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Summary

Contrast-enhanced magnetic resonance (MR) imaging is an effective tool for the de-

tection and analysis of female breast cancer. The imaging protocol consists of 3D

volumes acquired at different times before and after the administration of a contrast

agent. Intensity-time profiles are constructed for every voxel to aid in the diagnosis

process. However, because of the voluntary or involuntary movements of the patients,

the images have to be registered before a diagnosis can be reliably given.

Nonrigid deformation based on B-splines optimizing the normalized mutual infor-

mation (NMI) criterion has proved to be successful in this registration task involving

elastic deformations. In the first part of this work, we have proposed a fast approx-

imation algorithm to estimate the gradient of NMI using a set of auxiliary images

constructed from the image conditional probability distributions. Our method could

speed up the registration process by an order of magnitude with similar registration

quality. In the second part, we aimed to further speed up the registration process

by offloading the bulk of the computational load to the GPU hardware for efficient

processing. We exploited the single instruction multiple data (SIMD) processing ca-

pabilities and the dedicated interpolation hardware to obtain a further speed up of

15-30 times compared to CPU implementation.

viii



Chapter 1

Introduction

1.1 Background

Contrast-enhanced magnetic resonance mammography (CEMRM) uses magnetic res-

onance imaging (MRI) to obtain the 3-D image of the human breast. A bolus injection

of a contrast agent, usually a low molecular weight, freely diffusible molecule con-

taining a chelate of gadolinium, is administered after an initial non-enhanced scan,

and a series of T1-weighted images, typically using a 3-D gradient echo sequence, is

acquired repeatedly at the same spatial location. The enhancement of the tissue by

the contrast agent is acquired, and can be subsequently analyzed. One slice from an

example dataset is shown in Figure 1.1.

The contrast agent is rapidly extracted from the intravascular compartment to

the extracellular fluid space (or interstitial space) by a combination of perfusion and

passive diffusion, which is in turn dependent on the microvascular density of the tis-

sue, as well as tissue vascular permeability and the proportion of extracellular fluid

1
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Figure 1.1. An example slice from a typical dataset. Left: pre-contrast image, Right:
post-contrast image. Substantial enhancement can be observed in the left breast
lesion.

space in the tissue. In the breast, all normal, non-fat tissues will exhibit contrast

leakage and enhancement eventually. However, tissues with increased perfusion, mi-

crovascular density, capillary permeability, extracellular fluid space or a combination

of any of these factors, will exhibit more rapid and intense enhancement than normal

tissues. This increase in rate and degree of enhancement forms the foundation of

breast MRI and its use to detect cancer and other pathologies [1].

In general, most cancers, infections and some benign processes such as fibroade-

nomas exhibit intense enhancement within 1-3 minutes after intravenous contrast

injection, often with an initial rapid enhancement phase, while most benign lesions,

very few cancers and normal breast tissue usually show slower, progressive and less

intense enhancement over the first 5 minutes after injection. The terms “wash-in” and

“wash-out” have been applied to the temporal enhancement of lesions and tissues in

the breast after contrast injection. “Wash-in” refers to the initial contrast enhance-

ment phase, while “wash-out” is normally only seen in the usual clinical imaging
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timeframe of about 10 minutes after injection in lesions with a combination of high

blood flow, high microvascular density and high vascular permeability, leading to

contrast enhancement actually falling from an initial peak over the ensuing minutes.

This finding is highly specific for malignant invasive cancers, and is rarely seen in

benign processes or tissues. From the set of acquired images, we can construct a

contrast enhancement timecourse curve for every voxel to estimate the enhancement

and, if present, the wash-out rates, in order to classify the tissue. However, such

analysis cannot always be directly applied since patient motion due to breathing and

discomfiture is often present. The breast is also soft and deformable and will not

move in a uniform fashion between acquisitions. Standard methods of image sub-

traction available in clinical MRI workstations do not use any formal registration

scheme, and assume negligible patient motion between acquisitions. CEMRM offers

better tissue sensitivity and 3-D tomography compared to x-ray mammography [2],

and it is radiation-free. If registration can be made accurate and reliable, CEMRM

can be more reliably applied for breast cancer detection.

Registration of contrast-enhanced breast MR images has been studied by several

research groups. Many attempts employed mutual information (MI) or normalized

mutual information (NMI) as a similarity measure [3, 4, 5, 6, 7]. MI was proposed

independently by Collignon et al. [8] and Viola et al. [9]. To reduce the sensitiv-

ity of MI to image overlap, normalized mutual information (NMI) was proposed by

Studholme et al. [10]. MI and NMI measure the statistical dependency between pairs

of images and are therefore insensitive to intensity changes.

Rueckert et al. [7] showed that free-form deformation is a viable tool to effec-
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tively reduce the motion artifacts that exist in CEMRM images. They proposed a

combination of global affine and local free-form transformation to model the image de-

formation. It was demonstrated that most of the motion artifacts could be eliminated

during the non-rigid local registration phase. Although free-form deformation could

reduce motion artifacts, if it is performed in an unconstrained fashion, there would be

artificial volume reduction of contrast-enhanced lesions due to intensity changes [6].

This is definitely undesirable since breast tissue is known to be almost incompress-

ible. Furthermore, this side-effect may lead to an apparent reduction in enhancement

for small lesions, reducing their conspicuity and potentially causing diagnostic errors.

Currently, the problem of lesion volume reduction is addressed by adding a regular-

ization term to the cost function. Rueckert et al. used a smoothness constraint on

the transformation to control its “bending energy”. Rohlfing et al. [5] have proposed

an incompressibility constraint based on the Jacobian of the transformation function.

The Jacobian-based regularization penalizes both local contraction and expansion of

the transformation, then favoring volume-preserving transformations. Rohlfing et al.

have also suggested in [11] that when an over-constrained optimization is stuck in a

local minimum, some of the artifacts are not removed as a result. A good solution

would be to relax the constraint and allow it to escape from the local minimum.

Haber [12] addressed the problem of volume preservation using constrained reg-

istration with regularization, and the solution was found using sequential quadratic

programming (SQP). Chen el al. [13] solved the problem by simultaneous segmen-

tation and registration in an unified Bayesian framework. In particular, they have

integrated a pharmacokinetic model into a hidden markov model (HMM) framework
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for the segmentation step. Segmentation and registration are performed alternately

until convergence. In order to make sure that nonrigid registration using FFD and

NMI with incompressibility constraint is accurate, Tanner et al. [14] presented val-

idation studies using finite element model (FEM), and the results confirmed the

reliability of the method.

The calculation of MI and NMI is a highly computationally intensive task. It

requires the formation of the joint histogram of corresponding voxel pairs. The opti-

mization of the transformation parameters often requires computation of the gradient

of the MI- or NMI-based cost function with respect to the transformation parame-

ters. With appropriate interpolation of the histogram, an analytic expression can be

computed for MI derivatives. Maes et al. [15] used partial volume interpolation on

the histogram and derived analytic derivatives of MI to allow exact computation of

the gradient. Thévenaz et al. [16] used Parzen windowing to form the histogram and

derived an analytic form for the MI gradient. Computing the gradient may also be

done by numerical approximation, e.g., a stochastic approximation [17], or a finite-

difference approximation [3]. Stochastic approaches have the advantage of using a

subset of the data set, thus reducing the computational complexity.

1.2 Motivation

A fast registration method is desirable in a clinical setting. Since motion recovery

process is a typical ill-posed problem, we need to employ an optimization approach

to solve it. Many optimization techniques such as gradient descent, conjugate gradi-

ent, and Levenberg -Marquardt(LM) require the gradient information in the search
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process. To effectively compute the gradient of the cost function is therefore very

useful. In this thesis, we describe an approach that reduces the complexity of NMI

gradient computation by approximation. We have also observed that the commodity

graphics processing unit (GPU) has gained attention in recent years as a cheap yet

powerful computational resource. We attempt to exploit its dedicated hardware for

image processing operations to further speed up the system.

1.3 Contributions

With the aim of achieving fast registration of CEMRM images, we have made con-

tributions in the following areas.

1.3.1 Registration Using Approximated NMI Gradient

We observe that the conditional PDF of voxel intensities belonging to fatty and glan-

dular tissues in two images can be approximated by a Gaussian function, and the

enhanced structures by another Gaussian function with an increased mean value. If

we do not make a distinction between tissue types, the combined conditional PDF of

voxel intensities in the two images will be modeled by a mixture of Gaussians because

tissues of different types might possess similar intensities. By doing so, we can ap-

proximate the gradient of NMI by the gradients of two SSD terms involving auxiliary

images and the original images. The SSD gradients can be computed efficiently using

finite difference approximation.
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1.3.2 Hardware Acceleration Using GPU

We observe that the transformation and interpolation processes contribute to the

bulk of the computational load, and that the local support of the B-splines provides

a natural structure for parallelized processing. In the second part of this work, we

propose a framework to perform registration on off-the-shelf commodity graphics

processing unit (GPU). We describe the design and implementation of a parallel

scheme which fully utilizes the single instruction multiple data (SIMD) architecture

on GPU to optimize the control points in parallel. The dedicated graphics processing

hardware for interpolation is exploited to further shorten the computation time.

1.4 Organization of the Thesis

In Chapter 2, we give an overview of the several components in the general registra-

tion framework. We review the techniques that are currently in use. In Chapter 3,

we present the details of the approximated NMI gradient method that can greatly

simplify and speed up the registration process. In Chapter 4, a method to utilize com-

modity graphics processing units to speed up the registration system is presented,

and we conclude the thesis in Chapter 5.



Chapter 2

Image Registration

2.1 Overview

In this chapter, we describe how the registration problem is formulated in the current

literature. The formulation can be separated into three modules: the transformation,

the similarity measure and the optimizer. A short description of each component is

given in the subsequent sections.

2.2 Problem Formulation

Image registration is the process of finding a transformation between a pair of images.

We consider the pre-contrast image to be the reference image and denote it by u. The

post-contrast image is to be mapped onto the pre-contrast image and it is denoted

by v, where {u, v : R3 7→ R} are functions that maps the image voxels to intensities.

Since all the images used in this work are in digitized form, we only consider a discrete

coordinate grid and denote it as x. T (·) defines some geometrical transformation that

8
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models the motion between images. Defining some similarity measure S(·) that is

optimized when the images are well aligned, we formulate the overall registration as

T = arg max
T

(S(u(x), v(T (x))) (2.1)

The optimal transformations will be given by the function T that optimizes S, which

could be any similarity measure that measures registration quality.

2.3 Transformation Models

Transformations define mappings from one image to another, and they are controlled

by its parameters. The ability of a transformation to model complex deformations

is determined by its degree of freedom, or the number of independent parameters.

Examples of transformations with low degree of freedom are affine, rigid and similarity

transforms. Transformations with high degree of freedom often are defined using

basis functions. A good example is freeform deformation based on B-splines. In this

project, we have adopted a coarse to fine matching strategy similar to [7]. An initial

global coarse matching is first achieved using rigid transformation, followed by a local

motion correction using freeform deformation.

T (x) = Tglobal(x) + Tlocal(x) (2.2)
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2.3.1 Global Motion Model

We have chosen to use rigid transform to model the global motion. Consider a point

(x, y, z) in the coordinate grid x, the rigid transform is given by

Tglobal(x, y, z) = R(x, y, z) + T (2.3)

where R is a matrix representing a rotation and T is a matrix representing a trans-

lation.

If we denote the angle rotated about the x -axis by α, the angle rotated about

the y-axis by β and the angle rotated about the z -axis by γ, we can write R in the

following form,

R = R(α)R(β)R(γ) (2.4)

where R(α), R(β) and R(γ) are given respectively by

R(α) =


1 0 0

0 cos α − sin α

0 sin α cos α

 (2.5)

R(β) =


cos β 0 sin β

0 1 0

− sin β 0 cos β

 (2.6)

R(γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (2.7)
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The translation matrix T is given by

T =


tx

ty

tz

 (2.8)

2.3.2 Local Motion Model

In this section, we describe the local motion model that we employed. Rigid trans-

formation only removes the global motion between the images. Since the breast is

soft, it is easy to find nonrigid deformation where a global mapping is insufficient.

Freeform deformation using B-splines has been proved to be a powerful method to be

used in modeling deformable objects. The idea of freeform deformation is to use an

uniformly spaced grid of control points to represent local displacements, and to use

B-spline interpolation to find the displacement vectors for the voxels in between the

control points. Every control point is to be moved independently in 3D space, thus

deforming the image volume.

To represent freeform deformation, we define a grid of control points Φ with

dimension nx × ny × nz and we use φa,b,c to denote one particular control point. The

control point spacing in different axis directions are denoted by {δx, δy, δz}. Then 3D

free-form deformation is given by a tensor product of 1D B-splines,

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(dx)Bm(dy)Bn(dz)φa+l,b+m,c+n (2.9)

where a = bx/nxc−1, b = by/nyc−1 and c = bz/nzc−1. {dx, dy, dz} denotes distance
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of the voxel to its neighbor control point and they are given by dx = x − bx/δxc,

dy = y − by/δyc and dz = z − bz/δzc, where b·c is the floor operation.

The B-spline basis functions are given by

B0(t) = (1− t)3/6 (2.10)

B1(t) = (3t3 − 6t2 + 4)/6 (2.11)

B2(t) = (−3t3 + 3t2 + 3t + 1)/6 (2.12)

B3(t) = t3/6 (2.13)

Since the displacement vector of a voxel is interpolated from its immediate 4× 4× 4

neighborhood of control points, moving one control point only affects a local support

of the image. This nice property permits efficient computation of the transformation.

In 3 dimensional space, each control point has 3 degrees of freedom. For a 10 ×

10×10 grid of control points, we have a transformation with 3000 degree of freedom.

Comparing to rigid transform, there is a enormous increase of degree of freedom and

it allows efficient modeling of deformable objects. However, large number of control

points demand substantial computation time. In practice, it is needed to consider

the tradeoff between time and accuracy when deciding the number of control points

to use.

2.4 Similarity Measure

Similarity measures are defined to give a quantitative indication of how well two

images resemble one another. They are usually defined to be a function which gives
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a single numerical output.

One of the simplest similarity measure will be the SSD criterion,

SSD(u, v) =
∑

k

[u(xk)− v(T (xk))]
2 (2.14)

We have used xk to denote every possible voxels (indexed by k) in the coordinate

grid. The SSD criterion is attractive because of its low complexity, but its direct

application to this problem is not possible because of the non-uniform change in

intensity. If we wish to use SSD criterion, we first have to correct for this.

Information-theoretic measures do not require the two images to have the same

intensity range. Mutual information (MI) and normalized mutual information (NMI)

falls into this category. MI is defined as

MI(u, v) = H(u(x)) + H(v(T (x)))−H(u(x), v(T (x))) (2.15)

and NMI is defined as

NMI(u, v) =
H(u(x)) + H(v(T (x)))

H(u(x), v(T (x)))
(2.16)

where H(u(x)) and H(v(x)) denote the marginal entropies (ME) and H(u(x), v(T (x)))

the joint entropy (JE). We can calculate the entropy terms from the joint histogram

in terms of discrete intensity values. If we denote the number of bins in the histogram

by I and J , the number of entries in ith row and jth column by nij and the total
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number of entries by N , we have

H(u(x)) = −
∑
i∈I

p(i) log(p(i))

H(v(T (x)))) = −
∑
j∈J

p(j) log(p(j))

H(u(x), v(T (x))) = −
∑
i∈I

∑
j∈J

p(i, j) log(p(i, j))

(2.17)

where p(i) =
∑

j nij/N , p(j) =
∑

i nij/N and p(i, j) = nij/N .

Both MI and NMI measures the similarity of images from their statistical de-

pendencies in intensities. They do not require the structures in different images to

possess exactly the same intensities. But as optimization process proceeds, they

build up their own intensity matching restrictions and seek for an optimum which

minimizes JE. NMI is said to be the ”normalized” version of MI because the fact

that it is insensitive to the amount of overlap in the images. And this facilitates the

optimization process because its value subjects to less fluctuations.

2.5 Search Strategy

Since we have formulated image registration as an optimization problem, we need

to search for the optimal parameters which give the best similarity measure. The-

oretically, an exhaustive search which guarantees global optimum would be ideal.

However, it is infeasible due to the large number of parameters and the wide range

of possible values that the parameters can take.

In practice, we usually employ intelligent strategies and only search a fraction of
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the search space in order to save time. The search strategies can be broadly divided

into two categories: gradient based and non-gradient based. Methods like simplex,

Powell’s direction set and evolutionary strategies like genetic algorithm all fall into

the category of non-gradient based methods. For gradient based methods, we usually

first compute the gradient of the similarity measure, then search for the optimal

parameter along the direction of the gradients.

In this project, we have chosen to use gradient-based techniques due to its nice

convergence properties and simplicity in implementation. Since we usually have good

initialization for the image datasets we have, the local optimum found by gradient-

based techniques such as the gradient descent is sufficiently good.



Chapter 3

Fast Registration Using

Approximated NMI Gradient

3.1 Overview

We describe in this chapter an intensity-based registration algorithm for the analysis

of contrast-enhanced breast MR images [18][19]. Motion between pre-contrast and

post-contrast images is modeled by a combination of rigid transformation and free-

form deformation. We propose a fast method to compute an approximation of the

gradient of normalized mutual information (NMI) by the use of intensity-corrected

auxiliary images. The registration time can be reduced by 50% with comparable

performance. One well-known problem of non-rigid registration of contrast enhanced

images is the contraction of enhanced lesion volume. By modeling the outliers ex-

plicitly in the computation of similarity measure, we can effectively prevent artificial

volume reduction.

16
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3.2 Method

3.2.1 Assumptions about Probability Density Functions

It has been shown that the joint probability density function (PDF) of the image

voxel pairs can be modeled as a mixture of joint Gaussians [20]. The computational

complexity of estimating the joint Gaussian mixtures is high due to the large number

of parameters. We observe that in contrast enhanced MR mammography, the inten-

sities of voxels change according to the different rates of contrast agent intake. For

the voxels belonging to tissue types such as fatty and glandular which do not take in

contrast agents, the intensities remain almost unchanged. If the initial alignment of

the images is close, most of the voxels should match to voxels of the same tissue type

and we expect to find similar intensities. Therefore, instead of modeling the joint

probability function, we model the conditional probability density function between

image voxel pairs contributed by the non-enhanced structures by a Gaussian. For

the enhanced structures, we expect the intensities of corresponding voxels found in

the post-contrast image to be brighter. Because the amount of intensity changes

are dependent on the rates of contrast agent uptake, we model them using another

Gaussian distribution with a different mean value.

3.2.2 Estimating the Conditional PDF

Given one intensity u from the pre-contrast image, we take the column i = u from the

joint histogram to estimate the conditional means and variances. The histogram bins

in the dimension j are considered as outliers if j−i > ω, where ω is a threshold. That
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means the corresponding voxel contains significant enhancement and the intensity has

increased greatly.

The threshold value is estimated from the histogram. Given an intensity u = i

in the pre-contrast image, we assume that the outlier intensities is always greater

than the given intensity, and the inlier conditional means should be close to the

given intensity i. Therefore, we use the histogram bins where j < i to estimate the

conditional variance σ assuming the conditional mean is equal to i, and set ω = i+3σ.

If given an intensity v = j from the post-contrast image, the outlier should have

an intensity smaller than the given intensity and the threshold is determined as

ω = j − 3σ, where σ is estimated using histogram bins i > j.

We show in Figure 3.1 an example plot of the conditional PDF obtained from our

test data sets. The means and variances for the inliers and outliers are estimated

respectively. We have shown in the plot the raw histogram data, the Gaussian curves

estimated and the combined mixture of Gaussians. We can see that the estimated

Gaussian functions fit the data well. Motivated by this observation, we derive an

approximation to the NMI gradients in the next subsection.

3.2.3 Approximation of the NMI Gradient

In the optimization process, it is often required to compute its gradient with respect

to a transformation. For the pair of voxels u(xk) and v(T (xk)) indexed at xk, we

denote the former simply by uk and the latter by vT
k to denote the dependence on

the mapping T . As described in the appendix, the gradient of NMI with respect to
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Figure 3.1. Plot of conditional PDF given the intensity in the pre-contrast image
is 30 (including some tumor voxels before enhancement and some voxels of normal
tissue). We can see that the intensity of the tumor voxels have increased to around
80 while the normal voxels have increased slightly to around 40.

a transformation parameter can be written as,

∂NMI(u, vT)

∂φ
' 1

H2(u, vT)
[−MI(u, vT)

∂H(vT|u)

∂φ
−H(u, vT)

∂H(u|vT)

∂φ
] (3.1)

where MI(u, vT) = H(u) + H(vT)−H(u, vT) denotes the mutual information of the

two images. H(u|vT) can be calculated from the joint histogram of the images formed
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using the current mapping T .

H(u|vT) = −
∑
i∈I

∑
j∈J

p(i, j) log(p(i|j)) (3.2)

where p(i, j) = nij/N and p(i|j) = nij/
∑

j nij. If we perform the summation over

the set of all voxel positions xk, it can be rewritten as

H(u|vT) = − 1

N

∑
k

log(p(uk|vT
k )) (3.3)

We model the conditional probability density function (conditional PDF) relating

every possible image voxel intensity pairs using a mixture of standard Gaussians.

The expression of the conditional PDF is given by

p(uk|vT
k ) = p(uk|vT

k , Ω1)P (Ω1) + p(uk|vT
k , Ω2)P (Ω2) (3.4)

where Ω1 and Ω2 denote the sets of inlier and outlier voxels respectively. Assum-

ing that the conditional PDF is given by a mixture of standard Gaussian density

functions, it leads to

p(uk|vT
k , Ω1) =

1√
2πσvT

k ,Ω1

exp(−
(uk −mvT

k ,Ω1
)2

2σ2
vT

k ,Ω1

)

p(uk|vT
k , Ω2) =

1√
2πσvT

k ,Ω2

exp(−
(uk −mvT

k ,Ω2
)2

2σ2
vT

k ,Ω2

)

(3.5)

The parameters for every possible voxel intensity pair are different and should be

estimated separately. The conditional means and variances can be estimated using
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the method described in the previous section. Note that this estimation is only

performed once every iteration.

We consider the mixing proportions P (Ω1) and P (Ω2) to be approximately con-

stant with respect to transformation. The derivative with respect to a transformation

parameter φ is

∂

∂φ
H(u|vT) =

1

N

∑
k

1

p(uk|vT
k )

[p(uk|vT
k , Ω1)P (Ω1)

∂

∂φ

(u−mvT
k ,Ω1

)2

2σ2
vT

k ,Ω1

+ p(uk|vT
k , Ω2)P (Ω2)

∂

∂φ

(u−mvT
k ,Ω2

)2

2σ2
vT

k ,Ω2

]

(3.6)

Thus, we have the gradient of the total conditional entropy expressed in terms of a

weighted combination of the gradient of two squared difference terms:

∂

∂φ
H(u|vT) =

1

N

∂

∂φ

∑
k

[wvT
k ,Ω1

(uk −mvT
k ,Ω1

)2 + wvT
k ,Ω2

(uk −mvT
k ,Ω2

)2]

=
1

N

∂

∂φ
WSSD(u, wvT,Ω1

, wvT,Ω2
, mvT,Ω1

, mvT,Ω2
)

(3.7)

where the weights for the inliers and outliers are given, respectively, by

wvT
k ,Ω1

=
p(uk|vT

k , Ω1)P (Ω1)

2σ2
vT

k ,Ω1
p(uk|vT

k )

wvT
k ,Ω2

=
p(uk|vT

k , Ω2)P (Ω2)

2σ2
vT

k ,Ω2
p(uk|vT

k )

(3.8)

The weight images and the conditional means images for every voxel are updated

at the start of every iteration using the current estimate of transformation. We can

easily compute the WSSD gradient so as to obtain an approximation of the direction

of the NMI gradient in the parameter search space. We can infer from the weighting
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function: if the voxel pair belongs to the inlier set Ω1, the weights will be large for

the first term. If the voxel pair belongs to the outlier set Ω2, the weight is smaller

for the first term and larger for the second term. If we consider the summation of

the WSSD voxel by voxel, there is one dominant term at every voxel depending on

the class of the voxel. Similarly, we can derive another expression for H(vT|u) and

the corresponding auxiliary images. It follows that an approximation of the NMI

gradient with respect to a transformation variable φ is given by

∂NMI(u, vT)

∂φ
' 1

NH2(u, vT)
[−MI(u, vT)

∂

∂φ
WSSD(vT, wu,Ω1 , wu,Ω2 , mu,Ω1 , mu,Ω2)

−H(u, vT)
∂

∂φ
WSSD(u, wvT,Ω1

, wvT,Ω2
, mvT,Ω1

, mvT,Ω2
)]

(3.9)

In (3.9), we see that the two WSSD terms involved are weighted by MI and JE

respectively. At the initial stage of registration, JE will be large and MI small because

the two images are not well aligned. Therefore, the value of the gradient will be

dominated by the second WSSD term. With better alignment, we expect JE to

decrease and MI to increase. The contributions of the two WSSD terms will be

weighted accordingly.

In every iteration of the registration, we first construct the global joint histogram

using the current estimate of the transformation. We then use the histogram bins

with intensity range within the threshold value to compute the conditional means

and variances, as well as the current estimate of MI and JE. We then proceed to

construct the auxiliary images and estimate the direction of the NMI gradient. The

auxiliary images are constructed only once per iteration and the time needed for its

construction is negligible. Since our method modifies the traditional SSD and has an
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additional NMI flavor, we call it NMISSD.

3.2.4 Relation to Correlation Ratio

The correlation ratio (CR) was introduced by Roche et al. [21] as a registration

similarity measure. It is derived from probability theory to measure the degree of

similarity of two images. CR is expressed as

η(v|u) =
var[E(v|u)]

var(v)
(3.10)

Its value ranges from 0 (least aligned) to 1 (well aligned). It is shown in [21] that

1− η(v|u) =
1

Nσ2
SSD(u, mv) (3.11)

where N is the total number of voxel pairs, σ2 is the variance of v, and mv is the

image formed from the conditional expectation E(v|u). This expression is minimized

in registration. It is interesting to note that our SSD computation is in fact similar

to the computation of the correlation ratio, except for the fact that we have used two

conditional means from a Gaussian mixture. The existence of equivalence provides

new insights into the different similarity measures used. The derived expression of

NMI gradient (3.9) combines MI, JE and CR in an elegant manner.
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3.3 Study Design

3.3.1 Data

We used a total of 15 patient datasets obtained from the National University Hospital,

Singapore. Out of the datasets, 8 breasts contain lesion and 22 breasts are normal.

Image acquisition was done using a GE Sigma 1.5 Tesla coil MRI scanner with 3-D

fast-spoiled gradient echo and no spectral fat suppression (TR = 25.6ms, TE=3ms,

fractional echo, flip angle = 30◦, FOV = 32 to 40cm). The contrast agent used

was MagneVist Gd-DTPA of concentration 0.2mmol/kg. A typical data set has 5

scans (256×256×24 voxels) of voxel size 1.05mm×1.05mm×5.45mm. Slice direction

is axial. Variations to this protocol are mainly in the number of slices, which can vary

from 16 to 56 depending on the volume size to be acquired, and the slice thickness,

which depend on the size of the breast to be imaged. The contrast agent is injected

after the first scan, with post-contrast scans in the next 5 to 20 minutes. Each 3-D

scan requires 30-60 seconds of acquisition time.

3.3.2 Implementation Details

We have implemented the registration algorithm using C++. In our experiments,

we manually defined a rectangle region of interest (ROI) around each breast from

the maximum intensity projection (MIP) of the pre-contrast image in the axial direc-

tion. The same ROI was used for both pre-contrast and post-contrast images. ROI

registration was performed using rigid registration followed by nonrigid registration

based on B-spline basis functions. The transformation parameters were optimized



Chapter 3. Fast Registration Using Approximated NMI Gradient 25

by gradient descent. The gradients of the two SSD terms in NMISSD were approxi-

mated using finite differences, and the NMI gradient was approximated from them.

Optimization was terminated when the change in cost function was smaller than a

predefined threshold value. We have found that a threshold between 10−2 to 10−4

could achieve good registration. Nonrigid registration was performed employing a

two level strategy using control points of two different resolutions. Due to the small

ROI size (typically 100× 100 mm with different number of slices), we kept the image

resolution fixed. During registration, a coarse control point grid was applied first,

then the control point resolution was halved by inserting new points to form a fine

grid similar to Rueckert’s method [7]. The displacements of the new points were

interpolated from the old points using the same B-spline basis functions. We did

not use any regularization in registration. When optimizing the control points, we

took advantage of the compact local support of the B-spline basis functions and only

computed the similarity measure using the affected voxels in the 4 × 4 × 4 control

point neighborhood. All the B-spline basis functions were pre-computed to further

save time. When warping the template image, the interpolation method we used was

tri-linear. In the estimation of the conditional means, we have used 50 bins in both

dimensions of the joint histogram.

3.3.3 Evaluation of Registration

Subjective Test

It is difficult to provide a quantitative evaluation of the proposed nonrigid registra-

tion algorithm without available ground truth data. We thus resolved to subjective
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evaluation of the registration results. We have registered the datasets using rigid

and nonrigid registrations, using NMI and NMISSD respectively as a similarity mea-

sure. The subtraction images were obtained and the results of the same dataset

using different methods were blindly presented to an expert radiologist in a random

order. The evaluation was performed slice by slice on the quality of breast boundary

registration and the quality of motion artifact removal. For boundary registration,

we specifically looked at how well the boundaries of the registered breast matched

the original image in every slice of the subtraction image. For artifact reduction, we

looked at the amount of interior motion artifacts present before and after registration.

To compare the registration quality of different registration methods, we employed

a ranking scheme. For every dataset, we obtained 4 sets of subtraction images from

the registered images (NMI Rigid, NMISSD Rigid, NMI Nonrigid, NMISSD Nonrigid)

and the subtraction images without registration. The radiologist ranked the results

on breast boundary registration and artifact removal respectively. If the registration

quality of two methods were indistinguishable, a tied ranking could be used.

Lesion Preservation

Since local contraction of the transformation is possible, we investigated the extent

of volume contraction by different methods. To calculate the volume of the lesion, we

manually created a binary mask of the breast lesion after rigid registration with lesion

voxels assigned an intensity value of 255. A lesion was identified from the subtraction

image after rigid registration. The volume of the lesion was determined from the total

number of voxels in the mask that are labeled as lesion. To see whether there are
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any changes in the lesion volume, we applied the final transformation obtained from

the optimization process to the mask and compute the lesion volume in terms of

the number of lesion voxels after transformation. Those voxels with interpolated

intensities below 255 was considered to have contributed a fraction of voxel to the

total lesion volume, so as to account for partial volume effect.

3.4 Results and Discussion

3.4.1 Registration Quality

The results for the visual inspection are shown in Figure 3.2 and Figure 3.3. From the

distribution of the rankings, we can see that NMI and NMISSD performed similarly

for both rigid and nonrigid registration. For both boundary registration and artifact

reduction test, nonrigid registration ranks better than or equal to rigid registration

in most of the cases. For boundary registration, nonrigid registration using NMISSD

performed best (21, 6, 3, 0)1. Nonrigid registration using NMI as a similarity measure

also performed well (16, 9, 5, 0). Rigid registration generally received lower rankings

with (5, 3, 18, 4) for NMISSD and (5, 4, 15, 6) for NMI. For artifact reduction, non-

rigid registration using NMISSD performed well (23, 3, 4, 0). Nonrigid registration

using NMI have received ranking (19, 7, 4, 0). Rigid registration using NMISSD have

received (9, 6, 8, 7) and rigid registration using NMI have received (10, 5, 8, 7).

Although nonrigid registration generally performed better than rigid registration

for both tests, we note some exceptions in the rankings that in some cases rigid

121 cases assigned rank 1, 6 cases assigned rank 2, 3 cases assigned rank 3, 0 case assigned rank
4
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registration received rankings 1 or 2. This is because in those test cases, the amount

of motion are typically minor and nonrigid registration provided relatively small

improvement over rigid registration. We have shown in Figure 3.4 one such case. In

this case, nonrigid registration using NMI and NMISSD all received rank 1 for both

boundary registration and artifact reduction. However, since the motion is small and

the quality of rigid registration using NMI and NMISSD are acceptable too. They

both received rank 1 for artifact reduction and rank 3 for boundary registration.

We have also shown an example in Figure 3.5 where nonrigid registration clearly

outperformed rigid registration. In this case, nonrigid registration using NMISSD

received rank 1 for both test, nonrigid registration using NMI received rank 2 for

boundary registration and rank 1 for artifact reduction. Rigid registration using

NMI and NMISSD in this case all received rank 3 for both tests.

3.4.2 Effect on Lesion-Volume Reduction

In this section, we show results from tests on lesion volume reduction when nonrigid

registration is used. In areas of strong intensity differences caused by the uptake of

the contrast agent, misregistration will occur, resulting in the reduction of the volume

of contrast enhancement. Due to image normalization, the intensity difference be-

tween the auxiliary and original images is smaller than the direct intensity difference

between the original images. Ideally, if our normalization could remove all the inten-

sity differences, there should not be any reduction in volume. However, the intensity
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Figure 3.2. Histogram plot of the rankings received by different registration methods
for boundary registration. Rank 1 was assigned to the image with the best breast
boundary registration.

difference in the lesion region is too large and some of it is not removed by normaliza-

tion. Hence, we still observe some volume reduction when registration is performed

using NMISSD. In our experiments, the lesion datasets contain lesions of various sizes

and we have tested the effect of nonrigid registration on volume changes. The lesion

volume changes are evaluated using a control point grid with spacing 5mm. The

registration was performed in an unconstrained manner. The results have been sum-

marized in Table 3.1. It is generally observed that registration gives volume change

after nonrigid registration. Due to the normalization of intensity, smaller amount
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Figure 3.3. Histogram plot of the rankings received by different registration methods
for motion artifact reduction. Rank 1 was assigned to the image with the least amount
of motion artifact.

of volume change is observed with NMISSD. The creation of auxiliary images by

NMISSD could remove some intensity changes in the non-lesion areas, thus reducing

the possibility of local misregistration.

The maximum intensity projection (MIP) of Case 1 (Table 3.1) is shown in Fig-

ure 3.6. It can be seen that significant motion artifacts are present in the subtraction

image without registration. With rigid registration, most of the artifacts are removed

and the lesions are better visualized. After nonrigid registration, most of the arti-

facts are also removed, but the lesion volume is reduced and the shrinkage can be
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Figure 3.4. A dataset with relatively small amount of motion. In this case, rigid
and nonrigid registrations were rated similarly in the subjective tests. From left to
right: Maximum Intensity Projection (MIP) subtraction (before registration), MIP
subtraction (rigid NMI), MIP subtraction (rigid NMISSD), MIP subtraction (nonrigid
NMI), MIP subtraction (nonrigid NMISSD).

Figure 3.5. A dataset with moderate amount of motion. In this case, nonrigid regis-
tration performed clearly better than rigid registration. From left to right: Maximum
Intensity Projection (MIP) subtraction (before registration), MIP subtraction (rigid
NMI), MIP subtraction (rigid NMISSD), MIP subtraction (nonrigid NMI), MIP sub-
traction (nonrigid NMISSD).

clearly seen for NMI from the binary mask. Another example, Case 2, is shown in

Figure 3.7. This patient has been diagnosed with invasive lobular carcinoma and the

lesion is very big. Motion artifact is mostly present at the breast boundary. Rigid

registration is not effective in removing this artifact. After nonrigid registration,

the artifact at the breast boundary has been removed but at the same time volume

reduction is observed.

3.4.3 Computational Complexity

In nonrigid registration, the computational load is extremely heavy due to the exceed-

ingly high degree of freedom. The similarity measure has to be evaluated twice each
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Figure 3.6. Lesion volume test Case 1. Top from left to right: Maximum Intensity
Projection (MIP) subtraction (before registration), MIP subtraction (rigid NMI),
MIP subtraction (rigid NMISSD), MIP subtraction (nonrigid NMI), MIP subtrac-
tion (nonrigid NMISSD). Bottom from left to right: binary lesion masks of the cor-
responding top row image. Nonrigid registration by NMI has caused the lesion to
shrink by 22.63%, while NMISSD has reduced the shrinkage to 2.23%.

time we approximate the gradient in any dimension for a control node. Therefore,

the similarity measure has to be computed six times when we optimize one control

node in 3D. In this section, we present the results of the timing analysis we have

conducted for the proposed method. All the experiments have been carried out on a

Pentium IV Dell PC with 3.2GHz processor and 1GB RAM. The average ROI size is

about 110×110×26 voxels. We have taken advantage of the compact local support

of B-splines when computing the similarity measure during the optimization process.

Linear interpolation has been used to compute the value of the mapped intensities.

We have used fixed step gradient descent search in the optimization process, where

the magnitude of the gradient has been ignored and only the direction is taken into

account. Exactly same parameters have been used in all the experiments except for

the choice of similarity measure.

NMI computation is slow because we need to construct the normalized joint his-

togram each time and compute the sum of the logarithm of each histogram entry. Our
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Figure 3.7. Lesion volume test Case 2. Top from left to right: Maximum Intensity
Projection (MIP) subtraction (before registration), MIP subtraction (rigid NMI),
MIP subtraction (rigid NMISSD), MIP subtraction (nonrigid NMI), MIP subtrac-
tion (nonrigid NMISSD). Bottom from left to right: binary lesion masks of the cor-
responding top row image. Nonrigid registration by NMI has caused the lesion to
shrink by 8.71%, while NMISSD has reduced the shrinkage to 3.14%.

method use weighted SSD to approximate the NMI gradient, reducing the running

time from NMI by approximately half. The average timing of different registration

methods of our test cases are listed in Table 3.2. In actual registration systems,

many of the registration parameters like the number of control points, the number

of the histogram bins and the learning rate used in optimization need to be tuned

for different datasets. Therefore, it is desirable to shorten the registration time so

that the user could change the parameters interactively by observing the registration

outcome.

3.5 Conclusion

We have designed a nonrigid registration algorithm for CEMRM images in this paper.

By the use of auxiliary images constructed from conditional probability distribution

of image pairs, we showed that we can approximate the NMI gradient using SSD.

Our algorithm attempts to model the distribution of the enhanced intensity for every
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Table 3.1. Effect of lesion volume change before and after nonrigid registration. The
size of lesion is given in mm3 and percentage of changes in volume before and after
registration by different methods are listed.

Case ID Lesion Size(mm3) NMI NMI-SSD

1 2397.9 -22.63% -2.23%
2 13109.4 -8.71% -3.14%
3 500.3 -1.61% -0.68%
4 92.1 0.20% -0.51%
5 1378.1 0.74% 0.12%
6 430.6 -5.40% -1.47%
7 2341.4 1.42% -2.04%
8 356.6 -1.55% -1.88%

Mean ± Variance 2575.8±4350.4 -4.69±8.01% -1.48±1.06%

Table 3.2. Registration timing for different methods.

ROI Size (x, y, z voxels) NMI (seconds) NMI-SSD (seconds)

Average (105, 105, 36) 2467.4 1316.5
Variance (8, 8, 15) 1182.6 642.6

voxel, so as to take into account the effect of contrast enhancement during regis-

tration. Since it is difficult to identify intensity outliers from motion artifacts, it is

inevitable that some of the motion artifacts will be considered as lesions. However, we

expect the modeling to be good for majority of the voxels, and the registration would

be driven by those voxels that are identified correctly. Experiments have confirmed

the effectiveness of our algorithm. Our algorithm is able to achieve performance that

is close to normalized mutual information but at a much faster speed. It is also shown

that our method can effectively prevent misregistration around lesion boundaries, so

that physically plausible registration can be obtained.
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A Framework for Registration

Using GPUs

4.1 Introduction

The graphics processing unit (GPU) is a dedicated graphics rendering device found in

common personal computers (PCs) and workstations. A GPU implements a number

of graphics primitive operations in a way that makes running them much faster than

drawing directly to the screen with the host CPU. Their highly parallel structure

also makes them more effective than typical CPUs. Modern GPUs have reached a

stage where it is possible to use a high-level language to program the shaders to

achieve complex rendering effects. Due to the programmability and floating point

support available on GPUs, there has been an increasing interest in utilizing it for

scientific computing. GPUs employ a stream programming model which is distinc-

tively different from the sequential model used by CPUs. The stream programming

35
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model organizes data into parallel streams and computational kernels in the form of

fragment programs operate on them.

Image processing applications are particularly suitable for this programming model,

because identical localized operations are often applied throughout the entire image.

There are several attempts to use GPUs in image processing found in literature. Yang

et al. [22] made use of a GPU to perform real-time stereo depth calculations. Lefohn

et al. [23] proposed a 3D level-set solver for fast segmentation on a GPU. Strzodka et

al. [24] was the first one to make use of GPU to perform registration on 2D images.

They implemented a gradient flow registration method on a GPU which resulted

in computation time of less than 2 seconds on 256×256 images. They adopted a

per-pixel displacement vector field to model the motion between pair of images. Reg-

ularized local image gradient information at every pixel was used to perform updates

on the displacement vector field.

The degree of freedom of FFD is proportional to the number of control points. In

medical applications, the images are 3D and there is a large amount of data to handle.

A large number of control points is needed to correct local deformations. Since the

position of every control point needs to be optimized independently, the registration

process is computationally intensive. In this chapter, we propose a framework for the

registration of 3D medical image volumes using GPU. The method is also applicable

to processing of images with very high resolutions, e.g., satellite images. The 3D

volumetric images are packed into a flat 2D texture for efficient one-pass rendering.

The framework makes use of a modified version of the FFD where we have used

trilinear interpolation instead of cubic B-spline to compute the displacement of voxels
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from the control points. By using trilinear interpolation, we can make use of the

hardware accelerated interpolation feature available on GPUs. Our framework is

able to incorporate any intensity-based similarity measures such as sum of squared

difference (SSD) and normalized correlation coefficient (NCC). In our application, the

parallel processing paradigm in GPU programming is fully utilized by packing image

data into a data streams in order to optimize the control points efficiently. We perform

a thorough analysis of the performance of the system in terms of registration accuracy

and registration timing. We demonstrate that significant speed improvement can be

obtained without much loss in accuracy.

4.2 Piece-wise Linear Transform and Optimization

We use the formulation in chapter 2. And a piece-wise linear coordinate transfor-

mation model that is similar to the cubic B-Spline model found in [7] was used. A

regular grid of control points is defined on the image and deformation is achieved by

independently moving the control points. Defining the control point position as φi,

where i denotes the index of the control point. The transformation for a voxel with

physical coordinates (x, y, z) is given by

T (x, y, z) =
∑

n

L(dx)L(dy)L(dz)φn (4.1)

where φn denotes the positions of all the control points that are at the corners of

the 3D cell containing the voxel (x, y, z). L(·) denotes the linear interpolator and
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{dx, dy, dz} are computed as,

dx =
x

δx

− b x

δx

c, dy =
y

δy

− b y

δy

c, dz =
z

δz

− b z

δz

c (4.2)

where {δx, δy, δz} are the intervals between adjacent control points in different coor-

dinate axis directions and b·c denotes the floor operation.

To find the best possible transformation T (·), we need to optimize every control

point independently. In our applications, we assume that the images have already

been brought into coarse alignment by some rigid registration, and thus there are only

local differences to be corrected. Therefore, it is usually sufficient to find a local op-

timum using gradient based optimization techniques. To optimize one control point,

we first compute the similarity measure and its gradient, then search for the optimum

along the direction of the gradient. This process is iterated until the improvement in

image similarity measure falls below a predefined threshold.

We have used finite difference approximation to calculate the gradients of the

similarity measure. Therefore, image similarity is to be computed many times when

we calculate the gradients in 3D. To compute the similarity measure, every voxel in

the moving image is to be warped into the coordinate system of the reference image

and interpolation is used to find its mapped intensity value. Since there are so many

control points, these steps are repeated many times and this contributes to the major

portion of the computational load in nonrigid registration. In the following sections,

we will discuss strategies for efficient parallelized computation of the image similarity

measure and its gradients.
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4.3 GPU Implementation

4.3.1 Basics of GPU Programming

The graphics pipeline is highly optimized for graphics applications. We have shown

the flow of its operation in Figure 4.1. When objects need to be drawn, we issue a

drawing command via an API such as OpenGL and specify the coordinates of the

object vertices. The vertices are passed through the vertex processor and undergo

transformations which position the objects at the right geometry. The vertices are

then assembled into geometric primitives and then rasterized into fragments, which

are further processed by fragment processors before it is finally drawn onto the screen.

OpenGL
Vertex 

Processor
Fragment 
Processor

Vertex & 
Texture

Coordinates

Primitive 
Assembly

Rasterizer Framebuffer

Texture
Memory

OpenGL
Vertex 

Processor
Fragment 
Processor

Vertex & 
Texture

Coordinates

Primitive 
Assembly

Rasterizer Framebuffer

Texture
Memory

Figure 4.1. The graphics pipeline in latest generation graphics hardware. Program-
mable vertex and fragment processors provide added flexibility.

The fundamental data storage unit on a GPU is called texture, available in one,
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two and three dimensions. When viewed from a general purpose programming per-

spective, they can be considered as equivalent to arrays. The fragment processors are

the main computation kernels if GPU is used as a stream processor. When writing a

GPU program, we first need to determine the data-parallel portion of the application

and code it into fragment program kernels. To invoke a kernel, we specify the range

of the computation by rendering a quadrilateral on the image plane, and the region of

pixels (and the data contained in it) covered by the quad is sent through the pipeline

and passed through the kernels for processing. We can set a texture as a rendering

target, so that the computed values output from the fragment programs can be saved

in a texture for further processing.

4.3.2 GPU-based Registration

Data Storage

Although 3D texture seems to be a natural choice for the storage of 3D medical image

volumes, it is not convenient to be used in our nonrigid registration application. This

is because we need to warp the 3D moving volume from time to time in order to match

the reference volume. Current GPUs do not have support for the writing to a slice

of a 3D texture. As an alternative, we have chosen to use flat 3D textures proposed

by Harris et al. [25] for the real-time cloud simulations. As shown in Figure 4.2, the

3D volume is packed into a single flat 2D texture and a scheme which translates the

3D address to 2D address and vice versa is maintained. This scheme can also ensure

that the local neighborhood of each slice is packed in the same 2D texture so as to

facilitate efficient parallelized computations. Another advantage of using a single 2D
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texture instead of a stack of separate 2D textures is that we can invoke the processing

of the data using one single rendering pass, instead of multiple rendering passes.

Figure 4.2. Illustration of the data storage scheme. Slices of the 3D volume are
packed into a single 2D flat texture.

Transforming the Image

We store the positions of the control points φi in 2D flat textures as well, but with a

reduced resolution as compared to the original image volume. In each rendering pass,

we know the exact coordinates of every voxel in the 2D flat texture. It is possible to

fetch the position of the control points nearest to the voxel (or fragment in terms of

graphics terminology) via texture lookup operation. This process is exactly the same

for every voxel and therefore we can exploit the Single Instruction Multiple Data

(SIMD) architecture on GPUs to perform it in parallel. The computational kernel is

implemented using a fragment shader. The steps performed in the kernel for every

fragment can be summarized as:

1. Calculate the indices of the neighbor control points from the current fragment
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coordinate.

2. Fetch the location of the control points using texture lookups.

3. Interpolate the displacement for the current voxel from the control points.

Computation of Global Similarity Measure

The global similarity measure is calculated using the warped image and the reference

image. Two steps are performed to complete this task. The terms inside the sum-

mation in (2.14) is first computed using a simple fragment shader which performs

voxel-wise operations. The results are stored in a rendered texture which need to be

summed up. We perform summation of these individual values via a process known

as the reduce operation, which can be achieved by alternately rendering a pair of

textures, each time reducing the dimension of the rendering target by half and sum-

ming up the neighboring 4 fragments. This process is repeated until the dimension of

the output texture is reduced to 1×1. For a texture of size n, O(log(n)) operations

are needed as compared to sequential processing of O(n) operations on a CPU. The

process of summing up similarity measure is illustrated in Figure 4.3.

Localized Gradient Computation

We have used finite difference approximation to compute the gradient of the similarity

measure. The control points are perturbed in the positive and negative directions

respectively and the gradient of the similarity measure is computed based on the two

sets of images. If we denote the function which computes the similarity measure by

f(·), the x − coordinate of the control point being optimized by px, the gradient in
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Figure 4.3. The reduce operation to sum up the values in a texture.

the x-direction by ∇xf , and the small perturbation by ε, the gradient is computed

as,

∇xf =
f(px + ε)− f(px − ε)

2ε
(4.3)

Since the transformation model we used is piece-wise linear, moving a particular con-

trol point only affect the mapping of the voxels in its immediate neighborhood. The

support of every control point is defined by a linear interpolation kernel. Therefore,

the effect of the small perturbation is negligible in the regions near to neighboring

control points, and the effect is zero for regions beyond that. We can exploit this fact

to compute f(px + ε) and f(px − ε) simultaneously for alternate control points. An

illustration of this idea is shown in Figure 4.4.

The simultaneous computation of f(px + ε) and f(px − ε) for alternate control

points can be achieved by perturbing alternate control points appropriately and ren-
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Figure 4.4. 2D illustration of the localized support of each control point. The points
marked red are positioned alternately on the control point grid, and therefore the
similarity measure gradients can be computed simultaneously for them. The region
of support is also shown for one of the control point.
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der the entire image two times and compute its difference. In order to aggregate the

measure, we still need to apply the texture reduce operation. However, instead of

reducing the texture size to 1×1 as in global similarity calculation, we reduce the

texture only to the size that is the same as the number of control points that we want

to compute its gradient. In this way, we will have a texture in which every single pixel

contains the gradient value of its corresponding control point. To compute similarity

gradients for other control points, we simply shift the entire image texture by an

amount equal to the control point interval and the same computation kernel can be

applied.

Registration System

To this end, we have described all the individual kernels that are necessary for the

computation of several important components in the registration process. We are

now ready to describe the flow of our registration system on the GPU. For every

iteration, we perturb the control points in a CPU program and load the control

point positions into the GPU memory. The image is warped using the control points

and gradients calculated on the GPU. At the end of an iteration, the control points

positions are updated on the CPU using the computed gradients. The steps taken

can be summarized as follows:

1. Transform the moving image using the image transform kernel (GPU acceler-

ated).

2. Calculate the gradient for every control point (GPU accelerated).

3. Compute the global similarity measure (GPU accelerated).
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4. If the change in global similarity measure is smaller than a predefined thresh-

old, the process is terminated. Otherwise, update the control points using the

gradient descent rule, low pass filter the updated positions, and go to Step 1

(On CPU).

The major portion of the computation process has been offloaded to the GPU

in order to make full use of its hardware acceleration capability. The control point

update step performed on the CPU is computationally efficient due to the simplicity

of the operation. We have chosen to low pass filter the control point positions so

as to introduce some correlations into adjacent control points. By doing so, the

transformation defined by the control points will become smoother.

4.4 Experiments and Results

We have used the same datasets from our study of contrast-enhanced breast MR

imaging to test the effectiveness of our method. Here we just restate the protocol

for completeness. Image acquisition was done using a GE Sigma 1.5 Tesla coil MRI

scanner with 3-D fast-spoiled gradient echo and no spectral fat suppression (TR =

25.6ms, TE=3ms, fractional echo, Flip angle = 30o, FOV = 32 to 40cm). The contrast

agent used was MagneVist Gd-DTPA of concentration 0.2mmol/kg. A typical dataset

has 5 scans (256×256×24 voxels) of voxel size 1.05mm×1.05mm×5.45mm. Slice

direction used is axial. Variations to this protocol are mainly in the number of slices,

which can vary from 16 to 56 depending on the volume size to be acquired. The

contrast agent is injected after the first scan, and post-contrast scans will follow in
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Figure 4.5. Block diagram of the GPU registration system.
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the next 5 to 20 minutes. Each 3-D scan requires 30-60 seconds of acquisition time,

depending on the number of slices.

We tested our registration system using an NVIDIA GeForce 7800 graphics process-

ing unit which has 512MB onboard memory. The registration system was imple-

mented using Cg (C for graphics) and OpenGL. The CPU portion of the application

was implemented using C++.

Extensive experiments have been conducted to verify our registration system.

First, we investigate the effect of varying the number of control points on the final

registration results. We then proceed to test the algorithm implementation using

more datasets. Lastly, we run simulations to give an analysis of the timing of this

implementation.

4.4.1 Selection of Control Point Resolution

With the low pass filtering of the control point positions, the transformation defined

by the control points should be smooth and approximates a spline if the number

of points is large. In this section, we summarize results for the experiments on

varying the resolution of the control point mesh and the study of how it affects

registration. We used a dataset without lesions having an initial Sum of Squared

Difference (SSD) of 79.10 before registration. The size of the image Region of Interest

(ROI) is (100×100×28).

Starting from low resolution in all dimensions, we systematically increased the

number of control points and calculate the difference of the registered image and the

reference image. Since cubic B-splines have been successfully applied and validated
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in nonrigid registration [7], we also registered the images using splines with an imple-

mentation based on the Insight Toolkit [26]. The number of control points used for

spline registration is (8×8×8). The SSD value after spline registration is 16.24. We

then compared the images registered using our algorithm with the images registered

using cubic B-splines and calculate the difference. The results have been summarized

in Table 4.1.

Table 4.1. Effect of varying control point resolution on the registration results.

Control Point SSD SSD with reference image SSD with B-spline image
Resolution before registration after registration after registration
4× 4× 7 79.10 29.83 18.53
8× 8× 7 79.10 23.43 14.55

16× 16× 7 79.10 21.75 14.53
16× 16× 14 79.10 21.03 13.77
32× 32× 14 79.10 19.78 15.01
64× 64× 14 79.10 23.67 19.32

It can be inferred from the results that with increasing control point resolution, we

are generally able to obtain better registration because finer motion can be modeled

by a denser control point mesh. However, we have also observed that increased

number of control points does not guarantee low SSD value after registration. We can

see from the results that when the control point mesh resolution reaches (64×64×14),

the SSD value after registration has increased. This is because of the fact that every

control point has a localized support. If the number of control points is high, each

control point would have a very small region of influence, and this would increase the

chance of terminating the registration in a local minimum. We have also calculated

the difference of the images registered using our method to the images registered

using B-splines. The difference decreased with increasing control point resolution.
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Similarly, the difference also increased slightly when the control points are too dense.

However, the difference are generally quite small and this shows that our method by

linear interpolation is consistent with Spline-based registration.

4.4.2 Registration Result on More Datasets

In this section, we perform some experiments on datasets that contain lesions which

are enhanced in intensity after the injection of contrast agent. The registration algo-

rithm is based on [18][19]. The normalized mutual information (NMI) criterion has

been approximated by a combination of two SSD terms, which are computed between

original images and auxiliary images created from the voxel conditional probability

distributions. We have implemented the algorithm on a GPU.

Some result images are shown in Figure 4.6 and Figure 4.7. As we can see from

the images. The registration worked well in terms of artifact reduction. Most of

the motion artifacts have been removed after registration. We are able to better

visualize the lesions after registration. In terms of running time, the unoptimized

CPU implementation based on ITK requires 15 to 30 minutes depending on the size

of the image to be registered. For GPU implementation, the running time is cut

down to generally less than 1 minute. Substantial speed up has been obtained.

4.4.3 Analysis of Running Time

In this section, we describe results of the timing analysis of our GPU implementation.

We first describe the relationship of the total running time with respect to the number

of control points. A image volume ROI pair of size 100 × 100 × 28 is used in this
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Figure 4.6. Top left: Pre-contrast image. Top right: Post-contrast image. Bottom
left: Maximum Intensity Projection (MIP) of the difference image before registration.
Bottom right: MIP after GPGPU registration.
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Figure 4.7. Top left: Pre-contrast image. Top right: Post-contrast image. Bottom
left: Maximum Intensity Projection (MIP) of the difference image before registration.
Bottom right: MIP after GPGPU registration.
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experiment. We tested different number of control points and run the registration

algorithm for 100 iterations each time in order to have a fair comparison. The results

have been summarized in Table 4.2. We can see that the timing is approximately

constant for control point resolutions from 4 × 4 × 7 to 16 × 16 × 14. For CPU

implementation, we would have expected the running time to increase linearly with

the number of control points. However, due to the SIMD architecture and the parallel

processing capability of GPU, the running time does not really increase with the

number of control points. However, when the number of control points is greater

than what the GPU can handle in parallel, the running time would increase. Exactly

when the running time will increase depends on the capability of the GPU, for our

case, it is 64×64×14. Combining with the analysis given in Section 4.4.1, we are able

to determine the most feasible number of control points by considering the tradeoff.

We next examine the relationship of the running time with respect to the size of

the images to be registered. We run the algorithm on image sets with different sizes

and record their running time. The number of control points have been fixed at 32×

32× 14. Similar to the previous experiment, we run the algorithm for 100 iterations

for comparison. The results have been summarized in Table 4.3 and Figure 4.8. It

can be seen that the running time increases linearly with the size of the image in

terms of total number of image voxels.
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Table 4.2. Effect of varying control point resolution on the registration results.

Control Point Resolution Time (sec)
4× 4× 7 51.78
8× 8× 7 50.20

16× 16× 7 48.93
16× 16× 14 51.13
32× 32× 14 56.03
64× 64× 14 80.34

Table 4.3. Running time analysis for different image sizes.

Image Volume Resolution Total size (Voxels) Time (Sec)
128× 128× 28 458752 30.20
156× 156× 28 681408 40.65
184× 184× 28 947968 52.28
212× 212× 28 1258432 65.45
240× 240× 28 1612800 81.54
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Figure 4.8. Plot of running time in seconds against the image size.
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Conclusion

In this work, we showed it is possible to obtain fast approximation of the gradient of

normalized mutual information cost function using sum of squared difference between

auxiliary images and original images. We created the auxiliary images by modeling

the conditional probability density function as a mixture of Gaussians, each repre-

senting the inliers (normal structures) and the outliers (enhanced structures). The

approximation resulted in 50% reduction of the optimization time. The registration

quality is similar compared to the direct use of NMI gradient in optimization. By

modeling the outliers explicitly, it was also shown that the volume of the contrast

enhanced structures can be preserved.

We have also proposed a framework for 3D medical image registration using

intensity-based similarity measures on commodity GPUs. We have tested our im-

plementation on contrast-enhanced breast MR images. The results have shown that

our method is able to remove most of the motion artifacts, allowing for better visu-

alization of breast lesions. The timing can be generally controlled to below 1 minute,
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offering substantial speedup to common CPU implementations. Since off-the-shelf

commodity GPUs are cheap, this makes our method an attractive choice in cost-

effective medical applications.



Appendix A

Derivation of NMI gradient

The expression of normalized mutual information is given by

NMI(u, v) =
H(u) + H(v)

H(u, v)
(A.1)

To calculate its derivative with respect to a transformation parameter φ, we invoke

the quotient rule:

∂NMI(u, v)

∂φ
=

1

H2(u, v)
[(

∂H(u)

∂φ
+

∂H(v)

∂φ
)H(u, v)− ∂H(u, v)

∂φ
(H(u) + H(v)]

=
1

H(u, v)
[
∂(H(u) + H(v))

∂φ
− NMI(u, v)

∂H(u, v)

∂φ
] (A.2)
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We assume that H(u) is approximately invariant to the transformation if the image

overlap does not change, therefore ∂H(u)
∂φ

= 0. Hence,

∂NMI(u, v)

∂φ
' 1

H(u, v)
[
∂H(v)

∂φ
− NMI(u, v)

∂H(u, v)

∂φ
]

=
1

H(u, v)
[
∂H(u, v)−H(u|v)

∂φ
− NMI(u, v)

∂H(u, v)

∂φ
]

=
1

H(u, v)
[(1− NMI(u, v))

∂H(u, v)

∂φ
− ∂H(u|v)

∂φ
]

=
1

H(u, v)
[(1− NMI(u, v))

∂H(u) + H(v|u)

∂φ
− ∂H(u|v)

∂φ
]

=
1

H(u, v)
[(1− NMI(u, v))

∂H(v|u)

∂φ
− ∂H(u|v)

∂φ
] (A.3)

Using the fact that 1− NMI(u, v) = H(u,v)−H(u)−H(v)
H(u,v)

and MI(u, v) = H(u) + H(v)−

H(u, v), we can further rewrite (A.2) as

∂NMI(u, v)

∂φ
=

1

H2(u, v)
[−MI(u, v)

∂H(v|u)

∂φ
−H(u, v)

∂H(u|v)

∂φ
] (A.4)
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