View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarBank@NUS

STRING MATCHING AND INDEXING WITH SUFFIX DATA
STRUCTURES

WONG SWEE SEONG
(MSc. (School of Computing)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE
2007

https://core.ac.uk/display/48624721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

| like to thank everyone who has been there for me in this gieedtnowledge and a
journey of self discovery.

| am fortunately blessed with a caring family and am gratéduimy parents and
sisters for their support. | dedicate my thesis to the membdmy mother for her self-
lessness and abundant love. To that special someone, mgland supportive wife Lin
Li, thank you for your kindness and believing in me.

To my advisory committee members, Assoc Prof Tan Kian Leefssibc Prof Lee
Mong Li, thank you for your patience and valuable advice. Mgesre appreciation goes
to my supervisors Assoc Prof Ken Sung Wing Kin and Prof Wong Soon for their
guidance and generosity in sharing their wisdom with me.

Lastly, to all my friends and colleagues at the School of Cotimg, a big thanks to

you. The past years with the school will be fondly remembered

Contents

Acknowledgments i
Table of Contents iii
List of Figures \Y
List of Tables v
Summary Vi

1 Overview 1
1.1 Introduction e
1.2 Motivation. 4
1.3 Research problems and contributions 6

1.3.1 Exact and approximate string matchlng 6

1.3.2 Disk-based stringindexing 7
1.4 Organizationofthesis 9
1.5 Statement 9

H

2 Background 11
2.1 Introduction 11
2.2 Suffixtree and suffixarray oL 13
2.3 Compressed suffix data structures 15
2.4 Application of suffix data structures 16

3 Memory-based compressed string index 20
3.1 Introduction 20
3.2 Preliminaries 24

3.2.1 Editoperations 24
3.2.2 Suffix array, inverse suffix array agdfunction 25
3.23 Suffixtree 29
3.2.4 Otherdatastructures 31

3.2.5 Heavy pathdecomposition 33
3.3 Approximate string matching problem 36
3.3.1 The data structure for 1-approximate matching 36
3.3.2 The l-approximate matching algorithm 40
3.3.3 Thek-approximate matching problem with>1. 43
3.3.4 Thek-don't-caresproblem a7
3.4 SumMmMary e e e 49
Optimal exact match index 51
4.1 Introduction 51
4.2 Theapproach e 53
42.1 Basicconcept 53
4.2.2 Datastructures 54
4.2.3 UsingO(nlog|A|) bitdata structures 56
4.2.4 UsingO(nlog‘nlog|Al|) bit data structures 59
4.2.5 UsingO(n+/lognlog|A|) bit data structures 60
4.3 SUMMANY e e e e e e e e e 61
Disk-based suffix tree index 63
5.1 Introduction 63
5.2 Relatedwork 68
5.3 Structuresand algorithms 72
5.3.1 CPS-treerepresentation 73
5.3.2 Spaceoptimization Lo 76
533 Forwardlink 77
5.3.4 Exactstringmatching 79
5.3.5 Treeconstruction 83
5.3.6 Buffermanagement. 84
5.4 Bitrepresentationandanalysis 86
5.4.1 SearchtimeandlOaccessanalysis 86
5.4.2 Bit-packingscheme o oL 87
5.4.3 Diskspaceusageanalysis 92
5.5 Performancestudies. Lo 93
5.5.1 Experimentalsettings. 93
5.5.2 Performanceresults. oL 97
553 CPS-treeonhumangenome 103
56 DISCUSSION 109
5.7 Summary 110
Conclusion 112
6.1 Futuredirections 114

List of Figures

2.1

2.2
2.3

3.1

3.2
3.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9

Patrica trie for a set of strings { abbbba, abbbbca, abbc, bbaa, bbab, bbac,

bbbaa}. e 14
Suffix tree and suffixarray. oo 51
Depth first search of the suffix tree for approximate mateh 18

Balanced parentheses representation of core patbkditigd lines) in a

suffixtree. e 35
Algorithm for 1-mismatch and 1-difference. 42
Edit distance table between 2 strings= “AATGTTCA” and P’ =
“CATAGTTCACGG"withk=2. 44
Suffix tree and suffix array built on the text = “aaaaabaabbbaaaaba$”. 71
CPS-tree representation for text = “aaaaabaaabaatdz®i. 74
Forward links illustration. 80
Exact string matchingon CPS-tree. 81
CPS-tree construction process. v v v v v v e e 84
CPS-tree buildingfromSA. oo 58
CPS-tree updating of text positions. 86

(a) Bit-packing representation of the nodes in a Iow t(b) block over-

head fields in a block and (c) the bit size of the respectivddiaked in
theencoding. 88
Result 1 - Average page fault on index buffer for fruit fshgme. . . . 95

5.10 Result 2 - Average page fault on text and index buffersfriait fly

genome to answer exact match query (total 128MB). 99

List of Tables

3.1
4.1

5.1
5.2

5.3
5.4

5.5
5.6
5.7
5.8

5.9

Comparison of various results for 1-mismatch (or leddhce) problem. 24

Comparison of various results for exact string matcipiredplem. 53
Description of notationsused. 65
Worst case big-O 10 bounds for operations on variousgseg suffix

data structures. 66
Index tree structure filesize. L. 94
Average page fault on index buffer using different bufisplacement
policies for fruitflygenome. L. 96
Result 3 - In-memory (exact match) query timing on E. gelhome. . . 101
Result 4 - k-mismatch query on fruit fly genome. 101
Result 5 - Average page fault on index buffer for Human @dea to

answer exact matchquery. 104
Result 6 - Average page fault on text and index bufferlfonan Genome

to answer exact match query (total 1GB). 051

Result 7 - Local alignment search on the Human Genome. 105

Vi

Summary

This thesis studies methods for indexing a text so that tiearoences of any given
query string in the text can be located efficiently. An ocenoe or match may be im-
precise, allowing some deviations from the actual querys gives rise to a family of
interesting string matching problems like exact and apipnate string matching, and
sequence alignment.

Previously, a linear siz&(n) word index, where: is the length of the text, is con-
sidered manageable given that the index size is relativalgllscompared to the size
of available memory on most desktop computers. As such, wdaozais on developing
new search algorithms without worrying about the index.stt@vever, a new challenge
arises from searching large genome sequences which cynlaabillions of characters
in length. This leads to the issue of search efficiency orelatgng index, which is made
worst with the ever increasing genome size.

We consider two different computing models to handle thdlem. The first is to

compress the index so that it is small enough to be storeceim#éin memory. Another

Vil

computing model is to make use of secondary disk, where ttexiresides on the hard
disk. Blocks or chunks of the index are fetched into memomyruggquest. In this case,
we are concern with the number of 1O accesses to perforngsgaarch on the index. In
both scenarios, it is essential to have efficient computatigorithms to support various
string search. Mixed computing model is also possible withtiple levels of indexing,
combining both in-memory and disk-based indices.

We propose several compressed data structures to indeg skt ino(n) words or
O(n) bits. These data structures are suitable for in-memory ctaipn to answer exact,
as well as approximate, string matching problems. We stheyasymptotic bounds on
the query time and show that our indices give the best knowuatiso using different
indexing spaces. These proposed indices will be useful tongge performance for
computationally intensive search tasks. However, it isoled that in a pattern search,
consecutive accesses of the data structure, can be reagimgsts of the structure that
are very far apart. In fact, the access pattern is very muctiara. This results in a
significant IO cost that slows down the search performanttesifndex is not able to fit
into the memory. Thus, optimizing disk-based solution Ipees necessary.

Consequently, we propose a disk-based index representadised on suffix tree
called CPS-tree. Current suffix tree developments focuserconstruction efficiency
and less on the structural design to minimize the 10 accessd®e tree. Unfortunately,
the few 10 efficient suffix tree designs in the literature aeeyvmuch limited to exact

string match alone. As such, we present disk based CPSaimdejesign and engineer

viii

search algorithms on CPS-tree to support various typesingsearch and tree traversal
operations efficiently. Our worst-case 10 performance i b@unded in theory. Em-

pirical studies on exact string matching and sequence rakgn problems, conducted
on a large genome, further demonstrate that our proposedsttaicture is useful and
practical. Through theoretical analysis and experimantastigation, we illustrate the

advantages of our suffix tree design.

To summarize, we make our contributions to more efficiemgtmatching and in-
dexing. However, there are still rooms to further improveta efficiency. It is an
unsolved research challenge to come up with a compact stritex ((n) word size)
that displays good access locality for string search. Témsains as future work to be

done.

Chapter 1

Overview

1.1 Introduction

String matching is an important and age-old classical gmblThe problem is funda-
mental to many applications that require processing of dexter sequence data. Very
often, it involves finding the occurrences of a pattern gtima given text string. Some
of its applications are spell checking in text editor, idgrand password validation and
checking in system login, and content interpretation inuthoent and programming lan-
guage parsers. Furthermore, string matching is the vemnessof pattern matching
languages like Perl and Awk. Over the years, we see more iofstnatching algo-

rithms being applied to areas like information retrievalitprn recognition, compiling,
data compression, program analysis and security etc. Treralso a vast number of

research papers, over the past three decades, providimggtical as well as empirical

results to the problem with improved space and time efficeanc

Exact string matching finds the exact occurrence of any gpegtern in the text
to be searched. The early works focus on the on-line probléerevpreprocessing is
performed on the pattern string but not the text. Some of ldmsal works are Knuth,
Morris and Pratt (KMP) algorithm [55], and Boyer and Mooré{Balgorithm [12] for
string matching. The problem is extended to the approxirsateg matching where
some form of errors are allowed in finding the occurrence®rd lexists many different
variations of the error model but more commonly, we have tlewings, as formally
defined below.

Consider a texi’ of lengthn and a patterrP of lengthm, both strings over a fixed

finite alphabetA.

1. k-mismatch problem: Find all approximate occurrences®Bfin 7' that have Ham-
ming distances at mostfrom P. The Hamming distance between two strings is
defined to be the minimum number of character replacementaigert one string
to the other. The ldon’t-care problem is a special subproblem where mismatches
are allowed only at specficpositions on the patterR. Thek mismatch positions

are indicated orP.

2. k-difference problem: Find all approximate occurrences Bfin 7' that have edit
distances at mosgt from P. The edit distance between two strings is defined to

be the minimum number of character insertions, deletiond, raplacements to

convert one string to the other.

For the on-line version of the problem, the search time deépen the text size, and
therefore becomes inefficient in handling large text. Neyoathms have been proposed
to allow preprocessing of the text, or in other words usingeking, for faster string
search. In particular, suffix tree [67, 99] and suffix arra§][&re popular data structures
to be used for string indexing. More recently, compressétkslata structures are used
in indexing string.

Another class of problem that is closely related to the kedgénce problem is the se-
guence alignment problem. Tools for local alignment in geasequences like FASTA
[82, 83] and BLAST [4, 5], are among the most commonly usedstbg biologists to-
day. The problem extends on the k-difference problem byaasiog different costs to
each of the edit operations. Furthermore, in the affine gaproodel, a cost penalty is
given to a gap opening, which is defined as a consecutivetiosseither on the text or
the query but not both at the time. The objective is then to tledalignments between
the query and text that minimize the sum up cost.

In this thesis, we focus on a wide range of string matchindplgras ranging from
exact matching, approximate matching (Hamming and Ediadee measures) and se-
guence alignment problems as well. We study the time ancesganplexities of various
compressed data structures, assumed to be fully residimgmory, and proposed new

data structures that are asymptotically smaller and fagteearch. Next we extend our

work to consider 10-efficiency of specifically suffix tree cgcendary disk. A new rep-
resentation is proposed that is shown empirically to beiefftcas well as having nice

worst case performance bounds.

1.2 Motivation

One of the driving force for developing string matching teicjues stems from the mas-
sive availability of biological sequence data that begmthe late 90’s. This has created
opportunities for researchers to apply their innovatigeathms and techniques to work
on real datasets. Our work is also motivated by this uprisiegd. In August 2005, it
was reported that the collection of DNA and RNA sequence has already rdl®0
gigabases. These 100,000,000,000 bases, or “lettersé gfethetic code, represent both
individual genes and partial and complete genomes of ov&0D6 organisms. Sub-
mitters to GenBank contribute over 3 million new DNA sequeEnper month to the
database. GenBank (Bethesda, Maryland U3Apgether with European Molecular
Biology Laboratory’s European Bioinformatics InstituEE\BL-Bank in Hinxton, UK)

3, and the DNA Data Bank of Japan (Mishima, Japinform the International Nu-

cleotide Sequence Database Collaboration to share andinegae sequence database.

Yhttp : / Jwww.nlm.nih.gov/news/press_releases/dna_rna-100_gig.html
2http : / Jwww.ncbi.nlm.nih.gov

Shttp : / Jwww.ebi.ac.uk/embl

Ahttp : / Jwww.ddbj.nig.ac.jp

Scientists around the world can then have access to the corseyuence data, and
hopefully through collaborative research on the massiva, datientists can find cures
for diseases and improved health in shorter time to benéfrtahkind.

The storage size of sequenced genome and annotated badlsgguences, is grow-
ing in the order of several gigabytes per year. There is a teedllectively organize
and manage these sequences to support the data usagemeqaioé various compara-
tive tools at the application level. Sequences can be irtilsaehat search is performed
more efficiently. There already exists a wide range of comuputal tools on strings,
for searching approximate similarities, and finding cosssn alignments, repeats and
motif patterns, etc. Currently, there is a lack of a standadldxing data structure on se-
guences that can serve the needs of the various tools. Swateagindexing structure
must be robust and flexible. In addition, a management systéirbe useful to man-
age processes and allocate the use of system resourcesvetptraditional relational
database systems are inadequate for the task as the seqaemcegenerally huge and
unstructured in nature, without the proper notion of a key.

Another reason to study string matching problem is its walgge of applications.
Many algorithmic problems can be mapped into exact or apprate string search prob-
lems. This makes analyzing the algorithmic properties irtgmd. Furthermore, the
problems can be extended to higher dimensional text or ptelpatterns search prob-

lems where existing algorithms may be borrowed or built upon

1.3 Research problems and contributions

1.3.1 Exact and approximate string matching

Approximate string matching is an important problem to s@nd comparative analysis
on sequences often needs to perform close similarity sesrgart of the process. In
some cases, sequence data may contain noise or variatadigghvould like to tolerate
in our search. Given a query string, we would like to find itswrcences in a text by
allowing some degree of errors.

We consider two approximate matching problems: #hmismatch problem and the
k-difference problem. Our focus is on constructing compadides that are of(n)
words orO(n) bits size so that for large text of length there is a good chance that the
indices can fit into memory for searching. We give some impdodata structures for
the approximate string search with the best known query tisngg only less than linear
word size indices.

To add on to the above results, we revisit the problem of esiictg matching to
find more compact indexing structures. It is well known thakeg a preprocessed text
indexed usingD(n) words data structure, we can find the exact matches of a query
string in time linear to the query length. We push for evenermmpact data structures
(using less than linear words size) that can answer the qonegtimal time using bit-

compressed query string.

1.3.2 Disk-based string indexing

Atextis a string or set of strings. To answer string matclgjugries over the text, given a
query string, the text may be preprocessed and represengedita structure. This data
structure will then provide indexing into the text so thatrgj search and comparison
can be performed more efficiently.

Given the query string and text, the traditional approackttimg comparison is to
scan through the whole text for solution. This is generalst Enough provided that the
text is short. There is little to improve upon the query tinsena preprocessing of the
string is done and the loading of the whole text into memdadkgsaup the main bulk of the
processing time. Indexing on the text and index thus all@wshly partial access of the
text in order to find the solution at the expense of greateag®on disk for the index.
Together with efficient search techniques, the query tinmebeavery much improved.

We have considered in-memory indices which may be a faverdtdrnative to direct
scanning for small indices. It may not be suitable for indi@ger than the text itself
and will be time consuming to load into memory. The excepisomhen we have a large
memory and the indices can be preloaded into the memory teedrizatch queries or
any incoming queries in a server mode of operation.

Alternatively, we have the indices residing on disk and kiehfed into memory as
and when needed. The direct choice is to build a hash tabkv/ty fixed length-sub-

strings in the text. Samples of lengtisubstrings from the query is used to reference

the hash table, for fixed lengthmatches. Fixed length indexing lacks the flexibility, as
the length is fixed, to efficiently handle varied length gasrand more importantly, on
finding approximate match. Alsbhas to be short for it to be usable. There are some
well studied filtering techniques to overcome these shariogs likeg-grams indexing,
which generally performs well in practice. Another popudg@proach is to use hierar-
chical level of indices to extend on the lendthwhere only the top-level indices need
to reside in memory, the rest of the indices are fetched frask hto memory when
needed. These proposed indexing methods do not have adeeptarst case complex-
ity on query time and 1/O disk access for both exact and apprate string matching.

We recommend using suffix tree as a common indexing datatsteuon string and
propose means to improve its 10 access efficiency. We canusidg the suffix tree, in
time linear to the query length, the locations on the text thatch exactly to the query
string. One major issue with suffix tree data structuresas ttrequires a much larger
space than the text itself. This comes as a trade-off foefagiery time. For example,
a text string ofn characters need&: to 20n bytes to store the suffix data structure
depending on the level of compression and the functioraltt be supported. Recently,
there are proposed(n) bits compressed suffix tree and array implementations tieat a
very space efficient. The problem is that the access patterthe@ compressed data
structures tends to be highly random and hence it is moraldaitf the whole structure
can reside in the memory. There are many string related @mabthat can be efficiently

solved using suffix tree [37, 40]. Approximate string manchon suffix data structures

is one of them. However, the existing techniques can stifuber improved to answer
the queries more efficiently. It is still an open problem omvho perform disk-based
indexing efficiently for approximate string matching [5¥Ye address this issue and give

a feasible solution.

1.4 Organization of thesis

In chapter two, we introduce some related fundamental quade the literature. This is
followed by three chapters to showcase our proposed wankzarticular, we first focus
on in-memory string search and present compact data stescta solve the approxi-
mate string matching problem. Next we continue the studi wxact string matching
problem and proposed several data structures with optiesakth time and using less
than linear indexing space. Last but not least, we diverattention to disk-based string
indexing using suffix tree. We propose a new suffix tree repradion to handle various
string matching queries and tree traversal operationsezitig. Finally, in the conclud-

ing chapter, we discuss on the future research direction.

1.5 Statement

The preliminary work described in chapter 3 on approximé&iaeg matching was first

presented in the 16th Annual International Symposium oroAllgms and Computa-

10

tion 2005 [61]. An extended version of the paper was latenstibd and accepted
for publication in the Algorithmica journal [62]. Anotherr2sults extended from this
initial work, were presented in the 17th Annual SymposiumGambinatorial Pattern
Matching 2006 [18] and the 16th Annual European Symposiuniigorithms 2006
[17] respectively. The suffix tree representation proposeathapter 5 was presented in

the 23rd International Conference on Data Engineering 2007].

11

Chapter 2

Background

2.1 Introduction

The basic data structures used for string indexing are yauffix tree [20, 30, 45, 69],
suffix array [9, 68, 74] and g-grams [16, 46, 79, 86]. Suffixadstructures benefit from
linear search time in matching a given pattern string to & t&kis is at the expense
of larger index size. It goes by matching the query to characbn the edges along
a path from the root that ends at some node, and all the leavibee isubtree rooted
at the node will contain the locations of exact match in the. t®n the other hand, g-
grams is another popular index used that stores the locaticevery or selected length-
substrings in the text. It is basically a filtering technidbat works well in eliminating
segments of the text that have no possible match with theycgteng. The indices

takes up much smaller space when compared to suffix treee Hnetwo main setbacks

12

with the g-grams approach. Firstly, the lengihas to be fixed; and hence it lacks the
flexibility to cater to all-purposed demands. Secondlywbest-case running time is less
well bounded when compared to suffix data structures, thaugs shown to perform
reasonably well in practice on real biological sequences.

Inverted file [89] is a common text index used on linguistixt tdat is constructed
from a fixed set of naturally delimited words. We do not coesidverted file as a choice
for indexing string in general for the reason that biologgsguences is highly unstruc-
tured and will not benefit from the indexing. There is an adaph of inverted file to
index biological sequences called CAFE [101] that emplaysesfiltering techniques to
reduce the space and time complexities for heuristic search

There has been on-going developments of fast in-memory asdisk construction
[26, 33, 34, 40, 44, 45, 95, 98] of suffix data structures, dad en more compact but
functional suffix representations such as compressed gstdixand arrays [31, 38, 72,
85, 87, 88]. These advancements have made suffix data sgaetattractive choice for
indexing strings.

An overview on the various full-text indices in external mamcan be found in the
paper by Kirkkiinen and Rao [52]. The reader can refer to the paper by Naedrro
al. [75], for a survey on various indexing techniques for apprate string matching.
There is a recent interest in string matching on compressdddirectly without first
decompressing the text [6, 27, 51, 77, 78]. The main gain isdiicing the I/O burden

of bringing the text into memory and keeping the memory usagevhile scanning for

13

matching patterns.

The sections to follow describe the basic data structureffikdree and suffix array
as well as the compressed forms, and also introduce sonmg skearch applications
performed on the suffix data structures. These data stesctitl be refered frequently

in the later chapters.

2.2 Suffix tree and suffix array

A trie is a rooted directed tree that stores a set of stringechEand every leaf node
represents a string stored by the trie. It is assumed thatrimg $s a proper prefix of
another. For example, “abbc” is a proper prefix of “abbcbldiile “abbd” is not. Every
edge in the tree is labeled with a single character suchhkatdncatenating of trexlge
labelsin order, from the root to a leaf node, corresponds to thexssiifing represented
by the leaf node. A compact trie is a trie with every node, tizs only single outgoing
edge, merged into its parent node and the characters on aggesncatenated to form
a string (see Figure 2.1). While a Patricia trie [70] is like@npact trie except that
every edge label contains only the first character with tingtle of the original edge
label stored in the node that follows. Every internal nodéheacompact trie has at least
2 child nodes. Theath labelof a node is the concatenated edge labels from the root to
that node and theharacter deptlof a node is its path label length.

The suffix tree (ST) [67, 99] of a teft, is a compact trie of the set of suffixesBfas

14

b c b
c
a c A
O @
a a a b b b b a a a b b b b
b b b b b b b b b b b b b b
b b b a a a b b b b a a a b
b b c a b c a b b c a b c a
b b a b b a
a c a c
a a
Compacted Trie Patricia Trie

Figure 2.1: Patrica trie for a set of strings {abbbba, abbbbca, abbe, bbaa, bbab, bbac,
bbbaa}.

shown in Figure 2.2. The teft is usually concatenated by a special syntbtblat is not
found inT. Figure 2.2 gives a suffix tree with the suffixes appearingxnclographically
sorted order from left to right in the tree. In comparisorg #uffix array [66] ofl" is a
sorted array containing the starting text position of thi&xses of T. The Patricia trie of
a set of suffixes of " is denoted as PAT tree [36].

We often use suffix tree to mean a PAT tree representationtié&land suffix array
(SA) areO(n) word data structures whereis the text length with suffix array being a

more compact representation.

15

d

10 9 7 1 3 4 5 8 6
Sorted Suffix Tree

Text = acbbbcaca$

Figure 2.2: Suffix tree and suffix array.

2.3 Compressed suffix data structures

Although suffix array (SA) is compact compared to suffix trals@ PAT tree), it can still
be large. An SA built on a large text of size in billion of chetexrs (for example the
human genome), will not be able to fit fully in the main memofymmst computers. As
such a compressed suffix array (CSA) [38, 39] becomes arctatgalternative repre-
sentation. A CSA stores the array férfunction defined a®[i] = SA S A[i] + 1] for

textT'[1..n], 7 € [1..n] whereS A[i] is the text position found atth entry of suffix array.

16

Using the SA in Figure 2.2 as an example, we h#jg = [0,1,8,10,6,7,9,2,3,5].
Interestingly, thel array is actually a concatenation of at mp$tnumber of increasing
sequences whetd| is the size of the alphabet from which the text is drawn. Trakes
U array highly compressible and gives a representation $iatsn) bits depending on
the alphabet size. However, this comes as trade-off in tefrmasmputational time to re-
cover the SA value which can be relatively inexpensive iiith@le index is fully loaded
into memory [43].

Another compressed SA representation is the FM-index [2lu8ing the Burrows-
Wheeler compression algorithm [15]. Compressed suffix ({@%T) [88] was proposed
to be a compressed representation that supports suffixarersal operations efficiently.
It is basically a CSA augmented with additional data strieguike the balanced paren-
thesis representation [71] for the tree structure andihé (lowest common prefix)

query supporting structure [87].

2.4 Application of suffix data structures

There are many string search problems that can be solved ssifix data structures
[37, 40, 56]. Beside exact and approximate string matchiodplpms, there are also
problems of the longest common substrings between two segag palindrome and
maximum repeats etc. In computational biology, the appboa extend to solving

problems in probe design [50], motifs and repeat finding BB, and genome align-

17

ments [23, 24, 59]. For local and global sequence alignmrefii@ms , we can adopt the
commonly used “hit and extend” strategy, by finding only siheaitches (hits) on the text
and then, extend and verify for the rest of the query stririgs Reuristic strategy helps
to reduce the search space tremendously, by finding hits<eat fength substring of the
query (suitably short) using the suffix data structures. diace of “hit” length can be
easily varied according to requirements with possibly saft@ved errors. Examples
are FASTA [82, 83], BLAST family [4, 5, 54, 103] and Pattermntier [64, 65].

Next, we demonstrate how to perform an ordinary depth-fiestersal search on a
tree (in this case, a suffix tree) for approximate match. kereconsider the problem
of k-mismatch or k-difference, given query pattéfrand the text”. Recall that the k-
mismatch allows for substitution operation only while Kfelience allows for additional
2 edit operations, insertion and deletion of characterg. dlgorithm is shown in Figure
2.3. Theroutine DFSearchNode, k', i, P") takes in 4 parameters, namely, cNode refers
to the index of the current nodg’ is the number of errors encountered so fas the
current position on the query string to match andP’ is a copy of the error string
encountered. LefcNode| denotes the length of the path label to the nedede and
| P| denotes the length of pattern striflg

The traversal search for approximate match run@(imin{n, A*m*}m+ kocc) time
for k-mismatch and an additional factor 3 applies for k-differenceocc is the number
of occurrences of the approximate match in the text. Thisnga code demonstrates

the basic approach to string matching on suffix tree. Thexerare efficient algorithms

Call DFSearch(root,0,1,0)
Algorithm DFSearch (cNode, K, i, P")
If (0 =|P|+1)
Report all text position in the subtree rooted at cNode
If (K > k)
return
/* Query deletion */
DFSearchicNode, k' + 1,i+ 1, P')
Forc € A, andP’c a substring irl’
If (|P'| = |cNode|)
sNode = child(cNode, c)
Else
sNode = cNode
[* Query insertion */
DFSearch(sNode, k' + 1,i, P'c)
If Pli] # ¢
[* Substitution */
DFSearch(sNode, k' + 1,1+ 1, P'c)
Else
[* Exact match */
DFSearch(sNode, k',i+ 1, P'c)
End

Figure 2.3: Depth first search of the suffix tree for approxemaatching.

18

19

which incorporated dynamic programming over the suffix tséch will be presented

in the later chapters. Dynamic programming [80, 90, 92] ifuisin string matching

especially in reducing the redundancy in checking for ddifé combinations of editing
operations that can be applied. Also it allows for early teation by pruning off sub-

trees that have no possible match. For some theoreticdtgethe reader can refer to
works by Ukkonen [97] and Cobbs [21]. Navarro and Baeza<rfté] and Hunet al.

[45] gave empirical results using the approach.

20

Chapter 3

Memory-based compressed string

Index

3.1 Introduction

Consider a texi’ of lengthn and a patterP of lengthm, both strings over an alphabet
A. The approximate string matching problem is to find all agprmate occurrences of
P in T. Depending on the definition of “error”, this problem has twariations: (1)
The k-difference problem is to find all occurrencesfn 7' that have edit distance at
mostk from P (edit distance is the minimum number of character insestioleletions
and replacements to convert one string to another); and {&)kimismatch problem
is to find all occurrences of in T that have Hamming distance at mdsfrom P

(Hamming distance is the minimum number of character repiests to convert one

21

string to another). Both-difference and:-mismatch problems are well-studied and they
found applications in many areas including computationablgy, text retrieval, multi-
media data retrieval, pattern recognition, signal pracgssandwriting recognition, etc.

In the past, most of the works focus on the on-line versiorhefgroblem, where
both the text and the pattern are not known in advance. Th#oreof the problem can
be solved by dynamic programming in(nm) time. Landau and Vishkin [63] gave a
solution whose running time depends/grthe number of allowed “errors”. They solved
the problem irO(nk) time andO(m) space. Amiet al. [8] improved upon the result to
give anO(n+/k log k) time solution. We refer to [73] for a comparison study on vas
existing techniques.

Recently, people are interested in the off-line approxenmaatching problem, where
we can pre-process the téktand build some indexing data structure so that any pattern
guery can be answered in a shorter time. Jokinen and Ukkatn\ere the first to
treat the approximate off-line matching problem. Sincentmeany different approaches
have been proposed. Refer to Navaetal. [73] for a brief survey. Some techniques
are fast on the average [76, 93, 91, 10, 79, 74]. However,itley a query time com-
plexity depending om; i.e., in the worst case, they are inefficient even if thegatt
is very short and: is as small as one. The first solution with query time compjexi
independent of is proposed by Ukkonen [97]. When= 1 (that is, 1-mismatch or
1-difference problem), Cobbs [21] gave the result of using logn) bits space and

havingO(|A|m? + occ) query time. Later, Amiet al. [7] proposed arO(n log® n)-bit

22

indexing data structure witt)(m logn loglogn + occ) query time. Then, Buchsbaum
et al [14] proposed another indexing data structure whiglsG$n log® n) bits space so
that every query can be solved @(m loglogn + occ) time. Coleet al. [22] further
improved the query time. They gave @1n log® n)-bit data structure so that both the
1-mismatch and thé-difference problems can be solvedm + log n log log n + occ)
time, respectively. Recently, motivated by the indexingafg genomic sequences,
Trinh et al. [96] improves upon the space-efficiency. They proposed tata dtruc-
tures of sizeO(nlogn) bits andO(n) bits with query timeO(|A|m logn + occ) and
O(|Almlog® n + occlogn), respectively.

Some of the above results can be generalizedkfar 1. Cobbs'sO(nlogn)-
bit indexing data structure can answer batmismatch and:-difference queries in
O(m**A|* + occ) time [21]. Coleet al. [22] proposed am(n% log n)-bit

indexing data structure with query times@f L om - loglogn o o) and

O(lezlogn)loglogn |y, 3k o) for thek-mismatch and-difference problems, respec-
tively, wherec;, co, c3 are constants with, > ¢;. Trinh et al. [96] gaveO(n logn)-bit
and O(nlog|A|)-bit data structures that can answek-aismatch (or a-difference)
query inO(|A[*m* logn + occ) time andO(|A|*m* log” n 4 occlogn) time, respec-
tively.

All previous data structures for supporting the 1-mismétcii-difference) query ei-

ther require a space 6f(n log” n) bits orQ(m logn + occ) time for fixed alphabet size.

It is an open problem whether there existsdm log n) or evero(n log n)-bit data struc-

23

ture so that every 1-mismatch (or 1-difference) query caarisavered im(m log n+occ)
time. In this work, we resolve this open problem in the affitiieaby presenting a data
structure which use®(n+/log nlog |A]) bits while every 1-mismatch (or 1-difference)
query can be answered (| A|m loglog n + occ) time.

Our improvement is stemmed from the observation that sutbies allow for faster
access of some information when compared with suffix arrayirStead of using suffix
array like Trinhet al[96], we use suffix tree as the basic data structure to solee th
mismatch (or difference) queries. Furthermore, to redyeees, we apply the results
of Rao [85] and Sadakane [88] to reduce the space complekityeosuffix tree from
O(nlogn) bits toO(ny/lognlog |A|) bits. Together with a smart use of the y-fast trie
[100], we achieve our improvement.

Table 3.1 summarizes the results for 1-mismatch (or 1l4diffee) problem over a
finite alphabetd. Our result can be further extended in two ways. First, wevshat the
space of the data structure can be reduced(tolog |A|) bits if we accept a slow down
factor oflog® n for the query time wheré < ¢ < 1. Second, the data structure can be
extended to solve the k-mismatch (or the k-difference) lemolfor £ > 1. Our solution
can solve thé-mismatch (or thé-difference) problem i (| A|*m* (k-+log log n)+occ)
or O(logn (|A|*m*(k + loglogn) + occ)) query time, when the text is encoded using

O(n+/Togn log | A|) bits, for|A| = O(2V'e™), or usingO(n log | A|) bits.

24

Reference Bit space Query time

Cobbs [21] O(nlogn) O(]Alm?* + occ)

Buchsbaunet al. [14] | O(nlog®n) O(mloglogn + occ)

Coleet al.[22] O(nlog®n) O(m + lognloglogn + occ)

Trinh et al. [96] O(nlogn) O(|Almlogn + occ)
O(nlog|Al) O(|A|mlog® n + occlogn)

This work O(ny/lognlog|Al) | O(|]A|mloglogn + occ)*
O(nlog|Al) O(log® n(|Almloglogn + occ))

*assumeA| = O(2v1osn),

Table 3.1: Comparison of various results for 1-mismatcti(difference) problem.

3.2 Preliminaries

3.2.1 Edit operations

Let P = P[1]P[2]...P[m] be a string ofin characters over a finite alphabét A sub-
string of P is denoted byP[i..j] = P[i]|P[i + 1]...P[j], 1 < i < j < m. An edit
operation applied to a string is given in the forms ofa — ¢), (¢ — a), and(a — b)
for deletion insertionand substitutionoperations respectively, wheteb € A, a # b
ande is the empty string. Thedit distancebetweenP and P/, is the minimum number
of edit operations to convert one string to another. For gtantonverting stringbbd
to another stringbca will take at least 3 edit operations. Aedit traceis defined as a

sequence of edit operations that converts a stinig another string”’.

25

Lemma 1 Given a lengthm string P over a fixed alphabeti, there areO(| A|*m*)

possible edit traces for convertidgito some string”’ using at most: edit operations.

Proof. The bound on the number of edit traces can be estimated bydeoms the
number of different ways of applying or less edit operations to the string. There are
2 different groups of operations: The first group is of thenfar — b anda — ¢
and the second group has the form~ a. The first group consists of substitutions and
deletions that can be applied to every charactét.itlence the number of possible ways
of applyingk operations in this group is (*)(]A| + 1)*. The second group consists
of insertions that can occur at the start or end of stringndsdtween characters. The
number of possibilities in this group is (m + 1)*| A|*.

Summing up fork or less edit operations, we haye!_,[(™)(|A| + 1)t + (m +
1)t A|*"] = O(m*| A|¥) number of possible edit trace. Refer to Theorem 6 in [97] by

Ukkonen for details. O

3.2.2 Suffix array, inverse suffix array and¥ function

Let 7'[0..n] = tot; - - - t,,—1 be a text of lengtm over an alphabetl, appended with a
special symbot, ='$’ that is not in A and is smaller than any other symbolAn The
j-th suffix of T" is defined ag'[j..n| =t; - - - t,, and is denoted b¥.

The suffix arraySA[0..n| of T' is an array of integers so th@k 4, is lexicographi-

cally smaller tharl’s 4; if and only ifi < j. Note thatSA[0] = n. Theinverse suffix

26

array of T'is denoted as A1 [0..n], that is,S A~![:] equals the number of suffixes which
are lexicographically smaller than.

Given a stringP, we definerange(T, P) or the range of the suffix array @f corre-
sponding taP, to be the largest intervadz..ed] such thatP is a prefix of every suffix;
for j = SA[st], SA[st 4+ 1],...,SAled].

A concept related to the suffix array is the arma..n| [38], which is defined as
follows:

U[i] = SATYSA[i] + 1]

and similarly,U*[;] = U*=1{W[i]] = SATL[SA[:] + k], for k > 1.
Letts4 andty be the access time of each entry ®A and ¥ respectively. In this

paper, we need a data struct@evhich supports, for any, the following operations.
e reportsSAfi] in tg4 time,
e reportsSA~![i] in tg4 time,
e reports¥|[i| in ¢ty time, and
e reportssubstring(i,) = T[S A[i]..SA[i] + [— 1] in O(lty) time for some length.
Lemmas 2 and 7 give two implementations of the data stru@ure

Lemma 2 The data structur® can be implemented i®(n log | A|) bits so that s, =

O(log®n) andty = O(1), whered < e < 1.

27

Proof. We refer to Grossi and Vitter’s data structure [38] for coegsed suffix array

(CSA) with the required properties. O
Lemmas 3 to 6 are needed for the second implementation ofitiaestiuctureD.

Lemma 3 [84, 47] LetS be a subset of: elements drawn from the sét, 2,...,n). S
can be represented usinglog(n/m)-+O(m) bits such that the following rank and select
operations can be performed in constant time. A rank omera&turns the order of an
elementz € S, defined asRank(z] = | {y < z |y € S} |. A select operation returns

thei-th smallest element i, wherel < i < m (i.e. Select[i] = z if Rank[z] = i).

Lemma 4 Let X1, ..., X, be/ non-empty subsets g0, ...,n — 1} such that2§:1 ||
= m andm < n. The subsets can be represented usirigg(nf/m) + {logn + O(m)
bits such that given andj, theith smallest element ifX; can be retrieved in constant

time.

Proof. This lemma is from Corollary 2 in Rao’s paper [85]. First,retbhe setX =
{j*n+ x|z € X;} usingmlog(nf/m)+ O(m) bits of space as in Lemma 3. Second,
letc;, = I 1X], for1 < j < ¢ — 1. The arrayc can be represented directly using
additionall log n bits. Theith smallest element iX; is the(c;_; + 7)th element inX,

which can be retrieved i®(1) time. O

Lemma 5 The sequencé¥*[i] | 0 < i < n — 1} is the concatenation dfA|* sorted

lists.

28

Proof. This lemma is generalized from Lemma 3 in Rao’s paper [85]. O

Lemma 6 Let X7, ..., X, bel subsets of0,...,n — 1} such that.X;| =n/¢, 1 < j < /.
Then{W/[z] | z € X,} for all j, can be stored in a@(nllog |A| + |A|*log n)-bit data

structure such that giverwhere X [i] = z, ¥/[z] can be accessed (1) time.

Proof. For any givenj, {¥7[z] | = € X,} contains at mostA|’ sorted lists. Combining
Lemmas 4 and 5{¥/[z] | = € X;} can be represented 0i(| X;| log(n|AJ/|X;|) +
|A) log n+|X;|) = O((n/€)log(]A|”¢)+| A}’ log n) bits. Then, given whereX;[i] = z,
we can acces¥’|z] in constant time. The space needed to s{a¥é[z] | = € X}, for
1 < j < ¢, will then beO(nlog(|A|*¢) + 10gnZ§-z1 |A)7) = O(nllog | A| + | Al¢logn)

bits. O

Lemma 7 The data structur® can be implemented i@ (n+/log n log | A|) bits so that

tsa = O(1) andty = O(1), for |A| = O(2Ve™),

Proof. Building theO(n log |A|)-bit data structure in Lemma 2, thie function can be
accessed i (1) time. Below, we describ®(n\/logn log |A|)-bit data structures so
that bothSA andSA~! can be computed i®(1) time.

For the access df A value, recall that Rao [85] gives an implementation of th@€o
pressed suffix array that repofsi[i] in O(1) time usingO(n+/log n) bits for binary text
string (refer to Theorem 4 in [85]). For text on a fixed finitplabetA, Rao’s idea can be
generalized so thatA[i] can be accessed in constant time usin@éam,/log n log | A|)-

bit data structures.

29

For the access df A~! value, we need the following data structure. Let \/logn.
First, we storeSA~![z/] for all 0 < z < |n/{], which requiresO(n+/logn) bits.
Then, we need a data structure so tldfz] can be accessed if(1) time for any
0 <z < |n/f] and anyl < j < ¢. By Lemma 6, such data structure can be stored in
O(ny/Tognlog |A| +|A| V2" log n) = O(ny/Iog nlog |A|) bits (for| A] = O(2V1eEm)).

Now we show how to acces$A~![i] giveni in constant time. Ley = [i/¢],

K =i—yl,andz’ = SA~'[yl]. We claim thatSA~'[i] = ¥*'[2/] andk’ < ¢. Then,
using the data structures aboy$e4 ~'[i] can be computed i®(1) time.

Note thaty? < i < (y + 1)¢ and,k’ = i — y¢ < (. Itis then easy to verify that
UH 2] = SATSA[Z] + k'] and saSA[UF [2]] = SA[Z'] + K. SinceSA[] = yl, we

haveSA[U* [2']] = y¢ + k' = i. Thus, the claim follows. O

3.2.3 Suffix tree

A suffix tree for the textl" is an edge-labeled rooted directed tree with exactly 1
leaves numbere@to n. Each edge is labeled with a non-empty substring stich that

no two outgoing edges from a node have labels with the samefiesacter. For every
nodev, its path labeplabel(v) is constructed by concatenating the edge labels, in order,
from the root to the node. Note that the path label of everfydes a suffix of T’ that
starts at position.

We assumed that the suffixes of the leaves in the suffix treéegi@graphically

30

ordered so that the collection of leaf nodes from left to tigiil form the suffix ar-
ray denoted bySA[0..n]. For our approach, we require a suffix tree that support the

following operations:

label(u,v) : returns the label on the edge joining nad&o v in O(xtg4) time wherez

is the length of the edge label (i, v).
plen(v) : returns the length of the path laghbel(v) in O(ts4) time .

leftmost(v) : returns the SA index of the leftmost leaf in the subtreeedait nodes

in O(1) time.

rightmost(v) : returns the SA index of the rightmost leaf in the subtreegd@t node

vin O(1) time.
slink(v) : returns a node if there is a suffix link from node to nodeu in O(ty) time.

child(v,) : returns a childv of the nodev if ¢ is a prefix character to stringbel (v, w)

in O(|A|tsa) time.

Lemma 8 A suffix tree with the above properties can be implementedgusi

(1) O(nv/lognlog|Al) bits for ts4 = O(1) andty = O(1) and assumingA| =
O(2V'e™), or (2) O(nlog | A|) bits forts, = O(log® n) andty = O(1).

Proof. We refer to Sadakane’s paper [88] on compressed suffix tré&) nplementa-

tion that uses data structufeandO(n) bits for the balanced parentheses representation

of the suffix tree [72]. The space complexities follow fronnmas 2 and 7. O

31

The following result on LCP query is also available.

Lemma 9 [88] Given SA indicesi and j, the length of the longest common prefix
(LC'P) between suffixes at positiorfsA[i] and SA[j], denoted byicp(s, j)|, can be
computed irD(tg4) time using additionaD (n) bits data structure. The lowest common
ancestof LC' A) node between any two nodes in the suffix tree can also be cechput

O(tsa) time.

3.2.4 Other data structures

Given a suffix treeST built from the textT’, and a query patter# of lengthm, we

define the following terminologies and data structures:

Definition 1 Given a noder in ST, let x;, andz,; denote indices of' A corresponding

to the leftmost and rightmost leaf nodes in the subtree smhhbyz.

Based on the above definition, for any nadim ST, we havez,,..z,;] =

range(T, plabel(x)).

Definition 2 Arrays Fy;[1..m] and F4[1..m] are such thaltFy;[i].. F.4[i]] =

range(T, Pli..m]) for 1 <i < m. We also defing;[j] = 0 andF.,4[j] = n for j > m.

Lemma 10 Fy[1..m] andF 4[1..m] can be constructed i0(mty + m|A|tsa) time.

Proof. This can be done using the suffix links$1" in O(mty) time, given that

32

range(T, P[1..m]) can be obtained by traversing the suffix tre€ifm|A|ts) time.

Furthermore, the following two lemmas are needed to supp@tt pattern search

over a subtree in the suffix tree.

Lemma 11 Given a patterrP, let = be a node such thét...x,;| = range(T, P). For

any position; in T, P is a prefix of '[i..n| if and only if ;. < SA™'[i] < z,.

Proof. If P is a prefix of7[i..n] then by the definition of suffix tree, corresponds
to a leaf node such that is the prefix to its path label. It follows that must be on
the path from the root to the leaf node. Hence the correspgrn8A index of the leaf
node, which isSA~1[i] must fall within the range of;. andz,;. On the other hand, if
1. < SA7Yi] < .4, then the leaf is in the subtree rooted atand sdl'[i..n] must have

P as its prefix. O

Lemma 12 Given a patteriP, letz be a node such that;...x,;| = range(T, P). Then,

SA T SA[z] + |P|] < SATVSA[zp + 1] + |P[] < ... < SA VS A[z,] + | P|].

Proof. Leti and;j be any twaoS A indices suchthat,, <i < j < x,,, thenT[SA[i]..SA[i]
+|P| — 1] = T[SA[j]..SA[j] + |P| — 1] = P. Sincei < j, thenT[SA[i] + |P|..n] <
T[SA[j] + | P|..n] must be true. Now assume thatl ~*[SA[i] + | P|] > SA'[SA[j] +

| P|], which impliesT'[SA[i] + |P|..n] > T[S Al[j] + | P|..n]. Hence a contradiction.O

33

3.2.5 Heavy path decomposition

We introduce a standard technique to partitiofn) nodes of a tree int®(logn) lev-
els. Similar schemes have been used for tree structure essipn to give a depth of
O(logn) [14, 22]. The heavy path decomposition scheme is as suclenGisuffix tree
ST, we assign a level to every node$fT". The root is assignefdvel 1. If a nodev has
level 7, we assigrievel ¢ to the single child node of, that has the largest subtree (in
terms of number of nodes) among all the other child nodes dhe other child nodes
of v are assignedevel i + 1. Edges joining 2 nodes with the sarwel are denoted
ascore edgesand the rest of edges that join nodeseatl i to nodes atevel i + 1 are
denoted aside edgesAn internal node will have exactly one outgoingre edgeand
the rest of the outgoing edges aide edgesWe also denote a node with an incoming
core edge as eore nodeand otherwise, aide nodeThe root, is by default, aide node

The followings are also observed:

Lemma 13 There are)(logn) levels.

Proof. If a subtree rooted at a nodehavinglevel i containg leaves, then the number
of leaves of the subtree rooted at a child nadef v havinglevel i + 1 is at most//2.

As the suffix tree has leaves, there are at maStlog n) levels. O

Then we can easily get the following corollary:

34

Corollary 14 There are)(log n) side edges on the path from the root to any node in the

suffix tree.

Lemma 15 Consider any two distinct side edgesande; with end nodes); andw,
respectively. If both, andvy, havelevel i, then the two subtrees rootediatandwv, are
disjoint. In other words, the subtrees rooted at any twardisside nodes of the same

level are disjoint.

Proof. Suppose by contradiction that the two subtrees are notidisfben eithen, is
an ancestor of, or vice versa. Supposeg is an ancestor of,. Asv; andv, are on the
same level, edges running fromto v, are all core edges, includinrg, this contradicts

with the assumption that is a side edge. O

Lemma 16 Given any side node, that begins a core path (where all edges in the path
are core edges), we can find the leaf nadéat terminates the core pathdn(1) time

using additionaO(n) bits data structure.

Proof. Letu; be thei-th node in the suffix tree according to the preorder traversshe
nodes, and = O(n) be the number of nodes in the suffix tree. L¥éfl..t] be an array
first initialized as blanks, and [i] =* (" if u; is an internal side node, els€[i] =") if w;
is a core leaf node. It can be checked easily that the parseghieX [1..t] is balanced as
every core path finishes at a leaf. More importantly, for gyeair of parentheseds, j) in

X, u; andu,; form the start and the end of some core path. Figure 3.1 givesample

35

of the representation. The parentheses akagan be encoded in binary representation
usingO(n) bits based on th®ank and Seledata structure (from Lemma 3). By the
data structure for balanced parentheses (see Theorem1l]jntfie position of the close
parenthesis that matches the given open parenthesis, ¢aarfzkin constant time using

additionalo(n) auxiliary bits. Hence, the lemma follows. O

2 Os O 12
A (R
6 O
3 4 9 13 14 15
7 8

012345678910 11 12 13 14 15
C)) ()

Figure 3.1: Balanced parentheses representation of cohs (thickened lines) in a

suffix tree.

36

3.3 Approximate string matching problem

3.3.1 The data structure for 1-approximate matching

Our 1-approximate matching data structure is basically thesstrifie ST of the textT
(see Section 3.2.3), together with two other data strustufest, for every side node
(see Section 3.2.5), latbe the parent node of we maintain a set, = {SA S A[i] +
plen(u) +1] | i = 1(mod log® n) andv;, < i < vy}

Second, for every core leaf nod€éwhoseS A index isk), letv be the start of the cor-
responding core path, we maintain 2 listsSof indices, ., = {i | i = 1(mod log®n), i <
k and|icp(k,i)| > plen(v)} andH? = {i | i = 1(mod log®n),

i > k and|icp(k,i)| > plen(v)}. The values inf, and H' are ordered by increasing

longest common prefix lengtbep(k, 7).

Lemma 17 We can stord”, for all side nodes usingO(n) bit space. In addition, for
any rangdz..y|, we can find a valug such thafi € ', | = < i < y} usingO(loglogn)

time.

Proof. By Lemma 15, all subtrees rooted at different side nodesh@fsame level;
are disjoint. Hence, the total size Bf for all level- side nodes is at mostn/ log® n.
Since there ar®(log n) levels, (by Lemma 13), the total sizelof for all side nodes is
O(n/logn). We stord”,, for every side node, using they-fast trie[100] data structure.

The size of the data structured¥|I",| log n) bits and it allows efficient range query in

37
O(loglogn) time. Since the total size of dll, is O(n/logn), the lemma follows. O

Lemma 18 We can store//! and H' for all core leaf nodes (whoseSA index isk)
usingO(n) bit space. In addition, for any range..y|, we can report the valugse H!
andi” € H! such thatr < lep(i', k) < y andz < lep(i", k) < y usingO(loglogn)

time.

Proof. There are at most/log”n leaf nodes whose corresponding SA indéxz=
1(mod log®n). Also, each leaf node is reachable franlogn) side nodes whereby
each of the side nodeis the beginning of some core path (by Corollary 14). It than f
lows that each leaf node must be includedifiog n) different 4 lists. Hence, the total
size of H! and H! for all core paths i$)(n/logn). EachH! and H! is stored using the
y-fast trie[100] data structure. The size of the data structuré€¥(i$H'| + |H"|) logn)

bits. Since the total size of alfl, and A" is O(n/ logn), the lemma follows. 0
By Lemmas 8, 17 and 18, we have the following:

Lemma 19 The 1l-approximate matching data structure can be storédirog|A|)
andO(n+/lognlog|A|) bits forts4 = O(log®n) andtss = O(1) respectively. In both

casest, = O(1).

Below is the key lemma for our algorithm.

Lemma 20 Consider (1) a node in ST such thatP, = plabel(u), (2) a charactet,

and (3) another strin@, with [st..ed] = range(T, P,). Letv = child(u,c). Then, all

38

occurrences oP;cP, can be computed i@ (ts4(loglogn + occ)) time whereocc is the

total number of occurrences &fcP, in T'.

Proof. Note that{v;...v,;] = range(T, Pyc). If P = PycP, occursinT’, asP;cis a prefix
of P, P must occur at positio®' A[i] for somev,. < i < v,;. By Lemma 11, we can
verify if P occurs at positiors A[:] by checking ifst < SA™'[SA[i] + |P| + 1] < ed.
Hence, the occurrence &f can be found by performing the above checking for adl
[Ve..v;]. Moreover, by Lemma 125 A~ [SAi]+|Py|+1] is increasing fok € [vj..v,4].
Note that, for any, SA~[SA[i]| + | P;| + 1] can be retrieved i®(¢s4) time. Hence, one
occurrence of can be found irO(ts 4 log(v,; — vie)) time by binary search.

If vis a side node, recall that we associate d'séo it, wherel", = {SA™![SA[i] +

|Py| +1] | i = 1(mod log®n) andi € [vj..v,]}. There are3 cases.

e Case 1:T', is empty. This means that the number of leaves in the subfree o
(v,s — e + 1) is < log® n. Using the method we just discussed, one occurrence of

P can be found irO(ts 4 log (v, — vie)) = O(tsaloglogn) time.

e Case 2T, is non-empty and, by Lemma 17, we find sofrseich that
st < SATY[SA[i] + |P| + 1] < ed. Since any range query gffast trietakes

O(loglogn) time, the second case follows.

e Case 31, is non-empty and, by Lemma 17, we cannot find asych thatst <

SATSA[i]+]|P1|+1] < ed. Inthis case, usin@(log log n) time, we applyy-fast

39

trie to find « andb such thatS A~ [SA[a] + |P;| + 1] € T, is just smaller thamt
andSA~SA[b] + |P,| + 1] € T, is just bigger thard. Note thath — a < log® n.
Then, using the method described at the beginning of thef pnsocan find one

occurrence o in O(tgalog(b — a)) = O(tsaloglogn) time.

If vis a core node, lef’ P be the core path containing Since the side node lies
on the path from the root node toand would have been uncovered from traversing
the suffix tree to obtai®;, here we assume that the side node that begins the core path
C'P is known. We obtain the terminating leaf nodéwhoseS A index isk) of C'P by
Lemma 16 using)(1) time. Next, we search for the nodec C'P whose path label is
of length|P| + ¢ + 1 whereq = |icp(SATYSA[k] + | P1| + 1], st)|. By Lemma 94 is

computed inD(ts4) time. There ar@ cases.

e Case 1:H, is empty. This means that the number of leaves hanging frerndhe
path is< log”n. We can find one occurrence &f in O(tgalog(v, — v)) =

O(tsaloglogn) time.

e Case 2:q > |P,|. This means that leaf nodecorresponds to a suffix witk as

its prefix. We have recovered one occurrencé of

e Case 3:q < |P,|. First, we would like to find;' € H! andj” € H such that
llep(5' —log®n, k)| < [P+ q+1 < |lep(5', k)| and|lep(j", k)| < |P| +q +
1 < |lep(j= + log® n, k)| respectively. This can be computedirloglog n) time

given Lemma 18. Next, using binary search, we logasnd:" within the range

40

of j' —log®n...j' andj"...;" + log®n such thatlcp(i', k)| = |P| + ¢ + 1 and
llep(i”, k)| = | P1| + ¢ + 1 respectively. If bothy! and;” are not found, the binary
search is performed fdr — logZn < i* < k + log®n. The binary search takes
O(tsaloglogn) time. Giveni' ori” whichever one is found, we can recover node
r by performing aL.C A on the leaf node at or i" with z in O(ts,) time. If P,

is not completely matched after nodewe can continue to search the outgoing
side edges from node as described above (case where a side node) using

additionalO(ts4 loglog n) time. Overall, the time taken is stild(¢5 4 log logn).

Once we confirm thaf’ occurs in positionS Afi], the remaining occurrences &f
could be found by performing, for entriésto the left and to the right of, the above
checking (thatisst < SA™'[SA[i'] + |Pi| + 1] < ed), until we reach the boundary of

[ve..v,;] OF a false case occurs. The time require@{$s4(occ + 2)). O

Here, we define the proceduf&eeSearch(u,c, [st..ed]) to be the routine which finds
all the occurrences aP,cP, where P, = plabel(u) and|st..ed] = range(T, P,). By

Lemma 20, this procedure runs@nts 4(loglogn + occ)) time.

3.3.2 The 1-approximate matching algorithm

The algorithm traverses the suffix tree from the root to fingl patternP character by
character. Then, for every positiont introduces an “error” at that position and checks

for occurrences by callin@'reeSearch. The details of the algorithm is stated in Fig-

41

ure 3.2.

Lemma 21 Given the indexing data structure in Section 3.3.1, we caat® all 1-
mismatch (orl-difference) occurrences of a lengthpatternP in 7', usingO(tym +

tsa(|Almloglogn + occ)) time.

Proof. By Lemma 10, Step 1 take&3(mty + m|Altsa) time. Step 2 take®(1) time.
When we traverse down the suffix tree to a nadgvith plabel(u) = P[1..i — 1]),
we will execute Steps 3(a-c) for the node By Lemma 20, Steps 3(a-c) in total takes

O(tsa(|Almloglogn + occ)) time.

For Step 3(d), it take® (54| A|m) time. The lemma follows. O
By Lemmas 19 and 21, we get the following 2 theorems:

Theorem 22 Given anO(n+/log nlog | A])-bit indexing data structure, the 1-mismatch
or 1-difference problem can locate atapproximate occurrences of a lengthpattern

Pin T, usingO(]Ajmloglogn + occ) time, for|A| = O(2Ve™),

Theorem 23 Given anO(n log|A|)-bit indexing data structure, the 1-mismatch or 1-
difference problem can locate daHapproximate occurrences of a lengthpatternP in

T, usingO(log® n(|A|mloglogn + occ)) time, where) < e < 1.

42

Algorithm 1-approximate match
1. ConstructFy[1..m] andF 4[1..m] such that F,[i].. Frq[i]] = range(T, Pli..m]).
2. u =root node; = 1.
3. Repeat
[* Note: we maintain the invariant thatabel(u) = P[1..: — 1]. */
(a) Deletion at (find occurrences oP[1..i — 1] P[i + 1..m])
If P[i] # P[i+ 1]
report the occurrences found by
TreeSearch(u, Pli+ 1], [Fy[i + 2]..Fali + 2]]).
(b) Substitution at (find occurrences aP[1..i — 1]cP[i + 1..m] for
allce A—{P[i]})
Forc € A —{Pl[il},
report the occurrences found by
TreeSearch(u,c, [Fgli + 1]..Feqli + 1]]).
(c) Insertion at (find occurrences oP[1..i — 1]cPi..m| forallc € A — {P[i]})
Forc € A —{Pl[il},
report the occurrences found By-eeSearch(u, ¢, [Fyli].. Fealt]]).
(d) No insertion, deletion, and substitution:at
Letv = child(u, P[i]), E = label(u,v).
If Pli.i+|E|-1]=FE
u=v,i=1+ |E|
Else
Find the smallesf > i such thatP[j] # E[j — i + 1].
Report all the occurrences éf so that the error is at

Terminate and return.

Figure 3.2: Algorithm for 1-mismatch and 1-difference.

43
3.3.3 Thek-approximate matching problem with £ > 1

Extending the data structure to address/ihmismatch or the:-difference problem re-
quires the result from dynamic programming for string ccticn. Given2 stringsP and

P’ of lengthm andn, we can use standard dynamic programming approach to find the
edit distance between any prefix Bfand P’ in O(mn) [90], by filling a tableFE of size
(m+1) x (n+1). Entry E(i, j) stores the edit distance betwefi..i;] and P'[1..5].

Forl <i<mandl < j < n, the tableE(i, j) is evaluated as follows:

E(i—1,7)+c(Pli],€)

E(i,j) = min{ EG—1,j— 1)+ ¢(P[i], Pj])

E(i,j —1) + c(e, P'[j])

Note thatc(P[i], €) andc(e, P'[j]) are the edit costs for deletion and insertion. Their
values equal. ¢(P[i], P'[j]) is the edit cost for substitution. We has@”[i], P'[j]) = 0
if P[i] = P'[j]; and1 otherwise. Moreover, we need to find only those prefixes (or
actually the shortest prefix) @’ that is at most edit distance fromP. A match is

read from the entries in the last row of tabliethat is< k. We proceed by filling the

44

table column by column from left to right, up to thein{m + k,n}th columns. There
are at mos®k + 1 row entries to be filled in each column as entriedft, j) where
i > j+ kori< j—kwill have edit cost> k. An example is shown in Figure 3.3 for
k = 2. Hence, finding the prefixes @ that is at mosk edit distance fronP, takes
O((m+k) x (2k+ 1)) = O(mk) time with £ < m. We state the result in the following

lemma.

>0 4 40 4 > >

The shaded entries will have edit distane@ and hence need not be filled.

Figure 3.3: Edit distance table between 2 strifgs= “AATGTTCA” and P’ =
“CATAGTTCACGG” with k = 2.

Lemma 24 Given 2 stringsP and P’ of lengthm andn respectively, we can find the

prefixes of’ that is at most: edit distance fronP in O(mk) time.

Our solution for thek-approximate matching tries to apply the dynamic program-

ming on various paths of the suffix tree. We need the follov@iigmmas.

45

Lemma 25 Given a lengthm string P, there areO (| A|*m*) different path labelg”’ in
the suffix tree such that the edit distance betwBeand P’ is at mostt, where| A| is the

fixed alphabet size.

Proof. The number of possibl&”’ in the suffix tree is bounded by the number of edit

traces that can be applied to the strinigHence, by Lemma 1, the lemma follows.O

Lemma 26 After preprocessing the teft of lengthn and obtaining an

O(ny/lognlog|A|) or O(nlog|Al) bits data structure, the-mismatch ork-difference
problem can locate all approximate occurrences of a lenggattern P in 7', using
O(|A[Fm* Y (k + tga) + tsaocc) time where|A| is the alphabet size angtc is the

number of approximate occurrencestofn 7.

Proof. The result can be achieved by applying dynamic programmuay the suffix
tree (see Lemma 8) by computing the shortest prefixes onthlé gtarting from the root
that has edit distance at mdstrom P. This is performed through a preorder traversal
on the suffix tree. We maintai®’ to be the path label in the suffix tree during the
traversal. First, traverse down the leftmost path, and aadvance to a new character
at positionj on path label P, we add and compute for new coluniiix, 7) in the edit
distance tabld” between string#[1..m| and P'[1..5]. A new column can be computed
in O(k) time (see Lemma 24), while accessiR{;], a character on some edge label,
takesO(ts4) time. The path terminates at positignvhen the edit distance in the new

column, E(x, j), is > k, or whenE(m, j) is filled. If E(m,j) < k, we can then

46

report the occurrences within the SA range of the subtretedoat current position,
using thele ftmost andrightmost operations inD(tg4occ) time. This is followed by
backtracking to the next path (based on the preorderingeafitiales) and erasing the last
few columns added t@’, which equals to the number of characters backtracked.eSinc
the number of paths to traverse is bounded (refer to Lemmaw&bonclude that the
search time i€ (JA[*m* x m(k + tga) + tsaoce) = O(|A|*m* 1 (k + tga) + tsaocc).

It is worth mentioning here that similar results can be otgdiby applying backward
search on CSA [44] that give3(|A|"m" ™ (k + loglog |A|) + occlog® n) search time,

usingO(n log|A|) bits space. O

Theorem 27 After preprocessing the teft of lengthn and obtaining an
O(ny/lognlog|A|) (assumeA| = 0(2\/@)) or O(nlog |A|) bits data structure, the
mismatch or-difference problem can locate all approximate occurreéa lengths
patternP in T', usingO (| A|*m* (k+log log n)+occ) or O(log® n(| Al*m* (k+log logn)+
occ)) time respectively, where < ¢ < 1, |A] is the alphabet size andc is the number

of approximate occurrences 6fin 7.

Proof. The result is achieved in 2 steps. First, by Lemma 26, we Jolvihe (k — 1)-
mismatch or(k — 1)-difference problem irO(|A|*'m*(k + ts4) + tsaocc;) Where
occ.y, 1S the number of approximate occurrences’ah 7" with edit distance< k. What
remains is to find those occurrencegrolvith edit distance exactly in the text. In step 2,

for those paths terminating with edit distarice 1, we can further solve for thieth error

47

using the previous results fdrmismatch orl-difference (refer to Lemma 21). Since
there areO(|A|*~'m*~1) paths with edit distancé — 1 (see Lemma 25), we can find
the occurrences aP with exactly k-mismatch ork-difference using) (| A|*~tm*~t x
(tgm + tsa|Almloglogn) + tsaocck) time whereocey, is the number of approximate
occurrences of in T with edit distancek.

Combining steps 1 and 2, we have the solutiorOiA|*~'m*(k + tsa4 + ty +

tsalAlloglogn) + tgaocc) ime. By Lemmas 8 and 19, the theorem follows.

3.3.4 Thek-don’t-cares problem

A restrictive form of thetk mismatch problem is the don't cares or wildcards problem
where mismatches are allowed only at spedcifigositions on the pattern (as presented
with the pattern). We give the following results using theadstructures described in

Section 3.3.1.

Lemma 28 After preprocessing the te&t of lengthn and obtaining an
O(ny/lognlog|A|) (assumgA| = 0(2\/@)) or O(nlog|Al) bits data structure, the
1-don’t-care problem can locate all approximate occurrerde lengthm patternP in
T, usingO(] A|(m+loglogn)+occ) or O(log® n(|A|(m+loglogn)+occ)) time respec-
tively, where0 < ¢ < 1, |A| is the alphabet size andc is the number of approximate

occurrences oP in 7.

48

Proof. The proof follows from Lemma 21, where the algorithm outtine Figure 3.2 is
simplified with Steps 3(a-c) replaced by a single substtuanly at the single position
i where the don't care is allowed. Now Step 3c will tak& s 4| A| loglog n + occ) time.
This gives a total oD (tgm + tga|A|(m + loglogn) + occ)) time. (Refer to the proof
of Lemma 21 for details.)

By Lemma 19, the lemma follows. O

Also, we can extend the search for- 1 don't cares.

Lemma 29 After preprocessing the teXt of lengthn and obtaining an
O(ny/lognlog|Al) (assumgA| = 0(2\/@)) or O(nlog|Al) bits data structure, the
k-don’t-care problem can locate all approximate occurrerafea lengths: patternP
in T, usingO (| A|*(m + loglog n) + occ) or O(log® n(|A|*(m + |A]loglogn) + occ))
time respectively, wheré < ¢ < 1, |A| is the alphabet size andc is the number of

approximate occurrences 6fin 7.

Proof. For k don't cares, we might have to search ug 49" different paths down the
suffix tree. Traversing and matching the characters on despagh of lengthn takes
O(tsalAlm) time and reporting the occurrences takés,occ). This gives a total time
of O(tsa(|A*tm + occ)) to report the location of alt don’t cares patterns.
However, we can further reduce the time by searching fokthiedon’t care using
the resultin Lemma 28. We can now searchifalon’t cares inO (tym + tga| AlF(m +

|A|loglogn) + occ) time. By Lemma 19, the lemma follows. 0

49

3.4 Summary

Approximate string matching is about finding a given striagf@rn in a text by allowing
some degree of errors. In this work we present a space-effidaga structure to solve
the 1-mismatch and-difference problems. Given a teXt of lengthn over an alpha-
bet A, we can preprocesE and give arO(n+/log n log | A|)-bit space data structure so
that, for any query patter® of lengthm, we can find alll-mismatch (orl-difference)
occurrences of in O(]A|mloglogn +occ) time, whereocc is the number of occur-
rences. This is the fastest known query time given that theespf the data structure is
o(nlog®n) bits.

The space of our data structure can be further reduc@d¢idog | A|) if we can afford
a slow down factor ofog® n, for0 < ¢ < 1. Furthermore, our solution can be generalized
to solve thei-mismatch (and the-difference) problem i (| A|*m* (k+log log n)+occ)
and O (log® n(|A|*m"(k + loglogn) + occ)) query time using am®(n+/logn log | A|)-
bit and anO(n log | A|)-bit indexing data structures, respectively. We assumettiea
alphabet sizeA| is bounded b30(2\/@) for the O(n+/lognlog | A])-bit space data
structure.

The above results were first presented in [61] and the extemdesion has been
accepted for journal publication [62]. More recently, HZhanet al. [18] incorporated
some results presented here to give an improvement usirthifidex space in answering

approximate pattern matching. The results@te: + (clogn)**+ log log n+ occ) and

50

O(m+log® n((clogn) *+2) loglog n+occ)) time usingO(n log n) andO(n log | Al) bit
space respectively for some positive constarsde. Also in another recent work, H.L.
Chanet al. [17] gave results usin@(n log n)-bit index to report approximate pattern
matching inO(m + log n log log n + occ) andO (m log nloglog n + occ) time fork = 1

andk = 2 respectively.

51

Chapter 4

Optimal exact match index

4.1 Introduction

Given a textT'[1..n], characters from a finite alphabdt and with necessary prepro-
cessing and building an indexing structure, we locate tlaetematches of any given
pattern P[1..m] in T'. This defines the exact string matching problem. In this work
we are interested in finding the optimal query time for ex&aithg matching problem
usingo(n log n)-bits data structures to index the text. In other words, wikthighly
compressed indices to answer exact match query efficiently.

It is well known that suffix tree data structure ugs: log n) bits so that exact string
matching can be answered@hm + occ) time whereocc is the number of occurrences
of the query pattern found in the text. Compressed suffixyai@5A)[44] reduces the

space ta)(n log |A]) bits in query timeD (m loglog | A|+occlog® n), fore > 0, based on

52

backward search. Grossi and Vitter [38, 39] gave an indexaonpeessed suffix array
(C'SA) for exact match inO(m/log s n +log' ™ n(log |A| + loglogn) + occ) time
using O(n log |A|) bits for m = Q(log' ™ n) or occ = Q(n). Their result is optimal
in O(m/ log 4 n + occ) query time form = Q(log”*“ nlog 4 logn). The Lempel-Ziv
(LZ) index by Kirkkainen and Sutinen [53] was cited where occupyin@:) bits, any
pattern of lengthm < elog 4 n, where0 < e < 1, can be found irO(m + occ) time
(actuallyO(1 + occ) time with suitable table lookup).

Here, we present an algorithm that finds and enumerateseatidturrences in
O(m/ log 4 n + log' ™ nlog 4 logn + occ) time form = Q(log 4 nlog® n), € > 0. We
give the optimal search time 6f(m/ log 4 n+occ) form = (2(10ng| nlog®nloglogn).
This improves the previously reported result especiallylfoge alphabet size using
O(nlog |A]) bits by a factor ofD(log | A|). Next, to handle query of any given lengih
we useO(nlog®nlog|A|) bit data structures to answer exact match query in
O(m/ log 4 n+lognloglog n-+occ) time. Finally, we giveO(ny/log nlog | A]) bit data
structures withO(m/ log, 4 n + logf n + occ) or O(m + occ) query time. The resultin
O(m + occ) time is optimal if we take into consideration tliEm) preprocessing time
to encode a pattern string of lengthinto m/ log 4 n words. This gives the first linear
O(m + occ) time using onlyo(n log n) bits space for exact string matching over a fixed
finite alphabet. Table 4.1 summarizes the results for exengsmatching over a finite

alphabet.

53

Reference Bit space Query time

Suffix tree O(nlogn) O(m + occ)

CSA" [44] O(nlog|Al) O(mloglog|A| 4 occlog® n)
Grossi et al. [39] O(nlog|A|) O(m/ log 4 n + occ)

for m = Q(log*"“n log) 4 logn)
O(nlog|Al) O(m/ log 4 n + occ)

for m = Q(logiﬂ nlog® nloglogn)

This work O(nlog nlog|A[) | O(m/log 4 n + lognloglogn + occ)

O(ny/lognlog|A]) | O((m/log 4 n + logf, n + occ)
or O(m + occ)

* - backward search on CSA, aad- 0

Table 4.1: Comparison of various results for exact stringchiag problem.

4.2 The approach

4.2.1 Basic concept

We first consider a compact triesT,,, for suffixes of 7" at positions or split-points
w, 2w, ..., |n/w|w, usingO(n/wlogn) bits. w is a constant value to be determined
later. LetT; denotes the suffif’[i..n]. The compact trieST,,, consists of suffixeg;,,

1 < i < |n/w|. Any matching pattern of lengtkr w in 7" will cover at least one
split-point. We have another compact tri€],,, for reverse prefixes df’ at positions

w—1,2w —1,...,|[n/w]w — 1, usingO(n/wlogn) bits. The compact trieST,,,

consists of|n/w| substringsl'[iw — 1..1], 1 < i < |n/w]|. The compact tries are

54

sorted in lexicographical order, with leaf nodes storingtixt positiongw andiw — 1,

1 <i < |n/w], for ST, andST, respectively. This gives a search strategy to find exact
match given the query patteff[1..m]. We say that” occurs at position on the textl’

if there exists an integerwhere(j — 1)w < i < jw, such thatP[jw — i + 1..m] is a
prefix toT},, in ST,,, andP[jw — i..1] is a prefix tol [jw — 1..1] in ST,

We generalize the search for pattdenin text 7', by first splitting P into 2 parts,
head and tail P[j — 1..1] and P[j..m], for j = 1 to w. Next for eachy, we search for
P[j — 1..1] in ST,, and P[j..m] in ST, respectively. Let the largest leaf ranges with
common prefixes matching the respective head and tail patterST,, and ST, for a
givenj, be[z}. 2] and[y!..y7]. The leaf indices are enumerated in left to right order.
Also let ST, [x] denotes the text position stored in the leaf nade ST,,, similarly
for ST,[y]. The final step is to return those positions where= [z!..2] andy €
[y}..y5], such thaST,, [y] = ST, [x]+1, with the matching occurrence located at position

STulyl —j+1inT.

4.2.2 Data structures

We now describe some data structures that can help to spethe gearch. Given the
leaf rangesz!..27] and[y}..y}], we identify the “correct” matching leaf nodes, by trans-
forming the problem into a two-dimensional orthogonal msgarch. Below is a known

result:

55

Lemma 30 [3] Let S be a set of points inl..n] x [1..n], where|S| = n. Given
x1,%2,Y1, Y2, We can findL = {(z,y) € S |21 <z < a9 andy; <y < ys}, in

O(loglogn + |L|) query time using)(n log' ™ n) bit spaceg > 0.

We haveS defined as the leaf index range $if,, x the leaf index range o$T,, . A
point in S, (z,y), corresponds to the occurrence$f, [y] = ST,[z] + 1. In our case,
there are onlyn/w| points.

The following data structures are needed for our results:

Lemma 31 [39] Compressed suffix array (CSA) usiign log |A|) bit space, reports
S A (suffix array) andl entries intg4 = O(long‘ n), where0 < e < 1, andty = O(1)

time respectively. (The functioW is defined as sucli[i| = SA™'[SA[i] + 1]).)

Lemma 32 [85] Compressed suffix array (CSA) can be implemented using

O(n+/lognlog|A|) bit space, to repoit A (suffix array) andl entries in constant time.
Proof. This is generalized from Rao’s paper for binary text string. O

Lemma 33 [87, 88] GivenSA indices: and j and an implementation of th€'S A,
the length of the longest common prefix (LCP) between sufatg®sitionsS A[i| and
SA[j], denoted bylicp(i, j)|, can be computed if)(ts4) time using additionaD(n)
bits data structure. The SA range corresponding to the loesgsmon ancestor (LCA)

node between any two suffixes can be computed in constant time

56

Lemma 34 Given a Patricia trie storing strings of length at leadbg, 4 n, each over
the alphabeti, we can search for a pattern of lengthin

O(m/log 4 n + log, n) time. The Patricia trie use3(s log n) bit space.
Proof. Refer to Lemma 9 in Grossi and Vitter's paper [39]. O

Lemma 35 [84] Let S be a set ofn elements drawn frorni..n]. S can be represented
usingm log(n/m) + O(m + loglogn) bits such that the following rank and select op-
erations can be performed in constant time. A rank operagturns the order of an
elementr € S, defined aRank|z] = |{y < z | y € S}|. A select operation returns the

i-th smallest element i, wherel < i < m (i.e. Select[i] = z if Rank[z] = 7).

4.2.3 UsingO(nlog|A|) bit data structures

We first useS A[1..n| to denote the compressé&d! in the C'S A build for the textT'. Let
PT be a compact trie, more specifically a Patricia trie as defimégmma 34 for suffix
strings7'[i..m], such that. = SA[j] andjmodw = 0. Suppose the patterR[1..m]
exists in thePT which corresponds to suffixesA[iw] for i € [a..b]. The rang€a..b] is
mapped to itsS A rangeaw..bw] in theC'S A. Next the index ranggw..bw] is extended
to its left and right forla’..0'] which correspond to théC A to the suffixes in the range
[aw..bw].

There is the special case whdpél..m| is not found inPT, as onlyP[1..i], i < m,

has been matched. We can determine the leaf range+ 1] so thatP[1..m] if found

57

will exist between leaf index. anda + 1. We search within the& A range|aw..bw],
(b = a + 1), of the CSA for[a’..t/] with prefix matchingP[1..m|. This is performed
using binary search i®(m/ loggyn + tsalog w) by packinglog, 4 n characters into a
single word for constant time comparison, and applying/itbe result. This is similar
to binary search over suffix array with the use/a@f P.

Now that we have found th&A range forP[1..m], using the¥ function inC'S A,
we locate the rest of th& A ranges forP[i..m], 1 < i < w. For eachSA range, we find
within the range, the ranks of the first and last entries wheseposition modv = 0.
The ranks are in fact the leaf range $1T;, (see Section 4.2.1) with prefix matching
someP[i..m]. Let the leaf range ibT,, with strings starting withP[i..m] be [y!..y7].

The following Lemma gives the details:

Lemma 36 UsingO(n/wlog w) bit data structures, and given thel rangeli..j], 1 <
i < j < n, wherew is a constant, we can find the smalléstand the larges}’
such that', ;' € [i..j], and?,j’ € D, in O(1) time. We define the lisD = {i €
[1..n] | SA[ilmodw = 0}. We can also determine the rankiof |{j <i|j € D}|, in

O(1) time.

Proof. Imagine a bit array of size of 0's and 1's where the 1's mark the positions
of D inthe SA. There aren/w 1's in the bit array of lengtm and the space to store
using the rank and select data structure (see Lemma 38}rigw log(n/(n/w))) =

O(n/wlogw). Given a positioni, we can count the number of 1's before and at

58

O(1) time. Similarly, given the rank of some 1's in the array, we &iad its position in

O(1) time. O

To reiterate, for eacl§ A range corresponding tB[i..m|, 1 < i < w, using Lemma
36, we find the leaf rangg’..y!'] in ST, in constant time. Next we construct the compact

trie ST,, as described earlier and firfe[: — 1..1] for 1 < i < w, to yield the leaf range

l

Given the leaf rangeg)!..y’] and [z!..27], we search using the range query data
structure inO(loglogn + occ;) time (see Lemma 30). This is performedtimes, for

1 <7 < w, to collect all the occurrences. Notice tiaf,, is not actually constructed.

This leads to the following theorem:

Theorem 37 GivenO(n log|A|) bit data structures, we find all the exact match locations
of lengthm patternP, in textT" of sizen, drawn from alphabet,, in O(m/log 4 n +
log'™n log| 4/ log n + occ) time, whereocc is the number of occurrences Bfin 7" and

e > 0. We assume that = Q(log 4 nlog®n).

Proof. The data structuré’T” occupiesO(n/wlogn) bits and the search faP[1..m)]
takesO(m/ log 4 n + logf, n) time (by Lemma 34). The&§A range on the CSA for
patternP[1..m] is found using furthe©(n + |C'S A|) bits foricp query (by Lemma 33)
and takeg)(m/ log 4 n + tsalogw) time. TheC'SA takes|C'SA| bits and accessing
the U function takes a total of (wty) time to recover the rest dP[i..m|, 1 < i < w.

Mapping theS A ranges taST,, leaf ranges take®(w) time as well using additional

59

O(n/wlogw) bits (by Lemma 36)ST,, occupies)(n/w logn) bits and searchin§T,,
takesO(w/ log 4 n + log[, n) time if we implementST,, similar to PT". The final step
of two-dimensional range query takéXn/wlog't*n) bits andO(wloglogn + occ)
time.

In total, we need)(n/wlog'tn + |CSA| + n) bits to answer the exact match
query inO(m/log 4 n + tsalogw + tyw + logfy n + wloglogn + occ) time. The
theorem follows if we setv = log 4 nlog®n and uses the CSA given in Lemma 31

where|C'SA| = O(nlog|A]), ty = O(1) andtga = O(log® n). 0
The theorem can be extended to give the following result.
Corollary 38 Exact match can be found i@ (m/ log 4 n + occ) optimal time using

O(nlog |Al) bit data structures fan = Q(logf nlog nloglog n).

4.2.4 UsingO(nlog® nlog|A|) bit data structures

We now give a general solution for query of any length

Theorem 39 GivenO(n log® nlog|A|) bit data structures, we find all the exact match lo-
cations of lengthw patternP, in textT" of sizen, drawn from alphabet, in O(m/ log 4 n+

log nlog log n + occ) time, whereocc is the number of occurrences Bfin 7" ande > 0.

Proof. By settingw = elog 4 n, 0 < ¢ < 1, as given in the proof for Theorem 37,

we have the query time i@ (m/ log 4 n + log 4 nloglogn + log® n log log 4 n + occ)

60

= O(m/log 4 n +lognloglogn + occ) for m > elog 4 n usingO(nlog® nlog|A|) bit
space. Fom < elog 4 n, we use the LZ-index by #kkdinen and Sutinen i) (1+occ)

time usingO(n) bits. 0

Corollary 40 Exact match can be found i@ (m/ log 4 n + occ) optimal time using

O(nlog® nlog |Al) bit data structures fon = Q(logfm nloglog n+log'™n log 4 1og) 4/ 1)

4.2.5 UsingO(n+/lognlog|A|) bit data structures

We replace the CSA used in previous results with Rao’s implgation in
O(ny/lognlog | Al) bits so that SA can be accessed directly in constant timed.e=
O(1). First we build compact trig°T for suffix stringsT'[i..m], such that = SA[j]
and jmodw = 0. We search for patter®?[1..m| in PT to obtain the leaf rangg:..b|
and then find the SA range in CSA with common prefix matchitig.m|. The details
has been discussed in Section 4.2.3. Now using Rao’s CSAawehen recover the
matching position entries in the SA range(occ) time.

We give the following result.

Theorem 41 GivenO(n+/lognlog|A|) bit data structures, we find all the exact match
locations of lengthw patternP, in textT of sizen, drawn from alphabed, in
O(m/log 4 n + logf, n + occ) time, whereocc is the number of occurrences Bfin T

ande > 0.

61

Proof. The data structuré’l” occupiesO(n/wlogn) bits and the search faP[1..m|
takesO(m/ log 4 n + logf, n) time (by Lemma 34). The&§A range on the CSA for
patternP[1..m] is found using furthe©(n + |C'S A|) bits foricp query (by Lemma 33)
and takeg)(m/ log 4 n + tsalogw) time.

In total, using Rao’s CSA (see Lemma 32)@n+/lognlog|A) bits withtss =
O(1), we need)(n/wlogn+n+/lognlog|A|+n) bits to answer the exact match query

in O(m/log 4 n + logjy n + logw + occ) time. The theorem follows if we set =
\/10g 41, form > /log, 4 n. Form <, /log, 4 n, we refer to the LZ-index. O

We can further deduce the followings.

Corollary 42 Exact match can be found i@ (m/ log 4 n + occ) optimal time using

O(ny/Tognlog |A|) bit data structures fan = Q(log| 4 n).

Corollary 43 Exact match can be found ®(m + occ) time usingO(n+/log nlog | Al)

bit data structures.

4.3 Summary

We have studied the exact string matching problem and peoMigihter bounds on the
optimal solution in terms of space and query time trade-dfisst we show that using
O(nlog |A[) bits data structure, the optimal query time®@fm/ log 4 n + occ) can be

achieved fom = Q(long| nlog® nloglogn), wheree > 0. This extends the range of

62

answerable by a factor dfg |A| from previously known result. Next usingn logn)
bits data structure, for fixed finite alphabet and any patétengthm, we answer the
exact string matching problem with asg n log log n term added to the optimal query
time. Also we show thatm + occ) query time is achievable usingn logn) bits data

structure.

63

Chapter 5

Disk-based suffix tree index

5.1 Introduction

Suffix tree is an important data structure for indexing téshg since it can answer pat-
tern search query efficiently independent of the text stsimg. There exists many prac-
tical applications that rely on suffix tree, especially foogessing biological sequence
data [40, 42, 50, 58, 59, 81]. As various genome sequencinjgqis are ongoing and
more genome sequences are made known, the applicationfof tseé on biological
research is expected to increase.

Since genome size is in the order of gigabytes, maintainifiixsrees becomes an
important issue. There are two immediate problems. Thedicdilem is on constructing
suffix tree efficiently. Many suffix tree construction algbms have been proposed over

the years [13, 19, 34, 44, 45, 67, 95, 98, 99]. We are now abt®nstruct a suffix

64

tree (or a suffix array) for the human genome of 3 billion cheres within 30 hours
on a desktop machine with 4GB RAM [60, 95]. Hence, the probtamsuffix tree
construction is largely solved in practice.

The second problem is on accessing the suffix tree. As thengentatabase gets
bigger, maintaining suffix tree in memory is no longer feksibVe need to have a disk-
based representation of suffix tree which allows for effic@ecess. We have seen a
number of disk-based representations of suffix tree [2042969, 95] in the literature.
However, these disk-based suffix trees either fail to supgbthe general suffix tree
operations well or have high 10O disk access for certain dpBrs.

This work focuses on having a practical suffix tree impleragan on disk that sup-
ports various suffix tree operations efficiently. We proppS®mpactPartitionedSuffix
tree representation (CPS-tree) for disk-based access.CB8rtree achieves good 10
bound and time complexity, and is shown to be efficient on deéhsets as well. We
study ways to localize information in the tree so that furttnaversal down the tree is
minimized. This is achieved by propagating the suffix positin selected leaf nodes
up the tree to be stored locally. Also we add “shortcuts” itht® tree so that some in-
termediate nodes (or more correctly, pages containingddes) can be skipped when
traversing the tree. This guarantees matching any sufstrithe tree withO(logn)
index pages. Table 5.1 gives a list of notations used throwighis chapter for easy ref-
erence. We study and compare various tree partitioningadstto divide the tree into

logical blocks and the method that works best with our CR8:tindex buffers are also

65

created to identify suitable buffer replacement policyt thenerates fewer page faults on
the CPS-tree index. We build CPS-tree index on the humanngeramd study the 10
and computational performances. Results show that CRRS:tme support exact match

and local alignment queries efficiently for large genome.

Notation Description

n Index size

N Length of text string to be indexed
b Logical block size (in bytes)

B Memory page size (in bytes)

m Query string length

occ Number of matching occurrences

of the query on the text

| Al Alphabet size + 1
14 Edge label length
H Suffix tree depth

Table 5.1: Description of notations used.

Suffix tree finds many applications in pattern searching omoges sequences (such
examples are Mummer[59] and Weeder[81]). These applicatiwe memory based and
hence only handle genomes that are small. For a large ger@nededs to reside on
disk, the disk IO efficiency becomes an important issue. &$ sue first study the disk
IO efficiency of our proposed suffix tree to answer exact mgtetry and to handle tree

traversal operations. In Table 5.2, we present the worst d&s& access performance of

66

Suffix Exact match | Exact match | Edge label | Child node
structure query count query access access
SB-tree[29] loggn + M | logpn 4 % logzn + % loggn + %
CPT [20] ZEtloggn | L tloggn | J&+loggn | log|A|
m-+occ m-occ 4
e e +5
WOTD-tree[34, 95] min{m, H} min{m, H} L 1
_'_mgocc _i_merBocc
CPS-tree min{m, logn} | min{m,logn} L 1
_'_erBocc _'_%
: occ 4 4
suffix array[66] mlogn + %5 mlogn logn + 5 logn + 5

The WOTD-tree is generated using the TDD construction élgyof95].
The SB-tree does not maintain the original suffix tree stma;tso we derived the worst case
complexity for the node and edge label access to recoveriti@a suffix tree information.

Note thatH, the depth of the suffix tree, is bounded @yn).

Table 5.2: Worst case big-O |0 bounds for operations on uarfmroposed suffix data

structures.

our CPS-tree and compare with some proposed suffix strigdtutke literature. Finding
exact match on most suffix tree structures is generally IGnhtded bym. For SB-tree,

it runs inO(loggz n + (m + occ)/ B). CPS-tree is second to SB-tree, with an |10 bound
of O(min{m,logn} + (m + occ)/B) for exact match query, at most &flog B) factor
behind. For CPS-tree, counting the number of exact matclanslled easily without
going through all the matching occurrences.

Next, structures like SB-tree, CPT and suffix array are netgieed for basic tree

67

traversal operations like child node and edge label accets to Table 5.2). CPS-tree
and WOTD-tree support these operations with 10 access bioalegpendent of. Tree
traversal operations are essential to handle complexepianid to support various search
techniques over suffix tree (an example is the local aligrireearch).

As for disk space usage, we need to balance between mangansmall index
(to the extend of trimming off any extra bits), and keepingtfaccess by replicating
information to be stored in the tree so that access is keptan proximity. Experiments
show that for a DNA sequence with N characters, we need 7N tbya®s to store our
bit-packed suffix tree on disk in practice. This is assumirag every position on the text
is to be indexed. For example, the CPS-tree index built orhtlhrean genome with 3
billion characters is 27GB in size. Our scheme is compatakitee space efficient suffix
tree representations [20, 29, 30, 57] that work on bit-Igeeking.

Alternatively, we can enhance the CPS-tree index with tHiexsarray [66] on disk
using additionall vV bytes, so that the occurrences which correspond to an irraeerin
the array can be retrieved sequentially from disk diredthis will increase the total disk
usage for CPS-tree to around 11N to 13N bytes. Moreoverizgsis still small when
compare with most suffix tree implementations which use 1985N bytes [45, 57]
with more compact version in 12.5N bytes [34, 69, 95].

In brief, we have made improvements to CPS-tree giving tHeviing results: (1)
Fast searching and traversal of the suffix tree in terms ofd@ngy and computational

time; (2) fast enumeration of the occurrences; and lagly,compact the suffix tree

68

using bit-packing representation and other space opttioiza

We show in our experiments that the CPS-tree is space-etficéand performing
exact match query on it generates very few page faults (emenudman genome). We
also show that approximate match query and local alignnearth (using the affine gap
cost model) can be handled efficiently using the CPS-tree.

The rest of this chapter is organized as follows. We firstishice various suffix data
structures and other related works available in the litgeatNext, we describe in depth,
the structure of our CPS-tree. This is followed by the expental results on disk-based
and memory-based query search to show that CPS-tree perieethin practice. We

conclude with discussion on our ongoing work and reseanction.

5.2 Related work

The issue of 10 efficiency in suffix tree for exact string matghhas been addressed
considerably in the literature with the following 2 main ¢tloutions, Compact Pat Tree
(CPT)[20] and String B-Tree (SB-tree)[29}. CPT is a partitioned PAT tree [36, 70]
which is essentially a suffix tree with space highly optindizEvery leaf node in the tree

denotes a suffix of the text with the path to the leaf from thet fabeled with the suffix

1For in-memory representation of suffix tree, we have conge@suffix tree (CST) [88], FM-index
(FMI)[31] and compressed suffix array (CSA)[38] represtates, which are more compact in siz€ (V
bytes) but display poor access locality [68] and requireemammputation. They are therefore better suited

for memory-based computational model.

69

string. Though itis small in size, finding the occurrences phattern takes time linear
to the height of the suffix tree which can be very inefficienthbhaomputationally and in
terms of 1O cost. Our work improves on the CPT’s scheme soweatio not need to
traverse the full path to a leaf node to answer exact matctyquiis greatly enhances
the search efficiency.

SB-tree, on the other hand, applies the structure of B-tvee string to give a well-
balanced tree structure that promigedog; N) worst case 10 access to traverse the
tree from the root to a leaf node. As SB-tree does not exjylipreserve the suffix tree
structure, it is not obvious how SB-tree can be extended malleacomplex query like
approximate search efficiently [28]. This limits the usatds of SB-tree in practice.

More recently, Hunet. al. [45] gave a disk-based suffix tree for DNA and protein
sequences. It is shown that dynamic programming over théixgree can efficiently
solve the local alignment problem. Their main setback i$ tha suffix tree is large,
requiring 21N to 65N bytes depending on implementation. iMete al. followed up
with OASIS [69]. They gave a dynamic programming A*-searciveh algorithm over
suffix tree for exhaustive local alignment search on prateifuences that surpasses the
performance of Smith-Waterman algorithm [92]. Previou&liegerichet. al. [34] have
proposed the WOTD suffix tree representation. Tetta al. [95] gave an improved
top-down disk-based suffix tree construction algorithm edmDD, based on WOTD
suffix tree representation by Giegerieh al. [34], that can scale up efficiently for

large text sequence while using a fixed memory space. Halastheal. [41] further

70

suggested storing the nodes in the tree by depth-first anderd slightly more efficient

for enumerating the occurrences in exact match search.slstvawn that the top levels
in the suffix tree can be further compressed using array®&iup [48]. However, none
of the above results addresses the issue of 10 efficiencynidlimg pattern matching and
for the suffix tree traversals.

Bedathuret. al. [11] proposed a partitioning method for suffix tree, catgfio both
suffix link and tree node traversals. In searching for theimakcommon substrings,
they showed that their approach is more 10 efficient. Howeaweir proposed method
penalizes search that does not requires suffix link, for gtarm solving exact and
approximate pattern matching.

Another promising direction is to simulate suffix tree usihg suffix array (SA)[66].
One weakness of suffix array is that there is an additional @o® (logn) time factor
to simulate each operation on a suffix tree. Also access tsuffix array does not dis-
play a regular pattern, as a result, the disk 10 cost to sdarca pattern of lengtmn
on a disk-based suffix array can be as higlDés: logn). Enhanced Suffix Array [1],
essentially consisting of the suffix array and additionblds, was proposed to execute
with same time complexity as suffix tree except that it is mepace efficient. However,
it did not address the 10 issue of suffix array. There are agtres that replicate se-
lected suffix array entries in the memory to improve on the ¢©eas performance [9]
in practice. There are several works [16, 46, 94] that apptyfiitering strategy with

g-gram (or alike) indexing. The basic approach consists e$¢hsteps: neighborhood

71

generation, index lookup and followed by site verificatidrnere is no tight bound on
IO performance as it is dependent on the size of the candidatgenerated. Also when
searching for local alignment, there is a chance that it n@yfind all alignments. In

any case, CPS-tree is a more versatile indexing structurehvaupports both pattern

matching and suffix tree traversal efficiently.

O
o
<)

@
O

07>

O /
Kﬁ
Q ©
X

$ $ $

§$ S

o D

Ss‘g mga_'_ T %— S'S-U
Sm D O g5 |o & 9’8-3
&lel |58 28 |8 S S92

o | oD oD D o S oo |9
ol oo o D S ® VD o |T

o o D
L5 Q|2 oo | T Dy 322 5
mm g(ﬁ (Y D ¥ 69%66

&’g D 2 ® 2 S

O o o m
(B (B (7 (4(8 1) (1B (12 (5%9 (12 @9 (21 (15 (5°(10(1620 (22

Sorted suffix tree

suffixarray |12 |16]3|7[17) 4[8] 11[18] 14 5] 9] 1219 |21 156[10] 1820]22
5 7 10 15 20 22

SA index 1

Figure 5.1: Suffix tree and suffix array built on the text = ‘aalbaaabaababaaaaba$”.

72

5.3 Structures and algorithms

This section describes the CPS-tree structure and itscapipln in exact pattern search.
The reader can refer to Section 2.2 for description of thectires of suffix tree and
suffix array. We adopt the convention of letting the termim@symbol $’, appended to
the textT’, to be larger than any character found in the text. The suffix¢he suffix tree
are in lexicographically sorted order from left to right. \Wegin with a short revision on
how string matching is performed on a suffix tree.

The existence of any given query strindfircan be found in time linear to the query
length,m, using a suffix tree. Given a length-query string, we traverse the tree from
the root down a path matching the query with characters oedges until no further
matching is possible. There is at mastedges or nodes to visit and naturally, the query
string exists inT" if the whole query can be matched. The occurrences of theyquer
on 7' can be retrieved by visiting the leaf nodes in the subtreeeutite node where
the matching completes. For example, by traversing thexsuiéie in Figure 5.1, the
occurrences of “abaa” can be found in one subtree which penthe text positions
‘14’,'5’, and ‘9’. Note that the positions iT" where a query string occurs, are stored
consecutively in the suffix array (SA). For example, in Fegbrl, the SA entries ranging

from index 7 to 10, store the positionsThwhere the query string “aab” occurs.

73

5.3.1 CPS-tree representation

Our CPS-tree representation is illustrated in Figure 5s2t@n the same text string used
in Figure 5.1. CPS-tree is basically a modified PAT tree [3§,Wwhere an edge stores
the first character of the edge label and its length inste#lieadctual edge label. We first
partition the suffix tree into many small trees, to be addréss “local” trees, in a top-
down fashion so that each local tree fits into a logical blockxed size (the bounding
boxes in Figure 5.2). The end node in a local tree is eitheafiiede (terminating
circular node) or an external node (rectangular node witlo@igoing dashed edge)
pointing to the descending local tree in another logicatkldEach local tree, rooted at
nodev, is constructed by first including the nodend its children, then we recursively
include the node with the heaviest subtree (most numbernbhledes), among all nodes
at the local tree boundary, and its children. The processatspuntil the local tree is full
(that is, too big to fit into a logical block). This partitiorg method is referred as the
greedy approach which is fairly intuitive. It was shown ie fraper by Alstruet. al.[2]
that the average block access of the greedy approach is edinydh factor of)(log B)

(andQ(logifB)) more than the optimal layout.

There are several tree partitioning methods in the liteeg2b, 35]. In the paper by
Diwan et. al. [25], bottom-up, tree partitioning methods were propogbdf find the
optimal layout minimizing either the worst (maximum) or eage block access when

traversing from the root to any leaf in the tree. This howerees a partitioned tree with

74

possibly many under-filled internal blocks or pages [25]ahhis undesirable. Another
common approach is to build the partitions naively by gragghe nodes in the breadth-
first order [11]. This is expected to give good average psaréorce in general. We
implemented the breadth-first order partitioning and treeedy approach and, through
the experiments (see Table 5.4), showed that greedy appeadieves fewer expected

page faults for CPS-tree in practice.

J>“\$

Figure 5.2: CPS-tree representation for text = “aaaaalsadabaaaaba$”.

To compact the local tree, we do not store the edge labelathpliWe store the first

character on the edge together with its label length for leahedges. For leaf edges, we

75

only store the first character of the edge. The label lengéhle&f edge can be computed
if we know the character depth of the parent node (of the ledéhand the text position
stored in the leaf node. For each external nodea local tree, we store the replicate of
the text position of some leaf node in the subtree rooted(abnsider the whole suffix
tree). In our implementation, we select the leaf node whsaleachable from through
the heavy path where a heavy path is a path of heavy edges @ashyaddge of a node

is the edgéu, v) such thaw is the child ofu which has the largest subtree (with the most
number of leaves) when comparedite siblings. Figure 5.1 shows the heavy paths in
the suffix tree, with thickened edges. The text positionicated in the external nodes,
help to localize access and to improve 10 efficiency of patsgarch. Also, at the root
v of each local tree, we store the SA range of the subtree ratte(see Figure 5.2 for
an example). This information comes useful to access tlemaditSA on disk when we
need to enumerate the occurrences in a search.

To facilitate searching of nodes further down the tree, wataa extra link, denoted
as “forward link”, at the block-level (in addition to the CRi®e structure presented in
Figure 5.2). We can then access any node from the root, bgrsiang through, in the
worst casé)(logn) logical blocks. This property is useful for applicationatkdemand
worst case guarantee in query time. We will elaborate fuith&ection 5.3.3.

The top few levels of nodes in the suffix tree are most fredyergited in answering
queries. As such, CPS-tree is written to disk in a top-dowdenr The order to be

written is illustrated in Figure 5.2 as the block label on tbye left corner of each block.

76

Memory buffer is implemented to handle access to the suffig where the memory
buffer can be initialized very quickly through sequentedd of the first few pages of the
suffix tree from disk. Using an optimized bit-packing schexmencode the individual
tree structure, CPS-tree can further achieve good spd@atitin and |10 efficiency in

answering string matching query.

5.3.2 Space optimization

Each local tree is packed using bit representation. For plgna DNA character is
encoded using 3 bits given that the DNA alphabets is of sizéud fhe terminating
symbol ‘$’. Each node stores its outgoing edges in an edgg.arAn edge can be
selected by performing binary search over the edge arr&ygif| time at most. The
non-leaf edge label length is generally short, as such, weBusts to store the length
and 32 bits if the length is longer than 255. From our expentsieve find that there are
only a handful of non-leaf edges with label length longentB&5. A similar design was
used in CPT for better compression.

We pad each local tree with extra bits § bytes) so that the size of each block is a
multiple of 8 (in bytes). With the blocks written consecediyinto the index file, we can
record the starting location of each block using fewer bits.

The blocks are written sequentially into the index file orkdignoring the physical

boundaries that divide the file equally into sectors on disghysical page read from the

77

index file will fetch 1 or more blocks at a time, assuming tiat physical page is larger
than the block size. It is also possible for a logical blockeside across the boundary
of 2 consecutive pages. A logical block may be under-filled a@ence the blocks may

differ in size.

5.3.3 Forward link

The logical blocks in the CPS-tree is arranged in a tree. $hdion describes the
concept of forward link which allows us to access any logldakck within O(logn)
block accesses.

We need some definitions. For any logical blacthe leaf count of the logical block
i, denoted a$i|, refers to the number of leaf nodes in the subtree spannelebfjrst
node of the logical block As an example, the leaf count of the logical block 3 in Figure
5.21is 10. For every logical block (i, 7) is called a heavy link ifj| is the biggest among
all child blocks;j of block:. The chain spanned by the heavy links is called the heavy
chain of logical blocks. For example, logical blocks 1, 3d &form a heavy chain in
Figure 5.2.

Note that for any child block of block i, if (i, ;) is not a heavy link|j| < |i|/2.
Hence, when we search downward to access a logical blockee to access at most
log n non-heavy link. However, we may need to go throdgfn) heavy links to reach a

logical block. To speed-up, we introduce forward link wheltips some of the logical

78

blocks.

Consider a particular chain, let blockand; be the first and the last blocks respec-
tively. We define forward links for every block in the chaiorin: to 5 as follows. First,

a forward link is introduced from blockto blockr where blockr is a descendant of
blocki and an ancestor of blogksuch that is the deepest block witlx| > (]| +[j])/2.
Then, the chain is partitioned into two chains: The first nhaifrom the child of; to the
parent ofr and the second chain is fromto j. Lastly, we recursively define the forward
links for the two chains. An illustration of the forward liskarc arrows) is given in
Figure 5.3. The above procedure ensures we can find any i@khain withir2 log n
block accesses.

Now, imagine that we start at the first blockontaining the root node of the suffix
tree, in the process to find the exact match of a given quengstihe match count of
block: could be as large as If the matching reaches an external nade block:, and
v points to the child blocl, then there are 3 possibilities to continue the search dben t
tree. Case 1is thdt, j) is not a heavy link, so we can continue the search in childkbloc
j whose leaf count will be reduced by at least half, and so tlssipte match count to
be returned, is reduced t9'2 in block j. Otherwise, we havé, j) being a heavy link,
and letr be the block pointed to by the forward link in the current ldoc Case 2 is
when we can fully match the path label to the first node in timevdod blockr with the
query string and so the search continues in bloclSince a forward link reduced the

leaf range by half each time, we will have the possible mataintreduced ta /2 in

79

blockr as well. Next, we have the final case 3 where the path labetities not match
with the query string. In this case, we will continue the sban child blockj, knowing
that we have already eliminated the possibility of visitingwvard blockr and beyond

as in case 2. Hence the possible match count in bjaskeeduced by the leaf count of
forward blockr, which is stilln /2. This process is repeated as we visit a new block with
the possible match count reduces by half each time until thielmcount is 1 or when
the query string is fully match or when mismatch occurs wishnmatch to be found. In
this way, we can find the exact match of any query string in ttixsree withO(log n)

logical block accesses.

5.3.4 Exact string matching

Exact string matching on CPS-tree is performed by repe#ti@agearch process on each
local tree visited as we traverse down the suffix tree. Fromrdlot of the CPS-tree, we
traverse through the nodes matching the first charactereadbes while skipping the
in-between characters. At any one time, if no match is ptessitber searching through
the outgoing edges of a node, we conclude that no exact meists e7". Otherwise,
from the last matching node, we will proceed further down lead or an external node
within the same local tree, containing the text positi®pos. With Spos, we can then
retrieve the substring from the tektto verify on the matching of the skipped characters.

We illustrate exact search with query string “aaa” on théstifee shown in Figure

80

(\)

o >=nf2

&' n

Figure 5.3: Forward links illustration.

5.2. Starting with block 1, we match the first character onléfienost outgoing edge
of the root, labeled “a” and then again another charactentathe next leftmost edge,

ending at the external node in block 1 with text position Zetio Since both edges

CPS Searcli, P, c)
letv =thefirstnodein & d = ¢

while (not done)

binary search on’s edge- ar r ay for edgee with first character ==P[d + 1]

let nodeu be the target of & Spos be the text position i if exists
CASE 1: [eis not found] return no match
CASE 2: [uis an internal node]
d +=label length ok
if (d <m) v=u
else
read text positiorbpos from an end node below
c +=strQ(T'[Spos+c..N|,Plc+ 1..d])
if (¢ <m) return no match
else return all matches in the subtree under
CASE 3: [uis a leaf node]
c+=strQ(T'[Spos+c..N|,Plc + 1..m])
if (c<m) return no match
else return positionSpos as a match
CASE 4: [u is an external node]
let j be the local tree referenced by
letf w.i be the local tree (block) pointed to by the forward linkiin
letf w.dep be the character depth of the first node in local free
d +=label length ok
¢ +=strQ(T'[Spos+c..N|,Plc + 1..m])
if (d>m)
if (¢ <m) return no match
else return all matches in the subtree under
else-if (c < d) return no match
else-if (((4,j) is a heavy link) & ¢ > f w.dep))
/* using forward link */ returnCPSSearclff w.i ,P,f w.dep)
else returnCPSSearclyj, P, d)

Figure 5.4: Exact string matching on CPS-tree.

81

82

encountered are each of length 1, there is no need to verikipped characters. Oth-
erwise, we would need to retrieve the text starting at pmsi#i as stored in the external
node to verify against the query string. We proceed to thé¢ blexk 3 pointed by the
external node and match the next character “a”, ending attamial node (last match
node) after completely match the query string “aaa”. Now wecdto enumerate all the
occurring positions on the text. To do so, we obtain the SAyeainom the local trees
in the next level, so that the occurring positions can be mBegttly from the SA. We
obtain the left SA index by traversing the leftmost path doaalast match node, to find
block 7 with the left SA index 1. Similarly, we obtain the rigBA index by traversing
the rightmost path to reach block 8 with the right SA index &ie Tnatching positions
can then be read from the SA in entries 1 to 6.

If SA is not available, we can still recover the text posisday traversing the whole
subtree rooted at the last match node to retrieve the tektgusstored in the leaf nodes.
However, this process is much more time consuming and 10rsye especially for
large number of occurrences, which we would like to avoid.

The procedureCPSSearch{, P[1..m], c), given in Figure 5.4, performs the exact
string matching on the CPS-tree. It takes in 3 argumentst, (the local tree to begin
the search, (2P[1..m], the lengthm query string and (33, the number of characters
matched so far. The search procedure returns the enunreddtaccurrences of in
T. We have incorporated the use of forward link into the procedExact string search

on string queryP[1..m], is invoked by callingCPSSearch{T'ree, P[1..m],0) where

83

[Tree is the local tree containing the root of the suffix tree. We asfine a supporting
procedurestrC(s, g) which returns the longest matching prefix length betweangsgr

andg.

5.3.5 Tree construction

CPS-tree is constructed in 3 steps as given in Figure 5.5st, Rire obtain the SA
from text using existing construction package [60] avddabSecond, we construct
the CPS-tree in a top-down order, by searching the SA as wepin Figure 5.6 as
procedureCPSBuild (i, j,r,d, h). We havei andj as the SA index range to search
with, d is the character depth to the current node in the suffix thers, the current
node height, and is the reference to the parent node. The procedure is invaiibd
the call CPSBuild(1,n + 1,null,0,1). In the final step, we traverse the entire con-
structed CPS-tree to update the text positions in the eatterodes. The procedure
is CPSUpdatdi,r,x) as shown in Figure 5.7 whereis the current nodey is the
SA range size under the current node returned, ansl the text position being re-
turned.CPSUpdatéroot, 0,0) is invoked, a recursive procedure that performs basically
a depth-first traversal of the whole CPS-tree.

The whole construction takes approximately twice the timedanstruct the WOTD-
tree using the TDD package [95]. We are less concern withdhstouction time as it is

a one time effort. We could, in the future, speed up the canstm process by building

84

CPS-tree construction

1. Build SA from textT, using existing construction package.

2. Build CPS-tree from the SA: invok€PSBuild(1,n + 1, null, 0, 1)
3. Update the text positions in CPS-tree: invadk@S Updatdroot, 0, 0)

whereroot is the root node to whole suffix tree

Figure 5.5: CPS-tree construction process.

the CPS-tree directly from text instead of the SA.

5.3.6 Buffer management

We implemented 2 simple buffer replacement policies, thstleecently loaded (LRL)
and the most recently loaded (MRL). The LRL policy replades ¢ldest loaded page
with the newly loaded page whenever a page fault occurs. djhdetw levels of the
suffix tree are most frequently accessed and hence we cantimalkiest few pages of
the index persistently reside in the memory. This is the vatibn for the MRL policy
where the next page being fetched will replace the secongéae loaded (i.e. the last
page loaded besides the current loaded page). We will darnatsmshe 10 efficiency of
the two buffer replacement polices on the index and showMift is recommended for
CPS-tree index (see Section 5.5.2). The LRL policy is usetthenext buffer as there is

no clear access pattern for the text string.

85

/* maintain two global lists L and K */
CPSBuild(i, j,r,d, h)
Allocate and create a new block
Store the block overhead fieldsj as the left and right' A index respectively if.
Add a new node as the root intd.
while (I is not full)
for each characterin the alphabetd
Binary search oi$' A over the index rangé.; for the leftmost and rightmost
indexz andy s.t. T[SA[z] + d+ 1] = T[SA[y] + d+ 1] = c.
if ((x,y) is found)
Add a child nodey to p with first character on the edge labelas
if (x==y)
Set node; as a leaf node with suffix positiofiA[z].
else
Set nodey as a internal node.
The edge label length i@ ¢, is the longest common prefix
length of text starting a¥ A[z] + d + 1 andSA[y| + d + 1.
Add (z,y,q,d+t,h + 1) to list K.
if (I is not full)
Extract entry(z’, v, ¢',d’', h/) from K s.t. (v — ') is the largest range if.
Set(i, j,p,d,h) = (2, ¢, ¢, d', I).

For every entriesz’, v/, ¢',d', h') in K, convert internal nodg’ to an external node if.

Transfer all entries irk to L.

Write out block.

Update external nodeto point to blockl, if r £ null.

if (L is not empty)
Extract entry(z’, v, ¢',d’, /) from L s.t. b’ is the smallest irl..
Invoke C PS_Build(x',y',q',d', h').

Figure 5.6: CPS-tree building from SA.

86

CPSUpdatdi, r, x)
Setr = 0.
for each childj of nodei
if (j is a leaf node)
Setr’ = 1 anda’ = the suffix position stored in the leaf node.
else if(j is an internal node)
Invoke CPSUpdatdj, r', z').
else if(j is an external node)
Let k& be the root node in the next block pointed tojby
Invoke CPSUpdatdk,r’, x').
Set the text position of to z'.
if (r' > 1)

Setr =’ andz = z'.

Figure 5.7: CPS-tree updating of text positions.
5.4 Bit representation and analysis

5.4.1 Search time and IO access analysis

Given a node and the next character to match, it ték@sg | A|) time to perform binary
search on the edge array of the node to find the edge with itcfiesacter that match.
Accessing the label on a selected outgoing edge of a node ket b) time wherel

is the label length, given the character depth of the nad@,) is the time to traverse
down any path to an ending node in the local tree to retriesédkt position (in the leaf

or external node). The traversal tak@§) time as the local tree size is bound ©yb).

87

Reading length-substring from the text requir€s(//B) disk access.

To search for a length: query string in the suffix tree, it tak&$(m log | A|) time. It
takes anothe®(b) time to further obtain the left and right bounds of the maightA
range. In total, it take® (m log | A| + b+ occ) time for exact string matching on CPS-tree
whereocc is the number of occurrences of the query string.

For disk access, we analyze the disk access on text and ongagarately. The disk
access on text is bounded Blogn + m/B). We always read from the text position
found on some path that is the heaviest. This allows us tatabse there i (logn)
read off positions from the textO(m/B) is the 10 bound in retrieving the matching
guery substrings from the text. Note that without using tmvard links, the 10 disk
bound still holds.

The disk access on the index is boundedIyog n) as we ensure that the subtree
in the next block retrieved will have leaf nodes at least édlusing the forward link.
Reporting the occurrences from the reading the SA tdkesc/B) time. Hence the

disk 10 bound for exact string matchingd¥logn + (m + occ)/B).

5.4.2 Bit-packing scheme

Each node in the CPS-tree stores information about its auggedges. An outgoing
edge of a node can be one of the following: a leaf edge, a laltpd er an external edge.

Leaf edge, as the name suggests, points to a leaf, and a ttgsapeints to the next node

Node:

| child| |l eaf B |l ong B

edge-array ...

leaf edge (in the edge-array):

char S_pos

local edge (in the edge-array):

char ski p_en 0 next
external edge (in the edge-array):
char ski p_l en 1 next
External edge extension:
S_pos Bi dx
(a)
Block overhead - SA bound indices, forward link:
SA_Li dx SARi dx
fwedge | fwdep f w.Bi dx
(b)
Field size (bits) Fields
log | A | child|, char
log(8b) =logb+3 next, fwedge
log N S pos, Bidx, SALidx,
SARi dx, fw.dep, fw.Bidx
< |A] | eaf B, | ong.B
8orlog N ski plen
(€)

88

Figure 5.8: (a) Bit-packing representation of the nodedacal tree, (b) block overhead

fields in a block and (c) the bit size of the respective field=dus the encoding.

89

in the same local tree. An external edge is the connecting &althe first node in the
next local tree. We denote the first node in a local tree abeld node

Figure 5.8 gives the bit-packing representation of a nodeenCPS-tree. In CPS-
tree, a node consists of 2 parts, the aggregated child irfitom followed by the
edge- ar r ay, an array of its outgoing edges. The first part cont&ing chi | d| , the
number of child nodeg?) | eaf _B, a bitarray to mark the leaf edges in #ngge- ar r ay
and(3) | ong_B, a bit array to mark those edges in thdge- ar r r ay, whose label
length requires- 8 bits to represent (irrelevant to leaf edges). In¢ldge- ar r ay, the
edges are stored in increasing order, based on the firstatbacdd the edge label.

For a leaf edge, we store the first character of the edge labalk, , andSpos, the
suffix position on the text corresponding to the leaf nodetiddéathat we do not store
the label length of the leaf edge which can be computed givenext length and the
character depth of the node.

Local and external edges share similar representation,awe(fh) char , the first
character of the edge label, followed ®) ski p_l en, which is the edge label length -
1, (3) a single bit to identify the edge as external, angnext , the bit offset from the
start of the block where the next node (for local edge) or tttersion to the external
edge, is located in the block. We use 8 bitsg&i p_| en as most of the edge labels are
very short and can be more compactly encoded using only 1(thyteidea is borrowed
from CPT). We store the label length ki p_| en for length up to 256. If the label

length is> 256 (indicated by marking the corresponding position in ltteang _B field),

90

we use a longer field dbg /V bits instead.

For an external edge, we store additional information ingtige extension (access
through thenext field). The edge extension contaipos, a selected suffix position
on the text in a descending leaf node @idix, the index of the block containing the
next local tree. The block index is tlebytes offset (byte offset’) from the start of the
index file and is stored usingg N bits.

Spos (available in a leaf or an external edge), provides the Ipedlinformation
needed to retrieve from the text, the label of any edges ilottad tree. Take for example,
a nodev with an outgoing edge in the local tree whose character depthjs known.
To retrieve the edge label ef we need to traverse througho an ending node in the
local tree to recover the suffix positioBpos. The edge label of can then be read from
the text starting at positio8pos +d.

Now we need to explain how tHgpos in an external edge is obtained. Every heavy
path is terminated by a leaf node with an assigBpds. Imagine that for every leaf
node on the heavy paths, we propagateSpes value backwards to all the nodes and
edges on the respective heavy paths only. So if an extergal istbn a heavy path, it
stores the propagateégpos. Otherwise, the external edge can obtain 3p®s value
from the head node it points to.

Spos provides localized information for the local tree so thagethbel on an out-
going edge of a node on the path to the external edge can bm@btaom the text at

position,Spos + the character depth to the nodgpos is propagated from a selected

91

leaf node in the subtree spanned by the head node such thpatthifom the head node
to the leaf node forms (or is part of) a heavy path.

As the heavy path can be interpreted as the most frequeathgled path down a
subtree (as it contains the most leaf nodes), it makes sersdect the most common
string suffix for comparison. This increases the accesditpcm the text as consecutive
text segments will more likely be retrieved and comparedhag we traverse down the
path. Of course, this holds under the assumption that ewefix strings in the text is
equally likely to match with any given query string.

We store additional overhead fields before the local tragciire in each logical
block. Firstis the SA index corresponding to the leftmost aghtmost leaf nodes in the
suffix tree reachable from the head node. We address th&A as dx andSA_Ri dx
respectively, and collectively as the SA bound indices. sehiaformation give direct
access to the SA stored on disk if available, to retrievehadl quffix positions in the
leaf nodes under the current subtree. This improves in erating all the positions
especially if the the subtree is large as we can skip travgtbirough the subtree to visit
all the leaf nodes.

Next we store in the block overhead, the forward link infotima consisting of 3
fields: (1)f w.edge, the bit offset to the external edge in the block that leadghé&o
forward block, (2)f w.dep, the character depth of the head node in the forward block

and (3)f w.Bi dx, the forward block index.

92
5.4.3 Disk space usage analysis

We refer to the node representation scheme in Figure 5.8uioaoalysis of the disk
space usage. Each leaf accountddgrV +log | A| 42 bits to store th&pos, char , and

1 bit for each entry in thé eaf _B andl ong_B fields of its parent node. Each internal
node accounts fa8 + log |A| + 2 4 log |A| + (logb + 3) + 1 = 14 4 2log |A| + logb

bits forski p_l en,| chi I d| , 1 bit for each entry i eaf _B andl ong_B fields of its
parent nodechar , next and 1 external edge bit indicator respectively. Each ldgica
block also use®g N + log N + 2log N 4 2log N + (logb + 3) = 6log N + logb + 3

bits to storeSpos andBi dx for external edge, and the rest are for the block overhead
fields consisting of SA_Li dx andSA R dx, f w.dep, f wBi dx andf wedge.

Since there are leaf nodes in the suffix tree and the number of internal nodéss
bounded by (though it is much less thamin practice especially with large branching
factor), the total bit space required is at mgsg N +3 log | A|+1log b+16)n+ (6 log N +
log b+ 3)c+v wherec is the number of logical blocks. The termaccounts for the extra
variable bit space needed for padding some logical blocks extra bits at the end and
for label length on the edges that require more than 8 bittol@ sIf we assume that a
position on the text can be addressed using 4 bytes wordisthat N = 32 bits, and
given thatlog b = 13 sinceb = 8K bytes, we have an upper bound in CPS-tree size of

7.625n + 0.375n log |A| 4+ 25.625¢ + v bytes.

93

5.5 Performance studies

We consider the query of reporting on the exact match logatio the text sequence.
CPS-tree is compared with WOTD-tree and SA for both on-dmgkia-memory settings.
We study the 10 performance of index search and reportingxantenatch locations.
More complex queries like approximate matches and locghaient search are shown
feasible on the CPS-tree. The WOTD-tree (write-only topAadconstruction algorithm)
[34] is constructed in a top-down approach using the TDD pgel95] available. We

also perform string searching over the suffix array usin@tyirsearch technique.

5.5.1 Experimental settings

The datasets used are the fruit fly genome of 118.3 millioedas
(http://www.fruitfly.org/sequence, Release 4) and thedli.KK12 genome of 4.6 million
bases (http://www.ncbi.nih.gov, Gl: 49175990). Thesela¥& sequences consisting of
characters ‘A, ‘C’, ‘G’ and ‘T’. The data and index are buféel separately. Table 5.3
gives the index size on the fruit fly dataset used for CPSaneeWOTD-tree.

The buffers are first initialized fully with the first few blks read from the text
sequence and index files respectively. Initialization e Huffers can be performed
very quickly with sequential reads from the files. We igndre physical organization
of the files on disk and every page read from file is assumedkaaonstant time to

perform. If a block to access is not in the buffer, a page factiurs and a new page of

94

Index fruit fly, 118.3M (Mbytes)

CPS-tree— 829.77 ~T7.0N
CPS-tree 849.53 ~ 7.2N
WOTD-tree— 1089.97 =~ 9.2N
WOTD-tree 1474.61 ~ 12.5N

CPS-tree—: CPS-tree without in-built forward links.
WOTD-tree—: WOTD-tree excluding the 2 bit arrays.

Table 5.3: Index tree structure file size.

8 K bytes containing the required block is fetched into theduff

Queries are generated from random positions on the genssieso that it is guar-
anteed to return a match in the indexing structure. Thiswsllos to compare the perfor-
mance of various indexing structures over the same matchirgy length. Queries are
generated for length 10, 100, 1000 and 10000. The averagerpance is measured
from running consecutively, 1000 different random queokthe same length.

The experiments are carried out on an Intel P4 2.4GHz maehihe512KB cache
and 1GB of RAM, running Linux, with codes written in C++ usiggc v4.1.1 with level
3 optimization flag. We implemented the search algorithrn<ieS-tree, WOTD-tree
and SA, so that they all share the same access routines taffeesb

The WOTD-tree consists of 3 data structures: (1) An integayarepresenting the
tree structure with sibling nodes stored consecutivelpgi® integers for a branching

node and an integer for leaf node, (2) bit array to identig/ldgaf node and (3) another bit

95

array to identify the last sibling node. To access the edgel laould require accessing

the text sequence.

50
3 3 .
— g Existence query of length 10
<
2 %
o 40 - 2 CPS-greedy (MRL) oY
g 2 WOTD (LRL) EE858
% 2%
> g % SA (LRL) mumm
[5) S 5 S
a 30} 2 ?Eé CPS-breadth (MRL) 000
=
= %5 Egé
g : -
2 2O X ~
o <t 0,
S 20F BSo 5
S AN St
g 5 8
0>9 % 2%
I X X R <
O <O g
10 + 5 S o S
% EEEY ~ < e8
Il O , <<
OER " S 2
0% RS
% E%??

1 page 2 pages 16M 48M 96M 128M
Index buffer size

[3\)
9 ®
60 5 5 Exact match query of length 10
B B
Eﬁ?%‘ e CPS-greedy (MRL) XN
k(\o&’ k(\ox -
a_>; 50 + %034 f%;g WOTD (LRL) 558580
o oo
> B £ SA (LRL) Wemmm
I 22 22
] e :
S 4l B B CPS-breadth (MRL) ¥
= g g
g 3] s
£ 2]]
S 30} B B
& Pk P
(=% % S0
3]]
] oS 53
= S
= L LRSS %
g 0 82 :
s
< R . o
3
& S o
10 F N I o2
K £ :&gcp 4
32 3% NS
0 838 5 N

1 page 2 pages 48M 96M 128M
Index buffer size

Figure 5.9: Result 1 - Average page fault on index buffer foitfily genome.

96

Existence query
Query 1 2 LRL buffer replacement MRL buffer replacement
length| Index || page| pages|| 16M \ 48M \ 96M \ 128M || 16M \ 48M \ 96M \ 128M

CPS 3.66| 3.66| 1.18| 1.11| 0.96| 0.90| 0.65| 0.59| 0.47| 0.42
10 CcPs?® 488| 3.96| 1.43| 1.38| 1.28| 1.18|| 0.94| 0.88| 0.80| 0.70
WOTD || 41.69| 41.69| 8.80| 6.44| 4.73| 3.58| 17.05| 14.86| 11.77| 6.87

SA 16.40| 15.92| 7.14| 555| 4.83| 4.36| 15.49| 14.50| 12.36| 11.00

CPS 424 | 424\ 1.79| 1.72| 1.63| 158| 1.22| 116| 1.08| 1.02
100 | CPS® 541| 454 2.04| 197| 1.86| 1.78| 1.52| 1.45| 1.34| 1.27
WOTD || 42.28| 42.28| 9.09| 6.68| 4.88| 3.70| 17.13| 15.19| 11.32| 6.71

SA 16.76| 16.11|| 7.32| 5.73| 5.08| 4.59| 15.80| 14.94| 13.02| 11.52

CPS 427| 4.26| 1.79| 1.73| 1.62| 1.58| 1.25| 1.18| 1.07| 1.03
1K CPS® 549| 4.58| 2.08| 2.02| 1.89| 180} 157| 1.50| 1.38| 1.29
WOTD || 42.91| 4291 8.99| 6.45| 489| 3.69| 17.52| 15.14| 11.82| 7.16

SA 16.74| 16.08| 7.28| 5.61| 4.94| 4.49| 15.56| 14.51| 12.57| 11.29

CPS 427| 4.27) 1.85| 1.77| 1.67| 1.62| 1.25| 1.18| 1.08| 1.04
10K | CPS® 549| 454 2.06| 1.96| 1.88| 1.79| 1.52| 143| 1.34| 1.26
WOTD || 42.50| 42.50|| 9.06| 6.72| 4.94| 3.68| 17.10| 15.15| 11.48| 6.79

SA 16.78| 16.09| 7.38| 5.74| 5.03| 4.53| 15.72| 14.71| 12.67| 11.29

Exact match query

Query 1 2 LRL buffer replacement MRL buffer replacement
length | Index || page| pages|| 16M \ 48M \ 96M \ 128M || 16M \ 48M \ 96M \ 128M

CPS || 18.35| 5.29| 2.73| 2.66| 253| 247| 2.27| 2.17| 1.99| 1.93
10 CPS? || 16.26| 5.97| 3.00| 2.92| 2.81| 2.70| 292| 2.83| 2.69| 251
WOTD || 57.52| 57.52|| 9.30| 6.90| 5.13| 3.96| 20.23| 17.82| 14.38| 9.43

SA 17.52| 16.41| 7.47| 5.80| 5.04| 4.58| 15.93| 14.90| 12.71| 11.32

CPS 429| 4.26(1.80| 1.74| 1.65| 1.59| 1.24| 1.18| 1.10| 1.04
100 | CPS® 544) 455(2.05| 1.98| 1.87| 1.79| 1.52| 143| 1.35| 1.27
WOTD || 42.28| 42.28| 9.09| 6.68| 4.88| 3.70| 17.13| 15.19| 11.32| 6.71

SA 16.77| 16.11|| 7.32| 5.73| 5.08| 4.59| 15.80| 14.94| 13.02| 11.53

CPS 427| 4.27| 180| 1.73| 1.62| 1.58| 1.25| 1.18| 1.07| 1.03
1K CcPs?® 549| 458(2.08| 2.02| 1.89| 1.80| 1.57| 150| 1.38| 1.29
WOTD || 42.92| 42.92| 8.99| 6.45| 489 | 3.69| 17.53| 15.15| 11.82| 7.16

SA 16.76| 16.08| 7.28| 5.61| 4.94| 4.49| 15.56| 14.51| 12.57| 11.29

CPS 427 | 427 1.85| 1.77| 1.67| 1.62| 1.25| 1.18| 1.08| 1.04
10K | CPS? 549| 454 2.06| 1.96| 1.88| 1.79| 1.52| 143| 1.34| 1.26
WOTD || 42.50| 42.50| 9.06| 6.72| 4.94| 3.68| 17.10| 15.15| 11.48| 6.79

SA 16.78| 16.09| 7.38| 5.74| 5.03| 4.53| 15.72| 14.71| 12.67| 11.29

CPS? - CPS-tree with breadth first partition. The default usegdyepartition.

Table 5.4: Average page fault on index buffer using diffétrrifer replacement policies
for fruit fly genome.

97

5.5.2 Performance results

Result 1- 10 on index buffer: First, we examine the IO efficiency in traversing CPS-tree
index structure. We use the fruit fly genome in this comparisdh the main portion of
the index structure residing on disk. The size of the inddfebuanges from 1-2 pages,
to 128MB. For existence match query, the page faults arergetefrom traversing
the indices alone without reporting on the occurrences. |&\thie exact match query
finds the query pattern in the index and further enumerae®dtkurrences and hence
incurring more 10 cost. We report on queries of length 10 tdQDand compare the
two buffer replacement polices, LRL and MRL respectivelytiee index. For CPS-tree,
we also look into the 10 efficiency of our greedy approach e fpartitioning versus the
breadth first approach.

The results are tabulated in Table 5.4. We find the bufferacghent policy that
works well with each of the indexing structures, CPS-tre€@M-tree and SA indices,
and present the comparison in Figure 5.9. The figures shoavitimge page fault for
existence and exact match queries of length 10. CPS-trebditer average perfor-
mance using MRL buffer replacement policy than LRL, while Wbtree and SA work
better with LRL policy. The two figures show the differencees exact match query
gets more page faults than existence query for the sameimgistcucture. This is con-
tributed by the enumeration of the occurrences for exactimquery. The difference

quickly disappears as the query length increases to 100 eymhd as the number of

98

occurrences for query length of 100 and more is near to 1. Vhmge occurrences,
occ, per query found are 388.58, 1.64, 1.20 and 1.00 for quegthehO, 100, 1000 and
10000 respectively.

We report the following observations based on results frabld 5.4: (1) CPS-
tree consistently outperforms the other indices on differadex buffer size and for
query of length 10 to 10000. It can be seen that CPS-treeayisplery good access
locality, generating very few page fault per query. (2) Ongegly tree partitioning gives
fewer 10 than the breadth first approach for CPS-tree. Oumgnshows that a careful
organization of the nodes into blocks does significantlyrioep search performance. (3)
Query length of 100 and more have very similar 1O performaagceery rarely can you
find 2 or more positions with matching length 100 on the genome. Query of length
10 generates more page faults than those of length 100, ywfeamh reporting on the
occurrences.

To conclude, CPS-tree generates at most 1-2 page faultsiesrgn the index which
is much lesser compared to WOTD-tree and SA. CPS-tree al$ormes more consis-
tently with different index buffer size and policy. We hawanesidered using bigger index
buffer for WOTD-tree in our comparison as WOTD-tree corssidt3 data structures that
need to be buffered separately. It may seem bias at one glamoenpare a bit-packed
CPS-tree against WOTD-tree that is word based. Note thatnot straight forward to
modify and pack WOTD-tree using bit representation as somgéneering and design

issues need to be addressed. However, from what is obs&@R&iiree with 16M bytes

99

of index buffer is more 10 efficient than WOTD-tree with 128tes of index buffer on

the fruit fly genome.

From here onwards, we use MRL index buffer replacement p&icCPS-tree and

LRL for WOTD-tree and SA in our experiments to compare thestiperformances.

Average page fault count

Average page fault count

20 = 31.38 Per query of length 10
CPS-tree —o—
- WOTD-tree -
20
10
10 25 50 75 100
Percentage of text buffered
™. 23.92 Per query of length 1000
e CPS-tree —o—
20 L 8 WOTD-tree —%-—
SA R
- 14.77
L
10 | ¥9.32 u 9*53
e TAd g
7.66
1.82
3.10 1.26
10 25 50 75 100

Percentage of text buffered

Average page fault count

Average page fault count

20

10

20

10

u “2>3.91 Per query of length 100
CPS-tree —6—
L WOTD-tree -—x-—
' SA R
1493
e
)333 . 9*57
e B o "
7.73
1.89
508 1.25
10 25 50 75 100
Percentage of text buffered
m_25.07
Per query of length 10000
' CPS-tree —o—
WOTD-tree -
] SA R
15.48
11.07
e] 9.55
K- K
790 .
7.76
4.46 1.91 1.26
10 25 50 75 100

Percentage of text buffered

Figure 5.10: Result 2 - Average page fault on text and indébetsifor fruit fly genome

to answer exact match query (total 128MB).

Result 2 - 10 on combined buffers: Here, we look at the buffer size allocation

between the text and the index to answer exact match quemen@i total of 128MB

for buffering, we varied the text buffer size as a percentagée text size, and use the

100

remaining space available to buffer the index. Text buffe@suthe LRL replacement
policy and the initial portion of the text is first read intoetbuffer. Results in Figure
5.10 show that CPS-tree has the best 10 performance, genesagnificantly less page
faults when compared to the other 2 indices. Also CPS-treeS# work best with
full text buffering (in memory) while WOTD-tree gives mixedsults depending on the
query length.

We observed that CPS-tree works well with small index buffereasing the size of
the index buffer does not result in as many page fault redn@s increasing the size of
the text buffer. As such, to optimize performance with leditnemory space, we should
allocate a smaller buffer space to the index while the regh@®imemory space is used
to buffer the text. For example, on the fruit fly genome, wi#8 MB of memory space
for buffering, we can answer exact match query with an awerdg: 3 page faults per
query.

In the running of the queries, we find that CPS-tree, WOTER-tard SA, all took
from a few to tenths of milliseconds, on the average to answarery. It is noted that
CPS-tree is generally 2 to 3 times faster than WOTD-tree aldwith SA being the
slowest. Effort is taken to flush the system cache betweem racby executing some
unrelated memory intensive routines so as to minimize theong effect on the timing.

Result 3- computational time analysisiWe study the computational time needed to
perform search on the indices. The index and text are bathladded into the memory

and the results are shown in Table 5.5. This is performed @iktltoli genome (4.6M).

101

When compared to WOTD-tree, CPS-tree is much faster, shypthist CPS-tree has a
better representation scheme for suffix tree. Despite ttelat CPS-tree is bit-packed
and would incur some computational cost in extracting thieliéor processing, it is
still faster than WOTD-tree with fields of word size. CPSetis equally fast when
compared to SA for short queries with CPS-tree gaining fasgormance as the query

gets longer.

Query | Per query| Query time {isec) per query

length | occ count| CPS-treel WOTD-tree| SA
10 9.960 21 52 22
100 1.078 16 39 18
1K 1.003 25 50 36
5K 1.000 51 71 52

Table 5.5: Result 3 - In-memory (exact match) query timind=oroli genome.

Query| k=1 (perquery)| k=2 (perquery)

length| occ count| paging| occ count| paging

10 7369 58 79346 684
100 1.68 37 1.72 460

Table 5.6: Result 4 - k-mismatch query on fruit fly genome.

Result 4 - inexact match search:CPS-tree is capable of handling more complex

query. We run k-mismatch query on CPS-tree and the reswdtstaown in Table 5.6.

102

K-mismatch query finds all occurrences on the text that hawrhiag distance< k
from the query string. The search strategy used is to firstthiedexact match string
in the CPS-tree. Next, we backtrack along the traveled path“arase” the matched
characters on the path as we do so. At each node on the patin{sfeom the deepest
node), we branch to compare the remaining characters onuigy quvith every other
paths, incurring one mismatch (first character of the braude with the query) at the
time. This recursive process is then extendeditasmatches. The search is intuitive and
is a simplification of the general dynamic programming applofor string comparison
which caters to edit distance measure [21, 97]. The numbecairrences increases
sharply for largek, especially for short queries. Using a total of 200MB forfbtihg,
we find that the running time is aroud! to 0.2 sec per query fok = 1 and0.4 to 2 sec
when extended to 2 mismatches. ot 1, there is a total of 31 and 3001 substituted
query patterns being searched, for query length 10 and HaDtheat gives an average
page fault of 1.87 and 0.01 per substituted query pattepectsely. These numbers are
much lower than searching the individual pattern directlftteere is saving in the page
access through the search approach. For long query of 1&0§timot many substituted
pattern can find a match and hence resulting in early terimomaf the search and faster

running time.

103
5.5.3 CPS-tree on human genome

We constructed CPS-tree for the human genome of 3.08 bdhanacters (concatenating
the 24 chromosomes in the human reference assembly andwstiig@all character ‘N’
with randomly picked ‘A, ‘C’, ‘G’ or ‘T’). The human genomesipacked into 770MB
of space (2 bits per character). The setup consists of ageskimputer running Linux
with Intel Core 2 Duo 2.66GHz CPULG B of RAM and a single SATA 500GB hard
disk. We conduct similar investigation on the 10 performantthe CPS-tree index (27
GB size) to see if similar performance can be observed as amdpo the smaller index
for fruit fly genome.

Result 5- 10 on index buffer: Table 5.7 gives the average page fault on the index
buffer (using MRL replacement policy) of different sizesu&py of length 10 generates
significantly more page fault due to enumeration of the largmber of occurrences
(an average of 13761 matches per query as shown in Table ®8)the whole, for
human genome, it takes around 4 disk access to search the iAts®o it is observed
that increasing the index buffer size from 16M to 2GB 1% of the full index size) has
minimal impact on reducing the number of page fault. The shat@viour is observed
on smaller index for the fruit fly genome. We increase the mgmage size from the
default setting oR% to 16k and64k to investigate the amount of 10 reduction using a
larger page swap. As shown in the table, the number of padfs faweduced to around

3 per query. However, we find that each page loading becomes coonputationally

104

expensive and the gain is not realized in practice.

Result 6 - 10 on combined buffers: We examine the 10 performance on a total
buffer size of 1GB for both text and index (as shown in Tab8 .3t is without surprise
that the best performance goes to buffering the full text @mmary. The performance is

consistent with that reported for the fruit fly genome.

Query length| 1 page| 2 pages 16M | 512M | 1GB | 2GB
8k page size (default)
10 14.71 | 13.71 | 13.71| 13.49| 13.39| 13.25
100 5.23 423 | 423 | 418 | 410 | 3.99
1K 5.18 419 | 419 | 4.14 | 407 | 3.96
10K 5.18 418 | 4.18 | 413 | 407 | 3.91
16k page size
10 13.52 | 1252 | 12.52| 12.44| 12.35| 12.23
100 4.52 3.52 | 352 | 348 | 342 | 3.32
1K 4.53 353 | 353 | 349 | 344 | 3.34
10K 451 351 | 351 | 346 | 3.41 | 3.28
64k page size
10 1253 | 11.53 | 11.53| 11.47| 11.41| 11.33
100 3.83 283 | 283 | 279 | 275 | 2.62
1K 3.80 281 | 281 | 278 | 2.74 | 2.67
10K 3.79 279 | 279 | 275 | 271 | 261

Table 5.7: Result 5 - Average page fault on index buffer fontdn Genome to answer

exact match query.

105

Query| Per query, Percentage of text buffered
length | occ count| 10% | 25% | 50% | 75% | 100%

10 13761.80| 15.11| 14.82| 14.39| 13.93| 13.54

100 3.41 7.02 | 654 | 579 | 497 | 4.21
1K 1.00 6.99 | 6,51 | 5.80 | 5.00 | 4.16
10K | 1.00 7.27 | 6.73 | 5.88 | 5.01 | 4.16

Table 5.8: Result 6 - Average page fault on text and indexelosifior Human Genome to

answer exact match query (total 1GB).

Query length 50 | 100 1K 5K 10K
Query time (sec) 22 45 435 1382 | 1993
Match count 1094 | 1901 | 258449| 83351| 37656

Filtered match count 781 | 1332 | 143404| 38277 | 17643

Table 5.9: Result 7 - Local alignment search on the Human @eno

Result 7 - Local alignment search: BLAST [4, 5, 103] and FASTA [82, 83] are
some popular heuristic search tools to find the local aligrnbetween 2 biological
sequences. The well-known Smith-Waterman dynamic progragn algorithm [92] is
able to exhaustively locate all the alignments however gr@ach is computationally
intensive. This limits its usage. There are works that éifety adapt the dynamic
programming technique over suffix tree [21, 45, 69, 97]. Wik stiow that CPS-tree is

capable of supporting local alignment search. Our expertimdfers from the previous

106

reported studies on suffix tree in that we handle the affinengagbel (rather than basic
edit distance measure) on DNA sequence. The affine gap medebiie realistic for
biological sequences but it is more complex to compute wtieree are three dynamic
programming matrices to be filled.

We compute matriceB|[i, j], T[i, j] andQ[i, j] for ith row andjth column with the
query patternP along the y-axis and the suffix strir§ on the x-axis. MatrixI'[i, j]
finds the optimal score to aligR[1..i] and S[1..j], ending with the last charactél{;]
of the suffix string matches a gap space appended to the e of|. Matrix Q[i.j] is
similar to7'[i, j], finding the optimal score with last characteli] of the query matches
a gap space appended to the enddf.;j]. Score matrix3|[i, j], gives the optimal score
to align P[1..i] with S[1..j], from the best score out d&f[i, j|, Q[i, 7] and a possible
substitution (can be a match as well) Bfi| with S[j]. The matrices are updated, in

column-wise order (increasindirst thenjy), as follows:

107

T[Z7j]7
Bli,j] = max Qli, j].
Bli — 1,7 — 1]+ d(w, y;)

Bli—1,j]—o—e,

Tli,j] = max
Ti—1,j]—e
B[Zuj_]-] —0—€
Qli,j] = max
Q[lvj -]'] —€
Initialization :

B[0,0] = Bli,0] =0

We haveo as the gap open costjs the gap extension cost and the substitution cost
d(z;,y;) to compare théth character of with the jth character of5. d(z;,y;) = m if
x; ==y; elsed(x;,y;) = s (m is the match score andis the substitution penalty).

We prune the entries once the score<i) and use the score setting with= 5,
e =2,s = —3 andm = 1. Only alignments with score at and above the threshold (15
for query length< 1000 and 25 otherwise) are reported. There are 50 query patterns

of length 50, 100, 1000, 5000 and 10000 each, randomly geakfeom the fruit fly

108

genome. The human genome is fully loaded into memory for daech. We report

the locations on the human genome where the alignments agttuscore that met the
threshold. The average search time per query is given ire Bl We also report on the
average number of matches per query and the average coemtiladtring out overlaps

on the genome. As can be seen, there are many alignmentsa@tfuom the search for
query length 1000, as such, we increased the threshold feoto 25 for even longer

queries, to keep the number of alignments returned manbgelabr any 2 alignments
that overlap fully (one is enclosed within the other) on teagne, the alignment with
the lesser score is removed during filtering. It is noted thatnumber of alignments
varied widely from 0 to 384K per query for long queries. Herllge average match
count per query, as given in the table, is not consistent thizlquery length.

The goal of our investigation is to show that CPS-tree isiefficto handle practi-
cal queries like local alignment search in finding all aliggnts. We conclude that our
approach is a lot faster than Smith-Waterman algorithm.-€&&is still unable to out-
perform BLAST especially for long queries. On short quenéshort length € 100),
the performance on CPS-tree and BLAST are comparable. Wat mrigue that the qual-
ity of the results returned are different as exhaustiveckeigrperformed on CPS-tree to

account for all alignments while BLAST is a heuristic appnioa

109

5.6 Discussion

There are rooms for further optimization and investigatimmur current work. The
tree structure used in CPS-tree may be further compresssgglteshniques like the bal-
anced parenthesis representation [71]. Alternativehbé&tter space usage, we can limit
the maximum query length (which should be much shorter thanridexed sequence
length), so that those logical blocks whose character dep#rger than the maximum
query length can be pruned off, resulting in a smaller indiets. also possible to reduce
the index size by sampling the text positions. Reductiondek size may often result in
heavier computational cost as a trade-off. However, we hiopiesmaller index means
bigger part of the index can reside in memory at any one time raduces the number
of index pages to be fetched from disk. There is gain if theicédn in disk 10 time is
much more than the increased time in computation. In gengealvould like to explore
ways to further reduce the index size without significantactpon the computational
time.

Next, we have so far started to explore basic alignment baasing CPS-tree for
DNA sequences. We would like to consider protein sequencdsther variations of
sequence comparison supported by BLAST package. We hopth#ra are more ad-
vantages of using suffix tree approach for more complex gubsh cost matrix like for
protein where the substitution cost for a character x withtlaer character y is dependent

on the(z, y) pair. In such scenario, the heuristic approach of filterisgdiin BLAST to

110

reduce the candidate matches will be less effective or ctetipnally more costly.

5.7 Summary

Suffix tree is an important data structure for indexing a lsequence (like a genome
sequence) or a concatenation of sequences. It finds mangatppis in practice, es-
pecially in the domain of bioinformatics. Suffix tree alloves efficient pattern search
with time independent of the indexed sequence length. Hewekie performance of
disk-based suffix tree is a concern as it may be slowed downifisigntly due to poor
access locality amounting to high disk 10 cost.

The focus of this work is to design an |0-efficient suffix trepnesentation on disk.
We show that representing suffix tree using CPS-tree hasa@advantages. First, our
representation gives tight upper 10 bounds on various t@etsal and search oper-
ations. For example to recover a matching substring in th8-C&e takes)(logn)
page accesses on the tree wherns the length of the indexed sequence. Second, our
representation and storage scheme improves accessyaralireduces the number of
page fault, resulting in efficient pattern matching and edffictree traversal operations.
Third, by bit packing, our index remains compact. Experitakresults show that CPS-
tree outperforms other index structures resulting in $icgmtly fewer page faults using
a small memory space for buffering. When fully loaded int®tiain memory, CPS-tree

is still efficient. We build CPS-tree on the human genome oifll®b characters, and

111

further show that CPS-tree is scalable to handle large geraod to answer queries like
exact match and local alignment search. To our knowledgejghhe first reported 10
performance of suffix tree indexing at this genome scale. Welso the first to report
the performance of local alignment search using the affipecgat model on suffix tree
built on the human genome. Hence, we expect CPS-tree to bechdisk-based rep-
resentation of suffix tree, with potential use in practigaplecations. The preliminary

results are presented in [102].

112

Chapter 6

Conclusion

Suffix data structures are popularly used to index stringsids especially in the area of
computational biology. In this thesis, we study suffix ddtacures in two computing
models, in memory as well as disk based processing. We peapasmber of efficient
data structures to tackle string search problems rangmm #xact and approximate
matching to sequence alignment.

First in the in-memory setting, we give compressed datztras using(n) words
or O(n) bits to index the text and present fastest known search tmexact and approx-
imate string search. Specifically, we claim that given a1égft lengthn and a length=
query stringP over an alphabetl, we can build arO(n/log nlog | A|)-bit space data
structure to answer 1-mismatch (or 1-difference) quei§ {A|m loglog n + occ) time,
whereocc is the number of occurrences. The space of our data strucamee further

reduced td)(n log | A|) bits with a slow down factor diog® n, for0 < e < 1.

113

Extending to k-mismatch (and k-difference) problem, we salve the problem in
O(|A*m* (k 4+ loglog n) + occ) andO(log® n(| Al*mk (k + loglog n) + occ)) query time
using anO(n+/lognlog |A|)-bit (assumeA| = 0(2\/@)) and anO(nlog|A|)-bit
indexing data structures, respectively. The k-don’t-gan@blem, a special case of k-
mismatch problem, can be solved{|A|*(m+loglogn)+occ) or O(log® n(|A|*(m+
| A loglog n) + occ)) time, usingO(ny/Iogn log|A|) (assumdA| = O(2V1m)) or
O(nlog |A]) bits data structure respectively.

We also work on the exact string matching problem using log |A|) bits data
structure. The optimal query time 6¥(1mm/log 4 n + occ) can be achieved fomn =
Q(long‘ nlog® nloglogn), wheree > 0. Relaxing the index size ta(n logn) bits data
structure, for fixed finite alphabet and any pattern of lengthwe answer the exact
string matching problem i) (m/ log 4 n + lognloglogn + occ) time. Next we show
that(m + occ) query time is achievable usingn log n) bits data structure.

Working on suffix tree on disk, we present CPS-tree, an I@iefit suffix tree repre-
sentation. We give both experimental results as well ag/arsabn the 10 performances
for various tree traversal and search operations to jusstelyour suffix tree is the choice
to be used in disk based setting. We also introduce a mechatesoted as “forward
links” into the tree structure to reduce the number of pagess toO(logn) pages
in matching any given string (whereis the length of the text indexed). To illustrate
that CPS-tree has practical applications, we constructi@#Sfor the human genome

and perform local alignment search over CPS-tree. To ouwladye, this is the first

114

reported 10 performance study, and local alignment peréorre using affine gap cost

model, for a suffix tree at this genome scale.

6.1 Future directions

We have performed detailed study on algorithms to searaigstidices comprising of
compressed suffix data structures efficiently. However, swelyet to address the issue
of randomness in access pattern on compressed suffix datduses. This limits its
deployment to machines with large enough main memory to ti@dndices. On the
other hand, explicit suffix tree representation is too laxét into main memory. It
remains an open research problem to find a hybrid or new datetgte that exhibits
good access locality with index size close to that of conggeésuffix data structures.
Other techniques like sampling the text to reduce the sizbeotuffix tree (not all
text position are being indexed) deserves further invasbg. The practical trade-offs
point of reduced index size and increased computation cigrberdetermined with more

empirical studies.

115

Bibliography

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replaciofjis trees with en-

hanced suffix arrayslournal of Discrete Algorithm<(1):53-86, 2004.

[2] S. Alstrup, M. A. Bender, E. D. Demaine, M. Farach-Coltdn Rauhe, and
M. Thorup. Efficient tree layout in a multilevel memory hisghy. The revised
version of the published paper. Rroceedings of the 10th Annual European Sym-

posium on Algorithmsages 165-173, 2002.

[3] S. Alstrup, G. S. Brodal, and T. Rauhe. New data strustiwe orthogonal range
searching. IfProceedings of IEEE Symposium on Foundations of Computer Sc

ence pages 198-207, 2000.

[4] S. F. Altschul, W. Gish, W. Miller, E. Myers, and D. J. Li@mn. Basic local

alignment search toollournal of Molecular Biology215(3):403—-410, 1990.

[5] S. F. Altschul, T. L. Madden, A. A. Sdiffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped blast and PSI-blast: A new generatiqnaiéin database

116

search program$\ucleic Acids Resear¢cR5:3389-3402, 1997.

[6] A. Amir, G. Benson, and M. Farach. Let sleeping files li@ttern matching in
Z-compressed filesJournal of Computer and System SciendeX?2):299-307,

1996.

[7] A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewsein, and
M. Rodeh. Text indexing and dictionary matching with oneoerrJournal of

Algorithms 37(2):309-325, 2000.

[8] A. Amir, M. Lewenstein, and E. Porat. Faster algorithmsdgtring matching with
k mismatches. IfProceedings of ACM-SIAM Symposium on Discrete Algorithms

pages 794-803, 2000.

[9] R. Baeza-Yates, E. F. Barbosa, and N. Ziviani. Hieragshof indices for text

searchingJournal of Information System21(6):497-514, 1996.

[10] R. A. Baeza-Yates and G. Navarro. A practical index xttretrieval allowing

errors. INCLEI, pages 273-282, 1997.

[11] S. J. Bedathur and J. R. Haritsa. Search-optimizedxsuéfie storage for bio-
logical applications. InProceedings of the International Conference on High

Performance Computingpages 29-39, 2005.

[12] R. S. Boyer and S. J. Moore. A fast string searching atigor. Communications

of the ACM 20:762-772, 1977.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

117

A. L. Brown. Constructing chromosome scale suffix trekesProceedings of the

2nd Conference on Asia-Pacific Bioinformatipages 105-112, 2004.

A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. gmasearching over
tree cross products. IRroceedings of the 8th Annual European Symposium on

Algorithms pages 120-131, 2000.

M. Burrows and D. WheelerA Block Sorting Lossless Data Compression Algo-

rithm. Technical Report 124, Digital Equipment Corporation,4.99

X. Cao, S. C. Li, and A. Tung. Indexing DNA sequences gg#grams. InPro-
ceedings of the 10th International Conference on Databgstegs for Advanced

Applications pages 4-16, 2005.

H. L. Chan, T. W. Lam, W. K. Sung, S. M. Yiu, and S. S. Wongonipressed
indexes for approximate string matching. Pnoceedings of the European Sym-

posium on Algorithmgages 208-219, 2006.

H. L. Chan, T. W. Lam, W. K. Sung, S. M. Yiu, and S. S. Wong.likear size
index for approximate string matching. Rioceedings of the Symposium on Com-

binatorial Pattern Matchingpages 49-59, 2006.

C. F. Cheung, J. X. Yu, and H. Lu. Constructing suffix tfeegigabyte sequences
with megabyte memoryEEE Transactions on Knowledge and Data Engineering

17(1):90-105, 2005.

118

[20] D. R. Clark and J. I. Munro. Efficient suffix trees on sedary storage. IACM-

SIAM Symposium on Discrete Algorithrpages 383—-391, 1996.

[21] A. L. Cobbs. Fast approximate matching using suffixdérda Proceedings of the
6th Annual Symposium on Combinatorial Pattern Matchipgges 41-54, July

1995.

[22] R. Cole, L-A. Gottlieb, and M. Lewenstein. Dictionaryahching and indexing
with errors and don’t cares. Iaroceedings of the 36th Annual ACM Symposium

on Theory of Computingages 91-100, 2004.

[23] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson,White, and S. L.
Salzberg. Alignment of whole geomeNucleic Acids Researct27(11):2369—

2376, 1999.

[24] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzge Fast algorithms
for large-scale genome alignment and comparisdducleic Acids Research

30(11):2478-2483, 2002.

[25] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan.t&2ing techniques for
minimizing external path length. IRroceedings of the International Conference

on Very Large Data Basepages 343—-353, 1996.

[26] M. Farach. Optimal suffix tree construction with lardptabets. IrProceedings

of IEEE Symposium on Foundations of Computer Scigrages 390-398, 1997.

119

[27] M. Farach and M. Thorup. String matching in Lempel-Zontpressed strings.

Algorithmicg 20(4):388—-404, 1998.

[28] P. Ferragina. String search in external memory: Datzctires and algorithms.
In Srinivas Aluru, editorHandbook of Computational Molecular Biologghap-

ter 35, pages 35.1-35.49. Chapman & Hall/CRC, 1 edition5200

[29] P. Ferragina and R. Grossi. Fast string searching iorstary storage: Theoretical
developments and experimental results. AM-SIAM Symposium on Discrete

Algorithms pages 373-382, 1996.

[30] P. Ferragina and R. Grossi. The string B-tree: A new d#tacture for string
search in external memory and its applicatiodsurnal of the ACM46(2):236—

280, 1999.

[31] P. Ferragina and G. Manzini. Opportunistic data strreg with applications.
In Proceedings of IEEE Symposium on Foundations of Computen&cpages

390-398, 2000.

[32] P. Ferragina and G. Manzini. An experimental study obpportunistic index. In
Proceedings of ACM-SIAM Symposium on Discrete Algoritlpages 369-378,

2001.

[33] R. Giegerich and S. Kurtz. From Ukkonen to McCreight &einer: A unifying

view of linear-time suffix tree constructiodlgorithmica 19(3):331-353, 1997.

120

[34] R. Giegerich, S. Kurtz, and J. Stoye. Efficient impletagion of lazy suffix trees.
In Proceedings of the 3rd Workshop on Algorithm Engineeripgges 30-42,

1999.

[35] J. Gil and A. Itai. How to pack treesJournal of Algorithms32(2):108-132,

1999.

[36] G. H. Gonnet, R. A. Baeza-Yates, and T. Sniderformation Retrieval: Data
Structures and Algorithmghapter 5: New Indices for Text: PAT Trees and PAT

Arrays, pages 66—82. Prentice-Hall, 1992.

[37] R. Grossi and G. Italiano. Suffix trees and their appiass in string algorithms.
In Proceedings of the 1st South American Workshop on StringeBsing pages

57-76, 1993.

[38] R. Grossiand J. S. Vitter. Compressed suffix arrays afftksrees with applica-
tions to text indexing and string matching. Pnoceedings of ACM Symposium on

Theory of Computingpages 397-406, 2000.

[39] R. Grossi and J. S. Vitter. Compressed suffix arrays arffixdrees with ap-
plications to text indexing and string matchin&lAM Journal on Computing

accepted.

[40] D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computem&cand

Computational BiologyCambridge University Press, Cambridge, 1997.

121

[41] M. Halachev, N. Shiri, and A. Thamildurai. Exact mat@asch in sequence data
using suffix trees. liProceedings of the International Conference on Infornratio

and Knowledge Managemepiages 123-130, 2005.

[42] M. Hohl, S. Kurtz, and E. Ohlebusch. Efficient multiple genomgrainent Bioin-

formatics 18(Suppl. 1):S312-S320, 2002.

[43] W. K. Hon, T. W. Lam, W. K. Sung, W. L. Tse, C. K. Wong, and I8. Yiu.
Practical aspects of compressed suffix arrays and FM-indesearching DNA
sequences. IRroceedings of the 6th Workshop on Algorithm Engineering an

Experiments.pages 31-38, 2004.

[44] W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a timd-apace barrier in
constructing full-text indices. IRroceedings of IEEE Symposium on Foundations

of Computer Scien¢g@ages 251-260, 2003.

[45] E. Hunt, M. P. Atkinson, and R. W. Irving. Database inithgxfor large DNA and

protein sequence collectionshe VLDB Journgl11:256-271, 2002.

[46] H. Hyyroé and G. Navarro. A practical index for genome searchingProceed-
ings of the 10th International Symposium on String Procgsand Information

Retrieval pages 241-349, 2003.

[47] G.Jacobson. Space-efficient static trees and grapRsoteedings of Symposium

on Foundations of Computer Sciengages 549-554, 1989.

122

[48] R. Japp. The top-compressed suffix tree: A disk-regideaex for large se-
guences. IrBioinformatics Workshop, 21st Annual British national @Grence

on Databases?2004.

[49] P. Jokinen and E. Ukkonen. Two algorithms for approxergtring matching in
static texts. IrProceedings of the 16th International Symposium on Mathieala

Foundations of Computer Sciengmages 240-248, September 1991.

[50] L. Kaderali and A. Schliep. Selecting signature oligoleotides to identify or-

ganisms using DNA array®ioinformatics 18:1340-1349, 2002.

[51] J. Karkkainen, G. Navarro, and E. Ukkonen. Approximate string maiglaver
Ziv-Lempel compressed text. Broceedings of the 11th Annual Symposium on

Combinatorial Pattern Matchingpages 195-209, 2000.

[52] J. Karkkainen and S. S. Rao. Full-text indexes in external memory..IMEyer,
P. Sanders, and J. Sibeyn, editgkigorithms for Memory Hierachies: Advanced
Lecttures volume 2625 ofLNCS chapter 7, pages 149-170. Springer-Verlag

Berlin Heidelberg, 2003.

[53] J. Karkkainen and E. Sutinen. Ziv-Lempel index fgrgrams. InProceedings of

the 4th Annual European Symposium on Algorithpages 378-391, 1996.

[54] W. J. Kent. BLAT: The BLAST-like alignment tool. Genome Research

12(4):656-664, 2002.

123

[55] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast patterrichang in strings.SIAM

Journal on Computings(2):323—-350, 1977.

[56] P. Ko and S. Aluru. Suffix tree applications in compudagl biology. In Srinivas
Aluru, editor,Handbook of Computational Molecular Biologghapter 6, pages

6.1-6.27. Chapman & Hall/CRC, 1 edition, 2005.

[57] S. Kurtz. Reducing the space requirement of suffix tr&sftware-Practice and

Experience13:1149-1171, 1999.

[58] S. Kurtz and C.Schleiermacher. REPuter: Fast comjoutatf maximal repeats

in complete genome®ioinformatics 15:426—-427, 1999.

[59] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shunay, C. Antonescu,
and S. L. Salzberg. Versatile and open software for comgdarge genomes.

Genome Biology5(R12), 2004. http://mummer.sourceforge.net.

[60] T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A spacd ame effi-
cient algorithm for constructing compressed suffix arrdpsProceedings of the

International Computing and Combinatics Conferenuages 401-410, 2002.

[61] T. W. Lam, W. K. Sung, and S. S. Wong. Improved approxergiting matching
using compressed suffix data structures.Pinceedings of the Annual Interna-

tional Symposium on Algorithms and Computatipages 339-348, 2005.

124

[62] T. W. Lam, W. K. Sung, and S. S. Wong. Improved approxaergiting matching

using compressed suffix data structur&korithmicg accepted.

[63] G. M. Landau and U. Vishkin. Fasl parallel and serial@pgmate string match-

ing. Journal of Algorithms10(2):157-169, 1989.

[64] M. Li, B. Ma, and D. Kisman. PatternHunterll: Highly sgtive and fast ho-
mology search. IfProceedings of the 14th International Conference on Genome

Informatics pages 164-175, 2003.

[65] B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and ens®nsitive homology

search.Bioinformatics 18(3):440-445, March 2002.

[66] U.Manberand G. Myers. Suffix arrays: A new method foriore-string searches.

SIAM Journal of Computing?2(5):935-948, 1993.

[67] E. M. McCreight. A space-economical suffix tree constien algorithm.Journal

of the ACM 23(2):262-272, 1976.

[68] V. Mdkinen, G. Navarro, and K. Sadakane. Advantages of backvesnatising -
efficient secondary memory and distributed implementatfasompressed suffix
arrays. InProceedings of the Annual International Symposium on Aligars and

Computationpages 681-692, 2004.

125

[69] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An online andurate technique
for local-alignment searches on biological sequence®Rréceedings of the In-

ternational Conference on Very Large Data Bagesges 910-921, 2003.

[70] D. R. Morrison. PATRICIA: Practical algorithm to re¢we information coded in

alphanumericJournal of the ACM15:514-534, 1968.

[71] J. 1. Munro and V. Raman. Succinct representation ohibe¢d parentheses and

static treesSIAM Journal on Computin@1(3):762-776, 2001.

[72] J. 1. Munro, V. Raman, and S. S. Rao. Space efficient stfi#is. Journal of

Algorithms 39(2):205-222, 2001.

[73] G. Navarro. A guided tour to approximate string matchilACM Computing

Surveys33(1):31-88, March 2001.

[74] G. Navarro and R. Baeza-Yates. A hybrid indexing mettoo@pproximate string

matching.Journal of Discrete Algorithmsl(1):205-239, 2000.

[75] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarmdexing methods for ap-

proximate string matchindEEE Data Engineering Bulletir24(4):19-27, 2001.

[76] G. Navarro and R. A. Baeza-Yates. A new indexing methmdapproximate
string matching. IrProceedings of the 10th Annual Symposium on Combinatorial

Pattern Matchingpages 163-185, 1999.

126

[77] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Awia. Faster approx-
imate string matching over compressed text. Phoceedings of the 11th Data

Compression Conferencpages 459-468, 2001.

[78] G. Navarro and M. Raffinot. A general practical appro&zipattern matching
over Ziv-Lempel compressed text. Rroceedings of the 10th Annual Symposium

on Combinatorial Pattern Matchingpages 14—-36, 1999.

[79] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio.xtmdgtext with approximate
g-grams. IrProceedings of the 11th Annual Symposium on Combinatoaidd

Matching pages 350-365, 2000.

[80] S. Needleman and C. Wunsch. A general method applidablbe search for
similarities in the amino acid sequences of two proteidsurnal of Molecular

Biology, 48:443-453, 1970.

[81] G. Pavesi, G. Mauri, and G. Pesole. An algorithm for fimgdsignals of unknown

length in DNA sequence®ioinformatics 17(Suppl. 1):S207-S214, 2001.

[82] W. R. Pearson. Flexible sequence similarity searchuitiy the FASTA3 program

package Methods in Molecular Biology132:185-219, 2000.

[83] W. R. Pearson and D. J. Lipman. Improved tools for biatabsequence compar-

ison. Proceedings of National Academy of Sciences | 85/2444-2448, 1988.

[84]

[85]

[86]

[87]

[88]

[89]

[90]

127

R. Raman, V. Raman, and S. S. Rao. Succinct indexabtedaries with ap-
plications to encoding k—ary trees and multisets Ptoceedings of ACM-SIAM

Symposium on Discrete Algorithnmages 233-242, 2002.

S. S. Rao. Time-space trade-offs for compressed suffays. Information Pro-

cessing Letters82:307-311, 2002.

K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficiegtam filters for finding
all e-matches over a given length. Broceedings of the 9th Annual International
Conference on Research in Computational Molecular Biolgzages 189-203,

2005.

K. Sadakane. Succinct representatiofcpfinformation and improvements in the
compressed suffix arrays. Rroceedings of ACM-SIAM Symposium on Discrete

Algorithms pages 225-232, 2002.

K. Sadakane. Compressed suffix trees with full funaidag. Theory of Comput-

ing Systemsaccepted.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval

McGraw-Hill, New York, 1983.

P. Sellers. The theory and computation of evolutiordgisgances: Pattern recog-

nition. Journal of Algorithms1:359-373, 1980.

[91]

[92]

[93]

[94]

[95]

[96]

128

F. Shi. Fast approximate string matching with g-blosksjuences. IRroceed-
ings of the 3rd South American Workshop on String Procespiages 257-271.

Carleton University Press, 1996.

T. Smith and M. Waterman. ldentification of common mailat subsequences.

Journal of Molecular Biology147:195-197, 1981.

E. Sutinen and J. Tarhio. Filtration with g-samples pp@ximate string match-
ing. In Proceedings of the 7th Annual Symposium on Combinatoritiefa

Matching pages 50-63, 1996.

Z. Tan, X. Cao, B. C. Ooi, and A. K. H. Tung. The ed-tree: ihdex for large
DNA sequence databases. Iiternational Conference on Scientific and Statisti-

cal Database Managememgages 151-160, 2003.

S. Tata, R. A. Hankins, and J. M. Patel. Practical suffeetconstruction. In
Proceedings of the International Conference on Very LarggéalBasespages

36—47, 2004. http://www.eecs.umich.edu/tdd/index.html

H. N. D. Trinh, W. K. Hon, T. W. Lam, and W. K. Sung. Appraomate string
matching using compressed suffix arrays. Proceedings of the 15th Annual

Symposium on Combinatorial Pattern Matchipages 434-444, 2004.

129

[97] E. Ukkonen. Approximate string-matching over suffiges. InProceedings of
the 4th Annual Symposium on Combinatorial Pattern Matchpages 228-242,

1993.

[98] E. Ukkonen. On-line construction of suffix-treedlgorithmicg 14:249-260,

1995.

[99] P. Weiner. Linear pattern matching algorithm.Aroceedings of the 14th Sympo-

sium on Switching and Automata Thegppges 1-11, 1973.

[100] D. E. Willard. Log-logarithmic worst-case range gesrare possible in space

6(n). Information Processing Letterd7:81-84, August 1983.

[101] H. E. Williams and J. Zobel. Indexing and retrieval fggnomic databaseRro-
ceedings of IEEE Transactions on Knowledge and Data Engimgel4:63—78,

2002.

[102] S. S. Wong, W. K. Sung, and L. S. Wong. CPS-tree: A corhpaditioned suffix
tree for disk-based indexing on large genome sequenceBrolreedings of the

International Conference on Data Engineerjmpages 1350-1354, 2007.

[103] Z.Zhang, S. Schwartz, L. Wagner, and W. Miller. A grgathorithm for aligning

DNA sequencesJournal of Computational Biology'(1):203-214, 2000.

