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Summary 

 

 

 

The exceptional properties of carbon nanotubes (CNTs) facilitate their wide 

application in a number of fields in physics, chemistry, and biomedicine. Although the 

marvellous properties of CNTs have triggered great interest of researchers to explore 

potential applications of CNTs, the mechanism of CNTs interacting with biomolecules 

still remains unclear.  

This thesis focuses on investigation of interaction mechanism between peptides 

and CNTs based on different levels of molecular description. Computational strategies 

adopting either all-atom model or coarse-grained model are implemented. The major 

works reported in this thesis are listed as follows 

1)  An all-atom model is developed to study self-insertion behaviors of different 

peptides into SWCNTs in explicit water environment using molecular dynamics (MD) 

simulation. The conformational changes of the peptide and energetics of the 

interaction are traced. Variations in affinity of different peptides for single-walled 

carbon nanotubes (SWCNTs) are also observed.  

2) The Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) 

method is extended to evaluate the free energy of peptides interacting with CNTs. The 

relative binding affinities are compared with the experimental results to validate the 
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model. The physical mechanism involved in this process is then studied in detail. 

Other effects that may influence peptide-CNT interaction are also investigated.  

3) In order to obtain a general view of different binding affinity of hydrophobic 

and hydrophilic amino acids for the CNTs, binding free energy between each amino 

acid and the same CNT is estimated individually based on the all-atom model. The 

relative binding affinities of amino acids from the hydrophobic and hydrophilic groups 

are compared. 

4) A coarse-grained hydrophobic-polar (HP) lattice model is developed 

performing MC simulation to observe the macroscopic properties of the adsorption of 

peptides onto CNT surfaces. The preliminary energy parameters are developed 

according to experimental observations and numerical results from the all-atom model. 

The thermodynamic quantities and conformational characteristics of peptides are also 

clarified.  

Through these studies I am not only able to explore the detailed conformational 

properties and energetics of peptides interacting with CNTs, but also the peptide-CNT 

interaction mechanism from both microscopic and macroscopic views. The results 

obtained through this study provide valuable information on the potential applications 

of CNTs in the field of drug delivery, drug design and protein control. 
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Nomenclature 

 

 

a  particle’s acceleration 

A  Helmholtz free energy; 

accessible surface area 

ijA   the area of sphere i  buried inside sphere j  

A  ensemble average value of property A  

1c  the constant representing the initial velocity of the 

particle 

2c  the constant representing the initial position of the 

particle 

d  the center of mass distance between the peptide 

and the nanotube at instant simulation time 

0d  the initial center of mass distance between the 

peptide and the nanotube  

desE  desired energy 

MME  gas-phased molecular mechanics energy 

internalE  the internal energy 

eleE  the electrostatic energy 

vdwE  the van der Waals interaction energy 
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iE  potential energy of HP lattice model at certain 

state 

totaleleE _  the energy sum of eleE  and polG  

MME  gas-phased molecular mechanics energy 

tot
if  the sum of inter-molecular forces and external 

forces 

F  the force acting on the particle 

s
cntG , s

peptideG , s
complexG  free energy of the peptide, the carbon nanotube, 

and the peptide-nanotube complex solvated in 

water, respectively 

GΔ  interaction free energy 

solG  the solvation free energy 

nonpolG  polar energy 

polG  nonpolar energy 

h  Planck’s constant 

( )H Γ  Hamiltonian 

kθ  force constant for angle bending potential 

rk   force constant for bond stretching potential 

Bk  Boltzmann constant 

K  kinetic energy 

MUK  equilibrium constant 

l  bond length 
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0l  the reference bond length 

m  particle’s mass 

kN  the total number of contact pairs in a certain HP 

lattice structure 

N  number of particles 

mnp  the trial move 

p  momentum 

P  pressure 

iq   atomic partial charges 

NVEQ , NVTQ , VTQμ , NPTQ  the partition function for different ensembles 

ijr  distance between atoms 

r  displacement of the particle 

iR  atomic radius 

iS  the surface area of the isolated sphere 

S  entropy 

t  time 

*T  the dimensionless temperature 

T  temperature 

( )U r   potential energy 

ν  particle’s velocity 

V  box of volume 

nV  the rotational barrier height 
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iw  occurrence of each amino acid in proteins 

W  internal virial 

Z  partition function of the system 

iα  effective Born radius 

mnα  stochastic matrix element between state m  and 

state n  

β  inverse temperature (1/ )Bk T  

Γ  the set of particle positions and momenta 

),( jiS AAγ  interaction potential energy between the two 

amino acids residues for HP lattice model 

0ε   solvent dielectric constant 

ε   well depth; 

intermolecular potential energy parameter 

σ  the collision diameter 

θ  bond angle 

0θ  reference bond angle 

μ  the chemical potential of the simulated system 

κ  Debye-Huckel screening parameter 

iη  intrinsic radius of atom i  

mρ   the probability that the system is in state m  

ξ  random number (usually in range 0 to 1) 

ensΨ  the characteristic thermodynamic function 



                               Nomenclature                

 xii

ω  torsion angle 

)( iEΩ   the density of states with energy iE  

mnπ  the probability of moving from m  to state n  
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Chapter1  

Introduction 

 

 

1.1 Background information for Carbon nanotubes (CNTs) and peptides 

1.1.1 General overview of CNTs  

Carbon nanotubes (CNTs) are hollow cylindrical tubes consisting of webs of 

carbon atoms. Since their discovery in 1991 (Iijima, 1991), CNTs have stimulated 

ever-broader research activities in science and engineering devoted to production and 

application of various CNTs. The outstanding properties of CNTs such as high 

mechanical strength and remarkable electronic structure make CNTs special in 

applications in a vast variety of fields. A number of excellent reviews on general 

properties of CNTs are available (Harris et al., 1999; Dresselhaus et al., 1996; 

Dresselhaus et al., 2001), here I make this effort with emphasis on the applications of 

CNTs in biomedical areas.  

 

1.1.1.1 Molecular structure of CNTs 

CNTs are normally classified into two categories: single-walled carbon 

nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). SWCNTs are 

made from a graphite sheet rolled into a cylinder, while MWCNTs are composed of 

multiple concentric graphite cylinders, as illustrated in Figure 1.1. Compared with 
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MWCNTs, SWCNTs are more expensive and difficult to manufacture and clean, but 

they have been of great interest to researchers owing to their specific electronic, 

mechanical, and gas adsorption properties (Ebbesen et al., 1997). 

CNTs can be considered as rolled-up graphite sheets. When carbon atoms 

geometrically combine together to form graphite, 2sp  hybridization occurs (Brown et 

al., 1999). Different types of CNTs can be characterized by a linear combination of 

base vectors a  and b  of the hexagon, or n m= +r a b  , where n and m are integers 

of the vector equation (Thostensona et al., 2001; Qian et al., 2002) as shown in Figure 

1.2. The values of n and m uniquely determine the chirality, or twist style of the 

nanotube. Three major categories of CNTs can be defined based on the value of n and 

m. If mn = , the CNT is armchair, if 0=n  or 0=m , the CNT is classified as 

zigzag. When mn ≠ , the CNT is generally chiral. The chirality affects the 

conductance, the density, the lattice structure, and therefore affects other properties of 

the nanotube. A SWCNT is considered metallic if the value mn −  is divisible by 

three. Otherwise, the nanotube is semiconducting. Consequently, when tubes are 

formed with random values of n and m, it is expected that two-thirds of nanotubes 

would be semi-conducting, while the other third would be metallic, which happens to 

be the case. Representative configurations of the three types of CNTs are illustrated in 

Figure 1.3. 

Given the chiral vector ),( mn , the diameter d  and the chiral angle θ  of a 

carbon nanotube can be determined as  
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2 2 1/2

-1
2 2

d  (n   m   nm)  *0.0783 nm

3sin
2( )

m
n nm m

θ

⎧ = + +
⎪

⎡ ⎤⎨
= ⎢ ⎥⎪ + +⎣ ⎦⎩

 
(1.1) 

 

1.1.1.2 Properties of CNTs and their applications 

Many efforts have been made in order to investigate the mechanical properties of 

CNTs. For example, they were found to be bent mechanically by mechanical milling 

or embedding in a polymeric resin (Ajayan et al., 1994; Iijima et al., 1996; Chopra et 

al., 1995; Ruoff et al., 1995). This flexibility property was also predicted through 

theoretical calculations (Overney et al, 1993; Robertson et al., 1992; Tersoff, 1992). 

Treacy et al. (1996) first investigated the elastic modulus of isolated multi-walled 

nanotubes by measuring the amplitude of their intrinsic thermal vibration through the 

transmission electron microscope (TEM). Direct measurement of the stiffness and 

strength of individual, structurally isolated multi-wall CNTs has also been performed 

with an atomic-force microscope (AFM) (Wong et al., 1997). High Young’s modulus 

of CNTs was observed through these measurements. This high Young’s modulus 

implies that CNTs are very strong material. On the other hand, the mechanical 

properties of composite materials containing CNTs are expected to be greatly 

enhanced, although those materials will not be as robust as individual nanotubes. 

CNTs also possess unique electrical properties. These properties are sensitive to the 

orientation of the hexagonal graphite lattice because it determines the density of electron 

states at the Fermi level (Gao et al., 2004). Hamada et al. (1992) found theoretically that 

all the armchair nanotubes are electronic conductors, while zig-zag nanotubes are 
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semiconductors except for those mn −  is divisible by three. For CNTs whose radius is 

greater than 1nm, this simple model works remarkably well. In those cases that the 

radius of CNTs are smaller, however, the atomic arrangement of CNTs is highly curved 

and this simple rule is no longer valid owing to strong mixing between the in-plane and 

out-of-plane electronic orbitals. Therefore first-principles calculations are needed to 

adequately describe the electronic properties of very small diameter CNT systems (Blase 

et al., 1994). Furthermore, SWCNTs tend to self-assemble into bundles. The internal 

interactions of the tube may introduce small pseudogaps in bundles of nominally 

metallic nanotubes (Delaney et al., 1998; Kwon and Tomanek, 1998). 

The exceptional mechanical and electrical properties of CNTs facilitate their wide 

application in a number of fields in physics, chemistry, and material science including 

biosensors (Balavoine et al., 1999), atomic force microscopy (AFM) (Jarvis et al., 2000; 

Li et al., 1999) and fuel storage (Lee et al., 2000; Wang and Johnson, 1999). Their 

outstanding mechanical properties suggest that they could act as unique force 

transducers to the molecular world. The inversed electromechanical effect of CNTs 

enables the application of CNTs in nanomechanical applications, such as tweezers 

(Poncharal et al., 1999) and actuators (Baughman et al., 1999). The coulomb blockade 

was detected in transport measurements (Tans et al., 1997; Bockrath et al., 1998), which 

implies that the nanotubes are suitable building blocks of single-electron transistors. 

Recently some functional structures based on CNTs have also been fabricated, including 

nanotube transistor (Tans et al., 1998), nano-diode (Antonov and Johnson, 1999), and 

color display (Choi et al., 1999). Nanotubes can also form novel nanostructures which 
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may have potential application in nanoelectronics and nanophotonics, e.g., molecular 

junctions by jointing CNTs (Andriotis et al., 2000; Terrones et al., 2002; Srivastava et 

al., 2003), organized assembly of CNTs (Wei et al., 2002), and nano-films (Shimoda et 

al., 2002) composed of aligned uniform nanotubes, are to be manufactured in industry.  

CNTs also show great potential for biomedical applications owing to their high 

strength and biocompatibility. For example, recent demonstration of CNT artificial 

muscle implied a dramatic increase in work density output and force generation over 

known technologies, along with the ability to operate at low voltage (Baughman et al., 

1999). CNTs can also be utilized in gene and drug delivery. For example, they could 

be implanted at the sites where a drug is needed without trauma, and slowly release a 

drug effectively over a period of time (Harutyunyan et al., 2002). It is also promising 

in applying CNTs in the area of cellular experiments, where CNTs can be utilized as 

nanopipettes for the distribution of extremely small volumes of liquid or gas into 

living cells or onto surfaces. It is also conceivable that they could serve as a medium 

for implantation of diagnostic devices.  

 

1.1.2 Proteins and peptides 

Proteins are building blocks of a living cell, and they participate in essentially all 

cellular processes. One of the major functions of proteins is enzymatic catalysis of 

chemical conversions inside and around the cell. In addition, regulatory proteins 

control gene expression, and receptor proteins (which locate in the lipid membrane) 

accept intercellular signals that are often transmitted by hormones, which are proteins 
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as well. Structural proteins form microfilaments and microtubules, as well as fibrils, 

hair, silk and other protective coverings. These proteins reinforce membranes and 

maintain the structure of cells and tissues. Transfer proteins transfer other molecules. 

Some proteins provide the human body with entire bioenergetics, for example, light 

absorption, respiration, ATP production, etc.  

Proteins are polymers built of amino acids arranged in a linear chain and joined 

together by peptide bonds between the carboxyl and amino groups of adjacent amino 

acid residues. An −α  amino acid consists of a central carbon atom, called the α  

carbon, lined to an amino group, a carboxylic acid group, a hydrogen atom, and a 

distinctive R group. The R group is often referred to as the side chain. There are 

twenty kinds of amino acids, classified according to their side chains. The detailed 

structures for the individual amino acids can be found in references (e.g., Berg et al., 

2002). The twenty types of side chains vary in size, shape, charge, hydrogen-bonding 

capacity, hydrophobic character, and chemical reactivity. All the proteins in all species 

are constructed from the same set of twenty amino acids. Owing to the diversity and 

versatility of these twenty building blocks, proteins are able to perform a wide range of 

functions.  

Amino acids are often designated by a three-letter abbreviation or a one-letter 

symbol (Table 1.1). Their essential properties such as the occurrence in proteins and 

the hydrophobicity scale of each amino acid are also listed. Hydrophilic molecules are 

in favor of interacting with water while hydrophobic ones tend to be nonpolar and thus 

prefer other neutral molecules and nonpolar solvent. The value of hydrophobicity is 
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listed according to K-D method (Kyte and Doolittle, 1982), in which each amino acid 

has been assigned a value reflecting its relative hydrophilicity and hydrophobicity. A 

positive hydrophobicity value indicates that the amino acid is hydrophobic, and the 

negative value implies the hydrophilic property of the amino acid. The higher the 

hydrophobicity values, the more hydrophobic the amino acid is.  

Protein structures can be described at four levels. The primary structure refers to 

the amino acid sequence. A series of amino acids joined by peptide bonds form a 

polypeptide chain, and each amino acid unit in a polypeptide is called a residue. The 

polymer chain consists of a chemically regular backbone called main chain and 

various side chains (R1, R2, …, RM ). The number M of residues in one protein could 

range from a few dozens to many thousands. This number is gene-encoded, and so are 

the positions of these amino acids in the protein chain. Most natural polypeptide 

chains contain between 50 and 2000 animo acid residues and are usually referred to as 

proteins. Polypeptides made of small number of amino acids are called oligopeptides 

or simply peptides.  

Secondary structure refers to the conformation of the local regions of the 

polypeptide chain. Polypeptide chains can fold into regular structures such as the alpha 

helix, the beta sheet, and turns and loops. Although the turn or loop structures are not 

periodic, they are well defined and contribute together with alpha helices and beta 

sheets to form the final protein structure.  

Tertiary structure describes the overall folding of the polypeptide chain. Finally, 

quaternary structure refers to the specific association of multiple polypeptide chains to 
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form multisubunit complexes. A knowledge of the 3D structure of a protein is 

essential to understanding its function.  

 

1.2 Functionalization of CNTs with Biomolecules  

1.2.1 Experimental approaches 

Although there is growing interest in exploring the application of CNTs in novel 

fields, CNTs are extremely hydrophobic and form insoluble aggregates in solvent, 

which makes them difficult to assemble into applicable structures. The solubilization 

of SWCNTs has been a research goal for the past few years, and study on 

solution-phase handling would be very useful for many of the CNT applications. 

Ausman et al. investigated the room-temperature solubility of SWCNTs in a variety of 

solvents (Ausman et al., 2000). It was found that a class of non-hydrogen-bonding 

Lewis bases could lead to better solubility, but this was only a possible way that can 

provide better solvents capable of solvating pristine tubes. The problem that SWCNTs 

are insoluble in all solvents is still difficult to overcome. 

In order to make CNTs soluble, as well as to facilitate the possible applications 

of CNTs in various areas, many experimental efforts have been made, either through 

covalent or noncovalent interactions between biomaterials and CNTs to explore the 

biological applications of CNTs.   

For example, nanotubes could be solubilized well by functionalizing the 

end-caps with long aliphatic amines (Chen et al., 1998). Furthermore, it has been 
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reported that SWCNTs have been solubilized by functionalizing their sidewalls with 

fluorine (Mickelson et al., 1999) and with alkanesn (Boul et al., 1999).  

In addition, since the electronic properties of CNTs are sensitive to surface 

charge transfer and changes in the surrounding electrostatic environment, it is 

expected that functionalization of CNTs by attaching various functional groups or 

molecules to its outer surface could be applied to controllably modify the intrinsic 

chemical and physical properties for specific chemical and biomedical applications 

(Zhao et al., 2002; Hirsch et al., 2002; Wong et al., 1998; Erlanger et al., 2001; 

Azamian et al., 2002; Nguyen et al., 2002; Williams et al., 2002; Pantarotto et al., 

2003). Among them Wong et al. reported the modification of MWCNTs through 

amide bond. The amide bond formed between amine and carboxy functional groups 

bonded to the open ends of MWCNTs. The modified complex could be applied as 

AFM tips, so that the binding force between single protein-ligand pairs can be 

measured.  

However, for those applications requiring high conductivity properties of CNTs, 

the modification through noncovalent bond is more attractive. Another strategy that 

scientists are eager to explore is to attach organic molecules to these tubular 

nanostructures in a noncovalent way in order to preserve the nanotubes’ π networks- 

and thus their electronic characteristics. Scientists can manipulate nanotubes into 

ordered array without destroying their instinct structure through noncovalent 

modification approaches. 
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Chen et al. (2001) explored π-stacking interactions between the CNT and a 

molecule containing a planar pyreny group through noncovalent contact. The pyreny 

group irreversibly absorbed to the surface of a SWCNT driven by π-stacking forces. 

The molecule’s tail was tipped with a succinimidyl ester group. While an amine group 

attacked the ester function, the ester group could be substituted and an amide bond 

forms. This strategy may be very useful not only for immobilizing proteins or DNA, 

but also for solubilizing CNTs. There are also some studies referring to the 

noncovalent interactions between peptides and CNTs. Diechmann et al. (2003) 

designed an amphiphilic α-helical peptide not only to coat and solubilize CNTs, but 

also to control the assembly of the peptide-coated nanotubes into macromolecular 

structures through peptide-peptide interactions. The phage display method was used to 

identify peptides with selective affinity for CNTs (Wang et al., 2003). It was found 

that CNTs have strong affinity for peptide sequences rich in His and Trp. Several of 

the binding peptides had a hydrophobic structure of symmetric detergents. 

In addition to binding and attaching of functional groups to the outer surface of 

the CNTs, the hollow interior of CNTs can also be filled with smaller nanoparticles 

and molecules. For example, gas molecules, C60 and metallofullerences could be 

encapsulated into the inner space of CNTs to functionalize them (Gogotsi et al., 2001; 

Hirahara et al., 2000; Smith et al., 1998). Ito et al. reported observation of DNA 

transport through a SWCNT channel by fluorescence microscopy (Ito et al., 2003). 
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1.2.2 Simulation approaches 

A computational simulation allows researchers to gain insight into the processing 

of materials and propose new directions for design without expensive and time 

consuming experimentation in a laboratory.  

There have been only a few studies exploring the biomolecules-CNT interactions 

through computational methods. Hummer et al. showed that SWCNTs could act as a 

hydrophobic channel for conduction of water molecules (Hummer et al., 2001) 

molecular dynamics (MD) simulation. Gao and his colleagues simulated spontaneous 

insertion of DNA oligonucleotides into SWCNTs in water solvent environment (Gao 

et al., 2003). More recently the electrophoretic transport of single-stranded RNA 

molecules through SWCNT membranes was investigated using MD simulations (Yeh 

and Hummer, 2004). The numerical simulation results revealed that the translocation 

kinetics of RNA through the nanotube membranes was sequence-dependent. These 

works inspired us to further explore the problem using computational approaches.  

 

1.3 Molecular simulation models based on different levels of description 

While the previous works have provided us with hints on possible applications of 

CNTs, further research is needed to clarify the mechanism of interactions between 

biomolecules and CNTs. Therefore a systematic study based on different levels of 

description for modeling of peptide-CNT interaction is particularly essential. The 

all-atom simulations allow us to follow the delicate interplay of various chemical 

interactions leading to the formation of native or the equilibrium states with 

microscopic detail. On the other hand, simplified coarse-grained models are very 
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useful and efficient to gain insights into the general thermodynamic and kinetic 

features of the folding process.  

In this work different computational strategies based on the used of either 

all-atom or coarse-grained descriptions are discussed. These levels of description for a 

given system order themselves in terms of the amount of information captured by the 

relevant variables. Each level of description is characterized by a set of relevant 

variables that specify the state of the system at that level. Less detailed levels (coarser 

levels) have a smaller number of variables and capture less information than the 

all-atom level. 

 

1.3.1 The atomic model 

In atomic-level models, all the atoms can be explicitly simulated. Within a 

classical perspective, the appropriate tool to capture the detailed dynamical and 

thermodynamical aspects is constituted by simulations based on all-atom potentials. 

Although the time scale that could be handled by this model is limited by its large 

computational cost, it has proven useful in several important contexts. Examples 

involve tracing the detailed characterization of complete pathways, exploring the 

interactions between ligands and receptors, and design of possible drugs capable of 

interacting with specific mutants.  

Molecular simulations based on both MD and Monte Carlo (MC) approaches 

using all-atom force fields are frequently used. Among them MD simulations are 

particularly appealing in this field, since MD simulation method represents the only 
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computational method that can provide a time-dependent analysis of a system in 

molecular biology. Therefore, a complete description of the folding mechanism of a 

protein can be gained. 

In MD simulations, successive configurations of the system are generated by 

integrating Newton’s law of motion. The result is a trajectory that specifies how the 

positions and velocities of the particles in the system change with time. There are three 

essential components for a MD program: a model describing the interactions between 

system constituents (electrons, atoms/molecules, etc.); an integrator that propagates 

particle positions and velocities from simulation time t  to tδ  (The equations of 

motions are usually integrated using a finite difference method)； and a statistical 

ensemble where thermodynamic quantities such as temperature, pressure, or the 

number of particles are controlled.  

At the most basic level of model building, quantum mechanics (QM)-based ab 

initio MD method evaluates the interatomic forces from the electronic structure 

calculations during the process of simulation. The typical length and timescales are of 

the order of angstroms ( Å ) and picoseconds. Nevertheless, as the advent of more 

powerful, massively parallel computers, coupled with spectacular advances in 

theoretical framework of method (Carloni et al., 2002), enables the modeling and 

simulations of novel materials based on electronic level. For example, the electronic 

structure of DNA molecules (de Pablo et al., 2000; Gervasio et al., 2002) and reaction 

mechanism of enzymes (Carloni et al., 2002) were clarified. Classical MD models 

interatomic interactions via empirical molecular force fields (Stutman, 2002), where 
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the electronic distributions are estimated either by putting fixed partial charges on 

interaction sites or by adding an approximate model for polarization effects. The 

accessible length and time scale are in order of tens of nanometers and nanoseconds.  

Classical MD simulations are applied in a wide range of applications. They are 

often used to study the thermodynamic properties of gas, liquid, solid, phase 

transitions, as well as motions of bio-molecular systems (Kaplus, 1990; van Gunsteren, 

1994), including structural dynamics of biomolecules, protein/DNA interaction, and 

the effect of solvent. Owing to the large area of applicability, simulation packages for 

MD were developed by a number of research groups, such as Amber (Cornell et al., 

1995), Charmm (Brooks et al., 1983), NAMD (Kale et al., 1999), and Gromacs 

(Berendsen et al., 1995).  

Estimating free energy through MD simulation method has been a great 

challenge for scientists. Free energy is the most important general concept in physical 

chemistry. The free energies of molecular systems describe their tendencies to 

associate and react. Thus, being able to predict this quantity using molecular theory 

would be essential for us to understand the mechanism of physical and chemical 

phenomenon. 

Among the interactions between molecules, the ability to predict the strength of 

noncovalent binding between molecules has been a longstanding goal in computational 

chemistry. Gaining into the energetics of binding is a problem that is extremely 

difficult to solve using conventional computational free energy techniques. During the 

past 10-15 years, many efforts have been made by researchers to address the question 
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of ligand-receptor binding (Kollman 1993; Lamb and Jorgensen 1997; Bohm and Stahl 

1999). The most commonly-used methods include the free energy perturbation (FEP) 

theory, the linear interaction energy (LIE) and the Generalized Born Surface Area 

(GBSA) methods. 

Based on an all-atom model, FEP theory (Beveridge and DiCapua 1989; 

Jorgensen 1989; Kollman 1993) combined with conformational sampling by MD or 

MC simulations provide a rigorous way of calculating free energies upon modifactions 

of a ligand or a receptor. Most FEP calculations take advantage of a thermodynamic 

perturbation cycle and modifications of the ligand or receptor are achieved through 

nonphysical transformation process. As a result of sampling and convergence，

problems related to large perturbation FEP calculations are in most cases limited to the 

evaluation of relative binding free energies for compounds of similar chemical 

structure. Even calculations of relative binding free energy may pose a major problem 

if a lot of modifications are required to bring the system from one state to another.  

The LIE method, first proposed by Åqvist et al. (1994), was based on the 

electrostatic linear response approximation and an empirical estimate of the nonpolar 

binding contribution. This method is an alternative to FEP method. In contrast to FEP 

calculations, the LIE method requires only simulations of the corners of the 

thermodynamic perturbation cycle. However, explicit solvent is used and relatively 

long computational time is required by these approaches.   

The analytic Generalized Born (GB) model efficiently describes electrostatics of 

molecules in water environment. It treats the solvent implicitly as continuum with the 
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dielectric properties of water, and includes the charge screening effects of salt. The 

nonpolar free energy is estimated proportional the surface areas (SA) to represent the 

cavity and van der Waals contributions to solvation. The surface area is commonly 

calculated using the Linear Combinations of Pairwise Overlaps (LCPO) model 

(Weister et al., 1999). 

There are several advantages for using GB models. For example, the 

computational cost of using the GB model in MD simulation is generally significantly 

smaller than the cost of simulations with explicit water. The model describes 

instantaneous solvent dielectric response which eliminates the need for length 

equilibration of water necessary in explicit water simulations. The GB model assumes 

that the systems are solvated in an infinite volume of solvent, therefore avoiding 

possible artifacts of replica interactions in periodic system treatments to speed-up 

explicit water calculations. Since the solvent degrees of freedom are taken into account 

implicitly, estimating energies of solvated structures is much more straightforward 

than with explicit water models.  

The GBSA continuum solvent model is generally combined with the molecular 

mechanics (MM) of the molecules to describe solvation free energies. Calculations of 

binding free energy using MM-GBSA method only takes into account the physical 

states at both end points of binding reaction and therefore there is no need to devote 

computer time on intermediate states. The method has been applied to compare 

relative stabilities of different conformations of nucleic acids (Srinivasan et al., 1998 ), 

to identify correctly folded proteins (Lee et al., 2001) , and to estimate binding 
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affinities of small molecules or ligands binding to proteins (Kuhn and Kollman, 2000; 

Lee and Kollman, 2000; Wang et al., 2001). The method can also be utilized to predict 

the effects of amino acid mutations on binding affinities (Wang and Kollman, 2000), 

and could be extended to study the interaction free energies between CNTs and 

biomolecules.  

 

1.3.2 The coarse-grained hydrophobic-polar (HP) lattice model 

While computational simulation is a powerful tool which permits us to observe, 

examine and manipulate the smallest detail in many ways beyond the access of 

experiment, computer equipment is also a limited resource. Although MD simulation 

of the all-atom models can provide us with great insight into the peptide-CNT 

interaction mechanism, it is currently only suitable for simulating short peptides in a 

relatively short time scale (typically nanoseconds). Such an approach is not applicable 

to the study of the whole protein folding process which is typically in order of 

microseconds to seconds. Therefore it is also necessary to develop simulation models 

which are able to capture the essential features of the materials with the minimum of 

computational units and computational time. The atomic model and the coarse-grained 

model can serve as complements for each other.   

Molecular systems can be modeled at different levels of spatial resolution. The 

process of representing a system with fewer degrees of freedom than those actually 

present in the system is called coarse-graining. By coarse-graining I am not only 

reducing computational units in the system, but also on the possibility of exploring a 
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much larger time span. The validity of the coarse-gained models is inferred by 

confronting its predictions with experiments. Different from the classical atomic level 

representations of biomolecules, these coarse-grained models and their 

correspondingly simplified force fields consist of beads representing groups of atoms, 

monomers, or even several monomer units. The beads interact with each other through 

effective interaction functions that take into account the response of the omitted 

degrees of freedom effectively in an average way. They have proven to supply 

accurate thermodynamic descriptions of partitioning in homogeneous systems (Baron 

et al., 2007).  

In recent years there has been an emerging interest in the development of simple 

coarse-grained models for a variety of polymers (Baschnagel et al., 2000; 

MQller-Plathe, 2002; Kremer, 2003), lipids and surfactants (Marrink et al., 2004; Smit 

et al., 1990; Goetz and Lipowsky, 1998), and proteins (Tozzini, 2005; Shih et al., 2006; 

Bond et al., 2006). These studies focused on computer simulations of longer time and 

larger length scales at the expense of lower resolution of structural and dynamical 

properties. 

Among the many coarse-grained models, the HP lattice model is one of the most 

widely adopted one and has been shown successful in clarifying protein folding 

mechanism. First proposed by Dill and Lau (Lau and Dill, 1989), the HP model is 

based on the assumption that the hydrophobic interaction is the dominant force in 

protein folding. Each residue in the protein sequence is represented by either of the 

two types, hydrophobic (H) or polar (P). A protein is modeled as a specific sequence 



Chapter 1                                                                          Introduction                

 19

of H and P monomers. The structure of a protein is modeled as linked beads placed on 

the nodes of a Cartesian coordinate grid. Each protein chain contains N  residues, 

connected through 1−N  links. All connecting vectors move parallel to either the x- 

or the y-axis with a self-avoiding configuration. The lattice spaces which are not 

occupied by the amino acid residues are assumed to be solvent units. Interaction 

energies are calculated between monomers that are adjacent in space but not covalently 

lined.  

The HP lattice model is commonly implemented using MC algorithm, which is a 

stochastic algorithm that depends on probabilities. Despite its simplicity, the HP lattice 

model using MC simulation method is capable of capturing most essential mechanism 

of protein folding such as hydrophobic effect, multi-stage folding kinetics and molten 

globule states (Lau and Dill, 1989). Most importantly, the model captures the main 

physics of protein folding—the hydrophobic interactions, conformational freedom of 

the chain, and the steric restrictions imposed by excluded volume (Miller and Dill, 

2006). Furthermore, the full conformational spaces can be enumerated exhaustively 

and insights into the nature of free energy landscapes can be obtained. For short 

chains, all the possible conformations can be enumerated and their energies are 

evaluated to find the global energetic minimum for each HP sequence. Therefore the 

model has been successfully used to explore kinetics and thermodynamics of protein 

folding in bulk solvent (Lau and Dill, 1989; Miller and Dill, 2006; Camacho and 

Thirumalai, 1993; Chan and Dill; 1993; Li et al., 1996; Kumar et al., 2005; Chikenji et 

al., 2006) or adsorption of protein to various surfaces (Zhdanov, and Kasemo, 1998; 
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Anderson et al., 2000; Castells et al., 2002; Liu and Haynes, 2004). For example, 

Zhdanov and Kasemo investigated the relative rates of denaturation of HP chains in 

the presence of a solid-liquid interface. Their results revealed that at relatively high 

temperature, unfolding of the chains follows a first-order rate equation. This 

phenomenon is similar to what was observed without a surface present. At lower 

temperatures, however, the denaturation pathway at the surface differed in metastable 

states were formed. Castells et al. used a MC algorithm to demonstrate that 

mesoscopic protein chains attach to a surface in an unfolded state, and that the degree 

of unfolding is correlated to the degree of attraction of the residue to the surface.  

In this thesis the HP lattice model using MC simulation method is extended to 

study peptide-CNT interactions.  

 

1.4 Objectives and significance of this study 

In spite of the fact that the marvellous properties of CNTs have triggered great 

interest of researchers to explore wide applications of CNTs, the mechanism of CNTs 

interacting with biomolecules still remains unclear. Furthermore, there have been only 

a few studies focusing on interactions between peptides and CNTs, and therefore a 

systematically research in this area based on computational modelling is particularly 

novel and will significantly benefit the application of CNTs. Despite the challenge, 

this thesis focuses on developing both all-atom models and coarse-grained models to 

investigate the peptide-CNT interaction mechanism. Major works reported in this 

thesis are as follows. 
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1) An all-atom model is developed to study self-insertion behaviors of different 

peptides into SWCNTs in explicit water environment using MD simulation. The 

conformational change of the peptide and energetics of the interaction are traced. 

Variations in affinity of different peptides for SWCNTs are also observed.  

2) The MM-GBSA method is extended to evaluate the free energy of peptides 

interacting with CNTs. The relative binding affinities are compared with the 

experimental results to validate the model. The physical mechanism involved in this 

process is then studied in detail. Other effects that may influence peptide-CNT 

interaction are also investigated.  

3) In order to obtain a general view of different binding affinity of hydrophobic 

and hydrophilic amino acids for the CNTs, binding free energy between each amino 

acid and the same CNT is estimated individually based on the all-atom model. The 

relative binding affinities of amino acids from the hydrophobic and hydrophilic groups 

are compared. 

4) A coarse-grained HP lattice model is developed performing MC simulation to 

observe the macroscopic properties of the adsorption of peptides onto CNTs. The 

preliminary energy parameters are developed according to experimental observations 

and numerical results from the all-atom model. The thermodynamic quantities and 

conformational characteristics of peptides are also clarified.  

Through these studies I am not only able to explore the detailed conformational 

properties and energetics of peptides interacting with CNTs, but also the peptide-CNT 

interaction mechanism from both microscopic and macroscopic views. The approach 
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used in this study would greatly benefit our understanding of the mechanisms of the 

interactions between CNTs and bio-materials, and hence promote the design of novel 

nano-devices. 

These works will be thoroughly discussed in the following chapters.  

 

1.5 Main contribution of the thesis 

MD simulation method is used to provide a microscopic view of peptide-CNT 

interaction based on the atomic level. Self-insertion of peptides into SWCNTs and 

binding of peptides to the outer surface of SWCNTs are simulated. The energetics of 

interaction, as well as the conformational change of peptides is also discussed. 

Hydrophobicities of the peptides have high correlations with the peptides’ propensities 

for the CNT.  

Free energies of peptides binding to SWCNTs and peptides encapsulated into 

SWCNTs are estimated based on MM-GBSA method. The computational results are 

qualitatively comparable to binding affinities observed in experiments. It is observed 

that the van der Waals interaction plays a dominant role in peptide-SWCNT 

interaction.  

In order to complement the all-atom MD simulation studies, a 2D HP lattice 

model is developed to simulate the interactions between peptides and CNTs. The 

parameters are qualitatively developed based on both experimental studies and MD 

simulation results. Both the internal energy and conformational entropy contribute to 
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the Helmholtz free energy. These results promise potential application of CNTs in 

drug delivery, drug design and protein control.  

 

1.6 Organization of the thesis 

The thesis consists of five chapters and the contents of each chapter are as 

follows. 

In chapter 1, an overview of CNTs and peptides is presented. A literature review 

of bio-molecule functionalized CNT for various purposes of applications is carried out, 

which includes both experimental and theoretical approaches. Furthermore, the 

all-atom model and the coarse-grained model and the involved simulation algorithm 

for investigation of peptide-CNT interaction are introduced.  

In Chapter 2, MD simulation method is used to provide a microscopic view of 

peptide-CNT interaction based on the atomic level. Intensive numerical simulation has 

been carried out for a large number of different peptides. Self-insertion of peptides 

into SWCNTs and binding of peptides to the outer surface of SWCNTs are simulated. 

The energetics of interaction, as well as the conformational change of peptides is 

discussed. 

In Chapter 3, free energies of peptides binding to SWCNTs and peptides 

encapsulated into SWCNTs are estimated based on MM-GBSA method. The 

computational results are qualitatively compared with experimental results. It is 

observed that the van der Waals interaction plays a dominant role in peptide-SWCNT 

interaction. The properties of peptides that may have influence on their interaction 
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such as peptide length, hydrophobicities, aromatic rings are discussed. In discussion 

section, further simulations are performed to estimate binding free energy of each 

amino acid binding to the same SWCNT, and average binding affinity of hydrophobic 

and hydrophilic amino acids are obtained and compared.  

In Chapter 4, a coarse-grained HP lattice model is developed to simulate peptides 

interacting with CNTs. The parameters are qualitatively developed based on 

experimental studies and MD simulation results. The exact enumeration based on this 

coarse-grained model enables us to look into thermodynamics of the interaction 

process. The impact of internal energy and entropy are discussed and conformational 

change of peptides interacting with CNT surface is traced.  

The final Chapter 5 presents concluding remarks and recommendation for future 

research work. 
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Table 1.1 Abbreviations for amino acids, hydrophobicity (by K-D method) and the 
occurrence of the amino acids in proteins. 

Amino acid Three-letter 
abbreviation 

One-letter 
abbreviation 

Hydrophobicity Occurrence 
(%) 

Isoleucine Ile I 4.5 5.3 

Valine Val V 4.2 6.6 

Leucine Leu L 3.8 9.1 

Phenylalanine Phe F 2.8 3.9 

Cysteine Cys C 2.5 1.9 

Methionine Met M 1.9 2.3 

Alanine Ala A 1.8 7.8 

Glycine Gly G -0.4 7.2 

Threonine Thr T -0.7 5.9 

Serine Ser S -0.8 6.8 

Tryptophan Trp W -0.9 1.4 

Tyrosine Tyr Y -1.3 3.2 

Proline Pro P -1.6 5.2 

Histidine His H -3.2 2.3 

Glutamic acid Glu E -3.5 6.3 

Asparagine Asn N -3.5 4.3 

Glutamine Gln Q -3.5 4.2 

Aspartic acid Asp D -3.5 5.3 

Lysine Lys K -3.9 5.9 

Arginine Arg R -4.0 5.1 

 

 

  

 



Chapter 1                                                                          Introduction                

 26

 
 

Figure 1.1 Structure of single-walled carbon nanotubes (SWCNT) and multi-walled 
carbon nanotubes (MWCNT). 
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Figure 1.2 Definition of roll-up vector as linear combinations of base vectors a and b . 
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Figure 1.3 Three types of CNTs: armchair, zigzag, and chiral nanotubes. 
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Chapter 2  

Molecular dynamics (MD) simulation based on the all-atom 

model 

 

 

Molecular simulation based on the all-atom model has provided us with great 

insights into various biophysical phenomena. In this chapter, self-insertion behaviours 

of different peptides into SWCNTs in explicit water solvent are studied using MD 

simulation method. Section 2.1 introduces the molecular mechanics and force field for 

modelling of peptide-SWCNT potential function, and the algorithms for simulating the 

motions of the systems. Intensive numerical simulation is carried out for a large 

number of different peptides. In Section 2.2, the conformational change of the peptides 

and the energetics of peptide-SWCNT are analyzed. In addition, discussions on other 

factors that may influence the encapsulation mechanism are also included. Finally, the 

remarks are given in Section 2.3. In the following sections of this chapter, the word 

“propensity” will be used to represent the propensity of self-insertion of a peptide into 

a nanotube.  
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2.1 Modeling and simulation methods 

2.1.1 Molecular Mechanics and empirical force fields for molecular simulation  

In order to model the peptide-SWCNT interaction at the all-atom level, the 

analytical potential energy functions within the frame of classical molecular mechanics 

is used. The applications of molecular mechanics have employed MC methods, energy 

minimization, and MD methods to carry out the analytical potential energy 

calculations (Leach, 2001). Such methods have been widely used in computational 

biochemistry and biophysics, including the intrinsic strain of organic molecules, 

structures and dynamics of simple and complex liquids, thermodynamics of ligand 

binding to proteins, and conformational transitions in nucleic acids. Through these 

methods I am able to gain insights into a lot of biophysical phenomenon, especially for 

those are not accessible to experimental observations. Given the significance of the 

molecular mechanics model, many efforts have been made to consider both of the 

functional form and the parameters that is needed to apply the potential energy 

functions (or force fields).  

The basis for molecular modeling is to construct the energy potential between 

atoms and molecules, and to develop parameters comprising the force field. The force 

fields used in molecular modeling are primarily designed to reproduce molecular 

structural properties, but they can also be used to predict other properties, such as 

molecular spectra. Generally a force field is designed to predict certain properties and 

the empirical parameters will be developed accordingly. Here the potential function 
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and the parameters are constructed according to the Amber99 force field (Wang et al., 

2000). 

In a molecular system, atoms are not rigidly positioned in a system, and both 

external and internal forces can induce atomic motions. Some motions may even have 

chemical effect. The effects of motions are described by energy because energy 

demonstrates the measurement of the ability of work. There are two types of energies 

involved in molecular modeling: the first one is kinetic energy, or motional energy, 

which is related to the speed and mass of a moving object. The higher the speed and 

the heavier the object is, the bigger work it can do. The second one is potential energy, 

or positional energy. That is, the value of potential energy is determined by 

inter-molecular, intra-molecular, and environmental forces. Objects generally move 

from higher potential energy place to lower potential energy place. A molecule 

changes from higher potential energy form to lower potential energy form and the 

configuration of the system is optimized.  

In our model, the total potential energy between atoms is usually calculated as:  

Total Potential Energy = Bond Stretching Energy + Angle Bending Energy                 

+ Torsional Energy + Non-Bonded Interaction Energy 

Other forms of potential energy may also be added to the total potential energy 

function, according to different formula of force fields. The forces contributing to the 

whole simulated systems in this study are calculated as below. 

Bond stretching 
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There are several models for estimation of bond stretching energy, and the most 

widely used approach is adopted, namely the Hooke’s law formula. In this formula the 

energy varies with the square of the displacement from the reference bond length 0l  

2
0( ) ( )

2
rkU l l l= −  (2.1) 

 Where the parameter 0l  is the reference bond length, or commonly called the 

equilibrium bond length (Figure 2.1). This parameter is the length that the chemical 

bond adopts when all the other terms in the force field are set to zero. The bond 

stretching forces between atoms are very strong and considerable energy is required to 

make a bond deviate significantly from its equilibrium length. This is reflected in the 

magnitude of the force constants rk  for bond stretching.  

Angle bending 

The contribution of angle bending energy is also described as the deviation of 

angles from their reference values using a Hooke’s law: 

2
0( ) ( )

2
kU θθ θ θ= −  (2.2)

The contribution of each angle is characterized by a force constant kθ  and a 

reference value 0θ , as shown in Figure 2.1. Compared with the bond stretching energy, 

less energy is required to distort the angle away from equilibrium and the force 

constants for angle bending are proportionately smaller.  

Torsional terms 

For bond-stretching and angle-bending terms, substantial energies are required to 

cause significant deformations from their reference values. Therefore they are often 

referred to as ‘hard’ degrees of freedom. Most of the variation in structure and relative 
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energies is due to the complex interplay between the torsional and non-bonded 

contributions. The torsional potential represents the effect of rotation around a bond 

and as such it is a function of the dihedral angles. The torsional potential is expressed 

as  

2

0

( ) [1 cos( )]
2

N
n

n

VU nω ω γ
=

= + −∑  (2.3)

where ω  is the torsion angle, nV  is often referred to as the rotational ‘barrier’ height, 

which is a qualitative indication of the relative energy barriers to rotation, and n  

denotes the periodicity.  

Non-bonded interaction 

The non-bonded interaction between independent molecules and atoms also plays 

an important role in determining the structure of individual molecules. The 

non-bonded interactions do not depend upon a specific bonding relationship between 

atoms. As shown in Figure 2.1, the atoms interact through space and the energy 

potential is usually modeled as a function of some inverse power of the distance. The 

non-bonded energy terms in a force field are usually considered in two forms, the 

electrostatic interactions and the van der Waals interactions. The electrostatic 

properties are calculated as a sum of interactions between pairs of point charges, using 

Coulomb’s law. The energy function for the electrostatic interaction is written as: 

0

( )
atoms

i j

i j ij

q q
U r

rε<

= ∑  (2.4)

where iq  and jq  are atomic partial charges, 0ε  is the solvent dielectric 

constant. 
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The van der Waals interaction consists of both attractive and repulsive forces 

between atoms. The attractive contribution is due to dispersive forces. The short-range 

repulsive forces are often referred to as exchange forces, or overlap forces. This is to 

prevent the atoms from occupying the same region of space. The van der Waals 

potential function is usually modeled as Lennard-Jones 12-6 function.  

12 6

( ) 4
atoms

i j ij ij

U r
r r
σ σε

<

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  

(2.5)

There are two adjustable parameters in the Lennard-Jones 12-6 potential energy 

function: the collision diameter σ  and the well depth ε . 

Therefore the total potential energy function is defined as: 

12 6

2 2 2
0 0

0

( ) ( ) ( ) [1 cos( )] 4
2 2 2

atoms atoms
i jnr

bonds angles dihidrals i j i jij ij ij

q qk VkU l l n
r r r

θ σ σθ θ ω γ ε
ε< <

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + − + + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑ ∑r  

(2.6)

Energy parameters for all the atoms are constructed based on force field 

Amber99, which is suitable for general organic systems and drug-protein interaction 

simulation (Wang and Kollman, 2000). Carbon atoms on nanotubes are modeled as 

uncharged Lennard-Jones particles with a cross-section of Å400.3=ccσ and a well 

depth of -1mol kcal086.0=ccε . Carbon-carbon bond length of 1.4 Å  and angles of 

o120  are maintained by harmonic potentials with spring constants of 938 

 Åmol kcal -2-1  and 126 kcal mol-1 rad-2, corresponding to parameters of sp2 carbons in 

the AMBER99 force field.  

Van der Waals parameters between different types of atoms are calculated from 

the parameters of the pure atoms using combination rules (Cornell et al., 1995). The 
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cross-term non-bonded Lennar-Jones potential between different types of atoms could 

be obtained through certain combination rules, which is calculated as  

,
2

αα ββ
αβ αβ αα ββ

σ σ
σ ε ε ε

+
= =  (2.7) 

 

2.1.2 The criteria of peptide selection 

The selection of peptides is based on their specific biochemical properties such 

as hydrophobicity or their potential of being used as drugs. As shown in Table 2.1, 

some peptides are commonly used as therapeutic agents or extracted from 

disease-related proteins, others are designed to facilitate the identification of factors 

that may have influence on peptides' insertion into CNTs. Specifically, oxytocin (Pep3) 

is a commonly used drug peptide, Angiotensin II (Pep6) is one of the famous peptide 

hormones (Spyroulias et al., 2003); Pep7 and pep13 are extracted from N-terminal 

domain of mammalian PrPC (Chen and Prusiner, 1998) and yeast protein Sup35 

(Gsponer et al., 2003). In this thesis I refer to the peptides by their assigned names in 

the table instead of presenting their sequences. The properties of these peptides, 

including the hydropathy distributions of these peptides, and the number of residues 

containing aromatic rings on the peptides are also listed in Table 2.2. Each amino acid 

on the peptide is indicated as either ‘H’ (hydrophobic) or ‘P’ (polar), according to K-D 

method (Kyte and Doolittle, 1982). 

 

2.1.3 Generation of initial structures 

Initial structures for simulation are generated using LEAP module in Amber 7 
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package (Case et al., 2002). Each simulated system consists of one SWCNT and one 

peptide solvated in water solvent. Initial structures of oxytocin and Angiotensin II are 

obtained from Protein Data Bank (PDB entry 1NPO and entry 1N9V, respectively). 

Other peptides adopt stretched initial conformations. The (12, 12) (diameter 16.1 Å ) or 

(14, 14) (diameter 18.9 Å ) types of SWCNTs are constructed through folding a 

graphite sheet of carbon rings to cylinder. Initially, the peptide is aligned along the 

nanotube axis with an appropriate initial distance between them, as illustrated in Table 

2.1. The peptide-SWCNT complex is then surrounded by TIP3P water molecules 

(Jorgensen et al., 1983).  

Periodic boundary conditions are applied to the system. The periodic boundary 

conditions enable a simulation to be performed using a relatively small number of 

particles, in such a way that the particles experience forces as if they were in bulk fluid. 

The particles being simulated are enclosed in a box which is then replicated in all three 

dimensions to give a periodic array. During the simulation only one of the particles is 

represented, but the effects are reproduced over all the images. Each particle interacts 

not only with the other particles but also with its own images in neighbouring boxes. 

The particles that leave one side of the box re-enter from the opposite side as their 

image. In this way the total number of particles in the central box remains constant.  

 

2.1.4 Energy Minimization 

Energy minimization algorithm is implemented on the generated initial structures 

before MD simulation is run. This method is widely used in molecular modeling and is 
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an integral part of techniques such as conformational search procedures, and can also 

be used to prepare a system for other types of calculation. For example, energy 

minimization is often used prior to a MD simulation in order to relieve any 

unfavorable or overlap conformations 

In molecular modeling I am especially interested in minimization points on the 

energy surface. Minimum energy arrangements of the atoms correspond to stable states 

of the system; any movement away from the minimum energy configuration will lead 

to a higher energy. There may be a very large number of minima on the energy surface. 

The energy minimum corresponding to the very lowest energy is known as the global 

energy minimum. In order to identify those geometries of the system that correspond 

to minimum points on the energy surface, a minimization algorithm is used. I am also 

interested to know how the system changes from one minimum energy structure to 

another. The highest point on the pathway between two minima is of particular interest 

and is know as the saddle point, with the configuration of the atoms being the 

transition structure. Both energy minima and saddle points are stationary points on the 

energy surface, where the first derivation of the energy function is zero regarding all 

the coordinates.  

 

2.1.4.1 Statement for the energy minimization problem 

The minimization problem can be stated as: given a function f  which depends 

on one or more independent variables ixxxx ,...,,, 321 , and the purpose is to find the 

values of those variables where f  has a minimum value. At a minimum point the 
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first derivative of the function with respect to each of the variables is zero and the 

second derivatives are all positive, and the equation is written as 

2

20; 0
i i

f f
x x
∂ ∂

= >
∂ ∂

 (2.8)

     In this study, molecular mechanics minimizations are performed in Cartesian 

coordinates, where the energy is a function of 3N variables. For analytical functions, 

the minimum of a function can be found using standard calculus methods. However, 

this is not generally possible for molecular systems because of the complicated way in 

which the energy varies with the coordination. Therefore, minima are generally 

calculated and located using numerical methods, which gradually change the 

coordinates to produce configurations with lower and lower energies until the 

minimum is reached.  

Minimization algorithms can be classified into two groups: those which use 

derivatives of the energy with respect to the coordinates and those which do not. 

Derivatives have the advantage that they provide information about the shape of the 

energy surface, and if used properly, they can significantly enhance the efficiency with 

which the minimum is located. The ideal minimization algorithm is the one that 

provides the answer as quickly as possible, using the least amount of memory, and 

yields the least standard errors. Most minimization algorithms can only go downhill on 

the energy surface and therefore they can only locate the minimum that is nearest (in a 

downhill sense) to the starting point. Although some specialized minimization methods 

can make uphill moves to seek out minima lower in energy than the nearest one, but no 

algorithm has yet demonstrated to be capable of locating the global energy minimum 
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from an arbitrary starting position. The shape of the energy surface may be important 

if one wishes to calculate the relative populations of the various minimum energy 

structures.  

 

2.1.4.2 Derivative Minimization methods 

There are non-derivative minimization methods and derivative minimization 

methods, here only the later one is performed. In order to use a derivative 

minimization method the derivatives of the energy with regard to the variables should 

be calculated. Derivatives provide very useful information in energy minimization. 

The direction of the first derivative of the energy (the gradient) indicates where the 

minimum lies, and the magnitude of the gradient implies the steepness of the local 

slope. The energy of the system can be lowered by moving each atom in response to 

the force acting on it; the force is equal to minus the gradient. Second derivatives 

indicate the curvature of the energy function, and the information that can be used to 

predict the place where the function will change direction (i.e. pass through a 

minimum or some other stationary point). 

In order to calculate the derivative, the energy function is first written as a Taylor 

series expansion about the point kx  

2
)( ) ( ) ( ) ( ) ( ) ( ) / 2 ...k k k k kf x f x x x f x x x f x′ ′′= + − + − +  (2.9)

For a multidimensional function, the variable x  is replaced by the vector x  and 

matrices are used for the various derivatives. The derivative methods can be classified 

according to the highest-order derivative used. For example, first-order methods use 



Chapter 2                               Molecular dynamics (MD) simulation based on the all-atom model                

 39

the first derivatives whereas second-order methods use both first and second 

derivatives. Here derivation methods based on the first-order minimization methods 

are used. The two most frequently used methods in molecular simulations, the steepest 

descents and the conjugate gradient method are sequentially used on the input initial 

structure. Both algorithms gradually change the coordinates of the atoms as they move 

the system closer and closer to the minimum energy point.  

1) The steepest Descents Method 

The steepest descents method moves in the direction parallel to the net force, which 

corresponds to walking straight downhill in the direction of the gradient. For 3N 

Cartesian coordinates this direction is most conveniently represented by a 

3N-dimensional unit vector, ks . Thus 

/k k k= −s g g  (2.10)

where kg  is the first derivation of the potential energy. After determining the 

direction along which to move, the minimum point can choose to locate by performing 

a line search or take a step of arbitrary size along the direction of the force.  

2) Conjugate Gradients Minimization 

The conjugate gradients method produces a set of directions and does not show the 

oscillatory behaviors of the steepest descents method in narrow energy valleys. In the 

steepest descents method both the gradients and the direction of successive steps are 

orthogonal. In conjugate gradients, however, the gradients at each point are orthogonal 

but the directions are conjugate. A set of conjugate directions has the property that for 

a quadratic function of M variables, the minimum will be reached within M steps. The 
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conjugate gradients method moves in a direction kv  from point kx , where kv  is 

computed from the gradient at the point and the previous direction vector 1k−v : 

1k k k kγ −= − +v g v  (2.11)

where kγ  is a scalar constant calculated by  

1 1

k k
k

k k

γ
− −

⋅
=

⋅
g g

g g
 (2.12)

In the conjugate gradients method all of the directions and gradients satisfy the 

following relationships: 

0i j⋅ =g g  (2.13)

0i ij jU ′′⋅ ⋅ =v v  (2.14)

0i j⋅ =g v  (2.15)

It is noted that Equation (2.11) can only be implemented from the second step 

onwards and therefore the first step in the conjugate gradients method is the same as 

the steepest descents. The one-dimensional minimum in each direction is located to 

ensure that each gradient is orthogonal to all previous gradients and that each direction 

is conjugated to all previous directions.  

The steepest descent method is performed prior to conjugate gradient, as the 

starting structure is in some distance away from the minimum. However, conjugate 

gradients is much better once the initial strain has been removed by steepest descent 

method (Leach, 2001). Combining both of the algorithms is efficient for obtaining the 

energy-optimized structure of the system.  
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2.1.5 Integration of the motions of particles using finite difference method 

Although energy minimization is able to lead the system to the optimized energy 

states, the system may be trapped in local minimum if only minimization method is 

used. Therefore MD simulation is used after energy minimization to simulate the 

system into equilibrium state. MD simulations are applied in a wide range of 

applications. They can be used to study the thermodynamic properties of gas, liquid, 

solid, phase transitions, as well as internal motions of macromolecules (e.g., polymers, 

DNA, proteins). On the other hand, hydrodynamical fluid flow, plasma and electrons, 

and transport phenomena could also been simulated by MD calculations. 

 A common feature of all MD algorithms is that the positions of molecules are 

evolved with time by integrating the Newton’s equations of motion. Macroscopic 

quantities are extracted from the microscopic trajectories of particles. In principle, 

these equations can be solved by using any standard finite difference algorithm. 

However, in practice, the evaluation of force is the most time consuming step in a 

molecular simulation, and in MD simulation it is required that the algorithm should be 

efficient to handle large systems. Therefore many commonly used algorithms such as 

the conventional Runge-Kutta method are computationally too expensive because they 

require multiple force evaluations. The other requirement is that the integration 

algorithm must be well behaved for the force encountered in MD, which implies that 

the order of the algorithm defined as the highest order of the time step for the equation 

of the coordinates should be at least two (Sadus, 1999). In order to meet these 

requirements some finite difference algorithms have been developed and specifically 

tuned for applications to MD (Dahlquist and Bjork, 1974).  
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Finite difference algorithms used in molecular simulation can be classified as either 

predictor or predictor-corrector methods. In the predictor methods, the molecular 

coordinates are updated from quantities that are either calculated in the current step or 

that are from the previous steps. The Verlet (1967) algorithm and its subsequent 

modifications are typically widely used predictor algorithms. In contrast, 

predictor-corrector algorithms involve predicting new molecular coordinates. The 

predicted coordinates are used to calculate the value of related functions and to correct 

the initial prediction. The Gear (1971) algorithm is also one of the most widely used 

predictor-corrector algorithm for MD calculations. The detailed discussion on various 

integration schemes have been discussed in a number of references (Berendsen and 

van Gunsteren, 1986; Allen and Tildesley, 1987; Hockney and Eastwood, 1988; 

Rapaport, 1995; Gubbins and Quirke, 1996; Frenkel and Smit, 1996), while leap-frog 

Verlet algorithm is used for molecular simulations in this study.    

The problem posed specifically by MD is formulated as follows. The force acted 

on a particle during displacement is expressed as Newton’s second law of motion 

i i im=F a  (2.16) 

Where F  is the force acting on the particle, and m  and a  are the particle’s 

mass and acceleration, respectively. The equation can be written as the second 

derivative of displacement r  with respect to time t . 

2

2
i i

i

d
dt m

=
r F  (2.17)

The dynamic behavior of the whole system can be obtained by solving Equation 

(2.17). Integrate the equation with respect to time for a small interval yields: 
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i i
i

i

d t c
dt m

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

r F

 

(2.18)

At the time 0=t , the velocity is given by the constant 1c which represents the 

initial velocity iv .  Therefore the expression of the velocity at time t  is shown as: 

i
i i

d t
dt

= +
r a v  (2.19)

The equation can be integrated and and the displacement is written as 

2

22
i

i i
tt c= + +

ar r  
(2.20)

Where the constant 2c  is the initial position of the particle. Equation (2.20) allows 

us to calculate the particle’s displacement from the initial velocity and acceleration.  

As illustrated in Equation (2.20), the coordinates of the particle evolves with time. 

Any changes in particle displacement will also affect the strength of forces imposed 

between the particles, as well as the velocities, and accelerations between particles. 

Consequently, a general method is required to estimate all of the dynamic properties of 

the system. Different integrators have their specific advantages and shortcomings, and 

they are selected according to different requirements in various simulation systems. 

For example, the Gear algorithms are slower than the Verlet algorithms but the 

difference is not significant. The Verlet algorithms are easier to implement than the 

Gear algorithms, which is an advance. The Verlet algorithm belongs to the symplectic 

class of integrators that preserves a canonical structure. It was found that symplectic 

algorithms are likely to be the preferred choice for the long-time integration of 

Hamiltonian dynamic systems (Leimkuhler and Skeel, 1994), and therefore are 

suitable for carrying out simulations of the interactions between peptides and CNTs.  
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The Verlet Algorithm 

Verlet proposed that a simple predictor method can be successfully used in MD 

simulations (Verlet, 1976). Based on the original Verlet algorithm, many subsequent 

modifications and improvements have been made on the algorithm. These ‘Verlet 

family’ of algorithms are now widely used in MD simulations. In this section, the 

implementation of Verlet algorithm and the Leap-frog Verlet algorithm are shown. 

1) The original Verlet Algorithm 

The starting point for the Verlet algorithm is a Taylor series expansion, which is in 

common with the corrector-predictor algorithm. I start by considering the Taylor series 

expansions about ( )tr . 

2
2

2

1( ) ( ) ....
2!

d dt t t t t
dt dt

+ Δ = + Δ + Δ
r rr r  

(2.21)

2
2

2

1( ) ( ) ....
2!

d dt t t t t
dt dt

−Δ = − Δ + Δ
r rr r  

(2.22)

By adding the two equations, I have 

2
2

2( ) 2 ( ) ( ) ....dt t t t t t
dt

+ Δ = − −Δ + Δ
rr r r  

(2.23)

Equation (2.23) is known as Verlet’s algorithm. Such algorithm enables us to 

calculate the position of the molecules without calculating their velocities. However, 

the velocities could also be derived in order to determine the system kinetic energy, 

( ) ( )( )
2

t t t tt
t

+ Δ − −Δ
=

Δ
r rv  (2.24)

In the Verlet algorithms, the velocity calculations are optional because they do not 

actually contribute to the estimation of the atomic coordinates. However, in order to 

determine the total linear momentum and kinetic energy, the velocity calculations 
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should be included. The advantage of Verlet method lies in that it’s compact, easy to 

implement, time reversible, and the energy is conservable for long time steps.  

2) Leap-Frog Verlet Algorithm 

The ‘leap-frog’ algorithm proposed by Hockney (1970) calculates the velocity at 

half intervals. 

( ) ( ) ( / 2)t t t t t t+ Δ = + Δ + Δr r v  (2.25) 
 

( / 2) ( / 2) ( )t t t t t t+ Δ = −Δ + Δv v a  (2.26) 
 

( / 2) ( / 2)( )
2

t t t tt + Δ − −Δ
=

v vν  (2.27) 
 

In the original Verlet method, the next position is determined both by the current 

position and the velocity at the next half-time interval. In leap-frog algorithm, however, 

the velocity at the next half-time interval is determined by the current acceleration and 

the velocity at the previous half-time intervals. The current velocity is calculated as the 

average value of the velocities at the next and the previous half-time intervals. 

The major advantage of the leap-frog algorithm is that numerical imprecision is 

reduced because it is based on differences between smaller quantities. However, the 

calculation of velocities relies on velocity averaging at different time intervals and the 

algorithm is not self starting. I need to calculate the velocity at 2/tt Δ−=  initially. 

This difficulty can be overcome by using reverse Euler estimates of velocities. 

( / 2) (0) (0) / 2t t−Δ = −Δv v a  (2.1.30.)

In common with the original Verlet algorithm, the calculation of velocities lags one 

time interval behind the calculation of positions. The time step should be properly 
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chosen to guarantee the stability of the integrator. In our simulation tΔ  is chosen in 

the length scale of femtoseconds (fs). 

 

2.1.6 Statistical mechanics ensembles 

The target of the statistical mechanics is to convert the information generated at 

the microscopic level (including atomic and molecular positions, velocities, etc.) into 

macroscopic terms. The thermodynamic variables of a system include number of 

particles (N), temperature (T), pressure (P), internal energy (E), etc. The system is 

often analyzed with a few variables maintained at constant values. The choice of the 

ensemble determines which thermodynamic quantities can be evaluated and it also 

governs the overall simulation algorithm (Hill 1956; McQuarrie 1976; Chandler, 1987). 

Algorithms for implementation of different types of ensembles are discussed as below. 

 

2.1.6.1 Implementation of statistical ensembles 

There are generally four types of ensembles in common use, including the 

microcanonical, or constant-NVE, the canonical, or constant- NVT  ensemble, the 

isothermal-isobaric constant-NPT ensemble, and the grand canonical 

constant- VTμ ensemble. For each ensemble, the aforementioned thermodynamic 

quantities are specified or kept constant. Other thermodynamic variables could be 

determined by ensemble averaging. The fluctuations are evaluated by calculating the 

deviations of the thermodynamic quantities from the average value at any particular 

states. 
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The microcanonical ensemble, or constant-NVE ensemble is the default 

ensemble for MD calculations because Newton’s equations of motion conserve energy. 

Therefore a microcanonical ensemble is generated automatically by solving Newton’s 

equation of motion.  

The probability density for the microcanonical ensemble is proportional to 

( ( ) )desH Eδ −Γ  (2.28)

Where Γ  denotes the set of particle positions and momenta (or quantum 

numbers), and ( )H Γ  is the Hamiltonian. The delta function selects out those states of 

an N-particle system in a box of volume V  that have the desired energy desE .  

The microcanonical partition function is written as 

( ( ) )NVE desQ H Eδ= −∑
Γ

Γ  (2.29)

For an quasi-classical expression for NVEQ , in our atomic systems, the quantity is 

calculated from a factor of !N  

3

1 1 ( ( , ) ).
!NVE desNQ d d H E

N h
δ= −∫ r p r p  (2.30)

Where d d∫ r p  stands for integration over all N6  phase space coordinates, and 

h  is the Planck’s constant. The appropreiate thermodynamic potential is the negative 

of the entropy 

NVEB QkS ln/ −=−  (2.31)

The density for the canonical ensemble is proportional to 

exp( ( ) / )BH k T− Γ  (2.32)

And the partition function is expressed as 

exp( ( ) / )NVT BQ H k T
Γ

= −∑ Γ  (2.33)
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For our atomic system, the function can also be expressed in quasi-classical form 

3

1 1 exp( ( , ) / ).
!NVT BNQ d d H k T

N h
= −∫ r p r p  (2.34)

The appropriate thermodynamic function is the Helmholtz free energy A  

NVTB QTkA ln/ =  (2.35)

The probability density for the isothermal-isobaric (NPT) ensemble is 

proportional to 

)/)(exp( TkPVH B+−  (2.36)

The ensemble averaged term of ><+>< VPH  gives the thermodynamic 

enthalpy. The appropriate partition function is 

exp( ( ) / ) exp( / )NPT B B NVT
V V

Q H PV k T PV k T Q= − + = −∑∑ ∑
Γ

 (2.37)

The equation could be written in quasi-classical form for the atomic system: 

3
0

1 1 1 exp( ( ) / )
!NPT BNQ dV d d H PV k T

N h V
= − +∫ ∫ r p  (2.38)

The corresponding thermodynamic function is the Gibbs free energy G  

NPTB QTkG ln/ −=  (2.39)

In order to generate state points in the constant-NPT ensemble, the changes in the 

sample volume must be provided along with energy.  

The density function for the grand canonical ensemble is proportional to 

)/)(exp( TkNH Bμ−−  (2.40)

Where μ  is defined as the chemical potential of the simulated system. In the 

equation number of particles N , along with the coordinates and momenta of those 

particles are all variables. The grand canonical partition function is  
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exp( ( ) / ) exp( / )VT B B NVT
N N

Q H N k T N k T Qμ μ μ= − − =∑∑ ∑
Γ

 (2.41)

The equation could be written in quasi-classical form for an atomic system 

3

1 1 exp( / ) exp( / )
!VT B BN

N

Q N k T d d PV k T
N hμ μ= −∑ ∫ r p  (2.42)

and the corresponding thermodynamic function is TkPV B/− : 

VTB QTkPV μln/ −=−  (2.43)

Addition and removal of particles are allowed for the grand ensemble. The 

constant NVT and the constant NPT ensembles are most frequently used in this work, 

and quantities are transferable between different ensembles. 

 

2.1.6.2 Thermodynamic average 

The ensembles enable us to calculate the basic thermodynamic properties of the 

model system provided a suitable phase function is identified. In this section I derive 

the equations for calculation of thermodynamic quantities regardless of subscripts 

which identify particular ensembles. The functions are often derivatives of one of the 

characteristic thermodynamic functions ensΨ .  

In a model system, the total energy of the system is calculated as the sum of 

kinetic energy and the potential energy 

totE K U=< > + < >  (2.44) 

The kinetic energy is a sum of contributions from all the individual particle 

momenta, while the potential energy is calculated by summing over all pairs, triplets 

etc. of particles, corresponding to the potential energy function.   



Chapter 2                               Molecular dynamics (MD) simulation based on the all-atom model                

 50

The temperature and pressure are evaluated using the viral theorem, which is 

written in the form of generalized equipartition (Munster, 1969): 

(2.45) TkpHp Bkk >=∂∂< /  

TkqHq Bkk >=∂∂< /  (2.46) 

for any generalized coordinate kq  or momentum kp . For an atomic system, 3N terms 

of the form ii mp /2
α  (α  rages from 1 to 3) may be summed up and Equation (2.45) is 

expressed as 

2

1
/ 2 3

N

i i B
i

m K Nk T
=

< >= < >=∑ p  (2.47) 

This equation is the familiar equipartition principle: an average energy of 

2/TkB  counts for each degree of freedom. An instantaneous kinetic temperature 

function could be defined as 

2

1

12 / 3 /
3

N

B i i
iB

T K Nk m
Nk =

= = ∑ p  (2.48) 

The pressure is evaluated via Equation (2.46). Each coordinate derivative in 

Equation (2.46) is the negative of a component of the force if  on some molecule i , 

and by summing over N  molecules, I have: 

1 1

1 1
3 3i

N N
tot

i i i B
i i

V Nk T
= =

− ⋅∇ = ⋅ = −∑ ∑rr r f  (2.49) 

where tot
if  denotes the sum of inter-molecular forces and external forces. The 

latter re related to external pressure, and can be considered as the effect of the 

container walls on the system: 

1

1
3

N
ext

i i
i

PV
=

⋅ = −∑r f  (2.50) 
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If the ‘internal virial’ W  is defined 

1 1

1 1
3 3i

N N
tot

i i i
i i

V W
= =

− ⋅∇ = ⋅ =∑ ∑rr r f  (2.51) 

Regarding the inter-molecular forces, I have 

BPV Nk T W= +  (2.52) 

The pressure is evaluated as the ensemble averaged value of the instantaneous 

pressure function (Cheung, 1977) 

/ it ex
BP k T W V P Pρ= + = +  (2.53) 

where ρ  is the number density.  

 

2.1.7 Implementation details 

In this work, MD simulations are performed using the program based on the 

molecular simulation package Amber 7 (Case et al., 2002). Force field Amber 99, is 

used for modeling the peptide-SWCNT interaction system.  

The procedure of implementing simulations of peptide insertion into SWCNT 

interaction is shown in Figure 2.2. After the simulation system is selected and initial 

structure is generated, potential energy minimization is performed on each of the initial 

systems, the steepest descent algorithm is used for the first 10 cycles and conjugate 

gradient minimization is run for the following 19990 cycles. Then MD simulations are 

implemented on the energy-minimized systems, and the structure is saved every 5 ps. 

Constant-NVT ensemble is run first for 100 ps to target the temperature of the system 

from initial value of 0 K to 300 K. Subsequently the simulation is performed at 

constant pressure (1 bar), and constant temperature (300 K) for 1900 ps (Berendsen et 
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al., 1984). Newton's equations of motion are integrated with a step size of 1 fs, with all 

non-bonded cutoff distance of 8 Å  was used. Bonds involving hydrogen atoms were 

constrained using the SHAKE algorithm and a relative tolerance of 0.00001 (Rychaert 

et al., 1977) The partical-mesh Ewald method (PME) algorithm with cubic-spline 

interpolation (1 Å  grid width) was applied to calculate the full electrostatic energy of 

the simulated system (Darden et al., 1993).  

 

2.2 Results and Discussion 

2.2.1 Diverse propensities 

The stability of the conformational change of the peptides upon interacting with 

SWCNTs is tested through analysis of the root meant square deviations (RMSDs) of 

the backbone atoms on peptides. The RMSD trajectory of backbone atoms of one 

representative peptide during the 2ns of simulation time is shown in Figure 2.3. It is 

observed that over the simulation time, the RMSDs are stable with no unreasonable 

oscillations.  

Analyzing the simulation results, it is shown that some peptides are able to insert 

into SWCNTs while others are not. As an example of peptides that have strong 

affinities for SWCNTs, Figure 2.4 (a)-(f) show the snapshots of structures of oxcytocin 

(pep3)-SWCNT system at different simulation time. Water molecules are stripped for a 

clearer visualization purpose. It is observed that the first residue of oxcytocin begins to 

enter the nanotubes at about 50 ps, and it has been encapsulated in the nanotube 

completely by the time up to 500 ps. Afterwards the peptide is trapped in the tube and 
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does not escape, with only slight fluctuations in its relative position to the nanotube. 

Significant differences in propensities are also observed. Five among the 17 

simulated peptides, pep1 through pep5, could quickly self-insert into the SWCNTs. 

Pep12 through pep17 fail to insert into the SWCNTs, they either move away or 

approach the outer surface of the nanotube. Representative conformation of 

pep13-SWCNT interaction configuration at simulation time of 2ns is shown in Figure 

2.5. The remaining six peptides, pep6 through pep11 are able to enter or partly enter 

SWCNTs, but the insertion processes are very slow. Based on the above observation, 

these simulated peptides can be roughly classified into three classes as shown in Table 

2.3: (i) Peptides that have strong affinities for SWCNTs, which could insert into 

SWCNTs within 800 ps simulation time (pep1 through pep5); (ii) Pep6 through pep11, 

which could completely or partly enter SWCNTs within 2 ns simulation time, but the 

insertion progresses are greatly hindered compared to those in class (i) (encapsulated 

completely at least after 1.2 ns); (iii) Peptides that move away from the SWCNTs 

(pep12 through pep17).  

Different behaviors of peptides interacting with SWCNT could also be illustrated 

by tracing the relative distance between the two objects at instant simulation time. 

Figure 2.6 shows the normalized center of mass (COM) distances as the function of 

simulation time of three representative peptides from the respective three categories. It 

is apparent that the peptide from the first class shows the sharpest reduction of COM 

distance to the CNT, while the one from the third class indicates the opposite tendency. 

The peptide from the second class takes the intermediate. 
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2.2.2 Energetics of peptide-CNT interaction 

In order to examine the convergences and stabilities of MD simulations, the 

energetic trajectories of the simulation are also traced. The total potential energy 

trajectories and its components are analyzed with reference to simulation time. The 

data demonstrates that the energies converge with only small fluctuations. 

The energetics of the process of peptides insertion into SWCNTs is further 

analyzed. For peptides that could insert into the nanotube, the potential energy of the 

whole system decreases with the reduction of COM distance between the peptide and 

the nanotube, as shown in Figure 2.7(a). The system potential energy reaches its 

minimum when the mass center of the peptide is close to the centre of the SWCNT, 

and subsequently remains at the minimum value. In contrast, in the case that the 

peptide could not insert into nanotube, the potential energy is not dependent on the 

distance between the peptide and the nanotube. For instance, the COM distance 

between pep13 and the nanotube never reaches low values (Figure 2.8(a)). The peptide 

tends to interact with the water molecules more than the nanotube. 

Figure 2.7 (b) demonstrates the relationship between the energy sum of van der 

Waals and electrostatic interactions (non-bonded interactions) and the COM distance. 

Comparing Figure 2.7 (a) with Figure 2.7 (b), it is found that the energy sum is 

dominant in driving the peptide into the potential well. Contributions of other 

interaction energies are shown in Figure 2.7 (c), the difference between potential 

energy and non-bonded interactions energy is not dependent on the COM distance 
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between the two objects in our simulation system. It is found that the electrostatic 

interactions and the van der Waals interactions among the peptide, the CNT and water 

play an important role in determining whether peptides could be encapsulated into 

SWCNTs. Although pep13 is not able to self-insert into the SWCNT, the consistent 

energetic contributions are also observed as shown in Figure 2.8 (a)-(c). 

In order to further examine the significance of van der Waals interaction on the 

insertion of the peptide into SWCNT, I selected three systems in which the peptides 

could insert into the nanotubes with original van der Waals parameters, cut the 

cross-section parameter ccσ  by half (so that the van der Waals attraction is artificially 

reduced), and repeated the simulation for 2ns with the same initial conformations. 

Simulation results indicate that these peptides are not able to enter the nanotube with 

modified parameters. For the three selected systems with normal and modified van der 

Waals parameters, Figure 2.9 compares the normalized COM distances between the 

peptide and nanotube as the function of simulation time. It is shown that the COM 

distances decrease rapidly within first 800ps for the normal van der Waals parameters 

cases; while the COM distances remained roughly unchanged with time for the 

systems with modified van der Waals parameters. This indicates that with the changed 

van der Waals interactions, the peptide only make random motion around the nanotube, 

and hence the insertion progress of peptide into nanotube is greatly hindered. These 

results imply that van der Waals interactions play an important role in the 

self-insertion of peptide into SWCNT. 

For pep13 and pep14 (from the third class), I have also simulated the system with 
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initial structure of peptide being positioned within the inner space of SWCNT, then 

observe its conformational change over 1 ns of simulation time. It is found that both 

peptides remain inside the SWCNT. It is speculated that if initially positioned inside 

the CNT, the peptide would be trapped by the potential well of the CNT. The peptide 

does not necessarily move out spontaneously due to the energy barrier, even for 

peptides exhibiting low propensities.  

 

2.2.3 Impacts of CNT size 

Other factors that may have effects on the propensities involve diameters of 

SWCNTs, lengths of SWCNTs, etc.  

Taking into consideration that both the steric hindrance effect of CNTs and the 

van der Waals interactions between CNTs and peptides depend on the sizes of CNTs, 

the insertion process of peptides should be CNT-dimension dependent. 

As shown in Figure 2.10, if the diameter of the nanotube is too small, some bulky 

residues (for example, those have aromatic rings) may be stucked at the entrance of the 

SWCNT even though the insertion process starts normally. Therefore peptides would 

not be able to fully enter the nanotube. By contrast, if the diameter of the nanotube is 

large enough (Figure 2.4), the same peptide can be encapsulated into the nanotube 

completely. As an example, the critical diameter for a SWCNT to intake pep3 is 

approximately 18.9 Å . 

In order to clarify the effect of the SWCNT length on the propensity, two 

systems are tested, each composes of the same peptides but CNTs with different 
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lengths. In both cases, peptides could self-insert into the CNTs, and their normalized 

COM distances are compared in Figure 2.11. It is observed that the COM distance 

between the longer CNT and the peptide does not decrease after the peptide is fully 

encapsulated into the CNT. This may be due to that for such cases, there exist a 

potential well with broadened at bottom, the system could stay anywhere at the flat 

bottom of the potential well, and thus the peptide does not necessarily reach the central 

of the CNT. Therefore lengths of SWCNTs are not critical factors as long as the tubes 

are long enough to encapsulate the peptides. 

 

2.2.4 Correlations between hydrophobicities and propensities 

It is well-established that hydrophobic interactions play an essential role on the 

interactions between CNTs and peptides. In our study, hydrophobic interactions are 

not calculated explicitly because the macroscopic statistical properties such as 

averaged free energy and the entropy are not easily accessible in explicit solvent for 

MD system. Instead, I use K-D method (Kyte and Doolittle, 1982) to assign each 

amino acid residue a hydrophobicity value. The average hydrophobicity for each 

peptide corresponding to Table 2.1 is then calculated and plotted as bars in Figure 2.12. 

Comparing their average hydrophobicity values, it is found that peptides consisting of 

more hydrophobic amino acid residues tend to enter the SWCNTs more easily than 

those consisting of more hydrophilic polar residues. Such result is not surprising from 

the viewpoint of thermodynamics: hydrophobic solutes such as the SWCNT and 

hydrophobic peptide tend to aggregate to effectively reduce the hydrophobic surface 
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exposed to polar solvent and consequently to reduce the overall free energy of the 

system. It is also observed that pep8 through pep17 have comparable average 

hydrophobicity value, while they are differentiated in their affinities for SWCNTs as 

mentioned above. Other characteristics of amino acid residues such as sizes, charges 

and aromaticities may have impact on the interactions between SWCNTs and peptides. 

 

2.3 Remarks 

In this chapter, self-insertion behaviors of peptides into SWCNTs are studied in 

explicit solvent environment. Intensive numerical studies show that some peptides are 

capable of self-inserting into SWCNTs while others are not. Energetic analysis 

indicates that the electrostatic interactions, combined with the van der Waals 

interactions, contribute most to the insertion of peptides into SWCNTs. Other 

properties of peptides are also tested for their impact on the interaction. For example,   

sizes of SWCNTs should be chosen properly corresponding to dimensions of peptides 

to facilitate the insertion. From a macroscopic view, the hydrophobicity of a peptide 

correlates with the propensity.  
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Table 2.1 The list of the simulated peptides, type of SWCNTs, number of surrounding 
water molecules as well as the initial distance between the most adjacent two atoms of 

the peptide and the SWCNT along the nanotube axis. 
Assigned 
peptide 
name 

Peptides 
sequences 

Type of 
SWCNTs 

Number of 
surrounding 

Water 
Molecules 

Initial 
distances ( Å ) 

pep1 VEAGG (12, 12) 3172 2.5 
pep2 AAFEL (12, 12) 3072 4.1 
pep3 GLPCNQIYC (14, 14) 6373 2.7 
pep4 LLLLLLLL (12, 12) 4174 4.0 
pep5 FLIGI (12, 12) 3201 2.4 
pep6 DRVYIHPF (12, 12) 4985 5.6 
pep7 PHGGGWGQ (12, 12) 3750 4.0 
pep8 EEEEEEEE (12, 12) 4484 3.2 
pep9 QQQQQQQQ (12, 12) 4468 2.5 
pep10 KKKKKKKK (12, 12) 4628 3.2 
pep11 SQNGNRE (12, 12) 4058 3.5 
pep12 DNNNRTEE (12, 12) 3052 4.0 
pep13 GNNQQNY (12, 12) 4539 3.9 
pep14 DDDDDDDD (12, 12) 4488 3.2 
pep15 DKNNRQE (12, 12) 3993 4.4 
pep16 RRRRRRRR (12, 12) 4808 3.2 
pep17 NNNNNNNN (12, 12) 4451 4.0 
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Table 2.2 The properties of simulated peptides. For hydropathy distributions, each 
amino acid on the peptide is indicated as either ‘H’ (hydrophobic) or ‘P’ (polar), 

according to K-D method.   
Assigned 
peptide 
name 

hydropathy 
distributions 

Number of 
residues 

containing 
aromatic rings 

pep1 HPHPP 0 
pep2 HHHPH 1 
pep3 PHPHPPHPH 1 
pep4 HHHHHHHH 0 
pep5 HHHPH 1 
pep6 PPHPHPPH 2 
pep7 PPPPPPPP 0 
pep8 PPPPPPPP 0 
pep9 PPPPPPPP 0 
pep10 PPPPPPPP 0 
pep11 PPPPPPP 0 
pep12 PPPPPPPP 0 
pep13 PPPPPPP 1 
pep14 PPPPPPPP 0 
pep15 PPPPPPP 0 
pep16 PPPPPPPP 0 
pep17 PPPPPPPP 0 

 
 
 
 
 
 

Table 2.3 The list of the simulated peptides classified into three classed based on the 
insertion behaviors. 

peptide name Class 
pep1-pep5 First class 

pep6-pep11 Second class 
pep12-pep17 Third class 
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Bond stretching Angle bending 

  

Torsional Electrostatic interaction 

 
Van der Waals interaction 

 
 

Figure 2.1 Illustrations for potential energies between particles. 
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Figure 2.2 Strategies for implementation of simulation procedure.  
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Figure 2.3  The RMSDs for the backbone atoms on pep3 against the simulation time. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 2.4 The snapshots of the conformation of oxytocin (pep3) insertion into SWCNT at 
different simulation time: (a) initial structure, (b) 50ps, (c) 100ps, (d) 500ps, (e) 2ns. (f) 

shows the final structure (2ns) viewed along the axis of nanotube. The images are created 
with DS ViewerPro 5.0 software (Accelrys Inc., San Diego, CA) 
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(a) (b) 

Figure 2.5 The snapshots of the final structure of pep13 interacting with SWCNT at simulation 
time of 2ns. The images are created with DS ViewerPro 5.0 software (Accelrys Inc., San 

Diego, CA) 
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Figure 2.6 Normalized Center of Mass (COM) distances between the peptide and 
SWCNT as the function of MD simulation time. d0 is the initial COM distance 

between the peptide and the SWCNT, and d is the distance at the Corresponding 
simulation time. 
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Figure 2.7  (a) Potential energy of the simulated oxytocin (pep3)-SWCNT system as 
the function of COM distance between SWCNT and pep3. (b) Energy sum of the van 
der Waals energy and the electrostatic energy (non-bonded interaction energy) as the 

function of COM for pep3-SWCNT system. (c) The difference between potential 
energy and non-bonded interaction energy as the function of COM distance between 

pep3 and SWCNT. The half length of the nanotube is 12.9 Å .  
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(c) 

Figure 2.8 (a) Potential energy of the pep13-SWCNT system as the function of COM 
distance of SWCNT and pep13. (b) Energy sum of the van der Waals energy and the 

electrostatic energy (non-bonded interaction energy) as the function of COM for 
pep13-SWCNT system. (c) The difference between potential energy and non-bonded 
interaction energy as the function of COM distance between pep13 and SWCNT. The 

half length of the nanotube is 14.6 Å . 
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Figure 2.9 Normalized COM distances between the peptide and nanotube as the 

function of simulation time. Solid lines represent the cases with normal van der Waals 
parameters, dash lines are for the cases with the modified van der Waals parameters. 

 
 
 
 
 
 
 
 
 

 
Figure 2.10 Snapshots of conformation of oxcytocin and (12, 12) type SWCNT at 

simulation time of 2ns. The diameter of the nanotube is 16.1Α& , smaller than that of 
(14,14) in Figure 2.4. 
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Figure 2.11 Normalized Center of Mass (COM) distances between the peptide and 
SWCNT as the function of MD simulation time for the same peptide inserting into 

SWCNTs of different length. 
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Figure 2.12 Average hydrophobicity for simulated peptides. Higher values of the 
average hydrophobicity imply that the peptides are more hydrophobic. Sequence 

numbers of peptides are in accordance as listed in Table 1. Pep1 through pep5 rapidly 
insert into the SWCNTs, pep6 through pep11 partially insert into SWCNTs or insert 

completely with slow speed, pep12 through pep17 fail to insert into SWCNTs. 
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Chapter 3  

Estimation of interaction free energy  

 

 

The capability of evaluating the interaction free energy is essential for us to 

understand the mechanism of physical and chemical reactions. The MM-GBSA 

method has been successfully applied in many studies to predict the interaction free 

energies between biomolecules.  

In this chapter, I extend the MM-GBSA method to estimate the binding free 

energy of peptides onto the SWCNTs. The organization of this chapter is listed as 

follows. Section 3.1 presents the method of using continuum water medium solvent for 

calculating energetic contributions. The binding free energy model used in this work 

takes into account contributions of both the solute and the solvent and therefore the 

paths though the intermediate states are not traced. In section 3.2, the change in free 

energies upon binding are compared with binding affinities reported from experiments. 

Furthermore, the energetic contributions are analyzed. Our results show that the five 

peptides tested have diverse affinities for CNTs. The van der Waals interaction is the 

most significant contributor. The interactions between aromatic rings have also been 

explored.  

Section 3.3 gives further discussions arising from the previous study. As the 

computational model is qualitatively validated by comparing with the experimental 

results, the interaction free energy between encapsulated peptides and the SWCNT is 
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further investigated. The consistent finding that the van der Waals interaction 

dominates the interaction is drawn.  

In order to understand the various interaction affinities between individual amino 

acid and the same CNT, the same simulation strategy is applied on the free energy 

estimation of each of the amino acid-SWCNT interaction. A general comparison of the 

relative binding affinity between hydrophobic and hydrophilic groups of amino acids 

for the same SWCNT is carried out.  

Section 3.4 gives the remarks of this chapter. 

 

3.1 Methods  

There are two major steps involved to estimate the binding free energy of each 

peptide to CNTs. Firstly, MD simulations in explicit solvent to obtain the equilibrium 

structure of the peptide, the CNT, and the peptide-CNT complex are performed 

separately. Secondly the water molecules are removed from the equilibrated structure 

and the energy calculation is performed in implicit solvent using the MM-GBSA 

method. The peptide-CNT binding free energy is then obtained as the energy 

difference between the complex and the individual systems.  

 

3.1.1 Generation of initial structures 

To evaluate the free energies of peptides binding to SWCNTs, I adopt five 

peptide sequences, where the experimental relative binding affinities of these peptides 

for CNTs are available (Wang et al., 2003). Sequences of the peptides and their 
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average hydrophobicities calculated by the K-D method (Kyte and Doolittle, 1982) are 

listed in Table 3.1 for reference. A positive hydrophobicity value indicates that the 

peptide is hydrophobic and the negative value corresponds to hydrophilic peptides. 

Throughout the rest of the thesis, I refer to the peptides by their assigned name in 

Table 3.1, instead of listing the whole lengthy residue chains. The molecular properties 

of these peptides including the hydropathy distribution and the number of residues 

bearing aromatic rings are further illustrated in Table 3.2. 

In order to estimate the free energy change upon binding, for each system 

estimated, MD simulation experiment is carried out respectively for the complex of the 

peptide and the SWCNT solvated in water, the peptide in water, and the SWCNT in 

water. The Amber99 force field is used for building amino acid residues. 

Initial structure of a SWCNT is constructed as a hollow cylinder rolled up from a 

graphite sheet. A (6, 6) type SWCNT with diameter of 8.1 Å and length of 25.8 Å is 

used. Parameters of carbon atoms on SWCNTs are adopted the same as illustrated in 

Chapter 2.  

Initially, the peptide is constructed as a fully extended structure. Each complex of 

peptide-SWCNT contains one SWCNT and one peptide. The peptide is positioned 

approximately parallel to the SWCNT and parts of them contact directly. Subsequently 

the complex of peptide-SWCNT is surrounded by a layer of at least 10 Å of TIP3P 

water molecules. Water molecules are not accessible to the contact regions of 

peptide-SWCNT complex. Periodic boundary conditions are applied throughout the 

simulation.  
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3.1.2 MD simulation in explicit solvent 

The procedure of the MD simulation in explicit solvent is roughly identical to 

those stated in Chapter 2, while a brief description is given below. Firstly, for each 

initial structure of the complex, peptide or SWCNT solvated in explicit water 

molecules, energy minimization is performed to avoid steric clashes. The steepest 

descent method of minimization is used for the first 10 cycles and conjugate gradient 

minimization is run for the following 19990 cycles. MD simulation of constant volume 

and constant temperature (NVT) ensemble is then run for 100 ps to raise the 

temperature from initial value of 0K to 300K. Subsequently the structure is simulated 

for 1 ns under the conditions of constant pressure and constant temperature (NPT) 

ensembles.  

 

3.1.3 Calculations of energy contributions 

In MM-GBSA model, the molecular mechanical (MM) energies of the molecules 

are combined with the GBSA continuum solvent model to describe total free energies.  

 

3.1.3.1 Implementation of the GB model 

To calculate the solvent induced free energies of peptide-SWCNT interaction, the 

GBSA method is implemented. Both the polar and nonpolar terms are taken into 

consideration. The polar term is calculated by implementing a pairwise descreening 
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approximation. This particular form includes a Debye-Huckel term to account for salt 

effects at low salt concentrations (Srinivasan et al., 1999): 

0

1 1
2

gbf atoms
i j

pol gb
ij

q qeG
f

κ

ε

−⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (3.1)

Where iq  and jq  are atomic partial charges, 0ε  is the solvent dielectric 

constant, κ  is the Debye-Huckel screening parameter, and the double sum runs over 

all pairs of atoms. gbf  is a function that interpolates between the effective Born 

radius iα , when the distance ijr  between atoms is short, and the function is written 

as: 

1/ 22 2exp( / 4 )gb
ij i j ij i jf r rα α α α⎡ ⎤= + −⎣ ⎦  (3.2)

In the equation the effective Born radius iα  demonstrates how deeply buried a 

charge is in the low-dielectric medium, for example a protein or nucleic acid. The 

variable iα  depends not only on the intrinsic radius iη  of atom i , but also on the 

relative positions and intrinsic radii of all the other atoms in the molecules in the 

system: 

1 1 ( , )i i
j i

gα η η− −

≠

= −∑ r  (3.3)

These general characteristics can be applied to several pairwise analytical 

approximations of the Born radii (Bashford et al., 2000; Hawkins et al., 1995). In 

particular, the equation for ( ,  )g ηr  has been provided by Hawkins et al. (Hawkins et 

al., 1995). 

The intrinsic radius iη  is estimated from the atomic radius iR  by Equation 

(3.4). The overlap factors iS  approximately account for simultaneous overlap of three 

or more atoms. An overall offset is included to adjust the magnitudes of solvation 
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energies to match those from Poisson-Boltzmann calculation, therefore iη  is 

calculated by 

( )i i i offsetS R bη = +  (3.4)

The parameters are referred to the work of Tsui and Case (Tsui and Case, 2001). 

Although the GB model is an approximation to the physical situation with actual 

solvent molecules, eliminating the solvent molecules can greatly decrease the number 

of atoms in the system. This generally results in speed ups in the simulation, which is 

particularly significant as the number of water molecules required in the explicit 

solvent simulation is large.  

Due to the lack of a predefined solvent box, GB simulations are independent of 

the shape of the system. Another advantage of continuum models lies in the implicit 

averaging over the solvent degrees of freedom, so that this averaging does not need to 

be done by sampling the solute configurations explicitly. This property greatly 

simplifies calculations of thermodynamic quantities, and is very efficient for 

examining binding free energies between peptides and CNTs.   

The GBSA model 

While the GB model is used to compute the electrostatic solvent polarization 

energy, the total solvation free energy also includes nonpolar contributions. The 

nonpolar free energy arises from solvent–solvent cavity terms and attractive van der 

Waals solvent–solute interaction terms (Tomasi and Persico, 1994). These two terms 

are approximately proportional to the solvent accessible surface area (SA) of the solute 

molecule, with a surface tension term used as the linear scaling factor. The two energy 
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terms, polar ( polG ) and nonpolar ( nonpolG ) energy together make up the GBSA model 

(Qiu et al., 1997). 

In order to obtain solvent accessible surface areas from solute configurations, the 

linear combination of pairwise orbitals (LCPO) approach (Weiser et al., 1999) is 

implemented. This is a fast analytical approximation for computing exposed areas of 

atoms in molecules. This method makes use of linear combinations of terms composed 

from pairwise overlaps of hard spheres. First derivatives with respect to atomic 

coordinates are calculated to obtain the forces arising from this term.  

When two hard spheres, i  and j  show an overlap conformation, then iA , the 

accessible surface area of sphere i , is given by 

i i ijA S A= −  (3.5)

Where iS  is the surface area of the isolated sphere, 

24i iS rπ=  (3.6)

In which ir  is the radius of the sphere. 

ijA  is the area of sphere i  buried inside sphere j , or the overlap area of sphere 

i  with j , which can be expressed as the function of the internuclear distance ijd  

and the sphere’s radii ir  and jr  

2 2

2
2 2
ij i j

ij i i
ij

d r r
A r r

d
π

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.7)

The main equation in the LCPO method takes the following form to compute the 

accessible surface area of atom i : 
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Where ( )N i  denotes the neighbor list of i , or the list of spheres that overlap 

with sphere i . The second term in the equation involves the sum of pairwise overlaps 

if sphere i  with its neighbors. The third term is the sum of overlaps of the neighbors 

of i  with each other. The fourth term is a further correction for multiple overlaps in 

the system. 1 4P P−  are parameters estimated through multiple linear regression.  

Contributions of the nonpolar term are then calculated proportional to the solvent 

accessible surface ( A ) using Equation (3.9). Here the parameter 

2Å*/005.0 molkcal=σ  (Sitkoff et al., 1994).   

AGnonpol σ=  (3.9)

 

3.1.3.2 Evaluation of binding free energy from its components 

In order to implement the free energy calculation in continuum models, the final 

PDB structures of peptide-SWCNT complex, the SWCNT, and unbound peptides 

structures obtained from explicit solvent MD simulation are adopted. After the 

removal of water molecules, 50ps of MD simulations are carried out to arrive at the 

equilibrium state and another 50ps for data collections. All the energy components are 

sampled by averaging the results over the final 50ps.  

As shown in Equation (3.10), the binding free energy between a peptide and a 

SWCNT is estimated as the difference between the free energies of the complex in 
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water solvent ( s
complexG ), and that of the sum of the SWCNT ( s

cntG ), the peptide ( s
peptideG ) 

solvated in water, respectively.  

( )s s s
complex cnt peptideG G G GΔ = − +  (3.10)

The strategy is also shown in Figure 3.1. 

For each system representing the solvated molecules and the surrounding solvent, 

the free energy is calculated from the solute’s gas-phased molecular mechanics energy 

MME , and the solvation-induced free energy solG , which is expressed as 

solMM
s GEG +=  (3.11)

According to molecular mechanics theory, MME  could be calculated as 

internalMM vdw eleE E E E= + +  (3.12)

Which means that MME  is composed of the internal energy ( internalE ), the van der 

Waals interaction energy ( vdwE ), and the electrostatic energy ( eleE ). 

The internal energy includes the bond stretching, the angle bending and the 

torsion energy, which can be further expressed as 

torsionanglebond EEEE ++=internal  (3.13)

The contribution of the solvation free energy, solG , includes both the polar and 

nonpolar terms: 

nonpolpolsol GGG +=  (3.14)

The polar ( polG ) and nonpolar ( nonpolG ) energy contribution to the solvation free 

energy is estimated using GBSA (Onufriev et al., 2000; Tsui and Case, 2001) method 

as stated below.  
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Note that the energies and free energy contributions are all state functions. 

Therefore they can be calculated at different stages of the interaction systems 

regardless of their paths of evolutions to these states.  

In order to obtain a clear picture of the energy contributions, each term of  EΔ  

and GΔ  is also listed, which is calculated as the difference of this value between two 

states before and after binding. 

))()(()( nanotubeEpeptideEcomplexEE +−=Δ  (3.15)

The binding free energy can be finally calculated using  

internalMM sol vdw ele pol nonpolG E G E E E G GΔ = Δ + Δ = Δ + Δ + Δ + Δ + Δ (3.16)

 

3.2 Results  

3.2.1 Peptides display diverse propensities 

In the five peptide-SWCNT complex systems, the conformations of peptides 

change to favor interactions with SWCNTS. Some peptides wrap around the nanotubes 

completely while others partly contact the surface of nanotubes. As shown in Figure 

3.2, pep22 (Figure 3.2 (a)) does not wrap the SWCNT completely, but it interacts more 

with water instead. Pep20 binds tightly onto the SWCNT surface (Figure 3.2 (d)), 

which means that a larger part of the peptide interacts with the SWCNT. Apparently 

the contact area of pep22 with the SWCNT surface is much smaller than that of pep20. 

Behaviors of unbound peptides solvated in water are also simulated and analyzed. 

Pep22 is folded driven by the clustering in its end groups. Pep20 shows a high 

tendency of clustering in aromatic rings. This structure implies a favorable 
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conformation of pep20 interacting with SWCNT, particularly for ππ −  stacking of 

aromatic rings on the peptide and SWCNT surfaces (Wang et al., 2003).  

 

3.2.2 Error analysis of the systems in explicit solvent 

To examine the convergences and stabilities of MD simulations, the energetic 

trajectories and structural changes of the systems are traced. The potential energy 

trajectories are analyzed with reference to simulation time. The mean value of the 

potential energies and their standard deviations during the last 500ps are provided in 

Table 3.3 to verify the thermal stability of the simulations. The data demonstrates that 

the energies converge with only small fluctuations. 

The stability of the simulation is further studied through analysis of the root 

meant square deviations (RMSDs) of the backbone atoms on peptides, both in bound 

and unbound states. One randomly selected RMSD trajectory of backbone atoms of 

pep20 in the two states is provided in Figure 3.3. The RMSDs are stable with no 

unreasonable oscillations.  

 

3.2.3 Free energy calculations and energetic analysis  

Binding affinities between CNTs and peptides are sensitive to amino acid 

sequences, implying the possibility for design of nanotubes-based probes. In order to 

understand interactions between these two kinds of materials, analyzing the binding 
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free energies between CNTs and different peptides sequence is an efficient and reliable 

approach. 

For the five calculated systems, the mean values of the absolute energy 

contributions and their standard deviations estimated from the 50ps data-collection 

period are provided in Table 3.4. Overall the energies maintain constant and fluctuate 

within standard errors, except that eleE  and polG  appear to have relatively larger 

fluctuation. However, the energy sum of these two terms, totaleleE _  converges, and the 

errors are canceled by each other. Furthermore, one prolonged run for pep22 has been 

performed using the same method for 1ns for testing, 500ps for equilibrium and 500ps 

for data collection. However, the longer period of simulation doesn’t add to the 

convergence of the energy contributions. 

Based on the results of MD simulations and the free energy calculations, the 

binding free energies GΔ  and energy contributions are shown in Table 3.4. In this 

table, GΔ  qualitatively correlates with the binding affinities between peptides and 

SWCNTs. The greater the free energy changes between the two states before and after 

binding, or the lower the value of GΔ , the stronger is the binding affinities. The free 

energy implies that the peptide and the SWCNT should overcome certain value of 

energy barrier to dissociate once they bind to each other. 

Figure 3.4 lists the scaled experimental results of peptides’ binding affinities to 

CNTs (Wang et al., 2003) and our calculated binding free energies. In the experimental 

study, values of plaque-forming units correlate with binding affinities. I qualitatively 

compare our estimated free energies with that of the plaque-forming units. Among the 
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five peptides, absolute free-energy value of pep20 binding to CNT is the highest, 

corresponding to the strongest binding affinity observed in experiments. Furthermore, 

in agreement with experimental results, with only one mutation from Trp to Ser at the 

sixth position of peptide sequences, from pep18 to pep19, and pep20 to pep21, both 

mutations show apparent influence on decreasing of the binding affinities.   

The relative energy values are in good agreement with experiments, except for 

the calculation of pep22. From experiment results, pep22 has much weaker affinity for 

SWCNTs than pep18 and pep20, but slightly stronger than pep19 and pep21. In our 

simulation, binding free energy of pep22 to the SWCNT ranks the weakest among the 

five.  

Although the calculated free energies qualitatively reflect experimental 

observations, the energy contributions and their roles in binding of peptides to 

SWCNTs remain unclear. I observe that the contributions of the internal energies are 

quite small, and hence non-bonded interactions play a dominant role.  

It is also noted that the electrostatic interaction energy is balanced to some degree 

by the polar solvation energy. The sum of the two terms could be observed by totaleleE _ . 

The polar contribution of the solvation screen much of the electrostatic interaction in 

gas-phase, so that the value of totaleleE _Δ  is much smaller than that of eleEΔ  or 

polGΔ  respectively. On the other hand, the contribution of the nonpolar solvation 

energy to the total binding energy is almost negligible. Therefore it seems that the van 

der Waals interaction is the driving force for the binding process. For example, both 

pep18 and pep20 have stronger van der Waals interactions, and they have stronger 
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binding affinities. Table 3.6 shows the binding free energy differences between pep18 

and pep19, pep20 and pep21. There is only one mutation from Trp to Ser at the sixth 

position of the peptide sequences for both pairs. This results in an unfavorable loss in 

binding free energies. Comparing interaction energies of pep18-SWCNT with that of 

peptide 19-SWCNT complex, there’s a loss of 9.47 kcal/mol in the van der Waals 

interaction and 4.93 kcal/mol in totaleleE _Δ , the sum of  eleEΔ  and polGΔ . The 

mutation from peptide 20 to peptide 21 leads to a loss of 10.24 kcal/mol in the van der 

Waals interaction and 2.43 kcal/mol in toltaleleE _Δ . In both cases, although eleEΔ  and 

polGΔ  have different trends of fluctuation, their summation shows a slight loss after 

the mutation. There is a stronger contribution of the van der Waals interaction before 

the mutation from Trp to Ser. The major loss in binding free energy is due to the loss 

of this interaction.  

 

3.2.4 The effect of aromatic rings  

 The interactions between aromatic rings appear to be essential for the binding of 

peptides to SWCNTs. It has been observed experimentally that aromatic rings affected 

ligands or peptides’ affinities for CNTs significantly (Chen et al., 2001; Wang et al., 

2003). 

Similar results through calculations of the five peptides’ affinities for SWCNTs 

are also obtained. As discussed in the previous section, pep19 has only one mutation 

from pep18 at the sixth position, from Trp to Ser, and the same mutation is from pep20 

to pep21. It is found that significant propensity changes result from this crucial 
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mutation. The snapshots of pep20-SWCNT complex conformation over the course of 

the MD simulation are also recorded. The orientation of planar of aromatic ring on Trp 

on the sixth position of pep20 approximately parallels the CNT surface, with an offset 

from the rings in CNT surface. This is also called an “offset stacked” interaction 

configuration (Waters, 2002). The configurational trace reveals that a stable structure 

is formed due to the aromatic affinities within the peptide-CNT complex. Aromatic 

rings on other positions of the peptide may interact with the CNT surface with 

edge-to-face or other contact configurations.  

Based on the results that the van der Waals interaction dominates the binding of 

peptides to SWCNTs, it is expected that the stacked structure leads to stronger 

interaction energy. In order to further clarify the interaction mechanisms between 

aromatic rings and SWCNTs, a complex comprised of only one amino acid of Trp and 

one SWCNT is simulated for energy calculation. The complex in explicit water solvent 

is simulated first to obtain the equilibrium structure. The final equilibrium structure 

shows that the aromatic ring on the residue Trp also presents offset stacked 

configuration towards rings on the SWCNT. Afterwards the complex structure is 

adopted for potential energy calculation in vacuum. The Trp residue is located at 

different positions along the length of the SWCNT, each separated by approximately 

the length of the radius of one aromatic ring, with the trajectory parallel to the CNT 

axis. On the other hand, the residue is positioned in a greater distance from the CNT 

surface, which is approximately the radius of an aromatic ring. Illustration of the 

interaction conformation is provided in Figure 3.5. Potential energies of the system 
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with Trp in these different positions are calculated repeatedly with restrained structures. 

Analysis of the results indicates that the potential energy fluctuation along the length 

of CNT surface is quite small. The energy difference is within the range of 1 kcal/mol. 

However, potential energy change depending on the distance between the ring and 

CNT surface is much more substantial, the energy increases by 8.3 kcal/mol as the 

distance is enlarged approximately the radius of a ring. Despite the variations of the 

potential energy at different locations on the CNT surface, the distance between 

aromatic rings on the amino acid residue and the CNT surface is more crucial, at least 

within certain range. Therefore the stacked conformation is expected to possess 

stronger van der Waals interaction, which leads to an optimized lower free energy.  

 

3.3 Discussions  

3.3.1 Functionalizing CNTs with peptides 

One of the main challenges in applications of CNTs is the dispersion of 

nanotubes in solution and control of their assembly in solvent. Coating the CNTs with 

peptides could enable peptides to interact noncovalently with CNTs and therefore is 

one approach to modify the solubility of SWCNTs. Average hydrophobicities of the 

five peptides investigated in this chapter are all slightly below zero, which indicates 

that on the whole, these peptides are prone to be hydrophilic and are in favor of 

interacting with water. When hydrophilic peptides are used to coat the CNTs, the tubes 

will be more soluble in water instead of being highly hydrophobic.  
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3.3.2 Calculations of the entropic term 

In this study, energy contributions are summed unweighted to calculate the 

change of free energies, and the entropic change of solute is not taken into 

consideration. The entropy calculation is one of the greatest challenges in MD 

simulation, accurate and complete estimation for entropy through MD calculation is 

still under exploration. The entropy contribution can be estimated by performing 

normal mode analysis on the three species, for example the vibrational, transitional, 

and torsional terms of the entropy of the solute to the binding free energies (Massova 

et al., 1999), which were options for estimation of the entropy. However, in practice 

entropy contributions can be neglected if only a comparison of states of similar 

entropy is expected, such as two ligands binding to the same protein, or peptides in the 

comparable length interacting with the same SWCNT. The reason for this is that 

normal mode analysis calculations are computationally expensive and tend to have a 

large margin of error that introduces significant uncertainty in the result (Case et al., 

2002).  

 

3.3.3 Calculations of free energy of peptides encapsulated into SWCNTs 

3.3.3.1 Implementation details 

Based on the procedure of evaluating free energies of peptides binding to 

SWCNTs, the free energies of peptides encapsulated into SWCNTs are further 

discussed. Three representative peptides, named according to Chapter 2 as pep3 

(GLPCNQIYC), pep4 (LLLLLLLL), and pep4a (LLLL) are selected for investigation 
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of the interaction free energy of the peptide encapsulated into the SWCNT. As 

illustrated in Chapter 2, peptide 3 is a commonly used drug peptide named oxytocin, 

pep4 and pep4a are peptides composed of the same hydrophobic amino acid residue 

Leu but with different length. All the three peptides are able to spontaneously insert 

into the SWCNT. The purpose of investigating pep4 and pep4a is to clarify the 

significance of peptide length on affinity of the peptide for SWCNTs.  

The procedure of implementing free energy calculation based on MM-GBSA 

method follows that introduced in Section 3.1. In order to estimate the interaction free 

energy, for each estimated system, MD simulation experiment is carried out 

respectively for the complex of the peptide and the SWCNT solvated in water, the 

peptide in water, and the SWCNT in water. The initial structure of pep3 is extracted 

from Protein Data Bank with PDB entry 1NPO. Initial structures of pep4 and pep4a 

are generated using LEAP module provided by Amber 7 suit of programs in their 

stretched structure. A type (14, 14) SWCNT is tested for pep3 and type (12, 12) 

SWCNT for pep4 and pep4a respectively to encapsulate peptides. In each 

peptide-SWCNT system, the peptide is initially positioned along the axis of the 

SWCNT with a small distance between them (approximately 2 nm). All the 

subsystems are surrounded by a 10 Å layer of TIP3P water molecules. Periodic 

boundary conditions are applied.  

MD simulation is carried out on the generated structures solvated in explicit 

solvent. After energy minimization, MD simulation of constant volume and constant 

temperature (NVT) ensemble is then run for 100 ps to raise the temperature from 
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initial value of 0K to 300K. Subsequently the structure is simulated for 1900 ps under 

the conditions of constant pressure and constant temperature (NPT) ensembles. A time 

step of 1 fs is used to integrate the Newton’s equation of motion and the coordinates of 

the structures are saved every 5ps. The free energy and the energy contributions are 

calculated according to MM-GBSA model, with 50ps for equilibrium and 50ps for 

data collection.   

 

3.3.3.2 Results 

Based on the two-state theory, the conformations of the peptide in solvent and in 

peptide-SWCNT complex are compared. Figure 3.6 illustrates the conformations of the 

peptide in solvent and pep3-SWCNT complex at the two end states, respectively. It is 

shown that the peptide exhibits a compact structure in bulk solvent (Figure 3.6 (a)). 

However, as the peptide is encapsulated into the SWCNT, stretched conformations are 

observed. As shown in Figure 3.6 (c), the side view of the peptide-SWCNT complex 

indicates an adsorption of the peptide onto the inner surface of the SWCNT. It is 

inferred that the existence of the CNT would influence the conformation of the 

peptide. 

The mean values of the absolute energy contributions and the standard deviations 

estimated based on the 50ps data collection period are listed in Table 3.7. Overall the 

energies converge and fluctuate within standard errors. As shown in Table 3.8, the 

contributions of the internal energies are quite small, and hence non-bonded 

interactions play a dominant role. The nonpolar solvation energy nonpolarG  is 
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proportional to the change of the surface accessible area, and overall its contribution to 

the total binding energy is small. The van der Waals interaction has a significant 

contribution to the binding, which is consistent with the case of peptides binding to 

SWCNTs. 

The effect of the peptide length is also explored. If the energetic contributions of 

pep4a is compared to that of the pep4, it is found that the binding free energy of pep4a 

to the SWCNT is much higher than that of pep4, indicating a relatively weaker binding 

affinity. In addition, the major loss is the van der Waals interaction, which supports the 

point that the van der Waals interaction dominates the binding process. For example, 

vdwEΔ  is equal to -49.6 molkcal / for pep4a, which contains four residues of Leu, 

while the value of vdwEΔ  decrease to -106.5 molkcal /  as the number of Leu 

increases to eight for pep4. A longer peptide leads to a stronger van der Waals 

interaction between the peptide and the SWCNT.  

 

3.3.4 The influence of hydrophobicities of amino acids 

In order to clarify the affinity of different amino acids for SWCNTs, intensive 

simulations have been carried out on twenty amino acids individually based on 

MM-GBSA method. Through this a general picture of relative binding strength of 

hydrophobic and hydrophilic amino acids to SWCNT can also be obtained.  

The peptides are replaced with single amino acid, and approximately the same 

implementation method and procedure is used. After the simulation of the amino acid, 

the SWCNT, and the amino acid-SWCNT interaction in the explicit solvent, 
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respectively, the MM-GBSA method is performed to calculate the binding free energy 

for 10 ps of equilibration and 20 ps of data collection period. The binding free energy 

is then obtained as the energy difference between the complex and the individual 

systems.  

)( s
aa

s
cnt

s
complex GGGG +−=Δ  (3.17)

The stability of both energetic and structural trajectories throughout the MD 

simulation in explicit solvent is analyzed before the free energy is evaluated. In the 

stage of free energy calculation using MM-GBSA method, the average free energy and 

their standard deviations during the data collection period are provided in Table 3.9. 

The standard errors are also analyzed to trace the stability of energy perturbation.  

The calculation results indicate that the binding free energies vary with different 

amino acids. In order to qualitatively derive the interaction between hydrophobic and 

hydrophilic the occurrence of each amino acid in proteins iw  (Doolittle, 1989) and 

their estimated free energy iGΔ  are utilized to evaluate the average binding free 

energy for both the hydrophobic group and the hydrophilic group. iw  is listed in 

Table 1.1. 

According to the K-D hydropathy scale (Kyte and Doolittle, 1982), each amino 

acid has been assigned a value indicating its relative hydrophilicity and 

hydrophobicity. The twenty amino acids are classified into two groups based on this 

scale. The amino acids with positive values (including Ile, Val, Leu, Phe, Cys, Met, 

Ala) are considered hydrophobic (H) and the others with negative values are classified 
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into hydrophilic (P) groups. For hydrophobic group, the average binding free energy is 

1 1
/ 5.63 /

h hn n

H i i iG G w w kcal molΔ = Δ = −∑ ∑ , and 
1 1

/ 3.97 /
p pn n

P i i iG G w w kcal molΔ = Δ = −∑ ∑   for 

hydrophilic group. Where 7hn =  and 13pn = , and values of iw  are listed in Table 

1.1. These results imply that the both hydrophobic and hydrophilic amino acids have 

affinities for CNTs and generally the binding affinity of hydrophobic amino acid is 

stronger. In addition, experimental studies have shown that both hydrophobic and 

hydrophilic peptides may spontaneously bind to CNTs. On the other hand, it is also 

observed that hydrophobic peptides indeed have stronger affinities for CNTs than 

hydrophilic ones (Wang et al., 2003). Therefore our simulation results also agree with 

that of experiments. 

 

3.3.5 Impact of the aromatic ring 

It is also inferred from Table 3.9 that amino acids bearing aromatic rings have 

relatively stronger binding free energies for SWCNT, for example Trp and Phe. 

Consistently, it is observed that for pep18 through pep22, those with lower values of 

average hydrophobicities may show high affinities for SWCNTs, when they contain 

aromatic rings. For a peptide, hydrophobicity properties on its own can not determine 

its affinity for SWCNT. Aromatic rings also make contributions here, concluded both 

from energetic analysis and conformational observation. The stacked structure of 

aromatic rings may decrease the hydrophobic surface exposed to solvent. The van der 

Waals interaction is also stronger for such structure. 
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3.4 Remarks  

In this Chapter, free energies of peptides interacting with SWCNTs are 

calculated based on combined simulation methods of MD and continuum solvation 

model. The interaction free energies take into accounts both contributions of the solute 

and solvent. Both binding of peptides onto the outersurface of the SWCNT and 

encapsulation of peptides into the SWCNT are studied. The calculation results of 

binding free energies are proven to be satisfactory compared with experimental results 

of binding affinities of different peptides for SWCNTs.  

The energy contributions are also analyzed, it is found that noncovalent bond 

interactions dominate this binding process, among which the van der Waals interaction 

appears to be the most significant contributor. Aromatic rings on peptides have strong 

affinities for CNT surface, which is also driven by the van der Waals interaction. 

Further discussion implies that generally hydrophobic amino acids possess 

stronger affinity for SWCNTs than hydrophilic ones, while other effects such as 

aromatic rings on the amino acid also have impacts on the interaction. 

Despite the difficulties on estimation of some terms contributing to the total free 

energy, such as entropic change of the solute, the method I adopt is a good estimation 

of the binding affinities between peptides and CNTs. The method is also applicable for 

calculation of the interaction energies between other non-biological materials and 

biological materials.  
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Table 3.1 Sequences of five 12-residue peptides, as well as their average 
hydrophobicity. The hydrophobicity values of amino acid residues are calculated using 

the K-D method. 

Assigned peptide name Peptide sequence Average hydrophobicity 

pep18 HWKHPWGAWDTL -1.067 

pep19 HWKHPSGAWDTL -1.058 

pep20 HWSAWWIRSNQS -1.083 

pep21 HWSAWSIRSNQS -1.075 

pep22 LPPSNASVADYS -0.192 

 

 
 
 
 
 
 

Table 3.2 The properties of simulated peptides. For hydropathy distributions, each 
amino acid on the peptide is indicated as either ‘H’ (hydrophobic) or ‘P’ (polar), 

according to K-D method.   

Assigned peptide name hydropathy distributions 
Number of residues 
containing aromatic 

rings 

pep18 PPPPPPPHPPPH 3 

pep19 PPPPPPPHPPPH 2 

pep20 PPPHPPHPPPPP 3 

pep21 PPPHPPHPPPPP 2 

pep22 HPPPPHPHHPPP 1 
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Table 3.3 The average values of potential energies and their standard deviations over 
the last 500ps for simulated systems solvated in explicit TIP3P water molecules. 

Potential energies of the 
systems (kcal/mol) Mean  Std dev  

Pep18 -31480.0547 50.2578 
Pep8-SWCNT -31424.5957 54.0284 

Pep19 -25984.2227 52.9747 
Pep19-SWCNT -29909.0117 50.4474 

Pep20 -24530.0176 37.2812 
Pep20-SWCNT -26704.5547 48.2280 

Pep21 -23029.5352 41.4693 
Pep21-SWCNT -28454.0020 52.7485 

Pep22 -19882.0176 41.2324 
Pep22-SWCNT -41072.1289 61.7204 

SWCNT -11439.8437 30.5320 

 

 

Table 3.4  (a)-(e) The energy contributions of the five peptides binding to SWCNTs, 
and the standard deviations of the energy terms. 
Pep18-SWCNT 

complex Pep18 SWCNT Contributions 
(kcal/mol) 

mean Std dev mean Std dev mean Std dev 

internalE  1638.3746 12.2537 276.6918 8.2177 1367.0123 9.0915 

eleE  -12.1162 60.7432 7.3884 66.93 0 0 

vdwE  242.9762 7.5688 -23.9423 4.6645 309.2535 4.8121 

vacE  1869.2349 62.0499 260.1379 67.0886 1676.2667 8.3616 

polG  -394.1432 60.7556 -425.8539 65.7464 0 0 

nonpolG  9.4334 0.2452 6.4378 0.284 3.8638 0.0123 

solG  -384.7097 60.7575 -419.4159 65.6952 3.8638 0.0123 

totaleleE _  -406.2593 4.2575 -418.4655 4.4762 0 0 

G  1484.525 11.2766 -159.2781 7.1467 1680.1296 8.3621 
 

(a) 
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Pep19-SWCNT 
complex Pep19 SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1631.5192 12.0961 272.147 8.1537 1367.0123 9.0915 

eleE  142.6086 28.6066 170.8088 76.1325 0 0 

vdwE  250.7564 4.3113 -25.6338 4.6942 309.2535 4.8121 

vacE  2024.8838 31.429 417.322 77.4235 1676.2667 8.3616 

polG  -557.3611 28.412 -602.6929 75.0763 0 0 

nonpolG  9.9994 0.0369 5.7827 0.3024 3.8638 0.0123 

solG  -547.3617 28.4117 -596.9105 74.9688 3.8638 0.0123 

totaleleE _  -414.7525 2.2455 -431.8842 4.6101 0 0 

G  1477.5217 11.5573 -179.5883 7.5352 1680.1296 8.3621 
 

(b) 
 
 
 
 

Pep20-SWCNT 
complex Pep20 SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1638.374 12.8965 270.0867 10.5467 1367.0123 9.0915 

eleE  -345.1888 76.0889 -246.2108 91.7371 0 0 

vdwE  244.1539 6.3216 -23.1936 5.4034 309.2535 4.8121 

vacE  1537.3383 75.3554 0.6823 91.2897 1676.2667 8.3616 

polG  -319.562 74.7975 -417.1699 89.6081 0 0 

nonpolG  10.1645 0.1696 6.9329 0.3363 3.8638 0.0123 

solG  -309.3974 74.8006 -410.2368 89.6046 3.8638 0.0123 

totaleleE _  -664.7509 5.5092 -663.3806 6.1703 0 0 

G  1227.9415 11.772 -409.5546 7.8099 1680.1296 8.3621 
 

(c) 
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Pep21-SWCNT 
complex Pep21 SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1624.3468 13.0358 250.7221 8.4374 1367.0123 9.0915 

eleE  -409.3298 86.1343 -526.4892 96.0464 0 0 

vdwE  248.9652 6.7611 -28.4102 5.2523 309.2535 4.8121 

vacE  1463.9817 88.3124 -304.1774 96.097 1676.2667 8.3616 

polG  -259.5987 85.1361 -144.1688 93.6886 0 0 

nonpolG  9.2655 0.1538 5.8317 0.2158 3.8638 0.0123 

solG  -250.3332 85.1506 -138.3371 93.6964 3.8638 0.0123 

totaleleE _  -668.9283 5.2098 -670.658 5.8716 0 0 

G  1213.6492 11.9748 -442.5143 7.44 1680.1296 8.3621 
 

(d) 
 
 
 

Pep22-SWCNT 
complex Pep22 SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1582.9836 12.3242 219.3674 7.7071 1367.0123 9.0915 

eleE  -198.8516 64.7461 -293.2146 72.3533 0 0 

vdwE  267.3004 7.1236 -7.6251 4.8981 309.2535 4.8121 

vacE  1651.432 65.2193 -81.4723 72.9131 1676.2667 8.3616 

polG  -268.2461 63.3083 -194.4066 71.0038 0 0 

nonpolG  9.0397 0.15 6.0703 0.1855 3.8638 0.0123 

solG  -259.2063 63.2931 -188.3364 70.9858 3.8638 0.0123 

totaleleE _  -467.0977 4.1893 -4 87.621 4.0205 0 0 

G  1392.226 10.6293 -269.8085 6.3475 1680.1296 8.3621 

 
(e) 
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Table 3.5   The comparison of energy contributions of peptides binding to SWCNTs. 

Contributions(kcal/mol) pep18 pep19 pep20 pep21 pep22 

internalEΔ  -5.3295 -7.6401 1.275 6.6124 -3.3961 

eleEΔ  -19.5046 -28.2002 -98.978 117.1594 94.363 

vdwEΔ  -42.335 -32.8633 -41.906 -31.8781 -34.328 

vacEΔ  -67.1697 -68.7049 -139.611 91.8924 56.6376 

polGΔ  31.7107 45.3318 97.6079 -115.43 -73.8395 

nonpolGΔ  -0.8682 0.3529 -0.6322 -0.43 -0.8944 

solGΔ  30.8424 45.685 96.9756 -115.86 -74.7337 

totaleleE _Δ  12.2062 17.1317 -1.3703 1.7297 20.5233 

GΔ  -36.3265 -23.0196 -42.6335 -23.9661 -18.0951 

 
 
 
 

Table 3.6  Relative binding free energies between pep18 and pep19, and pep20 and 
pep21. GΔΔ  of pep18-pep19 is calculated as 

( 18 ) ( 19 )G G pep SWCNT G pep SWCNTΔΔ = Δ − −Δ − , and the same with other energy 

contributions and that of pep20-pep21. 

Contributions(kcal/mol) pep18-pep19 pep20-pep21 

lEinternaΔΔ  2.3106 -5.2929 

eleEΔΔ  8.6956 -206.4158 

vdwEΔΔ  -9.4717 -10.2413 

vacEΔΔ  1.5352 -221.95 

polGΔΔ  -13.6211 203.9839 

nonpolGΔΔ  -1.2211 -0.2019 

solGΔΔ  -14.8426 203.782 

toltaleleE _ΔΔ  -4.9255 -2.4319 

GΔΔ  -13.3069 -18.168 
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Table 3.7  (a)-(c) The energy contributions of the three peptides inserting into to 
SWCNTs, and their standard deviations of the energy terms, respectively. 

Pep3-SWCNT 
complex Pep3 SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1191.5861 15.3248 169.0035 6.5918 1019.4637 12.4125 

eleE  -204.6609 51.6702 -148.585 67.1861 0 0 

vdwE  495.4647 7.6932 -3.8899 3.9863 583.4814 4.3773 

vacE  1482.3896 53.4126 16.5285 67.8999 1602.9449 11.6556 

polG  -202.7411 51.0705 -276.8427 67.0532 0 0 

nonpolG  10.8287 0.1969 5.4019 0.1976 7.9816 0.026 

solG  -191.9124 51.0292 -271.4408 66.9631 7.9816 0.026 

totaleleE _  -407.4019 3.3831 -425.4276 3.627 0 0 

G  1290.4775 11.2524 -254.9122 7.8562 1610.9267 11.2014 

(a) 

 

Pep4a-SWCNT 
complex Pep4a SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1187.9714 12.5567 78.6398 5.3064 1110.8688 11.0425 

eleE  -179.9952 26.3942 -104.3704 25.3194 0 0 

vdwE  509.0128 7.0548 5.1788 2.5071 553.4804 4.4837 

vacE  1516.9889 32.071 -20.5519 26.0232 1664.3497 10.6876 

polG  -66.8007 25.8641 -149.3291 25.3112 0 0 

nonpolG  8.5188 0.1875 3.4415 0.0816 7.0454 0.0201 

solG  -58.2819 25.8924 -145.8875 25.294 7.0454 0.0201 

totaleleE _  -246.7959 3.3896 -253.6995 1.8106 0 0 

G  1458.7071 105946 -166.4394 6.4258 1671.3946 10.5351 

(b) 
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Pep4-SWCNT 
complex Pep4 SWCNT Contributions 

(kcal/mol) 
mean Std dev mean Std dev mean Std dev 

internalE  1286.4398 15.0647 162.9834 6.4882 1110.8688 11.0425 

eleE  -227.7805 37.5617 -143.454 58.2402 0 0 

vdwE  450.0414 9.4405 3.0397 3.5016 553.4804 4.4837 

vacE  1508.7008 39.9636 22.5692 58.5838 1664.3497 10.6876 

polG  -132.3807 36.4556 -239.3704 57.5327 0 0 

nonpolG  10.0537 0.1912 5.8221 0.1372 7.0454 0.0201 

solG  -122.327 36.4765 -233.5482 57.5546 7.0454 0.0201 

totaleleE _  -360.1612 3.2885 -382.8243 3.0567 0 0 

G  1386.3737 10.3652 -210.9792 7.5981 1671.3946 10.5351 
 

(c) 
 
 
Table 3.8 The comparison of energy contributions of peptides inserting into SWCNTs. 

Contributions(kcal/mol) pep3 pep4a pep4 

internalEΔ  3.1189 -1.5372 12.5876 

eleEΔ  -56.0759 -75.6248 -84.3265 

vdwEΔ  -84.1268 -49.6464 -106.4787 

vacEΔ  -137.0838 -126.8089 -178.2181 

polGΔ  74.1016 82.5284 106.9897 

nonpolGΔ  -2.5548 -1.9681 -2.8138 

solGΔ  71.5468 80.5602 104.1758 

totaleleE _Δ  18.0257 6.9036 22.6631 

GΔ  -65.537 -46.2481 -74.0417 

 
 



Chapter 3                                                       Estimation of interaction free energy                

 100

Table 3.9  Binding free energies and the standard deviations estimated using 
MM-GBSA method. The energy unit in this table is kcal/mol. The free energy of the 

SWCNT for all the twenty systems is 1653.5895s
cntG =  kcal/mol and the standard 

deviation is 8.7468 kcal/mol. The binding free energy is estimated as 

)( s
aa

s
cnt

s
complex GGGG +−=Δ . The lower value of  GΔ  correlates to a stronger binding 

affinity. 
The amino 

acid-SWCNT 
Amino Acid GΔ  Amino 

acid mean Std dev mean Std dev  

Ile 1584.591 8.2012 -62.4168 1.7384 -6.5813 

Val 1559.739 9.7484 -89.0848 1.7052 -4.7658 

Leu 1565.049 10.427 -81.4391 1.8871 -7.1018 

Phe 1598.538 8.5823 -48.4989 1.7332 -6.5523 

Cys 1596.942 9.0752 -53.5529 1.429 -3.0945 

Met 1586.07 9.1196 -59.2105 1.9881 -8.3093 

Ala 1596.049 8.4567 -54.1631 1.7447 -3.3771 

Gly 1573.276 10.1111 -76.9428 1.0023 -3.3711 

Thr 1552.899 9.1481 -97.6639 2.1033 -3.0267 

Ser 1570.769 8.7619 -80.4642 1.4295 -2.3565 

Trp 1601.97 9.2565 -43.6792 2.9699 -7.9406 

Tyr 1571.817 9.3792 -75.6519 1.8876 -6.1211 

Pro 1594.68 8.6813 -55.662 1.8604 -3.2473 

His 1605.269 9.9353 -42.3449 2.2036 -5.9758 

Glu 1623.309 8.8987 -25.4096 1.9013 -4.8712 

Asn 1515.04 7.7544 -133.307 1.5842 -5.243 

Gln 1536.462 8.6544 -114.396 1.9972 -2.7319 

Asp 1613.098 10.0269 -34.2139 1.5893 -6.2779 

Lys 1570.113 10.2352 -81.9991 2.2068 -1.4772 

Arg 1400.151 8.9225 -248.73 2.5351 -4.7084 
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Figure 3.1 The strategy of estimating interaction free energy between two states.  
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(a) (b) 

(c) (d) 

Figure 3.2  Snapshots of final structures of peptides and peptide-SWCNT complex in 
water solvent.  (a) pep22 (b) pep22-SWCNT complex (c) pep20 (d) pep20-SWCNT 
complex. The images are created with DS ViewerPro 5.0 software (Accelrys Inc., San 

Diego, CA) 
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Figure 3.3 The RMSDs for the backbone atoms on pep20. The dotted lines represent 

the unbound peptide and the solid lines represent the peptide in the complex. 

 

 

 

 

 
Figure 3.4 The comparison of binding free energies with experimental results. The 

binding free energies are drawn as their absolute values (kcal/mol). The 
plaque-forming units from experimental results are scaled linearly in relation to the 

absolute values of the binding free energy of pep20. Larger GΔ  and plaque-forming 
unit values correspond to higher binding affinities. 
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Figure 3.5 The scheme for calculating energy potential of residue Trp 
on the surface of a SWCNT. The residue containing an aromatic ring 
is moved along two directions for positioning and energy calculations. 
 

  

 

(a) 

  

(b) (c) 

Figure 3.6 Snapshots of final structures of peptides and peptide-SWCNT complex in 
water solvent.  (a) pep4 (b) pep4-SWCNT complex (c) side view of pep4-SWCNT 
complex. The images were created with DS ViewerPro 5.0 software (Accelrys Inc., 

San Diego, CA) 
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Chapter 4  

Thermodynamic studies based on a hydrophobic-polar (HP) 

lattice model  

 

 

Computational simulation has been critical in revealing the essential chemical 

and physical phenomena that are not accessible to experiments. As shown in Chapter 2 

and Chapter 3, I have studied the self-insertion of peptides into single-walled carbon 

nanotubes (SWCNTs) and binding of peptides to the outer-surface of the SWCNTs 

based on the all-atom models. The energetic and conformational analysis suggests that 

the hydrophobicities of peptides correlate to their affinities for CNTs.  

While MD simulation of the all-atom models have enabled us to gain great 

insight into the peptide-CNT interaction mechanism, the time scale it can handle is far 

less than that of the coarse-grained model. The typical accessible time scale for the 

all-atom models is up to nanoseconds, while the coarse-grained model can simulate the 

reaction process with the time scale from microseconds to seconds. In order to obtain a 

clearer picture of the entire interaction process between peptides and CNTs, 

investigating coarse-grained model seems also essential. The advantage of the HP 

lattice model is that it is capable of capturing most essential mechanism of protein 

folding such as hydrophobic effect and multi-stage folding kinetics (Lau and Dill, 

1989). Furthermore, the full conformational spaces can be enumerated exhaustively 
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and insights into the nature of free energy landscapes can be obtained. Therefore the 

model has been successfully applied to explore kinetics and thermodynamics of 

protein folding in bulk solvent and adsorption onto various surfaces.   

In this chapter, I extend the previous work to study the mechanism of peptides 

interacting with CNTs using HP lattice model and MC simulation method. In Section 

4.1, the simulation models and methods are presented. Exact enumeration of all the 

possible conformations of peptides has been carried out on 2D lattices with the chain 

length of 16 residues. In order to simulate the peptide-CNT interactions, a model wall 

with an energetically favorable potential to peptide beads is introduced. In Section 4.2, 

thermodynamics and conformational changes of peptides folding in bulk water and 

interacting with CNTs are discussed. The hydrophobicity of the CNT is incorporated 

into the existing HP lattice paradigm and the interaction parameters between model 

chain residues and the CNT monomers can be qualitatively determined based on 

experimental data and simulation results from the all-atom model. Section 4.3 

discusses the comparison between MD and MC algorithms, and Section 4.4 gives the 

remarks of the chapter.  

 

4.1  HP lattice model using Monte Carlo (MC) simulation methods 

4.1.1 2D HP lattice model for modeling peptide-CNT interactions 

The HP model was first proposed by Dill and Lau (Lau and Dill, 1989). The 

assumption of the model is that the hydrophobic interaction is the dominant force in 
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protein folding. Each residue in the protein sequence is represented by either of the 

two types, hydrophobic (H) or polar (P).  

The simplified HP lattice model has been found useful for modeling protein 

properties because it shows several protein-like features, including cooperative 

collapse, native structures having a nonpolar core and definable secondary structures, 

multi-stage folding kinetics, and molten globule states. Most importantly, the model 

captures the main physics of protein folding—the hydrophobic interactions, 

conformational freedom of the chain, and the steric restrictions imposed by excluded 

volume (Miller and Dill, 2006). For short chains, all the possible conformations can be 

enumerated and their energies are evaluated to find the global energetic minimum for 

each HP sequence. The thermodynamic properties of the system could be estimated 

through statistical mechanics. Therefore the model has successfully provided insight 

into the kinetics and thermodynamics for protein folding in bulk solvent or adsorption 

of protein to different surfaces. 

In HP lattice model, chains are configured as self-avoiding walks on 2D square 

lattices or 3D simple cubic lattices. While the HP model is most intuitively defined in 

3D to match the physical phenomenon, a 2D model is actually more suitable for 

currently computationally feasible sizes. For example, in order to represent the 

appropriate surface-interior ratios of protein molecule, 16-20 monomers in two 

dimensions can reproduce a chain of 154 monomers in three dimensions (Chan and 

Dill, 1993). The latter case is obviously beyond the scope of exact enumeration. A 

chain with 27 monomers is a feasible size in three dimensions, but unfortunately 
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there’s only one interior residue in a maximally compact conformation. Therefore a 2D 

lattice model is a feasible model allowing exact enumeration of all the possible 

configurations. In some recent work, the researchers also employed the 2D 

16-monermer of HP lattice model and revealed important principles on protein folding 

(Kumar et al., 2005; Chikenji et al., 2006). 

Therefore a 2D short chain is a realistic choice considering the number of 

monomers can be accurately enumerated. It was suggested that the ideal number of 

monomers for a 2D lattice model is about 16-20 (Chan and Dill, physics today, 1993). 

In order to obtain an accurate enumerate of all the possible conformations that the 

peptide undergoes, and to test the performance of the model using different sets of 

parameters, a 16-monomer system is a reasonable length for obtaining targeted results 

and within affordable computational time. It was also established that even the 2D 

16-monermer of HP lattice model can be used to reveal important principles on protein 

folding (Kumar et al., 2005; Chikenji et al., 2006). Therefore I simply apply 2D 

16-monomer model to represent peptides in this study. 

For our 2D lattice model, the structure of a protein is modeled as linked beads. 

Each protein chain contains 16N =  residues, connected through 1−N  links. The 

protein chain is placed on the nodes of a Cartesian coordinate grid. All connecting 

vectors move parallel to either the x- or the y-axis with a self-avoiding configuration. 

The lattice spaces which are not occupied by the amino acid residues are assumed to 

be solvent units.  
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The presence of a CNT surface is introduced into the simulation by modeling a 

straight wall on the lattice space. Each bead along the wall represents a segment of the 

CNT. I refer to such beads as type “C”. The wall is regarded as a rigid boundary, 

where no residue can go through it.  

The potential energy of a lattice chain containing N  monomers is defined as 

the sum of the interaction energies between all the contact pairs of the system. In the 

case of a peptide chain solvated in bulk water, the two elements which are adjacent in 

coordinate but not directly connected are defined as one contact pair. If both elements 

are hydrophobic, it’s called a native contact. For each contact pair ),( ji , a 

corresponding variable ),( jiS AAγ  is counted to the interaction potential energy 

between the two amino acids residues. The parameters ),( HHSγ , ),( PHSγ , and 

),( PPSγ  are determined according to the relative affinities between these element 

types. The energy parameters εγ 2),( −=HHS , εγ −=),( PHS , and 0),( =PPSγ  

are adopted in this model. In which 0>ε  and ε2  is the free energy required to 

unfold one “H-H” contact. The advantage of this set of parameter is that compact 

conformations of peptides in water can be obtained (Li et al., 1996). 

The interaction energies between the CNT and the peptide residues are only 

counted if the residues are in direct contact with the monomers of type “C”. In other 

cases, the interaction energy is zero. The energy parameters ),( CHSγ and ),( CPSγ  

are discussed in section 4.2.2.1 based on experimental and MD simulation results. 

Therefore the total energy ( E ) of a system is calculated as ∑=
KN

ji
jiS AAE

),(

),(γ , where 
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kN  denotes the total number of contact pairs in a certain structure, including those 

between pairs of residues in the peptide and also the residues and the CNT.  

 

4.1.2 MC simulation of peptide-CNT interactions 

The MC method is a stochastic algorithm that depends on probabilities. The 

general procedure of performing MC method is achieved by: (a) generating a random 

trial configuration; (b) evaluating an ‘acceptance criterion’ by calculating the change in 

energy and other properties in the trial configuration; (c) comparing the acceptance 

criterion to a random number and either accepting or rejecting the trial configuration. 

Note that all the generated states will make a significant contribution to the 

configurational properties of the system. Therefore it is essential to sample those states 

that make the most significant contributions in order to accurately determine the 

properties of the system within the finite simulation time. A Markov chain is often 

generated to evaluate these important states.  

A Markov chain is a sequence of trials in which the outcome of successive states 

only depends on the immediate predecessor. In a Markov chain, a new state will only 

be accepted if it is more favorable than the existing state. Specifically, the Metropolis 

algorithm (Metropolis, 1953) is implemented and ensemble sampling is carried out to 

calculate thermodynamic quantities. During the molecular simulation, the more 

favorable state usually correlates to the new trial state that is lower in energy.  
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4.1.2.1 Random number generators 

The random number generator is essential to every MC simulation program, and 

is accessed a very large number of times. The random number generator is used not 

only to generate new configurations but also to decide whether a given move should be 

accepted or not. Actually, the numbers produced by a random number generator are 

not in fact truly random. The same sequence of numbers should always be generated 

when the program is run with the same initial conditions. The sequences of numbers 

are therefore often referred to as ‘pseudo-random’ numbers as they possess the 

statistical properties of true sequences of random numbers of a different ‘seed’ is 

provided. In this way, several independent runs can be carried out using different 

seeds.  

The random numbers produced by a random number generator should satisfy 

certain criteria. A good random number generator should yield a random distribution 

of points while being computationally fast. The linear congruential method is used in 

this study for generating random numbers. Each number in the sequence is generated 

by taking the previous number, multiplying by a constant a , adding a second constant 

b , and taking the remainder when divided by a third constant (the modulus, m ). The 

initial value is the seed, supplied by the user. The algorithm is written as: 

[1] seedξ =  (4.1)

( ){ }[ ] [ 1] ,i MOD i a b mξ ξ= − × +  (4.2)



Chapter 4                          Thermodynamic studies based on a hydrophobic-polar (HP) lattice model 

 112

Where the MOD function returns the remainder when the first argument is 

divided by the second.  

  

4.1.2.2 Implementation of the Metropolis algorithm 

During the dynamic MC simulation of the lattice model, the peptide undergoes 

three types of allowable Verdier–Stockmeyer moves (crankshaft, flip, and turn) 

(Verdir and Stockmayer, 1962), as illustrated in Figure 4.1. The MC simulation of the 

lattice structures obeys the Metropolis algorithm (Metropolis, 1953). The Metropolis 

algorithm generates a Markov chain of states, suppose that the system is in a state m . 

It is assumed that the probability of moving to state n  is mnπ . The various mnπ  can 

be considered to constitute an N N×  matrix π , called the transition matrix, where 

N  is the number of possible states. Each row of the transition matrix sums to 1. 

Therefore the probability that the system lies in a particular state is represented by a 

probability vector ρ : 

1 2( , ,..., , ..., )m n Nρ ρ ρ ρ ρ=ρ  (4.3)

Here 1ρ  is the probability that the system is in state 1 and mρ  represents the 

probability that the system is in state m . If (1)ρ  represents the initial configuration 

which is randomly chosen, the probability of the second state is given by equation: 

(2) (1)π=ρ ρ  (4.4)

The probability for the system in the third state is: 

(3) (2) (1)π ππ= =ρ ρ ρ  (4.5)
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The equilibrium distribution of the system can be determined by considering the 

result of applying the transition matrix an infinite number of times. This limiting 

distribution of the Markov chain is given by limit lim (1) N
N π→∞=ρ ρ . 

Closely related to the transition matrix π  is the stochastic matrix, whose 

elements are labeled mnα . This matrix shows the probability of choosing the two 

states m  and n  between which the move is to be made. It is also referred to as the 

underlying matrix of the Markov chain. If the probability of accepting a trial move 

from m  to n  is mnp , then the probability of making a transition from m  to n  

( mnπ ) is calculated by multiplying the probability of choosing states m  and n  ( mnα ) 

by the probability of accepting the trial move ( mnp ): 

mn mn mnpπ α=  (4.6)

It is assumed that the stochastic matrix α  is symmetrical. If the probability of 

state n  is greater than that of state m  in the limiting distribution, for example, if the 

Boltzmann factor of n  is greater than that of state m  because the potential energy 

of state n  is lower than the energy of state m , then the transition matrix element 

mnπ  for progressing from m  to n  equals the probability of selecting the two states 

in the first place. If the Boltzmann weight of the state n  is less than that of state m , 

then the probability of permitting the transition is obtained by multiplying the 

stochastic matrix element mnα  by the ratio of the probabilities of the state n  to the 

previous state m. The algorithm is expressed as: 

( )mn mn n mπ α ρ ρ= ≥  (4.7)
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( / ) ( )mn mn n m n mπ α ρ ρ ρ ρ= <  (4.8)

These two conditions only apply when the states m  and n  are different. If m  

and n  are the same state, then the transition matrix element is calculated from the 

truth that the rows of the stochastic matrix sum up to 1: 

1mm mn
m n

π π
≠

= −∑  (4.9)

In order to apply the Metropolis algorithm to simulate the dynamics of lattice 

peptide, at each MC cycle, a single movement is randomly selected for the peptide, 

and the energy of the newly generated system is evaluated. According to the 

Metropolis algorithm, if the new system energy is found to be equal or less than that of 

the original conformation, the configuration is updated and a new cycle starts. If the 

new conformation results in an increase in system energy, however, the move with a 

probability is chosen according to Equation (4.6). This is achieved by comparing the 

Boltzmann factor exp( ( ) / )N
BP E k T= −Δ r  (where ( )N

n mE E EΔ = −r  ) to a random 

number r  between 0 and 1. The quantity Bk  is the Boltzmann constant, taken as the 

dimensionless unit with 1=Bk , and T  is the temperature. TkB  has the same 

dimension as ε . If rP > , the new configuration is accepted; otherwise, the previous 

configuration is retained.  

In this way, if the energy of new state nE  is very close to that of the old state 

mE  , then the Boltzmann factor of their energy difference is very close to 1, and the 

move is likely to be accepted. However, if the energy difference is very large, then the 

Boltzmann factor tends to be zero and the move is unlikely to be accepted.  
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The Metropolis algorithm is derived based on the condition of microscopic 

reversibility, which indicates that at equilibrium, the transition between two states 

occurs at the same rate. The rate of transition from a state m  to another state n  

equals the product of the population ( mρ ) and the appropriate element of the transition 

matrix mnπ . Therefore at equilibrium I have  

/ exp( ( ) / )N
mn nm BE k Tπ π = −Δ r  (4.10)

 

4.1.3 Molecular Simulation of Ensembles 

The original MC method sampled the canonical (NVT) ensemble, and it could 

also be extended to other ensembles by using importance sampling for Markov chain 

process. Here the canonical ensemble is sampled to calculate the thermodynamic 

quantities from the calculated microscopic properties. 

The average of any thermodynamic property ( )NA r  can be calculated by 

evaluating the following multidimensional integral over the degrees of freedom on the 

N particles in the system 

( ) ( ) ( )N N N NA A drρ= ∫r r r  (4.11)

where ( )Nρ r  is the probability of obtaining configuration Nr  which depends 

on the potential energy ( E ) of the system.  

exp[ ( )]( )
exp[ ( )]

N
N

N N

E
E d
βρ
β
−

=
−∫

rr
r r

 (4.12)

Where 1/( )Bk Tβ = . These integrals can not be evaluated analytically, and 

therefore the MC solution is utilized to generate a large number of trial configurations 
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Nr  and replace the integrations by summations over a finite number of configurations. 

If the configurations of the system are chosen randomly, Equation (4.11) is expressed 

as 

1

1

( ) exp[ ( )]

exp[ ( )]

trial

trial

N
N N

i i
i

N
N

i
i

A E
A

E

β

β

=

=

−
< >=

−

∑

∑

r r

r
 

(4.13)

However, this simple approach is not feasible in practice because random 

sampling may yield many configurations having a very small Boltzmann factor. Such 

configurations make very little contribution to the average. Therefore a large number 

of configurations should be generated and evaluated to obtain the accurate answer. 

The Metropolis sampling biases the generation of configurations towards those 

that make the most significant contribution to the integral, as introduced in the 

previous section. The limitations of random sampling can be avoided by generating 

configurations that make a large contribution to the right hand side of Equation (4.13).  

The MC method can also be extended to other ensembles because importance 

sampling can be used for any Markov chain process. The canonical average of any 

function of particle coordinates <A> can be obtained for Equation (4.13). In principle, 

<A> could be calculated through generating a large number of configurations (M) of 

particles, which is estimated by replacing the integrals with finite sums. 

∑

∑

=

=

−

−
>=< M

i

M

i

iE

iEiA
A

1

1

)](exp[

)](exp[)(

β

β
 

(4.14)
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It is noted that the system should come to equilibrium state before contributions 

to the ensemble average are accumulated. The equilibration period is important for 

obtaining reliable ensemble averages because the initial state my not accurately reflect 

the system configuration or properties at equilibrium. Therefore the equilibration 

period is used before calculation of ensemble averaged properties.  

In MC simulations, particle momenta are not involved, which is different from 

MD simulation method. It is unnecessary to know the particle momenta to calculate 

thermodynamic properties of the system because the momenta contribute exclusively 

to the ideal gas term. Deviations from ideal gas behavior are caused by interactions 

between particles which can be calculated from a potential energy function. The 

potential energy depends only on the positions of atoms or particles but not their 

momenta.  

 

4.1.4 Calculations of thermodynamics for peptide-CNT binding process 

The thermodynamic quantities of the model peptides binding to CNTs are thus 

calculated based on canonical ensemble. The partition function of the system, Z , is 

expressed by means of sampling all the possible configurations of the peptide chain in 

each energy state, 

∑ ∑ −Ω=−=
x E

BiiB
i

TkEETkxEZ )/exp()(]/)(exp[ , (4.15)

where )( iEΩ  is the density of states with energy iE . In this case, iE  is 

determined by both the “H-H” and “H-P” contact interactions within the lattice chain 
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and the neighboring  “H-C” and “P-C” interactions between the chain residues and 

the “C” type monomers.  

The probability ( Mρ ) that the system is in its native (lowest-accessible energy) 

state ME  is expressed as 

Z
ETkET MBM

M
)()/exp()( Ω−

=ρ . (4.16)

It should be noticed that, the lowest-accessible energy state of the system may be 

degenerated. The peptide may adopt several different conformations in the 

lowest-accessible energy state. The probability that the system is in the denatured 

(non-lowest energy) states is 

MU ρρ −=1 . (4.17)

For a system at equilibrium, the probabilities Mρ  and Uρ are connected by the 

equilibrium constant MUK ,  

M

U
MU M

UK
ρ
ρ

==
][
][ . 

(4.18)

where ][M and ][U  are the concentrations of the systems, which correspond to 

the lowest and non-lowest energy states respectively. Furthermore, the free energy 

change can be calculated as 

MUBMUMU KTkGGG ln−=−=Δ  (4.19)

The internal energy U  is calculated as the ensemble averaged energy E ,  

,)(∑==
i

iii EEEU ρ  (4.20)
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where )(Eiρ  is the probability that the energy of the system is iE . Different 

energy states are enumerated and the corresponding probabilities are calculated 

through the partition function.  

Z
ETkE

E iBi
ii

)()/exp(
)(

Ω−
=ρ  

(4.21)

The Helmholtz free energy of the system, A , could be calculated as  

ZTkAA B ln−==  (4.22)

Since the CNT surface is stationary, the conformational entropy of the model 

peptide is the entropy of the whole system, which is determined through standard 

thermodynamic equation,  

T
AUS −

=  (4.23)

 

4.2 Results 

4.2.1 Thermal unfolding of model peptide 

In this section, the thermal unfolding behavior of a randomly selected 

16-monomer model peptide in sequence HPPHHHPPHPPHHPPH is investigated. The 

model peptide (referred to as peptide I) contains eight hydrophobic residues and can 

fold into a unique native conformation with seven hydrophobic contacts, as shown in 

Figure 4.2. 

During the MC running, the conformation of the peptide undergoes 

Verdier-Stockmeyer moves. Figure 4.3 reports simulation results of 5*106 iterations 
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for the ensemble averaged number of native contacts, >< Q , in bulk water as the 

function of the dimensionless temperature, *T . The temperature T should be in unit 

of Bk/ε , here I refer to the dimensionless )//(*
BkTT ε=  to avoid lengthy 

presentation. It is observed from the figure that at low temperature, the peptide tends to 

be fully folded. The average number of hydrophobic contact pairs lies close to seven, 

which indicates that the peptide folds into its native state. As the temperature is 

increased, there are fewer native contacts, and the peptide is denatured from its native 

structure.  

The thermal unfolding of peptide I at different temperatures is simulated over 

5*106 iterations. Here the dimensionless temperature *T  is referred, which is in unit 

of Bk/ε . It is observed that at low temperature, the most probable state is the native 

state, while at high temperature, the denatured conformations are more populated.  

The denaturation in terms of the unfolding free energy change MUGΔ  can be 

described. For example, as illustrated in Table I, at the temperature 2.0* =T , the 

corresponding free energy change 0MU U MG G GΔ = − >> , indicating a stable native 

structure. On the other hand, at the temperature 6.1* =T , 0<Δ MUG , which shows 

that at higher temperature, the probability of finding the model peptide in the native 

state decreases drastically, and hence a denatured structure is preferred by the model 

peptide.  

In this simulation, the temperature acts as a thermodynamic property which 

controls the folding behavior of the model peptide chain. The higher temperature 

induces the unfolding and therefore influences other macroscopic properties of the 
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peptide. It is assumed that the Gibbs free energy difference between the native and 

unfolded states is zero at the mid transition temperature. For peptide I, at the 

temperature 7.0* ≈T , 5.0≈Mρ , and 0=Δ MUG , a phase transition state where the 

peptide exists both in folded and unfolded states is observed. This temperature is often 

defined as the protein folding temperature (Camacho and Thirumalai, 1993). I have 

tested the dynamic process of peptide folding in bulk solvent and binding to CNTs at 

different temperatures, including those below and above the folding temperature. Other 

values of temperatures that may go to extremes are not considered here.  

These observations imply that the lattice model is able to reproduce the essential 

properties of protein folding in bulk water.  

 

4.2.2 Thermodynamics of peptides interacting with CNTs 

4.2.2.1 The selection criteria for the interaction energy parameters and the 

analysis of thermodynamic quantities 

In Chapter 3, I have estimated the average binding free energy of hydrophobic 

and hydrophilic groups of amino acids to the same CNT based on the atomic model. 

For hydrophobic group, the average binding free energy is 5.63 /HG kcal molΔ = − , 

and that of the polar group is 3.97 /PG kcal molΔ = − .   

These results imply that the both hydrophobic and hydrophilic amino acids have 

affinities for CNTs and generally the binding of hydrophobic amino acid is stronger. In 

addition, experimental studies have shown that both hydrophobic and hydrophilic 
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peptides may spontaneously bind to CNTs. On the other hand, it is also observed that 

hydrophobic peptides indeed have stronger affinities for CNTs than hydrophilic ones 

(Wang et al., 2003). 

Based on the experimental observations and the energetic analysis of the atomic 

model, I qualitatively develop the interaction energy parameters for HP lattice model 

according to the following assumptions: the binding affinity of CNTs for hydrophobic 

residues should be stronger than hydrophilic ones, which implies 

),(),( CPCH SS γγ < . In addition, both hydrophobic and hydrophilic amino acid 

residues have affinities for CNTs, which implies that 0),( <CPSγ  and 

0),( <CHSγ .  

As to the relative energy parameters between “H-C” and “H-H” types of 

elements, the previous one is assumed to be lower. Such parameter is modeled with 

respect to the phenomenon that the CNT is extremely hydrophobic, which can form 

stable structure with hydrophobic residues in solvent (Dieckmann et al., 2003). 

Referring to the relative values of εγ 2),( −=HHS , εγ −=),( PHS  and 

0),( =PPSγ , several parameter sets may be acceptable if they satisfy the criteria. I 

repeat the simulations of representative peptide binding to the CNT using the same 

setups and experimental conditions except for the interaction parameters. Although the 

average system energy and the accessible structures of the peptide are 

parameter-dependent, the binding mechanisms are qualitatively the same for these 

acceptable parameter sets. The thermodynamic quantities of peptide I binding to the 
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CNT using preliminary parameters at representative temperatures over 5*106 MC runs 

are listed in Table 4.2.  

As shown in Table 4.2, the process of peptides interacting with the CNT surface 

is a balance between an energetic gain and a conformational entropy loss. Both the 

internal energy and the peptide conformational entropy contribute to the Helmholtz 

energy. The internal energy is composed of two terms: the intra-molecular interaction 

within the peptide, and the peptide-CNT interaction. The selection of the parameters 

affects not only the absolute value of internal energy, but also the balance between the 

internal energy and the entropy. For example, at 6.1* =T , the contribution of the 

internal energy U  is -39.4 ε  , when 4),( −=CHSγ ε , εγ 3),( −=CPS . As the 

parameters are set as 5),( −=CHSγ ε , 4),( −=CPSγ ε , U  decreases to -51.7 ε . 

The ratio of U to the Helmholtz free energy also enlarges.  

Such observation is reasonable because if both “H” and “P” types of elements 

have strong affinity for the CNT, the intra-molecular interaction, which is stabilizing 

the compact structure of the peptide, becomes relatively weak. The strong binding 

affinity of the peptide to the CNT induces the conformational change of the peptide. 

Both the internal energy and the entropy would then be affected by this strength of 

affinity. 

In addition to those parameters listed in Table 4.2, I have also taken into account 

other values of ),( CHSγ  and ),( CPSγ . If the interaction between “H-C” and “P-C” 

types of monomers is considered weak, for example 2),( −=CHSγ ε , 

εγ −=),( CPS , or εγ −=),( CHS , 0),( =CPSγ , the entire peptide weakly binds to 
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the surface of the CNT. Such an observation is not consistent with the experimental 

and MD simulation results. Therefore these data are not listed for discussion. It is 

inferred that choosing ),(),( HHCH SS γγ <  seems also essential. 

 

4.2.2.2 Conformational changes of peptide chain binding to CNT surface 

Based on the developed parameters, the conformational changes of peptides upon 

binding are simulated and captured. In order to make the discussion more general, the 

second model peptide, namely peptide II is introduced. Compared with peptide I, 

peptide II possesses more hydrophilic monomers, and has no unique native structure.  

At the start of each simulation, the model peptide is positioned partly in contact 

with the model CNT in their compact conformation, as shown in Figure 4.4. The 

vertical line beside the left-hand of the model peptide represents the CNT surface. A 

typical binding process is discussed on peptide I with preliminary parameters of 

5),( −=CHSγ ε , εγ 4),( −=CPS . Since the local energy barriers can be against the 

attempts that the chain unfolds into conformational trajectories leading to the 

lowest-accessible energy, the model chain binds reversibly at energies well above the 

energy minimum in the early stage of the binding process. Representative 

conformations of the two peptides shortly after their binding process are shown in 

Figure 4.5. 

In the later stage of the adsorption, the chain is irreversibly bound to the surface, 

at least within the duration of the simulation. As shown in Figure 4.6, it is observed 
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that the peptide unfolds at the interface, and the adsorption is essentially irreversible. 

Some native contacts may also be retained due to the internal attractions between 

peptide residues. The similar configuration at equilibrium was also observed through 

MD simulations of atomic model. The corresponding system potential energy 

decreases to a lower average value, and fluctuates between low energy states.  

The conformational change of peptide I is further illustrated in Figure 4.7.  The 

number of monomers in the first and the fourth layers adjacent to CNT surface is 

traced against the MC simulation cycles. In the first layer, the number of monomers on 

the peptide increases most drastically to show the adsorption of the peptide. On the 

other hand, in the layers which are further away from the wall, for example, the fourth 

one, the number of monomers drops, and the denaturation of the peptide is observed. It 

is also observed that the average number of hydrophobic contacts for peptide I in bulk 

water is more than that of the peptide binding to the CNT surface at the same 

temperature, indicating a change of peptide properties upon binding.  

Temperature is a crucial factor that affects the behavior of peptides binding to 

CNTs. For example, at 8.0* =T , peptide I is trapped at its local minimum over the 

course of MC simulation. The monomer numbers in the first and the fourth layers do 

not change significantly at 8.0* =T , showing that the peptide maintains its own 

conformation at low temperature, and the binding is reversible. On the other hand, at 

6.1* =T , the peptide is found denatured and bound to the CNT irreversibly. Further 

investigations show that the lowest-accessible energy state for peptide I is 

ε0.32−=ME  at 8.0* =T , but ε0.53−=ME  at 6.1* =T . Increasing the temperature 
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may facilitate the adoption of previously inaccessible low energy states of 

peptide-CNT system.  

 

4.3 Discussions on comparison of MD and MC methods  

While both the all-atom model and the coarse-grained model are developed to 

investigate the peptide-CNT interaction, different simulation techniques have also been 

adopted to implement the simulation. Among which both the MD and MC simulation 

methods are frequently used whereas they differ in a variety of ways. The most 

obvious difference is that MD provides information about the time dependence of the 

properties of the system whereas there is no temporal relationship between successive 

MC configurations. In a MC simulation the outcome of each trial move depends only 

upon its previous state, whereas in MD simulations it is possible to predict the 

configuration of the system at any time in the future or at any time in the past.  

The two methods also differ in their ability to explore phase space. A MC 

simulation often gives much more rapid convergence of the calculated thermodynamic 

properties of a simple molecular liquid. But it may explore the phase space of large 

molecules very slowly due to the need for small steps unless special techniques such as 

the configurational bias MC method are used. MD may fail to cross the barriers 

between the conformations sufficiently often to ensure that each conformation is 

sampled and it can be very useful for exploration of the local phase space, whereas the 

MC method may be more effective for conformational changes, which jump to a 

completely different area of phase space.  
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MD has a kinetic energy contribution to the total energy whereas in a MC 

simulation the total energy is determined from the ensembles, originally canonical or 

constant-NVT ensembles. MD simulation is traditionally performed under conditions 

of the microcanonical or constant NVE ensemble. Both the MD and MC techniques 

can be modified to sample from other ensembles. As the two techniques in some ways 

complement each other in their ability to explore phase space, they can also be 

combined to facilitate the exploration of physical or chemical phenomena.  

 

4.4  Remarks 

In this work, the coarse-grained HP lattice model is employed to study the 

interaction between peptides and CNTs. This simple model is capable of 

reconstructing a wide variety of complex characteristics of the target problem. Using 

the dynamic MC simulations, this HP lattice model can reproduce the dynamic 

processes of peptides folding in bulk water, and peptides binding to the CNT surface.  

The interaction parameters between the CNT monomers and two types of 

residues in our model are developed based on the related experimental data and MD 

simulation results. To the best of my knowledge, this is the first time that such a set of 

preliminary parameters are developed to study peptides’ binding to the CNT. It is 

found that both hydrophobic and hydrophilic residues have affinity for CNTs. The 

simulation results imply that the suggested parameters here are acceptable and can 

qualitatively reflect the mechanisms of the binding process.  
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Since all the possible configurations of the system are enumerated, 

thermodynamics and conformational change of peptides binding to CNTs can be 

explored. The analysis of the thermodynamic quantities suggests that both the internal 

energy and the peptide conformational entropy contribute to the binding process. Upon 

binding to the CNT, peptides generally unfold into their denatured states to reach the 

low energy states of the system. In order to access the low energy levels, the peptide 

has to escape from local energy minima and the average number of native contacts 

may decrease. Temperature has a significant influence on the interaction affinity. The 

model developed in this work is validated by qualitatively agreeing with experimental 

observations and simulation results of high-resolution model, and is able to provide 

further insight that is crucial for designing nanotube-based devices and drug delivery 

systems. 
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  Table 4.1 Thermodynamic quantities of sequence I in bulk water at different 

temperatures. In the table *T  is the dimensionless temperature, U  is the internal 

energy, MUGΔ  is the standard free energy change, S  is the conformational entropy 

of the peptide, A  is the Helmholtz free energy, Mρ  is the probability that the 

system lies in the lowest-accessible energy of the system. The energy unit is ε . 

*T  U (ε ) MUGΔ (ε ) ST * (ε ) A (ε ) Mρ  

0.2 -14.0 ∞+  0.0 -14.0 1.00 

0.8 -12.2 -0.3 3.9 -16.1 0.40 

1.6 -6.2 -5.1 12.9 -19.1 0.04 

 

 
 
Table 4.2 Thermodynamic properties of sequence I binding to the CNT using different 

parameters at representative temperatures. In the table  ME  is the lowest-accessible 

potential energy. Other quantity units can be referred to Table 4.1. 

),( CHSγ  

),( CPSγ  

(ε ) 

*T  
ME  

(ε ) 

U  

(ε ) 
MUGΔ  

(ε ) 

ST *  

(ε ) 

A  

(ε ) 
Mρ  

-4,-3 1.6 -42.0 -39.4 0.3 3.6 -43.0 0.54 

-5,- 4 1.6 -53.0 -51.7 1.5 1.8 -53.5 0.72 

-4,-3 0.8 -28.0 -27.9 3.1 0.1 -28.0 0.98 

-5,- 4 0.8 -32.0 -31.9 3.1 0.1 -32.0 0.98 
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Figure 4.1 The Verdier–Stockmeyer moves allowed for peptide conformational 
transition. 

 

 

  

Figure 4.2  The initial conformation of model peptide I. The filled cycles represent 
hydrophobic elements, while the unfilled ones represent polar elements. 
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Figure 4.3 The ensemble averaged number of hydrophobic contacts >< Q , as the 

function of the dimensionless temperature, *T . 
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Figure 4.4 Initial structures of peptide sequence I (left) and sequence II (right) 
interacting with model CNT surface. Peptide sequence I has eight hydrophobic 

residues and sequence II possesses five. The filled cycles represent hydrophobic 
elements while unfilled ones represent the polar elements. 
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Figure 4.5 The representative conformations of sequence I (left) and sequence II (right) 
shortly after their binding to the CNT surface. The peptide-CNT interaction energy 

parameters are 5),( −=CHSγ ε , εγ 4),( −=CPS . 

 
 
 
 
 
 
 

                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 4.6 Representative conformations of sequence I (left) and sequence II (right) 

binding to CNT surface at 6.1* =T  at 6.1* =T . The peptide-CNT interaction 

energy parameters are 5),( −=CHSγ ε , εγ 4),( −=CPS . 
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Figure 4.7  Illustrations of the averaged number of monomers in the first and the fourth 

layers adjacent to CNT surface against the MC cycles for peptide I at 6.1* =T  (fitted 

using fourth order polynomials). 
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Chapter 5 

Conclusions and Future work  

 

 

5.1 The major conclusion from the study 

This study has focused on investigating interaction mechanism between peptides 

and CNTs based on different levels of molecular description. Different computational 

strategies adopting either all-atom model or coarse-grained model are implemented. 

Through the studies, the following conclusions are drawn: 

1) MD simulation of self-insertion of peptides into SWCNTs is carried out based 

on molecular mechanics of atomic model. The energetic analysis on the total potential 

energy of the system indicates that the non-bonded interaction (including the van der 

Waals interaction and the electrostatic interaction) dominates the process. It is also 

found that some of the simulated peptides are capable of self-inserting into SWCNTs 

while others are not. The propensities of self-insertion of peptides into SWCNTs 

correlate with their average hydrophobicity. Furthermore, sizes of SWCNTs should be 

chosen properly corresponding to dimensions of peptides to facilitate the insertion.  

2) Free energies of peptides binding to SWCNTs are calculated using combined 

simulation methods of MD and MM-GBSA model. The calculation results of binding 

free energies qualitatively agree with experimental results of binding affinities of 

different peptides for SWCNTs.  From a microscopic view, the van der Waals 

interaction plays a key role in driving the peptides onto the surface of CNTs. Further 
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simulation is carried out to estimate the interaction free energy between encapsulated 

peptides and SWCNTs, and consistent results on the energetic contributions are 

obtained.  

3) In order to understand the affinity of different amino acids for SWCNTs, 

intensive molecular simulations have been carried out between individual amino acids 

and the same SWCNT using MM-GBSA method. Results show that the binding free 

energies vary with different amino acids. Generally hydrophobic amino acids possess 

stronger binding affinity for CNTs than the hydrophilic ones, and the average binding 

free energy from each group is evaluated.  

While the hydrophobicity of peptides correlates with strength of peptide-CNT 

affinity, other properties of peptides, for example the aromatic rings, the peptide length 

and the CNT size also have impact on their interaction free energy.  

4) The coarse-grained HP lattice model is employed to study the thermodynamics 

of the interaction between peptides and CNTs. The simplified model is capable of 

reconstructing a wide variety of complex characteristics of the target problem. The HP 

lattice model using MC simulation method can reproduce the dynamic processes of 

peptides folding in bulk water, as well as peptides binding to the CNT surface.  

The interaction parameters between the CNT monomers and ‘H’ or ‘P’ types of 

residues in our model are developed based on the relevant experimental data and MD 

simulation results. A set of preliminary parameters are developed to study peptides’ 

binding to the CNT based on the observed affinity of hydrophobic and hydrophilic 
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amino acids for CNTs. The simulation results imply that the suggested parameters here 

can qualitatively reflect the mechanisms of the binding process.  

5) Thermodynamics and conformational change of peptides binding to CNTs are 

also explored since all the possible configurations of the system can be enumerated by 

the coarse-grained HP lattice model. The analysis of the thermodynamic quantities 

suggests that both the internal energy and the peptide conformational entropy 

contribute to the binding process. Upon binding to the CNT, peptides generally unfold 

into their denatured states to reach the low energy states of the system. In order to 

access the low energy levels, the peptide has to escape from local energy minima and 

the average number of native contacts may decrease. Temperature has a significant 

influence on the conformational evolution of the peptide.  

 

5.2 Recommendations for future research work 

1) Despite the efforts we have made, there are still many open questions in 

application of biomolecule-CNT systems. For example, there have been limited studies 

on the use of CNTs to deliver drugs to live animals. More investigations should be 

performed to study the cellular uptake mechanism of CNTs. On the other hand, more 

work should be carried out to confirm that drugs or other molecular cargo can be 

successfully loaded onto or into the nanotube, and subsequently triggered to unload at 

some designated therapeutic site.  

2) Given that the computational resources are more powerful, larger systems of 

simulations could be performed based on all-atom models. For example, the full sized 
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proteins consisting of hundreds of amino acids interacting with SWCNTs, or 

MWCNTs can be studied. Therefore our understanding of kinetics and energetics of 

protein-CNT interaction can be enhanced, and properties of the novel materials such as 

their biocompatibility can be clarified. 

3) Although the MM-GBSA method is efficient in evaluating the interaction free 

energy based on the two-state theory, the paths through the end states are ignored. It is 

also recommended to develop the appropriate path-dependent methods for free energy 

estimation, again, on condition that the computer resource should be powerful enough 

to handle the simulation within reasonable simulation time. 

4) Based on the coarse-grained model, further studies can be carried out to 

understand the free energy landscape of peptide-CNT. For example different sequences 

of peptides, as well as peptides composed of different number of monomers can be 

tested to further investigate the peptide-CNT interactions. 

5) The computational models developed in this thesis can also be extended to 

investigate the interaction between other species of bio-materials. For example, they 

could be applied in the investigation of the interactions between proteins and 

biopolymers, or drug-resistant mutation systems, etc.  

6) Both the all-atom model and the coarse-grained model have some limitations. 

For example, it is not easy to enumerate all the orientations of the peptide-CNT 

interaction. As a recommendation for future work, a continuum model could be 

developed to provide further insights into the problem, and therefore a sound theory 

could be established.
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