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Summary 

 

This thesis presents results on spectroscopic studies of two dimensional carbon 

nanostructures: graphene and carbon nanowalls (CNWs). It also includes the high 

pressure Raman and photoluminescence (PL) studies of two popular semiconductor 

quantum dots (QDs): ZnCdSe alloy QDs and CdSe/ZnS core/shell QDs.  

Part 1.  Graphene, the one monolayer thick flat graphite, has been attracting 

much interest since it was firstly discovered in 2004. Graphene has many unique 

properties which make it an attractive material for fundamental study as well as for 

potential applications. In this study, firstly, we proposed a fast and precise method to 

identify the single-, bilayer- and few-layer graphene (<10 layers) by using contrast 

spectra, which were generated from the reflection of a white light source. Calculations 

based on the Fresnel’s Law are in excellent agreement with the experimental results 

(deviation 2%). The contrast image shows the reliability and efficiency of this new 

technique. The contrast spectrum is a fast, non-destructive, easy to be carried out, and 

unambiguous way to identify the numbers of layers of graphene sheet, which helps 

future research and application of graphene.  

Secondly, Raman studies of single and few layers graphene were carried out. The 

defect-induced D mode, two-phonon G′ mode and three-phonon G′′ mode show 

significant broadening and blue shift as the graphene thicknesses increase. The 

anisotropy of electron-hole interactions in graphene was discussed and used to explain 

the above phenomena based on double resonance theory. The energy difference 

between intra- and inter- layer excitons is about ~400 meV, which were estimated 

from the excitation energy dependent Raman results. 



 vii

 Thirdly, we report the first experimental study of process-induced defects and 

strains in graphene using Raman spectroscopy and imaging. While defects lead to the 

observation of defect-related Raman bands, strain causes shift in phonon frequency. A 

compressive strain (as high as 3.5 GPa) was induced in graphene by depositing a 5 nm 

SiO2 followed by annealing, whereas a tensile strain (~ 1 GPa) was obtained by 

depositing a thin silicon capping layer. In the former case, both the magnitude of the 

tensile strain and number of graphene layers can be controlled or modified by the 

annealing temperature. As both the strain and thickness affect the physical properties 

of graphene, this study may open up the possibility of utilizing thickness and strain 

engineering to improve the performance of graphene-based devices.  

Part 2. Two-dimensional carbon nanowalls (CNWs) were prepared by 

microwave plasma-enhanced chemical vapor deposition (PECVD). The Raman 

observations of different sample orientations and polarizations show that CNWs are 

well-crystallized. Micro-Raman scattering measurements were also carried out with 

different excitation laser. Besides, high temperature Raman experiment on CNWs was 

also performed. The Raman intensity of defect-induced D mode decreased 

significantly after annealing, which was attributed to the removal of surface 

amorphous carbon by oxidation. However, the intensity of D′ mode, another 

defect-induced Raman mode, did not change much after annealing, indicating that the 

surface amorphous carbon and surface impurity do not contribute as much to the 

intensity of D′ mode. The dominant contributor to the D′ mode would be the intrinsic 

defects. 

Part 3.  Raman and photoluminescence (PL) studies of alloy ZnxCd1-xSe (x=0.2) 

and CdSe/ZnS core/shell QDs were carried out under hydrostatic pressure up to 160 

kbar using the diamond anvil cell technique. For ZnCdSe QDs, The structural phase 
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transition from wurtzite to rock-salt was observed at 71 kabr, indicated by the 

disappearance of both PL and Raman peaks. Besides, the abrupt change of PL 

pressure coefficient and Raman peak split were observed at about 25.8 kbar, which 

may indicate a new unidentified structural phase transition of the alloy QDs. For 

CdSe/ZnS core/shell QDs, two phase transition at 69 and 79 kbar were found too, 

which correspond to wurtzite-rocksalt and rocksalt-cinnabar structure transformation, 

respectively. The high pressure cinnabar structure of CdSe was predicted by 

theoretical calculation and first confirmed in this experiment. The experimental 

results of CdSe/ZnS QDs show significant difference from that of CdSe QDs as well 

as bulk CdSe, implying the ZnS shell play a dominant role in structure stability and 

electron state of such system. This part of work provides a good model for the study 

of structural stability of semiconductor QDs. 
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Chapter 1  

Introduction 

 

General introduction  

 

Raman scattering is associated with the light scattering by optical phonons in 

solids and liquids. Since its discovery, especially after the invention of lasers, Raman 

scattering has gradually become one of the most versatile spectroscopic tools to 

characterize the condensed matter systems, including analyzing crystalline disorder, 

defects, crystallographic axis orientation, chemical composition and the presence of 

stress, as well as for investigating elementary excitations such as phonons, electrons, 

polarons, plasmons magnons, etc.1 In this thesis, Chapter 2 reviews briefly the 

historical development of the Raman scattering studies, and introduces the basic 

theory of Raman scattering.  

 

1.1 Introduction to graphene 

 

Graphene is the name of one monolayer thick carbon atoms, which packed into a 

two-dimensional (2D) honeycomb lattice.2 It has attracted much interest since it was 

firstly discovered in 2004.3,4 Graphene is the basic building block for other carbon 

nanomaterials, such as 0D fullerenes, 1D carbon nanotubes and 2D nanographite 

sheets. In the electronic band structure of graphene, the conduction band touches the 
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valence band at two points (K and K’)5,6 in Brillouin zone, and in the vicinity of these 

points, the electron energy has a linear relationship with the wavevector, E = ћkvf . 

Therefore, electrons in an ideal graphene sheet behave like massless 

Dirac-Fermions.7,8 The peculiar properties of graphene make it a promising candidate 

for fundamental study as well as for potential device applications.9-15  

Raman spectroscopy is one of the most commonly used tools to characterize 

carbon nano materials. Raman spectrum is very sensitive to the structure of materials, 

especially the chemical bonds, and the disordered structure. Besides, it has a high 

resolution, and can work under many experimental conditions. In Chapter 3 to 

Chapter 5, Raman and reflection spectroscopies were used as quick and precise 

methods for determining the thickness of graphene sheets, and also Raman studies of 

defects and strains in graphene were presented.  

 

 

1.2 Introduction to carbon nanowalls 

 

Carbon nano materials have received a lot of attention in the past decades. For 

example, CNTs have unique electronic properties, thermal stability, and high field 

emission efficiency, and they can be used as scanning probes, sensors, field emitters, 

electrodes, and so on.16-18 Recently, two-dimensional (2D) carbon nanowalls (CNWs) 

have also been fabricated.19 CNWs comprise flat graphene sheets which is very 

similar to that in graphite. The thickness of every carbon nanowall sheet is several nm, 
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but with a length of about several to tens of microns, and they are vertically aligned 

and well-separated. CNWs may have potential applications in energy storage and field 

emission displays due to their large surface areas. Besides, CNWs can also be used as 

template for fabrication of other types of nanostructured materials.20 

As CNWs have many potential applications, physical characterization of CNWs 

becomes necessary. The characterization of carbon nano materials mainly focuses on 

the structure stability, behaviors under different conditions, quantum size effect, and 

also the disorder analysis. In Chapter 6 to Chapter 7, Raman characterizations of 

CNWs as well as the study of thermal stability were presented. 

 

1.3 Introduction to semiconductor quantum dots 

 

Ⅱ-Ⅵ wide band-gap semiconductors quantum dots (QDs), such as CdSe and 

ZnSe, have attracted much attention. Their optical properties make them suitable as 

visible light emitting diodes (LEDs), lasers, and other optoelectronic devices.21-22 

However, a major problem encountered over the years in fabricating high quality bare 

QDs is that defects and surface-trap states are usually formed during growth, resulting 

in low luminescence efficiency and stability. It remains a major challenge to develop 

new synthetic methods or strategies to produce highly luminescent and stable QDs.  

One of the popular methods is to form alloy structured QDs. A 

composition-tunable emission across most of the visible spectrum can be achieved for 

alloy QDs, such as ZnxCd1-xSe alloy QDs. The PL properties of alloy ZnxCd1-xSe QDs 
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are comparable to the best reported CdSe-based QDs.23 Furthermore, these alloy QDs 

exhibit high stability due to their large particle size, high crystallinity and “hardened” 

lattice structure.  

Instead of fabricating alloy structured QDs, another popular method is to cover 

the bare QDs with a thin layer (a few angstroms) of another semiconductor or 

inorganic material which has a similar lattice constant and a larger band-gap. This is 

the so-called core/shell structured QDs, such as CdSe/ZnS QDs. The core/shell 

CdSe/ZnS QDs have higher photoluminescence (PL) efficiency and are more robust 

against chemical degradation or photo-oxidation than the bare CdSe QDs.24-26  

As both the alloy ZnxCd1-xSe and core/shell CdSe/ZnS QDs have many potential 

applications, the physical characterizations of these two QDs are important. Raman 

and PL spectroscopies are very useful techniques for the characterization of 

semiconductor QDs.27 Beside the basic characterization, the stability of 

semiconductor QDs is not only an essential aspect for understanding their 

fundamental physical process related to emission and Raman scattering, but is also 

vital to their applications. One way to explore the structure phase stability of 

semiconductor QDs is to apply hydrostatic pressure. Under high pressure, the QDs 

will change from one solid structure to another, which is also called structural phase 

transition. In Chapters 8 and 9, the high pressure Raman and PL studies of ZnCdSe 

and CdSe/ZnS QDs were presented. 
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1.4 Objectives and significance of the studies 

My Ph.D project focused on three parts.  

The objectives of the first part were: 

 

1. Identification of graphene thickness using reflection and contrast spectroscopy. 

The contrast between the graphene layers and the SiO2/Si substrate, which makes the 

graphene visible, was generated from the reflection spectrum by using normal white 

light source. The contrast spectra of graphene sheets from one to ten layers and the 

relation between graphene thickness and contrast values were obtained. Calculations 

based on the Fresnel’s equations were also carried out and the results were compared 

with the experimental data. This quick and precise method for determining the 

thickness of graphene sheets is essential for speeding up the research and exploration 

of graphene. 

2. The Raman characterization of graphene. The Raman spectra of single and 

few-layer graphene were carried out. The Raman modes (D, G′, and G′′) of graphene 

show significant broadening and blue shift as the graphene thicknesses increase. The 

anisotropy of excitons in graphene was used to explain these phenomena together 

with double resonance theory. The energy difference between intra- and inter- layer 

excitons were calculated from the excitation energy dependent Raman results. 

3. Raman studies of defects and strains in graphene. The defects were introduced 

by depositing a thin SiO2 layer on graphene, and the intensities of defect-induced D 

and D′ modes were used to estimate the amounts of defects. Besides, compressive 
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strain was introduced into graphene after annealing process and the frequency shift of 

in-plane vibrational G mode was used to calculate the magnitude of strain. Moreover, 

tensile strain in graphene was also realized by depositing a thin layer of silicon. As the 

strain may affect the physical properties of graphene analogy to what happened in 

CNTs, our findings should provide useful information critical to graphene device 

engineering and fabrication. 

 

The objectives of the second part were: 

 

1. Raman spectroscopy characterization of CNWs. This part included (1) Analysis 

and assignment of different Raman modes of CNWs: both the first order and high 

order modes. (2) Comparison of the CNWs Raman spectra with those of graphite, 

CNTs, and other carbon materials to identify their differences in structure and size 

effect. (3) Orientation and excitation energy dependence of the Raman modes of 

CNWs.  

2. Studies of the temperature dependence of CNWs. In this part, high temperature 

Raman spectroscopy studies were carried out on CNWs to study their thermal stability. 

The effects of pure thermal effect and thermal expansion were distinguished. Another 

aim was to check whether the D mode of CNWs will be eliminated under high 

temperature, so as to determine if all the defects can be oxidized under high 

temperature. 

The above study should contribute to a better understanding of the structure of 
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CNWs. This study may contribute to future applications of CNWs.  

 

The objectives of the third part were: 

 

High pressure Raman and PL inversigations of QDs. The pressure coefficients of 

PL energy and Raman peak frequency of ZnCdSe and CdSe/ZnS QDs were obtained. 

The transition pressure from wurtzite to rock-salt phase of ZnCdSe and CdSe/ZnS 

QDs was also compared with that of bulk ZnCdSe and bare CdSe QDs, so that the 

structural stability of these two QDs can be deduced. Considering the differences 

between ZnCdSe QDs and bulk ZnCdSe are mainly due to the finite size, the effect of 

quantum size effect as well as the surface energy on the ZnCdSe alloy was discussed. 

On the other hand, the differences between CdSe/ZnS QDs and bare CdSe QDs are 

mainly due to the ZnS shell, the effect of the ZnS shell on the structure of CdSe QDs 

was also discussed.  

This part of study should contribute to a better understanding of the structures of 

alloy and core/shell QDs; the alloy mechanism as well as the effect of shell on the 

core QDs can be understood more clearly. Hence, this work should contribute to the 

synthesis of better quality QDs and their future applications, such as incorporation 

into solid state structure.  

 
1.5 Organization of this thesis 
 

In chapter 2, Raman scattering is introduced and explained by classical and 

quantum theory, respectively. The Raman system is also introduced. In Chapter 3 to 
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Chapter 5, Raman and reflection spectroscopies are used as quick and precise 

methods for determining the thickness of graphene sheets. The anisotropic of electron 

hole interactions are estimated. Raman studies of defects and strains in graphene are 

also presented. In Chapter 6 to Chapter 7, Raman characterizations of CNWs as well 

as the study of thermal stability are presented. In Chapters 8 and 9, the high pressure 

Raman and PL studies of ZnCdSe and CdSe/ZnS QDs are carried out. The conclusion 

and future will be presented in Chapter 10. 
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Chapter 2  

Introduction to Raman Spectroscopy 

 

2.1 Basic introduction 

 

 Raman scattering is one of the processes resulting from the interaction of 

radiation with matter. It was discovered simultaneously by C. V. Raman and K. S. 

Krishnan in liquids 1 and by G. S. Landsberg and L. I. Mandelstam in crystals (quartz) 

2 in 1928. The effect had been predicted theoretically in 1923 by A. Smekal,3 and is 

therefore sometimes also referred to as the Smekal-Raman effect. A characteristic 

feature of Raman scattering is the change of the scattering light: the frequency of the 

scattered radiation is different from the frequency of the exciting radiation, and the 

frequency difference Δν is related to the molecule vibration of the matter.4 

After the discovery of Raman scattering, it was soon realized this effect can be an 

excellent tool to study excitations of molecules and molecular structures. In the years 

following its discovery, Raman spectroscopy was used to provide the first catalog of 

molecular vibrational frequencies. It was also used to identify chemical compounds 

because the values of Δν are indicative of different chemical species and also the 

frequencies of vibrational transitions depend on the atomic masses and the bond 

strengths.  

However, the application of Raman spectroscopy for “real world” analysis was 

impeded by both fundamental and technical issues, including weak intensity of 
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Raman, fluorescence interference, and inefficient light collection and detection. In 

1960s, with the introduction of lasers, which provide strong, coherent monochromatic 

light in a wide range of wavelength, and lately the charge-coupled devices (CCD), 

which permit multiwavenumber detection, together with other development later on, 

such as laser rejection filters, and personal computers, Raman spectroscopy has 

become an important analytical technique for the identification of virtually any 

material. A major improvement of Raman spectroscopy is the emergence of integrated 

Raman spectrometers that incorporated laser, spectrometer, sample accessories, and 

software into a complete system. These new instruments were more reliable and 

simpler to use and help greatly on the widespread application of Raman spectroscopy 

in different research fields, such as chemistry, biology, and engineering.5 

 

2.2 Definition of Raman scattering 

 

When monochromatic radiation of frequency ν0 is incident on a sample, in 

addition to the reflectance, transmission or/and absorption, some scattering of the 

radiation occurs. The main part of the scattering has the same frequency as the 

incident radiation, which is called Rayleigh scattering, after Lord Rayleigh,6 who 

explained the essential features of this phenomenon in terms of classical radiation 

theory in 1871. The Rayleigh scattering arises from scattering centers, like molecules, 

which are much smaller than the wavelength of the incident radiation. Besides 

Rayleigh scattering, there is still other scattering which has the same frequency as the 
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incident radiation. This scattering arises from larger scattering centers like dust 

particles, and is generally referred to as Mie scattering.7 Consequently, what is usually 

referred to, loosely, as Rayleigh scattering consists in practice of true Rayleigh 

scattering, together with some Mie scattering and unresolved Brillouin scattering, 

which will be introduced later. 

Besides the Rayleigh scattering, the remaining scattering has frequencies 

different from that of the incident radiation, as it originates from an inelastic 

scattering process, which is called Raman scattering. The Raman scattering is caused 

by modulation of susceptibility (or, equivalently, polarizability) of the medium by the 

vibrations (as well as the scattering by other excitations in solids, including plasmas, 

excitons, and magnons, occurs by the same mechanism).
 
If some material is irradiated 

by monochromatic light of frequency ν0 (laser), then as a result of the electronic 

polarization induced in the material by this incident beam, the light of frequency ν0 

(Rayleigh scattering) as well as that of frequency ν0 ± νn (Raman scattering) are 

scattered. The Raman scattering consists of two bands, with one band at lower 

frequency than the incident radiation (ν0 – νn) referred to as Stokes band, and another 

at frequency higher than the incident radiation (ν0 + νn) referred to as anti-Stokes band. 

Note that the Raman scattering is very weak compared to the incident radiation, even 

compared to Rayleigh scattering. The intensity of Rayleigh scattering is generally 

about 10-3 of the intensity of the incident exciting radiation; and the intensity of strong 

Raman bands is generally about 10-3 of the intensity of Rayleigh scattering. 8 

One more scattering needs to mention here is the Brillouin scattering, scattering 
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with change of frequency originating from a Doppler effect, can also be observed with 

gases, liquids, and solids. Scattering of this kind was predicted in 1922 by Brillouin,9 

but was not observed until 1930 by Gross.10 In Brillouin scattering, the change of 

frequency is very small and of the order of 0.1 cm-1. Brillouin scattering is therefore 

not separated from the scattered radiation under the experimental conditions used for 

most studies of Raman scattering. Figure 2.1 shows the schematic of the light 

scattering.  

 

 

 

Figure 2.1 Schematic spectrum of light scattering 

 

2.3 Basic theory of Raman scattering 

 

A molecule placed in an electromagnetic field has its charge distribution 

periodically disturbed by the field. The resultant induced, alternating dipole moment 
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acts as a source of radiation and gives rise to the entire class of light scattering 

phenomena. 

The alternating dipole moment is generally expressed as the dipole moment per 

unit volume, the polarization. In the case of interest here, the polarization is 

proportional to the induced field 

oo EP α=                        (1) 

The constant α , the polarizability, is of central importance in the theory of the 

Raman effect. Although the description of the detail of the Raman effect requires 

quantum theory, the existence of the effect is easily predicted from classical 

electromagnetic theory. 

Consider a light of wave of frequency ν0 with an electric field strength E. Since E 

fluctuates at frequency ν0, we can write  

tvEE 00 2cos π=                       (2) 

We then expect a polarization  

tvEP 00 2cos πα=                      (3) 

The polarizability, α , consists of two parts. The first is a constant, 0α , which 

represents the static polarizability. The second is a sum of terms having the periodic 

time dependence of the normal frequencies of the system under consideration.  

tvnn πααα 2cos0 ∑+=              (4) 

The polarizability may then be written as  
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The above equation correctly predicts the major qualitative features of the Raman 

effect. First, there is a leading term, which represents the component of the 

polarization having the frequency of the exciting field. This accounts for Rayleigh 

scattering. Second, each variable component of the polarizability, nα , give rise to 

components of the polarization having frequencies (v0 + vn) and (v0 - vn), account for 

the anti-Stokes and Stokes Raman bands.11  

In actual molecules, both P and E are vectors consisting of three components in 

the x, y and z direction. Consequently, Eq. (1) is written as  
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In matrix form, this is written as  
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The 3×3 matrix is called as the polarizability tensor. In normal Raman scattering, this 

tensor is symmetric: yxxy αα = , zxxz αα = and zyyz αα = .12 Accordingly, the vibration 

is Raman-active if one of these components of the polarizability tensor is changed 

during the vibration, which is known as the Raman selection rules. 

Because of the Raman selection rules, not all vibrational transitions will be 

“Raman active”, i.e. some vibrational transitions will not appear in the Raman 

spectrum. As compared to IR spectroscopy, where a transition can only be observed 

when that vibration causes a change in dipole moment of the molecule, in Raman only 
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transition where the polarizability of the molecule changes can be observed. This is 

due to the fundamental difference in how IR and Raman spectroscopy interact with 

the vibrational transitions. In Raman spectroscopy, the incoming photon causes a 

momentary distortion of the electron distribution around a bond in a molecule, 

followed by reemission of the radiation as the bond returns to its normal state. This 

causes temporary polarization of the bond, and an induced dipole that disappears upon 

relaxation. In a molecule with a center of symmetry, a change in dipole is 

accomplished by loss of the center of symmetry, while a change in polarizability is 

accomplished by preservation of the center of symmetry. Thus, in a centrosymmetric 

molecule, asymmetrical stretching and bending will be Raman inactive and IR active, 

while symmetrical stretching and bending will be Raman active and IR inactive. 

Hence, in a centrosymmetric molecule, IR and Raman spectroscopy are mutually 

exclusive. For molecules without a center of symmetry, each vibrational mode may be 

IR active, Raman active, both, or neither. Symmetrical stretches and bends, however, 

tend to be Raman active. 

2.4 Quantum model of Raman scattering 

 

In quantum theory, Raman scattering is considered as an inelastic collision 

process in which a quantum of the incident radiation is annihilated or a quantum of 

the scattered radiation is created with creation (Stokes process) or annihilation 

(anti-Stokes process) of a phonon. According to quantum theory, radiation is emitted 
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or absorbed as result of a system making a downward or upward transition between 

two discrete energy levels and the radiation itself is also quantized.13 

 

 

Figure 2.2 Schematic diagram representing Raman scattering process 

 

If the molecule is assumed to be a harmonic oscillator, the vibrational energy is 

quantized as: 

)
2
1( +⋅= nhvEn       (8) 

where v is the frequency of vibration of the molecule and n  is the vibrational 

quantum number and having integer values of 0, 1, 2, 3,…etc. 

 If a molecule is placed in an electromagnetic field, a transfer of energy will occur 

when the following Bohr’s frequency condition is satisfied:12 

hvE =Δ                         (9) 
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where ΔE is the difference in energy between two quantized states.  

Consequently, if the energy difference of an excited state E and ground states E0 

satisfies: 

0EEE −=Δ                      (10) 

The molecule can “absorb” or “emits” ΔE when it is excited from E0 to E or revert 

from E to E0.  

Figure 2.2 shows the schematic diagram of the quantum theory description of 

Raman scattering. The virtual states14 are usually intermediate states between the 

ground and first excited state of the system. In Raman scattering process, the system 

is excited by absorbing a photon and goes back by emitting a photon. The Rayleigh 

scattering arises from transitions which start and end at the same vibrational energy 

level. Stokes Raman scattering arises from transitions which start at the ground 

energy state and finish at a higher energy level, whereas anti-Stokes Raman scattering 

involves a transition from a higher to a lower level. The Raman frequency shift 

corresponds to the energy difference between the vibrational levels, also known as 

phonon energy. Thus, Raman frequency shift is an inherent characteristic of the 

material and is independent of the incident radiation. Normally, the anti-Stokes lines 

are less intense than the corresponding Stokes lines. This is because anti-Stokes lines 

arise from the excited states and Stokes lines arise from the ground state, while few 

molecules are initially in excited vibrational states compared to that in the ground 

state.  
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2.5 Resonance Raman scattering  

 

As has been mentioned above, Raman scattering is generally very weak, it is only 

about 10-6 of the incident radiation. However, in certain conditions, the normally weak 

Raman signal can be greatly enhanced.  If the wavelength of the incident laser 

radiation is close to that of an electronic absorption band, the Raman scattering may 

be enhanced by several orders of magnitude, typically in the range 103 to 106, which 

is known as resonance Raman scattering (RRS). The RRS can also be understood by 

looking at Figure 3.1, in which the excitation line energy is close to any of the energy 

level of the excited state E1. In that case, rather than exciting the molecule to a virtual 

energy state, it is excited to near one of the excited electronic transition states. The 

main advantage of RRS over traditional Raman spectroscopy is the large increase in 

intensity of the peaks, which makes sample with very low concentration or very weak 

signal can be observable under Raman spectroscopy. The RRS is also widely used in 

the application of nanostructured materials, like nanowires, nanotubes or quantum 

dots, in which the strong resonance enhance the Raman signals of those nanosize 

materials. 
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2.6 Micro Raman systems 

 

 

Figure 2.3 Schematic diagram of Raman system  

 

 Three micro Raman systems were used in our experiments: WITEC CRM200 

(532 nm, DPSSL laser), JY-T64000 (488 and 514 nm, Ar+ laser), and Renishaw 

inVia (325nm, He-Ne laser) Raman systems. Figure 2.3 shows the schematic diagram 

of the WITEC CRM200 system. A normal white light source (tungsten halogen lamp, 

excitation range from 350 nm to 850 nm) is used to illuminate and focus the sample. 

The reflected white light is collected and the optical image is recorded with a video 

camera. A 532 nm laser is coupled into a single mode fiber and then directed to the 
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sample through an objective lens to excite the Raman signals. The laser spot size at 

focus point is around 500 nm with a ×100 (NA=0.95) objective lens. To avoid laser 

induced sample heating, the power of laser at sample is below 1 mW. The sample is 

put on a translation stage which can be moved coarsely along x- and y-axes. It also 

can be finely moved with a piezostage. The piezostage has 100 μm of travel distance 

along x- and y-directions and 20 μm in the z-direction, which is appropriate as a 

mapping stage. The Raman scattering light as well as the Rayleigh light are collected 

in backscattering mode. An edge filter is used to block the Rayleigh light and only the 

Raman and a very small fraction of Rayleigh signals go to the 1800/600/150 

grooves/mm grating and detected using a TE-cooled charge-coupled-device (CCD) or 

avalanche photodiode (APD). During the Raman image, the sample is scanned under 

the illumination of laser. The Raman spectra from every spot of the sample are 

recorded and Raman images using peak intensity, peak position, or peak width can be 

generated after data analysis. The stage movement and data acquisition were 

controlled using ScanCtrl Spectroscopy Plus software from WITec GmbH, Germany. 

Data analysis was done using WITec Project software. 
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Chapter 3  

Graphene Thickness Determination Using Reflection and 

Contrast Spectroscopy 

3.1 Introduction 

 

The recent success in extracting few layers graphite sheet, even monolayer 

graphene from highly ordered pyrolytic graphite (HOPG) using a technique called 

micromechanical cleavage1,2 has stimulated great interest in both the fundamental 

physics study and potential applications of graphene.3 Graphene has a 

two-dimensional (2D) crystal structure, which is the basic building block for other sp2 

carbon nanomaterials, such as nanographite sheets, and carbon nanotubes. The 

peculiar properties of graphene arise from its unique electronic band structure, in 

which the conduction band touches the valence band at two points (K and K’)4,5 in 

Brillouin zone, and in the vicinity of these points, the electron energy has a linear 

relationship with the wavevector, E = ћkvf . Therefore, electrons in an ideal graphene 

sheet behave like massless Dirac-Fermions.6,7 Some of these unique properties have 

been observed experimentally8-21 and many new ideas22-29 about the fundamental 

physics and device applications of single and few layer graphene have been proposed. 

As presently micromechanical cleavage is still the most effective way to produce 

high-quality graphene sheets, a quick and precise method for determining the 

thickness of graphene sheets is essential for speeding up the research and exploration 
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of graphene. Although atomic force microscopy (AFM) measurement is the most 

direct way to identify the number of layers of graphene, the method has a very slow 

throughput and may also cause damages to the crystal lattice during the measurement. 

Furthermore, an instrumental offset of ~0.5 nm (caused by different interaction force) 

always exists, which is even larger than the thickness of a monolayer graphene and a 

data fitting is required to extract the true thickness of graphene sheets.30 

Unconventional Quantum Hall effects8-10 are often used to differentiate monolayer 

and bilayer graphene from few-layers. However, it is not a practical and efficient way. 

Researchers have attempted to develop more efficient ways to identify different layers 

of graphene without destroying the crystal lattice. Raman spectroscopy is the potential 

candidate for non-destructive and quick inspection of thickness of graphene.30-32 

Unfortunately, the differences between two and few layers of graphene sheets are not 

obvious and unambiguous in the Raman spectra. Another possible way is to identify 

the graphene layers of different thickness with the “naked eyes” under optical 

microscope. However, this is not a quantitative method because the color/contrast 

often varies from one laboratory to another.1,9  

In this chapter, we report a direct method for efficient and accurate inspection of 

the graphene sheet using contrast spectrum. The contrast between the graphene layers 

and the SiO2/Si substrate, which makes the graphene visible, was generated from the 

reflection spectrum by using normal white light source. Clear contrast difference for 

graphene sheets from one to ten layers can be observed. Calculations based on the 

Fresnel’s equations have been carried out and the results show excellent agreement 
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with the experimental data. The contrast image provides good evidence that this new 

method is an efficient and unambiguous way to identify the number of graphene 

layers. 

 

3.2 Experimental 

 

The graphene samples were prepared by micromechanical cleavage and 

transferred to Si wafer with a 285 nm SiO2 capping layer.1 The optical microscope 

was used to locate the few layers graphene and the thickness was further confirmed by 

Raman spectra/image. In the reflection experiments, the incident light was emitted 

from a normal white light source (tungsten halogen lamp, excitation range from 350 

to 850 nm, through a 1 mm aperture). The reflected light was collected using 

backscattering configuration (with a 100 um pinhole) and directed to a 150 lines/mm 

grating and detected with a TE-cooled charge-coupled-device (CCD). The obtained 

reflection spectra were compared with that of background spectrum from SiO2/Si to 

generate the contrast spectra. The Raman spectra were carried out with a WITEC 

CRM200 Raman system. The excitation source is 532 nm laser (2.33 eV) with a laser 

power below 0.1 mW on the sample to avoid laser induced heating. A 100× 

objective lens with a NA=0.95 was used both in the Raman and reflection 

experiments, and the spot sizes of 532 nm laser and white light were estimated to be 

500 nm and 1 um, respectively, which we determined by using a scanning edge 

method.33 For the contrast and Raman image, the sample was placed on an x-y 
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piezostage and scanned under the illumination of laser and white light. The Raman 

and reflection spectra from every spot of the sample were recorded.  

 

 

 

 

 

 

 

Figure 3.1 (a) optical image of graphene with 1, 2, 3 and 4 layers. (b) Raman spectra 
as a function of number of layers. (c) Raman image plotted by the intensity of G band. 
(d) The cross section of Raman image, which corresponds to the dash lines. 
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3.3 Results and Discussion 

 

Figure 3.1a shows the optical image of a graphene sample on the SiO2/Si 

substrate. The graphene sheet shows four different contrast regions, which can be 

understood as having four different thicknesses. The Raman spectra were then taken 

from different regions of the sample and the results are shown in Figure 3.1b. As has 

been proposed by Ferrari et al., the second order Raman 2D band is sensitive to the 

number of layers of graphene31,32 and the 2D band of single layer graphene is very 

sharp and symmetric compared to that of bilayer and few-layer graphemes.34 In our 

Raman spectra, the sharp 2D band of the single layer graphene can be clearly 

observed and distinguished. However, the difference of 2D band is not obvious for 

two to four layers. A clear difference between those layers is that G band intensity 

shows an increase with the number of layers (the spectra are recorded under the same 

condition). Once the single layer graphene is identified by the 2D band of Raman 

scattering, we can further identify different layers of graphene from the G band 

intensity plot, as shown in Figure 3.1c. This can be done as the intensity of G band 

almost linearly increases with the number of layers for few-layer graphene.32 Figure 

3.1d plots the Raman intensity of the G band along two dash lines drawn in Figure 

3.1c. It is obvious that the graphene sheet contains one, two, three and four layers. 

These can be compared with the contrast spectrum/image discussed later.  
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Figure 3.2 The contrast spectra of graphene sheets with different thicknesses, together 
with the optical images of all the samples. Besides the samples with 1, 2, 3, 4, 7 and 9 
layers, samples a, b, c, d, e and f are more than ten layers and the thickness increases 
from a to f. The arrows in the graph show the trend of curves in terms of the 
thicknesses of graphene sheets. 
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Figure 3.2 shows the contrast spectra for different thicknesses of graphene sheets, 

together with the optical images of all the samples used. Besides the samples with 1, 2, 

3, 4, 7 and 9 layers, samples a, b, c, d, e and f are more than ten layers thick and the 

thickness increases from a to f. The contrast spectra are obtained by the following 

calculation C(λ)= (R0(λ)- R(λ))/ R0(λ), where R0(λ) is the reflection spectrum from the 

SiO2/Si substrate and R(λ) is the reflection spectrum from graphene sheet. Using this 

method, the contrast across the whole visible range (with a spectrum resolution higher 

than 1 nm) can be recorded continually and no bandpass filter which was used in 

reference 35 is needed. Although one can observe different colors/contrasts for 

graphene sheets of different thickness using the optical image with “naked eyes”, the 

graphene’s visibility strongly varies from one laboratory to another and it relies on 

experience of the observer. Contrast spectra can make it quantitative and accurate. 

The contrast spectrum for single layer graphene has a peak centered at 550 nm, which 

is in green-orange range and it makes the single layer graphene visible. The contrast 

peak position is almost unchanged (550 nm) with increasing number of layers up to 

ten. The contrast for single layer graphene is about 0.09+0.005 and it increases with 

the number of layers, for example, 0.175+0.005, 0.255+0.010, 0.330+0.015 for two, 

three, and four layers, respectively. For graphene of around ten layers in thickness, the 

contrast of the sample saturates and the contrast peak shifts towards higher 

wavelength (samples a and b). For samples with larger number of layers (c to f), 

negative contrast occurs. This can easily be understood that these samples are so thick 



CHAPTER 3  Graphene Thickness Determination Using Reflection and Contrast 
Spectroscopy 

 

 30

that the reflections from their surface become more intense than that from the SiO2/Si 

substrate, resulting in negative value contrast.  

The origin of the contrast can be explained by the Fresnel’s equations. Consider 

the incident light from air (n0=1) onto a graphene, SiO2, and Si tri-layer system. The 

reflected light intensity from the tri-layer system can then be described by:35,36  
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light passes through the media which is determined by the path difference of two 

neighboring interfering light beams. In the above equations, n0, n1, n2, n3 are the 

refractive indexes of air, graphene, SiO2, and Si, while d1, d2 are the thickness of 

graphene and SiO2. The thickness of the graphene sheet can be estimated as d1=NΔd, 

where N represents the number of layers and Δd is the thickness of single layer 

graphene (Δd=0.335 nm).37,38 The refractive index of graphene (n1) may differ from 

that of bulk graphite (nG=2.6-1.3i),35 which can be used as a fitting parameter. The 

thickness of SiO2, d2, is 285 nm, with a maximum 5% error. The refractive index of 

SiO2, n2, is wavelength dependent, which was taken from reference.39 The Si substrate 

can be considered semi-infinite and the refractive index of Si, n3, is also wavelength 
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dependent.39 The reflection from SiO2 background, R0(λ), was calculated by using a 

d1=0. 

 

 

 

 

 

 

 

Figure 3.3 The contrast spectrum of single layer graphene: experimental data (black 
line), the simulation result using n=2.0-1.1i (red line), and the simulation result using 
nG=2.6-1.3i (dash line). 
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The calculated contrast spectra of single layer graphene are shown in Figure 3.3. 

The optimized simulation result was obtained with refractive index of single layer 

graphene nz=2.0-1.1i, whereas the simulation result using the bulk graphite value of 

nG (2.6-1.3i) shows large deviation from our experimental data. The variation of the 

refractive index of graphene from that of graphite may be ascribed to the decrease of 

interlayer interaction when the sample is ultra thin. Using the optimized refractive 

index nz, we calculated the contrast spectra of two to ten layers and a significant 

improvement of agreement between the fitting results and the experimental data was 

readily achieved as shown in Figure 3.4. The deviation between the experimental 

results and simulation is only 2%. By using this technique, the thickness of unknown 

graphene sheet can be determined directly by comparing the contrast value with the 

standard values shown in Figure 3.4. Alternatively, it can be obtained using the 

following equation:  

C=0.0046+0.0925N-0.00255N2        (5) 

where N (≤10) is the number of layers of graphene sheet. 

 

Our technique does not need a single layer graphene as reference (as in Raman), 

and it does not have an instrument offset problem caused by different interaction 

forces between probe and medium (as in AFM).30 Moreover, the simulation shows 

that the highest contrast of graphene sheet is almost unchanged for the thickness of 
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SiO2 substrate between 280 to 320 nm. Thus, our results can be applied directly to 

300 nm SiO2 capping layer, which is also commonly used. With simple modification, 

our technique can also be used to identify the number of graphene layers on 90 nm 

SiO2 substrate, which was suggested by Blake et al.35 that this substrate may provide 

better contrast. 

 

 

 

 

 

 

Figure 3.4 The contrast simulated by using both nG (blue triangles) and nz (red circles), 
the fitting curve for the simulations (blue and red lines), and our experiment data 
(black thick lines), respectively, for one to ten layers of graphene. 
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In order to demonstrate the effectiveness of the contrast spectra in graphene 

thickness determination, we carried out the contrast imaging, which was performed by 

scanning the sample under white light illumination, with an x-y piezostage and 

recording the reflection spectrum from every spot of the sample. As shown in Figure 

3.5a, distinct contrast for different thicknesses of graphene can be observed from the 

image. It is worth noting that the contrast image measurement can be done in a few 

minutes. Figures 3.5b and 3.5c show contrast along the two dash lines on the image. 

The contrast value for each thickness agrees well with those shown in Figure 3.4. 

Using equation 5, the N values along the two dash lines are calculated, where the N 

along the blue line is: 0.99, 1.93, and 3.83; and along the red line is: 0.98, 2.89 and 

3.94. Again our results show excellent agreement. The 3D contrast image is shown in 

Figure 3.5d which gives a better perspective view of the sample. 
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Figure 3.5 (a) The contrast image of the sample. (b) and (c): The cross section of 
contrast image, which corresponds to the dash lines. The contrast values of each 
thickness agree well with the contrast values of one to four layers as shown in Figure 
4. (d) The 3D contrast image, which shows a better perspective view of the sample. 
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3.4 Conclusion 

 

In summary, we have demonstrated that by using contrast spectra, we can easily 

determine the number of graphene layers. We have also calculated the contrast using 

the Fresnel’s equations and the results show an excellent match with the experimental 

data. From the simulation, we extracted the refractive index of graphene below ten 

layers as nz=2.0-1.1i, which is different from that of bulk graphite. Our experimental 

values can be directly used as a standard to identify the thickness of graphene sheet on 

Si substrate with ~300 nm SiO2 capping layer. We have also given an analytical 

expression for determining number of layers. From the contrast image, we have 

demonstrated the effectiveness of this new technique. Although current research 

mainly focuses on the single and bilayer graphene, we believe that the few layers (less 

than 10 layers) graphene also have interesting properties as they still exhibit the 

two-dimensional properties.3 Reflection and contrast spectroscopy provides a fast, 

non-destructive, easy-to-use, and accurate method to identify the numbers of graphene 

layers (below 10 layers), which helps future research and application of graphene. 
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Chapter 4  

Anisotropy of Electron-hole Pair States in Graphene Layers 

Observed by Raman Spectroscopy 

 

4.1 Introduction 

 

Graphene has exhibited a series of new electronic properties such as anomalously 

quantized Hall effects, absence of weak localization and the existence of a minimum 

conductivity1,2,3. These properties can be ascribed to its unique band structure whose 

conical valence and conduction bands meet at the single point of Dirac crossing 

energy(ED)4,5. As a result of that, quasiparticles in graphene behave as massless Dirac 

fermions and follow the rules of 2+1 dimensional quantum electrodynamics. As 

confined within the highly anisotropic layer lattice, electrons and holes, the two 

elementary quasiparticles of graphene, would undergo stronger interaction. 

Theoretically, the binding energy of 2D confined excitons would be four times larger 

relative to that of 3D cases6. Obviously, such effect will modify the dynamics of 

electrons and holes in graphene and affect its optical and transport properties too. For 

example, recently, Bostwick et al. found that the electron-hole (e-h) coupling may be 

responsible partially to the kink feature near ED of the graphene band structure from 

angle-resolved photoemission spectroscopy (ARPES) observations.7 Here, we would 

present our resonant Raman study on the e-h interaction behavior of graphene layers. 

From the dependence of the resonant Raman peak position on the layer number, the 
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2D confinement effect on the e-h interaction is demonstrated and measured.   

 

 
 

Figure 4.1: A schematic second-order double resonance Stokes process. 

 

In Raman spectra of graphite, the frequency of bands under resonance would shift 

with the excitation energy, i.e. it is indeed an identifier of the resonant state energy. 

For example, the disorder-induced D band which appears at about 1350 cm-1 for 532 

nm laser is a typical one. Due to double resonance effect, its frequency is highly 

dispersive and shifts with excitation energy by 44-51 cm-1/eV over a wide energy 

range8,9. However, the D band would not appear in the Raman spectra of defect-free 
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graphite or graphene layers. For such systems, two-phonon scattering with zero total 

momentum would be enhanced by the double resonance effect too. Figure 4.1 

illustrates a schematic second-order double resonance Stokes process with four virtual 

transitions: (i) e-h pair creation at wave vector k (i  a vertically) with the same 

energy as identical to the incident photon; (ii) electron-phonon scattering with an 

exchanged momentum q (a  b); (iii) electron-phonon scattering with an exchanged 

momentum -q (b a′); (iv) e-h recombination (a′ i vertically). Under double 

resonance, as the excited e-h state is selected by the incident photon, the 

corresponding phonon states are tuned as well to match the energy and 

quasi-momentum conservation. It has been found that, the phonon dispersion relations 

of graphite can be probed over a wide range of the Brillouin zone by double 

resonance Raman spectroscopy10. Reversely, by the monotonic phonon dispersion ωph 

on the photon energy, the energy (Eeh) of e-h pairs of graphene can be deduced too. 

 

4.2 Experimental 

 

 The graphene samples used in this study were prepared using the same method as 

described in Chapter 3.1 Raman spectra and Raman image were carried out with 

WITEC CRM200 (532 nm, DPSSL laser), JY-T64000 (488 and 514 nm, Ar+ laser), 

and Renishaw inVia (325nm, He-Ne laser) Raman systems.  
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Figure 4.2 (a) optical image of graphene with 1, 2, and 3 layers. (b) Raman spectra as 
a function of number of graphene layers, as well as the Raman spectrum of HOPG. (c) 
Raman image plotted by the intensity of G band. (d) The cross section of Raman 
image, which corresponds to the dash line. 

 
 
 

4.3 Results and discussion 

 

Figure 4.2a shows the optical image of a graphene sample on the SiO2/Si 

substrate. Raman spectra were then taken from the different regions of the sample and 

the results are shown in Figure 4.2b. For comparison, the Raman spectrum of bulk 

graphite, highly ordered pyrolytic graphite (HOPG), is also shown. There are two 

intense features in the spectra, which are the in-plane vibrational G band and the two 
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phonon G′ band, respectively. The frequency of G band is almost unchanged for 

graphene with different thickness. The single layer graphene has a sharp and 

symmetric G′ band, which makes it distinguishable from double- and multi- layer 

graphenes.10 We further identified different layers of graphene from the G band 

intensity plot, as shown in Figure 4.2c.11 Figure 4.2d plots the Raman intensity of the 

G band along the dash line. It is obvious that the graphene sheet contains one, two, 

three layers. 

 

 

 

 
 
Figure 4.3 The G′ (a) and G′′ (b) bands of graphene with one to four layers, as well as 
those of HOPG. 
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Figure 4.3a plots the G′ bands of graphene sheets in dependence of layer numbers, 

which shows a significant broadening and blue shift (center frequency) from 

single-layer graphene to double- and multi-layer graphene. Considering the two types 

of e-h pairs (intra- and inter-layer pairs) in graphene sheets, the broadening and blue 

shift can be easily understood. Since they have different interaction energy, the intra- 

and inter-layer e-h states select different phonon states and broaden the G′ bands of 

double- and multi- layer graphene sheets. On the other hand, selected by the 

high-energy intra-layer e-h states only, the G′ band of single-layer graphene is 

certainly sharper and with low frequency. Accordingly, by introducing the anisotropic 

behaviors of e-h pair states, we can explain clearly our observed Raman features: 

broadening and blue shift of G′ bands of graphene. In Figure 4.3a, the two fitted 

curves of double- and multi- layer graphene and HOPG correspond to the intra- and 

inter-layer e-h states. For HOPG, the split of two curves of G′ band is about 38 cm-1, 

which will be used to estimate the energy difference of intra- and inter-layer e-h states 

later. Similarly, the three-phonon band (G′′) which is located at ~4300 cm-1 can be 

ascribed to the different e-h states under triple resonance. Figure 4.3b shows the 

Raman G′′ band of graphene sheet with one to four layers as well as that of bulk 

graphite. Similar to the two-phonon band, the G′′ band of single layer graphene is as 

expected sharper and has a lower frequency than that of thicker graphene sheets and 

the bulk graphite. However, so far the resonant Raman features of graphene layers 

have not been clearly understood. Recently, from the electronic band splitting of 

double-layer graphene, Ferrari et al. successfully explained the broadening of the G′ 
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band10. However, their model cannot explain the significant blueshift of the G′ band 

center frequency, as well as that of the three-phonon band (G′′) and defect-induced 

band (D). 
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Figure 4.4 (a) The excitation energy dependence of the Raman spectrum of single 
layer graphene. The excitation source are 325 nm (3.81 eV), 488 nm (2.54 eV), 514 
nm (2.41 eV), and 532 nm (2.33 eV). (b) The G′ band frequency of single layer 
graphene with different excitation energy. 

 

Measuring the dispersion curve of the G′ band of graphene on the incident laser 

energy is the key step to measure the energy difference (Eanisotropic) between the intra- 

and inter-layer e-h states. The idea is simple. Suppose, G′ band under double 

resonance, the incident photon with energy of E1 excites the intra-layer e-h state (E1, 

k(q)) and the inter-layer e-h state (E1, k’(q’)). As the intra-layer e-h state (E2, k’(q’)) 

can be obtained from the G′ band dispersion curve of single layer graphene, we will 

have Eanisotropic (=E2-E1) at the point of k’(q’). The excitation energy dependent Raman 

studies of graphene and the results of single layer graphene are shown in Figure 4.4a, 

with the excitation wavelength of 325, 488, 514 and 532 nm, respectively. Figure 4.4b 

shows the G′ frequency for different excitation energy, where the G′ frequency shifts 

with the equation:              

ω=2460+94.8E.                      (1)   

where ω is the G′ frequency in cm-1 and E is the excitation energy in eV. 

From equation (1), we calculated that the 38 cm-1 split (ω2-ω1) of bulk graphite G′ 

band corresponds to an excitation energy difference:  

Eanisotropic =E2-E1= (ω2-ω1)/94.8=0.4 eV,      (2) 

 i.e. the anisotropy energy between the intra- and inter-layer e-h states is ~400 meV 

for 532 nm (2.33eV) excitation.  
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Figure 4.5 (a) Raman spectra of graphene with one to four layers after SiO2 deposition. 
(b)The D band bandwidth (triangles) and frequency (circles) of graphene with one to 
four layers. 

 

(b) 

(a) 
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The D band is not observable in normal graphene samples as they are of high 

quality and do not contain defects. Only a very weak D band at the edge of the 

graphene sheet is sometimes observed. In order to study the thickness dependence of 

the one-phonon D band, we intentionally induced defects in the graphene samples by 

depositing a thin layer (5 nm) of SiO2 on the samples. The Raman spectra of the SiO2 

coated samples are shown in Figure 4.5a. Both the D band and another defect-related 

Raman D′ band12 located ~1620 cm-1 become observable, where the thinner sheets 

show stronger D band. The relative intensity of the D’ band is also stronger for the 

thinner samples. Our observation can be understood as thicker samples are stiffer and 

more difficult to get damaged. As shown in Figure 4.5b, the D band of graphene 

becomes broader and shows blue shift as the graphene thicknesses increase, similar to 

that of G′ band. The simulation by Graf et al.11 which interprets the G′ band using the 

evolution of electronic structure without considering e-h interactions reveals no 

significant shift (or even a slight red shift) of the phonon frequency (center of the 

peak) for thicker graphene sheets, which is inconsistent to the experimental results. 

Our model with e-h states in low dimension can interpret the phenomena properly.  
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4.4 Conclusion 

 

 In summary, the Resonant Raman features on the graphene layer numbers have be 

understood by the different selection from intra-layer and inter-layer e-h states.  

Taking the advantage of double resonance Raman effect, we have observed the 

confinement effect on e-h interaction energy of graphene, which may be as much as 

400 meV for the 2.33 eV e-h state. At about 17 percent of the total energy of e-h pairs, 

such e-h attraction energy would modify significantly the qusiparticle dynamics of 

graphene layers. Therefore, in addition to the single particle behaviors within 

graphene layer systems, the e-h interaction should also be taken into account to 

understand their electronic and optical properties in further experimental and 

theoretical studies.  
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Chapter 5  

Tunable Strain and Controlled Thickness Modification in 

Graphene by Annealing  

 

5.1 Introduction 

 

Graphene has many exceptionally high crystallization and unique electronic 

properties, making it a promising candidate for ultrahigh speed nanoelectronics.1-4 

However, in order to make it a real technology, several critical issues need to be 

resolved which include but are not limited to (1) microelectronics compatible 

processes for fabricating both single layer and few layer graphene and related devices 

and (2) viable way of creating an energy gap at K and K′ points in the Brillouin zone. 

Researchers have successfully developed an energy gap in graphene by patterning it 

into nanoribbon,5,6 forming quantum dots 4 or making use of mutilayer graphene 

sheets with or without the application of an external electrical field.7-9 Besides global 

back gates,10-12 top local gates 13-17 have also been employed to develop more complex 

graphene devices, such as pn junction,18 Veselago lens 19 and Klein tunneling.20 The 

top gate oxides that have been used so far include HfO2, Al2O3 and SiO2. Although 

efforts have been made to deposit the gate oxides without damaging the graphene or 

changing its electrical properties,13-17 the gate oxides should influence the graphene 

sheets in at least three ways: doping, defects, and various mechanical deformations. 

Although theoretical studies suggest that chemical doping shifts the neutral point 
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1,21-23 and defects increase carrier scattering in graphene,24-26 so far they have not been 

studied experimentally. It is known that the sp2 bonds in graphitic carbon can hold 

extremely high mechanical strains 27,28 and exhibit interesting electromechanical 

properties, as observed in carbon nanotubes (CNTs).29,30 Remarkable strain effects on 

optical and electronic properties have been found in CNTs.29-36 As both the CNTs and 

graphene share the same honeycomb structure,37 it is plausible to expect similar type 

of effects in graphene, especially in gapped structures such as graphene nanoribbon, 

quantum dot, and nano-constrictions. 

We have studied systematically graphene sheets subjected to defects and 

mechanical deformations induced by insulating capping layers using Raman 

spectroscopy and Raman microscopy.  Different insulating materials were deposited 

on top of graphene by electron beam evaporation, pulsed laser deposition (PLD), 

sputtering and followed by annealing at different temperatures. Here we present the 

results of using SiO2 as a typical example. A thin layer of SiO2 (5 nm) was deposited 

on top of the graphene sheets by PLD and Raman spectroscopy was used to 

investigate the interaction between the SiO2 and graphene. Defect-induced Raman 

bands were observed after the deposition of SiO2. The amount of defects was 

significantly reduced by annealing. A striking feature in our spectroscopic data is that 

compressive strain as high as ~3.5 GPa was observed after the annealing process. The 

compressive strain may be useful to tune the electronic properties of graphene 

nanostructures. Possible applications to graphene based devices and spectroscopic 

research are also presented. To the best of our knowledge, this is the first 
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experimental report on defects and strain induced in graphene. We further show that 

the graphene thickness, and hence its properties, can be changed in a controlled 

manner by annealing in air. 

 

5.2 Experimental 

 

The graphene samples were prepared by micromechanical cleavage on Si wafer 

substrate with a 300 nm SiO2 cap layer and optical and Raman microscopies were 

used to locate the graphene sheet as described in Chapters 3 and 4. A 5 nm SiO2 top 

layer was deposited by PLD with a 248 nm KrF pulsed laser. The laser power used 

was very weak (~200 mJ and repetition rate of 10Hz) to achieve the slow and smooth 

deposition (1Ǻ/min) and ellipsometry was used to measure the total thickness of SiO2. 

The SiO2 thickness on the Si substrate was 303.5 + 0.5 nm before deposition and 

308.5 + 0.5 nm after deposition, indicating that the thickness of top SiO2
 layer was 5 

nm. The sample was annealed in a tube furnace at different temperatures for 30 min. 

Experimental details on Raman and contrast spectra and imaging are the same as 

described in Chapter 3. 
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Figure 5.1 (a) Optical image of graphene with 1, 2, 3 and 4 layers. (b) Raman spectra 
as a function of number of layers. (c) Raman image plotted by the intensity of G band. 
(d) The cross section of Raman image, which corresponds to the dash lines with 
corresponding colors in Raman image.  
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5.3 Results and discussion 

 

Figure 5.1a shows the optical image of a graphene sample on the SiO2/Si 

substrate. The Raman spectra recorded from different regions are shown in Figure 

5.1b. There are two intense features in the spectra, which are the in-plane vibrational 

G band and the two phonon 2D band, respectively. The single layer graphene has a 

sharp and symmetric 2D band, which makes it distinguishable from bilayer and 

few-layer graphenes.38 We further identify the thickness of other layers from the G 

band intensity plot, as shown in Figure 5.1c. 39 The cross section in Figure 5.1d clearly 

shows that the graphene sheet contains one, two, three and four layers. 
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Figure 5.2 (a) Raman spectra of a graphene sheet before and after the 5 nm SiO2 top 
layer deposition. (b) Raman spectra of graphene with one to four layers as well as that 
of bulk graphite after 5 nm SiO2 top layer deposition. (c) Raman images of graphene 
sheets without SiO2 cover generated from the intensity of the D band, and (d) the G 
band, together with the images generated from the sample graphene sheet after the 5 
nm SiO2 top layer deposition: (e) the D band, and (f) the G band. 

 

 The Raman spectra of graphene before and after 5 nm SiO2 deposition were 

shown in Figure 5.2a. A clear difference is that two extra Raman bands, located at 

1350 and 1620 cm-1, were observed after deposition. Those two Raman bands were 

both defects induced: The stronger one at 1350 cm-1 is assigned to the so-called 

disorder-induced D band, which is activated by a double resonance effect by defects, 

such as in-plane substitutional hetero-atoms, vacancies, or grain boundaries.40 The 
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weaker band at 1620 cm-1 is assigned to D′ band. The D′ band corresponds to the 

highest frequency feature in the density of state, which is forbidden under defect-free 

conditions.41 Its observation is also associated with the presence of defects in the 

lattice and originates from the double resonance process. The observation of D and D′ 

bands indicate that defects were introduced into graphene after the 5 nm SiO2 top 

layer deposition. This may be caused by the damage on the sample during deposition, 

or by the interaction between SiO2 and graphene which may produce vacancy, 

dislocation and/or dangling bonds. The defect peaks were also observed in graphene 

with 5 nm SiO2 top layer deposited by e-beam evaporation. Annealing is carried out 

to eliminate the defects, which will be discussed in latter section. Figure 5.2b shows 

the Raman spectra of graphene sheet with one to four layers as well as that of bulk 

graphite after SiO2 deposition. The Raman spectra were taken under same conditions. 

The D band intensity decreases with the increase of graphene thickness and is 

invisible for bulk graphite, demonstrating that defects are more easily introduced into 

thinner graphene sheets.42 Figure 5.2c and 5.2e show Raman images generated from 

the intensity of D band before and after deposition respectively. Before deposition, 

there is no D band hence the Raman image is dark. After deposition, the thinner 

graphene (single layer graphene) shows the strongest D band, which is consistent with 

the discussion above. Figure 5.3d and 5.3f show the images generated from the 

intensity of the corresponding G band, and they do not show noticeable difference. 

Hence the G band intensity is still a good criterion in determining the thickness of the 

graphene sheet.  
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Figure 5.3 (a) Raman spectra of single layer graphene coated by 5 nm SiO2 and 
annealed at different temperature. (b) The intensity ratio of D band and G band of 
graphene sheets with one to four layers (coated with SiO2) after annealing at different 
temperatures. 
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Figure 5.4 The Raman frequency of G band (a), D band (b), and 2D band (c) of 
graphene sheets with one to four layers (coated with SiO2) after annealing at 
differenet temperature. (d) Strain on single layer graphene controlled by annealing 
temperature. The red line is a curve fit to the experimental data. 

 

The Raman spectra of single layer graphene after annealing in air ambient at 

different temperatures are shown in Figure 5.3a. An obvious observation is that the 

intensity of D band decreases upon annealing. This is clearly demonstrated in Figure 

5.3b, which shows the intensity ratio between the D band and G band (ID/IG) that is 

often used to estimate the amount of defects in carbon materials. For one to four-layer 

graphene sheets, this ratio decreases with increase in annealing temperature. This can 

be understood as due to the recovery of damaged graphene at high temperature. 
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Figure 5.4a-c show another important observation, where the G, D, and 2D bands 

shifted to higher frequency with increase in annealing temperature. The G band blue 

shifted ~15 cm-1, while the D band blue shifted ~13 cm-1 and 2D band ~25 cm-1 after 

annealing at 500 oC. We attribute this significant blueshift of Raman bands to the 

compressive strain on graphene created by SiO2 cover layer. The SiO2 top layer 

becomes denser upon anneal so it exerted a stronger compressive strain on the 

graphene. For comparison, the Raman bands of bulk graphite did not shift after 

deposition and annealing, which supported the above explanation, as bulk graphite is 

too thick and it is not easily compressed by the thin SiO2 layer. We also annealed the 

graphene without SiO2 cover layer and no blueshift was observed for any of the 

Raman bands because the SiO2 substrate is quite dense before annealing and its 

density does not change after annealing. This confirms that SiO2 top layer plays an 

important role on the significant shift of Raman bands (compressive strain) of 

graphene after annealing. The strain was calculated by employing the pressure 

coefficient obtained from high hydrostatic pressure experiment. The pressure 

coefficient of G band frequency for graphite is 4.5 cm-1/GPa,43 and we have also 

performed high pressure experiment on another 2D carbon material (carbon nanowalls) 

where the pressure coefficient is 4.2 cm-1/GPa, similar to that of graphite. Since they 

are all carbon materials with similarity in structure, it is reasonable to use the G band 

coefficient of 4.5 cm-1/GPa as a rough estimate of the strain value. The strains on 

single layer graphene with annealing temperature are shown in Figure 5.4d. The 

compressive strain on graphene was as high as 3.5 GPa after depositing SiO2 and 
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annealing at 500 oC, and the strain on single layer graphene in our experiment can be 

fitted by the following formula:  

ε= -0.257+3.90×10-3 T+8.60×10-6 T2 

where ε is the compressive strain in GPa and T is temperature in oC. The appearance 

of such large strain is mainly because graphene sheets are very thin (0.325 nm in 

thickness for single layer graphene),44,45 so that they can be easily compressed or 

expanded. It has been reported that even the very weak van der waals interaction can 

produce large strain on the single wall carbon nanotubes.36 We have also introduced 

tensile strain (~1GPa) onto graphene by depositing a thin cover layer of silicon. We 

suggest that tensile strain can be also achieved by depositing other materials with 

larger lattice constant than graphene. In combination with annealing, both 

compressive and tensile strains can be introduced and modified in graphene in a 

controllable manner. The strained graphene may have very important applications as 

the properties of graphene (optical and electronic properties) can be adjusted by strain, 

where strain studies in CNTs have already set good examples,29-36 e.g. the bandgap of 

CNTs can be tuned by strain with a parameter of 100 meV per 1% strain.31 Strain 

engineering using SiGe alloy has already been used in the IC fabrication to improve 

the device performance. 
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Figure 5.5 Optical images of a graphene sheet with one, two, three, four, and six layer 
regions before (a) and after (b) after annealed at 600 oC for 30 min. Raman (G band 
intensity) images of the same graphene before (c) and after (d) annealing. Contrast 
images of the same graphene before (e) and after (f) annealing. The one to three layer 
regions disappeared, while the four to six layer regions remained after annealing. The 
thicknesses of three remained regions were two, three, and four layers.   
 
 
 

 Figure 5.5a shows the optical image of a graphene sheet with one, two, three, four, 

five and six-layer regions, as denoted by the numbers on the image. After annealing at 

600 oC for 30 min, the thinner part of graphene sheet (one to three layers) disappeared 

due to oxidation. However, the thicker part (four to six layers) still remained, as 

shown in Figure 5.5b. The thickness of different regions before and after anneal is 

determined by a combination of Raman imaging (Figure 5.5c and 5.5d) and contrast 

imaging (Figure 5.5e and 5.5f).46 Optical spectroscopic imaging techniques have a 



CHAPTER 5    Tunable Strain and Controlled Thickness Modification in 
Graphene by Annealing  

 

 63

clear advantage in this case over other techniques, e.g. atomic force microscopy 

(AFM), in determining the layer thickness, as AFM does not work properly due to the 

presence of SiO2 top layer on the graphene. Although the exact mechanism of 

graphene annihilation is unknown, it is most likely due to oxidation of carbon by 

oxygen diffused through the SiO2 cover layer from the air ambient as the thickness of 

the graphenes does not change when anneal is carried out in vacuum. This result 

suggests that annealing in the presence of oxygen provides a practical method of 

manipulating the graphene thickness in a controllable manner. For example, a local 

heating techniques may be used to either induce the strain or reduce the thickness 

selectively, opening another avenue for fabricating graphene-based devices.  

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5    Tunable Strain and Controlled Thickness Modification in 
Graphene by Annealing  

 

 64

5.4 Conclusion    

 

In summary, we have used Raman spectroscopy and microscopy to investigate 

the influence of top gate insulator (5 nm SiO2) on graphene sheets mainly on two 

important aspects, defects and strain. The results show that defects were introduced in 

graphene sheets during deposition and the amounts of defects increase as the graphene 

thickness decreases. After annealing, the defects in graphene can be greatly reduced. 

Moreover, significant Raman shifts of all the graphene bands were observed after 

SiO2 deposition and annealing, which was attributed to the compressive strain on 

graphene caused by the SiO2 top layer. Importantly, the strain can be controlled by the 

annealing temperature, which maybe used to tune the optical and electronic properties 

similar to what has been observed in CNTs. Finally, the graphene thickness can be 

modified in a controllable manner using anneal. Our findings provide useful 

information critical to graphene device engineering and fabrication.   
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Chapter 6  

Raman Spectroscopic Investigation of Carbon Nanowalls 

 

6.1 Introduction 

 

Self-assembled carbon nanostructures such as fullerenes and carbon nanotubes 

(CNTs) represent unusual forms of carbon in the nanometer regime.1 Their unique 

crystalline structure and dimensionality bring about new mechanical, chemical and 

electronic properties. Recently, the two-dimensional carbon nanostructures have also 

been grown. Wu et al. 2, 3 reported the fabrication of two-dimensional carbon 

nanostructures—carbon nanowalls (CNWs), grown vertically using microwave 

plasma-enhanced chemical vapor deposition (PECVD). Hiramatsu et al. 4 have done 

further research on controlled fabrication of aligned carbon nanowalls.  

Unlike CNTs, which are made from rolled up graphene sheets, CNWs comprise 

flat graphene sheets very similar to that in graphite. Due to the structural similarity, its 

properties (and hence Raman peaks) are closer to graphite than CNTs do. The large 

surface area of aligned carbon nanowalls are useful as templates for the fabrication of 

other types of nanostructured materials, which have potential applications in energy 

storage, as electrodes for fuel cells, sensors and field emission.5 Furthermore, carbon 

sheets can be seen as the starting material to roll into nanotubes. A good 

understanding of its physical properties would help to know more about CNTs. Here, 

we employ Raman spectroscopy to investigate the crystalline structural and optical 
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properties of the CNWs.  

Raman spectroscopy is a powerful tool and widely applied to determine the 

structural and electronic properties of various forms of carbon nanostructures. Single 

crystal graphite belongs to the D 4
6 h  symmetry group, with the following optical 

vibrational modes, 6, 7 

Γopt = 2E2g(R)+ E1u(IR)+ 2B2g+ A2u(IR) 

The two E2g modes are Raman active and have been identified with the Raman bands 

at ~1582 cm-1 (G band) and ~47 cm-l, while the E1u (~1588 cm-1) and A2u (~868 cm-1) 

are IR active and observable with IR reflectance. In addition, there are also two 

Raman bands at ~1360 and ~1620 cm-1, which are often designated as D and D′ 

modes. Wang et al. 7 have examined the first- and second-order Raman spectral 

features of graphite and related sp2 bulk carbon materials with broad range of laser 

wavelengths. Siegal et al. 8 and Ohgoe et al. 9 studied the diamond like carbon (DLC) 

films and found sp3 together with sp2 in the DLC. Maultzsch et al. 10 found that only 

CNTs with (n1-n2)/3 being integer contribute to the D mode spectrum because of their 

particular electronic structure, the so-called chirality-selective Raman scattering of D 

band. In this chapter, we measured the Raman spectra of CNWs grown on silicon 

substrate. No unexpected peak was observed and all the peaks in the spectra are 

assigned. Compared with graphite and CNTs, the D band of CNWs is very strong due 

to the high edge density and surface oxidation. Excitation energy dependence of the D 

band was also carried out from 1.95 to 3.8 eV and discussed using the double 

resonance model. 
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6.2 Experimental 

6.2.1 Growth of CNWs 

 

 

 
Figure 6.1 Schematic of micro-wave plasma enhanced chemical vapor deposition 
(PECVD) used to grow CNWs 

 

 

CNWs were prepared using micro-wave plasma enhanced chemical vapor 

deposition (PECVD) on Si substrates (~ 1cm × 1cm in size). 2, 3 The Schematic of 

PECVD is shown in Figure 6.1. The PECVD system is equipped with a 500 W 

microwave source and a cavity to couple the microwave to a quartz tube for 

generating the plasma. Inside the quartz tube are two parallel plate electrodes placed 2 

cm away from each other in the longitudinal direction of the tube that were used to 

Microwave 

Plasma

Quartz 
Chamber 

Microwave 
tuner rod 

Lower bias 
electrode 

Upper bias 
electrode 

Metal mesh 

Substrate
DC bias



CHAPTER 6   Raman Spectroscopic Investigation of Carbon Nanowalls 
 

 70

apply a DC bias to promote the growth and alignment of the both nanotubes and 

nanowalls. The gases used were mixtures of CH4 and H2. The typical flow rates of H2 

and CH4 are 40 and 10 sccm, respectively. Before CH4 was introduced to the quartz 

tube to commence the growth of nanotubes and nanowalls, the substrate was 

preheated to about 650-700 0C in hydrogen plasma without a bias for 8-10 min. 

During both preheating and growth, the process pressure was maintained at 1 Torr. A 

DC bias of -185 V was applied to the lower electrode on which the substrate was 

mounted while the top electrode was grounded.  
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Figure 6.2 SEM images of CNWs grown on Si substrate using PECVD:  (A) Top 
view of the CNWs. (B) Cross section of CNWs. (C) Several single layers scratched 
from the sample. 

(B) 

(A) 

(C) 
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6.2.2 Experimental detail 

 

The CNWs film samples grown by this method are very smooth and uniform. 

Figure 6.2 shows the SEM images of the CNWs samples. As can be seen in Figure 6.2 

(A) and (B), the two-dimensional carbon sheets were grown vertically on the substrate. 

These CNWs have a lateral dimension in the micron range and a thickness of several 

nanometers. Figure 6.2 (C) shows the SEM image of carbon nanowall “mat” 

scratched out from the substrate, showing that the carbon nanowalls can be detached 

mechanically from substrate with ease. Micro-Raman spectra were recorded with 

different excitation lasers: 325, 633, 488, 514.5 and 532nm. Raman measurements 

were recorded in different sample orientations and polarizations. All the Raman 

spectra were performed in the backscattering geometry at room temperature. The laser 

power on sample is kept below 1 mW to ensure that the lasers do not heat the samples, 

which can induce Raman shift. The resolution of the micro-Raman is below 1 cm-1. 



CHAPTER 6   Raman Spectroscopic Investigation of Carbon Nanowalls 
 

 73

 

120013001400150016001700
 

  

 

1621
1590.5

1353

1000 1500 2000 2500 3000 3500 4000

32222937
2693

1590

1353

In
te

ns
ity

Wavenumber (cm-1)

  

 

 

 
Figure 6.3 Raman spectrum of CNWs excited by 514 nm laser line, the insert shows 
the 1000-1800 cm-1 range, together with fitted peaks. 
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Figure 6.4 Raman spectra of graphite and CNWs excited by 514 nm laser line. 



CHAPTER 6   Raman Spectroscopic Investigation of Carbon Nanowalls 
 

 74

6.3 Results and discussion 

6.3.1 Raman characterization of CNWs 

Figure 6.3 shows the Raman spectrum of CNWs using 514 nm excitation. There 

are total five peaks from 1000 to 4000 cm-1. We have also made measurement below 

1000 cm-1. As expected, no “breathing mode”, which is characteristic of CNTs, was 

observed in the range of 100 cm-1 to 1000 cm-1. The peak at 1590 cm-1 is the 

Raman-active G band (E2g) originated from the in-plane vibrational mode. 6, 7 The 

peak at 1353 cm-1 is assigned to the so-called disorder-induced D band, which is 

activated in the first-order scattering process and usually thought to be due to the 

presence of in-plane substitutional hetero-atoms, vacancies, grain boundaries or other 

defects, all of which lower the crystalline symmetry. In the case of highly ordered 

pyrolytic graphite (HOPG), the D band disappears and only the G band exhibits in the 

fundamental region between 1100 and 1700 cm-1.11-13 Beside the G band, a distinct 

shoulder peak at 1621cm-1 attributed to D′ band is often observed in some disordered 

graphite-like carbons. The D′ band corresponds to the highest frequency feature in the 

density of states, which is forbidden under defect-free conditions.11 Its observation is 

also associated with the presence of defects in the lattice and originates from the q ~ 

2k phonons close to the Brillouin zone center.14-16 In the region of the higher order 

Raman spectrum, three distinct peaks are attributed to combinations of the Raman 

fundamentals, 2693 (2D), 2937 (D+G) and 3222 cm-1(2D′). These bands have also 

been observed in the Raman spectra of HOPG. 17-19 
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For a better understanding of the features of CNWs, the Raman spectrum of 

CNWs is compared with that of the bulk graphite (shown in Figure 6.4). The G band 

of CNWs has a slightly higher frequency and is also broader than that of graphite, 

which can be attributed to the breakdown of selection rule caused by defects and 

small size. Maultzsch et al. 20 have measured the phonon dispersion of graphite by 

inelastic x-ray scattering. It showed that the E2g LO phonon branch (~1582 cm-1) has 

positive phonon dispersion near the г point. The breakdown of |q|=0 selection rule 

allows the observation of vibrational modes correspond to a wider wave vector range, 

which resulted in the upshift and broadening of the G band. The intensity ratio of the 

D and G bands is about 2.2 for CNWs using 514nm excitation laser. This ratio is 

higher than that of graphite 6,7 as the CNWs contains more defects. However, one 

must exercise care in such comparison since the intensity of the band not only 

depends on the defects but also excitation energy. Unlike the SWCNTs, 10 the D band 

for CNWs can be fitted with a single Lorentzian peak and does not show any fine 

structure.  
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Figure 6.5A Raman spectra of CNWs recorded at different configurations (see Figure 
6.5B) using 514 nm laser line. (a) laser light perpendicular to the substrate. (b) and (c), 
laser light parallel to CNWs film (cross section) with the polarization of (b) parallel to 
the substrate and (c) parallel to the growth direction of the wall. (d) and (e), laser 
incident normally to the surface of a scratched sample, consisting several single walls. 
The polarization of (d) and (e) are parallel to the wall surface but with cross direction.  
Figure 6.5B Schematic diagram showing the CNWs samples, the laser light and its 
polarization, at five different configurations (a), (b), (c), (d), (e). 
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6.3.2 Orientation dependent Raman study of CNWs  

 

Figure 6.5A shows Raman spectra of CNWs for five different configurations 

between the laser light polarization and CNWs orientation (illustrated in Figure 6.5B) 

recorded using the 514 nm laser line. The ID/IG ratio for the five configurations is 

2.43(a), 2.31(b), 1.48(c), 1.46(d) and 1.35(e) respectively. This difference can be 

explained as due to the polarization effect of G band.21 In spectrum (a), the Raman 

spectrum was recorded perpendicularly to the substrate. In this configuration, the laser 

polarization does not affect the experiment result as it represents the average of 

different angles between the laser light polarization and normal direction of CNWs. 

This is consistent with the fact that the spectrum is almost unchanged in this 

orientation with the change in the laser polarization. In spectra (b) and (c) 

(cross-section scattering), the laser was scanned from the cross section of the CNWs 

film. Taken into account the randomness of the CNWs orientations in the substrate 

plane, spectrum (b) should be identical to spectrum (a). In our experiments, the ID/IG 

ratio of these two conditions is quite similar: 2.43(a) and 2.31(b). In spectrum (c), the 

in-plane vibrational G mode is enhanced because the polarization is parallel to all of 

the walls (not affected by the random arrangement within the substrate plane). 

Obviously, the ID/IG ratio of 1.48(c) is smaller compared with the first two conditions. 

Spectra (d) and (e) were taken perpendicularly to several single walls (SEM in Figure 

6.2C). Similar to (c), the polarizations of laser for both (d) and (e) are parallel to the 

wall surface. The ID/IG ratio of 1.46(d) and 1.35(e) are quite similar to 1.48 (c). From 
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the above results, the dependence of intensity on polarization direction implies that 

the graphene planes in the CNWs are parallel to the surface of individual CNWs and 

well-crystallized. 
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Figure 6.6. Raman spectra of CNWs excited by different laser lines: 325nm(3.8eV), 
488nm(2.54eV), 514nm(2.41eV), 532nm(2.33eV), and 633nm(1.96eV). 
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Figure 6.7 The frequencies of Raman mode (D band, 2D band, D+G band) of CNWs 
as a function of excitation energy. 
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6.3.3 Laser excitation dependent Raman study off CNWs 

 

The excitation laser energy dependence of the frequency of disorder-induced D 

band is one of the most interesting features of the Raman spectra in sp2 carbon 

materials. 22 Its frequency is highly dispersive and increases with increasing laser 

excitation energy at a rate of about 51 cm-1/eV. 23 This dispersive nature 24 as well as 

discrepancy between the D-band Stokes and anti-Stokes frequencies 25 has been 

explained recently by a double resonance process.16, 26 Double resonances, where two 

of the intermediate electronic states in the scattering process have to be real, occur 

more easily in semimetal-like graphite if the sample contains symmetry breaking 

elements. Based on the double resonance mechanism, the intensity of the observed 

D-band is proportional to the density of defects. 

The Raman spectra of CNWs with different excitation energy are shown in Figure 

6.6. The peak positions of the D band are plotted as a function of laser energy as 

shown in Figure 6.7, which also contains the peak position dependence on laser 

energy of the 2693 (2D) and 2937 cm-1 (D+G) bands. The G band is almost 

independent of excitation laser energy, while the D band shows a good linear shift (a 

rate of 46.19 cm-1/eV). The 2D band has a slope of 107.5 cm-1/eV, which is 

approximately twice that of the D band. The D+G band has a slope of 48.98 cm-1/eV 

similar to that of the D band, which is expected since the G band does not shift with 

excitation energy. Recently, J. Maultzsch et al.27 presented an in-depth analysis of 

double-resonant Raman scattering. The calculation result indicates that the D-mode 
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shows a shift between 43-61 cm-1 /eV, agreeing well with our experimental result. 
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Figure 6.8. The intensity ratio of D band to G band ID/IG (squares) and D′ band to G 
band ID′/IG (triangles) with excitation energy.  

 

Besides, we have also measured the intensity ratio of the D and G bands, shown in 

Figure 6.8 (squares). The ratio ID/IG decreases as the excitation energy increases. 

Similar result has also been observed by Mernagh et al. 28 in graphon carbon and 

Wang et al. 7 in glassy carbon. It was likely due to the resonance (vibronic) 

enhancement. The resonance enhancement for the D mode favors longer wavelength 

while the G mode favors shorter wavelength, which resulted in the relatively smooth 

changes of ID/IG. There is significant variation in the peak intensity ratio ID/IG by 

about a factor of 16 between Raman spectra recorded using λ = 325 and 633 nm lasers. 

The variation is much larger than that of glassy carbon and graphon, indicating that 
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the CNWs may have electronic structure and phonon dispersion that differ from these 

materials. 

 

Similarly, the relative intensity ID′/IG of the D′ band (1620 cm-1) and G band also 

decreases as the excitation energy increases as shown in Figure 6.8 (triangles). The 

excitation laser energy dependence of the D′ band intensity follows that of the D band. 

Tan et al. 14 observed in graphite whiskers that the frequency of the D′ band shifts 

slightly as the excitation energy varies. This shift is not easy to observe in CNWs 

where the G and D′ bands overlap. The similar behaviors of the D band and D′ band 

again indicates that the D′ band is associated with the presence of defects and 

originates also from a double resonance process involving q ~ 2k phonons close to the 

Brillouin zone center but with a relatively flat dispersion.  
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6.4 Conclusion 

In summary, 2D CNWs were grown by PECVD and SEM was used to study the 

morphology, and micro-Raman scattering experiments have been performed. All the 

observed peaks were assigned and compared with graphite. The extremely strong D 

band of CNWs was mainly attributed to the defects and high edge density. The G 

band shows strong polarization dependence. Different laser lines were used to excite 

the sample. The frequency of the D band shifts with the laser energy at a rate of 

46.19 cm-1/eV, and this result agrees well with the theoretical value by double 

resonance effect. The 2D and D+G bands shift at the rate of 107.5 cm-1/eV and 48.98 

cm-1/eV respectively. The decreasing intensity ratios ID/IG and ID′/IG with the 

increasing laser energy are observed and discussed.  
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Chapter 7  

High Temperature Raman Spectroscopy Studies of Carbon 

Nanowalls 

 

7.1 Introduction 

 

Thermal stability is an important property of the carbon materials. The 

temperature-induced shifts of the first-order Raman peaks have been reported on 

diamond by Zouboulis et al. 1 and on graphite by Tan et al. 2 For the carbon 

nanomaterials, Ci et al. found that the G mode temperature coefficient is different for 

different sizes of CNTs.3 Osswald et al. carried out high temperature Raman 

spectroscopy studies of single wall carbon nanotubes (SWCNTs) and double wall 

carbon nanotubes (DWCNTs).4 They found that the temperature coefficient of 

DWCNTs is between that of SWCNTs and graphite. Moreover, they observed the 

elimination of D mode between 440 ℃- 500 ℃ for SWCNTs and 370 ℃ - 400 ℃ for 

DWCNTs, and they concluded that the D mode of CNTs comes from amorphous 

carbon on the surface and also the damaged tubes. 

So far, there has been no study on temperature dependence of CNWs, though 

such study is necessary for a clearer understanding of thermal stability of CNWs. In 

this chapter, we studied the contribution of surface amorphous carbon on the intensity 

of the D mode, as well as the origin of the extremely strong D mode of CNWs. What 

is more, by heating the sample at air condition, we would be able to eliminate the 
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surface amorphous carbon and hence its related defects in CNWs.  

 

 

 
 
Fig. 7.1 (a) SEM image of CNWs grown on Si substrate using PECVD. (b) TEM 
image of the cross section of CNWs. The graphene planes which formed the wall 
were vertically aligned. There is some amorphous carbon on the surface of the wall. 
 

7.2 Experimental 

The growth of CNWs has been described in detail in chapter 6. Figure 7.1a shows 

the SEM micrograph of CNWs. The TEM image (Figure 7.1b) shows the cross 

section of a single carbon nanowall, the graphene planes which form the wall are 

clearly shown. In addition, there is some amorphous carbon on the surface of the wall. 

The high temperature Raman experiments were carried out in static air ambient using 

(a) 

(b) 
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a THMS 600 Linkam thermal stage with ~1°C temperature accuracy and stability. 

The sample was heated up to 600 °C at 5 °C/min, and held for 5 min at every 

measurement point. Raman spectra were recorded as described in Chapter 6. The 

integral (area) intensities of Raman bands were used in calculating the intensity ratio. 

500 1000 1500 2000 2500 3000 3500

 

R
am

an
 In

te
ns

ity

3219
2938

2689

1591

1348

 

 

Wavenumber (cm-1)

120013001400150016001700
 

1620
1591

1348

 

 
 
Fig. 7.2 Raman spectrum of CNWs excited by 532nm laser. The inset shows the 
1150-1750 cm-1 range, together with fitted peaks. 

 

 

7.3 Results and discussion 

Figure 7.2 shows the Raman spectrum of CNWs using 532 nm excitation. The 

peak at 1591 cm-1 is the Raman-active G band (E2g) originated from the in-plane 

vibrational mode. The peak at 1348 cm-1 is assigned to the so-called disorder-induced 

D band, which is activated by a double resonance effect by defects, such as in-plane 

substitutional hetero-atoms, vacancies, grain boundaries.5 Beside the G band, a 

distinct shoulder peak at 1620 cm -1 is attributed to D′ band. The D′ band corresponds 
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to the highest frequency feature in the density of state.6 Its observation is also 

associated with the presence of defects in the lattice.7,8 In the region of the higher 

order Raman spectrum, three peaks can be observed and attributed to combinational 

modes: 2689 (2D), 2938 (D+G) and 3219 cm-1(2D′).  
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Fig. 7.3 Frequencies of Raman modes (D, G and D′) of CNWs as the temperature 
increases 

 

For a better understanding of the thermal stability of CNWs, high temperature 

Raman spectroscopy studies of CNWs were carried out. Figure 7.3 shows the 

frequencies of Raman peaks of CNWs as the temperature increases. The G mode 

temperature coefficient of CNWs is 0.029 cm-1/K, which is much bigger compared to 

that of highly oriented pyrolytic graphite (HOPG, 0.011 cm-1/K).2 The phonon 

frequency change at high temperature can be written as:1,9  
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The former term describes the pure temperature effect, and latter describes the pure 

volume effect, which is also known as thermal expansion effect. The pure temperature 

effect depends on both the anharmonic (third and fourth) terms of the potential and 

the phonon occupation number n. The thermal expansion related frequency change 

can be expressed as: 1,9 

∫−=
T

dTTT
0

])(3exp[)0()( αγωω  

where α(T) is the thermal expansion coefficient and γ is the Grüneisen constant. The 

thermal expansion effect of HOPG is very weak, because HOPG has a very small 

thermal expansion coefficient, and also the expansion is almost exclusively along c 

direction, which will not affect the in-plane vibrational G mode.2 Furthermore, the 

anharmonic contribution of HOPG and other carbon materials can be ignored, because 

their Debye temperatures are around 2500 K, which is much higher than the 

experimental temperature.2,10 As a result, the 0.011 cm-1/K G mode thermal coefficient 

of HOPG is mainly attributed to the pure temperature effect due to phonon occupation 

number. For CNWs, the big difference of 0.029-0.011=0.018cm-1/K probably comes 

from the thermal expansion effect. Because of the higher amount of defects and 

impurities, CNWs have smaller crystal domain size. Thus, the crystal planar domains 

in CNWs expand easier with temperature than those in HOPG, resulting in a more 

notable temperature effect.2,11 Similar results have also been reported for carbon (12C) 

ions implanted graphite (CHOPG) and CNTs, which have G mode frequency 

coefficients of about 0.028-0.030 cm-1/K.2,4,12 However, the intrinsic (pure) 
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temperature effect of CNWs may differ from that of HOPG, which can also contribute 

to the great difference of the G mode coefficients, further study will be carried out on 

this part. As also can be seen from Figure 7.3, the D mode and D′ mode have thermal 

coefficients of 0.015 cm-1/K and 0.020 cm-1/K, respectively. The D mode thermal 

coefficient of CNWs is quite close to that of DWCNTs (0.015 cm-1/K), but is slightly 

larger than that of SWCNTs (0.014 cm-1/K).4  
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Fig. 7.4 The relative intensity ratio ID/IG (a) and ID′/IG (b) of CNWs at different 
temperature in the: first heating process, first cooling process and second heating 
process. 
 

Another focus was how the relative intensity of D mode and G mode (ID/IG) 

changes at high temperature, which is shown in Figure 7.4a. The ID/IG is normally 

used as a measurement of the amount of defects inside carbon materials. This is 

(a) 

(b) 
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because the D mode intensity is proportional to the amount of defects of materials as 

had been explained by the double resonance theory.5 In Figure 7.4a, the squares 

represent the ID/IG at each temperature during the heating process. It is obvious that 

the intensity ratio showed a sub-linear behavior as the temperature increased. After 

reaching the highest temperature 600 ℃, the sample was cooled down. The circles 

represent the ID/IG at each temperature during the cooling process. The ID/IG increased 

almost linearly as the temperature decreased, indicating that the behaviors of the 

sample at high temperature were not reversible. After the CNWs were cooled to room 

temperature, the ID/IG ratio of CNWs decreased to 1.95 as compared to 2.3 before 

anneal. The difference is attributed to the oxidation of surface amorphous carbon 

during heating. As can be seen from the TEM result (Figure 7.1b), the carbon 

nanowall sheet was covered by a layer of amorphous carbon. The surface defect 

caused by amorphous carbon is one kind of defects which contribute to the intensity 

of D mode. During the heating process, the amorphous carbon was easily oxidized 

and removed. As a result, the D mode intensity, hence ID/IG, decreased upon heating. 

The amorphous carbon of CNTs can also be removed when the samples are heated in 

air/oxygen condition at high temperature.13,14,15 For comparison, we treated CNWs in 

high vacuum at 600 ℃ for half an hour, the ID/IG ratio did not change, which 

demonstrated that the removal of surface amorphous carbon due to oxidation 

contributed to the decrease of ID/IG in our high temperature experiment under air 

ambient. For CNWs, the sub-linear decrease of ID/IG during the first heating process 

can be explained by different rate of oxidation of surface amorphous carbon at 
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different temperatures. 

The ID/IG increased during the first cooling process, and it decreased reversibly 

during the second heating process (as shown in Figure 7.4a). This is attributed to the 

temperature dependence of the double resonance effect of the D mode. At higher 

temperature, the D mode is in a less resonant condition, so the ID/IG ratio is lower. Our 

previous results in chapter 6 showed that the ID/IG ratio of CNWs changes with the 

excitation laser energy,16 which was also because of the resonance effect.17,18 The 

resonance effect explains well the reversible behavior of the ID/IG ratio observed in 

the second heating process. In the first heating process, both the oxidation of 

amorphous carbon and resonant effect contributed to the nonlinear decrease of ID/IG, 

with oxidation being the dominating factor. In the cooling process, the effect of 

surface amorphous oxidation was very weak because the surface amorphous carbon 

was almost oxidized, so the increase of ID/IG was mainly attributed to the resonant 

effect. 

It was worth noting that after the CNWs were heated to 600°C, the D mode 

intensity decreased only about 20%, while for CNTs, the D mode was completely 

eliminated at the range of 400°C to 500 °C.4,13 We conclude that the surface defects 

caused by amorphous carbon is not the main contributor to the intensity of D mode of 

CNWs. We take this as a confirmation of the fact that CNWs contain more structural 

defects than CNTs. The high edge density of CNWs may also contribute to the 

extremely strong D mode.  
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Fig. 7.5 The Raman spectra of CNWs before and after the heating process. The 
sample was grown with the presence of a small amount of water vapor in the growth 
chamber, and it had narrow peak width and separated G and D′ mode. 

 

Besides the D mode, the D′ mode is also of interest. The ID′/IG ratio dependence 

with temperature is shown in Figure 7.4b. The fitting error of ID′/IG was much bigger 

than ID/IG because the D′ mode was relatively weak and also overlapped with the G 

mode. However, we can still see that the ID′/IG showed a reversible behavior under 

high temperature, which differed a lot from the result of ID/IG. In order to confirm this 

result, we studied CNWs samples that were grown with the presence of a small 

amount of water vapor in the growth chamber. The Raman bands were much narrower 

for such samples, so that the G mode and D′ mode can be easily distinguished. Figure 

7.5 shows the Raman spectra before and after anneal at 550 ℃ for 30 min. Noted that 

the G mode intensity almost unchanged within the experiment error after anneal. We 

could clearly see that the D′ mode intensity did not show noticeable change relative to 
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the G mode intensity (ID′/IG slightly changed from 0.318+0.005 to 0.323+0.005), 

while the D mode intensity decreased significantly after anneal (ID/IG changed from 

3.610+0.010 to 3.020+0.010). As mentioned above, both D and D′ modes are 

defects-related. However, defects affect the two modes differently. While both the 

intrinsic defects in the crystals and the surface amorphous carbon on the sample 

surface contribute to the D mode, the D′ mode may be mainly due to the intrinsic 

defects, because the disappearance of amorphous carbon did not affect the intensity 

ratio of ID′/IG. This may be the reason that the D′ mode was not easily observed in 

CNTs, as CNTs have less intrinsic defects. 

 

 

7.4 Conclusion 

 

In summary, we have demonstrated that the ID/IG ratio of CNWs changed from 2.3 

to 1.95 after the sample was heated in air ambient to 600 ℃. The reason for the ratio 

decrease was found to be removal of surface amorphous carbon on the CNWs surface 

due to oxidation. In addition to the surface amorphous carbon, other causes of the 

extremely strong D mode of CNWs are the high structural defect density in CNWs 

and the high density of edges. In contrast to ID/IG, the ID′/IG ratio did not change much 

after the heating process, implying that the surface amorphous carbon and surface 

impurity do not contribute as much to the intensity of D′ mode. 
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Chapter 8 

High Pressure Raman and Photoluminescence studies of 

ZnCdSe Quantum Dots 

 

8.1 Introduction 

 

Ⅱ-Ⅵ wide band-gap semiconductors, (such as CdSe, ZnSe,) have attracted much 

attention in the past decade. Their optical properties make them suitable for visible 

light emitting diodes (LEDs), lasers, and other optoelectronic devices.1,2 The alloy 

ZnxCd1-xSe is also a very important semiconductor, its compositional dependent 

band-gap can be tuned to cover the entire visible range. Recently, different 

nanostructured ZnxCd1-xSe have also been synthesized, such as ZnxCd1-xSe quantum 

well, nanowires, nanorods, and QDs.3-7 The nanoscale structures bring out new 

properties. High-quality ZnxCd1-xSe QDs have been successfully prepared by the high 

temperature solution method.7 These alloy QDs show high PL efficiency (70-85%) 

and narrow band width (22-30nm), which are comparable to the best reported 

CdSe-based QDs. The ZnxCd1-xSe QDs can be very promising nanomaterial for 

applications as biological labels and short wavelength optoelectronic devices such as 

quantum dot lasers and photovoltaic cells.7  

As is well known, the stability of QDs is not only essential issue for 

understanding their fundamental physical process related to emission and Raman 

scattering, but is also vital to their applications. The alloy ZnxCd1-xSe QDs have been 
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demonstrated higher thermal and chemical stability due to its larger particle size, high 

crystallinity and “hardened” lattice structure, compared with bare CdSe QDs. 

However, the structural stability of such alloy QDs is little known.  

High pressure PL and Raman spectroscopy are the popular way to study the 

electronic structure and phase transition of semiconductor materials related to their 

structural stability. Tolbert and Alivisatos have reported the pressure induced wurtzite 

to rock-salt structural transformation in CdSe QDs.8,9 They showed that both the 

thermodynamics and kinetics of this transformation were strongly altered in QDs due 

to its small size and high surface energy. For the alloy materials, three phase 

transitions were observed by Arora et al. on Zn1-xMnxSe under pressure.10,11 It seems 

that the alloy sample may behave in a more complicated manner than binary 

structures (like CdSe) under high pressure. Li et al. performed micro-Raman and PL 

investigation on ZnxCd1-xSe films (x=0.68) and quantum wells (x=0.74) under high 

pressure.12,13 They reported the pressure coefficients of the materials, but did not 

observe any phase transition up to 66 kbar. Camacho et al. also studied the pressure 

dependence of optical phonons in zinc-blende ZnCdSe films (x=0.5 and 0.6) at low 

temperature.14 They did not observe any phase transition up to 75 kbar either. Up to 

now, no high pressure Raman and PL experiments have been reported on ZnCdSe 

QDs.  

In this chapter, we performed the high pressure Raman and PL experiments on the 

wurtzite ZnxCd1-xSe (x=0.2) QDs up to 130 kbar. Two structural phase transitions 

were observed and discussed: a new unidentified structural phase transition at 25.8 
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kbar and a wurtzite to rock-salt structural phase transition at 71 kbar. The 

experimental results of ZnCdSe QDs show significant difference from that of bare 

CdSe or ZnSe QDs as well as the corresponding bulk materials. 

8.2 Experimental  

8.2.1 Introduction of diamond anvil cell  
 
 

 

Figure 8.1 Schematic of Diamond Anvil Cell (DAC)   
 
 

Diamond anvil cells (DAC) are commonly used for the generation of very high 

pressures.15-19 The basic principle of the DAC is that when a metal gasket is 

compressed between the small flat faces of two brilliant cut gem quality diamonds set 

in a opposed anvil configuration, very high pressure is generated in the gasket hole, 

which is usually filled with a pressure transmitting medium and samples. 

Fig. 8.1 illustrates the compact Bassett cell used in our experiment, which has a 

threaded gland to apply force on the diamond anvils. The stainless-steel block 
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comprising the main body of the DAC has suitable apertures for the stationary piston 

and the sliding one, and the latter is held by a key in a slot to prevent it from rotation. 

The rockers provide translational motion for pressing the gasket between the upper 

and lower diamonds. In DAC, the window material is diamond, which serves the dual 

purpose of transmitting the pressure and being transparent to the laser and Raman 

signal. 

8.2.2 Experimental detail 

High-quality ZnxCd1-xSe QDs were successfully prepared at high temperature by 

incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe QDs,7 and 

the size of the ZnxCd1-xSe (x~0.2) QDs was ~4.7 nm as shown by transmission 

electron microscopy (TEM) image inserted in Fig. 8.2a. Energy-dispersive x-ray 

analysis (EDX) shows that the mole ratio of zinc: cadmium: selenium is 9.8 : 40 : 50.2, 

so the zinc composition is around x=0.2. X-ray diffraction (XRD) results reveal that 

the ZnxCd1-xSe QDs (x~0.2) are hexagonal wurtzite structure.7 High pressure was 

generated by a diamond anvil cell (DAC), with 4:1 methanol–ethanol mixture as 

pressure medium. A small piece of sample was loaded into a gasket with a hole of ~ 

250 μm in diameter and of ~ 100μm in thickness. Pressure was calibrated by the 

energy shift of the R1 luminescence line of a ruby crystal. The R1 line (694.2nm) from 

ruby is quite strong and sharp and its peak shift is almost linear up with pressure to 

300 kbar.
 
The pressure coefficient is 0.365 Å kbar-1

 
or 0.753 cm-1

 
kbar-1. The 

micro-Raman and PL measurements were carried out with a Renishaw inVia Raman 

system using a 532nm DPSSL laser. 
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Fig. 8.2 PL (a) and Raman (b) spectra of ZnxCd1-xSe (x=0.2) QDs at ambient pressure 
excited by using 532nm laser line. 

 

(a) 

(b) 
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8.3 Results and Discussion 

 

Fig. 8.2a shows the absorption and PL spectrum of ZnxCd1-xSe (x=0.2) QDs at 

ambient pressure. The absorption band of ZnxCd1-xSe (x=0.2) QDs is around 2.12 eV, 

which is blueshifted compared to that of corresponding bulk material with the same 

zinc composition (1.83 eV)20 due to the quantum confinement effect. The PL 

spectrum was excited by 532 nm laser line. The band edge emission is at about 2.04 

eV (609nm). The PL peak at 609 nm is quite symmetrical and has a full width at half 

maximum (FWHM) of about 30nm, indicating that the sample is of high quality, with 

a narrow distribution in the size of QDs.  

Fig. 8.2b shows the Raman spectrum of ZnxCd1-xSe (x=0.2) QDs at ambient 

pressure. There are two peaks in the spectrum; the stronger one at 213.9 cm-1 is the A1 

longitudinal-optical (LO) mode of the alloy QDs, while the weaker peak at 427.4 cm-1 

is the overtone of LO mode, which is exactly twice the frequency of the LO mode. 

The sharp drop at about 150 cm-1 is caused by the notch filter and the upward slope 

background is caused by the strong broad photoluminescence, whose maximum is 

located at about 600nm, as shown in Fig. 8.2a. The FWHM of the LO peak is about 

26 cm-1. Compare to the ZnCdSe bulk materials with similar Zn composition (FWHM 

~8 cm-1, peak position ~219 cm-1),21 the LO mode of ZnCdSe QDs shifts to lower 

frequency and becomes broader. These are due to small physical dimensions of the 

QDs which leads to the breakdown of q=0 selection rule of phonon dispersion, 

causing the first order Raman line to shift and broaden.22 
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Fig. 8.3a PL spectra taken from ZnxCd1-xSe (x=0.2) quantum dots under high pressure 
at room temperature. Above 71 kbar, the PL peak can not be observed because of 
phase transition. 
 

 
 
 
 
Fig. 8.3b PL peak energy of ZnxCd1-xSe (x=0.2) QDs as a function of pressure. At 
25.8 kbar, the pressure coefficient changed from 4.64 meV/kbar to 2.76 meV/kbar 
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Next, we studied the Raman and PL of ZnxCd1-xSe (x=0.2) QDs under pressure. 

Fig. 8.3a shows the PL spectra with increasing pressure. A large blue shift of the PL 

peak was observed due to the pressure induced blue shift of bandgap energy. Above 

the pressure of 71 kbar, the PL peak disappeared, indicating that the QDs undergo a 

phase transition from a direct-band-gap wurtzite structure to an indirect-band-gap 

rock-salt structure, which will cause the annihilation of PL emission. We also repeated 

the high pressure PL experiment using 488nm excitation laser. The results were quite 

similar to those of using 532nm excitation laser. Most of wurtzite/zinc-blende 

semiconductors (including CdSe and ZnSe) have this kind of phase transition under 

high pressure and this phase transition was observed in corresponding nanoscale 

semiconductor too.8,23,24 Here the phase transition pressure of ZnxCd1-xSe QDs (71 

kbar) is higher than that of CdSe (20 to 49 kbar)8,23,24 and lower than that of ZnSe (95 

to 130 kbar) with various size.24 Moreover, phase transition to rocksalt structure of 

Zn0.5Cd0.5Se,which has higher zinc composition than our sample, has not been 

observed up to the pressure of 75 kbar.14 Apparently for ZnxCd1-xSe alloy, the pressure 

of wurtzite/zinc-blende to rock-salt phase transition increases as the zinc composition 

increases. 

The PL energy as a function of pressure is shown in Fig. 8.3b. We fitted the data 

with the following formula:  

EP=E0+ α P 

where E0 is the ambient pressure PL energy, α is the PL pressure coefficient, and P is 

the applied hydrostatic pressure in kbar. It was found that at lower pressure, the PL 
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energy of ZnxCd1-xSe (x=0.2) QDs shifted linearly with a pressure coefficient of 4.64 

meV/kbar. However, above 25.8 kbar, the pressure coefficient changed to 2.76 

meV/kbar, and the PL peak also shifted quite linearly with pressure. Obviously there 

is an electronic structure change at this critical pressure, which may be due to an 

unidentified structural transition induced by pressure.  
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Fig. 8.4a Raman spectra of ZnxCd1-xSe (x=0.2) QDs at pressure of 0 kbar and 30 kbar. 
The smooth solid curves are the lorentzian fitting of the peaks. 
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Fig.8.4b Raman shift of LO mode of ZnxCd1-xSe (x=0.2) QDs as a function of 
pressure. After 25.8 kbar, a peak splitting was observed. Above 71 kbar, the Raman 
peaks can not be observed because of the semiconductor-metal phase transition. 
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High pressure Raman spectroscopy of ZnCdSe alloy QDs were also carried out. 

Below 71 kbars, the Raman LO mode shifted to higher frequencies with pressure. The 

LO peak disappeared at 71 kbars, the same pressure at which the PL disappears. The 

disappearance of LO mode is also attributed to the wurtzite to rocksalt phase 

transition as Raman scattering of the rocksalt phase is inactive. In order to study the 

possible structural phase transition at 25.8 kbar, the Raman spectra of ZnCdSe QDs 

before and after 25.8 kbar were compared. Fig. 8.4a shows the Raman spectra at 0 

kbar and 30 kbar, in which a peak splitting is clearly observed. By fitting all the 

Raman spectra at different pressure, we find that the peak splitting also began at 25.8 

kbar. Fig. 8.4b shows the Raman peak position of the LO peak as a function of 

pressure. The pressure coefficient of the LO mode before 25.8kbar was about 0.525 

cm-1/kbar, with a linear fit of ω= 214.3 cm-1 + 0.525 P cm-1/kbar. After splitting, the 

higher frequency peak has a pressure coefficient of 0.517 cm-1/kbar, with a linear fit 

of ω= 221.5 cm-1 + 0.517 P cm-1/kbar; and the lower frequency peak has the 

coefficient of 0.473 cm-1/kbar, with a linear fit of ω=201.67 cm-1 + 0.473 P cm-1/kbar. 

The Raman LO mode splitting as well as the PL pressure coefficient sudden change at 

the same pressure (25.8 Kbar) indicates that there is a new structural phase transition. 

This phase transition has not been observed in bulk ZnxCd1-xSe as well as bulk or 

nanoscaled CdSe and ZnSe. 

As we know, for the Ⅱ-Ⅵ semiconductor (such as CdSe), there are two stable 

structures at ambient condition, which are wurtzite and zinc-blende, or sometimes the 

mixture of these two structures. Under high pressure, the wurtzite or zinc-blende 
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structuredⅡ-Ⅵ semiconductors have their first-order phase transition to rocksalt 

structure, then may undergo phase transition to intermediate structures, such as 

cinnabar and Cmcm, followed by the CsCl structure at around 940 kbar.25-28 The 

structure of our ZnCdSe QDs at ambient condition is wurtzite, while at 25.8 kbar, it 

went through an unidentified phase transition. The observed new transition is below 

that of wurtzite to rock-salt phase transition at 71 kbar, which is confirmed by the 

disappearance of both Raman and PL intensity. The structure between 25.8 kbar could 

not be cinnabar or cmcm either, as the energies of these two structures are usually 

similar or higher than rocksalt,21 and they are also indirect bandgap structures without 

PL.  

A possible structure would be zinc-blende. Zinc-blende is a direct bandgap 

structure, which has a strong PL just like wurtzite. This is consistent with our results 

that the PL signals between 25.8 and 71 kbar were still strong. By the way, although it 

is well known that wurtzite and zinc-blende have very similar energy, the wurtzite to 

zinc-blende phase transition has been observed on ZnS by Pan et al. 29 on 

nanocrystalline and Wang et al. 30 on nanobelts with high pressure synchrontron x-ray 

diffraction experiments. As is well known, at ambient pressure, the bulk ZnCdSe alloy 

has a phase transition from wurtzite to zinc-blende by increasing the zinc composition. 

The critical composition for wurtzite to zinc-blende transition in bulk ZnxCd1-xSe is at 

x=0.5 to 0.7.31 Different zinc compositions result in different structures, implying that 

wurtzite to zinc-blende phase transition is a smooth transition that can easily happen 

for ZnxCd1-xSe alloy. Noted that if the QDs were in zinc-blende phase between 25.8 
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and 71 kbar, the deduced bandgap of the zinc-blende structure at ambient pressure 

will be 2.08 eV, which is higher than that of wurtzite structure (2.04 eV). This is 

inconsistent with the fact that bandgap of wurtzite semiconductor is normally higher 

than zinc-blende, mainly because of the more ionic character of the wurtzite 

structure.32 However, the small difference (~0.04 eV) could be caused by the different 

positions of the elements in the two structures, or the QDs size changing during the 

phase transition. Besides zinc-blende, there may also be other possible explanations 

for the new phase transition, such as a new high pressure structure, and a tilted 

wurtzite structure. Further high pressure x-ray diffraction experiment is necessary to 

confirm this conclusion   
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Fig. 8.5a Raman spectra of ZnxCd1-xSe (x=0.2) QDs before and after applying the 
pressure. 
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Fig. 8.5b PL spectra of ZnxCd1-xSe (x=0.2) QDs before and after applying the 
pressure. 
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At pressure downstroke, the Raman and PL peaks can be observed at 22 kbar and 

below. The splitting Raman LO modes recovered to one peak, which means that the 

QDs transform directly from rock-salt back to wurtzite structure. The wurtzite to 

rocksalt phase transition of ZnCdSe alloy QDs has a hysteresis of about 71-22=49 

kbar, which is comparable to the broad hysteresis of CdSe QDs (around 50 kbar).8 

After releasing the pressure, the recovered LO Raman peak position is about 210 cm-1, 

which is 4 cm-1 lower than peak position before the pressure was applied, as shown in 

Fig. 8.5a. Besides that, the PL peak becomes asymmetric with a tail to the low energy 

side, as shown in Fig. 8.5b. The main PL peak energy is at ∼1.99 eV, which is 0.05 eV 

lower than peak energy before the application of pressure. The red shift of Raman 

peak can not be caused by the smaller size of dots through the phase transition,9 

because smaller size QDs will accompany with higher electronic transition energy, 

hence the blue shift of PL,33,34 which is not accordant with our result. Both red shifts 

in Raman frequency and PL energy were caused by lattice defects that formed under 

the pressure and phase transition, which will cause the shrinkage of the band-gap, 

these phenomena were also observed on high pressure phase transition of CdS.35 The 

asymmetry of the recovered PL peak may be due to the increased emission of surface 

states, which are formed by the rearrangement of surface during the phase transition.9  
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8.4 Conclusion 

 

In Summary, Raman and PL experiments have been carried out on ZnxCd1-xSe 

(x=0.2) QDs under hydrostatic pressure up to 130 kbar at room temperature. Two 

structural transitions were observed in the pressure range. The wurtzite to rock-salt 

was observed at about 71 kbar, indicated by the disappearance of PL and Raman 

peaks. A new unidentified phase transition was also observed at about 25.8 kbar. At 

this pressure, the PL coefficient has a sudden change from 4.64 meV/kbar to 2.76 

meV/kbar, and also a split in Raman peak was observed. The new phase transition 

was probably a wurtzite to zinc-blende phase transition. These results for ZnCdSe 

QDs show significant difference from that of bulk ZnCdSe as well as CdSe and ZnSe 

QDs, implying that the quantum size effect plays an important role in the structure 

stability of the alloy QDs. 
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Chapter 9  

High Pressure Raman and Photoluminescence Investigations of 

CdSe/ZnS core/shell Quantum Dots 

 
9.1 Introduction 

 

Highly luminescent CdSe/ZnS core/shell semiconductor quantum dots (QDs) 

have attracted much attention because of their applications in optoelectronics,1 

nonlinear optics,2 and biology.3 The epitaxial ZnS shell around the CdSe core can 

strongly improve ODs’ photoluminescence (PL) efficiency, as well as chemical and 

thermal stability. Though the role of the ZnS shell has been intensively discussed,4 the 

influence of the ZnS shell on structural transformation and correlative electronic state 

properties is little known so far. One way to explore the electronic state and structure 

phase stability of semiconductor QDs is to apply hydrostatic pressure. Under pressure, 

solid-solid phase transitions from wurtzite to rock salt have been observed in CdSe 

QDs.5,6 Difference from the bulk materials, size-dependent phase transition properties 

reveal that the surface of QDs plays a dominant role in the relative stability of the 

phases of such system as well as the electronic state structure.6 Thus the reconstructed 

surface by the inorganic ZnS directly relates to the structural stability of QDs. The 

CdSe/ZnS QDs with “hard” shell are desired to offer significant differences in the 

kinetics and the mechanism of the phase transitions under pressure from those of 

organic-stablilized CdSe QDs. Therefore, it is crucial to investigate pressure induced 

phase transition and electronic state properties of CdSe/ZnS core/shell QDs to gain 
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further insight into the effects of ZnS shell.  

 

Methods on high pressure studies of QDs have been developed in past decades. 

Tolbert and Alivisatos have reported their studies on size-dependent phase transition 

of CdSe QDs using high pressure x-ray diffraction and optical absorption.5,6 The 

pressure-induced photoluminescence (PL) of CdSe QDs were measured to determine 

the electron-phonon coupling in these dimensionally restricted materials.7 

High-pressure experiments for the resistance measurement of PbS8 and CoFe2O4
9 

nanocrystals were also reported. Among those mentioned above, Raman scattering 

and PL are popular techniques for the determination of phase transition and electronic 

state information under high pressure.  

 

In this chapter, we performed PL and Raman spectroscopic studies of CdSe/ZnS 

core/shell QDs under the pressure up to 160 kbar. Two phase transitions were 

observed in whole pressure range. An unidentified high-pressure phase of CdSe/ZnS 

QDs above 79 kbar is observed and discussed. The full width at half maximum 

(FWHM) of the PL peak was found to anomalously decrease with pressure. These 

behaviors are quite different from that observed for CdSe QDs and bulk CdSe. We 

attribute these differences to the effect of the reconstructed surface by the ZnS shell. 
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Fig. 9.1 (a) Absorption and PL spectra of CdSe/ZnS QDs. The inset shows the TEM 
image. (b) Raman spectrum of CdSe/ZnS QDs excited with the 488 nm line from an 
Ar+ laser, after subtraction of the PL background. 
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9.2 Experimental 

 

The CdSe/ZnS QDs were prepared by an organometallic synthetic approach.10 

The thickness of the ZnS shell is estimated to be about 2-3 monolayer; and the ZnS 

overcoated CdSe QDs obtained by this method exhibit a high quantum efficiency 

(above 50%) at room temperature, as well as a narrow size distribution (<5%). 

Absorption spectra were measured by a UV-Visible spectrophotometer (Shimadzu, 

UV-1700) at room temperature, with the sample dispersed in toluene solution. As 

shown in Fig. 9.1(a), the absorption band of CdSe/ZnS QDs is around 1.91 eV which 

is blue-shift compared to that of the corresponding bulk material (1.7eV) due to the 

quantum size effect. The band edge emission at ambient conditions is 1.85eV. By 

comparing our results with the absorption band and PL of different-sized CdSe 

ODs,6,7,10 we conclude that the size of our CdSe/ZnS QDs is about 5.4 nm. This is in 

agreement with the estimation from the TEM image (~5.6 nm) inserted in Fig. 9.1(a). 

In order to estimate the thickness of the ZnS shell by comparing with Baranov’s 

results,11 we measured the Raman spectrum of CdSe/ZnS ODs at ambient conditions 

using a 488 nm Ar+ laser as the excitation source. As shown in Fig. 9.1(b), all three 

peaks were assigned to the longitudinal optical (LO) phonon and its overtone phonons 

of wurtzite structure CdSe core. No peak originated from the ZnS composite was 

observed. A good fit for the observed LO peaks was obtained by taking the sum of 

two Lorentzian functions. The peak positions and widths of LO (206.6 cm-1) and 

surface optical mode (200.4 cm-1) are comparable to those of the CdSe QDs with 
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0.5-2.2 monolayer ZnS shell. These results agree well with our estimated thickness of 

the ZnS shell.  

Detail of high pressure experiment is the same as described in Chapter 8. 
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Fig. 9.2. Pressure dependence of PL peak of CdSe/ZnS QDs. (a) PL spectra at 
different pressure. (b) Energy and FWHM of PL peak as a function of pressure 
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9.3 Results and discussions 

 

Pressure dependent PL spectra for CdSe/ZnS QDs are shown in Fig. 9.2(a). A 

blue shift in the emission band with increasing pressure was observed. The most 

striking feature of the pressure dependent PL data is that the FWHM for the PL band 

decreases approximately 30% (from 38nm to 26nm) while the PL peaks shifted 

toward high energy as shown in Fig. 9.2(b). This result is opposite to high pressure 

studies of CdSe7 and InP QDs.12 The mechanism of the decrease in the FWHM of the 

PL peak is not clear at the moment. One possible reason is that defects induced by 

interfacial lattice mismatch (ca.12%), which commonly lead to broadening in the PL 

peak. As CdSe has a smaller bulk modulus (533 kbar) as compared to that of ZnS 

(760kbar), the mismatch is greatly reduced under higher pressure. The decrease of 

defects states leads to narrower electron population.13 i.e., pressure induced surface 

optimization. The observation of decrease in PL intensity with pressure is signatures 

of carrier transfer to indirect conduction band states. The emission band is basically 

quenched above 69 kbar, indicating the phase transition from direct band-gap wurtzite 

to indirect band-gap rocksalt phase is complete.  

 

The pressure-induced energy shifts of the optical transition related to the direct 

energy gap are plotted in Fig. 9.2(b). The open triangle corresponds to the PL energy. 

The solid line is the least-square fit to the experimental data using a quadratic 

equation: 
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E = E0 + αP + βP2                                             (1) 

where the energy E is in eV and the pressure P is in kbar. The pressure coefficients α 

and β derived from fit to experimental data are 4.53 meV/kbar and -2.63×10-2 

meV/kbar, respectively. The values are comparable to that of bulk CdSe (4.81 and 

-1.9×10-2 meV/kbar) 14 and 4.4-nm sized CdSe QDs (4.5 meV/kbar, linear fit). 6 

 

 
 

 

Fig. 9.3. Pressure dependence of phonon frequencies of CdSe/ZnS QDs. (a) Raman 
spectra at different pressure. (b) Frequency of Raman peaks as a function of pressure. 
Inserts show their corresponding structures at different pressures. 

 

The resonance Raman spectra of CdSe/ZnS QDs at different pressure are shown 

in Fig. 9.3(a). Below 69 kbar, the resonance Raman spectra of CdSe/ZnS QDs is 

dominated by the LO phonon mode and the peak shifted linearly to higher frequencies 

with pressure. The LO peak disappears at 69 kbar which is the same pressure for the 

disappearance of PL peak. The disappearance of the LO phonon mode is attributed to 

the wurtzite to rocksalt phase transition as first-order Raman scattering of the 

rock-salt phase is inactive. Compared with wurtzite-rocksalt transition pressure for 
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bulk CdSe (27-30 kbar) and 4.4 nm-CdSe QDs (63 kbar), the elevated transition 

pressure for CdSe/ZnS QDs is attributed to higher surface free energies arose from the 

finite size effect and the reconstruction of the surface by ZnS. In the pressure range of 

70 to 79 kbar, no peak was observed. At pressures higher than 79 kbar, a weaker peak 

appeared around 201 cm-1. With increasing pressure, this peak linearly shifted toward 

lower frequencies. The peak remains visible at the pressures up to 160 kbar. The 

possibility of local impurity phonon mode of Zn or S interstitial in CdSe core formed 

by high pressure can be ignored, because no impurity phonon mode was observed at 

second upstroke below 79 kbar. The observation of the peak near 201 cm-1 here 

indicates another phase transition. This phase transition of CdSe core was not found in 

both CdSe QDs and the bulk CdSe before. 

The transition of CdSe from rocksalt to the CsCl structure is predicted at 940 

kbar.15 However, the existence of transitions to other intermediate phases between 

rocksalt and CsCl at lower pressures could not be excluded. The theoretical 

calculation performed by Côté16 has considered the cinnabar and Cmcm structures as 

possible intermediate phases. High pressure Cmcm structure of CdSe was found 

above 270 kbar by Nelmes.17 In accordance with Côté’s calculation, the total energy 

of cinnabar structure is close to that of the rocksalt structure. Therefore, we suggest 

the phase transition at 79 kbar is rocksalt to cinnabar structure transformation and the 

peak is CdSe TO phonon mode in cinnabar structure. Similar pressure dependence of 

TO phonon mode was also observed in ZnSe.18 In fact, the phase transition at 79 kbar 

was not observed for bare CdSe QDs. It seems that the ZnS shell may serve to induce 
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nucleation of cinnabar structure (a distortion of rocksalt) on the surface of CdSe core 

at high pressure. 

The Raman scattering of CdSe/ZnS QDs in the downstroke of pressure was also 

recorded. One Raman peak can be observed all the time during whole process. As 

shown in Fig. 9.3(b), the peak (circle) shifted up at first, and subsequently shifted 

down at pressures lower than 25 kbar. The abrupt change in slope of dω/dP represents 

the phase transition from high-pressure phase to wurtzite. Noted that transition point 

in the downstroke of pressure is not constant, we repeated the experiment and found it 

was in the range of 20 to 40 kbar, which is typical of first order phase transition. 

 The open triangles and squares correspond to the LO and TO Raman modes of 

the CdSe core in the upstroke of pressure in Fig. 9.3(b). The solid line is the 

least-square fit to the experimental data using a linear pressure dependent fit function: 

ωLO=207.16 + 0.41P                                                (2) 

ωTO=209.16 -0.12P                                                 (3) 

where ω was the wavenumber in cm-1. The value of vibrational pressure coefficients 

of LO mode are in good agreement with the CdSe QDs (>2.8nm). 
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9.4 Conclusion 

In conclusion, we have studied the pressure induced electronic states and phase 

transition properties of CdSe/ZnS QDs up to 160 kbar using PL and Raman 

spectroscopy in conjunction with diamond-anvil cell technique. The PL peaks were 

found to narrow down with pressure, which represents the reduction of defect states. 

In our pressure range, two phase transitions were observed: wurtzite-rocksalt at 69 

kbar and another phase transition at 79 kbar which may be attributed to 

rocksalt-cinnabar structure transformation. The pressure coefficients for Raman 

modes were derived from experimental data. These results for CdSe/ZnS QDs show a 

significant difference from the CdSe QDs as well as corresponding bulk materials, 

implying the ZnS shell play a dominant role in electronic state and structure phase 

transition properties under pressure. 
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Chapter 10  

Conclusion and Future Work 

 

This thesis contains three parts: First, spectroscopic studies of graphene were 

carried out; Second, Raman spectroscopy was used to investigate a new kind of 

carbon nanomaterial – carbon nanowalls (CNWs); Third, two popular semiconductor 

QDs (ZnCdSe and CdSe/ZnS QDs) were investigated by Raman and PL spectroscopy 

under high pressure. 

 

10.1 Spectroscopic studies of graphene 

 

1. We have demonstrated that by using contrast spectra, we can easily determine 

the number of graphene layers. We have also calculated the contrast using the 

Fresnel’s equations and the results show an excellent match with the experimental 

data. From the simulation, we extracted the refractive index of graphene below ten 

layers as nz=2.0-1.1i, which is different from that of bulk graphite. Our experimental 

values can be directly used as a standard to identify the thickness of graphene sheet on 

Si substrate with ~300 nm SiO2 capping layer. We have also given an analytical 

expression for determining number of layers. From the contrast image, we have 

demonstrated the effectiveness of this new technique. Although current research 

mainly focuses on the single and bilayer graphene, we believe that the few-layer (less 

than 10 layers) graphene also have interesting properties as they still exhibit the 
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two-dimensional properties. Reflection and contrast spectroscopy provides a fast, 

non-destructive, easy-to-use, and accurate method to identify the numbers of graphene 

layers (below 10 layers), which helps future research and application of graphene. 

2. Raman spectroscopy studies of graphene with one to four layers have been 

carried out. The results show that the zone boundary phonon, two-phonon, and the 

three-phonon modes show broadening and blueshift as the graphene thickness 

increases. We propose that the double resonance theory in together with the 

electron-hole interactions can be used to explain these phenomena. The anisotropy of 

excitons in graphene play an important role, and the energy difference of intra- and 

inter- layer excitons are about 400 meV, which were calculated from the excitation 

energy dependent Raman results. Therefore, in addition to the single particle 

behaviors within graphene layer systems, the excitonic effect e-h interaction should be 

also taken into account to understand their electronic and optical properties in further 

experimental and theoretical studies. 

3. We have used Raman spectroscopy to investigate the influence of top gate 

insulator (5 nm SiO2) on graphene sheets mainly in two important aspects, defects and 

strain. The results show that defects were introduced in graphene sheets during 

deposition and the amounts of defects increase as the graphene thickness decreases. 

After annealing, the defects in graphene can be greatly reduced. Moreover, significant 

Raman shifts of all the bands of graphene were observed after SiO2 deposition and 

annealing, which was attributed to the compressive strain on graphene caused by the 

SiO2 top layer. Importantly, the strain can be controlled by the annealing temperature, 
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which maybe used to tune the optical and electronic properties similar to what has 

been observed in CNTs. Finally, it was found that the graphene thickness can be 

modified in a controllable manner using anneal. Our findings provide useful 

information critical to graphene device engineering and fabrication. 

 

10.2 Raman spectroscopic investigation of CNWs 

 

1. All the observed Raman peaks of CNWs were assigned and compared with that 

of CNTs and graphite. No radial breathing mode (RBM) was observed, which is the 

characteristic of CNTs. The G mode of CNWs had a slightly higher frequency and 

was also broader than that of graphite, which can be attributed to the breakdown of 

selection rule caused by the small size of CNWs. Different laser lines were used to 

excite the sample. The frequency of the D band shifts with the laser energy at a rate of 

46.19 cm-1/eV, and this result agrees well with the theoretical value by double 

resonance effect. The 2D and D+G bands shift at the rate of 107.5 cm-1/eV and 48.98 

cm-1/eV respectively. The decreasing intensity ratios ID/IG and ID′/IG with the 

increasing laser energy are observed and discussed. 

2. High temperature Raman experiments were carried out on carbon nanowalls 

(CNWs). The intensity of the defect-induced D mode decreased significantly after the 

sample was heated up in air ambient. The Raman intensity ratio of D mode and G 

mode, ID/IG, changed from 2.3 at room temperature to 1.95 after the sample was 

heated to 600℃. This change was attributed to the removal of surface amorphous 
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carbon by oxidation. In contrast to ID/IG, the intensity ratio of D′ mode and G mode, 

ID′/IG, did not change much after the heating, indicating that the surface amorphous 

carbon and surface impurity do not contribute as much to the intensity of D′ mode. 

The finding also indicates that the dominant contributor to the D′ mode could be the 

intrinsic defects. Through this work, we have provided evidence that although the D′ 

mode is defects induced, it may have different origin of defects from the D mode. 

 

10.3 High pressure Raman and PL spectra study of semiconductor QDs (ZnCdSe 

and CdSe/ZnS QDs) 

1. Raman and PL study of wurtzite alloy ZnxCd1-xSe (x=0.2) QDs were carried 

out under hydrostatic pressure up to 130 kbar at room temperature using the diamond 

anvil cell technique. The structural phase transition from wurtzite to rocksalt, 

indicated by the disappearance of both PL and Raman peaks, was observed at 71 kabr. 

Besides, the abrupt change of PL pressure coefficient and Raman peak splitting were 

observed at about 25.8 kbar, which may indicate a new unidentified structural phase 

transition of the alloy QDs. The results of alloy ZnCdSe QDs differ greatly from that 

of bare CdSe or ZnSe QDs as well as the corresponding bulk materials, implying that 

the quantum size effect plays an important role in the structure stability of the alloy 

QDs.  

2. Pressure-dependent PL and Raman spectroscopic study of CdSe/ZnS core/shell 

QDs were also presented. The PL and Raman measurements were performed as a 

function of applied hydrostatic pressure up to 160 kbar. The PL and Raman peaks 
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shifted toward higher energy with increasing pressure. The full width at half 

maximum (FWHM) for PL peaks was found to decrease approximately 30%, which 

represents the reduction of defect states. Two phase transitions at 69 and 79 kbar were 

found, and they correspond to wurtzite-rocksalt and rocksalt-cinnabar structure 

transformation, respectively. The high pressure cinnabar structure of CdSe was 

predicted by theoretical calculation and has confirmed for the first time in this 

experiment. The experimental results of CdSe/ZnS QDs show significant difference 

from those of CdSe QDs as well as bulk CdSe, implying the ZnS shell plays a 

dominant role in structure stability and electron state of such system.  

The above works on ZnCdSe and CdSe/ZnS QDs suggest that analyzing both the 

high pressure Raman and PL spectra is a good strategy for the study of structural 

stability of semiconductor QDs, since it can provide information of the materials both 

in terms of energy bandgap and crystal structure changes under high pressure. 

 

10.4 Future work 

  

For the spectroscopic studies of graphene, further studies include: 1. Raman 

studies of electron-phonon coupling of graphene under the electric field. In this part, 

the electrical field can tune the band structure of graphene, which will affect the 

Raman spectra and show interesting phenomena. 2. High pressure Raman studies of 

graphene. The 2D structured graphene may exhibit different properties from that of 

bulk graphite and carbon nanotubes. 3. Polarization Raman studies of graphene 
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nanoribbons. Graphene nanoribbons is a 1D carbon nanomaterials which has been 

predicted to have extraordinary properties, i.e. the edge of nanoribbon can tune the 

nanoribbon from semiconductor to metallic. The polarization Raman studies of this 

1D structured material may give the information of how the edge affects the 

properties.  

For the Raman study of CNWs, several aspects are still unclear. In the high 

temperature Raman study of CNWs, it was found that CNWs has a much greater 

thermal coefficient (0.029 cm-1/K) than that of graphite (0.011 cm-1/K). It was 

speculated that this difference was caused by the great amount of defects and small 

domain size of CNWs. However, the different intrinsic (pure) temperature effects of 

CNWs and graphite could also be the reason. High temperature experiments needs to 

be carried out to address this issue. The thermal coefficients of CNWs, single-wall 

CNTs, multi-wall CNTs, and graphite with different amount of defects can be 

compared to identify the role of pure temperature effect on the thermal coefficient of 

carbon materials. 

For the high pressure study of ZnxCd1-xSe QDs, the new structural phase 

transition at about 25.8 kbar is still unassigned. It could be a wurtzite to zincblende 

phase transition, or a phase transition to an intermediate phase between wurtzite and 

rocksalt. Further high pressure x-ray diffraction experiment is necessary to clarify this 

new phase transition. Moreover, experiments on ZnxCd1-xSe QDs with different zinc 

composition should also be carried out. Such experiments may provide information on 

how the compositions of alloy QDs affect the structural stability of alloy QDs. 
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For the high pressure study of CdSe/ZnS QDs, since the ZnS shell plays a 

dominant role in structure stability and electron state of the core/shell system, it will 

be very interesting to carry out further study on QDs with different shell thickness, or 

different materials of shell. These future works can provide clearer information on 

how the shell affects the structure of QDs. 
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