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Summary 

Modern chemical plants have complicated unit operations with considerable 

recycles. The complex controls and instrumentation installed often compensate and 

conceal faults, causing many faults in the process to remain undetected, until serious 

consequences occur. This thesis strives to explore new methodologies suitable for fault 

detection and identification (FDI) during transient mode of operations. Though the 

emphasis of this thesis is mainly on transient operations, the proposed methodologies 

are generic and can be applied to steady-state operations as well.  

A novel framework based on multi-agent approach has been developed for 

detecting and diagnosing faults in the process industries by integrating various data-

driven fault detection and identification techniques. Three major data-driven 

approaches, namely, self-organizing map (SOM), principal components analysis 

(PCA), and kernel density estimator (KDE) were extended in this thesis to the domain 

of transient operations. 

The SOM belongs to the category of unsupervised neural-networks and is able 

to project high-dimensional data to two dimensions. The proposed SOM methodology 

utilizes cluster analysis approach for data representation, in which process operations 

(both steady-state and state transition) can be tracked and abstracted as a one-

dimensional sequence. These sequences provide a unique signature for a given 

operation and are used for identifying known process faults based on syntactic pattern 

recognition.   

The PCA approach has been popular in process monitoring. However, an in-

depth analysis of PCA-based approaches reveals that the method is unsuitable for 

transient states since the associated statistics for monitoring are prone to errors during 

these mode of operations. These shortcomings are overcome through a novel modeling 
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strategy based on multiple overlapping PCA models. This allows each model to 

overlap with its neighbors to enable continuity in modeling transient operations. An 

optimal PCA model is then chosen at every instant for online monitoring.  

A new monitoring statistic has also been proposed based on KDE to substitute 

the widely used Hotelling’s 2T  statistic for monitoring of transient operations. Since 

Hotelling’s 2T  statistic is based on F-distribution in data density modeling, it is 

unsuitable for transient operations. Therefore, a KDE-based statistic, which does not 

require a parametric model, is proposed. The KDE-based statistic can be used with any 

arbitrary distribution, and is suitable for most process operations. 

Finally, a collaborative, software multi-agent based framework is developed to 

integrate these heterogeneous FDI methods. The framework, which is designated as 

Collaborative Agents for Managing Efficient Operations (CAMEO), contains different 

FDI methods, each modeled as a software agent in an interactive multi-agent 

environment. Each monitoring agent observes the process in real-time and flags 

abnormalities independently. Collaboration among these methods is achieved through 

a standardized communication formalism. The resulting conflicts between the agents 

are resolved through decision fusion algorithms that consider the results of FDI agents 

and fuse them. The decision fusion strategy is the logic for enforcing consistency 

among different agents within CAMEO and the bedrock for the collaboration 

mechanisms. Extensive testing of the proposed method to multiple case studies 

demonstrates the method’s ability to reduce both Type-I and Type-II errors, and speed 

up time of fault detection and diagnosis considerably compared to any single 

application of FDI technique. The four developments reported above have been tested 

extensively using various case studies – the Tennessee Eastman problem, pilot scale 

distillation unit startup, and a simulated fed-batch operation. 
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Chapter 1 Introduction  

1.1 Introduction to Monitoring and Fault Diagnosis 

 As chemical plants and refineries grow in complexity, the process of detection, 

diagnosis and correction of abnormal situations becomes increasingly difficult for 

plant engineers and operators. Modern chemical plants have long sequential unit 

operations with considerable recycles. The complex controls and instrumentation 

installed often compensate and conceal faults. Consequently, most faults in processes 

are often remain undetected until serious consequences occur, i.e., shutdowns, 

equipments malfunctions, or catastrophic accidents such as fires or explosions. 

Methods of fault detection and diagnosis that improve unit availability, and reduce 

maintenance costs thus merit serious attentions (Himmelblau, 1978).  

 The chemical industries have rated abnormal events management (AEM) as a 

major problem with huge economic impact every year. Early detection and diagnosis 

of process faults while the plant is still in a controllable region can prevent progression 

of abnormal events into accidents and the resultant losses. From an economic 

viewpoint, Nimmo (1995) reported that approximately 20 billion dollars of annual 

losses in U.S. was due to poor Abnormal Event Management (AEM) while Laser 

(2000) reported that the impact of AEM on British economy was estimated at 27 

billion dollars. Industrial statistics also show that minor accidents are very common, 

occurring on a day-to-day basis, causing injuries, illness to plant personnel, and costing 

investors billions of dollars each year. It was also reported that about 70% of the 

industrial accidents are caused by human errors (Bureau of Labor Statistics, 1998; 

McGraw-Hill Economics, 1985; National Safety Council, 1999; Venkatasubramanian 

et al., 2003a). The severe consequences of abnormal events on humans safety and 
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economics offer motivation for this PhD work, which aims to resolve the difficulties 

faced by people in the process industries. The main area of investigation for major part 

of this thesis centers on the more challenging transient operations. Definitions for some 

of the important terms in this thesis are first established before a more thorough 

discussion on transient operations.  

• Transitions: Operations that induce large changes to plant operating conditions. 

The magnitude of the state-variables usually alters significantly when a process 

undergoes transition.  

• Modes: Operating regions correspond to steady-state operations. The variables 

magnitude often fluctuates within a small limit when a process is operating in a 

mode. 

• Fault: Any departure from an acceptable range of an observed variable or 

calculated parameter associated with a process (Himmelblau, 1978). 

• State identification: The task of locating the current process status, or state, 

based on measurable variables obtained from plant sensors. 

• Fault detection: The task of determining the health of a process. A process can 

be either in the state of normal or abnormal. 

• Fault diagnosis: The task of locating the root cause of an abnormal behavior, 

which constitutes the main reason for the deviations among process variables 

from the acceptable range of normal plant operations.   

• Fault candidate: A set of possible explanations for the plant’s abnormal 

behaviors. Explanations are usually derived using some analytical or artificial 

intelligence techniques. 

• Type-I Errors: False positives resulting from a fault detection or diagnosis 

algorithm, usually associated with the wrong prediction of abnormality.  
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• Type-II Errors: False negatives resulting from a fault detection or diagnosis 

algorithm, usually associated with inability to correctly detect or diagnose a 

fault. 

1.2 Introduction to Transient Operations 

 Increasingly, manufacturing facilities operate at a multitude of states and 

frequently switch between them. The switch from one state to another is termed as a 

process transition. Plant startups and shutdowns are common examples of transitions in 

the process and allied industries including refining, petrochemicals, paper & pulp, 

steel, and cement manufacture. Other transitions occur due to feedstock, throughput, or 

product slate changes as well as maintenance operations such as furnace decoking or 

absorber regeneration. Transient operations are also common in high-value added 

specialty and pharmaceutical plants which commonly operate in batch and fed-batch 

phases. Particulate operations such as crystallization, drying, filtration, etc, whose 

monitoring and control is becoming increasingly important in the pharmaceutical and 

formulated product industries, are also operated under transient states.  

 Process transitions commonly entail large changes in the plant operating 

conditions. Plant operators therefore perform transitions manually following 

predefined standard operating procedures (SOP), which clearly state the sequence of 

actions that need to be taken, e.g.: open or close valves, activate or deactivate 

equipments, reconfigure controllers, etc. However, owing to the lack of effective 

automation and the high cognitive load for operators, the occurrence of human errors 

during transitions is quite common. Survey conducted in the oil and gas industries also 

revealed that human errors, especially during transitions, are the leading cause of 

abnormal situations (Nimmo, 1995). A key feature of transient operations is that small 

changes in the plant operating conditions during critical periods can degrade the 
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quality of the final product; this is especially obvious in biological processes. Due to 

the numerous complexities in these modes of operations, effective techniques for 

online monitoring are essential since timely corrective action can prevent fault 

propagation and allow a batch or product to be saved. Furthermore, online monitoring 

would also engender safe operations as the occurrence of abnormal events can be 

minimized. 

1.3 Challenges in Monitoring Transient Operations 

 Operators and control engineers face tremendous challenges during process 

transitions. These challenges range from day-to-day operational challenges to 

transition modeling and monitoring. Control and operation challenges relate to the 

difficulties faced by plant personnel when operating and maneuvering logic controllers 

and plant equipments during transitions. On the other hand, modeling challenges relate 

to the difficulties in developing models (either first principle or data-based) suitable for 

control and monitoring transitions.  

1.3.1 Control and Operation Challenges 

The control and operational challenges for monitoring transient operations are 

as follows: 

1) State and time-based events: Transient operations can be both condition and time-

based. The tasks to be followed are often governed by a prespecified condition, e.g.: 

pH reaches a certain threshold or a predefined “milestone” during operation. Other 

tasks may be associated with time based actions, e.g.: heating for a prespecified 

duration, fixed time crystallization, etc.  

2) Multivariate multi-scale processes: A process plant is usually observed through 

hundreds or thousands of sensors. Each recorded variable might display a trend that is 
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unique. Multi-time scale effects also become important where some variables change 

quickly (order of seconds) and others respond over hours. Consequently, monitoring 

and tracing the root cause in the event of a fault can be difficult.  

3) Inadequacy of regulatory control: Most current-day DCS are configured for steady-

state control and are not effective during process transitions. Therefore, it is very 

common for plant operators to perform transitions manually following standard 

operating procedures (SOP) and transfer the control to the automation system only 

upon reaching steady-state.  

4) Run-to-run deviations: In many occasions, a process run (especially in batch 

operations) might be completed much earlier or later compared to another, as operating 

practices might be very dissimilar due to differences in initial condition, impurity 

profile, etc. At times, even the strictest adherence to SOP by plant operators might 

result in deviations of final product quality due to such exogenous environmental or 

process factors (pharmaceutical processes).  

5) Manual operations: Operators need to attend to numerous tasks during process 

transitions, which include tracking of important trajectories, executing standard 

operating procedures, attending to important alarms, synchronizing actions with other 

operators, etc. In addition, operators need to constantly watch out for other business 

related factors which include: (i) minimizing operating cost, (ii) ensuring process is 

safely operated, (iii) adhering to emission limits, and (iv) ensuring final products 

adhere to regulatory specifications, and customers / consumers expectations. The 

resulting high workload of plant operators increases the likelihood of human errors. 
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1.3.2 Modeling Challenges 

The modeling challenges for monitoring transient operations are as follows: 

1) Nonlinearity and discontinuity: Transient operations often display nonlinear and 

discontinuous behaviors. Such behaviors obviate simple linear models and complicate 

the task of process model development.   

2) Non-stationary states: Process dynamics during transitions are often displayed as 

large changes in plant operating conditions with normal operation state as trajectories 

rather than a fixed setpoint. The switching of process modes or evolution of process 

phases often require different flowsheet configuration through shutting down or 

starting up new equipments. Consequently, constructing a comprehensive model for 

process monitoring during transient states can be difficult.  

3) Inability to model human interactions: Human interactions with the process are 

often complex and difficult to predict. There is a lack of modeling techniques to-date 

that can be used to detect and rectify abnormal operations caused by human errors. 

 The above challenges are unique to transient operations. Hybrid discrete-

continuous behavior of the process therefore has to be considered when monitoring 

these modes of operations. This thesis seeks to overcome the difficulties encountered 

during transient mode of operations. A formal description of the thesis objective is 

stated in the following section.   

1.4 Objective of Thesis 

 This thesis strives to explore new methodologies suitable for fault detection and 

identification (FDI) during transient mode of operations. Though the emphasis of this 

thesis is on transient operations, the proposed methodologies are generic and can be 

applied to steady-state operations as well. The FDI methodologies developed are 
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centered on data-driven approaches. The attractive features offered by data-driven 

approaches such as the ability to be scaled-up (deployed) in short duration when there 

are an abundance of information rich data, and their potential of finding wider range of 

applications (beyond the domain of chemical processes) are the primary motivations 

for their selection. A conceptually sound means of integrating heterogeneous FDI 

methods is sought to improve the performance of FDI during transient operations. 

Towards this end, an efficient and scalable multi-agent based methodology is sought to 

integrate the strengths of numerous FDI methods. Since each FDI method is 

computationally complex, an efficient means of speeding up the response time of the 

integrated FDI system is also desirable. 

1.5 Thesis Overview and Organization 

 The rest of this thesis is organized as follows. In Chapter 2, a categorization of 

existing FDI methods is presented followed by a literature review of various data-

based modeling techniques. Most methods in the literature are compared and shown to 

be inadequate for transient operations. There is hence a need to develop new 

methodologies capable of covering this critical region of plant operations. Three 

different data-driven approaches, namely self-organizing map, statistical process 

monitoring, and kernel density estimator are selected in this thesis for further 

improvements. The conceptual review of these methods are also presented. Since each 

FDI method exhibits strengths and drawbacks that are process dependent, there is a 

strong motivation for the development of a collaborative approach for FDI to bring 

together the strengths from different classes of FDI methods. The rationale for such an 

approach is based on the precept that the strengths of different methods can be brought 

to bear on the problem and the drawbacks of any individual method overcome through 

collaboration. 
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 The development of Self-organizing Map (SOM) to represent and compare 

process operations is a major contribution in this research work and is presented in 

Chapter 3 and Chapter 4. SOM belongs to the category of unsupervised neural-

networks and has been gaining much attention lately for its ability to project high-

dimensional data to two dimensions. The trained SOM can serve as a high-fidelity 

model of process operations and different types of operation can be visualized as a 

series of best matching units (BMUs). Steady-state operations are often represented as 

a cluster on SOM while transient operations are represented as trajectories. With 

additional clustering, process operations can be abstracted as one-dimensional 

sequences on SOM. The generated sequences provide an unique identity for a 

particular operation and can be used for identifying known process faults based on 

syntactic pattern recognition. The method also supports the detection and identification 

of novel faults based on the variable residuals while comparing two process runs: a 

reference run compared to the actual operation.  

 Principal Components Analysis (PCA) has been a popular method for process 

monitoring. Mathematically, PCA relies upon eigenvector decomposition of the 

covariance or correlation matrix to capture the major trends of process variables. 

However, in-depth analysis of PCA-based approaches revealed that the method is 

unsuitable for transient operations. Though PCA shows high accuracy in data-

modeling, its associated statistics for process monitoring are subjected to errors during 

transient mode of operations. The existing PCA-based statistics assume that the 

training data follows a standard normal distribution, which does not hold for most 

transient processes. The resulting consequences of such assumptions are a significant 

increase in Type-I and Type-II errors when these statistics are applied during 

transitions. In Chapter 5, an adjoined multi-dynamic PCA (ADPCA) modeling 
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approach is developed to overcome this shortcoming. The proposed technique uses 

multiple PCA models that are allowed to overlap with their neighbors to enable 

continuity in modeling transient operations. For online application, an optimal PCA 

model is selected at every instant for process monitoring. Extensive testing of the 

proposed method demonstrates the methods’ ability to reduce both types of errors 

(Type-I and Type-II errors) compared to existing PCA-based monitoring technique. 

Detailed comparison between the proposed ADPCA technique with some other 

popular variants of PCA, i.e., multiway-PCA and dynamic-PCA are also presented.  

 In Chapter 6, a Kernel-Density Estimation (KDE) based PCA approach is 

developed for fault detection and identification during transient processes. Density 

estimation is the construction of an estimation of the density function (data 

distribution) from the observed data. The conventional means for process monitoring is 

based on parametric form of density estimation, by assuming that the data will follow a 

known density function, i.e., normal, F-distribution, 2χ , etc. Appropriate bounds on 

the density model are used to select the confidence limits for monitoring. Unlike the 

parametric approaches, the KDE does not require any prior assumption of the data 

distribution, instead the density model is estimated from the data itself. In this chapter, 

the KDE approach is extended to the transient operation regime. A new monitoring 

statistic is proposed to substitute the widely used Hotelling’s 2T  statistic.  Hotelling’s 

2T  statistic follows a F-distribution in data density modeling, and is unsuitable for 

modeling transient operations. Since KDE is bi-variate in nature, different 

combinations of the latent variables can be unified and integrated for multi-

dimensional KDE analysis. An attractive feature of KDE is that it can be used with 

arbitrary distributions. The method can hence be generalized to most process 

operations, i.e., in both the domain of steady-state and transient operations. Since 
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KDE-based monitoring statistic exhibits high accuracy in distinguishing data classes 

through unique confinement of data boundary, the KDE-based statistic is found to be 

very effective for fault identification.  

 Each FDI method has its corresponding strengths and shortcomings that are 

process dependent. A method that works well under one circumstance might not work 

well under another when different features of the process come to the fore. Since each 

developed FDI methods can be considered as an independent entity with similar 

objective (timely, accurate FDI during process operations), a collaborative, multi-agent 

based framework is developed in Chapter 7 to integrate heterogeneous diagnostic 

classifiers. A software agent can be viewed as an identifiable computational entity that 

automates some task or decision making to benefit humans. The framework developed 

in this thesis, which is designated as Collaborative Agents for Managing Efficient 

Operations (CAMEO), models each FDI method as an agent, located in an interactive 

multi-agent environment. Collaboration among these methods is achieved through a 

standardized communication formalism. The agents within the multi-agent framework 

can be distributed across a cluster of computer nodes to exploit multiple processors. 

Each agent communicates with other agents through message passing, this allows the 

integration of computationally demanding FDI methods.   

 When multiple FDI methods are used in parallel, a conflict resolution strategy 

is needed to arbitrate among the contradictory decisions proposed by the various FDI 

methods, so that one consolidated solution can be presented to the plant personnel. The 

resulting conflicts within the multi-agent system can often be resolved through 

decision fusion where incongruous opinions among the FDI agents are weighted and 

fused. Three of the popular decision fusion strategies, namely, voting, Bayesian-
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combination, and Dempster-Shafer fusion approaches are studied in Chapter 8. The 

strengths and shortcomings of each decision fusion strategy are critically evaluated.  

 Finally, a summary of the research is presented in Chapter 9 along with 

recommendations for future work in the area of fault detection and diagnosis. Some 

comments on the integration of the proposed work with other parts of plant operations 

are also provided.      
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Chapter 2 Literature Review 

2.1 Monitoring of Transitions – An overview  

 Operations of a process can be classified into modes and transitions. A mode 

corresponds to the region of continuous operations under fixed flowsheet conditions; 

i.e., no equipment is brought online or taken offline. During a mode, the process 

operates under steady state and its constituent variables vary within a narrow range 

(Srinivasan et al., 2004). In contrast, transitions correspond to large changes / 

discontinuities in the plant operations; i.e., change of setpoints, turning on or idling of 

equipments, maneuvering manual valves in a plant, etc. Due to the large alterations in 

magnitude of the observable plant variables, process transitions thus induce additional 

complexity to the complicated task of monitoring and fault diagnosis compared to its 

steady-state counterpart (see Section 1.2 for more thorough discussion on process 

transitions).  

 Despite the abundance of literature on fault detection and identification 

(Venkatasubramanian et al., 2003a,b,c), only a few of these methods have been 

explicitly designed for process transitions. In this thesis, existing FDI methods for 

transient operations are categorized as two classes: namely qualitative models and 

quantitative models. The classification of the FDI methods is based on the functional 

form of the diagnostic model, i.e., methods that are based on abstracted, trend, and 

causal analysis of process data are categorized as qualitative methods, while methods 

that use statistical or mathematical means for analysis of process data are categorized 

as quantitative methods (see Figure 2-1). A review of some of these FDI methods is 

presented next.  
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Figure 2-1: Existing approaches for monitoring transient operations  

 
2.2 Taxonomy of Existing FDI Methods 

As noted in previous section, existing FDI methods can be broadly classified into 

two categories namely qualitative model-based and quantitative model-based methods. 

2.2.1 Qualitative Model-based Methods:  

 Qualitative model based methods include techniques such as trend analysis, 

rule-based systems and signed-digraphs. Trend analysis is based on the abstraction of 

process data into a set of trends (Cheung and Stephanopoulos, 1990). Monitoring is 

then performed on the identified trends, which are made up of primitives that describe 

the qualitative behavior of the process variables. Classical trend analysis approaches 

are based on monitoring an ordered set of primitives that describe the evolution of a 

process variable. When a fault occurs, process variables vary from their nominal 

ranges and exhibit trends that are characteristic of the fault. Hence, different faults can 

be mapped to their characteristic trend signatures. Extension of trend analysis to fuzzy 

reasoning is reported in Dash et al. (2003). However, the above mentioned trend 

characterization is not true during process transitions since each variable might display 

a different trend during different phases of the transition. There are also occasions 

where process exhibits different trends during transitions due to normal operating 

variations, thus complicating trend comparison. The same trends observed during 

different stages could have different implications. Classical trend analysis is therefore 
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not sufficient to monitor transitions adequately. Sundarraman and Srinivasan (2003) 

overcome the above problems through enhanced trends. In their approach, enhanced 

trends are composed of an ordered sequence of enhanced atoms. The later consists of 

shape, duration of trend manifestation, and magnitude of the starting and ending of a 

trend. The enhanced trends computed from real-time were compared to a trend 

dictionary computed offline from normal operating dataset. Three types of matching 

degrees: shape matching degree, magnitude matching degree, and duration matching 

degree were also introduced to facilitate trend comparison during transition. The main 

shortcoming of trend analysis is that it is designed for monitoring individual variables. 

For instance, it does not take into account the correlation between the variables in the 

process.  

 Rule-based systems, sometimes referred to as expert systems, use rules to 

perform monitoring. They are best suited to situations where plant operators have a 

good knowledge regarding the nuances of the transitions and the underlying process. 

Honda and Kobayashi (2000) used a fuzzy rule-based inference system for the direct 

control of batch operations. The process phase is first recognized by fuzzy inference, 

and then a fuzzy neural network based control system is used to control the batch 

process. They have illustrated their methods on three processes - mevalotin precursor 

production, Vitamin B2 production, and sake mashing. In Muthuswamy and Srinivasan 

(2003), a rule-based expert system is developed for automation and supervisory control 

of semi-batch fermentation processes. They characterized transitions using features in 

process variables and represented them as multivariate rules. These rules track the 

process across phases and automatically detect the current active phase using online 

data. Different monitoring rules are formulated for each phase of a transition. The rule-

based transition characterization method was shown to be robust to measurement noise 
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and easily comprehendible to the operators. Nevertheless, rule-based systems are 

process specific, and at times it might be hard to extract rules to adequately model 

complex processes. 

2.2.2 Quantitative Model-based Methods 

 First-principle models, statistical models, signal processing models, and neural 

networks are grouped under model-based systems. These are built either from first-

principles knowledge or using input-output data (Venkatasubramanian et al. 2003c). 

Bhagwat et al., (2003a) presented a non-linear model-based approach to monitor 

process transitions. Estimation of process states and residuals is achieved through 

open-loop observers and extended Kalman filters. To address the issues arising from 

the discontinuous nature of transition, the scheme uses knowledge of the standard 

operating procedure and divides each transition into phases. For the purpose of 

monitoring, each phase is associated with a model component and different filters and 

observers are selected for fault detection in that phase. However, accurate models of 

highly complex processes operating in multiple regimes are seldom available and 

difficult to develop, thus limiting their practical applicability. Multiple model-based 

approaches have therefore been used to model, control, and monitor transitions. 

Banerjee and Arkun (1998) proposed a strategy to control transient processes through 

an identification method that builds linear models for different operating regimes, and 

then interpolates nonlinear models in between these local models to match plant 

dynamics during transitions. Kosanovich et al. (1997) designed different linear 

controllers for different operating regions of a reactor. A supervisory control strategy 

that assesses plant-model mismatch was used to determine the switching logic when 

different scheduling policies are demanded. The use of multi-linear models to predict 

process trajectory during fermentation is illustrated by Azimzadeh et al. (2001). They 
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used Model Predictive Control (MPC) in cascade with PID controllers for driving the 

transition along the optimal trajectory. In Bhagwat et al. (2003b), a multi-linear model-

based fault detection scheme was proposed based on decomposition of operation of a 

non-linear process into multiple locally-linear regimes. Kalman filters and open-loop 

observers were used for state estimation and residuals generation in each regime. 

Analysis of residuals using thresholds, faults maps, and logic-charts enabled on-line 

detection and isolation of faults.  

 Signal processing methods can be applied to analyze the normal/abnormal 

status of a process by comparing the online profile of process variables with those of 

previously known runs. The underlying methods perform time synchronization 

between process signals from different runs before comparing them based on 

predefined similarity metrics. Methods for signal processing include dynamic time 

warping (DTW) and dynamic programming (DP). DTW originated from the area of 

speech recognition and has found application in the chemical engineering domain 

recently. Some applications of DTW for process monitoring can be found in Gollmer 

and Posten (1996) and Kassidas et al. (1998a,b). One known shortcoming of DTW is 

its high computational cost which grows exponentially with the length of process data. 

This can be minimized by using landmarks such as peaks or local minima in the 

signals to reduce the complexity of signal comparison (Srinivasan and Qian, 2005). 

These landmarks, called singular points, can be used to align different runs. Singular 

points can be used first to decompose a long continuous signal into multiple, short, 

semi-continuous ones. DTW is subsequently applied on the short segments to perform 

monitoring during transitions. However, one known shortcoming of DTW algorithm is 

the essential requirement that the starting and ending points of the signals to be 

compared should coincide. Such shortcomings obviate their direct practice for online 
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applications since the points in the historical database that should be matched with the 

starting and ending points of the online signal are unknown. To overcome these 

shortcomings, Srinivasan and Qian (2006) proposed dynamic locus analysis which is 

an extension of the Smith and Waterman (1981) discrete sequence comparison 

algorithm for online signals comparison. 

 With the increasing availability of inexpensive sensors, the number of 

measured variables for most industrial processes easily ranges in thousands. This has 

lead to the popularity of multivariate statistical methods, which bring forth powerful 

means to monitor transitions. Principal components analysis (PCA) is one such 

multivariate dimensionality reduction technique that is widely used for developing 

data-driven models (Jackson, 1991). Applications of PCA and its variants for process 

monitoring can be found in Chiang and Braatz, (2003); MacGregor and Kourti, (1995); 

and Chen and Liu, (2002). Most of the reported work in multivariate statistical analysis 

is directed to processes where the correlation between the process variables remains 

the same. They are not directly applicable to transitions due to the statistical non-

stationarity of the process and time-varying dynamics. In order to overcome this, an 

extension called dynamic PCA (DPCA) has been proposed (Ku et al., 1995). In 

Srinivasan et al. (2004), DPCA has been used to classify process states based on 

historical operating data. Process data is first segmented into modes and transitions. 

Steady state modes are identified by using a moving window approach which is 

capable of rejecting outliers. A DPCA based similarity factor is used to compare 

transitions with historical data, which can be used for online FDI. 

 Neural-network based approaches are another popular area for fault diagnosis 

in continuous processes (Kavuri and Venkatasubramanian, 1993). They have been 

popular for classification and function approximation. Kapil et al. (2005) used neural-
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network to control a fed-batch yeast fermentation process. They tracked the trajectory 

of fermentation with a recurrent neural-network that allows online adaptation, and 

showed that such adaptation allows the network to be used over a wide region outside 

its training domain. In Fabro et al. (2005), recurrent neural-networks were used to 

identify process states and predict process behavior. Control actions for different 

phases of transition are provided through sets of fuzzy controllers. They illustrated 

their approach through a distillation-column startup case study. Theoretically, artificial 

neural networks can approximate any well defined non-linear function with arbitrary 

accuracy. But unfortunately, there is no universal criterion for selecting a specific 

structure of neural-network for a practical application. Usually the structure of the 

network is decided based on the input dimensionality and the complexity of the 

underlying classes. The construction of an accurate neural classifier for such 

multivariate, multi-class temporal classification problem suffers from the “curse of 

dimensionality”. To overcome the above drawbacks, Srinivasan et al. (2005a) 

proposed the use of two new neural network architectures, namely One-Variable-One-

Network (OVON) and One-Class-One-Network (OCON). In both structures, the 

original classification problem is decomposed into a number of simpler classification 

problems. The OVON uses a sub-state identification layer where a set of neural 

networks are used to identify simpler univariate, temporal patterns. A unification layer 

is subsequently used to infer the process state based on the sub-states, through multi-

dimensional, static pattern recognition. A state-identification layer is used to identify 

the presence or absence of a temporal pattern in multi-dimensions for OCON; the state 

of the process is inferred by analyzing the static, multi-dimensional outputs from the 

state-identification layer. Comparisons with traditional networks indicate that the new 

neural networks architectures are simpler in structure, faster to train, and yield 
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substantial improvement in classification accuracy. However, a priori knowledge of 

the sub-states of each variable is needed to derive the sub-state identification layer of 

OVON, which can be cumbersome for processes with large number of variables. High 

misclassification rate is also reported during state change when there is no clear 

separation between the states. Another way of improving classification accuracy of 

temporal patterns using neural-networks is to incorporate context-based information 

(previous process state). In Srinivasan et al. (2005b), a context-based neural network 

architecture called operating state identification neural-network (OSINN) was 

proposed for online state identification. They showed that feedback of context 

information to the input nodes of the network can improve classification accuracy.  

Subsequent sections within this chapter will review important concepts and 

literature that are deemed necessary for new FDI methodologies development in this 

thesis. 

2.3 Visualization Methods for Multivariate Temporal Data Analysis 

 Advancements in sensors and database technologies in chemical plants have 

resulted in the availability of huge amount of process data. Visual exploration methods, 

which facilitate humans to uncover knowledge, patterns, trends, and relationships from 

the data is hence crucial in understanding process operations, especially when multi-

state operation and transitions between them is common.  

 Visualization techniques use graphical representation to improve human’s 

understanding of the structure in the data. These techniques convert data from a 

numeric form into a graphic that facilitates human understanding by means of the 

visual perception system. The simplest approach by far is the coordinate plot using 

mutually orthogonal axis. However, this is useful only for 2- or 3-dimensional data. 
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Other techniques have been proposed to facilitate visualization of higher dimensional, 

including Andrews’ curves (Andrews, 1972) and Chernoff’s face (Chernoff, 1973). 

The Andrews’ curve forces all variables onto a two-dimensional curve by transforming 

each N-dimensional observation 1{ ,..., ,..., }i i in iNx x x x= to 

1 2 3 4 5/ 2 sin( ) cos( ) sin(2 ) cos(2 ) ...i i i i i if x x t x t x t x t= + ⋅ + ⋅ + ⋅ + ⋅ +  

 [ ]where -t π π∈ .   (Eq  2-1) 

Chernoff’s face uses different parts of the face such as ears, mouth, and eyes to 

represent different values observed from the data. However, these approaches have 

limited applicability to high-dimensional, temporal data.  

 The scatter diagram or scatter plot has been a popular tool for visualizing the 

correlation among multivariate data using two dimensional graphs by displaying all 

pairs of variables against each other (Rauwendaal, 1993). If the relationship between 

two variables is linear, the points on the corresponding subplot would fall on a straight 

line. An illustration is shown in Figure 2-2 based on 8 variables from the distillation 

column case study described in Section 4. The diagonal plots have been replaced by 

the histogram of the variable. From the figure, variables 1 and 2, 2 and 3, and 16 and 

18 appear to be linearly correlated, while no direct correlation is apparent between 

variables 6, 9 and 11. Scatter diagrams have been used for visualizing gene expression 

data by Zhang et al., (2003) and Craig et al., (2005). However, they have limited used 

even for correlation analysis as the number of subplots to be analyzed grows as 2CN . 

Consequently, more efficient techniques are required for high-dimensional data. 
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 Figure 2-2: Scatter plot of eight variables from the distillation column data 
 

 Parallel coordinates was first proposed by Inselberg (1985) and is based on a 

dual representation of the Cartesian coordinates. Each dimension in parallel 

coordinates is represented by a vertical line, so all the coordinate axis are parallel 

instead of being mutually perpendicular. Each observation is represented by locating 

its ith variable along the ith axis and connecting all the N points for the observation by a 

line. A high-dimensional dataset is then captured completely in a 2-dimensional 

envelope of the polygonal lines representing all the observations (Inselberg et al., 

1987). An example of parallel coordinates is shown in Figure 2-3 for the same 

distillation column dataset as above. Inselberg (2002) applied the parallel coordinates 

for mining operational data from a Very Large Scale Integration (VLSI chip) 

production plant. From the representation, operating conditions that give higher yield 

during manufacturing could be extracted visually. Albazzaz et al. (2005) used parallel 

coordinate to visualize multidimensional data from a wastewater treatment plant. 
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However, they concluded that automating the parallel coordinates method remains a 

difficult task, so it was not found suitable for on-line visualization of large scale data.  

 
Figure 2-3: Parallel coordinate visualization of the distillation unit startup 

  

 Principal Components Analysis (PCA) is a popular statistical technique for 

dimensionality reduction and information extraction. PCA finds combination of latent 

variables that describe major variation in the data (Jackson,1991; Wise et al., 1990). In 

general, only a few principal components are necessary to adequately represent the 

data. In such cases where the dimensions of multivariate data can be reduced 

effectively through PCA, visualization can be achieved through the biplot of the first 

few scores as they would explain the most important trends in the data. In Jokinen 

(1994), PCA was used for the visualization of an industrial continuous stirred tank 

reactor (CSTR) and distillation column. Six fault classes could be distinguished from 

the normal operation as clusters on a biplot. Sebzalli and Wang (2001) used a similar 
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technique to discover the various operating zones of an FCC process. Some other 

examples of PCA-based visualization can also be found in Mandenius et al. (1998) for 

visualizing state transitions in biopharmaceutical processes. Martin and Morris (1996) 

and Fourie and de Vaal (2000) applied it for process visualization and monitoring. 

Srinivasan et al. (2004) showed that for multi-state operations, process modes form 

clusters on the scores plot while transitions are depicted as trajectories. However, the 

use of PCA is not without limitation. Firstly, the linear approximation of PCA might 

not be sufficient to capture nonlinear relationships in the multivariate data. Also, often 

the first two or three principal components are not adequate for capturing all the 

important variance in the data, so depiction of observations in a 2- or 3-dimensional 

coordinate plot is not adequate. One solution for such cases is the use of parallel 

coordinates to visualize a larger number of scores as proposed by Wang et al. (2004). 

Finally, when multi-state operations are visualized, the scaling of each variable is 

dominated by the large variation during transitions; significant changes within a steady 

state would be obscured by the depiction. To overcome these shortcomings, a self-

organizing map based methodology is developed in Chapter 3 for visualizing high-

dimensional, multi-state operational data.  

2.4 Process Modeling with Self-Organizing Map 

 Most of the existing methods for FDI are based on supervised learning. 

Application of such methods during transitions can be difficult when the state/class 

information of process transitions is unavailable. Also, different operators might 

demarcate a process into different states based on their own interpretation, rendering 

state annotation a difficult operation. To overcome this, Self-Organizing Map that is 

based on unsupervised learning can be used when such state critical information is 

unavailable. 
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 The Self-Organizing Map (SOM) is an unsupervised neural network first 

proposed by Kohonen (1982). It is capable of projecting high-dimensional data to a 

two dimensional grid and thus can serve as a visualization tool. Self-organization 

means that the net orients and adaptively assumes the form that can best describe the 

input vectors (Kohonen, 1993). The SOM employs nonparametric regression of 

discrete, ordered reference vectors to the distribution of the input feature vectors. A 

finite number of reference vectors are adaptively placed in the input signal space to 

approximate the input signals.  

 Consider a dataset X containing I samples, each N-dimensional. X is therefore a 

2-dimensional matrix of size I x N, with the ith sample 1{ ,..., ,..., }i i in iNx x x x= . A SOM 

is an ordered collection of neurons. Each neuron has an associated reference vector 

n
jm ∈ℜ  so, { }1, ... , ...j j jn jNm m m m= . Consider a SOM 1{ ,..., ,..., }SOM T

j JM m m m=  

with J neurons, which has to be trained to represent and visualize X. This involves the 

calculation of the reference vector of every neuron. Initially, let each jm  be assigned a 

random vector from the domain of X. When a sample ix X∈  is presented to the SOM 

for training, the neuron whose reference vector has the smallest difference from ix  is 

identified and defined as the winner or the Best Matching Unit (BMU) for that input: 

 arg m in , [1 , ]i i jj
b x m j J= − ∀ ∈  (Eq  2-2) 

The distance  between ix  and jm  is measured here using the Euclidean metric, but 

other metrics can also be used.  

 The neurons in SOMM are usually placed in a two-dimensional grid. Let the 

location of the jth neuron be rj, where 2
jr ∈ℜ . A distance metric can be defined on the 

two-dimensional grid and all neurons up to a certain distance from the jth neuron 
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considered its topological neighbors jN  in the grid. This concept of neuron 

neighborhood is the key differentiating feature of SOM and is responsible for its 

unique properties (described below). During training, when each sample ix X∈  is 

presented, the reference vector of the BMU, 
ibm , as well as those of its topological 

neighbors in the grid are updated by moving them towards the training sample ix . In 

its simplest form, the SOM learning rule at the tth iteration is given as:  

 ( 1) ( ) ( ) ( ) ( ) ( )
ij j b j i jm t m t t h t x t m tα+ = + −  (Eq  2-3) 

where )(tα is the learning rate factor, and ( )
ib jh t  is a neighborhood function centered 

on the BMU ib  but defined over all the neurons in SOMM . The Gaussian neighborhood 

function is commonly used and is given by: 
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 (Eq  2-4) 

where )(σ t  is the neighborhood width. During training, the neighborhood width is 

varied from iteration to iteration by changing )(σ t .  A large value of σ  and α  is 

employed initially and is usually decreased monotonically with t (Kohonen, 2000). To 

guarantee convergence, it is necessary that as training proceeds and t → ∞ , ( ) 0tα →  

and ( )tσ  to a small value, typically 1. Other variants of the neighborhood function as 

well as training algorithms have been proposed in literature (Vesanto, 2002). 

 The updating of the reference vector of the neighborhood neurons along with 

that of the BMU’s provides the topology-preserving feature of SOM, i.e., the 

neighboring neurons are activated and learn from the training input ix  and thus acquire 

similar reference vectors. The neighboring units are thus, in a sense, more similar to 

each other and the trained SOM maps similar input samples onto nearby neurons.  
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 The training of the SOM requires the specification of two parameters – the 

number of neurons in the SOM, J and the aspect ratio of the two-dimensional grid. As 

recommended by Vesanto (2002), the following heuristic is used: 

 IJ 8=  (Eq  2-5) 

to specify the number of neurons and the square root of the ratio between the two 

largest eigenvalues of the covariance matrix of X to specify the aspect ratio. 

 Once the SOM has been trained, it can be directly used for classification of new 

samples. In this case, the index of the BMU can be considered as the class index. For 

any testing data ix , a class can be assigned by finding its BMU. The goodness of fit of 

a testing sample ix  to its BMU, ib , can be measured based on the quantization error 

(Vesanto, 2002):  

 
i

q
i i bE x m= −  (Eq  2-6)  

 The quantization error measures the goodness of projection. A large value of 

q
iE  indicates a large difference between the sample ix  and the identified BMU, ib , i.e., 

the ix  is not well represented by the SOM and is not very similar to any of the training 

samples.  

 The SOM can be used for visualization in two different ways. Firstly, the 

trained SOM can be thought of as a mapping from nX ∈ℜ  to 2-D. The neurons in a 

trained SOM are not equally distributed among the whole input space nℜ , rather more 

neurons are designated for regions with more samples in X (high density) and fewer 

ones for lower density regions in nℜ . Therefore, one way of visualizing clusters in X is 

by means of the distance between a neuron and each of its neighbors (Ultsch and 

Siemon, 1990).  

 ' ' 'jj j j jm m j= − ∈D N  (Eq  2-7) 
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The unified distance matrix (U-Matrix) visualizes the SOM by depicting the boundary 

between each pair of neurons by a color or gray shade that is proportional to their 'jjD . 

Alternatively, the average distance between the neuron and its neighbors can be used 

to color the neuron. 

 '
'

1 'j j j j
jj

m m j= − ∈∑D N
N

 (Eq  2-8) 

where, jN  is the size of the neighborhood (Ultsch and Siemon, 1990). Cluster 

borders are then indicated as “mountains” of high distances separating “valleys” of 

similar neurons. An example of a U-matrix is shown in Figure 3-1a of Chapter 3. From 

the U-matrix, three distinct clusters can be seen, as distinct valleys separated by 

mountains.  

 Secondly, clusters in the trained SOM can be labeled and directly used as a 

three-dimensional display to depict a new sample ix  from the space of X. This is 

particularly useful for identifying the class (cluster) of a new sample. The BMU 

corresponding to this new ix  is often referred to as its “hit”. If new samples are 

regularly available from an online process, the state of the process at a point in time 

can be identified from the hit; the evolution of the process state can also be visualized 

by the sequence of the hits, as discussed in Section 4.  

 SOM has been used successfully in diverse fields. A comprehensive review of 

SOM applications is reported by Kaski et al. (1998). Xiao et al. (2003) used SOM for 

microarray data analysis and visualization of transcriptional changes in tumors. López-

Rubio et al. (2003) adapted SOM for principal components analysis. Kolehmainen et 

al. (2003) used SOM to identify phases in the growth of yeast. While the previous 

applications of SOM are mainly for data clustering, recently SOM has also been 

applied to process monitoring and fault diagnosis. 
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 Deventer et al. (1996) demonstrated how disturbances in a froth flotation plant 

can be visualized with SOM. They tracked changes in operating conditions by utilizing 

features extracted from froth images and visualizing the degree of dispersion through 

SOM. In Chan et al. (2001), a constrained Kohonen network was proposed to 

overcome the problem of monitoring redundant sensors by constraining the weight 

vectors in the parity space. Srinivasan and Gopal (2002) showed that SOM can be used 

to extract features during the operation of a fluidized catalytic cracking unit. Jämsä-

Jounela et al. (2003) presented a SOM based fault diagnosis system for a smelter using 

heuristic rules. SOM was used to determine the coefficient for oxygen enrichment and 

detection of aggregations in various parts of the plant. Abonyi et al. (2003) applied 

SOM to estimate product quality in a polyethylene process. SOM was used initially for 

knowledge extraction of the historical data, and process monitoring was achieved 

through manual supervision of variables projection to SOM subspace. They also used 

SOM for quality estimation by incorporating quality information into SOM.  

 In Chapter 3 and Chapter 4, SOM-based visualization and FDI methods are 

described for diagnosing faults in transient operations. A SOM-based data 

representation structure is used to represent process operations.  

2.4.1 Dynamic programming approaches to discrete sequence 

comparison 

 The discrete sequence comparison problem is generally formulated as follows: 

given two long sequences, find the largest number of elements from one sequence that 

can be matched with those from the second while allowing for local variations in 

either. Several approaches have been proposed in literature including the dynamic 

programming based techniques of Needleman and Wunsch (1970) and Smith and 

Waterman (1981). The former performs a global alignment while the latter local. 
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Global alignment implies that the two sequences are aligned over their entire length, 

while local alignment requires discovering and aligning only a locally conserved 

subsequence.  

 The Needleman-Wunsch algorithm takes two input sequences, say  

1 2{ , ,..., ,..., }i IA a a a a=  and 1 2{ , ,..., ,..., }j JB b b b b= , and generates an alignment 

together with a score as an output. A distance between two sequences elements a and b 

is defined as ( , )d a b . Typically, each exact match gets a positive score, each mismatch 

gets a penalty; so ( , ) 0d a b ≥  if a b=  and ( , )d a b = −Φ  if a b≠ . In order to find the 

maximum matches between the two sequences, an alignment matrix, H of size (I+1) x 

(J+1), is setup, whose element ijH  measures the similarity between substring 

1 2{ , ,..., }iA a a a=  and 1 2{ , ,..., }jb b b . H is initialized with: 

 0iH i= ×Φ , [0, ]i I∈  (Eq 2-9) 

  0 jH j= ×Φ , [1, ]j J∈   (Eq 2-10) 

Other elements of H are calculated recursively as (Gusfield, 1997): 

  ( 1)( 1) 1 1 ( 1) ( 1)max( ( , ), , )i j ij i j i j i jH H d a b H H+ + + + + += + + Φ + Φ  (Eq 2-11) 

The last element of H, ( 1)( 1)I JH + + , is normally referred to as the score of an alignment 

and is a measure of similarity between A and B. The best alignment between the two 

sequences can be located by sequentially back tracing from this element until the first, 

11H , while selecting the best predecessor in each step. The Needleman-Wunsch 

algorithm has a computational complexity of O(IJ). 

The Smith-Waterman algorithm is a variation of the above and replaces Eq (2-9) and 

(2-10) with: 

 0 0 0i jH H= =  (Eq 2-12) 
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Therefore, local alignments become visible and the best matching subsequences can be 

identified from the highest score in the entire matrix (as versus the element IJH ). In 

this thesis, a sequence comparison based approach is propsoed for process monitoring 

and diagnosis.  

2.5 Process Modeling with Principal Components Analysis 

 Principal Components Analysis (PCA) is a popular statistical technique for 

process monitoring (Kourti, 2002). Mathematically, PCA relies upon eigenvector 

decomposition of the covariance or correlation matrix to capture the major tendencies 

of process variables. Let a mean centered dataset X be represented 

as 1 2 3{ , , ,..., }T
mX x x x x=  with I rows and N columns. The covariance matrix of X, is 

defined as:  

 ( )
1

TX XCov X
I

=
−

.  (Eq  2-13) 

 PCA linearly decomposes the data matrix X as the sum of scores, t , loadings, 

p  and a residual matrix e in the following way (Wise and Gallagher, 1996): 

 1 1 2 2 ... ...T T T T
k k K KX t p t p t p t p e= + + + + + + . (Eq  2-14) 

Here, K is the number of principal components that a user wants to retain. The value of 

K is at most equal to the dimension of X:  

 min( , )K I N≤ .  (Eq  2-15) 

The scores vector, t contains information on how the samples relate to each other, 

while the loadings vector, p contains information regarding the correlation among the 

variables. The p vectors are normally computed from the eigenvectors of the 

covariance matrix: 

 Cov( ) k k kX p λ p= ,  (Eq  2-16) 
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where kλ  is the eigenvalue  associated with eigenvector kp . The t , p  are then sorted 

in descending order with respect to kλ . The kλ are a measure of the amount of 

variance described by the kth principal components, or can be thought of the 

information being retained from the matrix X by pk. In most cases, only a few rows of  

kp  that capture enough variance of X need to be retained for process monitoring (Wise 

and Gallagher, 1996).  

2.5.1 PCA Associated Monitoring Statistics 

 Fault detection using PCA or its variants is achieved through monitoring of 

Squared Prediction Error (SPE) and/or Hotelling’s 2T  statistic. The SPE  measures the 

variation of a sample xi from the PCA model, i.e., lack-of-fit (Jackson and Mudholkar, 

1979): 

 ( )T T T
i i i i k k iSPE e e x p p x= = −1 . (Eq  2-17) 

The process is considered normal if α−< 1QSPEi , where α−1Q  denotes the upper 

control limit for confidence level, α−1  (Jackson and Mudholkar, 1979): 
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 The 2T  statistic measures the variation of the sample within the PCA model: 

 2 1 1T T T
i i i i iT t λ t x pλ p x− −= =  (Eq  2-19) 
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where 1−λ  is the diagonal matrix containing the inverse of the eigenvalues associated 

with K eigenvectors retained in the PCA model (Wise et al., 1990). An upper control 

limit 2
1 α−T  similar to α−1Q  can also be derived for the 2T  statistic (Jackson, 1991):     

 2
1

( 1) ( , , )K IT F K I K
I Kα α−

−
= −

−
  (Eq  2-20) 

where ( , , )F K I K α−  is a F distribution, α is the probability point, K and I-K are the 

numerator and denominator used in evaluating the degree of freedom.  

 
The SPE and 2T  monitoring statistics are complementary in nature, since the SPE  

measures the lack-of-fit while the 2T  statistic measures the variation of a sample 

within the model. Nevertheless, there have been suggestions that the use of a single 

index, rather than two different indexes, is preferrable in practice (Qin, 2003). A 

combined index for fault detection that combines SPE and 2T  statistics have been 

reported by Raich and Çinar (1996) and Yue and Qin, (2001). Raich and Çinar (1996) 

proposed a combined index called combined discriminant similarity index, iΦ , given 

as: 

 ))(1()( 2
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SPEΦ ii

i  (Eq  2-21) 

where ]10[  , ∈β . They further suggested that 1<iΦ  for a process to be considered 

normal. As an alternative, Chen et al. (2004) suggested synthesizing SPE and 2T  

statistics on a new bi-variate plot with their joint probability density function estimated 

through kernel density estimation. The joint projection technique was found to be more 

sensitive in detecting process fault and is able to reduce the number of monitoring 

charts used.   
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 There exist some variants of PCA methods termed Multiway-PCA and 

Dynamic-PCA (described in Appendix B). Previous literature on monitoring based on 

MPCA/DPCA for transient operations normally require the batch-length to be equal in 

order to rescale the online measurements at each time instant to reduce the occurrence 

of false positives, e.g.: Birol et al. (2002), Lee et al. (2004b), Chen and Liu (2002), 

Nomikos and MacGregor (1995), Rännar et al. (1998), etc. Monitoring limits which 

are generated based on fixed time approach might give reasonable performance if the 

underlying events are highly synchronized, e.g.: activation of fed-batch at fixed time-

point, all growth of microbiology to be consistent throughout, fixed duration of batch 

operation, etc. However, run-to-run variations are often significant in transient 

operations due to process environmental or human factors. For example, a low ambient 

temperature might cause a longer duration of heating for a process reboiler, different 

run lengths might occur due to unpredictable biomass characteristics, operation time-

lag induced by plant operators, etc. Such varying behavior cannot be adequately 

modeled by MPCA and DPCA techniques. To overcome these shortcomings, multiple 

models are needed for a more flexible monitoring of transient operations.  

2.5.2 Multi-model Approach for Process Monitoring  

 The use of multiple local models has been a popular approach in system 

identification (Böling et al., 2004), advanced control (Palma and Magni, 2004), and 

monitoring (Bhagwat et al., 2003b). In Chapter 4 of this thesis, a divide-and-conquer 

strategy is used to overcome the Type-I and Type-II errors outlined in the previous 

section by using multiple PCA models to monitor transient processes. Numerous 

benefits have been reported when such strategies are adopted to monitor multiple 

process modes. In the area of PCA, the use of distinct models for pattern recognition 

was first introduced by Wold (1976). The author suggested performing pattern 
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recognition based on modeling each distinct class by separate PCA models. While 

disjoint PCA models might yield greater accuracy during pattern recognition, their 

application to transient operations is prone to Type-I errors as these processes often 

follow a smoothly varying trajectory rather than abrupt changing from one state to 

another. Hwang and Han (1999) developed a method to monitor processes with 

multiple operating modes. Their method is based on clustering using a self-organizing 

map and a super-PCA model to capture the average covariance structure of the 

different modes. However, their approach is valid for modes that do not show strong 

nonlinearities, and the modes must be located near to one another in the PC subspace 

for the method to work. Lu and Gao (2005) showed that dividing a batch process into 

stages of different process characteristics could improve the quality of prediction of an 

injection molding process. Their method is based on a stage-based PLS modeling 

approach. The above methods used limited number of models for modeling processes 

that are not stationary. As an alternative, Rännar et al. (1998) built separate PCA 

models for each time slice of a batch data. They collected samples at each time interval 

across different batches of training data, and constructed a PCA model for each time 

interval. Online monitoring is then based on the PCA model created for a particular 

time instant. Such method of creating multiple PCA models requires every batch to be 

monitored have equal batch length, which is often not practical as run-to-run 

deviations can be quite common in practice. In summary, the existing PCA approaches 

with multiple models are limited to equal run-length, and inadequate handling of 

discontinuities, and thus prone to false positives. To overcome these shortcomings, a 

novel monitoring technique based on overlapping PCA models is proposed in Chapter 

4. As opposed to previous approaches, the proposed method is robust to varying run 



Chapter 2                                                                                            Literature Review 
_____________________________________________________________________ 

 -35-

length, gives good monitoring resolution, and sensitive to new operating regions (i.e., 

able to detect novel faults). 

2.6 Fault Isolation through Principal Components Analysis 

 In Chapter 5 of this thesis, a pattern recognition approach for fault isolation 

based on PCA augmented kernel density estimator (KDE) is developed. In literature, 

fault isolation in MSPC often relies on the monotonic increase/decrease of some 

function with respect to an appropriate measure. Two PCA-based approaches for 

generating such functions are based on angle discrimination, and statistical 

discrimination approaches.  

2.6.1 Fault Isolation based on Angle Discriminant 

PCA angle discriminant relies on comparing the angles of the latent variables 

of a faulty dataset with respect to another PCA model. Classification of fault classes is 

quantified through a similarity measurement, PCAS , which quantifies the resemblance 

in shape between two PCA models in the latent subspace (See Appendix C). PCAS  

measures the similarity between two PCA models based on the angles between the 

vectors of the first k PCs (Krzanowski, 1979). A modified form of PCAS  is given by 

Singhal and Seborg (2002) through weighting each principal component by the square 

root of its corresponding eigenvalue. A small value of PCAS  normally indicates low 

similarity between two models whilst large value signifies high similarity. 

Applications of PCAS  for fault diagnosis can be found in Raich and Çinar (1997), 

Singhal and Seborg (2002). However, one major drawback with angle-based 

discriminant is the difficulty in selecting window width from any given dataset. A 

snapshot collected from real-time is often an incomplete signal of a fault class. The 

non-availability of extensive fault data usually leads to poor recognition rate even 
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though the right class of fault is selected for comparison. As a solution, statistical 

discriminants which do not require the specification of snapshot can be used. 

2.6.2 Fault Isolation based on Statistical Discriminant 

 Statistical discriminants based on Q statistic and T2 can be used to characterize 

the similarity between various dataset. If a comparison of similarity is needed between 

two datasets, denoted S and H here respectively, a PCA model can be constructed 

based on dataset of H. S can be classified as belonging to class H if the majority of 

SPE and 2T statistic generated from S does not violate the upper control limit 

generated from PCA model of class H. When a dataset is compared against J fault 

classes, J number of PCA models is usually generated with their frequencies of in-

control status (SPE and 2T ) quantified. Such method of fault discrimination has been 

termed as fault reconstruction by Dunia and Qin (1998). If the PCA model shows good 

representation of the fault classes, 2T statistic can be used to discriminate the fault 

classes. If the important variations for discriminating faults are contained in the 

residual space, fault model that minimizes Q statistic can be identified. Alternately, if 

the variations are seen in both the score and residual space, then the fault candidate cF  

that minimizes the combined discriminant among W fault classes, 1,..., ,...,w WF F F , can 

be chosen (Yue and Qin, 2001): 

 2 2
1 1arg min [ / ] (1 )[ / ]c

w ww
F b T T b SPE Qα α− −= + −   (Eq  2-22) 

where b  is a weighting factor between 0 and 1. If the majority of fault samples 

identified shows: 

  2 2
1[ / ] 1wT T α− <<  and 1[ / ] 1wSPE Q α− <<   (Eq  2-23) 

the observation is deemed a good match to the fault class w identified (Chiang et al., 

2001). Fault discrimination based on SPE and 2T  has been reported to be effective in 
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the domain of continuous processes (Qin, 2003; Dunia & Qin, 1998; Chiang et al., 

2001), as the training data is usually composed of single mode of operation, where any 

deviation from the targeted mode is usually considered faulty. However, when a 

process undergoes transition, the magnitude of most variables vary considerably. 

Process transitions contravene the necessary conditions for application of conventional 

methods for statistical discriminant, i.e., Hotelling’s 2T  statistic. Such deviations often 

cause significant Type-I and Type-II errors. As an illustrative example, consider the 

trajectory produced from a time-varying fermentation process and represented in the 

PC subspace as shown in Figure 2-4. Hotelling’s 2T statistic (Eq 2-12) quantifies the 

deviation from PCA models through a F-distribution (shifted normal distribution) of 

the training data, which corresponds to an ellipse in the PC subspace. As can be seen 

from Figure 2-4, the normal operating data is not fully bounded with Hotelling’s 2T . 

The use of %1=α  (99% confidence, i.e, 2
0.99T  ) still dictates a large portion of the 

normal operating data as faulty (false positives). In this example, the rate of false 

positives is 9.06% contributed from regions t=[1 49], [84 87], [94 100], [790 806]. 

Apart from the high rate of false positives, Hotelling’s 2T is also prone to false 

negatives during transient operations. As shown in Figure 2-4, the statistic 

misclassifies operating spaces not belonging to the training data, which might be 

abnormal region. In Chapter 5 of this thesis, the class separability of temporal data in 

the score space is explored based on Kernel Density Estimator to overcome the 

shortcomings of Hotelling’s 2T  statistic.  
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Figure 2-4: Limitations of Hotelling’s 2T  statistic  

 

2.6.3 Nonparametric Bounds for Pattern Recognition with KDE 

 Kernel Density Estimator (KDE) is a density estimation technique which 

creates bounds based on the training data without the imposition of any priori 

assumption of density distribution of the training data (distribution of training data 

during transition is often not known to control engineers and difficult to predict). The 

monitoring bounds constructed can thus describe the behavior of process transitions 

more accurately. 

 KDE is a data-driven technique to estimate the density contour of a function. 

The main motivation for applying nonparametric approach to monitor transient 

operations is straightforward, i.e., when the dataset is showing no discernible 

functional form, then one would want to let the data decide which function fits them 

best. The basic algorithm of nonparametric density estimation was first introduced by 

Fix and Hodges (1951) when they addressed the problem of statistical discrimination 
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when the parametric form of the sampling density is not known. Several improved 

algorithms and alternative theoretical modes of analysis were later introduced by 

Rosenblatt (1956), Watson and Leadbetter (1963), Epanechnikov (1969), and Wahba 

(1971). The practical applications of nonparametric density estimation can be found in 

Scott (1979) and Silverman (1978).  

A non-parametric model gives better indication of features such as skewness 

and multimodality in a dataset which is usually unavailable from parametric model. 

Consider a N-variate data X with I samples given by 1( ,..., ,..., )T
i IX x x x= , and a 

generic vector N
ix ∈ℜ  having representation 1( ,..., )i i in iNx x x ,...,x= . The N-

dimensional kernel density estimator for X, f̂ , can be expressed as (Wand and Jones, 

1994): 

 1

1

ˆ ( , ) ( )
I

h i
i

f x h I K x x−

=

= −∑  (Eq  2-24) 

where h is a symmetric positive definite NN ×  matrix called the bandwidth matrix, 

  1/ 2 1/ 2( ) | | ( )hK x h K h x− −= , (Eq  2-25) 

and K is a N-variate kernel function satisfying  

 ∫ = 1)( dxxK . (Eq  2-26) 

 The bandwidth matrix is an important parameter in determining the final form 

of the density model and is described further in Appendix D. KDE methods have been 

popular in process monitoring though its application for disturbance identification has 

not been reported. Martin and Morris (1996) used KDE to generate confidence bounds 

for analysis of process data produced from a batch polymerization reactor. They 

showed that bounds generated from non-parametric approach was able to provide 

better accuracy in detecting faulty batches when visualized on the first two principal 
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components. The application of kernel density estimation to monitor a steady-state 

section of a glass melter is presented by Chen et al. (2000). They evaluated three 

bandwidth selector techniques, namely, MISE, adaptive MISE (AMISE), and biased 

asymptotic MISE (BAMISE) techniques. Their study showed that the BAMISE 

outperformed the other two methods in estimating data density for samples with small 

variation. Goulding et al. (2000) highlighted the issues of control under process 

uncertainty through KDE approaches. They used KDE to augment and support the 

functionality of closed-loop control for uncertainties caused by sensor errors. In 

Doymaz et al. (2001) nonlinear-PCA augmented KDE was used for real-time process 

monitoring. They executed their strategy in three steps: 1) noise suppression and 

outliers rejection through wavelet and moving median filter, 2) dimensional reduction 

through wavelet, and 3) pair-wise comparison of scores extracted from principal 

components through KDE. An approach for joint analysis of the 2T and SPE statistics 

for statistical process monitoring was introduced by Chen et al. (2004). The authors 

used KDE on the scatter diagram produced from T2 and SPE statistics in order to 

increase the sensitivity of both statistics. Lopes and Menezes (2004) used a non-linear 

principal components analysis for monitoring fermentation processes. They 

constructed a five layer auto-associative neural network for non-linear principal 

components extraction before KDE was applied to monitor the extracted latent 

variables. The application of KDE to monitor wastewater treatment process was 

described in Lee et al. (2004a) where independent component analysis was used to 

recover the source signals form a process data before KDE was applied to detect 

process faults.  

As described earlier, most KDE-based approaches for monitoring were usually 

conducted through inspection of the density contours produced on the 2D subspace of 
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the latent components. This usually involves looking at all possible pairs of latent 

components obtained. In Chapter 5 of this thesis, a method is proposed to combine the 

bi-variate KDE into a single, unified index by aggregating information from various 

combinations of the latent components obtained. Performance of the proposed index to 

disturbance detection and identification is also studied. 

2.7 Collaborative Decision Support with Multi-Agent System 

 A software agent-based framework is proposed in Chapter 6 to integrate 

various FDI methodologies into a coherent, unified system to support decision making 

during process operations. The term agent is defined as a computer system that is 

situated in some environment, and is capable of performing autonomous actions in that 

environment in order to meet its design objectives (Wooldridge and Jennings, 1995). A 

software agent can thus be viewed as an identifiable computational entity that 

automates some aspect of a task or decision making to benefit humans. Agent-based 

computing is regarded as the next significant breakthrough in software development 

with capabilities to perform autonomous actions in open, dynamically changing 

environment. It offers opportunities to solve a complex problem collaboratively using 

heterogeneous methods across multiple platforms. An agent is generally characterized 

by its underlying knowledge/methods, and is allowed to interact with other agents 

using a common agent communication language.  

 Agent-based computing has been used in various fields since its introduction in 

the early 90s. Some popular areas in which agent-based computing have been used 

include supply-chain analysis (García-Flores et al., 2000; Julka et al., 2002a,b), legacy 

systems integration (Allsopp et al., 2002; Sheremetov et al., 2004; Tabuada and 

Pappas, 2005), and information fusion (Tso et a., 2000).  
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 In the area of monitoring and fault diagnosis, Mangina et al. (2001) used multi-

agent approach to perform condition monitoring of industrial gas turbine startup 

sequences. Their agents used knowledge-based method to recognize the different 

phases of turbine operations. Abnormal operations of turbine were detected by placing 

appropriate linear threshold across state variables. The final diagnostic results were 

produced after validating the consistency with other sensors (implemented as Sensor 

collaborative agents and Meta-knowledge Reasoning Agent). Cho et al. (2003) 

developed an agent-based method to monitor network configuration. They 

incorporated their agents with different sets of knowledge-based reasoning systems to 

diagnose and recover known network faults. In Maturana et al. (2004), the multi-agent 

architecture was proposed to integrate various automation systems to control a chilled 

water system that is used frequently in US-navy vessels. Their diagnostic component 

includes a suite of data acquisition, signal processing, diagnostic, and prognostic 

algorithms. Under abnormal event, each agent can interrogate the diagnostic 

component of other agents to validate a fault hypothesis. In Ng and Srinivasan 

(2004b), the feasibility of combining different FDI methods based on multi-agent 

architecture was studied. They showed that various FDI methods can be integrated into 

a cohesive, and interacting entity through the introduction of an agent wrapper (see 

Chapter 6 for details).  

2.7.1 Needs for Collaborative & Distributed Agents 

 It is worth noting that each FDI method has its corresponding strengths and 

shortcomings that are process dependent. A method that works well under one 

circumstance might not work well under another when different features of the process 

come to the fore. A comparison of the strengths and shortcomings of these methods is 

shown in Table 2-1. As can be seen from the table, no single FDI method has the 
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capability to address the numerous facets of transient processes. Collaboration among 

heterogeneous methods is therefore needed to bring forth the benefits of each method 

to improve monitoring resolution and robustness of a FDI system. The rationale of 

such an approach is based on the precept that the strengths of various methods can be 

brought together to bear on the problem and the drawbacks of an individual method 

can be overcome through collaboration. 

 It has already been shown in the pattern recognition literature that a judicious 

combination of classifiers generally outperforms a single one (Al-Ghoneim and 

Kumar, 1998; Rahman and Fairhurst, 1999; Lin et al., 2003; McArthur et al., 2004). 

The main reason for combination of classifiers is based on the axiom that different 

types of classifiers can often compliment the shortcomings of others and hence 

improve classification performance through combined prediction. When diagnosing 

faults in complex processes, designing a perfect classifier for all possible scenarios can 

be difficult, and combining different fault diagnostic methods can be a good alternative 

by extracting different features from heterogeneous diagnostic classifiers. Combining 

multiple classifiers can also simplify the tedious process of parameters tuning. In most 

pattern recognition algorithms, the final model is affected by various parameters that 

need to be tuned offline. The objective of offline training is thus determination of the 

optimal parameters that minimizes prediction errors, e.g.: select optimal combination 

of variables, historical records in time-lag model, numerous thresholds, etc. Each 

combination could lead to different performance when the model is used online, and 

thus exhibit different prediction capabilities for different fault classes. One way to 

mitigate this problem is to train a group of classifiers, where each classifier utilizes 

different parameters to tackle a specific class of interest, and produces predictions 

based on the combination of all results (Lim and Harrison, 2003). 
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  The response time from a collaborative FDI system could constitute a 

bottleneck for its real-time applicability. Since most monitoring and fault diagnosis 

algorithms are computationally complex, a tremendous amount of computational 

resources would be required for monitoring and fault diagnosis, whereas the FDI 

results are often needed in real-time. There exist two main factors that contribute to the 

computational complexity in any FDI program: complexity due to algorithms, and 

complexity due to data structure. Algorithm complexity is caused by user commands 

that implement a high level of search activities at each iteration cycle. Some examples 

of such algorithms are dynamic time warping, dynamic locus analysis, and expert 

systems where a high number of CPU flops are needed. The data structure complexity 

is associated with the volume of data that need to be processed. Some simple routines 

can turn out to be extremely time consuming when the volume of data is high, e.g.: 

when iterating over a multivariate database of few hundred Gigabytes, the processing 

time for simple multivariate techniques such as principal components analysis (Wise 

and Gallagher, 1996) and partial least squares (Wold et al., 1989) approach could turn 

out to be significant. Consequently, the resulting collaborative FDI approach could 

easily overwhelm the load of a single processor. Such limitation is resolved in Chapter 

6 by integrating parallel computing method into the multi-agent framework by 

distributing the FDI methods (agents) across a networked computing cluster.  
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Table 2-1: Strengths and shortcomings of different FDI methods 

           Methods QTA Expert 
Systems 

PCA/PLS Kalman-
filters 

DTW/ 
DLA 

Neural 
Networks

SOM 

Multivariate Analysis × × √ × √ √ √ 
Speed of Detection √ √ √ √ √ √ √ 

Fault Isolation √ √ √ √ × √ √ 
Novel Fault Detection √ × √ × √ √ √ 
Explanation facility √ √ × × × × × 

Visualization of results × × √ × × × √ 
Recovery automation × √ × × × × × 
Ease of development √ × √ × √ √ √ 

Adaptation & Robustness √ × √ × √ √ √ 
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2.8 Decision Fusion Strategies for Conflicts Resolution 

 When multiple FDI classifiers are integrated, there is a need to synchronize the 

results generated from each FDI classifier with the conflicts among them resolved. The 

results synchronization in the proposed multi-agent framework through decision fusion 

is described in Chapter 7 of this thesis. Decision fusion is a subdivision of data fusion, 

which is defined as a multilevel, multifaceted process dealing with the automatic 

detection, association, correlation, estimation, and combination of data and information 

from single and multiple sources (DSTO, 1994). Decision fusion has been used in 

applications ranging from earth resource monitoring, weather forecasting, vehicle 

traffic control to military target classification and tracking, etc. The review paper from 

Clemen (1989) provides a good compilation of early work in the area of decision 

fusion, where the conclusions obtained from the decision fusion community were 

virtually unanimous: most authors reported dramatic performance improvements by 

combining multiple forecasters or classifiers. Hall (1992) distinguished the level of 

decision fusion into three categories, namely data-level fusion, feature-level fusion, 

and identity-fusion. Data-level fusion involves the process of merging data from 

coextensive sensors prior to analysis to eliminate sensing errors. Feature-level fusion 

combines different information from different sensors for identity declaration, while 

identity-level fusion performs class declaration by combining class specific predictions 

from different classifiers. This thesis focuses on decision fusion at the identity 

declaration level (Figure 2-5). The decision fusion process involves combination of 

predictions from different classifiers to achieve a joint declaration on data identity 

(classes) by merging predictions from all classifiers.  
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Input
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Figure 2-5: Schematic diagram of a decision fusion process involving N classifiers 
 

 In this thesis, existing approaches for decision fusion are classified into utility-

based and evidence-based methods. Utility-based methods provide the simplest way to 

fuse decisions. These methods do not utilize prior knowledge or evidence from 

previous predictions, but are based on some aggregating techniques which evaluate the 

combined utility functions generated from each classifier. Methods based on utility 

techniques include simple average, voting techniques, and their variants. Early studies 

in the area of economic variables estimation (Ringuest and Tang, 1987) showed that 

taking simple average from all forecasters gave higher accuracy in predictions as the 

error distributions from forecasters normally deviates evenly on the positive and 

negative side. A more popular form of utility-based approach is voting. There exist 

various variants of voting schemes, e.g.: plurality voting, approval voting, cumulative 

voting, borda count, etc. Each of these voting schemes differs in the way that the utility 

function is aggregated:  

1. Plurality voting: Plurality voting is a winner-take-all system that is currently 

used in most countries for election. During decision fusion, each classifier 

assigns votes for their desired candidates and the candidate that receives the 

maximum votes is declared the winner. The plurality voting technique is also 
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referred to as majority voting when a candidate requires more than 50% of the 

votes to be declared the winner.  

2. Approval voting (Brams and Fishburn, 1983): Each classifier votes for as many 

candidates as needed. Each candidate can receive at most one vote from one 

classifier, and the candidate receiving the greatest number of votes wins.  

3. Borda count (Saari, 1994): When the preference of ordering of each classifier 

are taken into account, the most preferred candidate receives n votes, while the 

second most preferred one received n-1 votes, and finally 1 for the least 

favored candidate. The candidate with the most number of votes is selected as 

winner.  

Applications of voting techniques to combine classifiers for handwritten numerals 

recognition can be found in Lam and Suen (1997), and Lin et al. (2003). 

 In contrast to utility-based techniques, evidence-based approaches use a priori 

information regarding the previous performance of each classifier to combine 

decisions. Two main approaches that form the backbone of many evidence-based 

approaches in the pattern recognition literature are the Bayesian and the Dempster-

Shafer methods. Bayesian technique is a popular method in evidence gathering and 

uncertainty reasoning by calculating the posteriori probability of an event. In Zheng et 

al. (2005), Bayesian-based fusion was used to integrate various image processing 

models for diagnosing diseases in endoscopic images. Results from different image 

analysis methods such as color segmentation, texture segmentation, and lumen 

detection, are combined to improve the accuracy of cancer detection. Rahman and 

Fairhurst (1999) proposed a decision combination strategy using a priori information 

sources for machine printed character recognition. They suggested constructing a 

knowledge base that incorporates  information of a dataset required by the regular 
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Bayesian approach for combining classifiers. In Foggia et al. (1999), threshold-based 

rejection criteria was proposed for Bayesian combination by using information 

regarding reliability of a classifier. They showed that introduction of rejection options 

for Bayesian combination reduces the rate of misclassification. In McArthur et al. 

(2004), three FDI methods have been combined based on Bayesian approach to 

diagnose faults within a transformer. They analyzed faults using k-means clustering, 

backpropagation neural-network, and user written rules, and showed that collaboration 

of FDI methods improve system performance.   

 The Dempster-Shafer theory, also referred to as theory of belief functions, is a 

generalization of the Bayesian theory of subjective probabilities (Shafer, 1990). The 

theory has been used to merge various types of classifiers. Instead of utilizing 

probabilities to address each question of interest as with Bayeisan theory, the 

Dempster-Shafer approach uses degree of belief collected from independent items of 

evidence (subjective probabilities) to merge two pieces of information. In Basir and 

Yuan (2005), Dempster-Shafer approach was used to locate faults in induction motors 

by combining time-domain, frequency-domain and statistical signal processing 

methods. Similar approaches were used in Yang and Kim (2006), where time-based 

and frequency-based features were first extracted from a motor by using two classifiers 

- vibration classifier and current classifier, before the final outputs were combined 

using Dempster-Shafer theory to generate final predictions of the motor faults. In 

Benouhiba and Nigro (2006), Dempster-Shafer method was used to resolve uncertainty 

in a multi agent-based cooperative system. Their proposed multi-agent system was 

able to extract rules to describe an environment from a rule database. Each rule was 

associated with a confidence value and the agents interacted with each other until a 

consensus was reached among all agents regarding the environment. Application of 
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Dempster-Shafer method to combine speech recognition classifiers is shown in Chan et 

al. (2006). The authors combined information from acoustic speech information with 

facial myoelectric signals and showed that decision fusion improved the robustness of 

speech recognizer under noisy conditions. In Chapter 7 of this thesis, three decision 

fusion methods (Voting, Bayesian-combination, Dempster-Shafer combination) are 

compared. 

 

Nomenclature  

Indices 

i  index used for process time representation (row of a given matrix)  

j index used for neurons within a self-organizing map model 

k index used for representing principal components 

n  index used for representing process variable (column of a given matrix) 

w index used for representing different fault classes 

Parameters 

1 an identity matrix 

I  number of samples for a given time-series data X 

J number of neurons within a SOM model 

K  number of principal components used for process modeling 

W total number of fault classes in a fault database 

β weighting function used to combine SPE and T2 statistic 

Variables 

bi best matching unit (BMU) on SOM for a given sample 

cα Standard normal deviation for upper (1-α) percentile in computing Q1-α 

Cov(X)   covariant matrix of a matrix X 
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ei residuals observed for xi with PCA modeling 

F an F-distribution 

Fc fault candidate that matches the signals from online measurement xi 

hbi(t) neighborhood for an identified BMU, bi, from sample xi during iteration t 

mj a neuron on self-organizing map, mj = {m1,...,mn,...,mN}  

MSOM a self –organizing map model 1{ ,..., ,..., }SOM
j JM m m m=  

pk kth principal component  

Q1-α upper control limit for SPE statistic 

r  the radius of the neighborhood function 

SPEi squared prediction error associated with PCA decomposition 

T2
1-α upper control limit for T2 statistic 

ti scores for xi from principal components projection 

Ti
2 Hotelling’s T2 statistic at time ith 

X a multivariate time series data 

xi ith samples from a multivariate time series data X 

α(t) learning rate at iteration t during SOM training 

λi diagonal matrix containing inverse of the eigenvalues for eigenvectors of 

cov(X) 

σ(t)  width of the neighborhood function used for SOM training at iteration t 

Фi combined discriminant similarity index observed for sample xi 
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Chapter 3 Multivariate Temporal Data 

Analysis using Self-organizing Maps – Visual 

Exploration of Multi-State Operations 

3.1 Introduction  

 Previous works on SOM have largely focused on exploiting the clustering 

capability of SOM for grouping multivariate data. In this chapter, the SOM is extended 

to visualize in real-time the multivariate samples originating from multi-state 

processes. A SOM-based methodology was developed to depict multi-state process 

operations. In the proposed representation, data from different process states (steady 

state and transient) demonstrate different characteristics in the SOM space. Steady 

states form clusters of adjacent BMUs while transient operation is reflected as a 

trajectory. Differences between two states can be observed easily based on the location 

and evolution of the BMUs.  

 A SOM has to be suitably trained to represent various process states. For robust 

visualization, the training of the SOM is performed using all available historical 

operations data – including those from steady state and transient operations during 

both normal and abnormal operations (Ng and Srinivasan, 2004). Using all process 

data for training enables the SOM to represent a wide range of operating conditions on 

the map. During training, the neurons on the SOM will orient themselves and evolve 

into a process map representing all the operating conditions in the training data while 

preserving the topology of the measurement space. The trained SOM model can then 

be used to visualize the process state in real-time.  
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3.2 Visualization of Process States 

 For visualizing process operations, data from online sensors, ix , are first 

projected on the trained SOM and the BMU of ix , 
ibm , identified. The location of 

ibm  

on the SOM indicates the current state of the process. As described in Srinivasan et al. 

(2004), process operation states can be classified into modes and transitions as 

manifested through the values and behavior of the measured variables. A mode 

corresponds to the continuous operation of the plant and corresponds to a fixed 

flowsheet configuration, i.e. no equipment is brought online or taken offline. During a 

mode, the process operates in a quasi-steady state and measurements should generally 

vary within a narrow range, although some variables may oscillate due to noise, 

instrumentation faults, or improperly tuned controllers. A transition corresponds to 

discontinuities in the plant operation, such as change of setpoint, opening valve, 

change of equipment configuration, turning on or idling equipment, etc, usually 

induced by operator actions. During a transition, at least one of its constituent variables 

would show a significant change.  

 Process modes and transitions display different characteristics on the SOM 

space. When a process is in a mode, all its variables have near-constant values. 

Therefore, online measurements from such a state should be projected on the same 

BMU. Noise and minor variations in process operation could result in projection of the 

online measurement to different BMUs, however these would be neighboring neurons 

because of the topology preserving feature of SOM training. Process modes can thus 

be identified when a high frequency of BMUs are found within a small neighborhood 

in the map. Process variables have significantly different values between different 

modes. So, different modes can be distinguished on the SOM based on difference in 

the BMUs.  
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 In contrast, process transitions are characterized by large changes in plant 

operating conditions. Such evolution of the variable values during the transition would 

cause the BMUs to traverse over a wide region in the SOM space. The transition can 

be visualized by connecting the successive BMUs and displaying the trajectory of 

process evolution. During transition operations, continuous variables and discrete 

variables have different effects over the trajectory. Continuous variables usually evolve 

from their original values to new target values over some period of time. For example, 

a heating operation will lead to increase in temperature from some initial value to a 

new value over a period of time. Such evolution of continuous variables would cause 

the BMU to advance through adjacent neurons, resulting in a smooth trajectory on the 

SOM space. However, discrete variables correspond to abrupt changes in plant 

operations such as opening or closing of valves, activating or deactivating of 

equipments, etc. Such changes can cause abrupt jumps to a BMU that is a significant 

distance apart, and thus would be exhibited as a discontinuous evolution in the 

trajectory. The transition trajectory on the SOM represents time in an implicit manner 

as it is produced based only on magnitude of the variables. An increase or decrease in 

the rate of change between two instances of the same transition would not be evident in 

the sequence of BMUs in the trajectory. This makes the representation robust to run 

length variations and is exploited in Section 3.3 for process monitoring.  

 Different transitions exhibit different trajectories in the SOM since they would 

start and end at different operating points; also the sequence of operations executed 

during different transitions would differ, hence the values of the intervening conditions 

would be different. These differences manifest themselves as differences in the 

trajectory on the SOM space. As a corollary, abnormal operations including wrong 

sequence of SOP execution, wrong procedures, wrong timing, and hardware failures 
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would also manifest themselves differently in the SOM space, leading to BMUs in 

abnormal neighborhoods. These can then be detected from the SOM visualization.  

3.3 Neuronal clusters  

 Next, consider the relationship between the process states and their depiction 

on the SOM map. Typically, the number of neurons is selected to be much larger than 

the number of states that the process would operate in. So the process states would not 

map to unique neurons. The jth neuron in the SOM corresponds to the process 

operating conditions whose mean is specified by mj. The same neuron would continue 

to be a BMU for all xi near this operating condition. A larger SOM with more neurons 

would offer finer resolution of operating conditions and is required to precisely 

visualize transition conditions and progression. However in large SOMs, even small 

changes in the operating condition would lead to different neurons (although in the 

same neighborhood) becoming the BMU, i.e., the “noise” absorbed by each neuron is 

low. To meet the conflicting requirements of finer resolution and better noise 

absorbance, a second layer of abstraction can be defined by grouping neurons into 

neuronal clusters (see Figure 3-1b). 
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Figure 3-1: Representation of process operational data using (a) single neuron per state, and (b) neuronal clusters  

 

 

 

(a) (b) 
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Figure 3-2: Cluster-based representation of process transition  

 

(a) (b) 
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 A neuronal cluster is defined as a set of contiguous neurons in the SOM map 

with high similarity in mj. The neuronal cluster exploits the topology preserving feature 

of SOM training to provide a coarser representation of operating conditions and 

process states. Through this abstraction, as shown in Sections 3.3 and 3.4, different 

modes would map to unique neuronal clusters. The state can then be identified in real-

time based on the hit. A neuronal cluster is said to have a hit if any of its constituent 

neurons has a hit. This can be used to abstract the trajectory as shown in Figure 3-2, 

where the hits are visualized on the cluster centroid instead of the neurons, thus 

depicting the transition at a lower level of resolution.  

 Neuronal clusters are defined by clustering the neurons in the trained SOM 

based on their reference vectors. Let all the neurons in MSOM be grouped into K 

neuronal clusters { }1 2, ,... ,...k KS S S S . The assignment of neuron j to cluster k is 

specified by a membership function jku : 

 
1 if neuron  is assigned to cluster 
0 otherwisejk

j k
u ⎧

= ⎨
⎩

 (Eq  3-1) 

Any clustering technique can be used to specify jku . The k-means clustering algorithm 

has been used here, which identifies the K clusters so as to minimize the total squared 

distance, pε  (Seber, 2004): 

 
1 1

|| ||
K J

p j jk k
k j

m u cε
= =

= ⋅ −∑∑ , (Eq  3-2) 

where, kc  is the centroid of the kth neuronal cluster and is given by: 

 
1

J

k j jk
j

c m u
=

= ⋅∑  (Eq  3-3) 
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 The assignment jku  is usually found through a two-step iterative procedure, 

starting from a random initialization. In the first step, the jth neuron is assigned to the 

cluster with the nearest centroid, kc : 

 
ˆ

ˆ arg min( )

ˆ1; 0   if 

j kk

jkjk

k r c

u u k k

= −

= = ≠
 (Eq  3-4) 

In the second step, the positions of all K centroids is updated by Eq 3-3 which may 

necessitate changes in the assignment. The two steps are repeated until there are no 

further changes to jku  and the centroids become stable. Since the above procedure 

could terminate at a local minima, the procedure has to be repeated multiple (P) times, 

with different initial assignments. The subscript p in pε  signifies the total distance in 

the pth replicate of the procedure. The assignment from the replicate with the minimum 

pε  is selected.  

 In the following sections, these characteristics of SOM are exploited for 

representation and visualization of high-dimension process operational data. 

3.4 Case Study 1: Visualization of distillation column startup 

operations 

Process description 

 The flowsheet of the pilot-scale distillation unit is shown in Figure 3-3. The 

column is of 2 meters height and 20 cm width and has 10 trays, where the feed enters 

at tray 4. The system is well integrated with a control console and data acquisition 

system. 19 variables comprising of all tray temperatures, reboiler and condenser 

temperatures, reflux ratio, top and bottom column temperatures, feed pump power, 

reboiler heat duty, and cooling water inlet and outlet temperatures, are measured at 10-
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second interval. Cold startup of the distillation column with ethanol-water at 30% v/v 

mixture is performed following the standard operating procedure (SOP) shown in 

Table 3-1. The feed passes through a heat exchanger before being fed to the column. 

The startup normally takes two hours and different faults such as sensor fault, pump 

failure, too high a reflux ratio, etc., can be introduced at different states of operation. 

The disturbances considered here are summarized in Table 3-2. Experiments for each 

disturbance were conducted and the operating data used to construct the plant 

historian. The 18 variables shown in Table 3-3 are measured at 10-second intervals.  

 
Figure 3-3: Schematic of the distillation unit set up 
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Table 3-1: Standard operating procedures (SOP) for distillation-unit startup 

Distillation column startup SOP 
1. Set all controllers to manual 
2. Fill reboiler with bottom product 
3. Open reflux valve and operate the column on full reflux 
4. Establish cooling water flow to condenser 
5. Start the power of reboiler heating coil 
6. Wait for all of the temperatures to stabilize 
7. Start feed pump 
8. Activate reflux control and set reflux ratio 
9. Open bottom valve to collect product 
10. Wait for all the temperatures to stabilize 

 
Table 3-2: Process disturbances analyzed for distillation unit startup case study 

Case Disturbance Type 
DST01 Reboiler power low Step 
DST02 Reboiler power high Step 
DST03 Feed pump high Step 
DST04 Feed pump low Step 
DST05 Tray Temperature Sensor T6 fault Random variation 
DST06 Reflux ratio high Step 
DST07 Reflux ratio low Step 
DST08 Bottom valve  Sticking 
DST09 Cooling water  Slow drift 
DST10 Low cooling water flow and feed 

pump malfunction 
Slow drift & Step  

 
Table 3-3: Variables used for monitoring of the lab-scale distillation unit startups 

 
Var Description Unit Range 
1. Tray 1 temperature °C 20.5 - 89.5 
2. Tray 2 temperature °C 20.7 - 90.1 
3. Tray 3 temperature °C 20.8 - 90.2 
4. Tray 4 temperature °C 20.6 - 89.8 
5. Tray 5 temperature °C 20.4 - 91.3 
6. Tray 6 temperature °C 20.5 - 91.6 
7. Tray 7 temperature °C 20.7 - 91.1 
8. Tray 8 temperature °C 20.5 - 91.4 
9. Reboiler temperature °C 21.4 - 90.9 
10. Top column temperature °C 20.5 - 88.8 
11. Cooling water inlet temperature °C 21.1 - 27.2 
12. Cooling water outlet temperature °C 21.2 - 33.3 
13. Condenser inlet temperature °C 21.1 - 77.9 
14. Feed temperature °C 23.6 - 28.4 
15. Reboiler power kW 0 - 2.0 
16. Feed pump speed RPM 0 - 199.6 
17. Reflux cycle time s 0 - 4 
18. Reflux ratio - 0 - 4 
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Visualization of Distillation-Unit Startup  

 The SOM-based visualization methodology described above is illustrated on 

the startup of a lab-scale distillation unit. The startup normally takes about two hours. 

The evolution of some of the key variables in one run is shown in Figure 3-4. 

 

Figure 3-4: Process state variables observed during a normal startup of the distillation 
unit 

 

 To obtain the training data, eleven runs– one normal and ten with the 

disturbances listed in Table 3-2, were conducted resulting in a total of 5615 training 

samples. These data were first normalized by auto-scaling each of the 18 variables. 

Next, a SOM was designed. From Eq 2-5, J was selected to be 600. PCA was 

performed on the training data and the ratio of the square root of the first two eigen-

values was found to be 3.07. This was used as the aspect ratio for the SOM leading to a 

map configuration of 43x14 neurons. A SOM with this configuration was trained with 
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all the training data and the average quantization error was found to be 0.303.  Then k-

means clustering with K=60 and P=1000 replicates was performed to identify neuronal 

clusters. The replicate with the smallest εp is shown in Figure 3-6, where all nodes 

belonging to the same cluster have been similarly shaded and labeled with the cluster 

number.  

 The available training data were then projected on the trained SOM to annotate 

it. Neuronal cluster 3 was found to correspond to the cold state and cluster 56 to the 

final steady state. This can be understood from Table 3-4 which lists the values of the 

18 measured variables for some of the cluster centroid. The centroid of cluster 3 has all 

its tray temperatures around room temperature. Similarly, at cluster 56, the tray 

temperatures are around 80–85 °C, the feed temperature is also higher (from 

preheating), and reflux ratio is about 1. For visualizing the startup transition, the online 

measurement from the normal startup run were projected on the trained SOM and the 

evolution of the hits tracked. There are three major phases during the startup – reboiler 

heating, evaporation, and column stabilization – before steady-state is established. The 

time evolution of the neuronal-clusters hits is labeled in Figure 3-6 and summarized in 

Figure 3-5. The startup operation begins at cluster 3 in this run with the column at the 

cold start state. When the reboiler power is turned on, its temperature (var 9) increases 

to the boiling point (~90 C° ). The lower tray temperatures also increase slowly and the 

hits evolve through adjacent clusters from 6→12→16→17→19→20→22→25. The 

increasing values of the temperatures are reflected in the centroids of the clusters as 

shown in Table 3-4. When the reboiler contents start boiling (around 80 °C), the 

temperatures throughout the column rise significantly. This leads to a smooth 

evolution of hits through clusters 26→27→29→32→33→37→43. Finally the column 

is stabilized by establishing the feed flow (var 16) and the hits move to clusters 
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47→52→54→55. Starting at t=3890s, the hits remain at cluster 56, indicating that the 

process has reached the final steady state. Data from the abnormal runs were also used 

to annotate the SOM. Figure 3-7 shows the various clusters that correspond to the 

various faults.   

 
Figure 3-5: Operating state identification based on SOM  

 
The startup transition demonstrates that continuous operations are exhibited as smooth 

trajectories on the SOM space wherein successive hits are in close proximity. Discrete 

events on the other hand are represented as abrupt jumps on the SOM. For example, 

when the feed pump is started at t=3410s, the hit moves across eight intervening 

neurons from a neuron in cluster 55 to another in cluster 56. Similarly, when the reflux 

ratio is changed from 0 to 1 at t=3430, the hits jump over three intermediate neurons.
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Table 3-4: Cluster centroids corresponding to various states of the startup transition 
Cluster id V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 State 

3 21 21 21 21 21 21 22 22 24 21 25 25 22 24 0.3 0 0 0 Cold Start 
6 21 21 21 21 21 21 22 22 27 21 26 26 22 24 0.7 0 0 0 Reboiler Heating starts 

12 21 21 22 21 21 21 22 22 33 22 26 26 22 24 0.9 0 0 0  
16 22 22 22 22 21 22 22 22 40 22 27 27 22 25 0.8 0 0 0  
17 22 22 22 22 21 22 22 23 49 22 27 27 22 25 0.8 0 0 0  
19 22 22 22 22 22 22 23 25 58 22 27 27 22 26 0.8 0 0 0  
20 22 22 22 22 22 22 24 28 67 22 27 27 22 26 0.9 0 0 0  
22 22 22 22 22 22 23 26 32 74 22 27 27 22 27 0.8 0 0 0  
25 22 22 22 22 23 25 31 41 80 22 27 27 22 27 0.8 0 0 0  
26 22 22 22 22 24 31 39 51 84 22 27 27 22 27 0.8 0 0 0 Evaporation starts 
27 22 22 22 22 27 40 52 64 87 22 27 27 22 27 0.8 0 0 0  
29 22 22 22 23 36 58 66 73 88 22 27 27 22 27 0.8 0 0 0  
32 22 22 25 34 60 75 77 80 89 22 27 27 22 27 0.7 0 0 0  
33 26 30 41 58 74 79 79 82 89 25 27 27 22 27 0.8 0 0 0  
37 45 57 68 74 78 79 80 83 89 37 27 27 22 27 0.8 0 0 0  
43 65 72 75 76 79 80 80 83 89 58 27 27 22 27 0.7 0 0 0  
47 76 78 78 78 79 80 80 84 90 76 27 28 22 27 0.8 0.6 0 0 Column Stabilization starts 
52 78 78 78 78 79 80 79 82 90 78 27 29 25 27 0.8 4.3 0 0  
54 78 78 78 78 79 80 79 82 90 79 27 30 31 27 0.8 6.2 0 0  
55 78 78 79 79 82 82 81 83 90 79 27 29 30 28 0.8 113.5 0.1 0  
56 79 80 80 81 86 86 85 87 90 80 27 28 27 28 0.8 114 2 1 Final Steady state 
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Figure 3-6: Trajectory of normal startup of distillation unit as projected on SOM  
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Figure 3-7: Visualization of various process faults on SOM
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Visualization of abnormal runs  

 Next, the use of the trained SOM for fault detection is described. The process signals 

for DST01 are shown in Figure 3-8 with the solid lines representing the signals for the 

abnormal operation while the dotted lines represent a normal run. The fault was introduced at 

t=10s. The online samples are projected on the SOM and its trajectory visualized as shown in 

Figure 3-9. The process can be seen to follow an abnormal trajectory from the beginning, 

with the hits evolving from cluster 3 to 38 instead of cluster 6. When the feed pump is 

activated (at t=5160s), the startup operation becomes unsuccessful as there is not enough heat 

supply to supplement the heat of evaporation. The temperature in most trays start to fall and 

the process trajectory is seen to move back toward the cold state (cluster 3). 

 
Figure 3-8: Comparison of process state variables during DST01 and normal startup 
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Figure 3-9: Visualization of process operation during run DST01 
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 During another run, a fault (human error) was induced at t=3530s when the 

reflux ratio was set to 2.5 times its nominal value. This leads to a reduction in product 

throughput and increases the load of the reboiler. In this run, samples prior to t=3540s 

broadly correspond to normal operation although there are minor run-to-run deviations 

(for example from t=2500s to t=3500s). The trajectory on the SOM absorbs these 

minor differences and the sequence of cluster hits remains the same. At t=3540s, when 

the fault is introduced, the SOM shows an abnormal hit on cluster 45 which 

corresponds to DST06. Although only two of the measured variables (var 17 and var 

18) reflect this fault, the variation can be clearly observed on the SOM space. This 

illustrates two key benefits of SOM visualization methodology, (i) dimensionality 

reduction – the operator does not need to monitor the different variables individually, 

rather the reduced 2-dimensional SOM map can reveal variations effectively, and (ii) 

diagnosis support – the abnormal hits serve as a signature of the fault, so the operator 

can quickly perform fault diagnosis based on the location of the hit on the annotated 

SOM. The latter can also be used for automated fault diagnosis as described Chapter 4 

of this thesis.  

 One key issue while forming the neuronal cluster is to determine the number of 

clusters. The number of clusters, K, affects the selectivity and sensitivity of SOM when 

it is used to track process operations. A larger K results in more neuronal clusters on 

SOM, and hence improves the system’s ability to represent different states (including 

disturbance classes). However, the SOM also becomes more sensitive with increasing 

K, and could result in false alarms. To evaluate the effect of K, the same SOM was 

clustered with various K values. For all K values in the range [40,70]K ∈  all the faults 

could be differentiated from the SOM visualization. The next section describes the 

application of the proposed visualization method to an industrial case study.  
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3.5 Case Study 2: Transition Identification & Visualization in an 

Industrial Hydrocracking Unit 

 The process analyzed in this section is the boiler of a Hydro-cracking Unit 

(HCU) in a major refinery in Singapore (Ng et al., 2006). Hydro-cracking is a versatile 

process for converting heavy petroleum fractions into lighter, more valuable products. 

The objective of HCU is to convert heavy vacuum gas oil (HVGO) to kerosene and 

diesel with minimum naphtha production. The simplified process flow diagram of the 

HCU is shown in Figure 3-10. The operations of the HCU considered are complex, and 

involves catalytic hydro-cracking reactions in a hydrogen-rich atmosphere at elevated 

temperatures and pressures. The HCU includes two sections, a reactor section and a 

fractionation section. Integrated to both these sections is a waste heat boiler (WHB) 

unit for heat recovery. This section illustrates the application of SOM for visualizing 

different operating states in the WHB unit. 

3.5.1 Analysis of operating data from Waste Heat Boiler  

 In this study, one month of operating data consisting of 21 measured variables 

from the WHB unit sampled at five-minute interval is considered. The data was auto-

scaled and used to train a SOM with 468 neurons and dimension of 1239 × . The 

trained SOM was then clustered with K = 70. The clustered SOM was annotated with 

the typical regions of operation. As can be seen from Figure 3-11, the WHB unit 

operates in 5 different modes, shown as M1 to M5. Analysis of the SOM showed that 

the unit underwent 7 different transitions during the period under consideration. Figure 

3-12 shows instances of four of these transitions. Next, the SOM is used to visualize 

transitions in the WHB. Mode M2 corresponds to the production of steam at 22T/hr, 

while mode M3 corresponds  a throughput of 14T/hr.  
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Figure 3-10: Process flow diagram of the refinery hydro-cracking unit 
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One instance of this transition is depicted as T23 in Figure 3-12 and requires 330 mins 

for completion. 

 The trained SOM was also used to visualize the operation during another 15-

day period. Data from this period was not used during the training and therefore 

demonstrates the SOMs generalization-ability. The mean quantization error for this 

period was 0.906, indicating that SOM provides a good representation for these as well. 

During this period, the plant was observed to operate in mode M3 for 83% of time, 

about 3% in M2 and 4% in M4. The process underwent transitions for a total of 32.5 

hours (~10%) during this period All the transitions could be easily visualized with the 

previously trained SOM.     

 For the purpose of comparison, the same data was visualized using PCA. The 

first three PCs captured 85.47% of the variance as shown in Figure 3-13. Data from the 

five modes identified from the SOM are shown in the biplot. In contrast to the SOM, 

the different modes of operation are not as clearly delineated by PCA.  
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Figure 3-11 : Operation map constructed for unit Waste Heat Boiler 
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Figure 3-12: Visualization of transition trajectories for the refinery WHB unit  
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Figure 3-13: Visualization of the WHB unit operation using first three scores 



Chapter3                                                                                             SOM Visualization 
_____________________________________________________________________ 

 -77-

3.6 Conclusions  

 Methods that enable effective visual exploration are crucial for extracting 

knowledge from complex, high-dimensional, temporal, multi-state data. In this work, 

the self organizing map has been shown to be capable of providing a method to reduce 

dimensionality and visually depict high dimensional process data in an intuitive 

graphic. Process operation can be represented in the SOM with each state – mode or 

transition – having a distinct representation. Process modes and transitions are mapped 

differently onto the SOM. Process modes, with its process variables exhibiting near-

constant values, are projected to a small neighborhood on SOM. In contrast, process 

transitions exhibit large changes in their variables, and are visualized as trajectory on 

the SOM by connecting the hits identified from SOM with lines. In cases where the 

underlying process has high noise levels, an additional layer of abstraction is desirable. 

In such cases, neighboring neurons are combined into a neuronal cluster which maps to 

a broad range of process operation.  

 Application of the proposed approach to two case studies - startup of a 

distillation unit, and operations of an industrial boiler within a hydro-cracker in a 

major refinery illustrate the benefits of visualization in extracting process knowledge 

even from complex, multi-state operations. Visualization of multi-state operations 

using the SOM results in a map of the process that has numerous uses. As 

demonstrated in the two case studies, values insights about the process operations can 

be obtained by analyzing historical operations data. The different states that the 

process operates in can be segregated. If multiple instances of the same state are 

present in the data, they can be compared. The trained map can also be used for real-

time state identification by identifying the location of the latest BMU on the annotated 

SOM.  
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 The SOM represents multi-state data as neurons on the SOM space that 

preserves the topological relationships of the measurement space. Differences between 

a node and its neighboring neurons are visualized through U-matrix. So dissimilar 

neighbors that would be distant in the original space are separated by nearby neurons 

separated by large U values, and depicted as dark mountains on the map. In contrast to 

traditional dimensionality reduction approaches such as PCA, which preserve global 

distances, the SOM dedicates neurons to an operating region only if it is present in the 

training data. It thus offers a more compact and rich representation of the operation 

which can be exploited for process monitoring as well, as proposed in the next chapter.  
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Nomenclature 
 
Indices 

i sample 

j,j’ neuron in SOM model 

n variable 

k, k̂  cluster 

p replicate in k-means clustering 

Parameters 

I total number of samples (rows) in X 

J total number of neurons in SOM 

K total number of neuronal clusters 

N total number of variables (columns) in X 

P total number of replicates for clustering 

Variables 

bi BMU for sample xi 

kc  centroids for kth cluster 

'jjD  distance between neurons j and j’ 

q
iE  quantization error for sample xi 

h
ib j  neighborhood function of bi 

SOMM  set of neurons 1{ ,..., ,..., }j Jm m m=  

mj reference vector of neuron j { }1,..., ,...,j jn jNm m m=  

jN  set of neurons that are topological neighbors of neuron j 

rj location of neuron j in two-dimensional grid 
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kS  kth neuronal cluster 

X training dataset { }1,... ,...,i Ix x x=  

xi ith sample in X { }1,..., ,...,i in iNx x x=  

jku  1 if the class membership of neuron j equal to k 

α learning rate factor 

pε  total cluster assignment distance in replicate p 

σ neighborhood width 
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Chapter 4 A Self-organizing Map based 

Methodology for Process Monitoring 

4.1 Introduction  

 This chapter describes a SOM-based methodology to detect and diagnose 

process disturbances during process operations. In the proposed approach, process 

operations (modes and transitions) are first represented in the SOM space. The SOM 

can serve as a high-fidelity model for any process operation. Steady states tend to form 

clusters of BMUs while transient operations are reflected as trajectories. Differences 

between two states can then be quantified based on the location and evolution of their 

corresponding BMUs. A method for comparing two trajectories and different means of 

performing disturbance identification are also presented. 

4.2 SOM for Process Operations 

 The SOM can be used to represent various process operations (Ng and 

Srinivasan, 2004a). The training of SOM is normally performed using all available 

data collected from previous operations, which includes data from modes and 

transition operations. The incorporation of all data enables SOM to represent a wide 

range of operating conditions on its topology map, and thus giving SOM better 

classification ability. During training, the neurons on the SOM will orient themselves 

and evolve into a process map representing all the operating conditions in the training 

data. Such a trained SOM can then be used to identify the process state in real-time. 

Data from online sensors, ix , can be projected on the SOM and the BMU, 
ibm , are 

identified. The location of 
ibm  on the SOM indicates the current state of the process.  
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 Process modes and transitions display different characteristics on the SOM 

space. When a process is in a mode, all its variables have near-constant values. 

Therefore, online measurements from such a state should be projected on the same 

BMU. Noise and minor variations in process operation could result in projection of the 

online measurement to different BMUs, however these would be neighboring neurons 

because of the topology preserving feature of SOM training. Process modes can thus 

be identified when a high frequency of BMUs are found within a small neighborhood 

in the map. Process variables have significantly different values between different 

modes. So, different modes can be distinguished on the SOM based on difference in 

the BMUs.  

4.3  Representing Process Operations using State-signatures 

 Consider the signal segment { }1,.., ,.., T
i IX x x x=  observed from a process as it 

operates in a specific state. Here, the ith element 1{ ,..., ,..., }i i in iNx x x x=  is the N-

dimensional measurement from the process at time i. As illustrated in Figure 4-1, each 

xi can be projected on a suitably trained SOM  1{ ,..., ,..., }SOM T
j JM m m m=  resulting in 

a hit on BMU bi . 

 { }arg mini i j
j

b x m= −  (Eq 4-1) 

 If the neurons in the SOM have been previously grouped as described in 

Chapter 3 into neuronal-clusters { }1,... ,...k KS S S S= , where [1, ]kS K∈ , a mapping 

jku between the neurons and the neuronal-cluster would have been established. Let ˆ
iS  

be the cluster-hit of xi , ˆ
iS  can be identified from the clustering space of the BMU of xi 

as:  
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 ˆ arg max( )
ii b k

k
S u=  (Eq 4-2) 

 As the process evolves with time, a sequence of cluster-hits 

{ }1
ˆ ˆ ˆ ˆ,..., ,...,X

i IS S S S= would be observed, corresponding to each ix in X. However, 

several xi in a small range would have the same ˆ
iS , so the sequence of cluster-hits 

would have repetitions. For efficient representation and comparison without 

consideration of timing differences, the repetition-free cluster sequence information is 

extracted from this sequence. The state-signature XΣ is the ordered set of hits across 

neuronal-clusters arising during X, ignoring consecutive hits on the same neuronal-

cluster. 1{ ,..., ,..., }X
r RΣ = Σ Σ Σ , where { }1,..., ,...,r k KS S SΣ ∈ , R I≤ . Typically, 

R I<< . The dwell-time rt  in a neuronal-cluster rΣ denotes the number of samples 

(hits) that map to the cluster. The dwell-time signature for X is the set of dwell-times 

ordered as per the neuronal-clusters in the state-signature. 1{ ,..., ,..., }X X X X
r RT t t t= . The 

derivation of XΣ  and XT from the sequence of cluster-hits has to consider two cases: 

Case 1: Cluster-hit continuation – when the cluster-hit for ix  is the same as that for 

1ix − , i.e.,  1
ˆ ˆ
i iS S −= : ˆ

iS  is not included in XΣ , only the dwell-time of 1
ˆ
iS − is 

updated. 1r rt t= + . 

Case 2: Cluster-hit change – when the cluster-hit for ix  is different from that for 1ix − , 

i.e.,  1
ˆ ˆ
i iS S −≠ : ˆ

iS is inserted as a new element in XΣ , i.e., { , }X X
iSΣ ← Σ
�

. A 

corresponding new entry is also included in { ,1}X XT T←  

 Two instances of the same transition with no variation in the temporal profiles 

of the measurements (except process noise) would have the same state- and dwell-

time-signatures. If the magnitude profile is the same between the two instances, but 
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different states persist for different durations (i.e., the two instances are not time 

synchronized) due to run-to-run or operator-to-operator variations, then their dwell-

time signatures would differ, but the state-signature would be the same. The state-

signature of two completely dissimilar transitions would be different since the 

sequence of cluster-hits would be distinct. This makes the proposed neuronal-cluster 

representation ideal for efficient transition monitoring and fault diagnosis.   

1 2 3 4 5 6Σ − Σ − Σ − Σ − Σ − Σ

5 13 19 17 15 14( )S S S S S S− − − − −
 

Figure 4-1: Abstraction of multivariate process data into state-signature 
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4.4 State-signature Comparison 

 The state-signatures can be used for online state identification. Consider the 

signal segment { }1,.., ,.., T
i IX x x x=  which is the last I samples from the multivariate 

process. This signal has to be compared with a collection of W reference signals in 

database Ψ to identify the one that best matches X.  Let { }1,..., ,...,
T

p PY y y y=  be one 

of the reference signals. Let 1{ ,..., ,..., }SOM
j JM m m m=  be a SOM that has been 

trained with all the signals in Ψ, and subsequently clustered using k-means. Let the 

state-signature of X be 1{ ,..., ,..., }X X X X
r RΣ = Σ Σ Σ  and that of Y, 1{ ,..., ,..., }Y Y Y Y

q QΣ = Σ Σ Σ . 

Since both X and Y are projected onto the same trained SOM as [1, ]X
r KΣ ∈  and 

[1, ]Y
q KΣ ∈ , the two can be compared.  

 A distance between XΣ  and YΣ can be defined as:  

 ( ) ( )
1

, ,
R

X Y X Y
r r

r
D d

=

Σ Σ = Σ Σ∑�  (Eq 4-3) 

 ( , ) || ||X Y
r q

X Y
r qd c cΣ ΣΣ Σ = − ,   , [1, ]X Y

r q KΣ Σ ∈  (Eq 4-4) 

If a more precise comparison including timing is necessary, TX and TY can also be 

compared to account for dwell-time in the different states.  

 ( )
1

,
X YR

X Y r r
Y

r r

t tE T T
t=

−
= ∑�  (Eq 4-5) 

 However, this does not account for small local variations between X and Y. 

Therefore, the direct comparison described above is of limited use for online 

comparisons. During online monitoring, since the real-time signal X is generated 

dynamically, it is incomplete and the corresponding start time and states vis-à-vis the 

reference signal is not known a priori. Also, noise and run-to-run variations could lead 
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to some differences in the state-signatures even from two instances of the same 

transition. Consequently, brute-force direct comparison of XΣ  and YΣ  is not suitable. 

Here, an efficient approach is devised using a concept similar to the local sequence 

alignment approach of Smith and Waterman (1981). The Smith-Waterman algorithm 

has to be extended to handle a characteristic specific to process operations – 

oscillations in measurements. Oscillations occur commonly in chemical processes due 

to a variety of reasons including disturbances, poorly tuned controllers, control valve 

problems, etc. These oscillations would be partly abstracted away by the state-

signature since a range of xi map to the same BMU and a set of BMUs map to the same 

neuronal-cluster. However, large oscillations would correspond to hits across two (or 

more) different neuronal-clusters – so there would be multi-element repeats in the 

state-signature, and the number of repeats could vary between two instances of the 

same transition. The Smith-Waterman algorithm considers repeats of single elements, 

but it does not adequately handle multi-element repeats. The algorithm is therefore 

extended to handle such cases.  

 The proposed state-signature comparison algorithm is based on a dissimilarity 

matrix derived from the principle of optimality and dynamic programming. The main 

steps in aligning the state-signatures for performing similarity analysis between two 

state-signatures XΣ  and YΣ   are: 

Step 1: Dissimilarity matrix initialization.  The first column and row of the 

dissimilarity matrix  H, whose size is Q R× , are initialized at this stage: 

 1 1( , )X Y
q qH d= Σ Σ , [1, ]q Q∈  (Eq 4-6) 

 1 1( 1) 1( , )X X
r r r rH H d− −= + Σ Σ , [2, ]r R∈  (Eq 4-7) 
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The reader would note that Eq (4-6) is similar to Needleman-Wunsch and Eq (4-7) to 

Smith-Waterman. This initialization ensures that a complete match is obtained for X 

based on a sub-sequence in Y. 

Step 2: Matrix propagation. Other elements of H are constructed recursively using 

distance between the centroids. As per the classical Smith-Waterman algorithm, three 

alternatives are considered for each ( 1)( 1)q rH + + .  

a) extending the alignment of X
rΣ  and Y

qΣ with a match between 1
X
r+Σ  and 1

Y
q+Σ ; 

b) allowing a missing element in Y, i.e., extend the alignment to 1
X
r+Σ  and Y

qΣ .  

c) allowing a missing element in X, i.e., extend the alignment to X
rΣ  and 1

Y
q+Σ ; 

and  

 In this chapter, the additional case of oscillation in the signals that is 

manifested as repeats in the online state-signature is considered. Repeats are 

eliminated while constructing the reference state-signatures YΣ during offline model 

development. Without loss of generality, only two-element repeats is considered in 

XΣ , i.e.,  

d) allowing the recurrence of the previous element in Y, i.e., match 1
X
r+Σ with 1

Y
q−Σ  

 The option that yields the lowest distance is selected as the value of ( 1)( 1)q rH + +  

 

1 1

( 1) 1
( 1)( 1)

( 1) 1

1 1

( , )

( , )
min

( , )

( , )

X Y
qr r q

Y Y
q r q q

q r X X
q r r r

X Y
qr r q

H d

H d
H

H d

H d

+ +

+ +
+ +

+ +

+ −

⎡ ⎤+ Σ Σ
⎢ ⎥
⎢ ⎥+ Σ Σ
⎢ ⎥=
⎢ ⎥+ Σ Σ
⎢ ⎥

+ Σ Σ⎢ ⎥⎣ ⎦

 (Eq 4-8) 

 Since the segment in YΣ  that matches the complete XΣ  was sought, the 

smallest distance between them is obtained as the smallest value in the last column, 

i.e., *q RH where 
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 { } [ ]* arg min , 1,qR
q

q H q Q= ∈  

 ( ) *,X Y
q RD HΣ Σ =  (Eq 4-9) 

In contrast to D�  above, D discounts minor mismatches and oscillations; hence D D≤ � . 

Step 3: Back-tracing. Once the alignment matrix H is fully computed, back-tracing can 

be used, if necessary, to recover the two aligned state-signatures, *XΣ  and *YΣ  from 

H. Here, the optimal predecessor is recursively identified starting from *q RH .  

4.5 Transition Monitoring and Diagnosis  

 The state-signature comparison algorithm proposed above can be used for 

transition monitoring and diagnosis as follows. When a transition is monitored in real 

time, the state-signature 1{ ,..., ,..., }X X X X
r RΣ = Σ Σ Σ  emanating from the process is 

compared with the reference signature for the normal transition, say YΣ . The process is 

deemed to have entered an abnormal state if there is a large difference in the sequence 

of neuronal-clusters or the dwell-times: 

 ( ) max,X YNormal D D
State

Abnormal Otherwise

⎧ Σ Σ ≤⎪= ⎨
⎪⎩

 (Eq 4-10) 

where, maxD  is a user-defined threshold. Comparison is performed with the W 

reference signals in the historical database Ψ when an abnormality is detected. The 

state-signatures for each of the fault candidates contain only the portion corresponding 

to the abnormal operating region. Therefore, XΣ is also truncated, retaining only the 

last one or more elements that do not match the previously known reference signature 

(Y). The truncated XΣ is compared with the signatures in Ψ. The fault is conclusively 

identified when exactly one of the reference signals, say ZΣ  in the database 

significantly matches the real-time signature. The specificity of the match is measured 
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using inseparability α, which is defined as the ratio of the distance of the best matching 

reference state-signature and that of the second-best one. A small value of α ( ≈ 0) 

implies that the real-time signal clearly matches a specific reference pattern while α≈ 1 

implies that the real-time state-signature cannot be differentiated from two or more 

reference patterns. The fault can be identified when α decreases below a user-specified 

threshold αmin. 

 ( ) ( )max
minFault ( , ) &

Unknown       Otherwise

X ZZ D D
State

α α⎧ Σ Σ ≤ ≤⎪= ⎨
⎪⎩

 (Eq 4-11) 

 An index called the maturity degree is also defined to measure the extent of 

progression of the fault at the time of detection. The maturity degree, Π, is the ratio 

between the number of clusters in *ZΣ (the signature of the fault as synchronized with 

XΣ ) and that in ZΣ  (the complete fault signature), at the time of fault isolation.  

 If max( , )X ZD DΣ Σ > , Z∀ ∈Ψ , the process can be said to be in a novel state. 

Some diagnosis support can be provided even in such cases by comparing the variable 

values between the online signal and the reference trajectory. The variable-residual, 

inδ , measures the deviation between the current measurement ix  and the closest 

operating condition expm  in the reference trajectory, Y , based on the set of neurons 

YM  in the state-signature YΣ :  

 { } ,
s.t.   1 ,Y

q

Y
j j

M m u j q
Σ

= = ∀  (Eq 4-12) 

The reference operating condition expm  that best corresponds to ix  is located from 

YM :  

 arg min || ||i jj
b x m∗ = − , Yj M∈   

 
*

exp
bm m=  (Eq 4-13) 
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The variable-residual, inδ ,  is then computed as the range normalized deviation 

between the current process measurement ix  and expm : 

 exp( )in in nδ x m= − , ],1[ Nn   =∀  (Eq 4-14) 

 The variable-residuals are thus similar to the contribution plot in PCA and can 

serve as an aid for fault isolation as illustrated in the case studies. A fault rectification 

strategy oriented towards minimizing the residuals can then be synthesized.  

4.6 Case Study 1: Disturbance Identification for Tennessee Eastman 

Process 

Process Description: 

The Tennessee Eastman (TE) plant (Downs and Vogel, 1993) is a popular test 

bed for process systems applications such as plant-wide control, optimization, 

predictive control, fault diagnosis and signal comparison. The TE process produces 

two products (G and H) and a byproduct (F) from reactants A, C, D, and E based on 

the following reactions:  

( ) ( ) ( ) ( )A g C g D g G liq+ + →  

( ) ( ) ( ) ( )A g C g E g H liq+ + →  

( ) ( ) ( )A g E g F liq+ →  

3 ( ) 2 ( )D g F liq→  

 The flow diagram of the process based on the control structure of McAvoy and 

Ye (1994) is shown in Figure 4-2.  The process has five unit operations: a two-phase 

reactor, a product condenser, a flash separator, a recycle compressor, and a product 

stripper. There are altogether 22 continuous process measurements (Table 4-1), 12 

manipulated variables and 19 composition measurements sampled less frequently.  
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 Table 4-1: TE process measurements and their base value 
Variable name Variable number Base case value Units 
A feed (stream 1) XMEAS (1) 0.2505 kscmh 
D feed (stream 2) XMEAS (2) 3664.0 kgh-1 
E feed (stream 3) XMEAS (3) 4509.3 kgh-1 
A and C feed (stream 4) XMEAS (4) 9.3477 kscmh 
Recycle flow (stream 8) XMEAS (5) 26.902 kscmh 
Reactor feed rate (stream 6) XMEAS (6) 42.339 kscmh 
Reactor pressure XMEAS (7) 2705.0 kPa gauge 
Reactor level XMEAS (8) 75.0 % 
Reactor temperature XMEAS (9) 120.40 °C  
Purge rate (stream 9) XMEAS (10) 0.3371 kscmh 
Product separator temperature XMEAS (11) 80.109 °C  
Product separator level XMEAS (12) 50.000 % 
Product separator pressure XMEAS (13) 2633.7 kPa gauge 
Product separator underflow (stream 10) XMEAS (14) 25.160 m3h-1 
Stripper level XMEAS (15) 50.000 % 
Stripper pressure XMEAS (16) 3102.2 kPa gauge 
Stripper underflow (Stream 11) XMEAS (17) 22.949 m3h-1 
Stripper temperature XMEAS (18) 65.731 °C  
Stripper steam flow XMEAS (19) 230.31 kgh-1 
Compressor work XMEAS (20) 341.43 kW 
Reactor cooling water outlet temperature XMEAS (21) 94.599 °C  
Condenser cooling water outlet temperature XMEAS (22) 77.297 °C  
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Figure 4-2: Flowsheet of Tennessee Eastman process 
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Table 4-2: Disturbance profile for TE process resulting from changes in base values of : (a) A feed during XD1; (b) reactor pressure 

during XD2; (c) reactor level during XD3; (d) reactor temperature during XD4; (e) compressor work during XD5 

 Target 
Time 
(min) Target 

Time 
(min) Target 

Time 
(min) Target 

Time 
(min) 

(a)         
XD1-A 1.20*Base value 180 1.40*Base value 190 1.60*Base value 200 1.0*Base value 780 
XD1-B 1.15*Base value 240 1.35*Base value 254 1.55*Base value 268 1.0*Base value 900 
XD1-C 1.10*Base value 300 1.30*Base value 318 1.50*Base value 336 1.0*Base value 1020 

(b)         
XD2-A 1.03*Base value 180 1.05*Base value 190 1.07*Base value 200 1.0*Base value 1020 
XD2-B 1.025*Base value 240 1.045*Base value 254 1.065*Base value 268 1.0*Base value 1080 
XD2-C 1.02*Base value 300 1.04*Base value 318 1.06*Base value 336 1.0*Base value 1200 

( c)         
XD3-A 1.05*Base value 180 1.10*Base value 190 1.15*Base value 200 1.0*Base value 780 
XD3-B 1.045*Base value 240 1.09*Base value 254 1.135*Base value 268 1.0*Base value 900 
XD3-C 1.04*Base value 300 1.08*Base value 318 1.12*Base value 336 1.0*Base value 1020 

(d)         
XD3-A 1.05*Base value 180 1.10*Base value 190 1.15*Base value 200 1.0*Base value 780 
XD3-B 1.045*Base value 240 1.09*Base value 254 1.135*Base value 268 1.0*Base value 900 
XD3-C 1.04*Base value 300 1.08*Base value 318 1.12*Base value 336 1.0*Base value 1020 

(e)         
XD5-A 0.95*Base value 180 0.90*Base value 190 0.85*Base value 200 1.0*Base value 780 
XD5-B 0.955*Base value 240 0.91*Base value 254 0.865*Base value 268 1.0*Base value 900 
XD5-C 0.96*Base value 300 0.92*Base value 318 0.88*Base value 336 1.0*Base value 1020 
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 In this section, the proposed SOM-based FDI method is tested for online 

disturbance identification on the Tennessee Eastman (TE) industrial challenge problem 

(Downs and Vogel, 1993). The 22 continuous process measurements (shown in Table 4-1)  

are used to identify unknown process disturbances online. Five disturbances, henceforth 

referred to as XD1 to XD5, that affect the A feed flowrate, reactor pressure, reactor level, 

temperature, and compressor work are considered. These are representative of setpoint 

changes or servo control problem in industrial process operations. Three different 

instances are created for each disturbance, i.e., for fault class XD2, XD2-A to XD2-C are 

created with different start times, duration, and magnitude. The profiles for each of the 

disturbance are listed in Table 4-2. In general, the five disturbance classes have very 

similar effect and are difficult to distinguish (Srinivasan and Qian, 2005). They therefore 

serve as good illustration for the proposed method.  

 In this case study, XD1-B, XD2-B, XD3-B, XD4-B, and XD5-B are used as the 

references for the five disturbances. The reference disturbances are first autoscaled and 

used to train a SOM. The fully trained SOM contains 756 map units. The quantization 

error, qE , during training is observed to be 1.072, or about 0.8% indicating that the SOM 

provides a good representation of the training data. k-means (K=50) is then used to cluster 

the SOM reference vectors. Data from all five reference runs are projected to construct the 

reference state-signatures. Three neuronal-clusters, namely, 19S , 21S , and 44S  correspond 

to nominal steady state operation (XD0-B). All other clusters correspond to various 

disturbance states. State-signatures were then generated for each disturbance by projecting 

them to the SOM. The fully trained SOM and the state-signatures are then used for fault 

detection and diagnosis for the testing data. 
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Scenario 1: Change in Reactor Pressure 

 During Run-4 the reactor pressure is increased from the base case value of 2705 to 

2867kPa gauge in three steps, starting from 300 min, as shown in Table 4-2. The signals 

of Run-4 are shown in Figure 4-3 (labeled as XD2-C). After the process settles at the new 

steady-state, the inverse change, decreasing the reactor pressure is introduced at t=1200 

min and the process is allowed to return to a steady-state. Initially (t<300min) the process 

remains in a normal state, and the BMUs are located in the three nominal neuronal-

clusters – 19S , 21S , and 44S . After the fault occurs, the signals of Run-4 start to exhibit 

abnormality and are projected to neuronal-cluster 25S  at t=312 min (see Figure 4-4). Since 

25S  is not in the nominal neuronal-cluster set, a fault is flagged. This neuronal-cluster and 

all subsequent ones form the real-time state-signature and are used for disturbance 

identification. 

 The state-signatures of XD1, XD2, and XD5 have element 25S  in their state-

signature, so the distance to them is small and all of them are initially identified as fault 

candidates. At t=354 min, a new neuronal cluster-hit occurs on 27S . The online state-

signature at this time becomes { }4 4 4
25 27,Run Run RunS SΣ =  which matches the reference for 

XD2 exactly but has large distances with XD1 and XD5. XD2 is clearly distinguishable 

from the others and α drops to 0 ( min 0.75α = ). The fault is hence isolated as XD2 at 

t=354min. A low maturity value of 354 minΠ =0.077 at the time of fault identification 

indicates that the fault has been identified at an early stage of its development. Table 4-3 

shows a part of the dissimilarity matrix between XD2 and this run. As can be observed 

there, there are minor run-to-run variations in the online state-signature (neuronal-cluster 
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42 inserted before cluster 40) as well as oscillatory behavior (neuronal-clusters 8 and 16), 

but the proposed method efficiently discounts them.  

 
Figure 4-3: Process signals during runs XD2-B and Run-4 (XD2-C) in TE case study 
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Table 4-3: Dissimilarity matrix between state-signatures of Run-4 and XD2-B 
4 4\XD Run

q rΣ Σ 25 27 … 28 2 8 16 8 16 8 16 22 36 11 1 42 40 7 2 8 
25 0.000 0.267 … 2.325 2.530 2.744 2.943 3.160 3.360 3.577 3.777 4.109 4.261 4.480 4.749 4.924 5.084 5.234 5.368 5.582 
27 0.267 0.000 … 2.058 2.263 2.477 2.676 2.893 3.093 3.310 3.510 3.842 3.994 4.213 4.482 4.657 4.817 4.967 5.101 5.315 
… … … … … … … … … … … … … … … … … … … … … 
28 0.324 0.591 … 0.000 0.205 0.419 0.618 0.419 0.618 0.419 0.618 0.951 1.103 1.322 1.591 1.766 1.925 2.075 2.210 2.424 
8 0.157 0.424 … 0.283 0.214 0.205 0.405 0.205 0.405 0.205 0.405 0.737 0.889 1.108 1.377 1.552 1.711 1.861 1.996 2.210 
16 0.317 0.566 … 0.482 0.414 0.405 0.205 0.405 0.205 0.405 0.205 0.537 0.689 0.908 1.177 1.352 1.512 1.662 1.796 2.010 
22 0.154 0.421 … 0.815 0.746 0.609 0.537 0.400 0.537 0.400 0.537 0.205 0.357 0.576 0.845 1.020 1.180 1.330 1.464 1.678 
36 0.275 0.329 … 0.967 0.898 0.761 0.689 0.552 0.689 0.552 0.689 0.357 0.205 0.424 0.693 0.868 1.028 1.178 1.312 1.526 
11 0.262 0.529 … 1.186 1.117 0.980 0.908 0.771 0.908 0.771 0.908 0.576 0.424 0.205 0.474 0.649 0.808 0.958 1.093 1.307 
1 0.416 0.683 … 1.455 1.386 1.249 1.177 1.040 1.177 1.040 1.177 0.845 0.693 0.474 0.205 0.380 0.540 0.689 0.824 1.038 
40 0.329 0.596 … 1.736 1.633 1.531 1.459 1.322 1.459 1.322 1.459 1.127 0.975 0.756 0.487 0.365 0.380 0.530 0.664 0.878 
10 0.449 0.716 … 1.943 1.840 1.737 1.666 1.529 1.666 1.529 1.666 1.334 1.182 0.962 0.694 0.572 0.572 0.674 0.809 1.023 
40 0.329 0.596 … 2.192 2.088 1.986 1.914 1.777 1.914 1.777 1.914 1.582 1.430 1.211 0.942 0.820 0.572 0.705 0.839 1.053 
7 0.238 0.505 … 2.341 2.238 2.135 2.064 1.927 2.064 1.927 2.064 1.732 1.580 1.360 1.092 0.970 0.722 0.572 0.706 0.920 
2 0.235 0.502 … 2.361 2.341 2.270 2.198 2.061 2.198 2.061 2.198 1.866 1.714 1.495 1.226 1.104 0.856 0.706 0.572 0.786 
8 0.157 0.424 … 2.437 2.555 2.341 2.412 2.198 2.279 2.198 2.279 2.080 1.928 1.709 1.440 1.318 1.070 0.920 0.786 0.572 
22 0.154 0.406 … 2.464 2.669 2.536 2.607 2.393 2.474 2.393 2.474 2.275 2.123 1.904 1.635 1.513 1.265 1.115 0.981 0.767 
34 0.218 0.485 … 2.442 2.647 2.722 2.793 2.579 2.660 2.579 2.660 2.461 2.309 2.090 1.821 1.699 1.451 1.301 1.167 0.953 
42 0.317 0.584 … 2.504 2.675 2.887 2.958 2.744 2.825 2.744 2.825 2.626 2.474 2.255 1.986 1.821 1.616 1.466 1.332 1.118 
7 0.238 0.505 … 2.453 2.632 2.846 3.046 2.846 2.995 2.846 2.995 2.796 2.644 2.425 2.156 1.991 1.786 1.616 1.502 1.288 
34 0.218 0.485 … 2.541 2.652 2.866 3.066 2.866 3.066 2.866 3.066 2.971 2.819 2.600 2.331 2.166 1.961 1.791 1.677 1.463 
44 0.175 0.442 … 2.444 2.648 2.842 3.041 2.842 3.041 2.842 3.041 3.082 2.930 2.711 2.442 2.277 2.072 1.902 1.788 1.574 
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Figure 4-4: Operating profile of Run-4 in TE case study from t=1min to t=1200min 
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Scenario 2: Change in Reactor temperature  

 During Run 7, the reactor temperature was increased from its base value of 120.4 

ºC to 134.85ºC starting at t=180 min. At t=185 min, the hit on the SOM deviates from the 

nominal neuronal-cluster 21S  to 32S  indicating an abnormality. Since neuronal-cluster 32S  

is unique to disturbance XD4 (in its state-signature), this disturbance is identified 

immediately.  

 Similar analysis was also performed for the rest of the runs as summarized in 

Table 4-4. In all runs, the average quantization error observed is 0.9313 or an average of 

0.71% per variable, and the maximum is 6.4714 or 4.9% indicating that the SOM was 

adequately representative for all cases. All faults are successfully detected and diagnosed 

with an average detection delay of 14.6 min and a diagnostic delay of 32.3 min. The 

distance observed at the end of the runs for all cases are shown in Table 4-5. The proposed 

method is able to identify the actual fault despite significant run-to-run variations 

including oscillations. The results from the classical Smith-Waterman algorithm are 

presented for comparison in Table 4-6. As can be seen, Runs 1 and 2 are indistinguishable 

based on the classical approach but are clearly separated by the proposed method (α << 

αmin). In all cases, the distance calculated by the proposed method is smaller or equal to 

that by the classical approach. Another major advantage of the proposed method is its 

computational speed. The computational time for the complete analysis of each sample is 

less than 0.1s (on a Pentium® XeonTM 3.0 GHz CPU), making it suitable even for large 

industrial-scale case studies.  



Chapter4                                                                                               Self-Organizing Map 
____________________________________________________________________________________________________________ 

 -100-

 
 
 

Table 4-4: Online fault diagnosis results for Tennessee Eastman Process 
 Fault Detection Fault Identification 

 
Fault 

Introduced
(min) 

Fault 
detected

(min) 

Detection
delay 
(min) 

Fault 
candidate

Time 
fault 

Diagnosed
(min) 

Diagnosis 
Delay 
(min) 

Fault 
Maturity

Best-
matching 
reference

Run-1 180 209 29 1,2,3,5 272 63 0.300 XD1 
Run-2 300 342 42 1,2,3,5 402 60 0.300 XD1 
Run-3 180 184 4 1,2,5 224 40 0.077 XD2 
Run-4 300 312 12 1,2,5 354 42 0.077 XD2 
Run-5 180 183 3 1,2,3 192 9 0.043 XD3 
Run-6 300 304 4 1,2,3 322 18 0.043 XD3 
Run-7 180 185 5 4 185 0 0.034 XD4 
Run-8 300 305 5 4 305 0 0.034 XD4 
Run-9 180 197 17 1,2,3,5 242 45 0.042 XD5 

Run-10 300 325 25 1,2,3,5 371 46 0.042 XD5 
  Avg delay 14.6  Avg delay 32.3   
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Table 4-5: Distance across all runs for TE process 

 XD1 XD2 XD3 XD4 XD5 α 
Run-1 0.2589 3.8514 3.4275 4.7354 3.6363 0.0755 
Run-2 0.2005 5.3449 4.9934 6.5299 5.0009 0.0401 
Run-3 6.8863 2.2394 5.5613 9.8257 5.3012 0.4224 
Run-4 6.2306 1.0292 4.5460 6.3150 4.7808 0.2264 
Run-5 11.6967 10.4014 1.9361 15.3684 9.6389 0.2008 
Run-6 11.1057 9.7793 2.1498 10.7938 9.2747 0.2318 
Run-7 7.6900 6.2753 6.3665 0.2376 7.2001 0.0379 
Run-8 8.7610 7.0106 6.9907 0.7839 7.9564 0.1121 
Run-9 10.1245 10.1992 9.9775 17.5436 3.1151 0.3122 

Run-10 10.6604 10.1364 9.8865 14.6375 4.2110 0.4259 
 

Table 4-6: Distance across all runs based on the classical Smith-Waterman algorithm 
 XD1 XD2 XD3 XD4 XD5 α 

Run-1 2.9746 3.8807 3.5087 4.7354 3.6505 0.8477 
Run-2 4.8179 5.8806 5.4901 6.5299 5.5651 0.8776 
Run-3 8.4095 4.9950 8.5673 9.8257 7.3123 0.6831 
Run-4 6.5026 2.2223 5.6519 6.7388 5.4776 0.4057 
Run-5 14.3717 14.1112 5.6357 15.3684 12.3101 0.4578 
Run-6 11.8885 10.7510 3.7666 11.6408 10.2432 0.3677 
Run-7 7.6900 6.2753 6.3665 0.5682 7.2001 0.0905 
Run-8 8.7610 7.0106 6.9907 1.4451 7.9564 0.2067 
Run-9 14.7669 15.0777 15.3282 17.7383 9.0327 0.6117 

Run-10 12.5298 11.8390 12.6871 15.1359 8.7695 0.7407 

4.7 Case Study 2: Fault diagnosis during startup of a distillation unit  

 In this section, the proposed methodology is tested with a lab-scale distillation 

unit. This case study is the same as the one described in Chapter 3.3 of this 

dissertation. The SOM created for this case-study contains 60 neuronal-clusters. A 

reference training data for normal startup, R, is projected to SOM to construct the 

dictionary state-signature, YΣ , and the reference dwell-time recorded. The state-

signature for the normal start-up was constructed and used for subsequent monitoring 

of the transition. Fault signatures were also constructed using data for the ten failures. 

These reference state-signatures were then used for process supervision. Three 

scenarios are discussed in detail. 
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Scenario 1: Reboiler power fault 

 In one run, a reboiler power failure was induced at t=10s, resulting in long 

heating time. The startup becomes unsuccessful at step 7 when the feed pump is 

activated as there is not enough heat to evaporate the feed. The online samples from 

this run are projected onto the SOM and the cluster-hits identified. The fault is 

successfully detected at t=130s when the state-signature deviates from neuronal-cluster 

3S  to 38S . The variable-residuals at time of fault detection are shown in . It is apparent 

that the reboiler power has significantly deviated from its profile during normal start-

up. A direct time-based signal comparison would lead to erroneous conclusions 

(significant residuals for Tray 4 temperature) since a different state (boiling phase) of 

the reference trajectory would then be used as the basis instead of the reboiler heating 

phase of the current run. The proposed state-signature comparison method also 

identifies the right fault (DST01) based on Eq (4-11).   

 
Figure 4-5: Variable residuals contribution chart at t=100s for DST01  
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Scenario 2: Low cooling water flow and feed pump malfunction 

 In this run, a complex fault arising from a low flow of condenser cooling water 

and feed pump malfunction is introduced. The process signals from this run are shown 

in Figure 4-6. The low flow of cooling water is first introduced at t=10s, but cannot be 

directly observed since the heat exchanger is not equipped with a flow sensor. The 

symptoms of the fault start around t=2990s when the outlet temperature of the 

condenser cooling water – T12 rises above its nominal value. The first alarm is flagged 

at t=3040s when abnormal state-sequence evolution (hit in neuronal-cluster 7) is 

observed (see Figure 4-7). The variable-residuals at t=3040s, shown in Figure 4-8a, 

readily depict the symptoms of the abnormality. The state-signature comparison also 

reveals a high similarity with DST10. A second fault was introduced at t=4000s when 

feed loss occurs due to pump failure. This is also immediately discernible from the 

variable-residuals at t=4020s (see Figure 4-8b) which shows both the differences.   
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Figure 4-6: Process signals for Run-10 in distillation unit case study 

 
 
Scenario 3: High reflux ratio 

 In this run, a high reflux ratio occurs due to human error at t=3540s. This leads 

to a reduction in product yield and increases the load on the reboiler. The fault is 

immediately detected at t=3540s while other run-to-run differences are ignored as can 

be seen in Figure 4-9.  

 Similar studies were conducted for the other faults as well. All faults were 

successfully detected and diagnosed as summarized in Table 4-7. Most faults are 

isolated quickly with an average diagnosis delay of t=137s (from time of fault 

introduction). DST04, and DST08 have similar responses initially and require a longer 

duration to be distinguished.  
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Figure 4-7: Operating trajectory of Run-10 in distillation unit case study 
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(a) Variable residuals contribution chart at t=3040s for DST10 

 
Figure 4-8: (b) Variable residuals contribution chart at t=4020s for DST10 
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Figure 4-9: Operating trajectory of Run-6 in distillation unit case study 
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  Table 4-7: Fault diagnosis results for distillation unit startup case study 

Scenario 
# Disturbance 

Time fault 
introduced 

(x10s) 

Time fault 
detected 
(x10s) 

Detection 
Delay 
(x10s) 

Fault 
Candidate 

(DST) 

Time 
fault 

Diagnosed
(x10s) 

Diagnosis
Delay 
(x10s) 

Fault 
maturity 

(%) 

DST01 Reboiler power low 1 13 12 1 13 0 0.07 
DST02 Reboiler power high 1 18 17 2 18 0 0.16 
DST03 Feed pump high 359 372 13 3 372 0 0.33 
DST04 Feed pump low 430 459 29 4,8 462 3 0.60 
DST05 Tray Sensor T6 fault 425 426 1 5 426 0 1.00 
DST06 Reflux ratio high 353 354 1 6 354 0 0.50 
DST07 Reflux ratio low 345 347 2 7 347 0 1.00 
DST08 Bottom valve 420 470 50 4,8 473 3 0.60 
DST09 Cooling water 1 1 0 9 1 0 0.04 

DST10 
Low cooling water 
flow and feed pump 
malfunction 

299 304 6 10 304 0 0.33 

   Avg Delay 13.1  Avg Delay 0.6  
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4.8 Robustness analysis 

 In the proposed approach, the number of clusters, K, is the main tuning 

parameter that determines performance. The effect of K on selectivity – the speed of 

fault identification and sensitivity – Type-I errors – was studied. A large K results in 

more neuronal-clusters and hence improves the ability to represent the process 

operation at a finer level of resolution. However, the SOM would also becomes more 

sensitive to minor deviations from normal operations, and could result in false alarms. 

Using too small a K could render some faults undetectable as the neurons correspond 

to abnormal operating regions would be amalgamated with the clusters for normal 

operation, leading to false negatives. To evaluate the effect of K on the results, the 

previously trained SOM described above, was partitioned with various K values. Table 

4-8 hows the results of the study. For a wide range of values, [40,70]K ∈ , all the 

faults can be well differentiated although the average detection delay decreases with 

increasing K.  

Table 4-8: Sensitivity studies for distillation unit startup case study based on various K 

K  DST 
Differentiable

Avg Detection 
Delay 

Misclassification 
Rate 

10 7 1261s 0.02% 
25 8 185s 0.00% 
40 10 132s 0.00% 
55 10 127s 0.00% 
70 10 111s 0.02% 
90 10 104s 2.80% 

 

4.9 Conclusions and Discussion 

 Online tracking of the process operating state is essential to detect and identify 

the occurrence of faults – known or novel. For transient states, the temporal evolution 

of the process has to be considered. The complexity stems from the need to compare 
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large-scale, multivariate, temporal signals in real-time. In this chapter, the SOM is 

used to reduce the dimensionality of the measurement space. Each SOM neuron and 

neuronal-cluster is a landmark in the multivariate measurement space – the latter 

provides a higher granularity and is hence more robust to run-to-run and operator-to-

operator variations. The one-dimensional string of neuronal-clusters can adequately 

serve as a signature of the transition state. With this representation, the transition 

monitoring and diagnosis problem becomes one of sequence comparison. A method to 

compare two state-signatures using dynamic programming has also been developed. 

Deviations during the execution of a known transition are detected when the distance 

between the reference signal and the online observations exceeds a pre-specified 

threshold. Two approaches have also been proposed for identifying the disturbance. (1) 

similarity with known faults is determined by comparing the deviant portion of the 

online state-signature with the library of reference signals. Known faults can be 

identified through this approach when the online state-signature matches unequivocally 

to one reference signal. (2) For novel faults where no similar sequence is available in 

the library, residuals can be calculated at the variable-level, so that the differences are 

localized and the fault can be diagnosed by the operator. Application of the proposed 

approach to two case studies – the Tennessee Eastman challenge problem and the 

startup of a distillation unit – illustrate its benefits method in diagnosing faults during 

multi-state, temporal process operations. 

 The proposed methodology shares some similarities with other data-driven 

approaches for online state identification. Similar to the SOM-based methodology, 

qualitative trend analysis also abstracts the signal into a small set of alphabets and can 

naturally discount time variations between the reference and the online signals. In the 

case of the latter the alphabets are based on the first (and second) derivatives of the 
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signal. The string of alphabets that represent the transition therefore dictates the gross 

profile (sets of shapes) for each variable. The proposed approach however decomposes 

the temporal signal based on magnitude ranges. The key advantages of the proposed 

approach are that (1) the granularity of the representation, i.e., the alphabet set (the set 

of neuronal-clusters) is adaptable to the process through the user-defined K. The 

method is robust for a wide-range of K values as shown in Section 4.8, yet fault 

detection with lesser delay can be obtained using a larger K. (2) the trend-analysis 

approach requires a separate logic for specifying the dictionary pointer which governs 

the correspondence between the reference and the online trends. Here, the dynamic 

programming approach obviates this step.  

 Signal comparison based strategies such as singular point augmented time 

warping and dynamic locus analysis evaluate the signals directly, without abstraction. 

The main advantage of the direct signal comparison is the speed of detection of 

deviations. There are three main shortcomings of the direct comparison – (1) the 

inherent uni-variate nature – this is partially addressed by the dynamic locus analysis 

of Srinivasan and Qian (2006), (2) the computational complexity of time warping in 

real-time, which is also partially addressed by the Singular point based simplification 

strategy of Srinivasan and Qian (2005;2007), and (3) the inability to address oscillatory 

signals where a one-to-one mapping between the reference and the real-time signals 

cannot be expected. The singular points use uni-variate landmarks to simplify the 

warping in contrast to the proposed approach which uses multivariate landmarks to 

abstract the signals and simplify the comparison. While this leads to an increase in the 

detection and diagnosis delay, the major advantage of the proposed method is 

computational efficiency and the inherent ability to deal with oscillatory signals.  
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 Also, since each neuron on SOM corresponds to a certain process conditions, 

the state-signature is analogous to a multi-model representation of the process with the 

evolution of the neuronal cluster-hit during the transition imparting the model 

switching, i.e., as the process evolves, a new neuron or neuronal-cluster, closer to the 

new operating regime, serves as the reference model. The proposed SOM-based 

approach is computationally efficient and suitable for real-time application even in 

large industrial case studies.  
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Nomenclature 

Indices 

i,p  sample 

j  neuron 

k  cluster 

n  variable 

q,r  state-signature 

Parameters 

I  total number of samples (rows) in X 

K  total number of neuronal-clusters 

N  total number of variables (columns) in a multivariate data 

Q,,R  total number of state-signatures in a sequence 

W  total number of fault classes available in database Ψ  

Variables 

bi  best matching unit on SOM for xi 

ck  centroid of kth cluster 

( , )X YD Σ Σ  distance between XΣ  and YΣ  

( , )X YD Σ Σ�  distance between XΣ  and YΣ  

Dmax  user defined threshold to detect abnormal process state 

q
iE   quantization error for sample xi 

H  dissimilarity matrix used for synchronizing two sequences 

mj  the jth neuron on SOM 

ibm   reference vector of the BMU observed for sample xi 

expm   reference operating condition for a sample 
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MR  neurons identified for a reference transition 

MSOM  a self-organizing map model 1{ ,..., ,..., }SOM
j JM m m m=  

Sk  kth neuronal-cluster 

ˆ
iS   state-cluster observed from xi 1

ˆ ˆ ˆ ˆ{ ,..., ,..., }i IS S S S=  

tr  the dwell-time observed for the rth element of a fault-signature 

ujk  1 if the class membership of neuron j equal to k 

xi  ith sample in X { }1,..., ,...,i in iNx x x=  

X  multivariate data X { }1,..., ,..., T
i Ix x x=  

X
rΣ   the rth element of a fault-signature generated from data X 

Y
qΣ   the qth element of a fault-signature generated from data Y 

αmin  threshold for inseparability between two faults 

δin  variable-residual for nth variable in xi 

Π  maturity degree of a fault 

Ψ  fault database containing data from various faults 
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Chapter 5 Adjoined Dynamic Principal 

Components Analysis for Transition 

Monitoring 

5.1 Introduction 

 Much of the statistical process control (SPC) literature has focused heavily on 

methods for handling data sampled from normal distributions. Current approaches for 

process monitoring based on the popular Principal Components Analysis techniques 

also assume that the process data follows a normal distribution. This assumption is not 

valid for most batch/transient operations. As an illustrative example, consider the 

univariate signal S shown in Figure 5-1a that arises from a transient operation. S can be 

classified into modes (M) and transitions (T). A mode corresponds to the continuous 

operation of the unit and a fixed flowsheet configuration, while a transition 

corresponds to discontinuities in the plant operation (Srinivasan, et al., 2004). Three 

modes { 1, 2, 3}M M  M  M∈  and two transitions { 1 , 2}T T  T∈ can be identified in S. 

Figure 5-1b shows the result of a distribution test conducted on S. The data distribution 

of S fits neither a bell curve normal distribution, nor a more complex nonparametric 

distribution. There are two implications when the normal distribution assumption is not 

satisfied. First, the monitoring limits constructed using SPE and 2T  are prone to Type-

II errors (false negatives) as the limits for the monitoring statistics cover a possibly 

abnormal operating region, e.g., portion of S at [40 ,70]t ∈ . Second, and perhaps the 

more common scenario, is that a number of normal samples are not covered with in the 

monitoring limits on both sides of S, leading to Type-I errors (false positives), for  
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Distribution test on SUnivariate signal S

(a) (b) (c)  
Figure 5-1: (a) A typical univariate signal, S, from a transient operation. (b) Probability density test on S. (c) Normal probability plot for S  

 

...

Partial signal of M1 Partial signal of T1 Partial signal of M3

(a)

(a)
(b) (c)  

Figure 5-2: Normal probability plot for different segment of S  
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example, see S in [20 28]t  , ∈ , and [75 100]t  , ∈ . Even for data sampled from a 

normal distribution, the occurrence of Type-I errors are generally close to α , i.e., ~50 

false positives for every 1000 samples analyzed with 95% confidence limits (Nomikos 

and MacGregor, 1995; Martin and Morris, 1996). The number of  Type-I errors for a 

non-Gaussian process, is much higher and included additionally the errors induced by 

the data modeling. As a result, the reliability of the supervision system is greatly 

reduced. This motivates alternate approaches for monitoring transient operations. 

5.1.1 Need for Multiple Adjoined Models 

 For an intuitive appreciation of the multi-model approach, consider the 

previous example. The normal probability plot (Theil et al., 1982) for each state is 

separately shown in Figure 5-2 and shows a much better fit, i.e., the underlying data 

from each state is locally linear, compared to the entire signal (Figure 5-1c). However, 

when multiple models are used in such cases, as illustrated in Sections 5.2, numerous 

false positives are encountered in the border between the models (see Figure 5-3). This 

high level of errors during model switching is due to discontinuity in modeling a 

continuous transient operation that follows a smoothly varying – but nonlinear – 

trajectory as versus one with abrupt changes from one state to another. This chapter 

addresses this critical problem in monitoring transients by using overlapping models as 

described in the following section. 
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Figure 5-3: Illustration of areas within disjoint models (solid lines) that are prone to 

false positives and their incorporation into adjoined models (dotted lines) 

5.2 Adjoined Multi Model-based Approach for Monitoring 

Transitions 

 In this section, an adjoined multi model-based methodology is proposed for 

online monitoring and supervision of transient operations. As noted earlier, single 

model based approaches are inadequate for transient operations; existing multi-model 

approaches rely on disjoint models, which makes them prone to Type-I errors due to 

discontinuity in modeling transient, multiphase operations. A multi-model approach 

that allows the different models to overlap is therefore proposed. 

 Adjoined models allow the representation of the smooth evolution of the 

transient operation in addition to any abrupt changes that occur. As a result, the 

monitoring statistics constructed for each constituent model comprehensively covers 

the relevant portion of the normal operating region (NOR), so false positives do not 
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occur during model-switching. Also, compared to monolithic models, the control limits 

are tighter and hence more sensitive to process faults. Such properties are ideally 

suited for monitoring transient operations which often characterized with non-linearity, 

non-stationary, and different batch length. 

 Though the proposed approach can be applied to most model-based 

approaches, it is illustrated here using multivariate statistical models, specifically PCA. 

Similar to other multi-model approaches, different PCA models are developed for 

different operating regimes. Traditionally, the state space is segmented into regimes by 

partitioning the training data into different non-overlapping clusters, i.e., each training 

sample contributes to exactly one model. Here, such concept is generalized and each 

training sample is allowed to contribute to possibly more than one model. The 

underlying precept is that for transient operations, crisp clustering draws artificial 

boundaries in a smooth distribution. Therefore adjoining points at the boundary would 

be assigned different clusters, which would lead to abrupt transitions between models. 

Such abrupt transitions lead to false positives. The proposed approach overcomes this 

by allowing a training sample to be used for multiple (one or more) models. While this 

has no affect on  points that are at the interior of the cluster, points in the periphery 

would be assigned to multiple (typically 2) clusters and therefore contribute to the 

corresponding models. The resulting areas of influence of the constituent models 

would therefore intersect. During online monitoring, this intersection of the models can 

be exploited to ensure a smooth transition between the models.  

 The proposed methodology is based on fuzzy clustering as a preprocessing step 

to PCA model development. Fuzzy clustering of historical data is used to differentiate 

multiple modes of operations in temporal signals. The membership information 

obtained through fuzzy clustering provides a means to construct overlapping PCA 
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models since the suitability of assigning a sample to multiple clusters can be assessed; 

such membership information is not available in crisp clustering algorithm such as k-

means. The training data is then split into multiple overlapping groups and a PCA 

model is constructed for each data group. During online monitoring, at every instant 

the PCA model that best describes the current state is selected. Monitoring statistics 

from this best-fit PCA model is then used for monitoring. Each of the above steps is 

described in detail next.  

5.3 Sample Assignment for Training Multiple Models using Fuzzy c-

means 

 Adjoined models are created based on clustering the normal operating data. Let 

a normalized 2-dimensional training data be 1{ ..., }T
i IX x , x ,...,x= , where ix  is the thi  

sample of X. X can be partitioned into different clusters through k-means clustering 

which assigns each sample xi to a cluster k [1, ]K∈ . The membership function iku of 

sample xi is given as: 

 
1 if sample  is assigned to cluster 
0 otherwise

i
ik

x k
u

⎧
= ⎨

⎩
 (Eq  5-1) 

The cluster assignment seeks to minimize the total squared distance, pε  (Seber, 2004): 

 
1 1
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K I

p i ik k
k i

x u cε
= =

= ⋅ −∑∑ , (Eq  5-2) 

where, kc  is the centroid of the kth cluster and || ... ||  notates the Euclidean distance.  
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The k-means classifies each sample so that it is assigned to exactly one cluster. The 

fuzzy c-means clustering (Bezdek, 1974) is a generalization of the k-means, where 

each sample can be assigned to one or more clusters as per a membership grade. 

Unlike in k-means, the membership function in fuzzy c-means iku  is continuous with 

0iku ≥  and indicates the extent to which a sample matches a cluster. The membership 

function is related to the distance from the centroid (Hathaway and Bezdeck, 1988): 

 1
ik

i k

u
x c

∝
−

 (Eq  5-4) 

When iku  are normalized across all clusters and fuzzified with parameter ν : 

 ( )2/ 1

[1 ]

1
ik v

i k

r , K i r
r k

u
x c
x c

−

∈
≠

=
⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

∑
, 1ν ≥  (Eq  5-5) 

A v  value of 2 is normally used which is equivalent to normalizing the iku  linearly to 

make their sum 1.  

 
1

1
K

ik
k

u
=

=∑  (Eq  5-6) 

When 1v → , the cluster center closest to the point is given much more weight than the 

others, and the algorithm reduces to the k-means.  

The centroid of the cluster is calculated as the mean of all samples weighted by their 

membership to the cluster.  
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 (Eq  5-7) 

The fuzzy c-means algorithm computes the memberships by iteratively minimizing 

(Hathaway and Bezdeck, 1988): 
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1 1

||
K I

v
p i ik k

k i
||x u cε

= =

= ⋅ −∑∑  (Eq  5-8) 

The procedure is terminated when the change in iku between two iterations is small. 

Since this could terminate at a local minimum, the fuzzy c-means algorithm is usally 

repeated multiple (P) times, starting from different initial assignments. The subscript p 

in pε  signifies the pth such replicate. Of the P replicates, the one that yields the 

minimum pε  is selected and the samples assignment from it used for model 

construction. 

5.4 Constructing Adjoined Models  

  
Figure 5-4: Offline training methodology for the proposed adjoined-PCA method 
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 Based on the clustering results, K different training data groups are prepared 

from X (see Figure 5-4) which are then used to train the K PCA models. A sample xi 

can be concurrently present in one or more data groups kG , [1 ]k  , K∈ . This 

assignment of a xi to data groups is based on the fuzzy cluster membership uik. A 

simple method is to assign the sample to a data group based on a threshold 

participation: 

if i k ikx G u θ∈ >  

However, the selection of a robust θ  is difficult. An alternate criterion based on cluster 

separability is therefore proposed. 

 Each ix  of X is analyzed based on its membership in kG . Consider the training 

data X along with the fuzzy cluster membership, iku . The highest value of iku  thus 

gives the cluster which is closest to ix , designated here as the best membership of ix , 

1
iB :  

1 arg max( )i ikk
B u= , [1 ]k K∈ , , 

The kth best cluster can be identified through: 

 arg max( )k
i ikk

B u= , [1 ]k K∈ , ,  (Eq  5-9) 

subject to constraints: 

( 1) ( 2) 1{ , ,..., }k k k
i i i iB B B B− −∉  & 

 ( 1)k k
i iB B δ−− < . (Eq  5-10) 

The adjoining threshold, δ , defines the allowable degree of overlap between the data 

groups kG , where 0 1δ≤ ≤ . A large value of δ  allows complete overlap between the 

regions identified while 0=δ  prevents any overlap and reduces to the traditional non-

adjoint multiple models.  
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 Each kG is used to train a PCA model kM , [1 ]k  , K∈ . Model kM  would share 

some similarity with its immediate neighbors since the two have common training data 

especially in the boundaries. The similarity between the models can be measured based 

on the angles between the spaces of their PCs (Krzanowski, 1979). Let kG  and 'k
G  be 

two data groups. The similarity between the two groups can be quantified by 

comparing their principal component subspaces L and M, which are the eigenvector 

matrices corresponding to the first C PCs (Krzanowski, 1979):  

 2
'

1 ' 1

1 ( ' ' )( , ) cos
C C

PCA
cc

c c

trace L MM LS A B θ
C C= =

= =∑∑ , (Eq  5-11) 

where 'ccθ  is the angle between the cth PC of kG  and the c' PC of 'k
G . A small values 

of PCAS  indicates low similarity between the models while a large value signifies high 

similarity. A shortcoming of PCAS  is that it is not normalized. A modified form was 

therefore proposed by Singhal and Seborg, (2002) by normalizing the similarity factor 

with eigenvalues:  
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λ λ
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∑
. (Eq  5-12) 

PCASλ is in the range of 0 to 1.  

 The PCASλ  is used here to evaluate the number of models that are needed to 

represent the transient operation. The optimal K is selected by starting from a large 

value of K and measuring the similarity of all pairs of the resulting models. If there 

exist any model pair whose PCASλ  is larger than a selected threshold, γ , that K is 

considered high. The procedure is therefore repeated with a smaller K. Once the 
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optimal number of models have been identified and trained, they can be used for 

monitoring. 

5.5 Choosing Current Active Model for Online Monitoring 

 
Figure 5-5 : Architecture of adjoined-PCA  

  

 In the proposed approach, as shown in Figure 5-5, only one model is used for 

online monitoring. This requires that the model that best describes the operation, optM , 

at time t has to be selected. The SPC statistics used for online monitoring is based on 

the identified optM . Let the samples collected online be designated as ix . The distance 

between each kM , [1 ]k K∀ ∈  ,  and ix  first needs to be evaluated. For evaluating the 

distance between ix  and kM , the combined discriminant similarity factor, Φ  is used. 

At every instant, the distance of ix  the kth PCA model , kM , [1, ]k K∈  , is evaluated as:  

 
( ) ( )

2

2(1 )ik ik
ik

k k

SPE T
Q T

β β
α α

Φ = + −i  (Eq  5-13) 

Here, ikSPE and 2
ikT  are the SPE and T2 for xi generated from the kth model, and ( )kQ α , 

2 ( )kT α  the control limits from the kth model. The nearest PCA model to ix  is selected 

as:  
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[1 ]

arg minopt
i ikk  , K

M
∈

= Φ   (Eq  5-14) 

The monitoring statistics, SPE and 2T from the Mopt model are then compared with 

their corresponding limits ( )optQ α  and 2 ( )optT α  for fault detection. The proposed model 

development and monitoring approach is described next using two case studies.  

5.6 AdPCA Method for Fault Detection 

The proposed AdPCA method can be summarized as follows: 

Offline Model Development 

Step 1: Data unfolding & normalization: Let 3dX�  be a 3-dimentional raw dataset 

collected from a plant historian. Time-wise unfolding is first carried out on the 3-

dimensional dataset to reduce 3dX�  to a 2-dimensional dataset X�  for analysis. Each 

variable of the training data, nX� , is then range-normalized to eliminate the varying 

scales of the variables: 

 
min

n n
n max min

n n

X XX
X X

−
=

−

� �
� � , [1 , ]n   N∈ .  (Eq  5-15) 

Step 2: Clustering: A large initial K is selected. Fuzzy c-means clustering is then 

applied on X to identify membership function of each sample ix  compared to all 

classes, iku , [1 ]i ,I∈  and [1 ]k ,K∈ . 

Step 3: Data reconstruction: Overlapping data groups kG , [1 ]k  , K∈  are created 

based on the data reconstruction method as described in Section 5.4 over all samples of 

X . 

Step 4: AdPCA model generation: A PCA/DPCA model is trained for each kG , 

[1 , ]k   K∈  identified. The samples within each group are autoscaled separately and 

projected to their principal components subspace as 1{ ,..., }KAdPCA M M∈ .  
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Step 5: Model evaluation: All PCA models are evaluated by comparing the , '
PCA
k kS  

values across all kM , 'kM  pair, where , ' [1 ]k k  , K∈  and 'k k≠ . If there exist a model 

pair which gives , '
PCA
k kS γ≥  , K  is reduced by 1 and the training algorithm repeated 

from Step 2.  

Step 6: The trained AdPCA models 1{ ,..., }KAdPCA M M∈  can be used for monitoring 

transient operations online. 

 

Online Monitoring 

As shown in Figure 5-5, the algorithm for online monitoring involves:  

Step 1: Data preprocessing: Online process measurements, designated here as i'x� , are 

first scaled to 'ix  based on the mean and variance obtained previously for each model 

(Step 4 of the model development phase).  

Step 2: Projection to PC subspace: 'ix  is projected to the principal components 

subspace of all available models kM , [1 ]k ,K∀ = , as scores and loadings.  

Step 3: Model selection: The best PCA model, Mopt, is selected from the existing 

models based on Eq (5-13) and Eq (5-14). 

Step 4: Online monitoring: Monitoring statistics, e.g.: iSPE  and Ti
2 are computed for 

ix  based on Mopt identified, and their corresponding limits ( )optQ α  and 2( ) ( )optT α  of 

Mopt used for monitoring.  

5.7 Case Study 1: Monitoring Startup of a Distillation Unit 

 In this section, the proposed method is tested on a lab-scale distillation unit as 

described in Section 3.4. The startup normally takes two hours. From an operation 

point of view, four operating states can be identified during the startup, namely, 
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reboiler heating phase, boiling phase, reflux heating phase, and final steady-state 

phase. Different faults, both equipment failure and operator errors are introduced at 

different states of the operation and monitored using the proposed approach.  

 To develop the various models, the operating data from five normal transitions 

are used as reference data. A low-pass FIR filter is used to remove high frequency 

process noise in the reference data before they are auto-scaled.  

 In order to construct adjoined models, K training data groups are first 

constructed. An adjoining threshold, δ, of 0.2 is chosen for constructing the adjoined-

PCA models. Process samples whose cluster separability ( ( 1)k k
i iB B −− ) is lesser than δ 

are placed in multiple data groups (see Figure 5-6). When the PCA models are formed 

using these data groups, the neighboring models become adjoined. The criterion 

described in Section 5.5 is used here for selecting the number of data groups, K. The 

training algorithm is started with an initial K of 15, and γ  of 0.85. If any pair of the 

constituent models, kM  and 'kM  ( 'k k≠ ) shows high similarity ( , '
PCA
k kS γ> ), K is 

reduced by 1 and the training repeated.  
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Figure 5-6: Class assignment of samples during one normal run of the distillation unit 
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 The AdPCA model constructed by following this training procedure contains 

six constituent models. The number of PCs for each model kM  is selected such that 

cumulative percentage variance captured is 95%≥ . Models 2M , 4M , and 6M  

correspond to reboiler heating phase; 3M  and 1M  to boiling and reflux heating phases, 

and 5M  to the final steady-state phase. Their PCAS  model comparison values are 

shown in Table 5-1. All models show low similarity with one another with the highest 

inter-model similarity value of 0.7568.  

Table 5-1: '( , )PCA
k kS M M  between PCA models identified for distillation unit startup 

case study 
PCA 

Model # 
M1 M2 M3 M4 M5 M6 

M1 1.0000 0.4351 0.6877 0.4940 0.6366 0.5216 
M2  1.0000 0.5182 0.5347 0.5837 0.6288 
M3   1.0000 0.7240 0.5032 0.7568 
M4    1.0000 0.4721 0.7366 
M5     1.0000 0.5196 
M6      1.0000 

 

 When tested with a different control dataset (normal operation), the AdPCA 

model shows high reliability, as shown in Figure 5-7. During normal operation, all six 

models are used for process monitoring (see Figure 5-7a which shows the model used 

at each instant). Initially at t=10s (sample 1), the combined statistics (with 5.0=β ) for 

model 2M , 1,2Φ  is the smallest among all models and is chosen as the current active 

model, optM . At t=1080s, 108,6Φ  reduces to 0.064 from 0.113 while 108,2Φ  increases 

to 0.070. Since 108,6Φ  is the smallest, the method switches to 6M  as the current active 

model for monitoring. Similarly, the current active model is switched as the process 

evolves. The remaining model switches occur at t=2100s ( 6M → 4M ), t=2450s 

( 4M → 3M ), t=2640s ( 3M → 1M ), and t=3400s ( 1M → 5M ). The reduced SPE and 2T  
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statistics from the current active model are used for monitoring the process. As seen 

from Figure 5-7b, there are no Type-I errors throughout the run.  

 For comparison, MPCA and DPCA models are also constructed based on the 

reference data. Six PCs are retained for the MPCA model while the DPCA model is 

constructed with l=2 and retaining 13 PCs. When tested with the same control dataset, 

both MPCA and DPCA are prone to false positives during the reboiler heating 

( ~ [0 30]t  , s ) and column stabilization phases ( ~ 340t s ). DPCA shows 11 false 

positives (Figure 5-8) while MPCA shows 6 false positives. A classical multi PCA 

model with no overlap (termed disjoint PCA, or DisPCA) is also created to compare 

the performance improvement arising from adjoining the models. DisPCA reduces the 

number of Type-I errors during ~ [0 30]t  , s  compared to DPCA and MPCA, since 

nonlinearity during the initial phase of the startup is better modeled by the multiple 

PCA models. However, DisPCA performs poorly during model switching, i.e., 5 false 

positives are observed during model switches around t~2640s and t~3400s. This 

illustrates the advantage of adjoined models for monitoring transient operations. The 

overlapping models ensure continuity in the PCA subspace and reduce the occurrence 

of Type-I errors during switching of models. Next, the efficiency of the proposed 

AdPCA method during various faults was evaluated. In this study, ten process 

disturbances as listed in Table 3-2 have been tested. Three disturbances are described 

in detail next. 
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Figure 5-7: Monitoring of a normal startup of the distillation unit using AdPCA 

 
Figure 5-8: Monitoring of a normal startup of the distillation unit using DPCA 
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Scenario 1: Feed pump fault 

 DST04 corresponds to a feed pump malfunction with its process signals shown 

in Figure 5-9. The fault was introduced at t=3550s during step 7 of the startup SOP 

when the operator erroneously sets the pump power at 55% of the nominal value. Such 

an action would adversely affect the throughput of the ethanol production and lead to 

continuous reduction in the reboiler level. There are two stages of fault propagation. 

Stage-1 spans from t=3560s to t=4600s. Recovery is possible only when the fault is 

still in an early stage. If the fault remains undetected or unidentified, the reboiler level 

will drop below the minimum operating limit (Stage-2 starting around t=4600s) and 

shutdown procedures will be automatically triggered by the safety interlock.  

 
Figure 5-9: Process signals for DST04 (x10s) – the dotted lines indicate the process 

signals of a normal startup while the dark lines represent the signals of the faulty run 
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 During [1, 2300]t  s∈ , the process is in reboiler heating phase and models 2M , 

6M , and 4M  are used for monitoring (Figure 5-10). During the boiling and column-

stabilization phases, the method switches to models 3M  ( [2300,  2670]t ∈ s) and 1M  

( [2680,  3540]t ∈ s) as during the normal startup operation. When the fault occurs at 

t=3550s, the steady-state model 5M  which gives the smallest combined statistics (Eq 

5-14) is selected for monitoring since the operation is progressing towards steady-state 

(SOP step 7 & 8 have been executed). As can be seen from Figure 5-10, at t=3560s 

both SPE  and T2 statistics violate the upper control limit of model 5M  and a fault is 

flagged. Although corrective measures could be performed at this juncture based on 

this information, for the sake of illustration, in this run, no recovery action is taken; 

hence the safety interlock is triggered and the distillation unit shut down. The 

temperatures in the column then begin to drop and model 1M  (t~4600s) is chosen as 

the current active model, indicating the process is progressing towards the cold state. 

 MPCA, DPCA, and DisPCA were also tested on this scenario. The MPCA 

method detects the fault only in Stage-2 (t=4600s with 6 false positives around t~[1, 

60]s) and fault recovery is not possible (see Figure 5-11). DPCA method improves 

sensitivity by detecting the disturbance earlier (t=3570s) but with 10 false positives. 

The performance of DisPCA is comparable to AdPCA in terms of detection speed 

(detection at t=3560s). However, 3 false positives arise during model switching (from 

3M  to 1M ). The proposed AdPCA method hence gives the best performance and 

detects the fault promptly without any false positives. 
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Figure 5-10: Monitoring of DST04 using AdPCA 

 
Figure 5-11: Monitoring of DST04 using MPCA 
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Scenario 2: Sensor fault 

 DST05 corresponds to a sensor fault. The fault was introduced at t=4250s when 

the process approaches steady-state. In this scenario, all variables remain normal 

except for the affected sensor (Tray 6 Temperature Sensor). Both MPCA and DPCA 

fail to detect this fault. Large number of Type-I errors (12 false positives for MPCA 

and 8 false positives for DPCA) is observed for both methods around t~[1, 200]s and 

t~3400s. When disjoined models are used (based on DisPCA), the method becomes 

more sensitive and the fault is promptly detected at t=4260s. However, five normal 

samples are rejected when the model switches from 3M  to 1M  and 1M  to 6M  (see 

Figure 5-12). In contrast, the proposed AdPCA method is able to detect the sensor fault 

promptly at t=4260s with only 1 Type-I error at t=3750s due to run-to-run deviations 

(see Figure 5-13).  

 

 
Figure 5-12: Monitoring of DST05 using DisPCA 
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  Figure 5-13: Monitoring of DST05 using AdPCA 

 

Scenario 3: Low reflux rate  

 DST07 corresponds to a fault in reflux ratio. The fault was introduced at step 8 

of the SOP (t=3440s) when the operator set the value of reflux ratio to 50% lower than 

that of the nominal value. MPCA fails to detect the error while DPCA detects the fault 

at t=3490s with 4 false positives (Table 5-2). DisPCA also suffers from 4 false 

positives during switching of models. The proposed AdPCA technique yields the best 

performance by detecting the fault at t=3450s with no false positives.  

 The summary of results for monitoring other faults is presented in Table 5-2. In 

general, MPCA and DPCA are prone to Type-I and Type-II errors. MPCA 

misclassified 37 samples in total while DPCA misclassified 48 samples. MPCA failed 

to detect two disturbances (DST05 and DST07) and DPCA failed to detect one – 

DST05. The average detection delay for MPCA and DPCA are 670.0s and 356.7s, 
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respectively. The proposed AdPCA method gives the best performance in all cases by 

(i) detecting all faults promptly with an average detection delay of 310.4s, and (ii) 

reducing Type-I Errors (7 total misclassified samples). The improvement in AdPCA is 

achieved because of (i) using multiple models to represent transitions more accurately, 

and (ii) making the models overlap to ensure continuity within the models. Switching 

of models during online monitoring can hence be performed smoothly without 

excessive Type-I errors. 

 Next, the robustness of the proposed AdPCA approach to various δ and K is 

evaluated, which govern the above two features of AdPCA. To study AdPCA’s 

robustness to different values of K, a selectivity (detection accuracy) versus sensitivity 

(earliness of detection) analysis is conducted. For this study, instead of the optimal K, 

the number of models is prescribed without consideration of the inter-model similarity.  

The method reduces to MPCA when K=1 – the average detection delay is hence 670s 

and there are 37 total false positives. When a small K value is used, the constructed 

models fail to represent the nonlinearity and discontinuities in the training data. 

Increasing K leads to an improvement in the average detection delay. However, the 

total false positives observable is still large (>20) for 3K ≤ . When 4K ≥ , the total 

Type-I errors from AdPCA decreases to 10 and the detection speed also improves with 

average detection delay of about 390s (Table 5-3). For a wide range of K values the 

performance is robust; for instance, even K=20 results in the same detection delay 

(~390s) and a minor difference in the total Type-I errors (1 additional false positive) is 

observed. The effect of varying the level of overlap between the models is shown in 

Figure 5-14. As expected, when δ=0, all models become disjoint (DisPCA) and an 

increase in Type-I error rate is observed, especially during switching of models (total 

of 26 false positives for all scenarios analyzed). A sharp decrease occurs when 
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0.05δ ≈  which decreases to ~7 for 0.2 0.5δ≤ ≤ . These remaining seven Type-I errors 

are caused by high variability in the cooling water temperature in some scenarios. 

These studies therefore indicate that the method is robust over a wide range of K and δ. 

Next, the proposed AdPCA method is applied to a batch process.  

 

 
Figure 5-14: Type-I Error observed for different δ in distillation unit case study  
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Table 5-2: Summary of monitoring results for distillation unit startup case study 

 Multiway-PCA Dynamic-PCA Disjoined-PCA Adjoined-PCA 
Fault ID 
 
 

Time fault 
introduced 

Time 
Fault 

Detected 
False 

Alarms 

Time 
Fault 

Detected 
False 

Alarms 

Time 
Fault 

Detected 
False 

Alarms 

Time 
Fault 

Detected 
False 

Alarms 
DST01 1 1 0 1 0 1 0 1 0 
DST02 1 1 0 1 0 1 0 1 0 
DST03 359 365 2 372 5 368 4 368 2 
DST04 355 460 6 357 10 356 3 356 0 
DST05 425 - 12 - 8 426 5 426 1 
DST06 352 353 4 353 7 353 3 353 2 
DST07 344 - 2 349 4 345 4 345 0 
DST08 346 471 5 347 4 347 4 347 2 
DST09 1 1 0 1 5 1 0 1 0 
DST10 1,400 300 6 300 5 301 3 301 0 
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Table 5-3: Selectivity vs. sensitivity analysis in distillation unit startup case study 
Detection delay  in x10s (misclassified samples) 

# Model K=1 K =2 K=3 K=4 K =5 K =8 K =10 K =15 K =20 
DST01 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
DST02 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
DST03 6 (2) 10 (0) 9 (2) 9 (1) 9 (0) 9 (0) 9 (0) 10 (0) 9 (0) 
DST04 105 (6) 103 (6) 1 (8) 1 (1) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 
DST05 - (12) 147 (2) 1 (5) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 
DST06 1 (4) 1 (7) 1 (3) 1 (3) 1 (5) 1 (3) 1 (2) 1 (2) 1 (3) 
DST07 - (2) 2 (2) 2 (1) 1 (2) 1 (2) 1 (0) 1 (2) 1 (2) 2 (2) 
DST08 125 (5) 124 (2) 124 (3) 124 (1) 1 (0) 1 (2) 1 (1) 1 (0) 1 (0) 
DST09 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 
DST10 299 (6) 299 (4) 300 (0) 300 (0) 300 (0) 300 (0) 300 (0) 299 (0) 299 (0) 
Avg 
Delay 67.0 67.1 54.4 54.4 39.0 39.0 39.0 39.0 38.9 
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5.8 Case Study 2: Monitoring of Fed-batch Penicillin Cultivation 

Process 

Case Study Description  

 The production of antibiotics from penicillin is a multiphase process with 

nonlinear process dynamics. The penicillin fed-batch simulator PenSim v2.0 (Birol et 

al., 2002) is used to generate the training and testing data for analysis. The process 

flowsheet is shown in Figure 5-15 The simulator is developed based on the 

mathematical model of Bajpai and Reuss (1980), and is able to capture the dynamics of 

sixteen process variables, namely, flow rates of input streams, temperature, pH, heat 

generated, aeration rate of fermenter, and concentrations of penicillin, CO2, and 

substrate utilization under a variety of operating conditions. Since the product is very 

much affected by pH and temperature, they are therefore controlled at specified 

setpoint (pH 5.0 and 25°C through PID controllers). In all runs, an initial batch culture 

is followed by a fed-batch operation based on the depletion of the carbon source 

(glucose). The process switches to the fed-batch mode of operation when the level of 

glucose concentration reaches 0.3g/l. Eight process faults have been generated with the 

details of each fault given in Table 5-4. The variables selected for monitoring of 

penicillin cultivation process is given in Table 5-5. 
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Figure 5-15: Process flowsheet of Penicillin cultivation process 

 
Table 5-4: Summary of the eight fault scenarios considered in the penicillin cultivation 

case study 
Case Fault type Occurrence time (h) 
SIM01 pH controller failure 0.5 
SIM02 Temperature controller failure 0.5 
SIM03 15% step decrease in aeration rate 60 
SIM04 15% step decrease in agitation power 30 
SIM05 15% step decrease in substrate feed rate 50 
SIM06 Ramp increase in aeration rate 70 
SIM07 Ramp increase in agitation power 40 
SIM08 Ramp increase in substrate feed 30 
 

Table 5-5: Variables used monitoring of penicillin cultivation process 

Number Variables Units 
1. Aeration rate  1h-1 
2. Agitation power  W 
3. Substrate feed rate  1h-1 
4. Substrate feed temperature  K 
5. Dissolved oxygen concentration % saturation 
6. Culture volume  litre 
7. Carbon dioxide concentration  mmol l-1 
8. pH - 
9. Fermenter temperature  K 
10. Generated heat  kcal 
11. Cooling water flow rate  1h-1 
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Process Monitoring based on AdPCA 

 In this section, the proposed AdPCA method is tested with the Penicillin 

cultivatioin case study. A total of ten normal batches are simulated to create the 

reference data based on an integration step size of 0.02h and a sampling interval of 

0.5h. The state variables during each normal run are highly nonlinear and many of 

them show strong discontinuities during the period of cultivation (see Figure 5-16). In 

all runs, an initial batch culture is followed by a fed-batch operation based on the 

depletion of the carbon source (glucose). The process switches to the fed-batch mode 

of operation when the level of glucose concentration reaches 0.3g/l.   

 
Figure 5-16: State variables of the penicillin cultivation process during a normal run 

 

 Next, the AdPCA model is constructed using the training data based on the 

state variables listed in Table 5-5. Similar to the previous case study, the AdPCA is 

initialized with K=15 groups, and K reduced when high similarity ( 0.85PCASλ > ) is 
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found between any two models. Based on the proposed training criterion with δ=0.2, 

eight adjoined groups are created by making the samples whose 1k k
i iB B −− < δ exist in 

multiple groups. The eight models within the AdPCA overlap given the presence of 

some samples in multiple models. The assignment of training samples to different 

groups for one normal run is shown in Figure 5-17. Model M3 corresponds to batch 

operation while the remaining correspond to fed-batch operation. All eight models 

show low similarity and the highest PCASλ  is 0.7694 (Table 5-6). 

 

Figure 5-17 : Class assignment of data from one normal run of the Penicillin 

Cultivation Process 

 

 The constructed AdPCA is then tested with a control dataset (normal run) and 

the monitoring results shown in Figure 5-18. As can be seen, the proposed method 

shows high reliability with no occurrence of false positives. Different phases of the 

fermentation are also accurately detected by the proposed AdPCA model. The 

performance of classical PCA-based techniques is also studied for comparison. All 

MPCA, DPCA, and DisPCA are trained using the same training data. The MPCA 

requires 7 PCs and DPCA 13 (with l=2). Both MPCA and DPCA techniques are prone 
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to false positives at t~36.5h (Figure 5-19 for MPCA). Such observations are consistent 

with the analysis of Lee et al. (2004) and Doan and Srinivasan (2007). When tested 

with DisPCA with the same settings, 3 false positives are observed at t~45.0h and 

t~230.0h when the model switching occurred. The proposed method hence gives the 

best performance compared to other PCA-based techniques. Next, the efficiency of the 

proposed AdPCA method is evaluated using three types of disturbances, (i) controller 

failure, (ii) step changes, and (iii) ramp changes in process manipulated variables. In 

this study, the eight different disturbances listed in Table 5-4 have been tested. 

Scenarios SIM05 and SIM07 are described in detail next. 

 

Figure 5-18 : Monitoring of a normal run of Penicillin Cultivation Process using 

AdPCA 
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Figure 5-19 : Monitoring of a normal run of Penicillin Cultivation Process using 

MPCA 

Scenario 1: Low aeration rate 

 SIM05 corresponds to a step decrease in substrate feed rate at t=50.0h. This 

reduction decreases the final product yield since the growth of the biomass is affected. 

MPCA and DPCA fail to detect this disturbance while the multi-model based 

approaches DisPCA and AdPCA detect the fault promptly at t=63.0h. During the 

batch, MPCA flags 13 false positives, DPCA 22 (see Figure 5-20), and DisPCA 2 – 

both due to discontinuity in modeling the transient operation. In contrast, AdPCA has 

no Type-I error during the run (see Figure 5-21).  
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Figure 5-20: Monitoring of SIM05 using DPCA 

 

 

Figure 5-21: Monitoring of SIM05 using AdPCA 
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Scenario 2: High agitation power 

 SIM07 corresponds to a ramp increase in agitation input power which increases 

the shear on the biomass. MPCA detects the fault at t=248.0h when the SPE exceeds 

the 99% confidence limit. DPCA detects the fault earlier at t=241.0h based on the 2T  

statistic. Both DisPCA and AdPCA show significantly better results and detect the 

fault earlier at t=64.0h. The number of Type-I errors observed in this scenario are 11 

(1.38%) for MPCA, 13 (1.63%) for DPCA, 2 (0.25%) for DisPCA, and none for 

AdPCA.  

 The summary of results for all disturbances is presented in Table 5-7. All 

disturbances are detected by AdPCA and DisPCA, while MPCA and DPCA fail to 

detect SIM05. Both the single-model PCA approaches are prone to Type-I errors with 

an average error rate of 1.00% for MPCA and 1.63% for DPCA. In general, DPCA 

detects drift/ramp disturbances faster than MPCA because of the time-lag information 

incorporated in the model. However, this subjects the DPCA to more false positives. 

DisPCA flags Type-I errors during model switching and has an average error of 

0.19%. The proposed AdPCA technique gives the best performance throughout. It is 

able to detect all disturbances promptly with an average detection delay of 10.0h 

compared to 45.0h and 36.1h for MPCA and DPCA, respectively.  

 The robustness of AdPCA to δ and K is also evaluated. As expected, a large 

number of Type-I errors is observed when the models are disjoint (12 false positives 

when 0δ =  as shown in Figure 5-22). A sharp decrease is observed for all 0.04δ ≥  

(only 2 false positives for all scenarios tested). Table 5-8 shows the effect of the 

number of clusters. Both selectivity and sensitivity improve with K. When K=1, the 

method reduces to MPCA and shows similar performance (64 false positives with 

average detection delay of 45.0h). For 8K ≥ , the method exhibits 2 false positives and 
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the average detection delay improves to 10.0h. With a further increase (K=20), the 

average detection delay improves to 8.9h with 3 false positives.  

 

 
Figure 5-22: Type-I errors observed for different δ  in Penicillin Cultivation Process
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Table 5-6: '( , )PCA

k kS M M  between PCA models for penicillin cultivation process 
PCA 

Model # M1 M2 M3 M4 M5 M6 M7 M8 

M1 1.0000 0.6943 0.6253 0.7694 0.6048 0.5622 0.6370 0.5403 
M2  1.0000 0.7009 0.6183 0.7344 0.6752 0.6097 0.6675 
M3   1.0000 0.6191 0.6346 0.7287 0.5360 0.6696 
M4    1.0000 0.6758 0.6680 0.6712 0.6510 
M5     1.0000 0.6728 0.7574 0.5982 
M6      1.0000 0.6208 0.6458 
M7       1.0000 0.6187 
M8        1.0000 

 

Table 5-7: Summary of monitoring results for penicillin cultivation process 
Multiway-PCA Dynamic-PCA Disjoined-PCA Adjoined-PCA 

Fault 
ID 

Time Fault 
Introduced Time 

Fault 
Detected 

False 
Alarms 

Time 
Fault 

Detected 

False 
Alarms 

Time 
Fault 

Detected 

False 
Alarms 

Time 
Fault 

Detected 

False 
Alarms 

SIM01 0.5 2.5 0 2.0 0 1.5 0 1.5 0 
SIM02 0.5 5.0 0 3.0 0 2.5 0 2.5 0 
SIM03 60.0 61.0 13 61.0 23 61.0 3 61.0 0 
SIM04 30.0 31.0 0 31.0 0 31.0 0 31.0 0 
SIM05 50.0 - 13 - 22 63.0 2 63.0 0 
SIM06 70.0 86.5 13 86.5 24 82.5 3 82.5 0 
SIM07 40.0 248.0 11 241.0 13 64.0 2 64.0 0 
SIM08 30.0 112.0 14 59.5 8 58.5 2 58.5 2 
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Table 5-8: Selectivity vs. sensitivity analysis in penicillin cultivation process 
Detection delay in min (misclassified samples) 

Model # 
K=1 K=2 K=5 K=8 K=10 K=15 K=20 K=50 

SIM01 2.0 (0) 3.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 1.5 (0) 1.5 (0) 2.0 (0) 
SIM02 4.5 (0) 2.5 (0) 1.5 (0) 2.0 (0) 2.0 (0) 2.0 (0) 1.0 (0) 2.0 (0) 
SIM03 1.0 (13) 1.0 (3) 1.0 (2) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 
SIM04 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 1.0 (0) 
SIM05 - (13) 188.5 (2) 32.0 (2) 13.0 (0) 13.0 (0) 13.0 (0) 13.0 (0) 13.0 (0) 
SIM06 16.5 (13) 17.0 (4) 12.5 (2) 12.5 (0) 12.5 (0) 12.5 (0) 12.5 (0) 8.5 (0) 
SIM07 208.0 (11) 197.5 (2) 108.0 (2) 24.0 (0) 24.0 (0) 24.0 (0) 24.0 (0) 24.0 (0) 
SIM08 82.0 (14) 33.0 (2) 36.5 (3) 28.5 (2) 28.5 (2) 26.5 (2) 26.5 (3) 24.0 (3) 

Avg 
Delay 45.0 36.4 23.1 10.0 10.0 9.8 9.6 8.9 
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5.9 Summary 

 Online monitoring of transient operations is important to detect abnormal 

events and enable timely recovery. Transient operations commonly follow a nonlinear, 

discontinuous trajectory in the principal components subspace. Therefore, classical 

PCA approaches such as MPCA and DPCA are unable to adequately model such 

operations. The run-length variations common across different instances of transient 

operations restricts the application of time-wise unfolding methods with MPCA unless 

explicit synchronization of trajectories is performed (Doan and Srinivasan, 2007). 

Further, reliable estimation of the underlying distribution of a multivariate transient 

operation is difficult. These difficulties are overcome when multiple models are used 

for modeling such non-stationary, and non-Gaussian systems. When the multiples 

models are disjoint, they become prone to Type-I errors, especially in the interregnum 

between models. To overcome this, a new monitoring technique, called Adjoined PCA, 

based on overlapping PCA models has been developed. In the proposed technique, 

multiple overlapping PCA models are constructed using membership information 

obtained though fuzzy clustering. Each constituent PCA model in AdPCA is allowed 

to overlap with its neighbors – this enforces continuity while modeling and monitoring 

transient operations. The monitoring statistics constructed for each constituent model 

hence comprehensively covers all relevant portion of the training data, so false 

positives do not occur during model switching. Additionally, since the proposed 

AdPCA classifies the region of the training data more accurately, unknown regions in 

the PC subspace are better excluded from the model. This reduces the occurrences of 

Type-II errors as well. This is not achievable with single model methods where a 

tradeoff between selectivity and sensitivity occurs. During online application, the 

optimal PCA model is selected at every instant and the process state monitored based 
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on it. The proposed AdPCA method is hence applicable to operations with different 

run-length since it switches among the models automatically based on the distance of 

the sample from the different models. Therefore, it can inherently adapt to varying 

durations by extending or reducing the period for which a model is used. Extensive 

testing of the proposed method using two case studies clearly demonstrates the 

method’s ability to red reduce both Type-I and Type-II errors.  
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Nomenclature  

Indices 

c principal components 

i process time (rows of X) 

k, k’ model within a bank of models 

n process variables  

Parameters 

1 identity matrix 

C total number of principal components retained 

I total number of samples (rows) 

K number of clusters used to construct AdPCA model 

l time-lag incorporated in dynamic-PCA model 

N total number of variables (columns) 

v fuzzifier used during fuzzy c-means clustering 

β weighting factor used for combining T2and SPE 

δ adjoining threshold  

Variables 

B k
i  the kth best cluster that data xi is belonging to 

ck centroids of kth cluster 

Gk a matrix composed of data from X that belong to cluster k  

Mk kth PCA model  

Mopt nearest PCA model to a new sample xi 

pc loadings  

Q(α) upper control limit for SPE at confidence level 1- α 
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S
'

PCA
kk  similarity observed between two PCA models, namely Mk and Mk’ 

SPEi squared prediction error for sample xi 

ikSPE  reduced SPE observed for sample xi based on kth model 

tc scores  

T2(α) upper control limit for T2 statistic based on 1- α confidence level 

Ti
2 Hotelling’s T2 statistic for sample xi 

2
ikT  T2 observed for sample xi based on kth model 

uik membership of  xi in each k group identified from clustering algorithm 

v fuzzifier used for c-means clustering 

X a multivariate time series data 

xi ith sample in X 

3dY�  a three-dimensional training data collected from plant historian 

Y�  a two-dimensional raw training data collected from plant historian 

Y auto-scaled data used for AdPCA model training 

Λ covariance matrix of X  

λc eigenvalue associated with pc 

σ
nY  standard deviation for variable 

nY  

Фik combined discriminant similarity index 
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Chapter 6 Pattern Recognition based on 

Binomial Combination of Non-parametric 

Confidence Bounds    

6.1  Need of Non-parametric Approach for Fault Recognition 

 A diagnostic classifier based on Kernel Density Estimator (KDE) is developed 

in this chapter for disturbance detection and identification. The proposed method can 

be used to substitute Hotelling’s 2T statistic in detecting deviations from reference 

PCA models. As described in Chapter 2.5, the popular Hotelling’s 2T statistic sustains 

unusual amount of Type-I and Type-II errors when applied to transient processes. 

Since obtaining a general data density model for all types of transient operations is 

difficult, a non-parametric approach such as KDE that does not require a prior 

specification of any parametric density model can be used. Given its non-parametric 

form, KDE-based method can be applied to both the domain of steady-state and 

temporal phase as in the case of transitions/batch operations. Reference data can first 

be projected to a latent subspace and the reference model created. Since KDE is bi-

variate in nature, different combinations of the latent variables have to be analyzed and 

merged for multi-dimensional analysis. The KDE-based statistic has been shown to be 

an effective tool for fault identification by rendering a database search possible 

through pattern recognition. The use of fault database for fault identification is justified 

through the continuous growth in availability of quality database in the process 

industries, either through long period of accumulated operations or development of 

high-fidelity simulator by the process engineers. Additional information such as fault 
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description and rectification strategies can also be associated with the fault-database to 

facilitate fault recovery in real-time. 

6.2 Fault Diagnosis based on KDE 

 KDE is a density estimation technique that creates bound based on the training 

data without the imposition of any priori knowledge of the distribution of the training 

data, eg: Gaussian, F-distribution, etc. The monitoring bounds constructed can thus 

describe the behavior of process transitions more accurately. It can hence be used to 

substitute the Hotelling’s T2 statistic in detecting deviations from a trained model 

during process transitions.  

 Though the proposed approach can be applied to most statistical model-based 

approaches, multivariate statistical methods is used here for illustration, specifically 

PCA. As noted earlier, since DPCA can capture the dynamics of process variables, 

DPCA model was developed for a transient process and then construct various KDE-

bounds for all combinations of the bi-variate PC pairs observed.  

 The KDE bounds are created based on the projection of normal operating data 

in the score space. Let the score matrix from a PCA/DPCA model be 

1{ ,..., ,..., }j Jt t t t= , where jt  being the jth column of t with J number of columns. For 

the purpose of monitoring, a total of 2 2!/(( 2)!2!)JC N= −  bounds can be constructed 

through KDE based on the binomial combinations from jt  vs 'jt  pair, , '
'

j
j j

j
⎛ ⎞

∀ = ⎜ ⎟
⎝ ⎠

, by 

selecting two components from the scores matrix t in each combination. Let the 

collection of these KDE bounds be noted as 'jjM M Λ∈ , where each 'jjM corresponds 

to the binomial 'j  vs j  combination of the score of principal components. Here, Λ is 

the collection of subsets for the binomial coefficients of the score matrix t, i.e., 
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[ ]1,2; 1,3;...; j - 1, jΛ = . Each of the bound created within M Λ , i.e., 

1,2 1,3[ ,M M 2,,..., ,j jM −  1, ]j jM − , corresponds to a contour in the two dimensional space 

and inspects variations in plane jj't , 'j j≠ .  

 Since the constructed bounds are very dependent on the bandwidth matrix, H, 

an additional scaling factor, Φ , was introduced to the H obtained to allow adjustment 

of the width of , 'j jM  used for monitoring: 

   optH H= Φ ×  (Eq  6-1) 

Here, optH  is the final smoothing parameters used for bounds generation. The scaling 

factor, Φ , plays an important role in adjusting the selectivity and sensitivity of , 'j jM . 

A 1Φ <  makes the KDE bound , 'j jM  tighter and more sensitive, hence reduces the 

rate of Type-II errors (false negatives) while 1Φ >  makes , 'j jM  larger, hence less 

prone to Type-I errors (false positives).  

 As noted in Chapter 2, the amount of variance described by each PC differs 

significantly, i.e., abnormality shown in the scores from the first few PCs normally 

indicate a more severe indication of faults compared to subsequent PCs. In order to 

accommodate such differences in the significance of PCs, their corresponding 

eigenvalues can be used as a weighting function. Since there exist 2
JC  bounds for a 

PCA/DPCA model with J latent variables (PCs), a sample x has to be investigated with 

all of the KDE bounds created, , 'j jM . In this work, an index was proposed to combine 

the results from all dimensions into a single, unified index by weighting each 

dimension in the binomial combination with their corresponding eigenvalues.  

 In the simple two dimensional case involving PC j and PC j’, the distortion 

index, τ , which measures the total amount of undesired changes in the PCs domain 

can be defined as the weighted Euclidean distance of the bivariate score of the online 
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sample, j,j'
it , compared to the closet point identified from the scores of the center 

trajectory (center line of the training data), and the closest point identified from the 

KDE bound , 'j jM . Let , '
*
j jC  be the closest point of the center trajectory from j,j'

it  , and 

j,j'
*M  be the closest point of the KDE bound , 'j jM  from j,j'

it  (see Figure 6-1), both 

, '
*
j jC  and j,j'

*M  can be identified through: 

 , ' , ' , '
* arg min(| |)j j j j j j

i r
r

M t M= −  (Eq  6-2) 

 , ' , ' , '
* '

'
arg min(| |)j j j j j j

i i
i

C t C= −  (Eq  6-3) 

Since the information contain in each dimension of the PC is proportional to their 

corresponding eigenvalue of the covariance matrix, the distance across each PC was 

weighted with its corresponding eigenvalue. The distortion index, τ , which calculates 

the relative distance between j,j'
it  to points , '

*
j jC  and j,j'

*M can then be evaluated as: 

 

, ' , '
*

, ' , '
* *

, ' , ' 2 , ' , ' 2
* ' *

, ' , ' 2 , ' , ' 2
* * ' * *

( , )
( , )

( ( )) ( ( ))
  

( ( )) ( ( ))

j j j j
i

i j j j j

j j j j j j j j
j x x j y y

j j j j j j j j
j x x j y y

d t C
d M C

t C t C
M C M C

τ

λ λ
λ λ

=

− + −
=

− + −

.  (Eq  6-4) 

Here, the jλ , 'jλ  is the eigenvalue for PC j and j’, while the subscript x and y denote 

their corresponding x and y coordinate in the PC space (see Figure 6-1). In the above 

two-dimensional scenario, the 0iτ ≈  if the bivariate scores j,j'
it  are close to the scores 

of the center trajectory of the training data, 1iτ ≤  if the sample is within the KDE 

bounds identified, while 1iτ >  if j,j'
it  is exceeding the allowable limits of the KDE 

bounds. 
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PC j

, ' , '
*( )j j j j

x xt C−

, ' j,j' 2 j,j' 2
x ' yd( , ) ( ) ( )j j

i j x j yt L t L t Lλ λ= − + −

, ' , '
*( )j j j j

y yt C−

Scores of the center
trajectory

Online sample

Bi-variate bounds
from KDE

, '
*
j jC

, '
*
j jM

, 'j j
it

 
Figure 6-1: Illustration of relative distance calculation between (i) , 'j j

it  and , '
*
j jC , and 

(ii) , '
*
j jM and , '

*
j jC  

 

 When J dimensions are involved, a total of 2
JC  bounds are produced and their 

monitoring results have to be combined. For cases involving J PCs, the τ  at time i 

instant can be evaluated as: 

( )

( )

'
, ' 2 , ' 2

* ' *
1 ' 1

'
, ' 2 , ' 2

* ' *
1 ' 1

( ( )) ( ( ) )

( ( )) ( ( ) )

J J
j,j' j j j,j' j j

j x x j y y
j j

i J J
j j j j

j x x j y y
j j

t C t C
τ

Q C Q C

λ λ

λ λ

= =

= =

− + −
=

− + −

∑∑

∑∑
, , ' [1, ]

'
j

j j  J
j

⎛ ⎞
∀ = ∈⎜ ⎟

⎝ ⎠
(Eq  6-5) 

where 
'

j
j

⎛ ⎞
⎜ ⎟
⎝ ⎠

corresponds to the binomial coefficients of J variables.   

 When analyzed across all 'jjt  pairs, the iτ quantifies the total amount of 

undesired changes of xi from all nominal jj't  pair in the PC subspace. The summation 

of the denominator in Eq 6-5 serves as a normalization function for τ . An upper 

control limit βτ  can be defined forτ  for the purpose of monitoring.  

6.3 Pattern recognition through fault distortion index 

 The proposed index can also be used as a pattern recognition metric. Upon the 

detection of fault, the fault patterns or features observed in real-time can be compared 
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with previous runs to predict the type of fault. Fault isolation is equivalent to pattern 

matching with the available multidimensional datasets. The fault isolation scheme 

considered here is based on the precept that different classes of faults always show 

unique fingerprints in the score space. The distortion index, τ , described in previous 

section can then be used for pattern recognition through discrimination of faults in the 

score space. 

 Here, a statistic-based fault reconstruction approach was used for fault 

identification. Fault identification is based on measuring the similarity between the 

online measurements ix  with each wF  in the fault database. Let there be W classes of 

known faults, wF , where [1 ]w  , W∈ . The PCA model, wPCA , that shows an in-control 

status for majority of the fault samples observed can be identified as the possible 

candidate for x .  

 Multiple KDE bounds  wFM  can be constructed for each wPCA  with the 

distortion index between x and each wFM quantified. The similarity between ix and 

each wFM , [1 ]w  , W∈ , is computed as a fault similarity measurement, iwS :  

 ( , )wF iw
iw i

i

ψS x M
L

= , [1 ]w  , W∀ ∈  (Eq  6-6) 

Here, iwψ  is the number of samples within an evaluation window (from the time of 

fault detection till time i) that show in-control status with wFM , and iL  is the length of 

the evaluation window used. The iwψ  can be computed at each instant as: 

 ( 1)
1 , ( , )
0 ,

wF
iw i

iw i- w
  if  x M

ψ ψ
    otherwise            

βτ τ⎧ <
= + ⎨

⎩
, [1 ]w  , W=  (Eq  6-7) 

The best matching fault candidate from the fault database at time i, opt
iF , can then be 

extracted as the best matching candidate: 
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 arg max( )opt
i iww

F S= , [1 ]w  , W= . (Eq  6-8) 

The fault can be accurately identified if wS  shows high level of similarity across the 

evaluation window used. In general, the initial stages of similarity search might return 

more than one successful candidates as there might exist multiple fault models wFM  

that show high degree of overlap in their PC subspace. However, this ambiguity is 

usually resolved with the analysis of additional samples.  

6.4 Implementation Algorithm 

 The KDE-based PCA monitoring and diagnosis method is implemented in 

practice as follows: 

Offline Training: 

Step 1: Normalization: Each variable of DX  is first autoscaled to alleviate the varying 

scales of different process variables. 

Step 2: Latent space projection: A dynamic matrix DX  is constructed from the 

autoscaled training data through Eq 2-14. The DX  is then projected to the principal 

components subspace as scores, t, and loadings, p. 

Step 3: KDE Bounds Construction:  A collection of KDE bounds, M Λ , is constructed 

for different binomial coefficients of scores jj't , , '
'

j
j j

j
⎛ ⎞

∀ = ⎜ ⎟
⎝ ⎠

 obtained from D
nX . The 

bandwidth selection technique as described in Appendix D is used for calculation of 

the bandwidth matrix, H. H can be further fine-tuned with a scaling factor, Φ , as 

described in Chapter 6.2. Monitoring bounds correspond to 95% and 99% contours are 

then constructed based on the estimated density of the scores ( , )optf t H
�

. The algorithm 
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for offline training is shown in Figure 6-2. An upper control limit, τ β , is selected and 

used for fault detection based on the anticipated noise level. 

Step 4: Fault database preparation: The available training data for different classes of 

faults, wF , is organized and stored in a fault database, DB , where { }1 ... wDB F F= ∪ ∪ . 

Each class of the fault is PCA/DPCA projected and the bounds wFM  constructed for 

each wF  in DB  similar to Steps 1 to 3.  

 

Online Monitoring &Fault Diagnosis 

Step 1: Online monitoring: New process measurements, designated as ix , is first (a) 

augmented with time-lag information, and then (b) autoscaled before being projected 

to the PCA model. The score for ix , designated as it , in the PC subspace is calculated 

based on the loadings obtained from offline training. 

Step 2a: Fault detection: The distortion index at time i, iτ , is quantified by combining 

all in-control/out-of-control status of all available KDE bounds (Eq 6-5). The 

underlying process is deemed abnormal if iτ τ β> .  

Step 2b: Fault diagnosis: Fault diagnosis involves iterating over the fault database, 

DB , to identify the root cause based on the available fault patterns (see Figure 6-3). 

The fault similarity measurement, Sw, [1 ]w  , W=  is calculated for each wF  by 

comparing D
ix  with each fault model constructed, wFM , through ( )wF

iw iτ x ,M  over a 

defined time window. The fault candidates that contain high degree of similarity 

(e.g.: 80%wS > ) are listed as possible candidates.  

In the following sections, the efficacy of the proposed metrics are illustrated using two 

case studies: a fed-batch penicillin cultivation testbed, and a pilot-scale distillation unit 

case-study.  
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Figure 6-2: Offline methodology for kernel-density models construction 
 

 
 

Figure 6-3: Online architecture for kernel-density model-based fault diagnosis 
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6.5 Case Study 1: Fault Diagnosis during Penicillin Cultivation 

 Ten normal fed-batches were simulated to create the reference data (with an 

integration step size of 0.02h and a sampling interval of 0.5h). The variables selected 

for the monitoring of penicillin cultivation process are listed in Table 5-5. The state 

variables during each normal run are highly nonlinear and many of them show strong 

discontinuities during the period of cultivation. In all runs, an initial batch culture is 

followed by a fed-batch operation based on the depletion of the carbon source 

(glucose). The process switches to the fed-batch mode of operation when the level of 

glucose concentration reaches 0.3g/l. 

 Next, the PCA model is constructed using the training data based on the state 

variables listed in Table 5-5. A DPCA model with time lag l =2 was trained. Eight PCs 

are needed to capture enough variance of the training data based on criteria 

1 1
95%J N

j jj j
λ λ

= =
>∑ ∑ . The final constructed DPCA model captures 98.77% variance 

of the fed-batch operations. In order to develop the KDE bounds, different binomial 

combinations of the PCs are used. A total of 28 KDE bounds are created based on the 

bivariate  scores of the eight PCs, i.e., the KDE bounds M Λ  are hence consisted of 

1,2 1,3 , ' 7,8{ , ,..., ,..., }j jM M M M MΛ = . The optimal bandwidth, optH , is determined 

based on the normal scale rule, AMISEH , by setting 1Φ = using Epanechnikov kernel. 

Based on Eq D-3, the values of H for the first two PCs are identified as [1.618, 1.371], 

and the monitoring bounds are created by using the contour of the estimated density 

from KDE. 

 When tested with a control dataset, the normal fed-batch operation is 

represented as a trajectory on the scores plot of the PCs. The monitoring bounds based 
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on KDE orient themselves around the trajectory produced, and occupy only the 

relevant normal operating region in the score space. 

 Eight process disturbances were studied as summarized in Table 5-4. All 

training data that are used for fault identification are simulated separately. The training 

data used for pattern recognition hence consist of eight groups. In this study, the 

performance of Hotelling’s T2 and bivariate-KDE based on PC1 and PC2 are compared 

with the proposed methodology. Two runs correspond to Run-06 and Run-07 are 

illustrated next. 

Scenario 1: Monitoring of a ramp increase in aeration rate 

 Run-06 corresponds to a ramp increase in aeration rate with a slope of +0.05. 

The fault was introduced at t=70.0h, by allowing the oxygen flow to increase 

continuously over time. The monitoring bounds of Hotelling’s T2 are reflected as 

ellipses in the PC subspace (see Figure 6-4a & 6-4b). The ellipses produced based on 

Hotelling’s T2 (based on 99% confidence) cover a large area on the PC subspace, 

rendering the method prone to Type-II errors. When the process trajectory deviates the 

99% confidence bound, Hotelling’s T2 flags the fault at t=86.5h.  

 In contrast, bivariate-KDE and the proposed KDE approach generate bounds 

based on the presence/absence of training data in the PCA score space. The bounds 

created based on 99% confidence limit thus fit the reference data well and hence 

avoids the occurrence of both Type-I and Type-II errors. The KDE bounds for the first 

two PCs are shown in Figure 6-5a. In this scenario, the same fault can be detected 7.5h 

earlier at t=79.0h (bivariate-KDE with PC1 vs PC2) by improving the bounds used for 

process monitoring.  

 The same fault is also monitored using the proposed distortion index,τ , based 

on 99% confidence limit. The τ  gives similar performance compared to bivariate KDE 
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and a better performance compared to T2 in this scenario by flagging the fault at an 

earlier time without any false positives (see Figure 6-5b). The improvement in 

detection speed over T2 is due to usage of better monitoring bounds as the bounds from 

KDE give better representation of the training trajectory in the PC subspace.  

 
(a) 

 
(b) 

Figure 6-4: Monitoring on Run-06 of penicilin cultivation case study using Hotelling 
T2 
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(a) 

 
(b) 

Figure 6-5: Monitoring on Run-06 of penicilin cultivation case study using KDE and 
Distortion Index 

 

 In order to test the fault isolation property of the proposed τ  statistic, the 

online signals are used for fault identification based on a pattern recognition approach 

by matching the faults with known fault patterns in the database. For the purpose of 

fault diagnosis, the τ  index is generated for each available fault patterns and its 

similarity with all faults Siw generated. Three fault candidates, namely, SIM06, SIM07, 
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and SIM08 are identified as potential candidates (see Figure 6-6) at time of fault 

detection as initial phase of these three classes of faults are similar given the ramp type 

of fault considered (characteristic of the fault become more obvious with t). 

Eventually, the similarity degree of SIM07, 7S , and SIM08, 8S , drops below the 

threshold (0.8) after the analysis of 46 additional samples, and enables the successful 

isolation of the fault at t=102h. The proposed τ  statistic hence provides good 

classification property to segregate the fault classes in the PC subspace. In contrast, 

isolation based on bivariate KDE (using PC1 and PC2) fails to distinguish SIM03 from 

SIM06 (Figure 6-7) since a significant portion of the bound for SIM03 is overlapping 

with the bound of SIM06 in the PC1 and PC2 subspace. The SIM03 corresponds to a 

step change while SIM06 corresponds to ramp change of the aereation rate variable. 
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Figure 6-6: Fault isolation during Run-06 using similarity based on DI method 



Chapter 6                                                                                       Non-parametric KDE 
_____________________________________________________________________ 

 -170-

0
100

200
300

400
500

600

SIM08

SIM07

SIM03

SIM06

0

0.5

1

Samples analyzed

S
im

ila
rit

y,
 S

w

 
Figure 6-7: Fault isolation during Run-06 using similarity based on first two PCs 

 

 This shows the need of combining various combinations of PCs to improve the 

class discrimination property of KDE. Using additional combinations of PCs help to 

improve the separability of the fault classes. Since it is very difficult to visually 

monitor so many different bivarate combinations of KDEs, the proposed approach 

provides a convenient way of automating the analysis of KDE plots and facilitates its 

actual implementation for multivariate analysis in practice. 

 

Scenario 2: Monitoring of a ramp increase in agitation input power 

 Run-07 corresponds to a ramp increase in agitation input power starting at 

t=40.0h which increases the shear on the biomass. Hotelling’s T2 causes significant 

delay in fault detection time with a delay of 198.0h from time of fault introduction 

(Figure 6-8). The detection speed of Hotelling’s T2 can be improved if a 95% 

confidence limit is used. However, using low confidence for control limit subjects the 

initial trajectory of the operations prone to false positives (Figure 6-8). In contrast, the 

KDE-based approaches successfully detects the fault at t=133.0h without any Type-I 
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errors (Figure 6-9) when the online trajectory deviates from the 99% confidence limit 

of the model.  

 
Figure 6-8: Monitoring on Run-07 of penicilin cultivation case study using Hotelling 

T2 

 
Figure 6-9: Monitoring on Run-07 of penicilin cultivation case study using KDE 
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Figure 6-10: Fault isolation during Run-07 using similarity based on DI method 

 

 Fault identification based on the online signature using bivariate KDE 

identifies four candidates – SIM04, SIM06, SIM07, and SIM08 at time of fault 

detection. The fault is isolated at t=238.5h when the similarities of other faults drop 

below the threshold (Sw<0.8). The proposed fault isolation approach using binomial 

combination of different PCs improves the initial selection of fault candidate and fault 

isolation time. SIM06, SIM07 and SIM08 are identified as potential candidates at time 

of fault detection (see Figure 6-10). The time of fault isolation also improves to 

t=170.0h (18.5h earlier) for the fault similarity of other candidates to drop below the 

selected threshold (Sw>0.8).        
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Table 6-1: Monitoring results for penicillin cultivation process 

Hotelling T2 Bivariate-KDE DIBC 

Run # 

Time 
fault 

introdu
ced 

Time of 
detection 

(h) 

Detectio
n Delay 

(h) 

Time of 
detection 

(h) 

Detectio
n Delay 

(h) 

Time of 
detection 

(h) 

Detectio
n Delay 

(h) 
Run-01 0.5 2.0 1.5 1.5 1.0 1.5 1.0 
Run-02 0.5 20.0 19.5 7.5 7.0 7.5 7.0 
Run-03 60.0 60.5 0.5 60.5 0.5 60.5 0.5 
Run-04 30.0 30.5 0.5 30.5 0.5 30.5 0.5 
Run-05 50.0 - - 50.5 0.5 50.5 0.5 
Run-06 70.0 86.5 16.5 79.0 9.0 79.0 9.0 
Run-07 40.0 238.0 198.0 133.0 93.0 133.0 93.0 
Run-08 30.0 177.5 147.5 107.0 77.0 86.0 56.0 

Avg 
Delay   54.86h  26.86h  23.86h 

 
Table 6-2: Fault diagnosis results for penicillin cultivation process 

Bivariate KDE DIBC 

Run # Fault 
Candidates 

Time 
Fault 

Isolated 

Isolation 
Delay 

Fault 
candidates 

Time 
fault 

isolated 

Isolation 
Delay 

Run-01 F1 1.5 1.0 F1 1.5 1.0 
Run-02 F2 7.5 7.0 F2 7.5 7.0 
Run-03 F3 60.5 0.5 F3 60.5 0.5 
Run-04 F4 30.5 0.5 F4 30.5 0.5 
Run-05 F5,F8 205.0 155.0 F5,F8 205.0 155.0 
Run-06 F3,F6,F7,F8 - - F6,F7,F8 102.0 32.0 
Run-07 F4,F6,F7,F8 238.5 198.5 F6,F7,F8 170.0 130.0 
Run-08 F4,F7,F8 131.5 101.5 F7,F8 94.0 64.0 

Avg 
Delay   66.28h   51.14h 

 
 The summary of monitoring and fault diagnosis to other scenarios of the fed-

batch penicillin cultivation case study is shown in Table 6-1 and Table 6-2. It was 

observed that the occurrence of the phase shift in each batch is around 86th–92nd 

samples. The Hotelling’s T2 identifies six of the disturbances while the bivariate-KDE 

and the proposed KDE-based approach identify all of the disturbances introduced. 

 Hotelling’s T2 is unable to detect the process disturbance of Run-05, which 

corresponds to a step decrease in substrate feed rate. The average detection delay based 

on Hotelling’s T2 is 54.8h for all detectable faults, while the average detection delay 

for the bivariate KDE and the proposed KDE-based approach is 26.9h and 23.9h 
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respectively (see Table 6-1) based on the same classes of faults detected through 

Hotelling’s T2. Also, kernel density-based approaches are able to reduce the rate of 

Type-I and Type-II errors compared to Hotelling’s T2. This improvement is due to the 

better bounds created for the training data by the KDE approach. The proposed KDE-

based approach is able to detect the faults faster compared to bi-variate KDE by 

incorporating additional information from other PCs 

 In this case study, all faults are correctly identified and isolated with the 

proposed KDE-based fault pattern recognition approach with an average diagnosis 

delay of 51.14h from time of fault introduction. Bivariate KDE-based approach fails to 

isolate fault SIM06 and requires an additional 15.14h (avg delay of 66.28h from time 

of fault introduction) to isolate the faults in average (Table 6-2). In summary, the 

proposed approach based on binomial combination of KDE bounds give the best 

results for both monitoring and fault identification compared to Hotelling’s T2 and 

bivariate-KDE.   

6.6 Case Study 2: Fault Diagnosis during Distillation-unit Startup 

 The proposed FDI method was also tested with the pilot-scale distillation unit.  

Nominal dataset from six normal startups are used as training data. The training data 

set is augmented with time-lag samples (l=2), before they are projected to the PC 

subspace.  Eight PCs are retained with a total cumulative variance of 95.52%. Similar 

to previous case study, a total of 28 KDE models are created based on the reference 

data for monitoring the startup operation.  

 The optimal bandwidth, optH , is determined based on the least squared cross-

validation, LSCVH , by setting the scaling factor, 8.0=Φ . The calculated optH  for the 

KDE bound in the first two PCs are [0.005,0.008]optH = . Ten process disturbances 
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have been tested in this study with their summary given in Table 3-2. The training data 

is first created by conducting separate experiments with their measurements taken at 

10-second interval. Two of the faults are described in detail.  

 
Scenario 1: Monitoring Low Reflux Ratio 

 Run-07 corresponds to a low reflux ratio. The fault was introduced at Step 8 

(t=3450s) when the plant operator sets the reflux ratio at 50% lower than the nominal 

value. Setting a low reflux ratio for the process has a negative impact on the resulting 

product quality. However, the effects are not immediately observable as product 

concentration is analyzed offline. The Hotelling’s 2T  approach is unable to detect the 

fault throughout the run (Figure 6-11a), as the fault is contained within the space 

occupied by the monitoring boundary. In contrast, the process disturbance is detected 

successfully by the proposed kernel density-based approach at st 3460=  (Figure 

6-12a) when the online trajectory deviates from the 99% confidence limit. The T2 and 

τ  statistics are shown in Figure 6-11b and Figure 6-12b respectively. Fault 

identification at time of fault detection suggests two candidates as possible root causes, 

namely DST06, and DST07. This ambiguity is resolved at t=3490s after analyzing 

three additional samples.  
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 (a) 

 
(b) 

Figure 6-11: Monitoring on Run-07 during distillatioin startup using Hotelling T2 
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(a) 

 
(b) 

Figure 6-12: Monitoring on Run-07 during distillation startup using Distortion Index 
 

 

Scenario 2: Monitoring of a Complex Fault 

 Run-10 corresponds to a complex fault arising from low flow of condenser 

cooling water and feed pump malfunction. The first fault occurred right after the 

startup (t=10s), and the second fault occurred during Step 7 of SOP (t=4000s) when the 

pump failed, thus cutting off the feed to the column. Since the heat exchanger is not 
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equipped with a flow meter, the fault cannot be observed directly. The symptoms of 

the fault start around t=3000s when the outlet temperature of the condenser cooling 

water – T12 shows abnormality. In this case study, Hotelling’s T2 is unable to detect 

both failures. In contrast, the kernel density-based approaches (both bivariate and 

binomial combination) detect the fault at t=3040s. The fault signals at time of fault 

detection are used for fault identification. With bivariate KDE (using only PC1 and 

PC2), two fault candidates - DST04, and DST10 are identified as similar to the online 

signal. The DST10 is identified as the only remaining candidate after the analysis of 

19th additional samples at t=3190s. The proposed KDE-based fault isolation approach 

improves the class discrimination by identifying DST10 promptly at the time of fault 

detection (t=3040s).  

 Similar studies were conducted for all other faults as shown in Table 6-3 and 

Table 6-4. Hotelling’s T2 was unable to detect three faults – DST05, DST07 and 

DST10. Most faults were successfully detected and diagnosed by the bivariate and the 

proposed KDE-based monitoring techniques. The KDE-based monitoring techniques 

failed to detect disturbance DST05, which corresponds to a sensor fault. The bivariate 

KDE performs poorly during Run-04. Its performance can be improved using the 

proposed distortion index where contributions from all PCs are considered. The 

average detection delay of Hotelling’s T2 is 356s. Detection delay based on bivariate-

KDE and the proposed approach are 350s and 200s respectively (Table 6-3). The 

proposed KDE method is also less prone to Type-I errors compared to Hotelling’s T2. 

Hotelling’s T2 shows unusual number of false positives during early stage of the 

startup ( ]3010[~  , t s). In this case study, the bivariate-KDE approach fails to isolate 

fault DST08. All other faults are isolated with an average diagnosis delay of 217.5s 

based on the faults identifiable with bivariate KDE. On the other hand, the proposed 
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fault isolation strategy successfully diagnosed all detectable faults with an average 

diagnostic delay of 41.3s (Table 6-4). This case study hence further illustrates the good 

class separable feature of the proposed KDE-based pattern recognition method. 
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Table 6-3: Monitoring results for the distillation unit startup 

Hotelling T2 Bivariate KDE DIBC 

Run # 
Time fault 
introduced 

(x10s) 
Time of 

detection 
(x10s) 

Detection 
Delay 
(x10s) 

Time of 
detection 

(x10s) 

Detection 
Delay 
(x10s) 

Time of 
detection 

(x10s) 

Detection 
Delay 
(x10s) 

Run-01 1 6 5 2 1 2 1 
Run-02 1 2 1 2 1 2 1 
Run-03 359 370 11 370 11 370 11 
Run-04 356 462 106 462 106 357 1 
Run-05 425 - - - - - - 
Run-06 353 354 1 354 1 354 1 
Run-07 345 - - 346 1 346 1 
Run-08 347 472 125 472 125 472 125 
Run-09 1 1 0 1 0 1 0 
Run-10 300 - - 304 4 304 4 

Avg 
Delay   35.6  35.0  20.0 
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Table 6-4: Fault diagnosis results for distillation unit startup 
 

Bivariate KDE DIBC 

Run # Fault 
candidates, 

optF (DST) 

Time fault 
isolated 
(x10s) 

Isolation 
Delay 
(x10s) 

Fault 
candidates, 

optF (DST) 

Time fault 
isolated 
(x10s) 

Isolation 
Delay 
(x10s) 

Run-01 F1 2 1 F1 2 1 
Run-02 F2 2 1 F2 2 1 
Run-03 F3,F6,F7 390 31 F2,F3,F5 380 21 
Run-04 F4 463 107 F4 357 1 
Run-05 - - - - - - 
Run-06 F6,F8,F10 359 6 F6 354 1 
Run-07 F3,F6,F7 354 9 F6,F7 349 4 
Run-08 F4,F8 - - F4,F8 482 135 
Run-09 F9 1 0 F9 1 0 
Run-10 F4,F10 319 19 F10 304 4 

Avg Delay   21.75   4.13 
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6.7 Summary 

 Fault detection and diagnosis of transient operations are important to identify 

abnormal events and enable their timely recovery. Currently, most statistical methods 

for process monitoring, specifically the PCA approach, is based on Hotelling’s T2. 

However, Hotelling’s T2 is unable to generate reliable bounds for a model when the 

underlying operations are non-stationary, or non-Gaussian. The run-length variations 

common across different instances of transient operations restricts the application of 

time-wise unfolding methods with PCA unless explicit synchronization of trajectories 

is performed (Doan and Srinivasan, 2008). One alternative to the above problem is 

through the use of multiple-models. However, most multi-model approaches suffer 

from high rate of errors during model switching (Srinivasan et al, 2005). Also, the 

design of a robust model selection algorithm for online applications can be difficult. 

Given the complexities associated with multi-model approaches, single model-based 

approaches offer a more reliable means of monitoring transient operations. 

 Since reliable estimation of the underlying distribution is also difficult, non-

parameteric approach such as Kernel Density Estimator (KDE) is hence a better 

alternative for FDI during transient mode of operations. Previous forms of KDE are 

constrained by their bi-variate analysis and manual interpretation of the bounds. To 

overcome this, a novel monitoring index called Distortion Index has been developed 

by combining the results from all binomial combinations of KDEs and weights them 

according to their level of significance. Since KDEs classifies the region of the training 

data more accurately, unknown regions in the PC subspace are better excluded. This 

reduces the Type-II errors. Though efficient in detecting abnormal samples in high 

dimensional space, binomial combination could easily lead to the problem of 
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“combinatorial explosion” when high number of PCs are used (J>20) and necessitate 

powerful computing resources for its online execution.  

 When a suitably annotated historical database is presented, both normal and 

abnormal, the proposed index can be used to locate the best matching fault by 

comparing the similarity of real-time measurements with the signals in the database. 

This can be used to identify known operating faults which occurrence is frequent. 

Extensive testing of the proposed method using two case studies clearly demonstrates 

the methods’ ability to reduce both Type-I and Type-II errors when compared to 

Hotelling’s T2. Throughout this paper, the focus has been on the improvement of 

classifying the normal/abnormal samples in the scores space. Combining the SPE 

statistic, or using additional information from the residue space, might improve the 

classification further and worth further studies.  

Nomenclature 

Indices 

i process time representation (row of a given matrix) 

j principal components  

n process variables 

r points that constitute the KDE bounds 

Parameters 

J  number of principal components retained with a PCA model 

l time lag parameter used to construct DPCA model 

N  number of variables within a matrix 

W total number of fault classes in the database 

Ф scaling factor used to scale bandwidth matrix H 

Variables 
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1 an identity matrix 

F opt
i  best matching fault candidate for data xi 

Fw fault dataset for wth class of fault 

H bandwidth matrix used to construct KDE model 

H opt  optimal bandwidth matrix for bivariate KDE 

HLSCV bandwidth matrix identified with LSCV method 

K(x) a kernel function used for density estimation of x 

L number of fault samples observed 

M '
KDE
jj  KDE model for the jth and j’th variable in the PCA scores matrix tjj’ 

MFw KDE model constructed with Fw 

Siw similarity between xi and wth KDE model MFw 

PCAS  PCA similarity measurement between two models 

T2 Hotelling’s T2 statistic 

ti score vector for data xi 

tjj’ the matrix constructed with j and j’ columns from the original scores matrix t 

xi online measurements observed from plant sensors 

xi
D autoscaled online measurement augmented with time lag data 

Y D  autoscaled training data augmented with time lag data 

Y autoscaled training data used for training of KDE model 

Y�  raw data used for training of KDE model 

λj eigenvalues for jth principal components 

τi distortion index  

τβ upper control limit for τ 

ψiw 1 if τiw observed between data xi and wFM is in control 
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Chapter 7 Collaborative Agents for Managing 

Efficient Operations 

7.1 Introduction  

 The strength of the different FDI methodologies described in the previous 

chapters can be combined to further enhance the performance of the diagnostic system. 

As described in Chapter 2, each FDI approach has its own strengths and shortcomings 

that are process dependent. A method that works well under one circumstance might 

not work well under another when different features of the process come to the fore. 

For instance, the multi-faceted nature of a process operation under different operating 

modes and transitions complicates the task of fault diagnosis, as different types of data 

analysis methods might be required under different conditions of operations. Since no 

single FDI method is able to address the numerous facets of transient processes, 

collaboration among heterogeneous methods is needed to bring forth the benefits of 

each method so that monitoring resolution and robustness of the FDI system can be 

brought to a higher ground. The rationale for such an approach is based on the precept 

that the strengths of different methods can be integrated to bear on the problem and the 

drawbacks of an individual method can be overcome through collaboration. Most 

monitoring and fault diagnosis algorithms are computationally complex while the 

answers are often needed in real-time. An efficient means of speeding up the execution 

time of the integrated FDI method is thus required. Towards this end, a multi-agent 

architecture is described in this chapter to realize the integration in practice.   
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7.2 Collaborative Agents for Managing Efficient Operations 

7.2.1 Agent Environment 

 An agent-based framework called Collaborative Agents for Managing Efficient 

Operations (CAMEO) is described here to render effective management of process 

operations possible. The proposed framework can be abstracted hierarchically as 

environment, hosts, and agents (Figure 7-1). An environment in CAMEO can be 

thought as a neighborhood of entities that supports plant operation. All entities within 

the plant can be part of the environment, i.e., software, hardware, controllers, humans, 

etc. Each agent environment might contain a number of hosts where each host 

determines the suitability of hosting a certain type of agents. The host contains relevant 

methods to identify the relevant agents within it, and it keeps track of any inter-host 

communication among agents. More importantly, the host contributes processing 

capability to the agent environment by sharing available processors. High performance 

computing units such as computer clusters or supercomputers are excellent candidates 

for hosts.  

 
 

Figure 7-1: Hierarchical abstraction of the proposed agent-based framework 
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7.2.2 Agents Classification   

 The agents within CAMEO form the primary entities of the proposed 

framework. Each agent encapsulates knowledge in certain areas and contains 

routines/algorithms capable of solving a certain task. Each agent does not necessarily 

form a complete application but rather as a reusable, self-contained piece of routine 

that can rationale its own decision based on the condition arises during process 

operation. In CAMEO, six classes of agents have been incorporated, each of which 

addresses a different aspect of process operation (see Table 7-1). Each class of agent is 

also platform independent, they can be initiated and executed from different hosts. 

Table 7-1: Classes of agents implemented in CAMEO 
 
1.0 Data Management Agents 
2.0 Operation and Control Agents 
      2.1 Regulatory Control Agents 
      2.2 Sequential Control Agents 
      2.3 Alarm management agents 
3.0 Supervision Agents 
      3.1 State identification Agents 
      3.2 Monitoring Agents 
      3.3 Diagnostic Agents 
      3.4 Process Optimization Agents 
4.0 Consolidator Agents 
5.0 Fault Tolerance and Recovery Agents 
6.0 Visualization and User Interface Agents 
 
 Data management agents provide the conduit to the process and its states for 

all other agents. Raw sensors data are read, de-noised, and reconciled by data 

management agents and the smoothed data is made available to other interested agents 

as messages. 

  The operation and control agents aid the operator in executing and controlling 

the different steps of a process transition. Some examples of these follow: Regulatory 

control agents interact with the DCS and perform actions such as reconfiguring the 

controller settings based on the current state of the process. The sequential control 
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agents coordinate the discrete steps required for executing sequential operations. The 

alarm management agents help reconfigure the alarm management system to current 

state and thus prevent alarm floods.  

 The goal of process supervision agents is to ensure safe operation. For effective 

process supervision, knowledge about the current process state is essential. Also, one 

way to prevent abnormal situations and make plant automation applications to function 

appropriately is to make them cognizant of the domain of their applicability. These 

applications can then enable or disable themselves in specific modes and reconfigure 

themselves with the correct settings when different states have to be handled 

differently. In order to automate such switching, context-sensitive information 

regarding the process state should be provided to the plant automation applications, 

which would then reconfigure themselves to the operating state. This is possible only if 

the different process states known a priori and their occurrence can be identified 

online. In CAMEO this role is performed by the state identification agents.  

 Other supervisory agents are monitoring agents, which detect abnormalities, 

and diagnostic agents, which are responsible for diagnosing the root cause. Monitoring 

and diagnostic agents can incorporate various FDI methods such as qualitative trend 

analysis, neural networks, rule-based system, etc. Successful fault isolation is achieved 

by collaboration between supervisory agents and consolidator agents. Results from 

monitoring agents are sent to consolidator agents to resolve possible conflicts 

generated from the multiple monitoring techniques that maybe applicable in any given 

state. Having solved the conflicts, the consolidator agents entrusts diagnostic agents to 

locate the possible root cause(s) of the situations. Subsequently, further appropriate 

corrective actions are planned by fault tolerance and recovery agents. This may 

require context specific tasks which are performed by sequential control agents.  
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 When multiple methods are used concurrently, conflict resolution is needed to 

arbitrate among the different solutions proposed by the different FDI methods and 

provide one consolidated solution to the operator. In CAMEO, this role is performed 

by consolidator agent.  The consolidator agent contains the logic to enforce 

consistency among different agents and are the bedrock for the collaboration 

mechanisms. Details on the algorithms used are described in Chapter 8 of this thesis. 

Other agents including supervision agents, operation and control agents, and 

visualization agents also interact with consolidator agent to enable consistency. 

Consolidator agents in turn use process state, historical performance, domain 

knowledge and other basis to fuse independent pieces of information contributed by 

other agents. The consolidated conclusion regarding the normality of the process 

operation and the root causes of any deviation provide the basis for planning corrective 

actions.  

 Having identified the root cause, the fault tolerance and recovery agents use 

process knowledge, available preplanned SOPs for specific situations, as well as 

historical records of corrective control actions to guide the process into a safe state to 

recover from an abnormal situation. The sequence of corrective measures generated by 

these agents can be implemented directly by the operation and control agents or 

communicated to the operations personnel through user interface agents.  

 A state specific context-sensitive graphical user interface is provided by the 

visualization agents in CAMEO. Visualization agents use powerful visualization tool 

in facilitating plant personnel to visualize the progression of process more easily. The 

visualization agents incorporate methods for projecting high dimensional data onto a 

much lower dimensional grid and thus provide a means for plant personnel to visualize 

even long duration process transitions effectively. User interface agents can also 
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automate email services to inform the relevant authorities regarding the events 

occurring in a plant, e.g: detection of fault, successful diagnosis of faults, state change 

operation, etc. The interactions among different classes of agents are illustrated in 

Figure 7-2. 

 Apart from the six classes of operational oriented agents, another class of 

agent: mobile agents are required to facilitate implementation. Mobile agents are 

responsible for speeding up computation time by reducing the workload of the local 

host. Mobile agents provide a means for inter-platform transportation among agents. 

Agents that require high computing resources can be transported to other platforms 

through mobile agents. The mobile agents use Message Passing Interface (MPI) for 

portability and platform independence. In general, the agents developed in this work 

are able to mimic some aspects of a human by being able to: (1) react to various 

circumstances due to changes in plant operating conditions, and (2) exhibit social 

ability such as cooperation, negotiation and migration.  

 
Figure 7-2: Interaction among heterogeneous types of agents  

 
7.2.3 Agent Communication 

 As described in Section 2.7, FDI algorithms can be computationally expensive 

and a parallel implementation of the framework is essential to enable decision support 



Chapter 7                              CAMEO: A Multi-Agent Framework                          
_____________________________________________________________________ 

 -191-

in real-time possible. To realize the speedup in practice, the mobile agents use 

Message Passing Interface (MPI) to exploit multiple processors (Kepner and Ahalt, 

2004). MPI is a popular interface to send messages across a network of computers. It 

allows the coordination of programs running on either distributed memory computers 

or on shared memory systems. Each agent within CAMEO is platform independent, 

and can be executed from any distributed location through mobile agents. The agents 

on different processors communicate with each other by exchanging messages based 

on a purpose-designed ontology (see Figure 7-3). Since agents of different classes 

require different data types in their methods, each agent needs to produce results in a 

specific format to enforce consistency. Knowledge-base approach based on string 

recognition is developed for each class of agents for ontology synchronization. Each 

class of agents has a vocabulary (list of strings) containing the queries the agent is 

capable of responding to, e.g.: for monitoring agent, the agent is capable of 

recognizing “monitoring”, “request_fault_diagnosis”, “transport_agent”, 

“reload_agent”, “get_data”, “send_results”, “activate”, “deactivate” etc, each 

representing various tasks the agent is capable of performing. An agent can 

communicate with another by sending it appropriate queries within the latter’s 

vocabulary.  

 An example of an inter-agent communication is shown in Figure 7-4. Suppose 

there are two agents, Agent-A and Agent-B, located at different hosts. Let the agents 

be denoted as aA  and bA  respectively, where aA  intends to request bA  to perform 

monitoring on a certain dataset, ix .  A common directory is used by aA  and bA  for 

communication. aA  first writes the message bufferA,Ψ , which contains essential data 

(information) for a certain task to be executed by bA  to the common directory before 

creating an empty message, lockA,Ψ  after the buffering of bufferA,Ψ  is completed. The 
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agent bA  continually checks the common directory for existence of lockA,Ψ  if its status 

is active. Once lockA,Ψ  is detected, bA  loads the message bufferA,Ψ  and executes the 

requested tasks based on the data in bufferA,Ψ  received. Both messages can be deleted 

by agent bA  after the completion of data transfer. With this message passing 

architecture, the agents in CAMEO can function freely across different hosts in a 

predefined agent-environment. The distributed multi-agent framework thus enables 

speedup of computational demanding routines by exploiting multiple processors. Two 

performance measurement indicators are used in this work to measure the impact of 

speedup, namely, overall speed enhancement index, pS , and the overall system 

efficiency index, pE . Both pS  and pE  are given as: 

 
machines pfor  required  timeAverage

machine singlefor  required  timeAverage
=pS ,  (Eq 7-1) 

 
p

pEp
processors  with up Speed

= .  (Eq 7-2) 

 
Figure 7-3: A typical flow of messages during online application 
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Figure 7-4: Inter-hosts message passing among heterogeneous type of agents 

 

7.2.4 Implementation of Multi-agent Architecture  

 The necessary steps for FDI based on the multi-agent formalism is described in 

this section. The system is implemented in Matlab and uses Secure Shell command 

(SSH Communication Security, 2006) to launch additional Matlab processes in other 

modes. The program can be executed on Windows and for Unix platforms. The 

necessary steps for implementing the multi-agent architecture are as follows: 

Step 1: Offline FDI models creation: various FDI models for process monitoring, rM , 

FDIr =∀  methods implemented, are first created based on available training data, 

jF , [1 ]j J∈  , , with their parameters and thresholds properly tuned.  

Step 2: Agents initialization: The constructed FDI models rM , [1 ]r  , R= , from step 1 

can be used to initialize the agent environment. The initialization of agent-environment 

is usually done through the master node by spreading the corresponding monitoring 

and diagnostic agents across the subnodes. A common directory dirΩ  for 

communication needs to be established for message passing among the distributed 

agents (could be a Windows directory or Samba drive on Unix machines).  
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Step 3: Data acquisition and preprocessing: The online measurements, iy� , are 

obtained from plant sensors/simulators by data management agents. Appropriate filters 

are implemented by data management agents to filter out high frequency noise, and the 

resulting smoothed data, iy , is normalized to appropriate format ix  before being 

distributed to monitoring agents, m
rA , in the form of messages, ixΨ . 

Step 4: Data analysis: Each monitoring agent m
rA collects the message ixΨ  from dirΩ  

and performs analysis on ix  based on the queries received. The completed monitoring 

results from each agent, ( )r
ie x , are sent back to the consolidator agent cA for decision 

fusion. 

Step 5: Fusion of monitoring results: Consolidator agent cA  collects ( )r
ie x from all 

m
rA  as message ( )r

ie xΨ . Monitoring results are fused and the status of the plant is 

decided. The decision from fusion of messages ( )r
ie xΨ  can be in either of the following 

states: normal i.e., 1( ( ) ... ( )) 0R
i iS e x e x∪ ∪ = , or abnormal, when 

1( ( ) ... ( )) 1R
i iS e x e x∪ ∪ = . The m

rA repeats Step 4 if the process is normal, otherwise 

cA  triggers diagnostic agents d
rA  for root cause identification. 

Step 6: Fault classification and identification: All diagnostic agents d
rA  are initiated 

by cA  through message 
cAΨ . Each d

rA performs a classification on ix based on its 

diagnostic methods, usually some form of similarity search with all available fault 

data, jF , [1 ]j  , J= , will be conducted. The completed diagnostic results ( )r
ie x  from 

each d
rA  are then sent to cA  for decision fusion. 

Step 7: Fusion of diagnostic results: cA  collects 
dAΨ from each dA  with their 

corresponding ( )ie x fused. The fused diagnostic decisions (as a set of fault candidates) 
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are presented to users by the visualization and user interface agents. 

Step 8: Visualization and fault rectification: The plant personnel interact with user 

interface agents to validate the faults identified from previous step. Once the real cause 

of abnormality has been identified, the actual recovery strategy is implemented 

through fault tolerant and recovery agents. 

 CAMEO has been designed to run optimally by spreading the processing load 

among six processors. The proposed method has also been tested on a Linux cluster 

with varying number of processors (1 to 8). The Linux cluster is made up of 16 Intel 

nodes containing 2 Pentium Xeon 3.06GHz processors each and 2GB memory. The 

nodes are connected together via high-speed, low-latency Myrinet interconnects. The 

theoretical performance of the 32-CPU cluster is estimated at 195840 MFlops (SVU 

webpage, 2006). Figure 7-5 shows the proposed system architecture when executed on 

Linux Cluster. The proposed multi-agent framework is tested next with a fed-batch 

penicillin cultivation process and a transition operation comprising startup of a pilot-

scale distillation unit.  

 

Figure 7-5: Overview of system architecture on Linux Cluster 
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7.3 Case Study 1: Fault-diagnosis for a Fed-batch Penicillin 

Cultivation Operation 

 The proposed multi-agent framework is illustrated with a fed-batch penicillin 

cultivation process in this section. Three monitoring agents have been implemented 

based on Dynamic Principal Components Analysis m
DPCAA , kernel density estimate 

m
KDEA  and self-organizing map m

SOMA . Out of the three monitoring techniques, two of 

them (SOM and KDE) have diagnostic capabilities and are subsequently implemented 

as diagnostic agents, represented here as d
SOMA  and d

KDEA . The self-organizing map 

constructed from m
SOMA  for a normal run is shown in Figure 7-6. The normal operating 

trajectory of SOM follows a predefined sequence during normal operations. The 

trajectory starts evolving from cluster 28 to cluster 145 when the system switches to 

fed-batch mode, and finally stops at cluster 56 when the fed-batch operations are 

completed successfully. The state-signature obtained in real-time, i.e., by tracking the 

cluster evolution, can be used to detect and identify known process disturbances. In 

contrast to m
SOMA , m

KDEA  constructs non-parametric bounds on the principal components 

subspace (Figure 7-7) based on the normal fed-batch trajectory, while  m
DPCAA  uses 2T  

and SPE for monitoring purposes. The agent environment created thus consists of the 

process simulator (PENSIM v2.0) and the Linux computing cluster, which is the main 

host for the multi-agent system. The agents are distributed across the computational 

environment during initialization phase by placing them in different nodes. Eight 

process disturbances have been tested for this fed-batch operations with the summary 

of each fault given in Table 5-4. Three case studies namely, SIM02, SIM05, and 

SIM07 are illustrated next.  
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Figure 7-6: Normal operating trajectory of penicillin cultivation process on SOM-

monitoring-agent 
 

 
Figure 7-7: Normal operating trajectory of penicillin cultivation process based on 

KDE-monitoring-agent 
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Scenario 1: SIM02- temperature controller failure 

 SIM02 corresponds to a failure in temperature controller and the fault was 

introduced at t=0.5h of production time. The failure of the PID controller causes the 

temperature in the fermentor to increase from 298K to 327K. CAMEO was used for 

fault diagnosis and the corresponding timeline of events shown in Figure 7-8.  

 
Figure 7-8: Timeline of events during run SIM02 

  

The fault was first detected by m
DPCAA  at t=2.0h (Figure 7-9), with the 

consolidator agent cA  informed. Since both m
SOMA  and m

KDEA could not detect the 

controller failure, only the variable’s residuals are generated to facilitate fault 

identification by human operators (Figure 7-10a). The variables residuals are generated 

by d
SOMA  based on time synchronization between a reference run selected a priori, RX  

with the online data collected, oX . The residuals are shown as percentage deviation 

from their optimal operating conditions, optm  on the SOM space. From Figure 7-10a, 

it can be seen that water flow (variable 11) has not been established, rendering heat 

removal from the fermentor unsuccessful, which in turn affects the growth of the 

biomass. Since m
DPCAA  is not equipped with fault identification features, the fault is 

unidentified at this stage.  
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 At t=2.5h, d
KDEA  successfully gathers enough confidence to distinguish SIM02 

from other fault candidates after additional data points have been obtained. A positive 

match from the fault database, SIM02, suggests that the temperature controller is the 

root cause of the abnormal event. m
SOMA  shows the worst performance in this case study 

by detecting the fault only at t=23.0h (Table 7-2). Late detection of this abnormal 

event might lead to a lost opportunity for early correction, and resulting poor quality 

batches that are unable to meet production specifications. If the fault is left unattended, 

more deviations can be seen (Figure 7-10b at t=200.0h) due to fault propagation. The 

low heat and carbon dioxide generated in comparison to the normal run clearly indicate 

that the yield is low in this run compared to normal batches. The operation is also 

unable to switch to fed-batch mode in this run as the condition for feeding is not met 

with a faulty temperature controller. 

 
Figure 7-9: Monitoring results of SIM02 based on DPCA-monitoring-agent 
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Process variables  
(a) Percentage deviation from normal operating trajectory at time of fault detection 
t=5.0h (SOM-diagnostic-agent)  
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Figure 7-10:  (b) Percentage deviation from normal operating trajectory at t=150h  

(SOM-diagnostic-agent) 



Chapter 7                              CAMEO: A Multi-Agent Framework                          
_____________________________________________________________________ 

 -201-

Scenario 2: SIM05- Low substrate feed  

 Controlling the substrate feed to biomass during fed-batch phase has drawn a 

lot of attention lately in order to optimize the growth of biomass. The effect of human 

error on this important variable is studied by introducing SIM05, which corresponds to 

a 15% step decrease in substrate feed (introduced at t=50.0h). The decrement in feed 

rate reduces the food supply to the biomass and subsequently affects the amount of 

biomass cultivated. Consequently, the yield is much lesser compared to batches 

operated under optimal operating condition. The timeline of events during monitoring 

with CAMEO is shown in Figure 7-11. For this scenario, m
SOMA  first detected the 

disturbance at t=57.5h (Figure 7-12) when the online trajectory deviates from the 

nominal state-sequence. The fault was also isolated very quickly by d
SOMA . The 

variable’s residuals generated from d
SOMA  (Figure 7-13) show that the substrate feed 

rate is 15% lower than the optimal value and is affecting the biomass growth. The 

identified disturbance SIM02 and the variable’s residuals are hence sent to plant 

operators for further actions.  

 

Figure 7-11: Timeline of events during run SIM05 
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Figure 7-12: Monitoring results of SIM05 based on SOM-monitoring-agent 
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Figure 7-13: Percentage deviation from normal operating trajectory at time of fault 

detection (SOM-diagnostic-agent) 
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Scenario 3: SIM07- Ramp increase in agitation power 

 SIM06 corresponds to a ramp increase in agitation power. The fault was 

introduced at t=70h and was not resolved throughout the production period. The 

continuous increment in agitation power causes the stirrer to impose a high level of 

shear force on the biomass, which affects the growth of the biomass negatively under 

extreme conditions. For this scenario, the fault was first detected by m
KDEA  at t=133.0h 

with a detection delay of 63.0h (timeline of events shown in Figure 7-14). The fault 

was subsequently isolated by d
KDEA  at t=135.0h. Both m

SOMA  and m
DPCAA  showed poor 

performance in this scenario with detection time at t=194.0h and t=233.0h 

respectively.  

 
Figure 7-14: Timeline of events during run SIM07 

 

 Similar analysis was carried out for the rest of the faults and the FDI summary 

obtained is shown in Table 7-2. The proposed multi-agent approach detects all faults 

successfully with an average detection delay of 25.75h and diagnostic delay of 26.7h. 

The average detection delay of each independent agent, m
DPCAA , m

SOMA , and m
KDEA  is 

50.9h, 50.1h, and 40.4h respectively. The proposed multi-agent approach thus offers a 

minimum improvement of 36.3% in terms of speed of fault detection. The three 

scenarios presented show that no single FDI method can guarantee optimality in 
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reducing fault detection and identification delay. Some FDI methods are able to 

perform better than their peers in certain scenarios but poorly in other cases. 

 The pS  observed using multiple processors are shown in Figure 7-15. The 

system benefited with a maximum speedup of 3.3 times when 4≥p . The pS  is 

limited by the response time from m
SOMA  and d

SOMA , in which the sequential nature of 

calculations prevent further speedup. As can be seen from Figure 7-15, the pS  

becomes constant for 4≥p , rendering further addition of processors  not useful.  

 
Figure 7-15: pS  and pE  observed during online implementation 
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Table 7-2: Fault-diagnosis results for penicillin cultivation case study 
Time fault detected (hr) 

Case 
 

Time fault 
introduced 

(hr) SPE/T2 SOM KDE 

Possible 
candidates 

(KDE) 

Time 
fault 

isolated 
(KDE) 

Possible 
candi-
dates 

(SOM) 

Time 
fault 

isolated 
(SOM) 

Time 
fault 

isolated 
(combine)

SIM01 0.5 1.5 19 1.5 F1 1.5 F1 19 1.5 
SIM02 0.5 2 23 7.5 F2 7.5 F2 23 7.5 
SIM03 60 60.5 60.5 60.5 F3 60.5 F3 60.5 60.5 
SIM04 30 30.5 30.5 30.5 F4 30.5 F4 30.5 30.5 
SIM05 50 - 77 189 F5,F8 205 F5 77 77 
SIM06 70 82 154 77 F6,F8 81 F6 154 81 
SIM07 40 233 194 133 F6,F7,F8 135 F7 194 135 
SIM08 30 177.5 124 105.5 F6,F8 156 F8 124 124 
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7.4 Case Study 2: Fault-diagnosis during Distillation-unit Startup 

 In this section, the proposed multi-agent architecture is tested with the 

distillation unit startup case study. Fault diagnosis using CAMEO to disturbance 

DST08 will be illustrated next.  

 DST08 corresponds to a disturbance of high reflux ratio. The disturbance was 

caused by human error at t=3460s when the reflux ratio was set to twice its nominal 

value. This causes a reduction in product yield and increases the load of the reboiler. 

The timeline of events for this case study is shown in Figure 7-16. In this scenario, the 

DPCA monitoring agent, m
DPCAA , detects the abnormality first at t=3470s (57.8min) 

with the diagnostic agents initiated for root cause identification. The fault is 

successfully isolated at t=4700s when the SOM diagnostic agent, d
SOMA , retrieves a 

fault candidate with high confidence from the fault database. The time taken for fault 

detection using just one technique is longer, i.e., t=4220s (SOM) and t=4720s (KDE).  

The summary of fault-diagnosis for other cases studied is shown in Table 7-3. 

Both m
KDEA  and m

DPCAA  fail to detect disturbance DST05. All faults are successfully 

detected and isolated based on CAMEO with an average detection and diagnostic 

delay of 31.1 samples and 44.3 samples respectively. Average detection delay based on 

single FDI approach is 35.2 samples (SPE/ 2T ), 35.9 samples (SOM), and 49.0 

samples (KDE). Minimum improvement of 11.64% is achieved in detection time by 

combining these three FDI methods compared to independent implementation. The pS  

and pE  observed using multiple processors are shown in Figure 7-17. The use of a 

routine optimizer which further parallelizes d
SOMA  has been able to achieve a speedup of 

~4.4x based on the hardware configurations as specified in Section 7.2.3. Average 
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processing time has been reduced from ~12s per sample to ~2.7s per sample during 

abnormal events (when high level of CPU flops are required).  

 
Figure 7-16: Timeline of events during run DST08 

 

 
Figure 7-17 : Speed enhancement and system efficiency measured on the Linux cluster 

during fault diagnosis of distillation-unit startup 
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Table 7-3: Summary of fault-diagnosis for startup of distillation-unit case study 
Time fault detected 

(x10s)  Scenario 
# 

Time fault 
introduced 

(x10s) SPE/T2 SOM KDE Combined 
detection 

Fault 
Candidates 

(KDE) 

Time 
Fault 

Isolated 
(KDE) 

Fault 
Candidates 

(SOM) 

Time 
Fault 

Isolated 
(SOM) 

Combined 
Isolation 

Time 

DST01 1 1 10 1 1 F1 1 F1 10 1 
DST02 1 1 1 1 1 F2 1 F2 1 1 
DST03 359 372 365 369 365 F3,F5,F6,F8,F9 399 F3,F4,F8 371 371 
DST04 356 357 360 357 357 F4,F9 359 F3,F4,F8 389 359 
DST05 425 - 428 - 428 - - F5 428 428 
DST06 353 353 354 354 353 F6,F8,F9 357 F6 354 354 
DST07 345 349 347 346 346 F3,F6,F7,F10 350 F7 347 347 
DST08 347 347 422 472 347 F4,F8 475 F3,F4,F8 470 470 
DST09 1 1 1 1 1 F9 1 F9 1 1 
DST10 1 300 300 304 300 F4,F5,F9,F10 347 F10 300 300 
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7.5 Summary 

 Though the focus of this study is oriented towards the domain of fault detection 

and isolation, the CAMEO multi-agent based approach is intended to be a general 

framework to efficiently manage process operations. CAMEO offers the flexibility to 

bring together different techniques in a concerted way with the shortcomings of each 

entity overcome through collaboration. Different algorithms can be combined easily 

with an agent wrapper and the results from each agent fused through a consolidator 

agent based on messages as foundation for communication. The two cases studied have 

clearly illustrated the three key benefits of the proposed multi-agent approach:  

1. improvement in the speed of fault detection and isolation,  

2. flexibility in integrating the strengths from numerous methods to provide a 

multi-faceted analysis, and  

3. reducing processing time and hence improving screen refresh rate of DCS.  

Three fault detection and diagnosis methods have been integrated in this chapter, 

namely, FDI with 2T and SPE statistics, self-organizing map, and kernel density 

estimator. In all cases studied, CAMEO successfully detected and diagnosed all faults 

with minimum detection and diagnostic delay compared to independent application of 

each FDI method. Early warning and fault recovery can thus be initiated quickly to 

prevent fault propagation. 

 The introduction of parallel programming technique (through Message Passing 

Interface) reduces computational time of the above algorithm and renders integration 

of time-consuming FDI algorithms possible. CAMEO allows allocation of computing 

resources from numerous hosts, and is able to reduce memory requirements on the 

main host by distributing the agents across various nodes (hosts) in the computing 
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cluster. The proposed multi-agent approach shows major dissimilarity with previous 

attempts in integrating FDI methods that were often based on hybrid approaches 

(Mylaraswamy and Venkatasubramanian, 1997; Özyurt and Kandel, 1996; Vedam and 

Venkatasubramanian, 1999). Hybrid systems for FDI can be considered as a 

deterministic approach where different FDI methods are often integrated layer-by-layer, 

i.e., results from trend analysis integrated with secondary signed-digraphs, etc. Any 

failure of one of the entity would cause an abrupt failure to the system as subsequent 

layer of FDI could not function normally without the inputs from previous layer of FDI 

unit. Also, reorganizing the set of FDI entities and parallelizing the codes for 

distributed computing are major challenges for such highly integrated systems. The 

restricted scalability of hybrid systems prevents them from integrating a high number 

of fault classifiers. In contrast, the proposed multi-agent architecture offers the 

opportunity to solve a problem through distributed entities of collaborative agents. 

Since the underlying agents use messages for data exchange, the agents need not be 

situated within the same host to access critical information (data), hence enabling 

parallelism among the FDI methods possible through exploitation of multiple 

processors.  

Nomenclature 

Indices 

i process time 

j fault ID 

p number of processors 

r number of FDI agents 

Parameters 

I total number of samples (rows) in X 
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J total number of faults in the training database 

Symbols 

m
DPCAA  DPCA-based monitoring agent 

d
KDEA  KDE-based diagnostic agent 

m
KDEA  KDE-based monitoring agent 

d
SOMA  SOM-based diagnostic agent 

m
SOMA  SOM-based monitoring agent 

Ac results consolidator agent 

( )r
ie x  monitoring results for xi from agent r 

Ep overall system efficiency index 

Fj training data for fault j 

mopt optimal operating conditions identified from SOM 

Mr FDI model constructed for process monitoring and fault identification 

Sp overall speed enhancement index 

xi process data at ith time interval 

Xo online data collected from plant DCS 

XR reference data used  to train a FDI model 

yi smoothed data obtained after noise removal 

�
iy  raw data collected from plant DCS 

ΨA,bufferBuffer message from Agent A containing the essential data for a certain  

 task from   

ΨA,bufferLock file from Agent A to inform the writing and deleting of buffer file 

Ωdir common directory used for agent communication 
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Chapter 8 Decision Fusion Strategies for 

Integration of Heterogeneous Diagnostic Fault 

Classifiers 

8.1 Introduction  

 Previous literature on monitoring and fault diagnosis of chemical processes 

often depends on a single FDI method. Some popular FDI approaches include 

statistical analysis, neural-networks, signal processing methods, etc. It has been well 

illustrated in Chapter 2 that each FDI method has its associated strengths and 

shortcomings. There is hence a strong motivation for developing collaborative 

approach for FDI to bring together the strengths from different classes of FDI methods. 

In Chapter 7 of this thesis, a multi-agent framework was described to combine 

heterogeneous types of these FDI methods. However, when multiple FDI methods are 

used in parallel, a conflict resolution strategy is needed to arbitrate among the 

contradictory decisions generated by the various FDI methods so that one consolidated 

solution can be presented to the plant personnel. In this chapter, three decision fusion 

strategies for combining predictions from heterogeneous diagnostic classifiers namely, 

voting strategy, Bayesian combination strategy, and Demster-Shafer combination 

strategy, are studied and thoroughly analyzed. It was found that combining diagnostic 

classifiers of different types through any of decision fusion strategies improve 

diagnosis performance compared to approaches based on any single method.  
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8.2 Decision Fusion Methodologies 

 Consider a classifierκ  being used for classification of input sample x. Suppose 

there are J classes and each class is represented by jC , [1 ] , j J∈ Λ = . The task of κ  

is then to assign each of the input sample, x , to one of the J+1 classes, i.e., ( ) je x C= , 

[1 1] , j J∈ Λ = +  with the (J+1)th class denotes that κ  rejects x , implicating that the 

sample is not assigned into any known classes. In general, any classifier is able to 

provide output in one of the following forms (Xu, et al., 1992):  

1. Abstract form: only a unique class j or some subsets of the available classes are 

produced in its predictions ( ) je x C= , [1 1] , j J∈ Λ = + . 

2. Rank form: all available classes jC , [1 1] , j J∀ ∈ Λ = +  are ranked and sorted, 

i.e., 1 2 1
' ''( ) [ , ,... ]J

j j je x C C C += , , ', '' [1 1]j j j J∀ ∈Λ = + , . 

3. Measurement form: a measurement, s , is given to each class jC , 

[1 ] , j J∀ ∈ Λ =  to quantify the degree of similarity between the sample x and 

jC , [1 ] , j J∈ Λ = , i.e., the output from a classifier κ , ( )e xκ , will take the 

form of a vector, 1( ) [ ,..., ,..., ]j Je x s s sκ = , [1 ], j J∈ Λ = , with s being 

continuous, [0 1] , js ∈ .  

 Among the three forms of predictions, predictions generated in measurement 

form contain the highest amount of information while predictions generated in the 

abstract form contain the least. If there are R classifiers denoted by rκ , [1 ] , r R= , a 

total of R predictions will be generated from the classifiers, denoted here as ( )re x , 

[1 ] , r R= , where ( )re x  can be within any of the prediction forms above. The problem 

of decision fusion is then on locating the best possible class information jC , 
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[1 1] , j J∈ Λ = +  for an input sample x by evaluating the combined predictions, 

1 2 1( ) { ... }R RE x e e e e−= ∪ ∪ ∪ ∪  from all classifiers, i.e., 1κ  to Rκ . Different decision 

fusion methods exist for this purpose and three of the most popular methods are 

described next. 

8.2.1 Voting-based Fusion 

 The most commonly used method to combine predictions is through voting. 

Voting-based approaches are also referred to as heuristic methods as voting-based 

methods often use procedures that mimic the behavior of humans while making joint 

inferences (Hall, 1992). When R predictions, i.e., Ree ,...,1 , are produced from R 

classifiers, the decisions from all classifiers can be counted as votes through 

application of a majority or plurality decision rule. To implement voting, the results 

produced from all classifier ( )re x , [1 ]r R∈ , , on a class Cj are represented as a vector 

in binary form r
jT : 

 
1, ( ) , [ ]

0,
r jr

j
 when e x C   j 1, J

T
 otherwise                           

= ∈⎧⎪= ⎨
⎪⎩

. (Eq 8-1) 

In most voting-based approaches, the final decision (class assignment) needs to be 

approved by at least half of the classifiers (majority voting). It is expressed in 

mathematical form as (Suen et al., 1990; Xu et al., 1992): 

 
, arg max ( ( ) ) / 2

( )
1,

E
j j r j

j
j if C T e x C R

E x
J otherwise

∈Λ
⎧ = ∈ >⎪= ⎨
⎪ +⎩

          

                                                    
 , (Eq 8-2) 

where 
1

( ( ) ) ( ( ) )
R

E r
j r j r j

r
T e x C T e x C

=

∈ = ∈∑ . Eq 8-2 can be relaxed from its majority 

threshold of R/2 if plurality voting is applied. In such a scenario, the expression for 

voting can be simplified to: 
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 ( ) , arg max ( ( ) )j j E r j
j

E x C if C T e x C
∈Λ

= = ∈   , [1 , ] j J∈ , [1 , ]r   R= .(Eq 8-3) 

The combined predictions from ( )E x is then the resulting class jC  which receives 

maximum number of votes. 

8.2.2 Bayesian-Inference based Fusion 

 The voting technique is based solely on the predictions produced from each 

classifier, and each classifier is treated equally without considering its previous 

performance. However, it has been well recognized that predictions from some 

classifiers generally outperform other classifiers in certain areas and should be given 

more weight when they are used on certain classes. The class-specific performance of 

each classifier rκ , [1 ]r R=  , , can then be obtained based on its previous performance 

using conditional probability, with the final predictions estimated through Bayes rule 

of calculating posteriori probability. The conditional probability quantifies the 

probability of occurrence of an event based on some gathered evidences. For example, 

given two events A and B, with probability of B as )(BP  such that 0)( >BP , the 

conditional probability of A given B follows the following expression (Haddad, 2006): 

 
)(

)()|(
)(

)()|(
BP

APABP
BP

BAPBAP =
∩

= , (Eq 8-4) 

where )|( ABP is the conditional probability that event B will occur given evidence A. 

For a classification problem of J classes on measurement x, if all classes are mutually 

exclusive (two classes cannot occur concurrently), the Bayesian inference process for 

evaluating the conditional probability of a certain class j, jx C∈ , [1 , ]  j J∈  from rκ  

becomes: 

 

1

( ( ) | ) ( )
( | ( ) )

( ( ) | ) ( )

r j j
j r J

r i i
i

P x j x C P x C
P x C x j

P x i x C P x C

κ
κ

κ
=

= ∈ ∈
∈ = =

= ∈ ∈∑
. (Eq 8-5) 
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The conditional probability that implies jx C∈ , [1 ], j J∈ , as given by Eq 8-5 can 

often be estimated from previous performance of rκ  using a confusion matrix (CM). A 

confusion matrix CM stores class-specific performance of a classifier rκ , and is 

normally constructed by testing rκ  with some training dataset. Consider a training 

dataset containing N samples which is tested with classifiers rκ . All predictions from 

all classifiers rκ  can be recorded in a confusion matrix as follows (Xu et al., 1992): 
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 (Eq 8-6) 

where r
ijn , [1 ], i J=  and [1 1] , j J= +  indicates the number of samples belonging to 

class iC , but assigned to class jC  by rκ . The diagonal elements of rCM is then the 

true predictions from rκ  on ith class. If the constructed rCM from a training dataset is 

composed of a diagonal matrix (except for r
Jin )1( + ), one can conclude that the results 

generated from classifier rκ  is 100% accurate. It follows from Eq 8-6 that the total 

number of samples, N, encountered by rκ  is: 

 ∑∑
=

+

=

=
J

i

J

j

r
ijnN

1

1

1
  (Eq 8-7) 

in which the total number of samples in each class iC  is: 

 ∑
+

=

=
1

1
.

J

j

r
ij

r
i nn , [1 ], i J=  (Eq 8-8) 

and the number of samples that is assigned to class jC  by rκ  is: 

 ∑
=

=
J

i

r
ij

r
j nn

1
. , [1 1] , j J= + . (Eq 8-9) 
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Utilizing information stored in rCM , the conditional probability that implies jC∈x , 

[1 , ]  j J∈  given the evidence that ( )r x jκ =  can be computed as (Xu et al., 1992): 

 
. 1

( | ( ) )
r r
ij ij

j r r M r
j iji

n n
P x C x j

n n
κ

=

∈ = = =
∑

, , [1 ]., i j J∈   (Eq 8-10) 

Analogous to Eq 8-5, ( | ( ) )j rP x C x jκ∈ =  can be implied as the confidence of a 

classifier regarding the assignment of sample x to class jC . When R classifiers are in 

use, there will be R confusion matrixes, rCM , [1 ], r R= , and R evidences, 

1( ),..., ( )Re e x e x= . Each classifier rκ  expresses its predictions supporting the 

proposition that jx C∈  in the form of conditional probability. The combined 

probability EP  that supports jx C∈  can be written as:  

 1( | ( ) , ) ( | ( ) ... ( ) )E j r r j RP x C e x j E P x C e x e x j∈ = = ∈ ∩ ∩ = , [1 ] , j J= (Eq 8-11) 

where E denotes the common classification environment that consists of all R events. 

If all classifiers are mutually exclusive (the fault classes in use does not overlap among 

each other), the events 1( ) ,..., ( )j K je x C e x C= = will be mutually exclusive as well and 

the combined belief function of Eq 8-11 can be written as (Xu et al., 1992): 
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∈

∏
∏

      

 (Eq 8-12) 

Here, ( | ( ) )j rP x C e x j∈ = can be estimated from Eq 8-10, and ( | )jP x C E∈ is the 

probability that jx C∈  is true under the environment E. For implementation purpose, 
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Xu et al. (1992) suggested the following estimate to be used for combining individual 

conditional probability: 

 1

1 1

( | ( ) )
( | ( ) , )

( | ( ) )

R
j rr

E j r RJ
j ri r

P x C e x j
P x C e x j E

P x C e x j
=

= =

∈ =
∈ = =

∈ =

∏
∑ ∏

. (Eq 8-13) 

Based on Eq 8-13, a sample x can be classified into class j depending on the calculated 

combined conditional probability. The class jC  with the highest 
jEP  can be selected as 

the optimal combined prediction: 

 
, arg max( )

( )
1,

     
x

                    

jj E
j

j if C P
E

J otherwise
∈Λ

=⎧⎪= ⎨
⎪ +⎩

. (Eq 8-14) 

8.2.3 Dempster-Shafer’s Fusion 

 The Dempster-Shafer method is a popular method in uncertainty reasoning. It 

is often used to combine separate pieces of evidence. The theory of Dempster-Shafer is 

based on belief functions and was originally developed by Dempster (Dempster, 1968), 

and later refined by Shafer (Shafer, 1976). The method can be used to combine 

classifiers of all types. Let Θ be a finite set of elements with members composed by 

hypothesis, objects, or fault classes. The union of all elements, Θ, is referred to as 

frame of discernment in the context of Dempster-Shafer theory, and the set that 

contains all the subsets of Θ is called the power set of Θ. Let a set of exhaustive and 

mutually exclusive elements containing J classes be given as jA , [1 ] , j J= . The 

universal set containing all singleton elements is then given as },...,{ 1 JAA=Θ . The 

subset Θ∈},...,{
1 qii AA denotes a combined proposition that support 

qii AA ∪∪ ...
1

and is 

called a superset of Θ. A Θ of size J has exactly J2  subsets.  

 The Dempster-Shafer theory normally uses a belief function )(Abel  to indicate 

the belief of a classifier rκ , [1 ], r R= , on a proposition Θ∈jA , ]1[   Jj ∈ . )(Abel  
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can also be referred to as basic probability assignment (BPA) or )(Am . )(Am  can be 

considered as the degree of belief held by rκ  regarding evidence A. Some properties of 

BPA are:  

 ( ) 0m ∅ = ,  ( ) 1
A

m A =∑ . (Eq 8-15) 

The BPA is a generalization of probability mass distribution and each element of Θ 

can be assigned a value between [0 1],  such that the values sum up to 1. Any subset 

NA 2∈ with 0)( >Am  is called a focal element. Since a subset A represents the 

disjunction of all elements in A, the truth of AB ⊆  implies the truth of A (Xu et al., 

1992). Consequently, )(Abel  can be calculated from all focal elements that support A: 

 ∑=
⊆ AB

BmAbel )()( . (Eq 8-16) 

A fundamental difference between the Dempster-Shafer theory and the Bayesian 

theory is in their treatment of ignorance (Giarratano and Riley, 1998). Bayesian 

theorem requires the sum of all probabilistic events to be equal to one, or 

∑
=

=∈
J

j
j jeCP

1
))(|( xx , when there are J possible events. However, Dempster-Shafer 

theory allows the method to operate under an incomplete probabilistic model by 

allowing both belief and disbelief of element iA  to be lesser than unity, 

i.e., 1)()( <¬+ ii AmAm , as the set which corresponds to disbelief of iA , i.e., 

ii AA −Θ=¬  only consists of two elements of the universal set. Apart from the belief 

function )(Abel , Dempster-Shafer theory also defines a plausibility function, )(Apls , 

which is given by: 

 ( ) 1 ( ) ( )
B A

pls A bel A m B
∩ ≠∅

= − ¬ = ∑  (Eq 8-17) 
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to measure the maximum amount of probability that can be distributed among the 

elements in A, which constitutes an upper limit function on the probability of A. The 

belief and plausibility function described can be used for integrating various types of 

information. 

 For combination of R classifiers, the performance of each classifier rκ , 

[1 ] , r R∈  can be measured in terms of recognition rate, r
rε , substitution rate, r

sε , and 

rejection rate, r
tε , based on performance from previous predictions, where the 

superscript r represents that the measurement is obtained from rth classifier. The basic 

BPA assignment supporting the proposition jC∈x  and jC∉x , ]1[ Jj  , ∈ for 

predictions of sample x based on classifier rκ can then be expressed as (Xu et al., 

1992): 

r
rj

r
j

r AmCm ε==∈ )()(x ,  

r
sj

r
j

r AmCm ε=¬=∉ )()(x ,  

 r
s

r
rj

r
j

rr AmAmm εε −−=¬−−=Θ 1)()(1)( .  (Eq 8-18) 

When R classifiers are applied, 3R BPAs ( ( )r
jm x C∈ , ( )r

jm x C∉ , and )(Θrm )  are 

generated, and the Dempster rule of combination can be used to combine them. The 

Dempster rule defines the combined BPAs of two classifiers, 1m  and 2m , as (Shafer, 

1976): 

1 2 1 2
,

( ) ( ) ( ) ( )
X Y A A

m A m m A k m X m Y
∩ = ≠∅

= ⊕ = ∑  

 1
1 2 1 21 ( ) ( ) ( ) ( )

X Y X Y
k m X m Y m X m Y−

∩ =∅ ∩ ≠∅

= − =∑ ∑  (Eq 8-19) 

where the symbol ⊕  represents the combination of two belief fuctions, with the 

condition that m is a BPA if 01 ≠−k . If 01 =−k , then 21 mm ⊕  does not exist and 1m  
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and 2m  are said to be totally contradictory. As an illustrative example, to merge R 

classifiers, the combined BPA of the first two classifiers 1κ  and 2κ , i.e., 21 mm ⊕  is 

first calculated as (Xu et al., 1992): 

)()()()(1
1

'2'1'2'1
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rrrr jjjj
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k
κκκκ ¬−¬−

=
21211
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κκκκ εεεε rssr −−

=  

)()()(
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2 srsrk −−−−=  

)Θ()()]()Θ()[()(
1

'
2

'
22

'
1
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κκ
2 rsrsrsr kkk −−+−+−=  

 0)(2 =Am  for all other Θ⊂A . (Eq 8-20) 

Subsequently, the combination for the rest of the BPAs, kmm ,...,3 , is calculated 

recursively in the same way based on the general formula: 

)()()()(1
1

'''' κ1κ1 krkkrk jjrjjr
r AmAmAmAm

k
¬−¬−

=
−−

 

)Θ()Θ()Θ( κ1 r
mmkm rrr −=  
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kj

r mAmkAmmAmkAm  

)Θ()()]()Θ()[()( 1κκκ1 '''' −− ++= rjrjjrrjr mAmkAmmAmkAm
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 0)(2 =Am  for all other Θ⊂A . (Eq 8-21) 

Interested readers are referred to Shafer (1976), Smets and Kennes (1994), and Yager 

(2001) for more details on Dempster-Shafer theory.  
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8.3 Decision Fusion of Diagnostic Classifiers 

 Since different classifiers generally exhibit strengths in different areas through 

extracting and analyzing different features from plant measurements, combining 

diagnostic classifiers of different forms is highly favorable. In this chapter, the 

diagnostic classifiers being considered utilize distinct features of the process data, i.e., 

mainly based on features extracted in the original signals space, in its reduced 

subspace as principal components, and the sequence of fault progression based on fault 

signature sequence analysis. The neural-network (Srinivasan et al., 2005a,b), Principal 

Components Analysis (Qin, 2003), and Self-Organizing Maps (Ng and Srinivasan, 

2004a) can be used for these multi-faceted, multi-feature classification of process 

operating data. Each of the FDI classifier is represented as an agent A  in the multi-

agent environment, and their final results combined through consolidator agent, cA  

based on the decision fusion strategies presented above.  

 Combination of fault detection and diagnosis results is challenging as 

compared to ordinary decision fusion of data classifiers. When FDI is performed on 

chemical processes, there exist two types of results that need to be fused, namely, the 

monitoring results and the diagnosis results. In the context of CAMEO, monitoring 

results are produced by monitoring agents m
rA , while fault relevant diagnostic results 

are produced by diagnostic agents d
rA . During online monitoring, the decision fusion 

algorithm needs to be optimized between the speed of fault detection and 

misclassification rates. In general, these objectives are often contradictory as classifiers 

that are sensitive to process disturbances are also prone to higher level of false 

positives. In contrast, diagnostic classifiers that are less sensitive to process 

disturbances are in turn prone to false negatives. Decision fusion schemes that strive to 
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reduce both Type-I (false positives) and Type-II (false negatives) errors are generally 

deemed more efficient. 

 Suppose there are R monitoring agents m
rA , [1 ], r R∈  as implemented in 

CAMEO, the monitoring results 
m
rAS produced from each  monitoring agent m

rA can be 

represented as a binary variable: 

 
⎩
⎨
⎧

=
  normal   process is, when

 abnormalprocess is, when
AS m

r  
 

0
1

)( . (Eq 8-22) 

The 
m
rAS , [1 ] , r R=  can then be combined through one of the decision fusion 

techniques as described in Section 8.2. If the combined monitoring results suggest that 

the process is at fault, i.e., when 1))(( =m
rASE , the diagnostic agents in CAMEO will 

be activated for fault identification. Suppose there are R diagnostic agents d
rA , 

[1 ] , dr A R∈ =  in CAMEO and let the fault database consisting J fault classes be 

},...,{ 1 JFFDB = , where each of  jF , [1 ], j J∈ Λ =  represents an independent and 

mutually exclusive class of fault. Each diagnostic classifier d
rA  will try to retrieve the 

classes of jF , [1 1] , j J∈ +  within DB  that gives high similarity to the measurements 

x based on its features extraction, and intelligent search method. As mentioned earlier, 

1+= JFj  corresponds to novel fault (unknown disturbances). Let the class prediction 

results from each diagnostic agent d
rA  be represented by ( )r r

je x F∈ , the decision 

fusion process of consolidator agent c
rA  is then to locate the most probable faults, 

optF from a list of }1,...,1{ +J classes by combining the predictions from all d
rA : 

 1 1( ) { ( ) ... ( )R R
j j jE x F e x F e x F∈ = ∈ ∪ ∪ ∈ .  (Eq 8-23) 
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8.3.1 Voting Strategy 

 The voting strategy is based on calculating the votes contributed by all FDI 

agents towards each fault classes in the fault database. Throughout this chapter, the 

strategy of plurality voting is used for decision fusion. Based on the plurality rule, the 

operations can be considered faulty whenever a plurality of the monitoring agents m
rA  

reports an abnormality in the measurement x observed:  

 
1, max ( ) 1

( )
0, max ( ) 0

m

m

m
rr AV
m
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⎧ =
⎪= ⎨

=⎪⎩

 (Eq 8-24) 

Similarly, the fault diagnosis results can also be combined based on plurality rule. The 

combined predictions (fault candidates), ( )VE x , are determined based on the votes 

generated from independent predictions ( )r
je x F∈  of all fault diagnosis agents d

rA .  

  ,
, ( ) max ( )

( )
1,

d

V r
j jV j r A

j          if  E x F e x F
E x

J     otherwise                                     
∈Λ ∈

⎧ ∈ = ∈⎪= ⎨
⎪ +⎩

 (Eq 8-25) 

In general, the voting strategy is accurate in determining the best matching fault 

classes by being able to combine agreements among heterogeneous diagnostic agents. 

However, under total conflicting scenarios, i.e., when the results produced by one 

diagnostic agent is in total conflict with another, i.e., =∩ )()( 21
dd AeAe ø, voting 

strategy is unable to resolve such conflicts especially if more than one fault candidates 

have similar number of votes. In such scenarios, a subset of fault classes that receive 

equal number of votes is extracted: 

 
,

( ) max ( )
d

opt V r
V jj r A

F E x  e x F  
∈Λ ∈

= = ∈ .  (Eq 8-26) 
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8.3.2 Bayesian-Combination Strategy 

 The Bayesian-combination strategy utilizes historical information from each 

FDI agent for decision fusion. The strategy adopted for detecting and diagnosing 

process fault is based on evaluating the conditional probability, ( | ( ) )j rP x F e x j∈ = , 

of the fault event. Prior to online implementation, the fault predictions obtained from 

each diagnostic agent d
rA  to different classes of faults are first analyzed offline and its 

results collected into a confusion matrix, CMr, as described in Section 8.2.2. Since the 

Bayes theorem allows multiple pieces of evidences to be fused by quantifying the 

product of all conditional probabilities from all classifiers (see Eq 8-13), its direct 

implementation suffers from longer delay in fault detection as any accurate detection 

from a monitoring agent will be discounted against the disbelief of other monitoring 

agents. As an illustrative example, for a system consisting of three monitoring agents, 

mm AA 21 , , and mA3 , it follows from Eq 8-13 that the fault can only be detected when all 

monitoring agents are able to detect the fault (Table 8-1). 

Table 8-1: Bayesian combination of three monitoring agents mm AA 21 , , and mA3  

Scenario 
# )( 1

mAS  )( 2
mAS  )( 3

mAS  )(xE  

1 0 0 1 0 
2 0 1 0 0 
3 1 0 0 0 
4 0 1 1 0 
5 1 0 1 0 
6 1 1 1 1 

 

One way to mitigate this problem is by taking the weighted average of the conditional 

probability produced by all monitoring agents, m
rA , [1 ], r R= , instead of their 

product. When new measurements x are obtained, the conditional probability for a 
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fault from class j to occur, ( | ( ) )j kP x F e x j∈ = , can be calculated based on Eq 8-10. 

The normal/abnormal status of a process can then be decided based on: 

 
1, ( | ( ) ) , , [1 , ]

( )
0,

j rB if P x F e x j j r R
S x

otherwise

δ∈ = > ∀ ∈ Λ ∀ ∈⎧⎪= ⎨
⎪⎩

       

                                                               
, (Eq 8-27) 

where δ is a threshold selected for determining the presence of fault. 

 Upon the detection of abnormal events, the results produced by all d
rA can be 

collected as a fault candidate pool CP, and the fault candidate jF  with highest 

combined conditional probability selected: 

 
, 1

1arg max ( | ( ) )B
j

R
opt

j r r
j F CP r r

F P x F e x j
FC∈Λ ∈ =

= ∈ =∑  (Eq 8-28) 

where rFC  is the number of fault candidates recommended by diagnostic agent d
rA . 

 
8.3.3 Dempster-Shafer Strategy 

 The Dempster-Shafer strategy uses belief function to merge decisions. The 

combination strategy collects evidence based on the recognition rate, r
rε , substitution 

rate, r
sε , and rejection rate, r

tε , of each FDI agent. The level of information being used 

by Dempster-Shafer technique is therefore more ambiguous compared to Bayesian 

combination technique as only a broad, superficial, and non-class specific information 

is utilized in the Dempster-Shafer approach. In this thesis, a fault detection criterion 

similar to Eq 8-27 is adopted for fault detection. When new measurements x are 

obtained, the basic BPA assignment )( m
rAm  from each monitoring agent m

rA  

supporting the proposition jx F∈ , [1 ], j J∈  can first be obtained based on Eq 8-18. 

The normal/abnormal status of a process can then be decided based on: 

 
1, ( ) , , [1, ]
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0,

r
jDS if m x F j r R

S x
otherwise
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. (Eq 8-29) 
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When a fault is detected, i.e., ( ) 1DSS x = , the fault class jF  that yields the largest 

combined BPA is selected: 

   1

,
arg max ( ) ... ( ) ... ( )DS

opt r R
j j j

j r CP
F m x F m x F m x F

∈Λ ∈
= ∈ ⊕ ⊕ ∈ ⊕ ⊕ ∈ ,(Eq 8-30) 

where CP is the candidate pool of diagnosis results produced by all d
rA . The combined 

BPA can then be calculated by recursive computation of Eq 8-20 and Eq 8-21 for all 

fault candidates present in CP.   

8.4 Measuring Inter-classifiers Agreement 

When multiple diagnostic classifiers are involved, it is necessary to measure the 

reliability of the predictions among different classifiers. For this purpose, the Cohen’s 

Kappa statistic (Cohen, 1960), pK , can be used as a measure to quantify the inter-

classifiers agreement. The Kappa statistic is based on the calculation of the difference 

between the observed agreement and the agreements expected by chance. The 

mathematical representation of Kappa is given as (Cohen, 1960): 

 
c

cop

p
ppK

−
−

=
1

  (Eq 8-31) 

where op is the observed proportion of agreement, and cp is the proportion of 

agreement expected by chance. The standard error for an observed pK  for large 

sample (of size N) follows (Cohen, 1960): 

 2)1(
)1(

c

oo
K pN

pp
p

−
−

≅σ  (Eq 8-32) 

The value of pK  is bounded in the range of [-1 , 1], where 1=pK  represents 

the case of perfect agreement for all cases, while 0=pK  is the exact scenario of 

agreement by chance, and 0<pK  indicates agreement less than chance, possibly a 
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systematic disagreement between two classifiers (Viera and Garrett, 2005).  Since 

different values of Kappa correspond to different potency of agreements, a commonly 

used benchmark for interpretation of Kappa statistic has been proposed, as shown in 

Table 8-2 (Landis and Koch, 1977).  

Table 8-2: Interpretation of Kappa value 
Kappa Value Interpretation 

<0.00 Less than chance agreement 
0.00-0.20 Slight agreement 
0.21-0.40 Fair agreement 
0.41-0.60 Moderate agreement 
0.61-0.80 Substantial agreement 
0.81-1.00 Almost perfect agreement 

 
 An illustrative example as presented in Howell (2001) is used here to facilitate 

the understanding of calculating the Kappa statistic. Suppose two observers 

(classifiers) analyzed a group of measurements containing 30 samples with the 

prediction results shown in Table 8-3. 

Table 8-3: Results of analysis presented by two classifiers 
 Classifier I  

Classifier II Normal Fault I Fault II Total 
Normal 15 ( 11c ) 2 ( 12c ) 3 ( 13c ) 20 ( 1m ) 
Fault I 1 ( 21c ) 3 ( 22c ) 2 ( 23c ) 6 ( 2m ) 
Fault II 0 ( 31c ) 1 ( 32c ) 3 ( 33c ) 4 ( 3m ) 

Total 16 ( 1n ) 6 ( 2n ) 8 ( 3n ) 30 (N) 
 
The diagonal elements in Table 8-3 represents the frequencies that both classifiers 

agree with each other while the off-diagonal elements represent the frequencies of 

disagreement. Such a table is often referred to as a contingency table (Howell, 2001) or 

agreement table (Cohen, 1968).  

The steps for evaluating Kappa statistic can be summarized as follows: 

1. Computation of op : The observed proportion of agreement, op , is simply the 

summation of the diagonal elements of the contingency table over the total 

number of samples analyzed (Table 8-3):  
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2. Computation of cp : The proportion of agreement by chance, cp , can be 

calculated with the probability that a judge would chose a particular class. As 

such, the cp  can be quantified through its probability: ∑
=

=
r

i
iic Nmnp

1

2/ , which 

gives a probability of 3556.030/)1620( 2 =×  for Normal, 

04.030/)66( 2 =× for Fault I, and 0356.030/)48( 2 =×  for Fault II as in the 

case of Table 8-3.  

Based on the two steps illustrated above, and utilizing Eq 8-31, the value of Kappa is 

estimated as 47.0
43.01
43.07.0

1
=

−
−

=
−
−

=
c

cop

p
ppK , which corresponds only to the region 

of moderate agreement if the classification table (Table 8-2) is used. Note that such a 

value is very different from the simplistic approach of measuring percentage 

agreement, which would be %707.030/)3315( ==++ , suggesting a strong 

agreements between the two judges.  

8.5 Case Study 1: Fault Diagnosis in Tennessee Eastman Plant 

 The control system used here is based on Lyman and Georgakis (1995), as 

implemented in the modified simulator of Chiang and Braatz (2003). Fifteen process 

faults, as proposed by Downs and Vogel (1993) are tested here (Table 8-4). Since the 

multiple SISO contol strategy is able to provide good recovery actions to disturbances 

IDV3, IDV4, IDV9, IDV15, IDV16, & IDV19, these six IDVs are excluded from the 

analysis. 

 Each training dataset simulates 1500 min of process operations with a sampling 

interval of 3 min. All faults were introduced at 1 hour of operating time for the training 
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data. In comparison, the testing dataset used for each run is created by simulating the 

process for 48 operating hours (2880 min) with the faults introduced at 480 min. The 

signals for each test run are thus different from the training data in terms of run-length 

and time of fault introduction.  

 Table 8-4: Process disturbances considered for TE process 

Variable 
number Process variable Type 
IDV(1) A/C feed ratio, B composition constant (stream 4) Step 
IDV(2) B composition, A/C ratio constant (stream 4) Step 
IDV(5) Condenser cooling water inlet temperature Step 
IDV(6) A feed loss (stream 1) Step 
IDV(7) C header pressure loss-reduced availability (stream 4) Step 
IDV(8) A, B, C feed composition (stream 4) Random variation

IDV(10) C feed temperature (stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift 
IDV(14) Reactor cooling water valve Sticking 
IDV(17) Unknown Unknown 
IDV(18) Unknown Unknown 
IDV(20) Unknown Unknown 
IDV(21) Valve for Stream 4 fixed at steady-state position   Constant position 



Chapter 8                                                      Decision Fusion Strategies                           
___________________________________________________________________________________________________________________ 

 -231- 

 
Figure 8-1: Process flowsheet of Tennessee Eastman process 
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FDI Agents Implemented 

 Three FDI agents are used in this case study for monitoring and fault diagnosis 

- Neural-Networks (NN), Principal Components Analysis (PCA), and Self-Organizing 

Maps (SOM).  

1. NN agent: The neural-network monitoring agent, m
NNA , is trained with the time-

series data of the fault jF , [1 16], j ∈ Λ = . A filtering method is first used to 

filter out the portion of jF  corresponding to normal operations. The reason for 

adopting the filtering technique is to segregate the portion of fault data from the 

training dataset so that only the distinctive fault portion of data is used for 

neural-network training. During filtering, the Euclidean distance between each 

sample of jF  is compared to the normal operating condition and the samples 

that show high similarity with normal operations are removed from jF . The 

filtered data are then range normalized before they are trained with a 

backpropagation neural-network as described in Appendix A of this thesis. For 

this case study, a three layer neural-network with size [30 30 16], and using 

tan-sigmoid transfer function for the initial two layer, and linear transfer 

function for the final layer is constructed for fault identification.    

2. PCA agent: The PCA monitoring agent, m
PCAA , is trained with normal operating 

data Rx only. The Rx  is first autoscaled and a PCA model is developed by 

retaining the first 16 PCs with the cumulative variance of 

%18.95
λ
λ

22
1

16
1 =

∑
∑

=

=

i PCi

i PCi >95%. PCA based fault detection is based on the limit 

violation of 2T statistic and SPE value. For fault identification, the fault 
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reconstruction approach as proposed in (Qin, 2003) is used by constructing a 

PCA model jFPCA for each fault class jF , [1 16], j ∈ . The iFPCA model that 

shows an in-control status during abnormal operations is considered to flag the 

process fault. 

3. SOM agent: The SOM monitoring agent, m
SOMA , uses a two-dimensional map to 

perform cluster analysis on the online measurement x. The SOM is constructed 

based on the same training data as used for training of neural-network 

monitoring agent, m
NNA  (applying similar filtering and normalization method). 

The fully trained SOM consists of 26x17 map units. Fault identification is 

based on abnormal cluster projection while fault identification during online 

application is based on cluster sequence analysis based on the fault signature 

generated from x in the SOM space. 

Diagnostic Results and Discussion 

 The fault diagnosis results of each FDI agent working in isolation is shown in 

Table 8-5 to Table 8-7. When a single FDI agent is used, the SOM agent identifies the 

highest number of faults (14 IDVs) with an average detection delay of 45.8 samples 

and an average diagnosis delay of 65.7 samples (Table 8-11).  

The PCA agent only distinguishes 10 disturbances (IDVs), but is able to give 

the shortest detection delay among the three agents with 26.8 samples in average. The 

reconstructed fault models in the PC subspace are shown in Figure 8-2. It can be 

observed that majority of the IDVs model overlap with other fault classes in the 

principal components subspace. Such high degree of overlap results in a low 

recognition rate (74.8%) when it is used for fault identification as PCA-based fault 

classifier tend to extract more than one IDVs for a given measurement x .  
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In contrast, neural-network agent d
NNA  yields highest recognition rate (95.7%) 

and fastest diagnostic delay (35.5 samples) compared to other FDI agents. However, 

the number of faults identified with neural-network agent is low with only eleven IDVs 

identified successfully. 

 
Figure 8-2:  Reconstructed fault models in the PC subspace 

 

Table 8-5: Performance of Neural-Network agent d
NNA  in TE problem 

IDV 1 2 5 6 7 8 10 11 12 13 14 17 18 20 21 
1 788 0 1 0 0 7 0 0 0 0 0 0 0 0 0 
2 0 773 0 0 0 2 0 0 0 0 0 0 0 0 0 
5 0 0 94 0 7 0 0 0 14 0 0 0 0 0 0 
6 0 0 0 783 0 7 0 0 0 0 0 0 0 0 0 
7 0 0 7 0 174 1 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 632 0 0 8 0 0 0 0 0 0 

10 0 0 6 0 3 2 0 0 36 0 0 0 0 0 0 
11 0 0 0 0 1 0 0 6 53 0 0 3 0 0 0 
12 0 0 0 0 4 0 0 0 657 0 0 0 0 0 0 
13 0 0 5 0 0 1 0 0 0 715 0 0 0 0 0 
14 0 0 16 0 2 1 0 0 3 0 0 0 0 0 0 
17 0 0 1 0 0 1 0 11 6 0 0 585 0 0 0 
18 0 0 0 0 0 0 0 0 5 0 0 0 699 0 0 
20 0 0 8 0 3 26 0 0 2 0 0 0 1 0 0 
21 0 0 0 0 22 0 0 0 0 0 0 0 0 0 263 
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Table 8-6: Performance of Principal Components Analysis agent d
PCAA  in TE problem  

IDV 1 2 5 6 7 8 10 11 12 13 14 17 18 20 21 
1 709 0 1 0 3 52 0 0 3 5 0 0 0 0 1 
2 0 782 4 0 6 25 4 0 6 17 1 0 3 3 2 
5 0 0 150 0 130 0 0 0 180 0 0 0 5 0 0 
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 2 751 0 0 0 1 0 0 0 0 0 

10 0 0 17 0 157 29 310 0 6 278 0 0 0 0 0 
11 0 0 0 0 0 0 0 114 2 0 114 29 0 0 0 
12 0 0 0 0 0 0 0 0 739 0 0 0 7 0 0 
13 0 0 1 0 0 2 0 0 0 146 0 0 2 0 0 
14 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 22 704 0 0 0 

18 0 1 0 0 0 0 0 0 9 0 0 0 345 0 0 
20 0 0 0 0 0 0 0 0 1 4 0 0 0 340 0 
21 0 0 32 0 283 22 16 0 47 160 14 1 12 24 66 

 

Table 8-7: Performance of Self-organizing Maps agent d
SOMA  in TE problem 

IDV 1 2 5 6 7 8 10 11 12 13 14 17 18 20 21 
1 777 0 1 1 1 16 1 1 1 1 1 0 1 1 1 
2 0 760 2 0 0 12 2 0 2 2 2 2 2 0 2 
5 0 0 66 0 3 4 0 0 4 0 0 0 0 0 0 
6 1 0 26 772 1 1 2 26 1 1 2 0 1 26 1 
7 2 0 4 2 167 2 4 2 39 2 2 0 2 4 2 
8 0 1 1 0 0 332 16 0 16 1 1 1 1 0 1 

10 0 0 0 0 0 1 37 0 0 6 0 0 0 0 1 
11 0 0 0 0 0 0 0 122 0 0 0 7 0 0 0 
12 0 0 4 0 4 13 0 0 427 0 0 0 0 0 0 
13 1 0 7 1 2 1 2 1 1 562 1 0 1 6 2 
14 0 0 0 0 0 0 0 1 1 0 17 1 0 0 0 
17 0 1 1 0 0 1 7 0 1 1 2 549 1 6 1 
18 1 0 1 1 3 21 3 3 33 2 1 0 705 3 1 
20 1 0 2 1 1 1 2 1 1 1 1 0 1 4 1 
21 1 0 1 1 1 1 1 1 1 1 1 0 1 1 267 

 
The combined FDI results based on various decision fusion strategies are 

shown in Tables 7-7 to 7-9, while the summary of disturbance diagnosis based on 

various FDI strategies are shown in Table 8-11. The voting based fusion approach 

failed to diagnose IDV14, while Dempster-Shafer based fusion failed to diagnose IDV 

20. In comparison, collaborative fault diagnosis based on Bayesian combination yields 
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the best results with i) highest number of identified faults (15 IDVs), ii) highest 

prediction accuracy, and iii) shortest detection and diagnosis delay (25.3 samples and 

28.0 samples respectively). Most of the faults can be successfully identified with the 

decision fusion methods. Bayesian fusion is able to diagnose all of the faults by 

effectively combining the strengths from each FDI classifiers. Both Dempster-Shafer 

and voting based decision fusion show improvements in reducing time of diagnosis 

delay and recognition rate compared to the use of any single approaches. Since voting-

based decision fusion requires plurality votes from all agents for fault detection and 

identification, the method suffers from higher detection delay compared to other fusion 

methodologies as any early detection of fault by one agent is not a sufficient condition 

to conclude the existence of fault.  

However, voting-based decision fusion yields highest recognition rate among 

the three decision fusion strategies as the method sought agreements from most FDI 

agents prior to contributing to the diagnosis results. Misclassification rates are 

therefore reduced for voting technique at the expense of longer detection delay..   

 
Table 8-8: Performance of Voting-based decision fusion for TE problem 

IDV 1 2 5 6 7 8 10 11 12 13 14 17 18 20 21 
1 788 0 0 0 0 32 0 0 0 0 0 0 0 0 0 
2 0 773 0 0 0 2 0 0 0 0 0 0 0 0 0 
5 0 0 111 0 6 0 0 0 22 0 0 0 0 0 0 
6 0 0 0 783 1 7 0 0 0 0 0 0 0 0 0 
7 0 0 6 0 212 1 1 0 4 0 0 0 0 1 0 
8 0 0 0 0 0 682 0 0 8 0 0 0 0 0 0 

10 0 0 0 0 12 4 68 0 32 30 0 0 0 0 0 
11 0 0 0 0 1 0 0 88 26 0 6 8 0 0 0 
12 0 0 0 0 3 0 0 0 711 0 0 0 0 0 0 
13 0 0 5 0 0 1 0 0 0 726 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 1 0 11 3 0 0 624 0 0 0 
18 0 0 0 0 0 0 0 0 8 0 0 0 708 0 0 
20 0 0 2 0 1 26 0 0 0 0 0 0 1 33 0 
21 0 0 0 0 62 0 0 0 0 37 0 0 0 0 290 
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Table 8-9: Performance of Bayesian-based decision fusion for TE problem 

IDV 1 2 5 6 7 8 10 11 12 13 14 17 18 20 21 
1 788 0 1 0 0 10 0 0 0 0 0 0 0 0 1 
2 0 788 0 0 0 2 0 0 0 0 0 0 0 0 0 
5 0 0 95 0 7 0 0 0 89 0 0 0 0 0 0 
6 1 0 0 783 0 7 0 0 0 0 0 0 0 0 0 
7 2 0 7 0 215 1 0 0 0 0 0 0 0 0 0 
8 0 0 0 0 0 770 0 0 8 0 0 0 0 0 0 

10 0 0 6 0 3 29 247 0 36 3 0 0 0 0 0 
11 0 0 0 0 1 0 0 126 53 0 0 5 0 0 0 
12 0 0 0 0 4 0 0 0 781 0 0 0 0 0 0 
13 1 0 5 0 0 3 0 0 0 749 0 0 0 0 0 
14 0 0 16 0 2 1 0 0 3 0 17 3 0 0 0 
17 0 1 1 0 0 1 0 11 6 0 0 735 0 0 0 
18 0 1 0 0 0 0 0 0 5 0 0 0 711 0 0 
20 0 0 8 0 3 26 0 0 2 0 0 0 1 311 0 
21 1 0 0 0 24 0 0 0 0 13 0 0 0 0 319 

 
Table 8-10: Performance of Dempster-Shafer based decision fusion for TE problem 

IDV 1 2 5 6 7 8 10 11 12 13 14 17 18 20 21 
1 788 0 1 0 0 7 0 0 0 0 0 0 0 0 0 
2 0 773 0 0 0 2 0 0 0 0 0 0 0 0 0 
5 0 0 113 0 7 0 0 0 14 0 0 0 0 0 0 
6 1 0 1 784 1 8 1 1 1 1 1 0 1 1 1 
7 2 0 11 2 213 3 4 2 7 2 2 0 2 4 2 
8 0 1 1 0 0 673 1 0 9 1 1 1 1 0 1 

10 0 0 6 0 3 2 38 0 36 2 0 0 0 0 1 
11 0 0 0 0 1 0 0 81 53 0 0 9 0 0 0 
12 0 0 0 0 4 3 0 0 717 0 0 0 0 0 0 
13 1 0 6 1 1 2 1 1 1 721 1 0 1 1 1 
14 0 0 16 0 2 1 0 1 4 0 17 1 0 0 0 
17 0 1 2 0 0 2 1 11 7 1 1 618 1 0 1 
18 1 0 1 1 2 2 2 2 7 2 1 0 705 2 1 
20 1 0 10 1 4 27 2 1 3 1 1 0 2 2 1 
21 1 0 1 1 23 1 1 1 1 1 1 0 1 1 310 

 
Table 8-11: Summary of disturbance diagnosis based on various FDI approaches 

FDI Methods 
 IDVs 

Identified 
Recognition 

Rate (%) 
Avg Detection  
Delay (sample) 

Avg Diagnosis 
 Delay (sample) 

SOM 14 92.56% 45.83 65.67 
PCA 10 74.85% 26.83 51.17 
NN 11 95.72% 28.17 35.50 

Voting 14 94.68% 30.33 40.83 
Bayesian 15 94.73% 25.33 28.00 

Dempster-Shafer 14 94.06% 28.17 35.30 
* best results indicated by shading 
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The agreements between the agents are measured with Cohen’s Kappa statistic 

as shown in Table 8-12. All three diagnostic agents, the d
PCAA ,  d

NNA , and d
SOMA  agents 

show high level of agreement in majority of the data analyzed, i.e., 6.0>pK , 

, ' , , ' ( , , ) d
r rA r r PCA NN SOM∀ ∈ . All disagreements among the FDI agents are resolved 

through the implemented decision fusion methods. 

Table 8-12: Kappa statistic observed among heterogeneous fault classifiers 
Classifier 

I 
Classifier 

II 
Kappa pK  

Value 
Standard Error 

PK
σ  

Agreement Level 

d
PCAA  d

NNA  0.8308 0.0063 Almost perfect  
d
NNA  d

SOMA  0.9016 0.0044 Almost perfect  
d
SOMA  d

PCAA  0.7193 0.0073 Substantial  

8.6 Case Study 2: Fault diagnosis during distillation-unit startup 

 In this section, the various decision fusion methodologies are tested with the 

pilot-scale distillation-unit startup case study described in Section 3.8. All ten DSTs 

are tested and various decision fusion methods are used to combine the diagnosis 

results produced from all monitoring and diagnostic agents. In this case study, the Self 

Organizing Map, Kernel Density Estimator, and Neural-network based FDI agents are 

used to diagnose process faults. The summary of disturbance diagnosis based on single 

FDI approach is shown in Table 8-21.  

FDI Agents Implemented 

 Three FDI agents were implemented in this case study to detect and diagnose 

faults, namely, neural-network agent, m
NNA , self-organizing map agent, m

SOMA , and 

KDE-based principal components agent, m
KDEA . All associated agents have diagnostic 

capabilities implemented as diagnostic agents, d
rA , where [ , , ]r SOM KDE NN= . 
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1. Neural-network agent, m
NNA :  The m

NNA  is constructed based on three layers of 

feedforward neural-network with [15 15 11] nodes on each layer with similar 

transfer function configurations as earlier case study. The fault data from the 

ten training DSTs and one normal data (available in Ng and Srinivasan, 2005) 

are used to form the neural-network training matrixes. The training matrix is 

then of size 11 columns of binary elements (see Appendix A). All state-

variables are autoscaled, and the weights and biases of the neural-network are 

obtained with scaled conjugate gradient training method.   

2. Self-organizing map agent, m
SOMA : The m

SOMA  is also constructed with similar 

training data. The constructed SOM consists of 2233 ×  map units and is used 

to track process trajectory during transitions. Abnormal operations are detected 

based on cluster-sequence analysis and state-signature comparison are used to 

diagnose process faults. 

3. KDE-based Principal components agent,  m
KDEA : The m

KDEA  for monitoring is 

constructed with normal operation data only, RX . The KDE models are 

constructed by constructing non-parametric bounds around the boundary of the 

normal operating region. Fault identification with m
KDEA  is based on the KDE 

model created, jFKDEM  for each class of fault, jF , [1 11], j ∈ . 

Diagnostic Results and Discussions  

The fault diagnosis results of each FDI agent working in isolation is shown in 

Tables 7-12 to 7-14. In this case study, m
KDEA  is unable to detect DST05. Most faults 

are successfully detected and diagnosed by other agents. 
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Table 8-13: Performance of Neural-Network agent d
NNA  in distillation unit startup case 

study 
DST 1 2 3 4 5 6 7 8 9 10 

1 598 0 0 0 0 0 0 0 0 0 
2 0 377 0 0 0 0 0 0 0 0 
3 0 0 237 0 0 0 0 0 0 0 
4 0 0 0 153 0 0 0 0 7 0 
5 0 0 0 0 147 0 0 0 0 0 
6 0 0 30 0 0 172 0 0 0 0 
7 0 0 0 0 0 0 107 0 0 0 
8 0 0 0 0 0 0 0 137 0 0 
9 0 0 16 0 0 1 0 2 266 2 

10 0 0 0 0 0 0 0 0 0 268 
 

Table 8-14: Performance of Kernel Density Estimation agent d
KDEA  in distillation unit 

startup case study 
DST 1 2 3 4 5 6 7 8 9 10 

1 602 0 6 2 0 0 0 9 92 0 
2 0 378 1 1 3 2 1 2 0 0 
3 0 0 75 0 17 13 0 1 17 2 
4 0 0 2 137 105 58 0 127 113 112 
5 0 0 0 3 2 0 0 3 3 3 
6 0 0 2 0 0 174 1 1 2 0 
7 0 0 1 0 0 3 110 0 90 1 
8 0 0 0 6 0 0 0 23 3 2 
9 0 0 0 0 0 0 0 0 110 0 

10 0 0 0 5 7 0 1 0 37 122 
 

Table 8-15: Performance of Self-organizing Maps agent d
SOMA  in distillation unit 

startup case study 
DST 1 2 3 4 5 6 7 8 9 10 

1 594 0 0 0 0 0 0 0 0 0 
2 0 378 0 0 12 0 12 0 12 12 
3 0 0 177 6 6 0 0 6 0 0 
4 0 0 114 159 114 0 0 0 0 0 
5 0 0 0 0 208 0 0 0 0 0 
6 0 0 0 0 0 172 0 0 0 0 
7 0 0 0 0 0 0 109 0 0 0 
8 0 0 127 127 127 0 0 148 0 0 
9 0 308 0 0 327 0 309 0 563 309 

10 0 0 0 0 0 0 0 0 0 172 
 
 

The summary of disturbance identification results based on isolated FDI agents 

to each DST analyzed is shown in Table 8-16. Both m
NNA  and m

SOMA  are able to detect 

and diagnose all ten disturbances introduced. The m
NNA  shows good recognition rate in 
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this case study with 87.15% accuracy and an average detection and diagnosis delay of 

21.0 samples and 51.4 samples respectively (Table 8-17).  

Table 8-16: Performance comparison of each FDI agent 
SOM KDE NN 

DST # 

Time 
fault 

detected 

Time 
fault 

diagnosed

Time 
fault 

detected 
Time fault 
diagnosed 

Time 
fault 

detected 
Time fault 
diagnosed 

1 10 10 2 11 2 3 
2 2 13 2 4 2 2 
3 365 371 370 398 360 360 
4 357 358 357 359 357 357 
5 426 426 - - 426 427 
6 354 354 351 354 351 354 
7 347 347 346 350 347 349 
8 348 470 348 474 348 350 
9 2 328 2 2 2 298 

10 300 300 302 339 203 203 
 

Table 8-17: Performance evaluation of each FDI classifier 

FDI methods DSTs Identified
Recognition 

Rate 
Avg Detection  

Delay 
Avg Diagnosis  

Delay 
SOM 10 56.22 32.3 78.9 
KDE 9 66.83 31.8 52.7 
NN 10 87.15 21.0 51.4 

  

 The combined FDI results based on various decision fusion strategies are 

shown in Tables 7-17 to 7-19. By combining the three FDI agents, all decision fusion 

strategies are able to diagnose all ten disturbances with improvements in speed of fault 

detection and diagnostic (see summary in Table 8-21). The voting strategy shows 

highest recognition rate with 98.36% as redundant information are filtered most 

effectively by seeking agreement from majority of the FDI agents (see Table 8-22). 

Though being able to classify samples more accurately, voting strategy incurs higher 

duration for successful fault detection and diagnosis compared to Bayesian and 

Dempster-Shafer fusion strategy as voting strategy requires a plurality of votes to 

change the belief of the consolidator agent. Shortest detection and diagnostic delay are 

observed through Bayesian and Dempster-Shafer combination strategies. For this case 
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study, both decision fusion strategies show no significant difference in terms of speed 

of fault detection and identification (see Table 8-22). A minimum improvement of 

37.9% (-19.5 samples) in speed of fault identification has been observed for strategies 

based on the multi-agent approach compared to any solitary application of FDI method 

(SOM, KDE or NN). Since the Bayesian fusion strategy utilizes a more explicit, class 

specific information (stored as Confusion Matrix as shown in Eq 8-6) for decision 

fusion, it is able to achieve a higher recognition rate compared to Dempster-Shafer 

strategy, which is based on lumping overall performance from a FDI classifier based 

on its previous predictions.      

 

Table 8-18: Performance of Voting-based decision fusion for distillation-unit startup 
case study 

DST 1 2 3 4 5 6 7 8 9 10 
1 600 0 0 0 0 0 0 0 0 0 
2 0 378 0 0 1 0 1 0 0 0 
3 0 0 177 0 0 0 0 0 0 0 
4 0 0 7 157 8 0 0 7 7 0 
5 0 0 0 1 150 0 0 1 1 1 
6 0 0 1 0 0 172 0 0 0 0 
7 0 0 0 0 0 0 109 0 0 0 
8 0 0 0 2 0 0 0 141 0 0 
9 0 0 0 0 0 0 0 0 348 2 

10 0 0 0 0 0 0 0 0 0 172 
 
 

Table 8-19: Performance of Bayesian-based decision fusion for distillation-unit case 
study 

DST 1 2 3 4 5 6 7 8 9 10 
1 600 0 0 0 0 0 0 0 0 0 
2 0 377 0 0 0 0 0 0 0 0 
3 0 0 237 0 0 0 0 0 0 0 
4 0 0 0 153 0 0 0 0 7 0 
5 0 0 0 0 147 0 0 0 0 0 
6 0 0 30 0 0 172 0 0 0 0 
7 0 0 0 0 0 0 107 0 0 0 
8 0 0 0 0 0 0 0 137 0 0 
9 0 0 16 0 0 0 0 1 266 2 

10 0 0 0 0 0 0 0 0 0 268 
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Table 8-20: Performance of Dempster-Shafer based decision fusion for distillation-unit 
case study 

DST 1 2 3 4 5 6 7 8 9 10 
1 602 0 2 1 0 0 0 2 2 0 
2 0 378 0 0 1 0 1 0 0 0 
3 0 0 237 0 0 0 0 0 0 0 
4 0 0 2 155 2 0 0 2 7 0 
5 0 0 0 0 208 0 0 0 0 0 
6 0 0 31 0 0 173 0 0 1 0 
7 0 0 1 0 0 1 110 0 1 1 
8 0 0 7 9 7 0 0 148 0 0 
9 0 213 0 0 213 0 213 0 561 215 

10 0 0 0 0 0 0 0 0 0 268 
 
 

Table 8-21: Summary of FDI results by various decision fusion strategy 
Voting Bayesian Dempster-Shafer 

DST # 

Time 
fault 

detected 
Time fault 
diagnosed 

Time 
fault 

detected 
Time fault 
diagnosed 

Time 
fault 

detected 

Time 
fault 

diagnosed
1 3 3 2 2 2 3 
2 2 2 2 2 2 2 
3 365 365 360 360 360 360 
4 357 358 357 357 357 357 
5 427 427 426 426 426 426 
6 351 354 351 354 351 354 
7 347 347 346 346 346 347 
8 348 350 348 350 348 350 
9 2 2 2 3 2 2 

10 300 300 203 203 203 203 
 
 

Table 8-22: Performance of disturbance diagnosis based on heterogeneous FDI 
approaches 

Combination 
 Strategy 

DSTs 
Identified 

Recognition 
Rate 

Avg Detection 
Delay 

Avg Diagnosis 
Delay 

Voting 10 98.36 31.3 31.9 
Bayesian 10 97.78 20.9 21.5 

Dempster-Shafer 10 75.23 20.9 21.6 
 

The agreements among inter-classifiers are quantified through Cohen’s Kappa 

statistic, pK , (see Table 8-23). All measured pK  are positive ( 0>pK ) indicating 

that no systematic disagreement exist between the diagnostic classifiers. Contrary to 

previous case study, the observed pK between classifiers d
SOMA , and d

PCAA  is observed 

to be 005.02391.0 ∓ , signifying only a fair agreement between them. Nonetheless, the 
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disagreements between d
SOMA  and d

PCAA  classifiers have been effectively resolved by 

the decision fusion methods.  

Table 8-23: Kappa statistic observed among heterogeneous fault classifiers 

Classifier 
I 

Classifier 
II 

Kappa pK  
Value 

Standard 
Error PK

σ  
Agreement Level 

d
KDEA  d

NNA  0.4495 0.0085 Moderate  
d
NNA  d

SOMA  0.6658 0.0090 Substantial  
d
SOMA  d

KDEA  0.2391 0.0053 Fair  
 

8.7 Summary 

 Three popular methods for combining heterogeneous diagnostic classifiers, 

namely, voting, Bayesian, and Dempster-Shafer techniques are studied and analyzed in 

this chapter. Significant improvement in recognition rate has been observed when 

decision fusion techniques are applied, in which total recognition rate increases from 

87.15% to 98.36% is observed for distillation column startup case study.  Also, 

application of decision fusion techniques (particularly Bayesian and Dempster-Shafer) 

shows that combination of heterogeneous classifiers improve overall system 

performance by reducing both fault detection and diagnosis time, with improvements 

of 21.1% based on Bayesian fusion for the Tennessee Eastman Challenge problem, and 

a minimum improvement of 37.9% for the distillation unit startup case study.  

In general, methods that utilize additional information of a classifier, i.e., Bayesian 

and Dempster-Shafer methods show better performance. Bayesian combination 

strategy uses class specific historical information for combining heterogeneous 

classifiers and has been found to perform better than Dempster-Shafer and Voting 

methods in terms of speed of fault detection and diagnosis. Dempster-Shafer method 

uses less precise information by quantifying only the recognition and substitution rate 

from a diagnostic classifier. The performance of Dempster-Shafer method can be 
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improved by incorporating class-specific information as for the Bayesian approach, 

i.e., utilizing the Confusion Matrix to generate basic probability assignment. Though 

the Voting method performs poorly compared to Bayesian and Dempster-Shafer 

method in term of speed of fault detection and diagnosis, voting method shows highest 

recognition rate among the three decision fusion methods as the plurality voting 

implemented rejects wrong predictions by seeking agreement from a plurality of 

classifiers. Nevertheless, its average speed of fault diagnosis has been improved 

considerably compared to application based on any single FDI approach. In addition, 

all three decision fusion algorithms are able to improve fault detection and diagnosis 

performance over single FDI method under conflicting scenarios, as shown in the 

distillation-unit startup case study when agreement level among FDI agents is low (i.e., 

when 24.0=pK ). 

 
Nomenclature

Indices 

i , j  fault/ class ID 

r classifier 

Parameters 

J total number of fault classes known to a fault classifier 

R total number of fault classifiers used 

N total number of samples in the training data 

Variables 

PK
σ

 Standard error for Cohen’s Kappa statistic for large sample 

Λ the superset containing all of the known fault classes Ad a diagnostic agent 

Am a monitoring agent 

Cj the jth class   
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CMr confusion matrix for rth classifier 

E(x) combined prediction results for sample x 

e(xi) classification results for sample xi 

m basic probability assignment  

Ø an empty set 

P(A|B) conditional probability of event A occurring based on evidence B 

PE combined probability for the occurrence of an event 

F opt
V  final prediction results obtained through Voting 

F opt
DS  final prediction results obtained through Dempster-Shafer 

F opt
B  final prediction results obtained through Bayesian combination 

sj similarity between a sample x when compared to jth class  

Kp the Kappa statistic between two classifiers 

xR the reference data used for training of models 

pc proportion of agreement by chance  

po proportion of agreement observed 

xi a multivariate sample collected at time i 

κr the rth classifier 
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Chapter 9 Summary and Recommendations 

for Future Work 

9.1 Research Summary 

 Fault diagnosis in the process industries deals with online identification of 

process states, detection of abnormal process behavior during operations, and 

diagnosis of possible root causes of the abnormal behavior. Since most plants 

increasingly emphasize the domain of agile manufacturing to increase their 

competitiveness globally, conventional steady-state monitoring techniques are no 

longer adequate. Additionally, recent regulatory changes in the FDA cGMP guidelines 

for pharmaceutical processes also drive tremendous interest in monitoring and 

diagnosing faults in batch and fed-batch operations (US FDA, 2004). As noted in 

Chapter 1, modeling and monitoring of transient operations are difficult and 

characterized by various challenges, i.e., highly non-linear processes, multivariate 

multi-scale operations, inadequacy of regulatory control, etc. In this thesis, an attempt 

was made to design a suitable architecture to monitor and diagnose faults in transient 

operations. Multiple new fault detection and diagnostic methods were developed and a 

multi-agent based diagnostic system has been proposed to integrate the strengths of 

these various FDI methods. The thesis was divided into five major sections covering 

the various developments.  

 First, a new self-organizing map-based methodology was proposed for (i) 

visualizing temporal, high dimensional operating data, and (ii) diagnosing faults in 

transient and steady-state operations. The proposed methodology successfully modeled 

transient operations with a SOM. The SOM is able to represent any state of a process. 
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Further clustering allows it to accommodate process noise and run-to-run variations. 

Process measurements recorded in real-time can be SOM projected and the online data 

abstracted into a univariate state-signature, generated based on the sequence observed 

in the cluster space after SOM projection of the online data. Different transitions are 

usually uniquely represented on the SOM, as well as in the signature space. So 

abnormality during operations are observed as deviations from normal state-sequences.  

A syntactic pattern recognition approach for disturbance identification was also 

proposed that compares the similarity between the online state-signature and the state-

signature of known disturbances stored in a knowledge-base. 

 Second, an Adjoined Dynamic Principal Components Analysis (ADPCA) 

approach was proposed that overcomes the drawbacks encountered in conventional 

PCA-based monitoring of transient operations. Single PCA models suffer from 

extensive Type-I and Type-II errors when a process is in a transient state. To overcome 

this, multiple overlapping PCA models were proposed. The proposed method enforces 

continuity in data modeling by allowing neighboring models to overlap with each 

other, and hence avoids discontinuity in modeling transient types of operations. A 

strategy to select the optimal PCA model in real-time for monitoring was also 

proposed in accordance with the ADPCA method. 

 Third, a pattern recognition approach for fault diagnosis was proposed based on 

a two-layer architecture, namely, principal components analysis and kernel density 

estimation. Conventional pattern recognition approach for PCA applications have been 

overly dependent on Hotelling’s 2T  statistic. By substituting the statistic with a non-

parametric technique (specifically KDE), the boundaries separating the fault classes 

can be improved and result in higher accuracy of fault classification. Since KDE 
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operates on a two-dimensional platform, the proposed index is formulated as 

multivariable classification through a binomial combination of bi-variate KDE models.      

 Given these extensive developments in fault diagnosis methodologies for 

transient operations, the various FDI approaches can be integrated to further improve 

the diagnostic efficiency. In the fourth part of this thesis (Chapter 7), a multi-agent 

architecture called CAMEO, Collaborative Agents for Managing Efficient Operations, 

was proposed to facilitate the integrated management of transient processes. In the 

proposed architecture, the whole operation is managed through a society of interacting 

agents, where each agent specializes in a certain area and addresses a special 

operational issue within the plant. The efficacy of the multi-agent approach was 

illustrated through combination of heterogeneous fault classifiers. The rationale for 

such an integration is based on the precept that the strengths of various approaches can 

be combined while their shortcomings overcome through collaboration.    

 When heterogeneous fault classifiers are combined, there is a need to resolve 

possible conflicts among the diagnostic classifiers. Various means of integrating 

decisions from the multi-agent architecture was thoroughly studied and compared in 

the final part of this thesis (Chapter 8). Three approaches of integrating decisions, 

namely voting, Bayesian theory, and Dempster-Shafer theory were studied. With the 

decision fusion algorithm in place, the fault-diagnosis module of the multi-agent 

architecture can be scaled-up with ease through addition of monitoring and diagnostic 

agents.   

9.2 Future Recommendations 

 This thesis thus offers a new multi-agent formalism for monitoring and 

diagnosis during transient operations. Next, some suggestions for future research are 

recommended. 
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9.2.1 Improvement to Diagnostic Methods 

 The proposed multi-agent architecture serves as a foundation for integrating 

FDI classifiers. In general, the performance of the multi-agent fault classifier increases 

with addition of new FDI methods. The gain in FDI performance is more obvious 

when classifiers utilizing distinct features of the process are added. Throughout this 

thesis, the main emphasis has been placed on data-based FDI approaches for 

disturbance isolation. The diagnostic algorithms used mainly focus on the area of 

pattern matching or similarity search with a fault database. These approaches of 

diagnosing faults inherit the common drawbacks of all data-driven approaches, such as 

inability to diagnose novel faults, and inadequate performance in situations where a 

single fault maps to many patterns in the feature space. To overcome these 

shortcomings, methods based on other reasoning methodologies, e.g.: signed-digraphs 

that reason based on causality, expert systems that solve uncertainties based on human 

experiences, and first-principle models, can be integrated.  

 Also, there should be a continuous drive to develop better diagnostic methods 

for FDI of transient operations. A multi-agent architecture consisting of poor 

diagnostic methods cannot be expected to do miracles.  

9.2.2 Transition Automation and Fault Tolerant Control 

 Throughout this thesis, the focus has been on the domain of fault detection and 

identification. There is however a strong motivation for achieving higher level of 

transition control through automation of transition operations. The use of data-driven 

approaches to automate transition has been previously proposed by Özkan et al. 

(2003), and by Banerjee and Arkun (1998). The proposed modeling and transition 

representation methods in this thesis, i.e., self-organizing map, or kernel density 

estimator techniques, can be well extended to drive a transition automatically based on 
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schemes such as Model Predictive Control. As noted in Chapter 3 & 4, self-organizing 

maps give a robust representation of process operations and the transition trajectory 

produced on SOM allows different states of transitions to be quantified and compared. 

Fault tolerant control can also be integrated into the proposed multi-agent framework 

to improve the robustness of an operation. Such integration allows the plant to 

continue to operate at least at a suboptimal level in the event of a fault, instead of 

failing abruptly.   

9.2.3 Integration of Multi-agent System with Planning Mechanism  

Multi-agent system can be considered more robust as agent-based method has 

been shown to be more tolerant to failure (Wooldridge, 2002). Since each agent has 

been made autonomous, failure in some agents (under the condition that there exist 

other agents to undertake the task) will not cause an abrupt failure but rather a graceful 

degradation in system performance. Agent researchers have also reported that agents 

can be programmed to change their behavior, and attend to unforeseen circumstances 

through means-end analysis or belief-desire-intention models (Jennings and 

Wooldridge 1996; Wooldridge, 1997; Fatima et al., 2004). While an individual agent 

can learn to change its performance, a society of agents can evolve to find a parato 

optimal configuration for a certain task and environment. This is a form of emergent 

behavior which would make multi-agent systems an attractive alternative to current 

approaches in the domain of fault detection and diagnosis in the process industries.  

9.2.4 Integration with Other Plant Operations 

 The concept of integrating fault diagnosis with other part of plant operations is 

not new. It was first conceptualized by Mylaraswamy (1996) who stressed the need to 

integrate fault diagnosis with supervisory control, operator notification system, and 

fault rectification system. Since the concept of integrating plant operations is deemed 
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very important, it is reiterated here. A graphical illustration of a possible integrated 

framework for process operations is shown in Figure 9-1. It is believed that a unified 

framework which could accurately segregate the plant operations into modes and 

transitions, and intelligently optimize both areas would be handy for engineers and 

operators. Some developments have been achieved in this area through the years (see 

Srinivasan et al., 2004; Srinivasan et al., 2005a,b,c; and Ng et al., 2006), but further 

developments in this area are needed before these methods can be put into practice.  

 There is also a growing consensus among both manufacturers and researchers 

that productivity of plant engineers and operators can be improved by better 

management of information flow within a company. It is believed that integrating 

additional information such as plant scheduling information, simulation studies for 

change of operating parameters, data mining from historical operations, etc, would be 

useful to plant engineers. However, such integration is generally difficult as plant 

engineers use different tools for different purposes. For instance, it is not difficult to 

locate a chemical plant which uses software from SAP for scheduling, software from 

ASPEN for simulation studies, systems from Emerson or Yokogawa for control and 

automation, and a dozen other systems provided by different vendors for a variety of 

other functions. It is hence crucial to develop standards for allowing distributed 

information to be collected, integrated, and unified. Defining such standards for plant 

operations, or OPC for real-time monitoring and control purposes (Liu et al., 2005) is 

also considered a practicable area worth studying.  

 



Chapter 9                                                              Conclusions & Future Work                          
_____________________________________________________________________ 

 -253-

 

Figure 9-1: Framework for integrating diagnosis with other parts of process operations 
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Appendix A: Back-propagation Neural-network 

 Back-propagation neural-network has been a popular method for context and 

disturbance identification (Rengaswamy and Venkatasubramanian, 2000; Srinivasan et 

al., 2005a,b). Neural-networks develop non-linear input-output model and are well 

suited for analysis of high-dimensional data. The neural-network achieves non-linear 

class separation through combination of individual neurons. Each neuron has its 

corresponding activity mo  governing by a transfer function mf  through (Hagan et al., 

1996): 

 
1
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∑ , (Eq A-1) 

where miw  are the weights from neurons from previous layer, ip  is the inputs from 

previous layer, and b is a connection bias. During learning, the training data (from 

normal and abnormal operations), 1 2[ , , ,... ]R
JX X F F F∈  can be used in conjunction 

with their class information, C to train a neural-network by adjusting the weights miw  

and bias b of all neurons. C is of similar length to the total rows of X and is often 

represented in binary form: 
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 The learning of neural-networks usually involves iteration to adjust miw  and 

bias b of all neurons until the sum of squared errors between C and predicted values C�  

drops below a prespecified threshold thr, i.e., 2

1 1
( , ) ( ( ) )

I J
t

ij ij
i j

d C C C C thr
= =

= − <∑∑� � . 

Different training algorithms such as conjugate gradient algorithms or quasi-Newton 
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algorithms can be used for such purpose. The fully trained neural-network model 

NNM  can then be used for class prediction of new samples iX . A threshold Cthr  can 

be placed on the predicted C�  to define the class acceptance criteria of NNM : 

 
, || 1||

( )
1,

C
ij

i
j      if C thr

C X
J     otherwise        

⎧ − <⎪= ⎨
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�
� , ],1[ Jj  ∈∀ . (Eq A-3) 

The notation ( )iC X j=�  indicates that the sample iX is exhibiting abnormal pattern of 

jth fault class, while ( ) 1iC X J= +�  indicates that iX is rejected by NNM  (existence of 

novel fault). 
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Appendix B: Multiway-PCA and Dynamic-PCA 

 PCA has been widely used for monitoring continuous operations (Kourti, 

2002). However, there exist some limitations of the PCA approaches when used for 

monitoring batch processes (Nomikos and MacGregor, 1994). In practice, batch data 

are usually stored in a three dimensional data matrix. An extension of PCA called 

Multiway-PCA (Nomikos and MacGregor, 1994) was proposed by for batch data 

analysis. MPCA organizes the batch data into time-ordered blocks by unfolding the 

three dimensional array into a large two dimensional matrix before they are 

decomposed into their corresponding principal components. In general, there exist 

three different ways that a 3-Dimensional array X can be unfolded into two 

dimensional matrices Lee et al. (2004b): 

• Batches x variables at each specific time (time-wise unfolding) 

• Variables x time for each specific batch (batch-wise unfolding) 

• Batches x times for each specific variables (variable-wise unfolding) 

 
Figure B-1 : Different means of data unfolding based on MPCA approach 
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 Each of these provides the flexibility to analyze a different type of variability in 

the batch-data set. Time-wise unfolding analyzes variability among samples across 

different batches at a specific time point, batch-wise unfolding identify abnormal 

batches from the 3-dimensional batch dataset, and variable-wise unfolding analyzes 

variability among the samples within a batch. Among the three unfolding methods, the 

batch-wise unfolding and variable-wise unfolding are more commonly used for batch 

processes monitoring. A major shortcoming of batch-wise unfolding is the need of 

complete batch dataset, which often limits their direct application for online 

monitoring. In this work, unless otherwise noted, the multiway-PCA technique adopted 

is based-on the variable-wise unfolding technique. Such a way of unfolding allows 

abnormal samples to be identified from a given batch trajectory.  

 PCA generates a linear static model of the data matrix X. When the data 

contains dynamic information, as in the case with data from batch processes and 

transitions, applying PCA/MPCA on the data does not capture the actual correlations 

between the variables, but only a linear static approximation. Even though there have 

been examples where static PCA have been applied to isolate disturbances in a 

dynamic system, the latent variables generated (scores) will be auto-correlated or 

cross-correlated. This can lead to misleading results: both false positives and false 

negatives. In such scenarios, a dynamic-PCA is more appropriate (Ku et al.,1995). The 

PCA assumes that all samples taken at different time instants are statistically 

independent. For non-stationary systems, the current values of process variables will 

depend on the past values due to time-lag behavior of the chemical processes. X(t) can 

be augmented with previous observations. The dynamic PCA correlation matrix is 

constructed by performing PCA projection to the vectors of current measurements 

stacked with time-lagged information, ( )DX t , where 
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( ) [ 1 ]DX t X(t)   X (t )   ...   X (t l)= − − , and l is the number of previous observations that 

are correlated to the current sample. In the general case,  
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,  (Eq B-1) 

where ( )X t is the two dimensional observation vector in the training dataset at time t. 

The extracted dynamic model is implicitly multivariate autoregressive (AR) (Ljung 

and Glad, 1994) if process inputs are included (Ku et al., 1995). The use of DPCA for 

fault diagnosis in feedback-controlled processes was reported by Shi and Tsung, 

(2003). Dynamic PCA was also shown to be able to cluster time varying states more 

effectively than conventional PCA approaches by Srinivasan et al. (2004). Chen and 

Liu (2002) integrated MPCA with DPCA to capture the correlation among different 

runs of a discontinuous batch-process. Though DPCA improves the performance of 

PCA models by incorporating process dynamics, its modeling approach based on a 

single model is still unable to capture the dynamics of non-stationary processes as in 

the case of transient operations.  
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Appendix C: PCA Similarity  

 The similarity between two PCA models can be measured using the PCAS . 

PCAS  measures the similarity between two PCA models based on the angles between 

the spaces of the first k PCs (Krzanowski, 1979). Let A and B be two groups with n 

variables. The similarity between the two groups is quantified by comparing their 

principal components subspaces L and M, which are the eigenvector matrices 

corresponding to the first k PCs (Krzanowski, 1979):  

 2

1 1

1 ( ' ' )( , ) cos
l l

PCA ij
i j

trace L MM LS A B θ
k k= =

= =∑∑ ,  (Eq C-1) 

where ijθ  is the angle between the ith PC of L and the jth PC of M. A modified form of 

PCAS  is given by Singhal and Seborg (2002) by normalizing the similarity factor with 

variances:  
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PCAS  is in the range of 0 to 1. A smaller values of PCAS  indicate low similarity 

between models whilst large value signifies high similarity.  
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Appendix D: Bandwidth Selection for Kernel 

Density Estimator  

 The shape of the constructed kernel density is normally determined by the 

choice of kernels while the kernel width is controlled by a bandwidth matrix, H. In 

practice, the choice of kernels has only minimal impact over the estimated density, f
�

. 

The more critical issue lies in the value of bandwidth selector used, H or sometimes 

being referred to as smoothing parameters. A number of measures to estimate H can be 

found in Wand and Jones (1994). The appropriate choice for H should be dependent on 

the purpose for which the kernel-density estimate technique is to be used upon. Some 

commonly used approaches for determining H include: normal scale rule, least squares 

cross-validation, plug-in type bandwidth selector, etc. Most of the proposed techniques 

used standard error criteria when estimating f
�

. Two of the most popularly used error 

criteria include mean squared error (MSE): 

    ˆ( ( , ) ( ))MSE E f x H f x= − ,  (Eq D-1) 

and mean integrated squared error (MISE):  

 2ˆ{ ( , ) ( )}MISE E f x H f x dx= −∫ , (Eq D-2) 

Here, ˆ ( , )f x H  is the estimated density function, and  ( )f x  is the real density function 

of X.  

 The normal scale rule computes the bandwidth matrix, AMISEH  by calculating 

the optimal value of asymptotic-MISE (AMISE) of the data density, which is the 

approximation to MISE.  AMISEH  is given as (Wand and Jones, 1994): 
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where dxxKxK ∫= )()( 2
2μ , ∫= dxxKKR 2)()( , ∫= dxxffR 2)('')''( . The 

computation of AMISEH  is less computational intensive but often produces over-

smoothed density estimate, thus the use of AMISEH  might capture additional region in 

the subspace of training data. A tighter bound can be created through Least squares 

cross-validation (LSCV). LSCV was developed by Rudemo (1982) by expanding the 

MISE criteria of Eq D-2 to: 

 2 2ˆ( ) 2 ( ) ( ) ( )MISE E f x,H dx E f x,H f x dx f x dx= − +∫ ∫ ∫
�

.  (Eq D-4) 

 The solution to minimization of Eq D-4 is given by Rudemo (1982), and Bowman 

(1984) as: 

  2 1
1

1

ˆ ˆ( ) ( ) 2 ( )
n

i
i

LSCV H f x,H dx I f X ,H−
−

=

= − ∑∫    (Eq D-5) 

where 1ˆ ( , ) ( 1) ( )
I

i h j
j i

f x H I K x X−
−

≠

= − −∑  is equivalent to the density estimate of X with 

jX  deleted. The optimal density estimate can then be obtained from the H that 

minimizes Eq D-1: 

 ( )arg min ( )LSCVH LSCV H= .  (Eq D-6) 

On the other hand, plug-in type of bandwidth estimators normally suggest means to 

estimate the term )''( fR  in Eq D-3, thus making it directly solvable. Some examples 

of plug-in rules can be obtained from Sheather and Jones, (1991), Scott et al. (1977), 

and Engel et al. (1995).  
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