

LOW-POWER INSTRUCTION-CACHES DESIGN

FOR EMBEDDED MICROPROCESSORS

ZHU XIAOPING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LOW-POWER INSTRUCTION-CACHES DESIGN
FOR EMBEDDED MICROPROCESSORS ZHU XIAOPING 2006

LOW-POWER INSTRUCTION-CACHES DESIGN

FOR EMBEDDED MICROPROCESSORS

ZHU XIAOPING

(B.Eng., HIT)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

 i

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor, Dr. Tay Teng Tiow,

for his professional supervision, patient guidance, constructive criticism, instructive

advice and continuous encouragement over the years of my PhD study and

preparation of this thesis. Without his support and guidance, this thesis would not

have been possible.

Many thanks must go to my friends, Yu Hongbin for his selfless help to share his

Synopsys/Cadence circuit design and simulation workstation account in his lab with

me; to Dr. Yu Jianghong for his provision of the manuals of simulation tools and the

server configuration files; to Xia Xiaoxin for his help to setup the SimpleScalar

simulation environment and to trace the cache performance with the downloaded

benchmarks; to Ng Ka Sin, Navneet Arvind Jagannathan and Pan Yan for their

invaluable discussion with me about the related research ideas and experimental

methods and results; as well as to the numerous anonymous reviewers of this work for

their constructive comments.

I sincerely thank my labmates, Ms. Sun Yang, Mr. Bao Chunyu, Ms. Mo Wenting,

Dr. Dong Liang, Dr. Lv Shijian and Mr. Xiangxu, for their helpful suggestion and

 ii

disscussion about my research, and for the enjoyable atmosphere brought by them in

the DSA lab. I also appreciate the lab technicians, Ms. Rose Seah and Mr. Teo King

Hok, for their cooperation, facilities assignment and prompt logistic support.

Especially, I am grateful to my beloved families for their selflessness, patience,

understanding and unconditional support all the time, without which I totally would

not be able to complete my pursuit of Ph.D. education.

Last but not least, I truly thank the National University of Singapore for awarding

me the research scholarship as a grant for my study.

 iii

TABLE OF CONTENTS

ACNOWLEDGEMENT…………………………………...…………………………i

TABLE OF CONTENTS………………………………………………...………….iii

SUMMARY……………………………………………………………...…………..vii

LIST OF FIGURES………………………………………………….……………….x

LIST OF TABLES………………………………………………………………….xiv

CHAPTER 1 INTRODUCTION………………………………………………….1

1.1 Background…………………………………………………………………....1

1.2 Methods of Low-Power Microprocessor Design……………………….……..3

1.3 Low-Power Cache Design Technologies……………………………….……...9

1.3.1 Size Scalable Caches Based on Hardware Technology ………….…..10

1.3.2 Software Optimizations ……………………………………………...13

1.3.3 Compiler-Controlled Low-Power I-Cache Design ………………..…14

1.3.4 Dynamic Power Reduction in the Tag Structure ……....…………….15

1.3.5 Reconfigurable Caches ………………………………………………17

1.4 Objectives………………………………………………………………….…19

1.5 Organization of the Thesis…………………………………………………....21

 iv

1.6 List of Papers from PH.D Work……………………………………………...24

CHAPTER 2 ELEMENTARY CACHE ARCHITECTURE

AND POWER CONSUMPTION ………………………………….25

 2.1 Memory Hierarchies in a Computer System……………………………...…25

 2.2 Elementary Cache Architecture……………………………………………...28

 2.3 Power Estimation for the Components in Caches…………………………...33

2.3.1 Power Estimation Models…………………………………………....33

2.3.2 Experiment Method……………………………………………….…35

2.3.3 Power Simulation Results and Potential of Power

Reductions in Cache……………..39

 2.4 Summary…………………………………………………………………….41

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME

TO REDUCE LEAKAGE POWER DISSIPATION…..……....…43

3.1 Introduction…………………………………………………………………..43

3.2 Hardware Implementation and Cache Scaling Mechanisms…………………46

3.2.1 Resizable Cache Architecture………………………………………...46

3.2.2 Gated-Vdd/GND Technique………………………………………….48

3.2.3 Cache Scaling Algorithm…………………………………………….50

3.3 Characteristics of Program Locality and the CSIs Insertion Algorithm…..….53

3.3.1 Instruction Segment Characteristics………………………………….55

 v

3.3.2 CSI Insertion Algorithm……………………………………………...55

3.3.3 Power Control Mechanism…………………………………………...61

3.4 Evaluation of Power Consumption and Performance in the

Size-Scalable I-cache………………………………………………………..64

3.4.1 Tradeoff Between the Power and Performance in

LRU Decay Algorithm……………………………………………….64

3.4.2 Working Set Size and Phase Transition Model……………………...67

3.4.3 Evaluation of Power Reduction and Performance Loss

in Scalable I-Caches………………………………………………….70

3.5 Summary……………………………………………………………………..77

CHAPTER 4 CODE RE-ALLOCATION FOR POWER REDUCTION

AND PERFORMANCE IMPROVEMENT IN I-CACHE…..…79

 4.1 Code Locality and Optimization Method……….……………………...……80

 4.1.1 Loops………………………………………………………………….81

 4.1.2 Subroutine Invocations……………………………………………..…82

 4.1.3 Other Patterns…………………………………………………………82

4.2 Simulation Methods and Experimental Results……………………………...85

 4.3 Integration of Code Optimization and CSI Algorithm ………………..…….93

4.4 Summary……………………………………………………………………..96

CHAPTER 5 REDUCING TAG ACTIVITIES FOR

 vi

ENERGY SAVINGS IN I-CACHE……………………………...98

5.1 Introduction………………….……………………………………………….98

5.2 Code Optimization and Locality Prediction …………………………..……100

5.3 Tag Control Mechanism …………………………………………………....102

5.4 Experimental Results…………………………………………………….....105

5.5 Summary……………………………………………………………………108

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE

BETWEEN POWER AND PERFORMANCE ………..……...110

6.1 Introduction…………………………………………………………………111

6.2 Reconfigurable Cache Architecture………………………………………....114

6.3 Simulation Results and Discussions………………………………………...118

6.4 Summary……………………………………………………………………122

CHAPTER 7 CONCLUSIONS………………………………………………………....124

REFERECES……………………………………………………………………....128

 vii

SUMMARY

As caches are used widely in modern microprocessors to fill in the speed gap

between main memory and processor, and the cache usually constitutes a big portion

of chip’s power, the optimization of power consumption and performance in such a

component is important. In this thesis, we investigate several algorithms to reduce the

power consumption in the instruction-cache memories while maintaining high system

performance.

Firstly, we explore a run-time size-scalable instruction-cache design method, which

adds some special cache-scaling instructions (CSIs) to the program object codes to

track the working set size during compilation phase. According to the prediction using

CSIs and the current system state, a hardware controller makes the decision of

caching instructions and scaling the active size of I-cache. Thus the unused cache

lines could be switched off at runtime to reduce power consumption. In hardware

implementation, we use a gated Vdd/Gnd technology and some logic circuits to

switch on and off the power supply for each cache line. This CSIs algorithm could

achieve a better balance between low power dissipation and high performance in the

 viii

scalable cache than previous algorithms such as the LRU line-decay and the method

in [90].

Secondly, we study a program object code reallocation method to reduce the

working-set size to maintain a small subset of cache lines in utility. When a size-fixed

cache is used, this algorithm could improve cache performance by reducing the

reference miss rate. If this method is integrated with the previous CSIs algorithm, we

could reduce more power consumption in the cache than only the CSIs algorithm is

used without additional penalty of performance.

Another proposal in this research is to reduce the tag activities for dynamic power

reduction based on cache-line access predictions. In this method, we predict the small

loop executions and the sequential locality of program object code during both

compilation phase and runtime. When the same cache line is accessed during the

consecutive cache references, the tag operations are disabled for power reduction and

the instructions are indexed using the line offset bits in the effective address bus. In

addition, we use the line boundary and an instruction pre-decoder for branch

instructions to detect the reference shift between different cache lines, so that the tag

operations could be activated in time to maintain system performance.

Finally, we design a reconfigurable cache, where the degree of set-associativity

could be configured to direct mapped, 2-way associative or 4-way associative, and the

 ix

refill-line size could be configured to 16 bytes, 32 bytes or 64 bytes in run time. The

cache reconfiguration method could achieve high performance with relatively low

power consumption when executing a wide range of application programs. In the

tradeoff between power consumption and performance, this design could present a

flexible adaptivity to meet different optimization criteria and solve the dilemma. For

example, it could guarantee a hyper-average performance and sub-average power, or

certain limit bounds of performance and power consumption.

 x

LIST OF FIGURES

Fig. 1-1 ITRS projections for transistor scaling trends and power consumption: (a)
physical dimensions and supply voltage; (b) device power consumption………6

Fig. 1-2 Power consumption for embedded/media processors.
(a) Strong ARM (b) Power PC………………………………………………….8

Fig. 2-1 The memory hierarchy in a computer system………………………………….26

Fig. 2-2 A cache positioned in the memory hierarchy:
(a) inside processor (b) outside processor……………………………………..27

Fig. 2-3 A direct-mapped cache with main memory……………………………………30

Fig. 2-4 Memory address partition for a 2k–way set associative cache…………………31

Fig. 2-5 The structure of a two-way set associative cache……………………………...32

Fig. 2-6 Using SAIF files during gate-level simulation ………………………………..37

Fig. 2-7 RTL simulation and SAIF files methodology …………………………………38

 xi

Fig. 2-8 Information input to power compiler…………………………………………..38

Fig. 3-1 System architecture of the resizable I-cache memory………………………….47

Fig. 3-2 A RAM cell with MOS gated-Vdd/GND technique……………………………48

Fig. 3-3 Flow chart of the compiler processes…………………………………………..54

Fig. 3-4 Node flow chart of an instruction segment…………………………………….56

Fig. 3-5 Increased miss rate of three applications in a 32K cache system using LRU
decay algorithm………………………………………………………………..65

Fig. 3-6 Working set size VS time window length……………………………………...66

Fig. 3-7 Phase transition model of working set with time……………………………....68

Fig. 3-8 Working set size of program “Acdsee” with time in a 512x64B cache………..69

Fig. 3-9 Increased code ratio using CSIs algorithm…………………………………….73

Fig. 3-10 Energy savings of a 32KB cache memory when using CSIs algorithm with
different parameter w…………………………………………………………..75

 xii

Fig. 3-11 IPC degradation of each application when using the CSIs algorithm with
different parameter w………………………………………………………….76

Fig. 4-1 Loop alignment…………………………………………………………………81

Fig. 4-2 Subroutine reallocation…………………………………………………………83

Fig. 4-3 Fusion of the loop with invoked subroutine…………………………………….83

Fig. 4-4 Fusion of subroutines invoked by the same loop……………………………….84

Fig. 4-5 Subroutine distritution…………………………………………………………..85

Fig. 4-6 A segment of object code with address mapping………………………………86

Fig. 4-7 Runtime profile data of the instruction basic blocks……………………………87

Fig. 4-8 Turn-off ratio (%) of a 16K direct-mapped I-cache when applying CSIs
algorithm vs. the integration of code optimization and CSIs to a group of
benchmarks ……………………………………………………………………..94

Fig. 4-9 Power savings (%) of a 16K direct-mapped I-cache when applying CSIs
algorithm and the integration of code optimization and CSIs to a group of
benchmarks……………………………………………………………………...96

Fig. 5-1 An example of code optimization process ……………………………………102

 xiii

Fig. 5-2 Tag activities controlled I-cache structure …………………………………...103

Fig. 5-3 Energy savings (%) in a 8K 4-way tag-reduced I-cache when
running a group of benchmarks………………………………………………..107

Fig. 5-4 Performance degradations (%) in terms of IPC……………………………….107

Fig. 6-1 The field belongingness of a5 and a4 according to the line

size configuration……………………………………………………………...116

Fig. 6-2 The field belongingness of a12 and a11 according to the set associative
cache configuration…………………………………………………………...118

 xiv

LIST OF TABLES

Table 1-1 The components of total power in the Alpha 21264 microprocessor at the
maximum operating frequency………………………………………………..5

Table 2-1 Cache configurations…………………………………………………………39

Table 2-2 Power consumption of cache components…………………………………...40

Table 3-1 Cache system configurations and power consumptions……………………...70

Table 3-2 Turn off ratio (%) and increased miss rate (%) of some programs in the
scalable cache with CSIs algorithm………………………………………….72

Table 3-3 Energy savings (%) and IPC degradations (%) of some general programs
when using LRU line decay vs CSIs algorithm in a 32K I-cache…………...74

Table 4-1 I-cache configuration…………………………………………………………88

Table 4-2 Miss rates of benchmark programs in the 16K I-cache………………………91

Table 4-3 CPI of benchmark programs before and after code optimization…………….92

 xv

Table 4-4 Power consumption of each component in the 16K direct mapped I-cache…95

Table 5-1 Parameters and configurations of I-cache…………………………………..106

Table 6-1 Instruction and data cache sizes, associativities, and line sizes of popular
embedded microprocessors………………………………………………….113

Table 6-2 Cache architecture configuration register…………………………………...114

Table 6-3 Miss rates (%) of some programs in the 8K I-cache with
different architectures………………………………………………………119

CHAPTER 1 INTRODUCTION

 1

CHAPTER 1

INTRODUCTION

1.1 Background

Portable devices based on embedded microprocessors have become increasing

popular and widely-used over the past years. The current trend in consumer

electronics is the integration of many functions previously provided in individual

devices into a single device. Thus instead of cell phones, MP3 players, digital cameras,

radios, audio recorders, global position systems (GPSs), personal digital assistants

(PDAs) and other separate portable devices, it is now common to see the functions

found in each of these separate devices integrated into one device. The typical user

also expects better response time when operating these devices. To achieve these

requirements, an embedded microprocessor capable of huge processing power is

needed. Such a high performance processor would usually incorporate more complex

circuits and consequently more transistors.

CHAPTER 1 INTRODUCTION

 2

With the development of submicron CMOS technology, more circuits can now be

accommodated on a single die. This allows modern microprocessors to incorporate

more complex circuits to improve system performance and functionality.

One problem associated with adopting submicron technology containing millions of

transistors in a chip is a dramatic increase in static power dissipation in addition to the

usual associated dynamic power dissipation. The static power consumption of a die is

proportional to the number of transistors. As we move forward, static power

dissipation of submicron CMOS chip is expected to equal or exceed that of dynamic

power dissipation.

 For a mobile electronic device that uses battery as its power supply, low power

dissipation is an almost universal requirement. Hence a multi-function integrated

electronics device is not expected to consume significantly more power than its

simpler predecessors. That is to say, not only are microprocessors expected to execute

complicated functions, but they also should sustain reasonably long usage times. This

gives rise to a need for low power consumption. Currently major research effort and

technological developments are centered on building microprocessors that can deliver

high performance and yet consume minimal power.

In this chapter, we will explore some techniques that have been developed to reduce

power consumption in microprocessors. In fact, there are many approaches for

CHAPTER 1 INTRODUCTION

 3

low-power microprocessor design. These range from system level enhancement,

architecture level enhancement, circuit level enhancement to transistor level

enhancement. A general understanding of the technological development on this front

will foster a clearer understanding of this study’s motivation and contribution. The

following section briefly introduces some typical directions in low power

microprocessor design method.

1.2 Methods of Low-Power Microprocessor Design

In the area of low-power microprocessor design, many methods have been

investigated and implemented in the past decades. These various techniques can be

applied to the different levels of the design hierarchy [1], and address both hardware

and software aspects.

Hardware design methods of low-power microprocessor design may be classified

into various categories. These range from adopting low-power architectures and

components [2-9] by redesigning the system architecture or component

implementations, fine grains and reconfigurable modules [10-12] on balance between

performance and power by disable part of grains or circuits, multi-mode or

multi-domain systems [13,14] by rescheduling the low-power mode or domain for

system operation when the performance is satisfactory, logic and circuit level

CHAPTER 1 INTRODUCTION

 4

improvement [15-18], data/address bus and I/O path reconstructions [19-21], clock

gating and distribution [22-23], voltage reduction and scaling [25-27] to reduce power

directly, to CMOS device technology improvement [28-30] at the low level design.

Software based design may be classified into operating system controlled or

application driven management [31-35], compiler optimizations [36-38], data

communication, transformation and speculation [39,40], model-based analysis [41],

instruction set architecture redesign, instruction level parallelism and optimization

[42-44].

Many of the above methods are well known and effective in reducing power

consumption of microprocessors when applied independently. Moreover, hardware

implementation techniques and software algorithms are increasingly combined

together [45-47] for better energy savings.

To reduce power consumption in a microprocessor, the design methods mainly

concentrate on those architectures, components or circuits that consume a significant

portion of power in the system. For example, it is important to reduce the power

consumed by the clock networks and the instruction execution circuits in the ALPHA

21264 microprocessor [48] because the power consumption of the global clock

network plus instruction issue units together account for 50% of the total system

power. Table 1-1 shows the power consumed in various components in the ALPHA

CHAPTER 1 INTRODUCTION

 5

21264 microprocessor that operates at the maximum operating frequency of 600MHz

[48].

Table 1-1 The components of total power in the Alpha 21264 microprocessor at
the maximum operating frequency

Global Clock Network 32%

Instruction Issue Units 18%

Cache Memories 15%

Floating Execution Units 10%

Integer Execution Units 10%

Memory Management Unit 8%

I/O 5%

Miscellaneous Logic 2%

This version of the ALPHA 21264 microprocessor is manufactured using a 0.35um

CMOS process technology. It is the third generation of the ALPHA microprocessors

with process technology developed from 0.75um and 0.5um. The dynamic power

consumption in these microprocessors occupies the bulk of total system power

consumption. This is because, only a small percentage of circuits in these chips are

inactive during each clock cycle, and the leakage power consumption in a CMOS

transistor that uses a long geometry feature is negligible compared with the

overwhelmingly dominant dynamic power consumption. However, with the

development of CMOS process technology, the channel length, transistor threshold

CHAPTER 1 INTRODUCTION

 6

voltage, and gate oxide thickness are reduced. As a result, the ratio of leakage power

consumption to total transistor power consumption steadily increases while the

dynamic power dissipation per CMOS device decreases.

Fig. 1-1 ITRS projections for transistor scaling trends and power consumption:

(a) physical dimensions and supply voltage; (b) device power consumption

Fig. 1-1 shows the International Technology Roadmap for Semiconductors (ITRS)

CHAPTER 1 INTRODUCTION

 7

projections for transistor scaling trends and device power consumption [49,50]. It is

shown that the CMOS device gate length, oxide thickness and power supply reduce

over one order from 1985 to 2020. In the mean time, dynamic power dissipation per

device decreases about two orders, while static power dissipation per device increases

over 3 orders. Therefore, the percentage of power consumption of each component in

a microprocessor may vary significantly with the development of CMOS process

technology.

Among the components in a modern microprocessor, the cache memory usually

occupies a big portion of the chip die. At any point of time, only one refill line in a

cache is accessed, which consumes dynamic power, while the rest of the memory cells

consume static power. Furthermore, as implementation moves towards more advanced

technology, giving rise to more transistors per chip, a larger percentage of the chip is

devoted to the implementation of cache. Therefore, the cache is a good potential for

applying static power reduction methods. The cache memory in a modern

microprocessor normally consumes about 15% to 50% of the total energy depending

on the system configuration and applications. Fig. 1-2 shows the decomposition of

power consumption for embedded/media processors. It is shown that, the caches

CHAPTER 1 INTRODUCTION

 8

Fig. 1-2 Power consumption for embedded/media processors.

(a) Strong ARM (b) Power PC

consume 42% and 23% of the total processor power in StrongARM 110 and Power

PC [38] respectively. This is a high percentage compared to the other components in

the microprocessor.

As on-chip cache memory becomes larger and larger for embedded microprocessors,

it is increasingly important to address power dissipation in such a component. For

example, 60% of the chip area in StrongARM is devoted to cache and memory

structures [51] that dissipate about 42% of the total chip power [52]. Therefore,

design for low-power caches has attracted keen interest from both researchers and

developers. In this thesis, we will address the low-power cache design for embedded

microprocessors.

In the past decade, large progress was made in the area of low-power cache design.

In the next section, we review some previous work related to low-power cache

designs.

CHAPTER 1 INTRODUCTION

 9

1.3 Low-Power Cache Design Technologies

Modern microprocessors generally employ the on-chip caches to bridge the speed

gap between the processor and main memory. Among the components in a

high-performance microprocessor, cache memory usually occupies a significant

fraction of the total die and consumes a large percentage of system power.

To reduce power consumption in the cache subsystem, a number of mechanisms

have been proposed. They are memory cells redesign [53,54], hierarchy or

architecture reconfiguration [55,56], avoidance of unnecessary data accesses [57] to

eliminate unnecessary dynamic power consumption and reduction of tag frequency

[58]. The effectiveness of many low-power cache structures has been examined in

[59,60]. Analytic model for power consumption in various cache structures has been

developed by [52,61]. Other aspects (also for performance improvement), such as

different cache architectures [62,63] with different power consumption and

performance, associativities [64] and choices of cache types [65] to cater for different

situations have also been evaluated.

The above technologies were proposed based on certain specific cache architectures

and have fixed active size during operation. To manage performance and power issues

collectively in the cache memory, an interesting mechanism has been explored

CHAPTER 1 INTRODUCTION

 10

recently to scale the active cache size dynamically in run-time to reduce power

consumption. In the following sections, some effective mechanisms for size-scalable

caches will be introduced.

1.3.1 Size Scalable Caches Based on Hardware Technology

General microprocessors are designed to provide good average performance over

different applications. However, the actual cache utilization varies widely both within

and across different programs. This may lead to an inefficient balance between power

consumption and system performance for individual programs and individual phases

in the same program. To get an optimal balance between low power and high

performance in different scenarios, some reconfigurable cache structures have been

proposed to adapt the behavior of different applications and activate/deactivate the

required portion of the cache resources.

In a chip with traditional CMOS process technology, the static power consumption

in cache is deemed to be negligible and the dynamic power is dominant. However, as

smaller geometry feature size and lower threshold voltage of the transistors are used

in advanced CMOS technologies, the fraction of static power consumption increases

exponentially. To reduce static power consumption in caches, a few algorithms have

been reported to tune the cache size in run-time according to certain control criteria.

CHAPTER 1 INTRODUCTION

 11

A traditional control criteria used to tune the cache size is the cache miss-rate bound.

In the Dynamically Resizable I-cache (DRI) [83], a large portion of cache memory

can be dynamically switched on and off using some preset bounds of the miss-rate. In

this algorithm, if the real miss-rate is lower than a tolerable lower-bound, a number of

cache lines will be put in the sleep-mode to reduce power consumption. Subsequently,

if the detected miss-rate is higher than an upper-bound, a large block of cache that is

in the sleep-mode is turned on to improve system performance. As a result, the

number of disabled cache lines is directly related to the detected cache miss rate and

the preset miss rate bounds.

Since the optimal miss rate varies widely in different programs based on the tradeoff

between power consumption and system performance, it is difficult to set an ideal

uniform miss-rate bound for all applications in advance. Furthermore, the scalable

granularity in DRI cache is relatively coarse. This drawback in DRI was improved to

some extent in Cache Line Decay [84] that enables/disables individual cache lines. It

has finer granularity than DRI and is potentially more effective. It uses a Least Recent

Used (LRU) line decay control mechanism, which is called LRU decay. In this case a

cache line is automatically switched off if it has not been referenced in a period of

time, named decay interval, and a new line is turned on once a reference miss

happens.

CHAPTER 1 INTRODUCTION

 12

The LRU decay algorithm is simpler than the scaling miss-rate bounds algorithm.

However the LRU decay is not able to guarantee the system performance using a

single period of line decay time. The Adaptive Mode Control (AMC) cache [85]

addressed this aspect and enhanced the LRU decay algorithm. It keeps the tag array

active all the time and provides a counter for each tag to measure its activity. With

this modification the increased miss rate that results from the size-tuning mechanism

can be monitored in real time, and their tracking of the program working set is

potentially more accurate than [84], where only a decay time is used. Here we define

a working set as a number of instructions that need to be stored in the

instruction-cache within a period of time for executions.

Besides detecting the actual miss rate, another hardware design method to maintain

system performance is to reduce the power voltage on some cache lines just to a small

threshold value, other than to zero. At this threshold value, the state of the data in

cache is still preserved. This algorithm is referred as drowsy cache [86], which puts

some lines into the state preserving low-power drowsy mode to reduce the leakage

power consumption with a small overhead of state transition. Though it also uses line

decay algorithm, the system performance in drowsy cache is not degraded as much as

that in DRI cache or AMC cache when they achieve the similar reductions of power

consumption.

The size-tuning algorithm for a cache memory is always a balance between power

CHAPTER 1 INTRODUCTION

 13

consumption and cache performance. The reduction of power consumption and cache

performance degradation are determined by the accuracy of tracking the runtime

working-set size. The above mentioned algorithms with hardware technologies

provide a possibility to predict the working-set size in run time. However, their

predictions of a working set size in the future time window are based on the past

usage of cache lines, this incurs an inevitable phase lag. Because the cache line usages

in different time phase do not keep the same, it is difficult to accurately predict the

working-set size in run time using only the above hardware technologies, so that the

cache scaling algorithm could be further investigated.

1.3.2 Software Optimizations

Besides the hardware design methods as described in Section 1.3.1, software

optimization and compiler support is another effective strategy to reduce power

consumption in caches. Traditionally, software optimizations aim at high cache

performance by improving the hit-rate with satisfactory spatial and temporal code

locality. A higher cache hit-rate (or lower miss rate) normally results in lower power

dissipation in the cache because of the smaller power overhead consumed by

reloading the missed data from main memory to cache. The software optimizations

for a high cache hit-rate are normally performed by a compiler, which plays an

important role in data transformation, register/memory allocation and bit transitions

CHAPTER 1 INTRODUCTION

 14

between successive instruction/data accesses.

When the compiler generates the program object code, the methods of loop tiling,

loop fusion, pattern recognition, instruction parallelism and branch prediction would

be considered. Besides the general optimization methods, some special techniques for

several typical situations in the embedded programs (for example, media applications),

have been investigated to reduce the power consumption in cache memories. For

example, the design space optimization of embedded memory systems via data

remapping was evaluated in [87]. At a higher level, memory access pattern

restructuring for energy savings was proposed later in [88]. Considering the prediction

of working sets in cache memory, Zhenlin et al. [89] used the compiler to estimate the

characteristics of programs and to improve cache line replacement algorithms. Along

this way, the compiler-directed algorithm is a promising research direction in the area

of low-power cache design. In the next section, we introduce a recent study in the

topic of compiler-controlled low-power instruction-cache design.

1.3.3 Compiler-Controlled Low-Power I-Cache Design

W. Zhang et al. combined the hardware method used in drowsy cache [86] (see

section 1.3.1) and a compiler-directed prediction algorithm to reduce leakage power

consumption in I-cache [90]. They detect the end of each loop and accordingly insert

CHAPTER 1 INTRODUCTION

 15

a special instruction during the compilation phase to communicate the information to

the hardware controller in runtime. For further energy savings, they optimized the

traditional object code of some loops in the programs using loop fusion, head

duplication for loop division and space tiling to cater for their cache size scaling

algorithm. This hardware and software hybrid approach achieved a better balance

between power and system performance. However, they have not considered some

useful factors such as the loop length, nested short loops, subroutine invocations and

the cache structures. Moreover, the increased code size as a result of applying their

algorithm is high. The overhead of fetching, decoding and executing these codes leads

performance loss.

1.3.4 Dynamic Power Reduction in the Tag Structure

The run-time resizable cache design methods as described in previous sections

mainly focus on reducing the static power consumption. On the other side, the

dynamic power dissipation in the cache also has potentials of further reductions. As is

known, a cache that is frequently used can be configured in direct-mapped structure or

set-associative structure. A direct-mapped cache usually consumes less power than

those caches with higher degrees of set-associativitity. It is because the higher

set-associativity, the more tag entries in the cache are in operation during each

instruction cycle. The number of tag activities is proportional to the dynamic energy

CHAPTER 1 INTRODUCTION

 16

dissipation in tag array. However, in order to improve system performance, the

set-associative caches even become more and more popular. From this point of view,

the low power design technologies in the component of tag array, especially for high

set-associative caches, become important and will be described as follows.

The cache tag array must be in operation during each instruction cycle. Thus the

dynamic power consumption in the tag array generally contributes a high percentage

of the total power dissipation in the cache sub-system. The power dissipation in tags

is proportional to the length of the tag and the tag activities. To reduce the tag

comparisons or tag length, a few methods have been proposed in the recent years.

A popular architecture is to provide an extra small L0 cache that stores recently and

frequently executed instructions, and the main cache is accessed only when L0 cache

misses [66-68]. The costs of this method are an increased cache miss rate and an

increment of die area.

Another speculative cache line access method is the phased cache design in

set-associative caches [69,70]. It first probes the initial tag array or the predicted way

and only in case of miss, it will access the rest of the tags. The penalty of this method

is an increment of cache access time in every tag prediction error.

Panwar et al. [71] used the Program Counter in microprocessor to predict whether

CHAPTER 1 INTRODUCTION

 17

two consecutively executed instructions belong to different cache lines and to perform

tag-checks. Witchel et al. [72] used a special compiler scheme to allow software to

access cache data without hardware cache tag-checks; while Ma et al. [73] proposed

to eliminate tag checks via a dynamic way-memorization. Koji Inoue et al. [74]

suggested a history-based tag-comparison using a branch target buffer, and Peter

Petrov et al. [75] predicted major program loops and used a shorter tag array to index

cache lines.

However, these studies mentioned in the above paragraph either achieved only a

small reduction of cache power dissipation, or paid an obvious penalty of

performance loss, power overhead and die area of extra complex circuits. Therefore,

this topic of research work could be further investigated to save dynamic power

consumption in the tag array while maintaining high cache performance.

1.3.5 Reconfigurable Caches

Other than the uniform cache structures, research works in the low-power cache

design have explored non-uniform cache architectures [76], as well as analyzed

multi-way selectivity [77] and studied the impact of different block size [78] on the

tradeoff between the cache performance and the power dissipation. Since a

general-purpose microprocessor is used for a variety of application programs, it is

CHAPTER 1 INTRODUCTION

 18

important to ensure both low power consumption and high system performance across

many different-domain applications. A fixed cache structure may perform well for a

certain program characteristic, but may perform badly when running another program.

Intuitively, run-time reconfigurable caches design would do well and has been

attracting more and more research interest.

In the area of reconfigurable cache design, Rama Sangireddy et al. [80] exploited

the possibility of using a part of cache memory for computational purpose to get a

better balance in the usage of cache and computing resources for different

applications. In their adaptive microprocessor architecture, the data cache is designed

as an optional coprocessor. A part of the data cache is designed as a multi-functional

cache that can be configured to perform certain computational functions in the media

application when such computing capability is required and only a small cache is

needed.

As far as a sole cache function is concerned, R. Balasubramonian et al. [81]

proposed a reconfigurable cache architecture where the size of the Level 1 cache and

Level 2 cache can be dynamically and separately tuned by allocating an extra cache

memory to L1 or L2 cache in different situations. On the other side, Chuanjun Zhang

et al. [82] introduced a way-concatenation technique, which could dynamically

configure the cache to be direct-mapped, two-way or four-way set associative with

fixed refill-line size.

CHAPTER 1 INTRODUCTION

 19

1.4 Objectives

In this section, we present four proposals in low-power caches design.

One purpose of this research was to develop an algorithm to tune instruction-cache

size in run-time to reduce the power consumption of I-cache while maintaining high

system performance. The essential of this algorithm is to track the program working

set size in run time. We use five kinds of cache scaling instructions (CSIs) to denote

the characteristics of typical program segments, such as the start and end of loops,

sequential instruction blocks and subroutine invocations. The CSIs are added to

program object codes during the compilation phase to predict the runtime program

working set size. In our algorithm, we use the exact parameters such as cache line size,

total number of cache lines, addresses map of program segments in memories, length

of loops and subroutines, to predict when to tune the cache size and which cache line

needs to be switched.

The second objective of this research is to optimize the program object code to

reduce the power consumption of instruction-cache while improving system

performance. In this method, we reallocate some typical instruction segments such as

loops and subroutines in memory map to reduce the runtime program working-set size.

CHAPTER 1 INTRODUCTION

 20

When the cache size is fixed, the code reallocation method could improve the cache

hit-rate. It is because a working set that is originally bigger than the instruction-cache

size before code reallocation may be smaller than the instruction-cache size after code

reallocation, so that this whole working-set could now be loaded into the

instruction-cache without cache reference miss during execution of this working set.

When the code reallocation method is integrated into our previous CSIs algorithm, the

result could enhance the advantage of CSIs algorithm. It is because a smaller working

set size in runtime implies more unused cache lines could be turned off and more

power consumption could be reduced in a re-sizable cache memory.

Thirdly, we propose a software and hardware co-design method to reduce the

unnecessary tag operations for low power consumption. In software design, we add

some special instructions to the application program object code during compilation

time to predict the characteristics of runtime tag-operations. Such predictions are used

to disable or enable the tag activities to reduce the dynamic power consumed by tag

array. In hardware design, we provide an extra component to disable or enable the tag

activities to support our software algorithm. In our algorithm, those unused tags are

totally disabled so that it could achieve more dynamic power reductions in the cache

tag array than some conventional proposals, which disabled only a part of high bits in

the unused tags.

Lastly, we present a reconfigurable cache memory to balance between high

CHAPTER 1 INTRODUCTION

 21

performance and low power consumption in different situations. In our cache

architecture, the total cache size is fixed. However, the degree of way associativity

and the refill-line size could be configured dynamically in run-time, depending on

different applications and system objectives. The selection of cache configurations is

based on a limit-bound on the cache performance or the power consumption. Using

this method, a collection of low-power and high performance in the cache could

probably be achieved for different program characteristics.

1.5 Organization of the Thesis

In this first chapter, we present the general background of low-power

microprocessor design methods. We then introduce low-power cache design methods,

give an overview of related works, as well as list the objectives of the research. The

remainder of this thesis is organized as follows.

In Chapter 2, memory hierarchies in typical computer systems and the elementary

cache architecture are introduced; the components in the cache memory are designed

and simulated for the evaluation of power consumptions. Based on the experimental

results, we analyzed the potentials of reducing the power consumption of the data

cells and of the tag array in a cache.

CHAPTER 1 INTRODUCTION

 22

In Chapter 3, we propose an algorithm to tune the Instruction-cache size in run-time

to reduce the leakage power consumption. To turn off a proper portion of

Instruction-cache memory, we predict the run-time program working set size during

compilation phase. The prediction algorithm is implemented by inserting five kinds of

cache scaling instructions (CSIs) into the original program object codes. To support

this algorithm, we use a gated-GND technology in hardware design to switch the

power supply for each cache-line. Furthermore, an extra arbiter is constructed to

record the system state and implement the power control algorithm. Lastly, the

experimental results are analyzed and compared with that in conventional cache

tuning algorithms.

In Chapter 4, we investigate an object-code reallocation method to reduce the power

dissipation in the instruction-cache while improving the system performance. The

goal of this method is to reduce the runtime program working-set size by reallocating

some typical instruction segments such as loops and subroutines in memory map. We

simulate the programs in the environment of SimpleScalar [102] to trace the sequence

of executed instructions and record the start addresses and the end addresses of all the

loops and subroutines, the iteration times of loops and the addresses where a

subroutine is invoked. The above information is called the program runtime profile

data, with which we reallocate some loops and subroutines in memory map and align

them with cache lines. Finally, we integrate the code reallocation method with our

CSIs algorithm, as well as evaluate the cache performance and the reduction of power

CHAPTER 1 INTRODUCTION

 23

consumption based on experiment results.

In Chapter 5, a software and hardware co-design method is studied to reduce the

unnecessary tag operations for low power consumption. In software design, we add

some special instructions to the application program object code during compilation

time to predict the necessity of runtime tag-operations. In hardware design, we

provide an extra component to disable or enable the tag operations to support our

software algorithm. Using a group of SPEC200 benchmarks, we simulated this design

method and evaluated the energy savings and performance loss with respect to the

simulation results.

In Chapter 6, we present a reconfigurable cache architecture, where both of the set

associativity and refill-line size have three choices. Such a cache has total nine

different configurations of architecture. This design aims to achieve both high

performance and low power consumption in the cache subsystem when running the

programs with a wide range of characteristics. The selection of an optimal cache type

for a specific program depends on certain criteria of balance between the power

consumption and system performance, for example, a cache miss rate bound. Finally,

the advantage of this reconfigurable cache is discussed based on experimental results.

In Chapter 7, the conclusions derived from the studies in this thesis are drawn.

CHAPTER 1 INTRODUCTION

 24

1.6 List of Papers from PH.D Work

• Zhu Xiaoping, Tay Teng Tiow, “A Compiler Controlled Instruction Cache

Architecture for an Embedded Low Power Microprocessor”, Proc. of IEEE the 5th
Intl. Conf. on Computer and Information Technology, 2005.

• Zhu Xiaoping, Tay Teng Tiow, “Codes Reallocation and Prediction for Power
Efficiency in I-Cache Memory”, Proc. of IEEE the 6th Intl. Conf. on ASIC, 2005.

• Tay Teng Tiow, Zhu Xiaoping, “A Runtime Auto Scalable Power-Efficient
Instruction-Cache Design”, Proc. of IEEE Intl. Symp. On Circuits and Systems,
2005.

• Zhu Xiaoping, Tay Teng Tiow, “Reducing Tag Activities for Power Efficiency in
I-Cache Memory”, Proc. of Intl. Conf. on Circuit, Communication and System
(ICCCAS’06), 2006.

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 25

CHAPTER 2

ELEMENTARY CACHE ARCHITECTRUE

AND POWRE CONSUMPTION

This chapter introduces memory hierarchies in typical computer systems, elementary

cache architecture and power simulation method.

2.1 Memory Hierarchies in a Computer System

In general, it is desirable that a processor has immediate and uninterrupted access to

memory, and the time required to transfer information between the processor and

memory should be such that the processor can operate at, or close to, its maximum speed.

Unfortunately, it is not cost effective to employ a single big block of high speed memory.

In fact, a computer system may contain many levels of memory to store the instructions

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 26

and data required for its operations. These hierarchies of memories have different units of

sizes, costs and speeds. Traditionally they can be divided into three main groups:

processor registers, primary memory, and secondary memory. A hierarchy of memory

system in a typical digital computer is shown in Fig. 2-1.

Fig. 2-1 The memory hierarchy in a computer system

Internal registers are not only high speed, but what makes them really expensive is

being highly ported. The amount of general registers is small (hundreds of bytes). The

primary memory is relatively larger (hundreds of thousands to millions of bytes) and less

expensive than the internal processor registers. It is used to store the active programs and

data during normal computer operation. The secondary memory is generally a lower-cost

and large-size extension of primary memory, in which programs and data files are held in

reserve and moved into primary memory as needed. The memories in different levels are

manufactured with different materials or technologies and have different characteristics.

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 27

In typical computer systems, the difference in access speed between internal processor

registers and primary memory is one order to two orders of magnitude. To narrow this

speed gap, the microprocessors can employ another type of memory called a cache. The

cache memory serves as an intermediate temporary storage unit that is logically

positioned between the processor registers and primary memory.

A cache memory can be positioned inside the microprocessor (on the same die) or exist

separately, as shown in Fig. 2-2. Sometimes both of these two types of caches are used

simultaneously in a computer system and are referred to by names such as level 1 cache

and level 2 cache. The cache can also be classified into instruction cache and data cache

according to what is stored in the cache.

(a)

(b)

Fig. 2-2 A cache positioned in the memory hierarchy:
(a) inside processor (b) outside processor

Although the cache has a high access speed, it is more expensive than the main memory

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 28

(primary and secondary memory). For tradeoff between low cost and high system

performance in a microprocessor, the capacity of internal processor caches normally

ranges from 2K to 128K bytes in the embedded domain. A cache memory is rather small

compared to main memory, but it should be large enough to keep those portions of

information that are most frequently needed and active.

Analyses of memory reference characteristics of programs have shown that typical

programs spend most of their execution times in a few main modules and tight loops

[116]. This property is known as the program locality principle and is a key consideration

in the design of cache memory scheme. The program locality can be divided into

temporal locality and spatial locality. Temporal locality means that in the near future, the

probability of referencing those data or instructions that have been referenced in the

recent past is high. Spatial locality means that in the near future, a program is more likely

to reference those data objects that have addresses close to the past reference. To reduce

the effective time required by a processor to access addresses, instructions or data, the

cache can be structured in various forms to improve system performance (such as a

higher reference hit rate) in different scenarios.

2.2 Elementary Cache Architecture

There are several kinds of cache architectures such as direct-mapped, set-associativity,

section-associativity and full associativity. Among these cache architectures, the direct-

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 29

mapped or set-associative caches are frequently used in real embedded microprocessors

(see Table 6-1). In section-associativity, a section of lines in the main memory can be

mapped to a certain number of cache lines sections in the fixed sequence. With the direct-

mapped cache architecture, the physical memory address is divided into three fields: a tag

field (the p higher-order bits), a line index field (r bits), and a word offset field (the least

significant n bits). When the CPU sends a physical memory address (p+r+n bits) to the

cache to read a datum, the line index field is transmitted to the decoder, causing the

content of the tag memory and the cache data memory to be transferred to their respective

buffers. If the tag so obtained matches the tag field of the memory address, the

comparator signifies “hit” and the reference to main memory is inhibited. The word field

is then used by a decoder/multiplexer to select the specific word desired in the line that is

in the cache data buffer. If there is a reference “miss”, main memory must be accessed to

obtain the information requested. While the CPU gets the datum, the cache receives a

copy and is updated by placing the line of information received in the data area and

placing the tag field in the tag area.

Fig. 2-3 shows a direct mapped cache architecture. Here the main memory and cache

are each divided into lines of 2n words. In addition to the data array, the cache has a tag

array consisting of 2r tags. Each tag identifies the address-range of the 2n words in the

corresponding refill line.

 In the direct mapping scheme, each main memory address maps to a unique cache line.

Since a cache can be mapped with 2p+n addresses in main memory, there are 2p main

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 30

Fig. 2-3 A direct-mapped cache with main memory

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 31

memory lines that are mapped to each cache line. When the consecutive data accesses are

going to different main memory lines that map to a same cache line, this situation is

mentioned as conflict miss and there will be a cache line replacement, making the cache

inefficient. In such a situation, a set associative cache can reduce the impact of this

drawback. In a 2k–way set associative cache, the 2r lines in main memory that are

mapped to a same cache line in direct-mapped scheme are now divided into 2k partitions,

each containing 2r-k lines. The physical memory address partitioning for this 2k–way set

associative mapping is shown in Fig. 2-4.

Fig. 2-4 Memory address partition for a 2k–way set associative cache

In this case, the main memory is divided into 2r-k sections, but each word in main

memory can reside in one of the 2k corresponding cache lines, known as a set, and the

line index field are also called the set index field. When k equals to r, it is called a fully

associative cache. Fig. 2-5 gives the structure of a two-way set-associative cache

architecture.

In the two-way set associative cache, both the two partitions of a cache line operate in

parallel. When the CPU issues an address to read a datum from cache, the tag field is

compared with those two tags selected by the line field synchronously. If there is a

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 32

reference hit, the datum is fetched from its associated line in the data area. However, if a

Fig. 2-5 The structure of a two-way set associative cache

miss is encountered, one of these two indexed lines is overwritten by the new data using a

certain replacement algorithm. Traditional line replacement policies least frequently used

(LFU), first in first out (FIFO), random replacement (RR) and least recent used (LRU).

Among these strategies, the LRU line-replacement algorithm is the most popular and is

reported to have high hit rate in cache memories where programs have large temporal

locality. To implement the line replacement algorithm and to indicate the valid data when

a cache line is flushed, a group of counters, registers, bit flags, etc. is needed in the cache

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 33

controller. For potential evaluation of the power reduction, the power consumption of

each component in the elementary cache architecture is estimated in the next section.

2.3 Power Estimation for the Components in Caches

2.3.1 Power Estimation Models

The power dissipation in CMOS circuits consists of dynamic power consumption and

leakage power consumption. The dynamic power consumption can be estimated using the

formula (2-1).

Pd = Ceff × f × Vdd
2 (2-1)

where Ceff represents the effective switched capacitance, Vdd is the supply voltage, and f

corresponds to the frequency of gate switch activities. The above model shows that, the

circuit dynamic power consumption is proportional to the load capacitance, frequency of

operation, and quadratic supply voltage.

Leakage power of a CMOS digital circuit can be estimated as follows:

Pleakage = Vdd × Ileakage (2-2)

 where Ileakage represents the total leakage current produced in the given internal state.

Here the total leakage current has two major components. One is the leakage current

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 34

flowing from the power supply to ground through the transistors, which are in ‘off-state’

due to subthreshold conduction. The other one is the leakage current of reversed biased

PN junctions associated with the source and drain of MOS transistors. The estimation of

the leakage current in a memory cell requires information on technology parameters,

circuit topology, temperature, power supply and memory state.

In the past few years, several models have been proposed to calculate the power

consumption of cache memories. Kamble and Ghose [52] developed an analytical model

to estimate cache energy dissipation based on SRAM cell and set associative

architectures. These require run time statistics of the cache activities such as hit/miss

counts, fraction of read/write requests, number of dirty victims and the information about

the cache organization such as tag width, line size and cache capacity, to derive the signal

transition counts in various cache components. However, the power estimation

inaccuracy using this model sometimes is as much as 30%. Moreover, this model only

accounts for dynamic power dissipation, which is probably not accurate enough for

upcoming smaller geometries in CMOS process, which has relatively large static power

consumption.

Another heuristic model for the estimation of power dissipation in each component in a

microprocessor including the cache is presented by Brooks et al. [92] and Joseph et al.

[93]. They use a hardware performance counters as proxies for power meters and

estimate the power–relevant events assuming that program behavior is fairly constant

with respect to the sampling intervals. Based on the circuit activity estimation and the

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 35

difference between the practical parameters and theoretic value, their computation result

of the power may have an error as large as 21% compared with the true value.

Shivakumar et al. [94] proposed an integrated model to estimate the cache access time,

instruction cycle time, power consumption and cache area. By integrating all these

models together users can have confidence that tradeoffs between time, power, and area

are all based on the same parameters and hence are mutually consistent. Besides the

impact of theoretic parameters, which are dependent on the CMOS technology and cache

configuration, this model also estimates the impact of sub-array organization, routine

structure, wire length and capacitance on the calculation of energy dissipation in each

component.

Other than the above methods of power estimation for the components in a cache

memory, here we simulate the operations of a cache memory in the environment of

Synopsys [95] and compile its power consumption. The advantage of this method is that,

this design tool could produce the real layout for circuits and take into account the

different input data. It is validated that the accuracy of power simulation using this

method is more than 85%. In the next section we will introduce our experiment process

and simulation results.

2.3.2 Experiment Method

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 36

To estimate the power consumption in cache memory, we designed the logic circuits for

each component in a cache. The components are then synthesized to Register Transfer

Level (RTL) and to gate level for the simulations of functional behaviors. During this

simulation period, we captured the circuit switching activities for power estimation with

input benchmarks using the Synopsys Design Compiler.

To capture the circuit switching activities in the Synopsys tool, we use the HDL

compiler to create a technology-independent design called a GTECH design. With the

information from the GTECH design, the HDL compiler creates a file called forward-

annotation in the RTL Switch Activity Interchange Format (SAIF). Fig. 2-6 shows the

experiment steps in gate-level simulation using the SAIF file.

Here we set the parameter, power_reserve_rtl_names, as true and create a RTL

forward-annotation SAIF file. The RTL forward-annotation file enables monitoring of the

switching activity of primary inputs and other synthesis-invariant elements of the design.

 For accuracy of power estimation, we annotated the switching activity again in the

back-annotation file onto a gate-level design (a technology-specific format) using the

input benchmarks. This methodology takes into account any hierarchical changes

between the GTECH design and the gate-level design. Fig. 2-7 shows the methodology

process using RTL simulation and circuit SAIF Files.

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 37

Fig. 2-6 Using SAIF files during gate-level simulation

We here use the VHDL System Simulator (VSS) SAIF interface to monitor the signals

in circuit and output a backward-annotation SAIF file. Then we input this file together

with the CMOS technology library and gate-level circuit net-list to the power compiler to

estimate the circuit power consumption, as shown in Fig. 2-8. Finally we use the power

compiler to output the report of power consumption of the circuit with some constraints

on timing and area requirement.

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 38

Fig. 2-7 RTL simulation and SAIF files methodoology

Fig. 2-8 Information input to power compiler

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 39

After going through the above experiment process, we can get the power consumption

of each component in the cache memory. In the next section we present the power

simulation results of the cache components that are designed in our experiment.

2.3.3 Power Simulation Results and Potential of Power Reductions in

Cache

In a power simulation experiment, we configured the cache system using the

parameters as listed in Table 2-1. Here a 4-way set associative 1K cache is designed using

a CMOS technology of 0.35µm with power supply of 3.3V, a clock frequency of 100MHz,

8-bit data bus and 16-bit address bus.

Table 2-1 Cache configurations

Parameter Value

CMOS technology 0.35µm

Supply voltage 3.3V

Clock frequency 100MHz

Cache type 4-Way associative

Cache size 16×64 Bytes

Address bus width 16-bit

Data bus width 8-bit

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 40

With the input of general object code files, we estimated the average power

consumption of each component in the cache using the experiment method as described

in Section 2.3.2. Table 2-2 shows the power simulation results of tag, LRU counter (used

to implement the LRU line replacement algorithm) and data cells in a refill-line when

they are in different operation modes.

Table 2-2 Power consumption of cache components

Component Average power (µW)

Tag (in operation) 69.2

LRU counter 27.7

Standby 32.8

Read 2169 Data cells in
a refill line

Write 5564

With the above cache configuration, the dynamic power consumed by the LRU counter

and tag are 27.7µW and 69.2µW respectively, which is overwhelmed by the dynamic

power consumed by the data cells in a refill line. If the clock frequency increases or the

tag length increases, the dynamic power consumption of the tag will increase. The power

consumption of LRU counters that implement line replacement algorithm is dependent on

the clock frequency, set-associativity and characteristics of the object codes.

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 41

The leakage power consumption of the data cells of a refill line is 32µW that is

compiled by the Synopsys without gate activities. It is shown that the dynamic power

dissipation of the data cells in a refill line is 2169µW when it is read, which is about 66

times of the leakage power consumption of a refill line when it is in standby. A refill line

consumes power of 5564µW only when it is updating the data because of a cache miss. In

each instruction cycle, there is only one refill line consuming the dynamic power and the

rest of the refill lines are in standby mode. However, the static power dissipation of the

whole data array in the cache is proportional to the total number of refill lines, as

described in Chapter 1. Therefore, the leakage power dissipation of the data array may

exceed its dynamic power consumption in a big cache. For example, if we increase the

number of cache lines in the above cache architecture to 256 with a total 16K cache size,

the static power dissipation of the data array would be 8396.8µW, which is more than the

dynamic power consumption of a refill line.

2.4 Summary

In this chapter, we introduced the memory hierarchies in typical computer systems, the

elementary cache architectures, the power simulation method and the experimental

results.

The cache bridges the speed gap between the microprocessor and the off-chip main

memories. A cache can be configured differently by selecting the different line sizes,

CHAPTER 2 ELEMENTARY CACHE ARCHITECTRUE AND POWRE CONSUMPTION

 42

number of cache lines, degree of way associativity and line replacement algorithms.

Although the power consumption of a cache or each component in the cache system

could be estimated using some traditional models, the accuracy of their power

estimations may not be high enough. Here we adopt an experimental method in the

environment of Synopsys to compile the cache power consumption based on gate-level

simulation. Using this experiment method, we could estimate the power consumption of

the components in different kind of cache architectures with different inputs. Furthermore,

we could also design and simulate other circuits or components, such as a power

controller, and evaluate the power consumed by them.

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 43

CHAPTER 3

RESIZE THE INSTRUCTION-CACHE

IN RUNTIME TO REDUCE LEAKAGE

POWER DISSIPATION

This chapter presents an algorithm to tune the Instruction-cache size in run-time to

reduce leakage power consumption. In this algorithm, we insert cache scaling

instructions (CSIs) into original program object code during compilation time to predict

the runtime program working set size. To support this algorithm, we utilize a gated-

GND technology in the hardware design to switch on or off the power supply for each

cache-line. Furthermore, we construct an additional power controller, called arbiter, in

the resizable I-cache to monitor the system state and implement the power control

algorithm. The experimental results showed that our proposal could reduce a significant

percentage of energy dissipation in the I-cache with negligible performance loss.

3.1 Introduction

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 44

In a chip manufactured using a long-channel CMOS process technology (e.g. 0.8µm or

longer), the static power consumption is negligible and the dynamic power consumption

is the dominant component in the total power dissipation. As described in Chapter 1, with

the development of deep sub-micron technology (e.g. 95nm or shorter), the chip

integration becomes greater, and this gives rise to the possibility that the static power

consumption becomes the major fraction in the total chip power dissipation.

Among all the components in a high-performance processor (for example, StrongARM

110 and Power PC, as shown in Fig. 1-2), cache memory occupies a significant fraction

of total die area and consumes a big percentage of power [51,52]. It was also estimated

that the static power consumption accounts for 30% of L1 cache power and 80% of L2

cache power in a 0.13um processor [83]. Therefore, design for reducing the leakage

power in large cache memories has been attracting more and more interest from

researchers and developers.

Generally, microprocessors are designed to provide good average performance over a

variety of applications. However, the actual cache utilization varies widely both within

and across programs. This may lead to an inefficient balance between power consumption

and system performance for individual programs and individual phases in the same

program. To manage performance and power issues collectively in the cache subsystem,

some mechanisms, such as DRI cache [83], LRU decay cache [84] and AMC cache [85],

have been proposed to tune the cache size during run time. These approaches allow

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 45

turning off certain blocks of cache lines dynamically to reduce static power dissipation by

making predictions based on past usage of the cache or a preset decay period. However,

this strategy may not track working set size very well since the past usage may not be

representative of future situations, and the optimal period of decay time is not uniform

across general programs. The Drowsy Cache [86] made some improvement by using a

shorter state transition time, but it still adopted an LRU decay algorithm, where a longer

decay time means a smaller performance loss, but also a smaller saving in energy. The

balance between performance and power in this algorithm is dependent on the line decay

interval, which is set by the designer. W. Zhang et al. combined the line decay and

compiler-directed prediction to save leakage power in I-cache [90], but they only focused

on predicting the end of each loop and then turning off the entire cache at the end of each

loop without considering the relationship between loop-length, cache size and

subroutines that are invoked repeatedly.

To further reduce power consumption in I-cache memory, we propose an algorithm to

predict the working set size of loops and subroutine invocations more accurately during

runtime using cache scaling instructions (CSIs). The CSIs are inserted into the object

code during the compilation phase. Based on these CSIs, we turn off an appropriate

portion of unused cache lines with a gated-Vdd [96] technique. A small overhead of

power dissipation and performance degradation is incurred when fetching and decoding

the CSIs, reloading instructions when re-accessing the lines which have been turned off,

and switching the power supply for cache lines. However, our experimental results

showed that this algorithm could reduce a high percentage of energy consumed by the I-

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 46

cache.

The remainder of this chapter is organized as follows. In Section 3.2, we present the

resizable cache architecture, the Gated-Vdd/GND Technology and our cache scaling

algorithm. In Section 3.3, we describe the characteristics of program locality, the CSIs

insertion algorithm and power control mechanism. In Section 3.4, we evaluate the power

reduction and performance degradation in resizable caches when using the CSIs and LRU

decay algorithms. In Section 3.5, we give a summary.

3.2 Hardware Implementation and Cache Scaling Algorithm

3.2.1 Resizable Cache Architecture

Fig. 3-1 shows the hardware architecture of the resizable cache system. It contains the

basic components in the traditional cache system such as data array (N lines with L bytes

per line), content addressable memory that comprises of N tag entries, a set of counters

that implements the refill-line replacement algorithm, and some other logic circuits that

implement the memory access operation. Besides these components, we added an

additional hardware component, called arbiter, in the size-scalable instruction-cache. The

arbiter interfaces between the CPU core and the cache lines to implement the cache size

scaling algorithm.

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 47

word
1

word
2

Refill line
1

word
L

word
1

word
2

Refill line
N word L

tag
1 X1

tag
N XN

counter
1

Carry
1

counter
N

Carry
N

Vcc

Vcc1

Vcc N

OR

Arbiter
(registers,counters,
comparators,shifts)

hit/miss

ROM
controller

ROM

CPU
core

ready 1

ready N

address bus
data bus

contr lines
handshake

Fig. 3-1 System architecture of the resizable I-cache memory

In essential, the cache size scaling algorithm is a power control algorithm, where those

unused cache lines are powered off to save leakage power consumption. This algorithm is

realized via both software and hardware designs. Based on the program object code

analysis, we predict the runtime working set size and encode this information in certain

cache scaling instructions (CSIs) that are added to the original program object codes

during the compilation phase. When the CSIs are executed in runtime, the arbiter will

interpret the data in the CSIs with the current cache system state. Subsequently, the

arbiter decides to scale the cache size and to turns on or off the power supply for certain

cache lines.

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 48

3.2.2 Gated-Vdd/GND Technique

To control the power supply in each cache line individually, we use the gated-

Vdd/GND technique [96]. In this technique, the power supplied to each line is separately

controllable and is gated using one or two switch transistors that enable the system to

effectively eliminate the dynamic power consumption and the leakage in the unused

cache lines. Fig. 3-2 shows an example of a SRAM cell with a MOS gated-Vdd/GND

technique. Here the single cell can be extended to a whole cache line. The Gated-Vdd

refers to the technique that adds an extra PMOS transistor between the supply voltage and

a cache line. The Gated-GND is one where a NMOS is added between the cache line and

Ground. The extra PMOS or NMOS transistors are turned on in the active cache lines and

turned off in the unused cache lines. Thus the supply voltage or current in the unused

cache lines is gated and virtual.

Fig. 3-2 A RAM cell with MOS gated-Vdd/GND technique

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 49

When the Gated-Vdd/GND transistors in the unused cache lines are turned off, they

produces the stacking effect in conjunction with the memory cell transistors, which could

effectively eliminate the leakage power consumption in these cache lines by virtually

turning off the power supply [96,97]. However, using the PMOS and/or NMOS

transistors to control the power supply presents a trade-off among leakage reduction, area

overhead, and impact on cache performance (power-up delay and active speed).

Since a power-control transistor is shared by a whole cache line, this transistor needs to

be sufficiently wide to sustain the total current that drawn by an entire cache line. In the

power control technology, we can use a PMOS or a NMOS. The advantage of using a

PMOS gated-Vdd transistor in each line is that the PMOS transistor requires less width,

meaning a small area overhead, than the NMOS transistor. Moreover, a PMOS transistor

incurs less access delay than an NMOS. The disadvantage of using a PMOS transistor is

that it achieves lesser leakage reduction than using a NMOS transistor here. It is shown in

[96] that, using a 0.18µm channel length and a low threshold voltage (0.2V) with a line

size of 32 bytes, the PMOS gated-Vdd could reduce 86% of leakage power with

negligible performance impact and area increase. On the other hand, the NMOS gated-

GND could save 97% of leakage power dissipation in the unused RAM cells with 5% of

the area overhead in the refill line and 8% delay of the read time. It is indicated in [94]

that reading data onto bitlines is only 6% of the total data access time. Because the

majority of the access time is in decoding the address (40%) and activating the wordline

(30%), the impact of NMOS gated-Vdd on the active line access speed is not significant

(here about 0.48%). Since the consideration of area overhead is less important than that

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 50

of the leakage reduction in our algorithm, in this case we use the NMOS transistor to

switch power supply for cache lines.

3.2.3 Cache Scaling Algorithm

The circuit to switch on and off a cache line is logically simple. The complexity lies in

the algorithm to decide which line is used or not used and when to switch on or off the

power supply to it. When certain cache lines are selected to turn off, the data stored in

these lines should be unused for a sufficiently long period of time so that the leakage

energy saved by the cache scaling method would exceed the energy consumed by the

arbiter and the associated circuits needed to turn on and off the cache lines. In the mean

time, system performance may also degrade because of the delay incurred by switching

on the power supply for cache lines in runtime and reloading those refill lines that have

been turned off but are re-accessed. For the balance between power reduction and

performance loss in the resizable cache design, some interesting ideas have been

proposed in recent years.

To guarantee system performance, conventional size scalable cache memories such as

DRI cache [83], LRU decay [84], AMC cache [85] and Drowsy Cache [86], set a limited

range for reference miss-rate and somewhat operates as an auto control system. If the real

miss rate is lower than a tolerable lower-bound, a number of cache lines will be put in the

sleep-mode to reduce power consumption. On the contrary, if the detected miss rate is

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 51

higher than the upper-bound, a block of cache currently in sleep-mode will be turned on

to improve system performance. In such a mechanism, the system must monitor the real

miss rate in runtime and compare it with the expected miss rate bounds. As a result, the

number of disabled cache lines is dependent on the detected cache miss rate and the

preset miss rate bound. This also determines the potential reduction of cache power

consumption. In fact, the ideal range of miss rate bound that determines the tradeoff

between cache performance and power consumption may vary widely in different

programs and phases. Moreover, the real miss rate detected in the past phase may not be

representative in the future time phase, so that the prediction of working set size based on

such preset miss rate bounds is not sufficiently accurate. Therefore, this approach may

achieve certain percentage of power savings but may not be optimum across different

applications.

Another power control scheme via cache size scaling is LRU decay. In this algorithm, a

block of cache memory is switched on when a reference miss occurs and is switched off

if it has not been referenced for a period of time. The tuned cache granularity and decay

period may be adjusted for the balance between low power and high performance in

different cache systems. However, a critical parameter used in the LRU line decay

algorithm to turn off each line is an interval of decay time that could be tuned

automatically in run-time, rather than be set. A manually preset uniform decay period

may not track the working set size very well in general programs because the optimal

period of decay time for individual applications is different. The traditional LRU decay

algorithm uses a unique time period to turn off cache lines. If this time interval is short,

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 52

the overhead of dynamic power and delay is significant because the cache miss rate will

increase when the LRU decay period decreases. Whenever a cache miss occurs, it brings

the cost of delay and power consumption for reloading instructions in the lines that are

accessed but have been turned off previously. If we use a longer decay time, we will get a

smaller cache performance loss and a corresponding smaller energy reduction. Therefore,

the tradeoff between high performance and low power consumption in the scalable cache

is dependent on the LRU decay interval that is set by the designer.

W. Zhang et al. combined the line decay algorithm and compiler-directed prediction to

reduce leakage power [90], but they only focused on the prediction of the end of each

loop and turned off the whole cache at the end of the loop. However, they ignored the

length of each loop and the relationship between it and the cache/line size. Moreover,

their algorithm did not consider the characteristics of subroutine invocations. Therefore,

the energy savings in their algorithm is conservative, and in some situations (for example,

if a short loop contains many smaller loops), the overhead of dynamic power and

execution time that results from increased miss rate and the execution of the added cache-

tuning instructions may be intolerable.

In substance, the extent of optimization to balance between power and performance in

size-scalable caches is determined by the program working sets prediction at the

algorithm level. To further reduce the leakage power consumption in I-cache with lower

cost of performance, we propose an algorithm to predict the runtime working set size of

loops and subroutine invocations more accurately using a few cache scaling instructions

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 53

(CSIs). In the next section, we will describe the characteristics of program locality and

the CSIs insertion algorithm. We then describe the power control mechanism in our cache

system using the CSIs in different scenarios.

3.3 Characteristics of Program Locality and the CSIs Insertion

Algorithm

An application program may be written using whatever advanced languages such as

C/C++, Basic and Java. Although the programs have various structures and functions and

are optimized by different compilers, they are ultimately translated to the binary object

code with the instruction set architecture (ISA) of the microprocessor. Since the object

codes are mapped to addresses in memory, it could be more accurate and easier to trace

the program characteristics and runtime working sets at the program object code level

than at a higher level, which is before compiler optimization. Hence we use the object

code as input to analyze the program working sets. It is equivalent to adding a program

analyzer to the original compiler after its last step. In this last step, the output object code

is analyzed and CSIs are inserted as appropriate. Fig. 3-3 shows the flow chart of the

process steps in a compiler.

The input of a compiler is the application program that is written using high-level

languages. The instruction statements with continuous character strings are separated into

distinctive tokens by the scanner. The output of the scanner gives the input to the parser

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 54

Fig. 3-3 Flow chart of the compiler processes

that groups tokens into sentences and determines if the grammar is correctly used as

defined by the language. Then it builds an abstract syntax tree (AST) for the program to

represent the instruction segment structure. Optimizations may be needed for the original

AST to suit machine architecture and produce faster and effective object code. Thereafter

a reduced AST is generated by the parser and it is translated to object code. Here in our

proposal, an extra code analyzer is added to the original compiler to predict the program

working sets and insert CSIs to control the cache size during runtime. The final output of

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 55

object code would direct the power controller to operate at the resizable cache memory.

3.3.1 Instruction Segment Characteristics

For all programs, we classify the instruction segments into three types: sequence, loop

and subroutine invocation. When the instructions are executed in the order of increasing

address, including forward jumps, it is defined as sequence. If the next instruction in

execution is located before the current executed instruction in memory address map, it is

regarded as the end of a loop. For subroutines and functions, they can be invoked by a

loop, a subroutine or an independent instruction. The loops may also be inside a

subroutine and they may in turn be nested. Fig. 3-4 gives an example of an instructions

flow chart in terms of the proper nodes. A node here represents a block of sequential

instructions without branches and is defined as a basic block. The analyzer in a compiler

extracts all the basic blocks in an application program, calculates the length of all basic

blocks and records the relationship among them. With this features, the analyzer inserts

some CSIs to the object code according to working set size prediction algorithms, which

is described as follows.

3.3.2 CSI Insertion Algorithm

In our size scalable I-cache memory, the number of refill-lines N and the refill-line size

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 56

Fig. 3-4 Node flow chart of an instruction segment

(number of bytes per line) L are used to indicate the working set size. A program working

set is defined as a number of program segments or instructions that would be stored in I-

cache for execution within a period of time window. Since sequential instructions in a

cache will not be accessed again in the near future after they are executed, it is therefore

not useful to cache the sequential instruction blocks. On the other hand, loops and

subroutines will be executed repeatedly. Therefore, it is useful to cache such program

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 57

segments to improve system performance. For loops and subroutines that are accessed

frequently, we propose to insert cache scaling instructions (CSIs) during compilation time

to the object code to predict their working sets, and then to tune the cache size in runtime

with the tradeoff between power reduction in cache and system performance loss. The

CSIs insertion algorithms for these scenarios are described as follows.

In the CSIs insertion algorithm, we consider two situations: loops and subroutines. For

a loop, we let m represent the length of the loop in terms of cache refill-lines, including

the length of subroutines (if any) invoked within this loop. If 1≤m≤wN, where the factor

w≥1, such a loop is defined as a small loop. Before the body of a small loop, a CSI 1 will

be inserted into the original program object code to indicate that more lines of cache are

needed to load the loop from the off-chip memory. Therefore, after a CSI 1 is executed, a

new cache line will be switched on to load instructions once a cache reference-miss

happens. If all lines in the cache-set are already used at this point of time, a line

replacement algorithm (LRU) will be applied.

At the end of small loop, a CSI 2 is added to indicate that the cache lines holding the

small loop can be turned off to save power. To maintain the system performance, the

cache line that holds this CSI 2 is not turned off immediately after the CSI 2 is executed.

This is to ensure that the instructions following the CSI 2 instruction that are in the same

cache line are executed before power to the cache line is turned off. Once a loop is

denoted with CSIs, its inner (smaller) loops will not be further denoted to avoid

redundancy. Thus in a loop nest, only the largest loop that has a length within the limit

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 58

bounds (1≤m≤wN) will be denoted by a pair of CSIs. Compared with the algorithm

proposed in [90], our algorithm has a smaller power consumption overhead and also

suffers lesser performance degradation that result from the increased codes. The

equivalent syntax of the modified program of this loop is expressed as follows:

CSI (start of loop);…..……1

{body of the small loop};

CSI (end of loop);…………2

If the length of a loop is greater than wN, it is defined as a big loop. When we set the

parameter w greater than 1, the length of a big loop is greater than the cache size. During

the execution of such a big loop, the entire cache would be kept power on. In this case, to

predict the working set of a big loop is less meaningful than a small loop for cache size

scaling, therefore, no CSI is added for a big loop.

For subroutine invocations, the compiler records the length of all subroutines (in

number of lines p) and the locations (addresses) of invoking-nodes. Since a recursive

subroutine invocation does not affect the working set size at run-time, CSIs are not

needed in such a scenario. If a subroutine is longer than the size of the whole cache, the

invocations for this subroutine will not be denoted. Otherwise, a pair of CSIs will be

added at the start and the end of these subroutine invoking-nodes based on the following

conditions. For instance, if a subroutine S is invoked by K nodes, the compiler will record

information of these nodes with a group of data-structures Rk (k=0,1,…,K-1). Since Rk

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 59

are created in the addressing order, the memory mapping address of node i, addri , is

lesser than that of node i+1, addri+1 , where 0≤ i <K-1. The distance in terms of the

number of cache lines between the node i and i+1 is calculated using the formula:

di=addri+1 /L - addri /L + ∑
+∈)1,(iij

n , (0 ≤ i < K-1)

where ∑
+∈)1,(iij

n is sum of the length of all other subroutines invoked between addri

and addri+1 .

We use di to classify the length between two different neighboring invocations for a same

subroutine. If di ≤wN, a pair of CSIs (3,4) are added for node i with syntax as follows:

 CSI (invoking, subroutine S); …………..…3

 invoking-node i for subroutine S;

 CSI (end of invocation, subroutine S); ……4

After the execution of a CSI 3, if a cache reference miss occurs, a new cache line will

be turned on to load instruction codes from main memory. In the event that all lines in the

cache-set are used, an LRU replacement algorithm will be applied. When a CSI 4 is

executed, an LRU decay algorithm (see section 1.3.1) will be applied to those cache lines

that hold the subroutine S. The power control mechanism in this situation will be detailed

in the next section.

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 60

If di >wN and di-1 ≤wN, the program locality between nodes i and i+1 is more loosely-

coupled than that between nodes i and i-1. As a result, a pair of CSIs (3,5) is added for the

node i as follows:

CSI (invoking, subroutine S); ………3

 invoking-node i for subroutine S;

CSI (clear subroutine S); …………...5

When a CSI 5 is encountered, those cache lines holding the subroutine S are turned off

immediately.

If di >wN and di-1 >wN, (1≤ i < K, set dK-1 >N), the invocation-node i does not show

closely-coupled locality with other invocation nodes. It is therefore regarded as a

sequential instruction block in the program and no CSI is added for such a invocation

node. In addition, if d0 >wN, invocation-node 0 is not denoted with CSI.

It is a fact that the lesser number of CSIs we added to the original object codes, the

lesser would be the cost of power and performance we need to pay for fetching and

decoding these CSIs. From this perspective, if a pair of CSIs (3,5) for subroutine A are

inside another pair of CSIs (3,4) for subroutine B, the inner CSIs (3,5) would be

eliminated. Because the subroutine A is invoked by the subroutine B, the cache lines that

hold the subroutine A may not be closed until the execution of subroutine B is completed,

that is, the second CSI 3 here is redundant and the CSI 4 could cover the CSI 5. Similarly,

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 61

if a pair of CSIs (3,5) is inside another pair of CSIs (3,5) or (1,2), the inner pair of CSIs

(3,5) would be removed to avoid redundancy because the information of closing

instruction blocks between the inner CSIs (3,5) is implicated in the CSIs (1,2) or the outer

CSIs (3,5). If a pair of CSIs (1,2) is inside of CSIs (3,4), the CSIs (1,2) are ignored as

well.

3.3.3 Power Control Mechanism

We classify the layouts of the program into three types: loop, subroutine and sequence

(see Section 3.3.1). A loop is such a program segment that is repeatedly executed in

runtime. We denote a small loop using a pair of CSIs (1,2) in our algorithm. A subroutine

is a portion of code within a larger program that performs specific task and is relatively

independent of the remaining code, but is invoked by other codes. We denoted a

subroutine using a pair of CSIs (3,4) or (3,5). A sequence is a block of instructions that

are sequentially executed in runtime. If the instructions are outside of loops or

subroutines, they are regarded as a sequence in our CSIs algorithm. In the following, we

describe the power control mechanism in our scalable I-cache .

 After execution of a CSI 1, a special flag bit in the arbiter will be set to indicate that a

new cache line would be powered on once a cache miss happens. At the circuit level,

each cache line that is occupied by the small loop can be indicated by a loop-bit flag.

If a CSI 2 is encountered, these loop-bit flags are cleared. In the mean time, an LRU

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 62

decay algorithm will be applied to the current accessed line that holds the CSI 2, and the

other lines that hold the small loop are switched off.

If a CSI 3 is encountered, a flag will be set to indicate the start of a subroutine

invocation. At the same time, a subroutine identity is written to a special register to

indicate those cache lines that holds this subroutine. The CSI 4 triggers the LRU decay

algorithm for those cache lines that stores the corresponding subroutine. The LRU decay

algorithm is implemented using a set of counters, each of which is attached to one cache

line. A counter is increased by one when a number of clock cycles elapse. It is reset on a

reference hit in its corresponding line. Once a counter overflows implying the predefined

time interval has elapsed, the line monitored by the counter will be powered off. The

decay interval may be adjusted by auto loading a number greater than zero when a line hit

is encountered. Such auto-loaded values may be programmed in software or hardware.

For example, it can be decreased if there are j reference misses happened, and it can be

increased if there is no misses for k consecutive instruction fetches. Parameters j and k in

this case is an indication of the miss rate and is used to control the rate of adaptation of

the decay interval. The range and bound of ideal or tolerable miss rate can be imposed to

ensure system stability and performance. Once a CSI 5 is executed, all the lines that hold

the related subroutine are turned off immediately.

In conventional designs, before an instruction is fetched, a flag bit is checked to

determine whether the microprocessor would go into an interrupt cycle or an instruction

cycle. A bit indicator R in CPU core is set to “1” for an interrupt cycle and “0” for an

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 63

instruction cycle. In our mechanism, a counter (COUNT_INT) in arbiter will increase by

one whenever R turns from “0” to “1” and decrease by one when an instruction RTI is

decoded. The RTI instruction indicates the end of an interrupt service routine.

During the period that the counter COUNT_INT holds a number greater than zero, the

cache lines fetched to cache contain the instructions that are from interrupt service

subroutines. In this situation, an LRU replacement algorithm is used for these cache lines.

Therefore, when a cache reference miss occurs, the bit I that is attached to the renewed

cache line is powered on to indicate that the line is used by an interrupt service subroutine.

For those lines with valid bit I, the power control algorithm is LRU decayed. The

counters implementing the LRU decay algorithm is only powered on when their

corresponding indicators Is are valid. If there is a reference hit on a line with a valid bit I,

its corresponding counter will be reset. Once a counter overflows, the corresponding line

including the tag, attached counters and indicator registers will be powered off together.

In our cache memory, line replacement is implemented using the LRU algorithm. It

consists of a set of LRU counters, each of which is attached to one cache line. Initially

these counters are set to zero. Whenever there is a cache reference miss, the cache line

with the greatest number in its counter among the accessed set- lines will be replaced. In

the mean time, the LRU counter in the newly replaced cache line will be cleared to zero

and the other valid counters in the same cache set will be increased by one. If there is a

hit on a cache line, the value in its related counter will be copied to a comparator and this

counter will be cleared to zero. For those counters that hold a greater value than that in

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 64

the comparator register, their original values would be kept unchanged. For those

counters that hold a smaller value than that in the comparator register, they would be

increased by one. Thus the values that are kept in all valid LRU counters in the same

cache set form the order of all valid cache lines in this set according to the LRU

algorithm. An LRU counter that holds the smallest value indicates that its related line is

the most recently used line. For the LRU replacement algorithm, the line with the greatest

value in its LRU counter is least recently used and will be selected to load a new line of

instructions when a cache reference miss occurs. This counter is subsequently cleared to

zero and the counters in other lines within the same set will increase by one.

3.4 Evaluation of Power Consumption and Performance in the

Size-Scalable I-cache

In this section, we discuss the tradeoff between the power consumption and

performance degradation in resizable caches using LRU decay algorithm as well as our

CSIs algorithm. We then evaluate the advantages of the CSIs algorithm based on

experimental results.

3.4.1 Tradeoff Between the Power and Performance in LRU Decay

Algorithm

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 65

In the conventional LRU line-decay algorithm, a block of cache memory is switched on

when a reference miss occurs and is switched off if it has not been referenced for a period

of time. The tuned granularity and decay period may be adjusted for a balance between

power and performance in different cache systems. However, there always exists a trend

where the turn-off ratio of the cache will increase when the decay time interval decreases,

but at the same time the cache reference miss-rate increases. We simulated this algorithm

using a group of popular Windows-based applications in a 32K direct-mapped I-cache

environment. The increased miss rate with LRU line decay period is show in Fig. 3-5.

When we use an LRU decay time of 16K instruction cycles, the increased miss-rate in the

scalable cache is about 1.8% on average; while it is only 0.4% if we use a decay time of

64K instruction cycles.

0

0.5

1

1.5

2

2.5

net transport

msmsgs

acdsee

Fig. 3-5 Increased miss rate of three applications in a 32K cache system using LRU
line decay algorithm

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 66

Typically, a long decay time would be adopted for small performance degradation in the

resizable cache. On the contrary, some users prefer a shorter LRU decay time to achieve a

larger power reduction. However, a shorter LRU decay time will give rise to a higher

cache miss rate that leads to a decrease in system performance. Furthermore, re-loading

the closed cache lines will result in an increase in dynamic power consumption.

Consequently, the trade-off between low power and high performance is dependent on the

preset control parameters (miss rate bound, length of detecting phase, decay time interval,

etc.).

For dynamically resizable cache memory structures, a common idea is to track the

program working set size and turn off those unused resources. Fig. 3-6 shows the

relationship between the time window length and working set size. The cache size scaling

mechanism in conventional memory systems are typically adaptive control systems, in

which some feedback parameters (e.g. miss rate) are measured in run-time. Based on the

Time window length

W
orking set size

Fig. 3-6 Working set size VS time window length

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 67

feedback parameters and certain scaling algorithm, the size-tuning decisions will be made

in scalable caches.

3.4.2 Working Set Size and Phase Transition Model

Although the memory granularity as well as the time window size in the tuning

algorithms may be different among scalable cache systems, they all estimate the current

cache usage to predict the working set size for future time phases. The phase transition

model of working sets states that programs follow a series of steady phases with rather

abrupt transitions in between. A phase is defined as a maximal interval during which the

working set size remains more or less constant. Fig. 3-7 indicates the model of tracking

the working set size using different algorithms. Here the working set size is represented

by the number of active cache lines, and the ti (i=0, 1,2, …) stands for the time when the

working set reaches a relative steady phase or begins to change to another size.

The time period of a phase (e.g. t4-t3) and the phase transition interval (e.g. t3-t2) vary

among different applications and different time windows. For an LRU decay algorithm,

some predefined limitation-parameters such as miss rate bound or decay interval may

prevent cache lines thrashing, a case of rapid switching on and off the same cache lines.

However, the transitions between working sets generally bring an over-shoot in tracking

the working set size using LRU decay algorithm, due mainly to a tuning-lag. It is

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 68

indicated by the solid line in Fig. 3-7. In the CSIs algorithm, the working sets can be

tracked more closely compared with that in the LRU decay algorithm, as is indicated by

the dashed line in Fig. 3-7.

Time

N
o

of
pa

ge
s

Tr
an

si
tio

n
be

tw
ee

n
w

or
ki

n g
 se

ts

Tr
an

si
tio

n
be

tw
ee

n
w

or
ki

n g
 se

ts

Tr
an

si
tio

n
be

tw
ee

n
w

or
ki

n g
 se

ts

Fi
rs

t
W

or
ki

ng

Se
t

Se
co

nd
 W

or
ki

ng

Se
t

Fo
ur

th
 W

or
ki

ng

Se
t

Th
ird

 W
or

ki
ng

Se

t

Fig. 3-7 Phase transition model of working set with time

We simulated the real time working sets of some benchmarks in a 32k I-cache using

both the two cache-scaling methods. Fig. 3-8 shows the number of active cache lines in

the y-axes and time in the x-axes when the image-viewing program “AcdSee” runs in a

512×64 cache using different size scaling algorithms.

The CSIs algorithm initially keeps the cache memory size at one line until a CSI is

executed or an interrupt service routine is executed. For the sequential program segments,

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 69

our policy does not deteriorate system performance while reducing the working set size.

It also consumes lesser power compared with using only the LRU decay algorithm to turn

off the cache lines. At the end of a loop or an invoked sub-routine, the CSIs prediction

can accurately and timely switch off those lines that will not be required in the next time

phase. It is shown that, using the CSIs algorithm a higher turn-off ratio of cache lines is

achieved compared with using an LRU decay algorithm only. Here the turn-off ratio is

defined as the ratio of the number of cache lines that are turned-off to the total number of

lines in the cache. As described in chapter 1, the leakage power consumption of a cache

memory is proportional to the cache size. Therefore, we could reduce more leakage

power consumption in cache memories by achieving a higher turn-off ratio.

0

100

200

300

400

500

600

LRU with typical decay time

LRU with shorter decay time

LRU with MSIs

N
um

be
r o

f a
ct

iv
e

lin
es

t0 t1 t2 t3 t4 t5 Time

CSIs

Fig. 3-8 Number of active lines in a 512x64B cache with time for program “Acdsee”

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 70

3.4.3 Evaluation of Power Reduction and Performance Loss in Scalable

I-Caches

To analyze the power reduction of the CSIs controlled caches, we designed an I-cache

system in the environment of Synopsys. The parameters of system configuration and the

power simulation result of each component are shown in Table 3-1.

Table 3-1 Cache system configurations and power consumptions

Parameter Value

CMOS process technology 0.35µm

Supply voltage 3.3V

Clock frequency 100MHz

Data bus 8-bit

Address bus 20-bit

Cache type 32K 2-way

Refill line size 64 Bytes

Total line number 512

Cache latency 1 cycle

Miss penalty 8 cycles

Power of a tag in working 90.89µW

Power of counter in a line 19.43µW

Leakage per line 34.6µW

Dynamic power when reading 2305µW

Dynamic power when writing 5681µW

Power of the arbiter 578.3µW

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 71

When we use the CSIs algorithm to turn off a certain portion of the cache lines, we

could reduce a corresponding percentage of leakage power consumption in these lines.

At the same time, we would consider the overhead of power consumed by the arbiter, by

the execution of CSIs code and by reloading some data due to an increment of cache miss

rate. If the cache turn-off ratio is high enough, the reduced leakage power will probably

be sufficient to offset the overhead of power consumption that is implicated in the cache

tuning algorithm.

It is shown that the added arbiter component in the cache (Table 3-1) consumes

578.3uW. This power consumption is less than 2.5% of the total power in the 32K cache.

The increased percentage of object code size and cache miss rate could also be estimated

when a program benchmark is given. Furthermore, in this case the execution time of a

program becomes a little longer due to a delay brought by the increased miss rate, the

execution of CSIs and the state transition when switching on the power of a new line.

Hence the system performance is degraded in terms of a decrease in IPC (instruction per

cycle).

To comprehensively evaluate the energy savings and system performance in the CSIs

algorithm, we apply a group of Windows-based general application programs to the

scalable cache to estimate the turn-off ratio and the increased miss rate. The results are

shown in Table 3-2, where the parameter w (see section 3.3.2) in CSIs algorithm is set to

1.

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 72

Table 3-2 Turn-off ratio (%) and increased miss rate (%) of some programs in the
scalable cache with CSIs algorithm

 Acd
see

Acro
read

Htmlco
mpress

Leap
FTP

Msm
sgs

Net
transport

Power
point

Ultra
edit Winamp Real

player

Turn off
ratio 77.3 84.9 78.2 79.5 73.1 87.6 81.7 75.8 63.2 67.4

Original
miss rate 0.163 0.458 0.08 0.053 0.258 0.191 0.094 0.139 0.082 0.075

Increased
miss rate 0.034 0.153 0.008 0.005 0.202 0.098 0.009 0.003 0.002 0.006

The experimental results show that an average of about 75% of turn-off ratio (ranging

from 63.2% to 87.6%) can be achieved in the cache memory. This implies that a large

percentage of leakage power dissipation in the cache could be reduced when the working

set size is small. However, there are two penalties involved in the CSIs cache scaling

algorithm. The first one is an increase of cache miss rate. In our experiment, the average

increased miss rate over all test-benches is less than 0.1%. The second penalty is the

latency and power consumption as a result of executing the increased codes. Fig. 3-9

shows the ratio of increased code of CSIs to the original program object code size. It is

shown that the ratio of CSIs over the original code size during execution is less than 1.6%

for all these programs when the factor w is no more than 2. For most applications, the

increased code size has a small variation when w is less than 1.5. When w is equal to 1,

the average increment of code ratio is only 0.34%, which is much less than the code

increment of about 5% in the algorithm of [90].

Based on the above experimental results and the total number of instructions executed,

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 73

In
cr

ea
se

d
co

de
 d

ur
in

g
ex

ec
ut

io
n

(%
)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Ac
dS
ee
5.
0

Ac
ro
Re
ad

Ht
ml
Co
mp
re
ss

Le
ap
FT
P

Ms
ms
gs

Ne
tT
ra
ns
po
rt

No
te
Pa
d

Po
we
rP
oi
nt

Ul
tr
aE
di
t

Wi
na
mp

W=1 W=1.5 W=2

Fig. 3-9 Increased code ratio using CSIs algorithm

the energy savings and execution time can be derived for each program. Table 3-3

compares the results of energy savings and performance loss in terms of IPC (instruction

per cycle) degradations when using LRU line decay, the cache tuning algorithm of [90]

and our CSIs algorithm. Here an LRU decay interval of 32K instruction cycles is applied

to the cache system.

When the LRU decay algorithm is used, the system performance degradation (IPC

decrease) ranges from 0.56% to 4.65% with an average of 2.85%, which is similar to that

in the CSIs algorithm when the parameter w is equal to 1. The energy savings in the

cache using CSIs algorithm can reach as high as 77.9% of the original cache energy

consumption with an average of 67.3% savings. However, the average energy savings in

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 74

line decay is only 36.8%, and that in the algorithm of [90] is about 56.2% with an average

IPC degradation of 3.04%.

Table 3-3 Energy savings (%) and IPC degradations (%) of some general programs
when using LRU line decay vs CSIs algorithm in a 32K I-cache

 Acd
see

Acro
read

Html
compr

ess

Leap
FTP

Msm
sgs

Net
trans
port

Power
point

Ultra
edit

Wina
mp Average

Line
decay 35.0 41.4 12.4 20.8 43.6 22.5 78.0 40.5 36.9 36.8

Algor
ithm
[90]

51.1 68.9 57.4 64.2 46.0 65.6 60.5 53.3 38.8 56.2
Energy
Savings

CSIs
(w=1) 61.5 77.9 70.3 72.3 62.1 75.3 75.1 61.2 50.5 67.3

Line
decay 4.46 2.85 0.56 2.64 3.57 0.74 3.34 4.65 2.82 2.85

Algor
ithm
[90]

4.78 3.25 3.34 2.21 2.19 4.57 1.77 2.31 2.93 3.04
IPC

degrada
-tion

CSIs
(w
=1)

4.65 3.04 3.14 1.98 2.05 4.40 1.34 2.26 2.77 2.85

If the decay interval in the LRU decay algorithm (see section 1.3.1) decreases, the

cache turn-off ratio will increase. However, the cache miss-rate will increase at the same

time. This leads to an increased overhead of power consumption and performance

degradation in the cache when re-accessing the lines that have already been turned off.

On the contrary, if we increase the decay interval, the system performance degradation

will decrease, but the leakage power reduction in the cache will also decrease due to the

decreased turn-off ratio. The trade-off between low power consumption and high

performance in the cache is dependent on the preset decay time. Although the decay

interval can be tuned to achieve the object of a single requirement of certain energy

savings or system performance, the LRU decay algorithm does not perform as well as our

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 75

CSIs algorithm in achieving the multiple objectives of low-power consumption and high-

performance.

While examining the balance between low power consumption and high performance in

our resizable cache system using the CSIs algorithm, we conducted a set of simulations

with different parameter w (see section 3.3.2). When the parameter w of the length

threshold increases, the number of CSIs inserted into the object code increases and the

increased miss rate resulting from the cache tuning algorithm decreases. Fig. 3-10 is the

simulation results of energy savings of the cache memory when applying the CSIs

algorithm to a group of programs. The energy savings across different applications vary

widely when a single common parameter w is used. Overall, for each individual program,

0

10

20

30

40

50

60

70

80

90

AcdSee5.0 AcroRead HtmlCompress
LeapFTP Msmsgs NetTransport
PowerPoint UltraEdit Winamp

Fig. 3-10 Energy savings of a 32KB cache memory when using CSIs algorithm with

different parameter w

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 76

if a smaller w is used, more energy will be saved. For example, when the parameter w is

equal to 1.4, the energy reductions across the nine programs range from 48.16% to

74.45% with an average of 63.9%. However, if w is equal to 2.4, the energy savings range

from 22.7% to 62.1% with average of only 44%. It is because when the parameter w

increases, the turn-off ratio of cache lines decreases and this leads to a trend of decreasing

the total energy savings. Moreover, when the w increases, the increased code ratio of

CSIs in execution has a larger overhead of power and delay.

The impact of the parameter w on the system performance is evaluated as shown in Fig.

3-11. When w is equal to 1, the IPC degradations of running these programs are in the

range from 1.34% to 4.65% with an average of 2.85%. When w increases, the IPC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

AcdSee5.0 AcroRead HtmlCompress
LeapFTP Msmsgs NetTransport

PowerPoint UltraEdit Winamp

IP
C

 D
eg

ra
da

tio
n(

%
)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 W

Fig. 3-11 IPC degradation of each application when using the CSIs algorithm with
different parameter w

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 77

degradation decreases slightly because both the increased miss rate and the number of

CSIs in the executing program decrease. For example, the average IPC degradation

decreases to 2.34% if w is equal to 1.9. The choice of proper parameter w is a balance

between low power and high performance. The optimal parameter w can be selected

using the least normalized energy-delay product or the maximum energy savings with

tolerable performance degradation. Overall, the experimental results show that the

average IPC degradation of running these programs in our scalable cache memory is

smaller than 3%. For some applications with small working sets, the goal of both low-

power and high-performance can be realized in our cache using the CSIs algorithm. For

instance, when we run the program PowerPoint, the energy savings could reach up to

about 75% with only 1.3% performance loss.

3.5 Summary

This chapter presented an algorithm to predict the program working set size during

compilation time and encode this information to a few cache scaling instructions that are

added to the original program object code. Based on the predictions and system states,

those unused cache lines can be selected properly and turned on or off in time to reduce

power consumption while maintaining high system performance.

We introduced the hardware implementation of the resizable cache architecture, the

power control mechanism with Gated-Vdd/GND technique and CSIs algorithm. We also

CHAPTER 3 RESIZE THE INSTRUCTION-CACHE IN RUNTIME TO REDUCE LEAKAGE POWER DISSIPATION

 78

analyzed the characteristics of program locality and the phase transition model of

working sets. Lastly, we evaluated the energy savings and performance loss in the

scalable I-cache using CSIs algorithm and LRU decay algorithm. The experimental

results using a group of Windows-based applications showed that our CSIs algorithm

could effectively reduce the power consumption in I-cache memory with small

performance degradation. It is shown that the overhead of power consumption and delay

resulted from the power control mechanism is not significant. The CSIs algorithm has a

smaller increment of object code size than the conventional method in [90], and can

reduce more power consumption than LRU decay algorithm. For example, the CSIs

algorithm can save 67.3% of total energy in a 32K I-cache on average with only 2.85% of

performance degradation in terms of IPC. However, the energy savings in LRU decay

algorithm is only 36.8% when a similar system performance is obtained.

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 79

CHAPTER 4

CODE REALLOCATION FOR POWER

REDUCTION AND PERFORMANCE

IMPROVEMENT IN I-CACHE

In this chapter, we propose to optimize the program object code to reduce the power

consumption of instruction-cache while improving system performance. In this method,

we reallocate some typical instruction segments such as loops and subroutines in memory

map to reduce the runtime program working-set size. When the cache size is fixed, the

code reallocation method could improve the cache hit-rate. It is because a working set

that is originally bigger than the instruction-cache size before code reallocation may be

smaller than the instruction-cache size after code reallocation. In the case the whole

working-set could now be loaded into the instruction-cache without cache reference miss

during execution of this working set, when the code reallocation method is integrated into

our previous CSIs algorithm as described in Chapter 3, the result could enhance the

advantage of the CSIs algorithm. This is because a smaller working set size in runtime

means more unused cache lines could be turned off and more power consumption could

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 80

be reduced in a re-sizable cache memory.

The remainder of this chapter is organized as follows. In Section 4.1, we introduce the

characteristics of program code locality in memory address map and the code reallocation

method. In Section 4.2, we describe the simulation method and experimental results of

the code reallocation method. In Section 4.3, we integrate the code reallocation method

with CSIs algorithm in a resizable cache and then evaluate the result. Finally, a summary

is presented in Section 4.4.

4.1 Code Locality and Optimization Method

The performance and power consumption of a cache memory is dependent not only on

the hardware architecture, but also on the referenced data streams. The static object codes

of a program from the optimization of a compiler will be loaded into cache memory prior

to execution. The addresses allocated to the program object code will greatly determine

the instruction reference patterns, and has an impact on the instruction-cache hit rate and

cache line replacement effectiveness. In general, memory allocation is not part of the

compilers process, therefore consideration for structure of the cache architecture is

typically not taken into account. Thus in all likelihood the final object code may not

perform well in terms of low miss rate in a specific I-cache memory.

Here we propose a code optimization to reduce the I-cache reference miss-rate and

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 81

reduce the run-time working set size in terms of the number of used cache lines within a

period of time. This could be realized by reallocating some program segments in main

memory address map when the typical code localities are encountered: loops, subroutines

and hybrid patterns. A loop is such a program segment that is repeatedly executed in

runtime. A subroutine is a portion of code within a larger program that performs specific

task and is relatively independent of the remaining code, but is invoked by other codes. In

the code reallocation algorithm, we only focus on those loops and subroutines that have a

length shorter than the cache size. A hybrid pattern refers to the situation where

subroutines are invoked by loops.

4.1.1 Loops

When a loop occupies (M+1) lines in I-cache but its exact length is no more than M

lines in terms of bytes, the addresses of this loop would be reallocated by aligning with

cache lines to reduce working set size. Fig. 4-1 shows an example of this situation.

lo o p
b o d y

Fig. 4-1 Loop alignment

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 82

In the loop alignment method, the basic instruction blocks adjacent to this loop can be

shifted, so that the replacement of those adjacent lines will not affect the reference hit on

the instructions that are contained in the loop. A basic instruction block is defined as the

minimal size of sequential instruction codes.

4.1.2 Subroutine Invocations

It is common to see that a great number of subroutine invocations are distributed in

application programs. Many of these invoked subroutines have a length that is no more

than M refill-lines size in terms of byte while occupying (M+1) cache lines in memory.

This address mapping may affect the efficiency of cache utility, especially in the event

that the subroutine is invoked frequently while its reference needs a replacement of

certain originally used cache lines. Therefore, the location of such a subroutine would be

remapped in memory addressing, or would be shifted to reduce working set or miss rate,

as shown in Fig. 4-2.

4.1.3 Hybrid Patterns

If a subroutine is invoked by a loop but neither the loop nor the subroutine fills up the

whole cache lines, they can be fused together, as shown in Fig. 4-3. The reference of this

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 83

Fig. 4-2 Subroutine reallocation

loop
body

invoked
subroutine

Fig. 4-3 Fusion of the loop with invoked subroutine

subroutine invocation needs line(s) replacement with the instructions in the loop due to

the cache set associativity, this reallocation strategy for invoked subroutine can

significantly reduce the cache miss-rate and working set.

Subroutine
invocation block

invoked
subroutine

Shift to line alignment

Line reallocation

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 84

In the event that a loop invokes several subroutines that are widely scattered in the

memory map, these subroutines may be reallocated together to improve cache utilities.

Fig. 4-4 gives an example of this situation. Here the subroutine 1 and subroutine 2

occupy 3 refill-lines and 2 refill-lines respectively before code optimization. These two

subroutines are invoked by a loop and probably need the same cache line during runtime.

After code reallocation, the working set size of these two subroutines could be reduced

from 5 cache lines to 3 cache lines, and they can be optimized to occupy different cache

lines with the loop body during execution to avoid repeated line replacement.

lo o p
b o d y

S u b ro u tin e 1

S u b ro u tin e 2

Fig. 4-4 Fusion of subroutines invoked by the same loop

When a subroutine is invoked by two or more different node and loops, the loop with

highest iteration would have the priority of being fused together with this subroutine in

the memory address map, if needed. However, if two loops both have high iteration and

invoke a same short subroutine, the subroutine may be duplicated and reallocated to

reduce the working set size during run time or to avoid cache line replacement to reduce

miss rate. Fig. 4-5 is a sketch map of such a scenario.

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 85

loop 1

loop 2

invoked
subroutine

Fig. 4-5 Subroutine distribution

4.2 Simulation Methods and Experimental Results

In our experiment, we apply the code reallocation algorithm to a group of the

SPEC2000 bench marks [99] and Media-benches [100], to evaluate the improvement of

cache performance. To prove the effectiveness of code optimization algorithm, we trace

the programs during runtime using a simulation tool, SimpleScalar [102]. The program

traces generated by the simulator can be used to commute the locations and reference

times of each basic block. This result allows the code reallocation method to be

implemented. With different object codes before and after code optimizations, we

simulated the cache miss rate in a fixed cache architecture, and then calculated the CPI

(cycle per instruction) for system performance evaluation.

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 86

Fig. 4-6 A segment of object codes with address map in memory

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 87

For example, Fig. 4-6 shows a segment of instructions in the program “Perl” with

object codes and address map. The program entry point is 0x400140, and the code

segment base address is 0x400000. The codes of the execution sequence are grouped into

a series of basic blocks. The end of a basic block may be a jump instruction or the

statement before destination of a jump instruction. We denote each basic block with a

number and trace the execution sequence during runtime, which is defined in a profile

data. A portion of the profile data in terms of basic block number string in this example is

shown in Fig. 4-7.

Fig. 4-7 Runtime profile data of the instruction basic blocks

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 88

On the other hand, the start address and end address of each basic block are recorded

during the simulation phase. These parameters are used to optimize the code allocation in

memory when we apply the code reallocation algorithm to the programs in the specific

cache architecture. Table 4-1 shows the configuration of I-cache in the experiment.

Table 4-1 I-cache configuration

Parameter Value

CMOS feature size 0.13um

Supply voltage 1.8V

Clock speed 500MHz

Cache type 16K direct mapped

Refill line size 64 bytes

Data bus 8 bits

Address bus 20 bits

Cache latency 1 cycle

Miss penalty 10 cycles

Replacement algorithm LRU

In the environment of SimpleScalar, we simulated the runtime profile data of the

programs in the above I-cache architecture. We also estimated the cache miss rate of

different programs using the tool of sim-cache. For example, when we execute the

following command:

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 89

./sim-cache –cache:il1 il1:256:64:1:l epic.ss

where il1 represents level 1 instruction cache; the cache configuration is 256 sets with 64

bytes per line and using LRU replacement algorithm; the input program is epic.ss.

 we can get the simulation results as follows.

sim: ** simulation statistics **
sim_num_insn 7892 # total number of instructions executed
sim_num_refs 4183 # total number of loads and stores executed
sim_elapsed_time 1 # total simulation time in seconds
sim_inst_rate 7892.0000 # simulation speed (in insts/sec)
il1.accesses 7892 # total number of accesses
il1.hits 7563 # total number of hits
il1.misses 329 # total number of misses
il1.replacements 143 # total number of replacements
il1.writebacks 0 # total number of writebacks
il1.invalidations 0 # total number of invalidations
il1.miss_rate 0.0417 # miss rate (i.e., misses/ref)
il1.repl_rate 0.0181 # replacement rate (i.e., repls/ref)
il1.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref)
il1.inv_rate 0.0000 # invalidation rate (i.e., invs/ref)
dl1.accesses 4334 # total number of accesses
dl1.hits 3866 # total number of hits
dl1.misses 468 # total number of misses
dl1.replacements 212 # total number of replacements
dl1.writebacks 204 # total number of writebacks
dl1.invalidations 0 # total number of invalidations
dl1.miss_rate 0.1080 # miss rate (i.e., misses/ref)
dl1.repl_rate 0.0489 # replacement rate (i.e., repls/ref)
dl1.wb_rate 0.0471 # writeback rate (i.e., wrbks/ref)
dl1.inv_rate 0.0000 # invalidation rate (i.e., invs/ref)
ul2.accesses 1001 # total number of accesses
ul2.hits 484 # total number of hits
ul2.misses 517 # total number of misses
ul2.replacements 0 # total number of replacements
ul2.writebacks 0 # total number of writebacks
ul2.invalidations 0 # total number of invalidations
ul2.miss_rate 0.5165 # miss rate (i.e., misses/ref)
ul2.repl_rate 0.0000 # replacement rate (i.e., repls/ref)
ul2.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref)
ul2.inv_rate 0.0000 # invalidation rate (i.e., invs/ref)
itlb.accesses 7892 # total number of accesses
itlb.hits 7874 # total number of hits
itlb.misses 18 # total number of misses

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 90

itlb.replacements 0 # total number of replacements
itlb.writebacks 0 # total number of writebacks
itlb.invalidations 0 # total number of invalidations
itlb.miss_rate 0.0023 # miss rate (i.e., misses/ref)
itlb.repl_rate 0.0000 # replacement rate (i.e., repls/ref)
itlb.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref)
itlb.inv_rate 0.0000 # invalidation rate (i.e., invs/ref)
dtlb.accesses 4334 # total number of accesses
dtlb.hits 4324 # total number of hits
dtlb.misses 10 # total number of misses
dtlb.replacements 0 # total number of replacements
dtlb.writebacks 0 # total number of writebacks
dtlb.invalidations 0 # total number of invalidations
dtlb.miss_rate 0.0023 # miss rate (i.e., misses/ref)
dtlb.repl_rate 0.0000 # replacement rate (i.e., repls/ref)
dtlb.wb_rate 0.0000 # writeback rate (i.e., wrbks/ref)
dtlb.inv_rate 0.0000 # invalidation rate (i.e., invs/ref)
ld_text_base 0x00400000 # program text (code) segment base
ld_text_size 139648 # program text (code) size in bytes
ld_data_base 0x10000000 # program initialized data segment base
ld_data_size 14032 # program init'ed `.data' and uninit'ed `.bss' size in bytes
ld_stack_base 0x7fffc000 # program stack segment base (highest address in stack)
ld_stack_size 16384 # program initial stack size
ld_prog_entry 0x00400140 # program entry point (initial PC)
ld_environ_base 0x7fff8000 # program environment base address address
ld_target_big_endian 0 # target executable endian-ness, non-zero if big endian
mem.page_count 45 # total number of pages allocated
mem.page_mem 180k # total size of memory pages allocated
mem.ptab_misses 47 # total first level page table misses
mem.ptab_accesses 905094 # total page table accesses
mem.ptab_miss_rate 0.0001 # first level page table miss rate

Here we shed some light on the parameter of il1.miss_rate that represents the cache

performance, to some extent. After all, we simulated the miss rates of a group of test

bench programs before and after the code optimization, as shown in Table 4-2.

Due to the different characteristics of programs, the miss rate of each test bench in the

I-cache varies widely and ranges from 0.04% to 4.17% before code optimization.

However, after object code optimization using the algorithm as described in Section 4.1,

the miss rates of all the test-benches decrease to some extent, ranging from 0.03% to

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 91

Table 4-2 Miss rates of benchmark programs in the 16K I-cache

Program Miss rate of original
program (%)

Miss rate after code
optimization (%)

epic 4.17 3.36

gcc 0.96 0.82

g721decode 3.16 2.38

g721encode 3.25 2.41

parser 0.87 0.74

vpr 4.07 2.97

unepic 0.04 0.03

vortex 2.19 1.85

average 2.34 1.82

3.36%. The average miss rate of all these bench marks drops from 2.34% to 1.82%. The

reduction of average cache miss rate is 0.52% that accounts for 22.2% of the original

average miss rate.

When we evaluate the system performance, the cache miss rate can be converted to CPI

(cycle per instruction) according to miss penalty and cache latency. We calculated the CPI

of each program using the formula (4-1). Table 4-3 shows the results of original programs

and the CPI after code reallocation.

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 92

CPI = cache latency × (1 – miss rate) + miss penalty × miss rate (4-1)

Table 4-3 CPI of benchmark programs before and after code optimization

Program Original CPI CPI after code
optimization

Performance
improvement (%)

epic 1.3753 1.3024 5.3

gcc 1.0864 1.0738 1.16

g721decode 1.2844 1.2142 5.47

g721encode 1.2925 1.2169 5.85

parser 1.0783 1.0666 1.09

vpr 1.3663 1.2673 7.25

unepic 1.0036 1.0027 0.09

vortex 1.1997 1.1665 2.77

average 1.2106 1.1638 3.87

Before code optimization, it is shown that the program unepic has the highest

performance in terms of a CPI 1.0036 when running on a 16K I-cache; and the program

vpr has the lowest performance with CPI of 1.3663. After code optimization, the

performances of all the programs are improved by a decrease in CPI ranging from 0.09%

to 7.25% compared with the original CPI. In conclusion, the original average CPI of

these programs is 1.2106, but the average CPI after code reallocation is 1.1638. That is,

the average performance of the I-cache when running these programs is improved by

3.87% in terms of CPI.

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 93

By reducing the cache reference miss rate, the code optimization algorithm not only

improves cache performance, but also reduces the power consumption of the cache. The

power reduction can be estimated using the decrease of miss rate and the power

consumption of reloading the instructions to refill lines. To further enhance the advantage

of the code reallocation method in low-power I-cache design, we integrate it with the

CSIs algorithm to reduce the runtime working set size so that it can contribute to an

additional leakage power reduction.

4.3 Integration of Code Optimization and CSIs Algorithm

The CSIs algorithm of leakage power reduction in scalable I-cache is presented in

Chapter 3. In this section, we combine it with the code optimization method to further

reduce power consumption in the I-cache.

As described in Section 4.1, the working sets of some typical program segments, such

as loops and subroutines, can be reduced by the code reallocation method. This means the

turn-off ratio of I-cache memory would increase when it is integrated with the CSIs

algorithm. We simulated a group of benchmarks in a 16K direct-mapped resizable I-cache

using only the CSIs algorithm, as well as using the integration of CSIs algorithm and

code reallocation. The parameters of cache configuration are the same with that in Table

4-1. Fig. 4-8 gives the turn-off ratio of a subset of SPEC2000 benchmarks and Media-

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 94

benches when different algorithms are used.

0

10

20

30

40

50

60

70

80

ep
ic gc

c

g7
21

de
co

de

g7
21

en
co

de
pa

rse
r

vp
r

un
ep

ic
vo

rte
x

CSIs algorithm

code optimization
and CSIs

Fig. 4-8 Turn-off ratio (%) of a 16K direct-mapped I-cache when applying CSIs
algorithm vs. the integration of code optimization and CSIs to a group of

benchmarks

When only the CSIs algorithm is used, the cache turn-off ratio ranges from 38.3% to

56.6% with an average of 48.7%. However, when the CSIs algorithm is integrated with

code optimization, the cache turn-off ratio is raised to the range from 45.7% to 68.5%

with an average of 55.5%. That is, the code optimization could promote the turn-off ratio

by 6.8% on average in the 16K I-cache.

While examining the power reduction in the scalable I-cache using the CSIs algorithm

and code reallocation method, we simulated the power consumption of each component

in the cache, as shown in Table 4-4. The total cache power consumption in a fixed cache

can be calculated using the formula (4-2). The cache power consumption in a scalable

Turn-off ratio (%)

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 95

cache is calculated using the formula (4-3).

Table 4-4 Power consumption of each component in the 16K
direct mapped I-cache

Parameter Value (mW)

Leakage per line 0.0367

Dynamic power of reading 3.2189

Dynamic power of writing 9.4511

Power of arbiter 0.8603

Power of tag 0.1622

Ptotal_fixed_cache = Pleakage_per_line × line_number + Preading × (1- miss_rate) + Pwriting ×

miss_rate + Ptag (4-2)

Ptotal_scalable_cache = Pleakage_per_line × line_number × (1- turn_off_ratio) + Preading × (1-

miss_rate) + Pwriting × miss_rate + Ptag + Parbiter (4-3)

When the CSIs algorithm vs. the integration of CSIs algorithm and code optimization

method are applied to some benchmarks, we estimated the power reduction in the I-cache

memory using the turn-off ratio and cache miss rate. Fig. 4-9 shows the percentage of

power reductions when the different programs and algorithms are used in the scalable I-

cache. The CSIs algorithm can reduce 24.6% to 34.4% with an average 30.6% of the total

power consumption in the 16K direct mapped I-cache across all the programs. In

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 96

0

5

10

15

20

25

30

35

40

45

ep
ic gc

c

g7
21

de
co

de

g7
21

en
co

de
pa

rse
r

vp
r

un
ep

ic
vo

rte
x

CSIs algorithm

code optimization
and CSIs

Fig. 4-9 Power reductions (%) of a 16K direct-mapped scalable I-cache when
applying CSIs algorithm vs. the integration of code optimization and CSIs

algorithm to a group of benchmarks

comparison, the integration of code optimization and CSIs algorithm can reduce as high

as 42.7% with an average 35.5% of the cache power consumption. In all the situations,

the code reallocation method contributes more power reductions ranging from 3.7% to

8.3% with an average 4.9% of the total cache power consumption. The more power

reduction comes from the increased turn-off ratio of cache and the decreased miss rate.

4.4 Summary

In this chapter, we investigate an object-code reallocation method to reduce the power

Power reductions (%)

CHAPTER 4 CODE REALLOCATION FOR POWER REDUCTION AND PERFORMANCE IMPROVEMENT IN I-CACHE

 97

dissipation in the instruction-cache while improving the system performance. The goal of

this method is to reduce the runtime program working-set size and cache miss rate by

reallocating some typical instruction segments such as loops and subroutines in memory

map. When it is integrated with CSIs algorithm in the resizable I-caches, the advantage of

low-power cache design algorithm can be further enhanced.

Using a set of SPEC2000 benchmarks and Media-benches, we simulated the code

reallocation method and the integration of it with CSIs algorithm in a 16K directed

mapped I-cache memory. The experimental results showed that the code optimization can

reduce the CPI from 1.21 to 1.16 on average, that is, the size-fixed cache performance is

improved by about 3.87%. On the other hand, the power reduction of the resizable cache

using CSIs algorithm is 30.6%. However, the integration of code optimization and CSIs

algorithm could achieve an average 35.5% of power reduction in the scalable cache

across all the test benches.

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 98

CHAPTER 5

REDUCING TAG ACTIVITIES FOR

ENERGY SAVINGS IN I-CACHE

5.1 Introduction

Since the conventional tag structure is persistently in operation when programs are

running, the dynamic power in such components generally occupies a high percentage of

total power in the cache sub-system when it has a high set-associativity and clock

frequency. In this chapter, we propose a software and hardware co-design method to

reduce the tag activities for energy savings in I-cache with little performance penalty.

In the recent years, a few methods have been proposed to reduce the tag comparisons or

tag length, to balance power consumption against high performance in cache memory. A

popular architecture is to provide an extra small L0 cache that stores the recent and

frequently executed instructions, and the main I-cache is accessed only when L0 cache

misses [66,67,68]. The costs in this method are the increased miss-rate and die area.

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 99

Another cache line access method is phased cache design [69,70] in set-associative

caches. In this method, it first probes the initial tag array or the predicted lines. In case of

misses, then it accesses the rest cache lines. The penalty in the above method is a longer

access time in a reference miss. Panwar et al. [71] used the Program Counter (PC) to

predict whether two consecutively executed instructions belong to different cache lines

and to perform tag-check, while Witchel et al. [72] used a special compiler scheme to

allow software to access cache data without hardware cache tag-checks. Ma et al. [73]

proposed to eliminate tag checks via a dynamic way-memorization and Koji Inoue et al.

[74] suggested a history-based tag-comparison using a branch target buffer. Peter Petrov

et al. [75] predicted major program loops and used shorter tag arrays to index cache lines.

However, these studies reduced a conservative portion of power dissipation in tag array,

but got a significant penalty of performance loss and die area of additional complex

circuits.

Here we propose an alternative way to aggressively reduce the tag operations using

simple logic circuits as well as compiler predictions based on the locality of program

object code. For the application programs, we trace their run-time profile data (see

Chapter 4) and denote all the small loops, defined as those whose length is less than the

cache size. If a subroutine is invoked by a small loop, the object codes of the subroutine

are probably reallocated in the memory to make the entire loop located in a continuous

region in addresses map. On the other hand, we utilize the least significant address bus,

the bits of refill-line offset, to judge the end of a refill line. We also adopt the prediction

results from the instruction decoder to enable tag activities when a jump instruction is

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 100

encountered. The experimental results showed that this approach could obtain a big

percentage of power reduction in the cache with negligible performance degradation.

The remainder of this chapter is organized as follows. In Section 5.2, we describe the

code optimization and prediction method. In Section 5.3, we present the hardware

implementation of tag controller. In Section 5.4, we give the simulation results of energy

savings and performance evaluation. Conclusions are drawn in Section 5.5.

5.2 Code Optimization and Locality Prediction

The program instructions generally have temporal and spatial locality. This feature has

been commonly used and enhanced to improve the I-cache hit rate. On the other hand, the

I-cache memory keeps only the portion of needed instructions at the current time window

based on certain line replacement algorithm. For high hit rate, the high set associative

caches are more and more popular. However, when we obtain the high cache hit rate, we

also find that a high percentage of tag activities are not necessary because the successive

instructions executed are in sequential locality or within a close region in the address map

and have the same tag bits. From this perspective, we propose a tag activity controller to

reduce the tag operations to reduce power consumption.

In the embedded system applications, a program typically executes about 90% of its

instructions in 10% of its code [91]. This small portion of codes usually constitutes a set

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 101

of loops with large number of iterations. In this section, we focus on predicting those

loops that have a length less than the cache size and have a sequential instruction locality.

If the instructions in a loop are executed sequentially, including the jumps within the

same cache line, the tag activities can be removed during the execution time of this loop

as long as we can predict the boundary between two adjacent cache lines. In the tag

control algorithm, we add two special instructions to such a loop at the object code level

during compilation time. The syntax is shown in follows.

Start of a loop (with length); (1)

{body of the predicted loop};

End of the loop; (2)

When an instruction (1) is executed, a flag bit in/out loop in the tag controller will be set,

indicating that the following instructions are located in a predicted loop and the I-cache

shifts to flagless mode. At the same time, this entire loop is loaded to I-cache memory

according to its length. When the instruction (2) is encountered after the execution of this

loop, the flag bit in/out loop is cleared and I-cache recovers to the normal operation mode

with tag checks.

In the case that one or more subroutines are invoked by a small loop and these

instruction blocks are separately distributed in a wide range of address map, we would

optimize the object code and make this loop be allocated in a continuous region in

addresses map. Fig. 5-1 shows an example of the code optimization. If a subroutine is

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 102

invoked by two predicted loops where the tag activities can be disabled, this subroutine

will be duplicated and assigned to both these loops.

Start of loop

Call subroutine 1

Call subroutine 2

Subroutine 1

Subroutine 2

End of loop

Start of loop

 subroutine 1

 subroutine 2

End of loop

Fig. 5-1 An example of code optimization process

If an interrupt occurs, the tag control flag in/out loop will be masked until the end of

execution of the interrupt service routine. If any cache lines in the predicted loop are

replaced by the interrupt service routine during this period, these lines will be reloaded

again after the interrupt.

5.3 Tag Control Mechanism

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 103

To support the tag control algorithm, we construct an I-cache memory, as shown in Fig.

5-2.

tag set index line offset

Tag 0
Tag 1
Tag 2
Tag 3

comparator 0
comparator 1

comparator 2

comparator 3

Reference effective address

OR

hit/miss

refill line 0
refill line 1

refill line 2

refill line 3

data array

data out
in/out loop branch

Tag array
AND

Instruction
decoderprogramable

Enable/Disable E/D

Fig. 5-2 Tag activities controlled I-cache structure

The effective address for cache reference, as issued by the processor, could be divided

into three fields (line offset, set index and tag), each of which has a specific function. The

line offset bits are the least significant bits, which would be used to locate a data byte in a

selected refill line. The set index is used to address the refill lines, and the tag field

checks whether a reference hit or miss happens in the corresponding line. In addition to

the traditional components in the I-cache, we added a few logic gates to enable or disable

flag

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 104

a portion of other circuit operations (tag activities), including the activities of tag field,

set index bits, tag array and comparators.

When the same refill line is accessed by the consecutive instruction references, the

effective addresses of these instructions in I-cache differ only in the least significant bits,

line offset bits. In this case, the tag activities could be eliminated without impact on cache

reference hits.

The flag bit of in/out loop is programmable, and it indicates whether the current

referenced instruction is located in a predicted loop with tagless mode. At the start of a

predicted loop, we fetch the entire loop to cache memory with continuous addresses and

set the flag bit in/out loop. Thus the tag activity is disabled and the instruction codes are

indexed only using the line offset bits. In the mean time, the flag bit of hit or miss

associated to each line is maintained and can be shifted by the output of the AND gate

(see Fig. 5-2). When the tag checks are disabled, the cache line boundary is denoted by

the AND gate with inputs of all the line offset bits. These associated address bits are all

one only when the last byte in a refill line is accessed. Therefore, an output one of this

AND gate sets the flag of hit/miss that is associated to the next refill line in address map

at the next instruction cycle and clears the flag of hit/miss in the current cache line.

For the instructions outside of the predicted loops, we can also disable the tag

operations during the execution of a basic instruction block (see Chapter 4). A basic

block is a certain number of sequential instructions with end of a branch instruction. At

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 105

the end of a basic block, the tag operations are enabled to find the locality of the next

basic block. In the tag controlled cache, a flag bit of branch (see Fig. 5-2) can be set by

an instruction pre-decoder, indicating the instruction being executed is a jump and

activating the tag operations at the next instruction cycle. In this situation, the boundary

between cache lines is also used to activate the tag activities to select the next line.

We implement the tag activity controller with a few logic gates so that the increased die

area is negligible compared with the algorithms where an L0 cache is added [66,67,68].

In some conventional tag eliminating methods such as the proposal in [75], only a

fraction of tag bits or a portion of tag array could be disabled to reduce power

consumption. However, we disabled the operations of the two fields of tag and set index

in the effective address bus and whole tag array during the period of non-tag cache access

to reduce the power consumption more aggressively.

5.4 Experimental Results

In the simulation experiment, we analyzed the object code and traced the profile data of

a subset of SPEC2000 benchmarks [99] using the toolset of SimpleScalar version 3.0

[102]. After the code optimization as described in Section 5.2, we predicted some loops

with length and iterations in the programs, where the tag activities could be disabled for

energy savings. In the meantime, we estimated the increased code size. It is a cause of

system performance loss and power overhead when fetching, decoding and executing the

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 106

flag-setting instructions. Another factor of the impact on system speed results from the

delay of tag controller operations when it activates the circuits. However, the tag

controller operations could be scheduled in parallel with other component activities,

therefore the tag could be enabled before it is needed to fetch the next instruction so that

the delay of tag control circuit is negligible.

On the other hand, we configured the cache using the parameters as shown in Table 5-1

and simulated the power dissipations of the tag, the tag control circuit and the whole

cache. The percentage of energy savings and system performance degradations are shown

in Fig. 5-3 and Fig. 5-4 respectively using our tag control method as well as the approach

in [75].

Table 5-1 Parameters and configurations of I-cache

Parameter Value

CMOS feature size 0.13um

Supply voltage 1.8V

Clock speed 500MHz

Cache type 8K 4-way

Cache line size 64 Bytes

Cache latency 1 cycles

Miss penalty 12 cycles

Address bus 32 bits

Data bus 8 bits

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 107

0

5

10

15

20

25

bz
ip
2

gc
c

gz
ip mc

f

pa
rs
er

pe
rl vp

r

vo
rt
ex

our algorithm

approach in [75]

Fig. 5-3 Energy savings (%) in an 8K 4-way tag-reduced I-cache when running a
group of benchmarks

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

bz
ip
2

gc
c

gz
ip mc

f

pa
rs
er

pe
rl vp

r

vo
rt
ex

our algorithm

approach in [75]

Fig. 5-4 Performance degradations (%) in terms of IPC

When applying our tag-controlled algorithm to a subset of benchmarks, the energy

savings in I-cache memory ranges from 14.2% to 20.7% with average 17.5% of the

original energy consumption. The impact on system performance in terms of the decrease

of instruction per second (IPC) is 0.12% on average across all the programs. However,

Energy savings (%)

Performance degradations(%)

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 108

the approach in [75] could reduce only about 14.7% of power consumption on average

with 0.13% of performance loss.

If we adopt a higher clock frequency or a higher set associativity in the I-cache, the

power consumed by the tag array will increase accordingly. In this case, the tag-

controlled algorithm has more advantage to save a higher percentage of energy

consumption.

5.5 Summary

To reduce power consumption in I-cache is of great importance for a low-power high-

performance embedded microprocessor design. This chapter presented a software and

hardware co-design approach to reduce the dynamic power dissipation in I-cache by

reducing tag activities while maintaining high system performance. In this method, we

predict the small loop executions and the sequential locality of program object code

during both compilation phase and runtime. When the same cache line is accessed during

the consecutive cache references, the tag operations are disabled for power reduction and

the instructions are indexed using the line offset bits in the effective address bus. In

addition, we use the line boundary and an instruction pre-decoder for branch instructions

to detect the reference shift between different cache lines, so that the tag operations could

be activated in time.

CHAPTER 5 REDUCING TAG ACTIVITIES FOR ENERGY SAVINGS IN I-CACHE

 109

The experimental results showed that this strategy could effectively reduce the I-cache

power consumption with negligible impact on performance. When a subset of SPEC

2000 benchmarks are applied to an 8K 4-way tag-controlled I-cache, this approach could

reduce an average of 17.5% energy consumption with only 0.12% of performance loss.

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 110

CHAPTER 6

A RECONFIGURABLE CACHE

DESIGN FOR BALANCE BETWEEN

POWER AND PERFORMANCE

The performance of a fixed cache architecture is to some extent determined by the

behavior of the application programs that use the cache. Several studies have argued that

the applications from different domains exhibit different characteristics [104-106]. Since

a general-purpose microprocessor is used for a variety of application programs, it is

important to ensure both low power consumption and high system performance across

many different-domain applications. A fixed cache structure may perform well for a

certain program characteristic, but may perform badly when running another program.

Intuitively, run-time reconfigurable caches design would do well and has been attracting

more and more research interest.

This chapter introduces a reconfigurable cache design where the cache line size and the

degree of set associativity can be configured dynamically. According to the simulation

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 111

results of each application program in different cache architectures, an optimal cache

architecture can be selected and configured for the program on the balance of cache

performance and power consumption.

The remainder of this chapter is organized as follows. In Section 6.1, we introduce the

background and some related works in reconfigurable cache design. In Section 6.2, we

present the implementation of our reconfigurable cache architecture. In Section 6.3, we

discuss the simulation results in different architectures using a group of benchmarks. In

Section 6.4, we give a summary.

6.1 Introduction

In the reconfigurable logic sources design in microprocessors, many of the works have

focused on utilizing reconfigurable circuits to partition the computation and to improve

computing capacity with a higher speed or lower power consumption. It is important to

ensure that all the hardware resources available on the chip can be utilized to maximum

extent possible for a wide range of applications. From this perspective, a study has been

investigated to use a dynamic configuration of a portion of cache memory and convert it

into a specialized computing unit, which is able to carry out an independent computation

[107,108].

It is an important way to customize the memory hierarchy [109,110] for specific

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 112

applications to fully exploit the limited resources to maximize the system performance. Z.

Ge, et, al. proposed a reconfigurable instruction memory hierarchy that consists of an

instruction cache and a scratchpad memory (SPM) [111]. The size of SPM is controlled

by different applications and it consumes lesser energy than a cache because it does not

have tag array. Several researchers have designed the algorithms to partition instructions

or data into the SPM with the goal of reducing the conflict misses and energy

consumption [111-113].

The rationale and benefits of reconfigurable cache memory architectures have been

studied previously by P. Ranganathan et. al. in [103]. They proposed a reconfigurable

cache architecture that allows the on-chip SRAM to be dynamically divided into different

partitions that can be assigned to different processor activities other than conventional

caching. A more flexible reconfiguration method was then explored by C. Zhang et. al.

[82]. They introduced a cache architecture that can be configured by software to be

direct-mapped, two-way, or four-way set associative. This cache can sometimes add the

degree of set associativity to increase the cache hit rate for certain applications. When the

additional associativity is unnecessary, a direct-mapped cache will be used to reduce

power consumption as long as it can achieve an acceptable hit rate. However, the refill-

line size in this cache is fixed.

When a cache reference misses, a line of data will be loaded into the cache in batch. If a

smaller line size is used, the energy consumption of the cache per reference miss is lesser.

That is to say, a shorter refill line leads to a lesser energy consumption if the cache miss

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 113

rate keeps unchanged. On the other hand, if a higher degree of set associativity is used, a

higher power will be consumed by the cache. For example, a direct mapped cache is

more energy-efficient per access, consuming only about 30% the energy of a same-size

four-way set associative cache [114]. However, we would also take account of the system

performance besides the power consumption when selecting the cache line size and set

associativity.

Table 6-1 shows the diversity among cache architectures found in modern embedded

microprocessors. It indicates the dilemma of deciding on the best cache architecture for

mass production. Overall, the cache size typically ranges from 4K bytes to 32K bytes

with line size of 16/32/64 bytes. The degree of set associativity normally ranges from

direct-mapped to 8-way associative.

Table 6-1 Instruction and data cache sizes, associativities, and line sizes of popular
embedded microprocessors. As. means associativity. DM stands for direct-mapped.
U means instructions and data caches are unified. Sources: Microprocessor Report,

and data sheets of various microprocessors.

Here we propose a reconfigurable cache architecture to solve this dilemma to some

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 114

extent. This cache can be configured to be direct-mapped, 2-way or 4-way set

associativity, with different line size of 16 bytes, 32 bytes or 64 bytes, when running

different application programs on the balance of power consumption and performance.

The implementation and simulation of the reconfigurable cache will be discussed in the

next sections.

6.2 Reconfigurable Cache Architecture

In our reconfigurable cache, we use a 4-bit configuration register to select the different

set associativites and refill-line size. To combine the different options, the cache

architecture can be reconfigured to a total of 9 different types, as shown in Table 6-2.

Here the DM means direct mapped; 16B stands for a line size of 16 bytes.

Table 6-2 Cache architecture configuration register

Configuration register (r3 r2 r1 r0) Cache architecture
0000 DM 16B
0001 DM 32B
0011 DM 64B
0100 2W 16B
0101 2W 32B
0111 2W 64B
1100 4W 16B
1101 4W 32B
1111 4W 64B

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 115

In the experiment, we set the cache size to 8K Bytes, and define the 16-Byte refill line

as a base line. In addition, we use a 32-bit address bus in the cache memory, which is

denoted as a31 …a0. Normally the effective memory address is split into three fields: line-

offset field, set index field, and tag field. On the other hand, we denote the 4 bits in

configuration register using (r3 r2 r1 r0), where the two most significant bits are used to

select the degree of set associativity, and the two least significant bits are used to select

the refill-line size.

When the two least significant bits (r1 r0) in the configuration register are cleared to 00,

the base line size of 16-Byte will be selected. In this case, there are total 512 lines and

corresponding 512 tags in the cache. The 4 least significant bits (a3 a2 a1 a0) of address

bus are used as the byte index in each refill-line. The next two bits a4 and a5 in the

address bus belong to the set index field, as shown in Fig. 6-1.

If r1r0 are set to 01, the adjacent two base lines are concatenated to form a 32-Byte line.

In this case, there are total 256 lines in the cache with 256 tags in use and the other 256

tags are turned off. To index the data in a refill-line, the 5 least significant bits in the

address bus (a4 a3 a2 a1 a0) are assigned to the line offset field. In fact, the bit a4 here is

used to index the two different base lines in each 32-Byte cache line. The bit a5 belongs

to the set index field.

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 116

Fig. 6-1 The field belongingness of a5 and a4 according to the line size
configuration

When r1r0 are set to 11, every four adjacent base lines are concatenated to form a 64-

Byte refill-line. Therefore, there are total 128 lines in the cache with 128 tags in use, and

the rest tags are turned off. In this case, the 6 least significant bits (a5 a4 a3 a2 a1 a0) belong

to line offset field. The bits a5 and a4 here are actually used to index the four different

base lines in each 64-Byte line.

Fig. 6-1 presents the field belongingness of a5 and a4 according to the different

configurations of refill-line size. Whatever the line size is used, a full line of data would

be loaded to the cache memory from main memory once a cache reference misses. The

selection of a cache line-set and a refill-line for data access is dependent on the address

bits in tag field and set index field. In our reconfigurable cache architecture, we use the

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 117

two most significant bits (r3 r2) in the configuration register to divide the bits in address

bus between tag field and set index field.

When r3r2 are cleared to 00, the cache is configured as direct mapped. In this case, the

tag field contains 19 bits (a31 …a13), and the a12a11 belong to the line index field. When

r3r2 are set to 01, the cache is configured to 2-way associative so that the bit a12 belongs

to tag field and a11 belongs to set index field. If r3r2 are set to 11, the cache is configured

to 4-way associative and the a12a11 belongs to tag field. The configuration circuit of

address bus division for tag field and set index field is shown in Fig. 6-2.

The hardware circuit required to support the reconfigurable cache architecture is

logically simple, so that the overhead of die area of this additional circuit is negligible

compared with the entire cache. The configuration logic gates in this cache can execute

concurrently with the instruction execution and address decoding circuits, therefore this

technique has negligible impact on the cache reference delay. The important question

regarding the reconfigurable cache architecture is how to balance between the cache

performance and power consumption or how much performance it can improve when

compared with the fixed cache architectures. To evaluate the performance and power

consumption in the reconfigurable cache, we applied a group of benchmarks to different

cache architectures and compared their miss rate, as discussed in the next section.

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 118

Fig. 6-2 The field belongingness of a12 and a11 according to the set associative cache
configuration

6.3 Simulation Results and Discussions

In the experiment, we simulated the miss rate of a subset of SPEC2000 benchmarks in

different cache configurations using the simulation tool, SimpleScalar. The results are

shown in Table 6-3. The cache miss rate can be converted to the CPI (cycle per

instruction) to evaluate the cache performance when the program runs, if the cache

reference delay and miss penalty are given. It can also be used to estimate the power

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 119

Table 6-3 Miss rates (%) of some programs in the 8K I-cache with different
architectures

program mcf vortex paser unepic cjpeg djpeg average

DM 16B 0.14 10.23 2.66 0.21 1.35 1.33 2.65

DM 32B 0.09 6.59 1.55 0.13 0.78 0.81 1.66

DM 64B 0.06 4.76 1.00 0.08 0.48 0.52 1.15

2W 16B 0.02 3.14 2.18 0.11 0.22 0.25 0.99

2W 32B 0.01 2.17 1.24 0.07 0.14 0.16 0.63

2W 64B 0.01 1.67 0.75 0.04 0.10 0.12 0.45

4W 16B 0.00 0.96 2.04 0.07 0.06 0.10 0.54

4W 32B 0.00 0.57 1.15 0.04 0.04 0.06 0.31

4W 64B 0.00 0.36 0.68 0.03 0.02 0.03 0.19

average 0.04 3.38 1.47 0.09 0.35 0.38

consumption in cache memory with the simulation results of power consumed by each

component.

In the different nine cache configurations, the six benchmarks have a wide range of miss

rates from 0% to 10.23%. If we use a higher degree of way associativity, a lower miss

rate can generally be achieved for the same program. For most benchmarks in our

experiment, the cache reference miss rate is much better in 2-way caches than in direct-

mapped caches. For example, the miss rate of program “Vortex” in direct-mapped cache

with 32-byte line size (DM 32B) is 6.59%, while in the 2-way set-associative cache with

32-byte line size (2W 32B) is only 2.17%. However, the miss rate in a direct-mapped

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 120

cache with longer refill-line may be lower than that in a 2-way cache with shorter refill-

line.

An optimal configuration of the cache architecture for each application program can be

selected before execution in runtime based on the runtime simulation results and certain

criteria in different situations. In these scenarios, if the tag length and the clock frequency

increase, the dynamic power consumed by the tag array will increase proportionately. The

system dynamic power consumption also increases if the cache miss-rate increases. On

the balance between low power and high performance, the candidate cache architecture

for a program could be configured to have a miss rate that is less than the average miss

rate across the nine different configurations or an acceptable limit bound. After a better

than average performance is guaranteed, the low power consumption would be taken into

account when we select the cache architecture. For example, the cache architecture for

each one of the six benchmarks could be configured as follows:

mcf -- (2W 32B) with miss rate of 0.01% vs average 0.04%

vortex -- (2W 64B) with miss rate of 1.67% vs average 3.38%

paser -- (DM 64B) with miss rate of 1.00% vs average 1.47%

unepic -- (DM 64B) with miss rate of 0.08% vs average 0.09%

cjpeg -- (2W 16B) with miss rate of 0.22% vs average 0.35%

djpeg -- (2W 16B) with miss rate of 0.25% vs average 0.38%

From the above configurations, an average of 0.54% of real miss rate could be achieved

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 121

when using an 8K I-cache to execute all these benchmarks. Although the above selected

cache architectures are configured to be direct mapped or 2-way set-associative, their

average performance is comparable with that of a 4-way set-associative 16-Byte cache.

Low power cache designs prefer a shorter refill line to a longer refill line if the miss

rates are same. This is because using a long refill line usually gives rise to loading more

unnecessary data from main memory to cache when a cache miss happens. However,

using a shorter refill lines sometimes results in a higher cache miss rate. When the power

overhead of the increased miss rate does not exceed the power consumed by loading the

unused data to cache, a longer refill line will have a lower priority in our reconfigurable

caches. The accurate estimation of power consumption in a cache is also dependent on

some other parameters such as the tag length, clock frequency, supplied voltage and

CMOS technology. The trade off between power consumption and performance in the

cache reconfigurations is sometimes also determined by the application requirement.

In the event that the system requires a lower limit bound of cache performance, for

example, if the I-cache miss rate would not exceed 0.8% in all situations, then the cache

architectures selected for the above benchmarks may be configured as follows.

mcf -- (DM 16B) with miss rate of 0.14%

vortex -- (4W 32B) with miss rate of 0.57%

paser -- (2W 64B) with miss rate of 0.75%

unepic -- (DM 16B) with miss rate of 0.21%

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 122

cjpeg -- (DM 32B) with miss rate of 0.78%

djpeg -- (DM 64B) with miss rate of 0.52%

In the above cache configurations, the performance of each benchmark may not be the

best in the nine different cache architectures, but all of them could meet the requirement

of the miss rate bound. When this condition is satisfied, the cache architecture could be

configured as such that the low associativity and short refill line have a higher priority for

power reduction. For example, the cache is configured to (DM 16B) for the program mcf

although its miss rate is 0.14%, which is the highest one among the nine different

configurations. Anyway, the average miss rate of these six applications is only 0.50%

when using the above configurations. It is lower than that in the previous combinations of

cache architectures, although we use more direct mapped cache architectures here. And it

is lower than the average miss rate of 0.63% in the cache architecture of (2W 32B) across

all the benchmarks, indicating that a collective issue of both low power and high

performance could be, to some extent, resolved in the reconfigurable cache architecture.

6.4 Summary

The effectiveness of a cache memory is, to some extend, determined by the

characteristics of the executed programs. In order to get high system performance and

low power consumption in all kinds of applications, the trade off between power

consumption and performance in cache memories has prompted a variety of architectures

CHAPTER 6 A RECONFIGURABLE CACHE DESIGN FOR BALANCE BETWEEN POWER AND PERFORMANCE

 123

in the real microprocessors. This chapter explored a reconfigurable cache design method

that could select a flexible refill line size and the degree of set-associativity to optimize

the cache performance and power consumption for different programs.

In this reconfigurable cache, both of the set associativity and refill line size have three

options with total nine different combinations of cache architectures. Using the

simulation tool SimpleScalar, we evaluated the 8K I-cache miss rate of a subset of

SPEC2000 benchmarks in all the different configurations. Based on certain creteria, the

cache memory can be configured to an optimal type for each application on the balance

between performance and power consumption for each program. Different users and

systems may have different requirement of the performance and power optimization,

however, it is a general preference to have a hyper-average performance or meet a limit

hit-rate bound in the cache design. The experimental results showed that the

reconfigurable cache could achieve both high performance and low power consumption

collectively.

CHAPTER 7 CONCLUSIONS

 124

CHAPTER 7

CONCLUSIONS

The low-power high-performance embedded microprocessor design had attracted a

great deal of research interest. As the caches are used widely in modern

microprocessors and usually constitute a big percentage of the chip’s power, the

optimization of power consumption and performance in such a unit is important. This

study developed several design methods to reduce power consumption while

maintaining high performance in cache memories.

With the development of CMOS technology, the chip integration as well as the

cache size becomes greater, and these give rise to the result that the percentage of

leakage power consumption in the cache increases steadily. In this thesis, we

investigated an algorithm that adds some special cache scaling instructions (CSIs) to

the program object code to track the runtime program working-set size during

compilation phase. According to the prediction and the current system state, a

hardware controller makes the decision of caching instructions and scaling the active

size of I-cache memory. Thus the unused cache lines could be switched off at runtime

to reduce power consumption. To support this algorithm, we utilize a gated-GND

CHAPTER 7 CONCLUSIONS

 125

technology in the hardware design to switch on or off the power supply for each

cache-line. Furthermore, we construct an additional power controller, called arbiter, in

the resizable I-cache to monitor the system state and implement the power control

algorithm.

Experimental results using a set of Windows-based general application programs

showed that our CSIs algorithm could effectively reduce the power consumption in

I-cache memory with small performance degradation. The overhead of power

consumption and delay resulted from the power control mechanism is not significant.

For example, the CSIs algorithm could save 67.3% of total energy in a 32K I-cache

on average with only 2.85% of performance loss in terms of IPC degradation.

However, the energy savings in LRU decay algorithm is only 36.8% when a similar

system performance is obtained. In our algorithm, the number of added CSIs during

execution was only 0.34% of the original instruction code size, and the increased die

area because of the added circuits is about 5% of the original cache memory size. The

increased code size during execution in the CSIs algorithm was less than that in

previous work of compiler-directed optimization [20].

On the other hand, we proposed an object-code reallocation method to reduce the

runtime program working set size and cache miss rate to reduce the power dissipation

in the instruction-cache while improving the system performance. It is done by

reallocating some typical instruction segments such as loops and subroutines in

CHAPTER 7 CONCLUSIONS

 126

memory map based on the analysis of the runtime program profile data. Simulation

results using a group of SPEC 2000 standard benchmarks and Media-benches showed

that the code optimization method could reduce the CPI (cycle per instruction) by an

average of 3.87% in a 16K direct mapped I-cache. When it is integrated with the CSIs

algorithm, it could reduce the power consumption as high as 35.5% of the total power

in a 16K resizable cache. The integration of these two algorithms could reduce 4.9%

more power consumption than only the CSIs algorithm is used. Although the power

reduction and performance improvement are not significant in some situations, the

code reallocation method could achieve both low power and high performance

collectively in all applications in the experiment.

After the static power consumption in I-cache has been reduced significantly, the

dynamic power consumption becomes prominent once again. Since the conventional

tag structure is always operating when programs are running, the dynamic power in

such components generally occupies a high percentage of total power in the cache

sub-system when it has a high set-associativity and clock frequency. This thesis

presented a software and hardware co-design approach to reduce the dynamic power

dissipation in I-cache by reducing tag activities while maintaining high system

performance. In this method, we predict the small loop executions and the sequential

locality of program object code during both compilation phase and runtime. When the

same cache line is accessed during the consecutive cache references, the tag

operations are disabled for power reduction and the instructions are indexed using the

CHAPTER 7 CONCLUSIONS

 127

line offset bits in the effective address bus. In addition, we use the line boundary and

an instruction pre-decoder for branch instructions to detect the reference shift between

different cache lines, so that the tag operations could be activated in time. The

experimental results showed that this strategy could effectively reduce the I-cache

power consumption with negligible impact on performance. When a subset of SPEC

2000 benchmarks are applied to an 8K 4-way tag-controlled I-cache, this approach

could reduce an average of 17.5% energy consumption with only 0.12% of

performance loss.

Lastly, we designed a reconfigurable cache. Its set associativity could be configured to

direct mapped, 2-way associative or 4-way associative, and the refill line size could

be configured to 16 bytes, 32 bytes or 64 bytes in run time. Using the total nine

different combinations of parameters in the cache architecture, we simulated a group

of benchmarks to evaluate the cache performance and power consumption. Across a

wide range of applications, the cache reconfiguration method could achieve high

performance when encountering different program characteristics with relatively low

power consumption on average compared with the size-fixed caches. On the balance

between power consumption and performance of the cache memories, the

experimental results showed that the reconfigurable cache could present a flexible

adaptivity to different situations with certain optimization criteria such as a

hyper-average performance, sub-average power consumption, or other limit-bounds of

performance and power consumption.

 128

REFERENCES

[1] Bill Morer, “Low-Power Design for Embedded Processors”, in Proc. of the IEEE, Vol.

89, No. 11, pp.1576-1587, Nov. 2001.

[2] Beom Seon Ryu, Jung Sok Yi, Kie Yong Lee and Tae Won Cho, “A Design of Low

Power 16-B ALU”, In Proceeding of the IEEE Region 10 Conference Volume 2,

pp.868-871, Sep.1999, South Korea.

[3] Mark Smotherman, Manoj Franklin, “Improving CISC Instruction Decoding

Performance Using a Fill Unit”, in Proceedings of the 28th Annual ACM/IEEE

International Symposium on Microarchitecture, pp. 219--229, 1995.

[4] Victor V. Zyuban, Peter M. Kogge, “Inherently Low-Power High-Performance

Superscalar Architectures”, IEEE Transactions on Computers, Vol. 50, No. 3, pp.268-

285, Mar. 2001.

[5] L. Wehmeyer, M. K. Jain, S. Steinke, P. Marwedel, and M. Balakrishnan, “Analysis

of the Influence of Register File Size on Energy Consumption, Code Size, and

Execution Time”, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 20, No. 11, pp.1329-1337, Nov. 2001.

 129

[6] Toni Juan, Tomas Lang, Juan J. Navarro, “Reducing TLB Power Requirements”, in

Proc. of 1997 Int'l Symp. on Low Power Electronics and Design, pp.196-201.

[7] C. Chen, L. –A. Chen and J. –R. Cheng, “Architectural Design of a Fast Floating-

Point Multiplication-Add Fused Unit Using Signed-Digit Addition”, IEE Proc. –

Comput. Digit. Tech., Vol. 149, No. 4, pp., July 2002.

[8] S. Osborne, A. T. Erdogan, T. Arslan and D. Robinson, “Bus Encoding Architecture

for Low-Power Implementation ”, IEE Proc. –Comput. Digit. Tech., Vol. 149, No. 4,

pp.152-156, July 2002.

[9] G. Palermo, M. Sami, C. Silvano, V. Zaccaria, R. Zafalon, “Branch Prediction

Techniques for Low-Power”, in Proc. of BLSVLSI’03, Apr. 28-29, 2003,

Washington, DC, USA.

[10] Stephen W. Keckler, William J. Dally, Daniel Maskit, Nicholas P. Carter, Andrew

Chang, Whay S. Lee, “Exploiting Fine-Grain Thread Level Parallelism on the MIT

Multi-ALU Processor”, in 25th Annual International Symposium on Computer

Architecture, pp.306-317, June 1998.

 130

[11] Darren C. Cronquist, Chris Fisher, Miguel Figueroa, Paul Franklin, Carl Ebeling,

“Architecture Design of Reconfigurable Pipelined Datapaths”, in Conf. on

Advanced Research in VLSI, pages 23-40, Atlanta, GA, March 1999.

[12] Kamlesh Rath, Sirisha Tangirala, Patrick Friel, Poras Balsara, Jose Flores and John

Wadley, “Reconfigurable Array Media Processor (RAMP)”, in Proc. of 2000 IEEE

Symposium on Field-Programmable Custom Computing Machines, pp.287-288.

[13] Keith I. Farkas, Paul Chow, Norman P. Jouppi, Zvonko Vranesic, “The Multicluster

Architecture: Reducing Cycle Time Through Partitioning”, in Proc. 30th Annual

International Symposium on Microarchitecture (MICRO-30), Research Triangle

Park NC, pp.149-159, December 1997.

[14] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian, David H. Albonesi,

Sandhya Dwarkadas, and Michael L. Scott, “Energy-Efficient Processor Design

Using Multiple Clock Domains with Dynamic Voltage and Frequency Scaling”, in

Proc. of IEEE the 8th Intl. Sym. On High-Performance Computer Architecture

(HPCA’02), pp.50-62, 2002.

[15] Jordi Cortadella, Alex Yakovlev, Jim Garside, “Tutorial Eight: Logic Design of

Asynchronous Circuits”, in Proceedings of the 15th international Conference on

VLSI Design (VLSID’02), IEEE Computer Soc., Pp.26-27, 2002.

 131

[16] P. Patra, U. Narayanan and T. Kim, “Phase Assignment for Synthesis of Low-Power

Domino Circuits”, Electronics Letters Vol. 37, No. 13, pp.814-816, Jun. 2001.

[17] Jessica H. Tseng and Krste Asanovic, “Energy-Efficient Register Access”, in Proc.

of 13th Symposium on Integrated Circuits and System Design, Manaus, Brazil,

pp.377-382, Sep. 2000.

[18] M. S. Elrabaa, I. S. Abu-Khater, and M. I. Elmasry, “Advanced Low-Power Digital

Circuit Techniques”, Norwell, MA: Kluwer, 1997.

[19] Dmitry Ponomarev, Gurhan Kucuk, Kanad Ghose, “Power Reduction in Superscalar

Datapaths Through Dynamic Bit-Slice Activation”, in Procedings of Int'l.

Workshop "Innovative Architecture for Future Generation High-Performance

Processors and Systems" (IWIA'01), pp.16-24, 2001.

[20] Mahesh Mamidipaka, Nikil Dutt, Dan Hirschberg, “Efficient Power Reduction

Techniques for Time Multiplexed Address Busses”, in Proc. of International

Symposium on System Synthesis, pp.207-212, Kyoto, Japan, October 2002.

[21] Ming-Ju Edward Lee, William J. Dally, and Patrick Chiang, “Low-Power Area-

Efficient High-Speed I/O Circuit Techniques”, IEEE Journal of Solid-State Circuits,

Vol. 35, No. 11, pp.1591-1599, Nov. 2000.

 132

[22] Jaewon Oh and Massoud Pedram, “Gated Clock Routing for Low-Power

Microprocessor Design”, IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 20, No. 6, pp.715-722, Jun. 2001.

[23]Li, H.,Bhunia, S., Chen, Y., Roy, K. and Vijaykumar, T. No., “DCG: Deterministic

Clock-Gating for Low Power Microprocessor Design”, IEEE Transactions on VLSI

Systems, Vol. 12, Issue 3, pp.245-254, March 2004.

[24] A. G. M. Strollo, E. Napoli, and D. De Caro, “New Clock-gating Techniques for

Low-power Flip-flop”, in Int. Symp. Low Power Electronics and Design, pp.114-

119, July 2000.

[25] Ravindra Jejurikar, Cristiano Pereira, Rajesh K. Gupta, “Leakage Aware Dynamic

Voltage Scaling for Real Time Embedded Systems”, in. Proceedings of the Design

Automation Conference, pp.275-280, Jun. 2004.

[26] Eric F. Weglarz, Kewal K. Saluja, and Mikko H. Lipasti, “Minimizing Energy

Consumption for High-Performance Processing”, in Proceedings of the 15th

International Conference on VLSI Design (VLSID’02), IEEE Computer Society,

pp.199-204, 2002.

 133

[27] Thomas D. Burd, Trevor A. Pering, Anthony J. Stratakos, and Robert W. Brodersen,

“A Dynamic Voltage Scaled Microprocessor System”, IEEE Journal of Solid-State

Circuits, Vol. 35, No. 11, pp.1571-1580, Nov. 2000.

[28] Se-Hyun Yang and Babak Falsafi, “Near-Optimal Precharging in High-Performance

Nanoscale CMOS Caches”, in Proc. of the 36th International Symposium on

Microarchitecture (MICRO-36 2003), pp.27-28.

[29] Tadahiro Kuroda, “Low-Power High-Speed CMOS VLSI Design”, Proc. of the 2002

IEEE Intl. Conf. on Computer Design: VLSI in Computers and Processors

(ICCD’02), pp.310-315.

[30] Chulwoo Kim, Ki-Wook Kim, Sung-Mo Kang, “Energy-Efficient Skewed Static

Logic with Dual Vt: Design and Synthesis”, IEEE Transaction on VLSI Systems,

Vol. 11, Issue 1, pp.96-103, Feb. 2003.

[31] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, Carla Ellis, “Power Aware Page

Allocation”, Technical Report CS-2000-08, Department of Computer Science,

Duke University, pp.105-116, June 2000.

[32] Jacob R. Lorch, Alan Jay Smith, “Software Strategies for Portable Computer Energy

Management”, pp.60-73, Feb. 24, 1998.

 134

[33] Qinru Qiu, Qing Wu and Massoud Pedram, “OS-Directed Power Management for

Mobile Electronic Systems”, in Proc. of 39th Power Source Conf., pp. 506-509,

2000.

[34] Diana Marculescu, Anoop Lyer, “Application-Driven Processor Design Exploration

for Power-Performance Trade-off Analysis”, in Proc. IEEE/ACM Intl. Conf. on

Computer-Aided Design, pp.306-313, San Jose, USA, Nov. 2001.

[35] Sriraman Tallam, Rajiv Gupta, “Profile-Guided Java Program Partitioning for Power

Aware Computing”, 18th Intl. Parallel and Distributed Processing Symposium

(IPDPS’04) – Workshop 5, pp.156b, Apr. 2004, Santa Fe, New Mexico, USA.

[36] Hongbo Yang, Guang R. Gao, Andres Marquez, George Cai, Ziang Hu, “Power and

Energy Impact by Loop Transformations”, in Porceedings of the Workshop on

Compilers and Operating Systems for Low Power (COLP'01), September 2001,

Barcelona, Spain.

[37] Victor De La Luz, Ismail Kadayif, Mahmut Kandemir, and Uger Sezer, “Access

Pattern Restructuring for Memory Energy”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 15, No. 4, pp.289-303, Apr. 2004.

[38] O.S. Unsal, R. Ashok, I. Koren, C.M. Krishna, and C.A. Moritz, “Cool-Cache: A

Compiler-Enabled Energy Efficient Data Caching Framework for Embedded and

 135

Multimedia Systems”, ACM Trans. Embedded Computing Systems, Volume 2,

Special Issue on Low Power, pp.373-392, August 2003.

[39] Rafael Moreno, Luis Pinuel, Silvia del Pino and Francisco Tirado, “Power-Efficient

Value Speculation for High-Performance Microprocessors”, in Proc. of the 26th

EUROMICRO conference, Vol. 1, pp.292-299, Sep. 2000, Maastricht, Netherlands.

[40] Peter Petrov and Alex Orailoglu, “Low-Power Data Memory Communication for

Application-Specific Embedded Processors”, ISSS/02, pp.219-224, Oct. 2-4, 2002,

Kyoto, Japan.

[41] Meyer, B. H. Pieper, J.J. Paul, J.M. Nelson, J.E. Pieper, S.M. Rowe, A.g., “Power-

Performance Simulation and Design Strategies for Single-Chip Heterogeneous

Multiprocessors”, IEEE Transactions on Computers, Volume 54, Issue 6, pp.684-

697, Jun. 2005.

[42] Krste Asanovic, “Energy-Exposed Instruction Set Architectures”, in Work in

Progress Session, HPCA-6, Toulouse, France, Jan. 2000.

[43] Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, and Masahiro Fujita, “Power

Analysis and Low-Power Scheduling Techniques for Embedded DSP Software”,

Fujitsu Scientific and Technical Journal, vol.31, No.2, pp.215-229, 1995.

 136

[44] V. Tiwari, S. Malik, A. Wolfe, and M.T.C. Lee, “Instruction Level Power Analysis

and Optimization of Software”, J. VLSI Signal Processing Systems, Vol. 13, No. 2,

pp.326-328, Jan. 1996.

[45] Christoforos Kozyrakis, David Judd, Joseph Gebis, Samuel Williams, David

Patterson, and Katherine Yelick, “Hardware/Compiler Codevelopment for an

Embedded Media Processor”, in Proc. of the IEEE, Vol. 89, No. 11, pp.1694-1709,

Nov. 2001.

[46] Chung-Hsing Hsu, Ulrich Kremer, Michael Hsiao, “Compiler-Directed Dynamic

Voltage/Frequency Scheduling for Energy Reduction in Microprocessors”, in Proc.

of ISLPED’01, pp.275-278, Aug. 6-7, 2001, Huntington Beach, California, USA.

[47] Song, L. Parhi, K.K. Kuroda, I. Nishitani, T., “Hardware/Software Codesign of

Finite Field Datapath for Low-Energy Reed-Solomon Codecs”, IEEE Transactions

on VLSI systems, Vol. 8, Issue 2, pp.160-172, Apr. 2000.

[48] Michael K. Gowan, Larry L. Biro, Daniel B. Jackson, “Power Considerations in the

Design of the Alpha 21264 Microprocessor”, DAC 98, pp.554-562, June 15-19,

1998, San Francisco, CA USA.

 137

[49] Kaushik Roy, Saibal Mukhopakhyay, and Hamid Mahmoodi-Meimand, “Leakage

Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer

CMOS Circuits”, Proc. of the IEEE, Vol. 91, No. 2, pp.305-327, Feb. 2003.

[50] International Technology Roadmap for Semiconductors. International SEMATECH,

Austin, TX. [Online]. Available: http://public. itrs.net/

[51] S. Manne, A.Klauser, and D.Grunwald, “Pipeline gating: speculation control for

energy reduction”, Proceeding of the 25th Annual International Symposium on

Computer Architecture, pp.132-141, June 1998.

[52] M.B. Kamble and K.Ghose, “Analytical energy dissipation models for low power

caches”, Proc. of International Symposium on Low-Power Electronics and Design,

pp.143-148, 1997.

[53] Nam Sun Kim Blaauw, D. Mudge, T., “Leakage Power Optimization Techniques for

Ultra Deep Sub-micron Multi-level Caches”, Proc. of Intl. Conf. on Computer

Aided Design, ICCAD-2003, pp.14-17, 9-13, Nov. 2003, .

[54] Yen-Jen Chang, Chia-Lin Yang, Feipei Lai, “A Power-aware SWDR Cell for

Reducing Cache Write Power”, in Proc. of the 2003 International Symposium on

Low Power Electronics and Design, 2003.

 138

[55] Balasubramonian, R., Albones, D., Buyuktosunoglu, A., Dwarkadas, S., “Memory

Hierarchy Reconfiguration for Energy and Performance in General-Purpose

Processor Architectures”, Proceedings of 33rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-33, 10-13 Dec., 2000, pp.245-257.

[56] Bhattacharyya, S., Srikanthan, T., Vivekanandarajah, K., “Area and Power Efficient

Pattern Prediction Architecture for Filter Cache Access Prediction in the Instruction

Memory Hierarchy”, in Proc. of IEEE International Symposium on VLSI Design,

Automation and Test, VLSI-TSA , Apr. 2005, pp.345-348.

[57] Nicolaescu, D., Veidenbaum, A., Nicolau, A., “Reducing Power Consumption for

High-Associativity Data Caches in embedded Processors”, Proc. of Design,

Automation and Test in Europe Conference and Exihibition, 2003, pp.1064-1068.

[58] Kandemir, M., Kolcu, I., “Reducing Cache Access Energy in Array-Intensive

Applilcations”, Proceedings of Design, Automation and Test in Europe Conference

and Exhibition, Mar. 2002, pp.1092.

[59] C.Su and A. Despain, “Cache design tradeoffs for power and performance

optimization: a case study”, Proc. of International Symposium on Low Power

Design, 1995.

 139

[60] Johnson Kin, Munish Gupta, William H.Mangione-Smith, “Filtering memory

references to increase energy efficiency”, IEEE Trans. On Computers, Vol.49, No.1,

Jan. 2000, pp. 1-15.

[61] Kamble, M.B. and K. Ghose, “Energy-efficiency of VLSI caches: a comparative

study”, Proc. of International Conference on VLSI Design, 1997.

[62] Smith, A., “Line(block) size choice for CPU caches” IEEE Trans. On Computers, 36,

9, Sept 1987, pp 1063-1075.

[63] Uming Ko, P.T. Balsara, “Characterization and design of a low-power high-

performance cache architecture”, Proceedings of Technical Papers, International

Symposium on VLSI Technology, 1995, pp.235-238.

[64] Hill, M. and Smith, A., “Evaluating associativity in CPU caches”, IEEE Trans. On

Computers, 38, 12, Dec. 1989, pp. 1612-1630.

[65] Wu, C.E., Y. Hsu and Y.H Liu, “A quantitative evaluation of cache types for high-

performance computer systems”, Computers, IEEE Transactions on, Vol. 42, 10, Oct.

1993, pp. 1154-1162.

[66] K. Ghose and M. B. Kamble, “Reducing power in superscalar processor caches

using subbanking, multiple line buffers and bit-segmentation”, Proc. of

 140

International Symposium on Low Power Electronics and Design, pp.70-75, Oct

1999.

[67] J. Kin, M. Gupta and W. H. Mangione-Smith, “The filter cache: an energy efficient

memory structure”, Proc. of the 30th International Symposium on Microarchitecture,

pp. 184-193, Dec 1997.

[68] N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis, “Energy and performance

improvements in microprocessor design using a loop cache”, Proc. of the

International Conference on Computer Design: VLSI in Computers & Processors,

pp. 378-383, Oct 1999.

[69] A. Hasegawa et al, “Sh3: high code density, low power”, in Proc. of IEEE Micro, pp.

11-19, 1995.

[70] K. Inoue, T. Ishihara and K. Murakami, “Way-prediction set-associative cache for

high-performance and low energy consumption”, Proc. of International Symposium

on Low Power Electronic and Design, pp. 273-275, Aug 1999.

[71] R. Panwar and D. Rennels, “Reducing the frequency of tag compares for low power

I-cache design”, Proc. of International Symposium on Low Power Electronic and

Design, pp. 57-62, Aug. 1995.

 141

[72] E. Witchel, S. Larsen, C. Ananian, and K. Asanović, “Direct addressed caches for

reduced power consumption”, Proc. of the 34th International Symposium on

Microarchitecture, Dec 2001.

[73] A. Ma, M. Zhan, and K. Asanović, “Way memorization to reduce fetch energy in

instruction caches”, In ISCA Workshop on Complexity Effective Design, Jul 2001.

[74] Koji Inoue, V. G. Moshnyaga, and K. Murakami, “A history-based I-cache for low-

energy multimedia applications”, Proc. of International Symposium on Low Power

Electronics and Design, 2002.

[75] Peter Petrov, Alex Orailoglu, “Energy frugal tags in reprogrammable I-caches for

application-specific embedded processors”, Proc. of CODES’02, May 6-8, 2002.

[76] Zeshan Chishti, Michael D.Powell, and T.N. Vijaykumar, “Distance Associativity

for High-Performance Energy-Efficient Non-Uniform Cache Architectures”, 36th

Annual IEEE/ACM Intl. Sym. on Microarchitecture (MICRO-36), p.55, Dec. 2003.

[77] D. Albonesi, “Selective Cache Ways: On-Demand Cache Resource Allocation”,

Proc. of the 32nd Annual IEEE/ACM Int. Sym. on Microarchitecture (MICRO 32),

Nov. 1999.

 142

[78] T.L.Johnson and W.H.Hwu. “Run-time Adaptive Cache Hierarchy Management via

Reference Analysis”, In 24th Intr. Sym. on Computer Architecture, pp107-116, Jun.

2000.

[79] Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi, “Reconfigurable

Caches and Their Application to Media Processing”, in Proc. of the 27th Intl. Symp.

On Computer Architecture, Jun. 2000.

[80] Rama Sangireddy, Huesung Kim, and Arun K. Somani, “Low-Power High-

Performance Reconfigurable Computing Cache Architectures”, IEEE Transactions

on Computers, Vol. 53, No. 10, Oct. 2004.

[81] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Memory

Hierarchy Reconfiguration for Energy and Performance in General-Purpose

Processor Architectures”, in Proc. of Int. Symp. on Microarchitecture, 2000.

[82] Chuanjun Zhang, Frank Vahid and Walid Najjar, “A Highly Configurable Cache

Architecture for Embedded Systems”, in Proceedings of the International

Symposium on Computer Architecture, pages 136—146, Jun. 2003.

[83] S.-H. Yang, M. Powell, B. Falsafi, K. Roy and T. Vijaykumar, “An Integrated

Circuit/Architecture Approach to Reducing Leakage in Deep-Submicron High

 143

Performance I-Caches”, Proc. of the 7th Int. Sym. on High Performace Computer

Architecture, Jan. 2001.

[84] S. Kaxiras, Z. Hu, G. Narlikar, and R. Mclellan, “Cache Decay: Ggenerational

Behavior to Reduce Cache Leakage Power”, Proc. of 28th Int. Symp. On Computer

Architecture, 2001.

[85] H. Zhou, Mark C.Toburen, Eric Rotenberg, T.M. Conte, “Adaptive Mode Control: A

Static-Efficient Cache Design”, Proc. of the Intl. Conf. On Parallel Architecture and

Compilation Techniques, pp.61-72, Sep. 2001.

[86] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:

simple techniques for reducing leakage power”, Proc. of the 29th International

Symposium on Computer Architecture, Anchorage, AK, May 2002.

[87] Krishna V. Palem, Rodric M. Rabbah, Wincent J. Mooney III, Pinar Korkmaz and

Kiran Puttaswamy, “Design space optimization of embedded memory systems via

data remapping”, LCTES’02-SCOPES’02,Berlin,Germany, Jue, 2002.

[88] Victor De La Luz, Ismail Kadayif, Mahmut Kandemir and Uger Sezer, “Access

pattern restructuring for memory energy”, IEEE transactions on parallel and

distributed system, Vol. 15, No.4, April 2004.

 144

[89] Zhenlin W., Kathryn S. M., Arnold L. R., Charles C. Weems, “Using the compiler to

improve cache replacement decisions”, Proc. of International Conference on

Parallel Architectures and Compilation Techniques, pp.199, Sep. 2002.

[90] W.Zhang, J.S.Hu, V.Degalahal, M.Kandemir, N.Vijaykrishnan, M.J.Irwin,

“Compiler-directed instruction cache leakage optimization”, Proc. of the 35th

Annual International Symposium on Microarchitecture (Istanbul, Turkey), 2002.

[91] Patterson, D.A., and Hennessy, J.L., “Computer Architecture: a Quantitative

Approach”, Morgan Kaufman, 1996, 2nd Edition.

[92] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations”, Proc. of 27th Int’l Symp. on Computer

Architecture, pp.83-94, 2000.

[93] R. Joseph and M.Martonosi, “Run-Time Power Estimation in High Performance

Microprocessors”, Proc. of Intl. Symp. on Low Powre Electronics and Design,

pp.135-140, 2001.

[94] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An Integrated Cache Timing, Power and

Area Model”, WRL Research Report, Compaq Computer Corporation, Aug. 2001.

[95] Synopsys, http://www.synopsys.com

 145

[96] M. Powell, S-H. Yang, B. Falsafi, K. Roy and T. Vijaykumar, “Gated-Vdd: a Circuit

Technique to Reduce Leakage in Deep-submicron Cache Memories”, Proc. of the

Int. Sym. on Low Power Electronics and Design (ISLPED), 2000.

[97] Y. Ye, s. Borkar, and V. De. “A New Technique for Standby Leakage Reduction in

High Performance Circuits”, in Proc. of IEEE Symp. on VLSI Circuits, pp.40-41,

1998.

[98] Denning, P.J., “Working Sets Past and Present”, IEEE Transactions on Software

Engineering, Vol. SE-6, No. 1, pp.64-84, Jan 1980.

[99] http://www.specbench.org/osg/cup2000

[100] Lee, C., Potkonjak, M., and Mangione-Smith, W. H., “Mediabench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems”, in

Proceedings of the 30th Annual International Symposium on Microarchitecture,

1997.

[101] Doug Burger, Todd M. Austin, “The SimpleScalar Tool Set, Version 2.0”,

University of Wisconsin-Madison Computer Sciences Department Technical Report

#1342, June, 1997.

 146

[102] D. Burger and T.M.Austin, “The SimpleScalar Tool Set, Version 3.0”, Technical

Report, Computer Science Department, University of Wisconsin-Madison, 1999.

[103] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable caches and their

application to media processing”, in Proceedings of 27th International Symposium

on Computer Architecture (ISCA-27), pp. 214-224, June 2000.

[104] D. C. Lee, P. J. Crowley, J.-L. Baer, T. E. Anderson, and B. N. Bershad,

“Execution Characteristics of Desktop Applications on Windows NT”, in

Proceedings of the 25th Annual International Symposium on Computer Architecture,

pp. 27-38, 1998.

[105] A. M. G Maynard, C. M. Donnelly, and B. R. Olszewski, “Contrasting

Characteristics and Cache Performance of Technical and Multi-User Commercial

Workloads”, in Proceedings of the 6th International Conference on Architectural

Support for Programming Languages and Operating System, pp. 145-156, Nov.

1994.

[106] P. Ranganathan, S. Adve, and N. P. Jouppi, “Performance of Image and Video

Processing with General-Purpose Processors and Media ISA Extensions”, in

Proceedings of the 26th International Symposium on Computer Architecture, pp.

124-135, 1999.

 147

[107] H. Kim, A. K. Somani, and A. Tyagi, “A Reconfigurable Multi-funciton

Computing Cache Architecture”, IEEE Trans. Very Large Scale Integration (VLSI)

Systems, Vol. 9, No. 4, pp.509-523, Aug. 2001.

[108] Rama Sangireddy, H. Kim, and Arun K. Somani, “Low-Power High-Performance

Reconfigurable Computing Cache Architectures”, IEEE Trans. On Computers, Vol.

53, No. 10, Oct. 2004.

[109] F. Catthoor, et. al., “Custom Memory Management Methodology: Exploration of

Memory Organization for Embedded Multimedia System Design”, Kluwer, 1998.

[110] P. R. Panda, N. Dutt, and A. Nicolau, “Memory Issue in Embedded Systems-on-

chip: Optimization and Exploration”, Kluwer, 1999.

[111] Z. Ge, H. B. Lim, W. F. Wong, “A Reconfigurable Instruction Memory Hierarchy

for Embedded Systems”, International Conference on Field Programmable Logic

and Applications, Aug. 24-26, 2005.

[112] S. Steinke, et. al., “Assigning Program and Data Objects to Scratchpad for Energy

Reduction”, in Proc. 2002 Design, Automation and Test in Europe Conf. (DATE

‘02), pp.409-416 Mar. 2002.

 148

[113] M. Verma, L. Whmeyer, and P. Marwedel, “Cache-aware Scratchpad allocation

algorithm”, in Proc. 2004 Design, Automation and Test in Europe Conf. (DATE

‘04), pp.21264-21269, Feb. 2004.

[114] Glen Reinman and N. P. Jouppi, “CACTI2.0: An Integrated Cache Timing and

Power Model”, 1999. COMPAQ Western Research Lab.

[115] Tong Sun and Qing Yang, “A Comparative Analysis of Cache Design for Vector

Processing”, IEEE Transactions on Computers, Vol. 48, No. 3, Mar. 1999.

