
SENSOR BASED LOCALIZATION OF A
MOBILE ROBOT

Lee Gim Hee
B.Eng (Hons), NUS

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2007

ACKNOWLEDGMENTS

The author wishes to express his heart-felt gratitude to his supervisor, Associate

Professor Marcelo H. Ang Jr for his guidance through the years. He is grateful to

Professor Ang for providing him with a lot of opportunities to extend his knowledge

and to develop his skills.

He would like to show his appreciation to those dedicated technicians from the

Control and Mechatronics Laboratory of the National University of Singapore who

have assisted him in the course of his project. He is glad to work with a great team

of fellow research students in his laboratory. They are Mana Saedan, Koh Niak Wu,

Tirthankar Bandyopadhyay and many other individuals who have contributed valu-

able ideas and advice to make this thesis possible.

The author is indebted to his caring parents who are always doing their best in

giving him the finest environment to do his Masters of Engineering work. He would

also like to express thanks to his sister and brother for being supportive. Finally,

the author would like to thank his wife, Grace Tang who is always by his side. Her

unconditional love has always been a source of strength, courage, inspiration and

happiness to the author.

ii

SUMMARY

Localization is the process of determining the pose of a mobile robot with respect

to a given map of the environment (known environment). The localization prob-

lem can be made more difficult in cases where the map of the environment is not

given (unknown environment) to the robot. This is the simultaneous localization and

mapping (SLAM) problem where the robot has to simultaneously build a map of its

environment and localizes itself with respect to this map.

Some of the sensors that are commonly used for mobile robot localization are

evaluated in this thesis. The odometer and laser range finder are found to be the

most suitable sensors for implementing the localization algorithms. A probabilistic

algorithm - The Particle Filter has been chosen over other algorithms for localization

of a mobile robot in a known environment due to its robustness, effectiveness and

ease of implementation.

The most significant contribution of this thesis is a novel solution for the SLAM

problem. This novel SLAM algorithm uses a laser scan matching algorithm to align

consecutive laser scans, loop closure detection algorithm to detect loop closure op-

portunity, and loop closure algorithm to close any detected loops in the map.

iii

TABLE OF CONTENTS

Page

Acknowledgments . ii

Summary . iii

List of Figures . viii

List of Tables . xvi

Nomenclature . xvii

Chapters::

1. Introduction . 1

1.1 Background . 1

1.2 Objectives . 4

1.3 Scope of Work . 5

1.4 Contributions of This Thesis . 6

1.5 Thesis Outline . 7

iv

2. Basic Concepts . 9

2.1 Basic Concepts in Mobile Robot Localization 9

2.1.1 State . 9

2.1.2 Sensor Measurements . 10

2.1.3 Control Actions . 11

2.2 Recursive State Estimation . 12

2.2.1 Belief Distributions . 13

2.2.2 State Transition and Measurement Probabilities 13

2.2.3 The Bayes Filter . 15

3. Sensor Evaluation . 18

3.1 Introduction . 18

3.2 Sensor Review . 19

3.2.1 Inertia Measurement Unit 19

3.2.2 Compass . 21

3.2.3 Global Positioning System 24

3.2.4 Odometer . 26

3.2.5 Cricket Motes . 28

3.2.6 NorthStar Localization Kit 30

3.2.7 Laser Range Finder . 34

3.3 Selection of Sensor(s) for Mobile Robot Localization 37

v

4. Localization In a Known Environment 39

4.1 Introduction . 39

4.2 Related Works . 40

4.2.1 Localization with Extended Kalman Filter 40

4.2.2 Localization with Correlation 42

4.2.3 Localization with Particle Filter 43

4.3 Method Investigated - The Particle Filter 44

4.3.1 Odometry Motion Model 46

4.3.2 Sensor Measurement Model 50

4.3.3 Resampling . 58

4.3.4 Pose Estimate . 61

4.4 Simulation and Implementation Results 62

4.4.1 Local Localization . 63

4.4.2 Global Localization and the Kidnapped Problem 68

5. Simultaneous Localization and Mapping 75

5.1 Introduction . 75

5.2 Related Works . 77

5.2.1 SLAM with Extended Kalman Filter 77

5.2.2 FastSLAM . 79

5.3 Occupancy Grid Mapping . 80

5.4 A Novel SLAM Algorithm . 84

5.4.1 Laser Scan Matching with Particle Filter 84

vi

5.4.2 Loop Closure Detection . 93

5.4.3 Loop Closure . 99

6. Conclusion . 107

6.1 Summary . 107

6.2 Further Works . 109

Bibliography . 111

vii

LIST OF FIGURES

Figure Page

1.1 The ER2 mobile robot with Joystick control. 5

2.1 The pose of a mobile robot with respect to a global fixed frame. . . . 10

2.2 Normal distribution with µ = 0 and σ =
√

3. 15

3.1 RGA300CA IMU from Crossbow Technology, Inc. 20

3.2 (a) Drift of RGA300CA IMU along the x-axis when it is stationary.

The signals change over time even when there are no changes in the

acceleration. (b) The stationary IMU shows non zero velocity due

to accumulated errors from the single integration process. (c) The

stationary IMU shows non zero distance traveled due to accumulated

errors from the double integration process. 22

3.3 HMR3300 Digital compass from Honeywell. 23

viii

3.4 GPS from RF Solutions Ltd. 25

3.5 An 8 degree/step bipolar stepper motor from Shinano Kenshi Co. Ltd

to drive the ER2 robot. 27

3.6 Cricket Motes from MIT computer science and artificial intelligence

laboratory. 29

3.7 RF and ultrasonic signals from beacons may get attenuated by obsta-

cles that intercept the line-of-sight from the beacon to receiver. 31

3.8 NorthStar projector kit (top), detector kit (bottom right) and infrared

indicator (bottom left) from Evolution Robotics, Inc. The infrared

indicator is used to detect IR light spots since they are not visible to

naked eyes. 31

3.9 An illustration to show the setup of the NorthStar localization kit. . . 32

3.10 Triangulation with two beacons. 33

3.11 (a) Laser range finder with internal rotating mirror. (b) Plan view of

(a) which shows the laser arc of view. 35

3.12 URG-04LX laser range finder from Hokuyo Automatic Co. Ltd. . . . 36

ix

3.13 An object that lies beyond the two-dimensional scanning plane of the

laser range laser range finder will not be detected. 37

3.14 IMU, odometer and laser range finder are the three sensors that work

indoor and requires no modifications to the environment. 38

4.1 2D ray casting from a hypothetical state x
[m]
t 53

4.2 Resampling process by drawing the particles with probabilities given

by the respective weights. 58

4.3 The problem of particles convergence due to repetitive resampling de-

spite the robot having no motion and sensors. 60

4.4 Snapshots of the interactive virtual simulator that obtains the true

pose of the robot from the user as well as simulates the odometry and

sensor measurements. Note that the odometry error grows larger as

the robot moves a longer distance. 64

4.5 Snapshots of the odometry error sampled by 10000 particles. 65

x

4.6 Simulation of the local localization problem. The particles are able to

give an accurate estimate of the true pose despite the large odometry

error. 67

4.7 Corridor outside the Control and Mechatronics Laboratory 1. 68

4.8 Occupancy grid map of the corridor outside the Control and Mecha-

tronics Laboratory 1. 68

4.9 Implementation of the particle filter to solve the local localization prob-

lem. 1000 particles are used. The robot starts from its initial pose on

the right end of the corridor. It travels to the left end of the corridor,

right towards its initial pose, left again and finally travels back to its

initial pose. Notice that the error from the odometer grows as the

robot travels a greater distance. 69

4.10 Simulation of the global localization problem. The particles are initial-

ized uniformly in the free space because the initial pose of the robot is

unknown. The particle set eventually converges to the true pose. . . . 71

4.11 The simulation in 4.10 is continued here. The robot is kidnapped to the

pose in (a) and causes a sharp drop in the total weight of the particle

set. The particles are re-initialized in (b) and finally converges to the

true pose in (f). 72

xi

4.12 Total weights of the particle set recorded over time for the simula-

tion done on the global localization and kidnapped problem shown in

Figures 4.10 and 4.11. 73

4.13 Implementation of the global localization and kidnapped problem. The

particles are initialized uniformly in the free space to estimate the

unknown robot pose in (a). The particles gradually converges from (b)

to (d). The robot is kidnapped in (e) and the particles are re-initialized

uniformly in the free space. The particles converges to the new pose

in (h). 74

4.14 Total weights of the particle set recorded over time during implementa-

tion of the global localization and kidnapped problem shown in Figure

4.13. 74

5.1 Rao-Blackwellized particles in FastSLAM, M denotes the total number

of particles. 79

5.2 Updating an occupancy grid map (a) when an obstacle is detected (b)

when a maximum range measurement is detected, i.e. it is assumed

that in this case no obstacle is detected. 83

xii

5.3 An occupancy grid map of Level 3 EA Block of the NUS Engineering

Faculty built with raw odometry readings. The robot has returned to

previously visited areas and these areas should coincide. 85

5.4 Particles distribution before (a) and after (b) sampling from the odom-

etry motion model. The distribution of the particles in (b) represents

the search space for the robot state xt that yields the best overlap

between the current and reference scans. Note also the discrepancy

between the current and reference scans. 88

5.5 (a) Predicted measurement z∗t obtained by rays casted from a hypo-

thetical state x
[m]
t . (b) Laser sensor measurement zt from the odometry

reading. Notice that the measurements where both zk∗
t and zk

t are not

lesser than the maximum laser sensor range are omitted. 90

5.6 Map ϑt after the scan matching process where the current range scan

has been integrated into the map at xt. Note that xt is the robot state

that yields the best overlap between the current scan and the map ϑt−1

at t− 1. 91

xiii

5.7 Implementation of the scan matching with particle filter algorithm in

a 73m x 30m cyclic environment, Level 3 EA Block of the NUS Engi-

neering Faculty (a) Occupancy grid map shows large loop closure error

before scan matching with particle filter. (b) Occupancy grid map

shows small loop closure error after scan matching with particle filter. 92

5.8 An illustration to show that a loop closure opportunity is detected

when the area covered by samples representing the scan matching un-

certainty intersects a pose from the trajectory that was previously trav-

eled by the robot. 95

5.9 An illustration to show that the robot makes a false positive loop clo-

sure detection when it makes an u-turn. 96

5.10 Illustrations of the topological map. The nodes are assigned values

according to the Dijkstra’s algorithm and the number of nodes between

the start and end nodes are counted by following the steepest descent

(a) A positive loop closure opportunity with 11 nodes in between the

start and end nodes. (b) A negative loop closure opportunity with no

nodes in between the start and end nodes. 97

xiv

5.11 Implementation of the loop closure detection algorithm on the ER2

robot. A loop closure opportunity has been detected by the samples

representing the scan match uncertainty and confirmed by having more

than 2 nodes between the start and end nodes. 98

5.12 Illustrations of finding xE for loop closure. (a) xE maybe anywhere

within a window centered at xS. (b) The particles are initialized uni-

formly within the window. (c) Particles start to converge as robot

moves. (d) The pose estimate is taken to be xE when more than 80

percent of the particles are found within 1m from the pose estimate. . 100

5.13 Simulation of the forward-backward loop closure algorithm. (a) Loop

closure opportunity detected. (b) Forward trajectory where xforward
S =

xS. (c) Backward trajectory where xbackward
t = xE. (d) Corrected

trajectory where xcorrected
S = xS and xcorrected

t = xE. 103

5.14 Results for the implementation of finding xE for loop closure. (a) The

initialization of the particles uniformly within the window centered at

xS. The particles eventually converges to xE as the robot moves from

(b) to (c). 105

5.15 Occupancy grid map of Level 3 EA Block of NUS Engineering Faculty

after loop closure. 106

xv

LIST OF TABLES

2.1 The Bayes filter algorithm. 16

4.1 The particle filter algorithm. 45

4.2 Algorithm for sampling from the odometry motion model. 48

4.3 Algorithm for sampling from a normal distribution with zero mean and

standard deviation σ. 49

4.4 The ray casting algorithm for the kth “ray” casted from x
[m]
t 55

4.5 The Bresenham line algorithm. 57

4.6 The low variance resampling algorithm. 61

xvi

NOMENCLATURE

xt Robot pose [x y θ]T where x, y and θ are the cartesian co-
ordinates of the robot location and orientation with respect
to a global fixed reference frame

zt Sensor measurement data

z∗t Predicted sensor measurement data

zk
t kth measurement reading provided by a sensor

ut Control data

bel(xt) Belief distribution of the of a robot, also denoted by
p(xt | z1:t, u1:t)

bel(xt) Predicted belief distribution of the of a robot

p(xt | xt−1, ut) State transition probability

p(zt | xt) Measurement probability

µ Mean of a multi-dimensional variable that follows Guassian
distribution

Σ Covariance of a multi-dimensional variable that follows
Guassian distribution

σ Standard deviation of an one-dimensional variable that fol-
lows Guassian distribution

η Probability normalizer

xvii

ni Number of revolutions taken by the left or right robot
wheel, i = left or right

D Diameter of the robot wheel

di Linear distance traveled by the left or right robot wheel, i
= left or right

Laxle Distance between the floor contact points of the left and
right wheels

ϑ Map of robot’s environment

ξt Finite sample set of particles

χ
[m]
t The mth particle [x

[m]
t w

[m]
t]T where x

[m]
t denotes its hypo-

thetical state and w
[m]
t denotes its importance factor

δtrans Translation of the robot

δrot Rotation of the robot

xmax
t Maximum weight particle

xestimate
t Pose estimate from particle filter algorithm

β Radius of a circular window for determining the pose esti-
mate from particle filter

w̃
[i]
t The weight of the particle x

[i]
t normalized over the total

weight of all the particles that are enclosed within the cir-
cular window of radius β and center xmax

t

Pt Error covariance of the state estimate for localization with
extended Kalman filter

f(.) Motion model for the extended Kalman filter

F Jacobian of f(.) evaluated at xt−1

Qt Error covariance of the motion model for the extended
Kalman filter

xviii

Kt Kalman gain

h(.) Measurement model for the extended Kalman filter

Ht Jacobian of h(.) evaluated at xt−1

Rt Error covariance of the measurement model for the ex-
tended Kalman filter

p(xt, ϑ | z1:t,u1:t) Joint probability distribution of the robot state xt and the
map ϑ of the environment given all the measurement data
z1:t and control data u1:t

yt Combined state vector for SLAM with extended Kalman
filter

St Error covariance of combined state vector estimate for
SLAM with extended Kalman filter

p(ϑi | z1:t,x1:t) Occupancy value of the ith grid cell in an occupancy grid
map

li,t Log odds of the ith grid cell in an occupancy grid map

εk Binary operator for determining if the kth measurement
reading should be included for scan matching

γ Distance threshold for adding new nodes in the topological
map for loop closure detection

xE True pose of robot for loop closure

xS Pose from the trajectory that was previously taken by the
robot where the loop closure opportunity is detected

xcorrected
S:t Corrected trajectory after loop closure

xforward
S:t Forward trajectory for loop closure

xbackward
S:t Backward trajectory for loop closure

αk Weighing factor for the forward and backward trajectories

xix

CHAPTER 1

INTRODUCTION

1.1 Background

The problem of autonomy of a mobile robot is simply summarised by Leonard

and Whyte as the necessary solutions to the following three questions: ”Where am

I?”, ”Where am I going?”, and ”How should I get there?” [1]. The first problem,

which is the focus of this thesis, defines the localization problem. Localization can be

seen as the process of determining the pose (position and orientation) of the mobile

robot with respect to a global frame of reference. A mobile robot is able to determine

its destination and plan a path that will enable it to navigate there safely only if it

is capable of finding its own location at every instance of time. In other words, the

”Where am I?” problem has to be answered before the ”Where am I going?” and

”How should I get there?” problems could be solved.

The earliest solution to the localization problem is to do relative pose measure-

ment [2] using sensors such as odometer, or inertia measurement unit (IMU). Relative

pose measurement, otherwise known as dead reckoning, is the process of tracking the

current pose of the robot based on the integration of the path that has been previously

traveled by the robot. However, the pitfall of relative pose measurement using sensors

1

is that the systematic and random errors on the sensors are also integrated into the

pose measurement. The accumulated errors will eventually grow unbounded and thus

the pose measurement becomes grossly erroneous. Examples of systematic errors in

odometry are unequal robot wheel diameters and finite encoder resolution. Random

errors in odometry include wheel slippage and traveling across uneven floors. Some

researchers tried to improve the odometry readings by incorporating error models into

the odometry readings. One of the approach is the UMBmark test [2, 3, 4] proposed

by Borenstein and Feng. The UMBmark test is based on a set of well-defined exper-

imental procedures that aimed to quantify the measurement of systematic odometry

errors and, to a limited degree, random odometry errors.

Another early approach to the localization problem is to do relative pose measure-

ment [2] using active beacons. Localization using active beacons has been traditionally

used in the global positioning system (GPS) for the localization of ships and airplanes.

There are two types of active beacon systems: trilateration and triangulation [5, 6].

Trilateration is the determination of the robot position based on distance measure-

ments to known beacon sources. In trilateration localization systems there are usually

three or more transmitters mounted at known locations in the environment and one

receiver fixed onto the robot. Note that the orientation of the mobile robot is not

found in trilateration. An example of the active beacons localization system that

make use of trilateration is the Cricket Motes [7]. Triangulation is the determination

of the robot pose based on the measurements of the angle from the beacon to the

robot heading. The distance to at least one of beacons and its location must also be

known. Similar to the trilateration method, three or more beacon readings must be

2

obtained to do triangulation. Note that it is also possible to do triangulation with two

beacons if the angles from these beacon to the robot heading, the distances from these

beacons to the robot, and the locations of these beacons are known (see Section 3.2.6

for more details). An example of the triangulation with two beacons is the NorthStar

localization kit [8, 9]. Unlike dead reckoning, the errors in active beacons localiza-

tion systems will not grow unbounded. However, the accuracy is highly dependent on

the size of its random errors and precise placement of the beacons in the environment.

It has become apparent from both the relative and absolute position measurement

examples that no deterministic approach is capable of providing the accurate pose

estimate of the mobile robot. This is largely attributed to noisy sensor readings that

carry only partial information of the measured variables. Hence, many researchers

turned to probabilistic approaches [1, 10, 11, 12, 13, 14, 15, 16]. The key idea of prob-

abilistic localization is to assign probability values to each hypothesis of the robot

pose from probability density functions conditioned upon the sensory data. In other

words, the pose of a mobile is represented by probability distributions over a whole

space of guesses instead of relying on a single “best guess”.

In this thesis, probabilistic algorithms shall be used to solve the localization prob-

lem. First, some basic concepts of probabilistic mobile robot localization are dis-

cussed. The Bayes filter, which is the most general form of probabilistic algorithm to

recursively estimate the pose of a mobile robot, will also be reviewed. Next, some of

the sensors that are commonly used for mobile robot localization will be evaluated.

The sensors which are evaluated include inertia measurement unit (IMU), compass,

3

global positioning system (GPS), odometer, Cricket Motes, NorthStar localization kit

and laser range finder. The best sensor(s) for implementation of the localization algo-

rithms on the ER2 mobile robot will be selected. One of the probabilistic algorithm

to solve the localization problem - the particle filter algorithm [14, 15, 16, 17] will be

examined. The algorithm will be simulated in virtual environments and implemented

on the ER2 mobile robot.

The localization problems described so far has been in the context where a mobile

robot has to locate its pose with reference to a known model of the environment.

The problem could be made more difficult if the model of the environment is not

available to the robot. This is the simultaneous localization and mapping (SLAM)

problem [1, 10, 15, 18, 19, 20, 21, 22]. The highlight of this thesis is a novel algorithm

proposed by the author to solve the SLAM problem. The algorithm is successfully

implemented on the ER2 mobile robot.

1.2 Objectives

The objective of this Masters of Engineering work is to investigate and implement

localization algorithms on the ER2 mobile robot shown in Figure 1.1. Note that the

robot is named ER2 because it is a modification of the ER1 robot from Evolution

Robotics, Inc1. The implemented algorithms give the robot the capability to do local

localization, global localization, solve the kidnapped (see Chapter 4 for details) and

SLAM (see Chapter 5 for details) problems. All localization algorithms are carried

1Company webpage: http://www.evolution.com/

4

out in indoor environments.

Figure 1.1: The ER2 mobile robot with Joystick control.

1.3 Scope of Work

The scope of work includes the following:

1. Evaluate and select the best sensor(s) for the robot to perform indoor localiza-

tion.

2. To investigate and implement localization algorithms for the robot to compute

its pose with respect to a given map using its sensory data.

5

3. To provide a complete solution for a mobile robot to build a grid-based represen-

tation of its surrounding using its sensory data and localize itself with respect

to this map.

4. All algorithms are to be implemented on the ER2 mobile robot and tested in

indoor environments.

1.4 Contributions of This Thesis

This thesis gives a concise analysis of the characteristics, advantages and disadvan-

tages of some sensors that are commonly used for the localization of a mobile robot.

The sensors which are evaluated include inertia measurement unit (IMU), compass,

global positioning system (GPS), odometer, Cricket Motes, NorthStar localization kit

and laser range finder.

Different variations of the particle filter are simulated and implemented on the

ER2 mobile robot platform. The different variations of the particle filter are meant

for solving the local localization, global localization and kidnapped problem respec-

tively.

The most significant contribution of this research is in solving the SLAM prob-

lem. A novel algorithm is proposed and implemented on the ER2 mobile robot to

do SLAM. This algorithm uses a laser scan matching algorithm to align consecutive

laser scans, a loop closure detection algorithm to detect loop closure opportunity and

6

loop closure algorithm to close any detected loops in the map.

1.5 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 This chapter gives the definitions of some terms that are commonly

used in the mobile robot localization context. The Bayes filter, which is the most

general form of probabilistic algorithm to recursively estimate the pose of a mobile

robot, will be reviewed.

Chapter 3 This chapter gives a detailed analysis of the characteristics, advantages

and disadvantages of some sensors that are commonly used for the localization of a

mobile robot. Evaluations are carried out on IMU, compass, GPS, odometer, Cricket

Motes, NorthStar localization kit and laser range finder. The best sensor(s) for the

robot to perform localization in an indoor environment will be selected.

Chapter 4 This chapter defines the local localization, global localization and

kidnapped problem of a mobile robot in a known environment. The particle filter

is discussed in detail. An overview of the particle filter is first presented. Next, the

motion and measurement models of the filter are discussed. Different variations of the

particle filter are suggested to solve the three localization problems in known indoor

environments. Results from simulations and implementations of the algorithms will

7

be shown in this chapter.

Chapter 5 This chapter describes a novel algorithm to solve the SLAM problem.

This algorithm uses a laser scan matching algorithm to align consecutive laser scans,

a loop closure detection algorithm to detect loop closure opportunity and loop closure

algorithm to close any detected loops in the map. Results from the implementations

of the algorithm on the ER2 mobile robot will be shown here. A brief description of

the occupancy grid mapping algorithm will also be given.

Chapter 6 This chapter gives the conclusion of the work. Some possible further

works are also discussed in this chapter.

8

CHAPTER 2

BASIC CONCEPTS

2.1 Basic Concepts in Mobile Robot Localization

This section introduces the definitions of some commonly used terms in the lit-

erature of mobile robot localization. The pose of the mobile robot, which is also

known as the state of the robot, will be defined first. Next, sensor measurements and

control actions which are both fundamental means for the robot to interact with the

environment are defined. These definitions are adapted from [10, 23].

2.1.1 State

A mobile robot can be represented as rigid bodies in an Enclidean workspace,

W∈ <N where N equals to 2. Hence, the pose of a mobile robot at time t denoted

by xt can be fully defined by three variables. The three variables are the position

coordinates (x, y) and heading direction θ of the robot defined with respect to a fixed

global coordinate frame in the Enclidean workspace. The pose of a mobile robot

will also be referred to as state in this thesis. Equation 2.1 shows the mathematical

denotation for the state of a mobile robot at time t.

9

xt = [x y θ]T (2.1)

Figure 2.1 shows an illustration of the robot pose with respect to a global fixed

frame.

Figure 2.1: The pose of a mobile robot with respect to a global fixed frame.

2.1.2 Sensor Measurements

A mobile robot gains momentary perception of its surrounding environment via

interpretations made from its sensor measurement data. For example, laser range

finders give the robot range information of objects in its environment. Some sensory

data may be available to the robot with some delay. In this research, it is assumed that

a new set of measurements is always available to the controller of the robot at every

10

instance of sampling. This is usually a valid assumption because the measurement

data of most sensors are updated at a much faster rate than the rate at which the

robot controller acquires the data. The measurement data set provided by a sensor

at time t will be represented mathematically by Equation 2.2.

zt = [z1
t z2

t ... zk
t]T (2.2)

where zk
t is the kth measurement reading provided by the sensor. For example,

k = [1, 360] for a laser range finder that provides 360 measurement data per scan.

2.1.3 Control Actions

A mobile robot changes its state by executing control actions that exert forces on

its environment. For example, a mobile robot can change its state by exerting forces

to turn its wheel for motion. In this thesis, information about the change of state of

the robot due to the control actions shall be given by the control data.

A typical control data is the velocity of the mobile robot because this information

can be used to compute the change of state of the robot. For example, a velocity of 10

cm/s, indicates a movement of 100cm away from the previous pose, in the direction

of the velocity after 10 seconds.

Another possible control data is the odometry reading. Odometry readings are

provided by odometer which return the current pose of the robot with respect to an

initial frame of reference by counting the number of revolutions in the robot’s wheels

11

(see Section 3.2.4 for more details). As such, odometry readings convey information

about the change of state.

Control data will be denoted by ut. The variable ut corresponds to the change

in the pose of the mobile robot in the time interval (t− 1, t] due to a control action.

It is assumed that there will always be exactly one control data per time step t in

this research. Note that the control data is also available even in the event where the

robot does not move. This control action is taken as an instruction for the robot to

“do nothing”.

In this research, the odometry readings shall be used as the control data. The

readings from odometers are generally more accurate than velocity because in addi-

tion to the drift and slippage error, velocity suffers inaccuracies in the computation

of the actual change of state using some mathematical model.

2.2 Recursive State Estimation

It was mentioned in Section 1.1 that deterministic approaches are not capable of

giving accurate estimations of the robot pose. This is due to noisy sensory data that

carry only partial information of the measured variables. Hence, it is desirable to

rely on probabilistic approaches that estimate the robot state recursively over time.

Recursive state estimation is a probabilistic approach for estimating the unknown

probability density function of a state variable recursively over time using a math-

ematical process model and incoming sensory data. Some terms for recursive state

12

estimation will be defined in Sections 2.2.1 and 2.2.2. Finally, the Bayes filter which

is the most general algorithm for doing recursive state estimation will be discussed in

Section 2.2.3. These definitions are adapted from [10].

2.2.1 Belief Distributions

A belief distribution refers to the estimated probability density function of the

state variable during the state estimation process. A belief distribution assigns a

probability or density value to each possible hypothesis with regards to the true state

of the robot. The hypothesis of the true state is otherwise known as the belief. A

belief reflects the robot’s internal knowledge about the state of itself. The belief

distributions are posterior probabilities over the robot state xt at time t conditioned

on all past measurements z1:t and all the past control data u1:t. In this thesis, the

belief over the state variable xt shall be denoted by bel(xt), which is an abbreviation

for the posterior

bel(xt) = p(xt | z1:t,u1:t) (2.3)

2.2.2 State Transition and Measurement Probabilities

The state transition probability specifies how the state of the robot evolves over

time as a function of the current control data ut. The probability is denoted by

p(xt | xt−1,ut). It is important to note that the current robot state xt is inde-

pendent of all the past control data u1:t−1 and sensor measurements z1:t−1. This

is because the robot state x is assumed to be a complete state and hence xt−1 is

13

a sufficient statistic of all the previous control data and sensor measurements. The

state transition probability illustrates the Markov assumption, which postulates that

the past and future data are independent if the current robot state xt is known.

The measurement probability specifies the probabilistic law according to which

the measurements zt are generated from the environment and current robot state

xt. The probability is denoted by p(zt | xt). It is also important to note that the

measurement probability is independent of all the past robot states x1:t−1, sensor

measurements z1:t−1 and all the control data u1:t. This is again due to the assump-

tion that the robot state xt is complete. Hence, following the Markov assumption,

the robot state xt is sufficient to predict the current sensor measurement zt.

Both the state transition and measurement probabilities are taken to be inde-

pendent of the time index t in this thesis. This means that the probability density

functions of both p(xt | xt−1,ut) and p(zt | xt) do not change over time. This as-

sumption implies that both the probability density functions of p(xt | xt−1,ut) and

p(zt | xt) can be pre-determined and consistently used throughout the recursive state

estimation process (see Sections 4.3.1 and 4.3.2 for more details).

An example of the probability density function for p(xt | xt−1,ut) and p(zt | xt)

is the multivariate normal distribution given by the Gaussian function in Equation

2.4 with mean µ and covariance Σ.

p(a) = det(2πΣ)−
1
2 exp{−1

2
(a− µ)T Σ−1(a− µ)} (2.4)

14

In the case of where the random variable is one-dimensional, the normal distribu-

tion becomes

p(a) =
1

σ
√

2π
exp{−(a− µ)2

2σ2
} (2.5)

where σ denotes the standard deviation. Figure 2.2 shows a plot of the one-dimensional

normal distribution with mean and standard deviation equal to 0 and
√

3 respectively.

Figure 2.2: Normal distribution with µ = 0 and σ =
√

3.

2.2.3 The Bayes Filter

The Bayes filter is the most general algorithm for doing recursive state estimation.

It calculates the posterior belief distribution bel(xt) from the most recent control data

ut and sensor measurement zt. Table 2.1 shows the pseudo code for a single iteration

15

of the Bayes filter.

1: Bayes filter(bel(xt−1), ut, zt):
2: for all xt do
3: bel(xt) =

∫
p(xt | ut, xt−1) bel(xt−1) dxt−1

4: bel(xt) = η p(zt | xt) bel(xt)
5: end for
6: return bel(xt)

Table 2.1: The Bayes filter algorithm.

There are two essential steps in the Bayes filter: the prediction and update step.

Line 3 is the prediction step. In this step, the predicted belief distribution bel(xt)

is computed from the integral of the product of two distributions: the prior belief

distribution bel(xt−1) and the state transition distribution p(xt | xt−1,ut).

Line 4 is the measurement update step. In this step, the current belief distribu-

tion bel(xt) is computed from the product of the measurement distribution p(zt | xt),

predicted belief distribution bel(xt) and a normalizing constant η. Note that the

product of p(zt | xt) and bel(xt) may not sum up to 1 and this violates the axiom of

probability which states that all probability density distributions must integrate to

1 [24]. Hence, the normalizing constant η is needed to make sure that the posterior

belief distribution bel(xt) sum up to 1.

An initial belief bel(x0) is required to do recursive state estimation using the

Bayes filter. The initial belief should be initialized to a point mass distribution if x0

16

is known with certainty. Alternatively, the initial belief should be initialized using

an uniform distribution over the domain of x0 if the initial value of x0 is completely

unknown. Non-uniform distributions could also be used if partial knowledge of x0 is

available.

It is important to note that it is not practical to implement the Bayes filter for the

localization of a mobile robot despite the fact that it is the most general algorithm

for recursive state estimation. This is because the state space xt is continuous and

therefore it is impossible to represent the beliefs in Lines 3 and 4 with a digital com-

puter. Nevertheless, there exist a number of techniques and algorithms to overcome

this problem. These techniques and algorithms rely on assumptions to approximate

the belief distributions. An example is the Kalman filter which assumed that the

belief distributions are Gaussian and hence Lines 3 and 4 can be calculated in closed

form. Another example is the particle filter which seeks to represent the belief dis-

tribution with a finite number of samples known as the particles and therefore Lines

3 and 4 can be computed with a digital computer. The particle filter will be used

to solve the localization problems in this thesis. See Chapters 4 and 5 for more details.

17

CHAPTER 3

SENSOR EVALUATION

3.1 Introduction

Sensors play an important role in the localization of mobile robots. This is because

they provide information regarding the internal state of the robot and its environment

which are essential for deducing the robot pose.

Many sensors are available in the market for mobile robot localization. For ex-

ample, IMU, compass, GPS, odometer, Cricket Motes, NorthStar localization kit and

laser range finder. However, the characteristics and operating principles of these

sensors may limit their applications to only certain areas. For example, the radio fre-

quency (RF) transmitted from satellites for GPS pose measurement gets attenuated

by buildings, tree canopies or even clouds [25, 26]. Hence restricting its use in build-

ings, jungles or cloudy days. Other indoor active beacons systems such as Cricket

Motes and NorthStar localization kit require modification to the environment, thus

limiting its use to mobile robot localizations in known environments.

In this chapter, some of the sensors which are commonly used for mobile robot

localization will be evaluated. These sensors include IMU, compass, GPS, odometer,

18

Cricket Motes, NorthStar localization kit and laser range finder. Note that ultrasonic

range finder which is also a commonly used sensor in mobile robots for obstacles avoid-

ance will not be included in the evaluation. This is because ultrasonic range finder

are generally not accurate enough for mobile robot localization. The characteristics,

advantages and disadvantages of the selected sensors shall be discussed. Finally, the

best sensor(s) for robot localization in both known and unknown environments will be

selected. The sensor(s)will be used for implementation of the localization algorithms

on the ER2 mobile robot.

3.2 Sensor Review

In this section, the characteristics, advantages and disadvantages for some of the

most commonly used sensors in mobile robot localization will be reviewed. These

sensors include IMU, electronic compass, GPS, odometer, Cricket Motes, NorthStar

Localization Kit and laser range finder.

3.2.1 Inertia Measurement Unit

The inertia measurement unit (IMU) is a single unit system that consists of both

the accelerometer and gyroscope to detect accelerations along the x, y and z axis,

and the rate of change in attitude (i.e. roll, pitch and yaw rates) respectively. The

total change from the initial positions along the x, y and z axis are subsequently

found by double integration of the acceleration along the respective axis. The total

change from the initial roll, pitch and yaw angles are found by single integration of

19

the angular rate around the respective axis.

Figure 3.1 shows the RGA300CA IMU manufactured by Crossbow Technology,

Inc2. This IMU consists of a high performance MEMS gyroscope and tri-axial ac-

celerometer [27]. The sensor is designed to measure rotation rates around yaw axis

and linear acceleration along the x, y and z axis. The MEMS angular rate sensor is

mounted with a z-sensitive axis vibrating ceramic plates that utilize the Coriolis force

to output angular rate independently of acceleration. The three MEMS accelerom-

eters are surface micro-machined silicon devices that use differential capacitance to

sense acceleration.

Figure 3.1: RGA300CA IMU from Crossbow Technology, Inc.

2Company webpage: http://www.xbow.com/

20

There are three main advantages of IMU. First, relative pose information are eas-

ily obtained from double and single integrations. Second, the sensor does not require

any modifications of the environment. Third, IMU is suitable for both indoor and

outdoor localization purposes. Unfortunately, IMU typically suffers from drifts where

the signals change over time even if there are no changes in the acceleration. Fur-

thermore, errors are accumulated during the integration process thus leading to an

ever increasing error in the pose measurements. The rate of drift and accumulation

of errors differs for different IMUs. Generally, IMUs with lower rate of drift and ac-

cumulation of errors tend to cost more.

Figure 3.2(a) shows the drifts recorded from the RGA300CA IMU when it is

stationary. Its shows a constant bias of approximately -0.021 m/s2 and regular fluc-

tuations of the signals even when there are no changes in acceleration. These errors

are accumulated during the single integration process to get the velocity. Figure

3.2(b) shows a non zero velocity despite the IMU being stationary. Figure 3.2(c)

shows that the errors from the recorded acceleration are further amplified during the

double integration process to get the distance.

3.2.2 Compass

The compass is an instrument invented by the Chinese at around 2000 B.C. [28]

for finding direction on Earth. The earliest compass is made up of a magnetized

needle floating on water to allow it to freely pivot to align itself with the Earth’s

magnetic field. Technically, a compass is a magnetic device using a needle to indicate

21

(a)

(b)

(c)

Figure 3.2: (a) Drift of RGA300CA IMU along the x-axis when it is stationary. The
signals change over time even when there are no changes in the acceleration. (b) The
stationary IMU shows non zero velocity due to accumulated errors from the single
integration process. (c) The stationary IMU shows non zero distance traveled due to
accumulated errors from the double integration process.

22

the direction of the magnetic north of Earth’s magnetosphere.

Figure 3.3: HMR3300 Digital compass from Honeywell.

Many variations of compasses have been created since its discovery by the Chinese.

They include gyrocompasses, electronics fluxgate compasses, Hall-effect compasses,

magnetoresistive and bearing compasses etc. Figure 3.3 shows an example of a mag-

netoresistive compass HMR3300 manufactured by Honeywell3. This compass consists

of three axis of magnetoresistive sensors on board for sensing direction and an ac-

celerometer to provide tilt (pitch and roll) sensing relative to the board’s horizontal

position [29].

3Company webpage: http://www.magneticsensors.com/

23

The main advantage of using the compass is that it requires no modification to

the environment. However, the major drawback of compass is that its accuracy is

easily affected by magnetic or ferromagnetic objects that are in its vicinity. As a

result, compasses are usually not used for indoor mobile robot localization. This is

because the steel structures in buildings are ferromagnetic objects that will cause

large interference to the compass readings.

3.2.3 Global Positioning System

The global positioning system (GPS) is an active beacon system that was first

developed by the United States Department of Defense and officially named NAVS-

TAR GPS [2, 25, 28]. The system was first developed for solely military uses but has

already been made available for civilian uses.

The GPS system is made up a constellation of at least 24 satellites orbiting around

Earth at a height of about 10,900 nautical miles4. The orbits of these satellites are

arranged in a way such that at least six satellites are within line-of-sight from any

locations on Earth. Each satellite makes two complete orbits each sidereal day5 hence

it passes over the same location on Earth once each day. This makes it possible to

compute the exact location of these satellites with the knowledge of the time infor-

mation from the atomic clocks carried by these satellites.

41 nautical mile = 1.852 km
51 sidereal day = 23.9344696 hours

24

A GPS receiver receives the time information of when the RF signals have been

transmitted from the satellite. The difference between the time when a RF was

transmitted and the time recorded by the internal clock of the GPS receiver when it

has received the RF signal is the time-of-flight for the RF signal to travel from the

satellite to the receiver. The range between the GPS receiver and satellite is then

computed from the time-of-flight for the RF signal to travel from the satellite to the

receiver. The location of the satellite is also computed from the time information.

Based on the ranges of the receiver to at least three of the satellites and the locations

of these satellites, the exact location of the GPS receiver is computed by trilateration

techniques. Information from a fourth satellite is also used to compensate for any

time errors between the GPS receiver and the satellites. Note that the location of the

GPS receiver is given in the longitude, latitude and altitude format.

Figure 3.4: GPS from RF Solutions Ltd.

25

Figure 3.4 shows a GPS receiver module and antenna manufactured by RF Solu-

tions Ltd6. This GPS module gives a position estimate that has an accuracy of within

5m and 50 percent circular error probability (CEP). The advantages of GPS for mo-

bile robot localization is that it is low cost and easy to use. A receiver module and

an antenna are all that is needed to receive location information from the satellites.

The major drawback of the GPS system is its dependence on RF signals. The RF

signals transmitted from the satellites will get attenuated by buildings, tree canopies,

clouds and rain etc. This restricts GPS usage to only outdoor environments where

there is no tree canopies, clouds or rain.

3.2.4 Odometer

Odometer refers to device that provides pose estimation of a wheeled robot by

counting the number of wheel revolutions. Let nleft and nright denotes the number

of revolutions taken by the left and right wheel of the robot respectively. The linear

distance traveled by the wheels is therefore given by

di = niπD, where i = left or right (3.1)

D is the diameter of the wheels. In a differential wheeled robot, the state of the robot

xt = [xt yt θt]
T at current time t is given by

6Company webpage: www.rfsolutions.co.uk

26

θt = θt−1 +
dright − dleft

Laxle

(3.2)

xt = xt−1 + 0.5(dleft + dright) cos θt (3.3)

yt = yt−1 + 0.5(dleft + dright) sin θt (3.4)

where Laxle is the distance between the floor contact points of the left and right wheels.

Figure 3.5: An 8 degree/step bipolar stepper motor from Shinano Kenshi Co. Ltd to
drive the ER2 robot.

Many devices can be used as an odometer for counting the number of revolutions

taken by the robot wheels. They include potentiometers, synchros, revolvers, en-

coders and tracking the control signals sent to stepper motors [2]. Figure 3.5 shows

an 8 degree/step bipolar stepper motor from Shinano Kenshi Co. Ltd Japan7. This

7Company webpage: http://www.skcj.co.jp/english/indexe.html

27

stepper motor is used to drive the ER2 mobile robot. The stepper motor is driven by

a regulated pulse train [30]. Each pulse drives a step (8o) of the motor and the speed

of the motor speed is determined by the frequency of the pulse train. The higher the

frequency, the higher the speed. nleft and nright from Equation 3.1 can be determined

by counting the number of pulses used to drive the left and right motors respectively.

The current state of the robot xt can thus be determined from Equations 3.2 to 3.4.

The main advantages of odometers for mobile robot localization are the ease of im-

plementation, low cost and it does not require any modifications to the environment.

Odometer is therefore the most popular choice for robot localization. The major draw-

back is that it suffers from random errors caused by wheel slippage etc and systematic

errors caused by unequal wheel diameters etc. These errors are accumulated as the

robot travels a greater distance and eventually will grow unbounded if left unchecked.

3.2.5 Cricket Motes

Figure 3.6 shows the Cricket Motes designed by the MIT Computer Science and

Artificial Intelligence Laboratory8. It is an indoor active beacon localization system.

Each Cricket Mote shown in Figure 3.6 can be configured to work as beacon or listener

and each beacon can also be configured to transmit an unique ID to the listener[7].

To set up an active beacon system, multiple beacons with unique IDs are attached

to the ceiling at known position coordinates with respect to a fixed reference frame

and a listener is attached to the robot. The beacons are capable of transmitting

8Laboratory webpage: http://cricket.csail.mit.edu/

28

Figure 3.6: Cricket Motes from MIT computer science and artificial intelligence lab-
oratory.

both RF and ultrasonic signals to the listener. Each beacon periodically broadcasts

it unique ID via RF signals and simultaneously broadcasts an ultrasonic pulse. The

listener on the robot will receive the RF message and ultrasonic pulse if it is within

the line-of-sight to the beacon.

Since RF travels about 106 times faster than ultrasound, the listener can use the

time difference of arrival between the start of the RF message from a beacon and

the corresponding ultrasonic pulse to infer its distance from the beacon. Problems

from cross-talks of the ultrasonic pulses and the solutions to solve these problems are

described in [31]. The robot is given a prior knowledge of the beacon position coordi-

nates and their respective IDs. Thus the listener on the robot will be able to deduce

the position coordinates of a beacon when it has received the ID information from its

29

RF message. The robot then compute its own position coordinates with respect to

the fixed frame by trilateration techniques, based on its distances from three or more

beacons and position coordinates of these beacons.

The Cricket Motes serves as a good alternative for the GPS as an active beacon

system for indoor mobile robot localization. It has an excellent distance accuracy in

the order of 1cm at a distance up to 3.5m and 2cm in the rest of the 10.5m range.

One of its major drawback is that it requires a cumbersome procedure of attaching

the beacons onto the ceilings and to obtain their precise position coordinates with

respect to a fixed reference frame. A large number of beacons are also needed to

cover large indoor environments and this means high cost. Figure 3.7 shows another

major drawback for the Cricket Motes. The RF and ultrasonic signals transmitted

from the beacons will get attenuated by obstacles that intercept the line-of-sight from

the beacon to listener. This means that there will be blind spots where the robot is

not able see three or more beacons to localize itself properly.

3.2.6 NorthStar Localization Kit

Figure 3.8 shows the NorthStar localization kit from Evolution Robotics, Inc9.

The NorthStar is an indoor active beacon localization system where modulated IR

light spots are used as uniquely identified landmarks by an advanced IR detector to

determine relative position and heading [8, 9].

9Company webpage: http://www.evolution.com/

30

Figure 3.7: RF and ultrasonic signals from beacons may get attenuated by obstacles
that intercept the line-of-sight from the beacon to receiver.

Figure 3.8: NorthStar projector kit (top), detector kit (bottom right) and infrared
indicator (bottom left) from Evolution Robotics, Inc. The infrared indicator is used
to detect IR light spots since they are not visible to naked eyes.

31

The NorthStar system consists of two basic components: Projector and Detector.

Each NorthStar projector emits two modulated IR light spots that can be decoded by

the detector. The NorthStar detector is a compact IR sensors equipped with onboard

signal processing and a communication interface. It is used to track the distances

and orientations to the IR light spots. The detector is also able to distinguish each

IR light spot based on information from the modulated IR source.

Figure 3.9: An illustration to show the setup of the NorthStar localization kit.

Figure 3.9 shows an illustration of a typical setup of the NorthStar localization

kit. The projector is place at a fixed location and it projects two IR light spots with

unique ID onto the ceiling at known locations with respect to a fixed reference frame.

The detector is fixed onto the robot and it will track the distances and orientations

of the IR light spots from the robot. The detector also track the unique ID of the IR

light spots and hence their locations with respect to the fixed reference frame will be

known. With the information of the distances and orientations of the IR light spots

32

from the robot and the locations of these light spots with respect to the fixed refer-

ence frame, the robot is able to compute its pose with respect to the fixed reference

frame based on the two beacons triangulation techniques.

Figure 3.10 shows an illustration of triangulation with two beacons. The unique

solution for the robot pose can only be obtained if the distances (i.e. d1 and d2) and

orientations (i.e. α1 and α2) from the robot to the beacons are known. The solution

will be ambiguous if only the distances (i.e. d1 and d2) from the beacons to the robot

are known.

Figure 3.10: Triangulation with two beacons.

The NorthStar localization kit provides a good alternative to the GPS as an ac-

tive beacon system for indoor mobile robot localization. However, there are several

33

drawbacks. First, the IR light spots must be projected onto flat ceilings for efficient

localization. This is not practical because many ceilings are designed with infras-

tructures such as beams which will cause disruptions to the IR light spots. Second,

lightings on the ceilings will cause inaccuracies to the pose estimates due to interfer-

ences to the IR light spots. Third, at least two IR light spots must be detected for the

robot to localize itself. The maximum range for the IR light from the projector to the

ceiling is about 4m. This means that a large number of projectors are needed for large

environments and hence increasing the cost. Fourth, the NorthStar localization kit

requires modifications to be done in the environment. Lastly, similar to the Cricket

motes, blind spots are created if there are obstacles that intercept the line-of-sight of

the detector to the IR light spots.

3.2.7 Laser Range Finder

A laser range finder is a device that uses a laser beam to determine its range to a

reflective object. A laser beam pulse is transmitted periodically from the laser range

finder. The laser beam pulse gets reflected back to the laser range finder if it hits

a reflective object. The distance from the laser range finder to the object is then

computed based on the time-of-flight for the laser beam to travel to the object and

back again. The laser range finders usually have an internal rotating mirror to deflect

the laser beam pulse so that range measurements can be obtained over a certain arc

of view. The rotation step angle of the mirror will determine the resolution of the

laser range finder. Figure 3.11(a) shows an illustration of the internal rotating mirror.

Figure 3.11(b) shows the plan view of Figure 3.11(a) which reveals the arc of view of

34

(a)

(b)

Figure 3.11: (a) Laser range finder with internal rotating mirror. (b) Plan view of
(a) which shows the laser arc of view.

the laser range finder.

Figure 3.12 shows the URG-04LX laser range finder from Hokuyo Automatic Co.

Ltd10. This laser range finder has an arc of view of resolution of ±90o with respect to

its heading and a resolution of approximately 0.00612 rad [32]. This means that there

10Company webpage: http://www.hokuyo-aut.jp/

35

are 513 readings in every range scan from the URG laser range finder. The maximum

range of this sensor is approximately 4095mm and its accuracy is experimentally

found to be ±50mm with 68 percent of confidence (see Section 4.3.2).

Figure 3.12: URG-04LX laser range finder from Hokuyo Automatic Co. Ltd.

One of the advantages of laser range finder is that it is able to sense long range

with high accuracy. In addition, it does not require any modifications of the envi-

ronment. The laser range finder can be used both indoor and outdoor. The major

drawback of laser range finder is that it can only detect objects that are within its two-

dimensional scanning plane. This means objects that lie beyond the two-dimensional

scanning plane will not be detected. Figure 3.13 shows an example of an undetected

object that lies beyond the two-dimensional scanning plane of the laser sensor. An-

other drawback is that limited information are provided by the laser scan readings.

It only tells the robot its distance relative to an object and this piece of information

is often not sufficient to localize the robot. However, this problem can be overcome

easily by doing feature extraction [11, 33] or building an occupancy grid map (see

36

Section 5.3) from the laser range scans.

Figure 3.13: An object that lies beyond the two-dimensional scanning plane of the
laser range laser range finder will not be detected.

3.3 Selection of Sensor(s) for Mobile Robot Localization

All the evaluated sensors have their respective strengths and weaknesses in the

context of mobile robot localization and each sensor is also suitable for use in different

environments. In this section, the sensor(s) suitable for localization of a mobile robot

in both known and unknown indoor environments shall be selected for implementa-

tion.

The objective of this research is to estimate the state xt of a robot in an indoor

environment. Hence, the selected sensor(s) must be able to work well in indoor en-

vironments. The robot state xt estimation must also be done in both known (see

Chapter 4) and unknown (SLAM problem, see Chapter 5) environments. As a result,

the selected sensor(s) must not make any modifications to the environment since it

37

can be unknown. Figure 3.14 shows an evaluation of the sensors according to the two

selection criteria. Three sensors: IMU, odometer and laser range finder are found to

fulfil all the two selection criteria.

Figure 3.14: IMU, odometer and laser range finder are the three sensors that work
indoor and requires no modifications to the environment.

It was mentioned in the previous chapter that the robot state xt is estimated

recursively from its previous state xt−1, current control data ut and sensor measure-

ment data zt. Both IMU and odometer provide information about the change in the

robot state and can be used as ut. However, odometer is chosen since the cost of

IMU is significantly higher than odometer. In addition, odometer is already available

on the ER2 robot.

The laser range finder is used as zt because it provides information about the

environment of the robot, in contrast to odometer which provides information about

the internal state of the robot.

38

CHAPTER 4

LOCALIZATION IN A KNOWN ENVIRONMENT

4.1 Introduction

Localization of a mobile robot in a known environment refers to the problem of

determining the pose of the mobile robot relative to a given map of the environment.

In other words, mobile robot localization problem can also be seen as a problem of co-

ordinate transformation. The mobile robot has to establish correspondence between

the global frame that is fixed onto the given map and its own local frame.

Localization problems in a known environment are generally classified into three

groups according to their level of difficulties [10]. They are local localization, global

localization and kidnapped problem in ascending level of difficulty. In local localiza-

tion, the robot has to keep track of its pose from an initially known location in the

map. In global localization, the robot is placed in an initially unknown location and

the goal is to locate its pose within the map. The kidnapped problem is an extension

to the global localization problem. The robot may get kidnapped and teleported to

some other location within the map during the global localization operation. The

robot has to detect its incorrect pose in the event of being kidnapped and locate its

correct pose as soon as possible. The kidnapped problem is usually used to test the

39

robot’s ability to recover from catastrophic localization failures.

In this chapter, some of the probabilistic approaches to solve the localization prob-

lem in a known environment will be first discussed. Next, the details of the particle

filter which will be used to solve all the three localization problems will be presented.

Finally, the simulation and implementation results of the particle filter for all the

localization problems in known environment will be shown.

4.2 Related Works

Some of the related works that uses probabilistic approach to solve the localization

problem in a known environment will be discussed in this section.

4.2.1 Localization with Extended Kalman Filter

The extended Kalman filter (EKF) [1, 10, 11, 34] is perhaps the most established

algorithm to implement the Bayes filter for the localization of mobile robots because

of its robustness and efficiency. The EKF algorithm is a recursive method of estimat-

ing the pose of the robot with noisy sensor readings.

A key feature of the EKF is that it maintains a posterior belief bel(xt) of the

pose estimate, which follows a Gaussian distribution, represented by a mean xt and

covariance Pt. The mean xt represents the most likely pose of the robot at time t and

covariance Pt represents the error covariance of this estimate. The EKF consists of

two steps: the prediction and update step. In the prediction step, the predicted belief

40

bel(xt) is first computed using a motion model which describes the state dynamics

of the robot. bel(xt) is subsequently transformed into bel(xt) by incorporating the

sensor measurements in the update step.

As mentioned above, the predicted belief bel(xt), which is represented by the

predicted mean xt and covariance Pt, is computed from the prediction step given by

xt = f(xt−1, ut) (4.1)

Pt = Ft Pt−1 Ft
T + Qt (4.2)

where f(.) is the motion model of the mobile robot, F is the Jacobian of f(.) evaluated

at xt−1, Qt is the error covariance of the motion model and ut is the control data of

the robot.

The predicted belief bel(xt) is subsequently transformed into the desired belief

bel(xt) by incorporating the sensor measurement zt in the update step shown in

Equations 4.3, 4.4 and 4.5.

Kt = PtHt
T (HtPtHt

T + Rt)
−1 (4.3)

xt = xt + Kt(zt − h(xt, ϑ)) (4.4)

Pt = (I−KtHt)Pt (4.5)

Kt computed in Equation 4.3 is called the Kalman gain. It specifies the degree to

which the measurement zt should be incorporated into the new state estimate. Equa-

tion 4.4 computes the mean xt by adjusting it in proportion to the Kalman gain

41

Kt and the deviation of the actual measurement zt with the predicted measurement

h(xt, ϑ). It is important to note that the sensor measurement zt = [z1
t z2

t ...]
T refers

to coordinates of a set of observed features instead of the raw sensor readings. Many

feature extraction algorithms [11, 33, 35] are available to extract features from the

raw sensor readings. The sensor measurement model h(.) gives the predicted mea-

surement from the given feature-based map ϑ [36, 37, 38] and predicted mean xt. Ht

is the Jacobian of h(.) evaluated at xt−1. Rt is the error covariance of the sensor mea-

surement model. Finally, the covariance Pt of the posterior belief bel(xt) is computed

in Equation 4.5 by adjusting for the information gain resulting from the measurement.

4.2.2 Localization with Correlation

There exists a number of algorithms that do robot localization with correlation

[12, 13, 39]. Typically, these algorithms first compile a small number of consecutive

sensor readings into a local map denoted by ϑlocal. Next, the local map ϑlocal is com-

pared with the given global map at all possible poses of the robot. Note that the

local map ϑlocal is usually built with respect to the robot frame. Therefore, the local

map ϑlocal has to be transformed into the reference frame of the global map prior to

comparison. A correlation value for each comparison will be computed. The more

similar the local map ϑlocal and global map at the possible pose, the higher the cor-

relation value. The pose in the global map that yields the highest correlation value

with the local map ϑlocal is taken as the estimated robot pose.

42

4.2.3 Localization with Particle Filter

In recent years, there is an increasing interest in the use of particle filter for robot

localization [10, 14, 15, 16, 17]. The intuition behind the particle filter is to repre-

sent the posterior belief bel(xt) by a finite sample set of M weighted particles drawn

according to this distribution. Similar to the EKF, the particle filter consists of the

prediction and update steps. In the prediction step, samples of the particles are drawn

from a motion model of the robot to represent the predicted belief bel(xt). The par-

ticles are then weighted according to the sensor measurements in the update step.

Finally, the predicted belief bel(xt) is transformed into the posterior belief bel(xt) by

resampling the particles according to their weights.

The increasing interest in particle filter is due to several reasons. First, raw sensor

measurements of the environment are used in particle filter localization. This is unlike

EFK localization which requires feature extraction and correlation localization which

requires local mapping. Second, the particle filter is non-parametric. This means

that the particle filter is more robust than EKF because it does not assume Gaussian

posterior belief distributions bel(xt). Third, different variations of the particle filter

is capable of solving all the three problems of localization in a known environment.

Fourth, the particle filter is easy to implement. Unlike the EKF, there is no need to

derive complicated Jacobians for the particle filter.

Due to the advantages of the particle filter over other the localization algorithms,

it shall be investigated in more detail and implemented on the ER2 mobile robot for

43

localization in this thesis.

4.3 Method Investigated - The Particle Filter

It was mentioned in Section 2.2.3 that it is not possible to represent belief distri-

bution in a digital computer because the continuous state space xt. The particle filter

attempts to overcome this problem by representing the belief distribution bel(xt) by

a finite set of random state samples drawn from this distribution.

In particle filter, the belief distribution bel(xt) is represented by a finite sample

set of particles denoted by

ξt := χ
[1]
t , χ

[2]
t , ..., χ

[M]
t (4.6)

where χ
[m]
t = [x

[m]
t w[m]]T denotes the mth particle. Here, x

[m]
t is a random variable

that represents the hypothesized state of the mth particle and wt is a non-negative

value called the importance factor which determines the weight of each particle.

Table 4.1 shows the pseudo code for the particle filter algorithm. The inputs to the

algorithm are the previous particle set ξt−1, the most recent control data ut and sensor

measurement zt. The particle filter algorithm first generates a temporary particle set

ξt that represents the predicted belief distribution bel(xt) in the prediction step. It

is then followed by the update step that transforms the predicted belief distribution

bel(xt) into the posterior belief distribution bel(xt). In details:

44

1: Particle filter(ξt−1,ut, zt):
2: ξt = ξt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt | ut, x

[m]
t−1)

5: w
[m]
t = p(zt | x[m]

t , ϑ)

6: χt
[m] = [x

[m]
t w

[m]
t]T

7: end for
8: ξt = resample(ξt)
9: Return ξt

Table 4.1: The particle filter algorithm.

1. Prediction: Line 4 of the algorithm generates the hypothetical state x
[m]
t by

sampling from the state transition probability distribution p(xt | ut, x
[m]
t−1).

The state transition probability p(xt | ut, x
[m]
t−1) is obtained from the odometry

motion model. See Section 4.3.1 for more details on the implementation of the

odometry motion model. The set of particles obtained after M iterations is the

discrete representation of the predicted belief bel(xt).

2. Update: The update step of the particle filter algorithm consists of two steps:

importance factor and resampling.

(a) Importance Factor: The importance factor w
[m]
t for the mth particle at

time t is computed in Line 5 of the algorithm. Importance factors are used

to incorporate the measurement zt into the particle set and the impor-

tance factor of the mth particle is given by the measurement probability

p(zt | x
[m]
t , ϑ). ϑ represents the given map of the environment that the

mobile robot is working in. The measurement probability is computed

from the sensor measurement model. See Section 4.3.2 for more details

45

on computing the measurement probability. It should be noted that the

particles with hypothetical states closer to the posterior belief distribution

bel(xt) will have a higher importance factor.

(b) Resampling: The resampling step in Line 8 of the algorithm is perhaps

the most important part of the particle filter. Resampling draws with

replacement M particles from the temporary set ξt. The probability of

drawing each particles is given by its importance weight. This means that

the particles with higher importance weight (also means that the hypothet-

ical states of these particle are closer to the posterior belief distribution

bel(xt)) will have a higher chance of appearing in ξt. Consequently, the

particles will be approximately distributed according to the posterior belief

distribution bel(xt) = η p(zt | xt) bel(xt) after the resampling step. See

Section 4.3.3 for more details on the resampling algorithm.

4.3.1 Odometry Motion Model

The distribution of the state transition probability p(xt | ut, x
[m]
t−1) in the parti-

cle filter algorithm is computed from the odometry motion model. It describes the

posterior distribution over the kinematic states that a robot assumes when executing

the control action at x
[m]
t−1. Information of the control action is provided by the con-

trol data ut. Note that odomtery is used to compute the state transition probability

p(xt | ut, x
[m]
t−1) because it was selected from the sensors evaluation in the previous

chapter.

46

The prediction step in Line 4 of the particle filter algorithm seeks to generate a

random x
[m]
t from the motion model p(xt | ut, x

[m]
t−1). Table 4.2 shows the pseudo

code for generating a random sample from the odometry motion model. The inputs

are the current control data ut and a hypothetical state x
[m]
t−1 of the robot at t− 1.

The relative motion information of the robot in the time interval (t− 1, t] can be

represented by a translated distance δtrans and a rotated angle δrot. Lines 2 and 3

of the algorithm computes δtrans and δrot from the previous state of the robot x
[m]
t−1

and the control data ut. δtrans and δrot are taken to be corrupted by noise. This is

because the control data ut is obtained from odometry readings that are corrupted

by noise.

Lines 4 to 16 of the algorithm assumed that the “true” values of the translation

and rotation denoted by δ̂trans and δ̂rot are obtained from δtrans and δrot by subtracting

independent Gaussian noise with zero mean and standard deviation denoted by σ.

The if − else conditions imposed from Lines 4 to 16 of the algorithm are to ensure

that no random noise is subtracted from δtrans and δrot if there is no motion.

Note that σ1, σ2, σ3 and σ4 do not have the same value. σ1 denotes the standard

deviation when there is only pure rotation. σ2 denotes the standard deviation when

there is only pure translation. σ3 and σ4 denotes the translational and rotational

standard deviations when there are both translation and rotation. The values for the

standard deviation have to be determined experimentally. First, the robot is made

to perform pure translation, pure rotation, as well as translation and rotation over a

47

1: sample motion model odometry(ut,x
[m]
t−1):

2: δtrans =

√
(xt − x

[m]
t−1)

2 + (yt − y
[m]
t−1)

2

3: δrot = θt − θ
[m]
t−1

4: if δtrans is ∅ and δrot is ∅ then
5: δ̂trans = δtrans

6: δ̂rot = δrot

7: else if δtrans is ∅ and δrot not ∅ then
8: δ̂trans = δtrans

9: δ̂rot = δrot − sample(σ1)
10: else if δtrans not ∅ and δrot is ∅ then
11: δ̂trans = δtrans − sample(σ2)

12: δ̂rot = δrot

13: else
14: δ̂trans = δtrans − sample(σ3)

15: δ̂rot = δrot − sample(σ4)
16: end if

17: x = x
[m]
t−1 + δ̂trans cos(θ

[m]
t−1 + δ̂rot)

18: y = y
[m]
t−1 + δ̂trans sin(θ

[m]
t−1 + δ̂rot)

19: θ = θ
[m]
t−1 + δ̂rot

20: return x
[m]
t = [x y θ]T

Table 4.2: Algorithm for sampling from the odometry motion model.

certain fixed interval given by ut. Next, the “true” values of the respective motions

are measured physically. This is done N times so that N “true” values can be ob-

tained for each of the motions over the fixed interval given by ut. A histogram of the

frequency distribution for the “true” values of each motion is then plotted and fitted

with a Gaussian curve. Finally, σ1, σ2, σ3 and σ4 can be obtained from the histogram

that represents the respective motion. For the ER2 robot used in this research, σ1 =

48

5o, σ2 = 8mm, σ3 = 10mm and σ4 = 7o. Note that the values for the standard devi-

ation are obtained for a rotation interval of 50o and translation interval of 1000mm.

Finally, in Lines 17 to 19 of the algorithm, the “true” pose x
[m]
t = [x y θ]T of the

robot is computed from its initial pose x
[m]
t−1 and the “true” translation and rotation

using the state equations of the robot.

It is important to note that most programming compilers are only capable to gen-

erate random numbers that follow an uniform distribution. However, the odometry

motion model in Table 4.2 requires random noises that follow normal distributions.

Table 4.3 gives an algorithm to generate a random number that follows normal distri-

bution with zero mean from random numbers that follow an uniform distribution [10].

The input to the algorithm is the desired standard deviation σ. rand(a,b) in Line

2 of the algorithm denotes a random number generator with uniform distribution in

[a,b].

1: sample normal distribution

2: return 1
2

12∑
i=1

rand(−σ, σ)

Table 4.3: Algorithm for sampling from a normal distribution with zero mean and
standard deviation σ.

49

4.3.2 Sensor Measurement Model

The sensor measurement probability p(zt | x[m]
t , ϑ) in the particle filter algorithm

is computed from the sensor measurement model. Unlike the odometry motion model

which generates a sample from p(xt | ut, x
[m]
t−1), the sensor measurement model seeks

to compute the probability value of p(zt | x[m]
t , ϑ).

The URG laser range finder was selected to provide zt from the sensors evaluation

in the previous chapter. Hence, there are a total of 513 readings in one scan and the

sensor measurement shall be denoted by

zt = [z1
t z2

t ... zK
t]T , where K = 513 (4.7)

The probability value p(zk
t | x[m]

t , ϑ) under a single sensor measurement reading

zk
t is assumed to follow a normal distribution with mean zk∗

t and standard deviation

σhit. This probability value is computed by

p(zk
t | x[m]

t , ϑ) = { 1√
2πσ2

hit

e
− 1

2

(zk
t −zk∗

t)2

σ2
hit } (4.8)

The standard deviation σhit of the sensor measurement model has to be obtained

experimentally. First, an object is placed at a fixed distance away from the laser

range finder. Next, N readings are obtained from the laser range finder for this ob-

ject. A histogram of the frequency distribution for these readings is then plotted

and fitted with a Guassian curve. The standard deviation of the Gaussian curve is

taken to be σhit. σhit is found to be 50mm for the URG laser range finder used in

this research. The mean zk∗
t from Equation 4.8 is the predicted kth sensor reading

50

from the hypothetical state x
[m]
t of the mth particle and a given occupancy grid map

ϑ of the environment. zk
t is the kth sensor reading from the laser range finder. Note

that an occupancy grid map (see Section 5.3 for more details) is a representation of

the environment as a tessellation of retangloid grid cells and each grid cell represents

either occupied or unoccupied space in the environment.

Assuming that the noise in each sensor range reading are independent of each

other, the total probability p(zt | x
[m]
t , ϑ) is therefore given by the product of the

individual measurement likelihoods shown in Equation 4.9 where η is a normalizer to

ensure that the probability stays within 0 to 1.

p(zt | x[m]
t , ϑ) = η

K∏

k=1

p(zk
t | x[m]

t , ϑ), where K = 513 (4.9)

The probability value that is computed from Equation 4.9 can be seen as a measure

of discrepancy between the laser scan measurements zt and the predicted measure-

ment readings

z∗t = [z1∗
t z2∗

t ... zK∗
t]T , where K = 513 (4.10)

The higher the discrepancy between zt and z∗t, the lower the probability value and

hence less weight for the hypothetical state of the mth particle. A particle with lesser

weight implies that the likelihood of the particle depicting the true state is lower.

51

Ray Casting Algorithm

The predicted measurement z∗t is computed from the ray casting algorithm [40].

The ray casting algorithm can be seen as a process of finding the sensor measure-

ment data from an imaginary laser range finder attached to a hypothetical state x
[m]
t .

Imaginary “rays” are casted from this laser range finder into the environment. The

environment must be represented as an occupancy grid map ϑ. Each imaginary “ray”

is terminated at the point where it hits an obstacle or when its length exceeded the

maximum range of the laser range finder. The length of these “rays” are subsequently

taken as z∗t. Figure 4.1 shows an illustration of the kth “ray” casted from an hypo-

thetical state x
[m]
t . The “ray” is terminated when it hits an obstacle and its length is

taken to be zk∗
t .

Table 4.4 shows the pseudo code of the ray casting algorithm for the kth “ray”

casted from x
[m]
t . The inputs to the ray casting algorithm are the hypothetical state

x
[m]
t , occupancy grid map ϑ of the environment and “ray” index k. The algorithm

consists of three steps:

1. The grid coordinates of x
[m]
t denoted by [ilocal jlocal]

T is computed.

2. The grid coordinates of the end point of the kth “ray” projected from x
[m]
t in

the event where there is no obstacle obstructions is computed. Let [ibeam jbeam]T

denote this grid coordinates.

3. The predicted measurement zk∗
t is computed using the Bresenham line algorithm

[40].

52

Figure 4.1: 2D ray casting from a hypothetical state x
[m]
t .

In details: Lines 2 and 3 of the algorithm transform the coordinates of the hypo-

thetical state x
[m]
t into grid cell coordinates [ilocal jlocal]

T . Note that [iglobal jglobal]
T

refers to the coordinates of the global fixed frame with respect to the grid frame and

grid resolution denotes the scale of the grid cell. For example, grid resolution =

1m implies that each grid cell represents 1m2 in the real world. It should also be noted

that [iglobal jglobal]
T and grid resolution are constant values that are pre-determined.

Figure 4.1 shows the relationship between the global fixed frame, grid frame and the

local frame of the hypothetical state.

Lines 4 to 7 computes the grid coordinates [ibeam jbeam]T for the end point of the

kth “ray” projected from x
[m]
t in the event where there is no obstacle obstructions.

53

Note that [ibeam jbeam]T is computed in two steps. First, the end point coordinates

[xbeam ybeam]T with respect to the global frame is computed in Lines 4 and 5. Next,

[ibeam jbeam]T is computed from [xbeam ybeam]T by doing coordinates transformation

in Lines 6 and 7. laser max range refers to the maximum range of the laser range

finder. The maximum range of the URG laser range finder used in this research is

4095mm. laser resolution refers to the angle between consecutive laser beams. The

laser resolution value for the URG laser range finder is approximately 0.00612 rad.

The laser range finder is placed at 80mm away from the center of the robot along

its x-axis. Hence, laser offset = 80mm is needed to account for this offset in the

computation of [xbeam ybeam]T . Figure 4.1 shows the position of the laser range finder

as seen from the hypothetical state x
[m]
t .

Lines 8 to 19 ensures that [ibeam jbeam]T stay within the size of the given map. The

size of the map ϑ is [imin, imax] in the i direction and [jmin, jmax] in the j direction.

Finally, the predicted measurement zk∗
t is computed by the Bresenham line algorithm

in Line 20.

Bresenham Line Algorithm

Table 4.5 shows the pseudo code of the Bresenham line algorithm. The inputs to

the algorithm are [ilocal jlocal]
T and [ibeam jbeam]T from the ray casting algorithm. The

algorithm returns the predicted measurement zk∗
t , which is also the distance between

x
[m]
t and the nearest obstacle in the direction of the kth “ray”. This is done by ex-

trapolating a “ray” from [ilocal jloacl]
T to [ibeam jbeam]T through the grid cells of the

occupancy grid map. The distance between [ilocal jlocal]
T and the first occupied grid

54

1: ray casting(x
[m]
t , ϑ, k):

2: ilocal = iglobal − x/grid resolution
3: jlocal = jglobal − y/grid resolution

4: xbeam = −laser max range ∗ cos(θ + k ∗ laser resolution + π
4
) + laser offset ∗

cos(θ) + x
5: ybeam = −laser max range ∗ sin(θ + k ∗ laser resolution + π

4
) + laser offset ∗

sin(θ) + y
6: ibeam = iglobal − xbeam/grid resolution
7: jbeam = jglobal − ybeam/grid resolution

8: if ibeam > imax then
9: ibeam = imax

10: end if
11: if ibeam < imin then
12: ibeam = imin

13: end if
14: if jbeam > jmax then
15: jbeam = jmax

16: end if
17: if jbeam < jmin then
18: jbeam = jmin

19: end if

20: return zk∗
t = bresenham line(ilocal, jlocal, ibeam, jbeam)

Table 4.4: The ray casting algorithm for the kth “ray” casted from x
[m]
t .

cell denoted by [iobstacle jobstacle]
T that obstructs the path of the “ray” is the predicted

measurement on the map scale. The actual predicted measurement zk∗
t is obtained

after accounting for the map scale.

The basic Bresenham line algorithm is only applicable to “rays” that are casted

downward and to the right with a gradient between -1 and 0. A full implementation

55

of the algorithm requires the “rays” to be casted in all directions. Lines 2 to 6 allows

the algorithm to work for “rays” with the magnitude of its gradient that is more than

1. This is achieved by reflecting the “ray”, with the magnitude of its gradient more

than 1, across the line y=x to change the magnitude of the gradient into lesser than

1. Lines 7 to 12 allows the algorithm to work for “rays” that are casted from right to

left. This is easily achieved by swapping ilocal with ibeam and jlocal with jbeam.

The grid coordinates of the cells that cross the path of the “ray” denoted by

[iintercept jintercept]
T are compute from Lines 13 to 36. This is done by checking if [i j]T

depicts a new cell each time i is increased by 1 and j is increased by jstep. The check

is carried out from Lines 31 to 35. Note that Line 17 assigns jstep with -1 if the “ray”

is casted upward. The grid cells [iintercept jintercept]
T are checked for occupancy from

Lines 21 to 30. Lines 21 to 25 checks for the first occupied cell along the casted “ray”.

In the case where ilocal > ibeam, Lines 26 to 31 of the algorithm will check for the last

occupied cell along the casted “ray”. This is because the “ray” is casted backward

when ilocal > ibeam. Note that φforward is set to false if the “ray” is casted backward.

The first or last occupied cell from the two cases are taken to be [iobstacle jobstacle]
T .

Finally, the Euclidean distance between [ilocal jlocal]
T and [iobstacle jobstacle]

T after

accounting for the map scaling is taken to be the predicted measurement zk∗
t .

56

1: bresenham line(ilocal, jlocal, ibeam, jbeam):

2: steep =| jbeam − jlocal | > | ibeam − ilocal |
3: if steep is true then
4: swap(ilocal, jlocal)
5: swap(ibeam, jbeam)
6: end if
7: φforward = true
8: if ilocal > ibeam then
9: swap(ilocal, ibeam)

10: swap(jlocal, jbeam)
11: φforward = false
12: end if

13: δi = ibeam − ilocal

14: δj =| jbeam − jlocal |
15: error = 0
16: j = jlocal

17: if jlocal < jbeam then jstep = 1 else jstep = −1 end if

18: for i = ilocal to ibeam do
19: (iintercept, jintercept) ← (i, j)
20: if steep is true then swap(iintercept, jintercept) end if
21: if φforward is true then
22: if ϑ at (iintercept, jintercept) is occupied then
23: (iobstacle, jobstacle) ← (iintercept, jintercept)
24: break
25: end if
26: else
27: if ϑ at (iintercept, jintercept) is occupied then
28: (iobstacle, jobstacle) ← (iintercept, jintercept)
29: end if
30: end if
31: error+ = δj
32: if 2 ∗ error > δi then
33: j+ = jstep
34: error− = δi
35: end if
36: end for

37: return zk∗
t = grid resolution ∗

√
(ilocal − iobstacle)2 + (jlocal − jobstacle)2

Table 4.5: The Bresenham line algorithm.

57

4.3.3 Resampling

The resampling step has the important function of forcing the particles back to

posterior belief distribution bel(xt). The easiest way to do resampling is to draw with

replacement M particles from the temporary set ξt. The probability of drawing each

particles is given by its importance weight. This way of doing resampling is analogous

to spinning a roulette wheel. Figure 4.2 shows a roulette wheel with M wheel sectors

each representing a particle and the width of each wheel sector is sized according to

the weight of each particle. During the resampling process, the roulette wheel is spun

M times and the particles from the outcomes will be selected into ξt.

Figure 4.2: Resampling process by drawing the particles with probabilities given by
the respective weights.

58

The beauty of the roulette wheel resampling algorithm lies in the ease of imple-

mentation. However, the resampling process tends to induce a loss of diversity in the

particle population. A good example is localization of a robot that does not move

and with no sensor [10]. Figure 4.3 shows an illustration of this example. Assuming

that the true state of the robot is in the center of the environment. The robot is

stationary and nine particles with equal initial weights are uniformly distributed in

the environment to estimate the pose of the robot. Obviously, the particles will never

be able to find out the true pose since the robot possesses no sensors. Therefore, the

pose of the particles should remain identical to their initial poses at any point of time.

Unfortunately, the resampling step will cause the particles to eventually converge to

one pose. The particles are resampled with the same weight from Figures 4.3(a) to

4.3(f). As a result, there will be particles occupying the same pose after the first

selection in Figure 4.3(a) and this increases its chance of being selected again. Even-

tually, all the particles will converge to one pose as shown in Figure 4.3(f). Although

the particles may converge to any of the nine initial poses, this does not necessarily

means that an accurate estimate of the true pose has been achieved.

The solution to this problem is the low variance resampling [10] shown in Table

4.6. The weights of the particles are normalized from Lines 3 to 5. A random number

r in the interval [0; M−1] is chosen in Line 6. The for loop from Lines 9 to 16 then

repeatedly computes U by adding fixed amount of M−1 to r and select the ith particle

that fulfils

argmin
i

i∑
m=1

w
[m]
t ≥ U (4.11)

59

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The problem of particles convergence due to repetitive resampling despite
the robot having no motion and sensors.

60

The advantage of the low variance resampling algorithm over the roulette wheel re-

sampling algorithm is it covers the sample space in a more systematic fashion. The

low variance resampling algorithm selects the particles systematically with a single

random number rather than selecting them independently at random. Hence, there

will not be any loss of diversity to the particle population. The exact set of particles

will remain for the example where the robot has no motion and sensors.

1: low variance resampler(ξt):
2: ξt = ∅
3: for m = 1 to M do

4: w
[m]
t =

w
[m]
tPM

i=1 w
[i]
t

5: end for
6: r = rand(0,M−1)

7: c = w
[1]
t

8: i = 1
9: for m = 1 to M do

10: U = r + (m− 1).M−1

11: while U > c do
12: i = i + 1
13: c = c + w

[i]
t

14: end while
15: add χt

[i] to ξt

16: end for
17: return ξt

Table 4.6: The low variance resampling algorithm.

4.3.4 Pose Estimate

The pose of the robot is estimated from the particle distribution at every time

step to complete the localization process. In this thesis, the pose estimate xestimate
t is

61

chosen as the weighted mean in a small window around the highest weight particle.

This is also known as the robust mean [17]. The highest weight xmax
t particle is first

obtained from Equation 4.12.

xmax
t = {x[m]

t | w
[m]
t = max(w

[k]
t) : k = 1, 2, 3....M} (4.12)

Next, the pose estimate xestimate
t is computed from all the particles x

[i]
t that are

enclosed within a circular window of radius β and center xmax
t as shown in Equation

4.13.

xestimate
t = {

∑
i

w̃
[i]
t x

[i]
t | ‖x[i]

t − xmax
t ‖ ≤ β} (4.13)

Note that w̃
[i]
t is the weight of the particle x

[i]
t , normalized over the total weight of all

the particles that are enclosed within the circular window of radius β and center xmax
t .

4.4 Simulation and Implementation Results

The simulation and implementation results for the local localization, global lo-

calization and kidnapped problem will be shown in Sections 4.4.1 and 4.4.2. The

simulations are done in an interactive simulator that is developed by the author. The

true pose of the robot is controlled by the user. In addition, the simulator simulates

the odometry readings and laser scan measurements. Figures 4.4(a) to 4.4(d) show

snapshots of the simulator which represents a 256m x 256m environment in the real

world. The white regions represents free spaces and the black regions represent ob-

stacles. The robot starts moving from an initial pose shown in Figure 4.4(a). It can

be seen from Figures 4.4(b) to 4.4(d) that the odometry error accumulates as the

62

robot moves a longer distance. The sensor measurements are obtained from beams

projected from the true pose of the robot. The implementations of the algorithms

are done on the ER2 robot equipped with odometer and the URG laser range finder.

The motion of the ER2 robot is controlled by the user with a Joystick.

4.4.1 Local Localization

Figures 4.5(a) to 4.5(d) show the simulation results without the localization al-

gorithm. 10000 particles are used to sample the odometry error. The simulation

starts with a known initial pose of the robot. Hence, all the particles are initialized

to the initial pose as shown in Figure 4.5(a). Notice that the particles set diverges as

the robot moves a longer distance from Figures 4.5(b) to 4.5(d). This is due to the

accumulated odometry error. The odometry error will eventually grow unbounded as

the robot travels greater distances.

Figures 4.6(a) to 4.6(d) show the snapshots of the local localization simulation.

The inputs to the particle filter algorithm are the odometry and sensor measurement

readings. The particles are initialized to the initial known pose of the robot as shown

in Figure 4.6(a). Figures 4.6(b) to 4.6(d) shows that the particles are giving an accu-

rate estimate of the true pose despite the growing odometry error. This is because the

predicted measurement z∗t from a particle that lies closer to the true pose of the robot

has lower discrepancy from the sensor measurement zt and hence will be assigned a

higher weight (see Section 4.3.2). As a result, the particles that are closer to the

true pose of the robot have a higher chance of getting selected during the resampling

63

(a) (b)

(c) (d)

Figure 4.4: Snapshots of the interactive virtual simulator that obtains the true pose of
the robot from the user as well as simulates the odometry and sensor measurements.
Note that the odometry error grows larger as the robot moves a longer distance.

64

(a) (b)

(c) (d)

Figure 4.5: Snapshots of the odometry error sampled by 10000 particles.

65

process (see Section 4.3.3).

The implementation of the particle filter to solve the local localization is carried

out in the corridor outside the Control and Mechatronics Laboratory 1 on Level 4,

EA Block of the NUS Engineering Faculty. The dimension of the corridor is approxi-

mately 41.8m x 2.6m. Figure 4.7 shows a picture of the corridor and Figure 4.8 shows

the occupancy grid map of the corridor.

Figures 4.9(a) to 4.9(d) show the implementation results of the local localization.

The particle set is initialized to the initial known pose of the robot show in Figure

4.9(a). Lesser number of 1000 particles are used in the implementation as compared

to the 10000 particles used in the simulation because the implementation environ-

ment is much smaller than the simulation environment. Notice that the particles

are initialized uniformly within a circle of radius 100mm around the initial position

of the robot. The orientation of the particles are also initialized uniformly within

±5o to the initial orientation of the robot. This is to eliminate possible errors in

estimating the initial pose of the robot. Figures 4.9(b) to 4.9(d) show that the error

from the odometer grows as the robot travels a greater distance. The robot will be

thinking that it is traveling in occupied space if it relied solely on the odometry read-

ings and this is obviously wrong. It can also be seen that the particle filter gives a

more reasonable pose estimate where the robot is always moving within the free space.

66

(a) (b)

(c) (d)

Figure 4.6: Simulation of the local localization problem. The particles are able to
give an accurate estimate of the true pose despite the large odometry error.

67

Figure 4.7: Corridor outside the Control and Mechatronics Laboratory 1.

Figure 4.8: Occupancy grid map of the corridor outside the Control and Mechatronics
Laboratory 1.

4.4.2 Global Localization and the Kidnapped Problem

Figures 4.10(a) to 4.10(f) show the simulation results for the global localization

problem. The inputs to the global localization algorithm are the odometry and sen-

sor measurement readings. During the start of the operation, the odometry is always

68

(a)

(b)

(c)

(d)

Figure 4.9: Implementation of the particle filter to solve the local localization problem.
1000 particles are used. The robot starts from its initial pose on the right end of the
corridor. It travels to the left end of the corridor, right towards its initial pose,
left again and finally travels back to its initial pose. Notice that the error from the
odometer grows as the robot travels a greater distance.

69

reset to xt = [0 0 0]T and the true pose of the robot could be anywhere within the

environment. Hence, the particles are initialized uniformly in the free space of the

given map as shown in Figure 4.10(a). The particles eventually converges to the true

pose from Figures 4.10(e) and 4.10(f) despite the wrong pose given by the odometry

readings. Note that 10000 particles are used in the simulation.

The particle filter algorithm discussed so far is not sufficient for the robot to re-

cover from the kidnapped problem. Fortunately, the problem can be easily solved by

observing the total weight of the filter at each iteration. The total weight of the par-

ticles are computed before the weights are normalized in the resampling step at each

iteration. Figure 4.12 shows the total weight of the particle set for the simulations

done in Figures 4.10(a) to 4.10(f) and Figures 4.11(a) to 4.11(f). Note that Figure

4.11 is a continuation of the simulation done in Figure 4.10. The robot is kidnapped

in Figure 4.11(a) and this causes a sharp drop in the total weight of the particle set

as shown in Figure 4.12. Figure 4.11(b) shows that the particles are re-initialized

uniformly in the free space after detecting the kidnapped. The global localization

process is repeated from Figures 4.11(c) to 4.11(d) and the particles finally converges

at Figures 4.11(e) and 4.11(f).

Figures 4.13(a) to 4.13(h) show snapshots of the implementation results of the

global localization and kidnapped problem using 5000 particles along the corridor

shown in Figure 4.7. The particles are initialized uniformly in the free space as

shown in Figure 4.13(a) and eventually converges from Figures 4.13(b) to 4.13(d).

The robot is kidnapped in Figure 4.13(e) and this is reflected in the sharp drop of

70

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Simulation of the global localization problem. The particles are initial-
ized uniformly in the free space because the initial pose of the robot is unknown. The
particle set eventually converges to the true pose.

71

(a) (b)

(c) (d)

(e) (f)

Figure 4.11: The simulation in 4.10 is continued here. The robot is kidnapped to
the pose in (a) and causes a sharp drop in the total weight of the particle set. The
particles are re-initialized in (b) and finally converges to the true pose in (f).

72

Figure 4.12: Total weights of the particle set recorded over time for the simulation
done on the global localization and kidnapped problem shown in Figures 4.10 and
4.11.

the total weights shown in Figure 4.14. The particles are re-initialized uniformly in

the free space after the detection of the kidnap. Figures 4.13(f) to 4.13(h) show that

the particle set eventually converges to the new robot pose.

73

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.13: Implementation of the global localization and kidnapped problem. The
particles are initialized uniformly in the free space to estimate the unknown robot
pose in (a). The particles gradually converges from (b) to (d). The robot is kidnapped
in (e) and the particles are re-initialized uniformly in the free space. The particles
converges to the new pose in (h).

Figure 4.14: Total weights of the particle set recorded over time during implementa-
tion of the global localization and kidnapped problem shown in Figure 4.13.

74

CHAPTER 5

SIMULTANEOUS LOCALIZATION AND MAPPING

5.1 Introduction

The Simultaneous Localization and Mapping (SLAM) problem asks if a mobile

robot is able to incrementally build a consistent map ϑ of an unknown environment

and simultaneously determines its own pose xt within this map. The SLAM prob-

lem is significantly more difficult than the local localization, global localization and

kidnapped problem that were discussed in Chapter 4. This is because the robot does

not have any prior knowledge of the environment and neither does the robot know

its initial pose. The robot has to rely on the measurement data z1:t and control

data u1:t to iteratively build a map of the environment and deduces its pose at each

iteration from the available map. Any inaccuracies of the map and pose that are left

unchecked will be accumulated, thus grossly distorting the map and therefore ruining

the robot’s ability to deduce its pose in further iterations.

In the probabilistic form, the SLAM problem requires the probability distribution

p(xt, ϑ | z1:t,u1:t) (5.1)

75

to be computed at all times t. This probability distribution describes the joint prob-

ability distribution of the robot state xt and the map ϑ of the environment given all

the measurement data z1:t and control data u1:t. In general, a recursive solution to

the SLAM problem is desired [18].

Another problem associated with SLAM is the loop closure problem [15, 19, 20] in

large cyclic environment. The loop closure problem arises due to the accumulation of

errors during the SLAM process. As a result, a robot traveling through an unknown

terrain may not be able to decide whether or not it has returned to a previously

visited location. The solution to the loop closure problem seeks to provide a mean

for the robot to decide whether or not it has returned to an area that was previously

visited based on its current measurement data zt, state xt and the acquired map ϑ.

In addition, the robot must be able to correct the acquired map ϑ upon detection

that it has returned to a previously visited location.

In this chapter, two of the existing SLAM algorithms - the extended kalman filter

(EKF) and the FastSLAM algorithm will be discussed in Section 5.2. In Section 5.3,

the details of building an occupancy grid map ϑ of the environment from the mea-

surement data z1:t will be described. The occupancy grid mapping algorithm assumes

that the precise pose of the robot is known at all times. Details and implementation

results of a novel SLAM algorithm will be given in Section 5.4.

76

5.2 Related Works

Two of the popular SLAM algorithms - SLAM with the EKF and FastSLAM al-

gorithm will be discussed in this section.

5.2.1 SLAM with Extended Kalman Filter

The earliest and perhaps the most influential SLAM algorithm is based on the

EKF [10]. The idea of using the EKF to solve the SLAM problem was first proposed

by Cheeseman and Smith in 1986 [21] and first implemented by Leonard and Whyte

in 1991 [1].

The EKF SLAM algorithm is similar to the EKF localization algorithm (see Sec-

tion 4.2.1). Both algorithms use feature-based maps [36, 37, 38] and assume that the

state belief follows a Gaussian distribution represented by the mean and covariance.

The main difference between the two algorithms is that in addition to estimating

the robot pose xt, the EKF algorithm also estimates the coordinates of all features

encountered along the way. This is done by including the coordinates of the features

ϑ = [ϑ1,x ϑ1,y ϑ2,x ϑ2,y ... ϑN,x ϑN,y]
T into the state vector. Note that N is the number

of acquired map coordinates at current time t. The resulting state vector shall be

known as the combined state vector and denoted by

yt = [xt ϑ]T = [x y θ ϑ1,x ϑ1,y ϑ2,x ϑ2,y ... ϑN,x ϑN,y]
T (5.2)

77

The combined state belief bel(yt) is computed recursively from the prediction

and update step. In the prediction step, the predicted belief distribution bel(yt)

represented by the predicted mean yt and covariance St is computed from

yt = f(yt−1, ut) (5.3)

St = Ft St−1 Ft
T + Qt (5.4)

where f(.) is the motion model of the robot and Ft is the Jacobian of f(.) evaluated

at yt−t and Qt is the covariance of the motion model.

The EKF SLAM algorithm will check for any newly acquired features and incor-

porate them into the predicted belief prior to the update step. The predicted belief

bel(yt) is subsequently transformed into the desired belief bel(yt) by incorporating

the sensor measurement zt in the update step given by

Kt = StHt
T (HtStHt

T + Rt)
−1 (5.5)

yt = yt + Kt(zt − h(yt, ϑ)) (5.6)

St = (I−KtHt)St (5.7)

Kt is the Kalman gain for the EKF SLAM algorithm. h(.) is the sensor measurement

model, and Ht is the Jacobian of h(.) evaluated at yt−1. Rt is covariance of the

sensor measurement model.

78

5.2.2 FastSLAM

The FastSLAM algorithm that was introduced by Montemerlo [22] marked a fun-

damental conceptual shift in the design of recursive probabilistic SLAM [18]. Previous

efforts in SLAM algorithms focus on improving the performance of the EKF SLAM

while retaining its linear Gaussian assumptions. The FastSLAM algorithm was the

first to use the Rao-Blackwellized particle filter to represent the state belief bel(xt)

with a non-Gaussian distribution along with Gaussians to represent map features.

Figure 5.1 shows the denotation of the Rao-Blackwellized particles in the Fast-

SLAM algorithm. Each particle in FastSLAM contains an estimated robot pose,

denoted by x
[m]
t , and a set of EKF with a pair of mean µ

[m]
j,t and covariance Σ

[m]
j,t

representing the location of the jth features ϑj of the map ϑ.

Figure 5.1: Rao-Blackwellized particles in FastSLAM, M denotes the total number
of particles.

79

Similar to the particle filter algorithm for localization, the FastSLAM algorithm

computes the state belief bel(xt) recursively with the prediction and update steps.

In the prediction step, the hypothetical state x
[m]
t of the mth particle is generated

by sampling from the odometry motion model (see Section 4.3.1). The set of parti-

cles obtained after M iterations is the discrete representation of the predicted belief

bel(xt).

In the update step, the mean µ
[m]
j,t and covariance Σ

[m]
j,t of the observed features

are updated with the sensor zt measurement and predicted measurement z∗t using the

standard EKF update equations (see Section 4.2.1). The importance factor w[m] of the

mth particle is given by a Guassian over the sensor measurement zt with the predicted

measurement z∗t and measurement covariance Qt as the mean and covariance.

w[m] = det(2πQt)
− 1

2 exp{−1

2
(zt − z∗t)

TQ−1
t (zt − z∗t)} (5.8)

Finally, the particles are transformed into the belief distribution bel(xt) after the

resampling step (see Section 4.3.3).

5.3 Occupancy Grid Mapping

A solution to the SLAM problem is necessary in the absence of both an initial

map and exact pose information. The robot has to estimate the map and localize

itself relative to this map. Solutions to the SLAM problem therefore have to be built

on top of two problems decoupled from SLAM. First, the localization problem with

a known map of the environment and second, the map building problem with known

80

pose of the robot. Solutions to the localization problem with a known map are dis-

cussed in the previous chapter. In this section, the map building problem with the

assumption that the exact pose of the robot is know will be discussed.

Map building is the process of generating consistent maps from noisy and uncer-

tain measurement data when the pose of the robot is known. The occupancy-grid

mapping algorithm [10, 41, 42, 43, 44] is a popular choice for map building because

it is comprehensive and easy to implement. Occupancy-grid mapping represents the

environment as a tessellation of rectangloid grid cells where each cell corresponds to

an area in the physical environment. Let ϑ denotes the occupancy grid map and ϑi

denotes the grid cell with index i.

The objective of the occupancy grid mapping is to estimate the occupancy value

of each grid cell denoted by p(ϑi | z1:t,x1:t), where z1:t is the set of sensor measure-

ment data up to time t and x1:t is the sequence of all poses of the robot. Occupancy

values indicate the probability of whether the cell is occupied p(ϑi | z1:t,x1:t) = 1 or

free p(ϑi | z1:t,x1:t) = 0. An occupancy value of p(ϑi | z1:t,x1:t) = 0.5 indicates that

the cell is an unexplored area. The estimation of the occupancy value for each grid

cell is assumed to be independent of other grid cells.

A robot does not have any knowledge of the world when it was first placed in an

unknown environment. It is therefore intuitive to set p(ϑi | z1:t,x1:t) = 0.5 for all

grid cells at time t = 0. The map is updated via the log odds [10, 41, 42, 43, 44]

representation of occupancy. The advantage of log odds representation is that it

81

can avoid numerical instabilities for probability near 0 or 1. The ith grid cell that

intercepts the line-of-sight of the sensor measurement is updated according to

lt,i = lt−1,i + lsensor (5.9)

where lt−1,i is the log odds computed from the occupancy value of the cell at t− 1.

lt−1,i = log
p(ϑi | z1:t−1,x1:t−1)

1− p(ϑi | z1:t−1,x1:t−1)
(5.10)

The value of lsensor depends on the sensor measurement. If the sensor measure-

ment is lesser than the maximum range of the sensor, it means that an object has

been detected. In this case, lsensor = locc for the cell that corresponds to the sensor

measurement and lsensor = lfree for all the other cells that intercepts the line-of-sight

of the sensor measurement.

Figure 5.2(a) shows an illustration of a sensor measurement that is lesser than the

maximum range of the sensor. The cell that corresponds to the sensor measurement

has been assigned lsensor = locc and shaded black. All the other cells that intercept

the line-of-sight of the sensor measurements are assigned lsensor = lfree and shaded

white.

If the sensor measurement is equal to the maximum range of the sensor, it means

that no object has been detected. In this case, lsensor = lfree for all the cells that

intercepts the line-of-sight of the sensor measurement. Figure 5.2(b) shows an illus-

tration of a sensor measurement that is equal to the maximum range of the sensor.

All the cells that intercepts the line-of-sight of the sensor measurement are assigned

82

lsensor = lfree and shaded white.

(a) (b)

Figure 5.2: Updating an occupancy grid map (a) when an obstacle is detected (b)
when a maximum range measurement is detected, i.e. it is assumed that in this case
no obstacle is detected.

locc and lfree are computed from

locc = log
p(ϑi = 1)

1− p(ϑi = 1)
(5.11)

lfree = log
p(ϑi = 0)

1− p(ϑi = 0)
(5.12)

where p(ϑi = 1) and p(ϑi = 0) denote the probabilities of the sensor measurement

correctly deducing whether a grid cell is occupied or empty. The two probabilities

must add up to 1 and their values depend on the accuracy of the sensor. p(ϑi = 1)

and p(ϑi = 0) will have values closer to 1 and 0 for an accurate sensor. The values

83

of p(ϑi = 1) and p(ϑi = 0) remain constant in the map building process. p(ϑi = 1) is

assigned a value of 0.9 and p(ϑi = 0) assigned a value of 0.1 for the URG laser range

finder used in this research since it is an accurate sensor. The occupancy value of a

grid cell is easily recovered from

p(ϑi | z1:t−1,x1:t−1) = 1− 1

1 + exp{lt,i} (5.13)

5.4 A Novel SLAM Algorithm

Many existing SLAM algorithms such as EKF and FastSLAM are feature-based

SLAM and the success of these algorithms depend greatly on feature extractions from

raw sensor measurements data. In this section, a SLAM algorithm that overcomes the

restrictions from feature extractions by using occupancy grid map will be discussed.

This SLAM algorithm has two novel aspects. First, a novel laser scan matching

algorithm is introduced to estimate the probability distribution p(xt, ϑ | z1:t,u1:t)

recursively. Second, a novel loop closure detection algorithm is used to detect loop

closure opportunity and a loop closure algorithm is used to close any detected loops

in the map. Detailed descriptions of the scan matching, loop closure detection and

loop closure algorithms are found in Sections 5.4.1, 5.4.2 and 5.4.3 respectively.

5.4.1 Laser Scan Matching with Particle Filter

Figure 5.3 shows an occupancy map of a cyclic environment (Level 3 EA Block

of the NUS Engineering Faculty) built from raw odometry readings. The robot has

returned to previously visited locations and therefore should close the loop in the

84

Figure 5.3: An occupancy grid map of Level 3 EA Block of the NUS Engineering
Faculty built with raw odometry readings. The robot has returned to previously
visited areas and these areas should coincide.

map. However, the accumulation of the odometry errors has grossly distorted the

map thus making it hard for the robot to detect the loop closure opportunities. The

loop closure detection problem can be made easier by doing laser scan matching. In

laser scan matching, the pose of the robot that captures the current laser scan is

sought with respect to a reference scan by adjusting the pose of the robot until the

best overlap with a reference scan is achieved. Consequently, the short term odome-

try errors that causes the misalignment between the current and reference scans are

reduced. This reduction of the odometry errors by scan matching results in a smaller

loop closure error hence reducing the difficulty for loop closure detection (see Section

5.4.2).

85

Many scan matching algorithms [45, 46, 47, 48] have been proposed by different

researchers over the years. For example, the iterative closest point (ICP) algorithm

[45], iterative matching range point (IMRP) algorithm [46] and iterative dual corre-

spondence (IDC) algorithm [46]. In ICP, each point from the current scan is first

matched with their respective closest point from the reference scan. Next, an er-

ror function computed based on the Euclidean distances between each pair of match

points. This error function measures the discrepancy between the scans. Finally, the

process is iterated until a match with the least error has been found. The IMRP al-

gorithm is similar to the ICP algorithm except that each point from the current scan

is matched with a point from the reference scan that is within a matching range. The

IDP algorithm proposed a combination of the ICP and IMRP algorithms by using the

ICP to calculate translation and IMRP to calculate rotation. Many of these existing

scan matching algorithms rely on intensive iterations and may not be suitable for real

time operations.

A novel scan matching algorithm has been proposed and implemented by the

author. This scan matching algorithm uses a particle filter which is similar to the

one used for localization of a mobile robot in a known environment (see Chapter

4). The algorithm seeks to generate the posterior distribution p(xt, ϑ | z1:t,u1:t)

that represents the robot state that yields the best overlap between the current and

reference scans. Note that reference scan refers to the acquired map ϑt−1 at time

t − 1. The posterior distribution p(xt, ϑ | z1:t,u1:t) is represented by a finite set of

M weighted particles denoted by ξt := χ
[1]
t , χ

[2]
t , ..., χ

[M]
t drawn from this posterior.

χ
[m]
t = [x

[m]
t w[m]]T denotes the mth particle where x

[m]
t and w[m] are the state and

86

importance factor of this particle.

Particles representing the posterior distribution p(xt, ϑ | z1:t,u1:t) are generated

in three steps. First, a temporary particle set ξt which represents the predicted belief

is generated from the odometry motion model p(xt | ut, x
[m]
t−1) of the robot. The

hypothetical states of the particles can be seen as the search space for the robot state

xt that yields the best overlap between the current and reference scans. Detailed

descriptions of the odometry model can be found in Section 4.3.1. It is important to

note that σ1, σ2, σ3 and σ4 which denote standard deviation of the odometry motion

model during pure rotation, pure translation as well as when there are both transla-

tion and rotation have the same values as the standard deviations discussed in Section

4.3.1. This is because the same ER2 robot is used to implement the scan matching

with particle filter algorithm. Figures 5.4(a) and 5.4(b) show the particle distribution

before and after sampling from the odometry motion model. Figure 5.4(b) shows

the distribution of the particles which represents the search space for the robot state

xt that yields the best overlap between the current and reference scans. Note the

discrepancy between the current and reference scans.

Second, the importance factor of each particle is computed from the sensor mea-

surement model p(zt | x
[m]
t , ϑt−1). The sensor measurement model is a measure of

the similarity between the current scan and reference scan as seen from the hypothet-

ical state of the particle. The higher the similarity between the scans, the higher the

weight value. The sensor measurement model used for scan matching is different from

the one used for localization of a mobile robot in a known environment p(zt | x[m]
t , ϑ)

87

(a)

(b)

Figure 5.4: Particles distribution before (a) and after (b) sampling from the odometry
motion model. The distribution of the particles in (b) represents the search space
for the robot state xt that yields the best overlap between the current and reference
scans. Note also the discrepancy between the current and reference scans.

(see Section 4.3.2). The sensor measurement model for the scan matching algorithm

computes the probability conditioned on the map ϑt−1 acquired at the previous time

step t−1 instead of a known map ϑ. The sensor measurement model p(zt | x[m]
t , ϑt−1)

for the scan matching process is given by

88

p(zk
t | x[m]

t , ϑt−1) =
εk√

2πσ2
hit

e
− 1

2

(zk
t −zk∗

t)2

σ2
hit + (1− εk) (5.14)

p(zt | x[m]
t , ϑt−1) = η

K∏

k=1

p(zk
t | x[m]

t , ϑt−1), where K = 513 (5.15)

σhit is the standard deviation for the sensor measurement model and was determined

experimentally to be 50mm for the URG laser sensor used in this research (see Sec-

tion 4.3.2). zk
t is the kth measurement reading from the laser sensor measurements

zt = [z1
t z2

t ... zK
t]T for K = 513 and zk∗

t is the kth measurement reading from the pre-

dicted measurements z∗t = [z1∗
t z2∗

t ... zK∗
t]T for K = 513. The predicted measurements

are obtained by the ray casting process (see Section 4.3.2) from the hypothetical state

x
[m]
t of the robot and the map ϑt−1 acquired at time t− 1. Note that η in Equation

5.15 is a normalizer that ensures the probability stays within 0 to 1. The most im-

portant variable in Equations 5.14 and 5.15 is perhaps εk. It is a binary operator

which is equals to 1 if both zk
t and zk∗

t are lesser than the maximum range of the laser

sensor and 0 otherwise. This is to ensure that the comparison of the current and

reference scans is made at the segments where both scans shows signs of existence of

obstacles. The existence of obstacles is deduced from the sensor measurements which

are lesser than the maximum range of the laser sensor. εk = 0 if both zk∗
t and zk

t are

not lesser than the maximum laser range. As a result, p(zk
t | x

[m]
t , ϑt−1) = 1 and

this will not cause any changes to the final value of p(zt | x
[m]
t , ϑt−1). Figure 5.5

shows an example for the selection of the relevant measurements. The measurements

where both zk∗
t and zk

t are not lesser than the maximum laser sensor range are omitted.

89

(a)

(b)

Figure 5.5: (a) Predicted measurement z∗t obtained by rays casted from a hypothetical

state x
[m]
t . (b) Laser sensor measurement zt from the odometry reading. Notice that

the measurements where both zk∗
t and zk

t are not lesser than the maximum laser
sensor range are omitted.

90

Third, the temporary particle set ξt undergoes a resampling process where it

is transformed into the particle set ξt which represents the posterior distribution

p(xt, ϑ | z1:t,u1:t) . The low variance resampling algorithm described in Section 4.3.3

is used. Finally, the robot state xt is chosen as the weighted mean in a small window

around the highest weight particle. This is the robust mean and the detailed descrip-

tions can be found in Section 4.3.4. Figure 5.6 shows the final map after the scan

matching process where the current range scan has been integrated into the map at

the xt.

Figure 5.6: Map ϑt after the scan matching process where the current range scan has
been integrated into the map at xt. Note that xt is the robot state that yields the
best overlap between the current scan and the map ϑt−1 at t− 1.

Implementation Results

The scan matching with particle filter algorithm was successfully implemented on

the ER2 robot. Figure 5.7 shows the occupancy grid maps of a 73m x 30m cyclic

environment acquired by the robot before and after implementation of the algorithm.

91

The occupancy grid map in Figure 5.7(a) shows a large loop closure error before im-

plementation of the scan matching with particle filter algorithm. Figure 5.7(b) shows

that the loop closure error was reduced tremendously after implementation of the

scan matching with particle filter algorithm.

(a) (b)

Figure 5.7: Implementation of the scan matching with particle filter algorithm in a
73m x 30m cyclic environment, Level 3 EA Block of the NUS Engineering Faculty (a)
Occupancy grid map shows large loop closure error before scan matching with particle
filter. (b) Occupancy grid map shows small loop closure error after scan matching
with particle filter.

92

5.4.2 Loop Closure Detection

The implementation results of the scan matching algorithm discussed in the previ-

ous section has shown a significant reduction in the odometry errors. Unfortunately,

the odometry errors cannot be completely eliminated with scan matching. The un-

certainties associated with scan matching continues to accumulate as the robot moves

further and finally manifest itself as a loop closure error when the robot returns to a

previously visited location. Hence, an algorithm is needed to detect any loop closure

opportunities.

A simple yet effective loop closure detection algorithm is proposed and imple-

mented by the author. This algorithm detects loop closure opportunities by moni-

toring the uncertainties associated with scan matching. The uncertainties associated

with scan matching is estimated by the odometry motion model described in Section

4.3.1. M random samples that represents the uncertainties associated with the scan

matching are drawn from state transition probability described by the odometry mo-

tion model after every iteration of the scan matching process. Note that the standard

deviations σ1, σ2, σ3 and σ4 for the odometry motion model used to monitor the un-

certainties associated with scan matching do not have the same values as the motion

model used in localization of the robot in a known environment and scan matching

with particle filter. These standard deviations should have smaller values because of

the odometry error reduction after scan matching and the values are found experi-

mentally to be σ1 = 1o, σ2 = 2mm, σ3 = 4mm and σ4 = 3o.

93

The experiments to get the standard deviations for the odometry motion model

used to monitor the uncertainties associated with scan matching are exactly the same

as the experiments to get the standard deviations for the odometry motion model

used in localization of the robot in a known environment described in Section 4.3.1

with one subtle difference. The corrected robot poses after the scan matching with

particle filter are used as the control data ut to compute the fixed intervals of trans-

lation and rotation, instead of using the raw odometry readings. As a result, there

are smaller discrepancies between the control data and the measured “true” values

and hence smaller standard deviations.

A loop closure opportunity is detected when the area covered by the samples that

represents the scan matching uncertainty intersects a pose from the trajectory that

was previously taken by the robot. Let this pose where the loop closure opportunity is

detected be denoted by xS. Figure 5.8 shows an illustration of a detected opportunity

for loop closure. It can be seen that the area covered by samples representing the

scan matching uncertainty intersects a pose from the trajectory that was previously

taken by the robot.

The loop closure detection is however not robust enough by solely depending on

the samples that represents the scan matching uncertainty. False positive will be cre-

ated if the robot makes an u-turn. Figure 5.9 shows an illustration of a false positive

loop closure detection when the robot makes an u-turn. The area covered by samples

representing the scan matching uncertainty intersects a pose from the trajectory that

94

Figure 5.8: An illustration to show that a loop closure opportunity is detected when
the area covered by samples representing the scan matching uncertainty intersects a
pose from the trajectory that was previously traveled by the robot.

was previously taken by the robot despite that there is no loop.

A topological map is built to prevent false positive loop closure detection [49]. The

construction of the topological map starts with adding the first node that corresponds

to the starting location of the robot. A new node is added if the distance between the

current pose of the robot exceeds a threshold γ from the previous node or if no node is

visible from the current pose of the robot. The newly created node is connected to the

previous node by an edge. The ray casting operation (see Section 4.3.2) is used to de-

termine if a node is visible from the current robot pose. If a loop closure opportunity

was detected by the samples representing the scan matching uncertainty, the number

95

Figure 5.9: An illustration to show that the robot makes a false positive loop closure
detection when it makes an u-turn.

of nodes that link the start node (closet node to the current robot pose xt) and the

end node (closest node to xS) are determined. A positive loop closure opportunity is

detected if more than 2 nodes are found in between the start and end nodes. The Di-

jkstra’s algorithm [50] is used to count the number of nodes in between the start and

end nodes. The algorithm first assigns a value of ‘0’ to the end node. Next, it assigns

a value of ‘1’ to all the children of the end node. In general, all children of a parent

node with value ‘N ’ are assigned with a value of ‘N +1’ until all nodes have been as-

signed a value. Finally, the total number of nodes in between the start and end nodes

are counted following a steepest descent of the node values from the start to end node.

96

(a) (b)

Figure 5.10: Illustrations of the topological map. The nodes are assigned values
according to the Dijkstra’s algorithm and the number of nodes between the start and
end nodes are counted by following the steepest descent (a) A positive loop closure
opportunity with 11 nodes in between the start and end nodes. (b) A negative loop
closure opportunity with no nodes in between the start and end nodes.

Figure 5.10 show illustrations of the topological map. The nodes are assigned

values according to the Dijkstra’s algorithm and the number of nodes between the

start and end nodes are counted by following the steepest descent. Figure 5.10(a)

shows a positive loop closure opportunity with 11 nodes in between the start and end

nodes and Figure 5.10(b) shows a negative loop closure opportunity with no nodes

in between the start and end nodes. Notice that no new nodes are added when the

robot makes an u-turn.

97

Implementation Results

Figure 5.11: Implementation of the loop closure detection algorithm on the ER2
robot. A loop closure opportunity has been detected by the samples representing
the scan match uncertainty and confirmed by having more than 2 nodes between the
start and end nodes.

The loop closure detection algorithm has been successfully implemented on the

ER2 robot. Figure 5.11 shows the implementation results. A loop closure opportu-

nity has been detected by the samples representing the scan match uncertainty and

confirmed by having more than 2 nodes between the start and end nodes. Note that

the nodes are added at a distance of 5.5m apart.

98

5.4.3 Loop Closure

Three things need to be done after a loop closure opportunity has been detected.

First, the true pose of the robot in the map has to be determined. Let xE denote the

true pose of the robot. Second, the trajectory of the robot from xS to xt has to be

corrected so as to close the loop. Let this trajectory be denoted by xS:t. Third, the

current map ϑt has to corrected according to the trajectory of the robot after loop

closure.

The true pose of the robot xE can be found by using a particle filter. The parti-

cles are initialized uniformly within a window centered at xS. The odometry motion

model of this particle filter has the same parameters as the one used for estimating

the scan matching uncertainty (see Section 5.4.2). The measurement updates of the

particles are done using the current sensor measurement data zt and the acquired

map ϑt−1 at time t−1. The estimated pose from the particles is taken to be xE when

more than 80 percent of the particles are found within 1m from the pose estimate.

Figure 5.12 shows an illustration of finding xE for loop closure. The particles are

initialized uniformly within a window centered at xS shown in Figure 5.12(b) upon

detecting the loop closure opportunity. The particle finally converges to xE as the

robot moves from Figure 5.12(c) to 5.12(d).

The loop can be closed with the knowledge of both xS and xE. A forward-backward

pose correction algorithm [51] is adopted for loop closure. Assuming that xS and xE

are error free poses of the robot at the start and end of the loop respectively, the

99

(a) (b)

(c) (d)

Figure 5.12: Illustrations of finding xE for loop closure. (a) xE maybe anywhere
within a window centered at xS. (b) The particles are initialized uniformly within
the window. (c) Particles start to converge as robot moves. (d) The pose estimate is
taken to be xE when more than 80 percent of the particles are found within 1m from
the pose estimate.

100

corrected trajectory xcorrected
S:t after loop closure is given by weighted average of the

forward xforward
S:t and backward xbackward

S:t trajectories shown in Equation 5.16.

xcorrected
k = αkx

forward
k + (1− αk)x

backward
k , for k = S, S+1, ..., t (5.16)

The forward trajectory xforward
S:t is the trajectory of the robot propagated forward

from xS to xt and is given by

xforward
k = xk, for k = S, S+1, ..., t (5.17)

and the backward trajectory xbackward
S:t is trajectory of the robot propagated backward

from xE to xS and is given by

xbackward
k =

{
xE, if k = t
xbackward

k+1 + xk − xk+1, if k = t-1, t-2, ..., S
(5.18)

αk is the weighing factor for the forward and backward trajectories and is given by

Equation 5.13(d). Notice that αk = 1 and (1−αk) = 0 when k = S. As a result, from

Equation 5.16 xcorrected
S = xS. This result is reasonable because xS is taken to be a

error free pose at k = S. Similarly, xcorrected
t = xE because xE is taken to be a error

free pose at k = t.

αk =
t− k

t− S
, for k = S, S+1, ..., t (5.19)

Finally, the full trajectory of the robot x1:t is given by

xk =

{
xk, for k = 1,2, ..., S-1
xcorrected

k , for k = S, S+1, ..., t
(5.20)

101

Figure 5.13 shows a simulation of the forward-backward loop closure algorithm.

Figure 5.13(a) shows a detected loop closure opportunity. Figure 5.13(b)shows the

forward trajectory obtained from Equation 5.17 and Figure 5.13(c) shows the back-

ward trajectory obtained from Equation 5.18. The loop is closed in Figure 5.13(d).

Notice that xS and xE remains the same because they are taken to be error free pose.

The current map ϑt can be corrected according to the trajectory of the robot after

loop closure. This is done by removing the current map ϑt and replacing it with a

new map generated by the occupancy grid mapping algorithm described in Section

5.3 with the corrected trajectory of the robot and the laser sensor measurements as-

sociated with each robot pose from the corrected trajectory as the inputs.

Implementation Results

The loop closure algorithm has been successfully implemented on the ER2 robot.

Figure 5.14 shows the results for the implementation of finding xE for loop closure.

Figure 5.14(a) shows the initialization of the particles uniformly within the window

centered at xS. xE maybe anywhere within this window. The particles eventually

converges to xE as the robot moves from Figure 5.14(b) to Figure 5.14(c).

Figure 5.15 shows the occupancy grid map after the loop closure using the forward-

backward loop closure algorithm. Notice that the samples representing the uncer-

tainty associated with scan matching are shifted to the xE with smaller uncertainty

because xE is taken to be an error free pose. The robot is traveling in previously

visited locations after the loop closure and the standard deviations σ1, σ2, σ3 and σ4

102

(a) (b)

(c) (d)

Figure 5.13: Simulation of the forward-backward loop closure algorithm. (a) Loop clo-
sure opportunity detected. (b) Forward trajectory where xforward

S = xS. (c) Backward
trajectory where xbackward

t = xE. (d) Corrected trajectory where xcorrected
S = xS and

xcorrected
t = xE.

103

from the odometry motion model used to model the uncertainty associated with scan

matching should have smaller values than the standard deviations from the odometry

motion model used to model the uncertainty associated with the scan matching in un-

known locations (see Section 5.4.2). This is because the current scan is matched with

a full map of the previously visited environment hence higher accuracy. These stan-

dard deviations are experimentally found to be σ1 = 0.6o, σ2 = 0.9mm, σ3 = 1.3mm

and σ4 = 1.9o.

The experiments to get the values for standard deviations are the same as the

experiments to get the standard deviations for the odometry motion model used to

model the uncertainty associated with the scan matching in unknown locations de-

scribed in Section 5.4.2 except for one difference. The corrected robot poses from the

scan matching with particle filter against a fully known map are used as the control

data ut to compute the fixed translation and rotation intervals, instead of using the

corrected robot poses after the scan matching with particle filter against a partially

known map. As a result of the scan matching against a fully known map, there are

smaller discrepancies between the control data and the measured “true” values and

hence smaller standard deviations.

104

(a) (b) (c)

Figure 5.14: Results for the implementation of finding xE for loop closure. (a) The
initialization of the particles uniformly within the window centered at xS. The par-
ticles eventually converges to xE as the robot moves from (b) to (c).

105

Figure 5.15: Occupancy grid map of Level 3 EA Block of NUS Engineering Faculty
after loop closure.

106

CHAPTER 6

CONCLUSION

6.1 Summary

Localization is the process of determining the pose of a mobile robot with respect

to a given map of the environment (known environment). It is the most fundamen-

tal and important problem in mobile robotics. This is because a mobile robot must

know its pose at every instance of time so as to determine its destination and plan a

path that will enable it to navigation there safely. The localization problem can be

made more difficult in cases where the map of the environment is not given (unknown

environment) to the robot. This is the SLAM problem where the robot has to simul-

taneously build a map of its environment and localizes itself with respect to this map.

The main objective of this thesis is to investigate and implement algorithms to es-

timate the robot state xt at every instance of time in both known and unknown indoor

environments. Probabilistic methods are selected over other deterministic methods

because it is more robust to represent xt by probability distributions over a whole

space of guesses than relying on a single “best guess”. In general, a probabilistic

solution is needed to estimate xt recursively.

107

In Chapter 2, some of the terms that are commonly used in the context of prob-

abilistic mobile robot localization were defined. These terms include state, sensor

measurements, control actions, belief distributions, state transition and measurement

probabilities. The Bayes filter, which is the most general form of probabilistic recur-

sive state estimation, was reviewed.

In Chapter 3, detailed analysis of the characteristics, advantages and disadvan-

tages were given for some sensors that are commonly used for the localization of a

mobile robot. These sensors include IMU, compass, GPS, odometer, Cricket Motes,

NorthStar localization kit and laser range finder. The odometer and laser range finder

were found suitable for mobile localization in both known and unknown indoor en-

vironments. The two sensors were used for the implementation of the localization

algorithms in this dissertation.

In Chapter 4, the particle filter was discussed in detail. The particle filter is a

practical variation of the Bayes filter that seeks to represent the belief distribution

with a finite number of samples known as the particles. Three different variations of

the particle filter were reviewed for solving three localization problems in a known

environment. They are local localization, global localization and the kidnapped prob-

lem. The localization algorithms using particle filter were successfully simulated in

virtual environments and implemented on the ER2 robot.

The most significant contribution of this thesis is found in Chapter 5. In this chap-

ter, a complete solution for the simultaneous localization and mapping of a mobile

108

robot in an unknown environment was proposed. This novel SLAM algorithm uses a

laser scan matching algorithm to align consecutive laser scans, loop closure detection

algorithm to detect loop closure opportunity and loop closure algorithm to close any

detected loops in the map. The SLAM algorithm was successfully implemented on

the ER2 robot.

6.2 Further Works

Some of the further works to improve the contributions are as follows:

1. Only a few key sensors commonly used for robot localization could be eval-

uated due to the time constrain of this dissertation. Further works can be

done to include more sensors in the evaluation. Examples of other sensors are

inclinometers, bumper switches and wheel encoders etc.

2. A key limitation of the localization algorithms for both known and unknown

(SLAM) environments implemented in this research is that they may fail in

highly dynamic environments. This is because the sensor measurement model

used in this research does not account for corruption of the sensor measurement

data by the state of dynamic objects in the environment. Further works can

be done to improve the sensor measurement model so that it is able to tolerate

corruptions from dynamic objects in the environment.

3. For a mobile robot to be truly autonomous, it must be able to acquire maps of

unknown environments, navigate from a point of origin to a destination using

this map, and determine its pose with respect to the acquired map at all times.

109

The SLAM algorithm proposed and implemented in this thesis allows the robot

to acquire maps of unknown environments and determine its pose with respect

to this map at all times. However, it does not allow the robot to navigate from

a point of origin to a destination using acquired map. Further works can be

done to integrate navigation algorithms into the SLAM algorithm to make the

robot truly autonomous. Examples of navigation algorithms are the navigation

functions [23], artificial potential field [52], vector field histogram [53], hybrid

navigation algorithm [54] and the integrated algorithm[55].

4. Implementation of the localization algorithms are carried out in only indoor

environments. The sensors are also selected for indoor environments. Further

works can be carried test the robustness of the algorithms in outdoor environ-

ments. Sensors such as compass, GPS and IMU [26] can be used for mobile

robot localization in the outdoor environments.

110

BIBLIOGRAPHY

[1] John J. Leonard and Hugh F. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,” in IEEE Transaction on Robotics and Automation,
June 1991, vol. 7, pp. 376–382.

[2] B. Everett J. Borenstein and L. Feng, Navigating Moblie Robots: Systems and
Techniques, Wellesley, MA: A.K.Peters, Ltd, 1996.

[3] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry
errors in mobile robots,” in IEEE Transaction on Robotics and Automation,
December 1996, vol. 12, pp. 869–880.

[4] J. Borenstein and L. Feng, “Umbmark: A benchmark test for measuring odom-
etry errors in mobile robots,” in Proceedings of the 1995 SPIE Conference on
Mobile Robots, October 1995, pp. 569–574.

[5] J. Borenstein and Y. Koren, “Herarchial computer system for autonomous vehi-
cle,” in Proceedings of the 8th Israelic Convention on CAD/CAM and Robotics,
December 1986.

[6] C. Cohen and F. Koss, “A comprehensive study of three object triangulation,”
in Proceedings of the 1993 SPIE Conference on Mobile Robots, Bosten, MA,
November 1992, pp. 95–106.

[7] MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
02139, Cricket V2 User Manual, 2 edition, July 2004.

[8] Evolution Robotics, Inc., 130 W. Union Street, Pasadena, CA 91103, NorthStar
Projector Kit User Guide, 1.0 edition.

[9] Evolution Robotics, Inc., 130 W. Union Street, Pasadena, CA 91103, NorthStar
Detector Kit User Guide, 2.1 edition.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, 2005.

[11] Martin David Adams, Sensor Modelling, Design and Data Processing for Au-
tonomous Navigation, vol. 13, World Scientific, 1999.

111

[12] Schiele B. and J.L. Crowley, “A comparison of position estimation techniques
using occupancy grids,” in Proceedings of the International Joint Conference on
Robotics and Automation (ICRA), 1999.

[13] Konolige K. and K. Chou, “Markov localization using correlation,” in Proceedings
of the International Joint Conference on Artificial Intelligencce (IJCAI), 1999.

[14] C. Kwok, D. Fox, and M. Meila, “Real-time particle filters,” in Proceedings of
the IEEE, March 2004, vol. 92, No. 3.

[15] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo localization
for mobile robots,” in Artificial Intelligence Journal (AIJ), 2001.

[16] D. Fox C. Kwok and M. Meila, “Adaptive real-time particle filters,” in Proceed-
ings of the International Joint Conference on Robotics and Automation (ICRA),
2003.

[17] Ioannis M. Rekleitis, “A particle filter tutorial for mobile robot localization,”
Tech. Rep. TR-CIM-04-02, Centre for Intelligent Machines, McGill University,
3480 University St., Montreal, Québec, CANADA H3A 2A7, 2004.

[18] Hugh Durrant-Whyte and Tim Bailey, Simultaneous Localization and Mapping:
Part I, IEEE Robotics and Automation Magazine, June 2006.

[19] Hugh Durrant-Whyte and Tim Bailey, Simultaneous Localization and Mapping:
Part II, IEEE Robotics and Automation Magazine, June 2006.

[20] Paul Newman and Kin Ho, “Slam-loop closing with visually salient features,” in
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 18-22 April 2005.

[21] Cheeseman P. and P. Smith, “On the representation and estimation of spatial
uncertainty,” in International Journal of Robotics, 1986, pp. 5:56–68.

[22] M. Montemerlo, S. Thrun, D. Koller, and B. Webreit, “Fastslam: A factored
solution to the simultaneous localization and mapping problem,” in Proceedings
of the AAAI National Conference of Artificial Intelligence, 2002, pp. 593–598.

[23] J.C. Latombe, Robot Motion Planning, Boston : Kluwer Academic Publishers,
1991.

[24] Richard A. Johnson, Probability and Statistics for Engineers, Prentice Hall, 6
edition, 2000.

[25] Ahmed El-Rabbany, Introduction to GPS : the global positioning system, Boston,
Mass. : Artech House, 2002.

112

[26] S. Sukkarieh, E.M. Nebot, and H. Durrant-Whyte, “A high integrity IMU/GPS

navigation loop for autonomous land vehicle applications,” in IEEE Transactions
on Robotics and Automation, June 1999, vol. Vol 15, No 3.

[27] Crossbow Technology, Inc, 4145 N. First Street, San Jose, CA 95134, RGA
Series User’s Manual, revision a edition, March 2005.

[28] Roland Siegwart and Illah Nourbakhsh, Introduction to Autonomous Mobile
Robot, Intelligent Robotics and Automation Agents. The MIT Press, Mas-
sachusetts Instittute of Technology Cambridge.

[29] Honeywell, Solid State Electronics Center, 12001 Highway 55, Plymouth MN
55441, HMR3200/HMR3300 Digital Compass Solutions User’s Guide, 04-02
revision a edition.

[30] Myke Predko, Programming Robot Controllers, McGraw Hill, 2003.

[31] Nissanka Bodhi Priyantha, The Cricket Indoor Location System, Ph.D. thesis,
Massachusetts Institute of Technology, June 2005.

[32] Hokuyo Automatic Co. Ltd., Kokudo Building 2-1-12, Sonezaki, Kita-ku, Osaka
530-0057, Japan, URG Series Communication Protocol Series, 1 edition, Feb
2004.

[33] Sen Zhang, Lihua Xie, Martin Adams, and Fan Tang, “Geometrical feature
extraction using 2d range scanner,” in The Fourth International Conference on
Control and Automation (ICCA03), Montreal, Canada, 10-12 June 2003.

[34] G. Welch and G.Bishop, “An introduction to the kalman filter,” Tech. Rep. TR
95-041, Department of Computer Science, University of North Carolina, Chapel
Hill, NC 27599-3175, February 1995.

[35] Jodo Xavier, Daniel Castrot, Marco Pachecot, Ant Nio Ruanot, and Urbano
Nunes, “Fast line, arc/circle and leg detection from laser scan data in a player
driver,” in Proceedings of the 2005 IEEE International Conference on Robotics
and Automation Barcelona, Spain, April 2005, pp. 95–106.

[36] H. Choset, Sensor based motion planning: The hierarchical generalized voronoi
graph, Ph.D. thesis, California Institute of Technology, 1996.

[37] H. Choset and J.W. Burdick, “Sensor based planning: The hierarhical gener-
alized voronoi graph,” in Proceeding Workshop on Algorithmic Foundations of
Robotics, Toulouse, France, 1996.

113

[38] D. Kortenkamp and T.Weymouth, “Topological mapping for mobile robots using
a combination of sonar and vision sensing,” in Proceedings of the Twelfth National
Conference on Artificial Intelligence, July 1994, pp. 979–984.

[39] Yamauchi B. and P.Langley, “Place recognition in dynamic environments,” in
Journal of Robotic Systems, 1997.

[40] William M. Newman and Robert F. Sproull, Principles of Interative Computer
Graphics, MacGraw-Hill Internation Series, 2 edition, 1979.

[41] H.P. Moravec, “Sensor fusion in certainty grids for mobile robots,” in AI Mag-
azine, Summer 1988, pp. 61–74.

[42] H.P. Moravec, “A bayesian method for certainty grids,” in AAAI 1989 Spring
Symposium on Mobile Robots, 1989.

[43] A. Elfes, “Sonar-based real-world mapping and navigation,” in IEEE Journal of
Robotics and Automation, June 1987, pp. 249–265.

[44] A. Elfes, Occupancy Grids: A Probabilistic Framework for Robot Perception and
Navigation, Ph.D. thesis, Department of Electrical and Computer Engineering,
Carnegie Mellon University, 1989.

[45] P.J. Besl and N.D. MacKay, “A method for registration of 3d shapes,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1992, pp. 239–256.

[46] F. Lu and E. Milios, “Robot pose estimation in unknown environments by
matching 2d range scans,” in Journal of Intelligent and Robotic Systems, 1997,
pp. 249–257.

[47] G. Wei, C. Wetzler, and E. von Puttkamer, “Keeping track of position and
orientation of moving indoor systems by correlation of range-finder scans,” in
Proceedings of the International Conference on Intelligent Robots and Systems,
1994, pp. 595–601.

[48] A. Diosi and L. Kleeman, “Laser scan matching in polar coordinates with ap-
plication to slam,” in Proceedings of the International Conference on Intelligent
Robots and Systems, August 2005, pp. 3317– 3322.

[49] C. Stachniss, D. Hähnel, W. Burgard, and G. Grisetti, “On actively closing loops
in grid-based fastslam,” Advanced Robotics - The Int. Journal of the Robotics
Society of Japan (RSJ), 2005, vol. 19, no. 10, pp. 1059–1080, 2005.

[50] Erwin Kreyszig, Advance engineering mathematics, John Wiley and SONS,
INC., 8 edition, 1999.

114

[51] S. Hagen and B.Krose, “Trajectory reconstruction for self-localization and map
building,” in Proceedings of the International Conference on Robotics and Au-
tomation, 2002, pp. 1796–1801.

[52] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
in International Journal of Robotic Research, 1986, vol. 5, pp. 90–98.

[53] J.Borenstien and Y.Koren, “The vector field histogram - fast obstacle avoidance
for mobile robots,” in IEEE Journal of Robotics and Automation, June 1991,
vol. 7, pp. 278–288.

[54] Lim Chee Wang, Lim Ser Yong, and Marcelo H. Ang Jr, “Hybrid of global path
planning and local navigation implemented on a mobile robot in indoor envi-
ronment,” in Proceedings of the IEEE International Symposium on Intelligent
Control, Vancouver Canada, 2002, pp. 821–826.

[55] Lee Gim Hee, Lim Chee Wang, and Marcelo H. Ang Jr, “An integrated algorithm
for autonomous navigation of a mobile robot in an unknown environment,” in
Third Humanoid, Nanotechnology, Information Technology, Communication and
Control Environment and Management (HNICEM) International Conference,
March 2007.

115

