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SUMMARY 
 

 

 

As caches are used widely in modern microprocessors to fill in the speed gap 

between main memory and processor, and the cache usually constitutes a big portion 

of chip’s power, the optimization of power consumption and performance in such a 

component is important. In this thesis, we investigate several algorithms to reduce the 

power consumption in the instruction-cache memories while maintaining high system 

performance.  

 

Firstly, we explore a run-time size-scalable instruction-cache design method, which 

adds some special cache-scaling instructions (CSIs) to the program object codes to 

track the working set size during compilation phase. According to the prediction using 

CSIs and the current system state, a hardware controller makes the decision of 

caching instructions and scaling the active size of I-cache. Thus the unused cache 

lines could be switched off at runtime to reduce power consumption. In hardware 

implementation, we use a gated Vdd/Gnd technology and some logic circuits to 

switch on and off the power supply for each cache line. This CSIs algorithm could 

achieve a better balance between low power dissipation and high performance in the 



 viii

scalable cache than previous algorithms such as the LRU line-decay and the method 

in [90].  

 

Secondly, we study a program object code reallocation method to reduce the 

working-set size to maintain a small subset of cache lines in utility. When a size-fixed 

cache is used, this algorithm could improve cache performance by reducing the 

reference miss rate. If this method is integrated with the previous CSIs algorithm, we 

could reduce more power consumption in the cache than only the CSIs algorithm is 

used without additional penalty of performance. 

 

Another proposal in this research is to reduce the tag activities for dynamic power 

reduction based on cache-line access predictions. In this method, we predict the small 

loop executions and the sequential locality of program object code during both 

compilation phase and runtime. When the same cache line is accessed during the 

consecutive cache references, the tag operations are disabled for power reduction and 

the instructions are indexed using the line offset bits in the effective address bus. In 

addition, we use the line boundary and an instruction pre-decoder for branch 

instructions to detect the reference shift between different cache lines, so that the tag 

operations could be activated in time to maintain system performance. 

 

Finally, we design a reconfigurable cache, where the degree of set-associativity 

could be configured to direct mapped, 2-way associative or 4-way associative, and the 



 ix

refill-line size could be configured to 16 bytes, 32 bytes or 64 bytes in run time. The 

cache reconfiguration method could achieve high performance with relatively low 

power consumption when executing a wide range of application programs. In the 

tradeoff between power consumption and performance, this design could present a 

flexible adaptivity to meet different optimization criteria and solve the dilemma. For 

example, it could guarantee a hyper-average performance and sub-average power, or 

certain limit bounds of performance and power consumption. 
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CHAPTER 1 
 
INTRODUCTION 
 

 

 

 

1.1 Background 

 

Portable devices based on embedded microprocessors have become increasing 

popular and widely-used over the past years. The current trend in consumer 

electronics is the integration of many functions previously provided in individual 

devices into a single device. Thus instead of cell phones, MP3 players, digital cameras, 

radios, audio recorders, global position systems (GPSs), personal digital assistants 

(PDAs) and other separate portable devices, it is now common to see the functions 

found in each of these separate devices integrated into one device. The typical user 

also expects better response time when operating these devices. To achieve these 

requirements, an embedded microprocessor capable of huge processing power is 

needed. Such a high performance processor would usually incorporate more complex 

circuits and consequently more transistors. 

 



CHAPTER 1                                                          INTRODUCTION 

 2

With the development of submicron CMOS technology, more circuits can now be 

accommodated on a single die. This allows modern microprocessors to incorporate 

more complex circuits to improve system performance and functionality.  

 

One problem associated with adopting submicron technology containing millions of 

transistors in a chip is a dramatic increase in static power dissipation in addition to the 

usual associated dynamic power dissipation. The static power consumption of a die is 

proportional to the number of transistors. As we move forward, static power 

dissipation of submicron CMOS chip is expected to equal or exceed that of dynamic 

power dissipation.  

 

 For a mobile electronic device that uses battery as its power supply, low power 

dissipation is an almost universal requirement. Hence a multi-function integrated 

electronics device is not expected to consume significantly more power than its 

simpler predecessors. That is to say, not only are microprocessors expected to execute 

complicated functions, but they also should sustain reasonably long usage times. This 

gives rise to a need for low power consumption. Currently major research effort and 

technological developments are centered on building microprocessors that can deliver 

high performance and yet consume minimal power. 

 

In this chapter, we will explore some techniques that have been developed to reduce 

power consumption in microprocessors. In fact, there are many approaches for 
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low-power microprocessor design. These range from system level enhancement, 

architecture level enhancement, circuit level enhancement to transistor level 

enhancement. A general understanding of the technological development on this front 

will foster a clearer understanding of this study’s motivation and contribution. The 

following section briefly introduces some typical directions in low power 

microprocessor design method. 

    

 

1.2 Methods of Low-Power Microprocessor Design 

 

In the area of low-power microprocessor design, many methods have been 

investigated and implemented in the past decades. These various techniques can be 

applied to the different levels of the design hierarchy [1], and address both hardware 

and software aspects.  

 

Hardware design methods of low-power microprocessor design may be classified 

into various categories. These range from adopting low-power architectures and 

components [2-9] by redesigning the system architecture or component 

implementations, fine grains and reconfigurable modules [10-12] on balance between 

performance and power by disable part of grains or circuits, multi-mode or 

multi-domain systems [13,14] by rescheduling the low-power mode or domain for 

system operation when the performance is satisfactory, logic and circuit level 
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improvement [15-18], data/address bus and I/O path reconstructions [19-21], clock 

gating and distribution [22-23], voltage reduction and scaling [25-27] to reduce power 

directly, to CMOS device technology improvement [28-30] at the low level design.  

  

Software based design may be classified into operating system controlled or 

application driven management [31-35], compiler optimizations [36-38], data 

communication, transformation and speculation [39,40], model-based analysis [41], 

instruction set architecture redesign, instruction level parallelism and optimization 

[42-44].  

 

Many of the above methods are well known and effective in reducing power 

consumption of microprocessors when applied independently. Moreover, hardware 

implementation techniques and software algorithms are increasingly combined 

together [45-47] for better energy savings.  

 

To reduce power consumption in a microprocessor, the design methods mainly 

concentrate on those architectures, components or circuits that consume a significant 

portion of power in the system. For example, it is important to reduce the power 

consumed by the clock networks and the instruction execution circuits in the ALPHA 

21264 microprocessor [48] because the power consumption of the global clock 

network plus instruction issue units together account for 50% of the total system 

power. Table 1-1 shows the power consumed in various components in the ALPHA 
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21264 microprocessor that operates at the maximum operating frequency of 600MHz 

[48].  

 

Table 1-1  The components of total power in the Alpha 21264 microprocessor at 
the maximum operating frequency 

Global Clock Network 32% 

Instruction Issue Units 18% 

Cache Memories 15% 

Floating Execution Units 10% 

Integer Execution Units 10% 

Memory Management Unit 8% 

I/O 5% 

Miscellaneous Logic 2% 

 

This version of the ALPHA 21264 microprocessor is manufactured using a 0.35um 

CMOS process technology. It is the third generation of the ALPHA microprocessors 

with process technology developed from 0.75um and 0.5um. The dynamic power 

consumption in these microprocessors occupies the bulk of total system power 

consumption. This is because, only a small percentage of circuits in these chips are 

inactive during each clock cycle, and the leakage power consumption in a CMOS 

transistor that uses a long geometry feature is negligible compared with the 

overwhelmingly dominant dynamic power consumption. However, with the 

development of CMOS process technology, the channel length, transistor threshold 



CHAPTER 1                                                          INTRODUCTION 

 6

voltage, and gate oxide thickness are reduced. As a result, the ratio of leakage power 

consumption to total transistor power consumption steadily increases while the 

dynamic power dissipation per CMOS device decreases.  

 

   

 
Fig. 1-1  ITRS projections for transistor scaling trends and power consumption: 

(a) physical dimensions and supply voltage; (b) device power consumption 

 

Fig. 1-1 shows the International Technology Roadmap for Semiconductors (ITRS) 
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projections for transistor scaling trends and device power consumption [49,50]. It is 

shown that the CMOS device gate length, oxide thickness and power supply reduce 

over one order from 1985 to 2020. In the mean time, dynamic power dissipation per 

device decreases about two orders, while static power dissipation per device increases 

over 3 orders. Therefore, the percentage of power consumption of each component in 

a microprocessor may vary significantly with the development of CMOS process 

technology.  

 

Among the components in a modern microprocessor, the cache memory usually 

occupies a big portion of the chip die. At any point of time, only one refill line in a 

cache is accessed, which consumes dynamic power, while the rest of the memory cells 

consume static power. Furthermore, as implementation moves towards more advanced 

technology, giving rise to more transistors per chip, a larger percentage of the chip is 

devoted to the implementation of cache. Therefore, the cache is a good potential for 

applying static power reduction methods. The cache memory in a modern 

microprocessor normally consumes about 15% to 50% of the total energy depending 

on the system configuration and applications. Fig. 1-2 shows the decomposition of 

power consumption for embedded/media processors. It is shown that, the caches  
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Fig. 1-2 Power consumption for embedded/media processors.  

(a) Strong ARM  (b) Power PC 

consume 42% and 23% of the total processor power in StrongARM 110 and Power 

PC [38] respectively. This is a high percentage compared to the other components in 

the microprocessor. 

 

As on-chip cache memory becomes larger and larger for embedded microprocessors, 

it is increasingly important to address power dissipation in such a component. For 

example, 60% of the chip area in StrongARM is devoted to cache and memory 

structures [51] that dissipate about 42% of the total chip power [52]. Therefore, 

design for low-power caches has attracted keen interest from both researchers and 

developers. In this thesis, we will address the low-power cache design for embedded 

microprocessors.  

 

In the past decade, large progress was made in the area of low-power cache design. 

In the next section, we review some previous work related to low-power cache 

designs. 
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1.3 Low-Power Cache Design Technologies 

 

Modern microprocessors generally employ the on-chip caches to bridge the speed 

gap between the processor and main memory. Among the components in a 

high-performance microprocessor, cache memory usually occupies a significant 

fraction of the total die and consumes a large percentage of system power.  

 

To reduce power consumption in the cache subsystem, a number of mechanisms 

have been proposed. They are memory cells redesign [53,54], hierarchy or 

architecture reconfiguration [55,56], avoidance of unnecessary data accesses [57] to 

eliminate unnecessary dynamic power consumption and reduction of tag frequency 

[58]. The effectiveness of many low-power cache structures has been examined in 

[59,60]. Analytic model for power consumption in various cache structures has been 

developed by [52,61]. Other aspects (also for performance improvement), such as 

different cache architectures [62,63] with different power consumption and 

performance, associativities [64] and choices of cache types [65] to cater for different 

situations have also been evaluated.  

 

The above technologies were proposed based on certain specific cache architectures 

and have fixed active size during operation. To manage performance and power issues 

collectively in the cache memory, an interesting mechanism has been explored 
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recently to scale the active cache size dynamically in run-time to reduce power 

consumption. In the following sections, some effective mechanisms for size-scalable 

caches will be introduced. 

 

 

1.3.1 Size Scalable Caches Based on Hardware Technology 

 

General microprocessors are designed to provide good average performance over 

different applications. However, the actual cache utilization varies widely both within 

and across different programs. This may lead to an inefficient balance between power 

consumption and system performance for individual programs and individual phases 

in the same program. To get an optimal balance between low power and high 

performance in different scenarios, some reconfigurable cache structures have been 

proposed to adapt the behavior of different applications and activate/deactivate the 

required portion of the cache resources.  

 

In a chip with traditional CMOS process technology, the static power consumption 

in cache is deemed to be negligible and the dynamic power is dominant. However, as 

smaller geometry feature size and lower threshold voltage of the transistors are used 

in advanced CMOS technologies, the fraction of static power consumption increases 

exponentially. To reduce static power consumption in caches, a few algorithms have 

been reported to tune the cache size in run-time according to certain control criteria.  
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A traditional control criteria used to tune the cache size is the cache miss-rate bound. 

In the Dynamically Resizable I-cache (DRI) [83], a large portion of cache memory 

can be dynamically switched on and off using some preset bounds of the miss-rate. In 

this algorithm, if the real miss-rate is lower than a tolerable lower-bound, a number of 

cache lines will be put in the sleep-mode to reduce power consumption. Subsequently, 

if the detected miss-rate is higher than an upper-bound, a large block of cache that is 

in the sleep-mode is turned on to improve system performance. As a result, the 

number of disabled cache lines is directly related to the detected cache miss rate and 

the preset miss rate bounds. 

 

Since the optimal miss rate varies widely in different programs based on the tradeoff 

between power consumption and system performance, it is difficult to set an ideal 

uniform miss-rate bound for all applications in advance. Furthermore, the scalable 

granularity in DRI cache is relatively coarse. This drawback in DRI was improved to 

some extent in Cache Line Decay [84] that enables/disables individual cache lines. It 

has finer granularity than DRI and is potentially more effective. It uses a Least Recent 

Used (LRU) line decay control mechanism, which is called LRU decay. In this case a 

cache line is automatically switched off if it has not been referenced in a period of 

time, named decay interval, and a new line is turned on once a reference miss 

happens.   
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The LRU decay algorithm is simpler than the scaling miss-rate bounds algorithm. 

However the LRU decay is not able to guarantee the system performance using a 

single period of line decay time. The Adaptive Mode Control (AMC) cache [85] 

addressed this aspect and enhanced the LRU decay algorithm. It keeps the tag array 

active all the time and provides a counter for each tag to measure its activity. With 

this modification the increased miss rate that results from the size-tuning mechanism 

can be monitored in real time, and their tracking of the program working set is 

potentially more accurate than [84], where only a decay time is used. Here we define 

a working set as a number of instructions that need to be stored in the 

instruction-cache within a period of time for executions.  

 

Besides detecting the actual miss rate, another hardware design method to maintain 

system performance is to reduce the power voltage on some cache lines just to a small 

threshold value, other than to zero. At this threshold value, the state of the data in 

cache is still preserved. This algorithm is referred as drowsy cache [86], which puts 

some lines into the state preserving low-power drowsy mode to reduce the leakage 

power consumption with a small overhead of state transition. Though it also uses line 

decay algorithm, the system performance in drowsy cache is not degraded as much as 

that in DRI cache or AMC cache when they achieve the similar reductions of power 

consumption. 

 

The size-tuning algorithm for a cache memory is always a balance between power 
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consumption and cache performance. The reduction of power consumption and cache 

performance degradation are determined by the accuracy of tracking the runtime 

working-set size. The above mentioned algorithms with hardware technologies 

provide a possibility to predict the working-set size in run time. However, their 

predictions of a working set size in the future time window are based on the past 

usage of cache lines, this incurs an inevitable phase lag. Because the cache line usages 

in different time phase do not keep the same, it is difficult to accurately predict the 

working-set size in run time using only the above hardware technologies, so that the 

cache scaling algorithm could be further investigated.  

 

 

1.3.2 Software Optimizations 

 

Besides the hardware design methods as described in Section 1.3.1, software 

optimization and compiler support is another effective strategy to reduce power 

consumption in caches. Traditionally, software optimizations aim at high cache 

performance by improving the hit-rate with satisfactory spatial and temporal code 

locality. A higher cache hit-rate (or lower miss rate) normally results in lower power 

dissipation in the cache because of the smaller power overhead consumed by 

reloading the missed data from main memory to cache. The software optimizations 

for a high cache hit-rate are normally performed by a compiler, which plays an 

important role in data transformation, register/memory allocation and bit transitions 
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between successive instruction/data accesses.  

 

When the compiler generates the program object code, the methods of loop tiling, 

loop fusion, pattern recognition, instruction parallelism and branch prediction would 

be considered. Besides the general optimization methods, some special techniques for 

several typical situations in the embedded programs (for example, media applications), 

have been investigated to reduce the power consumption in cache memories. For 

example, the design space optimization of embedded memory systems via data 

remapping was evaluated in [87]. At a higher level, memory access pattern 

restructuring for energy savings was proposed later in [88]. Considering the prediction 

of working sets in cache memory, Zhenlin et al. [89] used the compiler to estimate the 

characteristics of programs and to improve cache line replacement algorithms. Along 

this way, the compiler-directed algorithm is a promising research direction in the area 

of low-power cache design. In the next section, we introduce a recent study in the 

topic of compiler-controlled low-power instruction-cache design. 

 

 

1.3.3 Compiler-Controlled Low-Power I-Cache Design 

 

W. Zhang et al. combined the hardware method used in drowsy cache [86] (see 

section 1.3.1) and a compiler-directed prediction algorithm to reduce leakage power 

consumption in I-cache [90]. They detect the end of each loop and accordingly insert 
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a special instruction during the compilation phase to communicate the information to 

the hardware controller in runtime. For further energy savings, they optimized the 

traditional object code of some loops in the programs using loop fusion, head 

duplication for loop division and space tiling to cater for their cache size scaling 

algorithm. This hardware and software hybrid approach achieved a better balance 

between power and system performance. However, they have not considered some 

useful factors such as the loop length, nested short loops, subroutine invocations and 

the cache structures. Moreover, the increased code size as a result of applying their 

algorithm is high. The overhead of fetching, decoding and executing these codes leads 

performance loss. 

 

 

1.3.4 Dynamic Power Reduction in the Tag Structure 

 

The run-time resizable cache design methods as described in previous sections 

mainly focus on reducing the static power consumption. On the other side, the 

dynamic power dissipation in the cache also has potentials of further reductions. As is 

known, a cache that is frequently used can be configured in direct-mapped structure or 

set-associative structure. A direct-mapped cache usually consumes less power than 

those caches with higher degrees of set-associativitity. It is because the higher 

set-associativity, the more tag entries in the cache are in operation during each 

instruction cycle. The number of tag activities is proportional to the dynamic energy 
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dissipation in tag array. However, in order to improve system performance, the 

set-associative caches even become more and more popular. From this point of view, 

the low power design technologies in the component of tag array, especially for high 

set-associative caches, become important and will be described as follows.  

 

The cache tag array must be in operation during each instruction cycle. Thus the 

dynamic power consumption in the tag array generally contributes a high percentage 

of the total power dissipation in the cache sub-system. The power dissipation in tags 

is proportional to the length of the tag and the tag activities. To reduce the tag 

comparisons or tag length, a few methods have been proposed in the recent years.  

 

A popular architecture is to provide an extra small L0 cache that stores recently and 

frequently executed instructions, and the main cache is accessed only when L0 cache 

misses [66-68]. The costs of this method are an increased cache miss rate and an 

increment of die area.  

 

Another speculative cache line access method is the phased cache design in 

set-associative caches [69,70]. It first probes the initial tag array or the predicted way 

and only in case of miss, it will access the rest of the tags. The penalty of this method 

is an increment of cache access time in every tag prediction error. 

 

Panwar et al. [71] used the Program Counter in microprocessor to predict whether 
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two consecutively executed instructions belong to different cache lines and to perform 

tag-checks. Witchel et al. [72] used a special compiler scheme to allow software to 

access cache data without hardware cache tag-checks; while Ma et al. [73] proposed 

to eliminate tag checks via a dynamic way-memorization. Koji Inoue et al. [74] 

suggested a history-based tag-comparison using a branch target buffer, and Peter 

Petrov et al. [75] predicted major program loops and used a shorter tag array to index 

cache lines.  

 

However, these studies mentioned in the above paragraph either achieved only a 

small reduction of cache power dissipation, or paid an obvious penalty of 

performance loss, power overhead and die area of extra complex circuits. Therefore, 

this topic of research work could be further investigated to save dynamic power 

consumption in the tag array while maintaining high cache performance. 

 

 

1.3.5 Reconfigurable Caches 

 

Other than the uniform cache structures, research works in the low-power cache 

design have explored non-uniform cache architectures [76], as well as analyzed 

multi-way selectivity [77] and studied the impact of different block size [78] on the 

tradeoff between the cache performance and the power dissipation. Since a 

general-purpose microprocessor is used for a variety of application programs, it is 
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important to ensure both low power consumption and high system performance across 

many different-domain applications. A fixed cache structure may perform well for a 

certain program characteristic, but may perform badly when running another program. 

Intuitively, run-time reconfigurable caches design would do well and has been 

attracting more and more research interest.  

 

In the area of reconfigurable cache design, Rama Sangireddy et al. [80] exploited 

the possibility of using a part of cache memory for computational purpose to get a 

better balance in the usage of cache and computing resources for different 

applications. In their adaptive microprocessor architecture, the data cache is designed 

as an optional coprocessor. A part of the data cache is designed as a multi-functional 

cache that can be configured to perform certain computational functions in the media 

application when such computing capability is required and only a small cache is 

needed. 

 

As far as a sole cache function is concerned, R. Balasubramonian et al. [81] 

proposed a reconfigurable cache architecture where the size of the Level 1 cache and 

Level 2 cache can be dynamically and separately tuned by allocating an extra cache 

memory to L1 or L2 cache in different situations. On the other side, Chuanjun Zhang 

et al. [82] introduced a way-concatenation technique, which could dynamically 

configure the cache to be direct-mapped, two-way or four-way set associative with 

fixed refill-line size.  
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1.4 Objectives 

 

In this section, we present four proposals in low-power caches design. 

 

One purpose of this research was to develop an algorithm to tune instruction-cache 

size in run-time to reduce the power consumption of I-cache while maintaining high 

system performance. The essential of this algorithm is to track the program working 

set size in run time. We use five kinds of cache scaling instructions (CSIs) to denote 

the characteristics of typical program segments, such as the start and end of loops, 

sequential instruction blocks and subroutine invocations. The CSIs are added to 

program object codes during the compilation phase to predict the runtime program 

working set size. In our algorithm, we use the exact parameters such as cache line size, 

total number of cache lines, addresses map of program segments in memories, length 

of loops and subroutines, to predict when to tune the cache size and which cache line 

needs to be switched.  

 

The second objective of this research is to optimize the program object code to 

reduce the power consumption of instruction-cache while improving system 

performance. In this method, we reallocate some typical instruction segments such as 

loops and subroutines in memory map to reduce the runtime program working-set size. 
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When the cache size is fixed, the code reallocation method could improve the cache 

hit-rate. It is because a working set that is originally bigger than the instruction-cache 

size before code reallocation may be smaller than the instruction-cache size after code 

reallocation, so that this whole working-set could now be loaded into the 

instruction-cache without cache reference miss during execution of this working set. 

When the code reallocation method is integrated into our previous CSIs algorithm, the 

result could enhance the advantage of CSIs algorithm. It is because a smaller working 

set size in runtime implies more unused cache lines could be turned off and more 

power consumption could be reduced in a re-sizable cache memory. 

 

Thirdly, we propose a software and hardware co-design method to reduce the 

unnecessary tag operations for low power consumption. In software design, we add 

some special instructions to the application program object code during compilation 

time to predict the characteristics of runtime tag-operations. Such predictions are used 

to disable or enable the tag activities to reduce the dynamic power consumed by tag 

array. In hardware design, we provide an extra component to disable or enable the tag 

activities to support our software algorithm. In our algorithm, those unused tags are 

totally disabled so that it could achieve more dynamic power reductions in the cache 

tag array than some conventional proposals, which disabled only a part of high bits in 

the unused tags. 

 

Lastly, we present a reconfigurable cache memory to balance between high 
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performance and low power consumption in different situations. In our cache 

architecture, the total cache size is fixed. However, the degree of way associativity 

and the refill-line size could be configured dynamically in run-time, depending on 

different applications and system objectives. The selection of cache configurations is 

based on a limit-bound on the cache performance or the power consumption. Using 

this method, a collection of low-power and high performance in the cache could 

probably be achieved for different program characteristics. 

 

 

1.5 Organization of the Thesis 

 

In this first chapter, we present the general background of low-power 

microprocessor design methods. We then introduce low-power cache design methods, 

give an overview of related works, as well as list the objectives of the research. The 

remainder of this thesis is organized as follows. 

 

In Chapter 2, memory hierarchies in typical computer systems and the elementary 

cache architecture are introduced; the components in the cache memory are designed 

and simulated for the evaluation of power consumptions. Based on the experimental 

results, we analyzed the potentials of reducing the power consumption of the data 

cells and of the tag array in a cache. 
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In Chapter 3, we propose an algorithm to tune the Instruction-cache size in run-time 

to reduce the leakage power consumption. To turn off a proper portion of 

Instruction-cache memory, we predict the run-time program working set size during 

compilation phase. The prediction algorithm is implemented by inserting five kinds of 

cache scaling instructions (CSIs) into the original program object codes. To support 

this algorithm, we use a gated-GND technology in hardware design to switch the 

power supply for each cache-line. Furthermore, an extra arbiter is constructed to 

record the system state and implement the power control algorithm. Lastly, the 

experimental results are analyzed and compared with that in conventional cache 

tuning algorithms. 

 

In Chapter 4, we investigate an object-code reallocation method to reduce the power 

dissipation in the instruction-cache while improving the system performance. The 

goal of this method is to reduce the runtime program working-set size by reallocating 

some typical instruction segments such as loops and subroutines in memory map. We 

simulate the programs in the environment of SimpleScalar [102] to trace the sequence 

of executed instructions and record the start addresses and the end addresses of all the 

loops and subroutines, the iteration times of loops and the addresses where a 

subroutine is invoked. The above information is called the program runtime profile 

data, with which we reallocate some loops and subroutines in memory map and align 

them with cache lines. Finally, we integrate the code reallocation method with our 

CSIs algorithm, as well as evaluate the cache performance and the reduction of power 
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consumption based on experiment results. 

 

In Chapter 5, a software and hardware co-design method is studied to reduce the 

unnecessary tag operations for low power consumption. In software design, we add 

some special instructions to the application program object code during compilation 

time to predict the necessity of runtime tag-operations. In hardware design, we 

provide an extra component to disable or enable the tag operations to support our 

software algorithm. Using a group of SPEC200 benchmarks, we simulated this design 

method and evaluated the energy savings and performance loss with respect to the 

simulation results. 

 

In Chapter 6, we present a reconfigurable cache architecture, where both of the set 

associativity and refill-line size have three choices. Such a cache has total nine 

different configurations of architecture. This design aims to achieve both high 

performance and low power consumption in the cache subsystem when running the 

programs with a wide range of characteristics. The selection of an optimal cache type 

for a specific program depends on certain criteria of balance between the power 

consumption and system performance, for example, a cache miss rate bound. Finally, 

the advantage of this reconfigurable cache is discussed based on experimental results. 

 

In Chapter 7, the conclusions derived from the studies in this thesis are drawn. 
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CHAPTER 2 

ELEMENTARY CACHE ARCHITECTRUE  

AND POWRE CONSUMPTION 

 

 

 

This chapter introduces memory hierarchies in typical computer systems, elementary 

cache architecture and power simulation method.  

 

 

2.1 Memory Hierarchies in a Computer System 

 

In general, it is desirable that a processor has immediate and uninterrupted access to 

memory, and the time required to transfer information between the processor and 

memory should be such that the processor can operate at, or close to, its maximum speed. 

Unfortunately, it is not cost effective to employ a single big block of high speed memory. 

In fact, a computer system may contain many levels of memory to store the instructions 
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and data required for its operations. These hierarchies of memories have different units of 

sizes, costs and speeds. Traditionally they can be divided into three main groups: 

processor registers, primary memory, and secondary memory. A hierarchy of memory 

system in a typical digital computer is shown in Fig. 2-1. 

 

 

Fig. 2-1  The memory hierarchy in a computer system 

 

Internal registers are not only high speed, but what makes them really expensive is 

being highly ported. The amount of general registers is small (hundreds of bytes). The 

primary memory is relatively larger (hundreds of thousands to millions of bytes) and less 

expensive than the internal processor registers. It is used to store the active programs and 

data during normal computer operation. The secondary memory is generally a lower-cost 

and large-size extension of primary memory, in which programs and data files are held in 

reserve and moved into primary memory as needed. The memories in different levels are 

manufactured with different materials or technologies and have different characteristics. 
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In typical computer systems, the difference in access speed between internal processor 

registers and primary memory is one order to two orders of magnitude. To narrow this 

speed gap, the microprocessors can employ another type of memory called a cache. The 

cache memory serves as an intermediate temporary storage unit that is logically 

positioned between the processor registers and primary memory.  

 

A cache memory can be positioned inside the microprocessor (on the same die) or exist 

separately, as shown in Fig. 2-2. Sometimes both of these two types of caches are used 

simultaneously in a computer system and are referred to by names such as level 1 cache 

and level 2 cache. The cache can also be classified into instruction cache and data cache 

according to what is stored in the cache.  

 

 

(a) 

 

(b) 

Fig. 2-2  A cache positioned in the memory hierarchy:  
(a) inside processor   (b) outside processor 

 

Although the cache has a high access speed, it is more expensive than the main memory 
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(primary and secondary memory). For tradeoff between low cost and high system 

performance in a microprocessor, the capacity of internal processor caches normally 

ranges from 2K to 128K bytes in the embedded domain. A cache memory is rather small 

compared to main memory, but it should be large enough to keep those portions of 

information that are most frequently needed and active.  

 

Analyses of memory reference characteristics of programs have shown that typical 

programs spend most of their execution times in a few main modules and tight loops 

[116]. This property is known as the program locality principle and is a key consideration 

in the design of cache memory scheme. The program locality can be divided into 

temporal locality and spatial locality. Temporal locality means that in the near future, the 

probability of referencing those data or instructions that have been referenced in the 

recent past is high. Spatial locality means that in the near future, a program is more likely 

to reference those data objects that have addresses close to the past reference. To reduce 

the effective time required by a processor to access addresses, instructions or data, the 

cache can be structured in various forms to improve system performance (such as a 

higher reference hit rate) in different scenarios. 

   

 

2.2 Elementary Cache Architecture 

 

There are several kinds of cache architectures such as direct-mapped, set-associativity, 

section-associativity and full associativity. Among these cache architectures, the direct-
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mapped or set-associative caches are frequently used in real embedded microprocessors 

(see Table 6-1). In section-associativity, a section of lines in the main memory can be 

mapped to a certain number of cache lines sections in the fixed sequence. With the direct-

mapped cache architecture, the physical memory address is divided into three fields: a tag 

field (the p higher-order bits), a line index field (r bits), and a word offset field (the least 

significant n bits). When the CPU sends a physical memory address (p+r+n bits) to the 

cache to read a datum, the line index field is transmitted to the decoder, causing the 

content of the tag memory and the cache data memory to be transferred to their respective 

buffers. If the tag so obtained matches the tag field of the memory address, the 

comparator signifies “hit” and the reference to main memory is inhibited. The word field 

is then used by a decoder/multiplexer to select the specific word desired in the line that is 

in the cache data buffer. If there is a reference “miss”, main memory must be accessed to 

obtain the information requested. While the CPU gets the datum, the cache receives a 

copy and is updated by placing the line of information received in the data area and 

placing the tag field in the tag area.  

 

Fig. 2-3 shows a direct mapped cache architecture. Here the main memory and cache 

are each divided into lines of 2n words. In addition to the data array, the cache has a tag 

array consisting of 2r tags. Each tag identifies the address-range of the 2n words in the 

corresponding refill line.  

 

  In the direct mapping scheme, each main memory address maps to a unique cache line. 

Since a cache can be mapped with 2p+n addresses in main memory, there are 2p main  
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Fig. 2-3  A direct-mapped cache with main memory 
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memory lines that are mapped to each cache line. When the consecutive data accesses are 

going to different main memory lines that map to a same cache line, this situation is 

mentioned as conflict miss and there will be a cache line replacement, making the cache 

inefficient. In such a situation, a set associative cache can reduce the impact of this 

drawback. In a 2k–way set associative cache, the 2r lines in main memory that are 

mapped to a same cache line in direct-mapped scheme are now divided into 2k partitions, 

each containing 2r-k lines. The physical memory address partitioning for this 2k–way set 

associative mapping is shown in Fig. 2-4.                          

                                                                                                                                                                       

 

Fig. 2-4  Memory address partition for a 2k–way set associative cache 

 

 

In this case, the main memory is divided into 2r-k sections, but each word in main 

memory can reside in one of the 2k corresponding cache lines, known as a set, and the 

line index field are also called the set index field. When k equals to r, it is called a fully 

associative cache. Fig. 2-5 gives the structure of a two-way set-associative cache 

architecture.          

 

In the two-way set associative cache, both the two partitions of a cache line operate in 

parallel. When the CPU issues an address to read a datum from cache, the tag field is 

compared with those two tags selected by the line field synchronously. If there is a 
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reference hit, the datum is fetched from its associated line in the data area. However, if a  

 

Fig. 2-5  The structure of a two-way set associative cache 

 

miss is encountered, one of these two indexed lines is overwritten by the new data using a 

certain replacement algorithm. Traditional line replacement policies least frequently used 

(LFU), first in first out (FIFO), random replacement (RR) and least recent used (LRU). 

Among these strategies, the LRU line-replacement algorithm is the most popular and is 

reported to have high hit rate in cache memories where programs have large temporal 

locality. To implement the line replacement algorithm and to indicate the valid data when 

a cache line is flushed, a group of counters, registers, bit flags, etc. is needed in the cache 
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controller. For potential evaluation of the power reduction, the power consumption of 

each component in the elementary cache architecture is estimated in the next section. 

 

 

2.3 Power Estimation for the Components in Caches 

 

2.3.1 Power Estimation Models 

 

The power dissipation in CMOS circuits consists of dynamic power consumption and 

leakage power consumption. The dynamic power consumption can be estimated using the 

formula (2-1).  

Pd = Ceff × f × Vdd
2               (2-1) 

 

where Ceff represents the effective switched capacitance, Vdd is the supply voltage, and f 

corresponds to the frequency of gate switch activities. The above model shows that, the 

circuit dynamic power consumption is proportional to the load capacitance, frequency of 

operation, and quadratic supply voltage.  

 

Leakage power of a CMOS digital circuit can be estimated as follows: 

Pleakage =  Vdd × Ileakage           (2-2) 

 

 where Ileakage represents the total leakage current produced in the given internal state. 

Here the total leakage current has two major components. One is the leakage current 
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flowing from the power supply to ground through the transistors, which are in ‘off-state’ 

due to subthreshold conduction. The other one is the leakage current of reversed biased 

PN junctions associated with the source and drain of MOS transistors. The estimation of 

the leakage current in a memory cell requires information on technology parameters, 

circuit topology, temperature, power supply and memory state.  

 

In the past few years, several models have been proposed to calculate the power 

consumption of cache memories. Kamble and Ghose [52] developed an analytical model 

to estimate cache energy dissipation based on SRAM cell and set associative 

architectures. These require run time statistics of the cache activities such as hit/miss 

counts, fraction of read/write requests, number of dirty victims and the information about 

the cache organization such as tag width, line size and cache capacity, to derive the signal 

transition counts in various cache components. However, the power estimation 

inaccuracy using this model sometimes is as much as 30%. Moreover, this model only 

accounts for dynamic power dissipation, which is probably not accurate enough for 

upcoming smaller geometries in CMOS process, which has relatively large static power 

consumption.  

 

Another heuristic model for the estimation of power dissipation in each component in a 

microprocessor including the cache is presented by Brooks et al. [92] and Joseph et al. 

[93]. They use a hardware performance counters as proxies for power meters and 

estimate the power–relevant events assuming that program behavior is fairly constant 

with respect to the sampling intervals. Based on the circuit activity estimation and the 
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difference between the practical parameters and theoretic value, their computation result 

of the power may have an error as large as 21% compared with the true value.  

 

Shivakumar et al. [94] proposed an integrated model to estimate the cache access time, 

instruction cycle time, power consumption and cache area. By integrating all these 

models together users can have confidence that tradeoffs between time, power, and area 

are all based on the same parameters and hence are mutually consistent. Besides the 

impact of theoretic parameters, which are dependent on the CMOS technology and cache 

configuration, this model also estimates the impact of sub-array organization, routine 

structure, wire length and capacitance on the calculation of energy dissipation in each 

component.  

 

Other than the above methods of power estimation for the components in a cache 

memory, here we simulate the operations of a cache memory in the environment of 

Synopsys [95] and compile its power consumption. The advantage of this method is that, 

this design tool could produce the real layout for circuits and take into account the 

different input data. It is validated that the accuracy of power simulation using this 

method is more than 85%. In the next section we will introduce our experiment process 

and simulation results. 

 

 

2.3.2 Experiment Method 
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To estimate the power consumption in cache memory, we designed the logic circuits for 

each component in a cache. The components are then synthesized to Register Transfer 

Level (RTL) and to gate level for the simulations of functional behaviors. During this 

simulation period, we captured the circuit switching activities for power estimation with 

input benchmarks using the Synopsys Design Compiler. 

 

To capture the circuit switching activities in the Synopsys tool, we use the HDL 

compiler to create a technology-independent design called a GTECH design. With the 

information from the GTECH design, the HDL compiler creates a file called forward-

annotation in the RTL Switch Activity Interchange Format (SAIF). Fig. 2-6 shows the 

experiment steps in gate-level simulation using the SAIF file.  

 

Here we set the parameter, power_reserve_rtl_names, as true and create a RTL 

forward-annotation SAIF file. The RTL forward-annotation file enables monitoring of the 

switching activity of primary inputs and other synthesis-invariant elements of the design.  

 

 For accuracy of power estimation, we annotated the switching activity again in the 

back-annotation file onto a gate-level design (a technology-specific format) using the 

input benchmarks. This methodology takes into account any hierarchical changes 

between the GTECH design and the gate-level design. Fig. 2-7 shows the methodology 

process using RTL simulation and circuit SAIF Files. 
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Fig. 2-6  Using SAIF files during gate-level simulation 

 

We here use the VHDL System Simulator (VSS) SAIF interface to monitor the signals 

in circuit and output a backward-annotation SAIF file. Then we input this file together 

with the CMOS technology library and gate-level circuit net-list to the power compiler to 

estimate the circuit power consumption, as shown in Fig. 2-8. Finally we use the power 

compiler to output the report of power consumption of the circuit with some constraints 

on timing and area requirement.  
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Fig. 2-7  RTL simulation and SAIF files methodoology 

 

 

Fig. 2-8  Information input to power compiler 
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After going through the above experiment process, we can get the power consumption 

of each component in the cache memory. In the next section we present the power 

simulation results of the cache components that are designed in our experiment. 

 

 

2.3.3 Power Simulation Results and Potential of Power Reductions in 

Cache 

 

In a power simulation experiment, we configured the cache system using the 

parameters as listed in Table 2-1. Here a 4-way set associative 1K cache is designed using 

a CMOS technology of 0.35µm with power supply of 3.3V, a clock frequency of 100MHz, 

8-bit data bus and 16-bit address bus. 

 

Table 2-1  Cache configurations 

Parameter Value 

CMOS technology 0.35µm 

Supply voltage 3.3V 

Clock frequency 100MHz 

Cache type 4-Way associative 

Cache size 16×64 Bytes 

Address bus width 16-bit 

Data bus width 8-bit 
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With the input of general object code files, we estimated the average power 

consumption of each component in the cache using the experiment method as described 

in Section 2.3.2. Table 2-2 shows the power simulation results of tag, LRU counter (used 

to implement the LRU line replacement algorithm) and data cells in a refill-line when 

they are in different operation modes.  

 

Table 2-2  Power consumption of cache components 

Component Average power (µW) 

Tag (in operation) 69.2 

LRU counter 27.7 

Standby 32.8 

Read  2169 Data cells in 
a refill line 

Write 5564 

 

 

With the above cache configuration, the dynamic power consumed by the LRU counter 

and tag are 27.7µW and 69.2µW respectively, which is overwhelmed by the dynamic 

power consumed by the data cells in a refill line. If the clock frequency increases or the 

tag length increases, the dynamic power consumption of the tag will increase. The power 

consumption of LRU counters that implement line replacement algorithm is dependent on 

the clock frequency, set-associativity and characteristics of the object codes.  
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The leakage power consumption of the data cells of a refill line is 32µW that is 

compiled by the Synopsys without gate activities. It is shown that the dynamic power 

dissipation of the data cells in a refill line is 2169µW when it is read, which is about 66 

times of the leakage power consumption of a refill line when it is in standby. A refill line 

consumes power of 5564µW only when it is updating the data because of a cache miss. In 

each instruction cycle, there is only one refill line consuming the dynamic power and the 

rest of the refill lines are in standby mode. However, the static power dissipation of the 

whole data array in the cache is proportional to the total number of refill lines, as 

described in Chapter 1. Therefore, the leakage power dissipation of the data array may 

exceed its dynamic power consumption in a big cache. For example, if we increase the 

number of cache lines in the above cache architecture to 256 with a total 16K cache size, 

the static power dissipation of the data array would be 8396.8µW, which is more than the 

dynamic power consumption of a refill line.  

 

 

2.4 Summary 

 

In this chapter, we introduced the memory hierarchies in typical computer systems, the 

elementary cache architectures, the power simulation method and the experimental 

results.  

 

The cache bridges the speed gap between the microprocessor and the off-chip main 

memories. A cache can be configured differently by selecting the different line sizes, 
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number of cache lines, degree of way associativity and line replacement algorithms.  

 

Although the power consumption of a cache or each component in the cache system 

could be estimated using some traditional models, the accuracy of their power 

estimations may not be high enough. Here we adopt an experimental method in the 

environment of Synopsys to compile the cache power consumption based on gate-level 

simulation. Using this experiment method, we could estimate the power consumption of 

the components in different kind of cache architectures with different inputs. Furthermore, 

we could also design and simulate other circuits or components, such as a power 

controller, and evaluate the power consumed by them. 
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CHAPTER 3 

RESIZE THE INSTRUCTION-CACHE 

IN RUNTIME TO REDUCE LEAKAGE 

POWER DISSIPATION 

 

 

 

This chapter presents an algorithm to tune the Instruction-cache size in run-time to 

reduce leakage power consumption. In this algorithm, we insert cache scaling 

instructions (CSIs) into original program object code during compilation time to predict 

the runtime program working set size. To support this algorithm, we utilize a gated-

GND technology in the hardware design to switch on or off the power supply for each 

cache-line. Furthermore, we construct an additional power controller, called arbiter, in 

the resizable I-cache to monitor the system state and implement the power control 

algorithm. The experimental results showed that our proposal could reduce a significant 

percentage of energy dissipation in the I-cache with negligible performance loss.  

 

 

3.1 Introduction 
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In a chip manufactured using a long-channel CMOS process technology (e.g. 0.8µm or 

longer), the static power consumption is negligible and the dynamic power consumption 

is the dominant component in the total power dissipation. As described in Chapter 1, with 

the development of deep sub-micron technology (e.g. 95nm or shorter), the chip 

integration becomes greater, and this gives rise to the possibility that the static power 

consumption becomes the major fraction in the total chip power dissipation.  

 

Among all the components in a high-performance processor (for example, StrongARM 

110 and Power PC, as shown in Fig. 1-2), cache memory occupies a significant fraction 

of total die area and consumes a big percentage of power [51,52]. It was also estimated 

that the static power consumption accounts for 30% of L1 cache power and 80% of L2 

cache power in a 0.13um processor [83]. Therefore, design for reducing the leakage 

power in large cache memories has been attracting more and more interest from 

researchers and developers. 

 

Generally, microprocessors are designed to provide good average performance over a 

variety of applications. However, the actual cache utilization varies widely both within 

and across programs. This may lead to an inefficient balance between power consumption 

and system performance for individual programs and individual phases in the same 

program. To manage performance and power issues collectively in the cache subsystem, 

some mechanisms, such as DRI cache [83], LRU decay cache [84] and AMC cache [85], 

have been proposed to tune the cache size during run time. These approaches allow 
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turning off certain blocks of cache lines dynamically to reduce static power dissipation by 

making predictions based on past usage of the cache or a preset decay period. However, 

this strategy may not track working set size very well since the past usage may not be 

representative of future situations, and the optimal period of decay time is not uniform 

across general programs. The Drowsy Cache [86] made some improvement by using a 

shorter state transition time, but it still adopted an LRU decay algorithm, where a longer 

decay time means a smaller performance loss, but also a smaller saving in energy. The 

balance between performance and power in this algorithm is dependent on the line decay 

interval, which is set by the designer. W. Zhang et al. combined the line decay and 

compiler-directed prediction to save leakage power in I-cache [90], but they only focused 

on predicting the end of each loop and then turning off the entire cache at the end of each 

loop without considering the relationship between loop-length, cache size and 

subroutines that are invoked repeatedly. 

 

To further reduce power consumption in I-cache memory, we propose an algorithm to 

predict the working set size of loops and subroutine invocations more accurately during 

runtime using cache scaling instructions (CSIs). The CSIs are inserted into the object 

code during the compilation phase. Based on these CSIs, we turn off an appropriate 

portion of unused cache lines with a gated-Vdd [96] technique. A small overhead of 

power dissipation and performance degradation is incurred when fetching and decoding 

the CSIs, reloading instructions when re-accessing the lines which have been turned off, 

and switching the power supply for cache lines. However, our experimental results 

showed that this algorithm could reduce a high percentage of energy consumed by the I-
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cache.  

 

The remainder of this chapter is organized as follows. In Section 3.2, we present the 

resizable cache architecture, the Gated-Vdd/GND Technology and our cache scaling 

algorithm. In Section 3.3, we describe the characteristics of program locality, the CSIs 

insertion algorithm and power control mechanism. In Section 3.4, we evaluate the power 

reduction and performance degradation in resizable caches when using the CSIs and LRU 

decay algorithms. In Section 3.5, we give a summary. 

 

 

3.2 Hardware Implementation and Cache Scaling Algorithm 

 

3.2.1 Resizable Cache Architecture 

 

Fig. 3-1 shows the hardware architecture of the resizable cache system. It contains the 

basic components in the traditional cache system such as data array (N lines with L bytes 

per line), content addressable memory that comprises of N tag entries, a set of counters 

that implements the refill-line replacement algorithm, and some other logic circuits that 

implement the memory access operation. Besides these components, we added an 

additional hardware component, called arbiter, in the size-scalable instruction-cache. The 

arbiter interfaces between the CPU core and the cache lines to implement the cache size 

scaling algorithm.  
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Fig. 3-1  System architecture of the resizable I-cache memory 
 

 

In essential, the cache size scaling algorithm is a power control algorithm, where those 

unused cache lines are powered off to save leakage power consumption. This algorithm is 

realized via both software and hardware designs. Based on the program object code 

analysis, we predict the runtime working set size and encode this information in certain 

cache scaling instructions (CSIs) that are added to the original program object codes 

during the compilation phase. When the CSIs are executed in runtime, the arbiter will 

interpret the data in the CSIs with the current cache system state. Subsequently, the 

arbiter decides to scale the cache size and to turns on or off the power supply for certain 

cache lines.  
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3.2.2 Gated-Vdd/GND Technique 

 

To control the power supply in each cache line individually, we use the gated-

Vdd/GND technique [96]. In this technique, the power supplied to each line is separately 

controllable and is gated using one or two switch transistors that enable the system to 

effectively eliminate the dynamic power consumption and the leakage in the unused 

cache lines. Fig. 3-2 shows an example of a SRAM cell with a MOS gated-Vdd/GND 

technique. Here the single cell can be extended to a whole cache line. The Gated-Vdd 

refers to the technique that adds an extra PMOS transistor between the supply voltage and 

a cache line. The Gated-GND is one where a NMOS is added between the cache line and 

Ground. The extra PMOS or NMOS transistors are turned on in the active cache lines and 

turned off in the unused cache lines. Thus the supply voltage or current in the unused 

cache lines is gated and virtual.  

   

 

Fig. 3-2 A RAM cell with MOS gated-Vdd/GND technique 
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When the Gated-Vdd/GND transistors in the unused cache lines are turned off, they 

produces the stacking effect in conjunction with the memory cell transistors, which could 

effectively eliminate the leakage power consumption in these cache lines by virtually 

turning off the power supply [96,97]. However, using the PMOS and/or NMOS 

transistors to control the power supply presents a trade-off among leakage reduction, area 

overhead, and impact on cache performance (power-up delay and active speed).  

 

Since a power-control transistor is shared by a whole cache line, this transistor needs to 

be sufficiently wide to sustain the total current that drawn by an entire cache line. In the 

power control technology, we can use a PMOS or a NMOS. The advantage of using a 

PMOS gated-Vdd transistor in each line is that the PMOS transistor requires less width, 

meaning a small area overhead, than the NMOS transistor. Moreover, a PMOS transistor 

incurs less access delay than an NMOS. The disadvantage of using a PMOS transistor is 

that it achieves lesser leakage reduction than using a NMOS transistor here. It is shown in 

[96] that, using a 0.18µm channel length and a low threshold voltage (0.2V) with a line 

size of 32 bytes, the PMOS gated-Vdd could reduce 86% of leakage power with 

negligible performance impact and area increase. On the other hand, the NMOS gated-

GND could save 97% of leakage power dissipation in the unused RAM cells with 5% of 

the area overhead in the refill line and 8% delay of the read time. It is indicated in [94] 

that reading data onto bitlines is only 6% of the total data access time. Because the 

majority of the access time is in decoding the address (40%) and activating the wordline 

(30%), the impact of NMOS gated-Vdd on the active line access speed is not significant 

(here about 0.48%). Since the consideration of area overhead is less important than that 
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of the leakage reduction in our algorithm, in this case we use the NMOS transistor to 

switch power supply for cache lines. 

 

 

3.2.3  Cache Scaling Algorithm 

 

The circuit to switch on and off a cache line is logically simple. The complexity lies in 

the algorithm to decide which line is used or not used and when to switch on or off the 

power supply to it. When certain cache lines are selected to turn off, the data stored in 

these lines should be unused for a sufficiently long period of time so that the leakage 

energy saved by the cache scaling method would exceed the energy consumed by the 

arbiter and the associated circuits needed to turn on and off the cache lines. In the mean 

time, system performance may also degrade because of the delay incurred by switching 

on the power supply for cache lines in runtime and reloading those refill lines that have 

been turned off but are re-accessed. For the balance between power reduction and 

performance loss in the resizable cache design, some interesting ideas have been 

proposed in recent years. 

 

To guarantee system performance, conventional size scalable cache memories such as 

DRI cache [83], LRU decay [84], AMC cache [85] and Drowsy Cache [86], set a limited 

range for reference miss-rate and somewhat operates as an auto control system. If the real 

miss rate is lower than a tolerable lower-bound, a number of cache lines will be put in the 

sleep-mode to reduce power consumption. On the contrary, if the detected miss rate is 
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higher than the upper-bound, a block of cache currently in sleep-mode will be turned on 

to improve system performance. In such a mechanism, the system must monitor the real 

miss rate in runtime and compare it with the expected miss rate bounds. As a result, the 

number of disabled cache lines is dependent on the detected cache miss rate and the 

preset miss rate bound. This also determines the potential reduction of cache power 

consumption. In fact, the ideal range of miss rate bound that determines the tradeoff 

between cache performance and power consumption may vary widely in different 

programs and phases. Moreover, the real miss rate detected in the past phase may not be 

representative in the future time phase, so that the prediction of working set size based on 

such preset miss rate bounds is not sufficiently accurate. Therefore, this approach may 

achieve certain percentage of power savings but may not be optimum across different 

applications. 

 

Another power control scheme via cache size scaling is LRU decay. In this algorithm, a 

block of cache memory is switched on when a reference miss occurs and is switched off 

if it has not been referenced for a period of time. The tuned cache granularity and decay 

period may be adjusted for the balance between low power and high performance in 

different cache systems. However, a critical parameter used in the LRU line decay 

algorithm to turn off each line is an interval of decay time that could be tuned 

automatically in run-time, rather than be set. A manually preset uniform decay period 

may not track the working set size very well in general programs because the optimal 

period of decay time for individual applications is different. The traditional LRU decay 

algorithm uses a unique time period to turn off cache lines. If this time interval is short, 
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the overhead of dynamic power and delay is significant because the cache miss rate will 

increase when the LRU decay period decreases. Whenever a cache miss occurs, it brings 

the cost of delay and power consumption for reloading instructions in the lines that are 

accessed but have been turned off previously. If we use a longer decay time, we will get a 

smaller cache performance loss and a corresponding smaller energy reduction. Therefore, 

the tradeoff between high performance and low power consumption in the scalable cache 

is dependent on the LRU decay interval that is set by the designer. 

 

W. Zhang et al. combined the line decay algorithm and compiler-directed prediction to 

reduce leakage power [90], but they only focused on the prediction of the end of each 

loop and turned off the whole cache at the end of the loop. However, they ignored the 

length of each loop and the relationship between it and the cache/line size. Moreover, 

their algorithm did not consider the characteristics of subroutine invocations. Therefore, 

the energy savings in their algorithm is conservative, and in some situations (for example, 

if a short loop contains many smaller loops), the overhead of dynamic power and 

execution time that results from increased miss rate and the execution of the added cache-

tuning instructions may be intolerable. 

  

In substance, the extent of optimization to balance between power and performance in 

size-scalable caches is determined by the program working sets prediction at the 

algorithm level. To further reduce the leakage power consumption in I-cache with lower 

cost of performance, we propose an algorithm to predict the runtime working set size of 

loops and subroutine invocations more accurately using a few cache scaling instructions 
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(CSIs). In the next section, we will describe the characteristics of program locality and 

the CSIs insertion algorithm. We then describe the power control mechanism in our cache 

system using the CSIs in different scenarios. 

 

 

3.3 Characteristics of Program Locality and the CSIs Insertion 

Algorithm 

 

An application program may be written using whatever advanced languages such as 

C/C++, Basic and Java. Although the programs have various structures and functions and 

are optimized by different compilers, they are ultimately translated to the binary object 

code with the instruction set architecture (ISA) of the microprocessor. Since the object 

codes are mapped to addresses in memory, it could be more accurate and easier to trace 

the program characteristics and runtime working sets at the program object code level 

than at a higher level, which is before compiler optimization. Hence we use the object 

code as input to analyze the program working sets. It is equivalent to adding a program 

analyzer to the original compiler after its last step. In this last step, the output object code 

is analyzed and CSIs are inserted as appropriate. Fig. 3-3 shows the flow chart of the 

process steps in a compiler.   

 

The input of a compiler is the application program that is written using high-level 

languages. The instruction statements with continuous character strings are separated into 

distinctive tokens by the scanner. The output of the scanner gives the input to the parser  
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Fig. 3-3  Flow chart of the compiler processes 

 

that groups tokens into sentences and determines if the grammar is correctly used as 

defined by the language. Then it builds an abstract syntax tree (AST) for the program to 

represent the instruction segment structure. Optimizations may be needed for the original 

AST to suit machine architecture and produce faster and effective object code. Thereafter 

a reduced AST is generated by the parser and it is translated to object code. Here in our 

proposal, an extra code analyzer is added to the original compiler to predict the program 

working sets and insert CSIs to control the cache size during runtime. The final output of 
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object code would direct the power controller to operate at the resizable cache memory. 

 

 

3.3.1 Instruction Segment Characteristics 

 

For all programs, we classify the instruction segments into three types: sequence, loop 

and subroutine invocation. When the instructions are executed in the order of increasing 

address, including forward jumps, it is defined as sequence. If the next instruction in 

execution is located before the current executed instruction in memory address map, it is 

regarded as the end of a loop. For subroutines and functions, they can be invoked by a 

loop, a subroutine or an independent instruction. The loops may also be inside a 

subroutine and they may in turn be nested. Fig. 3-4 gives an example of an instructions 

flow chart in terms of the proper nodes. A node here represents a block of sequential 

instructions without branches and is defined as a basic block. The analyzer in a compiler 

extracts all the basic blocks in an application program, calculates the length of all basic 

blocks and records the relationship among them. With this features, the analyzer inserts 

some CSIs to the object code according to working set size prediction algorithms, which 

is described as follows. 

 

 

3.3.2 CSI Insertion Algorithm 

 

In our size scalable I-cache memory, the number of refill-lines N and the refill-line size  
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Fig. 3-4  Node flow chart of an instruction segment 

 

 

(number of bytes per line) L are used to indicate the working set size. A program working 

set is defined as a number of program segments or instructions that would be stored in I- 

cache for execution within a period of time window. Since sequential instructions in a 

cache will not be accessed again in the near future after they are executed, it is therefore 

not useful to cache the sequential instruction blocks. On the other hand, loops and 

subroutines will be executed repeatedly. Therefore, it is useful to cache such program 
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segments to improve system performance. For loops and subroutines that are accessed 

frequently, we propose to insert cache scaling instructions (CSIs) during compilation time 

to the object code to predict their working sets, and then to tune the cache size in runtime 

with the tradeoff between power reduction in cache and system performance loss. The 

CSIs insertion algorithms for these scenarios are described as follows. 

 

In the CSIs insertion algorithm, we consider two situations: loops and subroutines. For 

a loop, we let m represent the length of the loop in terms of cache refill-lines, including 

the length of subroutines (if any) invoked within this loop. If 1≤m≤wN, where the factor 

w≥1, such a loop is defined as a small loop. Before the body of a small loop, a CSI 1 will 

be inserted into the original program object code to indicate that more lines of cache are 

needed to load the loop from the off-chip memory. Therefore, after a CSI 1 is executed, a 

new cache line will be switched on to load instructions once a cache reference-miss 

happens. If all lines in the cache-set are already used at this point of time, a line 

replacement algorithm (LRU) will be applied.  

 

At the end of small loop, a CSI 2 is added to indicate that the cache lines holding the 

small loop can be turned off to save power. To maintain the system performance, the 

cache line that holds this CSI 2 is not turned off immediately after the CSI 2 is executed. 

This is to ensure that the instructions following the CSI 2 instruction that are in the same 

cache line are executed before power to the cache line is turned off. Once a loop is 

denoted with CSIs, its inner (smaller) loops will not be further denoted to avoid 

redundancy. Thus in a loop nest, only the largest loop that has a length within the limit 
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bounds (1≤m≤wN) will be denoted by a pair of CSIs. Compared with the algorithm 

proposed in [90], our algorithm has a smaller power consumption overhead and also 

suffers lesser performance degradation that result from the increased codes. The 

equivalent syntax of the modified program of this loop is expressed as follows: 

 

CSI (start of loop);…..……1 

{body of the small loop}; 

CSI (end of loop);…………2 

 

If the length of a loop is greater than wN, it is defined as a big loop. When we set the 

parameter w greater than 1, the length of a big loop is greater than the cache size. During 

the execution of such a big loop, the entire cache would be kept power on. In this case, to 

predict the working set of a big loop is less meaningful than a small loop for cache size 

scaling, therefore, no CSI is added for a big loop.  

 

For subroutine invocations, the compiler records the length of all subroutines (in 

number of lines p) and the locations (addresses) of invoking-nodes. Since a recursive 

subroutine invocation does not affect the working set size at run-time, CSIs are not 

needed in such a scenario. If a subroutine is longer than the size of the whole cache, the 

invocations for this subroutine will not be denoted. Otherwise, a pair of CSIs will be 

added at the start and the end of these subroutine invoking-nodes based on the following 

conditions. For instance, if a subroutine S is invoked by K nodes, the compiler will record 

information of these nodes with a group of data-structures Rk (k=0,1,…,K-1). Since Rk 
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are created in the addressing order, the memory mapping address of node i, addri , is 

lesser than that of node i+1, addri+1 , where 0≤ i <K-1. The distance in terms of the 

number of cache lines between the node i and i+1 is calculated using the formula:  

 

di=addri+1 /L - addri /L + ∑
+∈ )1,( iij

n    , ( 0 ≤ i < K-1)        

where ∑
+∈ )1,( iij

n  is sum of  the length of all other subroutines invoked between addri 

and addri+1 . 

 

We use di to classify the length between two different neighboring invocations for a same 

subroutine. If di ≤wN, a pair of CSIs (3,4) are added for node i with syntax as follows: 

 

    CSI (invoking, subroutine S );  …………..…3 

       invoking-node i for subroutine S; 

   CSI (end of invocation, subroutine S ); ……4 

 

After the execution of a CSI 3, if a cache reference miss occurs, a new cache line will 

be turned on to load instruction codes from main memory. In the event that all lines in the 

cache-set are used, an LRU replacement algorithm will be applied. When a CSI 4 is 

executed, an LRU decay algorithm (see section 1.3.1) will be applied to those cache lines 

that hold the subroutine S. The power control mechanism in this situation will be detailed 

in the next section. 
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If di >wN and di-1 ≤wN, the program locality between nodes i and i+1 is more loosely-

coupled than that between nodes i and i-1. As a result, a pair of CSIs (3,5) is added for the 

node i as follows: 

 

CSI (invoking, subroutine S ); ………3 

 invoking-node i for subroutine S; 

CSI (clear subroutine S ); …………...5 

 

When a CSI 5 is encountered, those cache lines holding the subroutine S are turned off 

immediately. 

 

If di >wN and di-1 >wN, (1≤ i < K, set dK-1 >N), the invocation-node i does not show 

closely-coupled locality with other invocation nodes. It is therefore regarded as a 

sequential instruction block in the program and no CSI is added for such a invocation 

node. In addition, if d0 >wN, invocation-node 0 is not denoted with CSI. 

 

It is a fact that the lesser number of CSIs we added to the original object codes, the 

lesser would be the cost of power and performance we need to pay for fetching and 

decoding these CSIs. From this perspective, if a pair of CSIs (3,5) for subroutine A are 

inside another pair of CSIs (3,4) for subroutine B, the inner CSIs (3,5) would be 

eliminated. Because the subroutine A is invoked by the subroutine B, the cache lines that 

hold the subroutine A may not be closed until the execution of subroutine B is completed, 

that is, the second CSI 3 here is redundant and the CSI 4 could cover the CSI 5. Similarly, 
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if a pair of CSIs (3,5) is inside another pair of CSIs (3,5) or (1,2), the inner pair of CSIs 

(3,5) would be removed to avoid redundancy because the information of closing 

instruction blocks between the inner CSIs (3,5) is implicated in the CSIs (1,2) or the outer 

CSIs (3,5). If a pair of CSIs (1,2) is inside of CSIs (3,4), the CSIs (1,2) are ignored as 

well. 

 

3.3.3 Power Control Mechanism  

 

We classify the layouts of the program into three types: loop, subroutine and sequence 

(see Section 3.3.1). A loop is such a program segment that is repeatedly executed in 

runtime. We denote a small loop using a pair of CSIs (1,2) in our algorithm. A subroutine 

is a portion of code within a larger program that performs specific task and is relatively 

independent of the remaining code, but is invoked by other codes. We denoted a 

subroutine using a pair of CSIs (3,4) or (3,5). A sequence is a block of instructions that 

are sequentially executed in runtime. If the instructions are outside of loops or 

subroutines, they are regarded as a sequence in our CSIs algorithm. In the following, we 

describe the power control mechanism in our scalable I-cache . 

 

 After execution of a CSI 1, a special flag bit in the arbiter will be set to indicate that a 

new cache line would be powered on once a cache miss happens. At the circuit level, 

each cache line that is occupied by the small loop can be indicated by a loop-bit flag.  

 

If a CSI 2 is encountered, these loop-bit flags are cleared. In the mean time, an LRU 
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decay algorithm will be applied to the current accessed line that holds the CSI 2, and the 

other lines that hold the small loop are switched off.  

 

If a CSI 3 is encountered, a flag will be set to indicate the start of a subroutine 

invocation. At the same time, a subroutine identity is written to a special register to 

indicate those cache lines that holds this subroutine. The CSI 4 triggers the LRU decay 

algorithm for those cache lines that stores the corresponding subroutine. The LRU decay 

algorithm is implemented using a set of counters, each of which is attached to one cache 

line. A counter is increased by one when a number of clock cycles elapse. It is reset on a 

reference hit in its corresponding line. Once a counter overflows implying the predefined 

time interval has elapsed, the line monitored by the counter will be powered off. The 

decay interval may be adjusted by auto loading a number greater than zero when a line hit 

is encountered. Such auto-loaded values may be programmed in software or hardware. 

For example, it can be decreased if there are j reference misses happened, and it can be 

increased if there is no misses for k consecutive instruction fetches. Parameters j and k in 

this case is an indication of the miss rate and is used to control the rate of adaptation of 

the decay interval. The range and bound of ideal or tolerable miss rate can be imposed to 

ensure system stability and performance. Once a CSI 5 is executed, all the lines that hold 

the related subroutine are turned off immediately.  

 

In conventional designs, before an instruction is fetched, a flag bit is checked to 

determine whether the microprocessor would go into an interrupt cycle or an instruction 

cycle. A bit indicator R in CPU core is set to “1” for an interrupt cycle and “0” for an 
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instruction cycle. In our mechanism, a counter (COUNT_INT) in arbiter will increase by 

one whenever R turns from “0” to “1” and decrease by one when an instruction RTI is 

decoded. The RTI instruction indicates the end of an interrupt service routine.  

 

During the period that the counter COUNT_INT holds a number greater than zero, the 

cache lines fetched to cache contain the instructions that are from interrupt service 

subroutines. In this situation, an LRU replacement algorithm is used for these cache lines. 

Therefore, when a cache reference miss occurs, the bit I that is attached to the renewed 

cache line is powered on to indicate that the line is used by an interrupt service subroutine. 

For those lines with valid bit I, the power control algorithm is LRU decayed. The 

counters implementing the LRU decay algorithm is only powered on when their 

corresponding indicators Is are valid. If there is a reference hit on a line with a valid bit I, 

its corresponding counter will be reset. Once a counter overflows, the corresponding line 

including the tag, attached counters and indicator registers will be powered off together.    

 

In our cache memory, line replacement is implemented using the LRU algorithm. It 

consists of a set of LRU counters, each of which is attached to one cache line. Initially 

these counters are set to zero. Whenever there is a cache reference miss, the cache line 

with the greatest number in its counter among the accessed set- lines will be replaced. In 

the mean time, the LRU counter in the newly replaced cache line will be cleared to zero 

and the other valid counters in the same cache set will be increased by one. If there is a 

hit on a cache line, the value in its related counter will be copied to a comparator and this 

counter will be cleared to zero. For those counters that hold a greater value than that in 
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the comparator register, their original values would be kept unchanged. For those 

counters that hold a smaller value than that in the comparator register, they would be 

increased by one. Thus the values that are kept in all valid LRU counters in the same 

cache set form the order of all valid cache lines in this set according to the LRU 

algorithm. An LRU counter that holds the smallest value indicates that its related line is 

the most recently used line. For the LRU replacement algorithm, the line with the greatest 

value in its LRU counter is least recently used and will be selected to load a new line of 

instructions when a cache reference miss occurs. This counter is subsequently cleared to 

zero and the counters in other lines within the same set will increase by one. 

 

 

3.4 Evaluation of Power Consumption and Performance in the 

Size-Scalable I-cache 

 

In this section, we discuss the tradeoff between the power consumption and 

performance degradation in resizable caches using LRU decay algorithm as well as our 

CSIs algorithm. We then evaluate the advantages of the CSIs algorithm based on 

experimental results. 

 

 

3.4.1 Tradeoff Between the Power and Performance in LRU Decay 

Algorithm 
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In the conventional LRU line-decay algorithm, a block of cache memory is switched on 

when a reference miss occurs and is switched off if it has not been referenced for a period 

of time. The tuned granularity and decay period may be adjusted for a balance between 

power and performance in different cache systems. However, there always exists a trend 

where the turn-off ratio of the cache will increase when the decay time interval decreases, 

but at the same time the cache reference miss-rate increases. We simulated this algorithm 

using a group of popular Windows-based applications in a 32K direct-mapped I-cache 

environment. The increased miss rate with LRU line decay period is show in Fig. 3-5. 

When we use an LRU decay time of 16K instruction cycles, the increased miss-rate in the 

scalable cache is about 1.8% on average; while it is only 0.4% if we use a decay time of 

64K instruction cycles. 
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Fig. 3-5  Increased miss rate of three applications in a 32K cache system using LRU 
line decay algorithm 
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Typically, a long decay time would be adopted for small performance degradation in the 

resizable cache. On the contrary, some users prefer a shorter LRU decay time to achieve a 

larger power reduction. However, a shorter LRU decay time will give rise to a higher 

cache miss rate that leads to a decrease in system performance. Furthermore, re-loading 

the closed cache lines will result in an increase in dynamic power consumption. 

Consequently, the trade-off between low power and high performance is dependent on the 

preset control parameters (miss rate bound, length of detecting phase, decay time interval, 

etc.).  

 

For dynamically resizable cache memory structures, a common idea is to track the 

program working set size and turn off those unused resources. Fig. 3-6 shows the 

relationship between the time window length and working set size. The cache size scaling 

mechanism in conventional memory systems are typically adaptive control systems, in 

which some feedback parameters (e.g. miss rate) are measured in run-time. Based on the  

 

Time window length

W
orking set size

 

Fig. 3-6  Working set size VS time window length 
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feedback parameters and certain scaling algorithm, the size-tuning decisions will be made 

in scalable caches.  

 

 

3.4.2 Working Set Size and Phase Transition Model 

 

Although the memory granularity as well as the time window size in the tuning 

algorithms may be different among scalable cache systems, they all estimate the current 

cache usage to predict the working set size for future time phases. The phase transition 

model of working sets states that programs follow a series of steady phases with rather 

abrupt transitions in between. A phase is defined as a maximal interval during which the 

working set size remains more or less constant. Fig. 3-7 indicates the model of tracking 

the working set size using different algorithms. Here the working set size is represented 

by the number of active cache lines, and the ti (i=0, 1,2, …) stands for the time when the 

working set reaches a relative steady phase or begins to change to another size.  

 

The time period of a phase (e.g. t4-t3) and the phase transition interval (e.g. t3-t2) vary 

among different applications and different time windows. For an LRU decay algorithm, 

some predefined limitation-parameters such as miss rate bound or decay interval may 

prevent cache lines thrashing, a case of rapid switching on and off the same cache lines. 

However, the transitions between working sets generally bring an over-shoot in tracking 

the working set size using LRU decay algorithm, due mainly to a tuning-lag. It is 
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indicated by the solid line in Fig. 3-7. In the CSIs algorithm, the working sets can be 

tracked more closely compared with that in the LRU decay algorithm, as is indicated by 

the dashed line in Fig. 3-7.  
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Fig. 3-7  Phase transition model of working set with time 

 

We simulated the real time working sets of some benchmarks in a 32k I-cache using 

both the two cache-scaling methods.  Fig. 3-8 shows the number of active cache lines in 

the y-axes and time in the x-axes when the image-viewing program “AcdSee” runs in a 

512×64 cache using different size scaling algorithms.  

 

The CSIs algorithm initially keeps the cache memory size at one line until a CSI is 

executed or an interrupt service routine is executed. For the sequential program segments, 
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our policy does not deteriorate system performance while reducing the working set size. 

It also consumes lesser power compared with using only the LRU decay algorithm to turn 

off the cache lines. At the end of a loop or an invoked sub-routine, the CSIs prediction 

can accurately and timely switch off those lines that will not be required in the next time 

phase. It is shown that, using the CSIs algorithm a higher turn-off ratio of cache lines is 

achieved compared with using an LRU decay algorithm only. Here the turn-off ratio is 

defined as the ratio of the number of cache lines that are turned-off to the total number of 

lines in the cache.  As described in chapter 1, the leakage power consumption of a cache 

memory is proportional to the cache size. Therefore, we could reduce more leakage 

power consumption in cache memories by achieving a higher turn-off ratio.  
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Fig. 3-8  Number of active lines in a 512x64B cache with time for program “Acdsee” 

 

 



CHAPTER 3      RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION 

 70

3.4.3 Evaluation of Power Reduction and Performance Loss in Scalable 

I-Caches 

 

To analyze the power reduction of the CSIs controlled caches, we designed an I-cache 

system in the environment of Synopsys. The parameters of system configuration and the 

power simulation result of each component are shown in Table 3-1.  

 

Table 3-1  Cache system configurations and power consumptions 

Parameter Value 

CMOS process technology 0.35µm 

Supply voltage 3.3V 

Clock frequency 100MHz 

Data bus 8-bit 

Address bus 20-bit 

Cache type 32K 2-way 

Refill line size 64 Bytes 

Total line number 512 

Cache latency 1 cycle 

Miss penalty 8 cycles 

Power of a tag in working 90.89µW 

Power of counter in a line 19.43µW 

Leakage per line 34.6µW 

Dynamic power when reading 2305µW 

Dynamic power when writing 5681µW 

Power of the arbiter 578.3µW 
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When we use the CSIs algorithm to turn off a certain portion of the cache lines, we 

could reduce a corresponding percentage of leakage power consumption in these lines.  

At the same time, we would consider the overhead of power consumed by the arbiter, by 

the execution of CSIs code and by reloading some data due to an increment of cache miss 

rate. If the cache turn-off ratio is high enough, the reduced leakage power will probably 

be sufficient to offset the overhead of power consumption that is implicated in the cache 

tuning algorithm.  

 

It is shown that the added arbiter component in the cache (Table 3-1) consumes 

578.3uW. This power consumption is less than 2.5% of the total power in the 32K cache. 

The increased percentage of object code size and cache miss rate could also be estimated 

when a program benchmark is given. Furthermore, in this case the execution time of a 

program becomes a little longer due to a delay brought by the increased miss rate, the 

execution of CSIs and the state transition when switching on the power of a new line. 

Hence the system performance is degraded in terms of a decrease in IPC (instruction per 

cycle). 

 

To comprehensively evaluate the energy savings and system performance in the CSIs 

algorithm, we apply a group of Windows-based general application programs to the 

scalable cache to estimate the turn-off ratio and the increased miss rate. The results are 

shown in Table 3-2, where the parameter w (see section 3.3.2) in CSIs algorithm is set to 

1.  
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Table 3-2  Turn-off ratio (%) and increased miss rate (%) of some programs in the 
scalable cache with CSIs algorithm 

 Acd 
see 

Acro 
read 

Htmlco
mpress

Leap 
FTP 

Msm
sgs 

Net 
transport

Power 
point

Ultra 
edit Winamp Real 

player

Turn off 
ratio 77.3 84.9 78.2 79.5 73.1 87.6 81.7 75.8 63.2 67.4 

Original 
miss rate 0.163 0.458 0.08 0.053 0.258 0.191 0.094 0.139 0.082 0.075 

Increased 
miss rate 0.034 0.153 0.008 0.005 0.202 0.098 0.009 0.003 0.002 0.006

 

 

The experimental results show that an average of about 75% of turn-off ratio (ranging 

from 63.2% to 87.6%) can be achieved in the cache memory. This implies that a large 

percentage of leakage power dissipation in the cache could be reduced when the working 

set size is small. However, there are two penalties involved in the CSIs cache scaling 

algorithm. The first one is an increase of cache miss rate. In our experiment, the average 

increased miss rate over all test-benches is less than 0.1%. The second penalty is the 

latency and power consumption as a result of executing the increased codes. Fig. 3-9 

shows the ratio of increased code of CSIs to the original program object code size. It is 

shown that the ratio of CSIs over the original code size during execution is less than 1.6% 

for all these programs when the factor w is no more than 2. For most applications, the 

increased code size has a small variation when w is less than 1.5. When w is equal to 1, 

the average increment of code ratio is only 0.34%, which is much less than the code 

increment of about 5% in the algorithm of [90]. 

 

Based on the above experimental results and the total number of instructions executed,  
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Fig. 3-9  Increased code ratio using CSIs algorithm 

 

the energy savings and execution time can be derived for each program. Table 3-3 

compares the results of energy savings and performance loss in terms of IPC (instruction 

per cycle) degradations when using LRU line decay, the cache tuning algorithm of [90] 

and our CSIs algorithm. Here an LRU decay interval of 32K instruction cycles is applied 

to the cache system. 

 

When the LRU decay algorithm is used, the system performance degradation (IPC 

decrease) ranges from 0.56% to 4.65% with an average of 2.85%, which is similar to that 

in the CSIs algorithm when the parameter w is equal to 1. The energy savings in the 

cache using CSIs algorithm can reach as high as 77.9% of the original cache energy 

consumption with an average of 67.3% savings. However, the average energy savings in 
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line decay is only 36.8%, and that in the algorithm of [90] is about 56.2% with an average 

IPC degradation of 3.04%.  

 

Table 3-3  Energy savings (%) and IPC degradations (%) of some general programs 
when using LRU line decay vs CSIs algorithm in a 32K I-cache 

  Acd 
see 

Acro 
read 

Html 
compr

ess 

Leap
FTP 

Msm
sgs 

Net 
trans
port

Power 
point

Ultra 
edit 

Wina
mp Average 

Line 
decay 35.0 41.4 12.4 20.8 43.6 22.5 78.0 40.5 36.9 36.8 

Algor
ithm 
[90] 

51.1 68.9 57.4 64.2 46.0 65.6 60.5 53.3 38.8 56.2 
Energy 
Savings 

CSIs 
(w=1) 61.5 77.9 70.3 72.3 62.1 75.3 75.1 61.2 50.5 67.3 

Line 
decay 4.46 2.85 0.56 2.64 3.57 0.74 3.34 4.65 2.82 2.85 

Algor
ithm 
[90] 

4.78 3.25 3.34 2.21 2.19 4.57 1.77 2.31 2.93 3.04 
IPC 

degrada
-tion 

CSIs 
(w 
=1) 

4.65 3.04 3.14 1.98 2.05 4.40 1.34 2.26 2.77 2.85 

 
 

If the decay interval in the LRU decay algorithm (see section 1.3.1) decreases, the 

cache turn-off ratio will increase. However, the cache miss-rate will increase at the same 

time. This leads to an increased overhead of power consumption and performance 

degradation in the cache when re-accessing the lines that have already been turned off. 

On the contrary, if we increase the decay interval, the system performance degradation 

will decrease, but the leakage power reduction in the cache will also decrease due to the 

decreased turn-off ratio. The trade-off between low power consumption and high 

performance in the cache is dependent on the preset decay time. Although the decay 

interval can be tuned to achieve the object of a single requirement of certain energy 

savings or system performance, the LRU decay algorithm does not perform as well as our 
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CSIs algorithm in achieving the multiple objectives of low-power consumption and high-

performance. 

 

While examining the balance between low power consumption and high performance in 

our resizable cache system using the CSIs algorithm, we conducted a set of simulations 

with different parameter w (see section 3.3.2). When the parameter w of the length 

threshold increases, the number of CSIs inserted into the object code increases and the 

increased miss rate resulting from the cache tuning algorithm decreases. Fig. 3-10 is the 

simulation results of energy savings of the cache memory when applying the CSIs 

algorithm to a group of programs. The energy savings across different applications vary 

widely when a single common parameter w is used. Overall, for each individual program,  
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Fig. 3-10  Energy savings of a 32KB cache memory when using CSIs algorithm with 

different parameter w 
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if a smaller w is used, more energy will be saved. For example, when the parameter w is 

equal to 1.4, the energy reductions across the nine programs range from 48.16% to 

74.45% with an average of 63.9%. However, if w is equal to 2.4, the energy savings range 

from 22.7% to 62.1% with average of only 44%. It is because when the parameter w 

increases, the turn-off ratio of cache lines decreases and this leads to a trend of decreasing 

the total energy savings. Moreover, when the w increases, the increased code ratio of 

CSIs in execution has a larger overhead of power and delay.   

 

The impact of the parameter w on the system performance is evaluated as shown in Fig. 

3-11.  When w is equal to 1, the IPC degradations of running these programs are in the 

range from 1.34% to 4.65% with an average of 2.85%. When w increases, the IPC  

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

AcdSee5.0 AcroRead HtmlCompress
LeapFTP Msmsgs NetTransport

PowerPoint UltraEdit Winamp

IP
C

 D
eg

ra
da

tio
n(

%
)

1    1.1    1.2   1.3   1.4  1.5  1.6   1.7   1.8   1.9    2    2.1   2.2   2.3  2.4   W

 

Fig. 3-11  IPC degradation of each application when using the CSIs algorithm with 
different parameter w 



CHAPTER 3      RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION 

 77

degradation decreases slightly because both the increased miss rate and the number of 

CSIs in the executing program decrease. For example, the average IPC degradation 

decreases to 2.34% if w is equal to 1.9. The choice of proper parameter w is a balance 

between low power and high performance. The optimal parameter w can be selected 

using the least normalized energy-delay product or the maximum energy savings with 

tolerable performance degradation. Overall, the experimental results show that the 

average IPC degradation of running these programs in our scalable cache memory is 

smaller than 3%. For some applications with small working sets, the goal of both low-

power and high-performance can be realized in our cache using the CSIs algorithm. For 

instance, when we run the program PowerPoint, the energy savings could reach up to 

about 75% with only 1.3% performance loss.   

 

 

3.5 Summary 

 

This chapter presented an algorithm to predict the program working set size during 

compilation time and encode this information to a few cache scaling instructions that are 

added to the original program object code. Based on the predictions and system states, 

those unused cache lines can be selected properly and turned on or off in time to reduce 

power consumption while maintaining high system performance.  

 

We introduced the hardware implementation of the resizable cache architecture, the 

power control mechanism with Gated-Vdd/GND technique and CSIs algorithm. We also 
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analyzed the characteristics of program locality and the phase transition model of 

working sets. Lastly, we evaluated the energy savings and performance loss in the 

scalable I-cache using CSIs algorithm and LRU decay algorithm. The experimental 

results using a group of Windows-based applications showed that our CSIs algorithm 

could effectively reduce the power consumption in I-cache memory with small 

performance degradation. It is shown that the overhead of power consumption and delay 

resulted from the power control mechanism is not significant. The CSIs algorithm has a 

smaller increment of object code size than the conventional method in [90], and can 

reduce more power consumption than LRU decay algorithm. For example, the CSIs 

algorithm can save 67.3% of total energy in a 32K I-cache on average with only 2.85% of 

performance degradation in terms of IPC. However, the energy savings in LRU decay 

algorithm is only 36.8% when a similar system performance is obtained. 
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CHAPTER 4 

CODE REALLOCATION FOR POWER 

REDUCTION AND PERFORMANCE 

IMPROVEMENT IN I-CACHE 

 

 

 

In this chapter, we propose to optimize the program object code to reduce the power 

consumption of instruction-cache while improving system performance. In this method, 

we reallocate some typical instruction segments such as loops and subroutines in memory 

map to reduce the runtime program working-set size. When the cache size is fixed, the 

code reallocation method could improve the cache hit-rate. It is because a working set 

that is originally bigger than the instruction-cache size before code reallocation may be 

smaller than the instruction-cache size after code reallocation. In the case the whole 

working-set could now be loaded into the instruction-cache without cache reference miss 

during execution of this working set, when the code reallocation method is integrated into 

our previous CSIs algorithm as described in Chapter 3, the result could enhance the 

advantage of the CSIs algorithm. This is because a smaller working set size in runtime 

means more unused cache lines could be turned off and more power consumption could 
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be reduced in a re-sizable cache memory. 

 

The remainder of this chapter is organized as follows. In Section 4.1, we introduce the 

characteristics of program code locality in memory address map and the code reallocation 

method. In Section 4.2, we describe the simulation method and experimental results of 

the code reallocation method. In Section 4.3, we integrate the code reallocation method 

with CSIs algorithm in a resizable cache and then evaluate the result. Finally, a summary 

is presented in Section 4.4. 

 

 

4.1 Code Locality and Optimization Method 

 

The performance and power consumption of a cache memory is dependent not only on 

the hardware architecture, but also on the referenced data streams. The static object codes 

of a program from the optimization of a compiler will be loaded into cache memory prior 

to execution. The addresses allocated to the program object code will greatly determine 

the instruction reference patterns, and has an impact on the instruction-cache hit rate and 

cache line replacement effectiveness. In general, memory allocation is not part of the 

compilers process, therefore consideration for structure of the cache architecture is 

typically not taken into account. Thus in all likelihood the final object code may not 

perform well in terms of low miss rate in a specific I-cache memory.  

 

Here we propose a code optimization to reduce the I-cache reference miss-rate and 



CHAPTER 4               CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE 

 81

reduce the run-time working set size in terms of the number of used cache lines within a 

period of time. This could be realized by reallocating some program segments in main 

memory address map when the typical code localities are encountered: loops, subroutines 

and hybrid patterns. A loop is such a program segment that is repeatedly executed in 

runtime. A subroutine is a portion of code within a larger program that performs specific 

task and is relatively independent of the remaining code, but is invoked by other codes. In 

the code reallocation algorithm, we only focus on those loops and subroutines that have a 

length shorter than the cache size. A hybrid pattern refers to the situation where 

subroutines are invoked by loops. 

 

 

4.1.1 Loops 

 

When a loop occupies (M+1) lines in I-cache but its exact length is no more than M 

lines in terms of bytes, the addresses of this loop would be reallocated by aligning with 

cache lines to reduce working set size. Fig. 4-1 shows an example of this situation.  

 

   

lo o p  
b o d y  

 

Fig. 4-1  Loop alignment 
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In the loop alignment method, the basic instruction blocks adjacent to this loop can be 

shifted, so that the replacement of those adjacent lines will not affect the reference hit on 

the instructions that are contained in the loop. A basic instruction block is defined as the 

minimal size of sequential instruction codes.  

 

 

4.1.2 Subroutine Invocations 

 

It is common to see that a great number of subroutine invocations are distributed in 

application programs. Many of these invoked subroutines have a length that is no more 

than M refill-lines size in terms of byte while occupying (M+1) cache lines in memory. 

This address mapping may affect the efficiency of cache utility, especially in the event 

that the subroutine is invoked frequently while its reference needs a replacement of 

certain originally used cache lines. Therefore, the location of such a subroutine would be 

remapped in memory addressing, or would be shifted to reduce working set or miss rate, 

as shown in Fig. 4-2. 

 

 

4.1.3 Hybrid Patterns 

 

If a subroutine is invoked by a loop but neither the loop nor the subroutine fills up the 

whole cache lines, they can be fused together, as shown in Fig. 4-3.  The reference of this  
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Fig. 4-2  Subroutine reallocation 
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Fig. 4-3  Fusion of the loop with invoked subroutine 

 

subroutine invocation needs line(s) replacement with the instructions in the loop due to 

the cache set associativity, this reallocation strategy for invoked subroutine can 

significantly reduce the cache miss-rate and working set. 

 

Subroutine 
invocation block 

invoked 
subroutine 

 

Shift to line alignment 

 

Line reallocation  
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In the event that a loop invokes several subroutines that are widely scattered in the 

memory map, these subroutines may be reallocated together to improve cache utilities. 

Fig. 4-4 gives an example of this situation. Here the subroutine 1 and subroutine 2 

occupy 3 refill-lines and 2 refill-lines respectively before code optimization. These two 

subroutines are invoked by a loop and probably need the same cache line during runtime. 

After code reallocation, the working set size of these two subroutines could be reduced 

from 5 cache lines to 3 cache lines, and they can be optimized to occupy different cache 

lines with the loop body during execution to avoid repeated line replacement.  

 

  

lo o p  
b o d y 

S u b ro u tin e  1

 

S u b ro u tin e  2

 

Fig. 4-4  Fusion of subroutines invoked by the same loop 
 

When a subroutine is invoked by two or more different node and loops, the loop with 

highest iteration would have the priority of being fused together with this subroutine in 

the memory address map, if needed. However, if two loops both have high iteration and 

invoke a same short subroutine, the subroutine may be duplicated and reallocated to 

reduce the working set size during run time or to avoid cache line replacement to reduce 

miss rate. Fig. 4-5 is a sketch map of such a scenario. 
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Fig. 4-5  Subroutine distribution 

 

 

4.2 Simulation Methods and Experimental Results 

 

In our experiment, we apply the code reallocation algorithm to a group of the 

SPEC2000 bench marks [99] and Media-benches [100], to evaluate the improvement of 

cache performance. To prove the effectiveness of code optimization algorithm, we trace 

the programs during runtime using a simulation tool, SimpleScalar [102]. The program 

traces generated by the simulator can be used to commute the locations and reference 

times of each basic block. This result allows the code reallocation method to be 

implemented. With different object codes before and after code optimizations, we 

simulated the cache miss rate in a fixed cache architecture, and then calculated the CPI 

(cycle per instruction) for system performance evaluation.  
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Fig. 4-6  A segment of object codes with address map in memory 
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For example, Fig. 4-6 shows a segment of instructions in the program “Perl” with 

object codes and address map. The program entry point is 0x400140, and the code 

segment base address is 0x400000. The codes of the execution sequence are grouped into 

a series of basic blocks. The end of a basic block may be a jump instruction or the 

statement before destination of a jump instruction. We denote each basic block with a 

number and trace the execution sequence during runtime, which is defined in a profile 

data. A portion of the profile data in terms of basic block number string in this example is 

shown in Fig. 4-7.  

 

 

Fig. 4-7  Runtime profile data of the instruction basic blocks 
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On the other hand, the start address and end address of each basic block are recorded 

during the simulation phase. These parameters are used to optimize the code allocation in 

memory when we apply the code reallocation algorithm to the programs in the specific 

cache architecture.  Table 4-1 shows the configuration of I-cache in the experiment.  

 

Table 4-1  I-cache configuration 

Parameter Value 

CMOS feature size 0.13um 

Supply voltage 1.8V 

Clock speed 500MHz 

Cache type 16K  direct mapped 

Refill line size 64 bytes 

Data bus 8 bits 

Address bus 20 bits 

Cache latency 1 cycle 

Miss penalty 10 cycles 

Replacement algorithm LRU 

 

 

In the environment of SimpleScalar, we simulated the runtime profile data of the 

programs in the above I-cache architecture. We also estimated the cache miss rate of 

different programs using the tool of sim-cache. For example, when we execute the 

following command: 
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./sim-cache –cache:il1 il1:256:64:1:l epic.ss 

where il1 represents level 1 instruction cache; the cache configuration is 256 sets with 64 

bytes per line and using LRU replacement algorithm; the input program is epic.ss. 

 

 we can get the simulation results as follows. 

 

sim: ** simulation statistics ** 
sim_num_insn                   7892 # total number of instructions executed 
sim_num_refs                   4183 # total number of loads and stores executed 
sim_elapsed_time                  1 # total simulation time in seconds 
sim_inst_rate             7892.0000 # simulation speed (in insts/sec) 
il1.accesses                   7892 # total number of accesses 
il1.hits                       7563 # total number of hits 
il1.misses                      329 # total number of misses 
il1.replacements                143 # total number of replacements 
il1.writebacks                    0 # total number of writebacks 
il1.invalidations                 0 # total number of invalidations 
il1.miss_rate                0.0417 # miss rate (i.e., misses/ref) 
il1.repl_rate                0.0181 # replacement rate (i.e., repls/ref) 
il1.wb_rate                  0.0000 # writeback rate (i.e., wrbks/ref) 
il1.inv_rate                 0.0000 # invalidation rate (i.e., invs/ref) 
dl1.accesses                   4334 # total number of accesses 
dl1.hits                       3866 # total number of hits 
dl1.misses                      468 # total number of misses 
dl1.replacements                212 # total number of replacements 
dl1.writebacks                  204 # total number of writebacks 
dl1.invalidations                 0 # total number of invalidations 
dl1.miss_rate                0.1080 # miss rate (i.e., misses/ref) 
dl1.repl_rate                0.0489 # replacement rate (i.e., repls/ref) 
dl1.wb_rate                  0.0471 # writeback rate (i.e., wrbks/ref) 
dl1.inv_rate                 0.0000 # invalidation rate (i.e., invs/ref) 
ul2.accesses                   1001 # total number of accesses 
ul2.hits                        484 # total number of hits 
ul2.misses                      517 # total number of misses 
ul2.replacements                  0 # total number of replacements 
ul2.writebacks                    0 # total number of writebacks 
ul2.invalidations                 0 # total number of invalidations 
ul2.miss_rate                0.5165 # miss rate (i.e., misses/ref) 
ul2.repl_rate                0.0000 # replacement rate (i.e., repls/ref) 
ul2.wb_rate                  0.0000 # writeback rate (i.e., wrbks/ref) 
ul2.inv_rate                 0.0000 # invalidation rate (i.e., invs/ref) 
itlb.accesses                  7892 # total number of accesses 
itlb.hits                      7874 # total number of hits 
itlb.misses                      18 # total number of misses 
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itlb.replacements                 0 # total number of replacements 
itlb.writebacks                   0 # total number of writebacks 
itlb.invalidations                0 # total number of invalidations 
itlb.miss_rate               0.0023 # miss rate (i.e., misses/ref) 
itlb.repl_rate               0.0000 # replacement rate (i.e., repls/ref) 
itlb.wb_rate                 0.0000 # writeback rate (i.e., wrbks/ref) 
itlb.inv_rate                0.0000 # invalidation rate (i.e., invs/ref) 
dtlb.accesses                  4334 # total number of accesses 
dtlb.hits                      4324 # total number of hits 
dtlb.misses                      10 # total number of misses 
dtlb.replacements                 0 # total number of replacements 
dtlb.writebacks                   0 # total number of writebacks 
dtlb.invalidations                0 # total number of invalidations 
dtlb.miss_rate               0.0023 # miss rate (i.e., misses/ref) 
dtlb.repl_rate               0.0000 # replacement rate (i.e., repls/ref) 
dtlb.wb_rate                 0.0000 # writeback rate (i.e., wrbks/ref) 
dtlb.inv_rate                0.0000 # invalidation rate (i.e., invs/ref) 
ld_text_base             0x00400000 # program text (code) segment base 
ld_text_size                 139648 # program text (code) size in bytes 
ld_data_base             0x10000000 # program initialized data segment base 
ld_data_size                  14032 # program init'ed `.data' and uninit'ed `.bss' size in bytes 
ld_stack_base            0x7fffc000 # program stack segment base (highest address in stack) 
ld_stack_size                 16384 # program initial stack size 
ld_prog_entry            0x00400140 # program entry point (initial PC) 
ld_environ_base          0x7fff8000 # program environment base address address 
ld_target_big_endian              0 # target executable endian-ness, non-zero if big endian 
mem.page_count                   45 # total number of pages allocated 
mem.page_mem                   180k # total size of memory pages allocated 
mem.ptab_misses                  47 # total first level page table misses 
mem.ptab_accesses            905094 # total page table accesses 
mem.ptab_miss_rate           0.0001 # first level page table miss rate 

 

Here we shed some light on the parameter of il1.miss_rate that represents the cache 

performance, to some extent. After all, we simulated the miss rates of a group of test 

bench programs before and after the code optimization, as shown in Table 4-2. 

 

Due to the different characteristics of programs, the miss rate of each test bench in the 

I-cache varies widely and ranges from 0.04% to 4.17% before code optimization. 

However, after object code optimization using the algorithm as described in Section 4.1, 

the miss rates of all the test-benches decrease to some extent, ranging from 0.03% to  
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Table 4-2  Miss rates of benchmark programs in the 16K I-cache 

Program Miss rate of original 
program (%) 

Miss rate after code 
optimization (%) 

epic 4.17 3.36 

gcc 0.96 0.82 

g721decode 3.16 2.38 

g721encode 3.25 2.41 

parser 0.87 0.74 

vpr 4.07 2.97 

unepic 0.04 0.03 

vortex 2.19 1.85 

average 2.34 1.82 

 

 

3.36%. The average miss rate of all these bench marks drops from 2.34% to 1.82%. The 

reduction of average cache miss rate is 0.52% that accounts for 22.2% of the original 

average miss rate. 

 

When we evaluate the system performance, the cache miss rate can be converted to CPI 

(cycle per instruction) according to miss penalty and cache latency. We calculated the CPI 

of each program using the formula (4-1). Table 4-3 shows the results of original programs 

and the CPI after code reallocation. 
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CPI = cache latency × (1 – miss rate) + miss penalty × miss rate       (4-1) 

 

Table 4-3  CPI of benchmark programs before and after code optimization 

Program Original CPI CPI after code 
optimization 

Performance 
improvement (%) 

epic 1.3753 1.3024 5.3 

gcc 1.0864 1.0738 1.16 

g721decode 1.2844 1.2142 5.47 

g721encode 1.2925 1.2169 5.85 

parser 1.0783 1.0666 1.09 

vpr 1.3663 1.2673 7.25 

unepic 1.0036 1.0027 0.09 

vortex 1.1997 1.1665 2.77 

average 1.2106 1.1638 3.87 

 

 

Before code optimization, it is shown that the program unepic has the highest 

performance in terms of a CPI 1.0036 when running on a 16K I-cache; and the program 

vpr has the lowest performance with CPI of 1.3663. After code optimization, the 

performances of all the programs are improved by a decrease in CPI ranging from 0.09% 

to 7.25% compared with the original CPI. In conclusion, the original average CPI of 

these programs is 1.2106, but the average CPI after code reallocation is 1.1638. That is, 

the average performance of the I-cache when running these programs is improved by 

3.87% in terms of CPI. 
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By reducing the cache reference miss rate, the code optimization algorithm not only 

improves cache performance, but also reduces the power consumption of the cache. The 

power reduction can be estimated using the decrease of miss rate and the power 

consumption of reloading the instructions to refill lines. To further enhance the advantage 

of the code reallocation method in low-power I-cache design, we integrate it with the 

CSIs algorithm to reduce the runtime working set size so that it can contribute to an 

additional leakage power reduction.   

 

 

4.3 Integration of Code Optimization and CSIs Algorithm 

 

The CSIs algorithm of leakage power reduction in scalable I-cache is presented in 

Chapter 3. In this section, we combine it with the code optimization method to further 

reduce power consumption in the I-cache.  

 

As described in Section 4.1, the working sets of some typical program segments, such 

as loops and subroutines, can be reduced by the code reallocation method. This means the 

turn-off ratio of I-cache memory would increase when it is integrated with the CSIs 

algorithm. We simulated a group of benchmarks in a 16K direct-mapped resizable I-cache 

using only the CSIs algorithm, as well as using the integration of CSIs algorithm and 

code reallocation. The parameters of cache configuration are the same with that in Table 

4-1. Fig. 4-8 gives the turn-off ratio of a subset of SPEC2000 benchmarks and Media-
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benches when different algorithms are used.  
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Fig. 4-8  Turn-off ratio (%) of a 16K direct-mapped I-cache when applying CSIs 
algorithm vs. the integration of code optimization and CSIs to a group of 

benchmarks 
 

When only the CSIs algorithm is used, the cache turn-off ratio ranges from 38.3% to 

56.6% with an average of 48.7%. However, when the CSIs algorithm is integrated with 

code optimization, the cache turn-off ratio is raised to the range from 45.7% to 68.5% 

with an average of 55.5%. That is, the code optimization could promote the turn-off ratio 

by 6.8% on average in the 16K I-cache.   

 

While examining the power reduction in the scalable I-cache using the CSIs algorithm 

and code reallocation method, we simulated the power consumption of each component 

in the cache, as shown in Table 4-4. The total cache power consumption in a fixed cache 

can be calculated using the formula (4-2). The cache power consumption in a scalable 

Turn-off ratio (%) 
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cache is calculated using the formula (4-3). 

 

Table 4-4  Power consumption of each component in the 16K  
direct mapped I-cache 

Parameter Value (mW) 

Leakage per line 0.0367 

Dynamic power of reading 3.2189 

Dynamic power of writing 9.4511 

Power of arbiter 0.8603 

Power of tag 0.1622 

 

 

Ptotal_fixed_cache = Pleakage_per_line × line_number + Preading × (1- miss_rate) + Pwriting × 

miss_rate + Ptag                                                                               (4-2) 

 

Ptotal_scalable_cache = Pleakage_per_line × line_number × (1- turn_off_ratio ) + Preading × (1- 

miss_rate) + Pwriting × miss_rate + Ptag + Parbiter                                  (4-3) 

 

When the CSIs algorithm vs. the integration of CSIs algorithm and code optimization 

method are applied to some benchmarks, we estimated the power reduction in the I-cache 

memory using the turn-off ratio and cache miss rate. Fig. 4-9 shows the percentage of 

power reductions when the different programs and algorithms are used in the scalable I-

cache. The CSIs algorithm can reduce 24.6% to 34.4% with an average 30.6% of the total 

power consumption in the 16K direct mapped I-cache across all the programs. In  
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Fig. 4-9  Power reductions (%) of a 16K direct-mapped scalable I-cache when 
applying CSIs algorithm vs. the integration of code optimization and CSIs 

algorithm to a group of benchmarks 
 

 

comparison, the integration of code optimization and CSIs algorithm can reduce as high 

as 42.7% with an average 35.5% of the cache power consumption. In all the situations, 

the code reallocation method contributes more power reductions ranging from 3.7% to 

8.3% with an average 4.9% of the total cache power consumption. The more power 

reduction comes from the increased turn-off ratio of cache and the decreased miss rate. 

 

 

4.4 Summary 

 

In this chapter, we investigate an object-code reallocation method to reduce the power 

Power reductions (%) 
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dissipation in the instruction-cache while improving the system performance. The goal of 

this method is to reduce the runtime program working-set size and cache miss rate by 

reallocating some typical instruction segments such as loops and subroutines in memory 

map. When it is integrated with CSIs algorithm in the resizable I-caches, the advantage of 

low-power cache design algorithm can be further enhanced. 

 

Using a set of SPEC2000 benchmarks and Media-benches, we simulated the code 

reallocation method and the integration of it with CSIs algorithm in a 16K directed 

mapped I-cache memory. The experimental results showed that the code optimization can 

reduce the CPI from 1.21 to 1.16 on average, that is, the size-fixed cache performance is 

improved by about 3.87%. On the other hand, the power reduction of the resizable cache 

using CSIs algorithm is 30.6%. However, the integration of code optimization and CSIs 

algorithm could achieve an average 35.5% of power reduction in the scalable cache 

across all the test benches.  
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CHAPTER 5 

REDUCING TAG ACTIVITIES FOR 

ENERGY SAVINGS IN I-CACHE 

 

 

 

5.1 Introduction  

 

Since the conventional tag structure is persistently in operation when programs are 

running, the dynamic power in such components generally occupies a high percentage of 

total power in the cache sub-system when it has a high set-associativity and clock 

frequency. In this chapter, we propose a software and hardware co-design method to 

reduce the tag activities for energy savings in I-cache with little performance penalty. 

 

In the recent years, a few methods have been proposed to reduce the tag comparisons or 

tag length, to balance power consumption against high performance in cache memory. A 

popular architecture is to provide an extra small L0 cache that stores the recent and 

frequently executed instructions, and the main I-cache is accessed only when L0 cache 

misses [66,67,68]. The costs in this method are the increased miss-rate and die area. 
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Another cache line access method is phased cache design [69,70] in set-associative 

caches. In this method, it first probes the initial tag array or the predicted lines. In case of 

misses, then it accesses the rest cache lines. The penalty in the above method is a longer 

access time in a reference miss. Panwar et al. [71] used the Program Counter (PC) to 

predict whether two consecutively executed instructions belong to different cache lines 

and to perform tag-check, while Witchel et al. [72] used a special compiler scheme to 

allow software to access cache data without hardware cache tag-checks. Ma et al. [73] 

proposed to eliminate tag checks via a dynamic way-memorization and Koji Inoue et al. 

[74] suggested a history-based tag-comparison using a branch target buffer. Peter Petrov 

et al. [75] predicted major program loops and used shorter tag arrays to index cache lines. 

However, these studies reduced a conservative portion of power dissipation in tag array, 

but got a significant penalty of performance loss and die area of additional complex 

circuits. 

 

Here we propose an alternative way to aggressively reduce the tag operations using 

simple logic circuits as well as compiler predictions based on the locality of program 

object code. For the application programs, we trace their run-time profile data (see 

Chapter 4) and denote all the small loops, defined as those whose length is less than the 

cache size. If a subroutine is invoked by a small loop, the object codes of the subroutine 

are probably reallocated in the memory to make the entire loop located in a continuous 

region in addresses map. On the other hand, we utilize the least significant address bus, 

the bits of refill-line offset, to judge the end of a refill line. We also adopt the prediction 

results from the instruction decoder to enable tag activities when a jump instruction is 
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encountered. The experimental results showed that this approach could obtain a big 

percentage of power reduction in the cache with negligible performance degradation. 

 

The remainder of this chapter is organized as follows. In Section 5.2, we describe the 

code optimization and prediction method. In Section 5.3, we present the hardware 

implementation of tag controller.  In Section 5.4, we give the simulation results of energy 

savings and performance evaluation. Conclusions are drawn in Section 5.5. 

 

 

5.2  Code Optimization and Locality Prediction 

 

The program instructions generally have temporal and spatial locality. This feature has 

been commonly used and enhanced to improve the I-cache hit rate. On the other hand, the 

I-cache memory keeps only the portion of needed instructions at the current time window 

based on certain line replacement algorithm. For high hit rate, the high set associative 

caches are more and more popular. However, when we obtain the high cache hit rate, we 

also find that a high percentage of tag activities are not necessary because the successive 

instructions executed are in sequential locality or within a close region in the address map 

and have the same tag bits. From this perspective, we propose a tag activity controller to 

reduce the tag operations to reduce power consumption. 

 

In the embedded system applications, a program typically executes about 90% of its 

instructions in 10% of its code [91]. This small portion of codes usually constitutes a set 
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of loops with large number of iterations. In this section, we focus on predicting those 

loops that have a length less than the cache size and have a sequential instruction locality. 

If the instructions in a loop are executed sequentially, including the jumps within the 

same cache line, the tag activities can be removed during the execution time of this loop 

as long as we can predict the boundary between two adjacent cache lines. In the tag 

control algorithm, we add two special instructions to such a loop at the object code level 

during compilation time. The syntax is shown in follows.  

 

Start of a loop (with length);    (1) 

{body of the predicted loop}; 

End of the loop;                               (2) 

 

When an instruction (1) is executed, a flag bit in/out loop in the tag controller will be set, 

indicating that the following instructions are located in a predicted loop and the I-cache 

shifts to flagless mode. At the same time, this entire loop is loaded to I-cache memory 

according to its length. When the instruction (2) is encountered after the execution of this 

loop, the flag bit in/out loop is cleared and I-cache recovers to the normal operation mode 

with tag checks.   

 

In the case that one or more subroutines are invoked by a small loop and these 

instruction blocks are separately distributed in a wide range of address map, we would 

optimize the object code and make this loop be allocated in a continuous region in 

addresses map. Fig. 5-1 shows an example of the code optimization. If a subroutine is 
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invoked by two predicted loops where the tag activities can be disabled, this subroutine 

will be duplicated and assigned to both these loops. 

 

Start of loop

Call subroutine 1

Call subroutine 2

Subroutine 1

Subroutine 2

End of loop

Start of loop

 subroutine 1

 subroutine 2

End of loop

 

Fig. 5-1  An example of code optimization process 

 

If an interrupt occurs, the tag control flag in/out loop will be masked until the end of 

execution of the interrupt service routine. If any cache lines in the predicted loop are 

replaced by the interrupt service routine during this period, these lines will be reloaded 

again after the interrupt.  

 

 

5.3 Tag Control Mechanism 
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To support the tag control algorithm, we construct an I-cache memory, as shown in Fig. 

5-2.  

 

tag set index line offset

Tag 0
Tag 1
Tag 2
Tag 3

comparator 0
comparator 1

comparator 2

comparator 3

Reference effective address

OR

hit/miss

refill line 0
refill line 1

refill line 2

refill line 3

data  array

data out
in/out loop branch

Tag array
AND

Instruction 
decoderprogramable

Enable/Disable E/D

 
 

Fig. 5-2  Tag activities controlled I-cache structure 

 

The effective address for cache reference, as issued by the processor, could be divided 

into three fields (line offset, set index and tag), each of which has a specific function. The 

line offset bits are the least significant bits, which would be used to locate a data byte in a 

selected refill line. The set index is used to address the refill lines, and the tag field 

checks whether a reference hit or miss happens in the corresponding line. In addition to 

the traditional components in the I-cache, we added a few logic gates to enable or disable 

flag
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a portion of other circuit operations (tag activities), including the activities of tag field, 

set index bits, tag array and comparators.  

 

When the same refill line is accessed by the consecutive instruction references, the 

effective addresses of these instructions in I-cache differ only in the least significant bits, 

line offset bits. In this case, the tag activities could be eliminated without impact on cache 

reference hits.  

 

The flag bit of in/out loop is programmable, and it indicates whether the current 

referenced instruction is located in a predicted loop with tagless mode. At the start of a 

predicted loop, we fetch the entire loop to cache memory with continuous addresses and 

set the flag bit in/out loop. Thus the tag activity is disabled and the instruction codes are 

indexed only using the line offset bits. In the mean time, the flag bit of hit or miss 

associated to each line is maintained and can be shifted by the output of the AND gate 

(see Fig. 5-2). When the tag checks are disabled, the cache line boundary is denoted by 

the AND gate with inputs of all the line offset bits. These associated address bits are all 

one only when the last byte in a refill line is accessed. Therefore, an output one of this 

AND gate sets the flag of hit/miss that is associated to the next refill line in address map 

at the next instruction cycle and clears the flag of hit/miss in the current cache line. 

 

For the instructions outside of the predicted loops, we can also disable the tag 

operations during the execution of a basic instruction block (see Chapter 4). A basic 

block is a certain number of sequential instructions with end of a branch instruction. At 
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the end of a basic block, the tag operations are enabled to find the locality of the next 

basic block. In the tag controlled cache, a flag bit of branch (see Fig. 5-2) can be set by 

an instruction pre-decoder, indicating the instruction being executed is a jump and 

activating the tag operations at the next instruction cycle. In this situation, the boundary 

between cache lines is also used to activate the tag activities to select the next line. 

 

We implement the tag activity controller with a few logic gates so that the increased die 

area is negligible compared with the algorithms where an L0 cache is added [66,67,68]. 

In some conventional tag eliminating methods such as the proposal in [75], only a 

fraction of tag bits or a portion of tag array could be disabled to reduce power 

consumption. However, we disabled the operations of the two fields of tag and set index 

in the effective address bus and whole tag array during the period of non-tag cache access 

to reduce the power consumption more aggressively. 

 

 

5.4 Experimental Results 

 

In the simulation experiment, we analyzed the object code and traced the profile data of 

a subset of SPEC2000 benchmarks [99] using the toolset of SimpleScalar version 3.0 

[102]. After the code optimization as described in Section 5.2, we predicted some loops 

with length and iterations in the programs, where the tag activities could be disabled for 

energy savings. In the meantime, we estimated the increased code size. It is a cause of 

system performance loss and power overhead when fetching, decoding and executing the 
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flag-setting instructions. Another factor of the impact on system speed results from the 

delay of tag controller operations when it activates the circuits. However, the tag 

controller operations could be scheduled in parallel with other component activities, 

therefore the tag could be enabled before it is needed to fetch the next instruction so that 

the delay of tag control circuit is negligible.  

 

On the other hand, we configured the cache using the parameters as shown in Table 5-1 

and simulated the power dissipations of the tag, the tag control circuit and the whole 

cache. The percentage of energy savings and system performance degradations are shown 

in Fig. 5-3 and Fig. 5-4 respectively using our tag control method as well as the approach 

in [75].   

 

Table 5-1  Parameters and configurations of I-cache 

Parameter Value 

CMOS feature size 0.13um 

Supply voltage 1.8V 

Clock speed 500MHz 

Cache type 8K 4-way 

Cache line size 64 Bytes 

Cache latency 1 cycles 

Miss penalty 12 cycles 

Address bus 32 bits 

Data bus 8 bits 
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Fig. 5-3  Energy savings (%) in an 8K 4-way tag-reduced I-cache when running a 
group of benchmarks 
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Fig. 5-4  Performance degradations (%) in terms of IPC 

   

When applying our tag-controlled algorithm to a subset of benchmarks, the energy 

savings in I-cache memory ranges from 14.2% to 20.7% with average 17.5% of the 

original energy consumption. The impact on system performance in terms of the decrease 

of instruction per second (IPC) is 0.12% on average across all the programs. However, 

Energy savings (%) 

Performance degradations(%) 
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the approach in [75] could reduce only about 14.7% of power consumption on average 

with 0.13% of performance loss. 

 

If we adopt a higher clock frequency or a higher set associativity in the I-cache, the 

power consumed by the tag array will increase accordingly. In this case, the tag-

controlled algorithm has more advantage to save a higher percentage of energy 

consumption. 

 

 

5.5 Summary 

 

To reduce power consumption in I-cache is of great importance for a low-power high-

performance embedded microprocessor design. This chapter presented a software and 

hardware co-design approach to reduce the dynamic power dissipation in I-cache by 

reducing tag activities while maintaining high system performance. In this method, we 

predict the small loop executions and the sequential locality of program object code 

during both compilation phase and runtime. When the same cache line is accessed during 

the consecutive cache references, the tag operations are disabled for power reduction and 

the instructions are indexed using the line offset bits in the effective address bus. In 

addition, we use the line boundary and an instruction pre-decoder for branch instructions 

to detect the reference shift between different cache lines, so that the tag operations could 

be activated in time. 
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The experimental results showed that this strategy could effectively reduce the I-cache 

power consumption with negligible impact on performance. When a subset of SPEC 

2000 benchmarks are applied to an 8K 4-way tag-controlled I-cache, this approach could 

reduce an average of 17.5% energy consumption with only 0.12% of performance loss. 
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CHAPTER 6 

A RECONFIGURABLE CACHE 

DESIGN FOR BALANCE BETWEEN 

POWER AND PERFORMANCE 

 

 

 

The performance of a fixed cache architecture is to some extent determined by the 

behavior of the application programs that use the cache. Several studies have argued that 

the applications from different domains exhibit different characteristics [104-106]. Since 

a general-purpose microprocessor is used for a variety of application programs, it is 

important to ensure both low power consumption and high system performance across 

many different-domain applications. A fixed cache structure may perform well for a 

certain program characteristic, but may perform badly when running another program. 

Intuitively, run-time reconfigurable caches design would do well and has been attracting 

more and more research interest.  

 

This chapter introduces a reconfigurable cache design where the cache line size and the 

degree of set associativity can be configured dynamically. According to the simulation 
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results of each application program in different cache architectures, an optimal cache 

architecture can be selected and configured for the program on the balance of cache 

performance and power consumption.  

 

The remainder of this chapter is organized as follows. In Section 6.1, we introduce the 

background and some related works in reconfigurable cache design. In Section 6.2, we 

present the implementation of our reconfigurable cache architecture. In Section 6.3, we 

discuss the simulation results in different architectures using a group of benchmarks. In 

Section 6.4, we give a summary. 

 

 

6.1 Introduction  

 

In the reconfigurable logic sources design in microprocessors, many of the works have 

focused on utilizing reconfigurable circuits to partition the computation and to improve 

computing capacity with a higher speed or lower power consumption. It is important to 

ensure that all the hardware resources available on the chip can be utilized to maximum 

extent possible for a wide range of applications. From this perspective, a study has been 

investigated to use a dynamic configuration of a portion of cache memory and convert it 

into a specialized computing unit, which is able to carry out an independent computation 

[107,108].  

  

It is an important way to customize the memory hierarchy [109,110] for specific 
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applications to fully exploit the limited resources to maximize the system performance. Z. 

Ge, et, al. proposed a reconfigurable instruction memory hierarchy that consists of an 

instruction cache and a scratchpad memory (SPM) [111]. The size of SPM is controlled 

by different applications and it consumes lesser energy than a cache because it does not 

have tag array. Several researchers have designed the algorithms to partition instructions 

or data into the SPM with the goal of reducing the conflict misses and energy 

consumption [111-113]. 

 

The rationale and benefits of reconfigurable cache memory architectures have been 

studied previously by P. Ranganathan et. al. in [103]. They proposed a reconfigurable 

cache architecture that allows the on-chip SRAM to be dynamically divided into different 

partitions that can be assigned to different processor activities other than conventional 

caching. A more flexible reconfiguration method was then explored by C. Zhang et. al. 

[82]. They introduced a cache architecture that can be configured by software to be 

direct-mapped, two-way, or four-way set associative. This cache can sometimes add the 

degree of set associativity to increase the cache hit rate for certain applications. When the 

additional associativity is unnecessary, a direct-mapped cache will be used to reduce 

power consumption as long as it can achieve an acceptable hit rate. However, the refill-

line size in this cache is fixed.  

 

When a cache reference misses, a line of data will be loaded into the cache in batch. If a 

smaller line size is used, the energy consumption of the cache per reference miss is lesser. 

That is to say, a shorter refill line leads to a lesser energy consumption if the cache miss 



CHAPTER 6    A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE 

 113

rate keeps unchanged. On the other hand, if a higher degree of set associativity is used, a 

higher power will be consumed by the cache. For example, a direct mapped cache is 

more energy-efficient per access, consuming only about 30% the energy of a same-size 

four-way set associative cache [114]. However, we would also take account of the system 

performance besides the power consumption when selecting the cache line size and set 

associativity.  

 

Table 6-1 shows the diversity among cache architectures found in modern embedded 

microprocessors. It indicates the dilemma of deciding on the best cache architecture for 

mass production. Overall, the cache size typically ranges from 4K bytes to 32K bytes 

with line size of 16/32/64 bytes. The degree of set associativity normally ranges from 

direct-mapped to 8-way associative.  

 

Table 6-1  Instruction and data cache sizes, associativities, and line sizes of popular 
embedded microprocessors. As. means associativity. DM stands for direct-mapped. 
U means instructions and data caches are unified. Sources: Microprocessor Report, 

and data sheets of various microprocessors. 

 

 

Here we propose a reconfigurable cache architecture to solve this dilemma to some 



CHAPTER 6    A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE 

 114

extent. This cache can be configured to be direct-mapped, 2-way or 4-way set 

associativity, with different line size of 16 bytes, 32 bytes or 64 bytes, when running 

different application programs on the balance of power consumption and performance. 

The implementation and simulation of the reconfigurable cache will be discussed in the 

next sections. 

 

 

6.2 Reconfigurable Cache Architecture 

  

In our reconfigurable cache, we use a 4-bit configuration register to select the different 

set associativites and refill-line size. To combine the different options, the cache 

architecture can be reconfigured to a total of 9 different types, as shown in Table 6-2. 

Here the DM means direct mapped; 16B stands for a line size of 16 bytes. 

 
Table 6-2  Cache architecture configuration register  

Configuration register (r3 r2 r1 r0) Cache architecture 
0000 DM  16B 
0001 DM  32B 
0011 DM  64B 
0100 2W  16B 
0101 2W  32B 
0111 2W  64B 
1100 4W  16B 
1101 4W  32B 
1111 4W  64B 
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In the experiment, we set the cache size to 8K Bytes, and define the 16-Byte refill line 

as a base line. In addition, we use a 32-bit address bus in the cache memory, which is 

denoted as a31 …a0. Normally the effective memory address is split into three fields: line-

offset field, set index field, and tag field. On the other hand, we denote the 4 bits in 

configuration register using (r3 r2 r1 r0), where the two most significant bits are used to 

select the degree of set associativity, and the two least significant bits are used to select 

the refill-line size.  

 

When the two least significant bits (r1 r0) in the configuration register are cleared to 00, 

the base line size of 16-Byte will be selected. In this case, there are total 512 lines and 

corresponding 512 tags in the cache. The 4 least significant bits (a3 a2 a1 a0) of address 

bus are used as the byte index in each refill-line. The next two bits a4 and a5 in the 

address bus belong to the set index field, as shown in Fig. 6-1.  

 

If r1r0 are set to 01, the adjacent two base lines are concatenated to form a 32-Byte line. 

In this case, there are total 256 lines in the cache with 256 tags in use and the other 256 

tags are turned off.  To index the data in a refill-line, the 5 least significant bits in the 

address bus (a4 a3 a2 a1 a0) are assigned to the line offset field. In fact, the bit a4 here is 

used to index the two different base lines in each 32-Byte cache line. The bit a5 belongs 

to the set index field.  
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Fig. 6-1  The field belongingness of a5 and a4 according to the line size 
configuration 

 

When r1r0 are set to 11, every four adjacent base lines are concatenated to form a 64-

Byte refill-line. Therefore, there are total 128 lines in the cache with 128 tags in use, and 

the rest tags are turned off. In this case, the 6 least significant bits (a5 a4 a3 a2 a1 a0) belong 

to line offset field. The bits a5 and a4 here are actually used to index the four different 

base lines in each 64-Byte line.  

 

Fig. 6-1 presents the field belongingness of a5 and a4 according to the different 

configurations of refill-line size. Whatever the line size is used, a full line of data would 

be loaded to the cache memory from main memory once a cache reference misses. The 

selection of a cache line-set and a refill-line for data access is dependent on the address 

bits in tag field and set index field. In our reconfigurable cache architecture, we use the 
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two most significant bits (r3 r2) in the configuration register to divide the bits in address 

bus between tag field and set index field.  

 

When r3r2 are cleared to 00, the cache is configured as direct mapped. In this case, the 

tag field contains 19 bits (a31 …a13), and the a12a11 belong to the line index field. When 

r3r2 are set to 01, the cache is configured to 2-way associative so that the bit a12 belongs 

to tag field and a11 belongs to set index field. If r3r2 are set to 11, the cache is configured 

to 4-way associative and the a12a11 belongs to tag field. The configuration circuit of 

address bus division for tag field and set index field is shown in Fig. 6-2.  

 

The hardware circuit required to support the reconfigurable cache architecture is 

logically simple, so that the overhead of die area of this additional circuit is negligible 

compared with the entire cache. The configuration logic gates in this cache can execute 

concurrently with the instruction execution and address decoding circuits, therefore this 

technique has negligible impact on the cache reference delay. The important question 

regarding the reconfigurable cache architecture is how to balance between the cache 

performance and power consumption or how much performance it can improve when 

compared with the fixed cache architectures. To evaluate the performance and power 

consumption in the reconfigurable cache, we applied a group of benchmarks to different 

cache architectures and compared their miss rate, as discussed in the next section. 
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Fig. 6-2  The field belongingness of a12 and a11 according to the set associative cache 
configuration 

 

 

6.3 Simulation Results and Discussions 

 

In the experiment, we simulated the miss rate of a subset of SPEC2000 benchmarks in 

different cache configurations using the simulation tool, SimpleScalar. The results are 

shown in Table 6-3. The cache miss rate can be converted to the CPI (cycle per 

instruction) to evaluate the cache performance when the program runs, if the cache 

reference delay and miss penalty are given. It can also be used to estimate the power  
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Table 6-3  Miss rates (%) of some programs in the 8K I-cache with different 
architectures 

program mcf vortex paser unepic cjpeg djpeg average

DM  16B 0.14 10.23 2.66 0.21 1.35 1.33 2.65 

DM  32B 0.09 6.59 1.55 0.13 0.78 0.81 1.66 

DM  64B 0.06 4.76 1.00 0.08 0.48 0.52 1.15 

2W  16B 0.02 3.14 2.18 0.11 0.22 0.25 0.99 

2W  32B 0.01 2.17 1.24 0.07 0.14 0.16 0.63 

2W  64B 0.01 1.67 0.75 0.04 0.10 0.12 0.45 

4W  16B 0.00 0.96 2.04 0.07 0.06 0.10 0.54 

4W  32B 0.00 0.57 1.15 0.04 0.04 0.06 0.31 

4W  64B 0.00 0.36 0.68 0.03 0.02 0.03 0.19 

average 0.04 3.38 1.47 0.09 0.35 0.38  

 

 

consumption in cache memory with the simulation results of power consumed by each 

component. 

 

In the different nine cache configurations, the six benchmarks have a wide range of miss 

rates from 0% to 10.23%. If we use a higher degree of way associativity, a lower miss 

rate can generally be achieved for the same program. For most benchmarks in our 

experiment, the cache reference miss rate is much better in 2-way caches than in direct-

mapped caches. For example, the miss rate of program “Vortex” in direct-mapped cache 

with 32-byte line size (DM 32B) is 6.59%, while in the 2-way set-associative cache with 

32-byte line size (2W 32B) is only 2.17%.  However, the miss rate in a direct-mapped 
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cache with longer refill-line may be lower than that in a 2-way cache with shorter refill-

line. 

 

An optimal configuration of the cache architecture for each application program can be 

selected before execution in runtime based on the runtime simulation results and certain 

criteria in different situations. In these scenarios, if the tag length and the clock frequency 

increase, the dynamic power consumed by the tag array will increase proportionately. The 

system dynamic power consumption also increases if the cache miss-rate increases. On 

the balance between low power and high performance, the candidate cache architecture 

for a program could be configured to have a miss rate that is less than the average miss 

rate across the nine different configurations or an acceptable limit bound. After a better 

than average performance is guaranteed, the low power consumption would be taken into 

account when we select the cache architecture. For example, the cache architecture for 

each one of the six benchmarks could be configured as follows:  

 

mcf -- (2W 32B) with miss rate of 0.01% vs average 0.04% 

vortex -- (2W 64B) with miss rate of 1.67% vs average 3.38% 

paser -- (DM 64B) with miss rate of 1.00% vs average 1.47% 

unepic -- (DM 64B) with miss rate of 0.08% vs average 0.09% 

cjpeg -- (2W 16B) with miss rate of 0.22% vs average 0.35% 

djpeg -- (2W 16B) with miss rate of 0.25% vs average 0.38% 

 

From the above configurations, an average of 0.54% of real miss rate could be achieved 
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when using an 8K I-cache to execute all these benchmarks. Although the above selected 

cache architectures are configured to be direct mapped or 2-way set-associative, their 

average performance is comparable with that of a 4-way set-associative 16-Byte cache.  

 

Low power cache designs prefer a shorter refill line to a longer refill line if the miss 

rates are same. This is because using a long refill line usually gives rise to loading more 

unnecessary data from main memory to cache when a cache miss happens. However, 

using a shorter refill lines sometimes results in a higher cache miss rate. When the power 

overhead of the increased miss rate does not exceed the power consumed by loading the 

unused data to cache, a longer refill line will have a lower priority in our reconfigurable 

caches. The accurate estimation of power consumption in a cache is also dependent on 

some other parameters such as the tag length, clock frequency, supplied voltage and 

CMOS technology. The trade off between power consumption and performance in the 

cache reconfigurations is sometimes also determined by the application requirement.  

 

In the event that the system requires a lower limit bound of cache performance, for 

example, if the I-cache miss rate would not exceed 0.8% in all situations, then the cache 

architectures selected for the above benchmarks may be configured as follows.  

 

mcf -- (DM 16B) with miss rate of 0.14%  

vortex -- (4W 32B) with miss rate of 0.57%  

paser -- (2W 64B) with miss rate of 0.75%  

unepic -- (DM 16B) with miss rate of 0.21%  
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cjpeg -- (DM 32B) with miss rate of 0.78%  

djpeg -- (DM 64B) with miss rate of 0.52%  

 

In the above cache configurations, the performance of each benchmark may not be the 

best in the nine different cache architectures, but all of them could meet the requirement 

of the miss rate bound. When this condition is satisfied, the cache architecture could be 

configured as such that the low associativity and short refill line have a higher priority for 

power reduction. For example, the cache is configured to (DM 16B) for the program mcf 

although its miss rate is 0.14%, which is the highest one among the nine different 

configurations. Anyway, the average miss rate of these six applications is only 0.50% 

when using the above configurations. It is lower than that in the previous combinations of 

cache architectures, although we use more direct mapped cache architectures here. And it 

is lower than the average miss rate of 0.63% in the cache architecture of (2W 32B) across 

all the benchmarks, indicating that a collective issue of both low power and high 

performance could be, to some extent, resolved in the reconfigurable cache architecture.  

 

 

6.4 Summary 

 

The effectiveness of a cache memory is, to some extend, determined by the 

characteristics of the executed programs. In order to get high system performance and 

low power consumption in all kinds of applications, the trade off between power 

consumption and performance in cache memories has prompted a variety of architectures 
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in the real microprocessors. This chapter explored a reconfigurable cache design method 

that could select a flexible refill line size and the degree of set-associativity to optimize 

the cache performance and power consumption for different programs.  

 

In this reconfigurable cache, both of the set associativity and refill line size have three 

options with total nine different combinations of cache architectures. Using the 

simulation tool SimpleScalar, we evaluated the 8K I-cache miss rate of a subset of 

SPEC2000 benchmarks in all the different configurations. Based on certain creteria, the 

cache memory can be configured to an optimal type for each application on the balance 

between performance and power consumption for each program. Different users and 

systems may have different requirement of the performance and power optimization, 

however, it is a general preference to have a hyper-average performance or meet a limit 

hit-rate bound in the cache design. The experimental results showed that the 

reconfigurable cache could achieve both high performance and low power consumption 

collectively.  
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CHAPTER 7 

CONCLUSIONS 
 

  

 

The low-power high-performance embedded microprocessor design had attracted a 

great deal of research interest. As the caches are used widely in modern 

microprocessors and usually constitute a big percentage of the chip’s power, the 

optimization of power consumption and performance in such a unit is important. This 

study developed several design methods to reduce power consumption while 

maintaining high performance in cache memories.  

 

With the development of CMOS technology, the chip integration as well as the 

cache size becomes greater, and these give rise to the result that the percentage of 

leakage power consumption in the cache increases steadily. In this thesis, we 

investigated an algorithm that adds some special cache scaling instructions (CSIs) to 

the program object code to track the runtime program working-set size during 

compilation phase. According to the prediction and the current system state, a 

hardware controller makes the decision of caching instructions and scaling the active 

size of I-cache memory. Thus the unused cache lines could be switched off at runtime 

to reduce power consumption. To support this algorithm, we utilize a gated-GND 
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technology in the hardware design to switch on or off the power supply for each 

cache-line. Furthermore, we construct an additional power controller, called arbiter, in 

the resizable I-cache to monitor the system state and implement the power control 

algorithm.   

 

Experimental results using a set of Windows-based general application programs 

showed that our CSIs algorithm could effectively reduce the power consumption in 

I-cache memory with small performance degradation. The overhead of power 

consumption and delay resulted from the power control mechanism is not significant. 

For example, the CSIs algorithm could save 67.3% of total energy in a 32K I-cache 

on average with only 2.85% of performance loss in terms of IPC degradation. 

However, the energy savings in LRU decay algorithm is only 36.8% when a similar 

system performance is obtained. In our algorithm, the number of added CSIs during 

execution was only 0.34% of the original instruction code size, and the increased die 

area because of the added circuits is about 5% of the original cache memory size. The 

increased code size during execution in the CSIs algorithm was less than that in 

previous work of compiler-directed optimization [20].  

 

On the other hand, we proposed an object-code reallocation method to reduce the 

runtime program working set size and cache miss rate to reduce the power dissipation 

in the instruction-cache while improving the system performance. It is done by 

reallocating some typical instruction segments such as loops and subroutines in 



CHAPTER 7                                                                    CONCLUSIONS 

 126

memory map based on the analysis of the runtime program profile data. Simulation 

results using a group of SPEC 2000 standard benchmarks and Media-benches showed 

that the code optimization method could reduce the CPI (cycle per instruction) by an 

average of 3.87% in a 16K direct mapped I-cache. When it is integrated with the CSIs 

algorithm, it could reduce the power consumption as high as 35.5% of the total power 

in a 16K resizable cache. The integration of these two algorithms could reduce 4.9% 

more power consumption than only the CSIs algorithm is used. Although the power 

reduction and performance improvement are not significant in some situations, the 

code reallocation method could achieve both low power and high performance 

collectively in all applications in the experiment. 

 

After the static power consumption in I-cache has been reduced significantly, the 

dynamic power consumption becomes prominent once again. Since the conventional 

tag structure is always operating when programs are running, the dynamic power in 

such components generally occupies a high percentage of total power in the cache 

sub-system when it has a high set-associativity and clock frequency. This thesis 

presented a software and hardware co-design approach to reduce the dynamic power 

dissipation in I-cache by reducing tag activities while maintaining high system 

performance. In this method, we predict the small loop executions and the sequential 

locality of program object code during both compilation phase and runtime. When the 

same cache line is accessed during the consecutive cache references, the tag 

operations are disabled for power reduction and the instructions are indexed using the 
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line offset bits in the effective address bus. In addition, we use the line boundary and 

an instruction pre-decoder for branch instructions to detect the reference shift between 

different cache lines, so that the tag operations could be activated in time. The 

experimental results showed that this strategy could effectively reduce the I-cache 

power consumption with negligible impact on performance. When a subset of SPEC 

2000 benchmarks are applied to an 8K 4-way tag-controlled I-cache, this approach 

could reduce an average of 17.5% energy consumption with only 0.12% of 

performance loss. 

 

Lastly, we designed a reconfigurable cache. Its set associativity could be configured to 

direct mapped, 2-way associative or 4-way associative, and the refill line size could 

be configured to 16 bytes, 32 bytes or 64 bytes in run time. Using the total nine 

different combinations of parameters in the cache architecture, we simulated a group 

of benchmarks to evaluate the cache performance and power consumption. Across a 

wide range of applications, the cache reconfiguration method could achieve high 

performance when encountering different program characteristics with relatively low 

power consumption on average compared with the size-fixed caches. On the balance 

between power consumption and performance of the cache memories, the 

experimental results showed that the reconfigurable cache could present a flexible 

adaptivity to different situations with certain optimization criteria such as a 

hyper-average performance, sub-average power consumption, or other limit-bounds of 

performance and power consumption. 
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