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Summary

The structure from motion (SFM) problem has been studied extensively by the

computer vision community in the past two decades. SFM amounts to the problem

of recovering the structure of 3-D scene and the 3-D relative motion between the

scene and the observer from the projection of the 3-D relative motion onto a 2-D

surface. If the camera is calibrated, camera motion can be recovered and Euclidean

reconstruction of the scene can be carried out. While many algorithms have been

developed for camera calibration, most are sensitive to noise and lack robustness

and reliability.

In this thesis we present a theoretical analysis of the behavior of SFM algorithms

with respect to the errors in intrinsic parameters of the camera. In particular, we

are concerned with the limitation of SFM algorithms in the face of errors in the

estimation of the focal length. This is important for camera systems with zoom

capability and online calibration cannot be always done with the requisite accuracy.

The results show that the effect of erroneous focal length on the motion estimation

is not the same over different translation and rotation directions. The structure of

the scene (depth) affects the shifting of the motion estimate as well. Simulation
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with synthetic data and real images was conducted to support our findings.

We also attempt to explain the paradox of the unnoticed distortions when viewing

the cinema. Cinema viewed from a location other than its Canonical Viewing

Point (CVP) presents distortions to the viewer in both its static and dynamic

aspects. Past works have investigated mainly the static aspect of the problem and

attempted to explain why viewers still seem to perceive the scene very well. The

dynamic aspect of depth perception has not been well investigated. We derive the

dynamic depth cues perceived by the viewer and use the iso-distortion framework

to understand its distortion. The result is that viewers seated at a reasonably

central position experience a shift in the intrinsic parameters of their visual systems.

Despite this shift, the key properties of the perceived depths remain largely the

same, being determined in the main by the accuracy to which extrinsic motion

parameters can be recovered. And for a viewer seated at a non-central position

and watching the movie screen with a slant angle, the view is related to the view

at the CVP by a homography, resulting in various aberrations such as non-central

projection.
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Chapter 1

Introduction

1.1 What this thesis is about

The problem of inferring 3-D information of a scene from a set of 2-D images

has a long history in computer vision. Although the basic geometric relationships

governing the problem of structure and motion recovery from image sequences are

well understood, the task is still unsolved and formidable. The reason for this half-

failure is that, by its very nature, this problem falls into the category of so-called

inverse problems, which are prone to be ill-conditioned and difficult to solve in their

full generality unless additional assumptions are imposed. Despite these negative

remarks, there has been a rapid development in computer vision over the two past

decades. In particular, the Structure from Motion (SFM), which is defined as the
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extraction of 3-D structure of a moving scene from image sequence, has become

the central topic of computer vision community and received increasing attention.

Since the existing SFM algorithms are very sensitive to noise, there have been

many error analyses in the literature. In this thesis, we propose an approach to

understand the detailed nature of the inherent ambiguities caused by the geometry

of the problem itself and thus cannot be removed by any statistical schemes.

The problem of SFM is usually divided into three steps: (1) extract features and

match them between images, (2) estimate the 3-D relative motion (ego-motion

or object motion) and (3) recover depth or structure based on the results of the

first two steps. Since both the recovery of 3-D motion from image motion, and

the image motion estimation process are ill-posed in nature, SFM is difficult to

solve robustly. Thus to understand the error characteristics of SFM algorithms is

critical not only for knowing the limitations of the existing algorithms, but also for

developing better algorithms. We take a step towards this direction. Our results

show that the effect of erroneous focal length on the motion estimation is not the

same over different translation and rotation directions. The structure of the scene

(depth) affects the shifting of the motion estimate as well.

The results are used to understand one paradox that has received extended interests

from psychophysics researchers—the unnoticed distortions under cinematic viewing

condition. That is, picture or cinema viewed from a location other its composition

point or center of projection (CoP) should present distortions to the viewer in both
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the static and dynamic aspects. However, picture or cinema viewing is apparently

not limited to the location at the CoP. Many other positions can serve as reasonable

viewpoints allowing layout to appear relatively normal. Many psychophysics and

vision researchers proposed their approaches to this paradox. However, most of

the hypotheses mainly attempt to deal with the static aspect of the problem. Our

work focuses on the dynamic aspect of cinematic perception and investigates its

distortion to be expected theoretically, by adapting the computational model of

the SFM process.

The remainders of this chapter overview the motivating factors, study scope and

contributions of our research. We close this chapter with the organization of the

thesis.

1.2 Background

1.2.1 Overview of SFM

The longstanding efforts of human to understand the image formation process can

be found in ancient civilizations throughout the world. However, the first work

that is directly related to multiple-view geometry is attributed to Kruppa [53]. He

proved that two views of five points are sufficient to determine both the relative
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transformation between the views and the 3-D location of points up to finitely

many solutions. The origin of a modern treatment is traditionally attributed to

Longuet-Higgins [60], who in 1981 first proposed a linear algorithm for structure

and motion recovery from two images of a set of points, based on the so-called

epipolar constraint. This work proved the existence of the solutions for 3-D scene

reconstruction from 2-D displacement and triggered many researchers to develop

practical computer vision algorithms. Tsai and Huang [103] proved that given an

essential matrix associated with the epipolar constraint, there are only two possible

3-D displacements. The study of the essential matrix then led to a three-step SVD-

based algorithm for recovering the 3-D displacement from image correspondences.

The essential matrix approach based on the epipolar constraint recovers only the

discrete 3-D displacement. Mathematically, the epipolar constraint works well only

when the displacement between the two images is relatively large, i.e. large base-

line are required. However, in real-time applications, even if the velocity of the

moving camera is not small, the relative displacement between two consecutive

images might become small due to the high frame rate. In turn, the algorithms

become singular due to the small translation and the estimation results become less

reliable. Thus, a differential version of the 3-D motion estimation problem is to

recover the 3-D velocity of the camera from optical flow, developed from which the

structure (depth) of the scene can be estimated. Although some algorithms address

the problem of motion and structure recovery simultaneously [99], most techniques
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try to decouple the two problems by estimating the motion first, followed by the

structure estimation. In this thesis, we also view the two as separate problems.

Due to the inverse nature of the problem, the estimation of 3-D motion based on

2-D displacement is noise sensitive. A small amount of error in image measure-

ments can lead to very different solutions. SFM algorithms proposed in the past

two decades faced this problem to varying extent. Many error analyses [1, 24, 111]

has been reported. Most of these analyses deal with specific algorithms each using

different optimization techniques. In [75], Oliensis argues that theoretical analyses

of algorithm behavior are crucial. These analyses should underlie any particular

algorithms. It is important not only for understanding algorithms’ properties, but

also for conducting good experiments and for developing the best algorithms. In

this thesis, we propose an approach that lends itself towards understanding the be-

haviors of SFM algorithms under a wide range of motion-scene configurations. We

study one class of algorithms based on the weighted differential epipolar constraint

which is adopted by most of the existing differential SFM algorithms using optical

flow as input. The optimization proposed by Xiang and Cheong [110] is adopted

in our work, since it permits an unifying view of these different algorithms. It is

based on the difference between the original optical flow and the reprojected flow

obtained via a backprojection of the reconstructed depth, analogous to the distance

between the observation and reprojection of the recovered structure in the discrete

case [113, 112].
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If the intrinsic parameters of the camera are unknown, the SFM problem can only

be “solved” under an uncalibrated scenario from which only projective structure

can be recovered. Most studies [29, 40, 68, 81] conducted have dealt with the

discrete case. If one wants to obtain the Euclidean structure, camera calibration

must be carried out. Camera calibration in this thesis refers to the process of

estimating the intrinsic parameters of the camera.

Similar to the SFM algorithms, calibration algorithms are also sensitive to noise.

The process of camera calibration introduces additional errors in the measurements,

which affect the final estimates of the motion and structure. This is the case both

when the camera is calibrated off-line or when self-calibration techniques are used.

With the exception of few, the study of these effects has not received much atten-

tion. In the discrete setting, Bougnoux [5] analysed the stability of the estimation

of intrinsic parameters and their effects on structure estimation. In [38], Grossmann

derived the covariances of the parameters of an uncalibrated stereo system with

fixed calibration parameters and under the hypothesis that an a priori quality of

the final estimates was showed in the context of nonlinear optimization techniques.

The effects of calibration errors on the motion estimates in the discrete setting are

explored by Svodoba and Sturm [94]. They derived the relations between noise in

the camera parameters and the acceptability of the translation vector. They also

found that the estimation of the rotation is very sensitive to the accuracy in the

calibration parameters. We derived similar result using a geometrical perspective.
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We also find that the effect of erroneous intrinsic parameters estimates on the mo-

tion estimation is not the same over different translation and rotation directions.

Furthermore the structure of the scene and the field of view (FOV) of the camera

affect the motion estimates as well.

1.2.2 The paradox of unnoticed distortion in slanted im-

ages

The puzzle of unnoticed distortions in slanted images was first addressed by La

Gournerie in 1859 [79]. The paradox occurs in two forms. The first concerns

viewing pictures either nearer of farther than the CoP but along the line extended

between that point and (usually) the center of the picture; the second, and by far

the more interesting and complex, concerns viewing pictures from the side at any

distance. Both of these forms can happen in the cinema viewing scenario.

Several explanations have been offered for the apparent invariance of perceived

layout and shape in pictures with changes in viewing position. One (perhaps dom-

inant) view is that observers somehow actively (though perhaps unconsciously)

“correct” or “compensate” for the perspective distortions of the retinal image due

to oblique viewing. This typically involves a simultaneous awareness of the pictorial

cues and the cues that reveal the structure of the picture surface. Cutting [21] ar-

gues that the slant at which pictures are viewed is usually small, and consequently
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the distortions of the retinal image are too small to be noticed. Perkins [77] claims

that such invariance is a byproduct of the viewer’s expectations with known shapes.

For example, if the retinal image is similar to the image that would be created by

a cube, prior expectations force the percept to that of a cube. The invariance thus

comes from the viewer’s experience with object whose shapes are familiar or usually

follow certain rules (right angles, parallel sides, symmetry). A third explanation

claims that the invariance is the consequence of altering or re-interpreting the reti-

nal image by recovering the position of the screen surface. For example, it is known

[8] that the locations of three mutually orthogonal vanishing points in the visual

field are sufficient to recover the CoP. Banks et al. [3] argues that a local slant

mechanism is used to estimate the foreshortening due to viewing obliqueness and

then adjust the percept derived from the retinal image to undo the foreshortening.

For a more detailed review please refer to Chapter 4.

Unlike the previous approaches, we are concerned with the dynamic cues in cinema

in our work. This is important because distortions are present in both its static

and dynamic aspects. As testified by the original names of kinetoscope and moving

pictures, cinema was understood from its birth as the art of motion. Motion

dynamically changes the viewing perspectives of the spectators. Therefore, motion

cues should be a privieged object of investigation. Our research on the dynamic

cues argues that viewers seated at a reasonably central position experience a shift

in the intrinsic parameters of their visual systems. Despite this shift, the key
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properties of the perceived depths remain largely the same, being determined in

the main by the accuracy to which extrinsic motion parameters can be recovered.

For a viewer seated at a non-central position and watching the movie screen with a

slant angle, the view is related to the view at the CVP by a homography, resulting

in various aberrations such as non-central projection.

1.3 Contributions

We summarize the major contributions of this thesis as below:

3-D motion estimation with erroneous intrinsic parameters We use the uni-

fied optimization criteria based on the differential epipolar constraint to anal-

ysis the effect of calibration errors on motion estimation. We show the effects

of erroneous intrinsic parameters on motion estimation are determined not

only by the errors in the intrinsic estimates, but are also related to the extrin-

sic parameters, i.e., the direction of the translational and rotational velocity.

Cinema viewing paradox We prove that the cinema viewed from a location

other than the CoP is no more complex than an uncalibrated SFM problem,

where in particular the focal length is fixed but potentially unknown. The

only difference with the usual SFM problem is that the principal point offset

can be very much larger than one usually encounters in such problem. The
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changes caused by the large principal point offset in the characteristics of the

depth distortion are highlighted.

1.4 Organization

The remainder of this thesis is organized in four chapters, followed by appendices

and a bibliography. The next chapter, Chapter 2, provides the background for

the specific problems addressed in the thesis. We review the basic algorithms

of SFM and highlight the relative merits of our work. The various optimization

criteria used in SFM are also reviewed for both the discrete and differential case.

To facilitate the discussion of depth perception we also revisit the iso-distortion

framework which is first introduced in [10]. Notations and models utilized in this

thesis are also introduced.

Chapter 3 presents a theoretical analysis of the behavior of SFM algorithms with

respect to the errors in intrinsic parameters of the camera. How uncertainty in the

calibration parameters gets propagated to the motion estimates is demonstrated

both analytically and in simulation. Analyses of the behavior of SFM under various

motion and scene configurations have been conducted.

In Chapter 4, we focus on the explanation of the unnoticed distortion of cinema

viewed from a location other than the CoP. We first prove that the image formation
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process can be treated as a SFM problem with a twist. That is, the changes caused

by the location shift from the CoP can be analogized to a traditional uncalibrated

SFM problem, only with minor modification. Then we show that the distortions

caused by the shifting of position and the pose of the viewer do not alter the abilities

of structure perception compared to the calibrated case, which in turn explains the

paradox. Unlike the previous research, our approach is concerned with the dynamic

aspect of the problem.

In the last chapter, we conclude our work and discuss future research directions.

In particular, we discuss extending our research to the camera calibration problem.

The appendices include a possible solution of the decomposition of the homography

matrix introduced in Chapter 4.
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Chapter 2

Models and Literature Review

Structure from motion (SFM) has been a very active area of computer vision in

the past 20 years. The idea is to recover the shape of objects or scenes from a

sequence of images acquired by a camera undergoing an unknown motion. Usually

it is assumed that the scene is made up of rigid objects possibly undergoing some

kind of Euclidean motion. The vision community extensively developed computer

systems to exploit stereopsis or motion parallax. Most of such approaches can

be classified as feature-based (discrete approach) or optical flow-based (differential

approach) based. Other classification criteria include the number of input image

(two views or multiple views), the implementation techniques (linear or nonlinear)

and the underlying geometric constraint (epipolar constraint or depth-is-positive

constraint). We briefly review the feature-based and flow-based approaches to
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facilitate our further discussion.

2.1 Feature based SFM

In general, in a discrete approach, if the relative position and orientation of the two

cameras are known, the 3D position of the imaged point can be easily computed by

triangulation. The use of the epipolar geometry for the estimation of the relative

orientation or motion was first proposed by Longet-Higgins [60] in the early eighties

of the last century. The so-called essential matrix linearly constraints the feature

points in the two images of the stereo pair:

xT
1 Ex2 = 0, (2.1)

where x1 and x2 are two corresponding feature points on two images, and E is the

essential matrix.

The 8 points algorithm developed by the author has the appealing property of be-

ing linear. Relative rotation and translation of the cameras can be estimated by a

factorization of the essential matrix. When the camera calibration is unknown the

matrix derived by the constraint in equation (2.1) is called the fundamental matrix

F . This can still be used to estimate motion and then structure but only up to a

projective transformation [27, 10]. Despite its simplicity the 8 points algorithm has

often been criticized for its excessive sensitivity to noise and lots of other techniques
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have been developed. These are mostly based on the minimization of functions of

the epipolar distances and usually require iterative optimization techniques. Beard-

sley and Zisserman [4] proposed an interesting technique that uses the weighted 8

points algorithm iteratively. At each stage the estimated essential matrix is used

to calculate weights for the features used in the computation. Such weights are es-

timated by calculating the epipolar distances and then used in the next iteration.

Excellent reviews of other weighted schemes can be found in [64, 112]. Hartley [41]

showed that the performance of the 8 points algorithm can be drastically improved

by renormalizing point feature coordinates. In his experiments he proved that the

final performance is very similar to that of more advanced and complex algorithms.

2.2 Flow based SFM

In the differential setting, feature point correspondence in the discrete approach is

replaced by optical flow. This is the velocity field of the image features

The estimation of optical flow is based on the image brightness constancy equation

which states that the apparent brightness I(x; t) of moving objects remains constant

over time. This implies that:

dI

dt
= ∇xIu +

∂I

∂t
= 0 (2.2)

The differential SFM problem has also been explored by many researchers: an
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algorithm was proposed in 1984 by Zhuang et al. [115] with a simplified version

given in 1988 [116]; and a first order algorithm was given by Waxman et al. [108]

in 1987. Most algorithms start from the basic bilinear constraint relating optical

flow to the linear and angular velocities and solve for rotation and translation

separately using either numerical optimization techniques [7] or linear subspace

methods [45, 44]. Kanatani [51] proposed a linear algorithm reformulating Zhuang’s

approach in terms of essential parameters and twisted flow. However, in these

algorithms, the similarities between the discrete case and the differential case are

not fully revealed and exploited.

Although the differential 3-D motion and depth estimation algorithms are chosen

as our subjects of study, our approach and the results are still applicable to a wider

range of SFM algorithms, including the discrete approach.

2.3 Camera calibration

One of the major problem faced in computer vision applications is the calibration

of camera. Camera calibration in this thesis is defined as the process of estimating

the intrinsic parameters of the camera. It is a prerequisite for the Euclidean recon-

struction from motion, for without camera calibration, SFM has to be generalized

using a projective approach.
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A camera is usually calibrated with one or more images of an object of known size

and shape. A flat plate with a regular patten marked on it [31, 102] is commonly

used for this purpose. Calibration in this way has the limitation of not being able

to calibrate the camera online while executing a visual task. It is important to

note that changes in the intrinsic parameters may be deliberate. An example is the

change in the focal length of the camera in performing a zoom operation. Hence,

in several applications, online calibration is desired and of practical interest.

Intensive study on the self-calibration has been conducted [81, 100, 68, 30]. The

general principle behind most self calibration methods is based on the recovery of

the absolute conic, which is invariant under rotations and translations, and inde-

pendent of the camera pose. In the pioneering work of Maybank and Faugeras [68],

the authors considered constraints on the intrinsic parameters, which arise from the

rigidity of the camera motion and which are based on the epipolar geometry of two

views. These constraints are known as Kruppa’s equations. Nevertheless, methods

based on these equations are plagued by inaccuracy due to high sensitivity to noise,

and also suffer from convergence problem. In particular, critical motion sequences

(CMS) [88, 89] will lead to multiple solutions in camera calibration. CMS has been

systematically classified by Sterm [88] in the case of constant intrinsic parameters.

This classification has been extended to more general calibration constraints, such

as varying focal length [89].

Our work is concerned with the behavior of motion and structure recovery with
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erroneous calibration of the intrinsic camera parameters. We show that the un-

certainty in the focal length estimation propagates to the motion estimation in a

complex manner. This propagation is influenced by the extrinsic parameters. The

coupling of intrinsic and extrinsic parameters is algorithm-independent, as long as

certain constraints (e.g. epipolar constraint) are involved in the algorithms.

2.4 Models

In this section, the notion of a perspective camera and the parameters associated

with the model are introduced.

The pinhole model is the most commonly used model to solve camera-related prob-

lem. In this simple model, the camera performs a perspective projection of a point

P in the 3-D world onto a pixel point p in the 2-D image plane through an optical

center O, guided by the principles of geometrical optics. Figure 2.1 introduces the

notation associated with the general projection process. The reference frame is

attached to the optical centre at O. A world point P = (X, Y, Z)T is projected to
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Figure 2.1: Image formation model: O is the optical centre. The optical axis is

aligned with the Z-axis and the horizontal and vertical image axes are aligned with

the X- and Y -axes respectively.

its image pixel coordinate (x, y) by the following well-known transformation [28]:

p =




x

y

1


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
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(2.3)

where we have expressed p and P in homogeneous coordinates, with slight abuse

of notation in using p and P for both homogeneous coordinates and Euclidean

coordinates. The constant 3 × 4 matrix Π0 represents the perspective projection,

and the upper triangular 3×3 matrix K is the intrinsic parameter matrix with the

focal length denoted by f , (ox, oy) the x- and y− coordinates of the principal point

respectively, and sθ the skew factor.
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Figure 2.2: 3-D camera motion

We now present the notation associated with the conventional SFM problem, ig-

noring all the intrinsic parameters except f . It is equivalent to saying one has

perfect estimates of the intrinsic parameters so that one can appropriately trans-

form the image coordinates to obtain sθ = ox = oy = 0. If the camera undergoes

a motion with a translational velocity v = (U, V, W )T and a rotational velocity

w = (α, β, γ)T (see Figure 2.2), the motion induces a relative motion between the

static scene point P and the camera. The relative 3-D velocity of P (with respect

to the camera) can be written as follows:

Ṗ = −v−w× p, (2.4)
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from which the well known 2-D motion field equations [60] can be derived:

u =
W

Z
x− f

U

Z
+

xy

f
α− f

(
1 +

x2

f 2

)
β + γy (2.5)

v =
W

Z
y − f

V

Z
− xy

f
β + f

(
1 +

y2

f 2

)
α− γx (2.6)

where (u, v) is the optical flow at the feature point (x, y) on the image plane. We

define ṗtr = (utr, vtr)
T and ṗrot = (urot, vrot)

T , where ṗtr

Z
and ṗrot are the flows com-

ponents due to translation and rotation respectively. Since only the translational

direction can be recovered from the flow field, we can set W = 1 without loss of

generality.

We introduce further notations for our distortion analysis. The estimated param-

eters are denoted with the hat symbol (ˆ) and errors in the estimated parameters

with the subscript e. The error of any estimate r is defined as re = r − r̂.

2.5 Iso-distortion framework

The iso-distortion framework was first introduced by Cheong et al. [10]. The iso-

distortion framework seeks to understand the geometric laws under which the re-

covered scene is distorted due to some errors in the estimated camera parameters.

The distortion in the perceived space is visualized by looking at the locus of equal

distortion, known as the iso-distortion surfaces. This makes explicit the systematic

way in which depths are distorted and leads to its algebraic characterization by
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Cremona transformation [48].

Referring to equations (2.5) and (2.6), we note that if there are errors in the

estimates of the extrinsic parameters, these errors will in turn cause errors in the

estimation of the scaled depth. The distorted depth Ẑ can be shown to be given

by:

Ẑ = Z

(
(x− x̂0, y − ŷ0) · n

(x− x0, y − y0) · n + Z (urote , vrote) · n
)

, (2.7)

equation (2.7) shows that errors in the motion estimates distort the recovered

relative depth by a factor D, given by the terms in the bracket, which among

other terms, contains the term n. The value of n depends on the scheme we use

to recover depth. In our work, we choose to recover depth along the estimated

epipolar direction, i.e. n = (x−x̂0,y−ŷ0)T√
(x−x̂0)2+(y−ŷ0)2

. Such a choice is reasonable because

the estimated epipolar direction contains the strongest translational flow and hence

is the most reliable direction to recover Z. Hence the distortion factor D becomes:

D =
(x− x̂0)

2 + (y − ŷ0)
2

(x− x0, y − y0) · (x− x̂0, y − ŷ0) + Z (urote , vrote) · (x− x̂0, y − ŷ0)
. (2.8)

The complexity of equation (2.8) can be better grappled with a graphical approach

in its first analysis. For specific values of the parameters x0, y0, x̂0, ŷ0, αe, βe, γe

and for any fixed distortion factor D, equation (2.8) describes a surface g (x, y, Z) =

0 in the xyZ-space. Normally, under general motion, a complicated distortion

characteristic may arise. Readers are referred to [11, 12] for a full description of

the geometry of the distortion.
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Algebraically, it was shown from [10] that the transformation from physical to

perceptual space belongs to the family of Cremona transformations. Such trans-

formation is bijective almost everywhere except on the set of what is known as

fundamental elements where the correspondence between the two spaces becomes

one-to-many [48]. The complex nature of this transformation makes it clear that

in general it is very difficult to recover metric depth accurately. What is less clear

is the feasibility of recovering some of the less metrical depth representations under

specific motions. For instance, the ordinal representation of depth constitutes one

such reduced representation of depth where only depth order is available. Cheong

and Xiang [12] showed that though in the general case, small amount of motion

errors can have significant impact on depth recovery, there exist generic motions

that allow robust recovery of partial depth information. In particular, lateral mo-

tion is better than forward motion in terms of yielding ordinal depth information

and other aspects of depth recovery. On the other hand, forward motion leads to

condition more conducive for 3-D motion estimation than that presented by lateral

motion.

In the case of uncalibrated motion with fixed intrinsic parameters and reasonably

small principal point offset, the distortion factor D becomes [12]:

• for lateral motion:

D =
f̂ Û

fU +
(
βf − β̂f̂

)
Z

, (2.9)
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• for forward motion:

D =
x2 + y2

((x− oxe) x + (y − oye) y) +
(
−

(
βf − β̂f̂

)
x +

(
αf − α̂f̂

)
y
)

Z
.

(2.10)

It was shown in [12] that the aforementioned properties regarding depth and motion

recovery are not affected, in spite of possible errors in the intrinsic parameters.

However, if the intrinsic parameters are allowed to vary dynamically, then ordinality

of depth will be lost under lateral motion.

The upshot of characterizing depth distortion behaviour under these generic types

of forward and lateral motions are the following two aspects. (1) It shows that the

reliability of a reconstructed scene has quite a different behaviour from that of the

motion estimates. For instance, if the motion contains dominant lateral translation,

it might be very difficult to lift the ambiguity between translation and rotation.

However, in spite of such motion ambiguity, certain aspect of depth information

seems recoverable with robustness. Indeed, in the biological world, lateral motions

are often executed to judge distance and relative ordering. On the other hand,

psychophysical experiments [104] reported that under pure forward translation,

human subjects were unable to recover structure unless favorable conditions such

as large field of view exist. Thus it seems that not all motions are equal in terms

of robust depth recovery and that there also exists certain dichotomy between

forward and lateral translation as far as motion and depth recovery are concerned.



24

(2) Understanding the depth recovered under these two very different motion types

allows us to better able understand the behaviour of depth reconstruction under

general motions, in the sense that the behaviour of depth reconstruction at the two

opposite poles of translational motion spectrum delimits the type of general depth

distortion behaviour somewhere in between the two poles.

2.6 SFM with erroneous estimation of intrinsic

parameters: a literature review

Analysis of the theoretical precision of SFM estimates is common in photogram-

metry, and increasing interaction between the computer vision and photogramme-

try has resulted in an excellent synthesis [101] of photogrammetric bundle adjust-

ment techniques which estimate jointly optimal 3-D structure and viewing param-

eter estimates. The survey highlights issues which might result in ill-conditioning

and erratic numerical behaviour, such as a local parameterization that is nonlin-

ear or excessive correlations, and unrealistic noise distributional assumption. Of

course, much SFM error analysis has been done in the computer vision community

[1, 24, 111]. Various ambiguities such as bas-relief ambiguity and opposite mini-

mum were reported in the literature and were mainly attributed to the presence of

noise in the image measurements [1, 24, 15]. Although dealing with the statistical
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adequacy of the optimization criteria is important for understanding the effect of

noise, it is equally important to understand the detailed nature of the inherent

ambiguities caused by the geometry of the problem itself and thus cannot be re-

moved by any statistical schemes. In [110], Xiang and Cheong argued that all the

major ambiguities are actually inherent to the optimization criteria adopted and

thus are algorithm-independent and will persist even with noiseless input. Oliensis

[74] noted that in two-frame SFM, depth reconstruction from lateral motion suffers

from the bas-relief ambiguity under which it is difficult to recover the constant

component of the inverse-depths. They also found that under the more difficult

situation of small range of depths and small translational baselines, the two-frame

algorithm was more likely to encounter local minima when the true motion was

forward than when it was sideways. Ma et al. [66] also examined the opposite

minimum but termed it as the second eigenmotion. They noted that the opposite

minimum can be distinguished from the true solution by using the positive depth

constraint. Similar observations were made by [15, 32, 110] .

In recent years, there have been developments that result in continuing interest in

SFM error analysis. One such development is the increasing variety of new camera

models being proposed and considered [71, 91]. Pless [80] used the framework of the

Fisher Information Matrix to understand how such standard rotation-translation

ambiguity is modified in the case of multiple cameras arranged in different configu-

rations. On the other hand, the widespread availability of video material recorded
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with a zoom lens has also prompted investigation into different uncalibrated SFM

algorithms and their related robustness properties. Errors in the intrinsic param-

eters might affect 3-D motion and scene recovery and various video applications

such as 3-D virtual content insertion might be severely affected. Our work aims at

unraveling the changes to the rotation-translation ambiguity that take place when

there are uncertainties in the intrinsic parameters; it also discusses other associated

properties such as the opposite minimum and the ordinality of recovered depths.

In the computer vision community and increasingly so for the photogrammetry

community, there is a need to deal with uncalibrated camera. The computer vi-

sion community has developed schemes for self-calibration and investigated what

structures can be recovered. Often in some applications such as object tracking, the

real-time constraint of the application might mean that we are not able to calibrate

the camera to the requisite degree of accuracy (e.g., ignoring the radial distortion)

or that we have to ignore small changes or errors in the intrinsic parameters so that

the computational complexity can be reduced. For instance, the quasi-Euclidean

approach [17] computes the plane at infinity based on an approximate calibration

of the intrinsic parameters. Indeed, in some applications a full-fledged Euclidean

reconstruction is not necessary, for instance in visual servoing or in image-based

rendering. Projective approaches aim to perform SFM without calibration, that is

all the calibration information is neglected and the intrinsic camera parameters are

assumed to vary freely from frame to frame. Oliensis [75] questioned whether the
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projective approach might not be too general to a fault. The projective approach

assumes zero knowledge of the calibration. In practice, there are always something

we may say about the intrinsic camera parameters. Certain parameters might be

known, such as the skew factor being zero, or we whether have a rough estimate of

a certain parameter even though it might not be exact. It is questionable whether

such neglect of available information leads to an increased or decreased robustness.

However, despite the enormous amount of done work on developing projective al-

gorithms, we still do not know when the projective approach is the right tool for

its main task of dealing with calibration uncertainty. To answer this, we need to

know how such simplification might affect the estimation of the camera’s egomotion

and, accordingly, scene recovery, and whether these influences are large enough in

practice to affect the goal of tasks to be carried out by the camera system.

Bougnoux [5] noted the difficulty of obtaining focal length in self-calibration, but

suggested from empirical evidence that part of the structure can be recovered de-

spite error in self-calibration. The ground for this view, in so far as can be ascer-

tained, seems to be based on the empirical results of depth reconstructed as part of

the self-calibration process. Zhang [114] performed self calibration with a moving

stereo rig, thus achieving redundancy compared to monocular sequence. They also

empirically found that depths reconstructed are of good quality despite error in fo-

cal length estimate, but the depths are reconstructed using triangulation from the

stereo pair (Type I measure in Tsai). Both did not address the accuracy of depth
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reconstructions under general motion-scene configurations using those erroneous

intrinsic parameters. Despite some works that suggest that depth reconstruction

is stable against error in calibration, there is still a paucity of theoretical evidence

that this notion is true for all motion-scene configurations.

Beside the work of Bougnoux [5], there have been many other works which report

on the fact that self-calibration algorithms are sensitive to noise and lack robustness

and reliability. Various researchers have analyzed the theoretical precision of the

intrinsic estimates. Various authors [50, 88, 90, 59] analyzed the critical motion

sequence in which no unique calibration can be obtained. Some of these general

results have practical importance for certain motions and the special case of two-

frame situation, which is also analyzed by Newsam et al. and Kahl and Triggs [50].

The significance of these works lies in that those configurations near to the critical

motion sequence would yield unstable intrinsic estimates. However, how these

uncertainties in estimating intrinsic parameters would in turn affect egomotion

estimates is not made clear in these papers.

Other sources of errors arise from various simplifications and inaccuracies in the

calibration process, and have indeed been the subject of various analysis. Lai

[55] analyzed how the estimation of camera orientation and position would be

affected when the offset of image centre and lens distortion are not included in the

calibration process. Similar analysis on the role of lens distortion were carried out

by [85, 109]. Lavest et al. [56] examined the influence of errors induced by the
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metrology of calibration points on the accuracy of the intrinsic parameters. The

results of these investigations support the notion that the effects of terms such as

distortion and image offset seem to be minimal and can be left out for a simplified

model.

Svoboda and Sturm [94] studied how uncertainty in the calibration parameters gets

propagated to the motion parameters. Our work is closest in spirit to [94] in that

it examines the effects of the intrinsic parameters on the estimation of the extrinsic

parameters. However, instead of a statistical approach (as in [94]), we adopt a

geometrical approach. The conclusions from [94] regarding the impact on the

rotational component of the egomotion estimates are not clear, though it seems that

the rotational estimates can be quite badly affected. The authors noted that the

influence of the precision of the calibration parameters on the motion parameters

estimation depends on the types of camera motion and the scene type. However,

they did not further explore this scene-motion dependency. We investigate this

dependency in a geometric manner and reveal further insights into this dependence.

Another work that investigated the coupling between the intrinsic and the extrinsic

parameters is the recent work by González et al [36]. They have shown experimen-

tally that there exists a strong coupling between the intrinsic and the extrinsic

parameters. Most calibration methods, even those using static camera and calibra-

tion objects, suffer instability in the sense that that the set of intrinsic parameters

returned by a calibration method suffered important variations under small dis-
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placements of the camera relative to the calibration pattern. Similar results have

been obtained for the extrinsic parameters when the camera only changed its inter-

nal configuration (i.e., when it zooms in or out) and not its relative position to the

calibration pattern. In both cases the instability affects principally the parameters

that are directly related with the element varied in the experiment. Therefore,

when focal length varies the pattern distance is very unstable and vice versa. Sim-

ilar results are obtained for the optic center when the pattern is displaced parallel

to the camera. Although the error functions minimized by these different cali-

bration techniques (usually minimizing the reprojection errors in the image or the

reconstruction errors of the reference points in the 3-D space) yield similar error

levels, it does not guarantee that the parameter estimates converge to the ground

truth values, which is a serious problem if we want to use the calibrated camera

in mobile applications. The main practical implication of this fact is that, when a

camera is calibrated with any of these methods, we are “calibrating” the camera

with just that pose. When subsequently the camera extrinsic parameters change, as

in mobile applications, can we assume these “calibrated” intrinsic values for SFM

analysis? Even the purported good quality of reconstructed depths under error in

focal length estimate (as claimed by [5, 114]) might be true only with respect to

that particular camera pose? In other words, one can get jointly optimal camera

parameters (intrinsic and extrinsic) and depths in a calibration algorithm (opti-

mal with respect to the cost function but without necessarily meaning that these

camera parameters are correct), but when the camera pose changes, and without
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calibrating again but rather using this fixed calibrated intrinsic parameters, the in-

trinsic parameters might be erroneous and these errors might affect the subsequent

motion analysis. If errors in the intrinsic parameters indeed worsen the estima-

tion of extrinsic motion parameters, depth reconstruction would be affected as the

latter critically depends on accurate egomotion estimation, especially in certain

scene-motion configuration such as forward translation [12]. Thus it is abundantly

plausible that the task of depth reconstruction in the face of calibration uncertainty

is a more complicated task than might be thought at first.

Finally, Oliensis [74] showed that unknown focal-length variations strengthen the

effects of the bas-relief ambiguity. This is attributed to the simple fact that the

zoom flow is essentially not recoverable from the forward translation component.

Coupled with the rotation-translation coupling that gives rise to the original bas-

relief valley, this new coupling renders all directions of the translation not accurately

recoverable. The paper also went on to note that the motion errors depend simply

on the estimated focal length and image center (e.g. the estimated translation

differs from the true translations by factors of the unknown focal length), but

this is based on various assumptions such as the non-translational terms can still

be annihilated in the proposed algorithm and that second order terms are small.

We look at this relationship between the extrinsic motion and the estimated focal

length in detail, assuming that the camera is not undergoing zoom motion, and

we found here that errors in the focal length modifies the phenomenon of bas-
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relief ambiguity in a non-simple way and thus affects the determination of camera

extrinsic motion.
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Chapter 3

Error Characteristics of SFM

with Unknown Focal Length

This chapter presents a theoretical analysis of the behavior of “Structure from

Motion” (SFM) algorithms with respect to the errors in the intrinsic parameters of

the camera. We demonstrate both analytically and in simulation how uncertainty

in the calibration parameters gets propagated to motion estimates. We studied

the behavior of the estimation of the focus of expansion (FOE) in the case that

the camera is well calibrated except that the focal length is estimated with error.

The results suggest that the behavior of the bas-relief ambiguity is affected by the

erroneous focal length. The amount of influence depends on the relative direction

of the translation and rotation parameters of the camera, the field of view and scene
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depth. Simulation with synthetic data was conducted to support our findings.

3.1 Problem Statements

Much work about the SFM error analysis has been done in the last 15 years [1, 24,

111]. Various ambiguities such as bas-relief ambiguity and opposite minimum were

reported in the literature and were mainly attributed to the presence of noise in the

image measurements [1, 24, 15]. In [110], Xiang and Cheong argued that all the

major ambiguities are actually inherent to the optimization criteria adopted and

thus are algorithm-independent and will persist even with noiseless input. Although

dealing with the statistical adequacy of the optimization criteria is important for

understanding the effect of noise, it is equally important to understand the detailed

nature of the inherent ambiguities caused by the geometry of the problem itself and

thus cannot be removed by any statistical schemes. In this thesis, we adopt such

geometrical approach and further the analysis of SFM with erroneous intrinsic

calibration and uncalibrated scenario.

In a recent critique of SFM research, Oliensis [75] argues that more comprehensive

theoretical as well as phenomenological analyses of algorithm behavior should be

carried out under all sorts of typical scenarios. Such analyses are important not only

for understanding algorithms’ properties, but also for conducting good experiments
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and for developing the best algorithms. Based on the work of [110], we propose

in this thesis an approach that lends itself towards understanding the behavior of

SFM algorithms in uncalibrated scenario. In particular, we are concerned with the

limitation of SFM algorithms in the face of errors in the estimation of the focal

length. This is important for camera systems with zoom capability, and online

calibration cannot be always done with the requisite accuracy. Instead of dealing

with specific algorithms, each using different optimization techniques, we study

one class of algorithms based on the weighted differential epipolar constraint. It is

based on the difference between the original optical flow and the reprojected flow

obtained via a back projection of the reconstructed depth, analogous to the distance

between the observed feature and the reprojection of the recovered structure in the

discrete case. This criterion permits a unifying view of these different algorithms.

It also allows us to develop a simple and explicit expression for the residual error

in terms of the errors in the 3-D motion estimates and the intrinsic parameters and

enables us to predict the exact conditions likely to cause ambiguities. The error

surfaces under a wide range of motion-scene configurations are plotted, from which

several results are drawn.

Like the SFM algorithms, calibration algorithms are also sensitive to noise and

lack robustness and reliability. Given the difficult of calibrating the camera pre-

cisely, projective approaches aim to perform SFM without calibration, that is all

the calibration information is neglected and the intrinsic camera parameters are
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assumed to vary freely from frame to frame. Although in some applications a full-

fledged Euclidean reconstruction is not necessary, for instance in visual servoing or

in image-based rendering, the projective approach may be too general to a fault.

Although enormous amount of work on developing projective algorithms have been

carried out by researchers, we still do not know when the projective approach is the

right tool for its main task of dealing with calibration uncertainty. The projective

approach assumes zero knowledge of the calibration. In practice, there are always

something we may say about the intrinsic camera parameters. It is questionable

whether such neglect of available information leads to an increased or decreased

robustness. To answer this, one thing we need to know is whether the calibration

uncertainty is large enough in practice to affect the goal of motion estimation and

depth reconstruction. Oliensis [75] reported that even small errors in the estima-

tion of focal length led to significant errors in the 3-D motion estimation. In this

thesis, we use the error surface to illustrate the behavior of egomotion estimation

with erroneous calibration of the focal length.

If such an understanding can be achieved, we can better judge if there is a need

of constant recalibration using robust but computationally intensive algorithms,

or we can accept certain errors in the focal length estimate but at the same time

are fully aware of the limit of the applicability of such algorithm. Due to space

limitation, we assume in this thesis no errors in other intrinsic parameters. However

the extension to those cases is not difficult and the results remain largely the same.
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3.2 Optimization Criteria for SFM

Most of the existing cost functions for SFM are based on some forms of the epipolar

constraint which was proposed by Longuet-Higgins [60]. The epipolar constraint

relates the 3-D motion parameters with the image displacements in a manner inde-

pendent of depth. In the discrete case, the SFM problem amounts to the estimation

of the fundamental matrix F (or the essential matrix E in the calibrated case) based

on a sufficiently large set of point correspondences [28] from the following epipolar

equation:

p1Fp2 = 0 (3.1)

where p1 and p2 are the corresponding image points in the two views. A cou-

ple of non-linear optimization criteria have been proposed to properly reflect the

geometric meaning of the epipolar equation, namely, p1 must lie on the epipo-

lar line of p2 given by Fp2 and p2 on the epipolar line of p1 given by FTp1.

The most commonly used three criteria are respectively based on the distance be-

tween the observed point and its corresponding epipolar line (denoted by JD1), the

gradient-weighted epipolar error (denoted by JD2) and the distance between the

observed point and the reprojection of the reconstructed depth (denoted by JD3).

Zhang [112] studied the relationship between these three criteria under different

motion configurations. JD2 was recommended since it is equivalent to the most

optimal JD3 under most configurations and yet is computationally more efficient.
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In the differential case, similar motion estimation algorithms can be developed

based on the differential epipolar constraint. The epipolar equation in the differ-

ential case can be written as [6]

pT ¯̂vṗ + pT¯̂v ¯̂wp = 0 (3.2)

from which one can minimize the following cost function

JE1 =
n∑

i=1

(
pT

i
¯̂vṗi + pT

i
¯̂v ¯̂wpi

)2
(3.3)

where n is the number of image velocity measurement. The constraint JE1 can also

be written in the following equivalent form:

JE1 =
n∑

i=1

((
[ṗi]2 −ˆ̇proti

)
·̂ ṗ⊥tri

)2

(3.4)

It says that in the image plane the derotated flow vector [ṗi]2 −̂ ṗroti
should be par-

allel to the epipolar directionˆ̇ptri
, or equivalently perpendicular toˆ̇p

⊥
tri

. However,

a bias of the estimated translation is well-known to be present when a linear algo-

rithm based on (3.4) is applied. In view of this bias, a statistically more adequate

implementation of the differential epipolar constraint should be

JE2 =
n∑

i=1




(
[ṗi]2 −ˆ̇proti

)
·̂ ṗ⊥tri

|| [ṗi]2 −ˆ̇proti
|| · ||̂̇p⊥tri

||




2

(3.5)

Like the discrete case, there are a variety of other non-linear methods which are

basically different weighted version of JE1. In [110] a cost function which amounts

to a weighted version of JE1 is proposed:

JR =
n∑

i=1



ˆ̇ptri

·
(
[ṗi]2 −ˆ̇proti

)⊥

ˆ̇ptri
· ni




2

(3.6)
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where ni is a unit vector in the image plane representing a particular direction as-

sociated with the ith image point. Various weighted differential epipolar constraints

differ mainly in the choice of this unit vector n. It was also shown that the key

properties of the various cost functions used in different algorithms are determined

by the angle between the two vectors involved in the dot product in the numerator;

the choice of n in the denominator might affect the detailed numerical properties

but has little influence on key properties such as the formation of the bas-relief

valley on the error surface.

3.3 Behavior of motion estimation algorithms with

erroneous estimated focal length

The preceding section reviewed the general behavior of motion estimation algor-

tihms for the calibrated case. This section will investigate the behavior of extrinsic

motion estimation under erroneous camera calibration. In particular, we consider

how extrinsic motion estimation would be affected by fixed errors in the estimates

of the focal length and the principal point offset.

We have seen in the preceding section that how studying the error surface of JR al-

lows us to understand the behavior of SFM algorithms in an algorithm-independent

way. Thus, we first need to express the cost function JR in terms of the various



40

component errors in the 3-D motion estimates together with terms arising from

errors in the estimates for the intrinsic parameters. For clarity of presentation,

we first consider the case where the only intrinsic parameter with error is the focal

length, leaving the full case to section 3.3.3. Substitutingˆ̇ptri = (xi − x̂0, yi − ŷ0)
T ,

[ṗi]2 = (ui, vi)
T =

(
xi−x0

Zi
+ uroti ,

yi−ŷ0

Zi
+ vroti

)T

and ṗroti = (ûroti , v̂roti)
T into

Equation (3.6) we have:

JR =
n∑

i=1


(xi − x̂0, yi − ŷ0) ·

(
vrote − y0e

Zi
, x0e

Zi
− urote

)

(xi − x̂0, yi − ŷ0) · ni




2

(3.7)

where the various error terms are expanded as follows:

(x0e , y0e) = (x0 − x̂0, y0 − ŷ0)

urote = −
(
βf − β̂f̂

)
+

(
α

f
− α̂

f̂

)
xiyi −

(
β

f
− β̂

f̂

)
xi

2 + γeyi

vrote =
(
αf − α̂f̂

)
+

(
α

f
− α̂

f̂

)
yi

2 −
(

β

f
− β̂

f̂

)
xiyi − γexi (3.8)

Besides the usual errors in the extrinsic motion parameters, new terms appear

in the above expression due to the inaccurate focal length estimate f̂ . For nota-

tional convenience, we shall henceforth omit the subscript i in the expression of JR,

although it is understood that the summation runs over all feature points. Fur-

thermore, we denote the terms in the numerator of Equation (3.7) (x− x̂0, y − ŷ0)
T

and
(
vrote − y0e

Z
, x0e

Z
− urote

)T
as t1 and t2 respectively, as in [110], and we will be

analyzing how this angular relationship between t1 and t2 — the key to the forma-

tion of the bas-relief valley — will change in the light of calibration errors. We also
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adopt the similar terminology that for the vectors t1 and t2, t1,n and t2,n denote

the nth order component with respect to x and y; thus we have:

JR =
∑(

t1 · t2

t1 · n
)2

t1 = t1,0 + t1,1 (3.9)

t2 = t2,0 + t2,1 + t2,2 + t2,Z

where

t1,0 = (−x̂0,−ŷ0)
T

t1,1 = (x, y)T

t2,0 =
((

αf − α̂f̂
)

,
(
βf − β̂f̂

))T

t2,1 = (−γex,−γey)T

t2,2 =

((
α

f
− α̂

f̂

)
y2 −

(
β

f
− β̂

f̂

)
xy,−

(
α

f
− α̂

f̂

)
xy +

(
β

f
− β̂

f̂

)
x2

)T

t2,Z =
(
−y0e

Z
,
x0e

Z

)T

Since the depth Z may be dependent on x and y in a complex manner, we use the

notation t2,Z without explicitly specifying the order of this term.

Equations (3.7) and (3.8) show that for any given data set (x, y, Z), the residual

error is a function of the true FOE (x0, y0), the estimated FOE (x̂0, ŷ0), the error in

the rotation estimates (αe, βe, γe) and the estimated focal length f̂ . In comparison

with the calibrated case, we immediately note the following:
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1. The estimation of γ is quite independent of camera calibration since the γe

term is not coupled with the intrinsic parameters in any meaningful way.

Thus, geometrically speaking, γ can be estimated well, like in the case of

calibrated SFM.

2. Unlike the calibrated case where the cost function only depends on errors in

the rotational parameters and not the true rotational parameters themselves

(for the calibrated case, t2,0 = (αef, βef)T and t2,2 = (αe
y2

f
− βexy

f
,−αexy

f
+

βe
x2

f
)T ), here the true rotational parameters do play a part in the formation

of the error surface.

3.3.1 Changes to the Bas-Relief Valley

Clearly, as in the calibrated case [110], the properties of the motion estimation

algorithms depend on the angular relationship between the terms in the numerator

of equation (3.7). In particular, if there exists a class of motion solutions that make

the dot product in the numerator vanish, then ambiguities exist. We recapitulate

the two conditions discussed in [110] that should be satisfied to make the numerator

of the cost function vanish:

(1) making t1 and t2 perpendicular to each other, and

(2) making ||t2|| small. (3.10)
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Condition (2) helps because condition (1) can never be completely satisfied at every

image point under general motion-scene configuration with depth Z not a constant

value. Making ||t1|| small does not help since it appears in both the numerator

and the denominator.

From the expressions of t1 and t2 in Equation (3.9), we can see that t1,0 , t2,0

and t2,Z are pointing towards constant directions for all the feature points. If we

consider t1,1 as a perturbation to the constant-direction vector t1,0 and (t2,1 + t2,2)

as a perturbation to (t2,0+t2,Z),1 then making the constant-direction vectors (t2,0+

t2,Z) and t1,0 perpendicular to each other is a reasonable choice for the minimization

of JR. Thus we have

y0e − αfZ + α̂f̂Z

x0e + βfZ − β̂f̂Z
=

ŷ0

x̂0

(3.11)

or equivalently

y0e − αefZ − α̂feZ

x0e + βefZ + β̂feZ
=

ŷ0

x̂0

(3.12)

The last equation shows that, in the case f̂ = f , the last terms in both the numera-

tor and the denominator on the left hand side vanish. The equation reduces to the

calibrated case, and as discussed in [110] it can be satisfied by obeying two inde-

pendent constraints, the first one relating to the translational parameters x0e

y0e
= x̂0

ŷ0

1This statement means that we require the feature points to be sufficiently evenly distributed

such that the vectors t1,1 are evenly spread on either side of t1,0 and the sum of vectors t2,1 and

t2,2 are evenly spread on either side of t2,0 +t2,Z, and the distribution of depth Z is symmetrical

with respect to the t1,0 direction.
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(which implies x0e

y0e
= x0

y0
), and the second one relating to the rotational parameters

αe

βe
= − ŷ0

x̂0
. The first constraint characterizes the valley that gives rise to the bas-

relief ambiguity found in calibrated SFM algorithms. However, in the uncalibrated

case, when the error in the focal length fe is significant, αe and βe cannot be freely

varied to satisfy the second constraint αe

βe
= − ŷ0

x̂0
. Rather, if there is significant

error in the estimate f̂ , the term t2,2 can no longer be treated as second order

effect and be ignored relative to t2,0. Comparing terms in t2,0 and t2,2, we observe

that even if the FOV is small (i.e. f is large) such that α
f
¿ αf and β

f
¿ βf , the

corresponding relationships for the estimated terms α̂

f̂
¿ α̂f̂ and β̂

f̂
¿ β̂f̂ may not

be valid, and thus we cannot assert ||t2,2|| ¿ ||t2,0|| . This is the case when f̂ is

under-estimated such that the estimated FOV is large. Under such circumstance,

making ||t2,2|| small is just as important towards minimizing the cost function JR.

Clearly this gives rise to the following constraint on the rotational estimates:

α

f
=

α̂

f̂
,

β

f
=

β̂

f̂
(3.13)

Note that in the above, the quantity f̂ is fixed (since we are considering fixed focal

length estimate); thus the two equations in (3.13) fully specify α̂ and β̂. With

this constraint, αe and βe cannot be freely varied such that the original calibrated

constraint αe

βe
= − ŷ0

x̂0
is satisfied. Thus to satisfy constraint (3.11), we cannot

decompose it into two independent constraints like in the calibrated case. Rather,
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to satisfy both (3.11) and (3.13) at the same time, we substitute (3.13) into (3.11)

and obtain a single constraint:

y0e − αfZ

(
1−

(
f̂
f

)2
)

x0e + βfZ

(
1−

(
f̂
f

)2
) =

ŷ0

x̂0

(3.14)

which can also be written as

y0 − αfZ

(
1−

(
f̂
f

)2
)

x0 + βfZ

(
1−

(
f̂
f

)2
) =

ŷ0

x̂0

(3.15)

The above expresses a constraint on the direction of the estimated FOE (x̂0, ŷ0) that

dictates the formation of the bas-relief valley. Compared to the original bas-relief

constraint in the calibrated case ŷ0

x̂0
= y0

x0
, which is a straight line passing through

the true FOE and the origin, this modified constraint indicates a “bas-relief” valley

that has a different slope in general given by
y0−αfZ

(
1−

(
f̂
f

)2
)

x0+βfZ

(
1−

(
f̂
f

)2
) . In particular, consider

the shift in the FOE estimate (x̂0, ŷ0) caused by the term βfZ

(
1−

(
f̂
f

)2
)

and

−αfZ

(
1−

(
f̂
f

)2
)

. One can also interpret this shift as an additional bias to the

FOE estimate caused by the error in the focal length estimate, over and above

the well-known bias towards the optical center. This bias was also investigated

in [65], but their approach has difficulty in analytically deriving the bias as a

function of the various factors. Using simulation, they seemed to obtain the result

that under-estimation of focal length results in a larger bias than over-estimation

of focal length. We confirm and explain later that the bias is indeed larger for
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under-estimation of focal length, but our approach also allows us to show how the

direction of the FOE bias is a function of the actual translation and rotation.

Furthermore, recall from equation (3.10) that ambiguity is more likely to arise if

||t2|| is also small. Of the terms in ||t2||, the rotational errors αe and βe in ||t2||

can no longer be freely varied due to equation (3.13); thus x̂0 and ŷ0 are clearly

constrained in magnitude in order to make ||t2,Z || and thus ||t2|| small. In other

words, (x̂0, ŷ0) is not only just constrained in direction but also in magnitude;

this is unlike the small field calibrated case, where any residual error caused by

the translational errors can be compensated for by a suitable choice of αe and

βe. Accordingly, we expect in general that the bas-relief valley might not straddle

across the entire visual field. In particular, the feasibility of the flipped minimum

solution [75] that exists under calibrated scenario (i.e. (x̂0, ŷ0) = −(x0, y0)) would

be diminished. On the other hand, due to the presence of the Z term in the

constraint (3.14), we expect the shape of this bas-relief valley to be markedly

affected by the way the scene points are distributed. For a cluttered scene with non-

smooth depth distribution, the valley will be less well-defined. That is, instead of a

narrow and elongated valley that stretches across the entire visual field, it would be

broader and rather reduced in length to a local quadrant. We also expect more local

minima in the solution space due to the non-smooth Z term in the constraint (3.14),

which could pose convergence problem for a Euclidean SFM algorithm assuming

erroneous calibration parameters. As a result, using a projective SFM algorithm



47

under such situation might have the advantage of facing less of a local-minimum

problem.

In sum, the Euclidean SFM algorithms assuming erroneous calibration parameters

exhibit different behavior from the error-free case, and these deviations are more

distinct when either the actual FOV or the estimated FOV is large, because then

the constraint on α̂ and β̂ (equation (3.13)) is stronger. As shown in Figure 3.3.1,

this means that under-estimating f gives rise to more pronounced shift of the

estimated FOE compared to over-estimating f (given the same magnitude in fe).

This is consistent with the somewhat paradoxical finding of [65] that larger FOV

gives rise to larger bias in the translation estimate. Note, however, that over-

estimating f results in a larger variance in the FOE estimate under the influence

of random image noise. Equation (3.13) also means that we can recover the ratio

of α to β with better accuracy. This can be seen in Figure 3.2, where with a FOV

of 53o, the curves f̂
f
, α̂

α
and β̂

β
increase approximately in tandem, which means that

the ratio of α to β can be recovered relatively well.

3.3.2 Visualizing the Error Surface JR

Further properties of the motion estimation process under calibration errors will be

visualized through plotting the residual of the cost function JR. Before doing so, let

us discuss briefly the plotting of this surface. For easier visualization, we consider a
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Figure 3.1: Over- and under-estimating focal length f by the same amount (i.e.

same |fe|) has different degree of influence on the estimation of FOE. The true

FOE is marked with “×”. Estimated FOEs with under- and over-estimated focal

length are marked with “+” and “◦” respectively. There are 50 trials for over-

estimating f and 50 trials for under-estimating f . An isotropic random noise is

added to the optical flow on each trial. Under-estimating f (“+”) gives rise to

more pronounced shift of the estimated FOE compared to over-estimating f (“◦”);

however, the latter displays a larger variance in the estimate under the influence

of random image noise.
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Figure 3.2: With a relatively wide FOV of 53o, the constraint exerted on the rota-

tional estimates α̂ and β̂ is strong. The curves f̂
f
, α̂

α
and β̂

β
increase approximately

in tandem with increasing f̂ , which means that the ratio of α to β can be recovered

well.
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3-dimensional surface, where each point on the surface represents a FOE hypothesis,

with the height representing the residue JR. Given a particular FOE hypothesis

and a fixed (possibly erroneous) focal length estimate, the rotation variables are

solved via a linear algorithm while minimizing JR. By computing the residual error

JR for each FOE candidate, we can describe the entire residual surface completely.

Some assumptions are made regarding the distribution of the feature points and

the depths. We assume that the feature points are evenly distributed in the image

plane, as is the distribution of the “depth-scaled feature points” ( x
Z
, y

Z
). The latter

assumption generally requires that the distribution of depths are independent of the

corresponding image co-ordinates x and y. Different combinations of translation

and rotation with over- and under-estimation of f are simulated. These simulations

are carried out based on the “epipolar reconstruction” scheme, that is, setting n in

equation (4.1) to be along the estimated epipolar direction (we reiterate that the

results obtained are independent of the choice of n). Given this scheme and for a

particular FOE candidate ((̂x0), ŷ0), JR is given by:

JR =
∑


c1 −

(
c2α̂ + c3β̂ + c4γ̂

)

η




2

(3.16)
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where

c1 = u(y − ŷ0)− v(x− x̂0)

c2 =
xy

f̂
(y − ŷ0)− (

y2

f̂
+ f̂) (x− x̂0)

c3 =
xy

f̂
(x− x̂0)− (

x2

f̂
+ f̂)(y − ŷ0)

c4 = x (x− x̂0) + y (y − ŷ0)

η =
√

(x− x̂0)2 + (y − ŷ0)2

and we minimize JR over all points in the image to solve for the rotation variables

α̂, β̂, γ̂. This is a typical linear least squares fitting problem, which we solved by

the singular value decomposition method. We performed this fitting for each fixed

FOE candidate over the whole 2-D search space and obtained the corresponding

reprojected flow difference JR. These residual values JR were then plotted in such a

way that the image intensity encoded the relative value of the residual (bright pixels

corresponded to high residual values and vice versa). The imaging surface was a

plane with a dimension of 512× 512 pixels; its boundary was delineated by a small

rectangle in the center of the plots (see Figure 3.3). The residuals were plotted over

the whole FOE search space covering the entire hemisphere in front of the camera.

We used visual angle in degree rather than pixel when stepping through the FOE

search space; thus the coordinates in the plots were not linear in the pixel unit.

The synthetic experiments have the following parameters: unless otherwise stated,

the focal length was 512 pixels which meant a FOV of approximately 53o; there

were 200 feature points distributed randomly over the image plane, with depths
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ranging from one to three times the focal length (i.e. 512 to 1536 pixel units).

The camera was undergoing a general translation with v = (1, 1, 1) pixel units per

second.

3.3.3 Further properties of motion estimation with calibra-

tion errors

We use the next few figures (Figures 3.3 to 3.8) to corroborate both predictions

made in the preceding subsection as well as further observations made in this

subsection. For all figures, true FOEs and the estimated FOEs are indicated by

“×” and “+” respectively.

1. Influence of FOV. Figure 3.3 illustrates the influence of visual field. Under

large FOV (53o), the second order flow field t2,2 exerts a stronger influence

through equation (3.13), which constrains the value of α̂ and β̂. As discussed

above, this constraint on α̂ and β̂ in turn reduces the length of the valley

formed by the bas-relief ambiguity, while at the same time the rotation of the

bas-relief valley is more pronounced, although the valley itself becomes more

“diffused” and shallow (Figure 3.3a). In small FOV (28o), the constraint

(3.13) is less effective; the constraint in (3.11) can be broken down into two

independent constraints like in the calibrated case, resulting in a bas-relief

valley that stretches across almost the entire visual field, with little rotation
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(a) (b)

Figure 3.3: The bas-relief valley is rotated if there is an error in the focal length

estimate (50% under-estimated here). v = (1, 1, 1), w = (0.001, 0.001, 0.001).

(a) FOV=53o (b) FOV=28o. For all figures, true FOEs and global minima are

highlighted by “×” and “+” respectively. Comparison between (a) and (b) reveals

the influence of FOV on the amount of bas-relief valley rotation. Larger FOV

results in larger rotation and the bas-relief valley becomes less well-defined and

less elongated.

in the direction of this valley compared to the calibrated case (Figure 3.3b).

2. Error in the estimate f̂ . The relative importance of t2,2 is also affected

by the estimated focal length f̂ . This can be seen by pitting the magnitude

of the various terms of t2,2 against those of t2,0, which include among others,

α
f

versus αf , β
f

versus βf , α̂

f̂
versus α̂f̂ , and β̂

f̂
versus β̂f̂ . Given a particular

f , under-estimating f (i.e. f̂ becomes small) has the effect of enhancing the

second order effect through raising α̂

f̂
compared to α̂f̂ and β̂

f̂
compared to β̂f̂ .

Thus under-estimating f would in general produce a stronger modification to

the bas-relief valley compared to over-estimating f . This is clearly illustrated
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(a) (b)

Figure 3.4: The influence of estimate f̂ (with f = 512) on the amount of bas-relief

rotation. (a)f̂ = 256, focal length under-estimated, with distinct rotation of the

bas-relief valley, (b)f̂ = 1024, focal length over-estimated, but rotation of the bas-

relief valley not conspicuous. Bas-relief valley also becomes less well-defined under

large estimated FOV in (a).

in Figure 3.4, where even the amount of f over-estimation is larger than the

amount of under-estimation, the tilting of the bas-relief valley for the former

(Figure 3.4b) is much less than that of the latter (Figure 3.4a). What this

means is that if we want to recover the true FOE, it is better to over-estimate

f than to under-estimate f . Note also that due to the larger estimated FOV

in Figure 3.4a, there is a shortening of the bas-relief valley; its more diffused

character is also clear.

3. Direction of valley rotation. Referring to equation (3.15), the direction

in which the bas-relief valley rotates depends on a variety of factors such as

the sign of fe and the angle between (α, β) and (x0, y0). We illustrate the

relationship by first looking at the case when α > 0, β > 0, x0 > 0 and
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y0 > 0. The direction of rotation depends on the sign of fe in the following

way. If fe > 0, the signs of the terms αfZ

(
1−

(
f̂
f

)2
)

and βfZ

(
1−

(
f̂
f

)2
)

in equation (3.15) are both positive. It is then clear that the new slope of

the bas-relief valley ŷ0

x̂0
=

y0−αfZ

(
1−

(
f̂
f

)2
)

x0+βfZ

(
1−

(
f̂
f

)2
) deviates from the original direction

y0

x0
(when fe = 0) in a clockwise manner (Figure 3.4a). Conversely, when

fe < 0, the rotation in the bas-relief valley is in an anti-clockwise direction.

However the amount of rotation is not so conspicuous compared to the case of

fe > 0 (Figure 3.4b). The reason for this anisotropy with respect to the sign

of fe has been explained earlier by their respective effects on the importance

of the t2,2 term. To aid further discussion for all the other cases, we define

the direction of various vectors as follows. For instance, when α > 0 and

β > 0, we say that the vector (α, β) is in the first quadrant. Carrying out the

analysis for all the other cases, we find that the bas-relief valley rotates as fol-

lows. For the case of under-estimation of f , if (α, β) is in the same quadrant

as (x0, y0), the bas-relief valley rotates in a clockwise direction (Figure 3.5,

first row). Conversely, if the two vectors (α, β) and (x0, y0) reside in diamet-

rically opposite quadrants, the bas-relief valley rotates in an anti-clockwise

direction (Figure 3.5, second row). For the case of over-estimation of f , this

relationship is exactly reversed. If the two vectors (α, β) and (x0, y0) are in

adjacent quadrants (e.g. quadrants 1 and 2), the direction of valley rotation

can be clockwise or anti-clockwise or there can be no rotation, depending

on the relative magnitudes of the various terms. For instance, in Figure 3.6,
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the “directions” of (x0, y0) and (α, β) are in the first and fourth quadrant re-

spectively and f is under-estimated. The bas-relief valley rotates in different

directions depending on the relative magnitude of α and β. If we regard the

movement of the bas-relief valley as an indication of the amount of bias in

the FOE estimate, caused by an error in the focal length estimate, we can

see that the bias is not necessarily towards the image center but depends on

a variety of factors discussed above.

4. Amount of FOE shift. Having looked at the direction of the bias in the

FOE estimate, we next examine the quantitative aspect of this bias, given

different amount of error in the focal length estimate f̂ . Figure 3.7 illustrates

the error surface for varying amount of error in the estimate f̂ , and for a

relatively large FOV of 53o under which we expect the effect of bias caused

by the error in the estimate f̂ would be more keenly felt. It can be seen that

even with a rather large under-estimation error of 50% in f̂ (the rightmost

point of Figure 3.7), the relative shift in the estimate x̂0 is only about 37%.

For the case of over-estimation in f̂ , the FOE estimate deviates very little

away from the calibrated case. This anisotropy has been explained before

and is due to effect of f̂ on the relative importance of the t2,2 term, which in

turn gives rise to equation (3.15). Thus, to the extent that equation (3.15) is

operative, we can then characterize the maximum amount of shifts in x0 and

y0 respectively by the two terms βfZ

(
1−

(
f̂
f

)2
)

and αfZ

(
1−

(
f̂
f

)2
)

in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.5: Rotation of the bas-relief valley for (x0, y0) and (α, β) in different

quadrants, with under-estimated focal length. In the first row, where (x0, y0)

and (α, β) are in the same quadrant, the bas-relief valley experiences a clock-

wise rotation; whereas in the second row, where (x0, y0) and (α, β) are in dia-

metrically opposite quadrants, the bas-relief valley rotates in an anti-clockwise

direction. W = 1, γ = 0.001 f = 512 and f̂ = 256 for all figures. The (U, V )

and (α, β) are respectively (a) (1, 1), (0.001, 0.001) (b) (1,−1), (0.001,−0.001) (c)

(−1, 1), (−0.001, 0.001) (d) (−1,−1), (−0.001,−0.001) (e) (−1,−1), (0.001, 0.001)

(f) (−1, 1), (0.001,−0.001) (g) (1,−1), (−0.001, 0.001) (h) (1, 1), (−0.001,−0.001).
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(a) (b)

Figure 3.6: Rotation of bas-relief valley when the “directions” of (x0, y0) and (α, β)

are in adjacent quadrants. (U, V, W ) = (3, 1, 1), f = 512, and f̂ = 256. Residual

error maps are plotted with (a) (α, β, γ) = (0.003,−0.001, 0), and (b) (α, β, γ) =

(0.001,−0.007, 0). The direction of rotation is clockwise for (a) and anti-clockwise

for (b).

that equation. To pin down the value for such a bound, we assume that the

effect of Z in the above two terms can be represented by some average depth

Zave. Then in relative terms, the changes to x0 can be expressed as follows:

x0 −
(

x0 + βfZave

(
1−

(
f̂
f

)2
))

x0

=
βf

fU/Zave

W


1−

(
f̂

f

)2



≈ upan

utrans−x

W


1−

(
f̂

f

)2

(3.17)

where upan and utrans−x are respectively the horizontal flow components due

to panning rotation β and lateral translation U with some average depth

Zave. Similar expression can be obtained for the relative change in the esti-

mate for y0. It can be seen that the relative change is affected by the ratio of

the rotational flow upan and the translational flow utrans−x; which is in turn



59

moderated by a multiplicative factor W

(
1−

(
f̂
f

)2
)

. Thus, for the simula-

tion conducted in Figure 3.7, where the translational flow and rotational flow

are approximately equal in magnitude and W = 1, a large under-estimation

error of 50% in f̂ would result in a bound of 75% in the FOE shift. That

this bound is much larger than the actual shift (37%) obtained could be due

to violation of the two assumptions made in deriving this bound: (1) the t2,2

term is maximally effective, and (2) scene points at different depths play an

equal role such that their effect can be represented by some average depth

Zave. Despite the looseness and approximate nature of the bound, we can

use equation (3.17) as a guide in assessing whether the resulting bias in FOE

is acceptable when using an approximate value of the focal length in a cali-

brated SFM algorithm, or it is better to face the tricky problem of estimating

the focal length (as discussed in [5, 42, 49]) using a general uncalibrated SFM

algorithm. As an illustrative example, consider a more typical error of 10%

in the estimate f̂ and under the same motion-scene configuration as above:

the bound obtained via equation (3.17) for the relative FOE shift would be

19% (for under-estimation of f). Furthermore, this is likely to be a very

loose bound; the actual shift obtained in the simulation is only 4%. Thus

we might want to proceed with a calibrated SFM algorithm even though the

focal length estimate has small error.

5. Effect of erroneous principal point. Besides being affected by error in
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Figure 3.7: The amount of shift in the estimated FOE with different errors in

the estimated focal length. The true focal length is 512, whereas the estimated

focal length vary from 256 (50% under-estimation) to 768 (50% over-estimation),

with a step size of 10% error. The translational and rotational parameters are

(U, V, W ) = (1, 1, 1) and (α, β, γ) = (0.001, 0.001, 0.001) respectively. True FOE

lies at the point (512, 512) on the bas-relief valley. The estimated FOEs deviate

very little away from the true solution for the case of over-estimation in f̂ . For the

case of under-estimation in f̂ , the amount of shift in the FOE is more significant.

However, even with a rather large under-estimation error of 50% in f̂ , the relative

shift in the estimate x̂0 is only about 37%.
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the focal length estimate, the bas-relief valley is also changed by error in

the principal point estimate. We use (xs, ys) to represent an image pixel

location in an image coordinate system with its origin located at the lower

left corner of the image. If the principal point of the camera is situated at

(Ox, Oy) in this new coordinate system, then (x, y) and (xs, ys) are related by

(x, y) = (xs − Ox, ys − Oy). Given an error (Oxe , Oye) in the principal point

estimate, the corresponding error function JR can be shown to be given by2

JR =
∑


(x + Oxe − x̂0, y + Oye − ŷ0) ·

(
vrote − y0e+Oye

Z
, xoe+Oxe

Z
− urote

)

(x + Oxe − x̂0, y + Oye − ŷ0) · n




2

where urote and vrote are given by:

urote = −
(
βf − β̂f̂

)
+

α

f
xy − α̂

f̂
(x + Oxe) (y + Oye) (3.18)

−β

f
x2 +

β̂

f̂
(x + Oxe)

2 + γy − γ̂ (y + Oye)

vrote =
(
αf − α̂f̂

)
+

α

f
y2 − α̂

f̂
(y + Oye)

2 − β

f
xy (3.19)

+
β̂

f̂
(x + Oxe) (y + Oye)− γx + γ̂ (x + Oxe)

2Note that in deriving these equations and plotting the figures, the true and the estimated

FOEs should be independent of the choice of the principal point, as the FOE actually indicates

a direction in space—that of the 3D translation.
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The corresponding terms in t1 and t2 are:

t1,0 = (−x̂0 + Oxe ,−ŷ0 + Oye)
T

t1,1 = (x, y)T

t2,0 =
((

αf − α̂f̂
)

,
(
βf − β̂f̂

))T

t2,1 = (−γx + γ̂ (x + Oxe) ,−γy + γ̂ (y + Oye))
T

t2,2 = (
α

f
y2 − α̂

f̂
(y + Oye)

2 − β

f
xy +

β̂

f̂
(x + Oxe) (y + Oye) ,

−α

f
xy +

α̂

f̂
(x + Oxe) (y + Oye) +

β

f
x2 − β̂

f̂
(x + Oxe)

2)T

t2,Z =

(
−y0e + Oye

Z
,
x0e + Oxe

Z

)T

To derive the conditions conducive for the formation of the bas-relief am-

biguity, we apply the same condition that the constant-direction vectors

(t2,0 + t2,Z) and t1,0 should be perpendicular to each other. We obtain,

analogous to equation (3.11), the following:

y0e + Oye − αfZ + α̂f̂Z

x0e + Oxe + βfZ − β̂f̂Z
=

ŷ0 −Oye

x̂0 −Oxe

(3.20)

The corresponding condition for making ||t2,2|| small gives rise to the follow-

ing:

αxy

f
=

α̂(x + Oxe)(y + Oye)

f̂

βxy

f
=

β̂(x + Oxe)(y + Oye)

f̂

αy2

f
=

α̂(y + Oye)
2

f̂

βx2

f
=

β̂(x + Oxe)
2

f̂



63

which are obviously not satisfiable at all points of the image. However, if we

make the assumption that the second order effect ||t2,2|| only comes into play

at the peripheral image points where x and y are large and that the magnitude

of the error (Oxe , Oye) is small compared to x and y at these peripheral

points, then the original constraint α
f

= α̂

f̂
, β

f
= β̂

f̂
of equations(3.13) is still

approximately true. Substituting this into equation (3.20), we obtain, after

some manipulation, the following form:

y0e − αfZ

(
1−

(
f̂
f

)2
)

x0e + βfZ

(
1−

(
f̂
f

)2
) =

ŷ0 −Oye

x̂0 −Oxe

which is analogous to equation (3.14). It differs from equation (3.14) in that

the bas-relief valley has been translated by an uniform amount (Oxe , Oye) and

passes through the true principal point. Figure (3.8) illustrates the changes

caused by (Oxe , Oye) = (100,−100), for (a) when there is no error in f̂ , and

(b) when there is an under-estimation error of 50%. The bas-relief valleys

appear bent because we have used visual angle in degree rather than pixel as

the FOE search step and thus the co-ordinates in the plots were not linear in

the pixel unit.

6. Implication for various visual tasks. We have seen how the recovery of

the FOE is affected by errors in the calibration parameters. How do these

errors affect metric depth recovery? In [12], we have shown that the type

of motion executed is crucial for depth recovery. Under lateral movement,
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(a) (b)

Figure 3.8: The bas-relief valley with erroneous principal point estimate (Ôx, Ôy) =

(0, 0). The entire bas-relief valley is shifted by a constant amount and passes

through the true principal point at (100, -100) (indicated by “◦”). The bas-relief

valleys appear bent because we have used visual angle in degree rather than pixel

as the FOE search step and thus the co-ordinates in the plots were not linear in

the pixel unit. (U, V, W ) = (3, 1, 1), (α, β, γ) = (0.003,−0.001, 0), and f = 512.

(a) f̂ = 512 (b) f̂ = 256 (50% under-estimation).
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while it might be very difficult to resolve the ambiguity between translation

and rotation, depth orders of scene points can be recovered with robustness.

Conversely, under forward translation, it is difficult to recover structure un-

less favorable conditions such as large field of view exist, because under this

motion configuration, small error in the FOE estimate can introduce large

distortion in the depth recovered. In the case of uncalibrated motion, in spite

of uncertainty in the focal length, the qualitative aspect of the depth recovery

process is not affected, regardless of whether it is a lateral or a forward mo-

tion. That is, under lateral motion, despite possible rotation of the bas-relief

valley, the depth orders of scene points are shown in [12] to be preserved.

Conversely, under forward motion, the inherent difficulty in depth recovery

would have been compounded by the errors in the intrinsic parameters, as we

have shown earlier that errors in the intrinsic parameters introduce additional

bias to the FOE estimate.

Let us explore the ecological implications even we do suffer from depth dis-

tortion when we are executing forward motions. Such motions are mainly

used in moving towards an object or for navigating through an environment.

In the context of such tasks, we might only need aspects of structural in-

formation to successfully complete the tasks, rather than acquiring a com-

prehensive metric scene reconstruction. For instance, the ability to estimate

the time-to-collision (TTC) is important for avoiding collision. It has been
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argued [57, 70, 93] that TTC can be recovered directly from the first order

derivatives of the optical flow, without going through the step of 3D motion

recovery. As a consequence, the TTC estimate would not be affected by the

aforementioned depth distortion, which stems from errors in the 3D motion

recovery. Nevertheless, calibration errors do affect the TTC estimate even it

is recovered directly from the optical flow. In the calibrated case, the TTC

estimate is not exact but bounded by some deformation terms [93] depending

on the amount of lateral translation and the surface slant. If there now exists

some error in the principal point estimate, the TTC bound would be affected

by this error. The detailed examination of how such task-specific structural

information is affected by calibration errors, while interesting, is beyond the

scope of this thesis.

Another commonly encountered scenario is that of a motion fixating on a

point of an object. One example of such scenario is a camera rotating around

an object in image-based modelling or image-based rendering application. If

we assume that the fixation is accomplished via the pan and tilt rotation, as

is usually done, then it can be easily shown that (x0, y0) and (α, β) are always

in adjacent quadrants with y0

x0
= −α

β
. The fixation constraint also allows us to

show that the signs and magnitudes of α and β would be such that the bias of

the FOE estimate is always towards the optical center, along the direction of

the original bas-relief valley. Note that this is also the condition under which
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[65] carried out their simulations and obtained the results that the bias in

the FOE estimate caused by the error in f̂ is towards the optical center. Our

model confirms this result under this specific motion configuration but also

predicts other bias directions under more general motion configurations.

3.4 Experiments and discussion

To verify the theoretical findings established just set out, we perform experiments

on both the Yosemite sequence and the Coke sequence. The optical flow was ob-

tained using Lucas-Kanade algorithm [62] with a temporal window of 11 frames.

Relatively dense optical flow fields were obtained. The cost function was imple-

mented based on the “epipolar reconstruction” scheme, that is, setting n in equa-

tion (4.1) to be along the estimated epipolar direction. We demonstrate that given

fairly dense and uniform distribution of scene points, our predictions about the

changes to the bas-relief valley and the bias in the FOE estimate due to erroneous

focal length hold true.

In the first experiment, the computer generated Yosemite sequence (Figure 3.9a)

was used. The average FOV is 46o, the true focal length is 337.5 pixels, and the

true FOE is located at (0, 59.5). Figure 3.9b shows the estimated FOE locations

for f̂ having errors of 0%,±16%,±33%, and ±50%.
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In the second experiment, similar analysis was conducted on the Coke image se-

quence (Figure 3.10a). The parameters of this sequence are FOV=28o, f=620

pixels, and the true FOE at (65, 73). The experimental results are shown in Figure

3.10b.

The results obtained seem to corroborate the various predictions made in this thesis.

In both sequences, the direction of bias in the FOE estimate is consistent with the

predictions made in the preceding section. The actual amount of FOE shift is also

unanimously small even for a large error of 50% in f̂ , the shifts being less than 10

pixels in both cases. We also predicted that the bias will be less pronounced for

over-estimating rather than under-estimating f , though this prediction is not borne

out by the results, with the case of over-estimation exhibiting comparable amount

of FOE shift as that of under-estimation for both sequences. However, this is not

surprising as we can see from Figure 3.3.1 that in the case of over-estimation, the

FOE estimate, while displaying a smaller bias, suffers from a larger variance under

the influence of noise. With the significant effect of local minima introduced by

non-uniform feature distribution and the presence of noise in real images, this high

variance term becomes important, thus contributing to the larger-than-expected

FOE errors seen in the results. In fact, as can be seen from Figures 3.9b and 3.10b,

these non-ideal effects also hamper the FOE recovery under perfect calibration,

with the direction of FOE errors lying along the bas-relief valley.

Overall, we found that the actual shift in the FOE estimate for real images is
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(a)

(b)

Figure 3.9: (a) Yosemite sequence. (b) Shift of the FOE estimate as a result of

erroneous focal length estimate f̂ . The true focal length of the image sequence is

337.5 and the true FOE is at (0, 59.5). Estimated FOEs are plotted for f̂ having

errors of 0%,±16%,±33%, and ±50% respectively.
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(a)

(b)

Figure 3.10: (a) Coke sequence. (b) Shift of the FOE estimate as a result of

erroneous focal length estimate f̂ . The true focal length of the image sequence is

620 and the true FOE is at (65, 73). Estimated FOEs are plotted for f̂ having

errors of 0%,±16%,±33%, and ±50% respectively.
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not significant even for relatively large error in the focal length estimate. The

two experiments conducted demonstrate that, even with a relatively dense set of

feature points, non-ideal effects such as non-uniform feature distribution and image

noise, rather than calibration errors, could play a potentially more significant role

in affecting the accuracy of FOE recovery. For image sequence where the feature

points are very clustered and sparse, or when the scene depths are near to a planar

scene, there can be a significant change in the bas-relief ambiguity, as detailed in

[110].

3.5 Conclusions

Error analysis for SFM has always been plagued by the complexity of the problem.

This complexity becomes even more daunting in the face of possible calibration

errors. In this chapter we have developed clear analytical expressions describing

the error behavior of the egomotion estimates when the fixed intrinsic parameters

are calibrated with error. The key results in this chapter are independent of the

algorithm used to perform egomotion estimation and calibration. As a result of

error in the estimate f̂ , the bas-relief valley is rotated in a direction that depends

on the relationship between the translation and the rotation. Under-estimating the

focal length would have the effect of shortening the bas-relief valley and making

it less well-defined in character. It also gives rise to a larger bias in the FOE
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estimate though with a smaller variance. On the other hand, over-estimating the

focal length results in less change to the bas-relief valley and the FOE estimate

would have smaller bias but larger variance. We also obtain an analytical bound

that quantifies the effect of an erroneous focal length on the FOE estimate. For a

typical figure of 10% error in the estimate f̂ and given certain generic motion-scene

conditions (such as rotation not too dominant), the bound obtained for the relative

FOE shift might turn out to be acceptable. Furthermore, this bound is likely to be

conservative as the actual shift obtained in simulation is consistently much smaller.

Error in the principal point estimate is shown to result in a simple change to the

error surface. The entire bas-relief valley is shifted by a constant amount such that

it passes through the true principal point. Real-world effects such as image noise

and non-uniform feature distribution are briefly investigated in the experimental

section, with results showing that these non-ideal effects are likely to play a much

more significant role than the errors in the calibration parameters.

The conclusion of this chapter is that if the image quality is acceptable and the

feature distribution is relatively dense and uniform, we might want to use a cali-

brated SFM algorithm even though the focal length estimate or the principal point

estimate has small errors. The resultant small loss in accuracy might be accept-

able compared to the uncertainty faced in estimating the focal length or principal

point using a general uncalibrated SFM algorithm. If, however, one has to deal

with high image noise or sparse and clustered feature distribution, the perennial
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problems that plague SFM estimation even for the calibrated case would certainly

be compounded by the calibration errors, posing grim problems for any general

2-frame SFM recovery algorithm. One suspects that under these situations (such

as in the real world), the visual system has to press maximal benefit from the

opportunities afforded by bodily and environmental resources along with signifi-

cant coupling of perception and action in order to carry out visuo- motor tasks

successfully.
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Chapter 4

What We See In the Cinema: A

Dynamic Account

Cinema viewed from a location other than a Canonical Viewing Point (CVP)

presents distortions to the viewer in both its static and dynamic aspects. Past

works have investigated mainly the static aspect of this problem and attempted to

explain why viewers still seem to perceive the scene very well. The dynamic aspect

of depth perception, which is known as structure from motion, and its possible

distortion, have not been well investigated. In our work, we derive the dynamic

depth cues perceived by the viewer and use the so-called iso-distortion framework

to understand its distortion. The result is that viewers seated at a reasonably cen-

tral position experience a shift in the intrinsic parameters of their visual systems.
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Despite this shift, the key properties of the perceived depths remain largely the

same, being determined in the main by the accuracy to which extrinsic motion

parameters can be recovered. For a viewer seated at a non-central position and

watching the movie screen with a slant angle, the view is related to the view at

the CVP by a homography, resulting in various aberrations such as non-central

projection.

4.1 Problem statements

Three projections underlie the creating and viewing of motion pictures, namely,

(a) the projection from the 3-D real scene to the film of the camera, (b) the back

projection from the film onto the viewing screen and (c) the projection from the

screen to the human retina. These projections are assumed to be perspective in

this thesis.

Mathematically, only the audience located at a certain viewing position sees a

“veridical” version of the scene as if he or she is seeing through the directors

eyes and making the same movement. We call this position the canonical viewing

position (CVP). All other positions receive visual stimuli different from the veridical

version; the differences include dynamic visual cues such as optical flow, as well as

depth information arising from such dynamic cues. Paradoxically, picture viewing
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is apparently not limited to the location at the CVP. Remarkably large number

of positions in front of the projector can serve as reasonable viewpoints allowing

layout within the motion picture to appear relatively normal. It is fortunate that

the human visual system has this ability, for without it, the design of cinema theater

and home entertainment system would be severely constrained.

The paradox of the unnoticed distortions was studied by researchers for about two

decades. Cutting [21] argues that the slant at which pictures are viewed is usually

small, and consequently the distortions of the retinal image are too small to be

noticed. Perkins [77] claims that such invariance is a byproduct of the viewer’s

expectations with known shapes. For example, if the retinal image is similar to

the image that would be created by a cube, prior expectations force the percept to

that of a cube. The invariance thus comes from the viewer’s experience with object

whose shapes are familiar or usually follow certain rules (right angles, parallel sides,

symmetry). A third explanation claims that the invariance is the consequence of

altering or re-interpreting the retinal image by recovering the position of the screen

surface. For example, it is known [8] that the vanishing points of three mutually

orthogonal lines are sufficient to recover the principal point. Banks et al. [3] argues

that a local slant mechanism is used to estimate the foreshortening due to viewing

obliqueness and then adjust the percept derived from the retinal image to undo

the foreshortening.

All these hypotheses mainly attempt to deal with the static aspect of the paradox.
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Yet, cinema is very much an art of camera motion, as testified by the original

names of kinetoscope and moving pictures. For Metz [16] indeed, movement is the

principal reason for the effect of reality within film. Motion dynamically changes

the viewing perspectives of the spectators both in space and in time to give the

unique reality effect, allowing the viewers to inhabit the visual space of the per-

son(s) producing the film narrative. The depth information carried by motion cues

is particularly relevant as cinema is typically viewed from a distance of 20m or

more, condition under which accommodation, convergence, and stereoscopic depth

perception are inactive. Last but not least, it is often through motion that the

content or the meaning in a shot is expressed and the attention of the viewers

captivated or shifted, allowing the films intentions to be communicated. Thus mo-

tion cue and depth perception arising from it should be the privileged object of

investigation in cinematic perception.

In theory, the optical flow present in the motion pictures and the dynamic depth

cues arising thereof should also experience distortion but have received very little

attention. In fact, it is not even clear what sort of distortion is experienced by the

viewer as far as the dynamic aspect is concerned. This neglect is partly due to

the fact that the distortion of depths arising from errors in the motion cues is an

analytically complex problem; geometrical analysis which shed light on this problem

has only been recently formulated [10, 12]. Our work focuses on this dynamic

aspect of cinematic perception and investigates computationally the distortion of
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both the camera motion parameters and the depth recovered from such distorted

motion cues.

To recover the spatial structure using optical flow present on the picture screen

amounts to the classical structure from motion (SFM) problem with a slight twist.

We will introduce this modified SFM model in Section 4.3. The typical SFM

problem has been the central problem of computer vision since 1980s. It recovers

the structure of 3-D scene and the 3-D relative motion between the scene and

the observer from the projection of the 3-D relative motion onto a 2-D surface.

If the 3-D motion parameters can be estimated perfectly, depth recovery can be

achieved accurately; in other words, one can perceive the spatial arrangement of

objects. However, this veridical space recovery from SFM is difficult to achieve, as

has been shown both computationally and experimentally. Either the 3-D motion

estimates contain errors with the result that depths are distorted; or the intrinsic

parameters of the camera are unknown, in which case one can only recover the

so-called projective depth[106], which is related to the true depth by a projective

transformation.

Since errors in motion estimates are highly likely, there have been various error

analyses in the past [1, 24, 38, 76, 95, 111], in terms of the local minima and

ambiguities of the SFM algorithms. However, there is much less analyses on the

behaviour of depth distortion given some errors in the motion estimates. Cheong et

al. [10] developed a geometric account of the depth error behaviour via the so-called
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iso-distortion framework. It showed that even with known intrinsic parameters but

with errors in the 3-D motion estimates, the distortion transformation from phys-

ical to perceived space is already highly complex, in fact, more complicated than

that of the projective transformation. It is a space Cremona transformation which

is a rational transformation between two projective spaces [48]. Given such po-

tentially complex distortion behaviour, Cheong and Xiang [12] then motivated the

importance of special generic motions favored by biological visual systems. One

such motion is the lateral motion which consists of lateral translation plus rotation.

Such motion will, despite errors in the estimates, yield a special type of Cremona

transformation that preserves depth order. We say that such transformation ex-

hibits ordinal depth invariance. Another generic motion type is the forward motion

(forward translation plus rotation) which gives rise to conditions conducive for 3-D

motion recovery but not for depth recovery. The idea here is that different motion

types are suited for specific tasks; this is important since there is no general motion

algorithm that can work well under all motion-scene configurations.

The SFM process is further complicated by the presence of intrinsic parameters

such as the focal length and the principal point coordinates. Cheong and Xiang [12]

further showed that as long as the focal length is not dynamically varying (i.e. the

camera is not performing zoom operation) and the errors in the principal point

estimation is small enough, the aforementioned properties of spatial perception

under different generic motions are still preserved.
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Whether visual systems in nature have a precise knowledge of the eyes’ intrin-

sic parameters when processing visual tasks is still unknown. Nevertheless psy-

chophysics researchers studying the perception of the scene structure from dynamic

cues [19, 98, 25] tend to assume that the brain uses a calibrated visual system and

neglect the problem of calibration altogether. This is mainly due to the elaborate

model needed to describe the complex intrinsic parameters of human eyes, making

it very difficult to incorporate them into computational analysis. In this thesis,

we only consider the typical intrinsic parameters used for modeling pinhole camera

[28]. The extent to which these intrinsic parameters are calibrated determines the

type of space that can be perceived from motion cues. As to the geometric structure

of this perceived visual space, there has been a host of models being proposed, e.g.,

Euclidean geometry [34], hyperbolic [63], affine [97], and others [47, 52]. Recently

Droulez and Cornilleau-Pérès’ anamorphosis glasses [26] show that the visual sys-

tem is able to re-calibrate a Riemannian metric adapted to the glasses deformation

and an Euclidean geometry can be perceived after the plastic adaptation. Other

experimental result [69] which supports the assumption that brain cognition is more

“Euclidean than affine or projective” is that when perceiving the orientation of a

surface drawn using curves, subjects preferentially consider the orthogonality cue

rather than parallelism. Viéville et al. [105] report that the human visual system

is able to take intrinsic parameter variations into account during perceptual tasks.

It has also been argued [37] that the more recently evolved vision-for-perception

system is quite different from those of the more ancient vision-for-action system,
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and the latter is based on Euclidean object metrics. In spite of these results, there

are psychophysical evidences that suggest human vision is not Euclidean under all

conditions [13, 96], especially in the impoverished scenarios typically encountered

in psychophysical experiments (e.g. random dots in motion). For instance Cheong

et al. [13] reported that the recovery of curvatures under lateral translation is sub-

ject to varying degrees of uncertainty depending on the motion-scene configuration.

In particular, the theory proposed therein explained why the reconstructed second

order shape tends to be more distorted in the direction parallel to the translational

motion than that in the orthogonal direction. This orientational anisotropy has

also been reported in many psychophysics papers [18, 72, 83]. [23, 22] studied the

perception of second order shapes under active vision, and it was found that some

types of shapes can be perceived quite accurately, whereas others are more difficult

to be distinguished. Thus, on the whole, it seems that human vision is quite plastic

and grades from being nearly Euclidean to non-metrical depending on tasks and

conditions.

In our work, we seek to use the iso-distortion framework to analyze the nature of

the depths recovered from dynamic cues under the cinema configuration. We show

that viewing a movie in a cinema from a general position differs from viewing a

3-D real scene primarily in that the visual system experiences an altered optical

flow resulting from changed intrinsic parameters. To be exact, this statement is

only correct for a viewer seated at a reasonably central position. The impacts
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on depth perception from different seating positions are elucidated and compared

with SFM under normal condition. Results show that even with the shift in the

intrinsic parameters, the key properties of the recovered depth remain largely the

same, despite some differences from the case of normal uncalibrated SFM discussed

by Cheong and Xiang [12], and these key properties are determined primarily by

the degree of accuracy to which the extrinsic parameters can be recovered and

by the types of motions being executed. In sum, the main contribution of our

work is to show the geometric laws governing distortions in the perceived space

and to make explicit those situations that lead to different types of distortions.

The implications of these results for cinematic viewing and uncalibrated vision in

general will be further discussed later, but these speculative possibilities have to

be further investigated by comprehensive psychophysical tests, in the light of the

types of distortion and their motion-scene dependency that are unraveled here.

4.2 Model and Prerequisite

If the 3-D motions have been estimated, Z can be in turn obtained from equation

(2.5) or (2.6). Usually a direction n is chosen according to some criteria to recover

Z. Thus Z can be obtained as

Z =
(x− x0, y − y0) · n

(u− urot, v − vrot) · n . (4.1)
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In the above equation, (x0, y0) =
(
f U

W
, f V

W

)
denotes the focus of expansion (FOE),

(urot, vrot) are the rotational components of equations (2.5) and (2.6) respectively,

and n is the unit vector in the direction chosen to recover Z. As an example, n

can be along the normal flow direction because the flow along this direction can be

most reliably estimated. In the case where optical flow can be recovered well, other

considerations might lead to the choice of recovering depth along the direction em-

anating from the estimated FOE (x0, y0), based on the intuition that this direction

(also known as the epipolar direction) contains the strongest translational flow and

thus provides the best estimate of depth.

It follows that if there are some errors in the estimation of the extrinsic parameters,

Z will be estimated with errors, that is, a distorted version of the space will be

perceived. The detailed analysis of this depth distortion will be deferred to Section

4, after we have introduced the modified form of the SFM problem under the

cinema viewing configuration.
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Figure 4.1: A simple cinema viewing configuration.
⇀
xp,

⇀
xs and

⇀
xv represent re-

spectively the feature points on the projector film, screen, and viewer’s retina cor-

responding to the same world point. (a) optical axes of viewer and projector are

coincident (b) optical axes of viewer and projector are not coincident but parallel

to each other.
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4.3 Structure from motion under cinema viewing

configuration

4.3.1 Optical axes of viewer and projector parallel

We first consider the case whereby the viewer’s optical axis is parallel to the pro-

jector’s optical axis, and the screen is oriented in a fronto-parallel manner to the

projector and the viewer. This is applicable to most cinema viewers who are seated

not near the side or right at the front (Figure 4.1). As the seats are designed to

face forward, the viewers will do so unless they are positioned so far off that they

are obliged to tilt their viewing axis towards the central area of the screen. We

assume the cinema images captured by the director has been transferred to film for

optical projection and we call this film the projector film. We also assume monoc-

ular viewing to focus on just motion cue. We use subscripts p, v, s to represent

quantities associated with projector, actual viewer and screen, respectively. The

distances (along the Z-axis) from the screen to the projector and to the viewer are

Dp and Dv, respectively. The focal length of the projector and that of the viewer’s

visual system are fp and fv, respectively.

Consider the simplest case where the viewer’s optical axis is not only parallel to but

also coincident with the projector’s optical axis. Then clearly the feature points
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⇀
xp,

⇀
xs and

⇀
xv (see Figure 4.1(a)) are related by:

⇀
xp =

fp
⇀
xs

Dp

(4.2)

⇀
xv =

fv
⇀
xs

Dv

=
⇀
xp

k
, (4.3)

where
⇀
xs is given in metric unit,

⇀
xp and

⇀
xv are in pixel units and

k =
Dvfp

Dpfv

Assume there is a 2D motion flow
⇀
up= (up, vp) on the projector film and the

corresponding flows on the screen and the viewer’s retina are denoted by
⇀
us and

⇀
uv, respectively. From equations (4.2) and (4.3), we have

⇀
up =

fp
⇀
us

Dp

(4.4)

⇀
uv =

fv
⇀
us

Dv

=
fvDp

⇀
up

Dvfp

=
⇀
up

k
. (4.5)

Equation (4.5) suggests that the flow
⇀
uv perceived on the retina is scaled by a

factor k compared with the corresponding flow
⇀
up on the projector film. The flow

⇀
up is given by

up = W
Z

(
xp − fc

U
W

)
+ αxpyp

fc
− β

(
x2

p

fc
+ fc

)
+ γy

vp = W
Z

(
yp − fc

V
W

)− β xpyp

fc
+ α

(
y2

p

fc
+ fc

)
− γy

(4.6)

where the 3-D motion parameters (U, V, W ) and (α, β, γ) represent the motion

experienced by the director’s camera, and fc is the focal length of the directors

camera. Expanding the horizontal component of
⇀
uv in equation (4.5) and bringing
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in equation (4.6), we obtain:

uv =
W

Z

(
xv − fcU

kW

)
+ α

xvyv

fc

k

−β

(
x2

v
fc

k

+
fc

k

)
+ γyv (4.7)

Similar expression can be written for the vertical component of the flow vv. From

equation (4.7), we see that the flow field experienced by the viewer indirectly

through the screen is one that arises from the same external motion and depths

experienced by the director’s camera, i.e. U, V, W, α, β, γ, Z, but with a modified

focal length f ′v = fc

k
= fv

Dpfc

Dvfp
. Thus only when the viewer is seated at the CVP

(
Dv = Dpfp

fc

)
, the motion field

⇀
uv is undistorted (i.e. the same as that experienced

by a viewer making the 3-D motion himself/herself).

Clearly, if the viewer is able to revise the estimate of its intrinsic parameter from fv

to f ′v, he/she is then no worse off than the case of having to solve the SFM problem

when experiencing an undistorted 2-D motion flow. Even the viewer is not able

to estimate the new focal length, we shall show later that the effect of this focal

length error is benign, as far as scene structure recovery is concerned.

The above analysis can now be extended to the case where the viewer’s and the

projector’s optical axes are parallel but not coincident (4.1(b)). If the viewer is

located at a position (tx, ty, Dc −Dv) away from the CVP, as illustrated in Figure

4.2, there will be a shift in the principal point (ox, oy). Since ox

tx
= − fv

Dv
and

oy

ty
= − fv

Dv
, we have (ox, oy) =

(
−tx

fv

Dv
,−ty

fv

Dv

)
. Thus the optical flow can be
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Figure 4.2: The configuration where the viewer’s and projector’s optical axes are

parallel but not coincident.
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written in the following form:

uv = W
Z

(
xv + tx

fv

Dv

)
− f ′v

U
Z

+
(xv+tx

fv
Dv

)(yv+ty
fv
Dv

)
f ′v

α

−f ′v

(
1 +

(xv+tx
fv
Dv

)
2

f ′2v

)
β + γ

(
y0 + ty

fv

Dv

) (4.8)

vv = W
Z

(
yv + ty

fv

Dv

)
− f ′v

V
Z
− (xv+tx

fv
Dv

)(yv+ty
fv
Dv

)
f ′v

β

+f ′v

(
1 +

(yv+ty
fv
Dv

)
2

f ′2v

)
α− γ

(
xv + tx

fv

Dv

) (4.9)

This is similar to the optical flow that would be obtained if the principal point of

the viewer’s optical system is not (0, 0) as we have assumed so far, but given by

(
tx

fv

Dv
, ty

fv

Dv

)
. In sum, for the simple scenario where the viewer’s and the projector’s

optical axes are parallel, the motion estimation problem is no more complex than

an uncalibrated SFM problem, where in particular the focal length f ′v might be

different over time due to the director using different lenses, but over most of the

time, f ′v would not be dynamically varying unless the director is using the zooming

shot. The difference with the usual uncalibrated SFM problem is that the principal

point offset
(
tx

fv

Dv
, ty

fv

Dv

)
can be very much larger (especially tx

fv

Dv
) than one usually

encounters in computer vision problem.

In general, if the intrinsic parameters are not calibrated, the visual system cannot

recover the Euclidean geometry of the scene from motion cues, but only its projec-

tive or affine geometry [29]. The question remains whether a person “calibrates”

his or her visual system. Indeed, the anatomy of the eye varies from the fovea to

the periphery and such parameters also change over time. Computationally, the
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estimation of intrinsic parameters from the motion cues is possible, even for varying

focal length and principal point [46]. However, it is numerically ill-conditioned and

always requires higher-order constraints. It seems that such higher-order mecha-

nisms cannot explain how the brain may estimate eye intrinsic parameters [105].

It could be that the visual system only needs to obtain a very rough estimation

of the intrinsic parameters, and knowing these rough estimates, it is sufficient to

obtain certain aspect of depth information [12]. If this were indeed the case, then

what the cinema viewer experiences is just a more severe version of the situation

with bigger errors in the estimates for the intrinsic parameters. We shall see in

Section 4.4 how these errors in the intrinsic parameters (as well as the extrinsic pa-

rameters) will affect spatial perception. In particular, we will compare the changes

caused by the large principal point offset
(
tx

fv

Dv
, ty

fv

Dv

)
in the characteristics of the

depth distortion. More importantly, we show that despite these errors, certain key

qualitative properties of the recovered depth remain unchanged.

4.3.2 Optical axes of viewer and projector not parallel

In general, movie viewers could watch the screen with a slant angle if he/she does

not sit right on the optical axis of the projector (see Figure 4.3). To relate how

the dynamic cues are transformed as a result of the slant, we relate the view of

a viewer seated at CVP and that of a viewer seated at a general position via a
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Figure 4.3: A general configuration, with a slant φ in the viewer’s optical axis

around the vertical axis.

homography (a 3×3 linear transformation) induced by the screen plane [43]. Here

we again assume that the axis of the projector is perpendicular to the screen. In

other words, no keystone distortion [78] is present in the cinema. Thus the unit

vector normal to the screen plane is given by N = (0, 0,−1)T . Then the coordinates

of a feature point xv of a viewer seated at CVP and x′v of a viewer seated at the

general position can be related by a simple homography H:

x′v = Hxv (4.10)
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where the homography is given by [43]

H = K′
v

(
R +

1

Dc

tNT

)
K−1

v . (4.11)

In the above equation, the rotation matrix R and the translation vector t denote

the rigid transformation between the viewer and the CVP. We have assumed that

human eye is modeled by a pinhole camera; thus K′
v and Kv are the intrinsic

parameter matrices characterizing the eyes of the viewer seated at the CVP and

the general position respectively, with the form of K′
v and Kv given by that of K

in equation (2.3). We assume that sθ, oxv, and oyv for the eyes at both positions to

be 0. We also assume that the focal lengths fv for the eyes at both positions to be

identical, because given the typical distance of the screen, both focal lengths will

correspond to the eyes at the most relaxed state. Thus:

Kv =




fv 0 0

0 fv 0

0 0 1




(4.12)

We assume that the viewer is gazing at a region near the central part of the screen,

and we first derive the simple case where the viewer is at the same vertical level

as the projector. There is an angle of φ between the viewer’s optical axis and the

vertical axis but there is no rotation around the X-axis. Conceptually, one can

also reduce any rotations around both X- and Y -axes to a single rotation about

the Y -axis by a suitable in-plane rotation of the X − Y coordinate axes. Referring

to Figure 4.3, the rotation matrix R and translation vector t can thus be written
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as:

R =




cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ




(4.13)

t =

[
tx 0 tz

]T

(4.14)

The homography H is then readily obtained as:

H = Kv




cos φ 0 − sin φ− tx
Dc

0 1 0

sin φ 0 cos φ− tz
Dc




K−1
v (4.15)

Using the projection model of equation (2.3), the whole projection process can then

be written as:

x′v = Hxv = HKv [I|0]X (4.16)

where X is the 3-D point that gives rise to xv (xv, x′v, X all expressed in homoge-

neous coordinates).

Equation (4.16) shows that there is a new “intrinsic parameter matrix” H′ = HKv

underlying the image formation process of a cinema viewer seated at a general po-

sition. Unfortunately the“intrinsic parameter matrix” induced by the homography
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is not an upper-triangular matrix like that of a typical intrinsic parameter matrix:

H′ = HKv =




cos φfv 0 −fv sin φ− tx
Dc

fv

0 fv 0

sin φ 0 cos φ− tz
Dc




(4.17)

If φ is sufficiently small, we can simplify H′ such that the effect of φ can be regarded

as a perturbation to Kv. Firstly, the lowest right entry can be approximated by

cos φ− tz
Dc

≈ Dc − tz
Dc

=
Dv

Dc

. (4.18)

Since H′ is up to an arbitrary scale factor that is inherent in homogeneous repre-

sentation, we can scale the whole matrix such that the lowest right entry is unity.

H′ = HKv =




cos θfv
Dc

Dv
0 − tx

Dv
fv

0 fv
Dc

Dv
0

sin θ Dc

Dv
0 1




(4.19)

Clearly, if φ is small enough such that cos φ ≈ 1 and sin φ ≈ 0, then the intrinsic

parameter matrix reduces to that of section 4.3.1. However, in the general case,

the matrix does not have the typical form for intrinsic parameter matrix in view

of the non-zero lowest left entry. Then, (x′v, y
′
v) can be written as

x′v =
cos θfv

Dc

Dv
X − tx

Dv
fvZ

Z + sin θ Dc

Dv
X

(4.20)

y′v =
fvY

Z + sin θ Dc

Dv
X

(4.21)

The projection at the general position can thus be regarded as one with not only

changes in focal length and principal point offset, but now these changes also vary



95

in magnitudes from the fovea to the periphery (the denominators in equations

(4.20) and (4.21) change as X increases from fovea to periphery). In other words,

the projection rays do not intersect at one point, with the result that we have a

non-central projection system [92, 91]. How would this impact on the viewer seated

at this general position? The human visual system is itself prey to non-ideal effects

like spherical aberration, coma and other asymmetries expected from a biological

system. For instance, the optical surfaces may lack rotational symmetry and their

nominal centres of curvature may not lie on a common axis; such meridional changes

in radius of curvature lead to ocular astigmatism [9].

Though these aberrations occur in the human eyes, its visual effect is minimal. For

instance, the astigmatic image falls on the peripheral retina which has relatively

poor resolving power compared to the retina at the macula. Thus peripheral spatial

vision performance seems little affected, though the effect of these off-axis errors on

spatial and temporal sampling in the periphery is not yet completely determined,

with some recent works being [33, 2, 39].

The question here is whether there is a need for the visual system to recalibrate a

system (to whatever extent) with such more severe aberrations introduced. The key

depends on the type of space recoverable or indeed being recovered by the human

visual system, under both everyday SFM and under cinema viewing condition. We

are now coming to the central question of depth distortion under both situations
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in the next section.

4.4 Depth distortion arising from erroneous es-

timation of 3-D motion and intrinsic param-

eters

4.4.1 Iso-distortion framework

The iso-distortion framework was first introduced by Cheong et al. [10]. The iso-

distortion framework seeks to understand the geometric laws under which the re-

covered scene is distorted due to some errors in the estimated camera parameters.

This is motivated by the fact that it is unlikely for a human visual system to re-

cover the exact motion parameters and hence it is important to understand how

the perceived space is distorted by such errors in the motion estimates.

Referring to equation (4.1), we note that if there are errors in the estimates of

the extrinsic parameters, these errors will in turn cause errors in the estimation

of the scaled depth. To simplify the discussion, we assume there is no error in

the optical flow, since we are primarily concerned with how errors in the motion

parameters affect depth reconstruction. Plugging the various motion estimates and
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the expression for the optical flow (equations (2.5) and (2.6) into equation (4.1) ,

we obtain the distorted depth Ẑ as follows:

Ẑ = Z

(
(x− x̂0, y − ŷ0) · n

(x− x0, y − y0) · n + Z (urote , vrote) · n
)

, (4.22)

Equation (4.22) shows that errors in the motion estimates distort the recovered

relative depth by a factor D, given by the terms in the bracket, which among

other terms, contains the term n. As mentioned in the discussion following equa-

tion (4.1), the value of n depends on the scheme we use to recover depth. In

our work, we choose to recover depth along the estimated epipolar direction, i.e.

n = (x−x̂0,y−ŷ0)T√
(x−x̂0)2+(y−ŷ0)2

. Such a choice is reasonable because the estimated epipolar

direction contains the strongest translational flow and hence is the most reliable

direction to recover Z. Hence the distortion factor D becomes:

D =
(x− x̂0)

2 + (y − ŷ0)
2

(x− x0, y − y0) · (x− x̂0, y − ŷ0) + Z (urote , vrote) · (x− x̂0, y − ŷ0)
. (4.23)

The complexity of equation (4.23) can be intuitively grasped with a graphical ap-

proach in its first analysis. For specific values of the parameters x0, y0, x̂0, ŷ0, αe, βe, γe

and for any fixed distortion factor D, equation (4.23) describes a surface g (x, y, Z) =

0 in the xyZ-space. The entire ensemble of such surfaces, each for a different value

of D, describes the distortion action of the motion errors on any points in the 3-

D space. Normally, under general motion, a complicated distortion characteristic

may arise. Readers are referred to [10, 12] for a full description of the geometry of

the distortion.
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Algebraically, it was shown from [10] that given such motion errors, the transfor-

mation from the physical to the perceived space belongs to the family of Cremona

transformations, whereby the homogeneous coordinates of a point in the perceived

space
[
X̂ , Ŷ , Ẑ, Ŵ

]
is related to the actual point [X ,Y ,Z,W ] by:

[
X̂ , Ŷ , Ẑ, Ŵ

]
= [φ1, φ2, φ3, φ4]

where the quantities φi are homogeneous polynomials in [X ,Y ,Z,W ]. Such trans-

formation is bijective almost everywhere except on the set of what is known as

fundamental elements where the correspondence between the two spaces becomes

one-to-many[48]. The complex nature of this transformation makes it clear that in

general it is very difficult to recover metric depth accurately. What is less clear is

the feasibility of recovering some of the less metrical depth representations under

specific motions. For instance, the ordinal representation of depth constitutes one

such reduced representation of depth where only depth order is available. Cheong

and Xiang [12] showed that, though small amount of motion errors can have sig-

nificant impact on depth recovery in the general case, there exist generic motions

that allow robust recovery of such partial depth information. In particular, lateral

motion is better than forward motion in terms of yielding ordinal depth informa-

tion and other aspects of depth recovery, in spite of the fact that the ambiguity

between the camera rotation and translation is more severe in this case. On the

other hand, forward motion leads to conditions more conducive for 3-D motion
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estimation compared to the case of lateral motion, but it is not necessarily good

for depth recovery. This dichotomy between forward and lateral motion means

that it is important for a biological system to choose a motion intelligently so as

to accomplish tasks robustly.

In the case of uncalibrated motion with fixed intrinsic parameters and reasonably

small principal point offset, the distortion factor D becomes[12]:

• for lateral motion (W = 0):

D =
f̂ Û

fU +
(
βf − β̂f̂

)
Z

(4.24)

• for forward motion (U = V = 0):

D =
x2 + y2

((x− oxe) x + (y − oye) y) +
(
−

(
βf − β̂f̂

)
x +

(
αf − α̂f̂

)
y
)

Z
.

(4.25)

It was shown in [12] that lateral motion is better than forward motion in terms

of yielding ordinal depth information, in spite of the fact that the ambiguity be-

tween the camera rotation and translation is more severe in this case. On the

other hand, forward motion leads to conditions more conducive for 3-D motion es-

timation compared to the case of lateral motion, but it is not necessarily good for

depth recovery. The aforementioned properties regarding the dichotomy in depth

and motion recovery are not affected, in spite of possible errors in the intrinsic
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parameters. However, if the intrinsic parameters are allowed to vary dynamically

(equations for D under such case not shown here; see [12] for a fuller account), then

even ordinal depth information might not be recoverable under lateral motion.

The upshot of characterizing depth distortion behaviour under these generic types

of forward and lateral motions are the following two aspects: (1) It shows that the

reliability of a reconstructed scene has quite a different behaviour from that of the

motion estimates. For instance, if the motion contains dominant lateral translation,

it might be very difficult to lift the ambiguity between translation and rotation.

However, in spite of such motion ambiguity, certain aspect of depth information

seems recoverable with robustness. Indeed, in the biological world, lateral motions

are often executed to judge distance and relative ordering. On the other hand,

psychophysical experiments [104] reported that under pure forward translation,

human subjects were unable to recover structure unless favorable conditions such

as large field of view exist. Thus it seems that not all motions are equal in terms

of robust depth recovery and that there also exists certain dichotomy between for-

ward and lateral translation as far as motion and depth recovery are concerned.

(2) Understanding the depth recovered under these two very different motion types

gives us an epistemological idea about the geometry of the perceived space under

general motions, in the sense that the behaviour of depth reconstruction at these

two opposite poles of translation spectrum delimits the type of general depth dis-

tortion behaviour somewhere in between the two poles. Clearly, in the absence of
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other depth cues, or without using additional scene knowledge, Euclidean or even

affine depth recovery may not be possible in general.

4.4.2 Depth distortion in cinema

We now apply the iso-distortion framework to look at the SFM problem under

the cinema viewing configuration. Like previous iso-distortion analyses, we restrict

ourselves to scenes where only the camera is moving or we assume that in scenes

where there are independently moving objects, these objects have been properly

segmented. We focus on the situation depicted in Figure 4.1(b) which has been

shown to be equivalent to an uncalibrated SFM problem for the viewer, with mostly

fixed but possibly unknown focal length and potentially very large principal point

offset.

One might ask to what extent the notion of generic motion employed in the previous

analyses is valid or relevant in the cinema context. In cinematography, camera

motions are not arbitrary, but are dictated by the need to communicate meanings

and by the mechanics of film-making. For instance, a panning shot is often used to

establish the scenes of a new shot and to track an object or person. A dolly shot

(translation in depth; see Fig 4.4(a)) is used to move in closer to a subject or to

effect a first-person viewpoint shot as the protagonist moves forward. Shots with

more complex combinations of motions are possible, for instance, translation and
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(a)

A

B


(b)

Figure 4.4: Camera operations: (a) basic terminologies for translational and rota-

tional operations, (b) typical camera operation on rail.

rotation are often coupled together in tracking shots using the setup illustrated in

Figure 4.4(b). Nevertheless, it is reasonable to say that in terms of translation, the

shots either exhibit primarily forward/backward translation or primarily lateral

translation. Thus, consistent with the assumption made in the previous paper [12],

we can hypothesize that the viewer is at least aware what generic type of motion

is being executed by the camera. That is, the motion estimates are such that

• for lateral motion, Ŵ = W = 0; and

• for forward motion, Û = U = V̂ = V = 0.

We ignore zooming motion and its possible confusion with forward translation.

Even though zoom lenses are prevalent nowadays, the experience of zooming mo-

tion is not a natural phenomenon to our eyes. Excessive zooming in or out may
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irritate the viewer and hence, zooming is not commonly used, except in some cases

where special effects are required [67, 58]. For instance, in the film Vertigo (1958),

Hitchcock makes Scotty’s illness visible and intelligible through the simultaneous

combination of a forward zoom and a dollying out (backward translation), this

“combination of approach and retreat whose complex confusions of perspective

briefly induce all the sensations of nausea in the spectator” [82]. This rare use

of zooming is fortunate as it is difficult to separate the flow field induced by a

zooming-in from the flow field simultaneously created by a forward translation. It

also justifies our decision to ignore such motion in our analysis. Next, we also

assume that the contribution of γe is very small. Camera operations in cinematog-

raphy usually minimize rotation about the optical axis (rolling) so as to avoid

causing excessive discomfort to viewers. Lastly, in our first presentation of the dis-

tortion characteristics, we make an assumption that will allow us to better grasp

the major geometrical features of the depth distortion: within a limited field of

view, second order rotational terms in the image co-ordinates are small relative to

the linear and constant terms. This is the case when the visual system focuses its

attention on the fovea region under normal viewing condition. Even if this assump-

tion is removed, given their typical magnitudes, these terms do not qualitatively

affect the nature of the depth distortion. However in the cinema viewing config-

uration, we will reinstate those second order terms caused by the principal point

offset (tx
fv

Dv
, ty

fv

Dv
) as the latter is large and no longer negligible.
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4.4.3 Lateral motion

If we assume that viewer is aware of the type of generic motion being made, then

under lateral motion all n will be in the same direction given by n = − (Û ,V̂ )
T

√
Û2+V̂ 2

, for

the epipolar reconstruction scheme of recovering depth. For notational convenience,

we can rotate the X- and Y -axes without loss of generality so that n becomes (1, 0)T

or
(
Û , V̂

)
lies in the direction (1, 0) (though (U, V ) need not lie in that direction).

Thus the optical flow caused by lateral motion can be written as

uv = −f ′v
U

Z
+

(xv − o′x)
(
yv − o′y

)

f ′v
α− f ′v

(
1 +

(xv − o′x)
2

f ′2v

)
β + γ

(
yv − o′y

)
(4.26)

vv = −f ′v
V

Z
− (xv − o′x)

(
yv − o′y

)

f ′v
β + f ′v

(
1 +

(
yv − o′y

)2

f ′2v

)
α− γ (xv − o′x)(4.27)

where

(
o′x, o

′
y

)
=

(
−tx

fv

Dv

,−ty
fv

Dv

)
.

Plugging in the value of n, the optical flow given by equations (4.26) and (4.27),

and the estimated quantities x̂0, ŷ0, α̂, β̂, γ̂, ô′x, ô′y, f̂ ′v into equation (4.24) we

obtain the distortion factor D:

• for the case of uncalibrated SFM under normal viewing condition (second

order terms due to rotation and principal point ignored):

D =
f̂ ′vÛ

f ′vU +
(
βf ′v − β̂f̂ ′v

)
Z

(4.28)
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Figure 4.5: Families of iso-distortion contours for lateral motion obtained by in-

tersecting the iso-distortion surfaces with the xZ-plane. FoV = 53o, f = f ′v =

309.0, U = V = 0.81, β = −0.002, α = 0.002,. (a) Viewer at CVP with

errors only in the 3-D motion estimates, Û = 1.0, β̂ = −0.001 (b) Viewer

with optical axis parallel to and coincident with the projector’s optical axis

Û = 1.0, β̂ = −0.001 f̂ ′v = 303.0 (c) Viewer in a general viewing position.

Û = 1.0, V̂ = 1.0, β̂ = −0.001, α̂ = 0.001, f̂ ′v = 303.0, o′x = o′y = 10000.
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• for the case of cinema viewing configuration (second order terms due to prin-

cipal point dominant):

D =
f̂ ′vÛ

f ′vU +
((

βf ′v − β̂f̂ ′v
)

+ O2 (xv, yv)
)

Z
(4.29)

where

O2 (xv, yv) = β
(xv − o′x)

2

f ′v
− α

(xv − o′x)
(
yv − o′y

)

f ′v

−β̂
(xv − ô′x)

2

f̂ ′v
+ α̂

(xv − ô′x)
2 (

yv − ô′y
)

f̂ ′v
(4.30)

The distortion factor expressed in equation (4.28) for normal viewing condition

has the form 1
a+bZ

, where a = f ′vU

f̂ ′vÛ
and b = βf ′v−β̂f̂ ′v

f̂ ′vÛ
are constants for all the scene

points. It has the property that the distortion preserves the depth order of any

two recovered depths Ẑ1 and Ẑ2 under certain conditions that are likely to hold

(see [12] for details). For instance, if Z1 > Z2, it can be readily shown that, given

either of the following conditions, depending on the sign of a:

• (a + bZ1) (a + bZ2) > 0 if a > 0, or

• (a + bZ1) (a + bZ2) < 0 if a < 0

the transformation Ẑ = DZ preserves the depth order of the two points, that is,

Ẑ1 > Ẑ2. Since a = f ′vU

f̂ ′vÛ
, the condition a > 0 means that f ′vU and f̂ ′vÛ have the
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same sign. This condition can easily be met by human visual system; thus we can

just focus on the first condition. The requirement (a + bZ1) (a + bZ2) > 0 simply

means that the two estimated depths should have the same sign. This condition

can be easily assured by checking the sign of Ẑ1 and Ẑ2. If they are of the same

sign, the depth order of Ẑ1 and Ẑ2 is correct; otherwise, reverse the depth order.

Furthermore, if the errors in the motion estimates are small enough, then this

perceived ordinal depth space converges to a metric space.

Now consider equation (4.29). It is of a similar form 1
a+bZ

, but with b given by the

non-constant expression:

b =

(
βf ′v − β̂f̂ ′v

)
+ O2 (xv, yv)

f̂ ′vÛ

where O2 (xv, yv) is given by equation (4.30). Clearly, ordinal depth is not preserved

since the value of b depends on (xv, yv). However, if the offset terms o′x, o′y, ô′x,

and ô′y in O2 (xv, yv) dominate (xv, yv), then b remains largely the same over a local

region, and to the extent that b is constant, the ordinality of depths recovered

within this local region is likely to be preserved. See Fig 4.5 for the values of

D in the x − Z plane under various viewing positions. We make the following

observations

• The sign of b decides whether the perceived space is compressed or expanded

(compared Figures 4.5(a), 4.5(b) with 4.5(c)), with the depth order preserved

irrespective of the sign of b.
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• There is no qualitative difference between the distortion in Figure 4.5(a) and

Figure 4.5(b), despite the addition of second order rotational terms (which

results in the bending of the contour) and the error in the focal length. This

echoes the result of our paper [12] that calibration is not the determining

factor in the quality of the perceived space.

• With the large principal point offset error found in the cinema viewing condi-

tion, the bending is made more pronounced by the second order terms arising

from this offset, which is further aggravated by the shift in the origin. This

results in difficulty in deciding depth orders across large visual angle, which

seems to be consistent with out experience of sitting in an extreme off-center

position.

4.4.4 Forward motion

For the case of forward motion, adopting the same “epipolar reconstruction” scheme,

n can be expressed as (x,y)T√
x2+y2

. The distortion factor D can then be expressed as:

• for the case of normal uncalibrated SFM (with all second order terms ignored)

D =
(xv − ô′x)

2 +
(
yv − ô′y

)2

(xv − o′x) (xv − ô′x) +
(
yv − o′y

) (
yv − ô′y

)
+ O′Z

(4.31)

where

O′ = −
(
βf ′v − β̂f̂ ′v

)
(x− ô′x) +

(
αf ′v − α̂f̂ ′v

) (
y − ô′y

)
(4.32)
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• for the case of cinema viewing configuration (second order terms due to prin-

cipal point dominant)

D =
(x− ô′x)

2 +
(
y − ô′y

)2

(xv − o′x) (xv − ô′x) +
(
yv − o′y

) (
yv − ô′y

)
+ O′′Z

(4.33)

where

O′′ = −_

βf (x− ô′x) +
_
αf

(
y − ô′y

)

_

βf = βf ′v − β̂f̂ ′v + O2
x (xv, yv)

_
αf = αf ′v − α̂f̂ ′v + O2

y (xv, yv)

O2
x (xv, yv) = −β

(xv − o′x)
2

f ′v
+ α

(xv − o′x)
(
yv − o′y

)

f ′v

+β̂
(xv − ô′x)

2

f̂ ′v
− α̂

(xv − ô′x)
(
yv − ô′y

)

f̂ ′v

O2
y (xv, yv) = −α

(
yv − o′y

)2

f ′v
+ β

(xv − o′x)
(
yv − o′y

)

f ′v

+α̂

(
yv − ô′y

)2

f̂ ′v
− β̂

(xv − ô′x)
(
yv − ô′y

)

f̂ ′v

From both equations (4.31) and (4.33), we see that D cannot be expressed in

the form of 1
a+bZ

with constant a and b. Indeed, for a particular value of D, the

corresponding iso-distortion surface is a cone. It has also been shown [11] that

all D surfaces in the 3-D space intersect on a common line. As can be seen the

distortion factor varies rapidly in a small neighborhood (Fig 4.6(a) and 4.6(b))

around the forward direction, and thus depth reconstruction is much more difficult

than that in the case of lateral motion. While the presence of the second order

terms may change the shape of the iso-distortion contours towards the periphery,
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Figure 4.6: Families of iso-distortion contours for forward motion. (a) Viewer

seated at CVP, fv = 309.0, βe = 0.001, αe = 0.001 (b) Viewer seated on the optical

axis of the projector with Dv < Dc, f ′v = 309.0, f̂ ′v = 303.0, β = −0.002, β̂ =

−0.001, α = 0.002, α̂ = 0.001. INF stands for infinity.

the key properties discussed above regarding depth distortion are still true. In

particular, ordinal depths are no longer recoverable. On the contrary, it has been

shown [14] that forward motion leads to conditions favorable for motion recovery.

In sum the discussion so far in this section has shown that while the multiple pro-

jection processes in a cinema viewing configuration (with optical axis of viewer and

projector being parallel) may vary the iso-distortion equations, they do not alter

the essential properties of depth distortion for both lateral and forward motion. In

other words, since in the first place it is difficult even under normal viewing condi-

tion to obtain exact motion estimates from motion cues, the key properties of the

perceived depths are already laid down, with changes in the intrinsic parameters
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(brought about by the cinema viewing condition) contributing only to quantitative

but not qualitative change.

4.5 Discussion

Various psychophysical experiments have showed that we cannot recover the Eu-

clidean space from two views even in our everyday activities. This is manifest in

various psychophysical phenomena such as apparent frontal parallel plane (AFPP),

apparent distance bisection (ADB), and foreshortening of visual space at increas-

ing distance under stereo vision [73] (note that human stereopsis is mathematically

equivalent to a lateral monocular translation along the inter-ocular distance, fol-

lowed by an eye rotation equal to the convergence angle). AFPP has also been

reported for the case of motion [13]. This inability to recover the veridical space is

also mirrored by the computational difficulties encountered in depth reconstruction

algorithms from motion and stereo cues. In particular, the resultant distortion in

the recovered depth is modeled by the distribution of the iso-distortion surfaces

presented in this thesis. For instance, Figures 4.5(a) and 4.5(b) explain the com-

pression of stereoscopic space noted by various researchers [35, 61, 107]. The sur-

prising thing is that we function remarkably well in everyday life and this seeming

paradox parallels that happening in the cinema.
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The results of our work showed the link between everyday SFM and that occur-

ring in the cinema. In particular, viewers seated at a reasonably central position

experience a shift in the intrinsic parameters of their visual systems. What are

the implications of these results? Is there a need to calibrate these changes in the

intrinsic parameters? It is an open question whether the human visual system does

this. There is no need to calibrate if, in the first place, we are not even able to esti-

mate extrinsic motion parameters accurately under everyday SFM condition. Such

errors in the motion parameters render Euclidean space recovery impossible and in

fact already determine all the important properties of space distortion. Changes or

errors in the intrinsic parameters introduce further changes in the perceived shape

but the qualitative nature of distortion remains the same.

Clearly, without a comprehensive psychophysical investigation, we cannot say con-

clusively about the nature of space representation used by the human visual system.

However the epistemological considerations (what can and what cannot be recov-

ered) raised by this computational inquiry do constrain the likely forms of space

recovered from motion cues over two views. It seems that that recovery of metri-

cal depth information is in general very difficult; indeed, even recovery of partial

depth such as ordinal depth information might not be possible under all situations.

Having now at our disposal the various computational results regarding depth per-

ception under cinema viewing configuration and uncalibrated SFM in general, we

are testing these predictions with psychophysical experiments so as to confirm or
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refine our views about the role of calibration in human vision.

Let us explore the cinematographic implications even we do suffer from depth

distortion arising from motion cues (not considering the role played by other cues).

Firstly, from our discussion in Section 4.4 about the nature of generic motions, it

means that the establishment shots favored by directors to introduce scenes will

yield reliable ordinal depth information, because of the lateral motions employed in

these shots. This is true irrespective of whether there is calibration of the intrinsic

parameters or not, and as long as the seat position is not too far off to the side. Such

qualitative appreciation of the scene depth might be sufficient to render cinematic

communication between the director and the audience possible.

On the other hand, shots with primarily forward motion present conditions fa-

vorable for motion recovery but not for depth recovery, regardless of whether the

intrinsic parameters are calibrated or not [14]. Such shots are mainly used in clos-

ing in towards a subject or to effect a first-person view as he or she navigates

through some environment. In the latter scenarios, the ability to recover the direc-

tion of motion well is obviously important for the appreciation of the meaning of

the shot. Aspects of structural information might also be important for the viewer

to “inhabit” the space of the protagonist, although its recovery from motion cues

might not be feasible. Which particular structural aspect needs to be recovered

is task-dependent; for instance, the ability to estimate the time-to-collision (TTC)

is important for shots depicting chases, say, through tight corridors. Fortunately,
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such information can be recovered directly from the optical flow, without going

through the step of 3D motion recovery [57, 70, 93].

Finally, it must be added that even though the distortion may seem severe for two-

frame SFM, the viewing conditions experienced by human being are typically not

so impoverished in depth cues, be it in everyday life or in the cinema. For instance,

merely extend the SFM problem to multiple views and the recovered structure has

to obey the constraint of rigidity. Other cues such as static perspective cue play an

important role too. The work by Stevens and Brookes [87], Sparrow and Stine [86]

or Cornilleau-Pèrés et al [20] have shown that static cues can dominate stereopsis

or motion cues for the perception of plane orientation. Cutting [21] showed that

the nonrigidity predicted by motion cue for a viewer not seated at the CVP is

not perceived and one explanation is that the static cues overrule the motion cue.

Indeed, static cues might also be used to recover H, the homography that relates

the view of a person seated at the CVP to that seated at a general position. For

instance, the orthogonality assumption among the detected vanishing directions

enable partial self-calibration of the principal point from just a single view.
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Chapter 5

Conclusions and Future Work

5.1 The behavior of SFM with erroneous intrin-

sic parameters

After intensive research in the past two decades, the geometric and computational

aspect of SFM seems well studied. However, the state of the art is that a prac-

tical SFM algorithm that can handle general visual tasks in the real world is still

unavailable. One of the contributing reasons is that the first step of SFM involves

solving an ill-conditioned problem. The computation of feature correspondence or

optical flow is under-constrained in nature, thus additional assumptions such as

depth smoothness are needed. Therefore, the input for the second and third steps
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is inevitably contaminated by errors which in turn lead to a distorted reconstruc-

tion. Consequently, the focus of SFM research has been shifted among others to the

robustness and sensitivity issues in recent years. In [75], Oliensis proposes a new

critique of SFM research. He argues that more comprehensive theoretical as well

as phenomenological analyses of algorithm behavior should be carried out under all

sort of typical scenarios. Such analyses are important not only for understanding

algorithms’ properties, but also for conducting good experiments and for develop-

ing the best algorithms. Our work is toward this direction. The analysis about

the motion estimation with erroneous focal length is based on [110]. In particular,

we are concerned with the limitation of SFM algorithms in the face of errors in

the estimation of the focal length. Instead of dealing with specific algorithms each

using different optimization techniques, we study one class of algorithms based on

the weighted differential epipolar constraint. The error surfaces under a wide range

of motion-scene configurations are studied and plotted, from which several results

are drawn.

In our work we have developed expressions describing the error behavior of ego-

motion estimation when the focal length is calibrated with error. The key results

are independent of both the egomotion estimation as well as the calibration algo-

rithms. We show the bas-relief valley will be rotated according to the error in the

focal length, in a way that is dependent on the motion-scene configuration. One

important suggestion is that, provided that one knows the rough range of the true
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focal length, setting a larger-than-true focal length helps to estimate the direction

of translation better though possibly with larger biases.

The results also show that the effect of erroneous focal length on the FOE estimate

is not the same over different translation and rotation directions. The structure of

the scene (depth) affects the shifting of the FOE estimate as well.

For the case of varying calibration parameters (f dynamically changing), additional

analyses are in order. The results established in [12]—that zoom field crucially

influence properties of depth reconstruction —raise the possibility that the results

might be quite different.

5.2 How movie viewers perceive scene structure

from dynamic cues

Our work offered an analytic account of several properties of the perceived visual

space when viewing the cinema from a location other than the CoP. In section 4.3,

we prove that the dynamic perception of pictures viewed from this location with

optical axis parallel to the projector’s axis can be treated as one where the viewer

experiences a change in the intrinsic parameters. Such changes remain within the

framework of uncalibrated SFM proposed for machine vision, and thus the viewer
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can use an algorithm similar to the various self-calibration algorithms proposed in

the computational vision community, if such algorithm exists at all in the human

brain. If the viewing axis and the projector axis are not parallel, then such viewing

configuration not only changes the intrinsic parameters, but the amount of changes

themselves are a function of the eye’s eccentricity, a situation not dissimilar to the

complex geometry of a foveated eye.

Even if the viewer is not able to calibrate these intrinsic parameters, we show that

the situation is not as serious as it seems. We investigate the properties of the

depth recovery and find that the ability of depth recovery is not jeopardized under

the cinema configuration. In other words, the estimation errors of the intrinsic

parameters will not change the essential properties of depth recovery. Lateral

motion still leads to robust ordinal depth recovery, whereas for forward motion,

the chief factor contributing to severe distortion in depth recovery is the difficulty

in estimating the extrinsic parameters well enough.

5.3 Future Work

The problem of recovering the structure of a 3-D scene from a sequence of images

obtained from the relative motion between the scene and the observer is an impor-

tant area of research in computer. As we mentioned earlier, only a few subproblems
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of the SFM problems have been addressed in this thesis. The theoretical framework

and methodology adopted in our work can be extended to tackle the other aspects

of the SFM problem.

In the first part of thesis, we presents detailed geometric analysis, along with sim-

ulations, of the errors computed for a large class of SFM estimation algorithms.

The analysis focuses on the errors caused by estimating the intrinsic characteris-

tics of the camera (specifically the focal length of the camera) inaccurately. The

results suggest that error on the side of larger focal lengths might result in more

accurate estimates of directions of motions. However, smaller focal lengths might

result in more stable estimations of motion. This may inspire new algorithms of

ego-motion and camera calibration algorithms. What so ever, we have also show

certain combination of the direction translation and rotation may help to reduce

the effect of erroneous intrinsic parameters on the ego-motion estimation.

The second part of our research relates the problem of perceiving motion on the

screen of a cinema to the errors analyzed in the first part. We show that this

viewpoint discrepancy may be modeled as an error in estimating the intrinsic pa-

rameters of the human system and suggests that depth recovery from motion cues

are not jeopardized much. Our geometrically motivated approach for understand-

ing the calibrated motion ambiguities can be readily extended to deal with other

viewing condition. For example Head-mounted displays (HMDs) and 3DTV, where

the the modified focal length focal length is more close to that of our visual system.
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Appendix A

Decomposition of Homography

Matrix

Among the various catalogues of explanations to the cinema viewing paradox, the

compensation hypotheses have lots of proponents. These hypotheses claim that

invariance is the consequence of re–interpreting the retinal image by recovering

the position of the CoP from either the information in the picture. Thus the CoP

recovery is a major problem for these hypotheses. Most of the algorithms agree that

the CoP is recovered from the locations of vanishing points in the light field. It has

been proved that the locations of three orthogonal vanishing points are sufficient to

recover the vanishing point [8, 54]. Alternatively, two orthogonal vanishing points

plus the assumption that the CoP lies ont the surface normal from the center of



121

the picture can be used to recover CoP [84]. In this section we propose another

possible algorithm that many be used to recovered CoP.

Considering the case discussed in Section 4.3.2, if the viewer is aware of the transla-

tion and rotation of himself/herself with respect to the CoP, clearly the position of

CoP can be recovered easily. Assume the viewer can somehow recover the homog-

raphy matrix H either from the pictorial compensation or from the global surface

compensation, then whether H can be decomposed into its motion and components

parameters, namely
{
R, t

Dp
,N

}
is the major problem for the above hypothesis.

We now prove that given a homography matrix H =
(
R + 1

Dp
tNT

)
, there are

at most two physically possible solutions for a decomposition into its components

{
R, t

Dp
,N

}
.

First note that H preserves the length of any vector orthogonal to N. Also, if we

know the plane spanned by the vectors that are orthogonal to N, we then know N

itself. We first recover the vector N based on this knowledge.

The symmetric matrix HTH has three eigenvalues σ2
1 ≥ σ2

2 ≥ σ2
3 ≥ 0 with σ2 = 0.

Since HTH is symmetric, it can be diagonalized by a 3 × 3 orthogonal matrix V

such that:

HTH = V
∑

VT (A.1)

where
∑

= diag {σ2
1, σ

2
2, σ

2
3}. We denote the three column vectors of V as [v1,v2,v3];then
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we have:

HTHv1 = σ2
1v1 (A.2)

HTHv2 = σ2
2v2 (A.3)

HTHv3 = σ2
3v3 (A.4)

Since v2 is orthogonal to both N and t, and its length is preserved under the map

H. Also, it is easy to check that the lengths of two other unit-length vectors defined

as

u1 =

√
1− σ2

3v1 +
√

σ2
1 − 1v3√

σ2
1 − σ2

3

, u2 =

√
1− σ2

3v1 −
√

σ2
1 − 1v3√

σ2
1 − σ2

3

(A.5)

is also preserved under the map H. Furthermore, it is easy to verify that H

preserves the length of any vectors inside each of the two subspaces

S1 = span {v2,u1} , S2 = span {v2,u2} (A.6)

Since v2 is orthogonal to u1 and u2, [v2]× u1 is a unit normal vector to S1, and

[v2]× u2 is a unit normal vector to S2. Define the matrices:

U1 =
[
v2,u1, [v2]× u1

]
, W1 =

[
Hv2,Hu1, [Hv2]×Hu1

]

U2 =
[
v2,u2, [v2]× u2

]
, W2 =

[
Hv2,Hu2, [Hv2]×Hu2

] (A.7)

We then have

RU1 = W1, RU2 = W2. (A.8)

This suggests that each subspace S1 or S2 may give rise to a solution to the

decomposition where R is given by W1u
T
1 or W1u

T
2 . By taking into account
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the sign ambiguity in the term 1
Dp

tNT , we obtain four solutions for decomposing

H =
(
R + 1

Dp
tNT

)
to

{
R, t

Dp
,N

}
:

1. R1 = W1U
T
1 , N1 = [v2]× u1,

1
Dp

t1 = (H−R1)N1

2. R2 = W2U
T
2 , N2 = [v2]× u2,

1
Dp

t2 = (H−R2)N2

3. R3 = R1, N3 = −N1,
1

Dp
t3 = − 1

Dp
t1

4. R4 = R2, N4 = −N2,
1

Dp
t4 = − 1

Dp
t2

In order to reduce the number of physically possible solutions, we may impose the

positive depth constraint. For example, if solution 1 is the true one; this constraint

will then eliminate solutions 3 as being physically impossible. Similarly, one of the

solutions 2 or 4 will be eliminated. Thus, we end up with at most two solutions.
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