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Summary

The combination of multiple-input multiple-output (MIMO) transmission with

orthogonal frequency division multiplexing (OFDM) technique is deemed as the

candidate to the upcoming fourth generation (4G) wireless communication systems.

This thesis addresses several initialization issues for MIMO OFDM systems. We

answer the following questions: how to use a few pilot carriers to track the timing

offset (TO) and the carrier frequency offset (CFO), how to apply the blind channel

estimation when the number of the transmit antennas is greater than or equal to

the number of receive antennas, how can we make the blind channel estimation

more robust to parameter uncertainty. All these questions are interesting yet never

answered or partly answered through the existing literatures.

Three main contributions are built from this thesis: First, a CFO tracking

algorithm is developed by utilizing the scatter pilot tones (PT) and the virtual

carriers (VC). The method not only shows the compatibility with most OFDM

standards but also provides improved performance compared to the existing works.

Furthermore, the algorithm is feasible for the synchronization initialization. Second,

a robust re-modulation on MIMO OFDM is proposed such that the channel matrix

possesses exciting properties. For example, the blind channel estimation after

the system re-modulation is robust to the channel order over-estimation, and the

channel estimation identifiability is guaranteed for random channel realization.

Moreover, the method is applicable for MIMO OFDM systems with equal number

of transceiver antennas, which is compatible to existing single-input single-output

(SISO) OFDM standards and the upcoming 4G OFDM standards. Third, by

vi



Summary

applying a non-redundant precoding, it is shown that the blind channel estimation

is applicable even for the case where the number of the transmit antennas is greater

than the number of receive antennas, e.g. multiple-input single-output (MISO)

transmissions. This method exhibits great potential to be applied in the uplink

cellular systems and the currently arising cooperative communications where there

are, in general, multiple relays but one destination only.
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Chapter 1

Introduction

In this chapter, we provide overviews for OFDM systems, MIMO channels, as well

as their integration—MIMO OFDM systems. We also briefly introduce initialization

issues of the OFDM based transmission. In the end, we present our goals and list

major contributions of this project.

1.1 Overview of OFDM

1.1.1 History of OFDM

The history of OFDM could be traced back to the mid 60’s, when Chang presented

his idea on the parallel transmissions of bandlimited signals over multi-channels

[1]. He developed a principle for transmitting messages simultaneously through

orthogonal channel that is free of both inter-channel interference (ICI) and

inter-symbol interference (ISI).

Five years later, a breakthrough was made by Weinstein and Ebert who used

the inverse discrete Fourier transform (IDFT) to perform base band modulation

and used discrete Fourier transform (DFT) for the demodulation [2]. This

model eliminates the need of subcarrier oscillator banks, and the symbols can be

transmitted directly after the IDFT transform rather than being transmitted on

different subcarriers. To this end, the physical meaning of OFDM, namely, signals

1



1.1 Overview of OFDM

are transmitted through different frequency sub-bands, disappears. Nonetheless, the

processing efficiency is greatly enhanced thanks to the development of fast Fourier

Transform (FFT) algorithm. To combat ICI and ISI, Weinstein and Ebert used

both guard space and raised cosine windowing in the time domain. Unfortunately,

such an system could not obtain perfect orthogonality among subcarriers over a

multi-path channel.

Another important contribution was made by Peled and Ruiz in 1980 [3], who

suggested that a cyclic prefix (CP) that duplicated last portion of an OFDM block be

inserted in the front the same OFDM block. This tricky way solves the orthogonality

problem in the dispersive channel. In fact, as long as the cyclic extension is longer

than the impulse response of the channel, the linear convolution between the channel

and the data sequence becomes the cyclic convolution, which implies the perfect

orthogonality among sub-channels. Although this CP introduces an energy loss

proportional to the length of the CP, the orthogonality among sub-channels normally

motivates this loss.

Currently, CP based OFDM is enjoying its success in many applications. It

is used in European digital audio/video broadcasting (DAB, DVB) [4], [5], high

performance local radio area network (HIPERLAN) [6], IEEE 802.11a wireless LAN

standards [7], any may others. In fact, OFDM is also a fundamental technique that

is adopted in the future fourth generation (4G) wireless communications [8], [9].

1.1.2 System Model of OFDM

The basic idea of OFDM is to divide the frequency band into several over-lapping

yet orthogonal sub-bands such that symbols transmitted on each sub-band

experiences only flat fading, which brings much lower computational complexity

when performing the maximum likelihood (ML) data detection. A modern DFT

based OFDM achieves orthogonality among sub-channels directly from the IDFT

and the CP insertion. An example of such a block structure is shown in Fig. 1.1

[10]-[12]. Let K denote the number of the subcarriers in one OFDM block

2



1.1 Overview of OFDM

time

Cyclic Prefix

K

P

Figure 1.1: The OFDM block structure with cyclic prefix.

and si = [si(0), si(1), . . . , si(K − 1)]T denote the signal block consisting of K

symbols to be transmitted during the ith OFDM block. The time domain signal

xi = [xi(0), xi(1), . . . , xi(K − 1)]T is obtained from the IDFT of si, which could be

expressed as

xi = FHsi (1.1)

where F is the normalized DFT matrix with the (a, b)th entry given by

1√
K

e
j2π(a−1)(b−1)

K . Assume the channel delay τh, after being normalized by the

sampling interval Ts, is upper bounded by L. Throughout the whole thesis we only

consider the constant channel during one frame transmission1, so the equivalent

discrete channel vector is written as h = [h(0), h(1), . . . , h(L)]T . The length of CP,

denoted by P , should be greater than or equal to L. After the CP insertion, the

overall OFDM block of length Ks = K + P is expressed as

ui = [xi(K − P ), . . . , xi(K − 1), xi(0), . . . , xi(K − 1)]T = Tcpxi (1.2)

where Tcp is the corresponding CP inserting matrix. The transmitted frame is

composed of M consecutive OFDM blocks u0, . . . ,uM−1. A linear convolution

between the frame and the channel is received at the destination, in the same time

1One frame consists of the heading and the information blocks.

3



1.1 Overview of OFDM
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Figure 1.2: A based band OFDM system model.

with additive Gaussian white noise (AWGN) generated by thermal vibrations of

atoms in antennas, shot noise, black body radiation from the earth or other warm

objects.

A typical base band OFDM system diagram is shown in Fig. 1.2.

Mathematically, the ith received block is given by

vi = H0ui + H1ui−1 + wi (1.3)

where wi is an Ks × 1 vector whose elements represent the AWGNs of variance σ2
n

and

H0 =




h(0) 0 0 . . . 0
... h(0) 0 . . . 0

h(L) . . .
. . . . . .

...
...

. . . . . .
. . . 0

0 . . . h(L) . . . h(0)




, H1 =




0 . . . h(L) . . . h(0)
...

. . . 0
. . .

...

0 . . .
. . . . . . h(L)

...
. . .

...
. . .

...

0 . . . 0 . . . 0




.

(1.4)

The second term H1ui−1 forms the so called inter-block interference (IBI). To remove

the IBI, the first P elements in vi is discarded and the remaining part is denoted by

yi = Hxi + ni = HFHsi + ni (1.5)

4



1.1 Overview of OFDM

where ni is the last K elements in wi and

H =




h(0) . . . 0 h(L) . . . h(1)
...

. . .
...

...
. . .

...

h(L− 1)
. . . h(0) . . . . . . h(L)

h(L)
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

...

0 . . . h(L) h(L− 1) . . . h(0)




(1.6)

is the corresponding circulant channel matrix. The ML detection selects the optimal

estimate ŝi to minimize the following objective function:

ŝi = arg min
b
‖yi −HFHb‖2 (1.7)

where b is the trial variable whose elements are selected from the signal constellation.

Generally, a computationally expensive K-dimensional search should be performed

to arrive at the optimal detection.

It is known that any circulant matrix can be diagonalized by the normalized

DFT matrix F [10]; namely, H = FHΛF where Λ is a diagonal matrix with the kth

diagonal element h̃(k). Here, h̃(k) is the kth element of h̃, and h̃ is the K-point

DFT of h. Applying the normalized DFT on yi gives

ri = Fyi = Λsi + ñi︸︷︷︸
Fni

. (1.8)

Note that ñi is a K × 1 vector whose elements are also AWGNs of the variance σ2
n.

To see this, we can compute the covariance matrix of ñi as

E{ñiñ
H
i } = E{Fnin

H
i FH} = σ2

nE{FFH} = σ2
nI. (1.9)

Since Λ is a diagonal matrix, the frequency selective channel is converted to K

parallel flat fading subchannels for each element si(k) with the equivalent channel

coefficient h̃(k). In this case, the ML detection of si(k) could be separately obtained

from

si(k) = arg min
b
|ri(k)/h̃(k)− b|2. (1.10)

5



1.2 Overview of MIMO System

This low- complexity one-step ML detection is a major advantage of using OFDM

techniques.

1.2 Overview of MIMO System

Traditionally, multiple antennas are placed at one side of the wireless link to perform

the interference cancelation through beamforming and to realize the diversity

again or the array gain through different ways of combining. It is recently

found that, adopting multiple antennas at both sides of the link offers additional

benefits—spatial multiplexing gain, which is consistent with the direct goal in

developing next-generation wireless communication systems, that is, to increase

both the link throughput and the network capacity. Years early, it is normally

considered that high data rate transmission can only be achieved by using more

bandwidth. However, due to spectral limitations, it is often impractical or sometimes

very expensive to increase the bandwidth. In this case, using multiple transmit and

receive antennas for spectrally efficient transmission is an alternative but a very

attractive solution. Meanwhile, MIMO technology can also enhance the link quality

by introducing diversity scheme, e.g., space time coding (STC).

The MIMO channel has multiple links and operates on the same frequency band.

One typical MIMO channel with Nt transmit antennas and Nr receive antennas is

shown in Fig. 1.3. For ease of the illustration, we consider flat fading channel between

different transceiver antennas and denote the corresponding channel coefficient as

hpq for p = 1, . . . , Nt, q = 1, . . . , Nr. The transmitted signal during the ith time

slot is denoted by the Nt × 1 vector si = [si(1), si(2), . . . , si(Nt)]
T and the received

signal is ri = [ri(1), ri(2), . . . , ri(Nr)]
T . Considering also the AWGN at the receiver,

ri could be represented as

ri = Hsi + ni (1.11)

where H is the Nr × Nt channel matrix with the (q, p)th entry given by hpq and

ni = [ni(1), ni(2), . . . , ni(Nr)]
T is the Nr × 1 vector of noise whose elements have

6
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Figure 1.3: Block diagram of MIMO flat fading channels.

variance σ2
n. Note that some notations are reused from the previous section due to

the limited size of the alphabet. The capacity for such a MIMO channel has been

derived by [13], [14]:

C = max
Rs

log det(I + HRsH
H/σ2

n) (1.12)

where Rs = E{sis
H
i } is the covariance matrix of si. The optimal Rs can be obtained

from a water-filling procedure by considering the power constraint tr(Rs) ≤ Ps,

where Ps is the maximum power consumed at the transmitter [13].

In fact, MIMO has gained its application in various standards. Table. 1.1

provides an overview of all current MIMO standards and their technologies.

1.3 MIMO-OFDM system

The signaling schemes in MIMO systems can be roughly grouped into two categories

[15]: spatial multiplexing [16] which realizes the capacity gain, and STC [17] which

improves the link reliability. Nonetheless, most MIMO systems possess both the

spatial multiplexing and the diversity gain. A thorough study on the trade-off
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1.3 MIMO-OFDM system

Table 1.1: Current MIMO standards and the corresponding technologies.

Standard Technology

WLAN 802.11n OFDM

WiMAX 802.16-2004 OFDM/OFDMA

WiMAX 802.16e OFDMA

3GPP Release 7 WCDMA

3GPP Release 8 (LTE) OFDMA

802.20 OFDM

802.22 OFDM

between these two types of gains in flat fading MIMO channels is provided in [18].

It is noted that most performance studies, transmission schemes, and STC

designs for MIMO are proposed under flat fading. However, practical wireless

communications always contain multi-path fading, where the ISI degrades the

system performance substantially and the ML detection can only be achieved with

heavy computational burden. Due to the capability of the OFDM that could covert

the time domain frequency selective channel to multiple flat fading subchannels,

the combination of MIMO and OFDM becomes a natural solution to combat the

multi-path fading and enhance the transmission throughput. Therefore, MIMO

OFDM has attracted lots of attention and has been adopted in most current and

future multi-antenna standards, as can be seen from Tab. 1.1.

Fig. 1.4 shows the MIMO OFDM system model that will be considered

throughout the whole thesis. It is seen that MIMO OFDM is a straight combination

of MIMO system and OFDM technique.

Assume that the equivalent discrete channel models for different links are

expressed as hpq = [hpq(0), . . . , hpq(Lpq)]
T , where Lpq is the maximum channel delay

between the pth transmit antenna and the qth receive antenna. Notations used

here are basically the same as those used in subsection 1.1.2 but with the antenna

index appearing on the superscript of different notations. For example, the time
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Figure 1.4: A base band MIMO-OFDM System.

domain signal block after IDFT from the pth antenna is x
(p)
i and the one after the

CP insertion is u
(p)
i . The received signal block on the qth receiver, after the removal

of CP, is expressed as

y
(q)
i =

Nt∑
p=1

Hpqx
(p)
i + n

(q)
i (1.13)

where n
(q)
i is the noise vector on the qth antenna during the ith signal block and

Hpq is the circulant matrix built from hpq. The normalized DFT of y
(q)
i is

r
(q)
i = Fy

(q)
i =

Nt∑
p=1

Λpqs
(p)
i + ñ

(q)
i︸︷︷︸

Fn
(q)
i

(1.14)

where ñq,i is the noise term after the normalized DFT and Λpq is the diagonal

matrix whose diagonal elements are the K-point DFT of hpq, denoted as h̃pq. Due

to the orthogonality among subcarriers, the signals on each subcarrier experience

independent fading channel from each other. Therefore, we can build K different
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1.4 System Initialization

signal vectors as

ξk = [r
(1)
i (k), r

(2)
i (k), . . . , r

(Nr)
i (k)]T

=




h̃11(k) h̃21(k) . . . h̃Nt1(k)

h̃12(k) h̃22(k) . . . h̃Nt2(k)
...

...
...

...

h̃1Nr(k) h̃2Nr(k) . . . h̃NtNr(k)




︸ ︷︷ ︸
Ξk




s
(1)
i (k)

s
(2)
i (k)

...

s
(Nt)
i (k)




︸ ︷︷ ︸
ζk

+




ñ
(1)
i (k)

ñ
(2)
i (k)

...

ñ
(Nr)
i (k)




︸ ︷︷ ︸
ηk

. (1.15)

Therefore, the MIMO frequency selective fading channels are converted into K

MIMO flat fading channels. Moreover each ζk can be independently detected, since

the new nose vectors ηk are independent across the index k. In this sense, the

computational complexity is greatly reduced. The sphere decoding (SD) technique

can be applied with the expected detection complexity O(N ec
t ), where ec is some

constant related with the signal-to-noise ratio (SNR), the size of the lattice, and

the number of the transceiver antennas. The SD algorithm has been intensively

discussed in the literatures [19], [20] and the references therein.

1.4 System Initialization

1.4.1 Synchronization

Synchronization is the most important task for any digital communication system.

To recognize it, consider a system with differential transmission and without any

channel coding or source coding. Differential transmission eliminates the need of

the channel estimation and introduces 3 dB loss in terms of SNR. Additionally,

excluding coding introduces more SNR loss. Yet, the system could still work under

high SNR if the perfect synchronization can be achieved. On the contrary, without

the synchronization, the system fails even if the perfect channel knowledge is known

and the most powerful coding is applied.

Synchronization normally includes time synchronization and frequency

synchronization, of each there are both the requirements for initial estimation and
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1.4 System Initialization

x x

K

Figure 1.5: Preamble structure of most OFDM schemes.

tracking. Basically, initial estimation counts on the transmitter sending preamble

to the receiver at the start of the transmission, whereas tracking requires sending

several pilots during the data transmission.

In MIMO systems, antennas are close to each other on any side of the link and

usually have a unique oscillator and sampling clock. As a result, the timing offsets

(TO) and the carrier frequency offsets (CFO) between different transceiver pairs are

normally the same [21]- [24]. In view of this, the synchronization for MIMO OFDM

makes no difference from that for single-input single-output (SISO) OFDM.

Preamble

Most wireless communication systems are packet-switched systems with a random

access protocol. This essentially indicates that a receiver has no a priori knowledge

about the arrival time of any packet. The random nature of the arrival times and the

high data rates require the synchronization to be completed shortly after the start

of the reception of a packet. To facilitate “quick” synchronization, each data packet

is equipped with a known sequence in the front, called the preamble. The preamble

is designed to provide information for a good packet detection, synchronization, as

well as channel estimation.

Channel estimation for the MIMO system normally requires orthogonal

sequences for all transmit antennas to be included as parts of the preamble in order

to achieve the optimal estimation [25]. To perform synchronization, a periodical

structure in the preamble is preferred since the phase rotation between time-delayed

versions of the same symbol is a measure for the CFO and this phase rotation does
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x x

y

h h

t

Figure 1.6: Receiving the preamble at the destination.

not affect the power of the received signals such that the frame detection and the

TO estimation can be performed [26]. Therefore, many preambles consist of at

least one concatenation of two identical training sequences per transmit antenna.

Furthermore, to make the channel estimation less vulnerable to ISI, a CP with

the length greater than the channel delay spread is added. A typical structure of

the preamble is shown in Fig. 1.5. For different OFDM standards, there may exist

minor alteration on the preamble structure. For example in IEEE 802. 11a, ten short

identical training sequences are placed before two long identical training sequences.

Frame Detection and Time Synchronization

The task of the frame detection is to identify the preamble in order to detect the

arrival of a packet. The frame detection algorithm can also be used as a time

synchronization algorithm, since it inherently provides a rough estimate of the

starting point of the packet.

Perhaps the most widely used algorithm is the one proposed by Schmidl and

Cox in their early work [26]. The algorithm is based on the correlation between

the two identical parts of the preamble. Define the received signal sequence as

y = [y(0), y(1), . . . , y(M)]T as shown in Fig. 1.6. The timing metric could be written

as

M(d) =
|∑K−1

k=0 y∗(d + k)y(d + k + K)|2∑K−1
k=0 |y(d + k + K)|2 . (1.16)
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1.4 System Initialization

If M(d) is greater than a pre-set threshold, the packet is supposed to be detected.

Moreover, the value of d that maximizes the matrix M(d) is deemed as the first

symbol in the first training sequence.

Frequency Synchronization

The frequency synchronization mainly targets to correct the CFO, which is caused

by the difference between oscillator center frequency at the transmitter and that at

the receiver, or by the Doppler effect. The CFO can be estimated using the phase

of the complex correlation between the two consecutive received training symbols

[26]. A simple MIMO extension of [26] was proposed in [27], where it is assumed

that there is a unique oscillator at either side of the MIMO system. This is a valid

assumption if the antennas are co-located. The estimated CFO is then given by

φ =
1

2πK
∠

(
K−1∑

k=0

y∗(dop + k)y(dop + k + K)

)
(1.17)

where dop is the optimal result from (1.16). It is also noted that the maximum

estimation range of the CFO is limited to (−0.5/K, 0.5/K] which equals one

subcarrier spacing, because the angle that can be estimated without phase ambiguity

is limited to (−π, π]. A larger range can be achieved by slightly changing the

structure of the preamble, for example short periodical training are also adopted

in IEEE 802.11a.

Frequency Offset Tracking

After the rough estimation by the preamble, the residue TO and the residue CFO

usually lie in tolerable regions. Normally, the residue TO will not change from time

to time if the sampling clock frequency is precise enough. However, the residue CFO

may vary slowly due to the center frequency drifting of the oscillator that is caused

by temperature changes, aging, and other effects [28]. Therefore, the residue CFO

is not a static value but a rather random or time-varying process. Although this

drift is slow relative to the symbol block period, it may hurt the performance in the
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1.4 System Initialization

long term viewpoint. Therefore, the residue CFO must be tracked and compensated

frequently during the data transmission. The training based methods that require

sending continuous training symbols cannot deal with this issue well due to its

bandwidth inefficiency. It is then better to design new approaches that can reliably

track the frequency varying from either the pilot tone (PT) or the bind ways.

1.4.2 Channel Estimation

Channel estimation is one of the most important components for almost all the

wireless communication systems. Knowing the channel state information (CSI) can

not only facilitate the data detection but is also beneficial in power allocation and

design of the capacity achieving schemes. Non-coherent detection, as an alternative,

alleviates the requirement of channel estimation but suffers from 3 dB power loss

compared to the coherent detection. In addition, not all transmission schemes have

corresponding non-coherent detection techniques available. Consequently, channel

estimation have been extensively studied over last two decades [29]-[49].

Training Based Channel Estimation

Training based channel estimation is adopted in almost all the current standards and

applications, where either the preamble or the pilot are transmitted to help training

the channels [29]-[34]. The advantages of the training based channel estimation is

its capability to provide accurate estimation within a short period and require very

low complexity. We give an example on training based channel estimation in SISO

OFDM system. Suppose the training sequence is s = [s(0), s(1), . . . , s(K − 1)]T

and its normalized IDFT is x. With perfect synchronization, the received signals

y and its DFT r = [r(0), r(1), . . . , r(K − 1)]T follow the similar expression in (1.5)

and (1.8), respectively. Either the time domain channel vector h or the frequency

domain vector h̃ can be estimated. To achieve lower complexity, h̃ is often chosen

to be estimated and the ML channel estimation is given by

h̃(k) = r(k)/s(k), k = 0, . . . , K − 1. (1.18)
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1.4 System Initialization

If the channel length or its upper bound is known as L, the denoising approach can

be applied to increase the channel estimation accuracy [50]:

h̃ = FF†(:, 1 : L + 1)h̃, (1.19)

where F(:, 1 : L + 1) is the K × (L + 1) matrix that contains the first L + 1 columns

of F.

Blind Channel Estimation

Although training based channel estimation can provide reliable channel estimates,

the spectrum efficiency is decreased since training should be transmitted from time

to time or at least at every start of one packet. An alternative solution is the so

called blind channel estimation which has received considerable attention during

the past decade [35]-[49]. Blind channel estimation normally relies on the statistical

information of transmitted signals, e.g., whiteness, circularity, etc. Although blind

method has higher spectrum efficiency, it normally requires a longer observation of

the received signals as well as a higher computational complexity. Therefore, blind

method is not suitable for relatively fast fading channels. Nonetheless, for next

generation wireless communications that aim at high data rate transmission, the

channel could be reasonably considered constant during one packet transmission.

The first effort in blind channel estimation mainly focused on the higher-order

statistics of the received symbols [35]-[38]. However, this procedure is

computationally expensive and requires too long observation of data blocks. A

major breakthrough was accomplished in [39] where a method allowing the blind

identification of the channels using only second-order statistics (SOS) was proposed.

Following this work, a promising family of blind channel estimation, so called

subspace-based blind channel estimation algorithm (SS) was developed in [40]-[49]

for either SISO, or single-input multi-output (SIMO) systems. In SS method, the

observation space is separated into signal and noise subspace by applying eigen-value

decomposition (EVD) on the covariance matrix of the received signals. By exploiting

the inherent structure of the channel matrix, the channel vector can be estimated
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from the noise subspace up to a complex scalar ambiguity. This ambiguity can

be solved either by transmitting several training symbols [46], forming the so called

semi-blind channel estimation, or by exploiting special symbol structure in the block

transmissions [49].

1.5 Research Objectives and Main Contributions

In this thesis, we will develop robust CFO tracking algorithms as well as the blind

channel estimation algorithms for MIMO-OFDM systems.

In terms of CFO tracking, we target at a new algorithm that could overcome the

drawbacks of the existing methods, e.g., low accuracy, small estimation range, partial

utilization of the existing resources, etc. We first develop a robust frequency tracking

algorithm using PTs that are issued in almost all the standards and are embedded in

each OFDM block. Identifiability of this pilot based algorithm is studied for the noise

free case, and a constellation rotation strategy is proposed to eliminate the CFO

ambiguity. To further improve the performance accuracy and enhance the algorithm

robustness to the CFO ambiguity, we consider the combination from the virtual

carriers (VC), that are also possessed in practical OFDM standards. For example,

in IEEE 802.11a standard, the subcarriers with indices {0, 27, 28, . . . , 36, 37} are set

as VCs, either to avoid the aliasing effect [51] or to be reserved for future use. The

CFO estimation algorithm by exploiting VCs has been developed in [52]-[54]. Then,

a weighted algorithm is proposed by exploiting both PTs and VCs. We show that

in the weighted algorithm, the PT part increases the estimation accuracy, while the

VC part reduces the outlier probability. Moreover, we derive the asymptotic mean

square error (MSE) of our proposed algorithm, and the optimal weight is given in

a closed-form. It turns out that, the proposed frequency tracking algorithm is also

applicable to the synchronization initialization since the algorithm itself does not

require the knowledge of the CSI and can provide the full range CFO estimation.

In terms of blind channel estimation, we develop a new SS algorithm that

possesses the following advantages: robustness to channel order over-estimation,
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guaranteeing the channel identifiability, applicability to the scenario where the

number of the receive antennas is no more than the number of the transmit antennas

(Nr ≤ Nt), etc. Note that the last property is not possessed by the traditional SS

algorithm. We first apply a re-modulation to the received signals such that the

system model is converted to the one similar to zero-padding (ZP) based MIMO

OFDM [55], which renders CP-OFDM all the advantages of ZP-OFDM. Besides,

CP-OFDM is compatible to most existing OFDM standards or the further 4G

MIMO-OFDM standards [8], [9]. We also provide thorough performance analysis

for CP-OFDM and it is shown that the asymptotical channel estimation MSE

agrees with the approximated asymptotical Cramér-Rao Bound (CRB). Since the

re-modulation based SS algorithm is not applicable for the case with Nr < Nt, we

further develop a non-redundant linear precoding based algorithm. The assumption

that the symbols sent from different transmitters are independent and identically

distributed (i.i.d.) allows this method to yield acceptable performance at low SNR

region and to work even for the multiple-input single-output (MISO) transmission

scenario. The method meets an error floor at high SNR which shows a reasonable

trade-off as the method itself overcomes the very difficulty on the requirement of the

number of the transceiver antennas. It is shown from the simulation that, acceptable

performance can still be achieved with relatively short observation time. We also

propose an approach to eliminate the multi-dimensional ambiguity that is known to

exist for blind channel estimation under multi-transmitter scenarios.

1.6 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, several existing CFO tracking

algorithms for OFDM systems are introduced. The preliminary knowledge of SS

method is also introduced in this chapter. In Chapter 3, the newly derived robust

CFO tracking algorithm and its theoretical performance analysis are presented. In

Chapter 4, we develop the system re-modulation to convert the CP based MIMO

OFDM into a similar model of ZP based MIMO OFDM. Several analytical results
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related to the channel estimation error are also derived. Chapter 5 provides the

non-redundant precoding based channel estimation for MIMO OFDM systems,

which is applicable for the case Nr ≤ Nt. Finally, the concluding remarks are

drawn in Chapter 6 and proofs of theorems are provided in Appendices.
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Chapter 2

Review of Existing Techniques

In this chapter, we briefly introduce some current CFO tracking algorithms for

OFDM systems. We point out that all the existing methods have their own

drawbacks and may fail the CFO tracking under certain scenario. We then provide

the preliminary knowledge of SS method and discuss the difficulties on extending

the SS method to MIMO OFDM systems.

2.1 Convectional CFO Tracking Algorithms

The CFO tracking algorithms can be classified into three categories, i.e., PT-aided,

CP-based, and VC-based schemes. PT-aided approach estimates CFO by

periodically inserting pilots on particular subcarriers and correlating the received

symbols with known pilots. CP-based method utilizes the periodicity created by

the insertion of the CP. VC-based scheme, on the other side, makes use of the

orthogonality between VCs and data modulated subcarriers. The principles of these

three methods have been presented in [56]-[58], [52].

2.1.1 System Model

The notations from subsection 1.1.2 are adopted here. Since the CFO is in presence,

the system model (1.5) should be modified accordingly. Denote the index sets
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CP Data
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Figure 2.1: Structure of the received OFDM block.

for PTs and VCs as P and V , respectively. The transmitted symbol on the kth

subcarrier in the ith OFDM block is

si(k) =





pi(k) ∈ Cp k ∈ P
0 k ∈ V
di(k) ∈ Cd otherwise

, k = 0, . . . , K − 1 (2.1)

where di(k) is the information symbol from the constellation Cd, and pi(k) is the

pilot symbol from the constellation Cp.

At the receiver, there usually exist both CFO and TO, which must be estimated

and compensated before the subsequent channel estimation and data detection. For

simplicity we assume perfect time synchronization. Suppose the frequency offset

is ∆f and its normalization with respective to 1/Ts is φ = ∆fTs. The received

baseband signals before and after the CP removal are given by

vi = ej2πφ((i−1)Ks)Ψ(φ)(H0ui + H1ui−1) + wi (2.2)

yi = ej2πφ((i−1)Ks+P )Ω(φ)Hxi + ni (2.3)

respectively, where Ψ(φ) and Ω(φ) have the forms

Ψ(φ) = diag
{
1, ej2πφ, . . . , ej2πφ(Ks−1)

}
(2.4)

Ω(φ) = diag
{
1, ej2πφ, . . . , ej2πφ(K−1)

}
. (2.5)

The structure of the received OFDM block is shown in Fig. 2.1, where it is

divided into three regions: A, B, C. Symbols in region A are corrupted by IBI from
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2.1 Convectional CFO Tracking Algorithms

the previous block. Region B represents the part in CP that is IBI free. Region C

denotes information symbols yi.

2.1.2 PT-Based Algorithm

Let ri = [ri(0), ri(1), . . . , ri(K − 1)]T denote the K-point normalized DFT of yi.

Then

ri(k)e−j2πφ((i−1)Ks+P ) =
1

K

K−1∑
v=0

h̃(v)si(v)e
j(K−1)π(v+Kφ−k)

K
sin(π(v + Kφ− k))

sin
(

π(v+Kφ−k)
K

) + ñi(k)

=
si(k)h̃(k)ej(K−1)πφ sin(πKφ)

K sin(πφ)
+ ICIi(k) + ñi(k) (2.6)

where

ICIi(k) =
K−1∑

v=0, v 6=k

h̃(v)si(v)e
j(K−1)π(v+Kφ−k)

K sin π(v + Kφ− k))

K sin
(π(v+Kφ−k)

K

) (2.7)

is the inter-carrier interference (ICI). For noise free case and φ = 0, ri(k) = h̃(k)si(k).

A non-zero φ both introduces ICI and reduces the effective signal power by a factor

of ej(K−1)πφ sin(πKφ)
K sin(πKφ)

.

For a slow fading channel1, the channel in ν = 2 consecutive blocks can be

assumed static. Based on this fact, the Classen&Meyr’s method [56] is developed by

using a few number of pilots. In fact, Classen&Meyr’s method assumes a sufficiently

small φ and a not high SNR, so that the ICI is much smaller than the noise and can

thus be ignored. The CFO is then estimated from

φ̂ =
1

2πKs

∠
(∑

k∈P
r∗i (k)ri+1(k)/

(
s∗i (k)si+1(k)

)
)

. (2.8)

Obviously, (2.8) is valid only when φ ¿ 1
Ks

. Therefore the coarse estimation during

the CFO acquisition stage is crucial to the performance of (2.8). There also exist

other problems: 1) the estimation accuracy of (2.8) is limited by ignoring the ICI;

2) At high SNR, since the ICI term is comparable to or even larger than the noise,

the approximation in (2.8) is not valid any more.

1Most frame based transmissions assume a slow fading channel, e.g., IEEE 802.11a [7].
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2.1.3 CP-Based Algorithm

Since CP is the copy of the last P data samples of the OFDM block, it is expected

that P −L symbols in the region B of Fig. 2.1 should be the same as the last P −L

symbols in the region C under the zero CFO case, namely,

vi(L + t) = vi(K + L + t) (2.9)

for t = 1, . . . , P − L. However, with the existence of CFO, the relationship changes

to

vi(L + t) = e−j2πKφvi(K + L + t). (2.10)

Based on this observation, CP-based CFO tracking has been developed in [57], [58],

which will also be named as Beek’s method, as

φ̂ =
1

2πK
∠

(
P−L∑
t=1

v∗i (L + t)vi(K + L + t)

)
. (2.11)

The advantages of the CP-based algorithm is its capability of tracking CFO within

only one OFDM block whereas the PT-based algorithm requires two consecutive

OFDM blocks. However, CP-based algorithm also exhibits many drawbacks: 1) The

estimation range is still as small as one subcarrier spacing; 2) The knowledge of the

channel length is crucial to the performance; say if L = P , then the CP-based

algorithm cannot work at all.

2.1.4 VC-Based Algorithm

The algorithm purely relying on VCs has been studied in [52]-[54]. It is proven in

[53] that, the ML CFO estimation based only on VCs is

φ̂ = min
ε

∥∥FH
v Ω(−ε)yi

∥∥2
(2.12)

where ε is the trial variable and Fv is the K × |V| matrix whose columns are

constructed from fk, k ∈ V . The identifiability of (2.12) has been fully studied

in [59].
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VC-based algorithm exhibits many advantages: 1) The CFO tracking can be

accomplished after receiving only one OFDM block; 2) The CFO estimation range

reaches its maximum, i.e. (−0.5, 0.5]. Therefore, it can also be used for CFO

acquisition at the start of the packet transmission; 3) The performance is not

affected by the channel length. However, the bottle neck of this method is its

high computational complexity since one dimensional searching of ε over the range

(−0.5, 0.5] is normally required. Although the complexity can be reduced by the

polynomial rooting [54], it is still very high compared to the PT- or the CP-based

method. Nonetheless, it is fine to use VC-based CFO tracking if the adaptive scheme

is adopted, because after the CFO acquisition the residue CFO is not big and the

local minimal converged from (2.12) is the true optimal with very high probability.

Another drawback of VC-based algorithm is its lower accuracy, since this method is

only a type of blind algorithm.

2.2 Conventional Subspace Based Channel

Estimation Method

2.2.1 The Algorithm

In this subsection, we introduce the SS method for single transmit antenna systems,

i.e. SISO, SIMO [40]. To provide a general discussion, we consider the pure

mathematical approach and the system model is written as

ri = Hsi + ni (2.13)

where ri is the ith received signal block of dimension N×1; si is the ith transmitted

signal block of dimension M × 1; ni is the N × 1 noise vector whose elements are

AWGNs with variance σ2
n; H is the channel matrix whose elements are chosen from

the multi-path channel vector h = [h(0), h(1), . . . , h(L)]T and should be constant

over a certain period. As will be seen later, the structure of H is different for

different systems. Nevertheless, the mth column of H could be represented as Cmh
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2.2 Conventional Subspace Based Channel Estimation Method

where Cm is some appropriate matrix of dimension N × (L + 1).

The covariance matrix of ri is then calculated from

Rr = E{rir
H
i } = HRsH

H + σ2
nI (2.14)

where Rs = E{sis
H
i } is the covariance matrix of si.

The subspace algorithm requires N > M and Rs should also be a full rank

matrix. The latter requirement is generally fulfilled since fully correlated symbols

are seldom transmitted. Then, the term HRsH
H in (2.14) can be eigen-decomposed

as

HRsH
H = U∆UH =

[
Us Uo

]

∆s 0

0 0





UH

s

UH
o


 (2.15)

where the M×M diagonal matrix ∆s contains M non-zero eigen-values of HRsH
H

and the N ×M matrix Us spans the so called signal-subspace. In turn, the N ×
(N−M) matrix Uo spans the noise-subspace. It is not hard to know that H and Us

span the same subspace and the noise subspace is orthogonal to the signal subspace.

Hence, the following equation holds:

UH
o H = 0. (2.16)

Since the noise is AWGN, the covariance matrix Rr is written as

Rr = HRsH
H + σ2

nI = U∆UH + σ2
nUUH

= U(∆ + σ2
nI)U

H =
[
Us Uo

]

∆s + σ2

nI 0

0 σ2
nI





UH

s

UH
o


 . (2.17)

From the uniqueness of the EVD, U is also the eigen-matrix of Rr. Therefore, even

at the noisy case, U of HRsH
H could still be obtained from the EVD of the signal

covariance matrix Rr. However, Uo should be obtained from the columns of U that

corresponds to the eigen-values σ2
n. Practically we can only construct the signal

covariance matrix from the sample covariance matrix, namely:

R̂ =
∑

i

rir
H
i . (2.18)
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Then Uo should be obtained from the columns of U that corresponds to the N −M

smallest eigen-values.

From (2.16), there is

UH
o Cmh = 0, m = 1, . . . , M. (2.19)

Define

K = [CH
1 Uo,C

H
2 Uo, . . . ,C

H
MUo]. (2.20)

The channel vector can be obtained from

KHh = 0. (2.21)

Therefore, the estimate of h, denoted as ĥ is a basis vector of the null space of KH .

It is important that the dimension of null space of KH is one such that ĥ is

different from h by only an unknown complex scalar, namely ĥ = αh. If this is

satisfied, we call that the identifiability of the channel is guaranteed. The unknown

scalar α exists in common to all the blind channel estimation method and could

be removed by transmitting a few training symbols. The identifiability study is

one of the most hardest problems for SOS based channel estimation. Different

consideration should be assumed for different systems. If the identifiability is not

guaranteed, the blind channel estimation would be meaningless.

2.2.2 Difficulties on Extending SS to MIMO OFDM

It is not such straightforward to extend SS method to MIMO OFDM systems. First

of all, if the number of the receive antennas is smaller than or equal to the number

of the transmit antennas, the channel matrix in MIMO OFDM is square or fat,

and the dimension of the noise subspace is zero. In other words, it is impossible

to obtain the channel vector from the SS method. Unfortunately, this undesirable

scenario also includes the popular SISO OFDM, see equation (1.5). Different types

of re-modulation on SISO OFDM have been proposed in [43], [45], [47], [48]. In

[43], the existence of VCs are utilized to construct the noise subspace. However, the
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method requires concatenating more than two OFDM blocks and yields a covariance

matrix with very large dimension. Consequently, the computational complexity is

increased. Besides, VCs are reserved for future use and purely counting on the

existence of VCs may not be agreeable in future applications. In [45], an OFDM

scheme without CP is proposed. The method not only destroys the orthogonality

among subcarriers but also requires concatenation of several OFDM blocks. The

concatenation of two OFDM blocks are also suggested in [47] where the CP between

two OFDM blocks is used to construct the noise subspace. Besides increasing the

computational complexity, this scheme is not well studied on the aspect of the

identifiability issue. Moreover, how to extend this scheme to MIMO OFDM is not

such straightforward. The redundant precoding based channel estimation combined

with the space-time coding is proposed in [48]. Since the redundant precoding is

applied, the transmission efficiency will be reduced.

A new OFDM scheme is proposed in [55] where, instead of using CP, consecutive

zeros are padded at the end of each OFDM block. This scheme is called ZP-based

OFDM as opposed to the traditional CP based OFDM. ZP OFDM exhibits many

advantages. For example, it is applicable to MIMO system when Nt ≥ Nr; it is

robust to channel order over-estimation, its channel identifiability is guaranteed,

etc. However, a major drawback that prevents ZP OFDM from wide application

is its incompatibility to most existing OFDM standards [4]-[7] or the further 4G

MIMO OFDM standards [8], [9].

2.3 Cramér-Rao Bounds

The Cramér-Rao bound (CRB) is a lower bound on the error variance of the best

estimator for estimating a specific set of parameters with the given system. Denote

the unknown parameters of a given system by a length-χ vector ϑ = [ϑ1, ϑ2, . . . , ϑχ]T

and the estimate of ϑ is denoted by ϑ̂. A lower bound on the accuracy of any
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2.3 Cramér-Rao Bounds

unbiased estimator is expressed as

Cov(ϑ̂) = E{(ϑ̂− ϑ)(ϑ̂− ϑ)T} < CRB(ϑ) (2.22)

where “<” is interpreted as that the matrix
(
Cov(ϑ̂)− CRB(ϑ)

)
is positive

semi-definite. The expression of CRB is given by the inverse of the Fisher

Information Matrix (FIM) J(ϑ), that is

CRB(ϑ) = J−1(ϑ). (2.23)

Let the noiseless measurement be denoted by ȳ(ϑ) and the noisy measurement be

denoted by r̄, respectively. The FIM is defined by

J(ϑ) = E

{(
∂lnp(r̄; ϑ)

∂ϑ

)(
∂lnp(r̄; ϑ)

∂ϑ

)T
}

(2.24)

where p(r̄; ϑ) is the probability density function (PDF) of r̄ and the derivative is

evaluated at the true parameters. Assuming a zero mean white Gaussian noise with

covariance matrix σ2
nI, the probability density function (PDF) for r̄ is given by

p(r̄; ϑ) =
1

(2πσ2
n)N/2

exp

[
− 1

2σ2
n

(r̄− ȳ(ϑ))T (r̄− ȳ(ϑ))

]
(2.25)

where N is the length of the vector r̄. Here, the derivative of the scalar function

p(r̄; ϑ) to the vector ϑ is defined as the vector

∂lnp(r̄; ϑ)

∂ϑ
=

[
∂lnp(r̄; ϑ)

∂ϑ1

,
∂lnp(r̄; ϑ)

∂ϑ2

, . . . ,
∂lnp(r̄; ϑ)

∂ϑχ

]T

. (2.26)
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Chapter 3

Robust Synchronization for

OFDM Systems

In this chapter, we propose a novel CFO tracking algorithm for OFDM systems

by exploiting both PTs and VCs embedded in each OFDM block. The proposed

tracking algorithm is able to achieve a full range CFO estimation, can be used before

channel estimation, and could provide improved performance compared to existing

algorithms. Moreover, reliable TO tracking can also be achieved at relatively high

SNR. As other synchronization algorithms, the proposed one can be easily extended

to MIMO OFDM systems.

3.1 Introduction

In OFDM systems, it is well known that a CFO, caused by oscillators’ mismatch

or Doppler effects, destroys the subcarrier orthogonality and results in a substantial

bit error rate (BER) degradation [60]. Therefore, frequency synchronization should

be performed before the channel estimation and the subsequent data detection.

Several CFO acquisition methods have been proposed in [26], [57], [61]-[67]. The

Beek’s method [57] exploits CP in front of each OFDM block for AWGN channels

and is later extended to multi-path channels in [58]. Repeated training sequences
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are used in [26], [61], [62], and several improvements are made in [63]-[66]. Optimal

training sequence design for CFO estimation over frequency selective channel has

been recently proposed in [67], where the periodic structures are, again, exploited.

Hence, almost all the methods in [57]-[67] use the periodic nature of the time domain

signal, either by utilizing CP or by designing training sequences with repeated parts.

However, using the periodic nature greatly reduces the CFO estimation region.

Furthermore, all these methods, except Beek’s method, are only applicable in CFO

acquisition stage because consecutive training blocks are required, which are only

available when the transmission starts.

After the acquisition stage, there may exist a residue CFO, either because of

the insufficient accuracy during the coarse estimation, or because of the time varying

nature of the surrounding environment. The residue CFO, if not compensated, may

still lead to performance degradation. Hence, many existing standards reserve a

limited number of scattered pilot tones in each OFDM block to improve the system

robustness. For example, in IEEE 802.11a WLAN standard [7], four pilots are

placed at the subcarriers with indices {7, 21, 43, 57} for the purpose of combating

the residue CFO and the phase noise.

We have introduced in Chapter 2 several existing CFO tracking methods and

listed their drawbacks. In this chapter, we develop a CFO tracking algorithm based

on the limited number of PTs by assuming that the channel remains constant during

two consecutive OFDM blocks. The method overcomes almost all the drawbacks

of PT-based, CP-based and VC-based algorithms and could provide improved

performances.

3.2 New CFO Tracking Algorithm

3.2.1 New Pilot-Based Tracking: p-Algorithm

We follow the system model introduced in subsection 2.1.1. Let ε be the trial variable

for the unknown CFO. After compensating y(m) by a diagonal matrix Ω(−ε), the
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symbol on the kth subcarrier can be written as

ri(k)e−j2πφ((i−1)Ks+P ) =
si(k)h̃(k)ej(K−1)π(φ−ε) sin(πK(φ− ε))

K sin
(
π(φ− ε)

) + ICIi(k) + ñi(k).

(3.1)

In the absence of the noise, if ε = φ, ri(k)e−j2πε((i−1)Ks+P ) reduces to si(k)h̃(k), and

ri+1(k)e−j2πε(iKs+P ) reduces to si+1(k)h̃(k). Assuming that the channel is constant

over two consecutive OFDM blocks, the metric

∑

k∈P

∥∥ri(k)e−j2πε((i−1)Ks+P )/si(k)− ri+1(k)e−j2πε(iKs+P )/si+1(k)
∥∥2

(3.2)

will be zero at ε = φ. Note that, at least one h̃(k), k ∈ P should be non-zero, which

is also assumed by Classen&Meyr’s method. Define

gp(ε) =
∑

k∈P

∥∥e−j2πε((i−1)Ks+P )fH
k Ω(−ε)yi/si(k)− e−j2πε(iKs+P )fH

k Ω(−ε)yi+1/si+1(k)
∥∥2

=
∥∥SiF

H
p Ω(−ε)yi − Si+1F

H
p Ω(−ε)yi+1e

−j2πεKs
∥∥2

(3.3)

where fk is the kth column of F; Fp is the K×|P|matrix whose columns are obtained

from fk, k ∈ P ; Si and Si+1 are |P| × |P| diagonal matrices with the diagonal

elements given by 1/si(k), 1/si+1(k), k ∈ P , respectively. A CFO estimator, called

p-algorithm, at the noisy case is proposed as

φ̂ = min
ε

gp(ε). (3.4)

If the channel is constant over ν > 2 blocks, the estimator (3.4) can be modified to

φ̂ = min
ε

ν−2∑
u=0

∥∥Si+uF
H
p Ω(−ε)yi+u − Si+u+1F

H
p Ω(−ε)yi+u+1e

−j2πεKs
∥∥2

. (3.5)

In the following discussion, we only focus on the case ν = 2 since ν is preferred to

be smaller in order to track a varying CFO. An example for the case ν > 2 will be

given in the simulation part.

In addition, it is interesting to find that Classen&Meyr’s method (2.8) is

equivalent to

φ̂ = min
ε

∥∥SiF
H
p yi − Si+1F

H
p yi+1e

−j2πεKs
∥∥2

. (3.6)
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Obviously, (3.4) possesses a much more reasonable structure than (3.6), since it

firstly rotates yi, yi+1 by Ω(−ε) and then estimates CFO by comparing the values

on pilot carriers. On the contrary, the estimator (3.6) compares those values from

the direct DFT of yi, yi+1, which may only give an acceptable approximation under

certain conditions. A further benefit of (3.4) is that, it could possibly provide a

full rage estimation of the CFO. A first look on this point is from the fact that

(3.4) contains the term e−j2πε, then φ ∈ (−0.5, 0.5] is allowed. However, (3.6) only

contains the term e−j2πKsε so the estimation range is limited to (−0.5/Ks, 0.5/Ks].

3.2.2 Identifiability of p-Algorithm

Similar to [68], [69], we study the uniqueness of the estimator (3.4) under the noise

free environment. The unknown CFO is assumed to be within the full region (-0.5,

0.5], and the trivial ambiguity φ̂ = φ± b, b ∈ I is excluded from the consideration.

For the noise free case, (3.4) reduces to

φ̂ = {ε|gp(ε) = 0}. (3.7)

Obviously, the true CFO φ is a solution to (3.7). The ambiguity appears if ∃ φ̄ 6= φ

such that gp(φ̄) = 0, which is equivalent to

0 =
K−1∑
v=0

h̃(v)
e

j(K−1)π(v+K∆φ−k)
K sin(π(v + K∆φ− k))

K sin
(

π(v+K∆φ−k)
K

)

︸ ︷︷ ︸
αvk

× (
si(v)/si(k)− si+1(v)/si+1(k)ej2π∆φKs

)
︸ ︷︷ ︸

βvk

=
K−1∑
v=0

h̃(v)αvkβvk, (3.8)

for all k ∈ P and ∆φ 6= 0, where ∆φ , φ− φ̄.

Case 1: K∆φ /∈ I: In this case, αvk 6= 0 for all v. The discussion is further divided

into two subcases.

1. Not all βvk = 0: The ambiguity happens when
∑

v h̃(v)αvkβvk = 0. This type

of ambiguity will be referred as h-ambiguity. Since h̃(v) is a linear combination
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of continuous complex random variables hl, the probability for h-ambiguity is

zero. Therefore, h-ambiguity can be ignored.

2. All βvk = 0: We call this kind of ambiguity as d-ambiguity. In order to

avoid this type of ambiguity, the value on pilots can be properly designed such

that βvk is not zero for some k ∈ P . For example, we can take si(k1) = 1,

si+1(k1) = 1, while choose si(k2) = 1, si+1(k2) = −1. Then, βk1k1 and βk1k2

cannot be zero at the same time.

Case 2: K∆φ ∈ I or more specifically, K∆φ ∈ IK−1 , {1, . . . , K − 1}1. Let

ṽk =
(
(k−K∆φ) mod K

)
. Obviously, ṽk 6= k when ∆φ 6= 0. In this case, αṽkk = 1,

and αvk = 0, ∀v 6= ṽk. The ambiguity happens if βṽkk = 0 or h̃(ṽk) = 0. Since the

latter can be equivalently considered as if the ṽkth carrier is a virtual carrier, we

incorporate the discussion on h̃(ṽk) = 0 into the discussion on βṽkk = 0, i.e.

si(ṽk)/si(k)− si+1(ṽk)/si+1(k)ej2π∆φKs = 0, for all k ∈ P . (3.9)

Case 2 is divided into three subcases.

1. All ṽk’s∈ P : The ambiguity under this subcase is called p-ambiguity. Two

different methods can be used to avoid the p-ambiguity. One is to choose

the pilot indices in a way that all pilot carriers are not equi-spaced. Then,

the p-ambiguity cannot happen since any K∆φ ∈ IK−1 could not make all

ṽk’s∈ P . However, since equi-spaced pilots can be used for optimal training in

some OFDM systems [70] (if the number of the pilot carriers is greater than

L), this approach to avoid p-ambiguity is not always recommended. The other

way is to design the pilot symbols such that equation (3.9) does not hold for

one or more ṽk ∈ P . If the pilot values are allowed to be arbitrary, then

the design is quite trivial. However, pilot value should be restricted to the

constellation Cp. Here, we will put special attention on pilot values belonging

1We only need to consider this subset since K∆φ′ = K∆φ+bK only provides a trivial ambiguity

in ∆φ′ = ∆φ + b.
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to {+1,−1} as adopted in IEEE 802.11a standards [7]. Then, p-ambiguity

can be avoided by properly consider three pilot carriers, say {k1, k2, k3}. We

can set si(k1) = si+1(k1) = si(k3) = si+1(k3) = 1, while taking si(k2) = 1,

si+1(k2) = −1. Then, (3.9) does not hold simultaneously for k1, k2 and k3.

2. All ṽk /∈ P : This subcase can be further divided into two sub-subcases.

(a) At least one ṽk, k ∈ P does not belong to V⋃N , where N denotes the

subcarrier index set for channel nulls. Without loss of generality, we

denote this specific k and ṽk as k1 and ṽk1 , respectively. The ambiguity

under this sub-subcase is called c-ambiguity. Since the values of si(ṽk1),

si+1(ṽk1) are selected from a finite alphabet, all the possible values of ∆φ

in (3.9) should belong to the set

Ψ =

{
1

2πKs

arg

(
s1

s2

)
+

ω

Ks

± ι

Ks

∣∣∣∣∀s1, s2 ∈ Cd, ι ∈ I
}

, (3.10)

where

ω =
1

2π
arg

(
si+1(k1)

si(k1)

)
. (3.11)

Let

µ ∈ A ,
{

1

2π
arg

(
s1

s2

) ∣∣∣∣∀s1, s2 ∈ Cd

}
(3.12)

represent all the possible phase differences for a certain signal

constellation Cd. The c-ambiguity can be excluded if

(µ + ω + ι)K

Ks

/∈ IK−1, ∀µ ∈ A. (3.13)

The constellation Cp, again, brings difficulties to fulfill (3.13). We still

focus on the discussions when pilots can only be chosen from the set

{+1,−1} as adopted in IEEE 802.11a standard. Since the symmetric

signal constellations are normally used, e.g., BPSK, QPSK, QAM, both

1
2π

arg
(

s1

s2

)
and 1

2π

(
arg

(
s1

s2

)
+ π

)
belongs toA. Therefore, it is sufficient

to consider only the case when si(k1) = si+1(k1) = 1, in which case ω is

0. Then, the c-ambiguity can be excluded if

(µ + ι)K

Ks

/∈ IK−1, ∀µ ∈ A. (3.14)
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Instead of designing the pilots values, we need to properly choose the

signal constellation Cd and the values of K, Ks. Note that, one value of

µ must be zero, then ιK
Ks

/∈ IK−1 is required. Therefore, K and Ks should

be co-prime numbers.

We give an example to illustrate the relationship between c-ambiguity

and system parameters. For simplicity, we consider K = 16, P = 5

and the QPSK constellation. Then, A is {0, 0.25, 0.5, 0.75}, and the only

solutions to K∆φ ∈ IK−1 are

∆φ =





0.25 µ = 0.25, ι = 5

0.5 µ = 0.5, ι = 10

0.75 µ = 0.75, ι = 15

. (3.15)

At the same time, if the symbol at the ṽkth carrier satisfies si(ṽk) =

si+1(ṽk)e
j2π∆φKs for any ∆φ in (3.15), then βṽkk = 0. In order to remove

the ambiguity, we need to carefully reassign values of K, Ks such that

(3.14) is satisfied. One thing to be mentioned is that, if the CFO can be

restricted to the region (-0.125, 0.125], c-ambiguity is directly avoided,

because the smallest ∆φ in (3.15) is 0.25. Note that, this ambiguity free

region is five times wider than that of Classen&Meyr’s or Beek’s method,

which is only (-0.5/21,0.5/21] (one subcarrier spacing).

(b) All ṽk’s, k ∈ P belong to V⋃N . We call this type of ambiguity as

n-ambiguity. Since the index set for ṽk is actually K∆φ cyclic-shift from

the set P , we can properly design the number and the positions of pilot

carriers such that at least one ṽk does not belong to V⋃N for any cyclic

integer shift K∆φ ∈ Ik. Due to the uncertainty of channel null set, an

assuring way is to choose |P| > |V|+ |N |. However, one may find better

choices if the CIR or at least the positions of channel nulls are known.

It needs to be mentioned that, the OFDM structure provided in IEEE

802.11a is almost n-ambiguity free, since ṽk, k ∈ P cannot simultaneously

belong to V , and N is an empty set with probability one.
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3. Otherwise: The ambiguity for this subcase can be avoided by the methods in

either of the previous two subcases.

Conclusion: Under the noise free condition, the CFO in the region (-0.5, 0.5]

can be uniquely determined2 from the estimator (3.4) by properly designing system

parameters, i.e., P , pi(k), K, Ks and Cd. However, it is hard to arrive at an

explicit design that could guarantee the ambiguity avoidance for an arbitrary system.

Nevertheless, since we know the guidelines to deal with each type of ambiguity, we

could easily derive an ambiguity free solution for any specific system.

Remark: The p-algorithm can be applied not only for CFO tracking but also

for CFO acquisition because: 1) It could provide a full range estimation; 2) It can

be applied before channel estimation.

3.2.3 Constellation Rotation: A Case Study for IEEE

802.11a WLAN

From the previous discussion, it is known that system parameters should be properly

designed to eliminate the CFO estimation ambiguity. However, there exist several

constraints that may bring inflexibility when designing some of these parameters.

For example, K is generally taken as 2p so that FFT can be implemented.

Meanwhile, symmetric signal constellations are normally adopted, e.g., PSK, QAM.

An example here follows the IEEE 802.11a standard, where the parameters are

chosen as K = 64, P = 16, Ks = 80, V = {0, 27, . . . , 37}, and P = {7, 21, 43, 57}.
Every pilot takes the value of +1 or −1. Obviously, the d-ambiguity can be removed

by assigning ±1 to different pilots. Meanwhile p-ambiguity and n-ambiguity do not

exist due to the position of pilot carriers3. We only need to deal with the c-ambiguity

that happens when
64

80
(µ + ι) =

4

5
(µ + ι) ∈ {1, . . . , 63}. (3.16)

2h-ambiguity that happens with probability zero is ignored here.
3Channel nulls on subcarriers are not considered here.
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QPSK -QPSK
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Figure 3.1: Constellation Rotation for QPSK.

It is seen that µ ∈ {0, 0.25, 0.5, 0.75} or equivalently arg
(

s1

s2

)
∈ {0, π/2, π, 3π/2}

are the only cases that may introduce c-ambiguity. Moreover, since K and Ks are

not co-prime numbers, any signal constellation Cd may cause c-ambiguity. A way

to resolve the c-ambiguity is to take double sets of modulations; namely, for OFDM

blocks with odd indices, we use signal constellation Cd1, whereas for OFDM blocks

with even indices, we use signal constellation Cd2. Let s̄1 be an arbitrary symbol in

Cd1 and s̄2 be an arbitrary symbol in Cd2. Then, Cd1 and Cd2 should be designed such

that arg
(

s̄1

s̄2

)
/∈ {0, π/2, π, 3π/2}.

To keep the system BER performance unaffected, we suggest a constellation

rotation scheme, i.e., Cd2 is a rotation from Cd1 by a proper angle θ. For example, Cd1

is taken as QPSK, while Cd2 is taken as π/4-QPSK. As shown in Fig. 3.1, arg
(

s̄1

s̄2

)

only belongs to {π/4, 3π/4, 5π/4, 7π/4}. Hence, the c-ambiguity can be totally

removed for noise-free case. Actually, Cd2 can be rotated from Cd1 by an arbitrary

θ ∈ (0, π/2) for a QPSK constellation under noise free conditions. However, an

optimal selection of θ for noisy environment is not strictly derived yet. Due to the

symmetry between the two constellations, a good choice may be θ = π/4 because

the minimum arg
(

s̄1

s̄2

)
is maximized, which may result in a larger distance between
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si(ṽk) and si+1(ṽk)e
j2π∆φKs . We can also show that if θ = π/4, c-ambiguity in noise

free case is also removed for higher order constellations, e.g., 16-QAM or 64-QAM.

Remark: The above discussion is established in the noise free environment.

The ambiguity, or more properly called the outlier, may happen in the presence of

noise.

3.2.4 Virtual Carriers Based Tracking: v-Algorithm

The v-algorithm used in this chapter is written as

φ̂ = min
ε

∥∥FH
v Ω(−ε)yi

∥∥2
+

∥∥FH
v Ω(−ε)yi+1

∥∥2
= min

ε
gv(ε), (3.17)

where both the ith and the (i+1)th received blocks are considered for the consistence

with p-algorithm.

3.2.5 Co-Consideration: pv-Algorithm

From previous subsections, we know that p-algorithm uses only pilot carriers,

while v-algorithm uses only virtual carriers. Therefore the two algorithms work

“independently” from each other. It is noted that, exploiting both pilot carriers

and virtual carriers may offer several additional benefits: 1) Improve the estimation

accuracy; 2) Reduce the probability of the ambiguity.

A reasonable combination of both p-algorithm and v-algorithm can be expressed

as the weighted sum of the two corresponding cost functions. The combined cost

function is given by

gpv(ε) = gp(ε) + γgv(ε) (3.18)

where γ is the weight whose optimal value will be derived later.

The first benefit comes from the fact that gpv(ε) exploits more resources than

either gp(ε) or gv(ε). The second benefit can be explained in the absence of the

noise. Suppose ∃φ̄ 6= φ such that gp(φ̄) = 0. From intuition, since gp(φ̄) and

gv(φ̄) are obtained through different approaches and possess different structures,

the probability for φ̄ to also be the null point for gv(ε) is small. However, the true
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CFO φ must be the null point for both gp(ε) and gv(ε). Therefore, after the addition,

the false null in either estimator will be compensated by the other estimator, leaving

only the true φ being the null of gpv(ε). Note that, the ambiguity is still possible to

happen once φ is the common null of both gp(ε) and gv(ε). However, the probability

may be greatly reduced compared with using either estimator. Furthermore, to

eliminate the ambiguity for pv-algorithm, we only need to eliminate the ambiguity

for p-algorithm (as in subsection 3.2.2 ), or to eliminate the ambiguity for v-algorithm

[59].

An example regarding the second benefit is shown here. For simplicity, the

parameters are taken as L = 3, K = 16, P = 5, φ = 0.25, γ = 1, P = {11},
V = {13, 14, 15}. Symbols are generated from QPSK constellations and pilots are

selected as pi(11) = pi+1(11) = +1. We also set h̃(12) = 0. From [59], the ambiguity

for v-algorithm takes place at the point ε = 0.1875. For p-algorithm, the c-ambiguity

may happen at the point ε ∈ {0,−0.25, 0.5} as shown in (3.15). The p-ambiguity

does not exist since there is only one pilot carrier. The d-ambiguity only happens

when the two OFDM blocks are exactly the same and can be ignored in this example.

Meanwhile, the n-ambiguity takes on place at ε ∈ {0.3750, 0.4375, 0.5} because of

the virtual carriers, and at ε = 0.3125 because of the channel null. It is seen that

the n-ambiguity, caused by the channel nulls, in p algorithm shifts to the opposite

direction as that in v-algorithm, i.e., 0.1875 = 0.25−1/16 while 0.3125 = 0.25+1/16.

Hence, there is only one common null for both p-algorithm and v-algorithm, which

corresponds to the true CFO value.

The cost function (3.4), (3.17), (3.18) of p-algorithm, v-algorithm, and

pv-algorithm in the absence of the noise are shown in Fig. 3.2 and Fig. 3.3.

From these two figures, although both p-algorithm and v-algorithm suffer from their

respective ambiguity, the pv-algorithm has a unique null at the true CFO value,

because the false null of either algorithm is compensated by the other algorithm.
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Figure 3.2: CFO pattern for p-algorithm, v-algorithm and pv-algorithm.

3.2.6 Ways to Obtain CFO from p- and pv-Algorithms

The direct way to estimate φ from either gp(ε) or gpv(ε) is the one dimensional

searching. However, the complexity of such kind of searching, although acceptable

in some applications, e.g., direction of arrival (DOA) estimation [71], is too high to

be implemented in other real time applications. To avoid computationally expensive

searching, several alternatives are considered. We will illustrate these methods for

pv-algorithm whereas the extensions to p-algorithm would be an easier job.

FFT Based Method

The estimator (3.18) can be expanded as

gpv(ε) = ρ0 + 2<
{

K+Ks∑
i=1

ρie
−j2πiε

}
(3.19)
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Figure 3.3: Scope-enlarged CFO pattern.

where ρi’s are coefficients that can be obtained from (3.18) straightforwardly. From

[62], we know that the minimization of the cost function can be achieved through

FFT.

Polynomial Rooting

Polynomial rooting for a single ε has been proposed in [54]. This method is able

to guarantee the achieving of the global minimum of gpv(ε), and its complexity can

be approximated by O((K + Ks)
3). Compared with the FFT based searching, the

polynomial rooting is recommended for smaller K and Ks.
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Adaptive Method

Adaptive algorithm can be utilized in certain cases in order to reduce the

computational complexity. However, the major bottleneck of adaptive method is

that, the initial point should be accurate enough to guarantee a global minimum.

Nonetheless, the residue CFO after the coarse estimation is normally small and the

tracking of the slow varying CFO could be reliably accomplished by the adaptive

method.

3.3 Timing Offset Estimation

Although our major concern is the CFO tracking, we would like to also examine

the capability of pv-algorithm on TO tracking. Let τ represent TO, the ith received

OFDM block is then

yi = [vi(P + 1 + τ), . . . , vi(Ks − 1), vi+1(1), . . . , vi+1(τ)]T . (3.20)

In this case, the joint TO and CFO estimation metric is written as

{φ̂, τ̂} = min
ε,%∈I

gpv(ε, %) (3.21)

where gpv(ε, %) is obtained in a similar way as (3.4) but using the new yi instead.

Obviously, gpv(ε, %) = 0 at {ε, %} = {φ, τ} under the noise free case. Note that

we need to perform a two dimensional search to solve (3.21), which usually has a

high complexity. However τ is an integer and is limited to a short range after the

acquisition stage. For each possible %, we can solve (3.21) for ε. If the range of % is

short, the overall complexity can be kept reasonably low. Besides, the residue TO

cannot varying from time to time, so the TO tracking does not need to be performed

frequently. Similar to the TO estimation method in [26], there will be a plateau

if the TO estimation error ∆τ = τ̂ − τ stay in region B as shown in Fig. 2.1. This

is because that the block starting in this region only causes a fixed phase rotation

at each subcarriers. Then, the system performance will not be affected because

the rotation is the same for the two consecutive OFDM blocks. Therefore, ∆τ in
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Figure 3.4: TO estimation metric versus the sample index, noiseless case.

[L − P, 0] can be considered as a successful TO tracking. Further effort to obtain

the perfect synchronization can be performed if the exact channel length is known

[72].

An example of the proposed TO tracking is given here with parameters K = 16,

L = 3, P = 5, φ = 0.25. Signals are obtained from QPSK constellation, and noiseless

environment is considered. We assume that during the tracking period, the TO is

already restricted to the region [−K/2, K/2] thanks to the TO acquisition at the

very beginning of transmission. For simplicity, we only show the timing metric

1/ minε gpv(ε, %) versus sampling time index in Fig. 3.4. Clearly, TO is perfectly

estimated within the region [−2, 0].

For noisy environment, the performance of TO estimation can be evaluated by
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Figure 3.5: TOFRs versus the SNR in the presence of noise.

TO failure rate (TOFR) defined as

TOFR =
the number of runs that give ∆τ out of the region [−2, 0]

the total number of Monte Carlo runs
. (3.22)

We then show TOFR versus the SNR for different value of P in Fig. 3.5. Clearly,

the proposed TO estimator (3.21) is effective at relatively high SNR.

3.4 Performance Analysis of CFO Tracking

For the ease of analysis, we assume that all pilots take values of +1. At high SNR,

the expectation and the variance of the proposed estimator can be approximated by
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[62]:

Epv{φ̂} ∼= φ− E{ġpv(φ)}
E{g̈pv(φ)} = φ− E{ġp(φ) + γġv(φ)}

E{g̈p(φ) + γg̈v(φ)} (3.23)

varpv{φ̂} ∼= E{[ġpv(φ)]2}
[E{g̈pv(φ)}]2 =

E{[ġp(φ) + γġv(φ)]2}
[E{g̈p(φ) + γg̈v(φ)}]2 (3.24)

where ġ(φ) and g̈(φ) represent the first and the second order derivatives of g(ε) at

ε = φ. As derived in Appendix A, (3.23) and (3.24) can be simplified as

Epv{φ̂} ∼= φ (3.25)

Varpv{φ̂} ∼= σ2

8π2

2Zp + γ2Zv

(Zp + γZv)2
(3.26)

where

Zp =
∥∥Pp(D∆η −Ksηi+1))

∥∥2
(3.27)

Zv =
i+1∑
m=i

ηH
mDPvDηm (3.28)

and all the variables are defined in Appendix A. Note that Ppηi+1 is the term only

related to the variable h̃(k), k ∈ P , and Varpv{φ̂} is not related to the specific CFO

value. Meanwhile, the CFO estimation MSEs by using gp(ε) and gv(ε) are

Varp{φ̂} ∼= σ2

4π2Zp

(3.29)

Varv{φ̂} ∼= σ2

8π2Zv

(3.30)

respectively. It is interesting to find that

Varpv{φ}|γ=0 = Varp{φ} (3.31)

Varpv{φ}|γ→∞ = Varv{φ}. (3.32)

Therefore the value of γ controls the effective part of each single estimator.

A nice property of weighted sum of p-algorithm and v-algorithm is that,

the closed form of the optimal weight γ can be obtained regardless of all other

parameters. Taking the derivative of (3.26) with respect to γ, we arrive at that, the

minimum value of Varpv{φ̂} is always achieved at γ = 2.
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3.5 Simulations

In this section, we examine the performance of the proposed estimators under various

scenarios. All parameters are taken from IEEE 802.11a standard. The 4-ray channel

model with an exponential power delay profile [73]

E{|hl|2} = ρexp(−l/10), l = 0, . . . , L (3.33)

is used where ρ is the coefficient to normalize the overall channel gain. Each channel

path is complex Gaussian. The normalized estimation mean square errors (NMSE)

is defined as

NMSE =
1

Mq

Mq∑
i=1

(φ̂i − φ)2

φ2
(3.34)

where Mq = 500 Monte-Carlo runs are taken for average.

1) CFO Less than One Subcarrier Spacing.

In this example, different CFOs are taken from the region (-0.5/64,0.5/64]. The

performance of p-algorithm, v-algorithm, pv-algorithm, Classen&Meyr’s method and

Beek’s method are compared. We assume that the estimated channel length is L̂ =

12 in order to give a fair comparison between the Beek’s method and our proposed

algorithms4. Furthermore, QPSK constellation is used for all OFDM blocks. The

NMSEs versus SNR for different algorithms are shown in Fig. 3.6, and the theoretical

results for p-algorithm, v-algorithm, and pv-algorithms are given as well.

As is seen from the figure, Classen&Meyr’s method can give a relatively

satisfying performance at lower SNR with a normalized CFO 0.1 subcarrier spacing.

However, at high SNR, Classen&Meyr’s method has an error floor. Meanwhile,

even when CFO is as small as 0.25 subcarrier spacing, the Classen&Meyr’s method

fails because the ICI term cannot be ignored any more. On the contrary, since our

p-algorithm does not make any approximation, it does not have an error floor and

is also valid for a large CFO value. Meanwhile, Beek’s method, p-algorithm and

pv-algorithm give comparable performance. However, our major concern is that

the performance of Beek’s method is greatly affected by the channel length, or the

4The length of the region B should be the same as |P| for fairness [58].

45



3.5 Simulations

6 8 10 12 14 16 18 20 22 24 26
10

−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

N
M

S
E

 

 

v−algorithm
p−algorithm
pv−algorithm
Classen&Meyr
Beek
Theoretical

CFO=0.1/64

CFO=0.25/64
no marker

Figure 3.6: NMSEs versus SNR for different CFO estimation algorithm: CFO

smaller than subcarrier spacing.

estimate of the channel length. For example, if L = 16, or if L < 16 but the

estimated L̂ is 16 due to the power leakage, then the Beek’s method cannot even be

applied. For v-algorithm, although no error floor is met, the performance is much

worse than either p-algorithm or pv-algorithm. This is because that v-algorithm

only consider the orthogonality between subcarriers and is actually a blind type

CFO estimation method. From intuition, pilot aided algorithm outperforms blind

algorithm. Note that there are three dashed lines without any marker. These lines,

ordered from top down, represent the theoretical NMSE of v-algorithm, p algorithm,

and pv-algorithm for CFO equaling to 0.1 subcarrier spacing, respectively. Similar

discussions hold for three solid lines in the figure for CFO equaling 0.25 subcarrier

spacing. We find that the numerical performance of p-algorithm and pv-algorithm
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Figure 3.7: NMSEs for pv-algorithm under different weight γ.

agree with theoretical results very well, which corroborates our analytical studies.

We also verify the optimality of the choice for γ in Fig. 3.7, which shows the

NMSE of pv-algorithm versus different value of γ at SNR=15 dB. Clearly, γ = 2 is

the optimal weight, which agrees with the theoretical result. Since p-algorithm is

the dominant component of pv-algorithm, the performance of pv-algorithm does not

depend critically on the choice of γ. From Fig. 3.7, we find that the NMSE value

does not change too much within the region γ ∈ [0, 5].

2) CFO Larger than One Subcarrier Spacing

One important contribution of our proposed algorithm is its applicability

for CFO greater than one subcarrier spacing. In this example, we consider the

performance of p-algorithm, v-algorithm, pv-algorithm. Note that, Classen&Meyr’s

method and Beek’s method are not included here because they are not applicable for

this scenario. The constellation schemes with and without rotation are compared.
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Figure 3.8: NMSEs versus SNR for different CFO estimation algorithm: CFO

larger than subcarrier spacing.

For the former scheme, Cd1 is QPSK and Cd2 is π/4-QPSK, while for the latter

scheme, QPSK constellation is used for all OFDM blocks. The CFO is taken as large

as 0.25 of the total bandwidth, which is 16 subcarrier spacings. NMSEs versus SNR

are shown in Fig. 3.8. It is seen from Fig. 3.8 that pv-algorithm is about 12 dB better

than v-algorithm and gives accurate estimation over all SNRs. However, it is also

noted that p-algorithm with constellation rotation cannot yield good performance

for SNR< 30 dB, and p-algorithm without constellation rotation fails at all SNR.

In the simulations, we have observed that several Monte-Carlo runs give outlier on

CFO estimation. From Fig. 3.2, we see that the noiseless cost function gp(ε) is close

to zero at several locations. If the noise is present, those close-to-zero points may

yield the minimum value in the cost function gp(ε), which causes CFO outlier. In

section 3.2.2, we only provide the discussion on the ambiguity elimination for noise
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Figure 3.9: CFOOP versus SNR for p-algorithm: Comparison of two

modulation schemes.

free environment. If the noise is present, the outlier may happen. Nevertheless,

our pv-algorithm benefits from both algorithms. The p-algorithm part increases the

estimation accuracy while the v-algorithm part reduces the outlier probability.

A reasonable way to evaluate the advantages of the constellation rotation

scheme is to consider the CFO outlier probability (CFOOP), which is defined as

CFOOP =
the number of runs with outlier

the total number of Monte Carlo runs
. (3.35)

where the outlier in the presence of the noise is defined as follows.

Definition: In noisy environment, the outlier occurs if the estimated φ̂ stays

outside the region [φ− 0.5/K, φ + 0.5/K].

The comparison of CFOOP for p-algorithm with different constellation schemes

is shown in Fig. 3.9. Clearly, the CFOOP is reduced to zero at high SNR
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Figure 3.10: NMSEs versus number of the consecutive OFDM blocks: CFO

lager than subcarrier spacing.

using the constellation rotation scheme whereas it meets an floor at high SNR

without constellation rotation. As analyzed in subsection 3.2.2, the c-ambiguity for

non-rotation scheme can never be removed, which consequently introduces non-zero

CFOOP all the time.

It has been shown that the proposed p-algorithm, pv-algorithm can be readily

modified when channel and CFO are constant over more than two consecutive

OFDM blocks. Using the same parameters as in Fig. 3.8, we show the NMSEs of

different algorithms versus the number of the consecutive OFDM blocks in Fig. 3.10.

The SNR is fixed at 20 dB. From Fig. 3.10 we find that the outlier of p-algorithm

in noisy environment can also be “removed” by increasing the number of blocks

used. Actually, the probability of the occurrence of the outlier is reduced when

more OFDM blocks are used.
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3.6 Summery

In this chapter, a novel CFO tracking method was developed for practical OFDM

systems. The proposed algorithm considers both the pilot carriers and the virtual

carriers, hence is compatible to most practical standards. The ambiguity for pilot

based algorithm was studied and several approaches to remove different types of

the ambiguity were discussed. Since many parameters are already fixed in existing

standards, a constellation rotation scheme was suggested to remove the c-ambiguity

effect. Performance of the algorithms were analyzed, and numerous simulation

results were presented to validate the theoretical results. From the simulation

results, we found that the pilot based algorithm increases the estimation accuracy

while the virtual carrier based algorithm reduces the outlier probability. Therefore,

the proposed algorithm is not only an effective method for CFO tracking but is also

applicable for CFO acquisition.
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Chapter 4

Subspace Blind Channel

Estimation for CP-Based MIMO

OFDM Systems

A novel SS method for CP-based MIMO OFDM systems is proposed in this chapter

with the aid of an appropriate re-modulation on the received signal blocks. The

feature that the number of the receive antennas is allowed to be the same as the

number of the transmit antennas shows great compatibility with the coming 4G

wireless communication standards as well as most existing SISO OFDM standards.

4.1 Introduction

OFDM combined with multiple antennas at both the transmitter and the receiver

sides has received considerable attention for its capability to combat the multipath

fading and boost the system capacity [13], [14]. Consequently, MIMO OFDM

appears as a promising candidate for the coming 4G wireless communications

[74]. The channel estimation issues for the MIMO OFDM have been intensively

studied in the recent literatures [75]-[80]. Several training based channel estimation

methods were developed in [75]-[77]. However, the amount of the training increases
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dramatically with the increment of the number of the transmit antennas [76], [77],

which in turn, decreases the system bandwidth efficiency [81]. For packet based

transmission, where the channel state information (CSI) is stable for certain number

of blocks, the blind channel estimation could be applied to reduce the number of the

training symbols while provides satisfactory performance. Therefore, blind methods

have received considerable attention during the past decade.

A major blind approach is the direct inheritance from the so called SS algorithm

which was originally developed in [40] for SIMO frequency selective channels. The

SS method has simple structure and achieves good performance, but it meets several

difficulties when being applied to MIMO OFDM systems [78]-[80]. First, it requires

the number of receive antennas to be greater than the number of transmit antennas.

Unfortunately, the symmetric links normally play a major role in the standard

wireless transmission. For example the 2 × 2 MIMO is the mandatory operation

for every IEEE 802.11n device [8], [9]. Besides, considering the equal number of the

transceiver antennas is beneficial since it is also compatible with the current SISO

OFDM transmission scheme, e.g., IEEE 802.11a standards [7]. Second, although

the SS method can be directly applied when there are more receive antennas than

transmit antennas, the precise knowledge of the channel order must be obtained,

which is very difficult in practice. The order over-estimation may produce an

ill-conditioned channel matrix which greatly deteriorates or sometimes fails the

channel estimation. To solve this problem, a zero-padding (ZP) based MIMO OFDM

has been suggested in [55]. Instead of using CP, consecutive zeros are padded at the

end of each OFDM block. This method will be referred as ZPSOS throughout the

thesis. Although ZPSOS exhibits many advantages, a major problem that prevents

its application is the incompatibility to most existing OFDM standards or the further

4G MIMO-OFDM standards [9].

In this chapter, we develop a new SS method that is applicable for CP based

MIMO OFDM systems through an appropriate re-modulation on the received signal

blocks. The method will be, correspondingly, named as CPSOS. The proposed
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method possesses all the advantages from ZPSOS but is also compatible with the

current and the future OFDM standards. Consequently, CPSOS shows a great

potential as a promising blind channel estimation candidate in MIMO OFDM

systems. We also provide thorough performance analysis for CPSOS. It is shown

that the asymptotical channel estimation MSE agrees with the asymptotically

approximated Cramér-Rao bound (ACRB).

4.2 System Model of MIMO OFDM

We consider the Nt × Nr MIMO OFDM system shown in Fig. 1.4. Notations are

the same as those in subsection 1.3. The information symbols are divided into Nt

streams and each stream is transmitted from one transmitter. Specifically, each

stream will be grouped into blocks of length K. Let

s
(p)
i = [s

(p)
i (0), s

(p)
i (1), . . . , s

(p)
i (K − 1)]T p = 1, 2, . . . , Nt,

i = 0, 1, . . . , M − 1

be the block symbol to be transmitted by the transmitter p during the ith OFDM

block (before IDFT) and x
(p)
i be the normalized IDFT of s

(p)
i .

Then, the overall ith transmitted OFDM block from user p is

u
(p)
i =


 x

(p)
i,P

x
(p)
i


 = Tcpu

(p)
i (4.1)

where x
(p)
i,P is the CP that contains the last P entries of x

(p)
i , and Tcp is the

corresponding CP insertion matrix. Let

hpq = [hpq(0), hpq(1), . . . , hpq(Lpq)]
T

be the channel response from the transmitter p to the receiver q, where Lpq is the

corresponding channel order upper bounded by P . For convenience, we will pad

P − Lpq zeros at the end of hpq such that they have a uniform length P . The
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received ith block (of length Ks = K + P ) on the qth receiver is then represented

by

v
(q)
i =


 y

(q)
i,P

y
(q)
i


 =

Nt∑
p=1

H(hpq)


 x

(p)
i−1,L

u
(p)
i


 + w

(q)
i (4.2)

where H(·) is the operation with respect to the argument inside the bracket:

H(hpq) =




hpq(P ) . . . hpq(0) . . . 0
...

. . . . . . . . .
...

0 . . . hpq(P ) . . . hpq(0)








Ks blocks

︸ ︷︷ ︸
(Ks+P ) blocks

(4.3)

and y
(q)
i,P , y

(q)
i have the structures

y
(q)
i,P = [y

(q)
i,P (0), y

(q)
i,P (1), . . . , y

(q)
i,P (P − 1)]T (4.4)

y
(q)
i = [y

(q)
i (0), y

(q)
i (1), . . . , y

(q)
i (K − 1)]T . (4.5)

The ith noise block on the qth receiver is denoted by

w
(q)
i = [w

(q)
i (0), w

(q)
i (1), . . . , w

(q)
i (Ks − 1)]T (4.6)

whose elements are zero mean complex AWGNs with the variance σ2
n and are

both spatially and temporally independent from each other. We then group the

transmitted and received signals into new variables by defining

xi(k) = [x
(1)
i (k), x

(2)
i (k), . . . , x

(Nt)
i (k)]T , k = 0, . . . , K − 1 (4.7a)

yi,P (l) = [y
(1)
i,P (l), y

(2)
i,P (l), . . . , y

(Nr)
i,P (l)]T , l = 0, . . . , P − 1 (4.7b)

yi(k) = [y
(1)
i (k), y

(2)
i (k), . . . , y

(Nr)
i (k)]T (4.7c)

h(p)(l) = [h1p(l), h2p(l), . . . , hNrp(l)]
T , l = 0, . . . , P (4.7d)

H(l) = [h(1)(l),h(2)(l), . . . ,h(Nt)(l)] (4.7e)

wi(k) = [w
(1)
i (k), w

(2)
i (k), . . . , w

(Nr)
i (k)]T , k = 0, . . . , Ks − 1 (4.7f)

yi = [yT
i (0),yT

i (1), . . . ,yT
i (K − 1)]T (4.7g)

yi,P = [yT
i,P (0),yT

i,P (1), . . . ,yT
i,P (P − 1)]T (4.7h)

xi = [xT
i (0),xT

i (1), . . . ,xT
i (K − 1)]T (4.7i)
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xi,P = [xT
i (K − P − 1),xT

i (K − P ), . . . ,xT
i (K − 1)]T (4.7j)

ui = [xT
i,P ,xT

i ]T (4.7k)

vi = [yT
i,P ,yT

i ]T (4.7l)

wi = [wT
i (0),wT

i (1), . . . ,wT
i (Ks − 1)] (4.7m)

H = [HT (0),HT (1), . . . ,HT (P )]T . (4.7n)

The signal blocks from all the Nr receivers, after proper entry permutation, can be

re-expressed as

vi = H(H)


 xi−1,P

ui


 + wi = H(H)T cp


 xi−1,L

xi


 + wi (4.8)

where T cp is the corresponding Nt(Ks + P ) × NtKs matrix whose specific form

is omitted for simplicity. Then, the SS method could be applied to (4.8) and the

identifiability could be guaranteed if

1. The NrKs ×NtKs matrix H(H)T cp is tall.

2. Matrix H(H)T cp is full rank.

3. Span of H(H̄)T cp equals to span of H(H)T cp if and only if H̄ = HB, where

B is an unknown constant matrix.

The first condition is satisfied only if Nr > Nt. Clearly, the direct modeling is not

applicable to the scenarios with Nr = Nt, which includes both the popular SISO

OFDM in IEEE 802.11a [7] and the 2× 2 MIMO OFDM in IEEE 802.11n [9]. The

second and the third conditions have not been studied yet in the existing literatures

to the best of our knowledge. One obvious example that breaks condition 2, 3 is

when H(P ) = . . . = H(1) = 0 but H(0) is full column rank. In this case, the matrix

H(H)T cp becomes singular.
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4.3 Proposed Algorithm and the Related Issues

4.3.1 System Re-Modulation

We find that, by properly remodulating the received signal block, the system model

(4.8) could be converted to a similar model of ZPSOS proposed in [55]. Let us

first divide the noise vector wi into two components as wi1 = wi(1 : NrP ), and

wi2 = wi(NrP + 1 : NrKs). Construct a new vector v́i = [yT
i−1,y

T
i,P ]T , which could

be expressed as

v́i = H(H)


 ui−1

xi,P


 +


 w(i−1)2

wi1


 . (4.9)

It can be verified that

zi , vi − v́i

= H(H)





 xi−1,L

ui


−


 ui−1

xi,P





 +


wi −


 w(i−1)2

wi1







︸ ︷︷ ︸
ςi

= H(H)




0NrP×1

di

0NrP×1


 + ς i = Gdi + ς i (4.10)

where

di = ui(1 : NtK)− xi−1

= [xT
i,P ,xT

i (0), . . . ,xT
i (K − P − 1)]T − xi−1 (4.11)

G =




H(0) . . . 0
...

. . .
...

H(P )
. . . H(0)

...
. . .

...

0 . . . H(P )




. (4.12)

The newly defined noise vector ς i is colored and has the covariance matrix

Rς = E{ς iς
H
i } = σ2

nRw, (4.13)
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with

Rw =




2INrP×NrP 0 −INrP×NrP

0 2INr(K−P )×Nr(K−P ) 0

−INrP×NrP 0 2INrP×NrP


 . (4.14)

Although it appears that the noise power in ς i is increased by a factor of 2, the

signal power in di is enlarged twice as well. Therefore, the effective SNR is not

changed. Since G is exactly the same as the channel matrix in ZPSOS [55], we get

the following lemma:

Lemma 4.1 [55]: For Nr ≥ Nt, if there exists an l ∈ [0, L] such that H(l) is of

full column rank, then G is of full column rank.

The proof is obvious and is omitted for brevity. The full column rank property

of H(l) is almost surely guaranteed because signal propagation from each of the

K transmitters is most likely independent. In the following, we assume that this

condition holds. Even if H(l) is not full column rank, it is still possible that G
is of full column rank, bearing in mind that Lemma 4.1 only provides a sufficient

condition.

4.3.2 SS Algorithm

The standard SS method requires the covariance of the noise vector to be a scaled

identity matrix. Therefore, we need to whiten the vector zi by R
−1/2
w and obtain

źi = R−1/2
w zi = R−1/2

w G︸ ︷︷ ︸
A

di + w̆i (4.15)

where w̆i is the NrKs × 1 white noise vector whose entries have variance σ2
n. In

addition, since Rw is a non-singular matrix, the new channel matrix A is full column

rank if Nr ≥ Nt.

Due to the special structure of Rw, R
−1/2
w can be calculated as

R−1/2
w =




c1INrP×NrP 0 c2INrP×NrP

0 1√
2
INr(K−P )×Nr(K−P ) 0

c2INrP×NrP 0 c1INrP×NrP


 (4.16)
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where

c1 =

√
2/3 +

√
1/3

2
, c2 =

√
2/3−

√
1/3

2

regardless of the Nt, K, P .

Proof: Noting that the square root of Rw is not unique, we may only focus on

R
1/2
w that has the special structure as

R1/2
w =




b1INrP×NrP 0 b2INrP×NrP

0 b3INr(K−P )×Nr(K−P ) 0

b2INrP×NrP 0 b3INrP×NrP


 (4.17)

where bi’s are real scalars. From Rw = R
1/2
w R

1/2
w , we obtained

b2
1 + b2

2 = 2, 2b1b2 = −1, b2
3 = 2

or equivalently

b1 =
1 +

√
3

3
, b2 =

1−√3

3
, b3 =

√
2.

Similarly, by letting

R−1/2
w =




c1INrP×NrP 0 c2INrP×NrP

0 c3INr(K−P )×Nr(K−P ) 0

c2INrP×NrP 0 c1INrP×NrP


 (4.18)

and from R
1/2
w R

−1/2
w = I, we obtain

c1 =

√
2/3 +

√
1/3

2
, c2 =

√
2/3−

√
1/3

2
, c3 = 1/

√
2.

Proof completed. ¥
The covariance matrix of źi is derived from

R = E{źiź
H
i } = ARdAH + σ2

nINrKs×NrKs (4.19)

where Rd = E{did
H
i } is the source covariance matrix, which should be full rank

if no two elements in di are fully correlated. The covariance matrix R can be

eigen-decomposed as

R = Us∆sU
H
s + σ2

nUoU
H
o (4.20)
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where ∆s is the NtK×NtK diagonal matrix and the NrKs×NtK matrix Us spans

the signal-subspace of R. In turn, the NrKs × (NrKs −NtK) matrix Uo spans the

noise-subspace of R. The standard SS method says that the matrix Uo is orthogonal

to every column of A. This can be equivalently expressed as

UH
o R−1/2

w CkH = 0, k = 1, . . . , K (4.21)

where Ck is the NrKs×Nr(P + 1) Toeplitz matrix with the first column e(n−1)Nr+1

and ep is defined as the pth column of INrKs . In addition, the first row of Ck is

[1,01×(Nr(P+1)−1)] for k = 1 and is 01×Nr(P+1) for k ≥ 2.

Define

K = [CH
1 R−1/2

w Uo,C
H
2 R−1/2

w Uo, . . . ,C
H
KR−1/2

w Uo]. (4.22)

The channel matrix H could be estimated from

KHH = 0. (4.23)

Therefore, the estimate of H, denoted as Ĥ, is a basis matrix of the orthogonal

complement space of K. We will show later that the dimension of the orthogonal

complement space of K is exactly Nt. Therefore, Ĥ can be obtained from left

singular vectors of K and is away from the true H by an unknown matrix B, namely

Ĥ = HB. (4.24)

This matrix ambiguity could be easily resolved by transmitting training symbols

as suggested in [55]. Note that the amount of the training needed to resolve the

ambiguity is much smaller than that required by a direct training based channel

estimation.

4.3.3 Channel Identifiability and Order Over-Estimation

Thanks to the proposed re-modulation, the channel matrix A possesses the similar

structure as that in [55], which greatly facilities the study of the identifiability issue.
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Theorem 4.1: If H(0) is full column rank, then the matrix H is uniquely

determined by span(A) subject to a common Nt×Nt non-singular matrix ambiguity

on each H(l).

Proof: Let Ā = R
−1/2
w Ḡ, where G is constructed from H̄ in a similar way as G

is constructed from H. If span(Ā) =span(A), then

Ā = AP (4.25)

where P is a matrix with dimension NtK ×NtK. Since R
−1/2
w is a full rank matrix,

it is not difficult to derive the following equality:

Ḡ = GP . (4.26)

Therefore, span(Ḡ) =span(G). Following the same procedure in [55], we could obtain

that

H̄(l) = H(l)B. (4.27)

One good aspect of Theorem 4.1 is that H(0) is almost always guaranteed full

rank as previously explained. From Theorem 4.1, we know that the dimension of

the orthogonal complement space of K must be Nt. It is also seen that an order

over-estimation on each Lpq does not affect the channel identifiability of H because

the estimate H̄(l) = H(l)B = 0 for l = Lj,k + 1, . . . , L is also correct. Therefore,

the two restrictions on the SS method for general MIMO systems [80], that is, the

requirement of exact channel order and the channel estimation identifiability, are

simultaneously lifted in the re-modulated CP-based MIMO OFDM system. ¥

4.3.4 Comparison with ZPSOS

Similarities

Similarities between these two methods mainly reside in the choice of system

parameters and the model structures. For example, under the same transmission

rate, namely, the same block length and the CP length, the channel matrix G
is exactly the same for both methods. The effective SNR, as discussed before,
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is also the same. Similar channel estimation accuracy for both CPSOS and

ZPSOS is observed in the later simulation. Moreover, problems like channel order

over-estimation and the identifiability are lifted for both CPSOS and ZPSOS.

Differences

Despite many similarities, there do exist other differences that show the advantages

of CPSOS over ZPSOS.

1. Symbol Detection. In ZP based OFDM, one needs to add the last P entries of

v
(p)
i to its first P entries to remove the ICI effect. Then, similar relationship

as in (1.15) could be derived for ZPSOS. Note that, ηi(k) in ZPSOS, is

not independent for different k, although its entries η
(q)
i (k) are independent

with respect to q. Therefore, the ML detection requires the co-consideration

of ri(k) over all carriers. This results in an exponential increment in the

detection complexity, which betrays the original purpose of adopting the

MIMO OFDM systems. Although the low complexity Zero Forcing (ZF)

detection is suggested in [55], it is well known that this linear detection suffers

from considerable performance loss.

We here suggest a suboptimal way that the detection still considers each

subcarrier independently regardless of whether the noise is dependent across

the carriers or not. It can be proved that the covariance matrix of ηi(k) in

ZPSOS is

E{ηi(k)ηH
i (k)} =

(
1 +

P

K

)
σ2

nINr×Nr . (4.28)

Therefore, the noise power, compared to CPSOS is increased by a factor of

(1+P/K), and the SNR loss is around 10 log(1+P/K) dB. In many standards,

e.g., IEEE 802.11a, IEEE 802.11n, K = 4P is adopted and the SNR loss is

around 1 dB.

2. Compatibility. Obviously, CP-based OFDM has a much wider application than

ZP-based OFDM. For example, CP-based OFDM has been well adopted into
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European DAB, DVB, HIPERLAN, IEEE 802.11a WLAN standards and the

coming IEEE 802.11n WLAN standards. However, to the best of the our

knowledge, ZP based-OFDM has very limited applications.

4.4 Asymptotical Performance Analysis

4.4.1 Channel Estimation Mean Square Error

We provide a first-order performance analysis on the proposed estimator at high

SNR similar to that in [44], [45].

Theorem 4.2: Assume that both noise and signals are zero-mean i.i.d. with

variances σ2
n and σ2

s , respectively, the mean and the covariance of the channel

estimation error are approximated by

E{∆H} = 0 (4.29)

E{vec(∆H)vecH(∆H)} = INt ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
. (4.30)

Specifically, the error covariance matrix for pth transmit antennas is

E{∆H(:, p)∆HH(:, p)} =
σ2

n(KH)†K†

2Mσ2
s

(4.31)

and the channel estimation MSE is

E{‖∆H(:, p)‖2} =
σ2

n‖K†‖2
F

2Mσ2
s

. (4.32)

See proof in Appendix B. Several insightful observations can be drawn from (4.31),

for example, the MSE is proportional to the noise power but is inversely proportional

to both the signal power and the number of the received signal block.

4.4.2 Deterministic Cramér-Rao-Bound

We consider the deterministic CRB [82] for CPSOS, where the observations

are z = [zT
0 , . . . , zT

M−1]
T , and the parameters to be estimated are ϑ =
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[vec(H),d1, . . . ,dM , σ2
n]. In order to calculate CRB, we need the joint PDF of z,

denoted as p(z|ϑ). Since ς i is correlated with both ς i−1 and ς i+1, the covariance

matrix of z, denoted as Rz, is an MNrKs×MNrKs Toeplitz matrix with the main

diagonal elements 2, the (NrK + 1)th, −(NrK + 1)th1 diagonal elements −1, and

all other elements 0. We note that the inverse of such a huge Toeplitz matrix is

mathematically prohibitive.

To simplify the derivation and gain more insight into the proposed algorithm,

we approximate Rz by

Rz = IM ⊗Rw (4.33)

which equivalently says that we ignore the correlations among different ς i’s. This

approximation is also justified since the performance of SS method is only related to

the auto-covariance of ς i and does not dependent on whether ς i are cross-correlated

or not. The so derived CRB will be called as approximated CRB (ACRB). Since we

relax the noise condition, ACRB should be greater than or equal to the CRB.

Define

Di = [D
(1)
i ,D

(2)
i , . . . ,D

(Nt)
i ] (4.34)

where

D
(p)
i =

K∑

k=1

Ckdi((k − 1)Nt + p). (4.35)

The ACRB is obtained as

ACRBvec(H) = σ2
n

(
M−1∑
i=0

DH
i R−1/2

w P⊥
AR−1/2

w Di

)†

(4.36)

where P⊥
A is the projection matrix onto the orthogonal complement space spanned

by A⊥. If signals are i.i.d. with variance σ2
s , the asymptotical ACRB for large M is

obtained as

ACRBvec(H) = INt ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
(4.37)

and the asymptotical ACRB for each column of H can be, separately, obtained as

ACRBvec(H(:,p)) =
σ2

n(KH)†K†

2Mσ2
s

. (4.38)

1Notations follow those in MATLAB.
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Figure 4.1: Channel estimation MSEs versus SNR with 200 received blocks.

See proof in Appendix C.

Interestingly, the asymptotical ACRB coincides with the asymptotical error

covariance matrix (4.31). We may draw the conclusion that

1. The channel estimation MSE is greater than or equal to the CRB, which agrees

with the intuition very well.

2. The SS method asymptotically achieves the optimal estimation (same

performance as ML estimation), regardless of whether the noise is colored

or white.

4.5 Simulations

In this section, we examine the performance of CPSOS for a 2 × 2 MIMO OFDM

systems under various scenarios. The OFDM block length is taken as K = 32, and
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Figure 4.2: Channel estimation MSEs versus number of OFDM blocks for

SNR= 20dB.

the CP length is taken as P = 8. The signal symbols are extracted from QPSK

constellations. The 6-ray channel model with an exponential power delay profile

E{|hpq(l)|2} = ρexp(−l/5), l = 0, . . . , 5 (4.39)

is used where ρ is the coefficient to normalize the overall channel gain to ‖hpq‖2 = 1.

The estimation MSE is defined as

MSE =
1

NtNr

‖ĤB−1 −H‖2
F (4.40)

where, for simulation purpose, the ambiguity matrix B is obtained according to [83]:

B = arg min
T
‖ĤT−1 −H‖2

F . (4.41)

The number of the Monte-Carlo runs used for average is taken as 500.

We first fix the number of the OFDM blocks as 200 and compare two different

blind channel estimators: CPSOS and ZPSOS. Note that 200 blocks is a common
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Figure 4.3: Amplitude estimation of channel taps at SNR= 12dB.

number for applying the SS algorithm. The channel estimation MSEs versus SNR

for these two algorithms are shown in Fig. 4.1. The analytical performance derived

from either the asymptotical MSE or ACRB is displayed as well. It is seen that

ZPSOS and CPSOS give comparable performance over all SNR considered. Both

methods are close to the analytical MSE after 20 dB. The gap between the analytical

result and the simulation result is due to the usage of the asymptotical MSE here.

One may expect a little bit better performance from CPSOS because the noise is

colored with a known covariance matrix (implicating less independency).

Fig. 4.2 shows the performance of MSEs versus the number of the OFDM blocks

for the two algorithms at SNR= 20 dB. As explained previously, the performance

of CPSOS is a little bit better than ZPSOS and it may achieve the analytical

asymptotical MSE when the number of the blocks becomes large.

Fig. 4.3 and Fig. 4.4 show the amplitude of the channel tap detection of four
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Figure 4.4: Amplitude estimation of channel taps at SNR= 20 dB.

random channel realizations at SNR= 12 dB and SNR= 20 dB, respectively. It

is noted that SNR= 12 dB yields relatively good channel amplitude estimation,

whereas SNR= 20 dB gives almost perfect estimation. Nevertheless, by noting that

the channel amplitude at tap 7 and tap 8 are close to zero in both figures, we may

also apply the channel order estimation method suggested in [55] under the proposed

CPSOS.

To demonstrate the robustness of CPSOS to the channel order over-estimation,

we assume the estimated channel order as L̂ = 5, 6, 7 respectively. The value

L̂ = 5 corresponds to the correct channel order, and other values are those being

over-estimated. The channel estimation MSEs versus SNR and block number for

these three different orders are displayed in Fig. 4.5 and Fig. 4.6, respectively.

As expected, order over-estimation only causes slight performance loss. This is

reasonable that assuming more channel taps, even if those zero taps, may also
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Figure 4.5: Channel estimation MSEs versus SNR for different estimated

channel order.

contribute to the channel estimation error. Nevertheless, the largest loss, appearing

when the order is taken the same as the CP length, is less than 1 dB.

Finally, we compare the bit error rate (BER) of the CPSOS and the ZPSOS

when the number of OFDM blocks is taken as 200. The ML detection is adopted

in CPSOS, while for ZPSOS, two different detections are used, e.g., sub-optimal

detection and ZF detection [55]. Fig. 4.7 shows the BER performances versus

SNR for the considered scenarios. Clearly, CPSOS outperforms ZPSOS within all

the SNR region. The SNR gain (at high SNR) between CPSOS and ZPSOS with

suboptimal detection meets our theoretical analysis, which is about 1 dB. Moreover,

the gap between CPSOS and ZPSOS with ZF detection is considerably large.
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Figure 4.6: Channel estimation MSEs versus number of OFDM blocks for

different estimated channel order.

4.6 Summery

In this chapter, we developed a new SS based blind channel estimation for MIMO

OFDM systems. With an appropriate re-modulation on the received signals, an

effective way has been found to apply the SS method for the CP based MIMO-OFDM

system when the number of receive antennas is no less than the number of transmit

antennas. Many issues related to the SS method have been studied for this newly

proposed modulation, e.g., channel identifiability, order over-estimation, MSE of

the channel estimation as well as the deterministic CRB on the channel estimation.

Most importantly, since the proposed method allows blind channel estimation for

the CP based MIMO OFDM, it is compatible with many existing standards and the

coming 4G wireless communication standards.
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Figure 4.7: BERs versus SNR for CPSOS and ZPSOS.
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Chapter 5

Non-Redundant Linear Precoding

Based Blind Channel Estimation

for MIMO OFDM Systems

In this chapter, we develop a simple blind channel estimation technique by utilizing

non-redundant linear block precoding. The algorithm is executable as long as the

number of the receive antennas is greater than a small portion of the number of

the transmit antennas and it also shows other advantages over the traditional SS

methods.

5.1 Introduction

From the previous chapters, we know that the traditional SS method cannot be

directly applied if the number of antennas at the receiver is smaller than or equal to

the number of antennas at the transmitter. Several solutions for SISO OFDM has

been introduced in subsection 2.2.2 and the drawbacks of each of them were also

listed. Although CPSOS developed in Chapter 4 is successfully applied to SISO

OFDM and MIMO OFDM with Nr ≥ Nt, it still remains unknown how to apply

SOS blind channel estimation to MIMO OFDM with Nr < Nt. The problem is
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tough and was not perfectly solved over the last two decades.

Precoded OFDM arose recently in [84], [85], where the information block is

first precoded and is then sent to channels. The meaning of precoding is quite

general, for example, if the precoding matrix is TcpF
H , the resulting system is

the so called CP-based OFDM. In addition, zero padding in [55] is also a kind of

precoded OFDM. A redundant block precoding based channel estimation for SISO

OFDM was proposed in [86] and a redundant precoding based space time coded

OFDM was proposed in [48]. These techniques sacrifice at least one symbol in each

block and are not spectrally efficient.

Based on the assumption that the transmitted symbols are independent and

identically distributed to each other, a new type of blind channel estimation

method for SISO-OFDM system has been reported in [87]-[91]. In [87] and [88], a

non-redundant linear precoder is applied at the transmitter and the CSI is possessed

in all entries of the signal covariance matrix. However, the authors purely extract the

CSI from a predefined single column of the covariance matrix, which greatly limits

the performance accuracy of the algorithm. In [89]-[91], cross correlation of two

consecutive OFDM blocks are utilized. However, this approach requires twice the

number of the received blocks to construct a similarly reliable correlation matrix as

the one in [87], [88]. Since a major drawback of blind algorithms is the requirement

for large number of the received signals, this cross correlation based method seems

not as attractive as the one in [87], [88]. Most importantly, in all these works

[87]-[91], how to apply the non-redundant linear precoding for the channel estimation

in MIMO OFDM systems was not addressed. In fact, the generalization approach

from SISO to MIMO is not a straightforward task.

In this chapter, we develop a new blind channel estimation method for both

SISO- and MIMO-OFDM systems. A novel contribution of the proposed method

lies in that it is even applicable for MISO systems. For SISO OFDM systems,

the newly proposed method can improve the performance accuracy compared to

the existing works. For MIMO-OFDM systems, we further propose an approach
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to eliminate the multi-dimensional ambiguity that is known to exist for channel

estimation under multi-transmitter scenarios. Finally, the stochastic CRB is derived

and the simulation results are provided to show the effectiveness of our proposed

algorithm.

5.2 System Model

We still consider the Nt × Nr MIMO OFDM system shown in Fig. 1.4 and the

received signal model is written in (1.13). For convenience, we re-write it here as

y
(q)
i =

Nt∑
p=1

HpqF
Hs

(p)
i + n

(q)
i , i = 1, . . . , M. (5.1)

For most cases, the transmitted signals are independent both over the time and

across the transmit antennas. That is, s
(p1)
i is independent from s

(p2)
i for any p1 6= p2.

Define1 new vectors

si =
[
(s

(1)
i )T , (s

(2)
i )T , . . . , (s

(Nt)
i )T

]T

(5.2)

ni =
[
(n

(1)
i )T , (n

(2)
i )T , . . . , (n

(Nr)
i )T

]T

(5.3)

and let

Hy =




H11 . . . HNt1

...
. . .

...

H1Nr . . . HNtNr


 (5.4)

denote the overall time domain channel matrix with its (q, p)th partitioned block

given by the circulant matrix Hpq. The overall received symbol vector yi can be

expressed as

yi =
[
(y

(1)
i )T , (y

(2)
i )T , . . . , (y

(Nr)
i )T

]T

= HyFHsi + ni (5.5)

1The notations in this chapter will be the same as those defined in subsection 1.3 unless otherwise

mentioned.
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where F is the block diagonal matrix with the form

F = diag{F, F, . . . , F︸ ︷︷ ︸} = INt ⊗ F. (5.6)

Nt blocks

Let

hpq = [hpq(0), hpq(1), . . . , hpq(L)]T

be the channel response from the transmitter p to the receiver q. The frequency

domain response of hpq is written as

h̃pq = DFT(hpq) =
√

KF(1 : L + 1)hpq

= [h̃pq(0), h̃pq(1), . . . , h̃pq(K − 1)]T . (5.7)

The normalized DFT of y
(q)
i is written as

r
(q)
i = Fy

(q)
i =

Nt∑
p=1

FHpqF
Hs

(p)
i + Fn

(q)
i

=
Nt∑
p=1

Λpqs
(p)
i + ñ

(q)
i (5.8)

where Λpq is a diagonal matrix with the diagonal elements obtained from h̃pq.

Since the noise is i.i.d. AWGN, the new noise vector ñ
(q)
i has the same statistical

distribution as that of the vector n
(q)
i .

Let

Hr =




Λ11 . . . ΛNt1

...
. . .

...

Λ1Nr . . . ΛNtNr


 (5.9)

denote the overall frequency domain channel matrix. There is

ri =
[
(r

(1)
i )T , (r

(2)
i )T , . . . , (r

(Nr)
i )T

]T

= Hrsi + ñi (5.10)

where

ñi = Fni (5.11)
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is the equivalent noise vector in the frequency domain. The source covariance matrix

is, by assumption, expressed as

Rs = E{sis
H
i } = σ2

sIKNt (5.12)

where σ2
s is the transmitted signal power.

5.3 Blind Channel Estimation for SISO OFDM

Systems

5.3.1 Generalized Precoding

For the SISO OFDM system, si, Hr and ñi reduce to s
(1)
i , Λ11 and ñ

(1)
i , respectively.

Suppose that the block symbol s
(1)
i is precoded by a predefined K ×K matrix W1

before the IDFT operation. The received signal vector can be rewritten as

r
(1)
i = Λ11W1s

(1)
i + ñ

(1)
i . (5.13)

As a result, the signal covariance matrix is

Rr = E{r(1)
i (r

(1)
i )H} = σ2

sΛ11P1Λ
H
11 + σ2

nIK

=




σ2
s [P1]11|h̃11(0)|2 + σ2

n . . . σ2
s [P1]1K h̃11(0)h̃11(K − 1)∗

...
. . .

...

σ2
s [P1]K1h̃11(K − 1)h̃11(0)∗ . . . σ2

s [P1]KK |h̃11(K − 1)|2 + σ2
n




= σ2
s(h̃11h̃

H
11)¯P1 + σ2

nIK×K (5.14)

where

P1 = W1W
H
1 (5.15)

is the square of the precoding matrix.

Remark: As will be seen later, the precoder W1 in the proposed algorithm can

be an arbitrary matrix. However, the precoding scheme in [87], [88] follows specific
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formality. For example in [87], although the algorithm is not illustrated by using a

precoding matrix, it in fact uses a precoding matrix with entries given by

[W1]ac =





1 a = c 6= t

2 a = c = t

1 a 6= c, c = t

0 otherwise

(5.16)

where t is taken as K/4.

5.3.2 Blind Channel Estimation Algorithm

On the cth column of Rr, except the diagonal element [Rr]cc, all the other K − 1

elements are of the form

[Rr]ac = σ2
s [P1]ach̃11(a− 1)h̃11(c− 1)∗, a 6= c. (5.17)

Since P1 is known as a prior, σ2
s h̃11(a− 1)h̃11(c− 1)∗ can be obtained from

σ2
s h̃11(a− 1)h̃11(c− 1)∗ =

[Rr]ac

[P1]ac

, a 6= c. (5.18)

However, σ2
s h̃11(c− 1)h̃11(c− 1)∗ cannot be recovered since the (c, c)th entry of Rr

is corrupted by the unknown noise variance.

As long as K − 1 ≥ L + 1, as usually the case, both the (L + 1) × 1 time

domain channel vector h11 and the K × 1 frequency domain channel vector h̃11 can

be obtained in the following way. Define

r̆c =

[
[Rr]1c

[P1]1c

, . . . ,
[Rr](c−1)c

[P1](c−1)c

,
[Rr](c+1)c

[P1](c+1)c

, . . . ,
[Rr]Kc

[P1]Kc

]T

= [σ2
s h̃11(0)h̃11(c− 1)∗, . . . , σ2

s h̃11(c− 2)h̃11(c− 1)∗,

σ2
s h̃11(c)h̃11(c− 1)∗, . . . , σ2

s h̃11(K − 1)h̃11(c− 1)∗]T (5.19)

Fc = [F(1 : c− 1, 1 : L + 1)T , F(c + 1 : K, 1 : L + 1)T ]T . (5.20)

The estimate of h11 from r̆c can be derived as

ĥc
11 =

1√
K

F†cr̆c = σ2
s h̃11(c− 1)∗h11, c = 1, . . . , K. (5.21)
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Consequently, the estimate of h̃11 is obtained as

ˆ̃h
c

11 = DFT(ĥc
11) =

√
KF(1 : L + 1)ĥc

11

= F(1 : L + 1)F†cr̆c = σ2
s h̃11(c− 1)∗h̃11 c = 1, . . . , K. (5.22)

In (5.21) and (5.22), the channel length is enforced in the time domain to obtain

a truncated channel vector and then the K-point DFT is performed to get the

channel frequency response. This process is known as denoising and could improve

the estimation accuracy [50].

Remark: The estimated channel vectors from both (5.21) and (5.22) are

different from the true one by a complex scalar, which is well known for almost

all the blind channel estimation. Since the cth entry of ˆ̃h
c

11 is σ2
s |h̃11(c − 1)|2, the

scaling ambiguity of the estimation can be eliminated if the transmitted signal power

is known.

In [87], [88], the authors proposed a method that uses only one of ˆ̃h
c

11 as the

final channel estimation, which greatly limits the performance of the algorithm. To

obtain better performance, an averaging approach should be necessarily adopted.

Since each ˆ̃h
c

11 is different from the true one by an unknown factor, it is not possible

to apply the maximum ratio combining (MRC). Moreover the direct averaging may

not be a good choice since some elements of the estimated channel vector may

be canceled with each other, e.g., when h̃11(c1 − 1) + h̃11(c2 − 1) = 0 for some

c1, c2 ∈ {1, . . . , K}. We now propose a new algorithm that jointly considers all

entries of the matrix Rr.

The Algorithm:

• Step 1: From (5.22), obtain K estimates ˆ̃h
c

11, c = 1, . . . , K.

• Step 2: Form a new matrix

Q =

[
ˆ̃h

1

11,
ˆ̃h

2

11, . . . ,
ˆ̃h

K

11

]
. (5.23)

It can be proved that

Q = (σsh̃11)(σsh̃11)
H . (5.24)
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From the subspace based detection theory [40], the estimate of σsh̃11, denoted

as ˆ̃h11 can be obtained as the eigenvector of Q that corresponds to the largest

eigenvalue.

• Step 3: Denoise the estimate vector ˆ̃h11 and obtain the final estimation result.

Remark: Instead of using only one column of Rr, the proposed method

extracts the channel estimation from the whole covariance matrix. Hence the final

estimate is more accurate than the one purely estimated from a single column [87],

[88].

5.3.3 Criteria for the Design of Precoders

1. Distortion Constraint:

In real applications, the number of the snapshots received within the channel

coherent time is finite. Therefore, the received signal covariance matrix is

replaced by the sample covariance matrix. As a result, each entry of Rr will

contain the distortion due to both the noise and the lack of the number of

snapshots. If one entry of P1 is much smaller than the other entries, the

distortion in the corresponding entry of Rr will be greatly enlarged after the

elimination of P1. Hence, the entry of Rr with possibly large distortion should

be discarded or the corresponding entry of P1 should be assigned a relatively

large value. However, no prior information of the distortion can be obtained

due to all unknown factors. A reasonable way is to assign equal value to all

the non-diagonal entries, at the same time as large as possible.

2. Power Constraint:

To keep the transmission power unchanged, matrix P1 should be designed such

that

Transmitting Power = E{(s(1)
i )HWH

1 W1(s
(1)
i )} = σ2

str(P1) = Kσ2
s (5.25)
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or

tr(P1) = K. (5.26)

Since the proposed algorithm equally considers all entries of Ry, there is

no reason why the value of one diagonal entry should dominate another.

Consequently, we consider each diagonal element to be 1. Combined with

the distortion constraint, the (a, c)th entry of P1 takes the value

[P1]ac =





1 a = c

p̄ a 6= c
a, c = 1, . . . , K (5.27)

where p̄ is some non-zero value.

3. Symbol Error Constraint:

It is known that, P1 should be designed as a positive definite matrix such that

the transmitted symbols can be restored after the channel is estimated. It can

be proved that, one of the eigenvalues of P1 in (5.27) is (K − 1)p̄ + 1 and all

the other eigenvalues are 1− p̄. Hence, the range of p̄ is − 1
M−1

< p̄ < 1.

Suppose at the receiver, the minimum mean square error (MMSE) equalizer

is applied for detecting the symbols [89]-[91]. That is

ŝ
(1)
i = Gr

(1)
i (5.28)

where

G = E{s(1)
i (r

(1)
i )H}E{r(1)

i (r
(1)
i )H}−1

= WH
1 ΛH

11(Λ11P1Λ
H
11 +

σ2
n

σ2
s

I)−1. (5.29)

The MSE of the estimation can be obtained as

MSE = E{‖Gr
(1)
i − s

(1)
i ‖2}

= σ2
str(I− (Λ11P1H̃

H
11 +

σ2
n

σ2
s

I)−1H̃11P1Λ
H
11)

= σ2
ntr((Λ11P1Λ

H
11 +

σ2
n

σ2
s

I)−1). (5.30)
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Let us first provide the following lemma.

Lemma 5.1: For any positive definite K×K matrix A, the following inequality

holds [92]:

tr(A−1) ≥
K∑

a=1

([A]aa)
−1 (5.31)

and the equality holds if A is diagonal. Since Λ11 is a diagonal matrix, the

minimum value of MSE can only be achieved when P1 is also a diagonal

matrix. With the fact that Λ11 is unknown, a reasonable choice of P1 is to be

an identity matrix. In this case, p̄ is expected to be 0, which makes the channel

estimation impossible. To reduce the symbol detection error, one may try to

decrease the value of |p̄|. However, this approach will enlarge the distortion

effect as stated in the distortion constraint part.

From the above discussion, it is seen that there exists a compromise between

channel estimation error and data detection error.

5.4 Blind Channel Estimation for MIMO

Systems.

5.4.1 MIMO Channel Estimation with Ambiguity

For MISO and MIMO systems, each receiver receives a combination of the

transmitted symbols from all the transmitters. Suppose the symbol from the pth

transmitter is separately precoded by the matrix Wp. The normalized DFT of the

received signal vector from the qth receiver can be written from (5.13) as

y
(q)
i =

Nt∑
p=1

ΛpqWps
(p)
i + n

(q)
i . (5.32)

Let P be the block diagonal matrix with the form

P = diag{P1, P2, . . . , PNt} (5.33)
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where

Pp = WpW
H
p . (5.34)

The signal covariance matrix Rr is then obtained as

Rr = E{rir
H
i } = σ2

sHrPHH
r + σ2

nIKNr

=




Rr,11 . . . Ry,1Nr

...
. . .

...

Rr,Nr1 . . . Rr,NrNr


 (5.35)

with its (b, d)th sub-block given by

Ry,bd = σ2
s

Nt∑
p=1

ΛpbPpΛ
H
pd + δ(b− d)σ2

nIK

= σ2
s

Nt∑
p=1

(h̃pbh̃
H
pd)¯Pp + δ(b− d)σ2

nIK , b, d = 1, . . . , Nr (5.36)

where δ(·) is the delta function that equals one at b = d and zero otherwise.

From (5.35), it is hard to eliminate the effect of all Pp’s for every entry of Rr.

A tricky way here is to take all the Pp same, namely:

P = P1 = . . . = PNt = WWH . (5.37)

With this effort, Rr,bd can be rewritten as

Rr,bd = σ2
s

(
Nt∑
p=1

h̃pbh̃
H
pd

)
¯P + δ(b− d)σ2

nIK . (5.38)

We will continue the discussion by considering the following two cases.

Case 1: b 6= d. In this case, Rr,bd simply has the form

Rr,bd = σ2
s

(
Nt∑
p=1

h̃pbh̃
H
pd

)
¯P. (5.39)

Dividing the (a, c)th entry of Rr,bd by [P]ac, we obtain

Qbd = σ2
s

Nt∑
p=1

h̃pbh̃
H
pd, b 6= d. (5.40)
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Case 2: b = d. For this case, Rr,bd is written as

Rr,bd = σ2
s

(
Nt∑
p=1

h̃pbh̃
H
pd

)
¯P + σ2

nIK . (5.41)

Noting the similarity between (5.41) and (5.14), we can define

r̆bd,c =

[
[Rr,bd]1c

[P]1c

, . . . ,
[Rr,bd](c−1)c

[P](c−1)c

,
[Rr,bd](c+1)c

[P](c+1)c

, . . . ,
[Rr,bd]ac

[P]ac

]T

. (5.42)

Similarly from (5.22), we can obtain

σ2
s

Nt∑
p=1

h̃pbh̃
∗
pd(c− 1) = F(:, 1 : L + 1)F†crbd,c, c = 1, . . . , K (5.43)

where Fc is defined in (5.20). Therefore

Qbd =

[
σ2

s

Nt∑
p=1

h̃pbh̃
∗
pd(0), . . . , σ2

s

Nt∑
p=1

h̃pbh̃
∗
pd(K − 1)

]
= σ2

s

Nt∑
p=1

h̃pbh̃
H
pd (5.44)

could also be constructed for b = d.

Define

Q =




Q11 . . . Q1Nr

...
. . .

...

QNr1 . . . QNrNr


 (5.45)

U =




h̃11 . . . h̃Nt1

...
. . .

...

h̃1Nr . . . h̃NtNr


 . (5.46)

It can be verified that

Q = σ2
sUUH = (σsU)(σsU)H . (5.47)

From the subspace detection theory, the matrix U can be estimated from the Nt

eigenvectors of Q which corresponds to the largest Nt eigenvalues. However, this

estimate differs from the true value by an Nt ×Nt matrix. Namely,

Û = UB (5.48)
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where B is an Nt × Nt unknown matrix. This higher dimensional ambiguity

commonly exists in the blind channel estimation when multiple transmit antennas

are used [79]. As in Chapter 4, some training symbols should be transmitted or the

finite alphabet property should be utilized to resolve this ambiguity. We will see in

the next subsection that the higher dimensional ambiguity can also be eliminated

by adopting a different scheme of precoding.

Remarks:

• It is seen that the proposed algorithm directly operates on the signal covariance

matrix and the source covariance is assumed as Rs = σ2
sI. Consequently, the

channel ambiguity issue is automatically removed.

• Moreover, since the channel frequency response matrix U is estimated, the

channel length constraint in the time domain is removed. That is, no matter

what L is, the vector h̃pq of length K is always estimated. So, the channel

over-order estimation only degrades the performance of the channel estimation

but will not fail the algorithm.

• Throughout the derivation, we do not put any restriction on the number of

the transmit and the receive antennas. Therefore, the proposed algorithm is

applicable for MIMO system when Nt is greater than or equal to Nr, in which

case the traditional SS method [40]-[45] cannot be applied. However, the value

of Nt should not exceed Nr(L + 1)− 1. The reason is illustrated as follows.

Let

V =




h11 . . . hNt1

...
. . .

...

h1Nr . . . hNtNr


 (5.49)

denote the Nr(L + 1) × Nt matrix containing time domain channel response.

The estimate of V, denoted as V̂, can be obtained from Û via IDFT operation

and is related with V by

V̂ = VB. (5.50)
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If Nt is greater than or equal to Nr(L + 1), the estimation (5.50) would be

meaningless. Because in this case, any Nr(L+1)×Nt matrix will be away from

V by an Nt × Nt matrix B. However, as can be seen in the next subsection,

this upper bound does not exist if the higher dimensional ambiguity problem

is resolved.

• By following the similar steps in section 5.3.3, the same design criterion for

precoder P can be derived and P with the form (5.27) is also suggested as a

good precoder for MIMO OFDM systems.

5.4.2 MIMO Channel Estimation with Scalar Ambiguity

We also propose the following scheme to eliminate the higher dimensional ambiguity

directly through the channel estimation. Suppose at the iNt + τth interval τ =

1, . . . , Nt, the symbol block from the pth transmitter is precoded by Wpτ and the

corresponding Ppτ is defined as

Ppτ = WpτW
H
pτ , p, τ = 1, . . . , Nt. (5.51)

Define Nt covariance matrices as

Rrτ = E{r(iNt + τ)r(iNt + τ)H}, τ = 1, . . . , Nt. (5.52)

We know from (5.35) and (5.36) that, the (b, d)th block of Rrτ has the form

Rrτ,bd = σ2
s

Nt∑
p=1

ΛpbPpτΛ
H
pd + δ(b− d)σ2

nIK

= σ2
s

Nt∑
p=1

(h̃pbh̃
H
pd)¯Ppτ + δ(b− d)σ2

nIK . (5.53)

Similar steps for estimating the channel response can be carried on as follows:

Case 1: b 6= d. For this case, the (a, c)th entry of Rrτ,bd can be expressed as

[Rrτ,bd]ac = σ2
s

Nt∑
p=1

[Ppτ ]ach̃pb(a− 1)h̃∗pd(c− 1), τ = 1, . . . , Nt. (5.54)
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Note that (5.54) contains Nt equations of Nt unknown parameters σ2
s h̃pb(a−1)h̃∗pd(c−

1), p = 1, . . . , Nt. Therefore the unknown parameters can be obtained as




σ2
s h̃1b(a− 1)h̃∗1d(c− 1)

...

σ2
s h̃Ntb(a− 1)h̃∗Ntd

(c− 1)


 =




[P11]ac . . . [PNt1]ac

...
. . .

...

[P1Nt ]ac . . . [PNtNt ]ac




−1 


[Ry1,bd]ac
...

[RyNt,bd]ac




(5.55)

Since (5.55) holds if and only if the inverse item exists, we should no longer grant

the same value to all Ppτ as suggested in subsection 5.4.1. Instead, Ppτ should

be designed such that the square matrix in (5.55) is non-singular. By considering

all pairs of (a, c) and properly reorganizing the results coming from (5.55), we can

obtain Nt new matrices

Qp,bd = σ2
s h̃pbh̃

H
pd for p = 1, . . . , Nt. (5.56)

Case 2: b = d. For this case, the diagonal entries of Rrτ,bd are corrupted by the

unknown noise power. Therefore, we may consider only the entries with a 6= c.

There is

[Rrτ,bd]ac = σ2
s

Nt∑
p=1

[Ppτ ]ach̃pb(a− 1)h̃∗pd(c− 1) (5.57)

for

τ = 1, . . . , Nt, b = d, a 6= c.

With a similar step in case 1, we can obtain the value of σ2
s h̃pb(a− 1)h̃∗pd(c− 1) from

(5.55) for all a 6= c. Then, a new vector can be formed as follows

r̆bd,c =[σ2
s h̃pb(0)h̃∗pd(c− 1), . . . , σ2

s h̃pb(c− 2)h̃∗pd(c− 1),

σ2
s h̃pb(c)h̃

∗
pd(c− 1), . . . , σ2

s h̃pb(K − 1)h̃∗pd(c− 1)]T (5.58)

for each c = 1, . . . , K. Following similar steps through (5.21) to (5.22), the vector

σ2
s h̃pbh̃

∗
pd(c− 1) can be obtained as

σ2
s h̃pbh̃

∗
pd(c− 1) = F(:, 1 : L + 1)F†cr̆bd,c. (5.59)
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Combining all the results of σ2
s h̃pbh̃

∗
pd(c−1), c = 1, . . . , K, we can obtain the estimate

Qp,bd = [σ2
s h̃pbh̃

∗
pd(0), . . . , σ2

s h̃pbh̃
∗
pd(K − 1)] = σ2

s h̃pbh̃
H
pd for p = 1, . . . , Nt. (5.60)

Define a new matrix

Qp =




Qp,11 . . . Qp,1Nr

...
. . .

...

Qp,Nr1 . . . Qp,NrNr


 . (5.61)

It can be readily seen that,

Qp = σ2
sUpU

H
p , p = 1, . . . , Nt (5.62)

where

Up = [h̃T
p1, h̃

T
p2, . . . , h̃

T
pNr

]T (5.63)

is the pth column of U and represents the NrK × 1 channel response vector purely

from the pth transmitter to all the receivers. Again, Up can be obtained from the

eigenvector of Qp corresponding to the largest eigenvalue.

Therefore, by assigning different precoding matrix to different transmitter and

taking Nt covariance matrices from different time slot, the higher dimensional

ambiguity reduces to one scalar ambiguity for each Up, namely

Ûp = αpUp (5.64)

where αp is an unknown complex scalar. In this case, there is no upper bound

constraint on the number of the transmit antennas. Since Nt covariance matrices

need to be constructed in real applications, the number of available snapshots seems

to be critical to the performance of the algorithm. Roughly speaking, in order to

build the comparably reliable covariance matrix as the one in the matrix ambiguity

case, Nt times more snapshots need to be obtained.

Remark: A general guideline for designing Ppτ is provided here. Similar to

SISO case, the power constraint can be satisfied by choosing proper diagonal values

for all Ppτ . However, special attention should be paid for the distortion constraint.

One intuition is that Ppτ should be designed such that each entry of the inverse
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matrix in (5.55) takes on a value as small as possible for all pairs of (a, c) in order

to reduce the distortion enhancement effect.

5.4.3 Symbol Detection

The proposed blind algorithm forms a novel contribution since it is a blind channel

estimation method applicable for the MIMO OFDM with Nt ≥ Nr. Common

application may lie in downlink communications where there are multiple antennas

at the base station, however, only one or two antennas are available at the mobile

terminal. It is also possible to apply the proposed algorithm in the cooperative

communications [93]-[97] where there are, in general, more relays but only one

destination.

For the case Nt > Nr, the linear detection may not be reliable and the ML

algorithm is usually carried out by an exhaustive search. Alternatively, specific

consideration can be made in the structure of the transmitted symbols to guarantee

a linear detection. The STC technique [17] will be a good choice.

For convenience, we only discuss the case with channel estimation ambiguity.

We consider a 2 × 1 transmission system with the implementation of Alamouti

codes [98] at the transmitter. Suppose in the 2ith block interval, s2i and s2i+1

are transmitted from the first and the second transmitters, respectively, and in

the (2i + 1)th block interval, −s∗2i+1 and s∗2i are transmitted from the first and

second transmitters, respectively. The received signals from the (2i)th block and

the (2i + 1)th block are given by

r2i = [Λ11, Λ21]


 Ws2i

Ws2i+1


 + n2i (5.65)

r2i+1 = [Λ11,Λ21]


 −Ws∗2i+1

Ws∗2i


 + n2i+1 (5.66)

where n2i and n2i+1 are the corresponding noise vectors. From our design of
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precoder, W = P1/2 is taken as a real matrix, therefore


 r2i

r∗2i+1


 =


 Λ11 Λ21

Λ∗
21 −Λ∗

11





 W 0

0 W





 s2i

s2i+1


 +


 n2i

n∗2i+1


 (5.67)

or equivalently

r̄ = Λ̄W̄s̄ + n̄ (5.68)

where r̄, Λ̄, W̄, n̄ representing the corresponding items in (5.67). It can be easily

known that Λ̄ is a unitary matrix. Then, the transmitted symbols is simply detected

from

s̄ = W̄−1Λ̄
H
r̄. (5.69)

Note that, W̄ is a pre-calculated term and can be stored in advance.

More general STC other than Alamouti code can also be utilized. In this case,

Rs may not be a multiple of the identity matrix. However, as long as different

sources send i.i.d. symbols, the value of Rs should be known in advance. Therefore,

we need only to redefine the new P as

P = WRsW (5.70)

and the proposed algorithm still works.

5.5 Stochastic Cramér-Rao Bound

In this section we derive the CRB for the proposed channel estimation algorithm.

For simplicity, we only focus on the discussion for the ambiguity case.

Since the channel matrix Hr or Hy in our model could be a square or a fat

matrix, the deterministic CRB is no longer applicable. Instead, we consider the

stochastic CRB [99], [100]. Here we do not use the covariance of ri, since h̃pq has

only L+1 degree of freedom. Namely, once L+1 elements of h̃pq are fixed, then other

elements of h̃pq can be consequently determined. Therefore, the signal covariance
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matrix of yi is used and is parameterized by the (NtNr(2L + 2) + 2) × 1 vector

θ = [θ1, θ2] with

θ1 = [Re{h11}T , Im{h11}T , . . . , Re{hpq}T ,

Im{hpq}T , . . . , Re{hNtNr}T , Im{hNtNr}T ]T (5.71)

θ2 = [σ2
s , σ

2
n]T . (5.72)

The covariance matrix Ry is then given by

Ry = E{yiy
H
i } = σ2

sHyFHPFHH
y + σ2

nIKNr . (5.73)

Define K ×K derivative matrices Tl with the (a, c)th entry

[Tl]ac =





1 for ((a− c) mod K) = l − 1

0 otherwise
, l = 1, . . . , L + 1 (5.74)

and

Dpq,l = qth {




0 . . . 0 . . . 0
...

. . . . . . . . .
...

0 . . . Tl . . . 0
...

. . . . . . . . .
...

0 . . . 0︸︷︷︸ . . . 0




for
p = 1, . . . , Nt

q = 1, .., Nr

(5.75)

pth.

Let

Apq,l = σ2
sR

−1/2
y Dpq,lFHPFHH

y R−1/2
y (5.76a)

GR
pq(:, l) = vec(Apq,l + AH

pq,l) (5.76b)

GI
pq(:, l) = vec(jApq,l − jAH

pq,l) (5.76c)

v = vec(R−1/2
y HyFHPFHH

y R−1/2
y ) (5.76d)

u = vec(R−1
y ) (5.76e)

Gpq = [GR
pq GI

pq] (5.76f)

G = [G11 , . . . ,Gpq , . . . ,GNtNr ] (5.76g)

∆ = [v u]. (5.76h)
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Suppose M data blocks are received, the stochastic CRB of channel vector θ1 is

given by

CRBθ1 =
1

M
(GHP⊥

∆G)† (5.77)

where

P⊥
∆ = I−∆(∆H∆)−1∆H (5.78)

is the projection matrix onto the orthogonal complement space of ∆.

Proof: See Appendix D. ¥

5.6 Simulations

In this section, we examine the performance of the proposed estimator under various

scenarios. The 3-ray channel model with exponential power delay profile [73]

E{|hpq(l)|2} = exp(−l/10), l = 0, . . . , 2 (5.79)

is used. The phase of each channel ray is uniformly distributed over [0, 2π). For

all numerical examples, the QPSK symbols are considered and the parameters are

taken as K = 32, L = 2. In each simulation run, 150 blocks of signals are obtained

and all the results are averaged over Nw = 100 Monte-Carlo runs.

The normalized estimation mean square errors (NMSE) is defined the same as

in (4.40).

1) SISO OFDM Systems

We first illustrate the performance comparison of the proposed joint estimator

with the single column estimator in [87]. For a relatively fair comparison, the value

of p̄ for the proposed precoder is obtained in a way that the MMSEs (5.30) for

both the proposed precoder and the precoder in [87] are the same. In Fig. 5.1,

the NMSEs of channel estimation versus SNR of these two different algorithms are

displayed. Line 1 and line 2 show the comparison between the proposed estimator

and single column estimator under the precoder suggested in [87]. We see that the

joint estimator is better than the single column estimator since we considered full
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1: Method in [85]
2: proposed method+precoder in [85]
3: proposed method+proposed precoder

Figure 5.1: Comparison with the existing work in SISO OFDM.

exploitation of available information. At the same time, comparison between line 2

and line 3 clearly shows the difference of the proposed estimator under two different

precoders, from which we see that our proposed precoder is much better than the

precoder in [87].

Next we consider the performance variation for different values of p̄. Three

values of p̄ as 0.25, 0.62, 1 are chosen and the corresponding NMSEs versus SNR

are shown in Fig. 5.2. At the same time the three stochastic CRB curves are drawn

from up to down representing the CRBs for 0.25, 0.62, and 1, respectively. We see

that the value of p̄ is critical to the performance of the proposed algorithm. As

shown in section III, the increase in the value of p̄ will cause the performance of the

proposed algorithm to be better. At the same time, the gap between the proposed

algorithm and their corresponding CRB becomes smaller. Moreover, we can also

see that both the NMSE curves and the CRB curve for those with p̄ 6= 1 meet lower
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Figure 5.2: Performance of the proposed algorithm for SISO OFDM under

different p̄.

floors after the SNR reaches a certain level. Remember that the proposed algorithm

is based on the assumption that the source covariance is a multiple of an identity

matrix. Since only finite number of the snapshots is available in the simulation, an

extra distortion (not related with SNR) will occur when we divide each entry of the

covariance matrix by p̄, causing the estimation floor irrelevant with SNR. However,

for p̄ = 1, each entry of covariance matrix does not go through such a dividing and

this extra distortion does not exist. Hence, no lower floor will be met for p̄ = 1.

Lastly, we examine BER of the MMSE detector with the channel response

estimated from the proposed algorithm. In Fig. 5.3, the BERs versus SNR are

plotted for p̄ equals, 0.2, 0.4, 0.5, 0.6, 0.8, respectively. From Fig. 5.3, we numerically

answer the question of how to make a good trade off when selecting the value of

p̄. Basically, p̄ around 0.5 gives better performance and the BER reaches 10−5 at
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Figure 5.3: BERs for SISO OFDM under different p̄.

20 dB.

2) MIMO OFDM Systems

In the second example, we show the performance results of the proposed

algorithm for the MIMO OFDM system with two transmit antennas and two receive

antennas.

Firstly, we consider the case where the channel estimation with matrix

ambiguity. Three values of p̄ as 0.25, 0.62, 1 are chosen and the corresponding

NMSEs versus SNR are shown in Fig. 5.4. In the meantime, the three stochastic

CRBs are also displayed from up to down representing the CRB for 0.25, 0.62, and

1, respectively. Similar to SISO scenario, larger p̄ gives better performance.

Next, we show the performance NMSEs versus the number of the snapshots

for the same MIMO system. It is expected that as the number of the signal block

increases, the estimate of the covariance matrix Rr becomes accurate thus will result
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Figure 5.4: Performance NMSEs for MIMO OFDM versus SNR.

in a better estimation for h̃pq. Fig. 5.5 shows the NMSEs versus the number of blocks

of these two estimators for the fixed SNR= 10 dB. The CRBs are displayed as well.

It can be seen from this figure that estimation with block number greater than 150

can give relatively good performance.

The BER performance of the proposed method for MIMO systems is shown in

Fig. 5.6. It is seen that small p̄ performs similarly for low SNR region. Furthermore,

small values of p̄ perform better at low SNR whereas large values of p̄ perform better

at high SNR, say above 30 dB. We note that the BER for MIMO is a little bit worse

than that for SISO case. Since the STC technique [17] is not applied and symbols are

generated independently for each transmitter, the simulated MIMO scenario could

only be considered as a spatial multiplexing system. Moreover, it is well known that

linear receivers in spatial multiplexing systems suffer from the lack of diversity [101].

Actually, the diversity order for linear receivers can be approximated as Nr−Nt +1,
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Figure 5.5: Performance NMSEs for MIMO OFDM versus number of

snapshots.

which is only 1 for the simulated scenario. Therefore, no diversity is introduced

here. Furthermore, we use the estimated channel for symbol detection. Note that,

most diversity works are based on perfect channel knowledge. Therefore, the errors

in channel estimation will directly affect the BER performance. One can see that

the NMSEs of the channel estimation for MIMO is a little bit worse than that for

SISO, which causes BER performance for MIMO to be a little bit worse than that

for SISO under the same diversity order of 1. However, the BER performance can

be improved if the STC or ML detection is applied.

Lastly, we illustrate the performance results of the proposed method with

channel estimation scalar ambiguity. The total number of snapshots is taken as

300 such that each covariance matrix is still constructed with 150 samples. The
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Figure 5.6: BERs for MIMO OFDM under different p̄.

precoding matrix is taken as

[P11]ac = [P22]ac =





1.2 a = c = 1, . . . , K/2

0.8 a = c = K/2 + 1, . . . , K

2/3 otherwise,

(5.80)

[P12]ac = [P21]ac =





0.8 a = c = 1, . . . , K/2

1.2 a = c = K/2 + 1, . . . , K

1/3 otherwise.

(5.81)

The channel estimation NMSEs versus SNR for h̃11, h̃12, h̃21, h̃22 are shown in

Fig. 5.7, separately. We see from the simulation results that the proposed method

still works well for scalar ambiguity estimation.

3) MISO OFDM System
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Figure 5.7: Performance NMSEs for MIMO OFDM versus SNR: with scalar

ambiguity

In this example, we consider the performance results of the proposed algorithm

for MISO OFDM system with two transmit and one receive antennas. Alamouti

codes [98] are applied at the transmitter, and the channel estimation with matrix

ambiguity is performed. We only illustrate the capability of the data detection of

the proposed algorithm. The BER performance curves corresponding to different

values of p̄ are shown in Fig. 5.8. We see that the proposed method works well for

the MISO case and the data detection is guaranteed by the application of Alamouti

code at the transmitter. Comparing to Fig. 5.3 and Fig. 5.6, the diversity order is

increased and BER curves drop in a much faster rate.
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Figure 5.8: BERs for MISO OFDM with Alamouti code under different p̄.

5.7 Summery

In this chapter, we developed a new blind channel estimation technique for SISO-

and MIMO-OFDM systems based on the second order statistical analysis. One

novel contribution of the newly proposed method is its capability under the scenario

where the number of the transmit antennas is greater than or equal to the number of

the receive antennas, in which case the traditional subspace based algorithm is not

applicable. For SISO OFDM case, the proposed method is shown to perform better

than the existing works. For MIMO OFDM case, the estimation methods with and

without ambiguity are discussed. The trade off for eliminating the ambiguity is that

more time slots during the channel coherent time are required to construct reliable

covariance matrices. Finally, the stochastic CRB is derived and simulation results

clearly show the effectiveness of the proposed method under various scenarios.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The thesis provides solutions to several unsolved issues in synchronization and

channel estimation for MIMO OFDM systems.

In terms of CFO tracking, we developed a new algorithm that could overcome

the drawbacks of the existing methods and, meanwhile, exhibits many exciting

properties, e.g., high estimation accuracy, full estimation range. The method is

the first one that fully exploits all the resources in one OFDM blocks. We studied

the identifiability of the tracking algorithm and showed that the ambiguity of

CFO estimation could be removed by properly adjusting the system parameters.

Nevertheless, with the exploitation on the virtual carriers, neither the ambiguity nor

the outlier occurs frequently throughout the practical simulations. To be mentioned,

the proposed frequency tracking algorithm is also applicable to TO tracking,

although seldom needed during the data transmission, and to the synchronization

initialization since the algorithm itself does not require the knowledge of the CSI

and can provide the full range CFO estimation.

In terms of channel estimation, we proposed two new blind algorithms which

fit the high speed transmission where the assumption that the channels are constant

during each frame time becomes reasonably valid. We first developed a signal
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re-modulated SS algorithm for CP-based MIMO OFDM with the following favorable

properties: robustness to channel order over-estimation, guaranteeing the channel

identifiability, and, most importantly, applicability to the scenario where the number

of the receive antennas is equal to the number of the transmit antennas. The

last property removes the most severe bottle neck on applying the traditional SS

method to the MIMO OFDM system and is compatible to the coming 4G wireless

communication systems. Afterwards, an even exciting blind channel estimation

algorithm is developed that is applicable to the case where the number of the receive

antennas is smaller than the number of the transmit antennas. A trade-off by doing

this is the employment of a precoding matrix. This precoding matrix is not favorable

when the ML estimation is required but is still feasible when the MMSE detection

is adopted.

Various numerical results are provided to verify each of our studies.

6.2 Future Works

Recently, the relay based wireless transmission [93]-[97] attracted lots of attention

due to its capability of enlarging the transmission range and enhancing the

transmission diversity for size-limited terminals. In most relay networks, channel

estimation is still an critical component for a reliable transmission. Training based

channel estimation has been derived in [102], where it shows that the channel

estimation in relay networks has fundamental differences from that in the traditional

point-to-point communication systems. Therefore, it is of interest to rethink the

blind channel estimation or the synchronization issues for the relay networks. All

these works will be exploited in our future researches.
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Appendix A

Error Evaluation for CFO

Tracking

Define new vectors

y̆i = e−j2πφ((i−1)Ks+P )Ω(−φ)yi = FHsi︸ ︷︷ ︸
ηi

+ e−j2πφ(i−1)KsΩ(−φ)ni︸ ︷︷ ︸
n̆i

(A.1)

y̆i+1 = e−j2πφ(iKs+P )Ω(−φ)yi+1 = FHsi+1︸ ︷︷ ︸
ηi+1

+ e−j2πφiKsΩ(−φ)ni+1︸ ︷︷ ︸
n̆i+1

. (A.2)

Obviously, n̆i has the same distribution as that of ni. Then gp(ε) is rewritten as

gp(ε) = ‖FH
p Ω(−ε)yi − FH

p Ω(−ε)yi+1e
−j2πεKs‖2

= (yH
i − yH

i+1e
j2πεKs)Ω(ε)PpΩ(−ε)

(
yi − yi+1e

−j2πεKs
)

(A.3)

where Pp = FpF
H
p is the projection matrix onto the subspace spanned by Fp.

Bearing in mind that FH
p

(
ηi − ηi+1

)
= 0, ġp(ε) |ε=φ can be obtained as

ġp(φ) = j2π∆ηDPp∆n̆ + j2π∆n̆HDPp∆n̆− j2π∆n̆HPpD∆η − j2π∆n̆HPpD∆n̆

− j2πKsη
H
i+1Pp∆n̆− j2πKsn̆

H
i+1Pp∆n̆

+ j2πKs∆n̆HPpηi+1 + j2πKs∆n̆HPpn̆i+1 (A.4)
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A. Error Evaluation for CFO Tracking

where D , diag{0, 1, ..., K − 1}, ∆η , ηi − ηi+1 and ∆n̆ , n̆i − n̆i+1 are used for

notation simplicity. The expectation of ġp(φ) is

E{ġp(φ)} = (0) + j4πσ2tr(DPp)− (0)− j4πσ2tr(PpD)

+ (0) + j2πKsσ
2tr(Pp) + (0)− j2πKsσ

2tr(Pp) = 0. (A.5)

After some manipulations, E{(ġp(φ))2} and E{g̈p(φ)} can be obtained as

E{(ġp(φ))2} = 16π2σ2‖Pp(D∆η −Ksηi+1)‖2 (A.6)

E{g̈p(φ)} = 8π2‖Pp(D∆η −Ksηi+1)‖2. (A.7)

On the other hand, gv(ε) can be rewritten as

gv(ε) =
i+1∑
m=i

‖FH
v Ω(−ε)ym‖2 =

i+1∑
m=i

yH
mΩ(ε)PvΩ(−ε)ym (A.8)

where Pv = FvF
H
v is the projection matrix onto the subspace spanned by Fv.

Bearing in mind that FH
v ηi = 0, ġv(ε) |ε=φ can be obtained as

ġv(φ) = j2π
i+1∑
m=i

(
ηH

mDPvn̆m + n̆H
mDPvn̆m − n̆H

q PvDηm − n̆H
q PvDn̆m

)
. (A.9)

It can be calculated that

E{ġv(φ)} = j2πσ2

i+1∑
m=i

(
0 + tr(DPv) + 0− tr(PvD)

)
= 0. (A.10)

Furthermore, E{(ġv(φ))2} and E{g̈v(φ)} can be obtained as

E{(ġv(φ))2} = 8π2σ2

i+1∑
m=i

ηH
mDPvDηm (A.11)

E{g̈v(φ)} = 8π2

i+1∑
m=i

ηH
mDPvDηm. (A.12)

Lastly, we derive the expectation of ġp(φ)ġv(φ) as

E{ġp(φ)ġv(φ)} = o(n4
i ) + o(n4

i+1) (A.13)

where the property PH
p Pv = 0 is used, and o(n4

i ) denotes the function at the order of

n4
i . This term can be ignored at higher SNR compared to E{ġp(φ)2} and E{ġv(φ)2}.
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Therefore, the p-algorithm and v-algorithm can be considered as uncorrelated to

each other.

Finally, substituting (A.5), (A.6), (A.7), (A.10), (A.11), (A.12) into (3.23),

(3.24) yields (3.25), (3.26).
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Appendix B

Channel MSE for Remodulated SS

Algorithm

Firstly, we introduce the lemma provided in [71].

Lemma B.1 [71]: Denote the singular value decomposition (SVD) of

Ź = A[d1, ...,dM ] = AD (B.1)

as

Ź = [Us Uo]


 ∆s 0

0 0





 VH

s

VH
o


 . (B.2)

The first order approximation of the perturbation to Uo due to the additive noise

Ẃ = [w̆1, ..., w̆M ] is

∆Uo = −Us∆
−1
s VH

s ẂHUo = −(ŹH)†ẂHUo. (B.3)

Ideally, the channel matrix H is obtained from

KHH = 0. (B.4)

However, we may only be able to obtain an orthonormal matrix Ĥ from the left

singular vectors of K. Therefore, H is expressed as H = ĤB−1 for an unknown B.

By applying Lemma B.1 again, the perturbation of the channel estimate Ĥ is

∆Ĥ = −(KH)†∆KHĤ (B.5)
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where

∆K = [CH
1 R−1/2

w ∆Uo, . . . ,C
H
KR−1/2

w ∆Uo]

= −[CH
1 R−1/2

w (ŹH)†ẂHUo, . . . ,C
H
KR−1/2

w (ŹH)†ẂHUo]. (B.6)

It then follows

∆H = ∆ĤB−1 = −(KH)†∆KHĤB−1 = −(KH)†∆KHH. (B.7)

Note that (B.7) could not be directly derived from Lemma B.1 since Lemma B.1 is

only applicable for perturbation in the eigen-space. Obviously,

E{∆H} = −(KH)†E{∆KH}H = 0. (B.8)

From [45], we know that E{ẂQẂH} = σ2
ntr(Q)I. Therefore,

E{ẂŹ†R−1/2
w CmH(:, p)HH(:, a)CH

b R−1/2
w (ŹH)†ẂH}

=σ2
ntr(Ź

†R−1/2
w CmH(:, p)HH(:, a)CH

b R−1/2
w (ŹH)†)I

=σ2
ntr(AH

b,a(Ź
H)†Ź†Am,p)I = σ2

ntr(AH
b,a(ŹŹH)†Am,p)I

=σ2
ntr(AH

b,a(AH)†(DDH)−1A†Am,p)I

=σ2
ntr(e

H
(b−1)Nt+a(DDH)−1e(m−1)Nt+p)I (B.9)

where Am,p is the ((m − 1)Nt + p)th column of A, and the property (ŹŹH)† =

(ŹH)†Ź† is used. The term DDH is in fact the estimated signal covariance matrix

2σ2
sMI for the asymptotically large M . Therefore, equation (B.9) can be well

approximated by

σ2
ntr

(
eH

(b−1)Nt+a(DDH)−1e(m−1)Nt+p

)
I =

σ2
n

2Mσ2
s

δm−bδa−pI. (B.10)

Finally, the channel error covariance matrix can be obtained as

E{vec(∆H)vecH(∆H)} = (KH)†E{∆KHvec(H)vecH(H)∆K}K†

= IK ⊗
(

σ2
n

2Mσ2
s

(KH)†UH
o UoK†

)

= INt ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
. (B.11)

119



Appendix C

Deterministic CRB for

Remodulated SS Algorithm

From approximation (4.33), it suffices to first consider zi, and the unknown

parameters changes to θ = [vec(H),di, σ
2
n]. The exact FIM for ϑ = [vec(H),di]

can be expressed as [82]

J =
1

σ2
n

ΓHR−1
w Γ (C.1)

where

Γ =

[
∂(Adi)

∂vec(H)
,
∂(Adi)

∂di

]
. (C.2)

It can be obtained straightforwardly that

∂(Adi)

∂vec(H)
= R−1/2

w Di (C.3)

∂(Adi)

∂di

= A. (C.4)

From [82], we know that for blind channel estimation, the FIM is singular and

its inverse does not exist. Then, some constraints should be utilized to make J a

non-singular matrix. Instead of taking any specific constraint, we use the minimal

constrained CRB defined as in [82].

Lemma C.1 [82]: Suppose the FIM for ϑ = [vec(H),di]
T is

J =
1

σ2
n


 J11 J12

J21 J22


 (C.5)
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C. Deterministic CRB for Remodulated SS Algorithm

where J11 is of dimension NtNr(P + 1)×NtNr(P + 1) and assume J is singular but

J22 is nonsingular. Then, the minimal constrained CRB for vec(H) is

CRBvec(H) = σ2
n[J11 − J12J

−1
22 J21]

†. (C.6)

This is a particular constrained CRB that yields the lowest value for tr{CRB} among

all lists of a minimal number of independent constraints.

Applying the above lemma, we obtain

ACRBvec(H) = σ2
n(DH

i R−1
w Di −DH

i R−1/2
w A(AHA)−1AHR−1/2

w Di)
†

= σ2
n(DH

i R−1/2
w (I−A(AHAAH)−1)R−1/2

w Di)
†

= σ2
n(DH

i R−1/2
w P⊥

AR−1/2
w Di)

†

= σ2
n(DH

i R−1/2
w UoU

H
o R−1/2

w Di)
†. (C.7)

From the approximation, the noise ηi can be considered independent for each

i. Then, the ACRB, by observing z, can be found directly from

ACRBvec(H) = σ2
n

(
M−1∑
i=0

DH
i R−1/2

w UoU
H
o R−1/2

w Di

)†

. (C.8)

Asymptotically, we have

M−1∑
i=0

(D
(k)
i )HR−1/2

w UoU
H
o R−1/2

w D
(p)
i

=
K∑

n=1

K∑
m=1

CH
n R−1/2

w UoU
H
o R−1/2

w Cm

M−1∑
i=0

d∗i ((n− 1)K + k)di((m− 1)K + p)

≈2Mσ2
s

N∑
n=1

CH
n R−1/2

w UoU
H
o R−1/2

w Cnδk−p

=2Mσ2
sKKHδk−p. (C.9)

Equation (C.9) is obtained asymptotically for large M , bearing in mind that

elements of di are i.i.d with variance 2σ2
s if s

(p)
i (n) are i.i.d with variance σ2

s .
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C. Deterministic CRB for Remodulated SS Algorithm

Therefore, the ACRB for vec(H) is

ACRBvec(H) = σ2
n(IK ⊗ (2Mσ2

sKKH))†

=
σ2

n

2Mσ2
s

IK ⊗ (KKH)†

= IK ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
. (C.10)
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Appendix D

Stochastic CRB for Precoded

MIMO OFDM

For circular complex zero-mean Gaussian random variable yi = <{yi}+j={yi} with

covariance matrices Ry = E{yiy
H
i } parameterized by a real vector θ = [θ1, θ2, ..., θχ],

the FIM of this vector θ is given by [99],[100]

[FIM]ab = Mtr

(
dRy

dθa

R−1
y

dRy

dθb

R−1
y

)
, for a, b = 1, ..., χ (D.1)

where M is the number of the available snapshots. For the proposed method, the

signal covariance matrix is

Ry = E{yiy
H
i } = σ2

sHyFHPFHH
y + σ2

nIKNr×MNr (D.2)

and is parameterized by θ = [θ1, θ2]. The following properties are very useful for

the derivation of CRB

tr(XY) = vec(XH)Hvec(Y) (D.3)

vec(XYZ) = (ZT ⊗X)vec(Y) (D.4)

(X⊗Y)(Z⊗W) = (XZ)⊗ (YW) (D.5)

which hold for all matrices X,Y,Z and W. Using these properties, we can rewrite

(D.1) as

1

M
[FIM]a,b = vec

(
dRy

dθa

)H

(R−T
y ⊗R−1

y )vec

(
dRy

dθb

)
(D.6)

123



D. Stochastic CRB for Precoded MIMO OFDM

or equivalently

1

M
FIM =

(
dry

dθT

)H

(R−T
y ⊗R−1

y )vec

(
dry

dθT

)
(D.7)

where

ry = vec(Ry) = σ2
s(H∗

y ⊗Hy)vec(FHPF) + σ2
nvec(IKNr×KNr). (D.8)

Equation (D.7) can be partitioned as

1

M
FIM =


 GH

∆H


 [G ∆] (D.9)

where

[G | ∆] = (R−T/2
y ⊗R−1/2

y )
dry

dθT
= (R−T/2

y ⊗R−1/2
y )

[
dry

dθT
1

| dry

dθT
2

]
. (D.10)

From Lemma 3, the minimal CRB for θ1 can be written as

CRBθ1 =
1

N
[GHG−GH∆(∆H∆)−1∆HG]† =

1

N
(GHP⊥

∆G)†. (D.11)

We need to evaluate the derivatives of ry with respect to θ. Let us firstly make the

following partition

[G | ∆] = [G11, ...,Gpq, ...,GNtNr | v u] (D.12)

where

Gpq = [GR
pq | GI

pq] = (R−T/2
y ⊗R−1/2

y )

[
dry

d<{hT
pq}

| dry

d={hT
pq}

]
(D.13)

v = (R−T/2
y ⊗R−1/2

y )
dry

dσ2
s

(D.14)

u = (R−T/2
y ⊗R−1/2

y )
dry

dσ2
n

. (D.15)

After some algebraic manipulations, the following results can be obtained

GR
pq(:, l) = vec

(
R−1/2

y

dRy

d<{hpq(l − 1)}R
−1/2
y

)
= vec(Apq,l + AH

pq,l) (D.16)

GI
pq(:, l) = vec

(
R−1/2

y

dRy

d={hpq(l − 1)}R
−1/2
y

)
= vec(jApq,l − jAH

pq,l) (D.17)

v = vec

(
R−1/2

y

dRy

dσ2
s

R−1/2
y

)
= vec(R−1/2

y HyFHPFHH
y R−1/2

y ) (D.18)

u = vec

(
R−1/2

y

dR

dσ2
n

R−1/2
y

)
= vec(R−1

y ). (D.19)
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D. Stochastic CRB for Precoded MIMO OFDM

Matrix Apq,l is given in (5.76a). Proved.
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