
STRING MATCHING AND INDEXING WITH SUFFIX DATA
STRUCTURES

WONG SWEE SEONG
(MSc. (School of Computing))

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE
2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgments

I like to thank everyone who has been there for me in this questfor knowledge and a

journey of self discovery.

I am fortunately blessed with a caring family and am gratefulto my parents and

sisters for their support. I dedicate my thesis to the memoryof my mother for her self-

lessness and abundant love. To that special someone, my loving and supportive wife Lin

Li, thank you for your kindness and believing in me.

To my advisory committee members, Assoc Prof Tan Kian Lee andAssoc Prof Lee

Mong Li, thank you for your patience and valuable advice. My sincere appreciation goes

to my supervisors Assoc Prof Ken Sung Wing Kin and Prof Wong Lim Soon for their

guidance and generosity in sharing their wisdom with me.

Lastly, to all my friends and colleagues at the School of Computing, a big thanks to

you. The past years with the school will be fondly remembered.

ii

Contents

Acknowledgments i

Table of Contents iii

List of Figures iv

List of Tables v

Summary vi

1 Overview 1
1.1 Introduction . 1
1.2 Motivation . 4
1.3 Research problems and contributions 6

1.3.1 Exact and approximate string matching6
1.3.2 Disk-based string indexing . 7

1.4 Organization of thesis . 9
1.5 Statement . 9

2 Background 11
2.1 Introduction . 11
2.2 Suffix tree and suffix array . 13
2.3 Compressed suffix data structures 15
2.4 Application of suffix data structures 16

3 Memory-based compressed string index 20
3.1 Introduction . 20
3.2 Preliminaries . 24

3.2.1 Edit operations . 24
3.2.2 Suffix array, inverse suffix array andΨ function 25
3.2.3 Suffix tree . 29
3.2.4 Other data structures . 31

iii

3.2.5 Heavy path decomposition . 33
3.3 Approximate string matching problem 36

3.3.1 The data structure for 1-approximate matching 36
3.3.2 The 1-approximate matching algorithm40
3.3.3 Thek-approximate matching problem withk ≥ 1 43
3.3.4 Thek-don’t-cares problem . 47

3.4 Summary . 49

4 Optimal exact match index 51
4.1 Introduction . 51
4.2 The approach . 53

4.2.1 Basic concept . 53
4.2.2 Data structures . 54
4.2.3 UsingO(n log |A|) bit data structures 56
4.2.4 UsingO(n logǫ n log |A|) bit data structures 59
4.2.5 UsingO(n

√
log n log |A|) bit data structures 60

4.3 Summary . 61

5 Disk-based suffix tree index 63
5.1 Introduction . 63
5.2 Related work . 68
5.3 Structures and algorithms .72

5.3.1 CPS-tree representation . 73
5.3.2 Space optimization . 76
5.3.3 Forward link . 77
5.3.4 Exact string matching . 79
5.3.5 Tree construction . 83
5.3.6 Buffer management . 84

5.4 Bit representation and analysis .. . 86
5.4.1 Search time and IO access analysis 86
5.4.2 Bit-packing scheme . 87
5.4.3 Disk space usage analysis . 92

5.5 Performance studies . 93
5.5.1 Experimental settings . 93
5.5.2 Performance results . 97
5.5.3 CPS-tree on human genome 103

5.6 Discussion . 109
5.7 Summary . 110

6 Conclusion 112
6.1 Future directions . 114

iv

List of Figures

2.1 Patrica trie for a set of strings= {abbbba, abbbbca, abbc, bbaa, bbab, bbac,
bbbaa}. 14

2.2 Suffix tree and suffix array. 15
2.3 Depth first search of the suffix tree for approximate matching. 18

3.1 Balanced parentheses representation of core paths (thickened lines) in a
suffix tree. 35

3.2 Algorithm for 1-mismatch and 1-difference. 42
3.3 Edit distance table between 2 stringsP = “AATGTTCA” and P ′ =

“CATAGTTCACGG” with k = 2. 44

5.1 Suffix tree and suffix array built on the text = “aaaaabaaabaababaaaaba$”. 71
5.2 CPS-tree representation for text = “aaaaabaaabaababaaaaba$”. 74
5.3 Forward links illustration. .. . 80
5.4 Exact string matching on CPS-tree. 81
5.5 CPS-tree construction process. .. . 84
5.6 CPS-tree building from SA. 85
5.7 CPS-tree updating of text positions. 86
5.8 (a) Bit-packing representation of the nodes in a local tree, (b) block over-

head fields in a block and (c) the bit size of the respective fields used in
the encoding. 88

5.9 Result 1 - Average page fault on index buffer for fruit fly genome. . . . 95
5.10 Result 2 - Average page fault on text and index buffers for fruit fly

genome to answer exact match query (total 128MB). 99

v

List of Tables

3.1 Comparison of various results for 1-mismatch (or 1-difference) problem. 24

4.1 Comparison of various results for exact string matchingproblem. 53

5.1 Description of notations used. .. 65
5.2 Worst case big-O IO bounds for operations on various proposed suffix

data structures. 66
5.3 Index tree structure file size. .. 94
5.4 Average page fault on index buffer using different buffer replacement

policies for fruit fly genome. 96
5.5 Result 3 - In-memory (exact match) query timing on E. coligenome. . . 101
5.6 Result 4 - k-mismatch query on fruit fly genome. 101
5.7 Result 5 - Average page fault on index buffer for Human Genome to

answer exact match query. 104
5.8 Result 6 - Average page fault on text and index buffers forHuman Genome

to answer exact match query (total 1GB). 105
5.9 Result 7 - Local alignment search on the Human Genome. 105

vi

Summary

This thesis studies methods for indexing a text so that the occurrences of any given

query string in the text can be located efficiently. An occurrence or match may be im-

precise, allowing some deviations from the actual query. This gives rise to a family of

interesting string matching problems like exact and approximate string matching, and

sequence alignment.

Previously, a linear sizeO(n) word index, wheren is the length of the text, is con-

sidered manageable given that the index size is relatively small compared to the size

of available memory on most desktop computers. As such, we can focus on developing

new search algorithms without worrying about the index size. However, a new challenge

arises from searching large genome sequences which can easily be billions of characters

in length. This leads to the issue of search efficiency on large string index, which is made

worst with the ever increasing genome size.

We consider two different computing models to handle the problem. The first is to

compress the index so that it is small enough to be stored in the main memory. Another

vii

computing model is to make use of secondary disk, where the index resides on the hard

disk. Blocks or chunks of the index are fetched into memory upon request. In this case,

we are concern with the number of IO accesses to perform string search on the index. In

both scenarios, it is essential to have efficient computation algorithms to support various

string search. Mixed computing model is also possible with multiple levels of indexing,

combining both in-memory and disk-based indices.

We propose several compressed data structures to index string text ino(n) words or

O(n) bits. These data structures are suitable for in-memory computation to answer exact,

as well as approximate, string matching problems. We study the asymptotic bounds on

the query time and show that our indices give the best known solution using different

indexing spaces. These proposed indices will be useful to optimize performance for

computationally intensive search tasks. However, it is observed that in a pattern search,

consecutive accesses of the data structure, can be reading segments of the structure that

are very far apart. In fact, the access pattern is very much random. This results in a

significant IO cost that slows down the search performance ifthe index is not able to fit

into the memory. Thus, optimizing disk-based solution becomes necessary.

Consequently, we propose a disk-based index representation based on suffix tree

called CPS-tree. Current suffix tree developments focus on the construction efficiency

and less on the structural design to minimize the IO accesseson the tree. Unfortunately,

the few IO efficient suffix tree designs in the literature are very much limited to exact

string match alone. As such, we present disk based CPS-tree,and design and engineer

viii

search algorithms on CPS-tree to support various types of string search and tree traversal

operations efficiently. Our worst-case IO performance is well bounded in theory. Em-

pirical studies on exact string matching and sequence alignment problems, conducted

on a large genome, further demonstrate that our proposed data structure is useful and

practical. Through theoretical analysis and experimentalinvestigation, we illustrate the

advantages of our suffix tree design.

To summarize, we make our contributions to more efficient string matching and in-

dexing. However, there are still rooms to further improve onthe efficiency. It is an

unsolved research challenge to come up with a compact stringindex (o(n) word size)

that displays good access locality for string search. This remains as future work to be

done.

1

Chapter 1

Overview

1.1 Introduction

String matching is an important and age-old classical problem. The problem is funda-

mental to many applications that require processing of sometext or sequence data. Very

often, it involves finding the occurrences of a pattern string in a given text string. Some

of its applications are spell checking in text editor, identity and password validation and

checking in system login, and content interpretation in document and programming lan-

guage parsers. Furthermore, string matching is the very essence of pattern matching

languages like Perl and Awk. Over the years, we see more of string matching algo-

rithms being applied to areas like information retrieval, pattern recognition, compiling,

data compression, program analysis and security etc. Thereare also a vast number of

research papers, over the past three decades, providing theoretical as well as empirical

2

results to the problem with improved space and time efficiencies.

Exact string matching finds the exact occurrence of any givenpattern in the text

to be searched. The early works focus on the on-line problem where preprocessing is

performed on the pattern string but not the text. Some of the classical works are Knuth,

Morris and Pratt (KMP) algorithm [55], and Boyer and Moore (BM) algorithm [12] for

string matching. The problem is extended to the approximatestring matching where

some form of errors are allowed in finding the occurrences. There exists many different

variations of the error model but more commonly, we have the followings, as formally

defined below.

Consider a textT of lengthn and a patternP of lengthm, both strings over a fixed

finite alphabetA.

1. k-mismatch problem: Find all approximate occurrences ofP in T that have Ham-

ming distances at mostk from P . The Hamming distance between two strings is

defined to be the minimum number of character replacements toconvert one string

to the other. The k-don’t-care problem is a special subproblem where mismatches

are allowed only at specfick positions on the patternP . Thek mismatch positions

are indicated onP .

2. k-difference problem: Find all approximate occurrences ofP in T that have edit

distances at mostk from P . The edit distance between two strings is defined to

be the minimum number of character insertions, deletions, and replacements to

3

convert one string to the other.

For the on-line version of the problem, the search time depends on the text size, and

therefore becomes inefficient in handling large text. New algorithms have been proposed

to allow preprocessing of the text, or in other words using indexing, for faster string

search. In particular, suffix tree [67, 99] and suffix array [66] are popular data structures

to be used for string indexing. More recently, compressed suffix data structures are used

in indexing string.

Another class of problem that is closely related to the k-difference problem is the se-

quence alignment problem. Tools for local alignment in genome sequences like FASTA

[82, 83] and BLAST [4, 5], are among the most commonly used tools by biologists to-

day. The problem extends on the k-difference problem by associating different costs to

each of the edit operations. Furthermore, in the affine gap cost model, a cost penalty is

given to a gap opening, which is defined as a consecutive insertions either on the text or

the query but not both at the time. The objective is then to findthe alignments between

the query and text that minimize the sum up cost.

In this thesis, we focus on a wide range of string matching problems ranging from

exact matching, approximate matching (Hamming and Edit distance measures) and se-

quence alignment problems as well. We study the time and space complexities of various

compressed data structures, assumed to be fully residing inmemory, and proposed new

data structures that are asymptotically smaller and fasterto search. Next we extend our

4

work to consider IO-efficiency of specifically suffix tree on secondary disk. A new rep-

resentation is proposed that is shown empirically to be efficient as well as having nice

worst case performance bounds.

1.2 Motivation

One of the driving force for developing string matching techniques stems from the mas-

sive availability of biological sequence data that begins in the late 90’s. This has created

opportunities for researchers to apply their innovative algorithms and techniques to work

on real datasets. Our work is also motivated by this uprisingtrend. In August 2005, it

was reported1 that the collection of DNA and RNA sequence has already reached 100

gigabases. These 100,000,000,000 bases, or “letters” of the genetic code, represent both

individual genes and partial and complete genomes of over 165,000 organisms. Sub-

mitters to GenBank contribute over 3 million new DNA sequences per month to the

database. GenBank (Bethesda, Maryland USA)2, together with European Molecular

Biology Laboratory’s European Bioinformatics Institute (EMBL-Bank in Hinxton, UK)

3, and the DNA Data Bank of Japan (Mishima, Japan)4, form the International Nu-

cleotide Sequence Database Collaboration to share and organize the sequence database.

1http : //www.nlm.nih.gov/news/press releases/dna rna 100 gig.html
2http : //www.ncbi.nlm.nih.gov
3http : //www.ebi.ac.uk/embl
4http : //www.ddbj.nig.ac.jp

5

Scientists around the world can then have access to the common sequence data, and

hopefully through collaborative research on the massive data, scientists can find cures

for diseases and improved health in shorter time to benefit all mankind.

The storage size of sequenced genome and annotated biological sequences, is grow-

ing in the order of several gigabytes per year. There is a needto collectively organize

and manage these sequences to support the data usage requirement of various compara-

tive tools at the application level. Sequences can be indexed so that search is performed

more efficiently. There already exists a wide range of computational tools on strings,

for searching approximate similarities, and finding consensus, alignments, repeats and

motif patterns, etc. Currently, there is a lack of a standardindexing data structure on se-

quences that can serve the needs of the various tools. Such a generic indexing structure

must be robust and flexible. In addition, a management systemwill be useful to man-

age processes and allocate the use of system resources. However, traditional relational

database systems are inadequate for the task as the sequencedata is generally huge and

unstructured in nature, without the proper notion of a key.

Another reason to study string matching problem is its wide range of applications.

Many algorithmic problems can be mapped into exact or approximate string search prob-

lems. This makes analyzing the algorithmic properties important. Furthermore, the

problems can be extended to higher dimensional text or multiple patterns search prob-

lems where existing algorithms may be borrowed or built upon.

6

1.3 Research problems and contributions

1.3.1 Exact and approximate string matching

Approximate string matching is an important problem to solve and comparative analysis

on sequences often needs to perform close similarity searchas part of the process. In

some cases, sequence data may contain noise or variations that we would like to tolerate

in our search. Given a query string, we would like to find its occurrences in a text by

allowing some degree of errors.

We consider two approximate matching problems: thek-mismatch problem and the

k-difference problem. Our focus is on constructing compact indices that are ofo(n)

words orO(n) bits size so that for large text of lengthn, there is a good chance that the

indices can fit into memory for searching. We give some improved data structures for

the approximate string search with the best known query timeusing only less than linear

word size indices.

To add on to the above results, we revisit the problem of exactstring matching to

find more compact indexing structures. It is well known that given a preprocessed text

indexed usingO(n) words data structure, we can find the exact matches of a query

string in time linear to the query length. We push for even more compact data structures

(using less than linear words size) that can answer the queryin optimal time using bit-

compressed query string.

7

1.3.2 Disk-based string indexing

A text is a string or set of strings. To answer string matchingqueries over the text, given a

query string, the text may be preprocessed and represented in a data structure. This data

structure will then provide indexing into the text so that string search and comparison

can be performed more efficiently.

Given the query string and text, the traditional approach tostring comparison is to

scan through the whole text for solution. This is generally fast enough provided that the

text is short. There is little to improve upon the query time as no preprocessing of the

string is done and the loading of the whole text into memory takes up the main bulk of the

processing time. Indexing on the text and index thus allows for only partial access of the

text in order to find the solution at the expense of greater storage on disk for the index.

Together with efficient search techniques, the query time can be very much improved.

We have considered in-memory indices which may be a favorable alternative to direct

scanning for small indices. It may not be suitable for indices larger than the text itself

and will be time consuming to load into memory. The exceptionis when we have a large

memory and the indices can be preloaded into the memory to answer batch queries or

any incoming queries in a server mode of operation.

Alternatively, we have the indices residing on disk and be fetched into memory as

and when needed. The direct choice is to build a hash table forevery fixed length-l sub-

strings in the text. Samples of length-l substrings from the query is used to reference

8

the hash table, for fixed length-l matches. Fixed length indexing lacks the flexibility, as

the length is fixed, to efficiently handle varied length queries and more importantly, on

finding approximate match. Alsol has to be short for it to be usable. There are some

well studied filtering techniques to overcome these shortcomings likeq-grams indexing,

which generally performs well in practice. Another popularapproach is to use hierar-

chical level of indices to extend on the lengthl, where only the top-level indices need

to reside in memory, the rest of the indices are fetched from disk into memory when

needed. These proposed indexing methods do not have acceptable worst case complex-

ity on query time and I/O disk access for both exact and approximate string matching.

We recommend using suffix tree as a common indexing data structure on string and

propose means to improve its IO access efficiency. We can find,using the suffix tree, in

time linear to the query length, the locations on the text that match exactly to the query

string. One major issue with suffix tree data structures is that it requires a much larger

space than the text itself. This comes as a trade-off for faster query time. For example,

a text string ofn characters needs4n to 20n bytes to store the suffix data structure

depending on the level of compression and the functionalities to be supported. Recently,

there are proposedO(n) bits compressed suffix tree and array implementations that are

very space efficient. The problem is that the access pattern on the compressed data

structures tends to be highly random and hence it is more suitable if the whole structure

can reside in the memory. There are many string related problems that can be efficiently

solved using suffix tree [37, 40]. Approximate string matching on suffix data structures

9

is one of them. However, the existing techniques can still befurther improved to answer

the queries more efficiently. It is still an open problem on how to perform disk-based

indexing efficiently for approximate string matching [52].We address this issue and give

a feasible solution.

1.4 Organization of thesis

In chapter two, we introduce some related fundamental concepts in the literature. This is

followed by three chapters to showcase our proposed works. In particular, we first focus

on in-memory string search and present compact data structures to solve the approxi-

mate string matching problem. Next we continue the study with exact string matching

problem and proposed several data structures with optimal search time and using less

than linear indexing space. Last but not least, we divert ourattention to disk-based string

indexing using suffix tree. We propose a new suffix tree representation to handle various

string matching queries and tree traversal operations efficiently. Finally, in the conclud-

ing chapter, we discuss on the future research direction.

1.5 Statement

The preliminary work described in chapter 3 on approximate string matching was first

presented in the 16th Annual International Symposium on Algorithms and Computa-

10

tion 2005 [61]. An extended version of the paper was later submitted and accepted

for publication in the Algorithmica journal [62]. Another 2results extended from this

initial work, were presented in the 17th Annual Symposium onCombinatorial Pattern

Matching 2006 [18] and the 16th Annual European Symposium onAlgorithms 2006

[17] respectively. The suffix tree representation proposedin chapter 5 was presented in

the 23rd International Conference on Data Engineering 2007[102].

11

Chapter 2

Background

2.1 Introduction

The basic data structures used for string indexing are mainly suffix tree [20, 30, 45, 69],

suffix array [9, 68, 74] and q-grams [16, 46, 79, 86]. Suffix data structures benefit from

linear search time in matching a given pattern string to a text. This is at the expense

of larger index size. It goes by matching the query to characters on the edges along

a path from the root that ends at some node, and all the leaves in the subtree rooted

at the node will contain the locations of exact match in the text. On the other hand, q-

grams is another popular index used that stores the locations of every or selected length-q

substrings in the text. It is basically a filtering techniquethat works well in eliminating

segments of the text that have no possible match with the query string. The indices

takes up much smaller space when compared to suffix tree. There are two main setbacks

12

with the q-grams approach. Firstly, the lengthq has to be fixed; and hence it lacks the

flexibility to cater to all-purposed demands. Secondly, theworst-case running time is less

well bounded when compared to suffix data structures, thoughit has shown to perform

reasonably well in practice on real biological sequences.

Inverted file [89] is a common text index used on linguistic text that is constructed

from a fixed set of naturally delimited words. We do not consider inverted file as a choice

for indexing string in general for the reason that biological sequences is highly unstruc-

tured and will not benefit from the indexing. There is an adaptation of inverted file to

index biological sequences called CAFE [101] that employs some filtering techniques to

reduce the space and time complexities for heuristic search.

There has been on-going developments of fast in-memory and on-disk construction

[26, 33, 34, 40, 44, 45, 95, 98] of suffix data structures, and also in more compact but

functional suffix representations such as compressed suffixtree and arrays [31, 38, 72,

85, 87, 88]. These advancements have made suffix data structure an attractive choice for

indexing strings.

An overview on the various full-text indices in external memory can be found in the

paper by K̈arkkäinen and Rao [52]. The reader can refer to the paper by Navarroet

al. [75], for a survey on various indexing techniques for approximate string matching.

There is a recent interest in string matching on compressed text directly without first

decompressing the text [6, 27, 51, 77, 78]. The main gain is inreducing the I/O burden

of bringing the text into memory and keeping the memory usagelow while scanning for

13

matching patterns.

The sections to follow describe the basic data structure of suffix tree and suffix array

as well as the compressed forms, and also introduce some string search applications

performed on the suffix data structures. These data structures will be refered frequently

in the later chapters.

2.2 Suffix tree and suffix array

A trie is a rooted directed tree that stores a set of strings. Each and every leaf node

represents a string stored by the trie. It is assumed that no string is a proper prefix of

another. For example, “abbc” is a proper prefix of “abbcbbd”,while “abbd” is not. Every

edge in the tree is labeled with a single character such that the concatenating of theedge

labelsin order, from the root to a leaf node, corresponds to the suffix string represented

by the leaf node. A compact trie is a trie with every node, thathas only single outgoing

edge, merged into its parent node and the characters on edgesare concatenated to form

a string (see Figure 2.1). While a Patricia trie [70] is like acompact trie except that

every edge label contains only the first character with the length of the original edge

label stored in the node that follows. Every internal node inthe compact trie has at least

2 child nodes. Thepath labelof a node is the concatenated edge labels from the root to

that node and thecharacter depthof a node is its path label length.

The suffix tree (ST) [67, 99] of a textT , is a compact trie of the set of suffixes ofT , as

14

Patricia Trie

a
b
b
b
b
a

a
b
b
b
b
c
a

a
b
b
c

b
b
a
a

b
b
a
b

b
b
a
c

b
b
b
a
a

a
b
b
b
b
a

a
b
b
b
b
c
a

a
b
b
c

b
b
a
a

b
b
a
b

b
b
a
c

b
b
b
a
a

ba

a

a

a
b

bb

b
b

b

b
a
a

c

c

a
c

Compacted Trie

2

a b

a b

c
b

a

cb

ca

23

2 1

0

1 1 1 1 1 3

Figure 2.1: Patrica trie for a set of strings= {abbbba, abbbbca, abbc, bbaa, bbab, bbac,

bbbaa}.

shown in Figure 2.2. The textT is usually concatenated by a special symbol$ that is not

found inT . Figure 2.2 gives a suffix tree with the suffixes appearing in lexicographically

sorted order from left to right in the tree. In comparison, the suffix array [66] ofT is a

sorted array containing the starting text position of the suffixes of T. The Patricia trie of

a set of suffixes ofT is denoted as PAT tree [36].

We often use suffix tree to mean a PAT tree representation. PATtree and suffix array

(SA) areO(n) word data structures wheren is the text length with suffix array being a

more compact representation.

15

=

bc
a
c
a
$

b

b
b
b
c
a
c
a
$

10 9 7 1 3 4 5 8 6 2

$

a
b

c
$

$
a

b

b
c

c

a

a

c

c

a

a

$

$

c
ca

a

$

$ ca

c

a

$

Sorted Suffix Tree

10 9 7 1 3 4 28 65

acbbbcaca$

Suffix Array

Text

b

Figure 2.2: Suffix tree and suffix array.

2.3 Compressed suffix data structures

Although suffix array (SA) is compact compared to suffix tree (also PAT tree), it can still

be large. An SA built on a large text of size in billion of characters (for example the

human genome), will not be able to fit fully in the main memory of most computers. As

such a compressed suffix array (CSA) [38, 39] becomes an attractive alternative repre-

sentation. A CSA stores the array forΨ function defined asΨ[i] = SA−1[SA[i] + 1] for

textT [1..n], i ∈ [1..n] whereSA[i] is the text position found ati-th entry of suffix array.

16

Using the SA in Figure 2.2 as an example, we haveΨ[i] = [0, 1, 8, 10, 6, 7, 9, 2, 3, 5].

Interestingly, theΨ array is actually a concatenation of at most|A| number of increasing

sequences where|A| is the size of the alphabet from which the text is drawn. This makes

Ψ array highly compressible and gives a representation that is O(n) bits depending on

the alphabet size. However, this comes as trade-off in termsof computational time to re-

cover the SA value which can be relatively inexpensive if thewhole index is fully loaded

into memory [43].

Another compressed SA representation is the FM-index [31, 32] using the Burrows-

Wheeler compression algorithm [15]. Compressed suffix tree(CST) [88] was proposed

to be a compressed representation that supports suffix tree traversal operations efficiently.

It is basically a CSA augmented with additional data structures like the balanced paren-

thesis representation [71] for the tree structure and theLCP (lowest common prefix)

query supporting structure [87].

2.4 Application of suffix data structures

There are many string search problems that can be solved using suffix data structures

[37, 40, 56]. Beside exact and approximate string matching problems, there are also

problems of the longest common substrings between two sequences, palindrome and

maximum repeats etc. In computational biology, the applications extend to solving

problems in probe design [50], motifs and repeat finding [58,81] and genome align-

17

ments [23, 24, 59]. For local and global sequence alignment problems , we can adopt the

commonly used “hit and extend” strategy, by finding only short matches (hits) on the text

and then, extend and verify for the rest of the query string. This heuristic strategy helps

to reduce the search space tremendously, by finding hits for fixed length substring of the

query (suitably short) using the suffix data structures. Thechoice of “hit” length can be

easily varied according to requirements with possibly someallowed errors. Examples

are FASTA [82, 83], BLAST family [4, 5, 54, 103] and PatternHunter [64, 65].

Next, we demonstrate how to perform an ordinary depth-first traversal search on a

tree (in this case, a suffix tree) for approximate match. Herewe consider the problem

of k-mismatch or k-difference, given query patternP and the textT . Recall that the k-

mismatch allows for substitution operation only while k-difference allows for additional

2 edit operations, insertion and deletion of characters. The algorithm is shown in Figure

2.3. The routine DFSearch(cNode, k′, i, P ′) takes in 4 parameters, namely, cNode refers

to the index of the current node,k′ is the number of errors encountered so far,i is the

current position on the query stringP to match andP ′ is a copy of the error string

encountered. Let|cNode| denotes the length of the path label to the nodecNode and

|P | denotes the length of pattern stringP .

The traversal search for approximate match runs inO(min{n, Akmk}m+kocc) time

for k-mismatch and an additional factor of3k applies for k-difference.occ is the number

of occurrences of the approximate match in the text. This example code demonstrates

the basic approach to string matching on suffix tree. There are more efficient algorithms

18

Call DFSearch(root, 0, 1, ∅)

Algorithm DFSearch (cNode, k’, i, P’)

If (i = |P | + 1)

Report all text position in the subtree rooted at cNode

If (k′ > k)

return

/* Query deletion */

DFSearch(cNode, k′ + 1, i + 1, P ′)

For c ∈ A, andP ′c a substring inT

If (|P ′| = |cNode|)

sNode = child(cNode, c)

Else

sNode = cNode

/* Query insertion */

DFSearch(sNode, k′ + 1, i, P ′c)

If P [i] 6= c

/* Substitution */

DFSearch(sNode, k′ + 1, i + 1, P ′c)

Else

/* Exact match */

DFSearch(sNode, k′, i + 1, P ′c)

End

Figure 2.3: Depth first search of the suffix tree for approximate matching.

19

which incorporated dynamic programming over the suffix treewhich will be presented

in the later chapters. Dynamic programming [80, 90, 92] is useful in string matching

especially in reducing the redundancy in checking for different combinations of editing

operations that can be applied. Also it allows for early termination by pruning off sub-

trees that have no possible match. For some theoretical results, the reader can refer to

works by Ukkonen [97] and Cobbs [21]. Navarro and Baeza-Yates [74] and Huntet al.

[45] gave empirical results using the approach.

20

Chapter 3

Memory-based compressed string

index

3.1 Introduction

Consider a textT of lengthn and a patternP of lengthm, both strings over an alphabet

A. The approximate string matching problem is to find all approximate occurrences of

P in T . Depending on the definition of “error”, this problem has twovariations: (1)

Thek-difference problem is to find all occurrences ofP in T that have edit distance at

mostk from P (edit distance is the minimum number of character insertions, deletions

and replacements to convert one string to another); and (2) The k-mismatch problem

is to find all occurrences ofP in T that have Hamming distance at mostk from P

(Hamming distance is the minimum number of character replacements to convert one

21

string to another). Bothk-difference andk-mismatch problems are well-studied and they

found applications in many areas including computational biology, text retrieval, multi-

media data retrieval, pattern recognition, signal processing, handwriting recognition, etc.

In the past, most of the works focus on the on-line version of the problem, where

both the text and the pattern are not known in advance. This version of the problem can

be solved by dynamic programming inO(nm) time. Landau and Vishkin [63] gave a

solution whose running time depends onk, the number of allowed “errors”. They solved

the problem inO(nk) time andO(m) space. Amiret al. [8] improved upon the result to

give anO(n
√

k log k) time solution. We refer to [73] for a comparison study on various

existing techniques.

Recently, people are interested in the off-line approximate matching problem, where

we can pre-process the textT and build some indexing data structure so that any pattern

query can be answered in a shorter time. Jokinen and Ukkonen [49] were the first to

treat the approximate off-line matching problem. Since then, many different approaches

have been proposed. Refer to Navarroet al. [73] for a brief survey. Some techniques

are fast on the average [76, 93, 91, 10, 79, 74]. However, theyincur a query time com-

plexity depending onn; i.e., in the worst case, they are inefficient even if the pattern

is very short andk is as small as one. The first solution with query time complexity

independent ofn is proposed by Ukkonen [97]. Whenk = 1 (that is, 1-mismatch or

1-difference problem), Cobbs [21] gave the result of usingO(n log n) bits space and

havingO(|A|m2 + occ) query time. Later, Amiret al. [7] proposed anO(n log3 n)-bit

22

indexing data structure withO(m log n log log n + occ) query time. Then, Buchsbaum

et al [14] proposed another indexing data structure which usesO(n log2 n) bits space so

that every query can be solved inO(m log log n + occ) time. Coleet al. [22] further

improved the query time. They gave anO(n log2 n)-bit data structure so that both the

1-mismatch and the1-difference problems can be solved inO(m+log n log log n+occ)

time, respectively. Recently, motivated by the indexing oflong genomic sequences,

Trinh et al. [96] improves upon the space-efficiency. They proposed two data struc-

tures of sizeO(n log n) bits andO(n) bits with query timeO(|A|m logn + occ) and

O(|A|m log2 n + occ log n), respectively.

Some of the above results can be generalized fork > 1. Cobbs’sO(n log n)-

bit indexing data structure can answer bothk-mismatch andk-difference queries in

O(mk+1|A|k + occ) time [21]. Coleet al. [22] proposed anO(n (c3 logn)k

k!
log n)-bit

indexing data structure with query times ofO((c1 logn)k log logn
k!

+ m + occ) and

O((c2 logn)k log logn
k!

+m+3k ·occ) for thek-mismatch andk-difference problems, respec-

tively, wherec1, c2, c3 are constants withc2 > c1. Trinh et al. [96] gaveO(n log n)-bit

andO(n log |A|)-bit data structures that can answer ak-mismatch (or ak-difference)

query inO(|A|kmk log n + occ) time andO(|A|kmk log2 n + occ log n) time, respec-

tively.

All previous data structures for supporting the 1-mismatch(or 1-difference) query ei-

ther require a space ofΩ(n log2 n) bits orΩ(m log n + occ) time for fixed alphabet size.

It is an open problem whether there exists anO(n logn) or eveno(n log n)-bit data struc-

23

ture so that every 1-mismatch (or 1-difference) query can beanswered ino(m log n+occ)

time. In this work, we resolve this open problem in the affirmative by presenting a data

structure which usesO(n
√

log n log |A|) bits while every 1-mismatch (or 1-difference)

query can be answered inO(|A|m log log n + occ) time.

Our improvement is stemmed from the observation that suffix trees allow for faster

access of some information when compared with suffix array. So, instead of using suffix

array like Trinhet al.[96], we use suffix tree as the basic data structure to solve the

mismatch (or difference) queries. Furthermore, to reduce space, we apply the results

of Rao [85] and Sadakane [88] to reduce the space complexity of the suffix tree from

O(n log n) bits toO(n
√

log n log |A|) bits. Together with a smart use of the y-fast trie

[100], we achieve our improvement.

Table 3.1 summarizes the results for 1-mismatch (or 1-difference) problem over a

finite alphabetA. Our result can be further extended in two ways. First, we show that the

space of the data structure can be reduced toO(n log |A|) bits if we accept a slow down

factor of logǫ n for the query time where0 < ǫ ≤ 1. Second, the data structure can be

extended to solve the k-mismatch (or the k-difference) problem fork ≥ 1. Our solution

can solve thek-mismatch (or thek-difference) problem inO(|A|kmk(k+log log n)+occ)

or O(logǫ n (|A|kmk(k + log log n) + occ)) query time, when the text is encoded using

O(n
√

log n log |A|) bits, for |A| = O(2
√

logn), or usingO(n log |A|) bits.

24

Reference Bit space Query time

Cobbs [21] O(n log n) O(|A|m2 + occ)

Buchsbaumet al. [14] O(n log2 n) O(m log log n + occ)

Coleet al. [22] O(n log2 n) O(m + log n log log n + occ)

Trinh et al. [96] O(n log n) O(|A|m logn + occ)

O(n log |A|) O(|A|m log2 n + occ log n)

This work O(n
√

log n log |A|) O(|A|m log log n + occ)∗

O(n log |A|) O(logǫ n(|A|m log log n + occ))

∗ assume|A| = O(2
√

logn).

Table 3.1: Comparison of various results for 1-mismatch (or1-difference) problem.

3.2 Preliminaries

3.2.1 Edit operations

Let P = P [1]P [2]...P [m] be a string ofm characters over a finite alphabetA. A sub-

string of P is denoted byP [i..j] = P [i]P [i + 1]...P [j], 1 ≤ i ≤ j ≤ m. An edit

operation applied to a stringP is given in the forms of(a → ǫ), (ǫ → a), and(a → b)

for deletion, insertionandsubstitutionoperations respectively, wherea, b ∈ A, a 6= b

andǫ is the empty string. Theedit distancebetweenP andP ′, is the minimum number

of edit operations to convert one string to another. For example, converting stringabbd

to another stringbbca will take at least 3 edit operations. Anedit traceis defined as a

sequence of edit operations that converts a stringP to another stringP ′.

25

Lemma 1 Given a length-m string P over a fixed alphabetA, there areO(|A|kmk)

possible edit traces for convertingP to some stringP ′ using at mostk edit operations.

Proof. The bound on the number of edit traces can be estimated by considering the

number of different ways of applyingk or less edit operations to the string. There are

2 different groups of operations: The first group is of the form a → b and a → ǫ

and the second group has the formǫ → a. The first group consists of substitutions and

deletions that can be applied to every character inP . Hence the number of possible ways

of applyingk operations in this group is≤ (mk)(|A| + 1)k. The second group consists

of insertions that can occur at the start or end of string, or in between characters. The

number of possibilities in this group is≤ (m + 1)k|A|k.

Summing up fork or less edit operations, we have
∑k
t=0[(

m
t)(|A| + 1)t + (m +

1)k−t|A|k−t] = O(mk|A|k) number of possible edit trace. Refer to Theorem 6 in [97] by

Ukkonen for details. ⊓⊔

3.2.2 Suffix array, inverse suffix array andΨ function

Let T [0..n] = t0t1 · · · tn−1 be a text of lengthn over an alphabetA, appended with a

special symboltn =‘$’ that is not inA and is smaller than any other symbol inA. The

j-th suffix ofT is defined asT [j..n] = tj · · · tn and is denoted byTj.

Thesuffix arraySA[0..n] of T is an array of integers so thatTSA[i] is lexicographi-

cally smaller thanTSA[j] if and only if i < j. Note thatSA[0] = n. The inverse suffix

26

array of T is denoted asSA−1[0..n], that is,SA−1[i] equals the number of suffixes which

are lexicographically smaller thanTi.

Given a stringP , we definerange(T, P) or the range of the suffix array ofT corre-

sponding toP , to be the largest interval[st..ed] such thatP is a prefix of every suffixTj

for j = SA[st], SA[st + 1], . . . , SA[ed].

A concept related to the suffix array is the arrayΨ[0..n] [38], which is defined as

follows:

Ψ[i] = SA−1[SA[i] + 1]

and similarly,Ψk[i] = Ψk−1[Ψ[i]] = SA−1[SA[i] + k], for k > 1.

Let tSA andtΨ be the access time of each entry onSA andΨ respectively. In this

paper, we need a data structureD which supports, for anyi, the following operations.

• reportsSA[i] in tSA time,

• reportsSA−1[i] in tSA time,

• reportsΨ[i] in tΨ time, and

• reportssubstring(i,l) = T [SA[i]..SA[i] + l − 1] in O(ltΨ) time for some lengthl.

Lemmas 2 and 7 give two implementations of the data structureD.

Lemma 2 The data structureD can be implemented inO(n log |A|) bits so thattSA =

O(logǫ n) andtΨ = O(1), where0 < ǫ ≤ 1.

27

Proof. We refer to Grossi and Vitter’s data structure [38] for compressed suffix array

(CSA) with the required properties. ⊓⊔

Lemmas 3 to 6 are needed for the second implementation of the data structureD.

Lemma 3 [84, 47] LetS be a subset ofm elements drawn from the set(1, 2, ..., n). S

can be represented usingm log(n/m)+O(m) bits such that the following rank and select

operations can be performed in constant time. A rank operation returns the order of an

elementx ∈ S, defined asRank[x] = | {y < x | y ∈ S} |. A select operation returns

thei-th smallest element inS, where1 ≤ i ≤ m (i.e. Select[i] = x if Rank[x] = i).

Lemma 4 Let X1, ..., Xℓ beℓ non-empty subsets of{0, ..., n − 1} such that
∑ℓ
j=1 |Xj|

= m andm ≤ n. The subsets can be represented usingm log(nℓ/m) + ℓ log n + O(m)

bits such that giveni andj, theith smallest element inXj can be retrieved in constant

time.

Proof. This lemma is from Corollary 2 in Rao’s paper [85]. First, store the setX =

{j ∗ n + x | x ∈ Xj} usingm log(nℓ/m) + O(m) bits of space as in Lemma 3. Second,

let cj =
∑j
t=1 |Xt|, for 1 ≤ j ≤ ℓ − 1. The arrayc can be represented directly using

additionalℓ log n bits. Theith smallest element inXj is the(cj−1 + i)th element inX,

which can be retrieved inO(1) time. ⊓⊔

Lemma 5 The sequence{Ψk[i] | 0 ≤ i ≤ n − 1} is the concatenation of|A|k sorted

lists.

28

Proof. This lemma is generalized from Lemma 3 in Rao’s paper [85]. ⊓⊔

Lemma 6 Let X1, ..., Xℓ beℓ subsets of{0, ..., n− 1} such that|Xj| = n/ℓ, 1 ≤ j ≤ ℓ.

Then{Ψj[z] | z ∈ Xj} for all j, can be stored in anO(nℓ log |A| + |A|ℓ log n)-bit data

structure such that giveni whereXj [i] = z, Ψj [z] can be accessed inO(1) time.

Proof. For any givenj, {Ψj [z] | z ∈ Xj} contains at most|A|j sorted lists. Combining

Lemmas 4 and 5,{Ψj[z] | z ∈ Xj} can be represented inO(|Xj| log(n|A|j/|Xj|) +

|A|j log n+|Xj|) = O((n/ℓ) log(|A|jℓ)+|A|j log n) bits. Then, giveni whereXj[i] = z,

we can accessΨj[z] in constant time. The space needed to store{Ψj[z] | z ∈ Xj}, for

1 ≤ j ≤ ℓ, will then beO(n log(|A|ℓℓ) + log n
∑ℓ
j=1 |A|j) = O(nℓ log |A| + |A|ℓ log n)

bits. ⊓⊔

Lemma 7 The data structureD can be implemented inO(n
√

log n log |A|) bits so that

tSA = O(1) andtΨ = O(1), for |A| = O(2
√

logn).

Proof. Building theO(n log |A|)-bit data structure in Lemma 2, theΨ function can be

accessed inO(1) time. Below, we describeO(n
√

log n log |A|)-bit data structures so

that bothSA andSA−1 can be computed inO(1) time.

For the access ofSA value, recall that Rao [85] gives an implementation of the com-

pressed suffix array that reportsSA[i] in O(1) time usingO(n
√

log n) bits for binary text

string (refer to Theorem 4 in [85]). For text on a fixed finite alphabetA, Rao’s idea can be

generalized so thatSA[i] can be accessed in constant time using anO(n
√

log n log |A|)-

bit data structures.

29

For the access ofSA−1 value, we need the following data structure. Letℓ =
√

log n.

First, we storeSA−1[xℓ] for all 0 ≤ x ≤ ⌊n/ℓ⌋, which requiresO(n
√

log n) bits.

Then, we need a data structure so thatΨj[z] can be accessed inO(1) time for any

0 ≤ x ≤ ⌊n/ℓ⌋ and any1 ≤ j ≤ ℓ. By Lemma 6, such data structure can be stored in

O(n
√

log n log |A|+ |A|
√

logn log n) = O(n
√

log n log |A|) bits (for |A| = O(2
√

logn)).

Now we show how to accessSA−1[i] given i in constant time. Lety = ⌊i/ℓ⌋,

k′ = i − yℓ, andz′ = SA−1[yℓ]. We claim thatSA−1[i] = Ψk′[z′] andk′ ≤ ℓ. Then,

using the data structures above,SA−1[i] can be computed inO(1) time.

Note thatyℓ ≤ i < (y + 1)ℓ and,k′ = i − yℓ ≤ ℓ. It is then easy to verify that

Ψk′[z′] = SA−1[SA[z′] + k′] and soSA[Ψk′[z′]] = SA[z′] + k′. SinceSA[z′] = yℓ, we

haveSA[Ψk′[z′]] = yℓ + k′ = i. Thus, the claim follows. ⊓⊔

3.2.3 Suffix tree

A suffix tree for the textT is an edge-labeled rooted directed tree with exactlyn + 1

leaves numbered0 to n. Each edge is labeled with a non-empty substring ofT such that

no two outgoing edges from a node have labels with the same first character. For every

nodev, its path labelplabel(v) is constructed by concatenating the edge labels, in order,

from the root to the node. Note that the path label of every leaf i, is a suffix ofT that

starts at positioni.

We assumed that the suffixes of the leaves in the suffix tree arelexicographically

30

ordered so that the collection of leaf nodes from left to right will form the suffix ar-

ray denoted bySA[0..n]. For our approach, we require a suffix tree that support the

following operations:

label(u, v) : returns the label on the edge joining nodeu to v in O(xtSA) time wherex

is the length of the edge label of(u, v).

plen(v) : returns the length of the path labelplabel(v) in O(tSA) time .

leftmost(v) : returns the SA index of the leftmost leaf in the subtree rooted at nodev

in O(1) time.

rightmost(v) : returns the SA index of the rightmost leaf in the subtree rooted at node

v in O(1) time.

slink(v) : returns a nodeu if there is a suffix link from nodev to nodeu in O(tΨ) time.

child(v, c) : returns a childw of the nodev if c is a prefix character to stringlabel(v, w)

in O(|A|tSA) time.

Lemma 8 A suffix tree with the above properties can be implemented using

(1) O(n
√

log n log |A|) bits for tSA = O(1) and tΨ = O(1) and assuming|A| =

O(2
√

logn), or (2)O(n log |A|) bits for tSA = O(logǫ n) andtΨ = O(1).

Proof. We refer to Sadakane’s paper [88] on compressed suffix tree (CST) implementa-

tion that uses data structureD andO(n) bits for the balanced parentheses representation

of the suffix tree [72]. The space complexities follow from Lemmas 2 and 7. ⊓⊔

31

The following result on LCP query is also available.

Lemma 9 [88] Given SA indicesi and j, the length of the longest common prefix

(LCP) between suffixes at positionsSA[i] andSA[j], denoted by|lcp(i, j)|, can be

computed inO(tSA) time using additionalO(n) bits data structure. The lowest common

ancestor(LCA) node between any two nodes in the suffix tree can also be computed in

O(tSA) time.

3.2.4 Other data structures

Given a suffix treeST built from the textT , and a query patternP of lengthm, we

define the following terminologies and data structures:

Definition 1 Given a nodex in ST , let xle andxri denote indices ofSA corresponding

to the leftmost and rightmost leaf nodes in the subtree spanned byx.

Based on the above definition, for any nodex in ST , we have[xle..xri] =

range(T, plabel(x)).

Definition 2 ArraysFst[1..m] andFed[1..m] are such that[Fst[i]..Fed[i]] =

range(T, P [i..m]) for 1 ≤ i ≤ m. We also defineFst[j] = 0 andFed[j] = n for j > m.

Lemma 10 Fst[1..m] andFed[1..m] can be constructed inO(mtΨ + m|A|tSA) time.

Proof. This can be done using the suffix links inST in O(mtΨ) time, given that

32

range(T, P [1..m]) can be obtained by traversing the suffix tree inO(m|A|tSA) time.

⊓⊔

Furthermore, the following two lemmas are needed to supportexact pattern search

over a subtree in the suffix tree.

Lemma 11 Given a patternP , let x be a node such that[xle..xri] = range(T, P). For

any positioni in T , P is a prefix ofT [i..n] if and only if xle ≤ SA−1[i] ≤ xri.

Proof. If P is a prefix ofT [i..n] then by the definition of suffix tree,i corresponds

to a leaf node such thatP is the prefix to its path label. It follows thatx must be on

the path from the root to the leaf node. Hence the corresponding SA index of the leaf

node, which isSA−1[i] must fall within the range ofxle andxri. On the other hand, if

xle ≤ SA−1[i] ≤ xri, then the leafi is in the subtree rooted atx and soT [i..n] must have

P as its prefix. ⊓⊔

Lemma 12 Given a patternP , letx be a node such that[xle..xri] = range(T, P). Then,

SA−1[SA[xle] + |P |] < SA−1[SA[xle + 1] + |P |] < . . . < SA−1[SA[xri] + |P |].

Proof. Let i andj be any twoSA indices such thatxle ≤ i < j ≤ xri, thenT [SA[i]..SA[i]

+|P | − 1] = T [SA[j]..SA[j] + |P | − 1] = P . Sincei < j, thenT [SA[i] + |P |..n] <

T [SA[j] + |P |..n] must be true. Now assume thatSA−1[SA[i] + |P |] ≥ SA−1[SA[j] +

|P |], which impliesT [SA[i] + |P |..n] ≥ T [SA[j] + |P |..n]. Hence a contradiction.⊓⊔

33

3.2.5 Heavy path decomposition

We introduce a standard technique to partitionO(n) nodes of a tree intoO(log n) lev-

els. Similar schemes have been used for tree structure compression to give a depth of

O(log n) [14, 22]. The heavy path decomposition scheme is as such: Given a suffix tree

ST , we assign a level to every node inST . The root is assignedlevel 1. If a nodev has

level i, we assignlevel i to the single child node ofv, that has the largest subtree (in

terms of number of nodes) among all the other child nodes ofv. The other child nodes

of v are assignedlevel i + 1. Edges joining 2 nodes with the samelevel are denoted

ascore edgesand the rest of edges that join nodes atlevel i to nodes atlevel i + 1 are

denoted asside edges. An internal node will have exactly one outgoingcore edgeand

the rest of the outgoing edges areside edges. We also denote a node with an incoming

core edge as acore nodeand otherwise, aside node. The root, is by default, aside node.

The followings are also observed:

Lemma 13 There areO(log n) levels.

Proof. If a subtree rooted at a nodev havinglevel i containsl leaves, then the number

of leaves of the subtree rooted at a child nodeu of v havinglevel i + 1 is at mostl/2.

As the suffix tree hasn leaves, there are at mostO(log n) levels. ⊓⊔

Then we can easily get the following corollary:

34

Corollary 14 There areO(log n) side edges on the path from the root to any node in the

suffix tree.

Lemma 15 Consider any two distinct side edgese1 ande2 with end nodesv1 andv2

respectively. If bothv1 andv2 havelevel i, then the two subtrees rooted atv1 andv2 are

disjoint. In other words, the subtrees rooted at any two distinct side nodes of the same

level are disjoint.

Proof. Suppose by contradiction that the two subtrees are not disjoint, then eitherv1 is

an ancestor ofv2 or vice versa. Supposev1 is an ancestor ofv2. As v1 andv2 are on the

same level, edges running fromv1 to v2 are all core edges, includinge2, this contradicts

with the assumption thate2 is a side edge. ⊓⊔

Lemma 16 Given any side nodev, that begins a core path (where all edges in the path

are core edges), we can find the leaf nodeu that terminates the core path inO(1) time

using additionalO(n) bits data structure.

Proof. Let ui be thei-th node in the suffix tree according to the preorder traversal on the

nodes, andt = O(n) be the number of nodes in the suffix tree. LetX[1..t] be an array

first initialized as blanks, andX[i] =‘(’ if ui is an internal side node, elseX[i] =‘)’ if ui

is a core leaf node. It can be checked easily that the parentheses inX[1..t] is balanced as

every core path finishes at a leaf. More importantly, for every pair of parentheses(i, j) in

X, ui anduj form the start and the end of some core path. Figure 3.1 gives an example

35

of the representation. The parentheses arrayX can be encoded in binary representation

usingO(n) bits based on theRank and Selectdata structure (from Lemma 3). By the

data structure for balanced parentheses (see Theorem 1 in [71]), the position of the close

parenthesis that matches the given open parenthesis, can befound in constant time using

additionalo(n) auxiliary bits. Hence, the lemma follows. ⊓⊔

(()) ()

0

4

6
9 14 1513

11

3

7 8

2 5

101

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.1: Balanced parentheses representation of core paths (thickened lines) in a

suffix tree.

36

3.3 Approximate string matching problem

3.3.1 The data structure for 1-approximate matching

Our 1-approximate matching data structure is basically the suffix treeST of the textT

(see Section 3.2.3), together with two other data structures. First, for every side nodev

(see Section 3.2.5), letu be the parent node ofv, we maintain a setΓv = {SA−1[SA[i]+

plen(u) + 1] | i ≡ 1(mod log2 n) andvle ≤ i ≤ vri}.

Second, for every core leaf nodeu (whoseSA index isk), letv be the start of the cor-

responding core path, we maintain 2 lists ofSA indices,H l
u = {i | i ≡ 1(mod log2 n), i ≤

k and|lcp(k, i)| ≥ plen(v)} andHr
u = {i | i ≡ 1(mod log2 n),

i > k and|lcp(k, i)| ≥ plen(v)}. The values inH l
u andHr

u are ordered by increasing

longest common prefix length|lcp(k, i)|.

Lemma 17 We can storeΓv for all side nodesv usingO(n) bit space. In addition, for

any range[x..y], we can find a valuei, such that{i ∈ Γv | x ≤ i ≤ y} usingO(log log n)

time.

Proof. By Lemma 15, all subtrees rooted at different side nodes, of the same level-ℓ,

are disjoint. Hence, the total size ofΓv for all level-ℓ side nodesv is at mostn/ log2 n.

Since there areO(log n) levels, (by Lemma 13), the total size ofΓv for all side nodesv is

O(n/ log n). We storeΓv, for every side nodev, using they-fast trie[100] data structure.

The size of the data structure isO(|Γv| log n) bits and it allows efficient range query in

37

O(log log n) time. Since the total size of allΓv is O(n/ log n), the lemma follows. ⊓⊔

Lemma 18 We can storeH l
u andHr

u for all core leaf nodesu (whoseSA index isk)

usingO(n) bit space. In addition, for any range[x..y], we can report the valuesil ∈ H l
u

andir ∈ Hr
u such thatx ≤ lcp(il, k) ≤ y andx ≤ lcp(ir, k) ≤ y usingO(log log n)

time.

Proof. There are at mostn/ log2 n leaf nodes whose corresponding SA index,i ≡

1(mod log2 n). Also, each leaf node is reachable fromO(log n) side nodesv whereby

each of the side nodev is the beginning of some core path (by Corollary 14). It then fol-

lows that each leaf node must be included inO(log n) differentH lists. Hence, the total

size ofH l
u andHr

u for all core paths isO(n/ logn). EachH l
u andHr

u is stored using the

y-fast trie[100] data structure. The size of the data structures isO((|H l
u| + |Hr

u|) log n)

bits. Since the total size of allH l
u andHr

u is O(n/ logn), the lemma follows. ⊓⊔

By Lemmas 8, 17 and 18, we have the following:

Lemma 19 The 1-approximate matching data structure can be stored inO(n log |A|)

andO(n
√

log n log |A|) bits for tSA = O(logǫ n) andtSA = O(1) respectively. In both

cases,tψ = O(1).

Below is the key lemma for our algorithm.

Lemma 20 Consider (1) a nodeu in ST such thatP1 = plabel(u), (2) a characterc,

and (3) another stringP2 with [st..ed] = range(T, P2). Let v = child(u, c). Then, all

38

occurrences ofP1cP2 can be computed inO(tSA(log log n + occ)) time whereocc is the

total number of occurrences ofP1cP2 in T .

Proof. Note that[vle..vri] = range(T, P1c). If P = P1cP2 occurs inT , asP1c is a prefix

of P , P must occur at positionSA[i] for somevle ≤ i ≤ vri. By Lemma 11, we can

verify if P occurs at positionSA[i] by checking ifst ≤ SA−1[SA[i] + |P1| + 1] ≤ ed.

Hence, the occurrence ofP can be found by performing the above checking for alli ∈

[vle..vri]. Moreover, by Lemma 12,SA−1[SA[i]+ |P1|+1] is increasing fori ∈ [vle..vri].

Note that, for anyi, SA−1[SA[i]+ |P1|+1] can be retrieved inO(tSA) time. Hence, one

occurrence ofP can be found inO(tSA log(vri − vle)) time by binary search.

If v is a side node, recall that we associate a setΓv to it, whereΓv = {SA−1[SA[i] +

|P1| + 1] | i ≡ 1(mod log2 n) andi ∈ [vle..vri]}. There are3 cases.

• Case 1:Γv is empty. This means that the number of leaves in the subtree of v

(vri− vle + 1) is < log2 n. Using the method we just discussed, one occurrence of

P can be found inO(tSA log(vri − vle)) = O(tSA log log n) time.

• Case 2:Γv is non-empty and, by Lemma 17, we find somei such that

st ≤ SA−1[SA[i] + |P1| + 1] ≤ ed. Since any range query ofy-fast trie takes

O(log log n) time, the second case follows.

• Case 3:Γv is non-empty and, by Lemma 17, we cannot find anyi such thatst ≤

SA−1[SA[i]+|P1|+1] ≤ ed. In this case, usingO(log log n) time, we applyy-fast

39

trie to finda andb such thatSA−1[SA[a] + |P1| + 1] ∈ Γv is just smaller thanst

andSA−1[SA[b] + |P1|+ 1] ∈ Γv is just bigger thaned. Note thatb− a ≤ log2 n.

Then, using the method described at the beginning of the proof, we can find one

occurrence ofP in O(tSA log(b − a)) = O(tSA log log n) time.

If v is a core node, letCP be the core path containingv. Since the side node lies

on the path from the root node tov and would have been uncovered from traversing

the suffix tree to obtainP1, here we assume that the side node that begins the core path

CP is known. We obtain the terminating leaf nodex (whoseSA index isk) of CP by

Lemma 16 usingO(1) time. Next, we search for the noder ∈ CP whose path label is

of length|P1| + q + 1 whereq = |lcp(SA−1[SA[k] + |P1| + 1], st)|. By Lemma 9,q is

computed inO(tSA) time. There are3 cases.

• Case 1:Hx is empty. This means that the number of leaves hanging from the core

path is< log2 n. We can find one occurrence ofP in O(tSA log(vri − vle)) =

O(tSA log log n) time.

• Case 2:q ≥ |P2|. This means that leaf nodex corresponds to a suffix withP as

its prefix. We have recovered one occurrence ofP .

• Case 3:q < |P2|. First, we would like to findjl ∈ H l
x andjr ∈ Hr

x such that

|lcp(jl − log2 n, k)| ≤ |P1| + q + 1 ≤ |lcp(jl, k)| and|lcp(jr, k)| ≤ |P1| + q +

1 ≤ |lcp(jr + log2 n, k)| respectively. This can be computed inO(log log n) time

given Lemma 18. Next, using binary search, we locateil andir within the range

40

of jl − log2 n...jl andjr...jr + log2 n such that|lcp(il, k)| = |P1| + q + 1 and

|lcp(ir, k)| = |P1| + q + 1 respectively. If bothjl andjr are not found, the binary

search is performed fork − log2 n ≤ il ≤ k + log2 n. The binary search takes

O(tSA log log n) time. Givenil or ir whichever one is found, we can recover node

r by performing aLCA on the leaf node atil or ir with x in O(tSA) time. If P2

is not completely matched after noder, we can continue to search the outgoing

side edges from noder as described above (case wherev is a side node) using

additionalO(tSA log log n) time. Overall, the time taken is stillO(tSA log log n).

Once we confirm thatP occurs in positionSA[i], the remaining occurrences ofP

could be found by performing, for entriesi′ to the left and to the right ofi, the above

checking (that is,st ≤ SA−1[SA[i′] + |P1| + 1] ≤ ed), until we reach the boundary of

[vle..vri] or a false case occurs. The time required isO(tSA(occ + 2)). ⊓⊔

Here, we define the procedureTreeSearch(u, c, [st..ed]) to be the routine which finds

all the occurrences ofP1cP2 whereP1 = plabel(u) and [st..ed] = range(T, P2). By

Lemma 20, this procedure runs inO(tSA(log log n + occ)) time.

3.3.2 The 1-approximate matching algorithm

The algorithm traverses the suffix tree from the root to find the patternP character by

character. Then, for every positioni, it introduces an “error” at that position and checks

for occurrences by callingTreeSearch. The details of the algorithm is stated in Fig-

41

ure 3.2.

Lemma 21 Given the indexing data structure in Section 3.3.1, we can locate all1-

mismatch (or1-difference) occurrences of a length-m patternP in T , usingO(tΨm +

tSA(|A|m log log n + occ)) time.

Proof. By Lemma 10, Step 1 takesO(mtΨ + m|A|tSA) time. Step 2 takesO(1) time.

When we traverse down the suffix tree to a nodeu (with plabel(u) = P [1..i − 1]),

we will execute Steps 3(a-c) for the nodeu. By Lemma 20, Steps 3(a-c) in total takes

O(tSA(|A|m log log n + occ)) time.

For Step 3(d), it takesO(tSA|A|m) time. The lemma follows. ⊓⊔

By Lemmas 19 and 21, we get the following 2 theorems:

Theorem 22 Given anO(n
√

log n log |A|)-bit indexing data structure, the 1-mismatch

or 1-difference problem can locate all1-approximate occurrences of a length-m pattern

P in T , usingO(|A|m log log n + occ) time, for |A| = O(2
√

logn).

Theorem 23 Given anO(n log |A|)-bit indexing data structure, the 1-mismatch or 1-

difference problem can locate all1-approximate occurrences of a length-m patternP in

T , usingO(logǫ n(|A|m log log n + occ)) time, where0 < ǫ ≤ 1.

42

Algorithm 1-approximate match

1. ConstructFst[1..m] andFed[1..m] such that[Fst[i]..Fed[i]] = range(T, P [i..m]).

2. u = root node,i = 1.

3. Repeat

/* Note: we maintain the invariant thatplabel(u) = P [1..i − 1]. */

(a) Deletion ati (find occurrences ofP [1..i − 1]P [i + 1..m])

If P [i] 6= P [i + 1]

report the occurrences found by

TreeSearch(u, P [i + 1], [Fst[i + 2]..Fed[i + 2]]).

(b) Substitution ati (find occurrences ofP [1..i − 1]cP [i + 1..m] for

all c ∈ A − {P [i]})

For c ∈ A − {P [i]},

report the occurrences found by

TreeSearch(u, c, [Fst[i + 1]..Fed[i + 1]]).

(c) Insertion ati (find occurrences ofP [1..i − 1]cP [i..m] for all c ∈ A − {P [i]})

For c ∈ A − {P [i]},

report the occurrences found byTreeSearch(u, c, [Fst[i]..Fed[i]]).

(d) No insertion, deletion, and substitution ati

Let v = child(u, P [i]), E = label(u, v).

If P [i..i + |E| − 1] = E

u = v, i = i + |E|

Else

Find the smallestj > i such thatP [j] 6= E[j − i + 1].

Report all the occurrences ofP so that the error is atj.

Terminate and return.

Figure 3.2: Algorithm for 1-mismatch and 1-difference.

43

3.3.3 Thek-approximate matching problem with k ≥ 1

Extending the data structure to address thek-mismatch or thek-difference problem re-

quires the result from dynamic programming for string correction. Given2 stringsP and

P ′ of lengthm andn, we can use standard dynamic programming approach to find the

edit distance between any prefix ofP andP ′ in O(mn) [90], by filling a tableE of size

(m + 1) × (n + 1). EntryE(i, j) stores the edit distance betweenP [1..i] andP ′[1..j].

For1 ≤ i ≤ m and1 ≤ j ≤ n, the tableE(i, j) is evaluated as follows:

E(0, 0) = 0;

E(0, j) = E(0, j − 1) + c(ǫ, P ′[j]), 1 ≤ j ≤ n;

E(i, 0) = E(i − 1, 0) + c(P [i], ǫ), 1 ≤ i ≤ m;

E(i, j) = min







































E(i − 1, j) + c(P [i], ǫ)

E(i − 1, j − 1) + c(P [i], P ′[j])

E(i, j − 1) + c(ǫ, P ′[j])

Note thatc(P [i], ǫ) andc(ǫ, P ′[j]) are the edit costs for deletion and insertion. Their

values equal1. c(P [i], P ′[j]) is the edit cost for substitution. We havec(P [i], P ′[j]) = 0

if P [i] = P ′[j]; and1 otherwise. Moreover, we need to find only those prefixes (or

actually the shortest prefix) ofP ′ that is at mostk edit distance fromP . A match is

read from the entries in the last row of tableE that is≤ k. We proceed by filling the

44

table column by column from left to right, up to themin{m + k, n}th columns. There

are at most2k + 1 row entries to be filled in each column as entries inE(i, j) where

i > j + k or i < j − k will have edit cost> k. An example is shown in Figure 3.3 for

k = 2. Hence, finding the prefixes ofP ′ that is at mostk edit distance fromP , takes

O((m + k)× (2k + 1)) = O(mk) time withk ≤ m. We state the result in the following

lemma.

3

A AC T G G

G

T

C

T

A

T

A

A

0 1

2 2

3

3

11

2

12

1 2

1 2 2

2

G T T C

3

3

2

2

2

3

3

3

33

A C

2 3

4

5 4 3

4

5

4

3

2

2

3 2

The shaded entries will have edit distance> 2 and hence need not be filled.

Figure 3.3: Edit distance table between 2 stringsP = “AATGTTCA” and P ′ =

“CATAGTTCACGG” with k = 2.

Lemma 24 Given 2 stringsP andP ′ of lengthm andn respectively, we can find the

prefixes ofP ′ that is at mostk edit distance fromP in O(mk) time.

Our solution for thek-approximate matching tries to apply the dynamic program-

ming on various paths of the suffix tree. We need the following2 lemmas.

45

Lemma 25 Given a length-m stringP , there areO(|A|kmk) different path labelsP ′ in

the suffix tree such that the edit distance betweenP andP ′ is at mostk, where|A| is the

fixed alphabet size.

Proof. The number of possibleP ′ in the suffix tree is bounded by the number of edit

traces that can be applied to the stringP . Hence, by Lemma 1, the lemma follows.⊓⊔

Lemma 26 After preprocessing the textT of lengthn and obtaining an

O(n
√

log n log |A|) or O(n log |A|) bits data structure, thek-mismatch ork-difference

problem can locate all approximate occurrences of a length-m patternP in T , using

O(|A|kmk+1(k + tSA) + tSAocc) time where|A| is the alphabet size andocc is the

number of approximate occurrences ofP in T .

Proof. The result can be achieved by applying dynamic programming over the suffix

tree (see Lemma 8) by computing the shortest prefixes on all paths starting from the root

that has edit distance at mostk from P . This is performed through a preorder traversal

on the suffix tree. We maintainP ′ to be the path label in the suffix tree during the

traversal. First, traverse down the leftmost path, and as weadvance to a new character

at positionj on path label,P ′, we add and compute for new columnE(∗, j) in the edit

distance tableE between stringsP [1..m] andP ′[1..j]. A new column can be computed

in O(k) time (see Lemma 24), while accessingP ′[j], a character on some edge label,

takesO(tSA) time. The path terminates at positionj when the edit distance in the new

column, E(∗, j), is > k, or whenE(m, j) is filled. If E(m, j) ≤ k, we can then

46

report the occurrences within the SA range of the subtree rooted at current positionj,

using theleftmost andrightmost operations inO(tSAocc) time. This is followed by

backtracking to the next path (based on the preordering of the nodes) and erasing the last

few columns added toE, which equals to the number of characters backtracked. Since

the number of paths to traverse is bounded (refer to Lemma 25), we conclude that the

search time isO(|A|kmk × m(k + tSA) + tSAocc) = O(|A|kmk+1(k + tSA) + tSAocc).

It is worth mentioning here that similar results can be obtained by applying backward

search on CSA [44] that givesO(|A|kmk+1(k + log log |A|) + occ logǫ n) search time,

usingO(n log |A|) bits space. ⊓⊔

Theorem 27 After preprocessing the textT of lengthn and obtaining an

O(n
√

log n log |A|) (assume|A| = O(2
√

logn)) orO(n log |A|) bits data structure, thek-

mismatch ork-difference problem can locate all approximate occurrences of a length-m

patternP in T , usingO(|A|kmk(k+log log n)+occ) orO(logǫ n(|A|kmk(k+log log n)+

occ)) time respectively, where0 < ǫ ≤ 1, |A| is the alphabet size andocc is the number

of approximate occurrences ofP in T .

Proof. The result is achieved in 2 steps. First, by Lemma 26, we solvefor the(k − 1)-

mismatch or(k − 1)-difference problem inO(|A|k−1mk(k + tSA) + tSAocc<k) where

occ<k is the number of approximate occurrences ofP in T with edit distance< k. What

remains is to find those occurrences ofP with edit distance exactlyk in the text. In step 2,

for those paths terminating with edit distancek−1, we can further solve for thekth error

47

using the previous results for1-mismatch or1-difference (refer to Lemma 21). Since

there areO(|A|k−1mk−1) paths with edit distancek − 1 (see Lemma 25), we can find

the occurrences ofP with exactlyk-mismatch ork-difference usingO(|A|k−1mk−1 ×

(tΨm + tSA|A|m log log n) + tSAocck) time whereocck is the number of approximate

occurrences ofP in T with edit distancek.

Combining steps 1 and 2, we have the solution inO(|A|k−1mk(k + tSA + tΨ +

tSA|A| log log n) + tSAocc) time. By Lemmas 8 and 19, the theorem follows.

⊓⊔

3.3.4 Thek-don’t-cares problem

A restrictive form of thek mismatch problem is thek don’t cares or wildcards problem

where mismatches are allowed only at specifick positions on the pattern (as presented

with the pattern). We give the following results using the data structures described in

Section 3.3.1.

Lemma 28 After preprocessing the textT of lengthn and obtaining an

O(n
√

log n log |A|) (assume|A| = O(2
√

logn)) or O(n log |A|) bits data structure, the

1-don’t-care problem can locate all approximate occurrences of a length-m patternP in

T , usingO(|A|(m+log log n)+occ) or O(logǫ n(|A|(m+log log n)+occ)) time respec-

tively, where0 < ǫ ≤ 1, |A| is the alphabet size andocc is the number of approximate

occurrences ofP in T .

48

Proof. The proof follows from Lemma 21, where the algorithm outlined in Figure 3.2 is

simplified with Steps 3(a-c) replaced by a single substitution only at the single position

i where the don’t care is allowed. Now Step 3c will takeO(tSA|A| log log n + occ) time.

This gives a total ofO(tΨm + tSA|A|(m + log log n) + occ)) time. (Refer to the proof

of Lemma 21 for details.)

By Lemma 19, the lemma follows. ⊓⊔

Also, we can extend the search fork > 1 don’t cares.

Lemma 29 After preprocessing the textT of lengthn and obtaining an

O(n
√

log n log |A|) (assume|A| = O(2
√

logn)) or O(n log |A|) bits data structure, the

k-don’t-care problem can locate all approximate occurrences of a length-m patternP

in T , usingO(|A|k(m + log log n) + occ) or O(logǫ n(|A|k(m + |A| log log n) + occ))

time respectively, where0 < ǫ ≤ 1, |A| is the alphabet size andocc is the number of

approximate occurrences ofP in T .

Proof. For k don’t cares, we might have to search up to|A|k different paths down the

suffix tree. Traversing and matching the characters on a single path of lengthm takes

O(tSA|A|m) time and reporting the occurrences takes(tSAocc). This gives a total time

of O(tSA(|A|k+1m + occ)) to report the location of allk don’t cares patterns.

However, we can further reduce the time by searching for thek-th don’t care using

the result in Lemma 28. We can now search fork don’t cares inO(tΨm + tSA|A|k(m +

|A| log log n) + occ) time. By Lemma 19, the lemma follows. ⊓⊔

49

3.4 Summary

Approximate string matching is about finding a given string pattern in a text by allowing

some degree of errors. In this work we present a space-efficient data structure to solve

the 1-mismatch and1-difference problems. Given a textT of lengthn over an alpha-

betA, we can preprocessT and give anO(n
√

log n log |A|)-bit space data structure so

that, for any query patternP of lengthm, we can find all1-mismatch (or1-difference)

occurrences ofP in O(|A|m log log n +occ) time, whereocc is the number of occur-

rences. This is the fastest known query time given that the space of the data structure is

o(n log2 n) bits.

The space of our data structure can be further reduced toO(n log |A|) if we can afford

a slow down factor oflogǫ n, for 0 < ǫ ≤ 1. Furthermore, our solution can be generalized

to solve thek-mismatch (and thek-difference) problem inO(|A|kmk(k+log log n)+occ)

andO(logǫ n(|A|kmk(k + log log n) + occ)) query time using anO(n
√

log n log |A|)-

bit and anO(n log |A|)-bit indexing data structures, respectively. We assume that the

alphabet size|A| is bounded byO(2
√

logn) for the O(n
√

log n log |A|)-bit space data

structure.

The above results were first presented in [61] and the extended version has been

accepted for journal publication [62]. More recently, H.L.Chanet al. [18] incorporated

some results presented here to give an improvement using fixed index space in answering

approximate pattern matching. The results areO(m+(c logn)k(k+1) log log n+occ) and

50

O(m+logǫ n((c log n)k(k+2) log log n+occ)) time usingO(n log n) andO(n log |A|) bit

space respectively for some positive constantsc andǫ. Also in another recent work, H.L.

Chanet al. [17] gave results usingO(n logn)-bit index to report approximate pattern

matching inO(m + log n log log n + occ) andO(m log n log log n + occ) time fork = 1

andk = 2 respectively.

51

Chapter 4

Optimal exact match index

4.1 Introduction

Given a textT [1..n], characters from a finite alphabetA, and with necessary prepro-

cessing and building an indexing structure, we locate the exact matches of any given

patternP [1..m] in T . This defines the exact string matching problem. In this work,

we are interested in finding the optimal query time for exact string matching problem

usingo(n log n)-bits data structures to index the text. In other words, we build highly

compressed indices to answer exact match query efficiently.

It is well known that suffix tree data structure usesO(n log n) bits so that exact string

matching can be answered inO(m + occ) time whereocc is the number of occurrences

of the query pattern found in the text. Compressed suffix array (CSA)[44] reduces the

space toO(n log |A|) bits in query timeO(m log log |A|+occ logǫ n), for ǫ > 0, based on

52

backward search. Grossi and Vitter [38, 39] gave an index on compressed suffix array

(CSA) for exact match inO(m/ log|A| n + log1+ǫ n(log |A| + log log n) + occ) time

usingO(n log |A|) bits for m = Ω(log1+ǫ n) or occ = Ω(nǫ). Their result is optimal

in O(m/ log|A| n + occ) query time form = Ω(log2+ǫ n log|A| log n). The Lempel-Ziv

(LZ) index by K̈arkkäinen and Sutinen [53] was cited where occupyingO(n) bits, any

pattern of lengthm ≤ ǫ log|A| n, where0 < ǫ ≤ 1, can be found inO(m + occ) time

(actuallyO(1 + occ) time with suitable table lookup).

Here, we present an algorithm that finds and enumerates all the occurrences in

O(m/ log|A| n + log1+ǫ n log|A| log n + occ) time form = Ω(log|A| n logǫ n), ǫ > 0. We

give the optimal search time ofO(m/ log|A| n+occ) for m = Ω(log2
|A| n logǫ n log log n).

This improves the previously reported result especially for large alphabet size using

O(n log |A|) bits by a factor ofO(log |A|). Next, to handle query of any given lengthm,

we useO(n logǫ n log |A|) bit data structures to answer exact match query in

O(m/ log|A| n+log n log log n+occ) time. Finally, we giveO(n
√

log n log |A|) bit data

structures withO(m/ log|A| n + logǫ|A| n + occ) or O(m + occ) query time. The result in

O(m + occ) time is optimal if we take into consideration theO(m) preprocessing time

to encode a pattern string of lengthm into m/ log|A| n words. This gives the first linear

O(m + occ) time using onlyo(n log n) bits space for exact string matching over a fixed

finite alphabet. Table 4.1 summarizes the results for exact string matching over a finite

alphabet.

53

Reference Bit space Query time

Suffix tree O(n log n) O(m + occ)

CSA∗ [44] O(n log |A|) O(m log log |A| + occ logǫ n)

Grossi et al. [39] O(n log |A|) O(m/ log|A| n + occ)

for m = Ω(log2+ǫ n log|A| log n)

O(n log |A|) O(m/ log|A| n + occ)

for m = Ω(log2
|A| n logǫ n log log n)

This work O(n logǫ n log |A|) O(m/ log|A| n + log n log log n + occ)

O(n
√

log n log |A|) O((m/ log|A| n + logǫ|A| n + occ)

or O(m + occ)

∗ - backward search on CSA, andǫ > 0

Table 4.1: Comparison of various results for exact string matching problem.

4.2 The approach

4.2.1 Basic concept

We first consider a compact trie,STw, for suffixes ofT at positions or split-points

w, 2w, . . . , ⌊n/w⌋w, usingO(n/w log n) bits. w is a constant value to be determined

later. LetTi denotes the suffixT [i..n]. The compact trie,STw, consists of suffixesTiw,

1 ≤ i ≤ ⌊n/w⌋. Any matching pattern of length≥ w in T will cover at least one

split-point. We have another compact trie,STw, for reverse prefixes ofT at positions

w − 1, 2w − 1, . . . , ⌊n/w⌋w − 1, usingO(n/w log n) bits. The compact trie,STw,

consists of⌊n/w⌋ substringsT [iw − 1..1], 1 ≤ i ≤ ⌊n/w⌋. The compact tries are

54

sorted in lexicographical order, with leaf nodes storing the text positionsiw andiw − 1,

1 ≤ i ≤ ⌊n/w⌋, for STw andSTw respectively. This gives a search strategy to find exact

match given the query patternP [1..m]. We say thatP occurs at positioni on the textT

if there exists an integerj where(j − 1)w < i ≤ jw, such thatP [jw − i + 1..m] is a

prefix toTjw in STw, andP [jw − i..1] is a prefix toT [jw − 1..1] in STw.

We generalize the search for patternP in text T , by first splittingP into 2 parts,

head and tail,P [j − 1..1] andP [j..m], for j = 1 to w. Next for eachj, we search for

P [j − 1..1] in STw andP [j..m] in STw respectively. Let the largest leaf ranges with

common prefixes matching the respective head and tail patterns, inSTw andSTw for a

given j, be [xlj ..x
r
j] and [ylj..y

r
j]. The leaf indices are enumerated in left to right order.

Also let STw[x] denotes the text position stored in the leaf nodex in STw, similarly

for STw[y]. The final step is to return those positions wherex ∈ [xlj ..x
r
j] and y ∈

[ylj ..y
r
j], such thatSTw[y] = STw[x]+1, with the matching occurrence located at position

STw[y] − j + 1 in T .

4.2.2 Data structures

We now describe some data structures that can help to speed upthe search. Given the

leaf ranges[xlj ..x
r
j] and[ylj..y

r
j], we identify the “correct” matching leaf nodes, by trans-

forming the problem into a two-dimensional orthogonal range search. Below is a known

result:

55

Lemma 30 [3] Let S be a set of points in[1..n] × [1..n], where |S| = n. Given

x1, x2, y1, y2, we can findL = {(x, y) ∈ S | x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2}, in

O(log log n + |L|) query time usingO(n log1+ǫ n) bit space,ǫ > 0.

We haveS defined as the leaf index range ofSTw× the leaf index range ofSTw . A

point in S, (x, y), corresponds to the occurrence ofSTw[y] = STw[x] + 1. In our case,

there are only⌊n/w⌋ points.

The following data structures are needed for our results:

Lemma 31 [39] Compressed suffix array (CSA) usingO(n log |A|) bit space, reports

SA (suffix array) andΨ entries intSA = O(logǫ|A| n), where0 < ǫ ≤ 1, andtΨ = O(1)

time respectively. (The functionΨ is defined as suchΨ[i] = SA−1[SA[i] + 1]).)

Lemma 32 [85] Compressed suffix array (CSA) can be implemented using

O(n
√

log n log |A|) bit space, to reportSA (suffix array) andΨ entries in constant time.

Proof. This is generalized from Rao’s paper for binary text string. ⊓⊔

Lemma 33 [87, 88] GivenSA indices i and j and an implementation of theCSA,

the length of the longest common prefix (LCP) between suffixesat positionsSA[i] and

SA[j], denoted by|lcp(i, j)|, can be computed inO(tSA) time using additionalO(n)

bits data structure. The SA range corresponding to the lowest common ancestor (LCA)

node between any two suffixes can be computed in constant time.

56

Lemma 34 Given a Patricia trie storings strings of length at leastlog|A| n, each over

the alphabetA, we can search for a pattern of lengthm in

O(m/ log|A| n + logǫ|A| n) time. The Patricia trie usesO(s logn) bit space.

Proof. Refer to Lemma 9 in Grossi and Vitter’s paper [39]. ⊓⊔

Lemma 35 [84] Let S be a set ofm elements drawn from[1..n]. S can be represented

usingm log(n/m) + O(m + log log n) bits such that the following rank and select op-

erations can be performed in constant time. A rank operationreturns the order of an

elementx ∈ S, defined asRank[x] = |{y < x | y ∈ S}|. A select operation returns the

i-th smallest element inS, where1 ≤ i ≤ m (i.e. Select[i] = x if Rank[x] = i).

4.2.3 UsingO(n log |A|) bit data structures

We first useSA[1..n] to denote the compressedSA in theCSA build for the textT . Let

PT be a compact trie, more specifically a Patricia trie as definedin Lemma 34 for suffix

stringsT [i..m], such thati = SA[j] andjmodw = 0. Suppose the patternP [1..m]

exists in thePT which corresponds to suffixesSA[iw] for i ∈ [a..b]. The range[a..b] is

mapped to itsSA range[aw..bw] in theCSA. Next the index range[aw..bw] is extended

to its left and right for[a′..b′] which correspond to theLCA to the suffixes in the range

[aw..bw].

There is the special case whereP [1..m] is not found inPT , as onlyP [1..i], i < m,

has been matched. We can determine the leaf range[a..a + 1] so thatP [1..m] if found

57

will exist between leaf indexa anda + 1. We search within theSA range[aw..bw],

(b = a + 1), of the CSA for[a′..b′] with prefix matchingP [1..m]. This is performed

using binary search inO(m/ log|A| n + tSA log w) by packinglog|A| n characters into a

single word for constant time comparison, and applying theLCP result. This is similar

to binary search over suffix array with the use ofLCP .

Now that we have found theSA range forP [1..m], using theΨ function inCSA,

we locate the rest of theSA ranges forP [i..m], 1 ≤ i ≤ w. For eachSA range, we find

within the range, the ranks of the first and last entries whosetext position modw = 0.

The ranks are in fact the leaf range inSTw (see Section 4.2.1) with prefix matching

someP [i..m]. Let the leaf range inSTw with strings starting withP [i..m] be [yli..y
r
i].

The following Lemma gives the details:

Lemma 36 UsingO(n/w log w) bit data structures, and given theSA range[i..j], 1 ≤

i ≤ j ≤ n, wherew is a constant, we can find the smallesti′ and the largestj′

such thati′, j′ ∈ [i..j], and i′, j′ ∈ D, in O(1) time. We define the listD = {i ∈

[1..n] | SA[i]modw = 0}. We can also determine the rank ofi = |{j ≤ i | j ∈ D}|, in

O(1) time.

Proof. Imagine a bit array of sizen of 0’s and 1’s where the 1’s mark the positions

of D in theSA. There aren/w 1’s in the bit array of lengthn and the space to store

using the rank and select data structure (see Lemma 35) isO(n/w log(n/(n/w))) =

O(n/w log w). Given a positioni, we can count the number of 1’s before and ati in

58

O(1) time. Similarly, given the rank of some 1’s in the array, we can find its position in

O(1) time. ⊓⊔

To reiterate, for eachSA range corresponding toP [i..m], 1 < i ≤ w, using Lemma

36, we find the leaf range[yli..y
r
i] in STw in constant time. Next we construct the compact

trie STw as described earlier and findP [i − 1..1] for 1 < i ≤ w, to yield the leaf range

[xli..x
r
i].

Given the leaf ranges[yli..y
r
i] and [xli..x

r
i], we search using the range query data

structure inO(log log n + occi) time (see Lemma 30). This is performedw times, for

1 ≤ i ≤ w, to collect all the occurrences. Notice thatSTw is not actually constructed.

This leads to the following theorem:

Theorem 37 GivenO(n log |A|) bit data structures, we find all the exact match locations

of length-m patternP , in textT of sizen, drawn from alphabetA, in O(m/ log|A| n +

log1+ǫ n log|A| log n + occ) time, whereocc is the number of occurrences ofP in T and

ǫ > 0. We assume thatm = Ω(log|A| n logǫ n).

Proof. The data structurePT occupiesO(n/w log n) bits and the search forP [1..m]

takesO(m/ log|A| n + logǫ|A| n) time (by Lemma 34). TheSA range on the CSA for

patternP [1..m] is found using furtherO(n + |CSA|) bits for lcp query (by Lemma 33)

and takesO(m/ log|A| n + tSA log w) time. TheCSA takes|CSA| bits and accessing

theΨ function takes a total ofO(wtΨ) time to recover the rest ofP [i..m], 1 < i ≤ w.

Mapping theSA ranges toSTw leaf ranges takesO(w) time as well using additional

59

O(n/w log w) bits (by Lemma 36).STw occupiesO(n/w log n) bits and searchingSTw

takesO(w/ log|A| n + logǫ|A| n) time if we implementSTw similar toPT . The final step

of two-dimensional range query takesO(n/w log1+ǫ n) bits andO(w log log n + occ)

time.

In total, we needO(n/w log1+ǫ n + |CSA| + n) bits to answer the exact match

query inO(m/ log|A| n + tSA log w + tΨw + logǫ|A| n + w log log n + occ) time. The

theorem follows if we setw = log|A| n logǫ n and uses the CSA given in Lemma 31

where|CSA| = O(n log |A|), tΨ = O(1) andtSA = O(logǫ n). ⊓⊔

The theorem can be extended to give the following result.

Corollary 38 Exact match can be found inO(m/ log|A| n + occ) optimal time using

O(n log |A|) bit data structures form = Ω(log2
|A| n logǫ n log log n).

4.2.4 UsingO(n logǫ n log |A|) bit data structures

We now give a general solution for query of any lengthm.

Theorem 39 GivenO(n logǫ n log |A|) bit data structures, we find all the exact match lo-

cations of length-m patternP , in textT of sizen, drawn from alphabetA, in O(m/ log|A| n+

log n log log n + occ) time, whereocc is the number of occurrences ofP in T andǫ > 0.

Proof. By settingw = ǫ log|A| n, 0 < ǫ ≤ 1, as given in the proof for Theorem 37,

we have the query time inO(m/ log|A| n + log|A| n log log n + logǫ n log log|A| n + occ)

60

= O(m/ log|A| n + log n log log n + occ) for m ≥ ǫ log|A| n usingO(n logǫ n log |A|) bit

space. Form < ǫ log|A| n, we use the LZ-index by K̈arkkäinen and Sutinen inO(1+occ)

time usingO(n) bits. ⊓⊔

Corollary 40 Exact match can be found inO(m/ log|A| n + occ) optimal time using

O(n logǫ n log |A|) bit data structures form = Ω(log2
|A| n log log n+log1+ǫ n log|A| log|A| n).

4.2.5 UsingO(n
√

log n log |A|) bit data structures

We replace the CSA used in previous results with Rao’s implementation in

O(n
√

log n log |A|) bits so that SA can be accessed directly in constant time i.e.tSA =

O(1). First we build compact triePT for suffix stringsT [i..m], such thati = SA[j]

andjmodw = 0. We search for patternP [1..m] in PT to obtain the leaf range[a..b]

and then find the SA range in CSA with common prefix matchingP [1..m]. The details

has been discussed in Section 4.2.3. Now using Rao’s CSA, we can then recover the

matching position entries in the SA range, inO(occ) time.

We give the following result.

Theorem 41 GivenO(n
√

log n log |A|) bit data structures, we find all the exact match

locations of length-m patternP , in textT of sizen, drawn from alphabetA, in

O(m/ log|A| n + logǫ|A| n + occ) time, whereocc is the number of occurrences ofP in T

andǫ > 0.

61

Proof. The data structurePT occupiesO(n/w log n) bits and the search forP [1..m]

takesO(m/ log|A| n + logǫ|A| n) time (by Lemma 34). TheSA range on the CSA for

patternP [1..m] is found using furtherO(n + |CSA|) bits for lcp query (by Lemma 33)

and takesO(m/ log|A| n + tSA log w) time.

In total, using Rao’s CSA (see Lemma 32) inO(n
√

log n log |A) bits with tSA =

O(1), we needO(n/w log n+n
√

log n log |A|+n) bits to answer the exact match query

in O(m/ log|A| n + logǫ|A| n + log w + occ) time. The theorem follows if we setw =

√

log|A| n, for m ≥
√

log|A| n. Form <
√

log|A| n, we refer to the LZ-index. ⊓⊔

We can further deduce the followings.

Corollary 42 Exact match can be found inO(m/ log|A| n + occ) optimal time using

O(n
√

log n log |A|) bit data structures form = Ω(log1+ǫ
|A| n).

Corollary 43 Exact match can be found inO(m + occ) time usingO(n
√

log n log |A|)

bit data structures.

4.3 Summary

We have studied the exact string matching problem and provided tighter bounds on the

optimal solution in terms of space and query time trade-offs. First we show that using

O(n log |A|) bits data structure, the optimal query time ofO(m/ log|A| n + occ) can be

achieved form = Ω(log2
|A| n logǫ n log log n), whereǫ > 0. This extends the range ofm

62

answerable by a factor oflog |A| from previously known result. Next usingo(n log n)

bits data structure, for fixed finite alphabet and any patternof lengthm, we answer the

exact string matching problem with anlog n log log n term added to the optimal query

time. Also we show that(m + occ) query time is achievable usingo(n log n) bits data

structure.

63

Chapter 5

Disk-based suffix tree index

5.1 Introduction

Suffix tree is an important data structure for indexing text string since it can answer pat-

tern search query efficiently independent of the text stringsize. There exists many prac-

tical applications that rely on suffix tree, especially for processing biological sequence

data [40, 42, 50, 58, 59, 81]. As various genome sequencing projects are ongoing and

more genome sequences are made known, the application of suffix tree on biological

research is expected to increase.

Since genome size is in the order of gigabytes, maintaining suffix trees becomes an

important issue. There are two immediate problems. The firstproblem is on constructing

suffix tree efficiently. Many suffix tree construction algorithms have been proposed over

the years [13, 19, 34, 44, 45, 67, 95, 98, 99]. We are now able toconstruct a suffix

64

tree (or a suffix array) for the human genome of 3 billion characters within 30 hours

on a desktop machine with 4GB RAM [60, 95]. Hence, the problemon suffix tree

construction is largely solved in practice.

The second problem is on accessing the suffix tree. As the genome database gets

bigger, maintaining suffix tree in memory is no longer feasible. We need to have a disk-

based representation of suffix tree which allows for efficient access. We have seen a

number of disk-based representations of suffix tree [20, 29,45, 69, 95] in the literature.

However, these disk-based suffix trees either fail to support all the general suffix tree

operations well or have high IO disk access for certain operations.

This work focuses on having a practical suffix tree implementation on disk that sup-

ports various suffix tree operations efficiently. We proposeaCompactPartitionedSuffix

tree representation (CPS-tree) for disk-based access. OurCPS-tree achieves good IO

bound and time complexity, and is shown to be efficient on realdatasets as well. We

study ways to localize information in the tree so that further traversal down the tree is

minimized. This is achieved by propagating the suffix position in selected leaf nodes

up the tree to be stored locally. Also we add “shortcuts” intothe tree so that some in-

termediate nodes (or more correctly, pages containing the nodes) can be skipped when

traversing the tree. This guarantees matching any substring in the tree withO(log n)

index pages. Table 5.1 gives a list of notations used throughout this chapter for easy ref-

erence. We study and compare various tree partitioning methods to divide the tree into

logical blocks and the method that works best with our CPS-tree. Index buffers are also

65

created to identify suitable buffer replacement policy that generates fewer page faults on

the CPS-tree index. We build CPS-tree index on the human genome and study the IO

and computational performances. Results show that CPS-tree can support exact match

and local alignment queries efficiently for large genome.

Notation Description

n Index size

N Length of text string to be indexed

b Logical block size (in bytes)

B Memory page size (in bytes)

m Query string length

occ Number of matching occurrences

of the query on the text

|A| Alphabet size + 1

ℓ Edge label length

H Suffix tree depth

Table 5.1: Description of notations used.

Suffix tree finds many applications in pattern searching on genome sequences (such

examples are Mummer[59] and Weeder[81]). These applications are memory based and

hence only handle genomes that are small. For a large genome that needs to reside on

disk, the disk IO efficiency becomes an important issue. As such we first study the disk

IO efficiency of our proposed suffix tree to answer exact matchquery and to handle tree

traversal operations. In Table 5.2, we present the worst case disk access performance of

66

Suffix Exact match Exact match Edge label Child node

structure query count query access access

SB-tree[29] logB n + m+occ
B

logB n + m
B

logB n + ℓ
B

logB n + ℓ
B

CPT [20] H√
B

+ logB n H√
B

+ logB n H√
B

+ logB n log |A|
+m+occ

B
+m+occ

B
+ ℓ
B

WOTD-tree[34, 95] min{m, H} min{m, H} ℓ
B

1

+m+occ
B

+m+occ
B

CPS-tree min{m, log n} min{m, log n} ℓ
B

1

+m+occ
B

+m
B

suffix array[66] m log n + occ
B

m log n log n + ℓ
B

log n + ℓ
B

The WOTD-tree is generated using the TDD construction algorithm[95].

The SB-tree does not maintain the original suffix tree structure, so we derived the worst case

complexity for the node and edge label access to recover the original suffix tree information.

Note thatH, the depth of the suffix tree, is bounded byO(n).

Table 5.2: Worst case big-O IO bounds for operations on various proposed suffix data

structures.

our CPS-tree and compare with some proposed suffix structures in the literature. Finding

exact match on most suffix tree structures is generally IO bounded bym. For SB-tree,

it runs inO(logB n + (m + occ)/B). CPS-tree is second to SB-tree, with an IO bound

of O(min{m, log n}+ (m + occ)/B) for exact match query, at most anO(log B) factor

behind. For CPS-tree, counting the number of exact match is handled easily without

going through all the matching occurrences.

Next, structures like SB-tree, CPT and suffix array are not designed for basic tree

67

traversal operations like child node and edge label access (refer to Table 5.2). CPS-tree

and WOTD-tree support these operations with IO access boundindependent ofn. Tree

traversal operations are essential to handle complex queries and to support various search

techniques over suffix tree (an example is the local alignment search).

As for disk space usage, we need to balance between maintaining a small index

(to the extend of trimming off any extra bits), and keeping fast access by replicating

information to be stored in the tree so that access is kept in near proximity. Experiments

show that for a DNA sequence with N characters, we need 7N to 9Nbytes to store our

bit-packed suffix tree on disk in practice. This is assuming that every position on the text

is to be indexed. For example, the CPS-tree index built on thehuman genome with 3

billion characters is 27GB in size. Our scheme is comparableto the space efficient suffix

tree representations [20, 29, 30, 57] that work on bit-levelpacking.

Alternatively, we can enhance the CPS-tree index with the suffix array [66] on disk

using additional4N bytes, so that the occurrences which correspond to an index range in

the array can be retrieved sequentially from disk directly.This will increase the total disk

usage for CPS-tree to around 11N to 13N bytes. Moreover, its size is still small when

compare with most suffix tree implementations which use 17N to 65N bytes [45, 57]

with more compact version in 12.5N bytes [34, 69, 95].

In brief, we have made improvements to CPS-tree giving the following results:(1)

Fast searching and traversal of the suffix tree in terms of IO paging and computational

time; (2) fast enumeration of the occurrences; and lastly,(3) compact the suffix tree

68

using bit-packing representation and other space optimization.

We show in our experiments that the CPS-tree is space-efficient, and performing

exact match query on it generates very few page faults (even for human genome). We

also show that approximate match query and local alignment search (using the affine gap

cost model) can be handled efficiently using the CPS-tree.

The rest of this chapter is organized as follows. We first introduce various suffix data

structures and other related works available in the literature. Next, we describe in depth,

the structure of our CPS-tree. This is followed by the experimental results on disk-based

and memory-based query search to show that CPS-tree performs well in practice. We

conclude with discussion on our ongoing work and research direction.

5.2 Related work

The issue of IO efficiency in suffix tree for exact string matching has been addressed

considerably in the literature with the following 2 main contributions, Compact Pat Tree

(CPT)[20] and String B-Tree (SB-tree)[29].1 CPT is a partitioned PAT tree [36, 70]

which is essentially a suffix tree with space highly optimized. Every leaf node in the tree

denotes a suffix of the text with the path to the leaf from the root labeled with the suffix

1For in-memory representation of suffix tree, we have compressed suffix tree (CST) [88], FM-index

(FMI)[31] and compressed suffix array (CSA)[38] representations, which are more compact in size (≤ N

bytes) but display poor access locality [68] and require more computation. They are therefore better suited

for memory-based computational model.

69

string. Though it is small in size, finding the occurrences ofa pattern takes time linear

to the height of the suffix tree which can be very inefficient both computationally and in

terms of IO cost. Our work improves on the CPT’s scheme so thatwe do not need to

traverse the full path to a leaf node to answer exact match query. This greatly enhances

the search efficiency.

SB-tree, on the other hand, applies the structure of B-tree over string to give a well-

balanced tree structure that promisesO(logB N) worst case IO access to traverse the

tree from the root to a leaf node. As SB-tree does not explicitly preserve the suffix tree

structure, it is not obvious how SB-tree can be extended to handle complex query like

approximate search efficiently [28]. This limits the usefulness of SB-tree in practice.

More recently, Huntet. al. [45] gave a disk-based suffix tree for DNA and protein

sequences. It is shown that dynamic programming over their suffix tree can efficiently

solve the local alignment problem. Their main setback is that the suffix tree is large,

requiring 21N to 65N bytes depending on implementation. Meek et. al. followed up

with OASIS [69]. They gave a dynamic programming A*-search driven algorithm over

suffix tree for exhaustive local alignment search on proteinsequences that surpasses the

performance of Smith-Waterman algorithm [92]. Previously, Giegerichet. al. [34] have

proposed the WOTD suffix tree representation. Tataet. al. [95] gave an improved

top-down disk-based suffix tree construction algorithm named TDD, based on WOTD

suffix tree representation by Giegerichet. al. [34], that can scale up efficiently for

large text sequence while using a fixed memory space. Halachev et. al. [41] further

70

suggested storing the nodes in the tree by depth-first order that is slightly more efficient

for enumerating the occurrences in exact match search. It was shown that the top levels

in the suffix tree can be further compressed using arrays for lookup [48]. However, none

of the above results addresses the issue of IO efficiency in handling pattern matching and

for the suffix tree traversals.

Bedathuret. al. [11] proposed a partitioning method for suffix tree, catering to both

suffix link and tree node traversals. In searching for the maximal common substrings,

they showed that their approach is more IO efficient. However, their proposed method

penalizes search that does not requires suffix link, for example in solving exact and

approximate pattern matching.

Another promising direction is to simulate suffix tree usingthe suffix array (SA)[66].

One weakness of suffix array is that there is an additional cost of O(log n) time factor

to simulate each operation on a suffix tree. Also access to thesuffix array does not dis-

play a regular pattern, as a result, the disk IO cost to searchfor a pattern of lengthm

on a disk-based suffix array can be as high asO(m log n). Enhanced Suffix Array [1],

essentially consisting of the suffix array and additional tables, was proposed to execute

with same time complexity as suffix tree except that it is morespace efficient. However,

it did not address the IO issue of suffix array. There are approaches that replicate se-

lected suffix array entries in the memory to improve on the IO access performance [9]

in practice. There are several works [16, 46, 94] that apply the filtering strategy with

q-gram (or alike) indexing. The basic approach consists of these steps: neighborhood

71

generation, index lookup and followed by site verification.There is no tight bound on

IO performance as it is dependent on the size of the candidatelist generated. Also when

searching for local alignment, there is a chance that it may not find all alignments. In

any case, CPS-tree is a more versatile indexing structure which supports both pattern

matching and suffix tree traversal efficiently.

Sorted suffix tree

1 2 16 3 7 17 4 8 11 18 14 5 9 12 19 21 15 6 10 13 20 22

1 2 416 73 17 118 18 14 5 9 12 15 131019 20 2221 6

ba

a
a

a
a

a a

a

a
$

$$
$

ba

ba

ba
$

a

a

baaaaba$

$
$

babaaaaba$
baababaaaaba$

aba$

baaaaba$
babaaaaba$

aba$

baaabaababaaaaba$

baaaaba$

abaababaaaaba$

babaaaaba$

babaaaaba$
abaababaaaaba$

aabaababaaaaba$

51 10 20 22157

ba

abaaabaababaaaaba$

SA index

Suffix array

Figure 5.1: Suffix tree and suffix array built on the text = “aaaaabaaabaababaaaaba$”.

72

5.3 Structures and algorithms

This section describes the CPS-tree structure and its application in exact pattern search.

The reader can refer to Section 2.2 for description of the structures of suffix tree and

suffix array. We adopt the convention of letting the terminating symbol ‘$’, appended to

the textT , to be larger than any character found in the text. The suffixes in the suffix tree

are in lexicographically sorted order from left to right. Webegin with a short revision on

how string matching is performed on a suffix tree.

The existence of any given query string inT can be found in time linear to the query

length,m, using a suffix tree. Given a length-m query string, we traverse the tree from

the root down a path matching the query with characters on theedges until no further

matching is possible. There is at mostm edges or nodes to visit and naturally, the query

string exists inT if the whole query can be matched. The occurrences of the query

on T can be retrieved by visiting the leaf nodes in the subtree under the node where

the matching completes. For example, by traversing the suffix tree in Figure 5.1, the

occurrences of “abaa” can be found in one subtree which contains the text positions

‘14’, ‘5’, and ‘9’. Note that the positions inT where a query string occurs, are stored

consecutively in the suffix array (SA). For example, in Figure 5.1, the SA entries ranging

from index 7 to 10, store the positions inT where the query string “aab” occurs.

73

5.3.1 CPS-tree representation

Our CPS-tree representation is illustrated in Figure 5.2 based on the same text string used

in Figure 5.1. CPS-tree is basically a modified PAT tree [36, 70] where an edge stores

the first character of the edge label and its length instead ofthe actual edge label. We first

partition the suffix tree into many small trees, to be addressed as “local” trees, in a top-

down fashion so that each local tree fits into a logical block of fixed size (the bounding

boxes in Figure 5.2). The end node in a local tree is either a leaf node (terminating

circular node) or an external node (rectangular node with anoutgoing dashed edge)

pointing to the descending local tree in another logical block. Each local tree, rooted at

nodev, is constructed by first including the nodev and its children, then we recursively

include the node with the heaviest subtree (most number of leaf nodes), among all nodes

at the local tree boundary, and its children. The process repeats until the local tree is full

(that is, too big to fit into a logical block). This partitioning method is referred as the

greedy approach which is fairly intuitive. It was shown in the paper by Alstrupet. al. [2]

that the average block access of the greedy approach is bounded by a factor ofO(logB)

(andΩ(logB
log logB

)) more than the optimal layout.

There are several tree partitioning methods in the literature [25, 35]. In the paper by

Diwan et. al. [25], bottom-up, tree partitioning methods were proposed,that find the

optimal layout minimizing either the worst (maximum) or average block access when

traversing from the root to any leaf in the tree. This howevergives a partitioned tree with

74

possibly many under-filled internal blocks or pages [25] which is undesirable. Another

common approach is to build the partitions naively by grouping the nodes in the breadth-

first order [11]. This is expected to give good average performance in general. We

implemented the breadth-first order partitioning and the greedy approach and, through

the experiments (see Table 5.4), showed that greedy approach achieves fewer expected

page faults for CPS-tree in practice.

10

1

3

56

7 8

4

9

2

22

221

15

17 21

2013

1015

17 18

615

3

2114

11 15101

12 19

914

11 12

514

1811

84

4

32

4 6

1

162 7

17

7

ba

a,1 b

a,1

$
b,2a,1

b $

b,2 $a,1

$ba,1

a,1 b

ba

b,2
a,1

b,2a,1

b,2a

a $ a b

$a,1 a b

a,1 b $

2

1 3

Figure 5.2: CPS-tree representation for text = “aaaaabaaabaababaaaaba$”.

To compact the local tree, we do not store the edge label explicitly. We store the first

character on the edge together with its label length for non-leaf edges. For leaf edges, we

75

only store the first character of the edge. The label length ofa leaf edge can be computed

if we know the character depth of the parent node (of the leaf node) and the text position

stored in the leaf node. For each external nodeu in a local tree, we store the replicate of

the text position of some leaf node in the subtree rooted atu (consider the whole suffix

tree). In our implementation, we select the leaf node which is reachable fromu through

the heavy path where a heavy path is a path of heavy edges and a heavy edge of a nodeu

is the edge(u, v) such thatv is the child ofu which has the largest subtree (with the most

number of leaves) when compared tov’s siblings. Figure 5.1 shows the heavy paths in

the suffix tree, with thickened edges. The text positions replicated in the external nodes,

help to localize access and to improve IO efficiency of pattern search. Also, at the root

v of each local tree, we store the SA range of the subtree rootedat v (see Figure 5.2 for

an example). This information comes useful to access the external SA on disk when we

need to enumerate the occurrences in a search.

To facilitate searching of nodes further down the tree, we maintain extra link, denoted

as “forward link”, at the block-level (in addition to the CPS-tree structure presented in

Figure 5.2). We can then access any node from the root, by traversing through, in the

worst caseO(log n) logical blocks. This property is useful for applications that demand

worst case guarantee in query time. We will elaborate further in Section 5.3.3.

The top few levels of nodes in the suffix tree are most frequently visited in answering

queries. As such, CPS-tree is written to disk in a top-down order. The order to be

written is illustrated in Figure 5.2 as the block label on thetop left corner of each block.

76

Memory buffer is implemented to handle access to the suffix tree where the memory

buffer can be initialized very quickly through sequential read of the first few pages of the

suffix tree from disk. Using an optimized bit-packing schemeto encode the individual

tree structure, CPS-tree can further achieve good space utilization and IO efficiency in

answering string matching query.

5.3.2 Space optimization

Each local tree is packed using bit representation. For example, a DNA character is

encoded using 3 bits given that the DNA alphabets is of size 4 plus the terminating

symbol ‘$’. Each node stores its outgoing edges in an edge array. An edge can be

selected by performing binary search over the edge array inlog |A| time at most. The

non-leaf edge label length is generally short, as such, we use 8 bits to store the length

and 32 bits if the length is longer than 255. From our experiments, we find that there are

only a handful of non-leaf edges with label length longer than 255. A similar design was

used in CPT for better compression.

We pad each local tree with extra bits (< 8 bytes) so that the size of each block is a

multiple of 8 (in bytes). With the blocks written consecutively into the index file, we can

record the starting location of each block using fewer bits.

The blocks are written sequentially into the index file on disk, ignoring the physical

boundaries that divide the file equally into sectors on disk.A physical page read from the

77

index file will fetch 1 or more blocks at a time, assuming that the physical page is larger

than the block size. It is also possible for a logical block toreside across the boundary

of 2 consecutive pages. A logical block may be under-filled and hence the blocks may

differ in size.

5.3.3 Forward link

The logical blocks in the CPS-tree is arranged in a tree. Thissection describes the

concept of forward link which allows us to access any logicalblock within O(log n)

block accesses.

We need some definitions. For any logical blocki, the leaf count of the logical block

i, denoted as|i|, refers to the number of leaf nodes in the subtree spanned by the first

node of the logical blocki. As an example, the leaf count of the logical block 3 in Figure

5.2 is 10. For every logical blocki, (i, j) is called a heavy link if|j| is the biggest among

all child blocksj of block i. The chain spanned by the heavy links is called the heavy

chain of logical blocks. For example, logical blocks 1, 3, and 6 form a heavy chain in

Figure 5.2.

Note that for any child blockj of block i, if (i, j) is not a heavy link,|j| ≤ |i|/2.

Hence, when we search downward to access a logical block, we need to access at most

log n non-heavy link. However, we may need to go throughO(n) heavy links to reach a

logical block. To speed-up, we introduce forward link whichskips some of the logical

78

blocks.

Consider a particular chain, let blocksi andj be the first and the last blocks respec-

tively. We define forward links for every block in the chain from i to j as follows. First,

a forward link is introduced from blocki to block r where blockr is a descendant of

block i and an ancestor of blockj such thati is the deepest block with|r| ≥ (|i|+ |j|)/2.

Then, the chain is partitioned into two chains: The first chain is from the child ofi to the

parent ofr and the second chain is fromr to j. Lastly, we recursively define the forward

links for the two chains. An illustration of the forward links (arc arrows) is given in

Figure 5.3. The above procedure ensures we can find any block in a chain within2 log n

block accesses.

Now, imagine that we start at the first blocki containing the root node of the suffix

tree, in the process to find the exact match of a given query string. The match count of

block i could be as large asn. If the matching reaches an external nodev in block i, and

v points to the child blockj, then there are 3 possibilities to continue the search down the

tree. Case 1 is that(i, j) is not a heavy link, so we can continue the search in child block

j whose leaf count will be reduced by at least half, and so the possible match count to

be returned, is reduced ton/2 in block j. Otherwise, we have(i, j) being a heavy link,

and letr be the block pointed to by the forward link in the current block i. Case 2 is

when we can fully match the path label to the first node in the forward blockr with the

query string and so the search continues in blockr. Since a forward link reduced the

leaf range by half each time, we will have the possible match count reduced ton/2 in

79

block r as well. Next, we have the final case 3 where the path label tor does not match

with the query string. In this case, we will continue the search in child blockj, knowing

that we have already eliminated the possibility of visitingforward blockr and beyond

as in case 2. Hence the possible match count in blockj is reduced by the leaf count of

forward blockr, which is stilln/2. This process is repeated as we visit a new block with

the possible match count reduces by half each time until the match count is 1 or when

the query string is fully match or when mismatch occurs with no match to be found. In

this way, we can find the exact match of any query string in the suffix tree withO(log n)

logical block accesses.

5.3.4 Exact string matching

Exact string matching on CPS-tree is performed by repeatingthe search process on each

local tree visited as we traverse down the suffix tree. From the root of the CPS-tree, we

traverse through the nodes matching the first character on the edges while skipping the

in-between characters. At any one time, if no match is possible after searching through

the outgoing edges of a node, we conclude that no exact match exists inT . Otherwise,

from the last matching node, we will proceed further down to aleaf or an external node

within the same local tree, containing the text position,Spos. With Spos, we can then

retrieve the substring from the textT to verify on the matching of the skipped characters.

We illustrate exact search with query string “aaa” on the suffix tree shown in Figure

80

n

i

... ...

...

...

...

...

...

...

...

...

...
...

...

...

...

r

j

...

...

...

>= n/2

Figure 5.3: Forward links illustration.

5.2. Starting with block 1, we match the first character on theleftmost outgoing edge

of the root, labeled “a” and then again another character “a”on the next leftmost edge,

ending at the external node in block 1 with text position 2 stored. Since both edges

81

CPSSearch(i, P, c)

let v = the first node ini & d = c

while (not done)

binary search onv’s edge-array for edgee with first character ==P [d + 1]

let nodeu be the target ofe & Spos be the text position inu if exists

CASE 1: [e is not found] return no match

CASE 2: [u is an internal node]

d += label length ofe

if (d < m) v = u

else

read text positionSpos from an end node belowu

c += strC(T [Spos+c..N],P [c + 1..d])

if (c < m) return no match

else return all matches in the subtree underu

CASE 3: [u is a leaf node]

c += strC(T [Spos+c..N],P [c + 1..m])

if (c < m) return no match

else return positionSpos as a match

CASE 4: [u is an external node]

let j be the local tree referenced byu

let fw i be the local tree (block) pointed to by the forward link ini

let fw dep be the character depth of the first node in local treefw i

d += label length ofe

c += strC(T [Spos+c..N],P [c + 1..m])

if (d ≥ m)

if (c < m) return no match

else return all matches in the subtree underu

else-if (c < d) return no match

else-if (((i, j) is a heavy link) & (c ≥ fw dep))

/* using forward link */ returnCPSSearch(fw i,P ,fw dep)

else returnCPSSearch(j, P, d)

Figure 5.4: Exact string matching on CPS-tree.

82

encountered are each of length 1, there is no need to verify for skipped characters. Oth-

erwise, we would need to retrieve the text starting at position 2 as stored in the external

node to verify against the query string. We proceed to the next block 3 pointed by the

external node and match the next character “a”, ending at an internal node (last match

node) after completely match the query string “aaa”. Now we need to enumerate all the

occurring positions on the text. To do so, we obtain the SA range from the local trees

in the next level, so that the occurring positions can be readdirectly from the SA. We

obtain the left SA index by traversing the leftmost path downthe last match node, to find

block 7 with the left SA index 1. Similarly, we obtain the right SA index by traversing

the rightmost path to reach block 8 with the right SA index 6. The matching positions

can then be read from the SA in entries 1 to 6.

If SA is not available, we can still recover the text positions by traversing the whole

subtree rooted at the last match node to retrieve the text positions stored in the leaf nodes.

However, this process is much more time consuming and IO expensive, especially for

large number of occurrences, which we would like to avoid.

The procedureCPSSearch(i, P [1..m], c), given in Figure 5.4, performs the exact

string matching on the CPS-tree. It takes in 3 arguments: (1)i, the local tree to begin

the search, (2)P [1..m], the length-m query string and (3)c, the number of characters

matched so far. The search procedure returns the enumeration of occurrences ofP in

T . We have incorporated the use of forward link into the procedure. Exact string search

on string queryP [1..m], is invoked by callingCPSSearch(lT ree, P [1..m], 0) where

83

lT ree is the local tree containing the root of the suffix tree. We also define a supporting

procedurestrC(s, q) which returns the longest matching prefix length between stringss

andq.

5.3.5 Tree construction

CPS-tree is constructed in 3 steps as given in Figure 5.5. First, we obtain the SA

from text using existing construction package [60] available. Second, we construct

the CPS-tree in a top-down order, by searching the SA as depicted in Figure 5.6 as

procedureCPSBuild(i, j, r, d, h). We havei and j as the SA index range to search

with, d is the character depth to the current node in the suffix tree,h is the current

node height, andr is the reference to the parent node. The procedure is invokedwith

the callCPSBuild(1, n + 1, null, 0, 1). In the final step, we traverse the entire con-

structed CPS-tree to update the text positions in the external nodes. The procedure

is CPSUpdate(i, r, x) as shown in Figure 5.7 wherei is the current node,r is the

SA range size under the current node returned, andx is the text position being re-

turned.CPSUpdate(root, 0, 0) is invoked, a recursive procedure that performs basically

a depth-first traversal of the whole CPS-tree.

The whole construction takes approximately twice the time to construct the WOTD-

tree using the TDD package [95]. We are less concern with the construction time as it is

a one time effort. We could, in the future, speed up the construction process by building

84

CPS-tree construction

1. Build SA from textT , using existing construction package.

2. Build CPS-tree from the SA: invokeCPSBuild (1, n + 1, null, 0, 1)

3. Update the text positions in CPS-tree: invokeCPSUpdate(root, 0, 0)

whereroot is the root node to whole suffix tree

Figure 5.5: CPS-tree construction process.

the CPS-tree directly from text instead of the SA.

5.3.6 Buffer management

We implemented 2 simple buffer replacement policies, the least recently loaded (LRL)

and the most recently loaded (MRL). The LRL policy replaces the oldest loaded page

with the newly loaded page whenever a page fault occurs. The top few levels of the

suffix tree are most frequently accessed and hence we can makethe first few pages of

the index persistently reside in the memory. This is the motivation for the MRL policy

where the next page being fetched will replace the second last page loaded (i.e. the last

page loaded besides the current loaded page). We will demonstrate the IO efficiency of

the two buffer replacement polices on the index and show thatMRL is recommended for

CPS-tree index (see Section 5.5.2). The LRL policy is used onthe text buffer as there is

no clear access pattern for the text string.

85

/* maintain two global lists L and K */

CPSBuild (i, j, r, d, h)

Allocate and create a new blockI.

Store the block overhead fieldsi, j as the left and rightSA index respectively inI.

Add a new nodep as the root intoI.

while (I is not full)

for each characterc in the alphabetA

Binary search onSA over the index rangei..j for the leftmost and rightmost

indexx andy s.t.T [SA[x] + d + 1] = T [SA[y] + d + 1] = c.

if ((x, y) is found)

Add a child nodeq to p with first character on the edge label asc.

if (x == y)

Set nodeq as a leaf node with suffix positionSA[x].

else

Set nodeq as a internal node.

The edge label length toq, t, is the longest common prefix

length of text starting atSA[x] + d + 1 andSA[y] + d + 1.

Add (x, y, q, d + t, h + 1) to list K.

if (I is not full)

Extract entry(x′, y′, q′, d′, h′) from K s.t. (y′ − x′) is the largest range inK.

Set(i, j, p, d, h) = (x′, y′, q′, d′, h′).

For every entries(x′, y′, q′, d′, h′) in K, convert internal nodeq′ to an external node inI.

Transfer all entries inK to L.

Write out blockI.

Update external noder to point to blockI, if r 6= null.

if (L is not empty)

Extract entry(x′, y′, q′, d′, h′) from L s.t.h′ is the smallest inL.

InvokeCPS Build(x′, y′, q′, d′, h′).

Figure 5.6: CPS-tree building from SA.

86

CPSUpdate(i, r, x)

Setr = 0.

for each childj of nodei

if (j is a leaf node)

Setr′ = 1 andx′ = the suffix position stored in the leaf node.

else if (j is an internal node)

InvokeCPSUpdate(j, r′, x′).

else if (j is an external node)

Let k be the root node in the next block pointed to byj.

InvokeCPSUpdate(k, r′, x′).

Set the text position ofj to x′.

if (r′ > r)

Setr = r′ andx = x′.

Figure 5.7: CPS-tree updating of text positions.

5.4 Bit representation and analysis

5.4.1 Search time and IO access analysis

Given a node and the next character to match, it takesO(log |A|) time to perform binary

search on the edge array of the node to find the edge with its first character that match.

Accessing the label on a selected outgoing edge of a node takes O(l + b) time wherel

is the label length, given the character depth of the node.O(b) is the time to traverse

down any path to an ending node in the local tree to retrieve the text position (in the leaf

or external node). The traversal takesO(b) time as the local tree size is bound byO(b).

87

Reading length-l substring from the text requiresO(l/B) disk access.

To search for a length-m query string in the suffix tree, it takesO(m log |A|) time. It

takes anotherO(b) time to further obtain the left and right bounds of the matching SA

range. In total, it takesO(m log |A|+b+occ) time for exact string matching on CPS-tree

whereocc is the number of occurrences of the query string.

For disk access, we analyze the disk access on text and on index separately. The disk

access on text is bounded byO(log n + m/B). We always read from the text position

found on some path that is the heaviest. This allows us to assert that there isO(log n)

read off positions from the text.O(m/B) is the IO bound in retrieving the matching

query substrings from the text. Note that without using the forward links, the IO disk

bound still holds.

The disk access on the index is bounded byO(logn) as we ensure that the subtree

in the next block retrieved will have leaf nodes at least halved using the forward link.

Reporting the occurrences from the reading the SA takesO(occ/B) time. Hence the

disk IO bound for exact string matching isO(log n + (m + occ)/B).

5.4.2 Bit-packing scheme

Each node in the CPS-tree stores information about its outgoing edges. An outgoing

edge of a node can be one of the following: a leaf edge, a local edge or an external edge.

Leaf edge, as the name suggests, points to a leaf, and a local edge points to the next node

88

Node:

|child| leaf B long B edge-array ...

leaf edge (in the edge-array):

char S pos

local edge (in the edge-array):

char skip len 0 next

external edge (in the edge-array):

char skip len 1 next

External edge extension:

S pos Bidx

(a)

Block overhead - SA bound indices, forward link:

SA Lidx SA Ridx

fw edge fw dep fw Bidx

(b)

Field size (bits) Fields

log |A| |child|, char

log(8b) = log b + 3 next, fw edge

log N S pos, Bidx, SA Lidx,

SA Ridx, fw dep, fw Bidx

≤ |A| leaf B, long B

8 or log N skip len

(c)

Figure 5.8: (a) Bit-packing representation of the nodes in alocal tree, (b) block overhead

fields in a block and (c) the bit size of the respective fields used in the encoding.

89

in the same local tree. An external edge is the connecting edge to the first node in the

next local tree. We denote the first node in a local tree as thehead node.

Figure 5.8 gives the bit-packing representation of a node inthe CPS-tree. In CPS-

tree, a node consists of 2 parts, the aggregated child information, followed by the

edge-array, an array of its outgoing edges. The first part contains(1) |child|, the

number of child nodes,(2) leaf B, a bit array to mark the leaf edges in theedge-array

and(3) long B, a bit array to mark those edges in theedge-arrray, whose label

length requires> 8 bits to represent (irrelevant to leaf edges). In theedge-array, the

edges are stored in increasing order, based on the first character of the edge label.

For a leaf edge, we store the first character of the edge label,char, andSpos, the

suffix position on the text corresponding to the leaf node. Notice that we do not store

the label length of the leaf edge which can be computed given the text length and the

character depth of the node.

Local and external edges share similar representation, we have(1) char, the first

character of the edge label, followed by(2) skip len, which is the edge label length -

1, (3) a single bit to identify the edge as external, and(4) next, the bit offset from the

start of the block where the next node (for local edge) or the extension to the external

edge, is located in the block. We use 8 bits forskip len as most of the edge labels are

very short and can be more compactly encoded using only 1 byte(this idea is borrowed

from CPT). We store the label length inskip len for length up to 256. If the label

length is> 256 (indicated by marking the corresponding position in thelong B field),

90

we use a longer field oflog N bits instead.

For an external edge, we store additional information in theedge extension (access

through thenext field). The edge extension containsSpos, a selected suffix position

on the text in a descending leaf node andBidx, the index of the block containing the

next local tree. The block index is the8-bytes offset (byte offset/8) from the start of the

index file and is stored usinglog N bits.

Spos (available in a leaf or an external edge), provides the localized information

needed to retrieve from the text, the label of any edges in thelocal tree. Take for example,

a nodev with an outgoing edgee in the local tree whose character depth,d, is known.

To retrieve the edge label ofe, we need to traverse throughe to an ending node in the

local tree to recover the suffix position,Spos. The edge label ofe can then be read from

the text starting at positionSpos +d.

Now we need to explain how theSpos in an external edge is obtained. Every heavy

path is terminated by a leaf node with an assignedSpos. Imagine that for every leaf

node on the heavy paths, we propagate theSpos value backwards to all the nodes and

edges on the respective heavy paths only. So if an external edge is on a heavy path, it

stores the propagatedSpos. Otherwise, the external edge can obtain theSpos value

from the head node it points to.

Spos provides localized information for the local tree so that edge label on an out-

going edge of a node on the path to the external edge can be obtained from the text at

position,Spos + the character depth to the node.Spos is propagated from a selected

91

leaf node in the subtree spanned by the head node such that thepath from the head node

to the leaf node forms (or is part of) a heavy path.

As the heavy path can be interpreted as the most frequently traveled path down a

subtree (as it contains the most leaf nodes), it makes sense to select the most common

string suffix for comparison. This increases the access locality on the text as consecutive

text segments will more likely be retrieved and compared with as we traverse down the

path. Of course, this holds under the assumption that every suffix strings in the text is

equally likely to match with any given query string.

We store additional overhead fields before the local tree structure in each logical

block. First is the SA index corresponding to the leftmost and rightmost leaf nodes in the

suffix tree reachable from the head node. We address them asSA Lidx andSA Ridx

respectively, and collectively as the SA bound indices. These information give direct

access to the SA stored on disk if available, to retrieve all the suffix positions in the

leaf nodes under the current subtree. This improves in enumerating all the positions

especially if the the subtree is large as we can skip traversing through the subtree to visit

all the leaf nodes.

Next we store in the block overhead, the forward link information consisting of 3

fields: (1)fw edge, the bit offset to the external edge in the block that leads tothe

forward block, (2)fw dep, the character depth of the head node in the forward block

and (3)fw Bidx, the forward block index.

92

5.4.3 Disk space usage analysis

We refer to the node representation scheme in Figure 5.8 for our analysis of the disk

space usage. Each leaf accounts forlog N+log |A|+2 bits to store theSpos,char, and

1 bit for each entry in theleaf B andlong B fields of its parent node. Each internal

node accounts for8 + log |A| + 2 + log |A| + (log b + 3) + 1 = 14 + 2 log |A| + log b

bits forskip len, |child|, 1 bit for each entry inleaf B andlong B fields of its

parent node,char, next and 1 external edge bit indicator respectively. Each logical

block also useslog N + log N + 2 log N + 2 log N + (log b + 3) = 6 log N + log b + 3

bits to storeSpos andBidx for external edge, and the rest are for the block overhead

fields consisting of,SA Lidx andSA Ridx, fw dep, fw Bidx andfw edge.

Since there aren leaf nodes in the suffix tree and the number of internal node isalso

bounded byn (though it is much less thann in practice especially with large branching

factor), the total bit space required is at most(log N+3 log |A|+log b+16)n+(6 log N+

log b+3)c+v wherec is the number of logical blocks. The termv accounts for the extra

variable bit space needed for padding some logical blocks with extra bits at the end and

for label length on the edges that require more than 8 bits to store. If we assume that a

position on the text can be addressed using 4 bytes word, thatis log N = 32 bits, and

given thatlog b = 13 sinceb = 8K bytes, we have an upper bound in CPS-tree size of

7.625n + 0.375n log |A| + 25.625c + v bytes.

93

5.5 Performance studies

We consider the query of reporting on the exact match locations in the text sequence.

CPS-tree is compared with WOTD-tree and SA for both on-disk and in-memory settings.

We study the IO performance of index search and reporting on exact match locations.

More complex queries like approximate matches and local alignment search are shown

feasible on the CPS-tree. The WOTD-tree (write-only top-down construction algorithm)

[34] is constructed in a top-down approach using the TDD package [95] available. We

also perform string searching over the suffix array using binary search technique.

5.5.1 Experimental settings

The datasets used are the fruit fly genome of 118.3 million bases

(http://www.fruitfly.org/sequence, Release 4) and the E. coli K12 genome of 4.6 million

bases (http://www.ncbi.nih.gov, GI: 49175990). These areDNA sequences consisting of

characters ‘A’, ‘C’, ‘G’ and ‘T’. The data and index are buffered separately. Table 5.3

gives the index size on the fruit fly dataset used for CPS-treeand WOTD-tree.

The buffers are first initialized fully with the first few blocks read from the text

sequence and index files respectively. Initialization of the buffers can be performed

very quickly with sequential reads from the files. We ignore the physical organization

of the files on disk and every page read from file is assumed to take a constant time to

perform. If a block to access is not in the buffer, a page faultoccurs and a new page of

94

Index fruit fly, 118.3M (Mbytes)

CPS-tree– 829.77 ≈ 7.0N

CPS-tree 849.53 ≈ 7.2N

WOTD-tree– 1089.97 ≈ 9.2N

WOTD-tree 1474.61 ≈ 12.5N

CPS-tree– : CPS-tree without in-built forward links.

WOTD-tree– : WOTD-tree excluding the 2 bit arrays.

Table 5.3: Index tree structure file size.

8K bytes containing the required block is fetched into the buffer.

Queries are generated from random positions on the genome itself so that it is guar-

anteed to return a match in the indexing structure. This allows us to compare the perfor-

mance of various indexing structures over the same matchingquery length. Queries are

generated for length 10, 100, 1000 and 10000. The average performance is measured

from running consecutively, 1000 different random queriesof the same length.

The experiments are carried out on an Intel P4 2.4GHz machinewith 512KB cache

and 1GB of RAM, running Linux, with codes written in C++ usinggcc v4.1.1 with level

3 optimization flag. We implemented the search algorithms for CPS-tree, WOTD-tree

and SA, so that they all share the same access routines to the buffers.

The WOTD-tree consists of 3 data structures: (1) An integer array representing the

tree structure with sibling nodes stored consecutively using 2 integers for a branching

node and an integer for leaf node, (2) bit array to identify the leaf node and (3) another bit

95

array to identify the last sibling node. To access the edge label would require accessing

the text sequence.

 0

 10

 20

 30

 40

 50

1 page 2 pages 16M 48M 96M 128M

A
ve

ra
ge

 p
ag

e
fa

ul
t p

er
 q

ue
ry

Index buffer size

3.
66

41
.6

9
16

.4
0

4.
88

3.
66

41
.6

9
15

.9
2

3.
96

0.
65

8.
80

7.
14

0.
94

0.
59

6.
44

5.
55

0.
88

0.
47

4.
73

4.
83

0.
80

0.
42 3.

58 4.
36

0.
70

Existence query of length 10

CPS-greedy (MRL)

WOTD (LRL)

SA (LRL)

CPS-breadth (MRL)

 0

 10

 20

 30

 40

 50

 60

128M96M48M16M2 pages1 page

A
ve

ra
ge

 p
ag

e
fa

ul
t p

er
 q

ue
ry

Index buffer size

13
.3

5
57

.5
2

17
.5

2
16

.2
6

5.
29

57
.5

2
16

.4
1

5.
97

2.
27

9.
30

7.
47

2.
92

2.
17

6.
90

5.
80

2.
83

1.
99 5.

13
5.

04
2.

69

1.
93 3.

96
4.

58
2.

51

Exact match query of length 10

CPS-greedy (MRL)

WOTD (LRL)

SA (LRL)

CPS-breadth (MRL)

Figure 5.9: Result 1 - Average page fault on index buffer for fruit fly genome.

96

Existence query

Query 1 2 LRL buffer replacement MRL buffer replacement

length Index page pages 16M 48M 96M 128M 16M 48M 96M 128M

CPS 3.66 3.66 1.18 1.11 0.96 0.90 0.65 0.59 0.47 0.42

10 CPS∗b 4.88 3.96 1.43 1.38 1.28 1.18 0.94 0.88 0.80 0.70

WOTD 41.69 41.69 8.80 6.44 4.73 3.58 17.05 14.86 11.77 6.87

SA 16.40 15.92 7.14 5.55 4.83 4.36 15.49 14.50 12.36 11.00

CPS 4.24 4.24 1.79 1.72 1.63 1.58 1.22 1.16 1.08 1.02

100 CPS∗b 5.41 4.54 2.04 1.97 1.86 1.78 1.52 1.45 1.34 1.27

WOTD 42.28 42.28 9.09 6.68 4.88 3.70 17.13 15.19 11.32 6.71

SA 16.76 16.11 7.32 5.73 5.08 4.59 15.80 14.94 13.02 11.52

CPS 4.27 4.26 1.79 1.73 1.62 1.58 1.25 1.18 1.07 1.03

1K CPS∗b 5.49 4.58 2.08 2.02 1.89 1.80 1.57 1.50 1.38 1.29

WOTD 42.91 42.91 8.99 6.45 4.89 3.69 17.52 15.14 11.82 7.16

SA 16.74 16.08 7.28 5.61 4.94 4.49 15.56 14.51 12.57 11.29

CPS 4.27 4.27 1.85 1.77 1.67 1.62 1.25 1.18 1.08 1.04

10K CPS∗b 5.49 4.54 2.06 1.96 1.88 1.79 1.52 1.43 1.34 1.26

WOTD 42.50 42.50 9.06 6.72 4.94 3.68 17.10 15.15 11.48 6.79

SA 16.78 16.09 7.38 5.74 5.03 4.53 15.72 14.71 12.67 11.29

Exact match query

Query 1 2 LRL buffer replacement MRL buffer replacement

length Index page pages 16M 48M 96M 128M 16M 48M 96M 128M

CPS 13.35 5.29 2.73 2.66 2.53 2.47 2.27 2.17 1.99 1.93

10 CPS∗b 16.26 5.97 3.00 2.92 2.81 2.70 2.92 2.83 2.69 2.51

WOTD 57.52 57.52 9.30 6.90 5.13 3.96 20.23 17.82 14.38 9.43

SA 17.52 16.41 7.47 5.80 5.04 4.58 15.93 14.90 12.71 11.32

CPS 4.29 4.26 1.80 1.74 1.65 1.59 1.24 1.18 1.10 1.04

100 CPS∗b 5.44 4.55 2.05 1.98 1.87 1.79 1.52 1.43 1.35 1.27

WOTD 42.28 42.28 9.09 6.68 4.88 3.70 17.13 15.19 11.32 6.71

SA 16.77 16.11 7.32 5.73 5.08 4.59 15.80 14.94 13.02 11.53

CPS 4.27 4.27 1.80 1.73 1.62 1.58 1.25 1.18 1.07 1.03

1K CPS∗b 5.49 4.58 2.08 2.02 1.89 1.80 1.57 1.50 1.38 1.29

WOTD 42.92 42.92 8.99 6.45 4.89 3.69 17.53 15.15 11.82 7.16

SA 16.76 16.08 7.28 5.61 4.94 4.49 15.56 14.51 12.57 11.29

CPS 4.27 4.27 1.85 1.77 1.67 1.62 1.25 1.18 1.08 1.04

10K CPS∗b 5.49 4.54 2.06 1.96 1.88 1.79 1.52 1.43 1.34 1.26

WOTD 42.50 42.50 9.06 6.72 4.94 3.68 17.10 15.15 11.48 6.79

SA 16.78 16.09 7.38 5.74 5.03 4.53 15.72 14.71 12.67 11.29

CPS∗b - CPS-tree with breadth first partition. The default uses greedy partition.

Table 5.4: Average page fault on index buffer using different buffer replacement policies
for fruit fly genome.

97

5.5.2 Performance results

Result 1- IO on index buffer: First, we examine the IO efficiency in traversing CPS-tree

index structure. We use the fruit fly genome in this comparison with the main portion of

the index structure residing on disk. The size of the index buffer ranges from 1-2 pages,

to 128MB. For existence match query, the page faults are generated from traversing

the indices alone without reporting on the occurrences. While the exact match query

finds the query pattern in the index and further enumerates the occurrences and hence

incurring more IO cost. We report on queries of length 10 to 10000 and compare the

two buffer replacement polices, LRL and MRL respectively for the index. For CPS-tree,

we also look into the IO efficiency of our greedy approach of tree partitioning versus the

breadth first approach.

The results are tabulated in Table 5.4. We find the buffer replacement policy that

works well with each of the indexing structures, CPS-tree, WOTD-tree and SA indices,

and present the comparison in Figure 5.9. The figures show theaverage page fault for

existence and exact match queries of length 10. CPS-tree hasbetter average perfor-

mance using MRL buffer replacement policy than LRL, while WOTD-tree and SA work

better with LRL policy. The two figures show the difference where exact match query

gets more page faults than existence query for the same indexing structure. This is con-

tributed by the enumeration of the occurrences for exact match query. The difference

quickly disappears as the query length increases to 100 and beyond as the number of

98

occurrences for query length of 100 and more is near to 1. The average occurrences,

occ, per query found are 388.58, 1.64, 1.20 and 1.00 for query length 10, 100, 1000 and

10000 respectively.

We report the following observations based on results from Table 5.4: (1) CPS-

tree consistently outperforms the other indices on different index buffer size and for

query of length 10 to 10000. It can be seen that CPS-tree displays very good access

locality, generating very few page fault per query. (2) Our greedy tree partitioning gives

fewer IO than the breadth first approach for CPS-tree. Our finding shows that a careful

organization of the nodes into blocks does significantly improve search performance. (3)

Query length of 100 and more have very similar IO performanceas very rarely can you

find 2 or more positions with matching length≥ 100 on the genome. Query of length

10 generates more page faults than those of length 100, mainly from reporting on the

occurrences.

To conclude, CPS-tree generates at most 1-2 page faults per query on the index which

is much lesser compared to WOTD-tree and SA. CPS-tree also performs more consis-

tently with different index buffer size and policy. We have considered using bigger index

buffer for WOTD-tree in our comparison as WOTD-tree consists of 3 data structures that

need to be buffered separately. It may seem bias at one glanceto compare a bit-packed

CPS-tree against WOTD-tree that is word based. Note that it is not straight forward to

modify and pack WOTD-tree using bit representation as some engineering and design

issues need to be addressed. However, from what is observed,CPS-tree with 16M bytes

99

of index buffer is more IO efficient than WOTD-tree with 128M bytes of index buffer on

the fruit fly genome.

From here onwards, we use MRL index buffer replacement policy for CPS-tree and

LRL for WOTD-tree and SA in our experiments to compare their best performances.

30

20

10

10075502510

A
ve

ra
ge

 p
ag

e
fa

ul
t c

ou
nt

Percentage of text buffered

3.58 2.96 2.27

4.50
6.12

9.86

31.38

18.95

7.88

Per query of length 10

CPS-tree
WOTD-tree

SA

10

20

10 25 50 75 100

A
ve

ra
ge

 p
ag

e
fa

ul
t c

ou
nt

Percentage of text buffered

2.98
1.89 1.25

9.33
7.69

9.57

23.91

14.93

7.73

Per query of length 100

CPS-tree
WOTD-tree

SA

10

20

10 25 50 75 100

A
ve

ra
ge

 p
ag

e
fa

ul
t c

ou
nt

Percentage of text buffered

3.10
1.82 1.26

9.32
7.44

9.53

23.92

14.77

7.66

Per query of length 1000

CPS-tree
WOTD-tree

SA
20

10

10075502510

A
ve

ra
ge

 p
ag

e
fa

ul
t c

ou
nt

Percentage of text buffered

4.46 1.91 1.26

11.07

7.90
9.55

25.07

15.48

7.76

Per query of length 10000
CPS-tree

WOTD-tree
SA

Figure 5.10: Result 2 - Average page fault on text and index buffers for fruit fly genome

to answer exact match query (total 128MB).

Result 2 - IO on combined buffers: Here, we look at the buffer size allocation

between the text and the index to answer exact match query. Given a total of 128MB

for buffering, we varied the text buffer size as a percentageof the text size, and use the

100

remaining space available to buffer the index. Text buffer uses the LRL replacement

policy and the initial portion of the text is first read into the buffer. Results in Figure

5.10 show that CPS-tree has the best IO performance, generating significantly less page

faults when compared to the other 2 indices. Also CPS-tree and SA work best with

full text buffering (in memory) while WOTD-tree gives mixedresults depending on the

query length.

We observed that CPS-tree works well with small index buffer. Increasing the size of

the index buffer does not result in as many page fault reduction as increasing the size of

the text buffer. As such, to optimize performance with limited memory space, we should

allocate a smaller buffer space to the index while the rest ofthe memory space is used

to buffer the text. For example, on the fruit fly genome, with128 MB of memory space

for buffering, we can answer exact match query with an average of < 3 page faults per

query.

In the running of the queries, we find that CPS-tree, WOTD-tree and SA, all took

from a few to tenths of milliseconds, on the average to answera query. It is noted that

CPS-tree is generally 2 to 3 times faster than WOTD-tree and SA, with SA being the

slowest. Effort is taken to flush the system cache between each run by executing some

unrelated memory intensive routines so as to minimize the memory effect on the timing.

Result 3- computational time analysis:We study the computational time needed to

perform search on the indices. The index and text are both fully loaded into the memory

and the results are shown in Table 5.5. This is performed on the E. coli genome (4.6M).

101

When compared to WOTD-tree, CPS-tree is much faster, showing that CPS-tree has a

better representation scheme for suffix tree. Despite the fact that CPS-tree is bit-packed

and would incur some computational cost in extracting the fields for processing, it is

still faster than WOTD-tree with fields of word size. CPS-tree is equally fast when

compared to SA for short queries with CPS-tree gaining faster performance as the query

gets longer.

Query Per query Query time (µsec) per query

length occ count CPS-tree WOTD-tree SA

10 9.960 21 52 22

100 1.078 16 39 18

1K 1.003 25 50 36

5K 1.000 51 71 52

Table 5.5: Result 3 - In-memory (exact match) query timing onE. coli genome.

Query k = 1 (per query) k = 2 (per query)

length occ count paging occ count paging

10 7369 58 79346 684

100 1.68 37 1.72 460

Table 5.6: Result 4 - k-mismatch query on fruit fly genome.

Result 4 - inexact match search:CPS-tree is capable of handling more complex

query. We run k-mismatch query on CPS-tree and the results are shown in Table 5.6.

102

K-mismatch query finds all occurrences on the text that has Hamming distance≤ k

from the query string. The search strategy used is to first findthe exact match string

in the CPS-tree. Next, we backtrack along the traveled path and “erase” the matched

characters on the path as we do so. At each node on the path (starting from the deepest

node), we branch to compare the remaining characters on the query with every other

paths, incurring one mismatch (first character of the branchedge with the query) at the

time. This recursive process is then extended tok mismatches. The search is intuitive and

is a simplification of the general dynamic programming approach for string comparison

which caters to edit distance measure [21, 97]. The number ofoccurrences increases

sharply for largek, especially for short queries. Using a total of 200MB for buffering,

we find that the running time is around0.1 to 0.2 sec per query fork = 1 and0.4 to 2 sec

when extended to 2 mismatches. Fork = 1, there is a total of 31 and 3001 substituted

query patterns being searched, for query length 10 and 100, and that gives an average

page fault of 1.87 and 0.01 per substituted query pattern respectively. These numbers are

much lower than searching the individual pattern directly as there is saving in the page

access through the search approach. For long query of length100, not many substituted

pattern can find a match and hence resulting in early termination of the search and faster

running time.

103

5.5.3 CPS-tree on human genome

We constructed CPS-tree for the human genome of 3.08 billioncharacters (concatenating

the 24 chromosomes in the human reference assembly and substituting all character ‘N’

with randomly picked ‘A’, ‘C’, ‘G’ or ‘T’). The human genome is packed into 770MB

of space (2 bits per character). The setup consists of a desktop computer running Linux

with Intel Core 2 Duo 2.66GHz CPU,4GB of RAM and a single SATA 500GB hard

disk. We conduct similar investigation on the IO performance of the CPS-tree index (27

GB size) to see if similar performance can be observed as compared to the smaller index

for fruit fly genome.

Result 5 - IO on index buffer: Table 5.7 gives the average page fault on the index

buffer (using MRL replacement policy) of different sizes. Query of length 10 generates

significantly more page fault due to enumeration of the largenumber of occurrences

(an average of 13761 matches per query as shown in Table 5.8).On the whole, for

human genome, it takes around 4 disk access to search the index. Also it is observed

that increasing the index buffer size from 16M to 2GB (≤ 7% of the full index size) has

minimal impact on reducing the number of page fault. The samebehaviour is observed

on smaller index for the fruit fly genome. We increase the memory page size from the

default setting of8k to 16k and64k to investigate the amount of IO reduction using a

larger page swap. As shown in the table, the number of page faults is reduced to around

3 per query. However, we find that each page loading becomes more computationally

104

expensive and the gain is not realized in practice.

Result 6 - IO on combined buffers: We examine the IO performance on a total

buffer size of 1GB for both text and index (as shown in Table 5.8). It is without surprise

that the best performance goes to buffering the full text in memory. The performance is

consistent with that reported for the fruit fly genome.

Query length 1 page 2 pages 16M 512M 1GB 2GB

8k page size (default)

10 14.71 13.71 13.71 13.49 13.39 13.25

100 5.23 4.23 4.23 4.18 4.10 3.99

1K 5.18 4.19 4.19 4.14 4.07 3.96

10K 5.18 4.18 4.18 4.13 4.07 3.91

16k page size

10 13.52 12.52 12.52 12.44 12.35 12.23

100 4.52 3.52 3.52 3.48 3.42 3.32

1K 4.53 3.53 3.53 3.49 3.44 3.34

10K 4.51 3.51 3.51 3.46 3.41 3.28

64k page size

10 12.53 11.53 11.53 11.47 11.41 11.33

100 3.83 2.83 2.83 2.79 2.75 2.62

1K 3.80 2.81 2.81 2.78 2.74 2.67

10K 3.79 2.79 2.79 2.75 2.71 2.61

Table 5.7: Result 5 - Average page fault on index buffer for Human Genome to answer

exact match query.

105

Query Per query Percentage of text buffered

length occ count 10% 25% 50% 75% 100%

10 13761.80 15.11 14.82 14.39 13.93 13.54

100 3.41 7.02 6.54 5.79 4.97 4.21

1K 1.00 6.99 6.51 5.80 5.00 4.16

10K 1.00 7.27 6.73 5.88 5.01 4.16

Table 5.8: Result 6 - Average page fault on text and index buffers for Human Genome to

answer exact match query (total 1GB).

Query length 50 100 1K 5K 10K

Query time (sec) 22 45 435 1382 1993

Match count 1094 1901 258449 83351 37656

Filtered match count 781 1332 143404 38277 17643

Table 5.9: Result 7 - Local alignment search on the Human Genome.

Result 7 - Local alignment search: BLAST [4, 5, 103] and FASTA [82, 83] are

some popular heuristic search tools to find the local alignment between 2 biological

sequences. The well-known Smith-Waterman dynamic programming algorithm [92] is

able to exhaustively locate all the alignments however the approach is computationally

intensive. This limits its usage. There are works that effectively adapt the dynamic

programming technique over suffix tree [21, 45, 69, 97]. We will show that CPS-tree is

capable of supporting local alignment search. Our experiment differs from the previous

106

reported studies on suffix tree in that we handle the affine gapmodel (rather than basic

edit distance measure) on DNA sequence. The affine gap model is more realistic for

biological sequences but it is more complex to compute wherethere are three dynamic

programming matrices to be filled.

We compute matricesB[i, j], T [i, j] andQ[i, j] for ith row andjth column with the

query patternP along the y-axis and the suffix stringS on the x-axis. MatrixT [i, j]

finds the optimal score to alignP [1..i] andS[1..j], ending with the last characterS[j]

of the suffix string matches a gap space appended to the end ofP [1..i]. Matrix Q[i.j] is

similar toT [i, j], finding the optimal score with last characterP [i] of the query matches

a gap space appended to the end ofS[1..j]. Score matrixB[i, j], gives the optimal score

to align P [1..i] with S[1..j], from the best score out ofT [i, j], Q[i, j] and a possible

substitution (can be a match as well) ofP [i] with S[j]. The matrices are updated, in

column-wise order (increasingi first thenj), as follows:

107

B[i, j] = max







































T [i, j],

Q[i, j],

B[i − 1, j − 1] + d(xi, yi)

T [i, j] = max



















B[i − 1, j] − o − e,

T [i − 1, j] − e

Q[i, j] = max



















B[i, j − 1] − o − e,

Q[i, j − 1] − e

Initialization :

B[0, 0] = B[i, 0] = 0

T [i, 0] = T [0, j] = −∞

Q[i, 0] = Q[0, j] = −∞

B[0, j] = −∞

We haveo as the gap open cost,e is the gap extension cost and the substitution cost

d(xi, yi) to compare theith character ofP with thejth character ofS. d(xi, yi) = m if

xi == yi elsed(xi, yi) = s (m is the match score ands is the substitution penalty).

We prune the entries once the score is≤ 0 and use the score setting witho = 5,

e = 2, s = −3 andm = 1. Only alignments with score at and above the threshold (15

for query length≤ 1000 and 25 otherwise) are reported. There are 50 query patterns

of length 50, 100, 1000, 5000 and 10000 each, randomly generated from the fruit fly

108

genome. The human genome is fully loaded into memory for the search. We report

the locations on the human genome where the alignments occurwith score that met the

threshold. The average search time per query is given in Table 5.9. We also report on the

average number of matches per query and the average count after filtering out overlaps

on the genome. As can be seen, there are many alignments returned from the search for

query length 1000, as such, we increased the threshold from 15 to 25 for even longer

queries, to keep the number of alignments returned manageable. For any 2 alignments

that overlap fully (one is enclosed within the other) on the genome, the alignment with

the lesser score is removed during filtering. It is noted thatthe number of alignments

varied widely from 0 to 384K per query for long queries. Hencethe average match

count per query, as given in the table, is not consistent withthe query length.

The goal of our investigation is to show that CPS-tree is efficient to handle practi-

cal queries like local alignment search in finding all alignments. We conclude that our

approach is a lot faster than Smith-Waterman algorithm. CPS-tree is still unable to out-

perform BLAST especially for long queries. On short queriesof short length (≤ 100),

the performance on CPS-tree and BLAST are comparable. We might argue that the qual-

ity of the results returned are different as exhaustive search is performed on CPS-tree to

account for all alignments while BLAST is a heuristic approach.

109

5.6 Discussion

There are rooms for further optimization and investigationin our current work. The

tree structure used in CPS-tree may be further compressed using techniques like the bal-

anced parenthesis representation [71]. Alternatively, for better space usage, we can limit

the maximum query length (which should be much shorter than the indexed sequence

length), so that those logical blocks whose character depthis larger than the maximum

query length can be pruned off, resulting in a smaller index.It is also possible to reduce

the index size by sampling the text positions. Reduction in index size may often result in

heavier computational cost as a trade-off. However, we hopethat smaller index means

bigger part of the index can reside in memory at any one time, and reduces the number

of index pages to be fetched from disk. There is gain if the reduction in disk IO time is

much more than the increased time in computation. In general, we would like to explore

ways to further reduce the index size without significant impact on the computational

time.

Next, we have so far started to explore basic alignment search using CPS-tree for

DNA sequences. We would like to consider protein sequences and other variations of

sequence comparison supported by BLAST package. We hope that there are more ad-

vantages of using suffix tree approach for more complex substitution cost matrix like for

protein where the substitution cost for a character x with another character y is dependent

on the(x, y) pair. In such scenario, the heuristic approach of filtering used in BLAST to

110

reduce the candidate matches will be less effective or computationally more costly.

5.7 Summary

Suffix tree is an important data structure for indexing a longsequence (like a genome

sequence) or a concatenation of sequences. It finds many applications in practice, es-

pecially in the domain of bioinformatics. Suffix tree allowsfor efficient pattern search

with time independent of the indexed sequence length. However, the performance of

disk-based suffix tree is a concern as it may be slowed down significantly due to poor

access locality amounting to high disk IO cost.

The focus of this work is to design an IO-efficient suffix tree representation on disk.

We show that representing suffix tree using CPS-tree has several advantages. First, our

representation gives tight upper IO bounds on various tree traversal and search oper-

ations. For example to recover a matching substring in the CPS-tree takesO(log n)

page accesses on the tree wheren is the length of the indexed sequence. Second, our

representation and storage scheme improves access locality and reduces the number of

page fault, resulting in efficient pattern matching and efficient tree traversal operations.

Third, by bit packing, our index remains compact. Experimental results show that CPS-

tree outperforms other index structures resulting in significantly fewer page faults using

a small memory space for buffering. When fully loaded into the main memory, CPS-tree

is still efficient. We build CPS-tree on the human genome of 3 billion characters, and

111

further show that CPS-tree is scalable to handle large genome and to answer queries like

exact match and local alignment search. To our knowledge, this is the first reported IO

performance of suffix tree indexing at this genome scale. We are also the first to report

the performance of local alignment search using the affine gap cost model on suffix tree

built on the human genome. Hence, we expect CPS-tree to be a good disk-based rep-

resentation of suffix tree, with potential use in practical applications. The preliminary

results are presented in [102].

112

Chapter 6

Conclusion

Suffix data structures are popularly used to index string datasets especially in the area of

computational biology. In this thesis, we study suffix data structures in two computing

models, in memory as well as disk based processing. We propose a number of efficient

data structures to tackle string search problems ranging from exact and approximate

matching to sequence alignment.

First in the in-memory setting, we give compressed data structures usingo(n) words

or O(n) bits to index the text and present fastest known search time for exact and approx-

imate string search. Specifically, we claim that given a textT of lengthn and a length-m

query stringP over an alphabetA, we can build anO(n
√

log n log |A|)-bit space data

structure to answer 1-mismatch (or 1-difference) query inO(|A|m log log n + occ) time,

whereocc is the number of occurrences. The space of our data structurecan be further

reduced toO(n log |A|) bits with a slow down factor oflogǫ n, for 0 < ǫ ≤ 1.

113

Extending to k-mismatch (and k-difference) problem, we cansolve the problem in

O(|A|kmk(k + log log n)+ occ) andO(logǫ n(|A|kmk(k + log log n)+ occ)) query time

using anO(n
√

log n log |A|)-bit (assume|A| = O(2
√

logn)) and anO(n log |A|)-bit

indexing data structures, respectively. The k-don’t-careproblem, a special case of k-

mismatch problem, can be solved inO(|A|k(m+log log n)+occ) or O(logǫ n(|A|k(m+

|A| log log n) + occ)) time, usingO(n
√

log n log |A|) (assume|A| = O(2
√

logn)) or

O(n log |A|) bits data structure respectively.

We also work on the exact string matching problem usingO(n log |A|) bits data

structure. The optimal query time ofO(m/ log|A| n + occ) can be achieved form =

Ω(log2
|A| n logǫ n log log n), whereǫ > 0. Relaxing the index size too(n log n) bits data

structure, for fixed finite alphabet and any pattern of lengthm, we answer the exact

string matching problem inO(m/ log|A| n + log n log log n + occ) time. Next we show

that(m + occ) query time is achievable usingo(n log n) bits data structure.

Working on suffix tree on disk, we present CPS-tree, an IO-efficient suffix tree repre-

sentation. We give both experimental results as well as analysis on the IO performances

for various tree traversal and search operations to justifythat our suffix tree is the choice

to be used in disk based setting. We also introduce a mechanism denoted as “forward

links” into the tree structure to reduce the number of page access toO(log n) pages

in matching any given string (wheren is the length of the text indexed). To illustrate

that CPS-tree has practical applications, we construct CPS-tree for the human genome

and perform local alignment search over CPS-tree. To our knowledge, this is the first

114

reported IO performance study, and local alignment performance using affine gap cost

model, for a suffix tree at this genome scale.

6.1 Future directions

We have performed detailed study on algorithms to search string indices comprising of

compressed suffix data structures efficiently. However, we have yet to address the issue

of randomness in access pattern on compressed suffix data structures. This limits its

deployment to machines with large enough main memory to holdthe indices. On the

other hand, explicit suffix tree representation is too largeto fit into main memory. It

remains an open research problem to find a hybrid or new data structure that exhibits

good access locality with index size close to that of compressed suffix data structures.

Other techniques like sampling the text to reduce the size ofthe suffix tree (not all

text position are being indexed) deserves further investigation. The practical trade-offs

point of reduced index size and increased computation can only be determined with more

empirical studies.

115

Bibliography

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with en-

hanced suffix arrays.Journal of Discrete Algorithms, 2(1):53–86, 2004.

[2] S. Alstrup, M. A. Bender, E. D. Demaine, M. Farach-Colton, T. Rauhe, and

M. Thorup. Efficient tree layout in a multilevel memory hierarchy. The revised

version of the published paper. InProceedings of the 10th Annual European Sym-

posium on Algorithms, pages 165–173, 2002.

[3] S. Alstrup, G. S. Brodal, and T. Rauhe. New data structures for orthogonal range

searching. InProceedings of IEEE Symposium on Foundations of Computer Sci-

ence, pages 198–207, 2000.

[4] S. F. Altschul, W. Gish, W. Miller, E. Myers, and D. J. Lipman. Basic local

alignment search tool.Journal of Molecular Biology, 215(3):403–410, 1990.

[5] S. F. Altschul, T. L. Madden, A. A. Scḧaffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped blast and PSI-blast: A new generation ofprotein database

116

search programs.Nucleic Acids Research, 25:3389–3402, 1997.

[6] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in

Z-compressed files.Journal of Computer and System Sciences, 52(2):299–307,

1996.

[7] A. Amir, D. Keselman, G. M. Landau, M. Lewenstein, N. Lewenstein, and

M. Rodeh. Text indexing and dictionary matching with one error. Journal of

Algorithms, 37(2):309–325, 2000.

[8] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching with

k mismatches. InProceedings of ACM-SIAM Symposium on Discrete Algorithms,

pages 794–803, 2000.

[9] R. Baeza-Yates, E. F. Barbosa, and N. Ziviani. Hierarchies of indices for text

searching.Journal of Information Systems, 21(6):497–514, 1996.

[10] R. A. Baeza-Yates and G. Navarro. A practical index for text retrieval allowing

errors. InCLEI, pages 273–282, 1997.

[11] S. J. Bedathur and J. R. Haritsa. Search-optimized suffix-tree storage for bio-

logical applications. InProceedings of the International Conference on High

Performance Computing, pages 29–39, 2005.

[12] R. S. Boyer and S. J. Moore. A fast string searching algorithm. Communications

of the ACM, 20:762–772, 1977.

117

[13] A. L. Brown. Constructing chromosome scale suffix trees. In Proceedings of the

2nd Conference on Asia-Pacific Bioinformatics, pages 105–112, 2004.

[14] A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching over

tree cross products. InProceedings of the 8th Annual European Symposium on

Algorithms, pages 120–131, 2000.

[15] M. Burrows and D. Wheeler.A Block Sorting Lossless Data Compression Algo-

rithm. Technical Report 124, Digital Equipment Corporation, 1994.

[16] X. Cao, S. C. Li, and A. Tung. Indexing DNA sequences using q-grams. InPro-

ceedings of the 10th International Conference on Database Systems for Advanced

Applications, pages 4–16, 2005.

[17] H. L. Chan, T. W. Lam, W. K. Sung, S. M. Yiu, and S. S. Wong. Compressed

indexes for approximate string matching. InProceedings of the European Sym-

posium on Algorithms, pages 208–219, 2006.

[18] H. L. Chan, T. W. Lam, W. K. Sung, S. M. Yiu, and S. S. Wong. Alinear size

index for approximate string matching. InProceedings of the Symposium on Com-

binatorial Pattern Matching, pages 49–59, 2006.

[19] C. F. Cheung, J. X. Yu, and H. Lu. Constructing suffix treefor gigabyte sequences

with megabyte memory.IEEE Transactions on Knowledge and Data Engineering,

17(1):90–105, 2005.

118

[20] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. InACM-

SIAM Symposium on Discrete Algorithms, pages 383–391, 1996.

[21] A. L. Cobbs. Fast approximate matching using suffix trees. InProceedings of the

6th Annual Symposium on Combinatorial Pattern Matching, pages 41–54, July

1995.

[22] R. Cole, L-A. Gottlieb, and M. Lewenstein. Dictionary matching and indexing

with errors and don’t cares. InProceedings of the 36th Annual ACM Symposium

on Theory of Computing, pages 91–100, 2004.

[23] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson,O. White, and S. L.

Salzberg. Alignment of whole geome.Nucleic Acids Research, 27(11):2369–

2376, 1999.

[24] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms

for large-scale genome alignment and comparison.Nucleic Acids Research,

30(11):2478–2483, 2002.

[25] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan. Clustering techniques for

minimizing external path length. InProceedings of the International Conference

on Very Large Data Bases, pages 343–353, 1996.

[26] M. Farach. Optimal suffix tree construction with large alphabets. InProceedings

of IEEE Symposium on Foundations of Computer Science, pages 390–398, 1997.

119

[27] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings.

Algorithmica, 20(4):388–404, 1998.

[28] P. Ferragina. String search in external memory: Data structures and algorithms.

In Srinivas Aluru, editor,Handbook of Computational Molecular Biology, chap-

ter 35, pages 35.1–35.49. Chapman & Hall/CRC, 1 edition, 2005.

[29] P. Ferragina and R. Grossi. Fast string searching in secondary storage: Theoretical

developments and experimental results. InACM-SIAM Symposium on Discrete

Algorithms, pages 373–382, 1996.

[30] P. Ferragina and R. Grossi. The string B-tree: A new datastructure for string

search in external memory and its applications.Journal of the ACM, 46(2):236–

280, 1999.

[31] P. Ferragina and G. Manzini. Opportunistic data structures with applications.

In Proceedings of IEEE Symposium on Foundations of Computer Science, pages

390–398, 2000.

[32] P. Ferragina and G. Manzini. An experimental study of anopportunistic index. In

Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pages 369–378,

2001.

[33] R. Giegerich and S. Kurtz. From Ukkonen to McCreight andWeiner: A unifying

view of linear-time suffix tree construction.Algorithmica, 19(3):331–353, 1997.

120

[34] R. Giegerich, S. Kurtz, and J. Stoye. Efficient implementation of lazy suffix trees.

In Proceedings of the 3rd Workshop on Algorithm Engineering, pages 30–42,

1999.

[35] J. Gil and A. Itai. How to pack trees.Journal of Algorithms, 32(2):108–132,

1999.

[36] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider.Information Retrieval: Data

Structures and Algorithms, chapter 5: New Indices for Text: PAT Trees and PAT

Arrays, pages 66–82. Prentice-Hall, 1992.

[37] R. Grossi and G. Italiano. Suffix trees and their applications in string algorithms.

In Proceedings of the 1st South American Workshop on String Processing, pages

57–76, 1993.

[38] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applica-

tions to text indexing and string matching. InProceedings of ACM Symposium on

Theory of Computing, pages 397–406, 2000.

[39] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with ap-

plications to text indexing and string matching.SIAM Journal on Computing,

accepted.

[40] D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge, 1997.

121

[41] M. Halachev, N. Shiri, and A. Thamildurai. Exact match search in sequence data

using suffix trees. InProceedings of the International Conference on Information

and Knowledge Management, pages 123–130, 2005.

[42] M. Höhl, S. Kurtz, and E. Ohlebusch. Efficient multiple genome alignment.Bioin-

formatics, 18(Suppl. 1):S312–S320, 2002.

[43] W. K. Hon, T. W. Lam, W. K. Sung, W. L. Tse, C. K. Wong, and S.M. Yiu.

Practical aspects of compressed suffix arrays and FM-index in searching DNA

sequences. InProceedings of the 6th Workshop on Algorithm Engineering and

Experiments., pages 31–38, 2004.

[44] W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a time-and-space barrier in

constructing full-text indices. InProceedings of IEEE Symposium on Foundations

of Computer Science, pages 251–260, 2003.

[45] E. Hunt, M. P. Atkinson, and R. W. Irving. Database indexing for large DNA and

protein sequence collections.The VLDB Journal, 11:256–271, 2002.

[46] H. Hyyrö and G. Navarro. A practical index for genome searching. InProceed-

ings of the 10th International Symposium on String Processing and Information

Retrieval, pages 241–349, 2003.

[47] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of Symposium

on Foundations of Computer Science, pages 549–554, 1989.

122

[48] R. Japp. The top-compressed suffix tree: A disk-resident index for large se-

quences. InBioinformatics Workshop, 21st Annual British national Conference

on Databases, 2004.

[49] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in

static texts. InProceedings of the 16th International Symposium on Mathematical

Foundations of Computer Science, pages 240–248, September 1991.

[50] L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify or-

ganisms using DNA arrays.Bioinformatics, 18:1340–1349, 2002.

[51] J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string matching over

Ziv-Lempel compressed text. InProceedings of the 11th Annual Symposium on

Combinatorial Pattern Matching, pages 195–209, 2000.

[52] J. Kärkkäinen and S. S. Rao. Full-text indexes in external memory. In U. Meyer,

P. Sanders, and J. Sibeyn, editors,Algorithms for Memory Hierachies: Advanced

Lecttures, volume 2625 ofLNCS, chapter 7, pages 149–170. Springer-Verlag

Berlin Heidelberg, 2003.

[53] J. Kärkkäinen and E. Sutinen. Ziv-Lempel index forq-grams. InProceedings of

the 4th Annual European Symposium on Algorithms, pages 378–391, 1996.

[54] W. J. Kent. BLAT: The BLAST-like alignment tool. Genome Research,

12(4):656–664, 2002.

123

[55] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.SIAM

Journal on Computing, 6(2):323–350, 1977.

[56] P. Ko and S. Aluru. Suffix tree applications in computational biology. In Srinivas

Aluru, editor,Handbook of Computational Molecular Biology, chapter 6, pages

6.1–6.27. Chapman & Hall/CRC, 1 edition, 2005.

[57] S. Kurtz. Reducing the space requirement of suffix trees. Software-Practice and

Experience, 13:1149–1171, 1999.

[58] S. Kurtz and C.Schleiermacher. REPuter: Fast computation of maximal repeats

in complete genomes.Bioinformatics, 15:426–427, 1999.

[59] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu,

and S. L. Salzberg. Versatile and open software for comparing large genomes.

Genome Biology, 5(R12), 2004. http://mummer.sourceforge.net.

[60] T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A space and time effi-

cient algorithm for constructing compressed suffix arrays.In Proceedings of the

International Computing and Combinatics Conference, pages 401–410, 2002.

[61] T. W. Lam, W. K. Sung, and S. S. Wong. Improved approximate string matching

using compressed suffix data structures. InProceedings of the Annual Interna-

tional Symposium on Algorithms and Computation, pages 339–348, 2005.

124

[62] T. W. Lam, W. K. Sung, and S. S. Wong. Improved approximate string matching

using compressed suffix data structures.Algorithmica, accepted.

[63] G. M. Landau and U. Vishkin. Fasl parallel and serial approximate string match-

ing. Journal of Algorithms, 10(2):157–169, 1989.

[64] M. Li, B. Ma, and D. Kisman. PatternHunterII: Highly sensitive and fast ho-

mology search. InProceedings of the 14th International Conference on Genome

Informatics, pages 164–175, 2003.

[65] B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology

search.Bioinformatics, 18(3):440–445, March 2002.

[66] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.

SIAM Journal of Computing, 22(5):935–948, 1993.

[67] E. M. McCreight. A space-economical suffix tree construction algorithm.Journal

of the ACM, 23(2):262–272, 1976.

[68] V. M äkinen, G. Navarro, and K. Sadakane. Advantages of backward searching -

efficient secondary memory and distributed implementationof compressed suffix

arrays. InProceedings of the Annual International Symposium on Algorithms and

Computation, pages 681–692, 2004.

125

[69] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An online andaccurate technique

for local-alignment searches on biological sequences. InProceedings of the In-

ternational Conference on Very Large Data Bases, pages 910–921, 2003.

[70] D. R. Morrison. PATRICIA: Practical algorithm to retrieve information coded in

alphanumeric.Journal of the ACM, 15:514–534, 1968.

[71] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and

static trees.SIAM Journal on Computing, 31(3):762–776, 2001.

[72] J. I. Munro, V. Raman, and S. S. Rao. Space efficient suffixtrees. Journal of

Algorithms, 39(2):205–222, 2001.

[73] G. Navarro. A guided tour to approximate string matching. ACM Computing

Surveys, 33(1):31–88, March 2001.

[74] G. Navarro and R. Baeza-Yates. A hybrid indexing methodfor approximate string

matching.Journal of Discrete Algorithms, 1(1):205–239, 2000.

[75] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for ap-

proximate string matching.IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

[76] G. Navarro and R. A. Baeza-Yates. A new indexing method for approximate

string matching. InProceedings of the 10th Annual Symposium on Combinatorial

Pattern Matching, pages 163–185, 1999.

126

[77] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster approx-

imate string matching over compressed text. InProceedings of the 11th Data

Compression Conference, pages 459–468, 2001.

[78] G. Navarro and M. Raffinot. A general practical approachto pattern matching

over Ziv-Lempel compressed text. InProceedings of the 10th Annual Symposium

on Combinatorial Pattern Matching, pages 14–36, 1999.

[79] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximate

q-grams. InProceedings of the 11th Annual Symposium on Combinatorial Pattern

Matching, pages 350–365, 2000.

[80] S. Needleman and C. Wunsch. A general method applicableto the search for

similarities in the amino acid sequences of two proteins.Journal of Molecular

Biology, 48:443–453, 1970.

[81] G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding signals of unknown

length in DNA sequences.Bioinformatics, 17(Suppl. 1):S207–S214, 2001.

[82] W. R. Pearson. Flexible sequence similarity searchingwith the FASTA3 program

package.Methods in Molecular Biology, 132:185–219, 2000.

[83] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence compar-

ison. Proceedings of National Academy of Sciences USA, 85:2444–2448, 1988.

127

[84] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with ap-

plications to encoding k–ary trees and multisets. InProceedings of ACM-SIAM

Symposium on Discrete Algorithms, pages 233–242, 2002.

[85] S. S. Rao. Time-space trade-offs for compressed suffix arrays. Information Pro-

cessing Letters, 82:307–311, 2002.

[86] K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficientq-gram filters for finding

all ǫ-matches over a given length. InProceedings of the 9th Annual International

Conference on Research in Computational Molecular Biology, pages 189–203,

2005.

[87] K. Sadakane. Succinct representation oflcp information and improvements in the

compressed suffix arrays. InProceedings of ACM-SIAM Symposium on Discrete

Algorithms, pages 225–232, 2002.

[88] K. Sadakane. Compressed suffix trees with full functionality. Theory of Comput-

ing Systems, accepted.

[89] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, New York, 1983.

[90] P. Sellers. The theory and computation of evolutionarydistances: Pattern recog-

nition. Journal of Algorithms, 1:359–373, 1980.

128

[91] F. Shi. Fast approximate string matching with q-blockssequences. InProceed-

ings of the 3rd South American Workshop on String Processing, pages 257–271.

Carleton University Press, 1996.

[92] T. Smith and M. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147:195–197, 1981.

[93] E. Sutinen and J. Tarhio. Filtration with q-samples in approximate string match-

ing. In Proceedings of the 7th Annual Symposium on Combinatorial Pattern

Matching, pages 50–63, 1996.

[94] Z. Tan, X. Cao, B. C. Ooi, and A. K. H. Tung. The ed-tree: Anindex for large

DNA sequence databases. InInternational Conference on Scientific and Statisti-

cal Database Management, pages 151–160, 2003.

[95] S. Tata, R. A. Hankins, and J. M. Patel. Practical suffix tree construction. In

Proceedings of the International Conference on Very Large Data Bases, pages

36–47, 2004. http://www.eecs.umich.edu/tdd/index.html.

[96] H. N. D. Trinh, W. K. Hon, T. W. Lam, and W. K. Sung. Approximate string

matching using compressed suffix arrays. InProceedings of the 15th Annual

Symposium on Combinatorial Pattern Matching, pages 434–444, 2004.

129

[97] E. Ukkonen. Approximate string-matching over suffix trees. InProceedings of

the 4th Annual Symposium on Combinatorial Pattern Matching, pages 228–242,

1993.

[98] E. Ukkonen. On-line construction of suffix-trees.Algorithmica, 14:249–260,

1995.

[99] P. Weiner. Linear pattern matching algorithm. InProceedings of the 14th Sympo-

sium on Switching and Automata Theory, pages 1–11, 1973.

[100] D. E. Willard. Log-logarithmic worst-case range queries are possible in space

θ(n). Information Processing Letters, 17:81–84, August 1983.

[101] H. E. Williams and J. Zobel. Indexing and retrieval forgenomic database.Pro-

ceedings of IEEE Transactions on Knowledge and Data Engineering, 14:63–78,

2002.

[102] S. S. Wong, W. K. Sung, and L. S. Wong. CPS-tree: A compact partitioned suffix

tree for disk-based indexing on large genome sequences. InProceedings of the

International Conference on Data Engineering, pages 1350–1354, 2007.

[103] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning

DNA sequences.Journal of Computational Biology, 7(1):203–214, 2000.

