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SUMMARY 

 
 

In this thesis, a novel concept of complex phasor method to process the digital 

holographic interference phase maps in complex field is proposed. Based on this 

concept, three temporal phase retrieval algorithms and one spatial retrieval approach 

are developed. Temporal complex phasor method is highly immune to noise and 

allows accurate measurement of dynamic object. A series of digital holograms is 

recorded by a high-speed camera during the continuously illumination changing or 

deformation process of the tested specimen. Each digital hologram is numerically 

reconstructed in the computer instead of optically, thus a sequence of complex-valued 

interference phase maps are obtained by the proposed concept. The complex phasor 

variation of each pixel is measured and analyzed along the time axis.  

The first temporal complex phasor algorithm based on Fourier transform is 

specially developed for dynamic measurement in which the phase is linearly dependent 

on time. By transforming the sequence of complex phasors into frequency domain, the 

peak corresponding to the rate of phase changing is readily picked up. The algorithm 

works quite well even when the data is highly noise-corrupted. But the requirement on 

linear changing phase constrains its real application.  

The short time Fourier transform (STFT) which is highly adaptive to exponential 

field is employed to develop the second and third algorithms. The second algorithm 

also transforms the sequence of complex phasors into frequency domain, and discards 

coefficients whose amplitude is lower than preset threshold. The filtered coefficients 

are inverse transformed. Due to the local transformation, bad data has no effect on data 

beyond the window width, which is a great improvement over the global transform, e.g. 
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Fourier transform. Another advantage of STFT is that it is able to tell when or where 

certain frequency components exist. The instantaneous frequency retrieval of the 

complex phasor variation of a pixel is therefore possible by the maximum modulus-the 

ridge-of a STFT coefficient. The continuous interference phase is then obtained by 

integration. It is possible to calculate the first derivative of the measured physical 

quantity using this method, e.g. velocity in deformation measurement.  

To demonstrate the validity of proposed temporal and spatial methods, two 

dynamic experiments and one static experiment are conducted: the profiling of surface 

with height step, instantaneous velocity and deformation measurement of continuously 

deforming object and deformation measurement of an aluminum plate. The commonly 

used method of directly processing phase values in digital holographic interferometry 

is employed for comparison. It is observed that the proposed methods give a better 

performance.  

The complex phasor processing as proposed in this study demonstrates a high 

potential for robust processing of continuous sequence of images. The study on 

different temporal phase analysis techniques will broaden the applications in optical, 

nondestructive testing area, and offer more precise results and bring forward a wealth 

of possible research directions. 
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NOMENCLATURE 
 
 

E Electrical field form of light waves 
 
a Real of amplitude of light wave 
 
ϕ  The phase of light wave 
 
I Intensity of light wave 
 
h Amplitude transmission 
 
ϕΔ  Interference phase 

 
Γ  Complex field of light wave 
 
d   Distance between object and hologram plane  
 
Re Real part of a complex function 
 
Im Imaginary part of a complex function 
 
ξΔ  Pixel size along x direction 

 
ηΔ  Pixel size along y direction 

 
maxf  Maximum spatial frequency 

 
maxθ      Maximum angle between object and reference wave 

 
δ  Optical path length difference  
 
Sf  Short time Fourier transform 
 

sP f  Spectrogram of short time Fourier transform 
 
ξ  Spatial frequency along x direction 
 
η  Spatial frequency along y direction 
 
A Complex field by conjugate multiplication 
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wϕΔ  Wrapped interference phase 
ℑ  Fourier transform 
 
ϕΔ ’  First derivative of interference phase 

 
xT  Time width of signal 

 
xB  Frequency domain bandwidth 

 
TBPg  Optimized window  
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CHAPTER ONE 

 
INTRODUCTION 

 
 
1.1 Background  

Dennis Gabor (1948) invented holography as a lensless means for image formation by 

reconstructed wavefronts. He created the word holography from the Greek words 

‘holo’ meaning whole and ‘graphein’ meaning to write. It is a clever method of 

combining interference and diffraction for recording the reconstructing the whole 

information contained in an optical wavefront, namely, amplitude and phase, not just 

intensity as conventional photography does. A wavefield scattered from the object and 

a reference wave interferes at the surface of recording material, and the interference 

pattern is photographically or otherwise recorded. The information about the whole 

three-dimensional wave field is coded in form of interference stripes usually not 

visible for the human eye due to the high spatial frequencies. By illuminating the 

hologram with the reference wave again, the object wave can be reconstructed with all 

effects of perspective and depth of focus. 

Besides the amazing display of three-dimensional scenes, holography has found 

numerous applications due to its unique features. One major application is Holographic 

Interferometry (HI), discovered by Stetson (1965) in the late sixties of last century. 

Two or more wave fields are compared interferometrically, with at least one of them is 

holographically recorded and reconstructed. Traditional interferometry has the most 

stringent limitation that the object under investigation be optically smooth, however, 

HI removes such a limitation. Therefore, numerous papers indicating new general 
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theories and applications were published following Stetsons’ publication. Thus HI not 

only preserves the advantages of interferometric measurement, such as high sensitivity 

and non-contacting field view, but also extends to the investigation of numerous 

materials, components and systems previously impossible to measure by classical 

optical method. The measurement of the changes of phase of the wavefield and thus 

the change of any physical quantity that affects the phase are made possible by such a 

technique. Applications ranged from the first measurement of vibration modes (Powell 

and Stetson, 1965), over deformation measurement (Haines and Hilderbrand, 1966a), 

(1966b), contour measurement (Haines and Hilderbrand, 1965), (Heflinger, 1969), to 

the determination of refractive index changes (Horman, 1965), (Sweeney and Vest, 

1973).  

The results from HI are usually in the form of fringe patterns which can be 

interpreted in a first approximation as contour lines of the amplitude of the change of 

the measured quantity. For example, a locally higher deformation results in a locally 

higher fringe density. Besides this qualitative evaluation expert interpretation is needed 

to convert these fringes into desired information. In early days, fringes were manually 

counted, later on interference patterns were recorded by video cameras (nowadays 

CCD or CMOS cameras) for digitization and quantization. Interference phases are then 

calculated from those stored interferograms, with initially developed algorithms 

resembling the former fringe counting. The introduction of the phase shifting methods 

of classic interferometric metrology into HI was a big step forward, making it possible 

to measure the interference phase between the fringe intensity maxima and minima and 

at the same time resolving the sign ambiguity. However, extra experimental efforts 

were required for the increased accuracy. Fourier transform evaluation (Kreris, 1986) 
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is an alternative without the need for generating several phase shifted interferograms 

and without the need to introduce a carrier (Taketa et al., 1982).  

While holographic interferograms were successfully evaluated by computer, the 

fabrication of the interference pattern was still a clumsy work. The wet chemical 

processing of the photographic plates, photothermoplastic film, photorefractive 

crystals, and other recording media all had their inherent drawbacks. With the 

development of computer technology, it was possible to transfer either the recording 

process or reconstruction process into the computer. Such an endeavor led to the first 

resolution: Computer Generated Holography (Lee, 1978), which generates holograms 

by numerical method. Afterwards these computer generated holograms are 

reconstructed optically. 

Goodman and Lawrence (1967) proposed numerical hologram reconstruction 

and later followed by Yaroslavski et al. (1972). They sampled optically enlarged parts 

of in-line and Fourier holograms recorded on a photographic plate and reconstructed 

these digitized conventional holograms. Onural and Scott (1987, 1992) improved the 

reconstruction algorithm and used this approach for particle measurement.  

Direct recording of Fresnel holograms with CCD by Schnars (1994) was a 

significant step forward, which enables full digital recording and processing of 

holograms, without the need of photographic recording as an intermediate step. Later 

on the term Digital Holography (DH) was accepted in the optical metrology 

community for this method. Although it is already a known fact that numerically the 

complex wave field can be reconstructed by digital holograms, previous experiments 

(Goodman and Lawrence, 1967) (Yaroslavski et al, 1972) concentrated only on 

intensity distribution. It is the realization of the potential of the digitally reconstructed 
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phase distribution that led to digital holographic interferometry (Schnars, 1994). The 

phases of stored wave fields can be accessed directly once the reconstruction is done 

using digitally recorded holograms, without any need for generating phase-shifted 

interferograms. In addition, other techniques of interferometric optical metrology, such 

as shearography or speckle photography, can be derived numerically from digital 

holography. Sharing the advantages of conventional optical holographic interferometry, 

DH also has its own distinguished features: 

 No such strict requirements as conventional holography on vibration and 

mechanical stability during recording, for CCD sensors have much higher 

sensitivity within the working wavelength than that of photographic recording 

media. 

 Reconstruction process is done by computers, no need for time-consuming wet 

chemical processing and a reconstruction setup. 

 Direct phase accessibility. High quality interference phase distributions are 

available easily by simply subtraction between phases of different states. 

Therefore, avoiding processing of often noise disturbed intensity fringe patterns. 

 Complete description of wavefield, not only intensity but also phase is available. 

Thus a more flexible way to simulate physical procedures with numerical 

algorithms. What is more, powerful image processing algorithms can be used for 

better reconstructed results. 

Digital holography (DH) is much more than a simple extension of conventional 

optical holography to digital version. It offers great potentials for non-destructive 

measurement and testing as well as 3D visualization. Employing CCD sensors as 

recording media, DH is able to digitalize and quantize the optical information of 

holograms. The reconstruction and metrological evaluations are all accomplished by 
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computers with corresponding numerical algorithms. It simplifies both the system 

configuration and evaluation procedure for phase determination, which requires much 

more efforts, both experimentally and mathematically. Digital holography can now be 

a more competing and promising technique for interferometric measurement in 

industrial applications, which are unimaginable for the traditional optical holography.   

In experimental mechanics, high precision 3D displacement measurement of 

object subject to impact loading and vibration is an area of great interest and is one of 

the most appealing applications of DH. Those displacement results can later be used to 

access engineering parameters such as strain, vibration amplitude and structural energy 

flow. Only a single hologram needs to be recorded in one state and the transient 

deformation field can be obtained quite easily by comparing wavefronts of different 

states interferometrically. In addition, there is no need at all for the employment of 

troublesome phase-shifting (Huntley et al., 1999) or a temporal carrier (Fu et al., 2005) 

to determine the phase unambiguously. By employing a pulsed laser, fast dynamic 

displacements can be recorded quite easily, provided that each pulse effectively freezes 

the object movement. Such a combination of DH and a pulsed ruby laser has been 

reported for: vibration measurements (Pedrini et al., 1997), shape measurements 

(Pedrini et al., 1999), defect recognition (Schedin et al., 2001) and dynamic 

measurements of rotating objects (Perez-lopez, 2001). However, this technique has its 

own limitation. An experiment has to be repeated several times before the evolution of 

the transient deformation can be obtained, each time with a different delay. Problems 

will arise when an experiment is difficult to repeat. Due to the rapid development of 

CCD and CMOS cameras speed, it is now possible to record speckle patterns with 

rates exceeding 10,000 frames per second. Therefore, one solution to those problems is 

to record a sequence of holograms during the whole process (Pedrini, 2003).  
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The quantitative evaluation of the resulting fringe pattern is usually done by 

carrying out spatial phase unwrapping. However, it suffers an inherent drawback that 

absolute phase values are not available. Phase value relative to some other point is 

what it all can achieve. In addition, large phase errors will be generated if the pixels of 

the wrapped interference phase map are not well modulated. An alternative is the one 

dimensional approach to unwrap along the time axis was proposed by Huntley (1993). 

Each pixel of the camera acts as an independent sensor and the phase unwrapping is 

done for each pixel in the time domain. Such kind of method is particularly useful 

when processing speckle patterns, and can avoid the spatial prorogation of phase errors. 

In addition, temporal phase unwrapping allows absolute phase value to be obtained, 

which is impossible by spatial phase unwrapping.  

 

1.2   The Scope of work 

The scope of this dissertation work is focused on temporal phase retrieval techniques 

combined with digital holographic interferometry and applying them for dynamic 

measurement. Specifically, (1) Study the mechanisms and properties of digital 

holography with emphasis on dynamic measurement; (2) Propose a novel complex 

field processing method; (3) Develop three temporal phase retrieval algorithms using 

powerful time-frequency tools based on the proposed method; (4) Compare spatial 

filtering techniques using the proposed method with commonly used ones; (5) Verify 

those proposed methods, algorithms and techniques with different digital holographic 

interferometric experiments. 

1.3 Thesis outline 

An outline of the thesis is as follows:  
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Chapter 1 provides an introduction of this dissertation.  

Chapter 2 reviews the foundations of optical and digital holography. In digital 

holographic interferometry, the basis of the two-illumination-point method for surface 

profiling and deformation measurement are discussed. This chapter also discusses the 

advantage of digital holographic interferometry’s application to dynamic measurement.  

Chapter 3 presents the theory of the proposed complex phasor method, under 

which the temporal Fourier analysis, temporal STFT filtering, temporal ridge 

algorithm are developed.  

Chapter 4 describes the practical aspects of a dynamic phase measurement. The 

setups are described.  

Chapter 5 compares the results obtained by the conventional and proposed 

methods. The advantages, disadvantages and accuracy of the proposed methods are 

analyzed in detail. 

Chapter 6 summarizes this project work and shows potential development on 

dynamic measurements. 
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CHAPTER TWO 

 
LITERATURE REVIEW 

 
 

2.1   Foundations of holography 

2.1.1 Hologram recording  

An optical setup composed of a light source (laser), mirrors and lenses to guide beam 

and a recording device, e. g. a photographic plate is usually used to record holograms. 

A typical setup (Schnars, 2005) is shown in Figure 2.1. A laser beam with sufficient 

coherence length is split into two parts by a beam splitter. One part of the wave 

illuminates the object, scattered and reflected to the recording medium. The other one 

acting as the reference wave illuminates the light sensitive medium directly. Both 

waves interfere. The resulting interference pattern is recorded and chemically 

developed.  

   The complex amplitude of the object wave is described by 

 
( ) ( ), ( , ) exp ,O O OE x y a x y i x yϕ⎡= ⎣ ⎤⎦                                                                             (2.1) 

 

with real amplitude  and phase Oa oϕ . 

 
( ) ( ) ( ), , exp ,R R RE x y a x y i x yϕ⎡= ⎣ ⎤⎦                                                                            (2.2) 

 

is the complex amplitude of the reference wave with real amplitude  and phase Ra Rϕ . 
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Beam 
Splitter

Mirror 

Mirror 

Mirror 

Hologram Object  

Laser 

lens 

lens 

 

Figure 2.1 Schematic layout of the hologram recording setup 
 

Both waves interfere at the surface of the recording medium. The intensity is 

given as 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) (

2

*

2 2 * *

, , ,

, , , ,

, , , , ,

O R

O R O R

O R O R O R

I x y E x y E x y

E x y E x y E x y E x y

a x y a x y E x y E x y E x y E x y

= +

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦
= + + + ),

                      (2.3) 

 

The amplitude transmission ( ),h x  of the developed photographic plated is 

proportional to

y

( ),I x y : 

 
( ) (0,h x y h I x yβτ= + ),                                                                                              (2.4) 
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The constant β  is the slope of the amplitude transmittance versus exposure 

characteristic of the light sensitive material. τ  is the exposure time and is the 

amplitude transmission of the unexposed plate. 

0h

 

2.1.2 Optical reconstruction 

The developed photographic plate is illuminated by the reference wave , as shown 

in Figure 2.2, for optical reconstruction of the object wave. This gives a modulation of 

the reference wave by the transmission

RE

( ),h x y : 

Beam 
Splitter

Stop 

Mirror 

Mirror 

Hologram Reconstructed Image   

Laser 

lens 

 

Figure 2.2 Schematic layout of optical reconstruction                              
 

( ) ( )
( ) ( ) ( ) ( ) (2 2 2 2

0

, ,

, , ,

R

R O R R O R O

E x y h x y

h a a E x y a E x y E x y E x yβτ βτ βτ ∗

=

⎡ ⎤+ + + +⎣ ⎦ ),
                        (2.5) 
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The first term on the right side of the equation is the zero diffraction order, it is 

just the reference wave multiplied with the mean transmittance. The second term is the 

reconstructed object wave, forming the virtual image. The factor before it only 

influences the brightness of the image. The third term produces a distorted real image 

of the object.  

 
2.2   Holographic interferometry (HI) 

By holographic recording and reconstruction of a wave field, it is possible to compare 

such a wave field interferometrically either with a wave field scattered directly by the 

object, or with another holographically reconstructed wave field. HI is defined as the 

interferometric comparison of two or more wave fields, at least one of which is 

holographically reconstructed (Vest, 1979). HI is a non-contact, non-destructive 

method with very high sensitivity. The resolution is able to reach up to one hundredth 

of a wavelength. 

Only slight differences between the wave fields to be compared by holographic 

interferometry are allowed: 

1. The same microstructure of object is demanded; 

2. The geometry for all wave fields to be compared must be the same; 

3. The wavelength and coherence for optical laser radiation used must be stable 

enough; 

4. The change of the object to be measured should be in a small range. 

In double exposure method of HI, two wave fields scattered from the same 

object in two different states are recorded consecutively by the same recording media 
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(Sollid and Swint, 1970), shown in Figure 2.3. The first exposure corresponds to initial 

state of object while the second the state of object after a physical parameter changes.  

 

Beam 
Splitter

Mirror 

Mirror 

Mirror 

Hologram Object of both states

Laser 

lens 

lens 

 

Figure 2.3 Recording of a double exposure hologram  
 

The complex amplitude of the object wave in its initial state is: 

 
( ) ( )1 , exp ,O o x y i x yϕ⎡= ⎣ ⎤⎦

)

                                            (2.6) 
 

where  is the real amplitude and ( ,o x y ( ),x yϕ  the phase distribution of the object 

wave. Due to the microstructure of the diffusely reflecting or refracting object, ( ),x yϕ  

changes randomly in space. The variation of the physical parameter to be measured 

leads to a change of the phase distribution from ( ),x yϕ  to ϕ ϕ+ Δ . ϕΔ  referred to 

interference phase, describes the difference between the initial state and the changed 

state. The complex amplitude of second state is therefore given as: 
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( ) ( ) ( ){ }2 , exp , ,O o x y i x y x yϕ ϕ⎡= + Δ⎣ ⎤⎦                                  (2.7) 

 

We illuminate the developed photographic plate with the reference wave , 

both recorded wave fields are reconstructed simultaneously, as shown in Figure 2.4.  

RE

Beam 
Splitter

Stop 

Mirror 

Mirror 

Hologram 
Reconstructed Image of both 

states 

Laser 

lens 

 

Figure 2.4 Reconstruction 
 

They interfere and result in a stationary intensity distribution: 

 

( ) ( )( )
( )

2
1 2 1 2 1 2

2

,

2 1 cos

I x y O O O O O O

o ϕ

∗= + = + +

⎡ ⎤= + Δ⎣ ⎦
                                 (2.8) 

 

Therefore the general expression for the intensity of an interference pattern is: 

 
( ) ( ) ( ) ( ), , , cos ,I x y A x y B x y x yϕ= + Δ                                                                     (2.9) 
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It is generally impossible to calculate ϕΔ  directly from the recorded intensity, 

for the items ( ),A x y  and ( ),B x y  are unknown. What’s more the cosine is an even 

function and the sign of ϕΔ  cannot be determined unambiguously. Therefore several 

techniques have been introduced to calculate the interference phase with the help of 

additional information. The most commonly used method of them is phase shifting. 

 

2.3   Digital holography (DH) 

In spite of the obvious advantages, classic holographic interferometry has always been 

regarded as a tool only applicable in laboratories. The reasons are as follows: First, the 

strong stability requirement of optical holography becomes the obstacle for industrial 

environments unless pulsed lasers are employed. Second, the photographic recording 

and the following chemical developments makes the on-line inspection very difficult 

due to the annoying time delays. Third, optical reconstruction has to be done in optical 

setup, for the case of real-time measurement, the exact repositioning of holographic 

plates after chemical development is required. Last, one thing is still missing in optical 

holography: the phase of the object wave could be reconstructed optically, however, 

not be measured directly. With respect to dynamic measurement, optical holography 

appears quite clumsy. 

The last huge step to the complete access of the object wave was digital 

holography. An exciting new tool to measure, store, transmit, manipulate those 

electromagnetical wave fields in the computer. In digital holography, the holographic 

image is replaced by a CCD-target, at the surface of which the reference wave and the 

object wave are interfering. The resulting hologram is digitally sampled and 

transferred to the computer by the framegrabber. The digital hologram is reconstructed 
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solely in the computer by diffraction theory and numerical algorithms. The relatively 

troublesome process of developing and replacing of a photographic plate is no longer 

needed.  

 

2.3.1 Types of digital holography 

2.3.1.1 General Principles 

Let the geometry for the numerical description be as in Figure 2.5. The CCD target 

with the coordinates ( ),ξ η  has a distance  apart from the object surface.  d

y

x

η y'

ξ x'

Object Plane Hologram Plane Image Plane 

d d 

z  

 

Figure 2.5 Coordinate system for numerical hologram reconstruction 
 

The image plane where the real image can be reconstructed is also d  away from 

hologram plane.This plane has the coordinates of ( )', 'x y . A hologram with the 

intensity distribution ( ,h )ξ η  is produced by the interference of object wave and the 

reference wave ( ),RE ξ η  at the surface of the CCD target. Then h ( ),ξ η  is quantized 

and digitized to be stored in the computer.  

The diffracted wave field in the image plane is given by Fresnel-Kirchhoff 

integral (Goodman, 1996): 
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( ) ( ) ( )

2exp '
', ' , ,

'R

i
ix y h E

π ρ
λξ η ξ η

λ ρ

+∞ +∞

−∞ −∞

⎛ ⎞−⎜ ⎟
⎝ ⎠Γ = ∫ ∫ dxdy                                            (2.10) 

 
with 

 

( ) ( )2 2 2' ' 'x yρ ξ η= − + − + d                                                                                  (2.11) 
 

'ρ  is the distance between a point in the hologram plane and a point in the 

reconstruction plane. Eq. (2.10) is the basis for numerical hologram reconstruction. It 

can be seen that the reconstructed wave field ( )', 'x yΓ  is a complex function, from 

which both the intensity as well as the phase can be calculated (Schnars, 1993). This is 

a huge improvement over the optical holography in which only the intensity is visible. 

The direct phase access makes up a real advantage when coming to digital holographic 

interferometry.  

Two different approaches (Kreis and Jüptner, 1997) have been introduced for 

the numerical solution of Eq. (2.10). In Fresnel-approximation, 'ρ  in the denominator 

is replaced by the distance d, which is valid when the distance d is large compared with 

CCD chip size. Another approach making use of the convolution theorem considers the 

integral as a convolution. It was first applied by Demetrakopoulos and Mittra (1974) 

for numerical reconstruction of sub optical holograms for the first time. Later Kreis 

(1997) applied this method to optical holography. Only the Fresnel-approximation will 

be treated in this study along with conditions that, if fulfilled, can simplify calculations. 

 

2.3.1.2 Reconstruction by the Fresnel Approximation 

The expression of Eq. (2.11) can be expanded to a Taylor series: 
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( ) ( ) ( ) ( )
22 22 2

3

' '' ' 1'
2 2 8

x yx y
d

d d d

ξ ηξ η
ρ

⎡ ⎤− + −− − ⎣= + + − +L⎦                                  (2.12) 

 

The fourth item can be neglected, if it is small compared to the wavelength 

(Klein and Furtak, 1986). Then the distance 'ρ  consists of linear and quadratic terms: 

 
( ) ( )2 2' '

'
2 2

x y
d

d d
ξ η

ρ
− −

= + +                                                                                     (2.13) 

 

A further approximation of replacing the denominator in Eq. (2.10) by d gives 

rise to the following expression for reconstruction of a real image: 

 

( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2', ' exp exp ' '

2, , exp exp ' 'R

ix y i d i x y
d d

E h i i x y d
d d

π π
λ λ λ

π π dξ η ξ η ξ η ξ η ξ
λ λ

+∞ +∞

−∞ −∞

⎛ ⎞ ⎡ ⎤Γ = − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤ ⎡ ⎤× +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ η+
                 (2.14) 

 

This equation is called Fresnel approximation or Fresnel transformation because 

of the mathematical similarity between the Fourier Transform and itself.  

The intensity is calculated by squaring: 

 
( ) ( ) 2

', ' ', 'I x y x y= Γ                                                                                                 (2.15) 
 

The phase is calculated by arctan: 

 

( )
( )
( )

Im ', '
', ' arctan

Re ', '
x y

x y
x y

ϕ
⎡ ⎤Γ⎣=
⎡ ⎤Γ⎣ ⎦

⎦

)

                                                                              (2.16) 

 

where Re denotes the real part while Im the imaginary part. Assuming the hologram 

function ( ,h ξ η  is sampled on a CCD target of M N× points with steps ξ ηΔ ×Δ  
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along the coordinates. With these discrete values the integral of (2.14) converts to 

finite sums (Schnars and Jüptner, 2005): 

 

( )

( ) ( ) ( )

2 2

2 2 2 2

1 1
2 2 2 2

0 0

2, exp exp

, , exp exp 2
M N

R
k l

i m nm n i d i d
d M N

km lnE k l h k l i k l i
d M

π πλ
λ λ ξ η

π ξ η π
λ

− −

= =

⎡ ⎤⎛ ⎞⎛ ⎞Γ = − +⎢ ⎥⎜ ⎟⎜ ⎟ Δ Δ⎝ ⎠ ⎝ ⎠⎣

N

⎦
⎡ ⎤⎡ ⎤ ⎛× Δ + Δ ⎜ ⎟

⎞+⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∑∑

                (2.17) 

 

It can be seen that Eq. (2.17) is a discrete inverse Fourier transform of 

( ),RE k l multiplied by  and ( ,h k l ) ( )( )2 2 2 2exp i d k lπ λ ξ η⎡ ⎤Δ + Δ⎣ ⎦ . This calculation is 

done most effectively by the Fast Fourier Transform (FFT) algorithm. The factor in 

front of the sum only affects the overall phase and can therefore be neglected if only 

the intensity is of concerned.   

 

2.3.1.3 Digital Fourier holography 

Digital lensless Fourier holography has been realized by Wagner et al. (1999). The 

specialty of lensless Fourier holography lies in the fact that the point source of the 

spherical reference wave is located in the same plane with the object. The reference 

wave at the CCD plane is therefore described as: 

 

( )

( )

2 2 2

2 2 2

2 2

2exp
,

1 2exp exp

R

i d
E

d

i d i
d d

π ξ η
λξ η

ξ η

π π ξ η
λ λ

⎛ ⎞− + +⎜ ⎟
⎝ ⎠=

+ +

⎛ ⎞ ⎡≈ − − +⎜ ⎟
⎤

⎢ ⎥⎝ ⎠ ⎣ ⎦

                                                   (2.18) 

 

Digital lensless Fourier holography recording setup is shown is Figure 2.6. 
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Object 

Reference wave  
source point 

CCD sensor 

 

Figure 2.6 Digital lensless Fourier holography 
 

The approximation used here is the same as the one used in the derivation of 

Fresnel transform. Inserting Eq. (2.18) into Eq. (2.14) results in following expression: 

 

( ) ( ) ( )2 2 1', ' exp ' ' ,x y C i x y h
d
π ξ η
λ

−⎡ ⎤ ⎡ ⎤Γ = + + ℑ ⎣ ⎦⎢ ⎥⎣ ⎦
                                                   (2.19) 

 

where C denotes constant. Digital lensless Fourier holography has a simpler 

reconstruction algorithm. However, it loses the ability to refocus, as the reconstruction 

distance d does not appear.   

 

2.3.1.4 Phase shifting digital holography 

By using the methods described above, we can reconstruct the complex amplitude of 

the object wave field from a single hologram. However, Skarman (1994), (1996) 

proposed a completely different method. He employed a phase shifting method to 

calculate the initial complex amplitude and thus the complex amplitude in any plane 

can be calculated using the Fresnel-Kirchhoff formulation of diffraction. Later this 

phase shifting method was improved and applied to opaque by Yamaguchi et al. 

(1997), (2001), and (2002). 
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PZT 
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Splitter

Reference 
wave 

Object 

CCD 

Figure 2.7 Phase shifting digital holography 
 

The principal setup for phase shifting digital holography is illustrated in Figure 

2.7. A mirror mounted on a piezoelectric transducer (PZT) guides the reference wave 

and shifts the phase of the reference with step. The object phase 0ϕ  is calculated from 

these phase shifted interferograms recorded by the CCD camera. As to the real 

amplitude  of the object wave, it can be measured from the intensity by blocking the 

reference wave. 

0a

The complex amplitude of the object wave is therefore determined: 

 
( ) ( ) ( ), , exp ,O O OE a iξ η ξ η ϕ ξ η⎡= ⎣ ⎤⎦                                                                          (2.20) 

 

The complex amplitude in the image plane is calculated using Eq. (2.14): 

 

( ) ( )

( ) ( ) ( )

2 2

2 2

', ' exp ' '

2, exp exp ' '

O

O

iE x y C x y
d

iE i x y d d
d d

π
λ

π πξ η ξ η ξ η
λ λ

+∞ +∞

−∞ −∞

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤× + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ ξ η
                             (2.21) 
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Now that we know the complex amplitude in the hologram plane, we can then 

invert the recording process to reconstruct the object wave (Seebacher, 2001). 

Hologram recording process is described: 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( ){ }

2 22

2 22

1

2exp
, ,

, , , ,

O O

O

i d x y
iE E x y dxdy

d x y

E x y g x y

π ξ η
λξ η

λ ξ η

ξ η

+∞ +∞

−∞ −∞

−

⎛ ⎞− + − + −⎜ ⎟
⎝ ⎠=

+ − + −

⎡ ⎤ ⎡ ⎤= ℑ ℑ ⋅ℑ⎣ ⎦ ⎣ ⎦

∫ ∫                   (2.22) 

 
with  

 

( )
( ) ( )

( ) ( )

2 22

2 22

2exp
, , ,

i d x y
ig x y

d x y

π ξ η
λξ η

λ ξ η

⎡ ⎤− + − + −⎢ ⎥⎣=
+ − + −

⎦                                            (2.23) 

 

( ),OE x y  is the complex amplitude of the object wave. By inversion of Eq. 

(2.22), it can be calculated directly: 

 

( )
( )

( )
1 ,

,
, , ,

O
O

E
E x y

g x y
ξ η

ξ η
−
⎧ ⎫⎡ ⎤ℑ⎪ ⎪⎣ ⎦= ℑ ⎨ ⎬

⎡ ⎤ℑ⎪ ⎪⎣ ⎦⎩ ⎭
                                                                           (2.24) 

 

The advantage of phase shifting digital holography is a reconstructed image of 

the object free of the D.C term and the twin image. Additional experimental efforts are 

needed to achieve this: phase shifted interferograms have to be generated and recorded. 

Thus such a method restricts itself to the measurement of slowly varying phenomena 

with constant phase during the recording cycle. 
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2.4   Digital holographic interferometry 

Instead of the optical reconstruction of a double exposure hologram and an evaluation 

of the resulting intensity pattern, the reconstructed phase fields can now be compared 

directly (Schnars, 1994) in digital holography. The cumbersome and error prone 

computer-aided evaluation methods to determine the interference phase from intensity 

patterns are out of date. Sign correct interference phases are obtained with minimum 

noise, high resolution, and an experimental effort significantly less than any phase 

shifting methods (Kreis, 2005). 

In each state of the object, one digital hologram is recorded. Those digital 

holograms are then reconstructed separately using the reconstruction algorithms above. 

From the resulting complex amplitudes ( )1 ,x yΓ  and ( )2 ,x yΓ  the phase distributions 

are obtained: 

 

( ) ( )
( )

1
1

1

Im ,
, arctan

Re ,
x y

x y
x y

ϕ
Γ

=
Γ

                                                                                    (2.25) 

 

( ) ( )
( )

2
2

2

Im ,
, arctan

Re ,
x y

x y
x y

ϕ
Γ

=
Γ

                                                                                   (2.26) 

 

where the index 1 denotes the first state and index 2 the second state. The interference 

phase is then determined in a pointwise manner by a modulo 2π subtraction: 

 
1 2 1 2

1 2 1 2

           if         
2    if 

ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ π ϕ ϕ
− ≥⎧

Δ = ⎨ − + <⎩
                                                                         (2.27) 

 

2.5   Phase unwrapping  

The previous sections show that the interference phase by digital holographic 

interferometry is indefinite to an additive multiple of 2π , i. e. it is wrapped modulo 
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2π . The processing of converting the interference phase modulo 2π   into a 

continuous phase distribution is called phase unwrapping. This can be defined in the 

following expression (Creath, et al. 1993): 

“Phase unwrapping is the process by which the absolute value of the phase angle of a 

continuous function that extends over a range of more than π2  (relative to a predefined 

starting point) is recovered. This absolute value is lost when the phase term is wrapped upon 

itself with a repeat distance of π2  due to the fundamental sinusoidal nature of the wave 

function (electromagnetic radiation) used in the measurement of physical properties.” 

 

2.5.1 Spatial Phase Unwrapping 

The unwrapping process consists, in one way or another, in comparing pixels or groups 

of pixels to detect and remove the π2  phase jumps. Numerous approaches have been 

proposed to process single wrapped phase maps (Ghiglia and Pritt, 1998), such as 

branch cut method (Just et al. 1995), quality-guided path following algorithm (Bone, 

1991), mask cut algorithm (Priti et al. 1990), minimum discontinuity approach (Flynn, 

1996), cellular automata (Ghiglia et al. 1987), neural networks and so on. They all 

have their own advantages and disadvantages, emphasizing the fact again that no 

single tool is able to solve all the problems (Robinson and Reid, 1993).  

This process also involves kinds of problems, in particular if the wrapped phase 

map contains lots of noises. Generally, a proper filtering of the wrapped phase map can 

greatly improve the results. However, if the object contains physical discontinuities 

such as the abrupt step change on an object in shape measurement, or cracks of the 

object surface in deformation measurement, phase unwrapping will result in the 

propagation of errors. This problem also arises when fringes are in unconnected zones. 
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Another inherent disadvantage of such a method is that only relative phase values can 

be obtained, and no absolute measurement is possible. 

 

2.5.2 Temporal Phase Unwrapping 

The algorithms mentioned above are “spatial” algorithms in the sense that a phase map 

is unwrapped by comparing adjacent pixels or pixel regions within a single image.  An 

alternative approach was proposed by Huntley and Saldner (1993) where the 

unwrapping process is carried out along the time axis. A series of interferograms are 

recorded and each pixel of the camera acts as an independent sensor. This procedure is 

particularly useful for an important subclass of interferometric applications where a 

series of incremental phase maps can be obtained. The advantages of such a procedure 

are obvious: First, erroneous phase values do not propagate spatially within a single 

image. Second, physical discontinuities can be dealt with automatically. The isolated 

regions can be correctly unwrapped, without any uncertainty concerning their relative 

phase order. Third, it allows the absolute phase values to be obtained. Although it 

suffers the limitation that the experiment has to be conducted step by step and may 

introduce loading problem, this novel concept leads to a family of phase extraction 

methods-temporal analysis techniques.  

 

2.6   Temporal phase unwrapping of digital holograms  

As mentioned in the introduction chapter, digital holographic interferometry is highly 

suitable for dynamic measurement. An interesting combination of digital holographic 

interferometry with temporal phase unwrapping to measure absolute deformation of 

the object has been reported (Pedrini et al., 2003). Figure 2.8 shows the procedure.  
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Such a method offers a unique advantage to determine unambiguously the direction of 

motion over the most commonly employed temporal digital speckle pattern 

interferometry that uses one dimensional Fourier transform (Joenathan et al., 1998a), 

(Joenathan et al., 1998b). In addition, it also avoids the troublesome phase-shifting 

(Huntley, 1999) technique which requires the phase to be constant during the 

acquisition of the phase-shifted interferograms. 

 

 
Figure 2.8 Procedure for temporal phase unwrapping of digital holograms (Pedrini et 

al., 2003) 
 

 

A sequence of digital holograms of an object subjected to continuous 

deformation is recorded. Each hologram is then reconstructed and the phase 

distribution is calculated. As we know, the calculated phase distribution are all 

wrapped into π−  to π , therefore, a temporal phase unwrapping (Huntley and Saldner, 

1993) is needed to carry out pixel by pixel. The 2D evolution of phase as function of 

time can be obtained. It is noticed that before the unwrapping process pixels having 

low intensity modulation are removed.  
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2.7   Short time Fourier transform (STFT)  

2.7.1 An introduction to STFT 

The Fourier transform has been the standard tool for signal processing in the spectral 

domain for many years. Although not accepted at the first time it is introduced, Fourier 

transform later became the cornerstones of contemporary mathematics and engineering. 

The definition of Fourier transform is given as: 

 

( ) ( )ˆ iwtf w f t e
+∞ −

−∞
= ∫ dt                                                                                               (2.28) 

 

However, such a tool appears clumsy when the signal is nonstationary. Since many 

signals in practice have spectra which vary with time. Due to the nature of classic 

Fourier transform, only the overall frequency is revealled. Therefore the information at 

which a frequency occurs at a certain time is lost. One solution of this problem is to 

introduce time dependency and at the same time preserve the linearity. The short time 

Fourier transform looks at the signal through a window over which the signal is 

approximately stationary (Goudemand, 2006).  

The STFT splits the signal into many segments, which are then Fourier 

transformed. A window function ( )g t u−  located at instant u isolates a small portion 

of the signal. The resulting STFT is (Mallat, 1999): 

 

( ) ( ) ( ), i tSf u f t g t u e dtξξ
+∞ −

−∞
= −∫                                                                             (2.29) 

 
The only difference between Eq. (2.37) and standard Fourier transform is the 

presence of a window function ( )g t . As the name implies, small durations of the 

signal are Fourier transformed. Alternatively, the STFT can also be interpreted as the 

 
26



 
CHAPTER TWO                                                                                             LITERATURE REVIEW 

projection of the signal onto a set of bases ( ) i tg t u e ξ∗ − −  with the parameters t and w. 

Those bases don’t have infinite extent in time any more (Chen and Ling, 2002). Hence 

it is possible to observe how the signal frequency changes with time. This is 

accomplished by translating the window with time. A 2D joint time-frequency 

representation can thus be resulted.   

An energy density called spectrogram is then defined (Mallat, 1999): 

 
( ) ( ) 2

, ,sP f u Sf uξ ξ=                                                                                               (2.30) 
 
It measures the energy of the signal in the time-frequency neighborhood of ( ),u ξ  

specified by the Heisenberg box of ,ug ξ .  

In STFT, the time-frequency uncertainty principle states that the product of the 

temporal duration tΔ  and frequency bandwidth ωΔ  is necessarily larger than a 

constant factor: 21≥ωΔΔt . Equality holds if and only if the window function w is 

Gaussian.   

 

2.7.2 STFT in optical metrology 

Two advantages of STFT make it a powerful tool when applied to optical metrology: 

(1) STFT is performed locally contrast to the global operation of Fourier transform. 

Hence a signal in one position will not affect the signal of another place, if the distance 

between them is larger than the effective radius of the window; (2) the spectrum of a 

local signal tends to be simpler than the spectrum of the whole signal. Thus more 

effective operation is possible (Qian, 2004). Compared with most commonly used 

Fourier transform, STFT is able to reduce the noise more effectively and prevent the 

propagation of bad pixels. Furthermore, it is more adaptive to exponential field and 
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more robust to noise due to its redundancy compared with discrete orthogonal wavelet 

transform (Qian et al., 2005).  Two spatial methods were proposed by Qian (2004). 

One is to filter the phase field by STFT and the other is to extract phase derivation by 

ridge algorithm of STFT. The main application of STFT includes phase and frequency 

retrieval, strain estimation in moiré interferometry, fault detection, edge detection and 

fringe segmentation.  

 

2.7.2.1 Filtering by STFT 

A fringe is first transformed into its spectrum. The noise distributes all over the 

spectrum due to the randomness and incoherence with the STFT basis. It can be 

suppressed by discarding the coefficients if their values are smaller than the preset 

threshold. A smooth image will be obtained after the inverse STFT. The scheme is 

described as: 

 

( ) ( ) ( ), , ,2

1, , , , ,
4

h h

l l
u vf x y Sf u v g x y d d dudv

η ξ

ξ ηη ξ
ξ η ξ η

π
+∞ +∞

−∞ −∞
= ×∫ ∫ ∫ ∫                         (2.31) 

 
with  
 

( )
( ) ( )

( )
, , ,       if    , , ,

, , ,
0                         if    , , ,

Sf u v Sf u v thr
Sf u v

Sf u v thr

ξ η ξ η
ξ η

ξ η

⎧ ≥⎪= ⎨
≤⎪⎩

                                       (2.32) 

 
Figure 2.9 shows an example from Qian (2007). It can be seen that a much better 

result is obtained by STFT. 

 

2.7.2.2 Ridges by STFT 

Consider a small block of a fringe pattern. A windowed element  is used 

to compare with it. The element that gives the highest similarity is called ridge. The 

(, , , ,u vg xξ η )y
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values of ξ  and η  that maximize the similarity are taken as the local frequency of 

pixel ( ),ξ η . Local frequencies are expressed as: 

 
( ) ( ) ( ), , , arg  max , , ,x yw u v w u v Sf u v ξ η⎡ ⎤ =⎣ ⎦                                                           (2.33) 

 

Figure 2.10 shows an example of strain exaction from moiré interferograms by 

WFR. 

 

 
Figure 2.9 Phase retrieval from phase-shifted fringes: (a) one of four phase-shifted 

fringe patterns; (b) phase by phase-shifting technique and (c) phase by WFR. (Qian, 
2007) 

 

 

Figure 2.10 WFR for strain extraction: (a) Original moiré fringe pattern; (b) strain 
contour in x direction using moiré of moiré technique and (c) strain field by WFR 

(Qian, 2007) 
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THEORY DEVELOPMENT 

 
 

3.1   D.C.-term of the Fresnel transform 

As shown in the intensity display of a holographic reconstruction in Figure 3.1, a 

bright center square is recognized, which is much brighter than the reconstructed 

image. Nothing is done to enhance the eligibility of the overall pattern. Therefore no 

images will be observed. The bright center can be explained as the undiffracted part of 

the reconstructing reference wave from the optical point of view; it is D.C.-term of the 

Fresnel transform from the computational point view. 

 

 
Figure 3.1 A reconstructed intensity distribution by Fresnel transform without clipping 

 

If the factors affecting the phase in a way independent of the specific hologram 

before the integrals of Eq. (2.14) or Eq. (2.17) are neglected, the Fresnel transform is 
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nothing but a Fourier transform of a product. The product is the result of hologram 

timing the reference wave and a chirp function. According to the convolution theorem, 

a same result will be obtained as the convolution of the Fourier transforms of 

individual factors. The Fourier transform of the hologram multiplied with reference 

wave ( ) ( ), ,RE k l h k l  generally is a trimodal with a high-amplitude peak at the spatial 

frequency . The D.C. - term whose value is calculated by (0,0)

)h k l

 

( ) ( ) (
1 1

0 0
0,0 , ,

M N

R
k l

H E k l
− −

= =

= ∑∑                                                                                  (3.1) 

 

can be modeled by a Dirac delta function. The D.C.-term of the Fresnel transform now 

becomes the D.C.-term of the Fourier transform of the digital hologram multiplied by 

the reference wave convolved with the Fourier transform of the two-dimensional chirp 

function. Since a Dirac delta function is assumed for Eq. (3.1), D.C.-term for the 

Fresnel transform is the Fourier transform of the finite chirp function 

 

( 2 2 2 2exp i k l
d
π ξ η
λ

⎡ Δ + Δ⎢⎣ ⎦
)⎤⎥                                                                                         (3.2) 

 

In two dimensions, the area of D.C.-term is given as 

 
2 2 2 2M N
d d
ξ η
λ λ
Δ Δ

×                                                                                                        (3.3) 

 

where 2 2M dξ λΔ  is along x direction and 2 2N dη λΔ along y direction. It is 

observed that the width of D.C.-term increases with increasing pixel dimensions and 

pixel number of the CCD sensor while decreases with increasing distance d. 

As shown above, D.C.-term is of no practical use at all, however, due to its high 

intensity, it disturbs the dynamic range of the display seriously. Nothing can be done to 
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the D.C.-term in optical holography, however, there indeed exits some effective 

numerical methods to eliminate D.C.-term.   

Takaki et al. (1999) described a separate recording method, in which the object 

wave intensity and the reference wave intensity are recorded separately besides 

recording the hologram. The object wave intensity and the reference wave intensity are 

then subtracted from the hologram before reconstruction. A stochastic phase (Demoli 

et al., 2003) is introduced during the recording. The digital hologram is then subtracted 

from the one without this phase, which can also result in a suppression of the unwanted 

terms. These hybrid methods require extra experimental efforts such as shutter, phase 

modulator as well as the multi-recording of digital hologram of the same scene. Thus 

they are not suitable for holographic interferometric applications, especially dynamic 

measurement.  

A combination of purely numerical methods only using a single digital hologram 

is mainly used in this study. A mean value subtraction method is introduced by Kreis 

and Jüptner (1997).  Rewrite Eq. (2.3) as follows: 

 
( ) ( ) ( )

( ) ( ) (

2

2 2

, , ,

, , 2 cos
O R

O R R O O

I x y E x y E x y

a x y a x y a a )Rϕ ϕ

= +

= + + −
                                                   (3.4) 

 

We can see that the first two terms lead to D.C.-term in the reconstruction 

process. The third term is statically varying between 2 O Ra a±  from pixel to pixel at the 

CCD sensor surface. The average intensity of the digital hologram is  

 

(
1 1

0 0

1 ,
M N

av
k l

)I I k l
MN

− −

= =

= ∑∑                                                                                                (3.5) 
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The first two items now can be suppressed by subtracting this average intensity 

avI  form the original digital hologram.  

 
( ) ( ) (' , , ,av )I k l I k l I k l= −                                                                                           (3.6) 

 

As a consequence, D.C.-term in the Fourier spectrum of (' , )I k l  by Eq. (3.1) is 

zero. The convolution of a zero with the transform of the chirp function is zero. It is 

noteworthy that (' , )I k l  will exhibit negative values, which are impossible in optical 

holography. This concept, however, is possible in digital holography. Since the 

relationship between each pixel is the same, with the only difference that the digital 

hologram is downshifted.  

The above method can be interpreted as the application of a high-pass filter with 

a cut off frequency just equal to the smallest nonzero frequency. Therefore other high-

pass filters can also be employed. In this way, good results have been realized by the 

high pass filter subtracting the averages over 3 3× pixel neighborhood from the origin 

digital hologram: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) (

1' , , 1, 1 1, 1, 1
9

                                  , 1 , , 1

                                  1, 1 1, 1, 1

I k l I k l I k l I k l I k l

I k l I k l I k l

I k l I k l I k l

⎡= − − − + − + − +⎣

+ − + + +

⎤+ + − + + + + + ⎦)
                               (3.7) 

 

where and . 2, , 1k M= −K 2, , 1l N= −K

As mentioned in previous chapter, digital lensless Fourier holography is just a 

simple 2D Fourier transform of the recorded digital hologram. Figure 3.2 illustrates the 

intensity display of a reconstructed image. The recorded object is a die. D.C.-term for 

this special setup restricts only to a pixel lying at the spatial frequency ( ) .  0,0
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D.C.-term

Figure 3.2 Digital lensless Fourier holography 

 

3.2   Spatial frequency requirements 

The biggest difference of digital holography from optical holography is the 

employment of CCD to record holograms which are then stored and reconstructed in a 

computer. The angle α  between the object and reference wave determines the spatial 

frequency of this interference pattern. The maximum spatial frequency to be resolved 

is therefore: 

 
max

max
2 sin

2
f α

λ
=                                                                                                        (3.8) 

 

A sampling of the intensity distribution of the hologram is meaningful only if the 

sampling theorem is satisfied. The sampling theorem requires that the sampling rate 

must be at least two times larger than the maximum frequency: 

 

max
1 2 f
ξ
>

Δ
                                                                                                                (3.9) 
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Because α  in all practical cases remain small, an approximation sin 2 2α α=  

in the calculations can be adopted. From Eq. (3.8) and (3.9), an upper limit to the angle 

is set: 

 

max 2
λα
ξ

=
Δ

                                                                                                               (3.10) 

 

In holography, no matter optical or digital, the configurations of the recording 

system can be categorized into two kinds: in-line and off-axis. Applications of in-line 

system are generally limited due to its interactive influence of coaxial diffraction wave 

components, while it is off-axis setups that have been always active. Therefore, in 

this study, we restrict ourselves to the discussion of off-axis systems. In the off-axis 

setup, an offset angle θ  is generally introduced to separate the various diffraction 

wave components in space. In digital Fresnel holography, such an angle is made by 

placing the object a distance  away from the optical axis of the system, while the 

collimated reference wave incidents normally onto the CCD sensor surface.  

offb

To separate the twin images from each other and from D.C.-term, the offset 

angle θ   between the object wave and the reference wave must be greater than a 

minimum value minθ . 

Suppose that the spatial frequency bandwidth of the object is . The spectrum 

of the diffraction terms of an off-axis system is shown in Figure 3.3. 

oW

1G  term lying at 

the origin of the frequency plane is just the spectrum of direct transmitting reference 

wave, while the term 2G is the halo wave component. It is the autocorrelation of the 

object spectrum in the spatial frequency domain and has a bandwidth of 2 . oW 3G  
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term whose center is located at position ( )sin ,0θ λ  is proportional to the object 

spectrum. It is actually the real image wavefield in the spatial domain, while 4G  is the 

spectrum of the virtual image. In order to separate 3G  or 4G  term from 2G term, the 

condition of sin 3 2oWθ λ > , the minimum allowable offset angel minθ  is therefore: 

 
(1

min sin 3 2oWθ −= )λ                                                                                                 (3.11) 
 

sinθ λ

oW

oW

1G

2G
4G 1G

yf

xf

 
 

Figure 3.3 Spatial frequency spectra of an off-axis holography 
 

 Suppose that the object has the lateral extensions of x yL L× . Figure 3.4 

illustrates the geometry of off-axis Fresnel digital holography.  Consider the case that 

the object is placed offset along the X-axis. 

The bandwidth of the object along the X-axis in frequency domain is xL Dλ . 

Compared with the distance between object and CCD sensor, the size of the CCD 

sensor is quite small. Therefore, an approximation is adopted: 

 

min
3
2

xL
D

θ =                                                                                                                  (3.12) 
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The maximum interference angle maxα  and the minimum offset angle minθ  

determine the digital recording geometry interactively (Xu et al., 1999): 

 

  ( )min 4 xD M Lξ ξ
λ
Δ

= Δ +                                                                                          (3.13) 

 

Reference wave X 

Y 

Z

offd

Object 
minD

CCD 

maxα

minθ

 

Figure 3.4 Geometry for recording an off-axis digital Fresnel hologram 
 

Figure 3.5 is the geometry of off-axis lensless Fourier holography. Similarly, 

two interactive factors determine the minimum recording distance as (Xu, 1999): 

 

min
4 xLD ξ

λ
Δ ⋅

=                                                                                                          (3.14) 

 

It can be observed from the above equation that digital lensless Fourier holography has 

the favorable feature of smaller recording distance compared with Fresnel holography. 

Due to limited spatial resolution of modern digital recording device, it is important to 

fully use the bandwidth of the CCD sensor. In digital lensless Fourier holography, the 

spherical reference wave is employed. Therefore, the angle between the object wave 

and the reference wave is nearly constant all over the sensor surface, as illustrated in 

Figure 3.6(Wagner et al., 1999).  
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Reference wave X 

Y 

Z

offd

Object 
minD

CCD 

maxα

minθ

 
 

Figure 3.5 Geometry for recording an off-axis digital lensless Fourier hologram 
 
 

 

Figure 3.6 Schematic illustration of the angle between the object wave and reference 
wave in digital lensless Fourier holography setup (Wagner et al., 1999) 

 

The sampling theorem is obeyed over the whole area. In addition, this kind of 

setup makes full use of the spatial-frequency spectrum of the CCD sensor at any point. 

The micro interference pattern by this setup is a sinusoid fringe with a unique vector 

spatial frequency of that object point. For a plane reference wave, however, the angle 

varies over the sensor surface. The bandwidth in some places of the sensor is therefore 

not fully used, taking into consideration of the sampling theorem. Each object point is 

encoded into an elementary sinusoidal zone plate consisted of an entire range of spatial 

frequency components. 
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3.3   Deformation measurement by HI 

In the holographic interferometric measurement of deformation, the displacement of 

each surface point P results in an optical path difference ( )Pδ . The interference phase 

 relates to this path difference (Kreis, 2005) by: ( )PϕΔ

 

( ) ( )2P Pπϕ δ
λ

Δ =                                                                                                     (3.15) 

 

The geometric quantities are explained in Figure 3.7. The displacement vector d
r

 

describes the shift of surface point P from its original position P1 to its new position P2. 

The optical path difference ( )Pδ  is then given by: 

 
( ) ( )1 1 2 2

1 1 1 1 2 2 2 2

P SP PB SP P B

s SP b PB s SP b P B

δ = + − +

= ⋅ + ⋅ − ⋅ − ⋅
ur uuur ur uuur uur uuur uur uuur                                                                  (3.16) 

 

where  and 1s
r

2sr  are unit vectors along the illumination direction,  and  are unit 

vectors in the observation direction, and 

1b
r

2b
r

iSP
uuur

 and iPB
uuur

 are the vectors from S to P or P  

to B, which are usually in the range of meter. And the d
r

 is in the range of several 

micrometers.The vectors  and 1s
r

2sr  can therefore be replaced by a unit vector sr  

pointing into the bisector of angle between them.  

 

1 2s s= =
ur uur r

s                                                                                                                   (3.17) 
 

Similarly for the vectors 1b
r

 and 2b
r

 

 
1 2b b b= =
r uur r

                                                                                                                 (3.18) 
 

39



 
CHAPTER THREE                                                                                   THEORY DEVELOPMENT 
 

 

By definition of the displacement vector d
r

, we have 

 

1 2d PB P B= −
ur uuur uuur

                                                                                                            (3.19) 
 

2d SP SP= −
ur uuur uuur

1                                                                                                              (3.20) 
 

Inserting Eq. (3.17) to (3.20) into (3.16) gives: 

 

( )b s dδ = −
r r r

                                                                                                              (3.21) 

 

Illumination 
point 

S2sr

1s
r

1b
r

 

2b
r

B 
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Object CCD 

d
r

 
 

Figure 3.7 Sensitivity vector for digital holographic interferometric measurement of 
displacement 

 
 

Therefore we have the expression for the interference phase (Schnars and 

Jüptner, 2005): 

 

( ) ( )( ) ( )2P d P b s d P Sπϕ
λ

Δ = − =
r r r rr                                                                          (3.22) 

 

The vector S  is called sensitivity vector, which is determined by the geometry 

of the holographic arrangement. It gives the direction along which the setup has the 

maximum sensitivity. It is the projection of the displacement vector onto the sensitivity 

r
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vector. Eq. (3.22) constitutes the basis of all quantitative measurements of the 

deformation of opaque bodies by holographic interferometry. 

 

3.4   Shape measurement by HI 

In two-illumination-method, the illumination point S is shifted to S’ between the two 

recording of digital holograms, as shown in Figure 3.8.  The resulting optical path 

length difference δ  is: 

 
( )

1 2

= '

'

SP PB S P PB SP S P

s SP s S P

δ + − − = −

= −
uruur uuruuuur

'

s
uur r

r

                                                                       (3.23) 

 

P
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S 1s
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Figure 3.8 Two-illumination point contouring 

 

The unit vectors have the same definition as the ones in deformation derivation. 

And the same approximation is used here: 

 ur
1 2s s= =                                                                                                                   (3.24) 

 

The optical path length difference is then given as: 

 

( )'s SP S P s pδ = − =
r uur uuuur ru

                                                                                               (3.25) 
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The corresponding interference phase is: 

 
2 psπϕ
λ

Δ =
urr

                                                                                                              (3.26) 

 

3.5   Temporal phase unwrapping algorithm 

Spatial smoothing is always necessary when analyzing data from speckle 

interferometers. It is usually best to carry out the smoothing before unwrapping rather 

than after (Huntley, 2002). Therefore, another algorithm was proposed by Huntley et al. 

(1999) to overcome the previous problems. The number of 2π  phase jumps between 

two successive wrapped interference phases is then determined by: 

 
( ) ( ) ( ){ }NINT ,0 1,0 2w wd t t tϕ ϕ⎡= Δ −Δ −⎣ π⎤⎦                                                         (3.27) 

 

The total number of phase jumps ( )v t , is calculated by: 

 

( ) ( )
' 2

'          2,3, , -1
t

t
v t d t t N

=

= =∑ …

0

                                                                         (3.28) 

 
( )1v =                                                                                                                      (3.29) 

 

and the unwrapped interference phase is obtained as: 

 
( ) ( ) ( ),0 ,0 2         1, 2, , 1u w
t t v t t Nϕ ϕ πΔ = Δ − = K −                                                (3.30) 

 

3.6   Complex field analysis 

One of the most attractive features of DH is that it allows the intensity and the phase 

the electromagnetical wave fields to be measured, stored, transmitted, applied to 
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simulations and manipulated in the computer. In reality, there is always certain amount 

of noise in experimental data, especially in speckle interferometry (e.g. digital 

holography). In the unwrapping process, the most critical step is to prevent the 

propagation of erroneous phase values. Therefore, it is necessary to obtain correct 

phase values before phase unwrapping. In previous works of digital holography, phase 

values calculated from a reconstructed complex field are processed and manipulated 

directly, without taking into consideration any intensity information. The intensity 

information of a reconstructed wave field is a good measure of the phase values 

(Yamaguchi et al., 2001), (Pedrini et al., 2003). In this study, a complex phasor method 

(CP) is proposed, in which both the amplitude and the phase information are 

considered. 

Using this method, the interference phase is calculated by another way. The 

coordinate system adopted here is the same as shown in Figure 2.5. Digital holograms 

at different states are recorded on the hologram plane ( ),ξ η  and the reconstructed 

complex wave field on an object plane ( ),x y  is given by: 

 
[ ]( , , ) ( , , )exp ( , , )x y n a x y n i x y nϕΓ =                                                                         (3.31) 

 

where  is the real amplitude and ( , , )a x y n ( , , )x y nϕ  is the phase of the object wave. 

Subsequently, two reconstructed complex wave fields of different states can be 

brought to interfere with each other by conjugate multiplication, and the resulting 

complex phasor distribution is to be processed. For simplicity, only one pixel is 

considered:  

 
( ) ( ) { } )]0,(exp[)()]0()([exp0)0()()( * ninAnianannA ϕϕϕ Δ=−=ΓΓ=                    (3.32) 
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where  1, 2,..., 1n N= −

The interference phase is given as: 

 
Im[ ( )]( ,  0) arctan
Re[ ( )]w

A nn
A n

ϕΔ =                                                                                     (3.33) 

 
where subscript w denotes a wrapped phase value. Each pixel of an interference phase 

map no longer presents a real-value phase but a complex-value phasor. Processing CP 

instead of phase offers the following advantages: (1) There is no need to discriminate 

the cases as in Eq. (2.27); (2) Processing a CP not only preserves the advantage of Eq. 

(2.27) it also provides more accurate results; (3) The real and imaginary parts of a CP 

are weighted implicitly by the square of the intensity modulation, which is a new 

filtering approach. 

 

3.7   Temporal phase retrieval from complex field 

Similar to temporal phase unwrapping, our proposed temporal phase retrieval methods 

analyze the fringe patterns pixel by pixel in which the complex phasor at each pixel is 

measured and analyzed as a function of time. Each pixel of the sensor acts as an 

independent sensor, the signal is processed temporally instead of spatially. 

 

3.7.1 Temporal Fourier transform 

Consider now a special case in which the interference phase is linearly dependent on 

time, as shown in Figure 3.9. The complex phasor will then be in the form 

of (( ) expA n iwt ) . After the complex phasor is transformed, a high amplitude peak 

whose position is determined by the phase changing rate w appears in the spectrum as 

shown in Figure 3.10.  
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Figure 3.9 A linearly changing phase 
 

 

Figure 3.10 The spectrum of a complex phasor with linearly changing phase 
 

Fourier transform is calculated most efficiently with FFT algorithm, however, 

the resulting frequency k are limited to integers. This is not sufficient just to calculate 

w and an algorithm for evaluating k which is not constrained to integer values is 

proposed. The main principle is based on Huntley’s (1997) method for temporal 

unwrapping of a sequence of interference phase maps. An initial value of  is used to 

obtain the exact value . This is carried out by getting the position of the peak from 

the resulting spectrum. The Search for the exact value  is carried out as follows: 

ek

pk

pk

(1)  is expressed as  and the Fourier transform of is given by: )(nA nn iba + )(nA
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{ }
1

1 1 1
1 1

( ) ( ) cos[ 2 ( 1) / ] sin[ 2 ( 1) / ]

         ( cos sin ) ( cos sin )

         Re[ ( )] Im[ ( )]

N

n n
n

N N

n n n n n n n n
n n

k a ib k n N i k n N

a b i b a

k i k

π π

α α α α

=

− − −
= =

ℑ = + − − + − −

= + + −

= ℑ + ℑ

∑

∑ ∑ 1−                          (3.34) 

 
where Nnkn /)1(21 −=− πα , the real and imaginary parts of )(kℑ  are denoted by 

 and  respectively. )](Re[ kℑ )](Im[ kℑ

(2) The intensity of the transform can be calculated from the real and imaginary part  

of the resulting complex phasor: 

 
2 2 2( ) Re [ ( )] Im [ ( )]k kℑ = ℑ + ℑ k                                                                                 (3.35) 

 

and its first derivative 

 

{ }2( ) 2 Re[ ( )] Re[ ( )] Im[ ( )] Im[ ( )]k k d k k d
k
∂

ℑ = ℑ ℑ + ℑ ℑ
∂

k

N

                                     (3.36) 

 

where  and  are the first derivatives of the real and imaginary 

parts, respectively. 

)](Re[ kd ℑ )](Im[ kd ℑ

(3) An iterative algorithm (Press et al., 2002) is then employed to determine . 

Compared with the bounded Newton-Raphson algorithm (Huntley, 1986), the 

proposed algorithm offers less programming code and lighter calculation burden. The 

rate of phase change is given by: 

pk

 
2 /pw kπ=                                                                                                              (3.37) 
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3.7.2 Temporal STFT analysis 

Fourier transform utilizes the global information of a signal and shows the overall 

frequency. Therefore, a signal in one position will definitely affect one signal in 

another place. As discussed in the previous chapter, the window function employed by 

STFT is to avoid such a problem. Furthermore, it can locate when or where a certain 

frequency occurs. This offers an alternative for interpretation of phase values.  

 
3.7.2.1 Temporal filtering by STFT 

Similar to Qian’s spatial filtering approach, the proposed temporal filtering method is 

as follows: Provide a threshold value for the spectrum and set spectral components 

with low amplitude to zero. It is assumed that noise is widely distributed with low 

coefficients in the spectrum. After eliminating the noise, a high-quality signal can be 

reconstructed from the filtered spectrum. 

A complex phasor denoted by  varies with time t and its STFT is: )(tf

 

( , ) ( ) ( ) exp( )Sf u v f t g t u ivt dt
+∞

−∞
= − −∫                                                                       (3.38) 

 

where  is a window function. Generally, it is a Gaussian function that gives the 

smallest Heisenberg box. As it is assumed that white noise is distributed over the 

whole frequency domain, however, the STFT of the input signal usually has a smaller 

band of distribution. Therefore, the signal and white noise in the frequency domain are 

well separated. As for the overlapped part, the coefficient is taken as white noise if its 

amplitude is smaller than a preset threshold. Thus, the noise can be removed more 

effectively. This procedure is somewhat similar to filtering by wavelet transform. The 

)(tg
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filtered sequence of complex phasors can be obtained by an inverse STFT of the 

filtered coefficients:  

 
1( ) ( , ) ( ) exp( )

2
U

L
f t Sf u v g t u ivt

π
+∞

−∞
= −∫ ∫ dvdu                                                           (3.39) 

 
where U and L are the upper and lower integration limits of v . The integration limits 

can be estimated by the following procedure: Firstly, 1D Fourier transform the 

sequence of complex phasors into Frequency domain. Secondly, manually set the 

bandwidth. Thirdly, pick up the peak. The upper limit and lower limit can then be 

decided by adding and subtracting half the bandwidth from the peak. The wrapped 

phases can be calculated by Eq. (3.33) and the temporal phase unwrapping is carried 

out.  

 

3.7.2.2 Temporal phase extraction from a ridge 

Often, it is more important to know when or where those frequency components 

happen and how they change with time. The concept of instantaneous frequency (IF) 

has been created in response to such kind of problem. The IF is defined: 

 

( ) ( )1
2if t

t
ϕ

π
∂

= ⋅
∂

t                                                                                                    (3.40) 

 

where the signal is in  the form of ( ) ( )expA t i tϕ⎡ ⎤⋅ ⎣ ⎦ . 

If the instantaneous frequencies of the phases are known, more useful 

information can be obtained, for example velocity measurement is possible in 

deformation measurement. There are currently two methods for instantaneous 

frequency estimation: either filter-based or time-frequency-representation (TFR)-based. 

Most existing approaches can be categorized into these two methods. However, the 
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filter-based methods are often difficult to converge and appear clumsy when tracking 

rapidly varying instantaneous frequency. In TFR, time and frequency information of a 

signal is jointly displayed on a 2D plane. STFT and Winger distribution (WD) are two 

popular choices among existing TFRs. However, large cross terms of WD are major 

handicap. Thus, STFT technique which is free of cross terms is a good choice over 

WD.  

The STFT of complex phasor variation can also be expressed as the following 

(Mallat, 1999): 

 

{ } ( ){ }ˆ( , ) ( ) exp [ ( ) ] [ ( )] ( , )
2
sSA u A u i u u g s u uξ ϕ ξ ξ ϕ ε ξ′= Δ − −Δ +                       (3.41) 

 

whereε is a corrective term. It can be neglected if both  and )(uA )(tϕ′Δ  have small 

relative variations over the support of window (Mallat, 1999). The term “small 

relative variations” is not precisely defined, therefore, in our experiment “small 

relative” is determined through experience.   In this study, scale s is actually not used 

and assigned to 1.  It is verified that the value of the term 

sg

)(/)( uAuA′ in the range of 

window  is around 0.1, hence   is considered to have a relatively small 

variation in our study and linear assumption of Eq. (3.41) is satisfied. A similar result 

is shown by Delprat et al. (1992) using a stationary phase approximation when  is 

Gaussian. It can be seen that 

sg )(uA

)(tg

)(tϕ′Δ  is possible to be calculated by neglecting the 

corrective term from Eq. (3.11). In Eq. (3.11), the term ( )wĝ  reaches its maximum 

at , therefore for each u the spectrogram 0=w 2),( ξuSA is maximum at )()( uu ϕξ ′Δ= . 

The corresponding time-frequency points )](,[ uu ξ  are known as ridges (Mallat, 1999). 
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At each instant, a frequency with the highest energy density is regarded as the 

most probable instantaneous frequency. The most popular approach introduced by 

Delprat to calculate instantaneous frequencies is to pick the peak from a locally 

transformed signal 2),( ξuSA . Mathematically, )(uϕ′Δ  is expressed as 

 
( ) arg  max ( , )u SA

ξ
uϕ ξΔ =’                                                                                      (3.42) 

 

The discrete version of STFT is given as 

 
1

0

2( , ) ( ) ( ) exp
N

s
n

i lnSA m l A n g n m
N
π−

=

−⎛= − ⎜
⎝ ⎠

∑ ⎞
⎟                                                                (3.43) 

 

where  and N is the total number of sampled points. Due to digitalization of 

time and frequency in the implementation, the output changes from continuous to 

discrete values which are generally integers. 

1−= tn

 

( ) 2 lu
N

ϕ π′Δ =                                                                                                           (3.44) 

 

In order to find the exact position of  which usually lies between frequency 

plots within a certain tolerance, the analysis is carried out as follows: 

el

(1) For a given time instant m, Eq. (3.43) is first calculated by FFT algorithm. The 

value of l that maximizes 2),( lmSA  is then used as an initial estimate. 

(2) Express a windowed signal )()( mngnA s −  as )()( nibna ww + , therefore the 

is calculated as follows: ),( lmSA
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1

0
1 1

0 0

( , ) [ ( ) ( )][cos( 2 / ) sin( 2 / )]

         [ ( ) cos ( )sin ] [ ( ) cos ( )sin ]

         Re[ ( , )] Im[ ( , )]

N

w w
n

N N

w n w n w n w
n t

SA m l a n ib n ln N i ln N

a n b n i b n a n

SA m l i SA m l

π π

nα α α

−

=

− −

= =

= + − + −

= + + −

= +

∑

∑ ∑ α                (3.45) 

 

where Nlnn /2πα = ,  and  are  the real and imaginary parts 

of  . 

) )],(Im[ lmSA],(Re[ lmSA

),( lmSA

(3) The intensity of the transform is then given by 

 
2 2 2( , ) Re [ ( , )] Im [ ( , )]SA m l SA m l SA m l= +                                                             (3.46) 

 

and its first derivative is  

 
2( , ) 2 Re[ ( , )] Re[ ( , )]

2 Im[ ( , )] Im[ ( , )]

SA m l SA m l SA m l
l l

SA m l SA m l
l

∂ ∂
=

∂ ∂
∂

+
∂

                                                          (3.47) 

 

(4) A modified Brent algorithm using first derivatives is employed to determine the 

exact value of  within the given tolerance. el

Phase unwrapping process can be avoided by integration of the instantaneous 

frequency instead of temporal phase unwrapping. 

 

3.7.2.3 Window Selection 

It is well known that an uncertainty relationship between time and frequency resolution 

exits in STFT. A shorter window provides poorer frequency resolution but is able to 

show rapidly changing signal and vice versa. A schematic demonstration is shown in 

51



 
CHAPTER THREE                                                                                   THEORY DEVELOPMENT 
 

 

Figure 3.11. Hence, a tradeoff between time and frequency resolution has to be made 

when choosing an appropriate window. Choosing an optimal window for each 

sequence is the most critical part of the whole processing.  

 

                                            (a)                                                  (b) 
 

Figure 3.11 Comparison of STFT resolution: (a) a better time solution; (b) a better 
frequency solution 

 

Consider a sample signal composed of a set of frequencies in a sequence. The 

definition of the signal is: 

 

( )

( )
( )
( )
( )

exp 10        0 t<0.1s

exp 25        0.1 t<0.2s

exp 50        0.2 t<0.3s

exp 100      0.3 t<0.4s

i t

i t
S t

i t

i t

π

π

π

π

⎧ ≤
⎪

≤⎪
= ⎨

≤⎪
⎪ ≤⎩

                                                                        (3.48) 

 

Following spectrograms in Figure 3.12 are obtained with different window length. 

It is observed that the shortest window provides the most precise time at which 

the signals change while the frequencies are hard to identify. The longest window 

allows a precise observation of the frequency content. However, the time information 

is blurred. 

The ability of STFT to preserve the time-frequency domain support of signals 

(Durak and Arikan, 2003) is an important criterion to measure the success of STFT 

representations. The time-frequency domain support of a signal  is commonly )(tx
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measured by its time-width  and its frequency domain bandwidth , which are 

defined as 

xT xB

 
 1 222( ) ( )t

x

t x t dt
T

x

η⎡ ⎤−⎣=
∫ ⎦                                                                                       (3.49) 

 
1 222( ) ( )f

x

f X f df
B

x

η⎡ ⎤−⎣=
∫ ⎦                                                                               (3.50) 

 
where  

 

2

2)(

x

dttxt
t
∫=η                                                                                                          (3.51) 

 

2

2)(

x

dffXf
f
∫=η                                                                                                    (3.52) 

 

In this study, the time bandwidth product is chosen as a measure of the support 

and the corresponding optimal Gaussian window is calculated as follows (Durak and 

Arikan, 2003): 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

x

x
TBP T

Bttg
2

exp)( π                                                                                             (3.53) 

 

Such an approach offers great convenience in processing all the sequences. 

Manually choosing a window for each process is not practical in reality. Another way 

is to pre-choose a window for the sequences in advance. It is simple but gives poorer 

results. 
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 (a) (b) 

 

 

 

 

 

(c) (d)  

Figure 3.12 Spectrograms with different window width: (a) 25 ms; (b) 125 ms; (c) 375 
ms; (d) 1000 ms 

 

 

3.7.3 Spatial phase retrieval from a complex field 

The interference phase distribution as shown in Figure 3.11 by digital holographic 

interferometry exhibits already low noise. It typically has a signal-to-noise ratio that is 

in the same range as that of an interference phase generated by a phase shifting method.  

In the interference phase distribution, a single correct value below π  that is shifted 

slightly above π  will appear as an isolated dark point in a neighborhood of bright 

points and vice versa. In order to produce a visually attractive interference phase 
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distribution and to permit a reliable phase unwrapping, a smoothing of the interference 

phase by digital filtering should be performed (Kreis, 2005).  

 

 

Figure 3.13 Unfiltered interference phase distribution 
 

The most commonly used method is to subject the interference phase to a 

sine/consine transformation before the filtering is accomplished (Creath, 1985). For 

such a filter, the distributions ( ),s n m  and ( ),c n m  are first calculated by: 

 
( ) ( ), sin ,s n m n mϕ⎡= Δ⎣ ⎤⎦

⎤⎦

)

                                                                                          (3.54) 
 
( ) ( ), cos ,c n m n mϕ⎡= Δ⎣                                                                                          (3.55) 

 

They are both smoothed by a low-pass filter, e.g. one replacing each value by the 

average value over square k  pixel neighbor. After filtering, the interference phase 

is then determined by: 

k×

 

( ) ( )
(

,
, arctan

,
f

f
f

s n m
n m

c n m
ϕΔ =                                                                                     (3.56) 
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However, the disadvantage is that each pixel is given an equal weight without 

considering the reliability of the pixel. As already mentioned, the intensity of each 

pixel is a good measure of the pixel’s reliability. The real and imaginary part of the 

generated complex phasor is weighted implicitly by the square of the intensity 

modulation. Therefore, a more reliable smoothing technique is possible by using a 

low-pass filtering of the real and imaginary part. 

A low-pass filtering of the real and imaginary part is actually a phasor average 

process to find the gravity of the phasors, as illustrated in Figure 3.14 (a). It is 

observed that a phasor with low amplitude and therefore less reliable phase values has 

less influence on the final results. The hollow circles represent phasors needed to be 

averaged while the filled circle is the resulting phasor. The sine/cosine transformation 

equals to a transformation into the complex field with amplitude 1 for all the pixels. It 

can be seen that the final result is dominated by less reliable phasors, as shown in 

Figure 3.14 (b).  

Im 

Re 

cos ϕΔ

sin ϕΔ

 

Figure 3.14 (a) Effect of filtering a phasor image; (b) effect of sine/cosine 
transformation 
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3.7.4 Combination of temporal phase retrieval and spatial phase retrieval 

A distinguished feature of temporal phase unwrapping concept is its ability to retrieve 

absolute phase value. It makes no sense if the temporal phase retrieval procedure is 

done before spatial smoothing, since the erroneous spatial phase values will be 

temporally propagated. Actually, this agrees with the results of Huntley (1999). A 

modified temporal phase unwrapping process employed by Huntley shows much better 

results than those methods to implement spatial filtering before temporal phase 

unwrapping. 

In this study, a comparison is always between the conventional method and the 

proposed methods in all experiments conducted. A flow chart of conventional method 

and proposed methods is given in Figure 3.15. 

Wrapped phases by DHI 

Spatial filtering 

Temporal phase 
unwrapping 

Complex phasors by DHI

Spatial filtering in 
complex filed 

Temporal phase retrieval 
by CP method 

 
 
                       (a)                                                                                 (b) 
 

Figure 3.15 Flow chart of (a) conventional method (b) proposed method 
 

Another advantage of filtering complex phasors spatially first is that it does not 

violate the linear assumption in Eq. (3.41) and the real amplitude of a particular pixel 

is prevented from changing drastically.  
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CHAPTER FOUR 

 
DEVELOPMENT OF EXPERIMENTATION 

 
 

To verify the proposed theoretical work, experimental systems for digital holographic 

interferometric measurement of the shape of a step-change object and a continuously 

deforming cantilever beam were developed. Other than that, a static deformation 

experiment is also conducted to verify the proposed spatial phase retrieval method. In 

the first section of this chapter, some equipment and specimen used in dynamic and 

static measurements are introduced. In the subsequent sections, experimental 

techniques used in these methods are described in detail. 

 

4.1 Equipment for dynamic measurement 

4.1.1 High speed camera 

The recording rate of a normal CCD camera is about 30 frames per second (fps). 

However, this is insufficient for most dynamic measurements as the low sampling rate 

means a violation of Nyquist sampling theorem and will probably lead to 

undersampling. A high speed camera is thus indispensable. In this investigation a high 

speed camera, Kodak Motion Carder Analyzer, Monochrome Model SR-Ultra is used 

(shown in Fig. 4.1). It is a compact monochrome high speed motion analyzing system 

designed for high speed application. It includes a full range of standard features, and 

optional accessories to record, view, measure and store the information required for 

high speed manufacturing.  
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Figure 4.1 Kodak Motion Corder Analyzer, Monochrome Model SR-Ultra 

 

The sensor of the high speed camera has a pixel size of 7.4 μm × 7.4 μm and an 

array of 658 pixels × 496 pixels. Its recording rate ranges from 30, to 10,000 fps. The 

size of an output image varies with the recording rate. At a recording rate of 125 fps 

which is commonly used in experiments, the output images have 512 pixels × 480 

pixels. If using the highest recording rate of 10,000 fps, the image size will reduced to 

128 pixels × 34 pixels and 30,832 images can be recorded within 3.0 seconds. The 

camera has a standard 8-bit monochrome BMP or TIFF output with 256 gray levels. It 

is also compatible with all C-mount camera lenses.   

 

4.1.2 PZT translation stage 

A piezoelectric translation stage with a computer controlled system is one of the key 

equipment to ensure precise loading of the beam in dynamic digital holographic 

measurement.  It can be used to prescribe a linear or nonlinear displacement. The 

translation stage used is a Piezosystem Jena, PX 300 CAP PZT stage, as shown in 

Figure 4.2. It is capable of generating a maximum horizontal displacement of 300 μm. 

It contains a closed loop capacitive control system with a position accuracy of 0.05% 
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at a full motion of 300 μm. It has a resolution of 1 nm and works well for high 

precision positioning. It has a maximum load of 10N. 

 

  

 
Figure 4.2 PZT translation stage (Piezosystem Jena, PX 300 CAP) and its controller 

 

4.1.3 Stepper motor travel linear stage 

The linear stage is used to mount and move the fiber optics at a constant speed to 

illuminate the object in shape measurement. A Newport UTM 150 mm mid-range 

travel steel linear stage, as shown in Figure 4.3, is used. It is a high-power DC-servo 

version with a resolution of 1μ . The stage features a built-in tachometer to provide 

superior speed stability, with a travel range of 150 mm and a maximum speed up to 

20 .  

m

mm/s

 

 

Figure 4.3 Newport UTM 150 mm mid-range travel steel linear stage 
 

The Melles Griot 17 MDU 002 shown in Figure 4.4 is designed to drive and 

control the linear stage. The operation of the stepper actuator is controlled by software 

within the primary and satellite processors. A simple communications protocol 
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provides the user access to positioning functions. Furthermore, the software 

automatically compensates for positioning errors, producing accuracy comparable to 

that of a linear encoder system. 

 

 
 

Figure 4.4 Melles Griot 17 MDU 002 NanoStep Motor Controller 

 

4.1.4 Specimens 

The specimen tested in the multi-illumination-point is an object with a step-change 

profile. Figure 4.5 (a) shows the dimensions of the object. The heights of the steps are 

respectively 1.62 ± 0.01 mm and 3.31 ± 0.01. Figure 4.5 (b) shows the top view of the 

object.  

 

 

 

1.62m
3.31m

 

(a)                                                                  (b) 

Figure 4.5 (a) Dimension of a step-change object; (b) top view of the specimen with 
step-change 
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The specimen used for the continuously deforming measurement consists of 

cantilever beam painted white to increase the reflectivity. The cantilever beam is 

loaded by a computer-controlled piezoelectric transducer (Figure 4.6 (a)). The area to 

be inspected is shown in Figure 4.6 (b). 

 

(a) 
 
 
 

x 

y 

z Inspection area 

PZT 
translation 

stage 
 

(b) 
 

Figure 4.6 (a) A cantilever beam and its loading device; (b) Schematic description of 
loading process and inspected area 

 

 

 
62



 
CHAPTER FOUR                                                        DEVELOPMENT OF EXPERIMENTATION 

4.2 Equipment for Static Measurement  

4.2.1   High resolution digital still camera 

The recording device for the static deformation measurement is shown in Figure 4.7. 

As Eq. (3.10) implies, a restriction exists for the interference angle between the object 

wave and the reference wave due to the limited resolution of current digital still 

camera. Smaller pixel size means better resolution. The Pulnix TM-1402 is employed 

as the recording medium in static measurement.  It is a miniature, high resolution (1.4 

megapixels), monochrome, progressive scan CCD camera. It resolution reaches 1392 x 

1040 pixels and the frame rate can be adjusted to 15 or 30 frames per second. The TM-

1402CL has a patent-pending look-up table (LUT). Applications include machine 

vision, medical imaging, ITS, character recognition and more. 

 

4.2.2   Specimen 

The advantage of spatial phase retrieval from complex field is demonstrated by the 

deformation of a circular thin plate. The aluminum plate is shown in Figure 4.8. The 

deformation is introduced by manually loading of the micrometer. 

 

 
Figure 4.7 Pulnix TM-1402 

 
                                                                                          

Figure 4.8 A circular plate centered loaded  

100 mm 
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4.3 Experimental setup 

As discussed in the theory chapter, digital lensless Fourier holography displays several 

advantages over the Fresnel digital holography using plane wave: (a) full usage of the 

bandwidth of the CCD sensor; (b) shorter recording distance; (c) Simpler 

reconstruction algorithm. In the following experiments, all experimental setups employ 

digital lensless Fourier holography. 

 

4.3.1 Multi-illumination method 

In the experiment, linear phase change is achieved through translating an illuminating 

fiber optics at a constant speed as shown in Figure 4.9. A specimen with step change 

surface as shown in Fig 4.5 is used for surface contour measurement. A He-Ne laser 

light beam of 632.8 nm wavelength is split into two beams by a fiber coupler. The 

fibre end with a 90% beam output (object beam) is mounted on a linear translation 

stage shown in Figure 4.3. The fiber end with a 10% output is used as a reference beam. 

The object and reference beams are then recombined by a beam splitter. To employ 

digital lensless Fourier holography, the distance between the object and the beam 

splitter has to the same as the distance between the reference fiber end and the beam 

splitter. The object has a distance of 45 cm from the CCD sensor. The high speed CCD 

camera is used to record digital holograms at 125 frames per second. Five hundred 

digital holograms are recorded and 129 consecutive images are selected for processing. 

 

4.3.2 Measurement of continuously deforming object 

A He-Ne laser (75 mW, λ = 632.8 nm) is divided into reference and object beams by a 

variable beamspliter, as shown in Figure 4.10.  Two spatial filters consisting of a 
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microscopic lens and a small pinhole are used to produce a spherical wave. A 

collimating lens is placed in front of one of the pinholes to generate a desired plane 

object wave. An angle (θ ) between the illumination and observation directions is 

taken as  in the experiment. The specimen is a cantilever beam shown in Figure 

4.6.  In the experiment, a linear loading is applied by using the triangular wave 

function and the inspection area of the beam is 

060

mm 50mm 10 × . A high speed CCD 

camera is used with a sampling rate of 125 frames per second. A total of 564 

consecutive digital holograms were captured during the process and 481 holograms are 

used for processing. The static deformation measurement is also conducted using the 

same setup as Figure 4.10. The beam in Figure 4.6 (b) is replaced by the plate in 

Figure 4.8.  

 

 

 

 

 

 

 

 

 
 

 

Step object 
Beam splitter 

Object beam 

He-Ne laser 

Computer 

Fibre optics 

Reference 
beam 

CCD sensor 

 
Figure 4.9 Optical arrangement for profile measurement using multi-illumination-point 

method 
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Figure 4.10 Digital holographic setup for dynamic deformation measurement 
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CHAPTER FIVE 

 
RESULTS AND DISCUSSION 

 
 

In this chapter, the experimental results are presented in details according to different 

holographic interferometric applications. The experiments can be categorized into two 

kinds: static and dynamic. In the static experiments, the basic techniques that will be 

used in dynamic processing are verified first. The spatial phase retrieval technique 

based on the proposed CP method is demonstrated in the plate deformation experiment. 

The results of temporal complex phasor analysis on profiling object surface with step 

change and instantaneous velocity and displacement measurement on continuously 

deforming objects are presented. Temporal DPS method is used mainly to generate 

results for comparison. All temporal CP and DPS algorithms are executed using Visual 

C++.  

 

5.1   D.C-term removal 

As discussed in theory chapter, several techniques are proposed to get rid of the D.C-

term from the intensity display of reconstructed image. The objective of this study is to 

develop new techniques for high speed measurement in digital holographic 

interferometry, thus, it is quite hard to employ the techniques with extra experiments 

efforts in our experiments.  Therefore, the pure numerical methods are used in our 

experiment. Although it is claimed that either mean value subtraction or high pass 

filter technique could do the job well, we find that a combination of these two 

techniques leads to a better result. 
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Figure 5.1 shows a typical digital hologram recorded in an off-axis Fresnel 

digital holography set up using plane wave as reference wave by Pulnix TM-1402. As 

already mentioned, holography is a clever combination of interference and diffraction. 

It can be observed from Figure 5.1 that the digital hologram is made of 

microscopically fine interference patterns produced by the coherent superstition of an 

object and a reference wave. 

 

Figure 5.1 A typical digital hologram  
 

The corresponding reconstruction of the digital hologram in Figure 5.1 is 

displayed in Figure 5.2. Its D.C.-term is eliminated by a combination of mean value 

subtraction and high-pass filtering techniques. The recorded object is a merlion. 

However, as shown in Figure 5.3, neither mean value subtraction nor high-pass 

filtering technique will achieve satisfactory results. 

As for digital lensless Fourier holography, a similar result is observed. Figure 

5.4 (a) shows a hologram from digital lensless Fourier holography setup while Figure 

5.4 (b) is its corresponding reconstruction image with D.C.-term eliminated. Figure 5.5 
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demonstrates the result processed either by the mean value subtraction or high pass 

filter. The object here is a plate illuminated by collimated illuminating wave.  

 

Real Image 
Imaginary Image

Figure 5.2 Intensity display of a reconstruction with D.C.-term eliminated 
 

 

 
(a)                                                            (b) 
 

Figure 5.3 Intensity display of reconstruction: (a) with average value subtraction only; 
(b) with high-pass filter only. 
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(a)                                                                    (b) 

 
Figure 5.4 (a) digital hologram in digital lensless Fourier holography; (b) Its 
corresponding intensity display of reconstruction with D.C.-term eliminated 

 
 

 

                           
(a) (b) 
 

Figure 5.5 Intensity display of reconstruction: (a) with average value subtraction; (b) 
with high-pass filter only 
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5.2   Spatial CP method  

The deformation measurement is conducted to verify proposed spatial phase retrieval 

method. The plate undergoes two states, one is undeformed and the other one 

deformed. The loading is realized by the micrometer just at the center of the plate. One 

digital hologram is recorded first. After loading, another digital hologram is recorded. 

The two digital holograms are reconstructed separately, from which two phase 

distributions are obtained. The interference phase is calculated by Eq. (2.27). The 

above approach referred to as DPS is commonly used in digital holographic 

interferometry. Figure 5.6 illustrates DPS process flow using images from plate 

deformation experiment. The experiment setup is exactly the same as the one shown in 

Figure 4.10.  It is observed that the interference pattern covers only a portion of the 

whole image. Therefore, the area of interest has to be selected manually to analyze, 

which is actually the biggest disadvantage of digital holographic interferometry. The 

procedure of spatial phase unwrapping of digital holographic inference phase maps is 

shown in Figure 5.7.  Due to the speckle noise inherent to laser techniques, a spatial 

filtering has to be carried out before phase unwrapping to limit the spatial propagation 

of errors. The filtering technique used here is the sine/consine transformation low-pass 

filter. 

In Figure 5.7, a 3D plot of the unwrapped interference phase is given. It can be 

seen that the unwrapped phase goes from -10 to 35 rad, which is actually a relative 

measurement. It will give rise to problems when calibration is needed, for a point 

whose movement is 0 has to be found first.   

As to the fringes whose signal to noise (SNR) are high, the result of the 

commonly used method is acceptable, as shown in Figure 5.7. If some areas are 

 
71



 
CHAPTER FIVE                                                                                    RESULTS AND DISCUSSION 

heavily polluted by noise, the sine/consine transformation low-pass filter will appear 

clumsy. 

 
  

Digital 
holograms 

Before loading  After loading  

 
  

Before loading  After loading  

Phase 
distributions 

Reconstruction 

 
 

Interference Phase 

DPS 

Interference 
phase 
distribution

 
 

Figure 5.6 Process flow of digital holographic interferometry 
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Figure 5.7 Spatial phase unwrapping  

 

A comparison of proposed CP method and DPS method is conducted in Figure 

5.8. It is seen that the fringe pattern has better quality at center than at edges. An area 

of the pattern at the edges is chosen for analyzing. A first check of residues of the area 
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is first done before any processing. As many as 596 residues are detected from the raw 

data.  

 

DPS method 

  

  

CP method 

  

Residue checking 

0 residues detected  9 residues detected 

596 residues detected 

Figure 5.8 Spatial phase retrieval by CP method 
 

In the proposed CP method, a complex phasor map is first produced by the Eq. 

(3.32). The real part and imaginary part of the complex phasor is low-pass filtered 

separately and the filtered interference map is determined by Eq. (3.33). 
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In DPS method, the low-pass filtering is done after the sine/cosine transform. 

The result by CP method looks obviously better than by DPS method. The residues of 

both results are checked then. No residues is found in CP method’s result while 9 

residues are found in the result of DPS method. Such a comparison verifies that the 

proposed CP method is more effective than DPS method. 

 
5.3   Temporal CP method in dynamic measurement 

In temporal phase analysis, the concept is quite different. No spatial processing exist 

any more if the spatial smoothing before any temporal processing is not accounted. 

The sequence of complex phasor maps are processed point by point by CP method, 

while the sequence of interference phase maps are processed in DPS method for 

comparison. 

 

5.3.1 Surface profiling on an object with step change  

As mentioned in chapter 4, 546 digital holograms are recorded by high speed camera 

while the fiber is moving at constant velocity. Figure 5.9 shows a digital hologram 

recorded by the high speed camera.  

 

Figure 5.9 Digital hologram in surface profiling experiment (particles are highlighted 
by circles) 
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Due to particles on the surface of the CCD sensor, the recorded digital hologram 

is also polluted. But these particles will not influence the reconstruction image, as 

shown in Figure 5.10, for each single pixel of digital hologram records the information 

of whole object.  

 

Real Image 

Imaginary Image 

Area of Interest 

 
Figure 5.10 Reconstruction of Figure 5.9 

 
The process flow of DPS method is illustrated in Figure 5.11.129 consecutive images 

out of 546 recorded images are selected for processing. Such a number is already 

sufficient to obtain a satisfying result by temporal phase unwrapping. In addition, 128 

interference   maps are much easier to implement FFT algorithm. As a comparison, the 

conventional DPS approach is also carried out: a sequence of phase maps is obtained 

by reconstructing the sequence of digital holograms using 2D FFT algorithm. The 

interference phase map between instant and is calculated by nt 0t

( ) 0,0w nnϕ ϕ ϕΔ = − .The number of 2π  phase jumps between two successive wrapped 

interference phases is determined by Eq. (3.27). The total number of phase jumps ( )v t  

is calculated by Eq. (3.28) and the phase unwrapping is carried out by Eq. (3.30). For 

the temporal phase unwrapping is carried out pixelwise, a given point is selected for  
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explanation. Figure 5.12 (a) illustrates how the interference phase of such a pixel 

varies with time while its unwrapped phase is given is Figure 5.12(b). The unwrapped 

phase for the area of interest and its corresponding 3D plot is shown in Figure 5.13. It 

is observed that the surface is polluted by spiky noise. At regions of step changes, the 

noise is especially high. The reason is that the illumination at these places is usually 

poor. Therefore, a consideration of intensity value is necessary when phase retrieval is 

carried out. Further more, the surface of object calculated by the conventional 

approach is not smoothed. 

The experimental data are then processed by proposed CP method to see if better 

results can be obtained. Those recorded digital holograms are first reconstructed by 2D 

FFT.  Complex phasor maps are obtained using Eq. (3.32) between state 0 and state n. 

Such a procedure is similar to the one shown in Figure 5.11. The first algorithm tested 

is temporal Fourier transform algorithm. Also, a given pixel is selected for analysis. Its 

phase and intensity variation with time are given in Figure 5.14. The sequence of 

complex phasors is Fourier transformed into frequency domain, the spectrum is 

demonstrated in Figure 5.15. Then exact position of the peak in frequency is picked up 

by the proposed temporal Fourier transform algorithm. The peak’s position lies at -

7.6239 while the estimation is -8. Then the frequency is calculated by Eq. (3.37). Now 

that we got the phase changing rate (frequency), it is much easier to determine the 

unwrapped phase. A simple integration will get the job done. The unwrapped phase for 

this pixel is displayed in Figure 5.16.  Such a procedure is repeated until every pixel is 

covered. The final result is illustrated in Figure 5.17. Compared with Figure 5.13 (a), 

the unwrapped phase is improved and the spiky noise is eliminated. However, the 

edges of the steps are still not uniform, as shown in Figure 5.17 (a). 
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                                 (a)                                                                      (b) 

Figure 5.12 (a) Wrapped phase for a given point; (b) Unwrapped phase for a given 
point 

 
 
 
 

 

 

 

 

 

                 

(a)                                                                                  (b) 

Figure 5.13 (a) Unwrapped phase; (b) corresponding 3D plot. 
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(a) (b) 

Figure 5.14 (a) Phase variation of a pixel; (b) intensity variation of a pixel 

 

 

Figure 5.15 Frequency spectrum of a pixel 

 

Figure 5.16 Unwrapped phase by integration 

 
80



 
CHAPTER FIVE                                                                                    RESULTS AND DISCUSSION 

 

 

 

 

 

 

                         (a)                                                                        (b) 

Figure 5.17 Results calculated by temporal Fourier transform algorithm: (a) unwrapped 
phase; (b) 3D plot 

 

The reason is that temporal Fourier transform algorithm requires linear phase 

changing rate which is quite hard to achieve in experiment. Although improved, the 

result still doesn’t reach our requirement.  

The second algorithm verified is temporal STFT filtering. It has no such 

limitation as linear phase changing rate. Thus, it has a much wider application. Still, a 

given pixel is selected. As indicated in Eq. (3.39), the integration limits have to be 

determined in advance. It is already discussed in Chapter 3 how to calculate such limits: 

the peak is picked up by the temporal Fourier transform algorithm first. The bandwidth 

is set as 5. For the given pixel, the integration limits goes from -0.47 to -0.27. The 

wrapped phase and unwrapped phase for that pixel are given in Figure 5.18. Similarly, 

the same procedure is done for every pixel. The unwrapped phase and its 3D plot are 

given in Figure 5.19. Compared with previous two results, we can see temporal STFT 

filtering algorithm achieves the best result. The uniformity at edges of step is much 

improved and the surface is much smoother. It again verifies that our proposed CP 

concept is more effective in eliminating noise than conventional method.  
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                           (a)                                                                           (b) 
 

Figure 5.18 Result for a pixel by temporal STFT filtering: (a) Wrapped phase; (b) 
Unwrapped phase 

 
 

 

 

 

 

 

           
(a)                                                                            (b) 

 
Figure 5.19 Results calculated temporal STFT filtering algorithm: (a) unwrapped phase; 

(b) 3D plot 
 

Another thing need to notice is how to determine a proper window for each 

sequence. Although STFT has the uncertainty relationship between the frequency and 

time resolution, temporal STFT filtering algorithm is just a transformation and inverse 

transformation process. Choosing a proper window for each sequence is not as critical 

as the ridge extraction algorithm to be discussed next section. In order to get a faster 

 
82



 
CHAPTER FIVE                                                                                    RESULTS AND DISCUSSION 

and simpler algorithm, the window is fixed for all sequences. In our experiment, the 

window width is selected as 10 frames for all sequences. 

 

5.3.2 Measurements on continuously deforming object 

In the previous section, the object is static while the fiber end moves continuously. The 

fringes are generated between different states duo to the changing reference wave. In 

this section, the beam undergoes continuously deformation while the reference wave 

keeps unchanging. The objective is to measure displacement and velocity of each pixel 

simultaneously, which is impossible to be achieved by conventional spatial and 

temporal methods.  

Velocity is nothing but the first derivative (instantaneous frequency) of 

displacement. As discussed in Chapter 3, the proposed temporal ridge extraction 

algorithm is able to retrieve instantaneous frequency. The continuous loading of beam 

is realized by PX 300 CAP PZT stage, which can generate kinds of wave. In the 

experiment, triangular wave is chosen to be the wave function. Figure 5.20 shows a 

triangular wave generated by the PZT stage. Only the increasing part of the triangle 

wave within a period is needed. The input voltage has to be adjusted carefully to make 

sure that the fringes are not too dense. 

During the continuous loading, 546 digital holograms are recorded, out of which 

481 consecutive images are selected for further processing. Figure 5.21 shows a digital 

hologram recorded during the process and the intensity display of its reconstruction. 

After all the holograms are reconstructed, the interference maps are obtained by DPS 

method, as shown in Figure 5.11. Figure 5.22 illustrates how the interference phase 

maps vary with time. A schematic description of the whole process is given in Figure 
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5.23.  Three points are selected from the inspection area for analysis and comparison. 

A typical fringe pattern in the experiment is shown in Figure 5.24 and the three 

selected points are denoted by A, B and C. The unwrapped phase by DPS method for 

frame 480 is shown in Figure 5.25. Some bad pixels are observed.  

 

Wave used
 

Figure 5.20 Triangular wave by PZT stage 

 

  

Area of interest 

(a) (b) 
 

Figure 5.21 Digital hologram and its intensity display of reconstruction 
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t=1 frame 
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t=96 frame t=144 frame 
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t=480 frame 
 

Figure 5.22 Interference phase variations with time 
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Figure 5.23 Schematic description of temporal phase unwrapping of digital holograms 

 

 
A B C

Figure 5.24 A typical interference phase pattern of the cantilever beam 
 

 

Bad Region 
 

Figure 5.25 Unwrapped phase by DPS method 
 

Numerical differentiation is a commonly used method to obtain the first 

derivative (instantaneous frequency) of a signal in signal processing. In this study, the 

first derivative of interference phase of a particular pixel along the time axis is 

calculated by numerical differentiation: 
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'( ) ( 1) ( )un n u nϕ ϕ ϕΔ = Δ + −Δ                                                                                      (5.1) 

 
where u denotes unwrapped phase. A calibration is needed before the unwrapped 

interference phase can be changed to the measured physical quantity. For the 

experimental configuration illustrated in Figure 4.10, the out-of-plane displacement of 

a particular pixel at each instant t can be calculated with good accuracy (Wagner et al., 

1999): 

 
( )( )

4 cos( 2)z
td t λ ϕ

π θ
Δ

=                                                                                                     (5.2) 

 
where θ is the angle between the illumination and the observation direction. The out-

of-plane instantaneous velocity can be expressed as )(tvz

 
'( )( ) ( )

4 cos( 2)z z
tv t d t λ ϕ

π θ
Δ′= =                                                                                          (5.3) 

 

The angle θ  employed in experiment is 60 and a constant o 4 cos( 2) 0.058k λ π θ= =  

is obtained to calibrate the experimental result. Figure 5.26 (a) shows the instantaneous 

velocity variation of point B by numerical differentiation of unwrapped interference 

phase from DPS method. It is seen that the result is in such a mess that no evaluation 

can be done. 

In the proposed ridge extraction algorithm, a sequence of complex phasor maps 

is first obtained after all the digital holograms are reconstructed. For each pixel, the 

instantaneous frequency as a function for the sequence of complex phasors is 

calculated by ridge extraction algorithm. The unwrapped interference phase is then 

obtained by integration. The process flow is shown in Figure 5.27.  
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Instantaneous velocities for point A, B, C calculated by the proposed ridge 

extraction algorithm are given in Figure 5.26 (b). A much better result is obtained and 

all three points have the same trend with time. Such a result again shows the 

effectiveness of the proposed method. It offers the possibilities which can not be 

obtained by conventional method. The window sizes for Point A, B and C are 15.4, 

13.4 and 11.5 pixels, respectively.  

 

 
 
 
 
 
 
 
 
 
 

 
Figure 5.26 (a) Instantaneous velocity of point B using numerical differentiation of 

unwrapped phase difference; (b) Instantaneous velocity of points A, B and C by 
proposed ridge algorithm 

 

The 2D distribution and 3D plots of instantaneous velocity at different time 

instants are shown in Figure 5.28. 

A change of Eq.(5.1) is as follows: 

 
'( ) ( ) ( 1) 0,1, , 1u un n n n Nϕ ϕ ϕΔ + Δ = Δ + = −K                                                            (5.4) 

 

with (0) 0uϕΔ = . Eq. (5.4) is nothing but numerical integration. Thus the phase 

unwrapping is avoided by integration of the derivatives. The integration of the 

instantaneous velocity of a given pixel produces displacement. Displacements 

distribution of point B calculated by both CP and DPS methods are demonstrated in 

Figure 5.29. In order to observe the results in more detail, displacement variation from 
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time 0.4s to 0.8s is selected to display. As shown in Figure 5.29(b), the displacement 

variation calculated by DPS method is full of noise, not as expected strait line at all. 

This also explains why the result of Figure 5.26 is so poor. The proposed method, 

however, gives a greatly improved result as shown in Figure 5.29 (d). 

Although temporal phase unwrapping method is able to prevent the ill-behaved 

pixels from spatial propagation, it brings along the problem of propagation of bad data 

along the time axis. As shown in Figure 5.30 (b), (d) and (f), the accumulation of 

interference phase errors along the time axis could result in an unbearable error in the 

region where the signal-to-noise ratio (SNR) is very low. Another observation is that 

the surface of the cantilever beam by DPS method is becoming smoother with the 

numbers of interference maps. Therefore, it is hard to get a satisfactory result for 

interference maps at early stages. However, the surfaces by CP method of different 

instants are all nearly the same smooth. It therefore offers another possibility to give a 

good result for any time instance.  

 

5.3.3 A comparison of three temporal CP algorithms 

Temporal Fourier transform algorithm has fewer real applications compared to the 

other two algorithms, since it has a restriction of linear phase changing. However, it 

plays an important role in the other two algorithms. As already discussed, a Fourier 

transform is needed to determine the integration limits for temporal STFT filtering 

algorithm. If temporal Fourier transform algorithm is employed, more precise 

integration limits are to be expected. Temporal ridge extraction algorithm actually 

shares the same principle as temporal Fourier transform algorithm. The temporal ridge 

extraction algorithm is able to pick up the peak of a locally transformed signal while  
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Figure 5.27 Flow chart of instantaneous velocity calculation using CP method 
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(a) t = 0.8s 

 

 

 

 

 

(b) t = 2.0s 

 

 

 

 

 

(c) t = 3.2s 

Figure 5.28 2D distribution and 3D plots of instantaneous velocity at various instants 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.29 Displacement of point B: (a) by temporal phase unwrapping of wrapped 
phase difference using DPS method; (b) by temporal phase unwrapping of 
wrapped phase difference from t = 0.4s to t = 0.8s using DPS method; (c) by 
integration of instantaneous velocity using CP method; (d) by integration of 
instantaneous velocity from t = 0.4s to t = 0.8s using CP method 

 

 

 

 
93



 
CHAPTER FIVE                                                                                    RESULTS AND DISCUSSION 

 

                            (a)   t = 0.8s                                                 (b) t = 0.8s 

 

                           (c)  t = 2.0s                                                   (d) t = 2.0s 

 

(e) t = 3.2s                                                              (f) t = 3.2s 

Figure 5.30 3D plot of displacement distribution at various instants. (a), (c), (e) by 
integration of instantaneous velocity using CP method; (b), (d), (f) by temporal phase 

unwrapping using DPS method 
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temporal Fourier transform algorithm only picks up the global peak.   

In terms of phase retrieval, temporal STFT filtering algorithm is more suitable 

than temporal ridge extraction algorithm. There is no such need to consider the 

uncertainty relationship in temporal STFT filtering algorithm as in temporal ridge 

extraction algorithm, for it is just a transformation and inverse transformation process. 

Choosing a proper window is critical for temporal ridge extraction algorithm. How to 

choose a window is still a hot research topic in signal processing. By integration of the 

derivatives of interference phase whose window may not be so proper, there is a high 

chance to obtain a wrong unwrapped phase.  

If it is the instantaneous frequency that is needed to measure, temporal ridge 

extraction algorithm is then the only choice. It offers more attracting possibilities than 

conventional methods as long as the right choice of time-frequency distribution is 

made.  

Temporal Fourier transform algorithm takes shorter time to execute than the 

other two algorithms while temporal ridge extraction algorithm takes the longest. All 

of the programs are executed using Visual C++. If other platforms are employed, the 

calculation time will be unbearable. A table to show these comparisons is given in 

Table 5.1. 
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Table 5.1 A comparison of different temporal algorithms from CP concept 

 

Algorithms Applications Calculation burden 

Temporal Fourier transform Fewest Lightest 

Temporal STFT filtering Suitable for phase retrieval  bearable 

Temporal ridge extraction Instantaneous frequency calculation Heaviest 
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CONCLUSIONS AND FUTURE WORK 

 
 

6.1   Conclusions 

The main goal of this thesis is to develop new temporal phase analysis approaches 

permitting more precise measurement in non-static conditions, using digital 

holographic interferometry. Digital holography offers direct access of the phases of the 

reconstructed wave, avoiding the troublesome experimental efforts like phase-shifting 

or carrier technique. Thus it’s nearly perfect for the area of dynamic measurement, for 

each state needs only one recording. The popular approach is to record a sequence of 

digital holograms during the whole process. Each interference phase distribution is 

then obtained from the complex reconstructed wave field. The temporal phase 

unwrapping is carried out along the time axis to get absolute and continuous phase. 

Such an approach offers the simplest way for dynamic measurement. However, the 

interference phase of each pixel is given an equal weight when processed without 

considering the reliability at all. Due to the much shorter exposure time and the 

electrical noise in dynamic measurement, lower signal-to-noise ratio usually exits.  It’s 

quite necessary to propose another processing method to retrieve high quality 

interference phase. In this study, a complex phasor method to utilize the intensity 

and phase information simultaneously is proposed, in which the intensity acts a 

good measure of the phase value. The most obvious advantage of processing 

complex phasors is that the more powerful tools such as Fourier transform or short 
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time Fourier transform can be employed while at the same time overcoming sign 

ambiguity. 

Under the concept of manipulating complex phasors, three temporal phase 

analysis techniques are developed in which the complex phasor of each pixel is 

measured and analyzed as a function of time. The first algorithm is based on Fourier 

transform while the rest two employs STFT. The first algorithm requires the phase to 

be linearly changing.  It picks up the peak corresponding to the changing rate from the 

resulting spectrum. In the frequency domain, the noise and signal is well separated, 

therefore, a well-filtered effect is achieved. In order to overcome the constraint of 

interference phase linear dependent on time, the rest two algorithms are proposed. The 

STFT more adaptive to exponential field is a local transform, thus signal in one place 

will not affect signal of another place. The second algorithm transforms the signal into 

spectrum and eliminates the coefficient with low amplitude by setting them to 0, the 

filtered coefficients are transformed back.  

  One of the important characteristics of STFT is that the instantaneous 

frequency of a processed signal can be extracted through the ridge. This character is 

very useful in eliminating noise effect as it is able to separate the signal and noise 

frequencies at any instant. The third algorithm combines the first algorithm’s principle 

and ridge algorithm to retrieve the first derivative of the interference phase. By 

integration the first derivative, the interference phase can be obtained without the need 

of phase unwrapping.   

Several applications are presented using temporal complex phasor method: 

profiling of a surface with step change; velocity and deformation measurement on 

continuously deforming objects. From a comparison between CP method and DPS 
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method, it is observed that CP provides better results, especially when SNR is low. The 

CP method presents a highly noise immunity.  

 

6.2   Future work 

The main contribution of this study is the proposal of a novel concept for digital 

holographic interferometry: CP method.  It offers more possibilities than the 

conventional DPS. Three algorithms developed in this study is just a case in point.  In 

this study, the proposed algorithms have been applied to surface profiling and 

continuously deforming measurement. However, a more appealing application on 

vibration measurement has not been studied. The fixed window of the proposed 

algorithms to process such a complex signal appears not so effective. STFT with 

adaptive window width has always been a hot researched topic in signal processing. 

Thus adaptive STFT should have great potential to be applied in digital holographic 

interferometry. It’s nearly possible to process all the problems encountered in digital 

holographic interferometric applications. Possible future areas can be studied: 

1. A simulation can be conducted to verify the future developed algorithms. The 

propose CP method is only verified by experiments to be effective. Therefore, a 

simulation is complementary for the proposed method. The simulation includes: 

Hologram generation, hologram reconstruction, addition of various noises.  

2. More complex experiments can be studied such as vibration. Periodic or non-

periodic vibration should be studied respectively. Vibration with higher frequency 

is especially worth of studying, thus having a higher requirement on the processing 

method. 
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3. Spatial application of CP method can be tried. In the digital reconstruction process, 

an intensity distortion problem exits due to the fill factor of the CCD sensor, which 

can be compensated by a known function. But it effect on the CP method has not 

been studied. If the effect could be eliminated, a quite promising digital 

holographic shearography is then possible. It’s quite flexible and more information 

can be retrieved.  
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APPENDIX 

 
 

APPENDIX A    SHORT TIME FOURIER TRANSFORM RIDGES 
 
 
We start from the definition of analytic instantaneous frequency. A cosine modulation 

 
)(cos)cos()( 0 tItItf MM ϕϕω =+=                 (A.1) 

 
has a frequency ω  that is the derivative of the phase 0)( ϕωϕ += tt . To generalize this 

notion, real signals f are written as an amplitude  modulated with a time varying 

phase 

MI

ϕ : 

 
)(cos)()( ttItf M ϕ=   with                            (A.2) 0)( ≥tIM

 
The instantaneous frequency is defined as a positive derivative of the phase: 

 
0)()( ≥′= tt ϕω                   (A.3) 

 
The derivative can be chosen to be positive by adapting the sign of )(tϕ . One must be 

careful because there are many possible choices of  and )(tIM )(tϕ , which implies 

that )(tω  is not uniquely defined relative to f. 

In short time Fourier transform, the spectrogram 2),(),( ζζ bSfbfPS =  

measures the energy of f in a time-frequency neighborhood of ),( ζb . The ridge 

algorithm computes instantaneous frequencies from the local maxima of ),( ζbfPS . 

The short time Fourier transform is computed with a symmetric window )()( tgtg −=  

whose support is equal to [-1/2, 1/2]. The Fourier transform g  is a real symmetric ˆ
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function and )0(ˆ)(ˆ gg ≤ω  for all R∈ω . The maximum ∫−=
21

21
)()0(ˆ dttgg  is on the 

order of 1. Generally, the window g is normalized so that 1=g . For a fixed scale a, 

)/()( 21 atgatga
−=  has a support of size a and a unit norm. The corresponding 

windowed Fourier atoms are  

 
ti

aba ebtgtg ζ
ζ )()(,, −=                   (A.4) 

 
and the windowed Fourier transform is defined by 

 
dtebtgtfgfbSf ti

aba
ζ

ζζ −+∞

∞−
−== ∫ )()(,),( ,,                (A.5) 

 
The following theorem relates ),( ξbSf  to the instantaneous frequency of f. 

 
Theorem   

Let )(cos)()( ttItf M ϕ= . If 0≥ζ  then 

 

[ ]( ) [ ]( ) (( )ζεϕζζϕζ ,)(ˆ)(exp)(
2

, ,, bbagbbibIagf Mba +′−−= )              (A.6) 

 
The corrective term satisfies 

 
( ) )(ˆsup,

)(
2,2,1, ωεεεζε

ϕω
ϕ gb

ba
II

′≥
+++≤                            (A.7) 

 
with 

 

)(
)(

1, bI
bIa

M

M
I

′
≤ε ; 

)(
)(

sup
2

2/
2, bI

bIa

M

M

abt
I

′′
≤

≤−
ε                (A.8) 
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and if 1)()( 1 ≤′ −bIbIa MM  then 

 
)(sup 2

2/
2, ta

abt
ϕεϕ ′′≤

≤−
                   (A.9) 

 
if )(bϕζ ′=  then 

 

( ))(2ˆ
)(
)(

1, bag
bI
bIa

M

M
I ϕε ′′

′
=                 (A.10) 

 
The proof of above theorem is presented by Mallat (1998). Delprat et al. (1992) 

give a different proof of a similar result when  is a Gaussian, using a stationary 

phase approximation. If the corrective term 

)(tg

( )ζε ,b  can be neglected, Eq. (A.6) 

enables us to measure and )(bIM )(bϕ′ from ),( ζbSf . This implies that the 

decomposition )(cos)()( ttItf M ϕ=  is uniquely defined. By reviewing the proof of 

the theorem mentioned above, one can verify that  and MI ϕ′  are the analytic 

amplitude and instantaneous frequencies of f.  Eqs. (A.8) and (A.9) show that the 

three corrective terms 1,Iε , 2,Iε  and 2,ϕε  are small if  and  )(tIM )(tϕ′  have small 

relative variations over the support of the window . Let ag ωΔ  be the bandwidth of 

 defined by ĝ

 
1)(ˆ <<ωg     for  ωΔω ≥ .                (A.11) 

 

The term )(ˆsup
)(

ω
ϕω

g
ba ′≥

 of  ( )ζε ,b  is negligible if  

 

a
b ωΔϕ ≥′ )(                   (A.12) 
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Ridge Points of Short Time Fourier transform  

Let us suppose that  and )(tIM )(tϕ′  have small variations over intervals of 

size a and 
a

b ωΔϕ ≥′ )(  so that the corrective term ( )ζε ,b  can be neglected. Since 

)(ˆ ωg  is maximum at 0=ω , Eq. (A.6) shows that for each b the spectrogram 

2
,,

2 ,),( ζζ bagfbSf =  is maximum at )()( bb ϕζ ′= . The corresponding time-

frequency points (b, )(bζ ) are called ridges. At ridge points, Eq. (a.6) becames 

 

[ ]( ) ( ) (( )ζεζϕζ ,0ˆ)(exp)(
2

),( bgbbibIabSf M +−= )             (A.13) 

 
Theorem above proves that the ( )ζε ,b  is smaller at a ridge point because the first 

order term 1,Iε  becomes negligible in Eq. (A.10). This is shown by verifying that 

( ))(2ˆ bag ϕ′  is negligible when ωΔϕ ≥′ )(ba . At ridge points, the second order term 

2,Iε  and  2,ϕε  are predominant in ( )ζε ,b . 

The ridge frequency gives the instantaneous frequency )()( bb ϕζ ′=  and the 

amplitude is calculated by 

 
( )

( )0ˆ
)(,2

)(
ga

bbSf
bIM

ζ
=                 (A.14) 

 
Let ),( ζΦ bS  be the complex phase of ),( ζbSf . If we neglect the corrective term, the 

Eq. (A.13) proves that ridges are also points of stationary phase: 

 

0)(),(
=−′=

∂
∂ ζϕζΦ b

b
bS                 (A.15) 
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APPENDIX B C++ SOURCE CODE FOR TEMPORAL RIDGE ALGORITHM 
 
 
void CTmpUnwrapping::WFRiges(fftw_complex *InputArray, double *dbRiges, 
double dbSigma, double dbPrecision, double *dbIntensity, double dbscale) 
{ 
 
    double* dbWindow=new double[iPoints]; 
 
    fftw_complex* ArrayforWFR=(fftw_complex*) fftw_malloc(sizeof(fftw_complex) 
* iPoints); 
 

for(int m=0;m<iPoints;m++) 
{ 

 
double dbsum=0; 

 
   for(int n=0;n<iPoints;n++) 
   { 

double dbminus=(double)(n-m)/dbscale; 
         double temp=-dbminus*dbminus/(2*dbSigma*dbSigma); 
 
          dbWindow[n]=exp(temp)/sqrt(dbscale);  
          dbsum=dbsum+dbWindow[n]*dbWindow[n]; 
    } 
 
    dbsum=sqrt(dbsum); 
 
     for(n=0; n<iPoints;n++) 
     { 
 
             ArrayforWFR[n][0]=InputArray[n][0]*dbWindow[n]/dbsum; 
             ArrayforWFR[n][1]=InputArray[n][1]*dbWindow[n]/dbsum; 
 
      } 
 
     double dbTemp=DBrent(ArrayforWFR,iPoints,0.00001); 
 
     double dbTmpIntn; 
       

CaculateParameters(ArrayforWFR,&dbTmpIntn,NULL,NULL,dbTemp,iPo
ints); 

 
if((-dbTmpIntn)>dbIntensity[m]) 

     { 
 
    dbRiges[m]=2*Pai*dbTemp/iPoints; 
    dbIntensity[m]=-dbTmpIntn; 
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  } 
 } 
} 
 
 
double CTmpUnwrapping::DBrent(fftw_complex* InputArray,unsigned int N,const 
double tol) 
{ 
 
  
 double iInitialGuess=AInitialGuess(InputArray); 
 
 if(iInitialGuess>=N/2) 
  iInitialGuess=iInitialGuess-N; 
 
 const int ItMax=100; 
 
 const double ZEPS=numeric_limits<double>::epsilon()*1.0e-3; 
 
 bool ok1,ok2; 
 
 int iter; 
 
 double a,b,d=0.0,d1,d2,du,dv,dw,dx,e=0.0,ax,bx,cx; 
 
 double fu,fv,fw,fx,ddfx,olde,tol1,tol2,u,u1,u2,v,w,x,xm; 
 
 ax=(double)iInitialGuess-1; 
 
 bx=(double)iInitialGuess; 
 
 cx=(double)iInitialGuess+1; 
 
 a=(ax<cx ? ax:cx); 
 
 b=(ax>cx ? ax:cx); 
 
 x=w=v=bx; 
 
 CaculateParameters(InputArray,&fx,&dx,&ddfx,bx,N); 
 
 fw=fv=fx; 
 
 dw=dv=dx; 
 
 for(iter=0;iter<ItMax;iter++) 
 { 
  xm=0.5*(a+b); 
  tol1=tol*fabs(x)+ZEPS; 

113



 
                                   APPENDIX                            
  

 

  tol2=2.0*tol1; 
 
  if(fabs(x-xm)<=(tol2-0.5*(b-a))) 
   return x; 
   
  if(fabs(e)>tol1) 
  { 
   d1=2.0*(b-a); 
   d2=d1; 
   if(dw!=dx) d1=(w-x)*dx/(dx-dw); 
 
   if(dv!=dx) d2=(v-x)*dx/(dx-dv); 
 
   u1=x+d1; 
 
   u2=x+d2; 
 
   ok1=(a-u1)*(u1-b)>0.0 && dx*d1<=0.0; 
 
   ok2=(a-u2)*(u2-b)>0.0 && dx*d2<=0.0; 
 
   olde=e; 
 
   e=d; 
 
   if(ok1||ok2) 
   { 
    if(ok1&&ok2) 
      d=(fabs(d1)<fabs(d2)?d1:d2); 
    else 
    { 
     if(ok1) 
      d=d1; 
     else 
      d=d2; 
    } 
 
    if(fabs(d)<=fabs(0.5*olde)) 
    { 
     u=x+d; 
     if(u-a<tol2 || b-u< tol2) 
      d=SIGN(tol1,xm-x); 
      
    } 
    else 
    { 
     d=0.5*(e=(dx>=0.0?a-x:b-x)); 
    } 
   } 
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   else 
   { 
    d=0.5*(e=(dx>=0.0?a-x:b-x)); 
   } 
  } 
  else 
  { 
 
    d=0.5*(e=(dx>=0.0?a-x:b-x)); 
  } 
   
 
  if(fabs(d)>=tol1) 
  { 
   u=x+d; 
   CaculateParameters(InputArray,&fu,NULL,NULL,u,N); 
  } 
  else 
  { 
   u=x+SIGN(tol1,d); 
   CaculateParameters(InputArray,&fu,NULL,NULL,u,N); 
   if(fu>fx) 
   { 
    return x; 
   } 
    
  } 
 
  CaculateParameters(InputArray,NULL,&du,NULL,u,N); 
  if(fu<=fx) 
  { 
 
   if(u>=x) 
       a=x; 
   else 
    b=x; 
   mov3(v,fv,dv,w,fw,dw); 
   mov3(w,fw,dw,x,fx,dx); 
   mov3(x,fx,dx,u,fu,du); 
  } 
  else 
  { 
   if(u<x)  
    a=u; 
   else 
    b=u; 
   if(fu<=fw || w==x) 
   { 
    mov3(v,fv,dv,w,fw,dw); 
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    mov3(w,fw,dw,u,fu,du); 
   } 
   else if(fu<fv || v==x ||v==w) 
   { 
    mov3(v,fv,dv,u,fu,du); 
   } 
  } 
 } 
 ::MessageBox(NULL,"Cannot Find the real solution","Fatal Error!",MB_OK); 
 return 0.0; 
} 
 
double CTmpUnwrapping::TBP(fftw_complex *InputArray) 
{ 
 
 double thetat,thetaf,dbT=0,dbsumxsqu=0,dbNumorator=0,dbB=0; 
  
 for (int x=0;x<iPoints;x++) 
 { 
  
  double dbIntnofSig=InputArray[x][0]*InputArray[x][0] +  

InputArray[x][1]*InputArray[x][1]; 
 
  dbsumxsqu+=dbIntnofSig; 
             double temp=x*dbIntnofSig; 
  dbNumorator+=temp; 
 
  dbT+=(x*temp); 
 } 
 
 thetat=dbNumorator/dbsumxsqu; 
 
 dbT=dbT/dbsumxsqu; 
 
 dbT=sqrt(dbT-thetat*thetat); 
 
 dbNumorator=0; 
 
 p=fftw_plan_dft_1d(iPoints,reinterpret_cast<fftw_complex*>(InputArray), \ 
 
 reinterpret_cast<fftw_complex*>(clxArrayofOutput),FFTW_FORWARD,FF
TW_ESTIMATE); 
 
            fftw_execute(p); 
 
 dbNumorator=0; 
 
 int iHalf=iPoints/2; 
 const double dbK=1/iPoints; 
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 for (x=0;x<iPoints;x++) 
 { 
  double iIndex; 
  if(x<iHalf) 
   iIndex=x; 
  else 
   iIndex=(double)x-iPoints; 
 
  double dbItnfre=0; 
   

dbItnfre=clxArrayofOutput[x][0]*clxArrayofOutput[x][0]+clxArrayof
Output[x][1]*clxArrayofOutput[x][1]; 

 
  double temp=iIndex*dbItnfre; 
  dbNumorator+=temp; 
 
  dbB+=(iIndex*temp); 
   
 } 
 
 thetaf=dbNumorator/(dbsumxsqu*iPoints*iPoints); 
 
 dbB=dbB/(dbsumxsqu*iPoints*iPoints*iPoints); 
 
 dbB=sqrt(dbB-thetaf*thetaf); 
 
 return sqrt(dbT/(dbB*Pai)); 
 
} 
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Journal papers 
 
1. Chenggen Quan, Cho Jui Tay, and Hao Chen, “Temporal phase retrieval from 

complex field in digital holographic interferometry”, Optics Letters, 32, pp.1602-

1604. 2007. 

2. H. Chen, C. Quan, C.J. Tay, “Instantaneous velocity measurement of dynamic 

deformation by digital holographic interferometry”, Optics Communications (In 

press) 
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