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Summary

The design of complex real-time systems requires not only powerful mechanisms for

modelling various aspects of a complex system but also tool support for developing

the models, especially tool support for verifying the established models. While

there are a variety of formal techniques and tools that have been proposed in the

literature and each may has its unique strength in describing one or some aspects of

a complex system, it has been realized that no single notation will ever be suitable

to address all aspects of a complex system with tool support. The state-of-the-

art formal modelling techniques, Z family languages OZ/TCOZ and state-machine

based techniques Timed Automata, both of them have their unique strength and

weakness on specifying high-level abstracted models for complex systems. This

thesis investigates the possible links between the modelling techniques OZ/TCOZ

and TA and research how to lend the strengths of different techniques to each other

or how to integrate the strengths of different techniques together so that they can be

utilized coherently for building and verifying models of complex real-time systems

in a unified framework. Firstly, a set of composable timed automata patterns

(reminiscent of ‘design patterns’ in object-oriented modelling) are defined based on

TCOZ process constructs. These composable timed automata patterns not only

provide a proficient interchange media for transforming TCOZ specifications into

TA designs, which supports one possible engineering development process: TCOZ

for high-level requirement specifications, then TA for design and timing analysis;

but also provide a generic reusable framework for developing real-time systems in



TA alone. Secondly, based on the patterns, a set of transformation rules from

TCOZ to TA are defined so that one possible engineering process for modelling and

checking of complex real-time system can be supported: TCOZ for building high-

level models and TA’s tool support to be reused for verification of the models. We

also investigate the semantic equivalence issue between TCOZ processes and timed

automata and provide a proof for the correctness of the transformation. Lastly,

inspired by this part of work, an interesting question is that: can we integrate

Object-Z and Timed Automata directly? In this way, not only the wonderful

tool support of TA can be reused straightforward, but also the timed composable

patterns now can be directly utilized for systematic TA designs. Thus, rather than

taking the transformation point of view, we also developed a novel integrated formal

language which combines Object-Z with TA. The advantage of this approach lies in

that by replacing TCSP with TA in TCOZ, the wonderful tool support of TA can

be reused straightforward, moreover, comparing to CSP/TCSP which provide a fix

topology for communications, this new formalism OZTA is injected with a novel

concept of partial and sometime synchronization to capture various synchronization

scenarios. Meanwhile, the OZTA notation is enhanced by introducing the set of

timed patterns as language constructs to specify the dynamic and timing features

of complex real-time systems in a systematic way. We also present a semantic

model of OZTA in Unifying Theories of Programming which provides the semantic

foundation for language understanding, reasoning and tool construction. Based on

the semantic model, we constructed HighSpec an interactive system which can

support editing, syntax and type checking of OZTA models as well as transforming



OZTA models into TA models so that we can utilize TA model-checkers, e.g.,

UPPAAL, for simulation and verification.

In summary, we built up the linkages of different modelling techniques, Object-

Z/TCOZ and Timed Automata, and established a powerful unified framework us-

ing two alternative approaches for modelling and checking of complex real-time

systems.
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Chapter 1

Introduction

1.1 Motivation and goals

Formal methods are of global concern in software engineering. A formal method [32,

8, 9] in software development provides a formal language for describing a software

artifact (e.g. specifications, designs, source code) such that formal proofs are pos-

sible, in principle, about the properties of the artifact so expressed. The use of

formal methods can greatly increase our understanding of a system by revealing

inconsistencies, ambiguities, and incompletenesses that might otherwise go unde-

tected.

Over the last few decades, a variety of formal modelling techniques have been

proposed in the literature. For example, VDM [2], Z [70], Object-Z [66], and B [3]

are state-oriented formalisms; CSP [39, 38], Timed CSP [61], and CCS [43] are

1
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process-oriented formalisms, and Timed Automata (TA) [4] and Petri-net [7] are

state-machine based formalisms.

While each formal specification technique may have its unique strength in describ-

ing the system or the aspects of the system which it fits well with, it has been

realized that no single notation will ever be suitable to address all aspects of a

complex system. As a result, combining different formal notations to capture var-

ious aspects of a complex system has become a recent research trend in software

specification and design [6, 29, 12]. A popular approach has been the blending of

Z/Object-Z with either CSP or CCS. For example, Fischer [28] and Smith [67] sug-

gested independently a combination of Object-Z with CSP. Mahony and Dong [50]

proposed Timed Communicating Object-Z (TCOZ), which combines Timed CSP

and Object-Z. Comparing to Fischer and Smith’s work, TCOZ is more novel in that

building on Timed CSP, it includes primitives for treating timing issues. Timed

CSP has strong process control modelling capabilities. Object-Z has strong data

and state modelling capabilities. The two languages complement each other in

their expressiveness. Building on the strengths of the Object-Z and Timed CSP

notations, TCOZ is capable of modelling state, process and timing aspects of com-

plex systems, thus it is well suited for presenting more complete and coherent

requirement models for real-time complex systems.

However, the design of complex real-time systems usually requires not only pow-

erful mechanisms for modelling various aspects of a complex system, but also tool

support for building up the models, especially tool support for verifying the estab-
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lished models.

One problem of integrated formal methods, is that very few of them has direct tool

support, even just for editing, not to say verification. This is mainly because high-

level specification languages such as Object-Z/TCOZ usually contain various kinds

of abstracted system information, which makes the implementation of a verification

tool from scratch difficult.

On the other hand, although the necessity of tool support for formal methods

is widely accepted and some tools have been proposed and developed, such as

Z/EVES [14], Alloy [54], PVS [56], SPIN [42], FDR [49], UPPAAL [58] and so on,

one problem of the existing tool support for integrated formal methods is that much

of them fails to exploit the advantages that formality brings. For example, Timed

Automata (TA) [4] is powerful in designing real-time models with multiple clocks

and has well developed automatic tool support for verification, e.g., UPPAAL [48],

KRONOS [16], TEMPO [69], RED [74] and Timed COSPAN [72]. One weakness

of TA, however, is the lack of high-level composable graphical patterns to support

the systematic design of complex real-time systems.

This motivates us to research how integrating formal methods can lend the strengths

of different techniques to each other and facilitate tool support for the development

process. The Z family languages OZ/TCOZ and the state-machine based modelling

techniques TA lie at each end of the spectrum of formal methods. Both of them are

state-of-the-art modelling techniques. OZ/TCOZ is good at specifying high-level

abstracted models for complex systems, while TA is good at designing low-level
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abstracted timed models with multiple clocks but with well-developed tool sup-

port. Thus, it is of great interest and importance to investigate the possible links

between OZ/TCOZ and TA so that they can be utilized coherently for building

and verifying models of complex real-time systems in the development process.

The objective of this thesis is to construct a unified framework for using OZ/TCOZ

and TA together for modelling and checking complex real-time systems in the

development process, so that:

• not only powerful mechanisms are available for specification, to capture var-

ious aspects of a system such as data structure, concurrency, and real-time

dynamic behaviors,

• but also tool support can be provided for design and verification either by

integrating existing tools or exploiting the particular languages combined.

To construct such a unified framework, we will present two alternative approaches,

i.e., a projection approach based on integrating existing notations and tools; and

an integration approach based on creating a new combined language with direct

tool support.

For the projection approach, we propose to use TCOZ for high-level requirement

specification and then project TCOZ models to TA models so that TA’s tool sup-

port UPPAAL can be reused for verification and analysis of the properties of TCOZ

models such as timing issues. In this framework, we investigate the strengths and

links between TCOZ and TA so that the two modelling techniques can benefit
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each other. This leads us to an interesting research result, i.e., timed composable

patterns (reminiscent of ‘design patterns’ in object-oriented modelling). These

timed composbale patterns not only provide a proficient interchange media for

projecting TCOZ specifications to TA designs for timing analysis, but also provide

a generic reusable framework for systematically developing real-time systems in

TA alone. Another important issue that needs to be addressed in language pro-

jection/translation is the consistency between the original TCOZ models and the

translated TA models. For this, we will provide a correctness proof to demon-

strate that our projection from TCOZ to Timed Automata is complete and sound.

One interesting question may arise from this part of our work: can we integrate

Object-Z and Timed Automata directly? In this way, not only the tool support

of TA can be reused straightaway, but also the timed composable patterns now

can be directly utilized for systematic TA designs. This motivate us to further our

research on an integration approach.

For the integration approach, we propose a new integrated modelling language

OZTA by combining Object-Z and Timed Automata. Besides its advantage of di-

rect tool support from TA over TCOZ, comparing to CSP/TCSP which provide

a fixed topology for communications, this new formalism OZTA is injected with a

novel concept of partial and sometime synchronization to capture various synchro-

nization scenarios. To achieve an effective combination of Object-Z and TA, the

following issues will be explored:

• how to semantically and syntactically link the key language constructs so
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that the two notations can be used in a cohesive way;

• how to clearly separate system functionality aspects from time control behav-

ior patterns, so that separate tools can later be applied to check the related

system properties;

• how to consistently unify the composition techniques from both Object-Z

(class instantiation) and TA (automaton product) so that subsystem models

can be easily and meaningfully composed;

• and how to systematically develop the communication mechanisms so that

various concurrent interactions between system components can be precisely

captured.

For this new integrated modelling technique OZTA, we also provide an operational

semantics model using the Unified Theory of Programming [40]. Based on the

semantic foundation, an interactive system HighSpec is developed to provide the

tool support for developing OZTA models, and the TA’s model-checker UPPAAL

is integrated with HighSpec for verification.

In summary, these two approaches, the projection approach and the integration

approach, represent two generic methods that can be adopted to take full advantage

of various reciprocal formalisms altogether to build and verify models of complex

systems.



1.2. OUTLINE OF THIS THESIS 7

1.2 Outline of This Thesis

The thesis is structured into 9 chapters. Chapter 2 covers the modelling languages

and techniques used throughout the thesis. Chapter 3 investigates the links be-

tween TCOZ and Timed Automata and defines a set of composable timed patterns.

Chapter 4 introduces the projection from TCOZ to Timed Automata. Chapter 5

demonstrates the projection using a railcar system. Chapter 6 proposes the new

integrated language OZTA. chapter 7 further enhances OZTA and gives the se-

mantic model for OZTA. Chapter 8 introduces an interactive system HighSpec

we developed for building and checking of OZTA models and demonstrates the use

of OZTA language and its tool support. Chapter 9 gives the conclusion of the

thesis and future works.

1.3 Publications from this Thesis

Most chapters of the thesis have been accepted in international refereed conference

proceedings or journals. Part of the work in Chapter 3, Chapter 4 and Chap-

ter 5 has been presented at International Journal on Software Engineering and

Knowledge Engineering [23] and the Sixth International Conference on Formal En-

gineering Methods ICFEM’04 (Nov 8-12, 2004, Seattle) [24], and a journal paper

has been submitted to IEEE Transactions on Software Engineering [44]. The work

in Chapter 6 has been presented at the 10th International Conference on Engi-

neering of Complex Computer Systems ICECCS’05 (June 2005, Shanghai) [22].
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The work in Chapter 7 has been presented at the Seventh International Confer-

ence on Formal Engineering Methods ICFEM’05 (1-4 November 2005, Manchester,

UK) [25]. Chapter 8 has been presented at 28th International Conference on Soft-

ware Engineering (ICSE’06), Research Demonstration (May 20-28, 2006. Shanghai,

China) [26]. I also made partial contributions to other publications [78, 21] which

are related to this thesis. They can be considered as side-stories to the impact of

this thesis work.



Chapter 2

OZ/TCOZ and Timed Automata

9
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In this chapter, we introduce the modelling techniques Object-Z, Timed Commu-

nicating Object-Z and Timed Automata.

2.1 Object-Z

Object-Z [66] is an extension of the Z [70] formal specification language to accom-

modate object orientation. The main reason for this extension is to improve the

clarity of large specifications through enhanced structuring.

The essential extension to Z given by Object-Z is the class construct which groups

the definition of a state schema and the definitions of its associated operations.

A class is a template for objects of that class: for each such object, its states

are instances of the state schema of the class and its individual state transitions

conform to individual operations of the class. An object is said to be an instance of

a class and to evolve according to the definitions of its class. Syntactically, a class

definition is a named box. In this box the constituents of the class are defined and

related. The main constituents are: a state schema, an initial state schema and

operation schemas. To illustrate Object-Z, we consider a simple message queue

system. The essential behaviors of this system is that it can receive a new message

or remove a message. The message queue has a FIFO property.
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Queue

items : seqMSG

# items ≤ max

Add
∆(items)
i? : MSG

items ′ = items a 〈i?〉

Init
items = 〈 〉
Del
∆(items)
i ! : MSG

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉

The first schema in the left column of the class is called a state schema; it has

an attribute items denoting a sequence of messages of the type MSG . The Init

schema describes the allowed initial values for the class attributes items . The

remaining two schemas are operation schemas which describe the possible state

change. The declaration parts of the operation schemas include a ∆- list of the

primary attribute items whose value may change. By convention, no ∆-list means

no attribute changes value. Note that ‘a’ means concatenation. For sequences s

and t , s a t is the concatenation of s and t . It contains the elements of s followed

by the elements of t .

Every operation schema implicitly includes the state schema in un-primed form

(the state before the operation) and primed form (the state after the operation).

Hence the class invariant holds at all times: in each possible initial state, and before

and after each operation. In this example, the operation Add adds a given input

item? to the end of the existing message sequence provided the sequence has not

already reached its maximum size (an identifier ending in ‘?’ denotes an input).

The operation Delete outputs a value item! defined as one element of items and
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reduces items by deleting the first one from the original queue (an identifier ending

in ‘!’ denotes an output).

The standard behavioral interpretation of Object-Z objects is as transition sys-

tems [65]. A behavior of a transition system consists of a series of state transitions

each effected by one of the class operations. A Queue object starts with items

empty then evolves by successively performing either Add or Delete operations.

Operations in Object-Z are atomic, only one may occur at each transition, and

there is no notion of time or duration. It is difficult to use the standard Object-

Z semantics to model the real-time dynamic behaviors of a system composed by

multi-threaded component objects whose operations have timing constraints.

2.2 Timed Communicating Sequential Process

Hoare’s CSP [39] is an event based notation primarily aimed at describing the

sequencing of behavior within a process and the synchronization of behavior (or

communication) between processes. Timed CSP extends CSP by introducing a

capability to quantify temporal aspects of sequencing and synchronization. Like

CSP, Timed CSP adopts a symmetric view of process and environment. Events

represent a cooperative synchronization between a process and its environment.

Both the process and the environment may control the behavior of the other by

enabling or refusing certain events and sequences of events.

The syntactic class of Timed CSP expressions is defined as follows:
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P ::= Stop | Skip | RunΣ

| e • t → P(t) | e t−→1 P

| P1 2 P2 | P1 u P2

| P1 |[ Σ ]|P2 | P1 ||| P2

| P1; P2 | P1 O P2 | P1 .{d} P2

| Wait[d ] | P1 O{d} P2 | µX • P(X )

RunΣ is a process always willing to engage any event in Σ. Stop denotes a process

that deadlocks and does nothing. A process that terminates immediately is writ-

ten as Skip. A process which may participate in event e then act according to the

process description P is written as e • t → P(t). The (optional) timing parameter

t records the time, relative to the start of the process, at which the event e occurs

and allows the subsequent behavior P to depend on its value. The process e
t−→1 P

delays the process P by t time units after engaging event e. The external choice

operator (2) allows choice of behaviors according to what events are requested by

the environment. Internal choice represents variation in behavior determined by

the internal state of the process. The parallel composition of processes P1 and P2,

synchronized on a common set of events Σ is written as P1 |[ Σ ]|P2. The sequential

composition of P1 and P2, written as P1; P2, acts as P1 until P1 terminates by com-

municating a distinguished event X and then proceeds to act as P2. The interrupt

process P1 O P2 behaves as P1 until the first occurrence of an event in P2, then the

control passes to P2. The timed interrupt process P1 O{d} P2 behaves similarly,

except that P1 is interrupted as soon as d time units have elapsed. A process

which allows no communications for a period of d time units, and then terminates
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is written as Wait[d ]. The timeout construct written as P1 .{d} P2 passes control

to an exception handler P2 if no event occurs in the primary process P1 by d time

units. Recursion is used to give finite representation of non-terminating processes.

The process expression µX • P(X ) describes processes which repeatedly act as

P(X ).

In general, Timed CSP is superior to Object-Z as a means of describing process

control. However, the behavior of a process at any point in time may be dependent

on its internal state and this may conceivably take an infinite range of values. It is

often not possible to provide a finite representation of a process without introducing

some notation for representing this internal state. The syntactic treatment of

internal state is complex and unwieldy, distracting strongly from the basically

elegant treatment of the delay and timeout issues. Timed CSP has yet no standard

support for state modelling in the form of mathematical toolkits and libraries,

nor are there modular techniques for constructing and reasoning about complex

internal state.

2.3 Timed Communicating Object-Z

Timed Communicating Object Z (TCOZ) [50] is essentially a blending of Object-Z

with Timed CSP, for the most part preserving them as proper sub-languages of

the blended notation. The essence of this blending is the identification of Object-Z

operation specification schemas with terminating CSP processes. Thus operation
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schemas and CSP processes occupy the same syntactic and semantic category; op-

eration schema expressions can appear wherever processes appear in CSP and CSP

process definitions can appear wherever operation definitions appear in Object-Z.

In this section we briefly consider various aspects of TCOZ. A detailed introduction

to TCOZ and its Timed CSP and Object-Z features may be found elsewhere [50].

The formal semantics of TCOZ (presented in Z) is also documented [51].

Timing and Channels

In TCOZ, all timing information is represented as real-valued measurements. TCOZ

adopts all Timed CSP timing operators, for instance, timeout and wait . In order

to describe the timing requirements of operations and sequences of operations, a

deadline command has been introduced. If OP is an operation specification (de-

fined through any combination of CSP process primitives and Object-Z operation

schemas) then OP • Deadline t describes the process which has the same effect

as OP , but is constrained to terminate no later than t (relative time). If it can-

not terminate by time t , it deadlocks. The WaitUntil operator is a dual to the

deadline operator. The process OP • WaitUntil t performs OP , but will not

terminate until at least time t . If it were to normally terminate before time t , it

idles. In this thesis, when the term TCOZ timing constructs is mentioned, it means

Timed CSP constructs with the extensions.

CSP channels are given an independent, first class role in TCOZ. In order to sup-

port the role of CSP channels, the state schema convention is extended to allow
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declaration of communication channels. Contrary to the conventions adopted for

internal state attributes, channels are viewed as shared (global) rather than as en-

capsulated entities. This is an essential consequence of their role as communication

interfaces between objects. The introduction of channels in TCOZ reduces the need

to reference other classes in class definitions, thereby enhancing the modularity of

system specifications.

Active Objects and Passive Objects

Active objects have their own thread of control, while passive objects are controlled

by other objects in a system. In TCOZ, an identifier Main (non-terminating

process) is used to determine the behavior of active objects of a given class. The

Main operation is optional in a class definition. It only appears in a class definition

when the objects of that class are active objects. Classes for defining passive objects

will not have the Main definition, but may contain CSP process constructors.

If ob1 and ob2 are active objects of the class C , then the independent parallel

composition of the two objects can be represented as ob1 ||| ob2, which means

ob1.Main ||| ob2.Main.

Semantics of TCOZ

The details of the blended state/event process model form the basis for the TCOZ

denotational semantics [51]. In brief, the semantic approach is to identify the

notions of operation and process by providing a process interpretation of the Z
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operation schema construct. TCOZ differs from many other approaches to blend-

ing Object-Z with a process algebra in that it does not identify operations with

events. Instead an unspecified, fine-grained, collection of state-update events is hy-

pothesized. Operation schemas are modelled by the collection of those sequences

of update events that achieve the state change described by the schema. This

means that there is no semantic difference between a Z operation schema and a

CSP process. It therefore makes sense to also identify their syntactic classes.

The process model used by TCOZ consists of sets of tuples consisting of: an initial

state; a trace (a sequence of time stamped events, including update-events), a

refusal (a record of what and when events are refused by the process), and a

divergence (a record of if and when the process diverged). The trace/refusal pair

is called a failure and the overall model the state/failures/divergences model. The

state of the process at any given time is the initial state updated by all of the

updates that have occurred up to that time. If an event trace terminates (that is if

a termination event X occurs), then the state at the time of termination is called

the final state.

The process model of an operation schema consists of all initial states and update

traces (terminated with a X) such that the initial state and the final state satisfy

the relation described by the schema. If no legal final state exists for a given initial

state, the operation diverges immediately. An advantage of this semantics is that

it allows CSP process refinement to agree with Z operation refinement.
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Network Topologies

The syntactic structure of the CSP synchronization operator is suitable for the case

of pipeline-like communication topologies. When expressing more complex commu-

nication topologies, it generally results in unacceptably complicated expressions.

In TCOZ, a graph-based approach is adopted to represent the network topology

[50]. For example, consider that processes A and B communicate privately through

the interface ab, processes A and C communicate privately through the interface

ac, and processes B and C communicate privately through the interface bc.

One CSP expression for such a network communication system is

(A[bc′/bc] |[ ab, ac ]| (B [ac ′/ac] |[ bc ]|C [ab ′/ab])
∖

ab, ac, bc)[ab, ac, bc/ab ′, ac ′, bc ′].

The hiding and renaming is necessary in order to cover cases such as C not being

able to communicate on channel ab.

The above expression not only suffers from syntactic clutter, but also serves to

obscure the inherently simple network topology. This network topology of A, B

and C may be described by

‖(A ab¾- B ; B bc¾- C ; C ca¾- A).

Other forms of stylized usage allow network connections with common nodes to be

run together, for example

‖(A ab¾- B bc¾- C ca¾- A),



2.3. TIMED COMMUNICATING OBJECT-Z 19

and multiple channels above the arrow, for example if processes D and F commu-

nicate privately through the channels df1 and df2, then

‖(D df1,df2¾ - F ).

A Timed Message Queue Example

The use of TCOZ is illustrated by the message queue example in section 2.1 tem-

pered with timed constraints, which can receive a new message through an input

channel ‘in’ within a time duration ‘Tj ’ or remove the first message in the queue

and send it through an output channel ‘out ’ within a time duration ‘Tl ’. If there is

no interaction with environment within a certain time ‘To ’, then the head message

will be removed from the current list.

As mentioned, TCOZ varies from Object-Z in the structure of class definitions,

which may include Timed CSP channel and process definitions.

TimedQueue

items : seqMSG
in, out : chan
Tl ,Tj ,To : N

Add
∆(items)
i? : MSG

items ′ = items a 〈i?〉

Init
items = 〈 〉
Del
∆(items)
i ! : MSG

items 6= 〈 〉 ⇒ items = 〈i !〉aitems ′

items = 〈 〉 ⇒ items ′ = 〈 〉

Join =̂ [i : MSG ] • in?i → Add • DeadlineTj

Leave =̂ [items 6= 〈 〉] • out !head(items) → Del • DeadlineTl

Main =̂ µQ • (Join 2 Leave) .{To} Del • DeadlineTl ; Q

The schema expressions are same as those in the Object-Z model, which capture
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the data structure and functionalities. Tl , Tj , To denote the time constants; and

in and out denote the communication channels. The dynamic behavior modelled

in TCOZ is expressed in the form of Timed CSP process definitions. Note that ‘=̂’

means ‘is defined as’. The Join operation specifies that after the parameter i has

been input on channel in, the state-calculation Add is performed, and this Add

operation is guarded by a Deadline expression, which constrains that the Add

operation shall be finished in Tj time units. The Leave operation specifies that if

the sequence items is not empty, it will output head(items), i.e., the first element

of items , through channel out and remove this element from items in Tl time units.

The behavior of this timed queue system is specified by the Main process which

defines a repeated timeout process. More information on the TCOZ notation can

be found in Appendix A.1.

Building on the strengths of the Object-Z and Timed CSP notations, TCOZ is

capable of modelling state, process and timing aspects of complex systems, thus

is well suited for presenting more complete and coherent requirement models for

real-time complex systems. However, one problem of existing formal methods,

especially for integrated formal methods like TCOZ, is that very few of them has

direct tool support. This is mainly because high-level specification languages such

as Object-Z/TCOZ usually contain various kinds of abstracted system information,

which makes the implementation of a verification tool from scratch difficult.
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2.4 Timed Automata

Timed Automata (TA) [4] are finite state machines with clocks. It was introduced

as a formal notation to model the behavior of real-time systems. Its definition

provides a general way to annotate state-transition graphs with timing constraints

using finitely many real-valued clock variables. Another interesting aspect is that

there exist model checking methods for temporal logics with quantitative temporal

operators which are directly applicable to TA. Thus a variety of tools such as

UPPAAL [48], KRONOS [16] etc., are available for specification and verification of

real-time systems modelled in TA. A timed automaton A is a tuple (S , Σ,C , I ,T ),

where

• S is a finite set of states.

• Σ is a set of actions/events.

• C is a finite set of clocks.

• I is a mapping that labels each state s in S with some clock constraint Φ(C ).

Φ(C )is a set of clock constraints which is defined by the following grammar:

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2

where x ∈ C , and c is a constant.

• T , a subset of S × S × Σ × 2C × Φ(C ), is the set of transitions. A switch

〈s , s ′, a, λ, δ〉 represents a transition from state s to state s ′ on input symbol

a. The set λ gives the clocks to be reset with this transition, and δ is a clock

constraint over C that specifies when the switch is enabled.
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s0 s1
x<=To

Del
x<=Tl

Add

x<=Tj

x:=0

in?
x:=0

out!
x:=0

x=To

x:=0

Figure 2.1: Timed Queue

As usual for automata, an initial or set of initial states can also be specified, as

well as terminal state(s). We also assume that the special event τ , denoting an

internal transition, is included in the events Σ. For example, the timed message

queue example can be designed as shown in Figure 2.1. The model has four states:

Add , Del , s0 and s1. The initial state s0 is denoted as a double circle. The control

is passed from s0 to state s1 by an internal transition on which a clock x is reset

to 0. Then the automaton waits for To time units to respond to the events from

its environment through channels in and out to add or delete a certain message. If

no event occurs during the To time units, the automaton will do the deletion and

then return to its initial state.

UPPAAL

UPPAAL [58] is a tool for modelling, simulation and verification of real-time sys-

tems, developed jointly by BRICS at Aalborg University and the Department of

Computer Systems at Uppsala University. The tool is appropriate for systems that
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can be modelled as a collection of non-deterministic processes with finite control

structure and real-valued clocks, communicating through channels or shared vari-

ables. It consists of three main parts: a system editor, a simulator and a model

checker. The system editor provides a graphical interface for the tool. Its output

is an XML representation of the timed automata. Typically, a system description

will consist of a set of instances of timed automata declared from the process tem-

plates, and of some global data, such as global clocks, variables, synchronization

channels.

The simulator is a validation tool which enables examination of possible dynamic

executions of a system. The model checker checks invariant and bounded liveness

properties by exploring the symbolic state space of a system, i.e., reachability

analysis in terms of symbolic states represented by constraints.

The model checking engine of UPPAAL is designed to check a subset of TCTL [5]

formulas for networks of timed automata. The formulas contain no nested quanti-

fiers and should be one of the following forms:

A[]φ Invariantly φ

E <> φ Possibly φ

A <> φ Always Eventually φ

E[]φ Potentially Always φ

φ → ψ Shorthand for A[ ](φ ⇒ A <> ψ)

where φ, ψ are local properties that can be checked locally on a state, i.e., Boolean
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expressions over predicates on the states and integer variables, and clock con-

straints.

In summary, as one of the most widely studied modelling languages for real-time

systems, Timed Automata has well developed tool support for model-checking such

as UPPAAL. However, one problem of TA is that it lacks of high-level composable

patterns to support systematic design for complex real-time systems. On the other

hand, TCOZ, built on the strengths of Object-Z and TCSP, has powerful compos-

able language constructs to directly capture common timing constraints. However

it has no tool support. In the next chapter, we will discuss how these modelling

languages can be linked together to complement each other.
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Composable TA patterns
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High-level real-time system requirements often need to state the system timing

constraints in terms of deadline, timeout , and waituntil commands which can be

regarded as common timing constraint patterns. For example, “task A must com-

plete within t time units” is a typical one (deadline). TCOZ was developed for

modelling the high-level real-time system requirements; it has the composable lan-

guage constructs that directly capture those common timing patterns. On the

other hand, if TA is used to capture real-time requirements, then one often needs

to manually cast those timing patterns into a set of clock variables with carefully

calculated clock constraints, which is a process that is very much closer to design

rather than specification. One interesting question is the following: can we build a

set of TA patterns that correspond to the TCOZ timing constructs? If such a set

of TA patterns can be formulated, then not only the transformation from TCOZ to

TA can be readily achieved, but also TA alone can be more applicable for capturing

high-level requirements if those TA patterns are utilized.

In this chapter, we introduce a set of composable Timed Automata patterns defined

based on TCOZ process constructs and discuss the use of these patterns.

3.1 Z definition of Timed Automata

Since the current published semantics of TCOZ [51] is specified in Z, we define a

set of composable TA patterns also in the same Z-meta notation. First of all, we
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give the definition of TA in Z as follows.

[State,Event ,Clock ]
T == {r : R | r >= 0}
Φ ::= ( <= )〈〈Clock × T〉〉 | ( >= )〈〈Clock × T〉〉 |

( < )〈〈Clock × T〉〉 | ( > )〈〈Clock × T〉〉 |
( ∧ )〈〈Φ× Φ〉〉 | true

Label =̂ Event × PClock × Φ
Transition =̂ State × Label × State

clk : Φ → PClock

∀ x : Clock ; t : T • clk(true) = ∅
clk(x <= t) = {x} ∧ clk(x >= t) = {x}
clk(x < t) = {x} ∧ clk(x > t) = {x}
∀ϕ1, ϕ2 : Φ • clk(ϕ1 ∧ ϕ2) = clk(ϕ1) ∪ clk(ϕ2)

STA

S : P State; i , e : State
Σ : PEvent
C : PClock
I : State 7→ Φ
T : PTransition

{i , e} ⊆ S ∧ dom I = S
∀ϕ : ran I • clk(ϕ) ⊆ C
∀ s , s ′ : State; l : Label • (s , l , s ′) ∈ T ⇒ {s , s ′} ⊆ S

∧ π1(l) ∈ Σ ∧ π2(l) ⊆ C

There are three basic types, i.e., State, Event and Clock ; T is a set of positive real

numbers; Φ defines the types of clock constraints, in which a true type is added

here to represent the empty set of clock constraints; Φ specifies a clock constraint;

the function clk(ϕ) returns the set of clocks used in ϕ; a timed automaton STA

is defined as a binding ( binding is a partial function from variables to values

), in which S models states; i and e respectively represent the initial state and

terminal state; σ is a set of events; C is a set of clock variables; I defines local

invariants which give a clock constraint to each state; and T models transitions;
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the second element of T , i.e., Label , models transition conditions, in which Event

is an enabling event, PClock represents the set of clocks reset on a transition.

To simplify the composition of automata, we define one initial/terminal state here

instead of a set of initial/terminal states for a timed automaton. In case there are

multiple initial/terminal states, we assume there is a unique initial/terminal state

which is connected to all initial/terminal states through an internal transition τ .

Note that the terminal state may be identical to the initial state, and in some cases

it may be unreachable, and thus omitted from a concrete automaton.

3.2 TA patterns

In the following, a set of TA patterns according to TCOZ constructs are defined

in Z together with their graphic presentations. In these graphical TA patterns,

an automaton A is abstracted as a triangle, the left vertex of this triangle or a

circle attached to the left vertex represents the initial state of A, and the right edge

represents the terminal state of A. Those timed patterns together with their formal

definitions can be readily understood. The timed composable patterns can be seen

as a reusable high-level library that may facilitate a systematic engineering process

when TA is used to design timed systems. Furthermore, these patterns provide an

interchange media for transforming TCOZ specifications into TA designs.
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seq : STA × STA → STA

∀A1,A2 : STA •
seq(A1,A2) = 〈|
S =̂ A1.S ∪ A2.S , i =̂ A1.i , e =̂ A2.e,
Σ =̂ A1.Σ ∪ A2.Σ,C =̂ A1.C ∪ A2.C , I =̂ A1.I ∪ A2.I ,
T =̂ A1.T ∪ A2.T ∪ {(A1.e, (τ,∅, true),A2.i)} |〉

A1 A2

D1. Sequential Composition

The sequential composition pattern: there are two timed automata A1, A2. By

linking the terminal state of A1 with the initial state of A2, the resulting automaton

passes control from A1 to A2 immediately when A1 goes to its terminal state.

deadline : STA × T→ STA

∀A : STA; t : T; ∃ x : Clock ; i0 : State | x 6∈ A.C ∧ i0 6∈ A.S •
deadline(A, t) = 〈|
S =̂ A.S ∪ {i0}, i =̂ i0, e =̂ A.e,
Σ =̂ A.Σ,C =̂ A.C ∪ {x},
I =̂ {s : A.S • (s , x <= t ∧ A.I (s))} ∪ {i0 7→ true},
T =̂ A.T ∪ {(i0, (τ, {x}, true),A.i)} |〉

x :=0

A

x<=t

D2. Deadline

The deadline pattern: there is a single fresh clock x . When the system switches to

the automaton A, the clock x gets reset to 0. The local invariant x <= t covers
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each state of the timed automaton A and specifies the requirement that a switch

must occur before t time units for every state of A. Thus the timing constraint

expressed by this automaton is that A should terminate no later than after t time

units.

waituntil : STA × T→ STA

∀A : STA; t : T; ∃ x : Clock ; i0, e0, s : State |
x 6∈ A.C ∧ {i0, s , e0} ∩ A.S = ∅ •

waituntil(A, t) = 〈|
S =̂ A.S ∪ {i0, s , e0}, i =̂ i0, e =̂ e0,
Σ =̂ A.Σ,C =̂ A.C ∪ {x},
I =̂ A.I ∪ {i0 7→ true, s 7→ true, e0 7→ true},
T =̂ A.T ∪ {(i0, (τ, {x}, true),A.i),

(A.e, (τ,∅, x >= t), e0), (A.e, (τ,∅, x <= t), s),
(s , (τ,∅, x = t), e0)} |〉

x=t

A
x:=0

s
x<=t

x>=t

D3. Waituntil

The waituntil timed pattern: the automaton is constrained to finish its process not

earlier than t time units. Two situations are captured here: if the process of A

finishes earlier than t time units, then the automaton idles until t time units and

if the process of A takes more than t time units, then the automaton terminates

as A terminates.
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timeout : STA × STA × T→ STA

∀A1,A2 : STA; t : T; ∃ x : Clock ; i0, e0 : State; ϕ : Φ | x 6∈ (A1.C ∪ A2.C )
∧ {i0, e0} ∩ (A1.S ∪ A2.S ) = ∅ ∧ ϕ = I (A1.i) • timeout(A1,A2, t) = 〈|

S =̂ A1.S ∪ A2.S ∪ {i0, e0}, i =̂ i0, e =̂ e0,
Σ =̂ A1.Σ ∪ A2.Σ,C =̂ A1.C ∪ A2.C ∪ {x},
I =̂ A1.I ∪ A2.I ∪ {i0 7→ true, e0 7→ true} ⊕ {A1.i 7→ x <= t ∧ ϕ},
T =̂ A1.T ∪ A2.T∪

{(i0, (τ, {x}, true),A1.i), (A1.i , (τ,∅, x = t),A2.i)}
∪{(A1.e, (τ,∅, true), e0), (A2.e, (τ,∅, true), e0)} |〉

x = t

A2

A1

x<=t
x :=0

D4. Timeout

The timeout pattern: there are two timed automata A1 and A2. If no transition

has been triggered for t time units in timed automaton A1, then A1 will timeout

and the control will be passed to A2.

recursion : STA × State → STA

∀A : STA; s0 : State | s0 ∈ A.S •
recursion(A, s0) = 〈|
S =̂ A.S , i =̂ A.i , e =̂ A.e,
Σ =̂ A.Σ,C =̂ A.C , I =̂ A.I ,
T =̂ A.T ∪ {s : State, l : Label | (s , l , s0) ∈ A.T • (s , l , i)}

−{s : State, l : Label | (s , l , s0) ∈ A.T • (s , l , s0)} |〉

�

D5. Recursion
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The recursion pattern: given a timed automaton A and a state s0, which is a fixed

point. The recursion is achieved by diverting all the transitions from pointing to

s0 to the initial state of A. The dotted arrow represents the transitions which are

originally pointing to s0. In the resultant automaton these transitions are replaced

by transitions which points to the initial state of A.

wait : T→ STA

∀ t : T; ∃ x : Clock ; i0,w0, e0 : State •
wait(t) = 〈| S =̂ {i0,w0, e0}, i =̂ i0, e =̂ e0,
I =̂ {i0 7→ true,w0 7→ true, e0 7→ true},
Σ =̂ ∅,C =̂ {x},
T =̂ {(i0, (τ, {x}, true),w0), (w0, (τ,∅, x = t), e0)} |〉

x :=0 x =t

D6. Wait

The wait pattern: Time idles at its second state for t time units then terminates.

tinterrupt : STA × STA × T→ STA

∀A1,A2 : STA; t : T; ∃ x : Clock ; i0, e0 : State |
x 6∈ A1.C ∪ A2.C ∧ i0 6∈ A1.S ∪ A2.S ∧ e0 6∈ A1.S ∪ A2.S •

tinterrupt(A1,A2, t) = 〈| S =̂ A1.S ∪ A2.S ∪ {i0, e0},
i =̂ i0, e =̂ e0, Σ =̂ A1.Σ ∪ A2.Σ,
C =̂ A1.C ∪ A2.C ∪ {x}, I =̂ A1.I ∪ A2.I ∪ {i0 7→ true, e0 7→ true},
T =̂ A1.T ∪ A2.T ∪ {(i0, (τ, {x}, true),A1.i)}

∪{s : A1.S • (s , (τ,∅, x = t),A2.i)}
∪{(A1.e, (τ,∅, true), e0), (A2.e, (τ,∅, true), e0)} |〉

x :=0
A1 A2

x = t

D7. Timed Interrupt
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The timed interrupted pattern: it is composed of two automata, A1 and A2, the

control will be passed from A1 to A2 immediately if A1 cannot finish its process

within t time units, that is, when the value of clock x increases to t, there will be

a transition to the initial state of A2 from any state of A1.

einterrupt : STA × STA × Event → STA

∀A1,A2 : STA; a : Event ; ∃ i0, e0 : State |
i0 6∈ A1.S ∪ A2.S ∧ e0 6∈ A1.S ∪ A2.S •

einterrupt(A1,A2, a) = 〈| S =̂ A1.S ∪ A2.S ∪ {i0, e0},
i =̂ i0, e =̂ e0, Σ =̂ A1.Σ ∪ A2.Σ ∪ {a},
C =̂ A1.C ∪ A2.C , I =̂ A1.I ∪ A2.I ∪ {i0 7→ true, e0 7→ true},
T =̂ A1.T ∪ A2.T ∪ {(i0, (τ,∅, true),A1.i)}

∪{s : A1.S • (s , (a,∅, true),A2.i)}
∪{(A1.e, (τ,∅, true), e0), (A2.e, (τ,∅, true), e0)} |〉

a
A1 A2

D8. Event Interrupt

The event interrupted pattern: it is composed of two automata, A1 and A2, the

control will be passed from A1 to A2 immediately when event a happens.

eprefix : Event × STA → STA

∀ a : Event ; A : STA; ∃ i0 : State | i0 6∈ A.S •
eprefix (a,A) = 〈| S =̂ A.S ∪ {i0}, i =̂ i0, e =̂ A.e,
Σ =̂ A.Σ ∪ {a},C =̂ A.C , I =̂ A.I ∪ {i0 7→ true},
T =̂ A.T ∪ {(i0, (a,∅, true),A.i)} |〉
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a

A

D9. Event Prefix

The event prefix pattern: if event a happens, then the control will be passed to A

immediately.

tprefix : Event × T× STA → STA

∀ a : Event ; A : STA; t : T; ∃ x , y : Clock ; i0, s0 : State |
t = x − y ∧ {x , y} ∩ A.C = ∅ ∧ {i0, s0} ∩ A.S = ∅ •

tprefix (a, t ,A) = 〈| S =̂ A.S ∪ {i0, s0}, i =̂ i0, e =̂ A.e, Σ =̂ A.Σ ∪ {a},
I =̂ A.I ∪ {i0 7→ true, s0 7→ true},C =̂ A.C ∪ {x , y},
T =̂ A.T [x − y/t ] ∪ {(i0, (τ, {x}, true), s0)} ∪ {(s0, (a, {y}, true),A.i)} |〉

x :=0

A[x-y/t]

  y := 0
a

D10. Timed Event Prefix

The timed event prefix pattern: there are two clocks, x is reset at the initial state,

y is reset when event a happens. The time difference of x and y records the time

point at which a happens and substitutes the variable t in the timed automaton

enabled by event a for further use.
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extchoice : STA × STA → STA

∀A1,A2 : STA; ∃ i0, e0 : State | {i0, e0} ∩ (A1.S ∪ A2.S ) = ∅ •
extchoice(A1,A2) = 〈| S =̂ A1.S ∪ A2.S ∪ {i0, e0} − {A1.i ,A2.i},
i =̂ i0, e =̂ e0,C =̂ A1.C ∪ A2.C ,
I =̂ A1.I ∪ A2.I ∪ {(i0, I (A1.i) ∧ I (A2.i))} − {(A1.i , I (A1.i)), (A2.i , I (A2.i))},
T =̂ A1.T ∪ A2.T ∪ {(A1.e, (τ,∅, true), e0), (A2.e, (τ,∅, true), e0)}

∪{l : Label , k : State | (A1.i , l , k) ∈ A1.T ∨ (A2.i , l , k) ∈ A2.T • (i0, l , k)}
∪{l : Label , k : State | (k , l ,A1.i) ∈ A1.T ∨ (k , l ,A2.i) ∈ A2.T • (k , l , i0)}
−{t : Transition | π1(t) = A1.i ∨ π1(t) = A2.i ∨ π3(t) = A1.i
∨ π3(t) = A2.i} |〉

A2

A1

D11. External Choice

The external choice pattern: timed automata A1 and A2 share a common initial

state and the environment has the choice to trigger one of them by different external

events.

intchoice : STA × STA → STA

∀A1,A2 : STA; ∃ i0, e0 : State | {i0, e0} ∩ (A1.S ∪ A2.S ) = ∅ •
intchoice(A1,A2) = 〈| S =̂ A1.S ∪ A2.S ∪ {i0, e0},
i =̂ i0, e =̂ e0, Σ =̂ A1.Σ ∪ A2.Σ,
C =̂ A1.C ∪ A2.C , I =̂ A1.I ∪ A2.I ∪ {i0 7→ true, e0 7→ true},
T =̂ A1.T ∪ A2.T ∪ {(i0, (τ,∅, true),A1.i), (i0, (τ,∅, true),A2.i),

(A1.e, (τ,∅, true), e0), (A2.e, (τ,∅, true), e0)} |〉

A1

A2

D12. Internal Choice
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The internal choice pattern: there are two timed automata A1 and A2 and an

initial state. The choice of which automaton to be triggered is decided by internal

events.

3.3 Generating New Patterns

New patterns can be composed from the existing ones. For example, the new timing

pattern PeriodicRepeat , which specifies “Task A is repeated every t0 time units pro-

vided that A is guaranteed to terminate before t0 time units”, can be composed by

three existing patterns - deadline, waituntil and recursion, as shown in Figure (a).

Assuming A is the automaton which performs the task A, clocks x and y are gener-

ated to respectively give the time constraints for the deadline and waituntil pattern.

The terminal state of the automaton A0 (A0 = waituntil(deadline(A, t0), t0) ), e0,

is the fix point for the recursion pattern, thus the transitions of A0 which were

originally pointing to e0 are diverted and point to the initial state of A0.

PeriodicRepeat : STA × T→ STA

∀A,A0 : STA; t0 : T; e0 : State | e0 = A0.e
∧ A0 = waituntil(deadline(A, t0), t0) •

PeriodicRepeat(A, t0) = recursion(A0, e0)

y=to

y=to

y>=to

io

eoy>=to

y<=t

y:=0
x<=to

o

A
x:=0

s

(a)

io

x:=0
A

x<=to

x=to

(b)
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The resultant automaton can be simplified as shown in Figure (b), in which any

consecutive initial, terminal and intermediate states linked with a τ transition label

are incorporated into one state to simplify the resultant automaton. To further

reduce the state space of the resultant timed automaton, clock y is removed by

reusing clock x. The two diverted transitions are merged into one transition since

they can only be enabled when the value of clock x equals t0.

PeriodicRepeat(A, t0) = 〈| S =̂ A.S ∪ {i0, e0}, i =̂ i0, e =̂ e0, Σ =̂ A.Σ,

C =̂ A.C ∪ {x}, I =̂ {s : A.S • (s , x <= t0 ∧ A.I (s))},

T =̂ {(i , (τ, {x}, true),A.i)} ∪ {A.e, (τ,∅, x = t0), i)} ∪ A.T |〉

3.4 Guidelines for TA Design Using Patterns

Many complex real-time systems can be naturally modelled as collections of small

processes lying in different layers of the systems, operating and interacting sequen-

tially or concurrently. Our generic TA patterns, in a way, provide a set of templates

to decompose a complex real-time system into different layers and smaller compo-

nents.

There are certain guidelines for the engineers to use these generic timed patterns

for systematic TA design:

• Decide the layers of the complex system. The abstracted triangle automaton

can be seen as an outside layer, which will be substituted by its inside layer.
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The TA model of a system can finally be generated in a top-down way by

continuously embodying its inside layers using appropriate patterns.

– For most reactive systems, usually the outmost layer of such systems

can be modelled by a recursion pattern.

– For systems which run one time only, a sequential pattern can be used

to model its outmost layer.

• Decompose the complex processes of one layer into smaller processes with

simpler behaviors. Those smaller processes mostly are composed together by

sequential composition or alternation.

– To describe a process which has different behaviors, usually the external choice

or the internal choice pattern should be applied.

– To capture a process which has exceptions, usually the timed interrupt

or the event interrupt patterns should be chosen.

– To specify requirement constraints, e.g., timing constraints, the deadline

and the waituntil pattern can be utilized.

– Sequential behaviors can be captured by utilizing the sequential compo-

sition pattern.

An Example: Timed Queue System

In the following, we will use the timed queue example in chapter 2.3 to demonstrate

how the timed patterns can be applied to facilitate TA designs in a systematic way.
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From its specification, four kinds of patterns in total can be identified in the timed

queue class, i.e., recursion, timed out , external choice and event prefix . Assume,

for any process P , that A(P) is the TA model of P . The timed queue automaton

can be generated step by step in a top-down way as follows:

step 1. The Main process is a re-

cursive process, say P , which stands

for (Join 2 Leave) .{To} Del •

DeadlineTl . According to the

recursion pattern, A(Main) can be

projected as shown in figure (a).

A(P)

(a)

step 2. Assume P1 stands for (Join 2

Leave) and P2 stands for Del •

DeadlineTl , then according to the

timeout pattern, A(Main) can be fur-

ther derived as shown in figure (b).

x=To
x<=To

A(P2)
A(P1)

x :=0

(b)

step 3. According to the

external choice pattern, A(P1)

can be derived as shown in the figure

(c), in which P3 represents the process

Join, and P4 represents the process

Leave.

A(P3)
A(P4)

x=To
x<=To

A(P2)

x :=0

(c)
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step 4. The processes Join and Leave

both match the timed event prefix pat-

tern and the deadline pattern. The

atomic operations Add and Del are

projected as states. Clocks x , y , z and

u are generated to give these opera-

tions the timing constraints. Now the

Main process has been translated into

an automaton as shown in figure (d).

x<=To Del

u<=Tl

Add

y<=Tj

Del

z<=Tl

x:=0 x=To u:=0

in? out!

y:=0 z:=0

(d)

step 5. The last step of this translation

is to simplify the resultant automaton.

Any two consecutive initial and termi-

nal states are merged into one state.

In order to reduce the state space of

the automaton, the clock y , z and u

are replaced by clock x after resetting

its value to 0.

x<= To

Add

x<=TjDel

x<=Tl

Del
x<=Tl

x=To
x:=0

in?
x:=0

x:=0

out!
x:=0

(e)

3.5 Discussion and Conclusion

The set of patterns we presented are defined according to TCOZ process constructs,

i.e., Timed CSP constructs with the extensions, thus preserves the expressiveness
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of Timed CSP in describing dynamic real-time behaviors. Moreover, these timed

composable patterns:

• not only provide a proficient interchange media for transforming TCOZ spec-

ifications into TA designs, which supports one possible engineering develop-

ment process: TCOZ for high-level requirement specifications, then TA for

design and timing analysis,

• but also provide a generic reusable framework for developing real-time sys-

tems in TA alone.

In the following chapters, this concept of timed patterns will be constantly applied

to facilitate building up the framework of modelling and checking of complex real-

time systems.





Chapter 4

Projection from TCOZ to TA

43
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4.1 Introduction

The specification of complex real-time systems requires powerful mechanisms for

modelling state, concurrency and real-time behavior as well as tool support for

verifying the established system models. Integrated formal modelling techniques

are well suited for presenting complete and coherent requirement models for com-

plex systems. Timed Communicating Object Z (TCOZ) is an integrated high-level

abstracted formal specification language for modelling both the state, process and

timing aspects of complex systems. However, the challenge is how to verify the

TCOZ models with tool support, and especially to analyze timing properties. CSP

has a good model checker FDR [60] but not Timed CSP1. Rather than develop a

tool for TCOZ from scratch, we believe a better approach is to reuse any existing

tools. The graph-based modelling technique, Timed Automata (TA) has well de-

veloped automatic tool support, e.g., UPPAAL [48], KRONOS [16], TEMPO [69],

RED [74] and Timed COSPAN [72].

In this chapter, we will define a set of rules for mapping TCOZ to Timed Au-

tomata based on the timed patterns presented in the previous chapter, and provide

a correctness proof for this transformation. The core of the transformation is per-

formed by analyzing the dynamic view of the TCOZ model, i.e., the timed process

associated with each class. A Java tool to automate the transformation process is

implemented and illustrated.

1To our knowledge, the only tool support for Timed CSP is the preliminary PVS encoding of

Timed CSP in Brooke’s PhD thesis [10].
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4.2 Mapping Rules

Since the timed composable patterns are defined according to TCOZ process con-

structs, the transformation rules are straightforward:

Definition 4.2.1 We define the mapping function A from TCOZ processes to TA

as follows.

• R1 : If P = Skip, then ∃ i0, e0 : State, so that A(P) = 〈| S =̂ {i0, e0}, i =̂

i0, e =̂ e0, I =̂ ∅,T =̂ {(i , (τ,∅, true), e)} |〉

• R2 : If P = Stop, then ∃ i0, e0 : State, so that A(P) = 〈| S =̂ {i0, e0}, i =̂

i0, e =̂ e0, I =̂ ∅,T =̂ ∅ |〉

• R3 : If P = a → P0, then A(P) = eprefix (a,A(P0))

• R4 : If P = a@t → P0, then A(P) = tprefix (a, t ,A(P0))

• R5 : If P = Wait t , then A(P) = wait(t)

• R6 : If P = P0 • WaitUntil t , then A(P) = waituntil(A(P0), t)

• R7 : If P = P0 • Deadline t , then A(P) = deadline(A(P0), t)

• R8 : If P = P1 ¤ {t}P2, then A(P) = timeout(A(P1),A(P2), t)

• R9 : If P = P1O{t}P2, then A(P) = tinterrupt(A(P1),A(P2), t)

• R10 : If P = P1Oa → P2, then A(P) = einterrupt(A(P1),A(P2), a)

• R11 : If P = µN • P(N ), then A(P) = recursion(A(P(N )),N )

• R12 : If P = P1; P2, then A(P) = seqcom(A(P1),A(P2))
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• R13 : If P = P1 u P2, then A(P) = intchoice(A(P1),A(P2))

• R14 : If P = P1 2 P2, then A(P) = extchoice(A(P1),A(P2))

• R15 : If P = P1 |[X ]| P2, then A(P) = A(P1) ‖ A(P2)

In these mapping rules, channels, events and guards in a TCOZ model are viewed

as triggers which cause the state transitions. They match the definition of actions

and timed constraints in Timed Automata, thus, they are directly projected as

transition conditions. Clock variables will be generated in the target automaton

to guard its transition if the process of TCOZ to be translated has any timing

constraints such as deadlines.

Consider the translation rule for the Deadline primitive. P0 • Deadline t de-

scribes the process which has the same effect as P0, but is constrained to terminate

no later than t . This process can be translated into timed automaton A(P) ac-

cording to the deadline pattern. The resultant automaton differs from A(P0) in

that its process time is limited to t time units, which is equivalent to the TCOZ

expression P0 • Deadline t . Other mapping rules can be explained in the same

way.

The above rules apply to all the TCOZ time primitives and its basic composition

of events, guards and processes, through which all the important dynamic informa-

tion about time constraints in a TCOZ specification can be completely translated

into Timed Automata. The following provides the transformation rules for TCOZ

class/objects:
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Every object in a TCOZ model is projected as a timed automaton. The Init

schema in TCOZ class is used to appoint one of those identified states to be an

initial state. It will not be projected as a new state because it does not trigger any

transition.

An operation schema in a TCOZ class, say Pop , is projected as a timed automaton

A(Pop). The projection rule is provided as follow,

• R0 : If P = Pop , then ∃ i0, op, e0 : State, so that A(Pop) = 〈| S =̂ {i0, op, e0}, i =̂

i0, e =̂ e0, I =̂ ∅,T =̂ {(i0, (τ,∅, true), op), (op, (eop ,∅, true), e0)} |〉

Where eop represents the data change event.

Note that by using the term ”projection”, we mean only a subset (i.e., the TCSP

process part) of TCOZ has been translated into TA. Namely, we mainly focus on

how to reuse TA’s tool-support to verify and analyze the timing behaviors of TCOZ

models, i.e., how to formally translate the process part (i.e. TCSP part) of a TCOZ

model into a TA model. Some constructs of TCOZ that cannot be mapped onto

any concept of Timed Automata, such as predicate expressions, containment and

etc. These are more relevant with the OZ part of TCOZ and are not considered in

the projection not only because they are beyond of the expressiveness of TA (other

Z tools i.e., Z/Eve tool can be used to check those properties), but also because they

can often be separated out from the timing analysis, and of little relevance with

the model-checking issues, thus are abstracted away here in our transformation.
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4.3 Correctness

This section is devoted to the soundness proof for our mapping rules from TCOZ

processes to Timed Automata.

Firstly two labelled transition systems (LTSs) are developed to represent the oper-

ational semantic models for TCOZ processes and Timed Automata. To show the

soundness of the mapping rules, we prove that any source process in TCOZ and

its corresponding target Timed Automaton preserve the same semantics under a

bisimulation equivalence relation between the two LTSs.

The operational semantics for TCOZ processes is captured by the labelled transi-

tion system

TS1
TCOZ =̂ (C, Στ ∪ T, −→1)

Note that

C =̂ P×T is the set of possible configurations, where P is the set of processes, and

T is the time domain. A configuration c = 〈P , t〉 comprising process P and time t

denotes a state in the transition system.

Στ is the set of possible communication events including the silent event τ .

−→1 ⊆ (C × Στ ∪ T × C) is the set of possible transitions.

A complete set of transition rules for TCOZ processes are provided in the following.

Note that most of these rules can be referred in Schneider’s book [63] except some
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new constructs introduced into TCOZ later such as Deadline and WaitUntil.

r1 : 〈Skip, t〉 τ−→1 〈ε, t〉

r2 : 〈Stop, t〉 δ−→1 〈Stop, t + δ〉

r3 : 〈a → P , t〉 a−→1 〈P , t〉

r4a : 〈a@u → P , t〉 δ−→1 〈a@u → P [u + δ/u], t + δ〉

r4b : 〈a@u → P , t〉 a−→1 〈P [0/u], t〉

r5a : 〈Wait t0, t〉 δ−→1 〈Wait(t0 − δ), t + δ〉, δ < t0

r5b : 〈Wait t0, t〉 t0−→1 〈ε, t + t0〉

r6a : 〈P ,t〉 a−→1〈P ′,t〉
〈P•Deadline t0,t〉 a−→1〈P ′•Deadline t0,t〉

r6b : 〈P ,t〉 δ−→1〈P ′,t ′〉, δ<t0

〈P•Deadline t0,t〉 δ−→1〈P ′•Deadline(t0−δ),t ′〉

r7a : 〈P ,t〉 a−→1〈P ′,t〉
〈P•WaitUntil t0,t〉 a−→1〈P ′•WaitUntil t0,t〉

r7b : 〈P ,t〉 δ−→1〈P ′,t ′〉, δ<t0

〈P•WaitUntil t0,t〉 δ−→1〈P ′•WaitUntil(t0−δ),t ′〉

r7c : 〈P ,t〉 δ−→1〈P ′,t ′〉, δ>t0

〈P•WaitUntil t0,t〉 δ−→1〈P ′,t ′〉

r8a : 〈P ,t〉 a−→1〈P ′,t〉
〈P ; Q ,t〉 a−→1〈P ′; Q ,t〉

r8b : 〈P ,t〉 a−→1〈ε,t〉
〈P ; Q ,t〉 a−→1〈Q ,t〉

r8c : 〈P ,t〉 δ−→1〈P ′,t ′〉
〈P ; Q ,t〉 δ−→1〈P ′; Q),t ′〉

r9a : 〈P ,t〉 a−→1〈P ′,t〉
〈P2Q ,t〉 a−→1〈P ′,t〉
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r9b : 〈Q ,t〉 a−→1〈Q ′,t〉
〈P2Q ,t〉 a−→1〈Q ′,t〉

r9c : 〈P ,t〉 δ−→1〈P ′,t ′〉 〈Q ,t〉 δ−→1〈Q ′,t ′〉
〈P2Q ,t〉 δ−→1〈P ′2Q ′),t ′〉

r10a : 〈P ,t〉 τ−→1〈P ,t〉,t=0

〈PuQ ,t〉 τ−→1〈P ,t〉

r10b : 〈Q ,t〉 τ−→1〈Q ,t〉,t=0

〈PuQ ,t〉 τ−→1〈Q ,t〉

r10c :
〈PuQ ,t〉 δ=0−→1〈PuQ ,t〉

r11a : 〈P ,t〉 a−→1〈P ′,t〉
〈P¤{t0}Q ,t〉 a−→1〈P ′,t〉

r11b : 〈P ,t〉 δ−→1〈P ′,t ′〉,δ<=t0

〈P¤{t0}Q ,t〉 a−→1〈P ′¤{t0−δ}Q ,t ′〉

r11c : 〈P ,t〉 δ−→1〈P ′,t ′〉,δ=t0

〈P¤{t0}Q ,t〉 δ−→1〈Q ,t ′〉

r12a : 〈P ,t〉 a−→1〈P ′,t〉,a 6=b

〈POb→Q ,t〉 a−→1〈P ′Ob→Q ,t〉

r12b : 〈Q ,t〉 a−→1〈Q ′,t〉,a=b

〈POb→Q ,t〉 a−→1〈Q ,t〉

r12c : 〈P ,t〉 δ−→1〈P ′,t ′〉
〈POb→Q ,t〉 δ−→1〈P ′Ob→Q ,t ′〉

r13a : 〈P ,t〉 a−→1〈P ′,t〉
〈PO{t0}Q ,t〉 a−→1〈P ′O{t0}Q ,t〉

r13b : 〈P ,t〉 δ−→1〈P ′,t ′〉,δ<=t0

〈PO{t0}Q ,t〉 δ−→1〈P ′O{t0−δ}Q ,t ′〉

r13c : 〈P ,t〉 δ−→1〈P ′,t ′〉,δ=t0

〈PO{t0}Q ,t〉 δ−→1〈Q ,t ′〉

r14 : 〈µX•P ,t〉 τ−→1〈P [(µX•P)/X ],t〉

r15a : 〈P ,t〉 a−→1〈P ′,t〉,a 6∈X

〈P |[X ]|Q ,t〉 a−→1〈P ′|[X ]|Q ,t〉

r15b : 〈Q ,t〉 a−→1〈Q ′,t〉,a 6∈X

〈P |[X ]|Q ,t〉 a−→1〈P |[X ]|Q ′,t〉
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r15c : 〈P ,t〉 a−→1〈P ′,t〉 〈Q ,t〉 a−→1〈Q ′,t〉,a∈X

〈P |[X ]|Q ,t〉 a−→1〈P ′|[X ]|Q ′,t〉

r15d : 〈P ,t〉 δ−→1〈P ′,t ′〉 〈Q ,t〉 δ−→1〈Q ′,t ′〉
〈P |[X ]|Q ,t〉 δ−→1〈P ′|[X ]|Q ′,t ′〉

In order to derive observable behaviors of TCOZ processes, internal actions in the

above LTS are abstracted away by introducing a new LTS as follows.

TS 2
TCOZ =̂ (C, Σ ∪ T, =⇒1)

Note that the set of configurations remains the same as that in TS 1
TCOZ, but the

transition relation abstracts away from internal actions. That is, for any states

c, c ′,

c
a

=⇒1 c ′ =̂ ∃ c1, c2 · c
τ

−→∗
1 c1

a−→1 c2

τ

−→∗
1 c ′

c
δ

=⇒1 c ′ =̂ ∃ c1, c2 · c
τ

−→∗
1 c1

δ−→1 c2

τ

−→∗
1 c ′

where the relation
τ

−→∗
1 is the sequential composition of a finite number of

τ−→1.

Now we construct an abstract transition system for our target formalism, Timed

Automata. Note that a “normal” transition system associated with timed automata

([4, 15]) can be

TS1
TA =̂ (S, s0, Σ

τ ∪ T,−→2)

where S =̂ S × V denotes all possible states of the transition system. Note that

each state is composed of a state of the timed automaton and a clock valuation

(interpretation). The initial state s0 = 〈i , v0〉 comprises the initial state i and a

zero valuation v0.
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−→2 ⊆ S × (Στ ∪ T)× S comprises all possible transitions of the following two

kinds:

• a time passing move 〈s , v〉 δ−→2 〈s , v + δ〉.

• an action execution 〈s , v〉 a−→2 〈s ′, v ′〉. It can only be performed when (1)

the transition of the timed automaton s
a; X ; ϕ−→ s ′ can be performed. (1) can

only be performed when (2) and (3) holds. That includes:

(2) the clock interpretation meets the guard. That is, v |= ϕ.

(3) the new clock valuation satisfies:

v ′(x ) = 0 for all x ∈ X ;

v ′(x ) = v(x ), for all x 6∈ X .

Based on the transition system TS1
TA, a new transition system with more abstract

transitions is defined as follows.

TS2
TA =̂ (S, s0, Σ ∪ T, =⇒2)

The only difference from TS1
TA lies in the new transition relation =⇒2⊆ S × (Σ ∪

T)×S, which abstracts away from all internal (τ) actions. That is, for states s , s ′,

s
a

=⇒2 s ′ =̂ ∃ s1, s2 · s
τ

−→∗
2 s1

a−→2 s2

τ

−→∗
2 s ′

s
δ

=⇒2 s ′ =̂ ∃ s1, s2 · s
τ

−→∗
2 s1

δ−→2 s2

τ

−→∗
2 s ′

Note that the transition relation
τ

−→∗
2 is the sequential composition of at most a

finite number of τ -transitions
τ−→2.
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With the above preparation, a bisimular (homomorphic) relation between TS2
TCOZ

and TS2
TA is readily defined.

Definition 4.3.1 (Bisimulation)

The relation ≈⊆ C × S is defined between states of TS2
TCOZ and states of TS2

TA.

That is, for any c ∈ C and s ∈ S, c ≈ s if and only if the following conditions hold:

• c
α

=⇒1 c ′ implies there exists s ′ such that s
α

=⇒2 s ′, and c ′ ≈ s ′;

• s
α

=⇒2 s ′ implies there exists c ′ such that c
α

=⇒1 c ′, and c ′ ≈ s ′.

The following theorem shows that our mapping rules preserve the bisimulation

relation between the source and target transition systems. Since the two transi-

tion systems employ the same set of observable actions (events), the theorem thus

demonstrates that each source TCOZ process and its corresponding target timed

automaton are semantically equivalent.

Theorem 4.3.2 (Correctness)

For any TCOZ process P and its corresponding timed automaton A(P), 〈P , t〉 ≈

〈i , v0〉 for some t , where i is the initial state of A(P), v0 is the zero valuation.

Proof The correctness is proved by structural induction. Given P is a TCOZ

process and A(P) is its translated timed automaton (please refer to chapter 3 for

the definitions (D1 - D12) of all the translated timed automata for the proof of

R0−R15), here we will demonstrate that P ≈ A(P).



4.3. CORRECTNESS 54

• Skip ≈ A(Skip). Proof is trivial as the only transition allowed by both is a

τ transitions.

• Stop ≈ A(Stop). Proof is trivial as the only transitions allowed by both

are δ transitions.

• Pop ≈ A(Pop). Let Pop be an operation schema. Pop may take a δ transition

and the process expression remains unchanged or take an eop transition and

then behave as Skip. A(Pop) may take a δ transition and remain at the

initial state or an eop transition and then remain at the final state where only

δ transitions are allowed. Therefore, Pop ≈ A(Pop).

• Wait t0 ≈ wait(t0). The process Wait t0 can perform a time passing move

(δ). By definition [D6], the automaton wait(t0) can also advance a corre-

sponding δ-step.

If δ < t0, 〈P , t〉 moves to 〈Wait(t0−δ), t +δ〉, while 〈i , v0〉 moves to 〈w0, v0 +

δ〉. By hypothesis, we know 〈Wait(t0 − δ), t + δ〉 ≈ 〈w0, v0 + δ〉.

If δ = t0, both 〈P , t〉 and 〈i , v0〉 move to their terminal states and preserve

the bisimulation as well.

• P = P1 2 P2. The target automaton is extchoice(A(P1),A(P2)). Assume

Pj ≈ A(Pj ) (j=1,2).

The process P may perform a communication event a or a time passing move

δ. By rule [r9a, r9b], we know that 〈P , t〉 a
=⇒1 〈P ′

j , t〉. By hypothesis, we

know 〈i(A(Pj )), v0〉 a
=⇒2 〈i(A(P ′

j )), v0〉, and 〈P ′
j , t〉 ≈ 〈i(A(P ′

j )), v0〉. By def-

inition [D12], we know 〈i , v0〉 = 〈i(A(Pj )), v0〉, thus 〈i , v0〉 a
=⇒2 〈i(A(P ′

j )), v0〉.
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This yields 〈P ′, t〉 ≈ 〈i(A(P ′
j )), v0〉.

By rule [r9c], we know that 〈P1, t〉 δ
=⇒1 〈P ′

1, t + δ〉, 〈P2, t〉 δ
=⇒1 〈P ′

2, t + δ〉,

where P ′ = P ′
1 2 P ′

2. By hypothesis, 〈i(A(P1)), v0〉 δ
=⇒2 〈i(A(P1)), v0 + δ〉

and 〈P ′
1, t +δ〉 ≈ 〈i(A(P1)), v0 +δ〉; 〈i(A(P2)), v0〉 δ

=⇒2 〈i(A(P2)), v0 +δ〉 and

〈P ′
2, t + δ〉 ≈ 〈i(A(P2)), v0 + δ〉. By definition [D12], we know 〈i(A(P1)), v0 +

δ〉 = 〈i(A(P2)), v0+δ〉 = 〈i(A(P)), v0+δ〉, thus 〈i(A(P)), v0〉 δ
=⇒2 〈i(A(P)), v0+

δ〉. This yields 〈P ′, t + δ〉 ≈ 〈i(A(P)), v0 + δ〉. Therefore, the automaton

extchoice(A(P1),A(P2)) simulates P1 2 P2.

Similarly, we can prove the process P1 2 P2 simulates the translated automa-

ton. The automaton extchoice(A(P1),A(P2)) may perform a communication

event a or a time passing move δ. If 〈i(A(P)), v0〉 a
=⇒2 〈i(A(P ′)), v0〉, by

definition [D12], we know 〈i(A(P ′)), v0〉 = 〈i(A(P ′
j )), v0〉. By hypothesis, we

know 〈Pj , t〉 a
=⇒1 〈P ′

j , t〉 and 〈P ′
j , t〉 ≈ 〈i(A(P ′

j )), v0〉. By rule [r9a, r9b], we

know 〈P , t〉 a
=⇒1 〈P ′, t〉 and 〈P ′, t〉 = 〈P ′

j , t〉, thus 〈P ′, t〉 ≈ 〈i(A(P ′
j )), v0〉.

This yields 〈i(A(P ′)), v0〉 ≈ 〈P ′
j , t〉.

If 〈i(A(P)), v0〉 δ
=⇒2 〈i(A(P)), v0+δ〉, by definition [D12], we know 〈i(A(P)), v0+

δ〉 = 〈i(A(Pj )), v0 + δ〉. By hypothesis, we know 〈Pj , t〉 δ
=⇒1 〈P ′

j , t + δ〉 and

〈P ′
j , t+δ〉 ≈ 〈i(A(Pj )), v0+δ〉. By rule [r9c], we know if 〈P , t〉 δ

=⇒1 〈P ′, t+δ〉,

then 〈Pj , t〉 δ
=⇒1 〈P ′

j , t + δ〉, thus i(A(Pj )), v0 + δ〉 ≈ 〈P ′, t + δ〉. This yields

i(A(P)), v0 + δ〉 ≈ 〈P ′, t + δ〉.

Therefore, P1 2 P2 ≈ extchoice(A(P1),A(P2))

• P = P1 u P2. The target automaton is intchoice(A(P1),A(P2)).
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If 〈P , t〉 τ
=⇒1 〈P ′, t〉, from the operational rules of TCOZ processes [r10a,

r10b], we know that 〈Pj , t〉 τ
=⇒1 〈Pj , t〉, where P ′ = Pj (j = 1, 2). By

hypothesis, 〈i(A(Pj )), v0〉 τ
=⇒2 〈i(A(Pj )), v0〉, and 〈Pj , t〉 ≈ 〈i(A(Pj )), v0〉.

This yields 〈P ′, t〉 ≈ 〈i(A(Pj )), v0〉, while 〈i(A(P)), v0〉 τ
=⇒2 〈i(A(Pj )), v0〉 is

straightforward.

〈P ′, t〉 ≈ 〈i(A(P ′)), v0〉 is straightforward when 〈P , t〉 δ
=⇒1 〈P ′, t〉 and δ = 0.

• P = a → P0. The target automaton is tprefix(a,A(P0)). The process P

performs a communication event a then perform P0.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, where P ′ = P0, while 〈i , v0〉 a

=⇒2 〈i(A(P0)), v0〉. By

hypothesis, we know 〈P ′, t〉 ≈ 〈i(A(P0)), v0〉.

• P = a@u → P0. The target automaton is tprefix(a, u,A(P0)). The process

P may perform a communication event a or a time passing move δ.

If 〈P , t〉 δ
=⇒1 〈P ′, t + δ〉, where P ′ = a@u → P [u + δ/u], while 〈i , v0〉 moves

to 〈s0, v0 + δ〉. By hypothesis, we know 〈P ′, t + δ〉 ≈ 〈s0, v0 + δ〉.

If 〈P0, t〉 a
=⇒1 〈P ′

0, t+δ〉, where P ′ = P [0/u], while 〈i , v0〉 moves to 〈s0, v0+δ〉

and immediately moves to〈i(A(P0)), v0〉. Because 〈i , v0〉 moves to 〈s0, v0 + δ〉

with an internal events τ , thus now 〈s0, v0 +δ〉 can be abstracted away in this

automaton. By hypothesis, we know 〈P ′, t + δ〉 ≈ 〈i(A(P0)), v0〉.

• P = P0 • Deadline t0. The target automaton is deadline(A(P0), t0). The

process P may perform a communication event a or a time passing move δ.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rule of TCOZ processes [r6a], we

know that 〈P0, t〉 a
=⇒1 〈P ′

0, t〉, and P ′ = P ′
0 • Deadline t . By hypothesis,
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〈i(A(P0)), v0〉 a
=⇒2 〈i(A(P ′

0)), v0〉, and 〈P ′
0, t〉 ≈ 〈i(A(P ′

0)), v0〉. This yields

〈P ′, t〉 ≈ 〈i(A(P ′)), v0〉, while 〈i , v0〉 a
=⇒2 〈i(A(P ′)), v0〉 is straightforward.

If 〈P , t〉 δ
=⇒1 〈P ′, t + δ〉, where P ′ = P ′

0 • Deadline(t0− δ), from the opera-

tional rule of TCOZ processes [r6b], we know that 〈P0, t〉 δ
=⇒1 〈P ′

0, t+δ〉. By

hypothesis, 〈i(A(P0)), v0〉 δ
=⇒2 〈i(A(P ′

0)), v1〉 and 〈P ′
0, t+δ〉 ≈ 〈i(A(P ′

0)), v1〉,

where v1 = v0 + δ. By a simple displacement of the specific clock x with

x + δ, we obtain 〈i , v0〉 δ
=⇒2 〈i(A(P ′)), v ′1〉, where v ′1 = v1 ⊕ {x 7→ 0}, and

〈P ′, t + δ〉 ≈ 〈i(A(P ′)), v ′1〉.

• P = P0 • WaitUntil t0. The target automaton is waituntil(A(P0), t0). The

process P may perform a communication event a or a time passing move δ.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rule of TCOZ processes [r7a], it

is easy to know that 〈P0, t〉 a
=⇒1 〈P ′

0, t〉, and P ′ = P ′
0 • WaitUntil t . By

hypothesis, 〈i(A(P0)), v0〉 a
=⇒2 〈i(A(P ′

0)), v0〉, and 〈P ′
0, t〉 ≈ 〈i(A(P ′

0)), v0〉.

This yields 〈P ′, t〉 ≈ 〈i(A(P ′)), v0〉, while 〈i , v0〉 a
=⇒2 〈i(A(P ′)), v0〉 is straight-

forward.

If δ < t0 and 〈P , t〉 δ
=⇒1 〈P ′, t + δ〉, where P ′ = P ′

0 • WaitUntil(t0 − δ),

from the operational rule of TCOZ processes [r7b], we know that 〈P0, t〉 δ
=⇒1

〈P ′
0, t+δ〉. By hypothesis, 〈i(A(P0)), v0〉 δ

=⇒2 〈i(A(P ′
0)), v1〉 and 〈P ′

0, t+δ〉 ≈

〈i(A(P ′
0)), v1〉, where v1 = v0 + δ. By a simple displacement of the specific

clock x with x +δ, we obtain 〈i , v0〉 δ
=⇒2 〈i(A(P ′)), v ′1〉, where v ′1 = v1⊕{x 7→

0}, and 〈P ′, t + δ〉 ≈ 〈i(A(P ′)), v ′1〉.

If δ >= t0 and 〈P , t〉 δ
=⇒1 〈P ′, t+δ〉, where P ′ = P ′

0, from the operational rule
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of TCOZ processes [r7c], we know that 〈P0, t〉 δ
=⇒1 〈P ′

0, t+δ〉. By hypothesis,

〈P ′
0, t + δ〉 ≈ 〈i(A(P ′

0)), v0 + δ〉, This yields 〈P ′, t + δ〉 ≈ 〈P ′
0, t + δ〉 ≈

〈i(A(P ′)), v0 + δ〉, while 〈i , v0〉 δ
=⇒2 〈i(A(P ′)), v0 + δ〉 is straightforward.

• P = P1; P2. The target automaton is seq(A(P1),A(P2)). The process P

may perform a communication event a or a time passing move δ.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rules of TCOZ processes [r8a,

r8b], we know that 〈P1, t〉 a
=⇒1 〈P ′

1, t〉; or 〈P1, t〉 a
=⇒1 〈ε, t〉.

If 〈P1, t〉 a
=⇒1 〈P ′

1, t〉, where P ′ = P ′
1; P2. By hypothesis, 〈i(A(P1)), v0〉 a

=⇒2

〈s0, v0〉, and 〈P ′
1, t〉 ≈ 〈s0, v0〉. This yields 〈P ′, t〉 ≈ 〈s0, v0〉, while 〈i , v0〉 a

=⇒2

〈s0, v0〉 is straightforward.

If 〈P1, t〉 a
=⇒1 〈ε, t〉, where P ′ = P2. By hypothesis, 〈i(A(P1)), v0〉 a

=⇒2

〈e(A(P1)), v0〉, and 〈P ′
1, t〉 ≈ 〈e(A(P1)), v0〉. According to the sequential

composition pattern, 〈e(A(P)), v0〉 τ
=⇒2 〈i(A(P2)), v0〉. This yields 〈P ′, t〉 ≈

〈e(A(P)), v0〉 ≈ 〈i(A(P2)), v0〉, while 〈i , v0〉 a
=⇒2 〈i(A(P2)), v0〉 is straight-

forward.

If 〈P , t〉 δ
=⇒1 〈P ′, t + δ〉, from the operational rule of TCOZ processes [r8c],

we know that 〈P1, t〉 δ
=⇒1 〈P ′

1, t + δ〉, where P ′ = P ′
1; P2. By hypothesis,

〈i(A(P1)), v0〉 δ
=⇒2 〈i(A(P1)), v0+δ〉 and 〈P ′

1, t+δ〉 ≈ 〈i(A(P1)), v0+δ〉. This

yields 〈P ′, t+δ〉 ≈ 〈i(A(P)), v0+δ〉, while 〈i(A(P)), v0〉 δ
=⇒2 〈i(A(P)), v0+δ〉

is straightforward.

• P = P1 ¤ {t0}P2. The target automaton is timeout(A(P1),A(P2), t0). The

process P may perform a communication event a or a time passing move δ.
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If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rule of TCOZ processes [r11a], we

know that 〈P1, t〉 a
=⇒1 〈P ′

1, t〉, where P ′ = P ′
1. By hypothesis, 〈i(A(P1)), v0〉 a

=⇒2

〈s0, v0〉, and 〈P ′
1, t〉 ≈ 〈s0, v0〉. This yields 〈P ′, t〉 ≈ 〈s0, v0〉, while 〈i , v0〉 a

=⇒2

〈s0, v0〉 is straightforward.

If 〈P , t〉 δ
=⇒1 〈P ′, t +δ〉, from the operational rules of TCOZ processes [r11b,

r11c], we know that 〈P1, t〉 δ
=⇒1 〈P ′

1, t + δ〉. If δ <= t0, we know P ′ =

P ′
1 ¤ {t0 − δ}P2. By hypothesis, 〈i(A(P1)), v0〉 δ

=⇒2 〈i(A(P1)), v0 + δ〉 and

〈P ′
1, t+δ〉 ≈ 〈i(A(P1)), v0+δ〉. According to the timeout pattern, 〈i , v0+δ〉 ≈

〈i(A(P1)), v0 + δ〉. This yields 〈P ′, t + δ〉 ≈ 〈i , v0 + δ〉 while 〈i , v0〉 δ
=⇒2

〈i , v0 + δ〉 is straightforward. If δ = t0, then P ′ = P2. According to the

timeout pattern, we know 〈i , v0〉 ≈ 〈i(A(P1)), v0〉 and 〈i(A(P1)), v0〉 δ
=⇒2

〈i(A(P2)), v0+δ〉. This yields 〈P ′, t+δ〉 ≈ 〈i(A(P2)), v0+δ〉 while 〈i , v0〉 δ
=⇒2

〈i(A(P2)), v0 + δ〉 is straightforward.

• P = P1Ob → P2. The target automaton is einterrupt(A(P1),A(P2), b). The

process P may perform a communication event a or a time passing move δ.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rules of TCOZ processes [r12a,

r12b], we know that 〈P1, t〉 a
=⇒1 〈P ′

1, t〉, If {a} 6= {b}, we know P ′ =

P ′
1Ob → P2, By hypothesis, 〈i(A(P1)), v0〉 a

=⇒2 〈s0, v0〉, and 〈P ′
1, t〉 ≈ 〈s0, v0〉.

This yields 〈P ′, t〉 ≈ 〈s0, v0〉, while 〈i , v0〉 a
=⇒2 〈s0, v0〉 is straightforward. If

{a} = {b}, then P ′ = P2. According to the event interrupt pattern, we know

〈i , v0〉 ≈ 〈i(A(P1)), v0〉 and 〈i(A(P1)), v0〉 a
=⇒2 〈i(A(P2)), v0〉. This yields

〈P ′, t〉 ≈ 〈s0, v0〉, while 〈i , v0〉 a
=⇒2 〈s0, v0〉 is straightforward.
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If 〈P , t〉 δ
=⇒1 〈P ′, t +δ〉, from the operational rule of TCOZ processes [r12c],

we know that 〈P1, t〉 δ
=⇒1 〈P ′

1, t + δ〉. we know P ′ = P ′
1Ob → P2, By

hypothesis, 〈i(A(P1)), v0〉 δ
=⇒2 〈i(A(P1)), v0 + δ〉 and according to the event

interrupt pattern, 〈i , v0〉 ≈ 〈i(A(P1)), v0〉. This yields 〈P ′, t + δ〉 ≈ 〈i , v0 + δ〉

while 〈i , v0〉 δ
=⇒2 〈i , v0 + δ〉 is straightforward.

• P = P1O{t}P2. The target automaton is tinterrupt(A(P1),A(P2), t0). The

process P may perform a communication event a or a time passing move δ.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rule of TCOZ processes [r13a],

we know that 〈P1, t〉 a
=⇒1 〈P ′

1, t〉, where P ′ = P ′
1O{t}P2. By hypothe-

sis, 〈i(A(P1)), v0〉 a
=⇒2 〈s0, v0〉, and 〈P ′

1, t〉 ≈ 〈s0, v0〉. This yields 〈P ′, t〉 ≈

〈s0, v0〉, while 〈i , v0〉 a
=⇒2 〈s0, v0〉 is straightforward.

If 〈P , t〉 δ
=⇒1 〈P ′, t + δ〉, from the operational rules of TCOZ processes

[r13b, r13c], we know that 〈P1, t〉 δ
=⇒1 〈P ′

1, t + δ〉. If δ <= t0, we know

P ′ = P ′
1O{t0 − δ}P2, By hypothesis, 〈i(A(P1)), v0〉 δ

=⇒2 〈i(A(P1)), v0 + δ〉

and 〈P ′
1, t + δ〉 ≈ 〈i(A(P1)), v0 + δ〉. This yields 〈P ′, t + δ〉 ≈ 〈i , v0 + δ〉

while 〈i , v0〉 δ
=⇒2 〈s0, v0 + δ〉 is straightforward. If δ = t0, then P ′ = P2.

According to the timeout pattern, we know 〈i , v0〉 ≈ 〈i(A(P1)), v0〉 and

〈i(A(P1)), v0〉 δ
=⇒2 〈i(A(P2)), v0+δ〉. This yields 〈P ′, t+δ〉 ≈ 〈i(A(P2)), v0+

δ〉 ≈ 〈i , v0 + δ〉.

• P = µN • P(N ). The target automaton is recursion(A(P(N )),N ).

If 〈P , t〉 τ
=⇒1 〈P ′, t〉, where P ′ = P [(µN • P)/N ], By hypothesis, we know

that 〈i(A(P(N ))), v0〉 τ
=⇒2 〈s0, v0〉, and 〈P ′(N ), t〉 ≈ 〈s0, v0〉. According to
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the definition of recursion, we know P ′(N ) = P ′, this yields 〈P ′, t〉 ≈ 〈s0, v0〉

while 〈i , v0〉 ≈ 〈s0, v0〉 is straightforward.

Similarly 〈P ′, t + δ〉 ≈ 〈i(A(P)), v0 + δ〉 if 〈P , t〉 δ
=⇒1 〈P ′, t + δ〉

• P = P1 |[X ]| P2. The target automaton is A(P1) ‖ A(P2). The process P

may perform a communication event a or a time passing move δ.

If 〈P , t〉 a
=⇒1 〈P ′, t〉, from the operational rules of TCOZ processes [r15a,

r15b, r15c], we know that:

〈P1, t〉 a
=⇒1 〈P ′

1, t〉 and a 6∈ X , where P ′ = P ′
1 | [X ] | P2, By hypothe-

sis, 〈i(A(P1)), v0〉 a
=⇒2 〈s1, v0〉 and 〈P ′

1, t〉 ≈ 〈s1, v0〉. This yields 〈P ′, t〉 ≈

〈s1, v0〉.

Or 〈P2, t〉 a
=⇒1 〈P ′

2, t〉 and a 6∈ X , where P ′ = P1 | [X ] | P ′
2, By hy-

pothesis, 〈i(A(P2)), v0〉 a
=⇒2 〈s1, v0〉 and 〈P ′

2, t〉 ≈ 〈s1, v0〉. This yields

〈P ′, t〉 ≈ 〈s1, v0〉.

Or 〈P1, t〉 a
=⇒1 〈P ′

1, t〉, 〈P2, t〉 a
=⇒1 〈P ′

2, t〉 and a ∈ X , where P ′ = P ′
1 |[X ]|

P ′
2, By hypothesis, 〈i(A(P1)), v0〉 a

=⇒2 〈s1, v0〉 and 〈P ′
1, t〉 ≈ 〈s1, v0〉, similarly

〈P ′
2, t〉 ≈ 〈s2, v0〉. This yields 〈P ′, t〉 ≈ 〈i(A(P ′)), v0〉 while 〈i(A(P ′)), v0〉 ≈

〈(s1, s2), v0〉 is straightforward.

If 〈P , t〉 δ
=⇒1 〈P ′, t +δ〉, from the operational rule of TCOZ processes [r15d],

we know that 〈P1, t〉 δ
=⇒1 〈P ′

1, t + δ〉 and 〈P2, t〉 δ
=⇒1 〈P ′

2, t + δ〉, where

P ′ = P ′
1 | [X ] | P ′

2, By hypothesis, 〈i(A(P1)), v0〉 δ
=⇒2 〈i(A(P1)), v0 + δ〉

and 〈P ′
1, t + δ〉 ≈ 〈i(A(P1)), v0 + δ〉, similarly 〈P ′

2, t + δ〉 ≈ 〈i(A(P2)), v0 +

δ〉. This yields 〈P ′, t + δ〉 ≈ 〈i(A(P ′)), v0 + δ〉 while 〈i(A(P ′)), v0 + δ〉 ≈
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〈(i(A(P1)), i(A(P2))), v0 + δ〉 is straightforward.

2

4.4 An Example: Railroad Crossing System

In this section, we will use a Railroad Crossing System (RCS) specified in TCOZ

as a driving example to illustrate our approach to model-checking TCOZ models

of real-time systems. The concept of the Railroad Crossing Problem was primarily

evolved by Heitmeyer [36]. It is a system which has a controller to operate a gate at

a railroad crossing safely. Based on the above features, we define some assumptions

and constraints as follows:

1. The train sends a signal to the controller at least 3 time units before it enters

the crossing, stays there no more than 2 time units and sends another signal

to the controller upon exiting the crossing.

2. The controller commands the gate to lower exactly 1 time unit after it has

received the approaching signal from the train and commands the gate to rise

again no more than 1 time unit after receiving the exiting signal.

3. The gate takes less than 1 time unit to come down and between 1 and 2 time

units to come up.
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TCOZ Model of RCS

According to the requirement description, an RCS consists of three components: a

central controller, a train, and a gate to control the traffic. The following provides

the formal specification of Gate, Train and Controller class in TCOZ.

Gate: The essential behaviors of this railroad crossing gate are to open and close

itself according to its external commands (events) up and down.

GateS ::= ToUp | Up | ToDn | Down

Gate

status : GateS
up, down : chan

Lower
∆(status)

status ′ = ToDn

Down
∆(status)

status ′ = Down

Init
status = Up

Raise
∆(status)

status ′ = ToUp

Up
∆(status)

status ′ = Up

Open =̂ up → (Raise • WaitUntil 1; Up) • Deadline 2
Close =̂ down → Lower • Deadline 1; Down
Main =̂ µG • Close; Open; G

The interface of the Gate class is defined through channels up and down. The

Deadline and WaitUntil expressions are used here to capture its timing prop-

erties, which constrain that the gate takes less than 1 time unit to come down and

between 1 and 2 time units to come up.

Train: The basic behavior of the train component is to communicate with the

controller with its passing information.
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TrainS ::= ToIn | In | Out

Train

status : TrainS
in, out : chan

Init
status = Out

Approach
∆(status)

status ′ = ToIn

Pass
∆(status)

status ′ = In

Exit
∆(status)

status ′ = Out

Trainin =̂ in → (Approach • WaitUntil 3; Pass) • Deadline 5
Trainout =̂ out → Exit
Main =̂ µT • Trainin ; Trainout ; T

Central Controller: The central controller is the crucial part of the system,

which actively communicates with the train, and gate. The Controller class is

modelled as follows:

ControllerS ::= TrIn | TrOut | GtClose | GtOpen
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Controller

status : ControllerS
up, down, in, out : chan

Init
status = TrOut

Arrive
∆(status)

status ′ = TrIn

Leave
∆(status)

status ′ = TrOut

GateClose
∆(status)

status ′ = GtClose

GateOpen
∆(status)

status ′ = GtOpen

Trainin =̂ in → Arrive
Trainout =̂ out → Leave
Close =̂ down → GateClose
Open =̂ up → GateOpen
Main =̂ µC • (Trainin • Deadline 1) • WaitUntil 1; Close; Trainout •

Deadline 1; Open; C

The attribute status keeps the records of the train’s passing information in the

system. When the train sends an in signal, the status of the controller changes

from TrOut to TrIn. When the train has passed the crossing and sent an out

signal to the controller, the status of the controller changes from TrIn to TrOut .

The main processes of the controller are receiving the train passing information

and manipulating the gate operations at the same time. If the gate is open then

instructions on closing the gate will be sent to the Gate. On the other hand, when

the train has passed the gate, the controller will open the gate.

RCS Configuration: After specifying individual components, the next step is

to compose them into a whole system. The overall system is a composition of all

the communicating components.
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RCSystem

t : Train; g : Gate; c : Controller

Main =̂ ‖(t in,out¾ - c up,down¾ - g)

Two essential properties of RCS are: first, the gate is never closed at a stretch for

more than a stipulated time range (suppose 10 time units); second, the gate should

be down whenever a train is crossing. These properties can be formally expressed

as:

RCSystem • ¤(g .status = ToDn → ♦≤10 g .status = Up)

RCSystem • t .status = In ⇒ g .status = Down

Translation

In this section, we show how the given translation rules can be applied to map

TCOZ specification into a timed automata.

First of all, for the whole RCS system, three automata can be identified in the

Timed Automata model, i.e., gate, train and controller. We use the gate class

as an example to show the identification of the states, transitions, guards and

synchronization mentioned above. According to the translation rules for TCOZ

classes/objects, four states can be identified through the static view of the Gate

class. It has four operation schemas. Each one is mapped into a state, namely,

Up, ToDown, Down, and ToUp, among which Up is the initial state as indicated

by the INIT schema in the Gate class. Synchronization and clock conditions on
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the transitions are constructed by transforming the Open and Close processes of

the Gate class according to the translation rules on Deadline and WaitUntil

primitives. A clock is generated to guard the atomic process Lower to finish no

later than 1 time unit, then it is reused to guard Raise and Up process to meet

their timing constraints by resetting its value to 0. The initial and terminal states

generated for every non-atomic process due to those translation rules, if they are

linked by a transition with a τ event, are incorporated into one state to simplify

the resultant automaton.

This gate automaton can be automatically generated by our translation tool and

visualized in UPPAAL as “process gate” in Figure 4.1. In the same way, we can

get the train and controller automata as “process train” and “process controller”.

Figure 4.1: Simulation
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Model-checking RCS

Now we can use the UPPAAL tool to simulate the system as well as to model-check

some invariants and real-time properties. In UPPAAL correctness criteria can be

specified as formulas of the timed temporal logic TCTL [37], for which UPPAAL

implements model-checking algorithms.

From a safety critical perspective, the key point of the RCS is to provide guaranteed

safe and efficient services. Examples of these properties can be formally described

in our model as:

• safety property - whenever the train is in, the gate is down. It can be trans-

lated into a TCTL formula in UPPAAL as follows:

A[] train.s2 imply gate.s102

• efficient service property - the gate is never closed at a stretch for more than

10 time units. To verify this property, we add a clock x to record the time

the gate takes to reopen itself:

gate.s101 --> (gate.s100 and gate.x<=10)

UPPAAL verified that these properties actually hold for this given model.
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4.5 Tool Support

The translation process is automated by employing XML/XSL [73] technology. In

our previous work, the syntax of Z family languages, i.e., Z/Object-Z/TCOZ, has

been defined using XML Schema and supported by a Z family Mark-up Language

(ZML) [71] tool. As the UPPAAL tool can read an XML representation of Timed

Automata, we developed a tool to automatically project the TCOZ model (in ZML)

to TA model (in UPPAAL XML). Our prototype is programmed in Java.

The main process and techniques for the transformation tool we developed are

depicted in Figure 4.2. The tool takes in a TCOZ specification represented in

XML, and outputs an XML representation of a Timed Automata specification

which has its own defined style file DTD by UPPAAL. The formal Z definitions

of timed patterns and the projection rules are used as a design document and

applied recursively during the implementation of the transformation. Building on

the strength of ZML, the automatic transformation can make use of the XML

parser Xerces [20] to easily abstract information from the specification.

Figure 4.2: TCOZ to UPPAAL diagram
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The transformation is achieved firstly by implementing a ZML parser, which will

take in a ZML specification and build a virtual model of the system in the mem-

ory. A TA interface is then built according to the UPPAAL document structure,

e.g., each TA document contains multiple templates and each template contains

a set of states, a set of transitions between states and transition conditions. A

transformation module is built to get information from the ZML parser, apply the

right transformation rule and feed the outcome of the transformation to the TA

interface. Note that TCOZ process expressions can be defined recursively, i.e., a

process expression may contain one or more other process expressions. Our trans-

formation modules are built to take care of all valid TCOZ specifications and the

transformation rules are applied recursively.

In the translation process, two kinds of abstraction can be applied to alleviate the

problem of state explosion. One is to reduce the number of translated TA states

by incorporating two or more consecutive intermediate states. These intermediate

states can be identified with an outgoing transition labelled by an internal τ event.

In UPPAAL, these states are mapped as urgent states [48], marked with ‘U’ rep-

resenting that no delay is allowed. This kind of simplification is automated by our

translation tool. Another kind of simplification is to reuse clocks instead of defining

a fresh clock for each time constraint. It is currently done by manually examining

whether a clock can be reused to specify more than one timing constraint.

Note that UPPAAL also adopts channels as its synchronization mechanism for the

interaction between automata. This is equivalent to the CSP channels in TCOZ
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for pairwise communications, the translation of which thus can be accomplished

directly by mapping the channel events from a TCOZ model to its TA model.

Hence it is not necessary to define a specific parallel composition pattern. Worthy

of mention is that for the translation of multiple synchronization of CSP in TCOZ

model, committed states2 need to be used to achieve broadcasting communication

in the target UPPAAL model (Detailed information can be found in [48]). Value

passing in UPPAAL is done by global variable assignments on the TA transitions,

which corresponds to TCOZ channel input/output. One may use integer variables

and arrays of integers, each with a bounded domain and an initial value. Predi-

cates over the integer variables can be used as guards on the edges of an automaton

process. Thus, attributes of the similar types in a TCOZ model can also be trans-

formed into their corresponding TA model. Variables are updated according to the

values of the post states of the corresponding TCOZ operations. However,currently

the mapping of data variables from a TCOZ model to its UPPAAL model is done

by manual work due to the mismatch of data types between the two languages.

The outcome of our transformation tool is UPPAAL’s XML representation of TA,

which is ready to be taken as input for verification and simulation. For example,

the following is part of the TCOZ XML representation of the Gate class :

<! The following is the Gate Class in TCOZ. > <classDef>

2An outgoing transition has to be taken instantaneously in committed states and an automaton

in a committed location blocks both time progress as well as enabled transitions in all other

automata.
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<name>Gate</name>

...

<state> ... </state>

<operation><name>MAIN</name>

<processExpr>

<mu>G</mu>

<processExpr>

<processExpr><simpleProExp>Close</simpleProExp>

</processExpr>

<proConnSym>composition</proConnSym>

<processExpr><simpleProExp>Open</simpleProExp>

</processExpr>

</processExpr>

</processExpr>

</operation>

</classDef>

The transformation tool takes in this gate class and generates the following gate

automaton.

- <template>

<name>Gate</name>

<declaration>clock y;</declaration>

- <location id="id10" >
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<name>ToUp</name>

<label kind="invariant"> y<=2 </label>

</location>

...

- <transition>

<source ref="id5" />

<target ref="id7" />

<label kind="assignment" >y:=0</label>

<label kind="synchronisation">down?</label>

</transition>

...

</template>

Following the style file [1] defined by UPPAAL, this XML code can be directly

visualized in UPPAAL and is ready for simulation and model-checking.

4.6 Conclusion

Formal Methods have been demonstrated to be effectively applicable in the indus-

trial development of complex real-time systems. Nevertheless, formal methods such

as TCOZ (Timed Communicating Object-Z), are not widely used in industry. If

the full potential of such languages is to be realized, they need to be supplemented

with software tools to assist with the more taxing mathematical aspects, such as
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the detection of specification errors and the verification of system properties.

In this section, we have proposed an approach to model-check TCOZ via projecting

TCOZ models to TA models so that tools associated with TA can be used to do

the verification. The transformation rules are provided in detail to define the

relation between a TCOZ class, i.e., its static and dynamic components, and a

timed automaton, i.e., its states and transitions. And a translation tool has been

implemented to automate the projection process.

We also investigated the semantic equivalence issue between TCOZ processes and

timed automata and provided a full proof. Little theoretical work has been done in

this area except that Joel and James in their recent work [55] have demonstrated

that Timed CSP has equal expressiveness with closed timed automata.

Since TCOZ is a superset of Timed CSP, one consequence of this work is that a

semantic link and a practical translation tool from Timed CSP to TA has been

achieved so that TA tools, i.e., UPPAAL, can also be used to check Timed CSP

timing properties. In this context, this work complements the recent pure the-

oretical investigation [55] on the expressiveness of Timed CSP and closed timed

automata.
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In this chapter, we will use a much more complex real-time system, i.e., a Multi-

terminal Railcar System (MRS) to further demonstrate the applicability of our

approach to modelling and checking real-time complex systems. The system was

primarily evolved from the railcar system [33] by D. Harel and E. Grey with addi-

tional timing constraints.

In the MRS system, there are four terminals which are located in a cyclic path.

Each terminal contains a push button for passengers to place their requests for car

service. A railcar travels clockwise on the track to transport passengers between

the terminals; it is equipped with a cruising controller for maintaining speed and a

destination board to record internal passenger requests and to help calculation of

the destination terminal. There is also a control center which receives, processes

and sends data to the terminals and the railcar so that external requests from any

terminal can be fulfilled.

Possible scenarios including the timing issues, stated as customer requirements,

are:

Railcar approaching terminal: When the railcar is approaching a terminal, it

sends an approach request 20 seconds in advance to the terminal to prepare for its

parking. After it receives the approach acknowledgment from the terminal, it will

check both its internal requests and external requests to decide whether it should

stop at the terminal or pass through directly.
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Railcar departing terminal: When the railcar decides to leave a terminal, it

sends a depart signal to the terminal, the terminal then prepares for the railcar

to depart and responds to it within 5 seconds, the railcar then leaves and starts

cruising to its next destination.

Railcar loading passenger: When the railcar comes to a stop at a certain

terminal, it will open its door for 10 seconds, after that it will close the door, and

begins to wait for either internal requests or an external request dispatched from

the controller. Passengers inside the railcar are given 5 seconds to make an internal

request before the railcar accepts any external requests.

Passenger in terminal: When a passenger in a terminal wishes to travel to

some destination terminal, and there is no available railcar, the passenger pushes

the button in the terminal and waits until the railcar arrives.

5.1 TCOZ Model of MRS

According to the requirements, the MRS has the following components: a con-

troller, terminals, and a railcar, which is also composed of three basic components:

a car destination panel, a car door and a car handler.

Buttons: A basic component of the MRS system is the button panel inside the

railcar and on the terminals. The behavior of buttons is modeled as follows:
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Button

on : B

TurnOn
∆(on)

on ′ = true

Init
on = false

TurnOff
∆(on)

on ′ = false

Terminal: The class Terminal has the following behaviors: it records external

requests from passengers through channel request and passes the request informa-

tion to the controller through channels enter and service; and it communicates

with the railcars through approach req , approach ack , depart req , and depart ack

channels.

Terminal
to == 5s

tpanel : Button
request , enter , service : chan
approach req , approach ack : chan
depart req , depart ack : chan

RequestService =̂ [¬tpanel .on] • request?self → tpanel .TurnOn;
enter !self → Skip

CarArrived =̂ service? → tpanel .TurnOff
CarApproach =̂ approach req → Wait to ; approach ack → Skip
CarDepart =̂ depart req → Wait to ; depart ack → Skip
Main =̂ µP • (RequestService 2 CarArrived 2

CarApproach 2 CarDepart); P

self is an object identity attribute which can be included in the communication to

tell the environment which object it is communicating with.
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Terminals
num == 4

tr : seqTerminal

#tr = num

Main =̂ tr(1) ||| tr(2) ||| tr(3) ||| tr(4)

Car Door: The car door is treated as a separate class so as to ensure a clear

description of its timing and safety property. In our model, it takes t0 time units for

the door to open when it receives the open command from the car handler. Once

the door is open, it will inform the handler by sending a conf message immediately

and remain open for t time units before closing.

DoorState ::= ToOpen | Opened | Closed .

CarDoor
t == 10s t0 == 2s

state : DoorState
open, conf , close : chan

Open
∆(state)

state ′ = Opened

ToOpen
∆(state)

state ′ = ToOpen

Close
∆(state)

state ′ = Closed

Main =̂ µD • open → ToOpen • Deadline t0; conf →
Open • Deadline t • WaitUntil t ; close → Close; D

Car Handler: The car handler maintains the state of the railcar, keeps track of

its current location, checks and decides whether to stop when passing a terminal

and provides the interface between the railcar environment and the other railcar

components.
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CarState ::= Idle | Ready | Departing | Approaching | Cruising

CarHandler
t1 == 5s t2 == 15s t3 == 20s t4 == 5s num == 4

tm, destination : N
ccur , tcur : B
state : CarState
open, conf , close : chan
int sched , int serv : chan
select , service : chan
cstop, tstop : chan
approach req : chan
approach ack : chan
depart req , depart ack : chan

Ready
∆(state, destination)
dest? : N

state ′ = Ready
destination ′ = dest

SetTm
∆(tm)

tm ′ = tm mod num + 1

Init
state = Idle ∧ tm = 1
tcur = false ∧ ccur = false

Approaching
∆(state)

state ′ = Approaching

Departing
∆(state)

state ′ = Departing

Cruising
∆(state)

state ′ = Cruising

ToStop
∆(tcur , ccur)
tsuc?, csuc? : B

tcur ′ = tsuc ∧ ccur ′ = csuc

Depart =̂ depart req → Departing • WaitUntil t1 • Deadline t1;
depart ack? → Skip

Approach =̂ approach req →
(approach ack? → Skip) • WaitUntil t1 • Deadline t1;
Approaching • WaitUntil t2 • Deadline t3

Check =̂ tstop!tm → [tsuc : B] • tstop?tsuc → cstop!tm →
[csuc : B] • cstop?csuc → ToStop;

Move =̂ µM • [destination 6= tm ∧ ¬ccur ∧ ¬tcur ] • Depart ;
Cruising ; SetTm; Approach; Check ; M

Handle =̂ Move 2 [destination = tm ∨ ccur ∨ tcur ] • open →
conf → service!tm → int serv ! → close → Skip

Main =̂ µCH • (int sched !tm → int sched?dest → Skip) ¤ {t4}
((int sched !tm → int sched?dest → Skip) 2

(select !tm → select?dest → Skip)); Ready ; Handle; CH

The attribute CarState is a free type variable which defines the five basic states of

the railcar; tm is an attribute which records the current terminal where the railcar
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is. It will be updated right before the railcar sends the request approach req to

enter the terminal; destination records the next destination indicated by the car

destination panel or the controller; ccur and tcur are two Boolean variables used

to decide whether the railcar should stop when passing a terminal.

Initially, the railcar idles at a terminal. CarHandler will quest for a destination

from the CarPanel first through channel int sched for 5 seconds before the it quests

for any external requests from the controller through channel select . Once the car

destination panel or the controller has indicated the next destination, the state of

the car will be set as Ready and it will start to move to its new destination. During

this period, when coming to each intermediate terminal, the car handler will check

the car destination panel and the controller through channel cstop and tstop to

see whether there are any new requests from passengers, then update the value of

ccur and tcur accordingly through the operation ToStop. If the car comes to stop

at a terminal, its door will be opened, the car destination panel and the central

controller will be notified and then once the door is closed, control will be returned

to the initial mode.

Car Panel: The car destination panel receives internal requests from passengers

inside the railcar through the int request channel and maintains a record of the re-

quests to provide scheduling services for the car handler through channel int sched .

It also communicates with the car handler through channel int serv , and cstop.

Due to the common behaviors of handling requests and calculating destinations

between the car destination panel class and the controller class, a destination panel
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class DestPanel is firstly defined to capture these operations. The car destination

panel class CarPanel thus inherits from DestPanel .

DestPanel
num == 4

panel : seqButton
i : N
4
len : N

num = # panel
len = # {t : dom panel |

panel(t).on = true}
Init
∀ i : 1 . . num •

panel(i).on = false

InitI
∆(i)
tm? : dom panel

i ′ = tm?

CalDest
∆(i)
dest ! : dom panel

i ′ = i + 1
dest ! = i ′

CarPanel
DestPanel

int request , int sched , int serv , cstop : chan

Main =̂ µCP • [tm : dom panel ] •
int request?(self , tm) → panel(tm).TurnOn; CP 2

[panel(tm).on] • int serv !tm → panel(tm).TurnOff ; CP 2

[¬panel(tm).on] • int serv !tm → CP 2

[len 6= 0] • (int sched?tm → InitI ;
µN • ([¬panel(i mod num).on] • CalDest ; N ) 2

[panel(i mod num).on] • int sched !dest → CP) 2

[csuc : B | csuc = panel(tm).on] • cstop?tm → cstop?csuc → CP

Central Controller: The responsibility of the central controller is to dispatch

external requests to the railcar. It consists of a request queue with channels that

connect the railcar and terminals. The Controller class is modeled as follows:
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Controller
DestPanel

enter , tstop, select : chan

Join =̂ [tm : N] • panel(tm).TurnOn
Remove =̂ [tm : N] • panel(tm).TurnOff
Dispatch =̂ [len 6= 0] • select?tm → InitI ;

µN • ([¬panel(i mod num).on] • CalDest ; N ) 2

[panel(i mod num).on] • select !dest → Skip
Check =̂ [tm : dom panel ] • tstop?tm →

([tm : dom panel | panel(tm).on] • Remove 2

[tm : dom panel | ¬panel(tm).on] • Skip);
[tsuc : B | tsuc = panel(tm).on] • tstop!tsuc → Skip;

Main =̂ µC • (enter?tm → Join 2 Dispatch 2 Check); C

Car

cd : CarPanel
ch : CarHandler
d : CarDoor

Main =̂ ‖(cd int sched ,int serv ,cstop¾ - ch open,close,conf¾ - d)

MRS Configuration: After specifying individual components, the next step is

to compose them into a whole system. The overall system is a composition of all

the communicating components.

RailCarSystem

cr : Car
trs : Terminals
ct : Controller

Main =̂ ‖(cr select ,tstop¾ - ct enter¾ - trs ;

trs service,approach req,approach ack ,depart req,depart ack¾ - cr)
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5.2 Translation

In this section, we show how the given translation rules can be applied to map

TCOZ specifications into timed automata.

For this system, first of all, each active class in the TCOZ model is projected

to a TA model as a timed automaton template. Namely, a terminal template

for the class Terminal ; a car door, a car destination panel and a car handler

template, respectively, for the classes CarDoor , C DestPanel , and CarHandler ;

and a controller template for the class Controller . The terminal template has

four instances which represent four different terminals according to the TCOZ

specifications. The other templates will have only one instance.

We use the terminal class as an example to show the identification of the states,

transitions, guards and synchronization mentioned above. Its processes mainly

have an external choice pattern and a recursion pattern as shown in its process

definition of the TCOZ model. According to the translation rules for the external

choice pattern, four transition branches can be identified, respectively, representing

the processes RequestService, CarArrived , CarApproach, and CarDepart . The first

two processes RequestService and CarArrived match the event prefix pattern and

are then projected as a returning switch. The latter two processes CarApproach

and CarDepart are a little more complex. They both have an atomic operation

in them, which is mapped into a state, i.e., s2 and s3 as shown in Figure 5.1.

Synchronization and clock conditions on the transitions are constructed by trans-
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forming the CarApproach and CarDepart process of Terminal class according to

the translation rules for the Wait and event prefix primitives.

s1

s3

s2

button==0,
cur!=id,
dest!=id

button:=1,
t:=id

enter!

service?
button:=0

cur==id

approach_req?
cur==id x:=0

depart_req?
cur==id

x:=0

depart_ack!
x==5

approach_ack!
x==5

Figure 5.1: Terminal Panel

These main behaviors of this terminal automaton can be automatically generated

by our translation tool. Then by adding the object reference information manually,

such as the identification of each different terminal, the whole automaton can be

visualized in UPPAAL.

We can get the other automata in the same way as follows,

carhandler : In this automaton, x is a clock variable which is reused several times

by resetting its value to 0. cur records the position where the railcar currently

is located. tcur/ccur determines whether the railcar should stop to serve the

external/internal requests at a certain terminal or not when the railcar arrives at

that terminal.

carpanel : The car panel automaton records internal requests in an array clist [4].

There are seven branches coming out from its initial state, they correspond to the
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branches of the external choice processes in the TCOZ model of Class CarPanel ;

among which four of them corresponds to all the possible internal requests.

x<=5

Ready

Departing

x<=5

Cruising

x<=100Approaching

x<=5

SetTm

x<=20

int_sched? x:=0

depart_ack?

x:=0x==5

open!
dest==tm

conf?int_serv!

x:=0,y:=0,
cur:=tm,
tcur:=0,
ccur:=0

dest!=tm,
tcur+ccur==0
depart_req!

x:=0

approach_ack?
x==5

service!close!

tm:=tm%N+1

x>=50
x:=0
approach_req!

select!

x==5

int_sched!

int_sched!

cur:=tm

x>=15 tstop! cstop?

tcur+ccur!=0
open!

tstop? cstop!

select?
x:=0

Figure 5.2: Car Handler

CalDest

clen!=0

i:=cur-1
int_sched?

int_sched!
clist[i%N]==1

dest:=i+1

clist[i%N]==0
i:=(i+1)%N

clist[2]==0,
cur!=3

clen:=clen+1,
clist[2]:=1

clist[1]==0,
cur!=2

clen:=clen+1,
clist[1]:=1

clist[0]==0,
cur!=1

clen:=clen+1,
clist[0]:=1

int_serv?
clist[cur-1]:=0,
clen:=clen-1
clist[cur-1]==1

clist[cur-1]==0
int_serv?

clist[3]==0,
cur!=4

clen:=clen+1,
clist[3]:=1

cstop!
ccur:=1
clist[cur-1]==1

cstop?

clist[cur-1]==0

cstop!
ccur:=0

Figure 5.3: Car Panel

controller : The controller receives external requests from channel enter and records

them in an array tlist [4]. After calculating the next destination, it dispatches one

of the requests from the array to the railcar through channel select . When the
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railcar has served that request, the controller will remove the request immediately.

CalDestenter?

tlist[t-1]:=1,
tlen:=tlen+1

select?

tlen!=0
i:=cur-1

tlist[i%N]==1
dest:=i+1
select!

tlist[i%N]==0
i:=(i+1)%N

tstop?

tlist[cur-1]==1

tcur:=1,
tlist[cur-1]:=0,
tlen:=tlen-1

tstop!
tlist[cur-1]==0
tcur:=0

tstop!

Figure 5.4: Controller

5.3 Model-checking MRS

Now we can use the simulator and verifier of UPPAAL to simulate the system as

well as to model-check invariants and real-time properties. In UPPAAL correctness

criteria can be specified as formulas of the timed temporal logic TCTL.

The key point of the MRS is to provide efficient services. These properties can be

formally interpreted as follows.

• Efficient service properties - Whenever the car destination board receives a

request to a terminal, say terminal 1, the railcar will eventually get to that

terminal within 600 seconds. It can be translated into the TCTL as liveness

properties:
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cp1.clist[0]==1-->ch1.tm==1 and ch1. y<=600 //The railcar will

eventually reach terminal 1 within 600 seconds if a passenger

pressed terminal 1 button.

• Some other properties - Timing constraints, deadlock-freeness, and safety

properties can also be checked, as shown in the following:

A[] cd1.open imply cd1.x<=10 and cd1.close imply cd1.x>=10 //Door

must be open for and only for 10 seconds. A[] not deadlock //The

system is deadlock-free. A[] ch1.cruising imply cd1.Close //

Whenever the railcar is running, the car door is always close.

UPPAAL verified that these properties actually hold for this given model.

Properties Time (N=3) Time (N=4)

cp1.clist[0]==1- ->ch1.tm==1 and ch1.y<=600 8.3s 250.0s

A[] cd1.Open imply cd1.x<=10 1.0s 11.2s

A[] not deadlock 2.6s 29.1s

A[] ch1.Cruising imply cd1.Close 1.1s 10.3s

Note that N is the number of terminals. The experiment was done under XP

Windows system with RAM 2G, CPU Intel 3.0GHz.
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Figure 5.5 and Figure 5.6 show the simulation and model-checking in UPPAAL.

Figure 5.5: Simulation

5.4 Conclusion

In this chapter, we demonstrated the modelling and verification of a Multi-terminal

Railcar system. Firstly, we found that TCOZ can be a good candidate for the high-

level abstracted specifications of complex real-time systems. The class constructs

in TCOZ are well suited for component declaration. The communication interfaces,

i.e., channels, act as implicit connectors for modelling the communications between

components. The network topology is used for defining the configuration of the

system. All these features may provide a consistent and flexible way of specifying

complex real-time models. Secondly, we found that after projecting the TCOZ
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Figure 5.6: Verification

model to a TA model, the system behavior can be simulated and system proper-

ties, especially, real-time properties can be proved by reusing TA’s tool support

UPPAAL.

In summary, this chapter demonstrates a unified framework that supports one

possible engineering process for modelling and verification of complex real-time

systems. Namely, integrated formal modelling techniques (i.e., TCOZ) can be

adopted for modelling complex systems; and low-level modelling techniques with

direct tool support (TA) can be used for design and verification by projecting the

high-level abstracted models (i.e., TCOZ models) to low-level models or designs

(i.e., TA).
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This chapter presents a new integrated formal method by combining Object-Z and

Timed Automata.

6.1 Introduction

In our previous chapters 3, 4 and 5, we investigated the projection techniques

from the TCOZ [53] (extension to Object-Z) to TA and discussed the notion of

timed patterns. One interesting question arised from that part of work is that: can

we integrate Object-Z and Timed Automata directly? In this way, not only the

tool support of TA can be reused straightforward, but also the timed composable

patterns now can be directly utilized for systematic TA designs. This motivate us

to further our research on an integration approach. In the following chapters, rather

than taking the transformation point of view, we propose a novel integrated formal

language which combines Object-Z with TA. An effective combination of Object-Z

and TA can not only help Object-Z with real-time modelling capability, but also

help TA with enhanced structure and state modelling features. The result of such

a combination can be a powerful unified method for designing complex computer

systems. The challenge of achieving an effective combination of Object-Z and TA

is to

• semantically and syntactically link the key language constructs so that the

two notations can be used in a cohesive way;

• clearly separate system functionality aspects from time control behavior pat-
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terns, so that separate tools can later be applied to check the related system

properties;

• consistently unify the composition techniques from both Object-Z (class in-

stantiation) and TA (automaton product) so that subsystem models can be

easily and meaningfully composed;

• systematically develop the communication mechanisms so that various con-

current interactions between system components can be precisely captured.

In the remaining sections of this chapter we will demonstrate how Object-Z and

TA can be effectively combined using motivating examples.

A Store

Consider a simple stock-control system for a store. The store stocks items which

each have a fixed use-by date. An item can be added to the store’s stock, but only

if the use-by date of the added item is today’s date or later. Any item can be sold

by the store. At the beginning of each day, those items whose use-by date is less

than the current date are removed (i.e., purged) from the store.

To specify this system in Object-Z, first we specify an item as an object of the class

Item:

Item

useBy : N
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Effectively, at this level of abstraction the only important thing about an item is

its (fixed) use-by date.

The stock control system is specified by the class Store:

Store

stock : P Item
today : N

Init
stock = ∅
today = 0

add
∆(stock)
i? : Item

i? 6∈ stock
i?.useBy > today
stock ′ = stock ∪ {i?}

sell
∆(stock)
i ! : Item

i ! ∈ stock
stock ′ = stock \ {i !}

purge
∆(stock , today)

today ′ = today + 1
stock ′ = stock \ {i : stock | i .useBy < today ′}

The semantics of Object-Z can be seen as a state transition system. For example,

given a particular Store object state

σ = {(stock , {itema , itemb}), (today , 20)},

if operation add is then performed with a new input item itemc, the new object

state would be

σ = {(stock , {itema , itemb , itemc}), (today , 20)}.

Notice that although there is an attribute today in this class and this attribute is

incremented whenever the purge operation takes place, no notion of the progressive
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passing of time is captured by this specification. Conceptually, we think of the

purge operation as taking place once a day, but this is not captured explicitly.

Furthermore, in standard Object-Z the operations are assumed to be atomic, so

there is no direct way of capturing the idea that an operation may take a specific

time to complete.

6.2 Overview on Combining Object-Z and TA

In this section, the semantic and syntactic issues on integrating Object-Z and TA

are discussed and a combined notation is proposed.

To illustrate how Object-Z and TA can be effectively integrated, consider the simple

stock-control system we met in the last section. What we want is to integrate into

this specification a notion of the sequential passing of time.

Suppose time is a positive real number measured in days starting at 0 (so, for

example, 1.5 is halfway through the second day). The use-by date associated with

an item is a positive integer denoting the day by which the item must be sold or

else purged from the store (e.g., a use-by date of 3 means that if the item is not

sold on or before day 3, at the start of day 4 it is purged).

We shall suppose it takes at most Ta time units to add an item to the stock, at

most Ts time units to sell an item in stock, and more than Tp1 but less than Tp2

time units (Tp1 < Tp2) to purge the stock at the beginning of the day, where each

of Ta, Ts and Tp2 is much less than 1. Furthermore, the addition of any item to
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the stock or the selling of any item in stock must be started and completed within

the same day. In our model, operations of the store will be disjoint, i.e., time-wise

they do not overlap.

The store with this timing information incorporated is specified by adding a Timed

Automaton to the class Store to get the class TimedStore:

TimedStore

stock : P Item
today : N

Init
stock = ∅
today = 0

purge
∆(stock , today)

today ′ = today + 1
stock ′ = stock \ {i : stock |

i .useBy < today ′}

add
∆(stock)
i? : Item

i? 6∈ stock
i?.useBy > today
stock ′ = stock ∪ {i?}
sell
∆(stock)
i ! : Item

i ! ∈ stock
stock ′ = stock \ {i !}

Ta,Ts ,Tp1,Tp2 : R

x , y : clock

purge
y < Tp2

A
x <= 1

add
y < Ta

sell

[i?, x < 1-Ta]
add-s, y := 0

add-e

x := 0, y := 0

[x = 1]
purge-e

[x < 1-Ts]
sell-s, y := 0 sell-e

x := 0

y < Ts

[y > Tp1]

[ i! ]

purge-s
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Consider the TimedStore class in detail. The top part of the class box is the

standard Object-Z specification we met in the last section and contains no timing

information. The bottom part of the class box contains a declaration of the timing

constants and the names of the clocks (in this case there are two clocks, x and y)

as well as the associated automaton. The declaration x : clock means that x plays

a dual role: it identifies (i.e., names) a clock and also records the time showing on

the clock, i.e., it is a variable that takes positive real number values. In fact, as we

shall see, the value of the clock x in this specification always lies between 0 and

1 inclusive and denotes the time that has passed in the current day. The clock y

is used to ensure that the operations are completed within the specified time. It

is assumed that both clocks progress at the same rate, i.e., the passage of time is

universally uniform.

The locations of the automata represent the various situations in which the store

can find itself. A location, together with the switches to and from that location,

specifies the timing limits (if any) for the corresponding situation. For each of

the three operations specified in the Object-Z part, there is a similarly-labelled

location to capture the situation when the store is undergoing this operation; the

store can undergo this operation only when in the corresponding location. The

other location, A, represents the situation when the store is idle and no operation

is being performed.

To illustrate the switches, consider those between locations A and add . The switch

from A to add is labelled add -s (i.e., add start), while the switch from add to A
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is labelled add -e (i.e., add end). The expression in square brackets, i.e., [i?, x <

1 − Ta] in the case of the switch labelled add -s , captures the requirements that

must be met if the switch is to take place, i.e., the input item i? (as defined in the

Object-Z operation add) must be supplied, and in addition the time as recorded by

the clock x must be less than 1− Ta (so that the operation, which can take up to

Ta time units to occur, can be completed within the same day). In addition, the

precondition of the Object-Z operation add must hold for the add -s switch to occur.

As the precondition of an operation must always hold before the switch to the place

labelled by that operation’s name can occur, this precondition is always implicitly

conjoined with any specific additional requirements within the square brackets.

When the switch from A to add occurs, the clock y is reset to 0; annotating the

location add with the condition y 6 Ta ensures that this location is exited within

time duration Ta, as required.

For the operation sell , the supply of the output item i ! is a requirement that must

be met for the switch sell -e to occur after the completion of the operation. Compare

this with the add operation where the input i? was required for the switch starting

the operation to occur.

Looking now at the switch purge-s , this switch can occur only when x is 1. Further-

more, it must occur at this time because of the time restriction placed on location

A. This ensures that the purge operation occurs precisely once a day (starting at

the end of each day and the beginning of the next). When the switch does occur,

the clock x is reset to 0 (ensuring that x always lies between 0 and 1 and hence
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denotes the time that has passed in the current day).

Location A is the automaton’s initial location. The understanding is that the

initial conditions as specified by the Init schema must hold when the automaton

is started in location A, and at the same time the clock x is set to 0 (the initial

value of the clock y can be arbitrary and so is not specified).

The fact that the ‘start’ switches associated with each operation emanate from

location A, and the ‘end’ switches each return to A, ensures that the operations

add , sell and purge do not overlap time-wise.

Note that the naming of switches can be systematic, e.g., a switch pointing to an

operation state can be labeled with the operation name follow by ‘s’ (for start). If

a switch is pointing from an operation state to an idle (control) state, then it can

be labeled with the operation name follow by ‘e’ (for end).

Inheritance

Inheritance is a mechanism for incremental specification and reuse, whereby new

classes may be derived from an existing class. Object-Z inheritance has a similar

style as the Z schema inclusion. We propose that the control behaviour (expressed

by the TA) can also be inherited and extended in a simple way. Consider a system

TimedStoreP which has the same sell and purge functionalities as TimedStore,

except for the add operation: only items with an expire date at least 3 days ahead

of the current day can be added into the store, and the add operation takes less
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than a half of the Ta time units to finish. In addition, the system is able to identify

the set pItems (promotion items) of items which have only two days left before their

expiry. An extra operation pSell (promotion sell), which takes at most Tpm time

units to execute, can sell a subset of these promotion items. The class TimedStoreP

can be defined by inheriting the class TimedStore. For the behaviour (automaton)

part, the add location refers to the redefined add operation, and its local invariant

changes to y < Ta/2 and its enabling condition changes to x < 1 − Ta/2. And a

new location pSell is introduced and connected (by new switches) with the control

(idle) location A from TimedStore. The other locations and their connections

remain unchanged as follows:

TimedStoreP
TimedStore[redef add ]

∆
pItems : P Items

pItems =
{i : store |

i .useBy < today + 2}
add
∆(stock)
i? : Item

i? 6∈ stock
i?.useBy > today + 3
stock ′ = stock ∪ {i?}

pSell
∆(stock)
is ! : P1 pItems

stock ′ = stock \ is !

Tpm : R

A
x <= 1

add
y < Ta/2

[i?, x < 1-Ta/2]
add-s, y := 0

add-e

pSell
y < Tpm

[x < 1-Tpm]
pSell-s, y := 0

pSell-e

If we expand the inheritance, then TimedStoreP becomes:
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TimedStoreP

stock : P Item
today : N
∆
pItems : P Items

pItems = {i : store | i .useBy < today + 2}

pSell
∆(stock)
is ! : P1 pItems

stock ′ = stock \ is !

Init
[unchanged]

sell
[unchanged]

purge
[unchanged]

add
∆(stock)
i? : Item

i? 6∈ stock
i?.useBy > today + 3
stock ′ = stock ∪ {i?}

Ta,Ts ,Tp1,Tp2,Tpm : R

x , y : clock

purge
y < Tp2

A
x <= 1

add
y < Ta/2

sell

[i?, x < 1-Ta/2]
add-s, y := 0

add-e

x := 0, y := 0
[x = 1]

purge-e

[x < 1-Ts]
sell-s, y := 0 sell-e

x := 0

y < Ts

[y > Tp1]

[ i! ]

purge-s,

pSell
y < Tpm

[x < 1-Tpm]
pSell-s, y := 0

pSell-e

Note that pItems is modelled as a secondary attribute whose value is subject to

change with each operation (implicitly it is included in every operation’s ∆ list).
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For multiple inheritance cases, the rules are that all similarly named locations (and

switches) are merged, with all corresponding invariants and conditions conjoined.

6.3 Design Decisions

In the previous section, we had an overview on how Object-Z and Timed Au-

tomata have been integrated. The approach taken in the OZTA notation is to

identify Object-Z operations as states in Timed Automata. Accordingly, pre/post-

conditions of an Object-Z operation are identified as transition conditions. Ques-

tions may arise on our integration approach, i.e., why Object-Z operation schemas

are identified as states in the associated timed automaton in an OZTA class? Can

we semantically link Object-Z operations with TA transitions in the associated

timed automaton? In the following, the design decisions related to this new for-

malism will be discussed and some examples will be used to show the reason we

choose to link Object-Z operations with TA states instead of TA transitions.

Consider the previous timed store example. Suppose we choose to identify the

Object-Z operations as transitions in the associated timed automaton. Let us

focus on the add operation part only, this branch can be designed as shown in

Figure 6.1.

The interpretation of this model is now different: there will be no state operations

any more; all the states are control states; instead, there will be two kinds of

transitions: operation transitions which represent the Object-Z operation schemas
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A 
x<=1 

A1 
y<Ta 

[i?, x<1-Ta] 
add, y:=0 

Figure 6.1: Model 1

and control transitions which coordinate the control flow together with control

states. On an operation transition, both the pre-condition and post-condition of

the corresponding operation schema should hold, which indicates that the update

of data variables is done on the corresponding operation transition. For example,

the data variable stock will be updated when the add operation transition occurs.

This approach fits nicely with the Object-Z interpretation of operations being

atomic, but is not well suited to multi-thread and real-time modelling. Restrict-

ing operations to be atomic events collapses the spatial and temporal aspects of

operations. Everything happens at a single point and instantaneously. This would

result in a need for a number of control states to artificially reconstruct the tempo-

ral aspects of the operations in the associated TA. Sometimes the design of these

control states can be unnecessarily tricky and may take extra effort to create or

understand. For example, in the timed store system, suppose that during the add

operation, a store inspector may interrupt the process to check the quality of the

item to be added for no more than Tc time units. For this requirement, the model

can be easily extended in our adopted approach (where operation schemas are

identified as states), as shown in Figure 6.2, in which the transition labelled ‘add-s’

implicitly indicates that the precondition of the add operation schema holds and
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the transition labelled with ‘add-e’ implicitly indicates the post-condition of the

add operation schema holds. This design allows the add operation to take time

and the data variable stock to be updated after the operation .

 

A 
x<=1 

add 
y<Ta 

check 
y<Tc 

[i?, x<1-Ta] 
add-s, y:=0 

add-e 

check-s 
y:=0 

x:=0 
check-e 

Figure 6.2: Model 2

However, in a model where operation schemas are identified as transitions, a prob-

lem happens as shown in Figure 6.3.

 

A 
x<=1 

A2 
y<Ta 

A1 
y<Tc 

[i?, x<1-Ta] 
add, y:=0 

check 
y:=0 

x:=0 

Figure 6.3: Model 3

As the add transition happens, both the pre-condition and post-condition of add

operation would hold, namely, the value of stock would be updated simultaneously.

As a result, the check event can never actually interrupt the add operation because

it is atomic. The same thing may happen to any processes involved with timed
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interrupt or time-out behaviors. To address this situation, we have to add some

control state(s) before the add operation transition to make sure that the data

variable stock is only updated when the add operation has not been interrupted as

shown in Figure 6.4,

 

A 
x<=1 

A2 
y<Ta 

A1 
y<Tc 

[i?, x<1-Ta] 
y:=0 

check 
y:=0 

x:=0 

add 

Figure 6.4: Model 4

where the add operation is now identified as the outgoing transition of control state

A2, meanwhile, the pre-condition of add also has to hold on the incoming transition

of A2. Compared to this model, the model in Figure 6.2 is more apt for modelling

timing properties in a natural way and carries no redundant pre/post-condition

from the Object-Z operation schemas.

Another problem of linking operation schemas with transitions is that, for a com-

plex real-time system with communications, identifying synchronization event names

with operation names would create unnecessary tensions between the data and pro-

cess views of objects, and considerably reduce the potential for reuse of operation

definitions since both of them are treated as events on transitions in Timed Au-

tomata.
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6.4 Composition and Communication

In this section, various composition and communication aspects of the combined

language are discussed, and synchronized communication links are systematically

introduced.

Independent stores

Consider now a system consisting of two stores operating independently. This

system is specified by the class TwoIndStores :

TwoIndStores

s1, s2 : TimedStore

s1 ‖ s2

The timed automaton of this class is simply the product [4] of the automata for

the two stores s1 and s2. The timed automaton for s1 is just the automaton of the

TimedStore class, but with the label of each location, the label of each switch, and

the names of the clocks distinguished by an ‘s1.’ prefix, as illustrated in Figure 6.5.

Notice that the input/output variables are not prefixed.

The timed automaton for s2 is labeled similarly. The s1 ‖ s2 notation in the class

TwoIndStores denotes the product of the associated automata. The implication

here is that the two stores are not only completely independent, but operations

in different stores can be executed concurrently. Indeed, when an object of the
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s1.purge
s1.y<Tp2

s1.A
s1.x<=1

s1.add
s1.y<Ta

s1.sell

[i?, s1.x < 1-Ta]
s1.add-s, s1.y:=0

s1.add-e

s1.x := 0, s1.y := 0

[s1.x = 1]

s1.purge-e

[s1.x < 1-Ts]
s1.sell-s, s1.y := 0 s1.sell-e

s1.x := 0

s1.y<Ts

[s1.y > Tp1]

[ i! ]

s1.purge-s

Figure 6.5: The Automaton s1

class TwoIndStores is instantiated, the two store objects start at the same time in

their A position with s1.x and s2.x set to 0 synchronously. As time passes at the

same rate for all clocks, both stores will always synchronise on the start of their

respective purge operations, namely, at the start of the next day, but apart from

that they run completely independently.

The two-stores example can be generalised to a collection of independent stores, as

specified by the class CollnIndStores. In this class the expression ‖ s : stores de-

notes the timed automata product (s1 ‖ s2 ‖ · · · ) where the set stores is {s1, s2, · · · }.

CollnIndStores

stores : FStore

‖ s : stores
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Transferring between stores

Consider now a system consisting of two stores, where each item sold by the first

store is added (i.e. transferred) to the second. Effectively, the first store sells

items only to the second store. A specification of this system is given by the class

TransStores :

TransStores

s1, s2 : TimedStore

(s1 ‖ s2) • sync {s1.sell -e ↔ s2.add -s}

The sync clause indicates that the two switches labeled s1.sell -e and s2.add -s are

to be treated as if these labels were identical, i.e. the automata must synchronize

on these switches. As part of this synchronization, as the output i ! and the input

i? have the same base-name they are identified and hidden (just as is the case

for the Object-Z parallel operator, i.e. they specify internal communication rather

than communication with the environment). Apart from this synchronization,

the product of the two timed automata effectively ensures that the two automata

operate independently and concurrently.

Now consider a system like TransStores where again each item sold by the first store

is added (i.e. transferred) to the second. However, an item from the environment

may also be added to the second store, i.e. not all items added to the second store

are necessarily transferring from the first. This system is specified in the class

Alt1TransStores :
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Alt1TransStores

s1, s2 : TimedStore

(s1 ‖ s2) • sync {s1.sell -e → s2.add -s}

The implication here is that whenever the switch s1.sell -e is taken then there must

be synchronization with the switch s2.add -s . However, the switch s2.add -s can

occur independent of (i.e. without synchronizing with) the switch s1.sell -e. With

this notation, notice that the synchronization sync {s1.sell -e ↔ s2.add -s} in the

TransStores class could have been alternatively (but less elegantly) expressed as

sync {s1.sell -e → s2.add -s , s2.add -s → s1.sell -e}.

Now consider the situation as before where an item sold by the first store can be

transferred to the second, but in addition not only can an item from the environ-

ment be directly added to the second store, (i.e. not all items added to the second

store are necessarily transferring from the first) but also an item sold by the first

store can be passed to the environment (i.e. not all items sold by the first store

are necessarily transferred to the second). This system is specified in the class

Alt2TransStores :

Alt2TransStores

s1, s2 : TimedStore

(s1 ‖ s2) • sync {s1.sell -e 7↔ s2.add -s}

The implication here is that when any of the switches s1.sell -e or s2.add -s is taken

there may or may not (the choice is non-deterministic) be synchronization with the
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switch s2.add -s or s1.sell -e respectively.

The examples involving two stores given so far in this section can be generalised to

a collection of stores. Consider a system consisting of a collection of stores where

an item from the environment can be added to any store, an item sold by any store

can be passed back to the environment, and given any two stores in the collection,

an item sold by the first store can be added (transferred) to the second. Such a

system is specified in the class CollnTransStores:

CollnTransStores

stores : FTimedStore

(‖ s : stores) • sync {s1, s2 : stores | s1 6= s2 •
s1.sell -e 7↔ s2.add -s}

More on synchronization

To further illustrate synchronization in TA, consider the three timed automata U ,

V and W illustrated in Figure 6.6.

v2v1
b

u2u1
a

U V

w2w1
c

W

Figure 6.6: Timed Automata U , V and W

The timed automaton (U ‖ V ‖ W ) • sync {a ↔ b} is behaviorally equivalent to

the product U 1 ‖ V 1 ‖ W 1 of the timed automata U 1, V 1 and W 1 illustrated

in Figure 6.7. In this case the switches labeled a and b have been re-named to a
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common label d . As these labels are the same, the product automaton will syn-

chronize on these switches. Consequently, the switch from location u1 to location

u2 in U 1 is always synchronized with the switch from location v1 to location v2

in V 1, and conversely.

v2v1
d

u2u1
d

U1 V1

w2w1
c

W1

Figure 6.7: Timed Automata U 1, V 1 and W 1

The timed automaton

(U ‖ V ‖ W ) • sync {a ↔ b, a ↔ c, b ↔ c}

is behaviorally equivalent to the product U 2 ‖ V 2 ‖ W 2 of the 3 automata U 2,

V 2 and W 2 illustrated in Figure 6.8. In this case the switch from location u1 to

u2 in U 2 must synchronize with either the switch from location v1 to v2 in V 2 or

from w1 to w2 in W 2; the switch from location v1 to v2 in V 2 must synchronize

with either the switch from location u1 to u2 in U 2 or from w1 to w2 in W 2; and

the switch from location w1 to w2 in W 2 must synchronize with either the switch

from location u1 to u2 in U 2 or from v1 to v2 in V 2.

u2u1

e

U2

w2w1

f

W2

v2v1

V2

f g g

e

Figure 6.8: Timed Automata U 2, V 2 and W 2

Compare this to the automaton

(U ‖ V ‖ W ) • sync {a ↔ b ↔ c}.
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This automaton is behaviorally equivalent to the product U 3 ‖ V 3 ‖ W 3 of the

three automata U 3, V 3 and W 3 illustrated in Figure 6.9. In this case the three

switches from location u1 to u2 in U 3, from location v1 to v2 in V 3 and from

location w1 to w2 in W 3 must synchronize.

u2u1
h

U3

w2w1
h

W3

v2v1

V3

h

Figure 6.9: Timed Automata U 3, V 3 and W 3

The timed automaton (U ‖ V ) • sync {a → b} is behaviorally equivalent to the

product U 4 ‖ V 4 of the timed automata U 4 and V 4 illustrated in Figure 6.10. In

V 4 a switch labeled a is added to duplicate the switch labeled b. As the switch

in automaton U 4 is also labeled a, this ensures that the product automaton will

synchronize on these two switches. Consequently, the switch from location u1 to

location u2 in U 4 is always synchronized with a switch from location v1 to location

v2 in V 4, but not conversely. The translation from location v1 to location v2 can

use the switch labeled b in which case no synchronization takes place.

The timed automaton (U ‖ V ) • sync {a 7↔ b} is behaviorally equivalent to the

product U 5 ‖ V 5 of the timed automata U 5 and V 5 illustrated in Figure 6.11. In

this case the switches labeled a and b are both duplicated and a common name, d ,

is assigned to these new switches. This ensures that the product automaton will

synchronize on these two switches. Consequently, a translation from location u1 to

location u2 in U 5 can synchronize with a translation from location v1 to location

v2 in V 5 if the switch labeled d is used. However, a translation from location u1 to
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u2u1
a

v2v1

b

U4
V4
a

Figure 6.10: Timed Automata U 4 and V 4

u2u1

a

v2v1

b

U5 V5
d d

Figure 6.11: Timed Automata U 5 and V 5

location u2 in U 5 could use switch a, or a translation from location v1 to location

v2 in V 5 could use switch b; in either case no synchronization takes place.

6.5 Operation Semantics

we present a formal description of the operational behavior of this integrated lan-

guage. The fundamental semantic links between Object-Z and TA are:

• Object-Z operations are identified with states in Timed Automata.

• Pre/Post-condition of an Object-Z operation are identified with TA transition

conditions.

The key novel idea of integrating the Object-Z semantics and TA semantics is to

embed object state updates (of Object-Z) into the action transition semantics of

TA. To facilitate the description of dynamic behaviors of a system, we introduce a

set of locations A, called control locations, to coordinate the location switches from



6.5. OPERATION SEMANTICS 114

one Object-Z operation to another. Each location of a timed automaton specified

in a class must be either a control location or an Object-Z operation location. A

class has an Object-Z part OZDefinition which obeys the conventional definition

[66] and a TA part TADefinition which is a a timed automaton. We write OZop to

denote the set of Object-Z operations defined in the class. The original Object-Z

operation operators: parallel composition, nondeterministic choice, and sequential

composition are replaced by TADefinition defined as follows.

SOZTA is a tuple (S , S0, Σ,X , I ,E ), where

• S is a union of A and Op, in which A is a finite set of control (idle) states and

Op is a finite set of operation states corresponding to the Object-Z operations;

• S0, a subset of S , is a set of initial locations;

• Σ is a set of labels;

• X is a finite set of clocks;

• I is a mapping that labels each location s in S with some clock constraint in

Φ(X ); and

• E , a subset of S × S × Σ × 2X × Φ(X ), is the set of switches. A switch

〈s , s ′, a, r , ϕ〉 represents a transition from location s to location s ′ on input

symbol a. The set r gives the clocks to be reset with this transition, and ϕ

is a clock constraint over X that specifies when the switch is enabled.

In the following, we present a timed transition system SOZTA to represent opera-

tional semantic models for this integrated language. Before we start to define the
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operational semantics, we need some definitions for the validity of Object-Z and

TA expressions.

The fact that a state guard G is valid under the semantic function σ : Var 7→ Value

is denoted by the following notation:

σ ² G

The fact that an operation Op is valid under the semantic functions σ1, σ2 is denoted

by

σ1, σ2 ² Op

For example, in the context of the Store system,

{(stock , {itema , itemb}), (today , 20)}, {(stock , {itema , itemb , itemc}), (today , 20)}

² add [i? 7→ itemc]

To keep track of the changes of clock values, we use functions known as clock as-

signments mapping X to the non-negative reals R+. Let u, v denote such functions,

and use u ² ϕ to mean that the clock values denoted by u satisfy the guard ϕ. For

d ∈ R+, let u + d denote the clock assignment that maps all x ∈ X to u(x ) + d ,

and for r ⊆ X , let [r 7→ 0]u denote the clock assignment that maps all clocks in r

to 0 and agree with u for the other clocks in X \r .
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To facilitate the description of operational semantics, let

OP : Location 7→ OZop

denote the association between TA locations to Object-Z operations.

The operational semantics of this integrated language is an extension of TA transi-

tion semantics coupled with object states. The timed state transition system SOZTA

consists of states which are tuples 〈l , u, σ, σ1〉 and state transitions are defined by

the rules:

R1 :
l

a,ϕ,r−→1 l ′ σ, σ1 ² OP(l) σ1, σ2 ² OP(l ′) u ² ϕ u ′ = [r 7→ 0]u u ′ ² I (l ′) l , l ′ ∈ Op

〈l , u, σ, σ1〉 a−→1 〈l ′, u ′, σ1, σ2〉

R1 is an action transition from one operation (location) state l to another operation

state l ′ where the post object state of l must be the same as the pre object state

of l ′, the timing constraints on the transition must be satisfied and the location

invariants of l and l ′ must be true.

R2 :
σ1, σ2 ² OP(l) u ² I (l) u + d ² I (l ′) d ∈ R+ l ∈ Op

〈l , u, σ1, σ2〉 d−→1 〈l , u + d , σ1, σ2〉

R2 is a delay transition in a certain operation state where only time is progressed.

R3 :
l

a,ϕ,r−→1 l ′ u ² ϕ u ′ = [r 7→ 0]u u ′ ² I (l ′) l ∈ A l ′ ∈ A

〈l , u, σ, σ〉 a−→1 〈l ′, u ′, σ, σ〉
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R3 is an transition from one control (location) state l to another control state l ′

where object states remain the same.

R4 :
u ² I (l) u + d ² I (l ′) d ∈ R+ l ∈ A

〈l , u, σ, σ〉 d−→1 〈l , u + d , σ, σ〉

R4 is a delay transition in a control state where time is progressed.

R5 :
l

a,ϕ,r−→1 l ′ σ1, σ2 ² OP(l) u ² ϕ u ′ = [r 7→ 0]u u ′ ² I (l ′) l ∈ Op l ′ ∈ A

〈l , u, σ1, σ2〉 a−→1 〈l ′, u ′, σ2, σ2〉

R5 is an action transition from one operation (location) state l to a control state

l ′ where the post object state of l much be the same as the object state of l ′, the

timing constraints on the transition must be satisfied and the location invariants

of l and l ′ must be true.

R6 :
l

a,ϕ,r−→1 l ′ σ, σ1 ² OP(l ′) u ² ϕ u ′ = [r 7→ 0]u u ′ ² I (l ′) l ∈ A l ′ ∈ Op

〈l , u, σ, σ〉 a−→1 〈l ′, u ′, σ, σ1〉

R6 is the inverse of R5.

These rules define six types of transitions in SOZTA. These rules are applied to a

single timed transition system. A complex system can be described as a product of

interacting timed transition systems. The communications between two transition

systems are obtained by synchronizing the transition with identical labels.
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6.6 An Example: Electronic Key System

As an illustration of how Object-Z and TA can be successfully integrated in prac-

tice, we present here an electronic key system as an example.

A room can be accessed through a sliding door. To open the sliding door, an

electronic key is inserted into the door’s electronic lock. The identity of the key (as

encoded as part of the key) is passed to the lock that then checks to see if the key

has permission to access the room. When access permission has been checked the

key is ejected from the lock. If the key has access permission, the door is opened

(or remains open); otherwise the door is closed (or remains closed).

We shall suppose that it takes less than Tsp time units, from the time the key is

inserted in the door’s lock, for the key to supply its identity to the lock, less than

Tch time units for the lock to check if the key has permission to access the room,

less than Tej time units for the key to be ejected from the lock, and less than Top

time units for the door to satisfy an ‘open’ request. Also, if the door has been

open Tto time units since the last ‘open’ request, a time-out occurs and the door

is closed. It takes less than Tcl time units for the door to satisfy a ‘close’ request.

A key is specified by the class Key :
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Key
supplyId
k ! : Key

k ! = self

Tsp,Tej : R

x : clock

A supplyId
x < Tsp

supplyId-s, x := 0

supplyId-e
[k!]

wait
eject-s, x := 0

eject-e

eject
x < Tej

The only operation in the Object-Z section of this class is supplyId specifying the

situation in which a key supplies its identity (to the lock). When considering time

aspects, however, other situations arise. A key will be in location wait after it

has supplied its identity and is waiting to see whether or not access is granted.

A key will be in location eject when it is being ejected from the lock once access

permission has been decided.

The lock is specified by the class Lock :
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Lock

keys : PKey

grant
k? : Key

k? ∈ keys

deny
k? : Key

k? 6∈ keys

Tch : R

y : clock

B grant
y < Tch

[ k? ]
grant-s, y := 0

grant-e

deny
y < Tch

[ k? ]
deny-s, y := 0

deny-e

The attribute keys in this class denotes the set of keys that have permission to

access the room. The operations grant and deny capture whether or not any

supplied key is in this set, and hence whether or not access to the room is granted

or denied.

The door is specified by the class Door :
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Door
State ::= opened | closed

status : State

open
∆(status)

status ′ = opened

Init
status = closed

close
∆(status)

status ′ = closed

Top,Tto,Tcl : R

z : clock

closed close
z < Tcl

open
z < Top

close-e

open-s, z := 0

open-e, z := 0
opened
z <= Tto

timeOut, z := 0
[z = Tto]

open-s, z := 0open-s

open-s,
z := 0

close-s,
z := 0

close-s close-s

close-s,
z := 0

A door can be in any of four situations: closed (location closed), opening (location

open where the operation open occurs), opened (location opened), and closing

(location close where the operation close occurs). In each situation, the door can

receive an instruction to open or close the door. In all cases, when an instruction

to open the door is received, the switch open-s is taken, while if an instruction to

close the door is received, the switch close-s is taken.

In locations closed or close, if the instruction to open is received, the operation
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open is invoked, while if the instruction to close is received effectively the door

continues as if nothing had happened. In location open, if the instruction to open

is received effectively the door continues as if nothing had happened, while if the

instruction to close is received the operation close is invoked. In location opened ,

if the instruction to open is received the door remains open, but the timing is reset

to 0, while if the instruction to close is received the operation close is invoked.

The complete electronic key system can now be specified by the class KeySystem.

In this class, the attribute keys denotes the set of all keys in the system; the set

of keys that have permission to access the room will be a subset of keys . The

synchronization conditions ensure that the key identity output by a key is passed

to the lock and used to determine whether or not that key has permission to access

the room, and that once the access permission has been decided the key is ejected

and the door requested to open or close, depending on whether access was granted

or denied.

KeySystem

keys : PKey
lock : Lock
door : Door

lock .keys ⊆ keys

Init
door .Init

((‖ key : keys) ‖ lock ‖ door) • sync{ky : keys •
ky .supplyId -e ↔ lock .grant-s ,

ky .supplyId -e ↔ lock .deny-s ,

lock .grant-e ↔ ky .eject-s ↔ dr .open-s ,

lock .deny-e ↔ ky .eject-s ↔ dr .close-s}
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6.7 Conclusion

Software system specification is an important activity in software engineering. The

specification of complex real-time systems requires powerful mechanisms for mod-

eling state, concurrency and real-time behavior as well as tool support for verifying

the established system model.

In this chapter, we proposed a new integrated specification language, OZTA. Build-

ing on the strength of Object-Z and Timed Automata, which are state-of-the-art

modelling techniques, respectively prevailing in Europe and North America, OZTA

provides

• not only powerful mechanisms to capture various aspects of a complex real-

time system, namely, system functionalities can be best captured in terms

of operations and constraints — the ideal application for Object-Z, system

control behaviors can be best captured in terms of visual flows between system

functionalities— the ideal application for Timed Automata;

• but also easy access to TA’s tool support, for the verification.
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7.1 Introduction

OZTA is a novel integrated formal language which builds on the strengths of

Object-Z and Timed Automata in order to provide a single notation for mod-

elling the static, dynamic and timing aspects of complex systems as well as for

verifying system properties by reusing Timed Automata’s tool support.

In the previous chapter, we have introduced the basics of OZTA notation and

made an preliminary exploration of its operational semantics. In this chapter, we

will further enhance the OZTA notation by extending its automaton part with

time pattern structures. And based the enhanced OZTA syntax, we will formalize

the semantics of OZTA in the Unifying Theories of Programming(UTP) [40] to

provide the foundation for language understanding, reasoning and especially, tool

construction. Note that the previous operational semantics we provided is not

totally compatible with the denotation semantics as it doesn’t support pattern

concepts.

7.2 The Syntax of OZTA

OZTA specifications are combination of Object-Z schemas with timed automata.

TA has powerful mechanisms for designing real-time models using multiple clocks

and has well developed automatic tool support. However, if TA is used to capture

real-time requirements, then one often needs to manually cast common timing

behaviors, such as deadline, timeout etc., into a set of clock variables with carefully
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calculated clock constraints, which is a process that is very much towards design

rather than specification. In chapter 3, we studied TA patterns and found that a

set of common timed patterns, such as deadline, timeout , waituntil , can be used

to facilitate TA design in a systematic way. In this chapter, before presenting the

semantics of OZTA, we will firstly give a full version of the OZTA syntax, in which

the OZTA notation is enhanced by implementing its automaton part with timed

pattern structures. The specification of the syntax of OZTA enhanced with the

notion of timed patterns can be presented as follows:
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Specification ::= CDecl ; ...; CDecl
CDecl ::=¹ Visiblist ; InheritC ; StateSch; INIT ; StaOp; [TADecl ]
Visiblist ::= VisibAttr ; VisibOp
InheritC ::= InheritCName
StateSch ::= CVarDecl
CVarDecl ::= v : T
StaOp ::= ∆(AttrName | ActName),CVarDecl • Pred(u, v ′)
TADecl ::= ClockDecl ; TA
ClockDecl ::= x : Clock
TA ::= State
| State • Invar(x , n)
| [Event ][Reset(x )][Guard(x , n)] • TA
| Wait (x , n)
| TA • Deadline (x , n)
| TA • WaitUntil (x , n)
| TA • Timeout(x , n) • TA
| TA; TA
| TA 2 TA
| TA u TA
| µX • TA(X )
| TA1 ‖ TA2 • S
State ::= StaOp(operation state) | StaCtr(control state) | StaU
Event ::= Event | Event ! | Event?
Reset ::= ( := )〈〈Clock × N 〉〉
S ::= { 7↔ }〈〈Event × Event〉〉 | { ↔ }〈〈Event × Event〉〉 |
{ → }〈〈Event × Event〉〉
Guard ::= ( <= )〈〈Clock × N 〉〉 | ( >= )〈〈Clock × N 〉〉
| ( < )〈〈Clock × N 〉〉 | ( > )〈〈Clock × N 〉〉
| ( ∧ )〈〈Φ× Φ〉〉 | true
Invar ::= ( <= )〈〈Clock × N 〉〉 | ( < )〈〈Clock × N 〉〉 | true

in which,

• StaCtr represents a control (idle) state which coordinates the state switches

from one Object-Z operation to another and StaOp is an operation state

corresponding to the Object-Z operation. Each state of a timed automaton

specified in an OZTA class must be either a control state or an operation

state.
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• Object-Z operations are identified with states in TA part of an OZTA class.

INIT operation scheme defines the initial values of the data variables declared

in a state schema, It implicitly corresponds to the first state defined in the

expression of the TA part of an OZTA model, which is either a control state

or an operation state.

• Event , Reset(x ), Guard(x , n) are transition labels for an automaton TA,

which respectively specifies synchronization (Event ! is an output event, Event?

is an input event), clock reset and clock constraint; State • Invar(x , n)

specifies a state with a local invariant. Meanwhile, pre/post-condition of

an Object-Z operation are implicitly identified as TA transition conditions.

• The rest of the expressions are the Timed Automata patterns which now can

be directly utilized to construct Timed Automata.

Among the specification, the argument x represents a certain clock, and n is a

natural number. The key novel idea of integrating the Object-Z semantics and TA

semantics is to embed object state updates (of Object-Z) into the action transition

semantics of TA.

7.2.1 An example : Shunting Game

The rules of the shunting game is that: given a board, a starting position and

four marked positions, a move consists of the black piece (the shunter) moving one

position either vertically or horizontally provided either
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• the position moved to is empty, or

• the position moved to is occupied by a white piece (a box) but the position

beyond the box is empty, in which case the box is pushed into empty position

The shunter can not push two or more boxes at a time. At each stage a score is

kept of the number of moves made so far. The game ends when the boxes occupy

the four marked positions.

The OZTA model of this shunting game is given as follow,

Board == (1..7× 3..4) ∪ (3..4× 1..6)

next : Board × Board

∀(i , j ), (k , l) : Board •
(i , j )next(k , l) ⇔
i = k ∧ (j = l + 1 ∨ j = l − 1) ∨
j = l ∧ (i = k + 1 ∨ i = k − 1)

WinGame : PBoard

over = {(3, 3), (4, 3), (3, 4), (4, 4)}

beyond : PBoard × PBoard ³ N× N
dom beyond = {b,w : Board | bnextw}
∀ b,w : dom beyond •
beyond(b,w) = 2w − b
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Game

shunter : Board
box : PBoard
score : N

Move
∆(shunter , box , score)

box 6= WinGame
shunter ′nextshunter
shunter ′ 6∈ box ⇒ box ′ = box
shunter ′ ∈ box ⇒

box ′ = (box − {shunter ′})∪
{beyond(shunter , shunter ′)}

score ′ = score + 1

Init
shunter = (1, 3)
box = {(2, 3), (4, 2), (4, 4), (6, 3)}
Win
score! : N

box = WinGame

Lose
∆(score)
score! : N

box 6= WinGame
score ′ = 0

x , y : clock

TA =̂ (x := 0) • µX • A; (x < 30) • Move • Deadline(y , 3)
2 (x < 30) • Win
2 (x >= 30) • Lose; X

The Init schema defines the starting positions of the shunter and the four boxes.

WinGame represents the set of the marked positions.

The shunter takes at most 3 time units to push an item to its next position. The

shunter loses the game if he can not finish his task in 30 time units. According to the

composition, external choice, deadline, recursion timed patterns, the corresponding

graphical TA specification can be derived as in Figure 7.1.

7.3 The Semantics of OZTA

Before building the semantics model for OZTA, we need to choose an appropri-

ate model of time. There are two typical time models: a discrete model and a
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MoveAndPush

y<=3

A

WinGameLose

MoveAround

x:=0

x<30

y:=0
x<27

score!
x>=30

score!

Figure 7.1: The Shunting Game

continuous model. The current semantics model for OZTA [22] is a primitive op-

erational semantics based on continuous time without pattern features. To make

our model with the extension of timed patterns more apt for exploration of al-

gebraic refinement laws, we choose the discrete model. The discrete time model

has also been adopted by the Sherif and He’s work [64] on the semantics for time

Circus [75, 76, 77] and Qin, Dong and Chin’s work [59] on the semantics for TCOZ.

7.3.1 The Automata Model

The following meta variables are introduced in the alphabet of the observations

of the OZTA automata behavior, some of which are similar to those in the previ-

ous UTP semantic frameworks [59]. The key difference is that we now take into

consideration clock variable updates.

• ok , ok ′: Boolean. These two variables are introduced to denote the obser-

vations of automaton initiation and termination. ok records the observation
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that the automaton has started. When ok is false, the automaton has not

started, so no observation can be made. ok ′ records the observation that the

automaton has successfully terminated. The automaton is divergent when

ok ′ is false.

• wait , wait ′: Boolean. Because of the requirement for synchronization, an

active process will usually engage in alternate periods of internal activity

(computation) and periods of quiescence or stability, while it is waiting for

a reaction or an acknowledgement from its environment. We therefore intro-

duce a variable wait ′, which is true just when a process is waiting in such

quiescent periods. Its main purpose is to distinguish intermediate observa-

tions from the observations made on termination. wait is used in the initial

observation, which is true when the process starts in an intermediate state.

• state, state ′: Var → Value. In order to record the state of data variables(class

attributes and local variables) that occur in an automaton, these two vari-

ables are introduced to map each variable to a value in the corresponding

observations.

• tr , tr ′: seq(seqEvent × PEvent). The two variables are introduced to record

the sequence of observations on the interactions between an automaton and

its environment. tr records the observations that occurred before the automa-
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ton starts and tr ′ records the final observation. Each element of the sequence

represents an observation over one time unit. Each observation element is

composed of a pair, where the first element of the tuple is the sequence of

events that occurred during the time unit, and the second is the associated

set of refusals at the end of the same time unit. The set Event includes all

possible communicating events.

• trace: seqEvent . This variable is used to record a sequence of events that

take place so far since the last observation. It can be derived from tr , tr ′ as

the following:

flat(tr)a trace = flat(tr ′) where a is a concatenation operator flat is defined

as:

flat : seq(seqEvent × PEvent) → seqEvent

flat(〈〉) =̂ 〈〉 flat(〈(es , ref )〉a tr) =̂ es a flat(tr)

An auxiliary function cs(trace) is adopted to extract the subsequences of

communication events from the sequence trace. The function cs is defined

as:

cs((〈〉)) =̂ (〈〉)

cs((〈e〉) a tail) =̂ 〈e〉a cs(tail), e ∈ Event .

• cval , cval ′: Clock → N ∪ {NULL}. Clock denotes all clock variables; N is

the set of natural numbers; NULL denotes the situation that the clock has

not been enabled yet.
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Some other definitions are given to facilitate the description of OZTA semantics.

• The predicate no interact(trace) denotes that there are no communication

events recorded in trace.

no interact(s) =̂ cs(s) = 〈〉

• The operator ◦ is the composition of two sequentially made observations.

For two observation predicates P(v , v ′) and Q(v , v ′), where v , v ′ represents

respectively the initial and final versions of all observation variables, the

composition of them is:

P(v , v ′) ◦Q(v , v ′) =̂ ∃ v0 • P(v , v0) ∧ Q(v0, v
′)

• A binary relation ¹ is the ordinary subsequence relation between sequences

of the same type.

7.3.2 The Semantics of OZTA Automata with Patterns

In this section, the observation model for OZTA automata is developed. We use TA

to stand for the semantics predicate of an automaton TA instead of the term [[TA]]

in UTP. Before we go into to the details of the semantics for each OZTA automata

expression, three healthiness conditions R1−R3 [59, 40] must be satisfied by the

semantics predicate for any automaton,

R1 TA = TA ∧ (tr
t¹ tr ′)

tr
t¹ tr ′ states that, given two timed traces, tr and tr ′, tr ′ is an expansion of tr .
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R2 TA(tr , tr ′) = TA(<>, tr ′ − tr)

It states that the initial value of tr may be replaced by ‘<>’ and the events in

which the process TA itself engages remains the same.

R3 TA = q ¢ wait ¤ TA

Where the predicateq = ¬ok ∧ (tr
t¹ tr ′) ∨ ok ′ ∧ (tr ′ = tr) ∧ ... ∧ (wait ′ = wait).

It means that if the process is asked to start in a waiting state of its predecessor,

it leaves the state unchanged.

State and Control Operation

• Operation State

StaOp =̂ ∆(b), a : T • Pred(u, v ′) =̂ ok ′ ∧ ¬ wait ′ ∧ no interact(trace) ∧

(∀ x : dom cval | cval(x ) 6= NULL • cval ′ = cval ⊕ {x 7→ (cval(x ) + #tr ′ −

#tr)}) ∧ ((∃ val1 • state ′ = state ⊕ {a 7→ val1}) ◦ (∃ val • state ′ = state ⊕

{a 7→ val} ∧ Pred(state(u), state ′(v ′))))

In an operation state, time may progress, and no event or state will be up-

dated. NULL means the clock has no value, it has not been initialized yet.

• Control state

StaCtr =̂ ok ′ ∧ ¬ wait ′ ∧ no interact(trace) ∧ (∀ x : dom cval | cval(x ) 6=

NULL • cval ′ = cval ⊕ {x 7→ (cval(x ) + #tr ′ −#tr)})

In a control state, time may progress, and no event or state update.
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• Urgent state

StaU =̂ (StatOP ∨ StaCtr) ∧ #tr ′ = #tr

The semantics of an urgent state is that the automaton will pass the control

from the urgent state to a next state without delay.

• Init State

StaI =̂ ok ′ ∧ ¬wait ′ ∧ tr = 〈〉 ∧ no interact(trace) ∧ (∀ x : dom cval •

cval(x ) = NULL) ∨ ok ′ ∧ ¬wait ′ ∧ tr 6= 〈〉 ∧ no interact(trace) ∧ (∀ x :

dom cval | cval(x ) 6= NULL • cval ′ = cval ⊕ {x 7→ (cval(x ) + #tr ′ −#tr)})

The sequence of observations of an OZTA model starts from an initial state.

The value of each clock variable is initially set to NULL. The initial state

may also act as a normal control state after the automaton starts working.

Local Invariant

In verification tools e.g. UPPAAL, local invariants are often restricted to con-

straints that are downwards closed, i.e., in the form: x < n or x ≤ n where n is

natural number.

State • Invar(x , n) =̂ x ∈ dom cval ∧ (State ∧ (cval(x ) + #tr ′ −#tr) < n ∧ (∀ c :

dom cval | cval(c) 6= NULL • cval ′ = cval ⊕{c 7→ (cval(c)+#tr ′−#tr)})∨Stop)
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Clock Reset

Reset(x ) =̂ ok ′ ∧ ¬wait ′ ∧ #tr ′ = #tr ∧ state ′ = state ∧ (∃ x : Clock | x ∈

dom cval • cval ′ = cval ⊕ {x 7→ 0})

Consecutive clock reset operations are combined into one atomic reset operation.

Reset(x ) • TA =̂ Reset(x ); TA

Event

Event =̂ ok ′ ∧ ¬wait ′ ∧ trace = 〈Event〉 ∧ state ′ = state ∧ #tr ′ = #tr

Event • TA =̂ Event ; TA

Clock Constraint

An automaton can be guarded by a clock constraint. The clock-guarded automaton

Guard(x , n) • TA behaves as TA if the condition Guard(x , n) is initially satisfied.

Guard(x , n) • TA =̂ (∃ x : Clock • x ∈ dom cval) ∧ (Guard(x , n) ∧ TA ∨

¬ Guard(x , n) ∧ Stop)

It enjoys the following properties:

• G1. false • TA = Stop

• G2. true • TA = TA

• G3. Guard(x , n) • Stop = Stop
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• G4. Guard1(x1, n1) • (Guard2(x2, n2) • TA) = (Guard1(x1, n1) ∧ Guard2(x2, n2)) •

TA

• G5. Guard(x , n) • (TA1; TA2) = (Guard(x , n) • TA1); TA2

These algebraic laws can be derived from our semantic definition according to

propositional and predicate calculus. For example, G1-G3 can be proved as follows,

Proof :

• G1. false • TA = false ∧ TA ∨ ¬ false ∧ Stop = false ∨ true ∧ Stop = Stop

• G2. true • TA = true ∧ TA ∨ ¬ true ∧ Stop = TA ∨ false = TA

• G3. Guard(x , n) • Stop = (∃ x : Clock • x ∈ dom cval) ∧ (Guard(x , n) ∧

Stop ∨ ¬ Guard(x , n) ∧ Stop) = (∃ x : Clock • x ∈ dom cval) ∧ Stop = Stop

Wait

The Wait construct specifies an automaton which idles for n time units and then

terminates.

Wait(x , n) =̂ ok ′ ∧ ¬ wait ′ ∧ #tr ′ − #tr = n ∧ (∀ i : #tr ′ < i < #tr •

no interact(π1(tr
′(i))))

It is subject to the following laws.

• Wait n1; Wait n2 = Wait(n1 + n2)

• Stop • Timeout(x , n) • TA = Wait n; TA
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Deadline

The Deadline construct TA • Deadline(x , n) imposes a timing constraint on the

automaton TA, which requires that TA should terminate no later than n time

units.

TA • Deadline(x , n) =̂ (ok ∧ (x ∈ dom cval ∧ cval ′ = cval ⊕ {x 7→ 0})) ◦ TA •

Invar(x , n)

It can also be described in this way,

TA • Deadline(x , n) =̂ ok ∧ x ∈ dom cval ∧ Reset(x ) • TA • Invar(x , n)

WaitUntil

The WaitUntil construct TA • WaitUntil(x , n) constrains automation TA to

finish in no less than n time units.

TA • WaitUntil(x , n) =̂ TA ∧ (#tr ′ − #tr ≥ n) ∨ ((∃ tro • tr ¹ tro ¹

tr ′ ∧ #tro − #tr < n) ∧ (ok ∧ x ∈ dom cval ∧ cval ′ = cval ⊕ {x 7→ 0})) ◦

(TA[tro/tr
′, true/ok ′, false/wait ′]) ◦ (Wait(x , n − (#tro −#tr))[tro/tr ]))

Timeout

The timeout construct TA1 • Timeout(x , n) • TA2 specifies that if no transition

has been triggered for n time units in the timed automaton TA1, then TA1 will

timeout and the control will be passed to TA2.
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TA1 • Timeout(x , n) • TA2 =̂ (ok ∧ (x ∈ dom cval ∧ cval ′ = cval ⊕ {x 7→ 0})) ◦

((TA1 ∧ no interact(trace) ∧ #tr ′ −#tr ≤ n) ∨ (∃ k : #tr < k ≤ tr + n,∃ tro •

π1(tr
′(k)) 6= 〈 〉 ∧ tr ¹ tro ∧ #tro − #tr = k ∧ (∀ i : #tr < i < #tr + k •

no interact(π1(tr
′(i))) ∧ tro(i) = tr ′(i)) ∧ TA1[tro/tr ]) ∨ (∃ tro • tr ¹ tro ∧

#tro − #tr = n ∧ (∀ i : #tr < i < #tr + n • no interact(π1(tr
′(i))) ∧ tro(i) =

tr ′(i)) ∧ TA2[tro/tr ]))

Recursion

We define the semantics of recursion same as [64, 59]. We say that a process A is as

good as process B if it will meet all the operations and satisfy all the specifications

satisfied by B . This relation is denoted by A w B . A process A is equal to a

process B if

A = B =̂ A w B ∧ B w A.

Notice that the set of observations in our model form a complete lattice with respect

to the relation w, having Chaos (which is a process with its predicate as true) as

its bottom element, u as the greatest lower bound. So we can define the semantics

of recursion as the weakest fixed point [40].

µX • TA(X ) =̂ u{X | X w TA(X )}

X is the fixed point.
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Parallel Composition

The parallel composition of two automata represents all the possible behaviors of

both automata which are synchronized on a specific set of events and on the time

when the events occur.

In addition to the handshake synchronization, OZTA also supports other two syn-

chronization mechanisms, namely, partial synchronization and sometime synchro-

nization.

Given a parallel composition TA1 |[E ]| TA2 • S , where E denotes the set of events

on which TA1 and TA2 will synchronize, and S contains elements of the form a → b,

a 7↔ b (E ∩ event(S ) = ∅).

The notation a → b ∈ S simply indicates that event a from TA1 must be synchro-

nized with event b from TA2, but event b can occur independently of a. Given

a 7↔ b ∈ S , it indicates that event a from TA1 and b from TA2 may synchronize

with each other, or occur independently.

This parallel composition is defined in terms of the general parallel merge operator

‖M in the UTP [40]:

A1 |[E ]| A2 • S =̂ (((A1; idle) ‖M A2) ∨ (A1 ‖M (A2; idle))); ((ok ⇒ Skip) ∧ (¬ok ⇒ tr
t¹ tr ′))

Take note that Skip is a semantic predicate which preserves the observations, that

is, Skip =̂ (obs′ = obs), where obs denotes all observables.
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An idle process, which may either wait or terminate, follows after each of the two

automata. This is to allow each of the automata to wait for its partner to terminate.

idle =̂ ok ′ ∧ no interact(trace) ∧ state ′ = state

The merge predicate M is defined as,

M =̂ ok ′ = (0.ok ∧ 1.ok) ∧ wait ′ = (0.wait ∨ 1.wait) ∧ state ′ = (0.state ⊕

1.state) = (1.state ⊕ 0.state) ∧ tr ′ ∈ syn(0.tr , 1.tr ,E , S ) ∧ #tr ′ = #0.tr =

#1.tr ∧ cval ′ = (0.cval ⊕ 1.cval) = (1.cval ⊕ 0.cval)

Given two timed traces tr1, tr2, and a set of events E , and a set of pairs of par-

tial/sometime synchronizations S , the set syn(tr1, tr2,E , S ) is defined inductively

as follows.

syn(tr1, tr2,E ,∅) =̂ syn(tr2, tr1,E ,∅)

syn(〈〉, 〈〉,E , S ) =̂ {〈〉}

syn(〈(t , r)〉, 〈〉,E , S ) =̂ {〈(t ′, r)〉 | t ′ ∈ (t ‖
E S
〈〉)}

syn(〈〉, 〈(t , r)〉,E , S ) =̂ {〈(t ′, r)〉 | t ′ ∈ (〈〉 ‖
E S

t)}

syn(〈(t1, r1)〉a tr1, 〈(t2, r2)〉a tr2,E , S ) =̂

{〈(t ′, r ′)〉a u | t ′ ∈ (t1 ‖
E S

t2) ∧ r ′ = r1 ∪ r2 ∧

u ∈ syn(tr1, tr2,E , S )}

s ‖
E S

t is used to merge untimed traces s and t into one untimed trace, where E is the

set of events to be synchronized, S is the set of partial/sometime synchronization
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pairs.

In the following clauses, e, e1 are representative elements of E (events), x , x1 repre-

sent communication events not residing in E or S , a → b, a1 → b1 are representa-

tive partial synchronization pairs from S , while c 7↔ d , c1 7↔ d1 are representative

sometime synchronization pairs from S . Let y , y1, y2 ∈ {x , x1, b, b1, c, d , c1, d1}.

Let z , z1, z2 ∈ {e, a, e1, a1}. Moreover, we use k(a, b) to denote the synchronization

of a and b.

s ‖
E ∅

t =̂ t ‖
E ∅

s 〈〉 ‖
E S
〈〉 =̂ {〈〉}

〈z 〉 ‖
E S
〈〉 =̂ 〈〉 ‖

E S
〈z 〉 =̂ {}

〈y〉 ‖
E S
〈〉 =̂ 〈〉 ‖

E S
〈y〉 =̂ {〈y〉}

〈y〉as ‖
E S
〈z 〉at =̂ {〈y〉al | l∈(s ‖

E S
〈z 〉at)}, z→y 6∈S

〈z 〉as ‖
E S
〈y〉at =̂ {〈y〉al | l∈(〈z 〉as ‖

E S
t)}, z→y 6∈S

〈e〉as ‖
E S
〈e〉at =̂ {〈e〉al | l ∈ (s ‖

E S
t)}

〈z1〉as ‖
E S
〈z2〉at =̂ {}, where z1 6= z2

〈y1〉as ‖
E S
〈y2〉at =̂ {〈y1〉al | l ∈ (s ‖

E S
〈y2〉at)}∪

{〈y2〉al | l ∈ (〈y1〉as ‖
E S

t)}, where y1 7↔ y2 6∈ S

〈a〉as ‖
E S
〈b〉at =̂ {〈k(a, b)〉al | l ∈ (s ‖

E S
t)}∪

{〈b〉al | l ∈ (〈a〉as ‖
E S

t)}
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〈b〉as ‖
E S
〈a〉at =̂ {〈k(a, b)〉al | l ∈ (s ‖

E S
t)}∪

{〈b〉al | l ∈ (s ‖
E S
〈a〉at)}

〈c〉as ‖
E S
〈d〉at =̂ {〈k(c, d)〉al | l ∈ (s ‖

E S
t)}∪

{〈c〉al | l ∈ (s ‖
E S
〈d〉at)} ∪ {〈d〉al | l ∈ (〈c〉as ‖

E S
t)}

A network of timed automata is the parallel composition A1 ‖ A2 ‖ ... ‖ An of a

set of timed automata A1,A2, ...,An .

7.3.3 The Semantics of Class

OZTA has two kinds of classes, active and passive ones. The behavior of (an object

of) an active class can be specified by a record of its continuous interactions with

its environment via its time automaton specifications, whereby any update on its

data state is hidden. A passive class does not have its own thread of control and

its state and operations (processes) are available for use by its controlling object.

To address issues like class declarations, their well-formed definitions and their

composition, we adopt the same class model for OZTA from TCOZ since TCOZ

and OZTA have very similar object-orientation features except that the Timed CSP

operations are now replaced with timed automata. More detailed information on

the semantics of class model, such as class encapsulation, inheritance, and dynamic

binding, can be referred to [59].
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7.4 Conclusion

In this chapter, we firstly further enhanced the OZTA notation by introducing a

set of timed patterns to its TA part, which can facilitate specifying the dynamic

and timing features of complex real-time systems in a systematic way. Secondly,

we presented an enhanced semantics in unifying theories of programming. This

semantics model of OZTA provides the foundation for language understanding,

reasoning and especially, tool construction which will be discussed in the next

chapter.
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8.1 Introduction

The specification of complex real-time systems requires powerful mechanisms for

modelling data structure, concurrency and real-time behavior as well as tool-

support for building up and verifying the established models.

HighSpec is an interactive system for composing and checking OZTA models.

HighSpec supports all the modelling features of OZTA and provides powerful

checking capabilities. The main functionalities are listed below,

• Automated systematic TA design via timed pattern,

• Schema editing and expansion,

• Syntax and type checking,

• Projection to TA model checker, UPPAAL, for verification,

• Generation of LATEXpresentation of established models.

�

Figure 8.1: Overview of HighSpec
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Figure 8.1 provides an overview of HighSpec: it mainly consists of five compo-

nents, i.e., a powerful GUI editor to compose Object-Z schemas and the corre-

sponding timed automaton, a syntax and type checker, a LATEX code generator for

read of established OZTA models and model translators to UPPAAL for verifica-

tion. The input language is based on the syntax and semantics we presented in

the previous chapters. The output can either be an XML representation of OZTA

models or LATEX source files of OZTA models; HighSpec can also generate pro-

jections of OZTA models which are ready to be taken as input for simulation and

verification in UPPAAL.

8.2 Modeling

HighSpec provides powerful automated support with user commands for directing

the design of an OZTA model. All the information input from the user interface

is collected into a special Abstract Data Type (ADT) designed according to the

integrated syntax of Object-Z and Timed Automata. Basically, the information can

be divided into three parts. The system configuration part supports declaration of

global information and classes. Each OZTA class contains an Object-Z part and a

Timed Automaton part . The Object-Z part contains the information of Object-Z

schema such as state variables, operations and pre/post condition of operations,

and the Timed Automaton part captures the information about the control flow

between the Object-Z operations and related timing behaviors according to system

requirements.
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The Object-Z schema information recorded in the ADT plays an important role for

designing the corresponding timed automaton. Once the definitions of the Object-

Z operation schemas in an OZTA class are completed, its corresponding timed

automaton can be generated in a top-down way by repeatedly applying the timed

patterns to fulfil the control and timing requirements. Guidelines for designing the

TA part of OZTA models can be found in chapter 3.4.

8.3 Checking

An OZTA syntax and type checker is implemented in HighSpec for checking

the validity of an OZTA model, as well as model translators for verifying various

properties of OZTA models by reusing TA’s tool support.

8.3.1 Syntax and Type Checker

The OZTA language has a quite complex syntax since it includes the Z notation.

It is easy, especially for an inexperienced OZTA user, to make some syntax or type

errors. HighSpec is able to detect and report such errors. A full set of type

checking rules can be found in our technical report [19]. The class diagram of this

checker is shown in Figure 8.2.
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OZTAChecker

ozta OZTAModel
global TypeEnv

+ check ()
+ checkClass()

OZChecker
oz OZ
env TypeEnv
globalEnv TypeEnv

+ check()
+ checkOperation()

Checker
env TypeEnv
globalEnv TypeEnv

PredChecker

+ check(Pred pred)
+ visitAndPred(Pred p)

ExprChecker

+ check(Expr expr) Type
+ visitPowerExpr(Expr p)

TypeEnv
pairs SymbolTable

+ getPairs() SymbolTable
+ getType(Name n) Type

Type

SymbolTable

SymboTabNode

name Name
type Type

+ equals(Object o) boolean
+ toString() String

ElseChecker

+ visitSchText(SchText)
+ visitNonClassDef()

Producer

Unification

+unify(Type t1,Type
t2) boolean

1
1

1

1 0..n

1

1..n

0..1

1

1

1..n

1 1

1
1

1
1

1

0..n

Figure 8.2: Class Diagram of the type checker

8.3.2 OZTA to UPPAAL

HighSpec adheres to light-weight principles: instead of implementing a model

checker for OZTA from scratch, we choose to project the integrated requirement

models into UPPAAL models so that UPPAAL can be utilized to simulate the

dynamic behaviors of the OZTA model and verify various kinds of properties.

The translation process can be automated by employing XML/XSL technology. In

our previous work [71], the syntax of Z-family languages, i.e., Z/Object-Z/TCOZ,

has been defined using XML Schema and supported by the ZML tool. As the

UPPAAL tool can read XML representations of Timed Automata, the automatic

projection of the OZTA model (in ZML) to a TA model (in UPPAAL XML) is

implemented in our OZTA tool.

The UPPAAL translator in HighSpec takes an OZTA specification represented

in XML, and outputs an XML representation of a Timed Automata specification

which has its own defined style file DTD by UPPAAL. The automatic transforma-
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tion is achieved firstly by making use of our OZTA ADT to easily extract informa-

tion from the specification. A TA interface is then built according to the UPPAAL

document structure, e.g., each TA document contains multiple templates and each

template contains some states, their transitions and transition conditions. The

outcome of our translator is the UPPAAL’s XML representation of TA, which is

ready to be taken into UPPAAL as input for future verification and simulation.

Although our projection can handle most of the TA information of an OZTA model,

one limitation needed to be pointed out is that: coupled with operation schema

predicates and data structures, the semantics of operation states in the TA part

of an OZTA model is slightly different from those of states in UPPAAL. However,

the main structure of the OZTA automata model is still consistent with that of the

UPPAAL model by regarding the OZTA operation states as abstracted automata

which need further implementation. This gap between the OZTA’s TA model and

UPPAAL’s TA model can be remedied by some manual work on the operation

states, namely, to further embody these abstracted automata by adding the data

information.

8.4 Case Study: A Frog Puzzle Game

In this chapter, we use a frog puzzle game model to demonstrate the use of

HighSpec. The puzzle specifies that, given seven stones, three white frogs on

the left facing right and three black frogs on the right facing left. A frog can move
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in the direction it is facing to an empty stone, which is adjacent or is reached by

jumping over a frog on an adjacent stone. To complicate the puzzle, we add some

timing constraints to the moves of frogs, i.e., each frog takes at least 1 time unit,

but no more than 2 time units to move to its next position. We define that the

puzzle is solved if a sequence of moves can be found that will exchange the positions

of the black and white frogs within 30 time units.

In the following, the case study will be carried out starting with the OZTA model

design, followed by the syntax and type checking, then projecting to UPPAAL,

and lastly generating the LATEX document.

8.4.1 Design of OZTA Models

Firstly, we build the OZTA model for this frog puzzle. Screen-shots are provided

in Appendix A.3 to briefly illustrate the Object-Z and structural TA design.

Posn == 1..7
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Puzzle

wf , bf : PPosn
nf : Posn
win : B

#wf = 3 ∧ #bf = 3

Init
wf = {1, 2, 3}
bf = {5, 6, 7}
nf = 4

BlackMove
∆(bf , nf )

¬(bf = {1, 2, 3} ∧ wf = {5, 6, 7}
∧ nf = 4)

nf ′ rightb nf
bf ′ = bf ∪ {nf } − {nf ′}
Lose1

∆(win)

win ′ = false

Win
∆(win)

bf = {1, 2, 3} ∧ wf = {5, 6, 7}
nf = 4
win ′ = true

WhiteMove
∆(wf , nf )

¬(bf = {1, 2, 3} ∧ wf = {5, 6, 7}
∧ nf = 4)

nf ′ leftw nf
wf ′ = wf ∪ {nf } − {nf ′}
Lose2

∆(win)

nf 6∈ rightb(| bf |)
nf 6∈ leftw(| wf |)
win ′ = false

x , y : clock

BlackMove

y<=2

s1

Win

Lose_1

s0

WhiteMove

y<=2

Lose_2

x:=0 count

x<=30

y:=0
x<30

y>=1

x>30

y:=0
x<30

y<=1

rightb : Posn ↔ Posn

∀ i , j : Posn •
i rightb j ⇔ i = j + 1 ∨ i = j + 2

leftw : Posn ↔ Posn

∀ i , j : Posn •
i leftw j ⇔ i = j − 1 ∨ i = j − 2

In this model, we define the empty stone also as a frog object nf . BlackMove

captures the position exchanges between the black frogs and the empty stone;

same for WhiteMove; Win defines the situation when the puzzle is solved. The
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game begins with a count event after its initial state; player will lose the game

when the time is out as described by (x > 30) • Lose1 or whenever the frogs are all

jammed by each other in the middle way as described by Lose2. The graphical TA

part of the model can be derived from the following textual specification according

to the sequential composition, external choice, deadline, waituntil , and recursion

patterns:

TA =̂ µY • (x := 0)(count) •
µX • ((x < 30) • BlackMove • Deadline(y , 2) • WaitUntil(y , 1); X )

2 ((x < 30) • WhiteMove • WaitUntil(y , 1) • Deadline(y , 2); X )
2 ((x <= 30) • Win; Y ) 2 ((x > 30) • Lose1; Y ) 2 (Lose2; Y )

8.4.2 Syntax and Type Check

After building the model, we will demonstrate several kinds of syntax errors and

type errors that can found and reported by HighSpec.

wf , bf : Posn
nf : Posn
win : B

#wf = 3 ∧ #bf = 3

For example, when the state schema shown above is checked, two error messages

would be reported as:

Error: not set type in size Expr: #wf (Posn)

Error: not set type in size Expr: #bf (Posn)

Since wf and bf are defined as type Posn, which is not a set.
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8.4.3 Model Checking Using UPPAAL

For this frog puzzle game, HighSpec can automatically extract the system con-

figuration and TA part from the ADT of the OZTA model and generate an XML

representation of the UPPAAL model. The state variables bf ,wf , nf are projected

to the UPPAAL model as global int variables bf [3],wf [3], nf . Due to the lim-

ited expressiveness for data manipulation in UPPAAL, we need to respectively

expand BlackMove and WhiteMove into three branches. The predicates in the op-

eration schemas of the OZTA model are projected as guards on the corresponded

transitions. The final UPPAAL model can be generated for verification and model-

checking in this way as shown in Figure 8.3.

s0

s1

Wf1
y<=2

Wf2

y<=2

Wf3
y<=2

Bf1

y<=2

Bf2

y<=2

Bf3

y<=2

Win

Lose_1

Lose_2

x:=0,wf[0]:=1,wf[1]:=2,wf[2]:=3,
bf[0]:=5,bf[1]:=6,bf[2]:=7,nf:=4

y:=0,temp:=nf

nf==wf[1]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==wf[2]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==wf[0]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==bf[1]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

y:=0,temp:=nf

nf==bf[2]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

y:=0,temp:=nf

nf==bf[0]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

x<=30,nf==4,
wf[1]+wf[2]+wf[0]==18

y>=1
nf:=wf[1],wf[1]:=temp

y>=1
nf:=wf[2],wf[2]:=temp y>=1

nf:=wf[0],wf[0]:=temp

y>=1
nf:=bf[1],bf[1]:=temp

y>=1
nf:=bf[2],bf[2]:=temp

y>=1
nf:=bf[0],bf[0]:=temp

win:=1

nf==wf[1]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0, temp:=nf

nf==wf[2]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0,temp:=nf

nf==wf[0]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0,temp:=nf

nf==bf[1]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

nf==bf[2]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

nf==bf[0]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

x>=30

win:=0

nf!=bf[0]-1,nf!=bf[0]-2,
nf!=bf[1]-1,nf!=bf[1]-2,
nf!=bf[2]-1,nf!=bf[2]-2,
nf!=wf[0]+1,nf!=wf[0]+2,
nf!=wf[1]+1,nf!=wf[1]+2,
nf!=wf[2]+1,nf!=wf[2]+2win:=0

Figure 8.3: Frog Puzzle Model in UPPAAL

To find the solution of this frog puzzle, we can check the following property in

UPPAAL.
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E <> P .Win

which means that there exists a sequence of moves that will exchange the positions

of the black and white frogs within 30 time units.

UPPAAL verified that this property holds for this given model. Solutions of the

puzzle can be visualized in UPPAAL’s simulator by running its diagnostics trace.

8.4.4 Generation LATEX Document

HighSpec supports generation of LATEX source code. This will be demonstrated

using the frog puzzle model once again, its correspondent LATEX source code can

be generated by the tool as follows.

\documentclass{llncs}

\usepackage{pt}

...

\usepackage{lncsexample}

\begin{document}

\begin{class}{Puzzle}

\begin{anonschema}

bf : \power Frog \\

wf : \power Frog \\

...

\end{anonschema}

\begin{init}

bf= \{1,2,3\} \\

wf=\{5,6,7\} \\ nf=4 \\

\end{init}

...

\begin{op}{BlackMove}

\Delta (bf,nf) \\
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\where %

!( bf=\{5,6,7\}\land wf=\{1,2,3 \} \\ \land nf=4 ) \\

nf’~ \underline{next1} ~ nf \\

bf’= bf \uni \{nf\}-\{nf’\}

\end{op}

... \where \t1 \mbox{\epsfxsize=80mm

\epsfbox{./Puzzle_Puzzle.eps}}

\end{class}

\end{document}

8.5 Conclusion

In this chapter, we presented, HighSpec, a distinguished tool support for mod-

elling and verification of complex real-time systems in that:

• it is built for a high-level integrated formal method, i.e., OZTA, which pro-

vides powerful mechanisms for capturing various aspects of complex real-time

systems such as data structure, concurrency and timing constraints. Many of

the integrated formal methods such as TCOZ have no exclusive tool support

even just for editing, not to say verification tools. This is mainly because in-

tegrated high-level specification languages usually contain various aspects of

abstracted system information, which makes the implementation of verifica-

tion tool from scratch impossible. The problem is circumvented in HighSpec

by projecting the integrated OZTA model to TA model so that TA’s tool sup-

port can be reused for checking.

• it implemented a novel mechanism for establishing TA models in a systematic
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way by using a set of timed patterns to specify common control and timing

behaviors. Comparing to traditional TA tool support such as UPPAAL,

HighSpec effectively releases users from the trouble to manually cast these

common behaviors into clock variables, states, and transition conditions so

that they can focus on the specification level of a model rather than the

implementation.
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Conclusion and Future Directions
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9.1 Summary and Contributions

There are a variety of formal techniques and tools that are reasonably mature and

well-understood in the literature. These all have similarities and differences to some

degree. It is important for the formal method community to understand and be able

to explain how various techniques differ one from another. Such an understanding

is necessary before any real evaluation of individual strengths and weakness of

the techniques is possible. The techniques under consideration, Object-Z/TCOZ

and TA lie at each end of the spectrum of formal modelling techniques. Object-

Z/TCOZ is good at structurally specifying high-level requirements for complex

systems, while TA is good at designing timed models in simple clock constraints

but with highly automatic tool support. It is of great interest to investigate the

links of these two kinds of different languages so that they can benefit each other.

One important contribution of this thesis is that the investigation on the strengths

and links between those two modelling techniques, TCOZ and TA, leads us to an

interesting research result, i.e., timed composable patterns (reminiscent of ‘design

patterns’ in object-oriented modelling). These patterns are formally defined in

Z and the process algebra-like compositional nature is preserved in the graphical

representations. These timed composable patterns:

• not only provide a proficient interchange media for transforming TCOZ spec-

ifications into TA designs;

• but also provide a generic reusable framework for systematically developing

models of real-time systems in TA alone.
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Another main contribution is that we provide two effective ways for building and

checking complex real-time models in a unified framework.

• With the projection approach, we demonstrate one possible engineering pro-

cess for modelling real-time complex systems, i.e., in the life cycle of software

development, TCOZ can be adopted for building high-level abstract models

and TA’s tool support can be reused for model-checking TCOZ model by

using the timed patterns as the interchange media for projection from TCOZ

models to TA models.

Based on the timed patterns, a set of transformation rules is defined. We also

investigate the semantic equivalence between TCOZ processes and Timed

Automata and provide a full proof for the correctness of the transformation.

Little theoretical work has been done in this area except that Joel and James

in their recent purely theoretical investigation [55] have demonstrated that

Timed CSP has equal expressiveness with closed timed automata. In this

context, this work complements Joel and James’s work.

Since TCOZ is a superset of Timed CSP, one consequence of this work is

that a semantic link and a practical translation tool from Timed CSP to TA

has been achieved so that TA tools, i.e., UPPAAL can also be used to check

Timed CSP timing properties.

One closely related area of research to ours is J. Hoenicke and E.-R. Olderog’s

work on integration of CSP, Object-Z (OZ) and Duration Calculus (DC) [41],
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in which CSP-OZ-DC benefits from Timed Automata’s tool support, i.e. UP-

PAAL, for model-checking by transforming the DC part of a system model

into a timed automaton. The technical difference between our study and

theirs is the development of the generic TA patterns, i.e., we not only focus on

lending Timed Automata’s tool support to TCOZ for model-checking TCOZ,

but also on lending TCOZ’s structure to systematic TA designs by providing

a set of composable timed patterns. Furthermore, their work mainly focuses

on a smooth integration of the underlying semantic models of CSP, OZ, and

DC and its use for verifying properties of CSP-OZ-DC specifications. Fur-

thermore, we provide soundness proof for our transformation from TCOZ

to TA while their work does not. Another related formalism for modeling

real-time systems is TRIO [13]. This notation uses a notion of interface di-

agram which is quite different from the TCSP-featured TCOZ notation in

modeling dynamic behaviors. TRIO has been compared to TCOZ and ref-

erenced in the TCOZ paper [50]. Similar to our work, there are also some

other real-time formalisms such as Harel’s Statecharts [33], Jahanian and

Mok’s Modechart [47] which have been provided by a translation/projection

approach with tool support like model-checking. However, the main contri-

bution of our work is the construction of various generic and reusable timed

patterns which are reminiscent of object oriented patterns, even though our

work was initially orientated to develop tool support for TCOZ.

This part of our work also inspired an interesting question: can we integrate

Object-Z and Timed Automata directly? In this way, not only the wonderful
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tool support of TA can be reused straightforward, but also the timed compos-

able patterns can be directly utilized for systematic TA designs. It motivated

us to further our study on an integration approach.

• In the integrating approach, rather than taking the transformation point

of view, we developed a novel integrated formal language which combines

Object-Z with TA. Such an effective combination of Object-Z and TA not

only helps Object-Z with a real-time modelling capability, but also helps TA

with enhanced structure and state modelling features. The result of such

combination is another powerful unified method for designing complex real-

time systems.

The OZTA notation is enhanced by introducing the set of timed patterns

as language constructs that can specify the dynamic and timing features of

complex real-time systems in a systematic way. We also presented a seman-

tic model of OZTA in Unifying Theories of Programming which provides

the semantic foundation for language understanding, reasoning and tool con-

struction. Based on the semantic model, we constructed HighSpec, an in-

teractive system which supports editing, type-checking OZTA models as well

as transforming OZTA models into TA models so that we can utilize TA

model-checkers, e.g., UPPAAL, for simulation and verification.

One closely related area of research to ours is on integration of Object-Z

with various timed calculi. For example, Object-Z is combined with Timed

CSP [62] in [53, 17], with the timed refinement calculus [52, 27] in [68]
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and with the duration calculus [79] in [41]. Indeed, those combinations have

made improvements in comparison to some early conservative framework ap-

proaches [18, 57].

The technical difference between our approach to the others has been the

way to clearly separate functionalities and timed behavior, and the use of

graph based Timed Automata, instead of the calculi to capture behavior.

One clear benefit of our approach is that many existing well developed tools

[58, 16, 69, 72] for TA can be used to check the timed behavior of the design

models. In addition to the benefit of bring graphical appeal in capturing

the object behavior of Object-Z classes, our approach also provides a way to

structure TA using Object-Z classes, so that the scale problem of TA can be

managed. The novel communication mechanism developed in our approach is

also more flexible and expressive than CSP channels. For example, arbitrary

communication between various objects can be captured at the composite

class level with the elegant communication links.

Another related work is the combination of Z with graphical diagrams, i.e.,

Statecharts [33] and Petri-nets [7]. For example, in [11] a framework is pre-

sented to link Z with Statecharts; it treats Z operation schemas as state tran-

sition links in Statecharts. Similarly, the language OZS [30] blends Object-Z

with Statecharts and treats Object-Z operations as state transition links.

Combinations of Z and Petri-net have also been investigated in [35, 34]. All

those approaches suffer a common drawback the states in the graph have



9.2. FUTURE WORK 167

no systematic correspondence in Z or Object-Z parts. The issues of object

composition and timing have not been addressed. Our approach is different:

we treat Object-Z operations as states (i.e., TA locations) instead of state

transitions (i.e., TA switches) and furthermore we have a systematic naming

convention for all switches. Object composition and real-time issues are the

main focus points in our approach.

9.2 Future Work

In this thesis, we build a unified framework to model and check real-time complex

systems using Object-Z/TCOZ and Timed Autoamta. This frame can be further

extended or improved by integrating more useful techniques from multiple domains

so that various properties of an TCOZ or OZTA model can be analyzed in the

projected domains.

One future work can be projecting TCOZ/OZTA to Alloy to analyze the OZ part

of a TCOZ/OZTA model. Alloy is a structural modelling language based on first-

order logic, for expressing complex structural constraints and behavior. The Alloy

Analyzer(AA) supports two kinds of automatic analysis: simulation, in which the

consistency of an invariant or operation is demonstrated by generating an instance;

and checking, in which a consequence of the specification is tested by attempting

to generate a counterexample. The essential constructs of Alloy are signature, fact,

function, predicate and assertion. Projection guideline for important primitives of
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OZ are presented as follows.

• Types: All the basic types of OZ are defined as,

sig TypeRef {}{sigFact} in Alloy.

• State variables: The State variables of an OZ class are projected as fields of

signature sigState{}. However, not all state variables are necessarily to be

projected into Alloy model. Those which are irrelevant for the properties to

be checked in Alloy can be abstracted away.

• The predicates of the state schema are projected as facts in Alloy. The

keyword disj in Alloy can be used to indicate that the variables declared in

the OZ state schema are disjoint.

• Functions: OZ Functions can be defined as predicates or functions in Al-

loy. When an OZ function returns a value, then it should be projected as a

function in Alloy, otherwise it should be projected as a predicate in Alloy.

Each parameter of the OZ functions corresponds to a parameter in the Alloy

models.

• Operation schema: Each operation schema Op with an empty ∆-list is pro-

jected as a predicate; each OZ operation schema Op with a ∆-list, ∆(s), is

projected as a fact Op in Alloy. The predicates of those operation schemas

can be projected as a predicate pred(s , s ′){}. Each state variable in the ∆-list

of an OZ operation schema corresponds to a pair of parameters of the same
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type in the Alloy predicate, which respectively represent the pre-state and

pose-state of the OZ state variable. i.e.,

fact Op{ all s, s’: State{ pred(s,s’) } }

• Ordering of state transitions: To reason about the OZ part of an OZTA

model in Alloy, when the ordering of the state transitions of its OZ part is

to be analyzed, we need to import a module ordering in Alloy to record the

instances of its OZ state schemas. The instance of ordering ord records pairs

of pre-state and post-state for its OZ state variables.

open util/ordering[State] as ord module util/ordering[elem] one

sig Ord {

first_, last_: elem,

next_, prev_: elem -> lone elem}

The OZ Init operation is now projected as a fact which constrains the first

element of ord in order to record the initial state of the OZ state variables.

Another future work is to use Constraint Logic Programming (CLP) [45] as the

underlying reasoning support for TCOZ or OZTA models to prove traditional safety

properties and beyond, such as reachability, deadlock-freeness, timewise refinement

relationship, lower or upper bound of variables, etc. CLP is designed for mechanized

proving based on constraint solving. CLP has been successfully applied to model

programs and transition systems for the purpose of verification [31, 46].

Lastly is that we plan to further enhance our HighSpec tool by extending the

current set of TA patterns into a dynamic pattern library so that new patterns
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can be defined by system designers and added into the pattern library for future

reuse.
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Appendix A

A.1 TCOZ Notation

Notation Explanation

c : chan declare c to be a channel

Stop deadlocked process

Skip terminate immediately

Wait t delay termination by t

a → P communicate a then do P

a@t → P communicate a at time t then do P

c.a communicate a on channel c

c?a input a on channel c

c!a output a from channel c

[b] • P enable P only if b

P ; Q perform P till termination then Q

continued on next page
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Notation Explanation

P 2 Q perform the first enabled of P and Q

P u Q perform either of P and Q

P |[A ]|Q synchronize P and Q on events from

A

(‖ p1, . . . , pn • . . . ; pi
A¾- pj ; . . . ) network topology abstraction with

parameters p1, . . . , pn and network

connections including pi communicat-

ing with pj on private channels from

A

P ||| Q P and Q running without synchro-

nization

P .{t} Q if P does not begin by time t , perform

Q instead

P O {t}Q perform P until time t , then transfer

control to Q

P O e → Q perform P until exception e, then

transfer control to Q

P • Deadline t P must terminate before time t

P • WaitUntil t after P idle until time t

Main identifier of active class
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A.2 Type Inference Rule

Expressions:

Γ ` n : N
[ NumExpr ]

Γ ` n : Z

[ NaturalNumExpr ]
Γ ` N : Z

Γ ` x : T ∈ Γ
[ RefExpr ]

Γ ` x : T

Γ ` E : PT
[ PowerExpr ]

Γ ` PE : P(PT )

Γ ` E1 : T1, ..., Γ ` En : Tn ,
[ TupleExpr(n > 2) ]

Γ ` PE : T1 × ...× Tn

Γ ` E1 : T , ..., Γ ` En : T ,
[ SetExpr(n > 0) ]

Γ ` PE : PT

Γ ` E1 : PT1, ..., Γ ` En : PTn ,
[ ProdExpr(n > 2) ]

Γ ` PE : P(T1 × ...× Tn)

Γ ` x1 : T1; ...xn : Tn | P ,
Γ[x1 ← T1]...[xb ← Tn ] ` E : T

[ SetCompExpr1 ]
Γ ` {S • E} : PT

Γ ` x1 : T1; ...xn : Tn ,
Γ ` [x1 ← T1]...[xn ← Tn ] ` E : T

[ SetCompExpr2 ]
Γ ` {S • E} : T1 × ...× Tn
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Γ ` S : T1 × ...× Tn ,
Γ[x1 ← T1]...[xb ← Tn ] ` E : T

[ LambdaExpr ]
Γ ` λ S • E : P(T1 × ...Tn × T )

Γ ` S : T1 × ...× Tn ,
Γ[x1 ← T1]...[xb ← Tn ] ` E : T

[ MuExpr1 ]
Γ ` µ S • E : T

Γ ` S : T1 × ...× Tn ,
Γ[x1 ← T1]...[xb ← Tn ] ` E : T

[ MuExpr2 ]
Γ ` µ S • E : T1 × ...Tn

Γ ` E1 : T , Γ ` E2 : T , ...Γ ` En : T
[ SequenceExpr ]

Γ ` 〈E1,E2, ...En〉: P(Z× T )

Γ ` E1 : Z, Γ ` E2 : Z
[ OperExpr(InFun : +,−, ∗, div ,mod) ]

Γ ` E1InFunE2 : Z

Γ ` E1 : Z, Γ ` E2 : Z
[ OperExpr(InFun : ..) ]

Γ ` E1InFunE2 : PZ

Γ ` E1 : PT , Γ ` E2 : PT
[ OperExpr(InFun : ∪,

∫
, \) ]

Γ ` E1InFunE2 : PT

Γ ` E1 : T1, Γ ` E2 : T2
[ OperExpr(InFun :7→) ]

Γ ` E1 7→ E2 : T1 × T2

Γ ` E1 : P(Z× T )
Γ ` E2 : P(Z× T )

[ OperExpr(InFun : a) ]
Γ ` E1

a E2 : P(Z× T )

Γ ` E1 : PT1

Γ ` E2 : P(T1 × T2)
[ OperExpr(InFun : C,−C) ]

Γ ` E1InFunE2 : P(T1 × T2)
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Γ ` E1 : P(T1 × T2)
Γ ` E2 : PT2

[ OperExpr(InFun : B,−B) ]
Γ ` E1InFunE2 : P(T1 × T2)

Predicate:

Γ ` P , Γ ` Q
[ AndPred ]

Γ ` P ∧ Q

Γ ` P , Γ ` Q
[ OrPred ]

Γ ` P ∨ Q

Γ ` P , Γ ` Q
[ ImpliesPred ]

Γ ` P ⇒ Q

Γ ` P , Γ ` Q
[ IffPred ]

Γ ` P ⇐⇒ Q

Γ ` P
[ NegPred ]

Γ ` ¬ P

Γ ` E1 : T , Γ ` E2 : PT
[ MemPred ∈ ]

Γ ` E1 ∈ E2

Γ ` E1 : T , Γ ` E2 : T
[ MemPred = ]

Γ ` E1 = E2

Γ ` E1 : Z, Γ ` E2 : Z
[ RelationPred(InRel :<,6, >, >) ]

Γ ` E1InRelE2

Γ ` E1 : T , Γ ` E2 : T
[ RelationPred(InRel : 6=) ]

Γ ` E1 6= E2

Γ ` E1 : PT , Γ ` E2 : PT
[ RelationPred(InRel :⊂,⊆) ]

Γ ` E1InRelE2
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Γ ` E1 : T , Γ ` E2 : PT
[ RelationPred(InRel : 6∈) ]

Γ ` E1 6∈ E2

Γ ` E : ObjectT
[ PromotedInitPred ]

Γ ` E .INIT

Γ ` S
Γ[x1 ← T1]...[xn ← Tn ] ` P

[ ExistsPred ]
Γ ` ∃ S • P

Γ ` S
Γ[x1 ← T1]...[xn ← Tn ] ` P

[ ForallPred ]
Γ ` ∀ S • P

else:

Γ ` E1 : T1; ...En : Tn

Γ[x1 ← T1]...[xn ← Tn ] ` P
[ SchText1 ]

Γ ` x1 : E1; ...xn : En | P

Γ ` E1 : T1; ...En : Tn
[ SchText2 ]

Γ ` S

A.3 Screenshots of HighSpec
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Figure A.1: The Main Window of HighSpec

Figure A.2: The Object-Z Editing part
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Figure A.3: The Timed Automaton Editing Part 1: state definition

Figure A.4: The Timed Automaton Editing Part 2: transition definition

Figure A.5: The Timed Automaton Editing Part 3: pattern library
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Figure A.6: The Timed Automaton Editing Part 4: timing parameter of patterns

Figure A.7: The Timed Automaton Editing Part 5: relating Object-Z operation

with atomic states in the timed automaton

Figure A.8: The Model of Frog Puzzle Game Example: the default abstracted

automaton with recursive pattern as the outmost layer and external choice as its

inside layer
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Figure A.9: The Model of Frog Puzzle Game Example


