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SUMMARY 

 

Crash prediction model is one of the most important techniques in investigating the 

relationship of road traffic crash occurrence and various risk factors. Traditional 

models using generalized linear regression are incapable of taking into account the 

within-cluster correlations, which extensively exist in crash data generating or 

collecting process.  

  

To overcome the problem, this study develops a Bayesian hierarchical approach to 

analyze the traffic crash frequency and severity. Zero-inflated Poisson model with 

location-specific random effects is proposed to capture both the multilevel data 

structure and excess zeros in crash frequency prediction. And for crash severity 

prediction, a hierarchical binomial logistic model is developed to examine the 

individual severity in the presence of within-crash correlation. Bayesian inference 

using Markov Chain Monte Carlo algorithm is developed to calibrate the proposed 

models and a number of Bayesian measures such as the deviance information criterion, 

cross-validation predictive densities, and intra-class correlation coefficients are 

employed to establish the model suitability.  

 

The proposed method is illustrated using the Singapore crash records. Comparing the 

predictive abilities of the proposed models against those of traditional methods, the 

study proved the importance of accounting for the within-cluster correlations and 

demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in 

modeling multilevel structure of traffic crash data. 
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CHAPTER ONE 

INTRODUCTION 

 
 

1.1 THE PROBLEM 

 

Road safety is a socio-economic concern. With the rapid development of motorization 

in the past 50 years, the increase of road traffic crashes has become one of the major 

global health problems. Worldwide, an estimated 1.2 million people are killed in road 

crashes each year and as many as 50 million are injured (Peden et al., 2004). 

International studies ranked road traffic crashes as the ninth most serious cause of 

death in the world in the year 1990. It was forecasted that without increased efforts and 

new initiatives, the total number of causalities on the roads will increase by some 60% 

in 2020 and as much as 80% in low income and middle-income countries, which will 

by then be the third most serious cause of death. 

 

From the economic perspective, the magnitude of road traffic crashes places a huge 

economic burden on society.  For example, in 2005, there were 172 fatal, 71 serious 

injuries, 6,463 slight injuries, and 81,580 Properties-Damage-Only (PDO) crashes in 

Singapore. A scientific estimate (Chin, 2007) showed that the total cost of road crashes 

occurring in 2005 is S$527.25 million, which is about 0.3% of the year’s GDP in 

Singapore. The estimated cost per fatal crash is S$837,475.  

 

Due to the tremendous life and property loss, more and more attention has been placed 

in various ways on improving the road safety situations. One important way is traffic 
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safety management. Based on the understanding of the traffic system properties, and 

integrated with other transport functions, traffic safety management is targeted to 

developing, implementing, and assessing road safety countermeasures. To ensure the 

cost-effectiveness of source location, traffic authorities always desire to identify where 

the most serious “problem” sites are, and to know whether the proposed 

countermeasures will work or are working effectively. However, it is sometimes very 

difficult to obtain a comprehensive understanding of traffic system safety because road 

traffic is such a complicated system, which may be affected by a diversity of risk 

factors including environmental situations (e.g. weather, street lighting), geometric 

features (e.g. the layout on the roadway and roadside, the grade), traffic conditions (e.g. 

traffic volume), regulatory measures (e.g. signals), and driver and vehicle 

characteristics (e.g. driver age, driver gender, vehicle type, in-vehicle safety protection 

measures). Moreover, the understanding of traffic system safety may be further 

obscured since crash occurrences are necessarily discrete, often sporadic and random 

events. Hence, obtaining unbiased estimation and prediction of traffic system safety 

has become the central concern for research as well as for practical purposes in road 

safety management. In practice, the need to obtain estimates of system safety 

specifically arises from:  

 

1) Entity identification which deviates from a norm and requires rectification,  

2) Assessment of the effects of safety countermeasures,  

3) Evaluation of standards, programs, rule-making or policies either prospectively or 

retrospectively, and  

4) Other unspecified occasions.  
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1.2 RESEARCH BACKGROUND  

 

 

 

Figure 1.1 Mind Map of the Research Background 

 

Traffic system consists of entities which are differentiated by a variety of traits. For 

example, as shown in the Figure 1.1, traffic facilities in a country, region, or city can 

be viewed as one such entity in some macroscopic analysis. The traits for this kind of 

entity can be such factors as road density, population, and some other social-economic 

features. Traffic entities can be, more intuitively, a road section or an intersection, with 

various geometric, traffic, and regulatory factors as traits. Furthermore, a driver-

vehicle unit can also be treated as an entity, with traits of driver age, gender, annual 

distance traveled, vehicle type, make and so on. Most studies of traffic system safety 

tend to focus on one or several specific entities. While some researchers conduct the 
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regional evaluation on road safety, some others focus on the microscopic analysis of 

driving behaviors. Hence, traffic system safety analysis is more or less equivalent to 

understanding the safety of various particular traffic entities and their interactions. 

 

Although the methods to estimate the system safety vary in a wide range, most studies 

on road safety have relied on traffic crash statistics to address a range of the above-

mentioned safety-related concerns. Hauer (1992) defined system safety as the expected 

number of crashes in each severity class, which is a characteristic property of a certain 

system during a specific period of time. Since crash occurrence is likened to a 

symptom of some undesirable problems in the traffic system, it is reasonable to assume 

that the answers to such problems can be obtained by examining the symptoms, i.e. the 

frequency and severity of crash occurrence (Chin and Quek, 1997). 

 

Since traffic entities can be characterized by their traits, either observable or 

unobservable, it is the usual practice in safety research to establish a statistical 

relationship between these traits in crash causation and the crash occurrence. This 

safety statistical model is called as crash prediction model (CPM), which is the major 

concern of this thesis. Some other researchers also define this kind of models as safety 

performance function (SPF). The term “crash prediction model” will be used 

consistently in the rest of this thesis. 

 

Frequency and severity are two major concerns in understanding the relationship of 

crash occurrence and various risk factors (Hauer, 2006). CPMs are developed to 

estimate and predict the crash frequency as well as the crash severity. In this thesis, the 

prediction models for crash frequency and severity are termed “crash frequency 
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prediction model” (CFPM) and “crash severity prediction model” (CFSM), 

respectively. A significant number of studies have been conducted on investigating the 

suitability of various CPMs. 

 

1.2.1 Crash Frequency Prediction Models (CFPM) 

 

Researchers have been using various statistical techniques to model the crash 

frequency, ranging from the use of multiple linear regression models (ML) to methods 

involving exponential distribution families such as Poisson and negative binomial (NB) 

regression models. It has been observed that for random, discrete, nonnegative and 

sporadic crash data, ML models have several undesirable statistical limitations such as 

the assumption of normality (Jovanis and Chang, 1986; Joshua and Garber, 1990; 

Miaou and Lum, 1993). To overcome the problems associated with ML models, 

Jovanis and Chang (1986) proposed the Poisson regression model, which showed the 

advantages of Poisson model over linear regression technique in modeling the crash 

frequency.  

 

Poisson distribution also suffers from an important limitation. Poisson regression 

model may be appropriate only when the mean and the variance of the crash 

frequencies are approximately equal, which is a basic property of Poisson process. But 

this latent assumption has been denied in many traffic studies (e.g. Miaou, 1994; 

Shankar et al., 1995; Vogt and Bared, 1998), in which the variance of the crash 

frequency is significantly greater than the mean. To overcome this over-dispersion 

problem, NB model has been found to be more suitable than Poisson model by 

introducing a stochastic component to relax the mean-variance equality constraint 
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(Lawless, 1987; Miaou, 1994; Shankar et al., 1995; Poch and Mannering, 1996; Barron, 

1998).   

 

1.2.2 Crash Severity Prediction Model (CSPM) 

 

To account for the nominal or ordinal features of crash severity data, categorical data 

analysis techniques for discrete dependent variables have generally been employed in 

most previous crash severity studies. While some researchers (Mannering and Grodsky, 

1995; Shankar and Mannering, 1996; Mercier et al., 1997; Al-Ghamdi, 2002) used 

binomial/multinomial logit or probit models to explore the significance of risk factors 

by taking crash severity as a nominal, some others (O’Donnell and Connor, 1996; 

Quddus et al., 2002; Rifaat and Chin, 2005; Abdel-Aty and Keller, 2005) employed 

ordered logit or probit models to account for the ordered nature of severity levels. 

 

1.3 RESEARCH PROBLEMS 

 

1.3.1 Multilevel Data Structure 

 

As shown above, generalized linear regression models (GLM) are traditionally used in 

both CFPM and CSPM. While those GLMs adapt appropriate dependent variables to 

the specific features of crash frequency or severity, they suffer from the underlying 

limitation that all samples in the dataset are assumed to be independent of one another. 

However, in crash data generating process or collecting process, there are often 

hierarchies between the different samples, which imply some unobserved 

heterogeneities due to multilevel data structure.      
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Specifically, in CFMP, Poisson and NB distributions are incapable of taking into 

account some unobserved heterogeneities due to spatial and temporal effects of crash 

data. In particular, in both Poisson and NB models, it is presupposed that the crash 

occurrence distributions for the sites with similar observed characteristics are the same. 

Furthermore, crash counts for a specific location in different time periods are assumed 

to be independent of one another. But indeed, some hidden features may necessarily 

exist between different traffic sites and crash occurrences for a specific site may often 

be correlated serially. Consequently, without appropriately accounting for the location-

specific effects and potential serial correlations, the standard errors in the regression 

coefficients may be underestimated.  

 

In CSPM, the techniques used in most past studies, assuming independence between 

samples (e.g., a crash or a driver), also suffer from limitations in some special data 

structure with present of clustering data. For example, it is reasonable to assume that 

the characteristics of the vehicles within which casualties are traveling will affect their 

probability of survival. If this is the case, then casualties within the same vehicle 

would tend to have more similar severity than casualties within different vehicles, and 

the assumption of residual independence will not be met. The same argument may be 

extended to encompass the effect of similarities between different crashes, road 

sections, or geographical regions. Hence, the models without considering the within-

cluster correlations, especially when the correlations exist significantly, would result in 

inaccurate or biased estimates for factor effects. 
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1.3.2 Excess Zeros in Count Data 

 

Another challenge with existing CFPM is the distribution of excess zero crash 

observations in some crash data. It is obvious that the distribution of annual crash 

frequencies with extra zeros may be qualitatively different from the simple Poisson 

and parent NB distribution (Shankar et al., 1997). If the Poisson or NB distributions 

are applied in this case, estimation may be mistakenly regarded as the presence of 

over-dispersion in the data whereas over-dispersion may merely be a natural result of 

an incorrectly specified model.  

 

To better reflect this special situation, Lambert (1992), in his study on defects in 

manufacturing, introduced a technique called zero-inflated model by proposing a dual-

state system. In recent years, this technique has been employed successfully in road 

crash frequency prediction (e.g. Miaou, 1994, Shankar et al., 1997, Chin and Quddus, 

2003). However, the zero-inflated models are also incapable of accommodating the 

within-location correlation as well as between-location heterogeneities associated with 

multilevel data structure. Hence, it would also be interesting whether the accounting of 

multilevel structure into zero-inflated model will further improve the performance of 

CFPM.  
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1.4 RESEARCH OBJECTIVE, METHODOLOGY AND SCOPE  

 

1.4.1 Research Objectives 

 

Based on the identified research problems, two main objectives are formulated for this 

research, which are: 

 

a) to examine and model the multilevel data structure in CPMs, i.e. CFPM and CSPM.  

b) to explore a theoretical framework to determine the suitability of applying various 

safety statistical models in predicting crash frequency and severity.  

 

1.4.2 Methodology 

 

To achieve the above objectives, hierarchical models that allow multilevel data 

structure to be properly specified and estimated, are employed. Specifically, in CFPM, 

based on the investigation of traditional count models such as Poisson and NB models, 

innovative microscopic traffic crash prediction models are developed to capture both 

multilevel data structure and excess zero crash observations in the crash frequency data. 

This is done by developing the random effect Poisson model (REP), the zero-inflated 

Poisson model (ZIP), and zero-inflated Poisson model with random effects (REZIP). 

As for CFSM, a hierarchical binomial logistic model (HBL) is proposed to account for 

the within-cluster correlation of crash severity.  

 

In model calibration, this study develops Bayesian inference (BI) with Markov Chain 

Monte Carlo (MCMC) algorithm to estimate the proposed models. In Bayesian models, 
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given model assumptions and parameters, the likelihood of the observed data is used to 

modify the prior beliefs of the unknowns, resulting in the updated knowledge 

summarized in posterior densities. BI has intrinsic advantages in explicitly accounting 

for hierarchical structure over likelihood-based estimation due to its potential to model 

all sources of sampling uncertainty in the hierarchical models (Congdon, 2003). Due to 

the absence of built computing programme, the Bayesian inferences for the proposed 

models are innovatively realized by programming using BUGS language (Bayesian 

Inference Using Gibbs Sampling).  

 

A number of statistical measures in the Bayesian framework are proposed to assess the 

suitability of the proposed models, such as Deviance Information Criterion (DIC) and 

cross validation predictive densities (CV). Furthermore, an Intra-class Correlation 

Coefficient (ICC) is employed to estimate the proportions of variances associated with 

different levels and hence to examine the advantage of the hierarchical models over the 

traditional models. Moreover, the proposed methods are illustrated and validated using 

Singapore intersection data. After identifying the critical factors contributing to crashes 

at intersections, possible causes and potential countermeasures for each of the 

identified factors are discussed and suggested. 
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1.4.3 Scope of the Study 

 

While the proposed method may apply to most traffic crash situations on various 

roadway types, the statistical models developed in this study are mainly illustrated on 

the prediction of traffic crash frequency and severity at urban signalized intersections. 

The models are based on police recorded crash data and field survey data for geometric, 

traffic and regulatory characteristics. In CFPM, a total of 52 signalized intersections 

are sampled which are supposed to be representative of all intersections in Singapore.  

 

Although we proposed the full hierarchical models, only random intercept models are 

illustrated to avoid excess complexity as the large set of covariates are used. The 

random effects on covariate coefficient can be easily extended within the proposed 

methodological framework.  
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1.5 ORGANIZATION OF THE THESIS 

 

This thesis is organized under seven chapters as structured in Figure 1.2. 

 

 

 

Figure 1.2 Structure of the Thesis 
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Chapter 1 is the introductory chapter which provides the research background, 

identifies the research problems, lays out the research objective, methodology and 

scope, and finally presents an outline of the thesis.   

 

Chapter 2 provides a critical literature review for traditional CPMs. The research 

problems are specified in details and some existing solutions on the identified 

problems are also reviewed. 

 

Chapter 3 and Chapter 4 are the crash frequency prediction model development. While 

Chapter 3 describes the methodology formulation of modeling multilevel data and 

excess zeros in CFPM, Chapter 4 summarizes an illustrative example for the proposed 

method using Singapore intersection data.   

 

Chapter 5 and Chapter 6 are the crash severity prediction model development. 

Specifically, Chapter 5 proposes a Bayesian HBL model in modeling the multilevel 

data structure in crash severity. Chapter 6 uses the proposed method to examine the 

severity of driver injury and vehicle damage in traffic crashes at intersections using 

Singapore crash data.  

 

Finally, conclusions derived from the analysis are summarized in Chapter 7, where 

research contributions and recommendations for further research are appended. 
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CHAPTER TWO 

REVIEW OF CRASH PREDICTION MODELS 

 
 

2.1 INTRODUCTION 

 

Statistical modeling is a process of exploring and identifying the potential 

interrelationships of response variables and the explanatory variables in probabilistic 

forms. In road safety research, the wildly-used crash prediction model (CPM) is 

specifically targeted to examining the behavior of crash occurrence, including crash 

frequency and crash severity, for traffic entities. A variety of traits associated with the 

entities, as shown in Figure 1.1, are assumed to provide information on the behavior of 

the crash occurrence. Appropriate probabilistic forms and statistically significant traits 

are identified based on the examination of crash occurrence mechanism and model 

fitting performance on historical data.  

 

In particular, crash frequency prediction model (CFPM) is developed when the crash 

frequency for the traffic entities is concerned, while crash severity prediction model 

(CSPM) is employed when the crash severity is focused. The fitted models of crash 

occurrence are useful in estimating the safety situation of traffic entities, in predicting 

the safety performance of existing or planning highway facilities, in providing 

information for safety countermeasure development and assessment and so on.    

 

This chapter presents a critical review on traditional CFPM and CSPM. These include 

general description of crash occurrence mechanism, mathematical formulations, 

general forms, assumptions and potential weakness of conventional models, i.e. 
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Poisson and negative binomial (NB) regression models for CFPM and logit, probit and 

ordered models for CSPM.  

 

2.2 CRASH FREQUENCY PREDICTION MODEL (CFPM) 

 

2.2.1 Crash Occurrence Mechanism 

 

A traffic crash is, in theory, the result of a Bernoulli trial. Each time a vehicle enters an 

intersection, a highway segment, or any other type of entity (a trial) on a given 

transportation network, it will either crash or non-crash. For purposes of consistency, a 

crash is termed a “success” while non-crash is a “failure”. For the Bernoulli trial, a 

random variable, defined as X , can be generated with the following probability model: 

if the outcome is a “success” (e.g. a crash), then 1=X , whereas if the outcome is a 

“failure”, then . Thus, the probability model becomes 0=X

 

Table 2.1 Crash Occurrence as a Bernoulli Trial 

X  1 0 

)Pr( Xx =  p  q  

 

where is the probability of success (a crash) and p )1( pq −= is the probability of 

failure (non-crash). 

 

In general, if there are independent trails (vehicles passing through an intersection, 

road segment, etc.) that give rise to a Bernoulli distribution, then it is natural to 

consider the random variable

N

Z that records the number of successes out of the trials. N
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Under the assumption that all trials are characterized by the same failure process, the 

appropriate probability model that accounts for a series of Bernoulli trials is known as 

the binomial distribution, and is given as: 

 

nNn pp
n
N

nZ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== )1()Pr(  (2.1) 

 

where  In Equation (2.1), is defined as the number of crashes 

(successes). The mean and variance of the binomial distribution are and 

....,,2,1,0 Nn = n

NpZE =)(

)1()( pNpZVAR −= respectively.  

 

For typical motor vehicle crashes where the event has a very low probability of 

occurrence and a large number of trials exist (e.g. million entering vehicles, vehicle-

miles-traveled, etc.), it can be shown that the binomial distribution is approximated by 

a Poisson distribution. Under the binomial distribution with parameters andN p , 

let Np /μ= , so that a large sample size N will be offset by the diminution of p to 

produce a constant mean number of eventsμ for all values of . Then asp ∞→N , it 

can be shown that  

 

μμμμ −
−

≅⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== e

nNNn
N

nZ
npNn

!
1)Pr(  (2.2) 

 

where, μ  is the mean of a Poisson distribution. This approximate lends a reasonable 

support to the use of Poisson regression model in estimating the crash frequency. 

 

National University of Singapore                                                                                                                                        16



                                                                        Chapter Two  Review of CPMs 

On the other hand, the Poisson approximation to the binomial distribution in crash 

occurrence may also be understood from the aspect of traffic entity. Traffic crash 

occurrence in a traffic entity, e.g. an intersection or a road segment, is random, discrete 

and sporadic events that may follow Poisson process. Specifically, dividing the year 

into 8760 one-hour periods, the chance that more than one crash will occur in any 

single hour is negligible and the occurrence of crashes is likely to be independent for 

the different hours. The hourly number of crashes would then be binomially distributed 

with Binomial (8760, p ) where p  is the probability of a crash in any given hour. 

Since p  is very low, this distribution is extremely close to the Poisson distribution 

with the mean of ( ).  Even when the crash probability is indeed variable from 

one hour to the next, the number of crashes will still have approximately a Poisson 

distribution. 

p×8760

 

Consequently, by assuming the crash occurrence as Poisson process, the Poisson 

distribution has been commonly employed to describe the crash frequency at various 

traffic entities. When considering the variations of the process associated with different 

traits of entities, Poisson regression model have been thus conventionally adapted in a 

number of CFPM studies (e.g. Maycock and Hall, 1984; Jovanis and Chang, 1986; 

Joshua and Garber, 1990; Jones, Janseen, and Mannering, 1991; Miaou and Lum, 

1993). The assumptions and mathematical forms of Poisson regression model are 

briefly reviewed in the following. 
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2.2.2 Poisson Regression Model 

 

As discussed in the crash occurrence mechanism, Poisson distribution may be a 

reasonable description for crash occurrence when crashes are considered to occur both 

randomly and independently in time. The Poisson distribution has only one adjustable 

parameter, namely the mean of the distribution μ , which must be positive. This 

requirement may be unsatisfactory in the case of an additive model, in which the μ  

does not necessarily have a lower bound. To ensure μ  to be positive, a commonly 

used formulation is a log-linear relationship between the expected numbers of crashes 

in an observation unit i in a given time period t , i.e. itμ  and the covariates X, which is  

 

)exp()( βX ititit yE ==μ  (2.3) 

 

where,  is a vector of covariates (traits) which describe the characteristics of a 

observation unit i  (traffic entity, e.g. an intersection, a road segment) in a given time 

period  (e.g. annual) and β  is a vector of estimable coefficients representing the 

effects of the covariates. Note that  is the number of observing crashes in an 

observation unit i  in a given time period . Therefore, the probability of observing , 

when 

itX

t

ity

t ity

itμ  is given, can be expressed as  

 

!
)exp(

)|Pr(
it

y
itit

itit y
y

itμμ
μ

−
=  (2.4) 
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where itμ  is a deterministic function of and randomness in the model comes from 

the Poisson specification for . 

itX

ity

 

To estimate itμ , i.e. , which is the effect of the covariates on the dependent variable, 

the method of maximum likelihood estimation (MLE) is commonly used (Green, 

1997). In general, the likelihood function for independently Poisson-distributed 

random variables is 

β

 

∏∏
==

−
=

T

t it

y
itit

N

i
itit y

yL
it

11 !
)exp(

)|(
μμ

μ  (2.5) 

 

The basic idea of maximum likelihood is that given the data, an estimate of  can be 

determined by maximizing this function and hence the likelihood of having generated 

the data (King, 1989). 

β

 

Correspondingly, the log-likelihood function is then  

 

 [∑∑
==

−−=

=
T

t
itititit

N

i

itit

yy

yLl

11
)!ln()ln(       

 ))|(ln()(

μμ ]

μβ
 (2.6) 

 

Standard numerical maximization methods can easily be applied to this globally 

concave function by using one of many computer programs (e.g. Greene, 1995).   

 

However, the Poisson regression model has some potential problems in describing the 

crash process. One important constraint is that the mean must be equal to the variance. 
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If this assumption is not valid, the standard errors will be biased and the test statistics 

derived from the model will be incorrect. Many researchers have modified the simple 

Poisson assumption by assuming that the parameter is distributed, usually in a Pearson 

type III distribution. A historical and bibliographical account of the problem associated 

with the use of the Poisson model has been well documented (Haight, 1967). In a 

number of recent studies (Miaou, 1994; Shankar et al., 1995; Vogt and Bared, 1998), 

the crash data were found to be significantly overdispersed, i.e. the variance is much 

greater than the mean. This will result in incorrect estimation of the likelihood of crash 

occurrence. 

 

In overcoming the problem of over-dispersion, several researchers, like Miaou (1994), 

Kulmala (1995), Shankar et al. (1995), Poch and Mannering (1996), and Abdel-Aty 

and Radwan (2000) have employed the NB distribution instead of the Poisson. By 

relaxing the condition of mean equals to variance, NB regression model is more 

suitable in describing discrete and nonnegative events. The mathematical formulation 

of NB regression model is described in the following. 

 

2.2.3 Negative Binomial Regression Model 

 

To overcome the over-dispersion problem, the NB regression model relaxes the 

“equality” constraint between mean and variance by introducing a stochastic 

component into the Poisson model even though the source of over-dispersion in event 

count data cannot be distinguished (which will be discussed in detail in the later 

section of this chapter). Mathematically, the Equation (2.3) can be rewritten as 
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)exp(~
ititit εμ += βX   (2.7) 

 

where ε  is a random error that is assumed to be uncorrelated with X. Hence, the 

relationship of μ~  and original μ  in Poisson model follows readily 

 

 

it

itit

ititit

δμ
εμ

εμ

it    
)exp(    

)exp()exp(~

=
=
= βX

                                          (2.8) 

 

where itδ is defined to equal )exp( itε . An assumption needs to be made about the 

mean of the error term ( itδ ) to identify NB regression model (Long 1997). The most 

convenient assumption is that 

 

1)( =itE δ                                                       (2.9) 

 

which implies that the expected count after adding the new source of variation is the 

same as it was for the Poisson regression model, i.e. 

 

 

it

it
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                                                (2.10) 
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The distribution of observations given X and δ is still Poisson, i.e. 

 

!
))(exp(-

                          

!

~)~exp(
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it

it

y
ititit

y
itit

ititit

y

y
y

it

it
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=

−
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                             (2.11) 

 

However, since δ  is unknown we cannot compute ),|Pr( δXy and instead need to 

compute the distribution of given only X. To compute  without 

conditioning on

ity )|Pr( Xy

δ , we average ),|Pr( δXy by probability of each of δ . If g is the 

probability density function (pdf) forδ , then 

 

∫
∞

×=
0

)](),|[Pr()|Pr( ititititititit dgyy δδδXX                  (2.12) 

 

The solution of this integral in Equation (2.12) depends on the form of )( itg δ . Ideally, 

the choice of this function reflects some knowledge or theory about the process that 

generates the over-dispersion. However, such information is rarely, if ever, available. 

Furthermore, few functions will produce compound Poisson distributions that are 

computationally tractable. In practice, the gamma distribution is usually chosen. There 

are two main advantages to this choice. First, the solution to Equation (2.12) that 

follows from this choice can easily be used to obtain parameter estimates. Second, the 

gamma distribution is quite flexible. It can vary from highly skewed to symmetric 

shapes, depending on the values of the two parameters that characterize it.  
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Assuming that )( itg δ has a gamma distribution with mean 1 and variance . The 

resulting probability distribution under the NB assumption is  

k
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in which  is often referred to as over-dispersion parameter. If k reduces to zero 

then the NB regression model reduces to the Poisson regression model. In this way, the 

Poisson regression model is nested within the NB regression model and a t-test for 

can be used to evaluate the significant presence of over-dispersion in the data. In 

NB regression model, it is assumed that unconditional mean 

)0(≥k

0=k

itμ  is independently 

distributed over time.  For this specification, the mean and variance will be 

respectively 

 

ititit kyE μμ =),|(                             (2.14) 

 

)1(),|( itititit kkyVar μμμ +=                        (2.15) 

 

 and the mean-variance relationship of the distribution is given by  

 

)](1)[(),|( itititit ykEyEkyVar +=μ      (2.16) 
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Estimation of itμ can be obtained through standard maximum likelihood as mentioned 

in the previous section and is given by  
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This function is maximized to obtain coefficient estimates for β and . Several 

researchers, like Miaou (1994), Kulmala (1995), Shankar et al. (1995), Poch and 

Mannering (1996) and Abdel-Aty and Radwan (2000) have employed this NB 

distribution and they have proved that NB regression model is better than Poisson 

model in fitting the overdispersed crash data.  

k

 

However, the NB regression model is not without limitations. As mentioned above, 

although NB regression model provides an over-dispersion parameter ( ) to relax the 

constraint between mean and the variance of crash data, the source of over-dispersion 

in event count data cannot be distinguished. Specifically, as with Poisson regression 

model, NB regression model also assume an “independent” relationship between 

different observations. When some special data structures are present, i.e. correlations 

exist in crash data, NB as well as Poisson regression models are obviously not 

adequate. The next section presents a discussion on the possible sources of over-

dispersion in crash data and some existing solutions.  

k
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2.2.4 Potential Problems and Existing Solutions 

 

In the Poisson regression model, variation in μ  is introduced through observed 

heterogeneity. Different values of X result in different values of μ . In the NB 

regression model, variation in μ~  is due both to variation in X among individuals but 

also to the heterogeneity introduced byε . For a given combination of the values for the 

independent variables, there is a distribution of μ~ ’s rather than a single μ . However, 

both Poisson and NB regression models assume the observations are independent with 

each other. Consequently, some unobserved heterogeneities due to spatial and 

temporal effects of crash data may not be taken into account appropriately. In 

particular, in both Poisson and NB regression model, it is presupposed that the crash 

occurrence distributions for the sites with similar observed characteristics are the same. 

Furthermore, crash counts for a specific location in different time periods are assumed 

to be independent with each other.  

 

But indeed, some hidden features may necessarily exist between different traffic sites 

and crash occurrences for a specific site may often be correlated serially. Traffic crash 

is a complex event with a large number of factors involved. Ideally, all of the relevant 

factors should be included in the model. In practice, however, some of the factors may 

not be available or even collectable for study. A model may only consider the most 

important factors as independent variables and omit the others. It assumes that similar 

sites (site with same selected independent variables) have the same mean of crash 

occurrence. In the real world, however, similar site may be different in omitted factors 

and thus may have different means. This introduces additional variance to the data and 

causes the over-dispersion. Consequently, without appropriately accounting for the 
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location-specific effects and potential serially correlations, the estimates of the 

standard error in the regression coefficients may be underestimated.  

 

One way to overcome these problems is to treat them in a time series cross-sectional 

panel with different locations and time periods, as suggested by Hausman et al. (1984) 

in their study of patent applications. Using the panel data, the hidden features can 

alternatively be captured by individual (location) heterogeneity. In employing the 

model in what may be its first application in traffic crash studies, Shankar et al. (1998) 

showed that the introducing of location-specific random effects and time indicators 

into the NB regression model can significantly improve the explanatory power of crash 

models. In recent years, the proposed hierarchical model (random effect model) is 

increasingly applied to develop the crash prediction models (e.g. Yang, 2003, Chin and 

Quddus, 2003a).   

 

Another possible source of over-dispersion in existing CPMs is the distribution of 

excess zero crash observations in some crash data. This “excess zeros” occurs 

frequently as the outgrowth of three sources: a) crash severity: minor crash may not be 

reported; b) near crash: it may also indicate a potentially dangerous traffic location 

even though no crashes have been recorded (Shanker et al., 1997); c) specific types of 

crashes: some traffic location is possibly safe regarding to specific types of crashes 

(Chin and Quddus, 2003b). 

 

It is obvious that the distribution of annual crash frequencies with extra zeros may be 

qualitatively different from the simple Poisson and parent NB distribution (Shankar et 

al., 1997). If simply applying the Poisson or NB distribution in this case, estimation 
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may be mistakenly regarded as the presence of over-dispersion in the data whereas 

over-dispersion may merely be a natural result of an incorrectly specified model. To 

better reflect the situation, a dual-state system may be assumed. In this, one state is the 

zero-crash state, in which the traffic location, e.g. an intersection or a roadway section, 

can be regarded as virtually safe, while the other state is the non-zero-crash states, in 

which the crash frequencies are assumed to follow some known distributions such as 

the Poisson and NB.  

 

To handle this dual-state system, Lambert (1992), in his study on defects in 

manufacturing, proposed a technique called zero-inflated Poisson (ZIP) regression. 

This ZIP model provides a practical way to explicitly model existence of the two states 

as well as allow for both the probability of a perfect state (i.e. zero-defect state) and the 

mean of the imperfect state (i.e. non-zero-defect state) to depend on the covariates. 

This has been recently applied in a variety of fields to account for the excess zero 

count data, for example, in applications to sociology (Land et al., 1996), industry (e.g. 

Xie et al., 2001; Ghosh et al., 2006), management (Karen and Kelvin, 2005), and 

biomedicine (Hall, 2000).   

 

In traffic analysis field, zero-inflated models are examined and increasingly employed 

to investigate the relationship between traffic crashes and the covariates. Miaou (1994) 

started the exploration of using the ZIP structure to analyze crash frequency. Shankar 

et al. (1997) conducted an empirical inquiry to explore the conditions under which the 

zero-inflated models are more appropriate than simple Poisson and NB regression 

models on crash analysis research. In a more recent study, Chin and Quddus (2003b) 

proposed an evaluation framework to determine the suitability of applying different 
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count models in crash studies, and they demonstrated that the zero-inflated probability 

process is an appropriate technique for modeling specific types of crashes in which the 

data contain many zero counts. Furthermore, the applications of ZIP model have been 

found in analysis of truck crashes (Miaou, 1994), motor vehicle crashes (Lee et al., 

2002; Qin et al. 2005), run-off-road crashes (Lee and Mannering, 2002), pedestrians 

and motorized traffic crashes, (Shankar et al., 2003), occupational injuries (Wang et al., 

2003), crash occurrence at signalized T-intersections (Kumara and Chin, 2003), and 

crash rate prediction for two-lane highway segments (Xiao et al., 2004).   

 

However, Lord et al. (2005, 2007) have questioned the basic dual-state assumption of 

zero-inflated models. The essential objection is that no highway is “virtually safe” to 

allow a non-crash state. They have also provided several reasons for the presence of 

excess zeros other than the dual-state explanation. Nonetheless, despite the lack of 

intuitive appeal, zero-inflated models may still be used for three reasons. Firstly, zero 

crash observations exist everywhere in road network, and no alternative solution is 

currently available to systematically account for the excess zeros. Secondly, as long as 

the regression results are not extrapolated beyond the range of observation of the study 

period, the model may still be valid even though no highway is “virtually safe”. 

Thirdly, in the absence of any better alternative, this model may yet be suitable for 

prediction rather than estimation purpose.    

 

Although ZIP model is capable of handling the dual-state system in crash data with 

excess zero observations, it does not accommodate the within-location correlation as 

well as between-location heterogeneities, which is the basic motivation for the need of 

hierarchical models. Hall (2000), in his research of zero-runoff sub-irrigation system, 

National University of Singapore                                                                                                                                        28



                                                                        Chapter Two  Review of CPMs 

developed the ZIP models with random effects which have demonstrated to fit better 

than corresponding fixed effects models with zero-inflation and mixed effects models 

without zero-inflation for the repeated measures and split-plot data sets. Hence, it 

would be also interesting if a theoretical combination of zero-inflated model and 

random effect model can further improve the performance of CFPM.  
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2.3 CRASH SEVERITY PREDICTION MODEL (CSPM) 

 

In addition to the crash frequency, crash severity is another important concern of road 

safety. Instead of the count data in crash frequency, description of crash severity level 

is generally associated with the nominal or ordered features. Some generalized linear 

models (GLM) have generally been employed to account for these features in most 

previous crash severity studies. In particular, while some researchers (Jones and 

Whitfield, 1988; Lui et al., 1988; Shibita and Fukuda, 1994; Mannering and Grodsky, 

1995; Shankar and Mannering, 1996; Mercier et al., 1997; Simoncic, 2001; Al-Ghamdi, 

2002) used binomial/multinomial logit/probit model to explore the significance of risk 

factors by taking crash severity as a nominal variable, some others (O’Donnell and 

Connor, 1996; Quddus et al., 2002; Rifaat and Chin, 2005; Abdel-Aty and Keller, 2005) 

employed ordered logit/probit models to account for the ordered nature of severity 

levels. This section presents a critical review on these models conventionally used in 

crash severity studies.  

 

2.3.1 Logit and Probit Models 

 

The logit and probit models are commonly used when the crash severity is classified as 

nominal categories. Binary logit/probit models are applied when accounting only two 

states of severity level, for example, injury or non-injury, fatal or non-fatal; while 

multinomial logit/probit models extend the analysis on two states to multiple states of 

severity levels.  
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In modeling the two-state severity levels using binary logit/probit models, the 

dependent variable Y for  observation unit (e.g. a crash, a driver) can only takes one 

of two values: Y  representing the two states of severity levels respectively. 

The binary logit model denotes the probability of 

thi

10 ori =

1=iY  by )1Pr( == ii Yπ , which 

follows a binomial distribution. A logistic transformation can be interpreted as the 

logarithm of the odds of severity level 1 vs. severity level 2. The logistic 

transformation of the probability iπ is given by 
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The binary logit model is obtained by treating the Equation (2.18) as a link function in 

the generalized linear model framework, 
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So probability iπ  can be solved: 
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i −
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where, is a vector of explanatory variables such as geometric, traffic, and situational 

factors, as well as the driver-vehicle characteristics which are assumed to have effects 

on severity level. is the effect coefficient vector of the explanatory variables. For all 

iX

β
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possible values of and , the logistic transformation ensures that iX β π remains in the 

[0, 1] interval. As π approaches 0, logit(π ) tends toward ∞− ; as π approaches 1, 

logit(π ) tends toward .  ∞+

 

The binary probit model provides an alternative to the logit model. Again, a nonlinear 

model in π is transformed so that a monotonic function of π is linear with respect to 

explanatory variables. The probability iπ  is given by the standard cumulative normal 

distribution function: 

 

)()
2
1exp(

2
1 2 βX i

βX

∫ ∞−
Φ=−= i dtti π

π                                  (2.21) 

 

where denotes the cumulative distribution function of the standard normal 

distribution. The probit transformation is given by the inverse of the standard 

cumulative normal distribution function.  

)(⋅Φ

 

Solving Equation (2.21) for yields βX i

 

Probit       (2.22) βX i=Φ= − )()( 1
ii ππ

 

Thus, the probit model can be written as 

 

( βX iΦ=i )π                                                            (2.23) 
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For the normal and the logistic distribution have similar shapes, probit and logit 

models are very similar. In practice, the logistic distribution may be preferred due to 

the simplicity of probability distribution and density functions. In case of crash 

severity studies, the logit model is preferred because of its ease in interpretation in 

terms of log-odds ratio which probit model cannot do since probit model has no simple 

closed-form expression for the odds-ratio.   

 

Though binary logit model is applied broadly in severity studies, it may not be 

adequate when more than two states of the injury severity are considered. The 

multinomial logit model extends the logit model to more than two states. For the 

nominal dependent variable, the multinomial logit model (McFadden, 1973) is the 

most widely-used discrete choice model due to its simple mathematical structure and 

ease of estimation. This discrete choice model is based on the principle that an 

individual chooses the outcome that maximizes the utility gained from that choice. 

Based on this principle and the assumption that the error term is generalized extreme 

value (GEV) distributed, McFadden (1981) derived the simple multinomial logit 

model. The final form of the model is as follows:   

    

∑
==

J

ii jy
)exp(

)exp(
)(

ji

ji

βX
βX

π            (2.24) 

 

where )( jyii =π  is the probability of individual i having alternative j  in a set of 

possible choice categories , is a vector of measurable characteristics that 

determine alternative 

J iX

j ; is a vector of statistically estimable coefficients.  jβ
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However, the multinomial logit model has the limitation of independence of irrelevant 

alternatives (IIA) (Ben-Akiva and Lerman, 1985), such that the odd of m  versus  

( ) is not affected by other alternatives, i.e. 

n

Jnm ...1, ∈

 

) ]-[exp(
)(
)(

nm ββX i
ii

ii

ny
my

=
=
=

π
π

  (2.25) 

 

This expression is only a function of the respective utilities of alternatives m  and , 

and is not affected by the introduction/removal of other alternatives. This analytical 

feature implies that the relative shares of the two given alternatives are independent of 

composition of the set of alternatives.  

n

 

The limitation of IIA in multinomial logit model was also identified by Shankar, 

Mannering and Barfield (1996), Chang and Mannering (1999), Lee and Mannering 

(2002) in their studies on crash severity. Shankar et al. (1996) classified severity of a 

crash to be one of four discrete categories: property damage, possible injury, evident 

injury and disabling injury or fatality. But according to them, property damage and 

possible injury crashes may share unobserved effects such as internal injury or effects 

associated with lower-severity crashes. However, the basic assumption in the 

derivation of the multinomial logit model is that error terms or disturbances are 

independent from one crash severity category to another. Shankar et al. (1996) 

suggested that if some severity categories share unobserved effects (i.e. have correlated 

disturbances), the model derivation assumptions are violated and serious specification 

errors will result.  
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On the other hand, according to Long (1997), a significant advantage of the 

multinomial probit model is that the errors can be correlated across choices, which 

eliminates the IIA restriction. However, computational difficulties make the 

multinomial probit model impractical. 

 

2.3.2 Ordered Logit and Probit Models 

 

When the dependent variable is ordinal in nature, it should not preferably be treated as 

nominal. Multinomial logit/probit model cannot handle ordinal dependent variable. 

Consequently, there will be loss of efficiency due to information being ignored. One 

way to deal with this problem is to use ordered logit/probit model. The ordered 

logit/probit models discern unequal differences between ordinal categories in the 

dependent variable (McKelvey and Zavoina, 1975; Greene; 2000).  

 

In crash severity modeling, researchers (e.g., O’Donnell and Connor ,1996; Duncan et 

al.,1998; Khattak, 2001; Kockelman et al., 2002, Rensky et al., 1999; Quddus et al., 

2002) have recognized that the discrete measure of severity is ordinal in nature and 

have applied the ordered logit/probit models to severity studies. The difference 

between the two models lies in the assumption of errors. O’Donnell and Connor (1996) 

and Rensky et al. (1999) have further indicated that the results from the ordered probit 

and ordered logit are similar. However, ordered probit model is preferable because the 

assumption that the distribution of errors is normally distributed is more likely to be 

valid. A mathematical description of ordered probit model is presented in the 

following. 
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The ordered probit model is usually motivated in a latent (i.e. unobserved) variables 

framework. In CSPM, the general form of the ordered model is 

 

iiy ε+= βX i
*   (2.27) 

 

Mmymy mmi    to1for             ≤   if   *
1- =<= ττ   (2.28) 

    

where, y represents the crash severity and can be ordered in M several levels (e.g., 

slight injury, serious injury and fatal) and  indicates the injury propensity.  is a 

vector of explanatory variables describing characteristics of the victim, vehicle, crash 

and the environmental ,  is a vector of parameters to be estimated  and  is the error 

term.  

*y iX

β iε

 

In Equation (2.27) and Equation (2.28), the latent variable  ranging from to *
iy ∞− ∞+  

is mapped to an observed ordinal variable y . The threshold values s'τ are unknown 

parameters to be estimated. The extreme categories, 1 and M , are defined by open-

ended intervals with ∞+∞   =  τand   -  =τ M0 . The mapping from the latent variable to 

the observed categories is illustrated in Figure 2.1 below: 

1τ 2τ 3τ mτ

 

*y

∞− ∞+  

y
 

 

Figure 2.1 Mapping of Latent Variable to Observed Variable 
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To calibrate the model, distribution of error term ( ) need to be assumed to estimate . 

For the ordered probit model, 

ε β

ε is assumed distributed normal with mean 0 and 

variance 1. Hence, the probability of a particular value of given can be computed. 

According to following formulation, the predicted probability of any type of injury 

severity,  for given  is 

iy iX

m iX

   

( ) )()( |m Pr 1 βXβXX iii −Φ+−Φ== −mmiy ττ   (2.29) 

 

The model is unidentified since a change in the (the first component in 

representing the intercept) in the structural model can always be compensated for by 

a corresponding change in the thresholds ( . As suggested by Long (1997), 

there is an infinite number of parameterizations that could be made to identify the 

model, only one of two are commonly used that is either 

0β

β

) and  21 ττ

0β  or 1τ  is constrained to 0. 

The choice of parameters to be used is arbitrary and does not affect or the associated 

significance tests, as well as the computed probabilities in Equation (2.29).  

β

 

The contribution to the likelihood for the i th observation depends on which value of 

severity is observed. For each of the ordered responses (m Mm ,...,1= ), the product 

over all observations have been taken for which my = and the likelihood can be 

written as  
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( )∏∏
1 1

|Pr
n

i

M

m

d
i

immyL
= =

== iX   (2.30)

  

where =1 if  , and 0 otherwise. Thus,  define a set of dummy variables 

only one of which is equal to 1 for any observation.  

imd myi = imd m

 

Then the final form of the log-likelihood can be written as  

 

( ) ( ) ( )[∑∑
1 1

- -  - ln ln(
n

i

M

m
1-mmim ττdLl

= =

ΦΦ== βXβXβ ii  ) ]   (2.31)  

 

2.3.3 Potential Problems  

 

As reviewed above, the GLMs, i.e. logit/probit or ordered models, have been applied 

broadly to account for the nominal or ordered feature of crash severity levels in 

modeling the crash severity. These models have been proved to be useful in many 

studies. However, a potential problem arises when factors influencing the severity 

levels of any individual casualty are seen to be operating at a variety of scales, with 

these scales comprising successive levels of a hierarchy. These may be associated with 

the personal characteristics of the casualty at the lowest level of the hierarchy, the 

features of the vehicle within which they are located or the distinguishing events of the 

crash in which they are involved. At the highest levels of the hierarchy, they may be 

extended to the properties of the road section upon which the crash took place; or even 

the attributes of the geographical region or country where it occurred.  
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However, since the techniques used in most past studies assumed independence 

between different observations, these techniques may not be incapable of accounting 

for the possible within-cluster correlations. Actually, this within-cluster correlation has 

already been identified in some earlier studies; for example, Evans (1992, 1993) found 

that in a multiple vehicle crash, the risk of fatality was dependent on the characteristics 

of the other vehicles. Hence, the models without considering the covariance between 

individuals in the same cluster (e.g., a same crash), especially when the covariance is 

significant, would result in inaccurate or biased estimates of factor effects. 

 

2.4 SUMMARY  

 

This chapter presents a critical review on the traditional CPMs. In according to the 

features of response variable, various GLMs are broadly applied to build probabilistic 

formulations on the relationship of the crash frequency or severity with a variety of 

possible covariates, such as geometric, traffic, environmental factors as well as driver-

vehicle characteristics.  

 

However, potential problems are identified in both CFPM and CSPM with their 

applications in certain areas of road crash predictions. One of the most fundamental 

problems with the application of GLMs is that each observation (e.g. a crash or a 

vehicle) entered into the estimation procedure corresponds to an individual situation, 

either for crash frequency or severity. Hence, the residuals from the model exhibit 

independence. However, a consideration of the data structure suggests that in some 

cases the assumption of independence may often not hold true with the present of a 

multilevel structure of crash data.  
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This possible existence of multilevel structure within crash data is commonly ignored. 

However, disregarding hierarchies, where they are present, can lead to the production 

of models giving unreliable estimates of prevision, incorrect standard errors, 

confidence limits, and tests (Skinner et al. 1989). In the rest of this thesis, 

methodological formulations using Bayesian hierarchical modeling technique are 

proposed to take account of potential multilevel data structures in modeling crash 

frequency and severity. Specific CFPM (in Chapter 3 and Chapter 4) and CSPM (in 

Chapter 5 and 6) are separately developed, which are illustrated using Singapore 

intersection data.  
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CHAPTER THREE 

MODELING MULTILEVEL DATA AND EXCESS ZEROS  

IN CRASH FREQUENCY PREDICTION  

 

 

3.1 INTRODUCTION 

 

In estimating the crash frequency, the Poisson and negative binomial (NB) models 

may be incapable of appropriately taking into account the unobserved heterogeneities 

when some special crash data structures are present. As reviewed in the Chapter 2 

multilevel data structure (e.g. repeated observations at same sites for different time 

periods) and excess zero observations are two critical issues which may violate the 

latent assumptions in the Poisson process.  

 

To better fit the crash data, some researchers (e.g. Shankar et al., 1998; Yang and 

MacNab, 2003, Chin and Quddus, 2003a) applied hierarchical data analysis techniques 

to deal with the multilevel data structures, while some others (e.g. Miaou, 1994; 

Shankar et al., 1997; Chin and Quddus, 2003b) employed the zero-inflated count 

model to account for the excess zero crash occurrences. Most of them have proven the 

effectiveness of techniques employed on improving the predictive performance of 

crash frequency prediction models (CFPM).   

 

However, the model may still be inadequate if it involves both multilevel data structure 

and excess zeros in crash frequency prediction. Hence, it is interesting to examine 
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whether zero-inflated count model with random effects will further improve the 

existing CFPMs.  

 

This study attempts to propose the use of zero-inflated Poisson model with location-

specific random effects (abbreviated as REZIP). Furthermore, theoretical evaluating 

tools are also developed to determine the suitability of applying different count models 

(e.g. random effect Poisson model (REP), zero-inflated Poisson model (ZIP), and 

REZIP model) in road crash frequency prediction.  

 

In model calibration, Bayesian analysis using Markov Chain Monte Carlo (MCMC) 

algorithm, instead of the classical maximum likelihood estimation (MLE) and 

likelihood ratio tests, is employed. Many advantages of Bayesian inference (BI) have 

been known in philosophical as well as practical aspects over the traditional MLE 

inference, which will be discussed in the section 3.4 of this chapter.   

 

In selecting the appropriate model, the statistical tests of over-dispersion and zero-

inflation are used to examine the crash data. Furthermore, model assessment measures 

based on cross validation predictive densities are proposed, which provide reliable and 

flexible tools to compare the model fitness between arbitrary non-nested models, e.g. 

REP, ZIP and REZIP models in this study.  

 

Crash records and site characteristic data at signalized intersections in Singapore are 

used to illustrate the proposed methodology. The results demonstrate that the REZIP 

model can significantly improve the predictive performance of crash prediction models 
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for the subject dataset. The specific research strategy for CFPM development is 

presented in the following.   

 

3.2 RESEARCH STRATEGY 

 

 

 

Figure 3.1 Research Strategy for CFPM Development 
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The research strategy for CFPM development is illustrated in Figure 3.1. After 

identifying the research problems (see section 2.2 for details) and specifying the 

objective and research strategy, the proposed methodology is formulated in this 

chapter, consisting of model specification, model inference, and tools for model 

assessment. Then, the model development using Singapore intersection data, the model 

estimation and comparison, and the result interpretation, as well as the summary of 

research findings will be presented in the Chapter 4.  

  

3.3 MODEL SPECIFICATION 

 

The section presents the model specifications for REP, ZIP, and REZIP models, 

associated with a discussion of the methodological evolution.  

 

3.3.1 Random Effect Poisson Regression Model  

 

The basic link function of REP model that modifies the Poisson regression model can 

be described as follows (Hausman et al., 1984): 

 

iiteiitit
σαμλ +== βX  (3.1) 

 

where, itλ is the modified Poisson parameter for random effects, itμ is the Poisson 

parameter representing the expected number of crashes at roadway location i  in time 

period t  ( and ), Ii ...1= iTt ...1= iα is the random location-specific effects assumed to 

be independently and identically distributed (IID) at the location level, and )ln( ii ασ = . 

itX  is the vector of covariates, whereas β is a vector of estimate coefficients. We 
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denote the total number of observations as , which equals to ∑ . For simplicity, 

we use same length and same periods for observations on all sites, for instance annual 

crash frequency. And hence, all  are equal, simplified as

N
=

I

i
iT

1

iT T . The Poisson probability 

specification then becomes 
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where, is observed number of crashes for roadway location i  in time period t . ity

 

To ensure a positive value of itλ , iα ( )exp( iσ= ) is generally assumed a gamma 

distribution with parameters ),( θθ , so that )( iE α = 1, θα /1)( =iVar . Hence, the joint 

density for this REP model can be derived as  
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 (3.3) 

 

with itityE μ=)(  and })/1(1{)( ititityVar μθμ += .  

 

Theoretically, while keeping the same mean as ordinary Poisson regression model, this 

REP model can explain the over-dispersion caused by within-location covariance. 

However, over-dispersion may also be the results of inappropriate model specification. 

Excess zeros is a common source of the potential misspecification in CFPM.     
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3.3.2 Zero-inflated Poisson Regression Model 

 

In case of over-representation of zero crash observations, ZIP model (Lambert, 1992) 

may be employed to better fit the data. The basic assumption is that the population 

consists of two possible states: zero crash state with probability and non-zero crash 

state with probability ( ). The former consists of those traffic entities that always 

have zero crash while the latter may be assumed to follow some distribution such as 

Poisson. In this dual-state system, it is difficult to judge whether an entity with zero 

crash for a year is in the first or second state. Therefore, the overall probability of zero 

counts is a combination of the probabilities of zeros from each state, weighted by the 

probability of being in that state. Hence, the probabilities of zero (0) can be expressed 

as   

itp

itp−1

 

)0()1(]|0Pr[ ititititit Rppy −+== X   (3.4) 

 

where is a Poisson probability with zero crash (i.e., ) that occur by 

chance in the second state. On the other hand, the probability of positive counts is 

given by 

)0(itR 0=ity

 

)()1(]|0Pr[ ititititit yRpy −=> X  (3.5) 

 

where  is the Poisson probability with positive counts ( ). Hence, the 

ZIP model can be expressed as  

)( itit yR 0>ity
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The Equation (3.6) can be further simplified as 
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where, is an indicator variable in which itl 1=itl when 0=ity  and , otherwise. 0=itl

 

Lambert (1992) has proposed that  and the mean itp itμ  in the non-zero crash state be 

formulated as a logit and log-linear relationship respectively with their covariates,  

 

θA it
it

it
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p
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=
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ln)(logit  (3.8) 

 

βX itit =)ln(μ   (3.9) 

 

where  and  are the covariate withθ and as their coefficients vectors.  itA itX β

 

Depending on the specific analytical strategy, the covariates of and may or may 

not be same. In the case of similar covariates (i.e. = ) affecting both  and

itX itA

itX itA itp itμ , 

the number of parameters can be reduced by treating as a function ofitp itμ .   
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Hence, a natural parameterization can be further proposed as follows, 

 

βX itit τp −=)(logit  (3.10) 

 

βX itit =)ln(μ  (3.11) 

 

whereτ is an unknown, real-value shape parameter. In this ZIP(τ ) model, of zero 

crash state is a simple multiplicative function of variables that explain the non-zero 

crash counts. 

itp

 

The mean and variance of the ZIP model are  

 

)1(),|( ititititit pyE −= μAX   (3.12) 

 

)1)(1(),|( ititititititit ppyVar μμ +−=AX  (3.13) 

 

Obviously, if , the ZIP specification results in the standard Poisson but 

otherwise, the variance exceeds the mean, which is a possible source of over-

dispersion.  

0=itp

 

To justify the appropriateness of zero-inflated count model over standard count model, 

Vuong statistics proposed by Vuong (1989) can be used. In this test, two models are 

considered: first is the predicted probability of observing  based on the 

zero-inflated count data model; second is the predicted probability for the 

)|(rP̂ 1 itity μ itn

)|(rP̂ 2 itity μ
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standard Poisson regression model. By examining the mean ( m ) and standard 

deviation ( ) of statistic   mS
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Voung statistic is defined as 

 

mS
NmV =  (3.15) 

 

which asymptotically follows a standard normal distribution. If  it favors the 

zero-inflated count model while 

96.1>V

96.1−<V it favors the parent Poisson regression 

model but otherwise neither model is preferred. 

 

3.3.3 Zero-inflated Poisson Model with Location-Specific Random Effects 

 

Although ZIP model is capable of accounting for excess zeros by specifying the dual-

state system, it is based on the assumption of independence among the observed 

samples. This assumption is possibly violated in repeated measures design such as 

crash count at some specific sites. While the crash occurrences may be independent 

between traffic sites, there almost certainly is correlation among repeated observations 

at the same sites. Hence, it is interesting and maybe sometimes necessary to consider 

the location-specific random effects into ZIP model. If these random effects truly exist, 

Equation (3.8) and Equation (3.9) may lead to erroneous estimations of factor effects. 
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In particular, location-specific random effects can be considered into ZIP model for 

both probability of being zero-crash state and count likelihood in non-zero-crash state. 

Hence, these two equations may be rewritten as follow.  
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iitiitit σαμλ +== βX)ln()ln(  (3.17) 

 

where iψ and iσ are the location-specific random effects for the two states with 

independent normal distributed, i.e. ),0(~ 2
ψϕψ Ni , and . Due to some 

unobserved crash-inducing factors, it is reasonable to assume a correlation between 

different observations within specific site.  

),0(~ 2
σϕσ Ni

 

The modified Poisson parameter itλ  in Equation (3.17) is also a random variable rather 

than a deterministic function of  like itX itμ  in Equation (3.9). Correlation between itλ  

and ti ′λ   arising for different time period t  in a particular location i  will be 

accounted for by α

)( tt ′≠

i while itλ and ti′λ  )( ii ′≠  for different locations will be assumed to 

be independent as αi is assumed independent. 

 

In case of similar covariates, the corresponding REZIP(τ ) will then be 

 

iititp ψτ +−= βX)(logit  (3.18) 

iitit σλ += βX)ln(  (3.19) 
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3.4 BAYESIAN INFERENCE  

 

3.4.1 Choice of Model Inference Algorithm  

 

Algorithms of MLE inference for generalized linear models with random effects have 

been successfully built up for many years (e.g. Hinde, 1982). Currently, such 

hierarchical models can be fitted from a frequentist perspective with specialized 

computer software such as “MLwinN (Rasbash et al., 2000) and “HLM” (Raudenbush 

et al., 2001). The model calibration programs for REP and ZIP models are also 

available in some prevailed statistics software, such as STATA (STATA, 2005). 

Moreover, Hall (2000) proposed an EM algorithm to maximize the likelihood function 

for ZIP model with random effects, in which both the state of the process (zero state 

versus Poisson state) and the random effects were regarded as missing data.  

 

On the other hand, with the recent development of computing capacity and Bayesian 

analysis techniques, some researchers have been working on calculating the models in 

a Bayesian framework (Gelman et al., 2003; Congdon, 2003). Bayesian inference (BI) 

is the process of fitting a probability model to a set of data and summarizing the result 

by a probability distribution on the parameters of the model and on unobserved 

quantities such as predictions for new observations. Instead of giving “maximum 

likelihood” estimates for the studied unknowns totally based on the sample data in 

MLE inference, the essential characteristic of Bayesian methods is its explicit use of 

probability for quantifying uncertainty in inferences based on statistical data analysis. 

Specifically, the ultimate aim of Bayesian data analysis is to obtain the marginal 

posterior distribution of all unknowns, and then integrate this distribution over the 
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unknowns that are not of immediate interest to obtain the desired marginal distribution. 

Or equivalently, using simulation, we draw samples from the joint posterior 

distribution and then look at the parameters of interest and ignore the values of the 

other unknowns.  

 

The general procedure of Bayesian inference is summarized below:  

 

1) Set up the likelihood part of the model, )|( μyp , whereμ is the model parameters 

and y  is the observable response data. The model should be consistent with 

knowledge about the underlying scientific problem and the data collection process. 

 

2) Write the prior beliefs about the truth of the parameter value, )(μp , which could be 

based on various sources of information. If prior information is not so well 

formulated, temporarily, we set constant)( ∝μp , with the understanding that the 

prior density can be altered to include additional information or structure. 

 

3) Setting up a full probability model: )()|(),( μμμ pypyp ×= , which is a joint 

probability distribution for all observable and unobservable quantities in the 

problem. 

 

4) Conditioning on observed data: calculating and interpreting the appropriate 

posterior distribution )()|()|( μμμ pypyp ∝ , i.e. the conditional probability 

distribution of the unobserved quantities of ultimate interest, given the observed 

data. This is the major difficulty in the development and application of Bayesian 

techniques. Recently, data simulation for Bayesian posterior inference has made 
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great progress. The modern approach to Bayesian estimation has become closely 

linked to sampling-based estimation methods. For this problem, we draw 

simulations , from the posterior distribution. Use the sample draws to 

compute the posterior density of any functions of

Lμμ ,...,1

μ that may be of interest. 

 

5) Evaluating the fit of the model and the implications of the resulting posterior 

distribution.  

 

In this study, BI is employed to calibrate the proposed models. This choice of BI over 

MLE in crash analysis is important for several reasons when multilevel data structure 

and extra zero observations are present.  

 

Firstly, while in MLE, coefficients of factor effects are taken as fixed, BI appropriately 

represents the hierarchical data generating processes of crash occurrence by taking the 

parameters as unknowns with certain distributions (Gelman et al., 2003).  

 

Secondly, BI can accumulate evidence from any information sources regarding crash 

prediction. In Bayesian models, any engineering experiences or justified previous 

findings may be considered into the posterior estimate of parameters by specifying the 

informative prior on those unknowns with preliminary information (Yang, 2003).  

 

Thirdly, in modeling zero-inflated count data, Bayesian estimates perform better over 

MLE with respect to interval width and coverage probability when the probability of 

zero-crash state is chosen closer to unity (Ghosh, et al., 2006).  
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Moreover, since zero-inflated model could have multiple modes, the MLE are not 

always suitable for making inferences of parameters in this case while the Bayesian 

expected mean would be a better summary of the posterior than its modes (Angers and 

Biswas, 2003).  

 

3.4.2 Bayesian Inference Using Gibbs Sampler 

 

The Bayesian analysis of ZIP models have been proposed by several statistical 

researchers, e.g. Angers and Biswas (2003), Ghosh et al. (2006). Inspired by these 

works, this study attempts to conduct the BI further for REZIP model. Gibbs sampling 

method (Gelfand and Smith, 1990), as a Markov chain Monte Carlo (MCMC) 

algorithm, is employed to generate samples from non-standard joint posterior 

distribution of parameters. The basic idea behind the Gibbs sampling algorithm is to 

successively sample from the conditional distribution of each node given all the others 

in the graph (these are known as full conditional distributions): the Metropolis-within-

Gibbs algorithm is appropriate for difficult full conditional distributions and does not 

necessarily generate a new value at each iteration. Under broad conditions, this process 

eventually provides samples from the joint posterior distribution of the unknown 

quantities. Empirical summary statistics, e.g. mean, median or quantiles, can be formed 

from these samples and used to draw inferences about their true values.  

 

In the regression problem, the dual-state dependent variable  is represented by latent 

variables  using the data augmentation step (Tanner and Wong, 1987) as follows, 

ity

),( BV
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)1( ititit BVy −=  (3.20) 

 

in which  )(~ itit PoissonV λ and .  )(~ itit pBernoulliB

 

Start

Initial value of β, θ and φ

For (i in 1:N)

Sample (V, B) given data y

Sample β given sampled values of θ and (V, B) 

Sample θ given sampled values of β and (V, B) 

Convergence?

Keep the samples Drop the samples

Summarize the samples after convergence to 
approximate posterior distributions for β and θ

End

yes no

 

 

Figure 3.2  Bayesian Inference for ZIP Model Using Gibbs Sampler 
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Instead of sampling directly from the posterior of ),( λp , samples from the posterior of 

),,,( BVp λ , are obtained given the dependent variable y . The detailed Gibbs sampling 

algorithm for zero inflated power series (ZIPS) models is illustrated by Ghosh et al. 

(2006). The procedure using Gibbs sampler to calibrate the models can be summarized 

as in Figure 3.2.  

 

In the algorithm, by specifying initial values of model parameters, data augmentation 

step is implemented to sample  given current values of ),( BV ),,( np λ ; then using 

Gibbs sampling method,  or  are sampled iteratively given the previously sampled 

values of  and or ;  are also updated with the current sampled values 

of , this circle continues until convergence. The distributions of estimates are 

obtained by summarizing the results of a presupposed number of iterations ( N) after 

model convergence. The magnitude of N  depends on the model convergence speed 

and the complexity of model structure.  

β θ

),( BV β θ ),( BV

),( θβ

N

 

When informative prior distributions are available, prior variance-covariance matrix of 

 and/or θ may be used with some suitably structured matrix instead of identity 

matrix. In the absence of strong prior knowledge, uninformative priors can be assumed 

for model parameters such as  and . On the 

other hand, reasonable initial values of parameters for the MCMC simulation chains 

can be obtained by fitting standard logistic and Poisson regression models.  

β

)10000(~, I,θ Nβ )100,0(~, 22 Unifσψ ϕϕ

 

The above MCMC sampling procedure was implemented using BUGS language 

(Bayesian Inference Using Gibbs Sampling) in WinBUGS (Spiegelhalter et al., 2003). 
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In this study, specific programmes for REP, ZIP and REZIP models are innovatively 

designed. Furthermore, Bayesian Output Analysis (BOA) programme (Smith, 2001) is 

adapted to obtain the distributional summary for MCMC simulation results and also to 

provide a variety of convergence diagnostic algorithms.   

 

3.5 CROSS VALIDATION MODEL COMPARISON 

 

The choice of the candidate models depends on the complexity and fitness of the 

subject crash data. In order to compare the specific predicting abilities of REP, ZIP, 

and REZIP models, cross-validation assessment (CV) in Bayesian framework is 

proposed. Compared with the other parametric criterion such as AIC and BIC, CV 

provides fairly flexible and reliable measures to examine the suitability for different 

output categories, which is extraordinarily useful for assessing the predicting ability on 

“zero” in this study. Moreover, Instead of just making a point estimate traditionally, 

cross validation predictive densities (Vehtari and Lampinen, 2002) in Bayesian 

framework describe the uncertainty in the estimates by obtaining distribution of the 

expected utility estimate. This is essential in model assessment by computing the 

probability of one model having a better expected utility than some other model. 

 

In this study, a k-fold CV, instead of the leave-one-out CV, is employed to save the 

computational cost to overcome the difficulty of slow sampling speed in MCMC 

algorithm. In particular, the data set are divided into k  roughly equal-sized groups and 

denotes the set of data points in the group where the observation at site i in time 

period  belongs. In the k-fold CV, we evaluate the predictive ability of candidate 

models using the following steps:  

)(its

t

National University of Singapore                                                                         57



                                                                                                              Chapter Three  CFPM (I/II)                             

 

 

1) Remove one group, i.e. , from the data set; )(its

2) Fit the model with the remaining )1( −k  groups;  

3) Use the fitted model to predict the removed group;  

4) Summarize the prediction error by comparing the actual left-out data;  

5) Repeat the entire procedure k times with different groups of data left out in turn;  

6) Estimate various expected prescribed utilities to compare predictive ability for 

candidate models, as further discussed below.    

 

In the Bayesian framework, the k-fold CV predictive densities for observation at 

site i in time period t are computed by the equation 

 

∫ ×= θθθ dMDpMDxypMDxyp itsits
itit

its
itit ),|(),,,|ˆ(),,|ˆ( ))((\))((\))((\   (3.21) 

 

where is the predictive crash number for observation ; are the data in 

the remaining groups except ;

itŷ ),( itit yx ))((\ itsD

)1( −k )(its θ denotes all the model parameters and hyper-

parameters of the prior structures and M  is all the prior knowledge in the model 

specification, including all implicit and explicit prior specifications. This means that 

we have to fit the full model using data of )1( −k groups for k  times to yield the n  

predictive densities. In MCMC algorithm, we sample from for each 

group, and this would normally take times to sample from the full posterior. Thus, as 

is greatly less than the total number of observations, the computational savings are 

considerable.  

),|(θ ))((\ MDp its

k

k
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After obtaining the predictive densities, we would like to estimate how good the 

candidate models are by estimating how good those predictions (i.e. ) are. The 

goodness of the predictive distribution can be measured by 

comparing it to the actual observation with the utility, 

itŷ

),,|ˆ( ))((\ MDxyp its
itit

ity

 

),,,( )((\ MDxyuu its
ititit =  (3.22) 

 

The goodness of the whole model can then be summarized by computing some 

summary quantity of the distribution of  over all data, for example, the mean  itu

 

)],,,([ ))((\ MDxyuEu its
itititCVfoldk =−−   (3.23) 

 

In this study, two estimate utilities are employed. The first utility is the mean 

predictive square error (MPSE) given by 

 

2))((\ )],,|ˆ[( it
its

ititit yMDxyEu −=  (3.24) 

 

Hence, the corresponding model comparison criteria is 

 

∑
∀

−=
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where, 95.0=αu denotes the mean maximum predictive square error with 95% probability 

confidence, and  is the 95% Bayesian credible interval of predictive mean 

in MCMC simulation. This provides a confidence level for the predictions.  

)975.0,025.0(IE

 

To compare the predictive abilities for specific frequency in observations 

( ), a second measure can be defined as disaggregate predictive probability-

based utilities  by estimating the cumulative probability of , 

,...2,1,0=f

)( fu )5.0,5.0(ˆ +−∈ ffy

 

∑
=∀

+−∈=
)(

))((\ ),,|)5.0,5.0(ˆ(ˆ
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its
itit

it

MDxffyP
fn

fu  (3.27)  

 

where is the number of actual observed frequency of “ ”. In the case of large 

sample sizes, provides an overall percentage of model fitness. 

)( fn f
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3.6 SUMMARY 

 

This chapter is the methodology formulation part of the study on CFPM. Following the 

development of research strategy, the methodology formulation is presented. To 

account for the multilevel structure and excess zeros in crash frequency data, REP, ZIP 

and REZIP models are developed associated with the evaluating tools for over-

dispersion and excess zeros. Bayesian inference is chosen and developed for model 

calibration with a number of philosophical and practical advantages over traditional 

MLE algorithm for the proposed models. To compare the model fitting and predicting 

performance, a cross-validation algorithm in Bayesian framework, i.e. cross validation 

predictive density, is proposed innovatively. Several utility criteria are also developed. 

Using Singapore data, an illustrative study using the proposed methodology is 

conducted to develop the CFPM for intersection crashes, which is described in the next 

chapter.   
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CHAPTER FOUR 

CRASH FREQUENCY PREDICTION MODEL 

ON SIGNALIZED INTERSECTIONS  

  

 

4.1 INTRODUCTION 

 

Signalized intersection is a hazardous location type on the road, which accounts for a 

substantial portion of traffic crashes, and the situation appears to be worsening. For 

example, in United States, 20% of all crashes and 7% of fatal crashes occur at 

signalized intersections (Porter and England, 2000). Furthermore, a 19% increase of 

the fatal crash frequency at traffic signals between 1992 and 1996 was reported while 

the number of all other fatal crashes only increased by 6% (Retting et al., 1999). In 

Singapore, as shown in Table 4.1, a total of 18008 intersection crashes were reported 

during 1998-2005, which represent about 33.7% of all traffic crashes. 

 

To investigate the characteristics of intersection crashes, crash frequencies at 

signalized intersections in Singapore are examined in relation to various site 

characteristics. The models proposed in Chapter 3 (i.e. REP, ZIP, and REZIP models) 

are illustrated and examined. The result shows that REZIP model can significantly 

improve the predictive performance of CFPM for the subject dataset. 

 

According to the research strategy presented in Figure 3.1, this chapter summarizes the 

main steps in model development, including data collection, model estimation and 

model comparison. Based on the model results, significant factors are then identified 
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and interpreted to understand the crash occurrence and to provide recommendations for 

countermeasure development at intersections.  

 

Table 4.1 Road Crash Statistics in Singapore (1998-2005) 

Year Total crash Intersection crash Percentage 

1998 5636 1963 34.83% 

1999 6548 2336 35.68% 

2000 7228 2595 35.90% 

2001 7090 2533 35.73% 

2002 6879 2500 36.34% 

2003 6446 2087 32.38% 

2004 6845 2227 32.53% 

2005 6706 1767 26.35% 

Total 53378 18008 33.74% 

 

 

4.2 DATA COLLECTION 

 

4.2.1 Site Selection  

 

In order to develop a mathematical model that correlates crash occurrence at 

intersection to the intersection characteristics, one need to select intersections that have 

a wide variety of geometric, traffic and control characteristics. A total of 52 four-

legged signalized intersections from the southwestern part of Singapore are selected to 

illustrate the process of establishing a suitable statistical model. Among which a 

number of intersections are in residential area and are characterized by low traffic 

volumes and few, if any, road crashes. Several intersections are in the vicinity of 

Central Business District (CBD) and are characterized by high traffic volumes and 
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crashes. There is diversity in geometric, traffic and control characteristics among the 

chosen intersections that lead to proper approach modeling crash occurrence at 

intersection. The list of selected intersections is given in Appendix A (Table A.1). 

 

4.2.2 Traffic Crash Data 

 

Traffic crash data from the year 1998 to 2005 is collected from Singapore Traffic 

Police Department. Each of the crash records in the database contains about over 50 

fields that exhibit the driver, pedestrian, vehicle and roadway particulars related to the 

crash. A sample structure of the crash database is enclosed in Appendix A (Table A.2). 

In the crash records, crash location in road network is depicted by the grid code that 

may help to display the spatial crash distribution. Any crash within 100m from the 

center of the intersection is considered as intersection crash.  

 

One can easily identify the total number of crashes at an intersection from the fields of 

their connecting street code (i.e. STREETCD1, STREETCD2) and crash IP number 

from the data file (Table A.2). Each intersection is divided into two separate roads, i.e. 

major and minor road, which are defined based on approach traffic volume. Crash 

counts are taken at each road in one-year interval. Thus, an intersection provides two 

observations per year and 16 observations to the study period. Consequently, a total of 

832 observations are provided by the 52 intersections. The number of crashes 

calculated for each road per year is used as a dependent variable in developing the 

model. In total, 2644 crashes are identified for the selected sites in which 3.2% were 

fatal, 8.9% resulted in serious injury and the rest in slight or no injury. The distribution 

of crash counts is shown in the Figure 4.1. 
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Figure 4.1 Distribution of Crash Counts in Observations 

 

4.2.3 Site Characteristics  

 

In order to examine the relation between crash occurrence and the possible factors, 23 

covariates in the subject approach are collected representing traffic conditions, 

geometric features, and regulatory controls. In addition, 9 covariates are selected from 

the conflicting approach which may have interactive effects on the crash frequency in 

subject approach. The descriptive statistics of those variables are presented in Table 

4.2.  
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Table 4.2 Covariates Used in the CFPM  
 

Covariates of subject approach Mean S.D. Min Max 

Number of lanes 5.79 1.90 2 10 

Approach width (m) 20.84 6.84 7.20 36 

Sight distance (m) 304.50 127.46 51.50 400 

Curvature on approach road 0.39 0.49 0 1 

Distance between cross walk and the curb(m) 0.48 1.06 0 5.6 

Uncontrolled left-turn lane 0.78 0.42 0 1 

Exclusively right turn lane 0.60 0.49 0 1 

Presence of RLC 0.22 0.42 0 1 

Presence of median  0.79 0.41 0 1 

Median width greater than 2 m 0.25 0.43 0 1 

Number of bus bays 1.71 1.26 0 4 

Number of bus stops 2.62 1.31 0 4 

Average distance of upstream and downstream 
bus stops from intersection 280.79 250.70 68.50 1000 

Presence of pedestrians refuge 0.13 0.33 0 1 

Total approach volume (ADT) 21.21 12.66 1.42 53.85 

Approach right-turn volume (ADT) 7.68 5.07 0.51 28.78 

Cycle duration 117.69 12.81 100 150 

Number of phases per cycle 3.50 0.67 2 5 

Percent of green time 0.39 0.13 0.2 0.8 

Red length in pedestrian crossing (sec) 75.50 15.38 40 118.50 

Speed limit 52.02 6.56 40 80 

Signal control type 0.54 0.50 0 1 

     

Covariates of conflicting approach     

Approach width (m) 20.77 6.80 7.20 36 

Sight distance (m) 304.50 127.46 51.50 400 

Curvature on approach road 0.39 0.49 0 1 

Uncontrolled left-turn lane 0.78 0.42 0 1 

Exclusively right turn lane 0.59 0.49 0 1 

Presence of RLC 0.21 0.41 0 1 

Presence of median  0.79 0.41 0 1 

Total approach volume (ADT) 21.13 12.61 1.42 53.85 

Approach right-turn volume (ADT) 7.61 5.06 0.51 28.78 
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In the data collection, some geometric elements are measured from the design layout 

of the intersection, including Number of lanes, Presence of uncontrolled left-turn lane, 

Exclusive right-turn lane, Presence of median at approach road near intersection, and. 

Most of the geometric data needed are collected from the site survey. These variables 

include Approach width, Sight distance to intersection, the existence of Curvature on 

approach road, Distance between cross walk and the curb, Presence of red-light 

camera (RLC), Median width greater than 2m, Number of bus bays, Number of bus 

stops, Average distance of upstream and downstream bus stops from intersection, 

Presence of pedestrians refuge. 

 

Traffic characteristics at intersection include traffic demand pattern and traffic 

regulatory control variables. Exposure to crashes at intersection is likely to be 

dependent on traffic demand pattern, i.e. traffic volumes. Two types of traffic volumes 

considered in this study, i.e. Total approach volume and Approach right-turn volume 

at major or minor road at intersection. Average daily traffic (ADT) of total volumes 

and right turn volumes are collected from the loop detectors at the sites maintained by 

the Land Transport Authority (LTA) for 52 intersections. 

 

Since traffic regulation has significant effects on traffic volumes at intersection, traffic 

regulation may affect crash occurrence at intersections significantly. Traffic regulatory 

control data, such as Cycle duration, Number of phases per cycle, Percent of green 

time, Red duration in pedestrian crossing, Road speed limit are included in this study. 

Furthermore, two types of signal control (Signal control type) are considered, e.g., 

adaptive signal control and pre-timed signal control. In the antecedent, all signalized 

intersections in Singapore were operated under the pre-timed signal control. In recent 
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years, most of signal controls are converted to adaptive type. The date of conversion is 

recorded in Traffic Computer System (TCS) maintained by LTA. The signal-timing 

plan and the number of phases per cycle are also collected from TCS record. The 

approach speed limit is collected from the accident data file. 

 

In addition to the site characteristics for the subject approach, it is also reasonable to 

expect significant effects of the conflicting approach characteristics on the crash 

occurrence. In this study, a total of 9 covariates from the conflicting approach are 

included in the models, which are also shown in the Table 4.2. 

 

4.3 MODEL CALIBRATION AND COMPARISON  

 

Figure 4.1 shows the crash count distribution of the 832 observations, in which 163 

involved no crashes and with a mode of 3 crashes per year per site. Hypothesis test on 

the “equality” constraint of the mean and variance imposed by the Poisson distribution 

against the alternative that the variance exceeding the mean, indicates that the over-

dispersion parameter is significantly greater than zero ( 13.9=t , ). Besides 

the potential within-site correlation caused by repeated data collection measures, over-

dispersion may also be led to by zero-inflation. The test with Vuong statistics 

( , ) clearly shows that zero-inflated count model is favored over the 

parent Poisson model.  

001.0=p

20.3=V 001.0<p

 

Since we use the same covariate set for both judgment of zero-crash state ( ) and the 

parameter for non-zero-crash state (

itp

itμ ), the natural parameterization on variables in 

the two states, i.e. ZIP(τ ) and REZIP(τ ), are utilized as justified in section 3.3. To 
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evaluate quantitatively the predictive abilities of the candidate models, a 4-fold CV is 

implemented. In particular, the dataset is evenly divided into four groups with 208 

samples in each group. Iteratively, the parameter estimates using data in any three 

groups are employed to estimate predictive distributions for the observations in the 

remaining group. Note that the prediction process is done at the same time with the 

model calibration by treating the data in the test group as missing with the three 

candidate models, so that a total of 12 models are investigated.  

 

For each model calibration and prediction, three chains of 100,000 iterations are set up 

in WinBUGS based on the convergence speed and the magnitude of the dataset. After 

ensuring the convergence, first 20,000 samples are discarded as adaptation and burn-in, 

and only every tenth samples of the rest are retained for estimation to reduce 

autocorrelation, leaving a total of 12000 posterior samples.  

 

Table 4.3 Cross-Validation Model Comparison 

Utility REP ZIP REZIP 

u  2.31 1.97 1.89 

95.0=αu   6.82 4.54 3.06 

ffu ∀)(  0.29 0.38 0.44 

 

 

The model comparison results of criteria defined in section 3.5 are shown in Table 4.3. 

Judged by the criteria of MPSE ( u ), models accounting for excess zeros have been 

demonstrated to have a significant improvement in predictive abilities ( ZIPu =1.97, 

REZIPu =1.89). The consideration of location-specific random effects in the ZIP model, 

resulting in REZIP model, yields the smallest predictive square errors. And REZIP 
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model also has the smallest credible interval width around the observations 

( )95.0( =αREZIPu =3.06). Furthermore, we calculate the probability-based predictive utility 

for the whole dataset. The result implies that, compared to REP model, REZIP 

model can increase the predictive accuracy as the overall percentage of model fitness 

by about 15%, i.e. from 29% to 44%. This explanatory and predictive power is 

considered acceptable for our purpose.  

)( fu
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Figure 4.2 Model Comparison of Predictive Abilities using Cross-Validation 

 

In particular, as shown in Figure 4.2, although the predictive abilities vary from the 

low to high crash frequencies, accounting for excess zeros in ZIP as well as REZIP 

models as a whole performs better in terms of predictive abilities for future 

observations. And this is the most apparent for prediction on “zero”, where ZIP and 

REZIP show the significant improvement to predict the zero crash occurrence 

( = 0.15, = 0.56, =0.54). This is not surprising as the zero crash 

state is specifically modeled. One the other hand, as for the differences between ZIP 

REPu )0( ZIPu )0( REZIPu )0(
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and REZIP, the ZIP predicts zero a little bit better possibly because REZIP provides 

more flexible model structure for the whole data rather than only the zero observations. 

This may also explain the outperforming of REZIP over ZIP in the low frequency 

predictions. When considering the frequency of crash counts in observations where 

most are below five, we can conclude that the REZIP will significant improve the 

predictive abilities compared to REP and ordinary ZIP.           

 

4.4 PARAMETER ESTIMATES AND SIGNIFICANT VARIABLES  

 

To understand how the different models affect the assessment of the various risk 

factors, we run each fitted model to obtain the parameter estimates using all 832 

samples. As expected, some variations occur in the means of estimates as well as in the 

credible intervals. In Table 4.4, we list the estimates for those variables which are 

significant statistically in at least one of three candidate models, i.e. REP, ZIP, and 

REZIP. Same signs for most effect estimates are found in all three models, which 

imply that we can be relatively confident about the qualificative effect of risk factors 

(i.e. negative or positive) on crash frequencies. However, with respect to quantitative 

effects, it is not surprising to find a fairly large difference between REP and the other 

two zero-inflated models because of the entirely different model specifications. 

Moreover, regarding ZIP and REZIP models, two major differences are identified. 

Firstly, the credible intervals differ to some extent although parameter estimates are 

approximately similar. In particular, three non significant factors in the ZIP model 

appear to be significant in the REZIP model (i.e. Time trend, Number of lanes, 

Distance of bus stops from intersection) while another three significant factors in the 

ZIP model proved to be insignificant in the REZIP model (i.e. Present of RLC, Cycle 
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duration, Uncontrolled left-turn lane in conflicting approach). Secondly, there is a 

difference in the shape parameters (τ ) ( 08.2,50.1 == REZIPZIP ττ ). The larger shape 

parameter in the REZIP model indicates a steeper average trend towards zero-crash 

state with unit change in the risk factors.  

 

Since the crash data are derived from historical records, and not from designed 

experiments, it seems difficult to assess the resulting differences by the differences 

themselves. Hence, the model assessment measures on predictive ability as illustrated 

in section 3.5 are especially useful for this kind of ‘Happenstance Data’ (Box et al., 

1978). Moreover, the validity and practicality of the individual factors can also be 

examined based on engineering and intuitive judgment. In Table 4.4, Incidence Rate 

Ratios (IRR), i.e. )exp(β are calculated for the REZIP model results to facilitate 

interpretation of the variables. Apparently, if the IRR of a given variable is much less 

than 1.0, then an increase in value of the variable is associated with a significant 

improvement in safety and vice versa. Since the REZIP model have proved a relatively 

better fit for the data and in the predictive abilities, several interpretations of the 

parameter estimates may be made, as follows.    
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Table 4.4 Posterior Summary of Parameter Estimates 

 REP ZIP REZIP 

Covariates mean mean mean 95% BCI IRR

Time trend -0.01  -  -0.02 -0.03  0.00  0.99 

Number of lanes -  -  0.08  0.03  0.16  1.08 

Sight distance 0.19  0.08  0.11  0.01  0.22  1.12 

Presence of RLC -  0.07  -  - -  -  

Presence of median -  0.08  0.05  0.03  0.11  1.06 

Distance of bus stops  

from intersection 

0.17  -  -0.09 -0.16  -0.03  0.91 

Total approach volume 0.11  0.11  0.07  0.01  0.11  1.07 

Cycle duration -0.18  -0.11 -  -  -  - 

Number of phases per cycle -  0.06  0.05  0.00  0.12  1.05 

Red length in pedestrian 

crossing (sec) 

0.21  0.06  0.10  0.02  0.18  1.10 

Uncontrolled left-turn lane  

in conflicting approach 

-  0.09  -  -  - -  

Conflicting approach total 
volume  

0.25  0.19  0.15  0.03  0.28  1.17 

Tau (shape parameter)   1.50 2.08 1.24 3.40  
 

 

As a whole, a small but significant decreasing time trend of crash occurrence is 

identified in the model (IRR 0.985, 95%BIC (-0.033, -0.003)). In traffic variables, both 

Total approach volume (IRR 1.068, 95%BIC (0.005, 0.112)) and Conflicting approach 

volume (IRR 1.165, 95%BIC (0.027, 0.278)) are found to be significantly associated 

with crash frequency. It is not surprising since exposure to crash is likely to depend on 

traffic volume. Among the geometric factors, both Number of lanes (IRR 1.078, 

95%BIC (0.028, 0.159)), and Presence of median (IRR 1.055, 95%BIC (0.026, 0.113)) 

have negative effects on the intersection safety. This may be explained that a higher 

crash frequency is associated with larger intersections, with wider medians and more 
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traffic lanes. In such instances, not only are there more conflict points, the less defined 

space for vehicle turning and maneuver would have also contributed to more crashes. 

Sight distance (IRR 1.116, 95%BIC (0.005, 0.217)) is surprisingly identified as 

another negative geometric factor. The greater freedom of maneuver and potential 

higher speed with long sight distance may be the causes resulting in greater crash 

frequencies. This may be especially true when considering the complex risk factors 

regarding to the regulatory controls at signalized intersection. Kulmala, R. (1995) and 

Chin and Quddus, (2003a) also found the similar results in the studies of four-leg 

intersections.   

 

Moreover, result also shows that longer distance of the bus stop from the intersection 

give rise to fewer crash occurrences (IRR 0.912, 95%BIC (-0.162, -0.025)). This is 

reasonable since the presence of a standing bus close to the intersection will influence 

the traffic maneuver near the intersection. Finally, two signal control variables are 

identified: Number of phases per cycle (IRR 1.025, 95%BIC (0.002, 0.121)), and Red 

duration in pedestrian crossing (IRR 1.104, 95% BIC (0.018, 0.183)). It is reasonable 

to expect higher crash risks during phase change periods and increase of the number of 

phases in fixed time means more potential conflicts. While a long red duration in 

pedestrian crossing per cycle does not give rise to higher crash risk, longer designed 

duration implies more pedestrian traffic crashes and is therefore a surrogate measure of 

pedestrian exposure.       

 

 

 

 

National University of Singapore                                                                                                                                        74



                                                                               Chapter Four  CFPM(II/II) 

4.5 Summary 

 

The study of CFPM, as presented in Chapter 3 and Chapter 4, showed that when 

analyzing the crash frequency data with multilevel structure and excess zeros, REZIP 

model could be used as an alternative to the ordinary REP model or ZIP model. A 

methodological framework using Bayesian analysis was proposed for CFPM. This 

framework was shown to provide a reliable measure to fit various flexible models. A 

cross validation comparison method was used to evaluate the suitability of the models. 

The assessment measures proved to be useful and reliable to examine the predictive 

performance of the whole model as well as the realization of individual observations in 

the data, for instance, “zero” occurrence in crash data.  

 

Using intersection data in Singapore, the illustrative results indicated that REZIP can 

significantly perform better in terms of predictive abilities over the other candidate 

models. The differences in parameter estimates in the three models (REP, ZIP, REZIP 

models) may not be sufficient to justify the suitability of any model. However, 

engineering and intuitive judgment based on the results estimated lends support to the 

selection of appropriate models. Furthermore, the differences between model results 

also imply that careful model development and assessment should be conducted since 

different specifications could result in quite different effect estimates as well as in their 

credible intervals.       

 

It should be noted that all these considerations and treatments are aimed at accounting 

for the possible sources of over-dispersion in crash data. In particular, while random 

effect models take the physical data collection scheme into consideration, zero-inflated 
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models assume a dual-state data-generating process to explain the excess zeros. Hence, 

although the model selection depends on specific data, model specification considering 

both zero-inflated and random effects proposed in this study can be recognized as a 

theoretical improvement to better account for the possible sources of over-dispersion.  
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CHAPTER FIVE 

BAYESIAN HIERARCHICAL BINOMIAL LOGISTIC MODEL 

IN CRASH SEVERITY PREDICTION 

 

 

 

5.1 INTRODUCTION 

 

Crash frequency and severity are two major concerns in understanding the relationship 

of crash occurrence and various risk factors. In Chapter 3 and Chapter 4, we developed 

statistical techniques to model the multilevel data and excess zeros in crash frequency 

prediction (CFPM). In addition to the crash frequency, crash severity is another 

important major symptom of traffic system safety. Before developing and 

implementing the traffic safety treatments, it would be very useful if a comprehensive 

understanding of the effects of risk factors on crash severity is available.  

 

As reviewed in Chapter 2, generalized linear regression models (GLM) for discrete 

response variable, e.g. logit/probit model and ordered model, are commonly used in 

crash severity prediction models (CSPM). However, most crash severity studies 

ignored severity correlations between individuals involved in the same cluster, for 

example, occupants in the same vehicle, drivers in the same crash etc. Models without 

accounting for these within-cluster correlations will result in biased estimates in the 

factor effects. 
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This study proposes a Bayesian hierarchical analysis to examine the crash severity 

which is capable of appropriately modeling the multilevel data structure. To formulate 

the methodology, we take the driver-vehicle units involved in same crashes as the 

subject of study. The research justification and strategy for CSPM development is 

presented in the following.   

 

5.2 RESEARCH JUSTIFICATION AND STRATEGY 

 

Analysis of crash severity can be conducted in different ways for various purposes. 

Some studies focused on the crash frequencies at specific traffic sites associated with 

different severity levels (e.g. fatal, serious, slight) to investigate how geometric, traffic, 

and environmental factors affect the crash severity. While this kind of studies normally 

take each crash as the subject unit, analysis can also be undertaken based on the driver-

vehicle units involved in crashes to examine individual severity. Compared to the 

crash-based severity studies, individual severity analysis is promising and may yield a 

disaggregate understanding about severity levels of different driver-vehicle groups. 

This is especially useful when the severity levels of driver-vehicle units with different 

characteristics are desired (Hauer, 2006). 

 

Since the techniques used in most past severity studies assumed independence between 

different observations, these techniques may not be adequate in modeling multilevel 

individual severity of driver injury or vehicle damage in the presence of potential 

correlations between those involved in the same multi-vehicle crashes. Actually, this 

correlation between samples has already been identified in some earlier studies; for 

example, Evans (1992, 1993) found that in a multiple vehicle crash, the risk of fatality 
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was dependent on the characteristics of the other vehicles. Hence, the models without 

considering the covariance between individuals in the same crashes, especially when 

the covariance is significant, will result in inaccurate or biased estimates of factor 

effects. 

 

As discussed previously, hierarchical modeling is a statistical technique that allows 

multilevel data structures to be easily specified and estimated (see Snijders and Bosker, 

2000; Goldstein, 2003). Although the basic theories of hierarchical models have been 

developed and discussed for many years, it is only recently that many practical 

limitations on the use of hierarchical analysis have been overcome. A good number of 

applications of this modeling technique have been found in sociological research 

disciplines. In traffic safety research, Jones and Jorgenson (2003) presented a good 

exploration and discussion on the potential applications of the hierarchical models. 

Since then, the hierarchical modeling technique has been gaining an increasing amount 

of attention in accounting for the hierarchical data structure in road crash frequency 

and severity studies. For example, Jones and Jorgensen (2003) and Lenguerrand and 

Laumon (2006) developed hierarchical models to identify factors affecting crash 

severity, while Kim et al. (2007) employed the hierarchical crash prediction models for 

different crash types at rural intersections.   

 

In the investigation of individual severity in crashes at signalized intersections in 

Singapore, a within-crash correlation was preliminarily identified, which will be 

shown in detail in Chapter 6. Motivated by this correlation and inspired by the existing 

studies with hierarchical models, we propose the use of a hierarchical binomial logistic 

(HBL) model to examine the significant risk factors related to severity of driver injury 
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and vehicle damage in traffic crashes. In particular, crash is considered as cluster and 

there are a number of sub-clusters per cluster, i.e. driver-vehicle units involved in a 

crash. A full Bayesian method using Markov chain Monte Carlo (MCMC) algorithm is 

employed for model calibration to explicitly model the two-level data structure, i.e. 

crash-level and individual-level. Using the Intra-class Correlation Coefficient (ICC) 

and Deviance Information Criterion (DIC) in model assessment and comparison, the 

use of random effects on crash level in the model is further validated to be effective in 

this study in accounting for the within-crash correlations.  

 

 

Figure 5.1 Research Strategy for CSPM Development 
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The specific research strategy for CFPM development is illustrated in Figure 5.1. In 

the rest of this chapter, the methodology is formulated, consisting of model 

development, inference, assessment and comparison. In Chapter 6, the illustrative 

study using Singapore crash data is presented. Specifically, data collection and model 

calibration are summarized to illustrate the proposed methodology and to understand 

the significant risk factors on individual severity. Summary of this study are presented 

finally. 

 

5.3 HIERARCHICAL BINOMIAL LOGISTIC MODEL  

 

In the presence of within-crash correlation of individual severity, models without 

appropriately considering the hierarchical data structure might yield inaccurate or 

biased parameter estimations. To account for this within-crash correlation, a HBL 

model with two-level specification is developed to estimate the effects of the selected 

covariates on severity level. Specifically, in the individual-level model (level 1), the 

response variable for the iY th driver-vehicle unit in jth crash only takes one of two 

values: = 1 in case of high severity, e.g. fatal or severe injury, while = 0 in case 

of low severity, e.g. slight or no injury. The probability of = 1 is denoted by 

ijY ijY

ijY

)1Pr( == ijij Yπ , which follows a binomial distribution; hence 
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where is the ppijX th covariate in the individual-level for ith driver-vehicle unit in jth 

crash, while j0β and are the intercept and the regression coefficients. In the context pjβ
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of the hierarchical model, the within-crash correlation is specified in the crash-level 

model (level 2) as: 

 

j

Q

q
qjqj uZγ 0

1
0000 ++= ∑

=

γβ    (5.2) 

 

pj

Q

q
qjpqppj uZβ ++= ∑

=1
0 γγ    (5.3) 

 

In Equation (5.2) and Equation (5.3), both intercept j0β and regression coefficients 

in Equation (5.1) vary with the different crashes. Specifically, two components are 

combined to decide the coefficient values. First, linear relationships are assumed for 

them with the crash-level covariates , which is reasonable since the various crash 

features (e.g. street lighting, road surface condition) may result in different severity 

results. Second, besides the fixed parts which depend on the crash-level covariates , 

random effects are also included to permit the potential random variations across the 

crashes ( and ). These between-crash random effects vary across the different 

crashes only but are constant for all the driver-vehicle units within a same crash. This 

specification enables the model to account for the within-crash correlations (Jones and 

Jorgensen 2003, Kim et al. 2007). Practically, the random effects are used to represent 

some unobservable variations between different crashes, which is the major difference 

between ordinary binomial logistic model (OBL) and HBL.  

pjβ

qjZ

qjZ

ju0 pju

The full model with Equation (5.1), Equation (5.2) and Equation (5.3) is academically 

named as random slope model (Snijders and Bosker, 2000). When the random effects 

are assumed only on the intercept, a simplified form can be obtained by dropping the 
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crash-level covariate component ∑ and the random part , which is referred 

to as random intercept model. The Equation (5.3) is thus modified to be: 

=

Q

q
qjpqZ

1
γ pju

 

0ppjβ γ=   (5.4) 

 

In this study, to avoid excess complexity as the large set of covariates used, only the 

random intercept model is investigated. Hence, the combined model is yielded by 

substituting Equation (5.2) and Equation (5.4) with Equation (5.1) and is represented 

as follows: 
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The random effects are generally assumed as a normal distribution with mean zero 

and variance , as suggested by Snijders and Bosker (2000). The variance of outcome 

( ) therefore consists of two components: the variance of ( ) which captures the 

between-crash variability (level 2), and the variance associated with logistic 

distribution which captures the within-crash variability (level 1).  

ju0

2
0τ

ijY ju0
2
0τ

 

In interpreting the fixed effect part of coefficient estimation, a similar way can be 

followed as with the OBL, the exponential of effect coefficients, i.e. )exp(γ , can be 

calculated to obtain Odds Ratio (O.R.) estimates in HBL model. This provides a basic 

interpretation for the magnitude ofγ : if O.R. is less than 1.0, a unit increase in the 
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variable or will reduce the odds of being severe by a multiplicative effect of pijX qjZ

)exp(γ and vice versa. For the categorical covariates in the model where dummy 

variables are applied, )exp( ba γγ −  represents the odds ratios between these two 

categorical variables, a and b. In this case, the parameter or its estimate makes sense 

only by comparing one category with another. 

 

5.4 BAYESIAN INFERENCE 

 

There are several methods available for model calibration in hierarchical binomial 

logistic model (see Goldstein, 2003). As discussed in section 3.4, Bayesian analysis 

has a number of intrinsic advantages for calibrating hierarchical models over classical 

likelihood-based estimation methods. Several studies have also demonstrated the 

potentials of Bayesian inference (BI) in philosophical aspect as well in practical aspect 

in transportation applications (e.g. Washington et al., 2005; Mitra and Washington, 

2007). Therefore, this study of CSPM also employs BI to calibrate the proposed two-

level model (Gelman et al., 2003). A summarized description as well as the general 

procedure of BI can be found in section 3.4.  

 

Specifically, in the absence of strong prior information for the model unknowns of the 

proposed HBL model, uninformative priors are assumed for all regression coefficients 

( 00γ , 0pγ and q0γ ) with normal distributions (0, 1000), and the variance of the normal 

distributed random effects

2
0τ

j0μ with inverse gamma distribution (0.001, 0.001). The 

model was also programmed via the Gibbs sampler (Gilks et al., 1995) using BUGS 

language, which is implemented using WinBUGS (Spiegelhalter et al., 2003a). The 

95% Bayesian Credible Interval (95% BCI) is used to examine the significance of 
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covariates, which provides probability interpretations with normality assumption on 

unknowns and confidence interval estimations (Gelman et al., 2003). Specifically, 

those coefficient estimations are identified as significant, whose 95% BCIs do not 

cover “0”, i.e. the 95% BCIs of O.R. do not cover “1”. Besides, engineering and 

intuitive judgment should be able to confirm the validity and practicality of the sign of 

each covariate and the rough magnitude of each estimated coefficient.  

 

5.5 MODEL ASSESSMENT USING INTRA-CLASS CORRELATION 

COEFFICIENT (ICC) 

 

An Intra-class Correlation Coefficient ρ  (ICC) is normally defined to examine the 

proportion of specific crash-level variance (level 2) in overall residual variance (Jones 

and Jorgensen 2003; Kim et al. 2007). Since the logistic distribution for the individual-

level (level 1) residual implies a variance of , this implies that for a two-

level logistic random intercept model with an intercept variance of , the ICC for 

between-crash residual is  

29.33/2 =π

2
0τ

 

3/22
0

2
0

πτ
τ

ρ
+

=   (5.6) 

 

The ICC is an indicator of the magnitude of the within-crash correlation. A value of ρ  

close to zero means that there is a very small variation between the different crashes, 

indicating that OBL model may be adequate for the data. On the other hand, a relative 

large value of ρ  implies a favor for hierarchical model, e.g. HBL model in this study.       
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5.6 MODEL COMPARISON USING DEVIANCE INFORMATION 

CRITERION (DIC) 

 

To further ensure the advantage of employing HBL over OBL, an OBL model with the 

same covariates and dataset can also be estimated to compare with the calibrated HBL 

model. The OBL model may be given by dropping random effect part , which 

means ignoring the severity correlations between driver-vehicle units within the same 

crashes. So the Equation (5.5) changes to: 
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For model comparison, a recently-developed criterion, Deviance Information Criterion 

(DIC), proposed by Spiegelhalter et al. (2003b), is employed. To introduce the DIC, an 

evolutional review of the traditional model comparison criteria is necessary.  

 

Within the classical modelling framework, model comparison generally takes place by 

defining a measure of fit, typically a deviance statistic, and complexity, the number of 

free parameters (degree of freedom, DF) in the model. The deviance statistic ( ) is 

defined as: 

2G

 

 

)log(log22
fc LLG −−=    (5.8) 

 

in which denote the likelihood of current model, and denote the likelihood cL fL
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estimated from the full (or saturated) model, or in other word, the maximum attainable 

likelihood for the data. 

 

Since increasing complexity is accompanied by a better fit, models are compared by 

trading off these two quantities and, following early work of Akaike (1973), proposals 

are often formally based on minimizing a measure of expected loss (Akaike 

Information Criterion, AIC) on a future replicate data set as follows: 

 

bLbAIC c 2)(log2)( +−=  (5.9) 

 

in which b is the number of variables in the model. Using this criterion, the model 

yielding the minimum AIC may be selected as the best model (Joshua and Garber, 

1990). 

 

In the case of large samples, the use of the statistic as a goodness-of-fit measure 

may not be a satisfactory procedure for rejecting one model in favor of another 

(Raftery 1986, 1995). The essence of the argument is that, when the sample size is 

large, it is much easier to accept (or at least harder to reject) more complex models 

because the likelihood-ratio test ( ) is designed to detect any departure between a 

model and observed data. Adding more terms to a model will always improve the fit, 

but with large samples it becomes harder to distinguish a “real” improvement in fit 

from a trivial one. 

2G

2G

 

One solution to this problem is to use the Bayesian information criterion (BIC) statistic 

in searching for parsimonious models that provide an “adequate” fit to the data. The 
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BIC index provides an approximation to a ×− 2 log transformed Bayes factor, which 

may be viewed as the ratio in likelihood between one model ( ) and another model 

( ). The basic idea is to compare the relative plausibility of two models rather than 

to find the absolute deviation of observed data from a particular model. However the 

statistical methods for calculating the Bayes factor are complicated. Many applied 

researchers have found the BIC statistic popularized by (Raftery 1986, 1995) to be 

useful. It is defined as: 

0M

1M

 

nDFGBIC log2 −=    (5.10) 

 

This expression shows that BIC penalizes more, per degree of freedom, for a larger 

sample than for a smaller sample, at the rate of .  

2G

nlog

 

A model comparison using the AIC or BIC both requires the specification of the 

number of parameter in each model, but in complex hierarchical models parameters 

may outnumber observations and these methods clearly cannot be directly applied 

(Gelfand and Dey, 1994). The most ambitious attempts to tackle this problem appear 

in the smoothing and neural network literature (Wahba, 1990). Spiegelhalter et al. 

(2003b) suggest Bayesian measures of complexity and fit that can be combined to 

compare models of arbitrary structure. It aims to identify models that best explain the 

observed data but with the expectation that they are likely to minimize uncertainty 

about observations generated in the same way. It is defined as: 

 

DD pDpDDIC +=+= )(2)( θθ   (5.11) 
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in which )(θD is termed as ‘Bayesian deviance’ in general: 

 

)}(log{2)}|(log{2)( yfypD +−= θθ  (5.12) 

 

and, more specifically, for members of the exponential family with )()( θμ=YE we 

shall use the saturated deviance )(θD obtained by setting ))(|{)( yypyf == θμ .  

 

Dp  is motivated as a complexity measure for the effective number of parameters in a 

model, as the difference between the posterior mean of the deviance and the deviance 

at the posterior estimates of the parameters of interest. It is given as: 

 

)()( θθ DDpD −=  (5.13) 

 

This is the so called “mean deviance minus the deviance of the means’. )(θD is 

regarded as classical estimate of fit given by the MCMC simulation. And the posterior 

mean deviance )(θD can be taken as a Bayesian measure of fit or “adequacy”. The DIC 

is formed by the sum of the classical estimate of fit and twice the effective number of 

parameters ( ). Also we can consider DIC as a Bayesian measure of fit or adequacy, 

penalized by an additional complexity term . Obviously, DIC is intended as a 

generalization of AIC.  

Dp

Dp
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5.7 SUMMARY 

 

This chapter is the part of methodology formulation in the CSPM study. Based on the 

research justification, we take the individual severity of driver-vehicle units involved 

in same crashes as the subject of study. Following the development of research 

strategy, the methodology formulation is presented. A Bayesian HBL model is 

proposed to account for the within-crash severity correlations of individuals involved 

in same crashes. ICC is adopted to evaluate the magnitude of random effects. DIC is 

further introduced to compare the suitability of hierarchical logistic model to the 

ordinary logistic model. The proposed methodology is illustrated and validated using 

Singapore crash data, which is presented in Chapter 6.   
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CHAPTER SIX 

SEVERITY OF DRIVER INJURY AND VEHICLE DAMAGE  

IN TRAFFIC CRASHES AT SIGNALIZED INTERSECTIONS 

 

 

6.1 INTRODUCTION 

 

To model the within-crash correlation, a Bayesian HBL model is developed in Chapter 

5 to investigate the significant factors on the individual severity. According to the 

research strategy proposed in section 5.2, this chapter presents a study on individual 

severity of driver injury and vehicle damage at signalized intersection using Singapore 

crash data to illustrate and validate the proposed methodology. Following a description 

of data set for analysis, model calibration and validation results are summarized. Based 

on the parameter estimation, significant factors are identified and discussed. The 

summary of CSPM study is given finally.     

 

6.2 DATA SET FOR ANALYSIS 

 

For this study, crash data in Singapore from 2003 to 2005 are used. Of the total of 

19832 reported crashes in this period, 4095 cases occurring at signalized intersections 

are extracted and used in the model. In these, 7840 driver-vehicle units are involved, 

resulting in an average involvement rate of 1.91 individuals per crash.  

 

In the dataset, each observation is associated with a driver-vehicle unit involved in the 

crashes at intersections. Two categorical severity indicators are of interest, which are 
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driver injury severity: a) fatal or serious injury, DI(A), b) slight or no injury, DI(B); 

and vehicle damage severity: a) extensive damage, VD(A), b) slight or no damage, 

VD(B). To yield a net effect estimate of each potential factor on individual severity, a 

binary dependent variable is defined by combining the two severity indicators: a) DI(A) 

or/and VD(A), denoted as IS(A), representing high individual severity b) otherwise is 

low individual severity denoted as IS(B). A summary of severity statistics is given for 

years in Table 6.1.  

 

TABLE 6.1 Summary of Crash Severity at Signalized Intersection by Years 

Year DI(A) DI(B) % of DI(A) VD(A) VD(B) % of VD(A) IS(A) IS(B) % of IS(A)

2003 39 2622 1.49 491 2170 22.63 508 2153 23.59 

2004 37 2885 1.28 398 2524 15.77 412 2510 16.41 

2005 36 2221 1.62 173 2084 8.30 192 2065 9.30 

Total 112 7728 1.45 1062 6778 15.67 1112 6728 16.53 

Note:  DI(A): driver with fatal/serious injury DI(B): driver with slight or no injury 

 VD(A): vehicle with extensive damage VD(B): vehicle with slight or no injury 

 IS(A): DI(A) or/and VD(A) IS(B): otherwise 

 

 

In addition to severity levels, a record of crash IP number, geometric features, traffic 

conditions, driver and vehicle characteristics is also reported. There are a total of 25 

variables coded for each intersection crash in the dataset. A number of variables like 

location code, vehicle registration number, nature of vehicle registration etc. are 

excluded as they were irrelevant to the analytical purpose. A correlation matrix for 

those remaining variables, which are hypothesized to relate to the severity levels, is 

checked to avoid multi-collinearity as well as wrong signs or implausible magnitudes 

in the estimated coefficients. For the highly correlated variables, only the most 

significant variable is retained in the analysis; for example, weather condition is 
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excluded because of its high correlation with road surface. Finally, a total of ten 

covariates in the crash-level are used, i.e. Day of week, Time of day, Intersection type, 

Nature of lane, Road surface, Street lighting, Road speed limit, Vehicle movement, 

Presence of red light camera (RLC), and Pedestrian involved. In addition, to explore 

how differently the various driver-vehicle characteristics affected the severity levels, 

five covariates in the individual-level, i.e. driver-vehicle level, were selected, i.e. 

Vehicle type, Driver age, Driver gender, Involvement of offending party, Passenger 

involved. Unfortunately, several vehicle safety features such as airbags, and anti-lock 

brakes, are not included in the crash dataset. But although those variables may be 

important to affect the individual severity, they are not so useful in Singapore since 

most vehicles are less than 6 years old and are hence equipped with the latest 

protective features in modern cars. Moreover, the stringent compulsory annual 

inspection on all vehicles to ensure they are road worthy means that these features are 

in serviceable conditions. 

 

The definitions of the selected covariates, together with their mean and standard 

deviation (S.D.), are presented in Table 6.2. For convenience of analysis, all these 

variables are split as groups of dummy variables based on the engineering experiences 

or existing findings in previous studies. For example, Vehicle type is categorized as 

three groups of two-wheel vehicle, light vehicle and heavy vehicle, since the vehicle 

weight had been identified relevant to injury severity (Evans and Frick, 1994). 
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TABLE 6.2 Covariates used in the CSPM 

Covariates  Description of the variables Mean S.D. 
Day of Week If crash at weekend =1, otherwise=0 0.164 0.370
Time of Day    

Day time If crash in 10am – 5pm =1, otherwise = 0 0.289 0.453
Night time If crash at 8pm – 7am =1, otherwise = 0 0.434 0.496
Peak time If crash at 7am – 10am or 5pm – 8pm =1, 

otherwise=0  0.278 0.448
Intersection Type    

X intersection If crash at X type intersection =1, otherwise =0 0.014 0.115
T/Y intersection If crash at T/Y type intersection =1, otherwise =0 0.232 0.422
Other types If crash at other type intersection =1, otherwise =0 0.755 0.430

Nature of Lane    
Single lane If crash on single lane =1, otherwise =0 0.025 0.155
Left-most lane If crash on Left-most lane =1, otherwise =0 0.163 0.369
Right-most lane If crash on right-most lane =1, otherwise =0 0.256 0.437
Centre lane If crash on centre lane =1, otherwise =0 0.556 0.497

Road Surface  If road surface is  dry = 0, otherwise =1 0.129 0.335
Weather Condition If weather condition is fine = 0, otherwise =1 0.098 0.297
Street Lighting If street lighting is fine = 0, otherwise =1 0.338 0.473
Road Speed Limit    

40 km/h If road speed limit is 40km/h =1, otherwise =0 0.005 0.068
50 km/h If road speed limit is 50km/h =1, otherwise =0 0.891 0.311
60 km/h If road speed limit is 60km/h =1, otherwise =0 0.072 0.258
70 km/h If road speed limit is 70km/h =1, otherwise =0 0.032 0.176

Vehicle Movement   
Single vehicle self-skidded If Single vehicle self-skidded =1, otherwise = 0 0.031 0.172
Single vehicle against 
stationary object or 
pedestrian 

If Single vehicle against stationary object or 
pedestrian =1, otherwise = 0  

0.029 0.169
Between moving vehicle and 
stationary vehicle  

If between moving vehicle and stationary vehicle =1, 
otherwise =0 0.882 0.323

Between moving vehicles If between moving vehicles =1, otherwise = 0 0.053 0.223
Other movements If other movements =1, otherwise = 0 0.006 0.076

Presence of Red Light Camera If a red light camera is present =1, otherwise = 0 0.072 0.258
Pedestrian Involved If passengers involved  =1, otherwise = 0 0.051 0.220
Vehicle Type    

Two-wheel vehicle If vehicle type is motor scooter or motorcycle =1, 
otherwise = 0 0.304 0.460

Light vehicle If vehicle type is motorcar, station wagon, goods can, 
pick-up or minibus =1, otherwise =0 0.572 0.495

Heavy vehicle If vehicle type is Bus, bendy, lorry, tip truck, trailer, 
crane or other heavy vehicles =1, otherwise =0 0.124 0.329

Driver Age    
<= 25 If driver age <= 25 = 1, otherwise =0 0.162 0.368
26 – 45 If driver age within 26-45 =1, otherwise =0 0.480 0.500
46 – 65 If driver age within 46-65 =1, otherwise =0 0.326 0.469
> 65 If driver age > 65 =1, otherwise =0 0.033 0.178
Driver Gender If driver is female =1, otherwise =0 0.104 0.305
Involvement of Offending Party If driver is likely at=fault =1, otherwise =0 0.627 0.484
Passenger Involved If with passengers on board =1, otherwise =0 0.170 0.376
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6.3 MODEL CALIBRATION AND VALIDATION 

 

A preliminary examination of potential within-crash covariance in the collected data 

set identified a significant correlation between individuals involved in same multi-

vehicle crashes, which represent 83.5% of all crashes at signalized intersections in 

Singapore. In particular, in a multi-vehicle crash, if the severity of driver-vehicle unit 

was IS(A), then the others had a probability of 31% also to be in IS(A). On the other 

hand, if a driver-vehicle unit was in IS(B), then the others had only 12% chance to be 

in IS(A). This significantly lower ratio clearly implies that the correlation among the 

individual severities in a multi-vehicle crash may exist. Hence, the proposed HBL 

model may be more appropriate in modeling the data than OBL model. The results for 

model calibration as well as quantitative assessment are presented in this section. 

 

In the model calibration, beginning with the 15 covariates in the data set, each variable 

was tested for the statistical significance and the insignificant ones were eliminated. In 

the final model, three chains of 20,000 iterations each produced trace plots with a good 

degree of mixing, and Brooks, Gelman and Rubin convergence diagnostics (Brooks 

and Gelman, 1998) using Bayesian Output Analysis (BOA) program (Smith, 2001) 

indicated convergence. Particularly, after discarding 10000 burn-in samples and 

thinning to retain every fifth sample to reduce autocorrelation (leaving a total of 6000 

posterior samples), the 0.975 quantiles of the corrected scale reduction factor (CSRF) 

for the parameters were each 1.2 or less. Posterior distributions were all uni-modal. 

The means, standard deviations and associated 95% BCI of estimated random effects 

and regression coefficients were monitored and listed in the Table 6.3. 

 

National University of Singapore                                                                                                                                        95



                                                                               Chapter Six  CSPM (II/II) 

TABLE 6.3 Posterior Summaries of Parameter Estimates 

Parameters 
Effect 

Estimate  

95% BCI  

of Odds Ratio 

  Mean S.D.  

Odds 
Ratio 

2.5% 97.5% 

Fixed effects        

Time of Day       

Day time* 0 0  1.00 1.00 1.00 

Night time  0.17 0.09  1.19 1.04 1.39 

Peak time  -0.89 0.36  0.41 0.12 0.85 

Intersection Type       

X intersection -0.72 1.27  0.49 0.07 5.38 

T/Y intersection  0.18 0.06  1.20 1.02 1.36 

Other types* 0 0  1.00 1.00 1.00 

Nature of Lane       

Single lane -1.05 0.98  0.35 0.07 2.27 

Left-most lane -0.37 0.42  0.69 0.33 1.50 

Right-most lane  0.23 0.08  1.26 1.07 1.83 

Centre lane* 0 0  1.00 1.00 1.00 

Street Lighting  -1.17 0.34  0.31 0.14 0.59 

Presence of Red Light Camera  0.73 0.12  2.08 1.68 2.53 

Pedestrian Involved  -0.96 0.46  0.38 0.14 0.92 

Vehicle type       

Two-wheel vehicle  1.29 0.21  3.63 2.53 5.75 

Light vehicle* 0 0  1.00 1.00 1.00 

Heavy vehicle  -2.07 0.36  0.13 0.11 0.23 

Driver Age       

<= 25  0.15 0.13  1.16 1.02 1.43 

26 – 45* 0 0  1.00 1.00 1.00 

46 – 65 -0.16 0.19  0.85 0.61 1.19 

> 65  0.53 0.28  1.70 1.03 3.74 

Involvement of Offending Party  0.49 0.13  1.63 1.21 2.14 

Random Effects        

between-crash variance ( ) 2
0τ 1.34 0.87   0.56 2.29 

within-crash variance  3.29      

ICC 0.289      

* represents the reference category used in the model for the multinomial variable 
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To check the model adequacy, underlying assumptions for the HBL model in Equation 

(5.5) were assessed. Posterior samples of the crash-level random effects ( ) can be 

thought of as residuals, and thus can be examined with usual model diagnostics. In the 

MCMC simulation, 200 random effects  were randomly sampled, and the fact that 

they averaged very close to zero was reassured. Normal probability plots, revealing no 

strong abnormalities, also validate the normality and exchangeability assumptions. 

ju0

ju0

 

As shown in Table 6.3, the variance of ( ), indicating the magnitude of the 

between-crash variance, is 1.34. Hence, the ICC is calculated by: 

ju0
2
0τ

 

%9.28
3/34.1

34.1
2 =

+
=

π
ρ  

 

This means that 28.9% of unexplained variations in individual severity were resulted 

from between-crash variance, which strongly suggests the usefulness of the model 

specification of hierarchical structure. If an OBL mode was implemented without 

considering the random effects between crashes, the results will be biased and 

inaccurate.  

 

Model comparison using DIC further strengthened this argument. DIC values for fitted 

OBL model (Equation (5.7)) and HBL model (Equation 5.5)) are given in Table 6.4. 

Results show that )(γD  of HBL model (1984.5) is less than one third of that obtained 

in OBL model (6165.5). After penalized by , the DIC value for HBL model (3067.9) 

is also hugely less than that in OBL model (6191.9). This further proves that the use of 

crash-level random effects in HBL model can substantially improve the model fit. 

Dp
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TABLE 6.4 Results of Model Comparison using DIC 

 )(γD   )(γD  Dp  DIC 

Ordinary logistic model 6165.5 6139.1 26.4 6191.9 

Hierarchical logistic model 1984.5 901.1 1083.4 3067.9 

 

 

6.4 DISCUSSIONS ON SIGNIFICANT RISK FACTORS 

 

Summary statistics for the posterior samples of fixed effects of significant covariates 

are presented in Table 6.3.  In the final HBL model, 9 variables are identified as 

significant judged by 95% BCI. They are: 1) Time of day, 2) Intersection type, 3) 

Nature of lane, 4) Street lighting, 5) Presence of red light camera, 6) Pedestrian 

involved, 7) Vehicle type, 8) Driver age, 9) Involvement of offending party. The 

detailed interpretations for these significant risk factors are offered in the following.  

 

Time of Day 

 

The time of crash occurrence is classified into 3 periods, i.e. day time (10am – 5pm), 

night time (8pm – 7am), and peak time (7am – 10am or 5 pm – 8 pm). Compared with 

crash occurrences during day time, crashes which occur at night time have 19% higher 

odds of high severity (IS(A)) (O.R. 1.19, 95% BCI (1.04, 1.39)). This finding is 

consistent with Simoncic (2001) who found crashes at night were more serious than 

those during daytime. This may be expected since speeding and alcohol use resulting 

in higher crash severity are more likely in these hours. Moreover, at night the effect of 

street lighting comes into play and this was also found to be significant in this study. 

The high probability of IS(A) in night time is consistent with previous studies for 
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severities of motorcycle crashes (Quddus et al., 2002) and single vehicle crashes 

(Rifaat et al., 2005) in Singapore. Furthermore, individuals involved at crashes in peak 

time (O.R. 0.41, 95% BCI (0.12, 0.85)) are also found to have reduced odds of being 

IS(A) by 60%. It can be reasoned that due to the higher traffic volume, the vehicle 

speeds during peak time are substantially reduced compared to off-peak time, hence 

resulting in lower crash severity. This is consistent with Zhang et al. (2000), in which 

the odds of fatality in crashes that occurred in 70-90 kph zones were almost six times 

more than those in crashes occurring in zones with slower speeds.  

 

Intersection Type 

 

It is found that crashes occurring at T/Y type intersections (O.R. 1.20, 95% BCI (1.02, 

1.36)) increase the odds of being IS(A) by 20%, in contrast to other type of 

intersections. Results indicate that, though insignificant, X type intersections may have 

an averagely positive effect on reducing the crash severity. Vehicles on the minor road 

at T/Y type intersections, merging into the major road, have a higher probability to be 

seriously collided by the going-through vehicles on the major road. This is similar to 

the right-turn traffic (left-driving) at X type intersections. In addition, a shorter sight 

distance, commonly associated with a T/Y type intersections, may also be a factor 

causing more severe crashes.        
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Nature of Lane 

 

Another significant geometric factor is Nature of Lane, where the right-most (left 

driving) lane (O.R. 1.26, 95% BCI (1.07. 1.83)) is identified to be significant on 

increasing the odds of severe crashes by 26%, compared with central lane. This result 

is consistent with the Khorashadi et al. (2005) who found that for right driving, if the 

location of collision is on the left lane, the likelihood of injury severity increased by 

268.1%. The higher severity risk may be caused by higher speed on right-most lane 

than on other lanes. According to Bedard et al. (2002), traveling at speeds exceeding 

112 kph was independently associated with a 164% increase in the odds of a fatality 

compared with speeds less than 56 kph.  

 

Street Lighting 

 

Street Lighting is identified as a significant factor (O.R. 0.31, 95% BCI (0.14, 0.59)). 

The odds ratios value indicates that a bad street lighting condition can increase the 

odds of severe crash by about 69%. This result is generally expected because drivers 

may have more reaction time and better perception ability on crash risk in good street 

lighting environments. Yau (2004) also found that street lighting condition affects the 

crash severity for the single vehicle crashes in Hongkong.  This finding implies that 

improving the street lighting can substantially improve the safety condition at 

intersections.  
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Presence of Red Light Camera 

 

Results show that among the highly significant risk factors, Presence of red light 

camera (O.R. 2.08, 95% BCI (1.68, 2.53)) is associated negatively with crash severity. 

In other words, the presence of red light camera is associated with higher severity level. 

In the sites with red light camera, the odds of being IS(A) increase by 108%. This may 

seem surprising compared to findings in many studies in which the red light camera 

has been proved to be useful in reducing the violation and crash frequencies, as well as 

relieving the crash severity. In a recent driver behavior study in Singapore, Huang and 

Chin (2006) have found that the presence of a red light camera is effective in curbing 

the red light running as well as reducing crash risk in angle crashes. Although red light 

camera itself may not increase the risk of severe crashes, it is associated with high risk 

sites. Specifically, intersections with red light camera may have already been placed in 

sites with more severe crashes since traffic authorities always install cameras at 

extraordinarily hazardous sites. Moreover, this reinforces the findings by Chin and 

Quddus (2003), where the presence of a surveillance camera was found to be 

associated with an increase in the total crash frequency at intersections. These results 

imply that, keeping other covariates unchanged, some unmeasured factors may have 

effects on the relative severity.  

 

Pedestrian Involved 

 

The variable Pedestrian involved is a significant factor affecting driver severity (O.R. 

0.38, 95% BCI (0.14, 0.92)). The involvement of pedestrians substantially reduces the 

odds of being IS(A) by about 62%. This is intuitively reasonable since pedestrians, 
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rather than the drivers, are much easier to be injured seriously in the collisions. It is 

also supported by Chang and Wang (2006), who found that pedestrians were more 

likely to have higher risks of being injured than other types of vehicle drivers in traffic 

crash. Crash severity statistic also confirms this finding that of driver-vehicle units 

involved in the crashes of “vehicle against pedestrian” type, only 3.4% were injured 

severely and/or damaged extensively, compared with the overall rate of 16.5% as 

shown in Table 6.1.   

 

Vehicle Type 

 

Vehicle type is categorized as three groups in this study, i.e. two-wheel vehicle, light 

vehicle, and heavy vehicle. By taking the most common light vehicle as reference, the 

other two dummy variables for two-wheel vehicle (O.R. 3.63, 95% BCI (2.53, 5.75)) 

and heavy vehicle (O.R. 0.13, 95% BCI (0.11, 0.23)) were all found to have significant 

effects on individual severity. Compared with light vehicle, two-wheel vehicle 

increased the odds of being IS(A) by 263%, representing the most significant factor in 

the model. The severity risk in two-wheel vehicle (e.g. motorcycles) is expected as 

two-wheel riders have not the facility of safety protections that are available in light 

vehicle (e.g. cars), such as seatbelt, airbag etc. Again the two-wheeler driver may be 

thrown off from the vehicle at the time of collision while in the case of car crashes this 

may rarely happen. Kockelman and Kweon (2002) found that riding a motorcycle is 

causing more severe injury than driving a car. Again heavy vehicle reduces the odds of 

being IS(A) by 87%. It is not surprising that as the vehicle weight increases, the risks 

of being injured or damaged decrease substantially, even though other driver-vehicle 

units involved in the same crash may be more vulnerable to be injured or damaged. 
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This finding is also supported by Levine et al. (1999), who reported that every 454 kg 

(1000 lbs) increase in vehicle weight was equivalent to the driver’s ability to withstand 

front impact crashes of 10 more kph (6 mph) before being fatally injured. However, it 

is interesting to notice that as found in Rifaat et al. (2005), the truck crashes in single 

vehicle crashes are more likely to result in serious injuries and fatalities. This 

contradiction can be explained by the different collision types between intersection 

crash and single vehicle crash. In contrast to intersection crash, more severe crashes 

may be caused by higher energy exchange for trucks with roadside objects in single 

vehicle crashes. Moreover, as found in Rifaat and Chin (2005), the higher relative 

fatality risk was associated with truck crashes mainly on high speed roads such as 

expressway rather than other highway types where signalized intersections are located.    

 

Driver Age 

 

The demographic variable, Driver age, is found to be significant on individual severity, 

in which both young group (O.R. 1.16, 95% BCI (1.02, 1.43)) and aged group (O.R. 

1.70, 95% BCI (1.03, 3.74)) are identified to have effects on increasing the odds of 

being IS(A). Odds ratios indicate that a 16% increase of the IS(A) odds is associated 

with young drivers while 70% for aged drivers. It is likely because young drivers drive 

more recklessly (Rifaat and Chin, 2005; Kocklelman et al., 2002) while aged drivers 

have relatively weak risk detecting and reacting abilities. Again Hilakivi et al. (1989) 

also showed that young drivers as well as older drivers are more at risk of being 

involved in severe crashes. Another reason for young drivers to be involved with 

severe crashes may be that they represent a large proportion of riders of two-wheel 

vehicles, which have been proven to be associated with a higher risk of being involved 
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in more severe crashes (Rifaat and Chin, 2005; Quddus et al., 2002). Furthermore, as 

indicated by Rifaat and Chin (2005), decrease of visual power, deterioration of muscle 

strength and reaction time may be responsible for the aged drivers to be involved in 

severe crashes.  

 

Involvement of Offending Party 

 

Involvement of Offending Party affects crash severity significantly (O.R. 1.63, 95% 

BCI (1.21, 2.14)). The at-fault driver-vehicle unit has 63% higher odds to be IS(A) 

than the not at-fault party. This provides a more convincible evidence for educating 

drivers to keep away from risk-taking maneuvers.     

 

6.5 SUMMARY 

 

This study developed a Bayesian HBL model to identify the risk factors on individual 

severity of driver injury and vehicle damage at urban intersections. It is helpful to 

account for the severity correlation of driver-vehicle units involved in the same multi-

vehicle crashes. The estimation of random effects using ICC showed that 28.9% of 

unexplained variation in severity level was resulted from between-crash variance. 

Model comparison with ordinary logistic model using DIC further ensured the 

suitability and model-improving effectiveness of introducing the crash-level random 

effects. This means, if ordinary logistic model were used, 28.9% residual variance 

could not be explained by this model, which might result in inaccurate coefficient 

estimates of risk factors. The Bayesian hierarchical modeling approach also showed 

flexibilities to explicitly explore the hierarchical data structure in traffic safety field.  
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Of the covariates including various geometric features, traffic conditions, and driver-

vehicle characteristics, 9 variables were identified as significant using 95% BCI. 

Among these, the crash-level significant factors are Time of day, Intersection type, 

Nature of lane, Street lighting, Presence of red light camera, and Pedestrian involved. 

In particular, it was found that crashes occurring in peak time, in good street lighting 

condition, and in the case of pedestrians involved are associated with lower severity, 

while those occurring in night time, at T/Y type intersections, on right-most lane, in 

the presence of red light cameras have larger odds of being severe. Vehicle type, 

Driver age and Involvement of offending party were also found to affect severities of 

driver injury and vehicle damage significantly. Specifically, results indicated that 

heavy vehicles have a better resistance on serious injury or extensive damage, while 

two-wheel vehicles, young or aged drivers, with the involvement of offending party 

have a higher risk of being high severity.  

 

This study of CSPM has a great potential in traffic safety discipline, especially when 

the correlation exists in the data set. This study illustrated a way to analyze the 

potential within-crash correlations in severity study using the hierarchical modeling 

technique. It also proved and emphasized the importance of accounting for this kind of 

within-cluster correlation in yielding reliable and accurate effect estimates for various 

risk factors.  
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

7.1 CONCLUSIONS AND RESEARCH CONTRIBUTIONS 

 

Crash prediction model (CPM) is one of the most important techniques in investigating 

the relationship of road traffic crash occurrence and various risk factors. Traditional 

models using generalized linear regression are incapable of taking into account the 

within-cluster correlations, which extensively exist in crash data generating or 

collecting process.  

  

To overcome the problem, this study developed a Bayesian hierarchical method to 

analyze the traffic crash frequency and severity. It demonstrated the flexibilities and 

effectiveness of the Bayesian hierarchical modeling approach in explicitly modeling 

the multilevel structure and excess zeros in traffic safety data. Furthermore, this study 

also explored a theoretical framework to determine the suitability of applying various 

statistical safety models in predicting traffic crash frequency and severity. The 

proposed method has a great potential in traffic safety discipline. While most previous 

studies ignored the multilevel structure in traffic crash data, this study proved and 

emphasized the importance of accounting for the within-cluster correlation in yielding 

reliable and accurate effect estimates for various risk factors. 
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7.1.1 Crash Frequency Prediction Model (CFPM) 

 

To account for the multilevel data structure and excess zeros in crash frequency 

prediction model (CFPM), this study innovatively developed zero-inflated model with 

location-specific random effects (REZIP). The results showed that REZIP could be 

used as an alternative to the ordinary random effect Poisson model (REP) or zero-

inflated Poisson model (ZIP).  

 

A methodological framework using Bayesian analysis with Markov Chain Monte 

Carlo (MCMC) algorithm for model specification was proposed. A computing 

programme using BUGS language was, in the first time, developed to calibrate the 

REZIP model. Bayesian credible interval (BCI) was used to examine the significance 

of estimated parameters. This framework was also shown to provide a reliable measure 

to fit various flexible models. A cross-validation assessment method in the Bayesian 

framework, i.e. cross-validation predictive densities, was innovatively adopted to 

evaluate the suitability of the models. Several utility functions including the mean 

predictive square error (MPSE) and disaggregate predictive probability-based utilities, 

as well as their BCI measures were developed to analyze the cross-validation results. 

The assessment measures proved to be useful and reliable to examine the predictive 

performance of the whole model as well as the realization of individual observations in 

the data, for instance, “zero” occurrence in crash data.  

 

Using intersection data in Singapore, the illustrative results indicated that REZIP could 

significantly perform better in terms of predictive abilities over the other candidate 

models (REP and ZIP). Specifically, judged by the criteria of MPSE ( u ), models 
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accounting for excess zeros have been demonstrated to have a significant improvement 

in predictive abilities ( ZIPu =1.97, REZIPu =1.89). The consideration of location-specific 

random effects in the ZIP model, resulting in REZIP model, yields the smallest 

predictive square errors. And REZIP model also has the smallest credible interval 

width around the observations ( )95.0( =αREZIPu =3.06). Using the probability-based 

predictive utility )( fu for the whole dataset, the result implies that, compared to REP 

model, REZIP model can increase the predictive accuracy as the overall percentage of 

model fitness by about 15%, i.e. from 29% to 44%.  

 

As for the parameter estimation, a small but significant decreasing time trend of crash 

occurrence was identified in the model. Several factors were found to be significant in 

affecting the crash frequency including Total approach volume, Conflicting approach 

volume, Number of lanes and Presence of median, Sight distance, Distance of the bus 

stop from the intersection, Number of phases per cycle, Red duration in pedestrian 

crossing. The differences of parameter estimations between different models also 

imply that careful model development and assessment should be conducted since 

different specifications could result in quite different effect estimates as well as in their 

credible intervals. 

 

7.1.2 Crash Severity Prediction Model (CSPM) 

 

In crash severity prediction model (CSPM), a hierarchical binomial logistic model 

(HBL) was developed to identify the risk factors on individual severity in traffic 

crashes. It is capable of accounting for the severity correlation of driver-vehicle units 

involved in the same multi-vehicle crashes. A full Bayesian method with MCMC 
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algorithm was employed for model calibration to explicitly model the two-level data 

structure, i.e. crash-level and individual-level. A computing programme was 

specifically developed using BUGS language to realize the proposed algorithm. Intra-

class Correlation Coefficient (ICC) was employed to assess the random effects, and the 

Deviance Information Criterion (DIC) was developed for model comparison.  

 

Using Singapore crash data, a CSPM on individual severity of driver injury and 

vehicle damage at signalized intersections was developed to illustrate and validate the 

proposed method. The estimation of random effects using ICC showed that 28.9% of 

unexplained variation in severity level was resulted from between-crash variance. 

Model comparison with ordinary binomial logistic model (OBL) using DIC further 

ensured the suitability and model-improving effectiveness of introducing the crash-

level random effects ( 9.6191=HBLDIC , 9.3067=OBLDIC ).  

 

Of the covariates including various geometric features, traffic conditions, and driver-

vehicle characteristics, 9 variables were identified as significant using 95% Bayesian 

Credible I. Among these, the crash-level significant factors are Time of day, 

Intersection type, Nature of lane, Street lighting, Presence of red light camera, and 

Pedestrian involved. In particular, it was found that crashes occurring in peak time, in 

good street lighting condition, and in case of pedestrian involved are associated with  

lower severity, while those occurring in night time, at T/Y type intersections, on right-

most lane, and in the presence of red light camera have larger odds of being severe. 

Vehicle type, Driver age and Involvement of offending party were also found to affect 

severities of driver injury and vehicle damage significantly. Specifically, results 

indicated that heavy vehicles have a better resistance on serious injury or extensive 
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damage, while two-wheel vehicles, young or aged drivers, and the involvement of an 

offending party have a higher risk of a more serious injury or damage.  

 

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

The Bayesian hierarchical methodology developed in this study has great potentials of 

extension as well as application for future research in traffic crash analysis. Three 

major directions are outlined in this section, i.e. multilevel structure in traffic safety 

data, other possible model formulations, and Bayesian updating function for CPMs. 

 

7.2.1 Multilevel Structure in Traffic Safety Data 

 

Multilevel data structures are commonly ignored in the traffic safety studies. This 

study developed the Bayesian hierarchical method to model the within-location 

correlation in crash frequency prediction and the within-crash correlation in crash 

severity analysis. But the multilevel data structure in traffic data is not only limited in 

location-specific and crash-specific correlation in CPMs. A more general form can be 

proposed for traffic safety study to be a T×5 -level hierarchy, i.e. geographic region – 

traffic site – crash – driver-vehicle unit – occupant, as shown in Figure 7.1. The 

involvement and emphasis for different sub-groups of these levels depend on different 

research purposes and also rely on the heterogeneity examination on crash data 

employed. Generally, macro-analysis focus on the former three levels, i.e. geographic 

region level, traffic site level, and crash level, while micro-analysis concern the later 

three levels, i.e. crash level, driver-vehicle unit level, and vehicle occupant level.  The 

Bayesian hierarchical modeling method provides us with a flexible and reliable model 

calibration and assessment measure for these potential explorations and applications. 
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Figure 7.1  A T×5 -Level Hierarchy in Traffic Safety Data 

 

7.2.2 Other Possible Model Formulations 

 

It should be noted that all the considerations and treatments in this study are aimed at 

accounting for the possible sources of over-dispersion in crash data. In particular, 

while hierarchical models take the physical data collection scheme into consideration, 

zero-inflated models assume a dual-state data-generating process to explain the excess 

zeros. Hence, in crash frequency prediction, a natural extension of the proposed 

methodology is to negative binomial (NB) model, which even allows within-cluster 

dispersion. Intrigued by the proposed REZIP model, the NB model accounting for both 

random effect and zero-inflation can also be investigated. And in the crash severity 

prediction, the hierarchical multinomial models as well as ordered models can also be 

developed to account for the special characteristics of dependent variables representing 

crash severity levels. These non-nested complicated models can be implemented and 
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compared in the proposed Bayesian framework which provides a fairly flexible and 

reliable tool for model specification, model calibration as well as suitability 

assessment.  

 

On the other hand, while this study only considered the random intercept in the 

regression equations, the random effects on the covariate coefficients can also be 

examined with careful specifications, resulting in random slope models. In the random 

slope models, the cross-level interaction between covariates could be appropriately 

specified and estimated.  

 

7.2.3 Bayesian Updating Function for CPM 

 

From the practical perspective, the Bayesian statistics can accumulate evidences in 

favor of any model. In Bayesian modeling technique, specifying the prior amounts to 

introducing extra information or data based on accumulated knowledge, and the 

posterior estimate in being based on the combined sources of information (prior and 

likelihood) therefore has greater precision. Moreover, within Bayesian framework, that 

data may be analyzed sequentially, with no loss of information. A model can be fit to 

data at any time, resulting in posterior distribution for all parameters of a model. If 

additional data become available generated by the same process, then the posteriors 

from the first analysis serve as the priors for the second analysis, and the result is the 

same as if the two sets of data were estimated simultaneously.  

  

All the practical properties of Bayesian technique mentioned above naturally make us 

expect its possible application to innovatively improve the development of CPMs. A 
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special property of the CPMs among most the traffic safety problems is that the data is 

difficult to collect and gradually available along the time scale, e.g. year by year. And 

furthermore, there are many possible variations for the prediction models itself as the 

outcome of changes of some influential factors, e.g. the installation of red light camera, 

or the adjust of amber interval time. This means that, to make the models valid, we 

need update them periodically with the coming of new data. Fortunately, the Bayesian 

algorithm provides a quite flexible and reliable measure to realize this updating 

requirement. In Bayesian context, the previous model could be used as the prior 

knowledge of the updated model, in other words, the posterior distributions of model 

parameters are used as the prior distributions of the parameters in new model, which 

will be updated only by the newly-collected data to obtain the new posterior 

distributions of the model parameters. Hence, a Bayesian updating system could be 

developed for CPMs in future study. The recently-developed computational methods 

along with improvements in computing speed have made it possible to compute 

Bayesian inference for more complicated models on larger datasets. 
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APPENDICES 

 

Appendix A 

 

This appendix indicates the list of the intersections selected in the chapter four, as 

shown in Table A.1  

                      
TABLE A.1 The List of Signalized Intersections Within Study Area 

 
Intersection ID               Name of the Connecting Roads 

1 Commonwealth Avenue West, Clementi Avenue 3, Clementi Avenue 4 

2 Commonwealth Avenue West, Clementi Avenue 2 

3 Commonwealth Avenue West, Clementi Road  

4 Commonwealth Avenue West, North Bouna Vista Road  

5 Clementi Road, West Coast Road, Pasir Panjang Road 

6 Commonwealth Avenue, Queensway  

7 Commonwealth Avenue, Alexandra Road  

8 Alexandra Road, Delta Road, Lower Delta Road 

9 Clementi Road, West Coast Highway 

10 Clementi Road, West Coast Road, Pasir panjang Road 

11 Clementi Avenue 2, West Coast Road, Clementi west Street 2 

12 Jurong East Ave 1, Jurong East State 32 

13 Jurong East Ave 1, Jurong Town Hall Road  

14 Jurong East Ave1, Toh Guan Road, Jurong East Central 

15 Jurong East Central, Boon Lay Way 

16 Jurong East Central, Jurong East Street 13 

17 Jurong East Central, Jurong East Street 21  

18 Jurong East Central, Jurong Town Hall Road 

19 Jurong East Street 11, Jurong Town Hall Road 
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20 Clementi Road, Kent Ridge Crescent 

21 Boon Lay Drive, Boon Lay Avenue 

22 Jalan Ahammed Ibrahim, Jalan Boon Lay 

23 Jalan Ahammed Ibrahim, Jurong Pier Road 

24 Corporation Road, Jalan Ahammed Ibrahim 

25 Jurong Port Road, Jalan Buroh 

26 Ayer Rajah Expressway, Jurong Town Hall Road, Jln Ahamed Ibrahim 

27 Jalan Ahammed Ibrahim, Jurong Port Road 

28 Pan-Island Expressway, Jurong Town Hall Road, Bukit Batok Road 

29 Boon Lay Way, Jurong Town Hall Road 

30 Boon Lay Way, Jalan Boon Lay 

31 Corporation Road, Corporation Drive 

32 Boon Lay Way, Jurong West Street 51, Yung Ching Road 

33 Boon Lay Way, Corporation Road 

34 Bukit Timah Road, Caneagh Road 

35 Bukit Timah Road, Clementi Road 

36 Bukit Timah Road, Selegie Road 

37 Bukit Timah Road, Stevens Road 

38 Bukit Timah Road, Farrer Road 

39 Dunearn Road, Adam Road, Whittey Road 

40 Holland Road, Six Avenue 

41 Alexandra Road, Tanglin Road 

42 Commonwealth Drive, Tanglin Halt Road 

43 Alexandra Road, Pasir Panjang Road, Telok Blangah Road 

44 Alexandra Road, Queensway, Jalan Bukit Merah 

45 Dover Road, North Bouna Vista Raod, AYE Avenue 

46 Lower Kent Ridge, North Bouna Vista Road, From AYE 

45 Corporation Drive, Ho Chin Road 
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46 Lower Delta Road, Jalan Bukit Merah 

47 Lower Delta Road, Ayer Rajah Expressway 

48 Lower Delta Road, Tiong Bahru Road 

49 Henderson Road, Jalan Bukit Merah 

50 Henderson Road, Tiong Bahru Road 

51 Boon Lay Avenue, Jalan Boon Lay 

52 Commonwealth Avenue, Commonwealth Drive, Holland Avenue 
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Appendix B  

 

This appendix illustrates a portion of sample crash data, as shown in Table B.1 

 

Table B.1 A Part of the Crash Data File Consisting All the Fields 
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