
Answering Topband Queries in Time

Series Data

LI LING

A Thesis submitted for

the Degree of Master of Science

Department of Computer Science

School of Computing

National University of Singapore

· 2007 ·

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Top k queries are queries that request for k answers having the highest or

lowest values for some attribute, expression, or function. These queries arise

naturally in many database applications where users are interested in finding

records that are closest to the values specified in a query. Example applications

include census data analysis, data mining, information retrieval and similarity

search of multimedia data. For example, rather than finding all publications on

a certain topic, a researcher may want to retrieve the ten most heavily referenced

papers on the topic at hand.

There has been a long stream of research work that address the efficient eval-

uation of top k queries in relational databases. In this thesis, we investigate the

usefulness of top k queries in time series data and introduce a new class of queries

called ⌈k⌉-topband. Topband queries aim to retrieve objects that are within top

k at every time point over a specified time interval. This kind is queries is de-

signed from the observation that objects which exhibit some consistent behavior

over a period of time would enable decision-makers to assess, with greater confi-

dence, the potential merits of the objects. A rank-based approach is proposed to

evaluate topband queries efficiently. Experiment results on both synthetic and

real world datasets indicate that the proposed approach is efficient and scalable,

and has direct applications in real world scenarios.

i

Contents

Acknowledgments 1

1 Introduction 2

1.1 Contribution . 5

1.2 Organization . 7

2 Related Work 8

2.1 Similarity Queries in Time Series Data 9

2.1.1 Dimension Reduction on Data 9

2.1.2 String of Symbols . 10

2.1.3 Distance Measure . 11

2.2 kNN Queries in Relational Database 12

2.2.1 Cell Method . 12

2.2.2 R-Tree . 12

2.2.3 k-d-Tree & Quad-Tree . 13

2.3 Top k Queries in Relational Database 14

2.4 Map Top k Queries to SQL Selection Queries 16

2.5 Topband vs. Top-k and Skyline Queries. 18

3 Answering Topband Queries with Rank Method 21

ii

3.1 RankList Construction . 25

3.2 Topband Search . 27

3.3 RankList Updates . 28

3.3.1 Insertion . 28

3.3.2 Deletion . 30

3.4 Time & Space Complexity . 32

4 Answering Topband Queries in Relational System 34

4.1 Answering Topband Queries with Existing Methods 36

4.2 RankList Implementation . 38

4.2.1 RankList original Implementation 39

4.2.2 RankList simplified Implementation 42

5 Performance Study 46

5.1 Experiments on RankList Structure 47

5.2 Experiments on Topband Queries 53

5.2.1 Effect of Number of Intersection Points 54

5.2.2 Effect of Query Selectivity 55

5.2.3 Scalability . 56

5.2.4 Experiments on k*-topband queries 58

5.3 Experiments on Real World Datasets 58

6 Conclusion and Future Work 66

iii

List of Figures

1.1 Example student dataset with {stu2, stu3} being consistently in

the top 3. 4

2.1 Mapping the January and February test marks in Figure 1 to a

2-D space to illustrate skyline query. 19

3.1 Rankings of time series . 22

3.2 RankList original constructed for student dataset in Figure 1.1

from January to May . 23

3.3 RankList simplified constructed for student dataset in Figure 1.1

from January to May . 25

5.1 Time to construct RankList simplified vs. RankList original . . . 48

5.2 Time to construct RankList simplified 49

5.3 Time to search RankList simplified vs. RankList original 49

5.4 Time to search RankList simplified 50

5.5 Update cost . 52

5.6 Space requirement of RankList . 53

5.7 Effect of number of intersection points with the response time in

log scale . 54

5.8 Effect of query selectivity with the response time in log scale . . . 55

iv

5.9 Scalability with the response time in log scale 57

5.10 Experiments on k*-topband queries 59

5.11 Time to search RankList for stock dataset 61

5.12 Space of RankList for stock dataset 61

5.13 Precision vs. smoothing threshold for the stock dataset 62

5.14 Top 20% students for each batch 64

v

List of Tables

2.1 Computing the average scores of the students’ January and Febru-

ary tests to illustrate top-k query. 19

4.1 Example student relation . 35

4.2 Example RankTable original relation 39

4.3 Example RankTable simplified relation 42

5.1 Parameters of dataset generator 46

5.2 Percentage gains of stocks retrieved by topband over top-k queries. 63

vi

Acknowledgments

First and most importantly, I am extremely grateful to my supervisor A/P Lee

Mong Li and A/P Wynne Hsu. They have given me the most valuable guidance

that an adviser can give her students. Their helpful comments, suggestions and

insightful criticism are invaluable to my research work.

I am also very grateful to my friends from database group for their continuous

support and those valuable discussions and suggestions.

Finally, I would like to express my love and gratitude to my family who have

always been supporting and encouraging me.

1

Chapter 1

Introduction

Time series data are of growing importance in many new database applications.

A time series (or time sequence) is a sequence of real numbers, each number

representing a value at a time point. Typical examples include stock prices or

currency exchange rates, weather data, etc. Recently, there has been an explosion

of interest on time series databases due to its usefulness in knowledge discovery.

Many high level representations of time series [11, 14, 19, 21, 24, 28, 30, 37], and

distance functions for sequence and/or subsequence matching are proposed [1,11,

31, 32, 36]. However, all these works are focused on similarity matchings which

include range queries, best-match queries and k-nearest neighbor queries.

We observe that time series data is also very useful in decision marking because

it captures historical data. Oftentimes, decisions that are made based on one time

point observation may not be as reliable or durable as decisions that are made

based on observations over a period of time. In fact, many real world applications

such as online stock trading and analysis, traffic management systems, weather

monitoring, disease surveillance and performance tracking, have large repositories

of historical data. Finding objects that exhibit some consistent behavior over a

2

period of time would enable decision-makers to assess, with greater confidence,

the potential merits of the objects.

In this work, we define a class of queries call topband to retrieve objects with

some persistent performance over time. The states of an object over time consti-

tute a time series. We will first illustrate with examples the relevance of topband

queries in various applications.

Example 1. Stock Portfolio Selection. In selecting a portfolio of stocks

for long-term investment, investors would have greater confidence in stocks that

consistently exhibit above industry average in growth in earnings per share and

returns on equity. These stocks are more resilient when the stock market is bear-

ish and may be a better choice than volatile stocks. We can issue a topband

query to return a set of stocks whose growth in earnings per share or return on

equity are consistently above the 50th percentile over a period of time.

Example 2. Targeted Marketing. The ability to identify ”high value” cus-

tomers is valuable to companies who are keen on marketing their new products

or services. These ”high value” customers usually have been with the company

for some time and have regular significant transactions. Marketing efforts that

are directed to this group of customers are likely to be more profitable than those

to the general customer base. The topband query allows these ”high value”

customers to be retrieved. This will allow the company to develop appropriate

strategies that will further its business goals.

Example 3. Awarding Scholarships. Organizations that provide scholar-

ships have many criteria for selecting suitable candidates. One of the selection

3

Figure 1.1: Example student dataset with {stu2, stu3} being consistently in the
top 3.

criteria often requires the students to have demonstrated consistent performance

in their studies or leadership roles. The topband query can be used to retrieve

this group of potential scholarship awardees.

Formally, given a time series dataset, we define the ⌈k⌉-topband as the set of

time series which are ranked among the top k at every time point. The parameter

⌈k⌉ denotes the size of the answer set, and ranges between 0 to k.

Figure 1.1 shows a sample student dataset which records the test marks of six

students in the first ten months in 2006, assuming there is one test per month.

A ⌈3⌉-topband query to retrieve students who are consistently in the top 3 for

every test over the ten months will yield {stu2, stu3}. Note that the size of the

answer set does not need to be 3.

We also introduce a variation of ⌈k⌉-topband queries. The purpose is to

retrieve a set of time series that outperforms a particular time series. For example,

suppose we want to find a set of stocks whose gains are always greater than some

reliable stock such as IBM for the past month. Again, we can retrieve the set

4

of stocks whose gains are higher than IBM for each day in the last month and

compute the intersection. Note that the number of stocks that outperform IBM

would vary from day to day, that is, the value k may be changed from one time

point to another. We call such queries k*-topband, to indicate the changing k at

different time points.

So far, we have posed a strict condition on ⌈k⌉/k*-topband queries. That is,

the candidate object must perform well at EVERY time point. However, in prac-

tice, it is very hard to find such objects. For example, when awarding scholarships

(Example 3), the formulation of topband queries requires good performances for

all time points. But there may be extenuating circumstances beyond a student’s

control which may lead to a temporary drop in his/her performance. In this case,

it should be relaxed to disregard the students’ performance for a few time points.

In this work, we will apply the Haar Wavelet Transform technique to the origi-

nal dataset to get the candidate objects for the less restrictive topband queries.

The disadvantage of utilizing Haar Wavelet Transform is that the result set may

contain some objects which do not perform well at few time points. However,

the cost/space cost will be reduced while processing the less restrictive topband

queries, as well as it is more close to the real practice. We will discuss more about

the less restrictive version of topband queries in Chapter 5.

1.1 Contribution

A naive approach to process a ⌈k⌉-topband query is to consider it as a set of top-k

queries over a continuous time interval. For each time point in the time interval,

we obtain the top-k answers and compute their intersections. It is clear that

this straightforward approach can be potentially expensive with many redundant

5

computations.

We address this shortcoming and develop a rank-based approach to evaluate

topband queries efficiently. The time series at each time point are ranked; the

time series with the highest value at a time point has a rank of 1. We observe

that the rank of a time series is only affected when it intersects with other time

series. Referring to our example in Figure 1.1, for the January test, stu1 is ranked

first while stu2 is ranked second. However, in the February test, the rank of stu1

drops. Note that the time series for stu1 intersects with that of stu2, stu3 and

stu4 between the two tests.

Based on this observation, we design an efficient algorithm to construct a

compact RankList structure from a time series dataset. With this structure, we

can quickly answer topband queries. Furthermore, the RankList structure can be

implemented on top of any relational database system. In the following chapters,

we will describe how to utilize existing approaches to answer topband queries, as

well as our proposed method.

The main contributions of this thesis are summarized below.

1. We give a formal definition of topband queries and explain how a traditional

relational database system handles such queries. We also describe how

topband queries can be answered using SQL and existing top k methods

and highlight the drawbacks of these approaches.

2. We propose a technique that utilizes rank information to answer topband

queries efficiently. Algorithms to construct, search and update the RankList

structure are presented.

3. We present a suite of comprehensive experiment results to show the effi-

ciency and scalability of our proposed method. We also demonstrate that

6

top-band queries are able to retrieve interesting results from two real world

stock and student datasets.

1.2 Organization

The rest of the thesis is organized as follows. Chapter 2 provides a review of

related work. We first discuss how similarity queries and top k queries are eval-

uated in time series data. Then we show how topband queries are different from

top k and skyline queries.

Chapter 3 presents the proposed technique that utilizes rank information to

answer topband queries efficiently. More specifically, it describes the RankList

structure which can capture the rank information of each time series. Various

algorithms to construct, search and update the RankList are given as well as the

analysis of their time complexity.

Chapter 4 describes how topband queries can be answered using existing SQL

and top k methods and highlights the drawbacks of each method. We show

how the proposed RankList structure can be implemented on top of relational

database.

Chapter 5 presents a suit of comprehensive experiment results to show the

efficiency and scalability of the proposed method, as well as the direct application

of topband queries in real world scenario.

Finally, we conclude in Chapter 6 with directions for future work.

7

Chapter 2

Related Work

In time series database, much research effort has been put on retrieving similar

matches which include range queries, best-match queries and k-nearest neighbor

queries. Given the inherent high dimensionality of time series data, this prob-

lem becomes even complex. In this chapter, we first review various high level

representations of time series and distance functions for sequence/subsequence

matching.

Given that a naive approach to process topband queries is to obtain the top-k

answers at every time point and compute their intersections, we will review the

various methods to process kNN and top k queries. Note that top k query is a

special case of kNN query.

Finally, we discuss the differences between topband queries, top k, and skyline

queries, thus providing a clear idea of topband queries.

8

2.1 Similarity Queries in Time Series Data

Research in time series data has been concentrated on answering similarity queries

which include range queries, best-match queries and k nearest neighbor queries.

Two main approaches are developed in order to process similarity queries effi-

ciently. One is to reduce the dimensionality on the data and the other one is to

transform the data into a string of symbols. In this section, we will review how

existing approaches utilize these two approaches. Furthermore, we will discuss

the distance measured used in time series data to measure the similarity of two

sequences.

2.1.1 Dimension Reduction on Data

The most promising solutions to answer similarity queries involve performing

dimensionality reduction on the data, then indexing the reduced data with a

spatial access method. Four major dimensionality reduction techniques have

been proposed in the previous work. They are Discrete Fourier Transform [1,32],

Piecewise Aggregate Approximation [24,25], Discrete Wavelet Transform [11] and

Singular Value Decomposition [36].

[1] discuss DFT approach. The basic idea of this approach is that obtaining

DFT coefficients using the Algorithm Fast Fourier Transform (FFT), cutting off

all but the first few Fourier coefficients and calculating the square root of the

sum of the squared differences of these coefficients. If the difference is below a

user-defined threshold, then the two sequences are considered to be similar. The

reason to choose DFT is because it is the most well known, its code is readily

available, it does a good job of concentrating the energy in the first few coefficients

and the amplitude of the Fourier coefficients is invariant under shifts. [32] further

9

propose to use the last few Fourier coefficients of a time sequence in the distance

computation since every coefficient at the end is the complex conjugate of a

coefficient at the beginning and as strong as its counterpart. In this way, the

search time of the index can be reduced by more than 50 percent in most cases.

However, DFT suffers the problems that it cannot capture the feature of time

localization.

[11] discuss to use Haar Wavelets to reduce the dimensionality. Haar trans-

form can be seen as a series of averaging and differencing operations on a discrete

time function. One advantage of DWT over DFT is that DWT can capture

the feature of time localization. However, it is only defined for sequences whose

length is an integral power of two.

To overcome the drawbacks of DFT and DWT, [25] propose Piecewise Aggre-

gate Approximation (PAA) approach. In order to reduce the data to N dimen-

sions, PAA approach divides the data into N equi-sized ”frames” and calculates

the mean value of the data falling within a frame, taking a vector of these val-

ues to be the data reduced representation. PAA requires each segment is of the

same length, while [24] relax this requirement by allowing the segments to have

arbitrary lengths. This approach is called APCA (Adaptive Piecewise Aggre-

gate Approximation). APCA can capture the shapes of time series data more

accurately than PAA and have a less response time.

2.1.2 String of Symbols

Another approach to answer similarity queries is to transform data into a string

of symbols, then index these symbols accordingly. Three pieces of work [2, 3, 22]

have discussed this approach.

[2] present a shape definition language, called SDL, for retrieving objects

10

based on shapes contained in the histories associated with these objects. Eight

symbols are proposed in [2] to describe transitions of objects from one time instant

to the following one and a four-layer hierarchical storage structure, which also

acts as an index structure, is designed to store these symbols. The advantage

of [2] is its ability to perform blurry matching and efficient implementability.

However, SDL can be only used to do blurry matching, not the exact matching.

[3] and [22] also translate the data into a string of symbols by calculating

the amplitude difference between two adjacent samples. [3] adopt signature files

to index the text-string while suffix tree is utilized as index in [22].

All these three transformation techniques aim to capture the shape informa-

tion of the time series, but losing the actual data values in the process.

2.1.3 Distance Measure

Besides Euclidean distance, which is the most well known distance measure, dy-

namic time warping (DTW) [4] is also a much more robust distance measure for

time series. One advantage using DTW is that DTW allows similar shapes to

match even if they are out of phase in the time axis. [23] show that PAA [25]

can be adapted to allow indexing under DTW. [26] propose a modification of

DTW called Derivative Dynamic Time Warping (DDTW). Instead of consider-

ing values in the Y axis of the datapoints, DDTW considers the first derivative

of the sequences. Compared to DTW, DDTW can avoid ”singularities” and can

find obvious, natural alignments in two sequences simply even if a feature in one

sequence is slightly higher or lower than its corresponding feature in the other

sequence.

11

2.2 kNN Queries in Relational Database

A typical approach to answer kNN queries is partitioning approach, which par-

titions the data space recursively and stores information about the partitions in

the nodes. Cell method [35], R-tree approach [33], k-d-tree approach [20] and

Quad-tree approach are key methods in partitioning approach.

2.2.1 Cell Method

The cell method [35] is a straightforward technique for solving the best match or

nearest neighbor problem. The algorithm divides the data space into identical

cells and stores the data objects inside a cell in a list which is attached to the

cell. During nearest neighbor search the cells are visited in order of their distance

to the query point. The search terminates if the nearest point which has been

determined so far is nearer than any cell not visited yet. Although this procedure

minimizes the number of records examined, it is extremely costly in space and

time, especially when the dimensionality of the space is large.

2.2.2 R-Tree

[33] propose an approach that uses R-tree for nearest neighbor search. Two

metrics are computed for each Minimum Bounding Rectangle (MBR) for ordering

and pruning search. One metric is MinDist, which is the minimum possible

distance from the query point to the rectangle. The other metric is MinMaxDist.

This is computed as the maximum possible distance from the query point to

the nearest data point inside the rectangle. The algorithm traverses the R-tree

and stores for every visited rectangle a list of subrectangles ordered by their

MinMaxDist. Three pruning strategies are adopted when traversing:

12

1. An MBR M and the query point P with MinDist(P, M) greater than the

MinMaxDist(P, M’) of another MBR M’ is discarded because it cannot

contain the Nearest Neighbor(NN).

2. An actual distance from P to a give object O which is greater than the

MinMaxDist(P, M) for an MBR M can be discarded because M contains

an object O’ which is nearer to P.

3. Every MBR M with MinDist(P, M) greater than the actual distance from P

to a given object O is discarded because it cannot enclose an object nearer

than O.

The algorithm is terminated when there is no items in the list. One disad-

vantage of this algorithm is that it traverses the index in a depth-first fashion.

Subnodes are stored before descent, but once a branch has been chosen, its pro-

cessing has to be completed, even if sibling branches appear more likely to contain

the NN. The algorithm therefore accesses more partitions than actually neces-

sary. Furthermore, R-tree cannot scale well when the number of dimensions is

up to 16.

2.2.3 k-d-Tree & Quad-Tree

k-d-tree [20] and Quad-tree are both multidimensional tree structures that extend

the binary search tree to multidimensional data. Both of them accomplish the

three functions of the binary search tree: storing the records, dividing space

into hyperrectangles and providing a directory among the hyperrectangles. The

critical exception is that we have to choose at each internal node one of k keys

to use as a discriminator in a multidimensional tree.

13

The algorithm to construct a k-d-tree is to choose for the discriminator that

coordinate j for which the spread of attribute values is maximum for the subcol-

lection represented by the node. The partitioning value is chosen to be the median

value of this attribute. The algorithm to construct quad-tree is to partition the

search space into four quadrants.

Range search with k-d-tree is straightforward. Starting at the root, the k-d-

tree is recursively searched in the following manner. When visiting a node that

discriminates by the jth key, one compares the jth range of the query with the

discriminator value. If the query range is totally above (or below) that value, then

one need only search the right subtree (respectively, left) of that node; the other

son can be pruned from the search because any node it contains does not satisfy

the query in that particular key. If the query range overlaps the node’s key, then

both children need to be searched. This can be accomplished by searching both

children recursively. Range searching with Quad-tree is similar.

These two structures are most effective in situations where little is known

about the nature of the queries or a wide variety of queries are expected.

2.3 Top k Queries in Relational Database

The work in [16, 17] first address top k queries when dealing with queries con-

taining image content. They use grade to represent the extent to which that

object fulfills the condition, where the larger the grade is, the better the match.

They observe that for queries with non-boolean attributes, like ”color = ’red’”

or ”shape = ’round’”, grade may be intermediate values between 0 and 1 instead

of the exact value 0 or 1. They call such non-boolean attributes multimedia at-

tributes. The result of such queries with multimedia attributes should be a sorted

14

list items in its database that match the query the best.

The work in [16,17] assume each of these multimedia attributes have a native

sub-system that answers top k queries involving only the corresponding attribute.

In the first phase of the proposed Fagin’s Algorithm A0, for each condition on the

corresponding attribute, the query processing system obtains a set L of streams

of top matches from the corresponding sub-system. This process terminates until

there are at least k objects in the intersection of L. In the second phase, Algo-

rithm A0 computes the score of each of the retrieved objects, and returns the

best k objects. Some research [17] further address the problem that certain sub-

queries may obtain extra weights. However, Algorithm A0 is unable to provide an

accurate estimation in the presence of correlation among attributes and skewed

distribution.

The work in [18] generalize Fagin’s Algorithm A0([16]) as Fagin’s threshold

algorithm [18] (TA). TA assumes that each attribute of the multidimensional

data space has an index list. The index list can be utilized to access the data

items in descending order of the ”local” score for the given attribute with regard

to an elementary query condition. There are two modes to access data utilized

in TA. One is referred to as ”sorted access”, which will output the graded set of

all objects, one by one, along with their grades under the query, in sorted order

based on grade. The other one is termed as ”random access”. It will output the

grade of a given object. In the first step, TA does sorted access in parallel to each

of the sorted lists. When an object R is seen under sorted access in some list,

TA does random access to the other lists to find the corresponding grade of R.

Then it will compute the grade of R. If the grade value is one of the k highest it

has seen, remember R and its grade. In the second step, for each list, TA defines

the threshold value τ to be the grade of the last object seen under sorted access

15

of that list. As soon as at least k objects have been seen whose grade is at least

equal to τ , then halt. In the last step, TA outputs the k objects that have been

seen with the highest grades.

One disadvantage of the TA method([18]) is that it moves to the next ob-

ject only after probing all needed sources of the current object. This in turn

incurs more access cost. To overcome this drawback, [34] propose to calculate

the probability that the total score exceeds a threshold that would make the item

interesting for the top k result based on the assumption of the data distribution.

If this probability is sufficiently low, it drops the data item from the candidate

list. However, this method would result in some false dismissals.

[8] also aim at avoiding the overly conservative best-score/worst-score bounds

of the TA method([18]). It proposes an efficient evaluation of top k queries

over a (distributed) ”relation” whose attributes are handled and provided by

autonomous sources accessible over the web with a variety of interfaces. The ex-

pected score is estimated, and upper and lower bounds for the scores are explored

in order to prune objects in the first few steps instead of scanning the whole values

of an object. In this way, [8] spend less time to process top k queries compared

to [18].

2.4 Map Top k Queries to SQL Selection Queries

Another stream of research work to answer top k queries is to map top k queries

into SQL selection queries [6,7,9,10,12,13,15,29]. The work in [9,10] illustrate the

inefficiencies inherent in a relational DBMS to handle top k queries, and proposes

adding a STOP AFTER clause to SQL to allow query writers and query tools

to explicitly limit the cardinality of a query result. A STOP operator, which

16

produces the top or bottom k tuples of its input stream in a specified order and

discards the remainder of the stream, as well as two implementation methods

Scan-Stop and Sort-Stop, are proposed in [9] to efficiently process STOP AFTER

clause. Furthermore, [10] present additional strategies based on the use of range

partitioning techniques and semi-join-like methods to process the STOP AFTER

clause. However, both work suffer from the drawback that the techniques in [9,10]

can only be used after evaluating the score for each object. Hence, these strategies

require a preprocessing step to compute the scoring function itself involving one

sequential scan of all the data.

To overcome the drawbacks in [9, 10], the work in [12] examine how a top k

query can be mapped to a multi-attribute range query. The key issue is to deter-

mine an appropriate search distance d which would retrieve the k best matches

for the query. [12] use the histogram-based statistics on the relations to deter-

mine the search distance. Unfortunately, using only relatively coarse histograms

to identify such a precise value for d is not possible. Therefore, there are two

scenarios when processing top k queries by [12]. The first scenario is called pes-

simistic scenario. The pessimistic heuristic uses a largest possible value for d

of the selection query, and usually results in an answer set much larger than k

points. However, it guarantees that the actual top k points are included in the

answer set. The other scenario is optimistic scenario. It uses a smallest possible

value for d, resulting in a smaller selection query and thus less access cost than

the pessimistic strategy. However, the resultant selection query usually returns

far less than k points. When this happens, the query must be ”re-started” by

using a larger d, which in turn incurs extra access cost.

In order to find more precise value of d, [6] introduce a single value in each

histogram bucket computed using a variation of the fractal dimension concept,

17

which models multidimensional data skews within buckets. Using this value,

a more precise value of d can be determined from the optimistic scenario to

the pessimistic scenario in [12]. Furthermore, [7] propose to use the particular

workload of query to find the optimal value of d. However, histogram-based

approach still has drawbacks in maintenance overhead and scaling.

In order to overcome the histogram drawbacks, the work in [13] propose a

sampling-based approach to map a top k query to a multi-attribute range query.

A sampling set S is first chosen and the first several points are retrieved from

S according to their distance with the query point q in ascending order. These

points are used subsequently to determine the appropriate search distance to

map to selection queries. Compared to the histogram-based approach in [9], the

sampling-based approach [13] has advantages in terms of estimation accuracy,

run-time efficiency and resource usage. Recently, [15] compute the search dis-

tance by taking into account imprecision in the optimizer’s knowledge of data

distribution and selectivity estimation.

2.5 Topband vs. Top-k and Skyline Queries.

Top k query requests for k answers having the highest or lowest values for some

attribute, expression, or function, whereas skyline query retrieves objects which

are not dominated by other objects on every attribute. Both of them aim to

retrieve objects with outstanding values.

Topband query is different from top k and skyline queries such that it aims

to retrieve the set of objects that show some consistent performance over time.

However, mapping a time series dataset to a multi-dimensional dataset, and using

top-k or skyline query methods may not be able to retrieve the desired set of

18

id test 1 test 2 average mark

stu1 92 79 85.5
stu2 88 89 88.5
stu3 84 86 85
stu4 77 94 85.5
stu5 72 76 74
stu6 78 73 75.5

Table 2.1: Computing the average scores of the students’ January and February
tests to illustrate top-k query.

objects.

To illustrate, we continue with the example in Figure 1.1 and consider the

performance of the students for only the January and February tests. A ⌈3⌉-

topband query over [200601, 200602] will retrieve the students stu2 and stu3

since their test scores for January and February are consistently within the top

3 highest.

A top-k query retrieves k objects which have the highest scores based on some

monotonic function [9]. Table 2.1 lists the January and February test marks for

the students and their averages. A top-3 query will retrieve students stu1, stu2

and stu4, but stu1 has not done well in the February test and stu4 has not done

well in the January test.

skyline

Figure 2.1: Mapping the January and February test marks in Figure 1 to a 2-D
space to illustrate skyline query.

19

Now let us map the January and February test marks of the students in

Figure 1.1 to a two-dimensional space as shown in Figure 2.1. The x-axis and

y-axis in Figure 2.1 represent the marks of the students in January and February

respectively. A skyline query retrieves a set of points from a multi-dimensional

dataset which are not dominated by any other points [5]. Figure 2.1 shows the

results of a skyline query (stu1, stu2, stu4). Note that stu1 and stu4 are retrieved

although they have not done well in one of the two tests. Further, stu3 who has

consistently scored above 85, is not retrieved by the skyline query.

In the following chapters, we will describe a rank based approach to answer

topband queries and show how the proposed method can be implemented on top

of a relational database system.

20

Chapter 3

Answering Topband Queries with

Rank Method

A time series s is a sequence of values that change with time. We use s(t) to

denote the value of s at time t, t ∈ [0, T]. A time series database TS consists of

a set of time series si, 1 ≤ i ≤ N . Given a time series database TS, an integer

k, and a time point t, a top-k query will retrieve k time series with the highest

values at t. We use top-k(TS, k, t) to denote the set of top k time series at t.

A ⌈k⌉-topband query over a time interval [tu, tv] will retrieve the set of time

series U =
⋂

Ut where Ut = top-k(TS, k, t) ∀ t ∈ [tu, tv]. Note that the size of

U is between 0 to k. In this chatper, we present an approach that utilizes rank

information to efficiently process topband queries.

The rank of the various time series at each time point can be obtained by

sorting the values of the time series at each time point. We observe that the

rank of a time series s at a time point t, denoted by rank(s,t), is affected by

the intersection of s with other time series between the time points t − 1 and t.

Figure 3.1 illustrates how the rankings of a set of time series may be affected by

21

intersections.

t-1 t
60

70

80

90

s1

s2

s3

s4

(a)

t-1 t
60

70

80

90

s1

s2

s3

s4

(b)

Figure 3.1: Rankings of time series

There are three cases:

1. A time series s does not intersect with any other time series between the

time points t − 1 and t. In this case, rank(s,t) = rank(s,t − 1).

For example, the time series s1 and s4 in Figure 3.1(a) do not intersect with

other time series between t1 and t2. Therefore, there is no change in their

rankings at these time points.

2. A time series intersects with other time series between the time points t−1

and t, leading to a change in the ranking of the time series.

For instance, the time series s2 and s3 in Figure 3.1(a) intersects with

each other between t1 and t2. We have rank(s2,t1)=2, rank(s2,t2)=3, and

rank(s3,t1)=3, rank(s3,t2)=2.

3. A time series intersects with other time series between the time point t− 1

and t, but there is no change in the ranking of the time series.

For example, both of the time series s2 and s3 Figure 3.1(b) intersects with

s1 and s4 between the time point t1 and t2. However, their ranks are 2 and

3 respectively at both time points.

22

We can construct an inverted list for each time series to store the rank in-

formation. Each entry in the list consists of the rank of the time series at the

corresponding time point. We call this structure RankList. There are two options

for the RankList design. The first option is that we store the rank information

for a time series at every time point (see Figure 3.2). The second option is that

we only store the rank information for a time series at the time points at which

the rank is different compared to its previous time point (see Figure 3.3). That

is, an entry is only created in the inverted list of a time series when its ranking

is affected by an intersection. In order to differentiate the two structures, we call

the first one RankList original and the second one RankList simplified. Further,

if an existing time series does not have any value at some time point, then it will

be ranked 0 at that time point.

Figure 3.2: RankList original constructed for student dataset in Figure 1.1 from
January to May

A ⌈k⌉-topband query can be quickly answered with the RankList structure by

traversing the list of each time series and searching for entries with rank values

greater than k. The result is the set of time series which do not have such entries

in their lists.

For example, to answer a ⌈3⌉-topband query issued over the student dataset

in Figure 1.1, we traverse the list of stu1 in Figure 3.3 and find that the rank in

23

the second entry is greater than 3. Hence, stu1 will not be in the answer set. In

contrast, there are no entries in the lists of stu2 and stu3 with rank values greater

than 3, and {stu2, stu3} are the results of the ⌈k⌉-topband query. Similarly, such

query can be answered by traversing the list in RankList original. Note that we

can stop searching a list whenever an entry in the list with rank value greater

than k is encountered.

To answer k*-topband query with the RankList simplied structure, we need

to find the ranks of the specified time series s1 at various time points. Then we

traverse the list of each time series to look for entries with rank values greater

than the rank of s1 at the corresponding time point. The result is a set of time

series which do not have such entries in their lists. Note that the entry of s1 at

some time point t may not exist because its rank at t is the same as its rank at

t− 1. In this case, we need to look for the entry with the largest time point that

is smaller than t. For example, to retrieve the students who always outperform

stu6, we traverse the list of stu2 and compare the ranks in the first two entries

with the corresponding entries in the list of stu6. When we encounter the third

entry of stu2, we find that the entry with time 200604 does not exist in the list

of stu6. In this case, we locate the second entry with time 200603 since 200603

is the largest time which is smaller than 200604 in the list of stu6 and compare

the rank in the third entry of stu2 with the rank in that entry accordingly.

Compared to RankList simplied, answering k*-topband query with the

RankList original is simpler. This is because RankList original stores the rank

information of a time series at every time point. For example, to retrieve the

students who always outperform stu6, we traverse the list of stu2 and compare

the ranks in every entry with the corresponding entry in the list of stu6. Since

stu2 holds higher ranks than stu6 at every entry, stu2 is a candidate answer.

24

Figure 3.3: RankList simplified constructed for student dataset in Figure 1.1
from January to May

The RankList structure can be extended to retrieve time series which are

consistently at the bottom k. If we have N time series in the dataset, then we

traverse the list of each time series and search for entries with rank values greater

than N − k or 0. The result is the set of time series which do not have such

entries in their lists.

Next, we present the algorithms to construct the RankList structure as well

as search and update.

3.1 RankList Construction

Algorithm 1 shows the steps to construct the inverted list structure RankLst simplied

that captures the rank information for each time series in a dataset. The algo-

rithm utilizes two arrays called PrevRank and CurrRank to determine if the

ranking of a time series at the current time point has been affected by some

intersection.

Lines 3 and 5 initialize each entry in the PrevRank and CurrRank array to 0.

This is because of the possibility of missing values for some time series. If a time

series s has a value at time t, CurrRank[s] will be initialized to 1 (lines 7-8). The

25

Algorithm 1 BuildRankList

1: Input: TS - time series database with attributes id, time and value
T - total number of time points in TS

2: Output: RankLst s - RankList simplied structure for TS
3: initialize int [] PrevRank to 0;
4: for each time point t from 0 to T do

5: initialize int [] CurrRank to 0;
6: let S be the set of tuples with time t;
7: for each tuple p ∈ S do

8: initialize CurrRank[p.id] to 1;
9: for each pair of tuples p, q ∈ S do

10: if p.value < q.value then

11: CurrRank[p.id]++;
12: else

13: CurrRank[q.id]++;
14: for each time series s in TS do

15: if CurrRank[s] != PrevRank[s] then

16: Create an entry <t, CurrRank[s]> for time series s in RankLst s;
17: PrevRank[s] = CurrRank[s];
18: return RankLst s;

Algorithm 2 ⌈k⌉-topband Search

1: Input: RankLst - RankList structure of TS;
t start, t end - start and end time points;
integer k;

2: Output: A - set of time series that are in top k over [t start, t end];
3: initialize A to contain all the time series in TS;
4: for each time series s in A do

5: locate the entry <t, rank> for s in the RankLst with the largest time point
that is less than or equal to t start;

6: if entry not exist then

7: A = A - s;
8: CONTINUE;
9: while t ≤ t end do

10: if rank > k or rank = 0 then

11: A = A - s;
12: break;
13: else

14: entry = entry.next;
15: return A;

26

Algorithm 3 k*-TopbandSearch

1: Input: RankLst - RankList structure of TS;
t start, t end - start and end time points;
s - a specified time series;

2: Output: A - set of time series that outperform s over [t start, t end];
3: for each time point t from t start to t end do

4: locate the entry e for s in the RankLst with the largest time point that is
less than or equal to t start;

5: let k = e.rank;
6: let U(t) = ⌈k⌉-topband(RankLst, t, t, k);
7: let A =

⋂
Ut ∀ t ∈ [t start, t end];

8: return A;

algorithm scans the database once and compares the values of the time series at

each time point (lines 9-13). If the ranking of a time series s changes from time

point t− 1 to t, we create an entry in the inverted list of s to record its new rank

(lines 14-17).

Algorithm 1 can also be utilized to construct the RankList original. The if

condition (line 15) must be omitted since an entry needs to be created at every

time point for RankList original.

3.2 Topband Search

Algorithm 2 finds the set of time series that are consistently within the top

k in the specified time interval. It takes as input the inverted list structure,

RankLst simplied or RankList original, for the time series dataset, an integer k,

and the start and end time points t start, t end. The output is S, a set of time

series whose rank is always higher than k over [t start, t end].

S is initialized to be the set of all the time series in the dataset (line 3). The

entries for each time series in the RankLst is sorted by time. For each time series

s, we check if its rank is always higher than k in the specified time interval (lines

27

4-14). The entry with the largest time point that is less than or equal to t start

is located (line 5). If the entry does not exist or there is no value of s or the

rank value of the entry is larger than k, then s is removed from S (lines 6-12).

Otherwise, we continue to check the ranks of the entries for s until the end time

point is reached.

Algorithm 3 finds the set of time series that outperforms a specific time series

(k*-topband queries). We need to determine the value of k at each time point.

This can be obtained by checking the rank of the specified time series in RankList

structure (lines 4-5). Then we call Algorithm 2 using the various values of k to

retrieve the desired set of time series (line 6) before computing their intersection

(line 7) to get the final answer.

Alternatively, we can first obtain the ranks of the specified time series at the

various time points from the RankList structure and then carry out an index

scan to retrieve the set of outperforming time series. This removes the need for

an intersection operation to compute the final set of answers.

3.3 RankList Updates

Insertion involves adding new values to an existing time series or adding a new

time series into the dataset. The insertion of any new value may affect the

rankings of existing time series. Hence, we need to compare the new value with

the values of existing time series at the same time point.

3.3.1 Insertion

Algorithm 4 shows the necessages changes made to a RankList simplied structure

when a new value is inserted. It takes as input a tuple <p, t, p(t)> to be inserted.

28

Algorithm 4 Insert

1: Input: TS - database with attributes id, time and value
RankLst s - RankList simplied structure of TS;
<p, t, p(t)> - a tuple to be inserted;

2: Output: RankLst s - updated RankList simplied structure for TS
3: initialize int CurrRank to 1;
4: let S be the set of tuples with time t in TS;
5: for each tuple s ∈ S do

6: if p(t) > s.value then

7: locate the entry e for s.id in RankLst s which has the largest time point
that is less than or equal to t;

8: let PrevRank = e.rank;
9: if e.time = t then

10: increment e.rank by 1;
11: else

12: create an entry <t, PrevRank + 1> for s.id and insert into RankLst s;
13: locate the entry e at time t + 1 for s.id in RankLst s;
14: if entry does not exist then

15: create an entry <t+1, PrevRank> for s.id and insert into RankLst s;
16: else

17: CurrRank++; /* p(t) < s.value */
18: locate the entry e for p in the RankLst s which has the largest time point

that is less than or equal to t;
19: if e.rank 6= CurrRank then

20: if e.time = t then

21: replace e.rank with CurrRank;
22: else

23: create an entry <t, CurrRank> for p and insert into RankLst s;
24: locate the entry e′ at time point t + 1 for p in RankLst s;
25: if e′ does not exist then

26: create an entry <t + 1, 0> for p and insert into RankLst s;
27: return RankLst s;

29

The algorithm checks for the set of existing time series S whose values are smaller

than p(t) at time point t (lines 6-15). We obtain the rank of s ∈ S from the entry

which has the largest time point that is less than or equal to t and store it in the

variable PrevRank (line 7-8). Next, we try to retrieve the entry <t, rank> for s.

If the entry exists, we increase the rank by 1 (lines 9-10). Otherwise, we insert a

new entry for s at t (lines 11-12).

Updating the rank of s at t may affect its rank at time t+1. Lines 13-15 check

if an entry exists for s at t+1. If the entry does not exist, implying that its rank

at t+1 follows the entry prior to t, we need to create an entry with PrevRank at

t + 1 and insert into RankList (lines 14-15). Finally, we update the rank for the

corresponding time series p of the new value at t using CurrRank (lines 20-24).

Note the algorithm also checks the entry for p at t+1 (line 25). If the entry does

not exist, indicating that p does not have a value at time t + 1 (since p does not

have a value at time t), we insert an entry with rank 0 for p (lines 25-26).

The logic to update a RankList original structure is simpler when a new value

is inserted. All what we need to do is to obtain the set of time series S whose

ranks will be affected (whose values are smaller than p(t)) at time point t; update

the rank of the time series in S by incrementing by 1; and update the rank for

the corresponding time series p. Algorithm 5 shows the details steps.

3.3.2 Deletion

Similarly, the deletion of a value from a time series dataset may affect entries in

the RankList simplied structure.

Algorithm 6 takes as input a tuple <p, t, p(t)> to be deleted and obtains the

set of existing time series S whose values are smaller than the deleted value at

time t (lines 5-20). We retrieve the rank of s ∈ S from the entry which has the

30

Algorithm 5 Insert

1: Input: TS - database with attributes id, time and value
RankLst o - RankList original structure of TS;
<p, t, p(t)> - a tuple to be inserted;

2: Output: RankLst o - updated RankList original structure for TS
3: initialize int CurrRank to 1;
4: let S be the set of tuples with time t in TS;
5: for each tuple s ∈ S do

6: if p(t) > s.value then

7: locate the entry e for s.id in RankLst o which has the time point that is
equal to t;

8: increment e.rank by 1;
9: else

10: CurrRank++; /* p(t) < s.value */
11: locate the entry e for p in the RankLst o which has the time point that is

equal to t;
12: replace e.rank with CurrRank;
13: return RankLst o;

largest time point that is less than or equals to t and store it in PrevRank (line

6-7). Next, we try to retrieve the entry <t, rank> for s. If the entry exists, we

decrease the rank by 1 (lines 8-9). Otherwise, we insert a new entry for s at time

t (lines 10-11).

Updating the rank of s at time t may affect its rank at t + 1. Lines 12-14

checks if an entry exists for s at t+1 and creates a new entry if it does not exist.

Finally, we update the rank for the corresponding time series p of the deleted

value at t + 1 (lines 17-18) and insert an entry <t, 0> for p (line 19) to indicate

the missing value of p at t.

Similarly, updating the RankList original structure is simpler when a value is

deleted. First, the set of time series S whose values are smaller than the deleted

value at time t is retrieved. Second, updating the rank of the time series in S

by decrementing by 1. Third, set the rank of p at t to 0. Algorithm 7 shows the

details steps.

31

Algorithm 6 Delete

1: Input: TS - database with attributes id, time and value
RankLst s - RankList simplied structure of TS;
<p, t, p(t)> - a tuple to be deleted;

2: Output: RankLst s - updated RankLst simplied structure for TS
3: let S be the set of tuples with time t in TS;
4: for each tuple s ∈ S do

5: if p(t) > s.value then

6: locate the entry e of s.id in RankLst s with the largest time point that
is less than or equal to t;

7: let PrevRank = e.rank;
8: if e.time = t then

9: decrement e.rank by 1;
10: else

11: create an entry <t, PrevRank-1> of s.id and insert into RankLst s;
12: locate the entry e at time point t + 1 for s.id in RankLst s;
13: if entry does not exist then

14: create an entry <t+1, PrevRank> for s.id and insert into RankLst s;
15: locate the entry e for p in the RankLst s with the largest time point that is

less than or equal to t;
16: locate the entry e′ at time t + 1 for p in RankLst s;
17: if e′ does not exist then

18: create an entry <t + 1, e.rank> for p and insert into RankLst s;
19: create an entry <t, 0> for p and insert to RankLst s;
20: return RankLst s;

3.4 Time & Space Complexity

The time complexity for the various operations on the RankList structure is

polynomial. Suppose we have N time series and T time points in the dataset.

In the worst case, each time series will intersect with every other time series at

every time point. Therefore, the time complexity to build the RankList structure

is O(T*NlogN) where (NlogN) is the time taken to sort the values of the time

series at each time point.

The Search algorithm examines the list entries with time points in the spec-

ified time interval. Since the rank information of each time series at each time

32

Algorithm 7 Delete

1: Input: TS - database with attributes id, time and value
RankLst o - RankList original structure of TS;
<p, t, p(t)> - a tuple to be deleted;

2: Output: RankLst o - updated RankLst original structure for TS
3: let S be the set of tuples with time t in TS;
4: for each tuple s ∈ S do

5: if p(t) > s.value then

6: locate the entry e of s.id in RankLst o with the time point that is equal
to t;

7: decrement e.rank by 1;
8: locate the entry e for p in the RankLst o with the time point that is equal to

t;
9: set e.rank to 0;

10: return RankLst o;

point is recorded at most once, we have at most T entries in each list. Hence the

time complexity for Search is O(N*T) in the worst case.

The Insert (Delete) algorithm compares the new value (deleted value) with

every existing values at the same time point to update the ranks. In the worst

case, ranks for all time series the existing values correspond to need to be updated.

Hence, the time complexity for both Insert and Delete is O(N).

The space complexity for the RankList original structure is O(N*T) whereas

it depends on the number of intersection points for the RankList simplied struc-

ture. In the worst case, every time series has a ranking which is different from

its ranking at previous time point at every time point. Hence, the space com-

plexity of the RankList simplied structure is O(N*T). In practice, we expect the

size of the RankList simplied to be much smaller than the size of the original

dataset. This is because for topband queries to be meaningful, the rankings of

the time series should oscillate within a limited range. Further, we can apply

smoothing techniques (i.e. Haar Wavelet Transform) to reduce the size of the

RankList simplied structure (see Section 5.1).

33

Chapter 4

Answering Topband Queries in

Relational System

A time series database can be stored in a relational table R with three attributes:

the id or name of the time series s, time point t, and the value of s at t. We use the

triple <s, t, s(t)> to denote a tuple in the relation R. For example, the time series

dataset in Figure 1.1 can be stored in a relational table as shown in Table 4.1.

In this chapter, we presents processing topband queries in relational database

system. In the first part, we describe how existing SQL and top k methods

process topband queries and highlight the drawbacks of these two approaches.

In the second part, we present building RankList structure on top of relational

database system, as well as searching and updating it using SQL command.

34

id time mark

stu1 200601 92
stu2 200601 88
stu3 200601 84
stu4 200601 77
stu5 200601 72
stu6 200601 78
stu1 200602 79
stu2 200602 89
stu3 200602 86
stu4 200602 94
stu5 200602 76
stu6 200602 73
stu1 200603 80
stu2 200603 91
stu3 200603 84
stu5 200603 70
stu6 200603 76
stu1 200604 96
stu2 200604 90
stu3 200604 80
stu5 200604 73
stu6 200604 75
stu1 200605 94
stu2 200605 91
stu3 200605 83
stu4 200605 78
stu5 200605 75
stu6 200605 72

Table 4.1: Example student relation

35

4.1 Answering Topband Queries with Existing

Methods

A ⌈k⌉-topband query can be mapped to an SQL query which requires a nested

loop. For example, a ⌈3⌉-topband query to retrieve students with consistent

performance for the period January to May is equivalent to the following standard

SQL query:

SELECT c.id FROM student c

WHERE c.time ≥ 200601 and c.time ≤ 200605

and (SELECT count(c1.id) FROM student c1

WHERE c1.time = c.time

and c1.id <> c.id

and c1.mark > c.mark) < 3

GROUP BY c.id

HAVING count(c.time) = 200605 - 200601 + 1

The general approach for evaluating this SQL query is:

1. For each tuple <s, t, s(t)> in relation R, we retrieve the set of tuples at

time point t. If the number of tuples whose values are larger than s(t) is

less than k, then the tuple <s, t, s(t)> is a top k result at t and is stored

in an intermediate relation. This is a nested loop which is expensive and

cannot be removed.

2. Group the tuples in the intermediate relation according to their time series

id. If the number of tuples in each group s is the same as the number of time

points in the specified time interval, then s is an answer to the ⌈k⌉-topband

query.

36

We can utilize an early pruning strategy to optimize the above SQL query. A

tuple <s, t, s(t)> can be skipped if there exists another tuple with id s and is not

ranked top k previously. However, the improved SQL query still requires nested

loops to compute the ⌈k⌉-topband result. Experiment results in Chapter 5 reveal

that even the improved SQL approach remains expensive.

Next, we examine how we can leverage the top-k operator proposed in [7] to

answer ⌈k⌉-topband queries. This involves mapping the top-k query at each time

point to a range query. The search distance can be estimated using any of the

methods in [7, 12, 15]. The basic framework is as follows:

1. For each time point t in the specified time interval, estimate the search

distance dist such that it encompasses at least k tuples with values greater

than dist. Note that the search distance could vary for the different time

points.

2. Use the estimated distances to retrieve the set of top k tuples at each time

point, and compute the intersection.

For instance, our example query to retrieve the students who are consistently

within top 3 for the period January to May is equivalent to the following range

query. The function distance(c.time) in the range query denotes the estimated

search distance at the time point c.time.

SELECT c.id from student c

WHERE c.time ≥ 200601 and c.time ≤ 200605

and c.mark > distance(c.time)

GROUP BY c.id

HAVING count(c.time) = 200605 - 200601 + 1

37

There are two drawbacks to this approach. First, the intermediate relation

to store the top k results at each time point is proportional to k and the number

of time points. Second, many of these computations are wasted since the final

result will not have more than k tuples.

Finally, we discuss how k*-topband queries can be answered using SQL. Given

that a time series s will be specified in such queries, we can use the values of s at

the various time points to retrieve the set of time series that have larger values

than s. For example, the SQL query to retrieve the students that outperform

stu6 for the period Jan to May is:

SELECT c.id FROM student c

WHERE c.time ≥ 200601 and c.time ≤ 200605

and c.mark > (SELECT c1.mark FROM student c1

WHERE c1.time = c.time

and c1.id = ’stu6’)

GROUP BY c.id

HAVING count(c.time) = 200605 - 200601 + 1

Again, many of the computations in the above SQL query for k*-topband

could be wasted.

4.2 RankList Implementation

The proposed RankList structure can be easily built on top of a relational database.

We define a relation called RankTable which consists of three attributes: time

series id, time point time, and the rank of the time series at time point rank. The

key of the relation is {id, time}. This relation can be subsequently indexed by

the B+-tree for fast access.

38

4.2.1 RankList original Implementation

id time rank

stu1 200601 1
stu1 200602 4
stu1 200603 3
stu1 200604 1
stu1 200605 1
stu2 200601 2
stu2 200602 2
stu2 200603 1
stu2 200604 2
stu2 200605 2
stu3 200601 3
stu3 200602 3
stu3 200603 2
stu3 200604 3
stu3 200605 3
stu4 200601 5
stu4 200602 1
stu4 200603 0
stu4 200604 0
stu4 200605 4
stu5 200601 6
stu5 200602 5
stu5 200603 5
stu5 200604 5
stu5 200605 5
stu6 200601 4
stu6 200602 6
stu6 200603 4
stu6 200604 4
stu6 200605 6

Table 4.2: Example RankTable original relation

The inverted list structure in Figure 3.2 can be mapped to the RankTable original

relation in Table 4.2. ⌈k⌉-topband queries can now be answered by issuing SQL

queries over the relation RankTable original to retrieve time series whose rank is

higher than k. Our running example query to retrieve the students who are con-

sistently within the top 3 for the period Jan to May is equivalent to the following

SQL query:

39

(S1) SELECT c.id FROM RankTable original c

WHERE c.time = 200601

and NOT EXISTS (SELECT c1.id

FROM RankTable original c1

WHERE c1.id = c.id

and c1.time ≥ 200601 and c1.time ≤ 200605

and (c1.rank = 0 OR c1.rank > 3))

The condition [c.time = 200601] in the above SQL query S1 guarantees that

the subquery is executed only once for each time series.

k*-topband queries require a subquery to retrieve the values of k since k is

dependent on the rank of the specified time series at various time points. For

example, the following SQL query retrieves the students that outperform stu6 for

the period Jan to May:

(S2) SELECT c.id FROM RankTable original c

WHERE c.time = 200601

and NOT EXISTS

(SELECT c1.id

FROM RankTable original c1

WHERE c1.id = c.id

and c1.time ≥ 200601

and c1.time ≤ 200605

and c1.rank > (SELECT c2.rank

FROM RankTable original c2

WHERE c2.id = ’stu6’

and c2.time = c1.time))

40

The RankTable original relation needs to be updated when a new value is

inserted into the dataset. This can be accomplished by issuing a set of SQL

statements as shown in statements S3 − S5 when the tuple <stu4, 200603, 78>

is inserted into the time series relation:

(S3) CREATE VIEW V(id, time, rank)

AS (SELECT c.id, c.time, c.rank

FROM RankTable original c

WHERE EXISTS (SELECT * from student

WHERE id = c.id

and time = 200603

and mark < 78))

(S4) UPDATE RankTable original SET rank = rank + 1

WHERE id IN (SELECT id from V)

and time = 200603

(S5) UPDATE RankTable original SET rank = (SELECT count(*))

WHERE id = ’stu4’

and time = 200603

The statement S3 creates a view V to store the set of time series whose ranks

are affected by the addition of the new value. It contains entries that has the

time points which equal to the time point of the new value. Statement Statement

S4 is used to update the ranks of the time series at time point t which are affected

by the new value. Finally S5 updates the rank information of the time series with

the newly inserted value.

Similar SQL statements can be issued to update the RankTable original rela-

tion when a value is deleted from the dataset.

41

4.2.2 RankList simplified Implementation

id time rank

stu1 200601 1
stu1 200602 4
stu1 200603 3
stu1 200604 1
stu2 200601 2
stu2 200603 1
stu2 200604 2
stu3 200601 3
stu3 200603 2
stu3 200604 3
stu4 200601 5
stu4 200602 1
stu4 200603 0
stu4 200605 4
stu5 200601 6
stu5 200602 5
stu6 200601 4
stu6 200602 6
stu6 200603 4
stu6 200605 6

Table 4.3: Example RankTable simplified relation

The inverted list structure in Figure 3.3 can be mapped to the RankTable simplified

relation in Table 4.3. ⌈k⌉-topband queries can now be answered by issuing SQL

queries over the relation RankTable simplified to retrieve time series whose rank

is higher than k. Our running example query to retrieve the students who are

consistently within the top 3 for the period Jan to May is equivalent to the

following SQL query:

(S6) SELECT c.id FROM RankTable simplied c

WHERE c.time = 200601

and NOT EXISTS (SELECT c1.id

FROM RankTable simplified c1

WHERE c1.id = c.id

42

and c1.time ≥ 200601 and c1.time ≤ 200605

and (c1.rank = 0 OR c1.rank > 3))

The condition [c.time = 200601] in the above SQL query S6 guarantees that

the subquery is executed only once for each time series.

k*-topband queries require a subquery to retrieve the values of k since k is

dependent on the rank of the specified time series at various time points. For

example, the following SQL query retrieves the students that outperform stu6 for

the period Jan to May:

SELECT c.id FROM RankTable simplified c

WHERE c.time = 200601

and NOT EXISTS

(SELECT c1.id

FROM RankTable simplified c1

WHERE c1.id = c.id

and c1.time ≥ 200601

and c1.time ≤ 200605

and c1.rank > (SELECT c2.rank

FROM RankTable simplified c2

WHERE c2.id = ’stu6’

and c2.time = (SELECT max(time)

FROM RankTable simplified

WHERE id = c2.id

and time < c1.time)))

The RankTable simplified relation needs to be updated when a new value is

inserted into the dataset. This can be accomplished by issuing a set of SQL

43

statements as shown in statements S7 − S10 when the tuple <stu4, 200603, 78>

is inserted into the time series relation:

(S7) CREATE VIEW V(id, time, rank)

AS (SELECT c.id, c.time, c.rank

FROM RankTable simplified c

WHERE EXISTS (SELECT * from student

WHERE id = c.id

and time = 200603

and mark < 78)

and c.time = (SELECT max(c1.time)

FROM RankTable simplified c1

WHERE c1.id = c.id

and c1.time ≤ 200603))

(S8) INSERT INTO RankTable simplified (id, time, rank)

SELECT p.id, 200603+1, p.value from V p

WHERE p.id NOT IN

(SELECT c.id

FROM RankTable simplified c

WHERE c.id = p.id

and c.time = 200603+1)

(S9) INSERT INTO RankTable simplified (id, time, rank)

SELECT p.id, 200603, p.value + 1 FROM V p

WHERE p.id NOT IN

(SELECT c.id

FROM RankTable simplified c

WHERE c.id = p.id

and c.time = 200603)

44

(S10) UPDATE RankTable simplified SET rank = rank + 1

WHERE id IN (SELECT id from V)

and time = 200603

The statement S7 creates a view V to store the set of time series whose

ranks are affected by the addition of the new value. It contains entries that has

the largest time points less than or equal to the time point of the new value.

Statement S8 inserts entries at time point t + 1 for the set of time series whose

ranks are affected at time point t. Statements S9 and S10 are used to update the

ranks of the time series at time point t which are affected by the new value.

Similar SQL statements can be issued to update the RankTable simplified

relation when a value is deleted from the dataset.

Compared to RankList original, RankList simplified is more complicated to

implement when a new value is added/deleted. However, the tradeoff is that

RankList simplified has less entries compared to RankList original which is more

efficient when answering topband queries. We will show the details experiment

result in the next section.

45

Chapter 5

Performance Study

In this chapter, we present the results of three sets of experiments to evaluate the

efficiency and scalability of the proposed method. We implement the algorithms

in Chapter 3 in Java (JDK version 1.5.01). The synthetic data generator produces

time series datasets with attributes id, time and value. Table 5.1 shows the range

of values for the various parameters and their default values.

Parameter Range Default

Number of time series N [100, 500] 100
Number of time points T [5000, 20000] 10000

k [50, 250] 50
Length of query interval L [5000, 10000] 10000

Percentage of intersection points [2%, 10%] 5%

Table 5.1: Parameters of dataset generator

The first set of experiments examines and compares the time taken to con-

struct, search and update the RankList original and RankList simplified struc-

tures, as well as the space requirements. We also investigate how the time and

space requirements are affected by applying the Haar Wavelet Transform [11]

technique, which is conceptually simple, fast and memory efficient.

In the second set of experiments, we map the RankList structure to a relational

46

table called RankTable, and compare the proposed method (Rank original &

Rank simplified) with the SQL approach (Nested) and the top-k range query

method (Top-k).

The third set of experiments evaluates the effectiveness of topband queries on

two real-life datasets, stock and student, as well as the tradeoff of the smoothing

method.

All the experiments are carried out on a 2.58GHz Pentium 4 PC with 1.00

GB RAM, running WinXP. Each experiment is repeated 5 times, and the average

time taken is recorded.

5.1 Experiments on RankList Structure

We first carry out a set of experiments on the synthetic dataset to examine how

the number of intersection points affects the RankList original and RankList simplified

structures. We set the number of time series N to 100 and the number of time

points T to 10000, giving us a total of 1 million data points. We vary the number

of intersection points from 10% to 50% of the total possible number of intersection

points.

We also use the Haar Wavelet Transform to smooth the dataset. The Haar

transform allows a time series to be viewed in multiple resolutions through a

series of averaging and differencing operations. For example, the values {9, 7, 3,

5} can be transformed as follows:

47

Resolution Averages Coefficients

4 {9, 7, 3, 5}

2 {8, 4} {1, -1}

1 {6} {2}

The two values {8, 4} at resolution 2 are obtained by taking the average

of the first two numbers {9, 7} and the last two numbers {3, 5} at resolution

4 respectively. The two numbers {1, -1} in the coefficients part of resolution

2 are the differences of {9, 7} and {3, 5} divided by two respectively. This

process continues until a resolution of 1 is reached. The Haar transform returns

(6, 2, 1,−1) which is composed of the last average value 6 and the coefficients on

the rightmost column (2, 1, and -1).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40 45 50

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Percentage of Intersection Points (%)

RankListsimplified

RankListoriginal

Figure 5.1: Time to construct RankList simplified vs. RankList original

Different degrees of smoothing can be achieved by limiting the size of the

Haar transform. A parameter threshold is used to indicate the size of the Haar

transform. For example, if we fix the size of the Haar transform to be 2 (threshold

= 2/4 = 0.5), then the resulting time series is reconstructed as (6+2, 6+2, 6-2,

48

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8 9 10

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Percentage of Intersection Points (%)

RankList

RankList (0.9)

RankList (0.75)

RankList (0.6)

RankList (0.45)

RankList (0.3)

Figure 5.2: Time to construct RankList simplified

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

S
ea

rc
h
 T

im
e

(s
ec

o
n
d
)

Percentage of Intersection Points (%)

RankListsimplified

RankListoriginal

Figure 5.3: Time to search RankList simplified vs. RankList original

49

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45 50

S
ea

rc
h
 T

im
e

(s
ec

o
n
d
)

Percentage of Intersection Points (%)

RankList

RankList (0.9)

RankList (0.75)

RankList (0.6)

RankList (0.45)

RankList (0.3)

Figure 5.4: Time to search RankList simplified

6-2) = (8, 8, 4, 4).

Figure 5.1 shows the total time taken to build the RankList simplified and

RankList original structures by varying the number of intersection points. The

time used to build the RankList simplified structure increases as the number of in-

tersection points increases, whereas, it is almost constant to build RankList original

structure. Furthermore, as the number of intersection points increases, the time

cost to build RankList simplified structure goes more close to the time cost to

build RankList original structure. This is expected as RankList simplified records

rank information changes. As discussed in the beginning of Chapter 3, more

number of intersections will result in more changes in rank information. There-

fore, more entries are created to record changes and more time cost to build the

RankList simplfied structure. RankList original structure records the rank infor-

mation at every time point no matter there is a change or not. Therefore, the

number of entries does not depend on the number of intersection points. Thus,

the time cost is almost constant to build the RankList original structure.

50

Figure 5.2 plots the total time taken to build the RankList simplified structure

as the smoothing threshold, indicated in brackets, varies from 0.3 to 0.9. In this

experiment, we focus on studying the smoothing effect on the RankList simplified

structure. This is because smoothing technique aims to reduce the number of

intersection points. However, the number of intersection points has little ef-

fect on the RankList original structure (as shown in Figure 5.1). Figure 5.2

indicates that as the smoothing threshold decreases, the time to construct the

RankList simplified structure decreases despite the increase in the percentage of

intersection points.

Next, we examine the time cost to search the RankList structures. Figure 5.3

shows that as the number of intersection points increases, the time cost to search

the RankList simplified structure increases whereas it is almost constant to search

the RankList original structure. This is because as the number of intersection

points increases, more entries are created in RankList simplified structure, there-

fore, more entries need to be searched. For RankList original structure, there is

no increase in the number of entries, therefore, the search time is almost constant.

Again, searching the RankList simplified structure takes less time than searching

RankList simplified structure, since the previous one has less entries to search.

Figure 5.4 shows that the time taken to search the RankList simplified de-

creases as the smoothing threshold value decreases. This is expected since the

smoothing step will reduce the number of intersection points.

We also examine the cost to update the RankList simplified and RankList original

structures by varying the number of insertions/deletions from 20 to 100. Fig-

ure 5.5 shows that the update time increases linearly with the number of inser-

tions/deletions for both structures. RankList original takes less time to update

than RankList simplified. This is because when updating, RankList original looks

51

 0

 2

 4

 6

 8

 10

 12

 14

 20 30 40 50 60 70 80 90 100

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Number of Insertions/Deletions

Insertsimplified

Deletesimplified

Insertoriginal

Deleteoriginal

Figure 5.5: Update cost

at one specific entry whereas RankList simplified needs to take care of the rank

information at both the specific time point and the time point after that.

Figure 5.6 gives the space requirements of the RankList simplified and

RankList original structures. As expected, the space for RankList simplified in-

creases as the number of intersection points increases. Using Haar Transform

to smooth the time series also has an effect on the number of entries in the

RankList simplified. We see that as the smoothing threshold decreases from 0.9

to 0.3, the space required by the RankList simplified structure decreases despite

the increase in the percentage of intersection points. Furthermore, the space cost

for the RankList original is constant as the number of intersection points varies.

Again, RankList simplified takes less space compared to RankList original.

In conclusion, RankList simplified structure has advantage in constructing,

searching and space requirement compared to RankList original, whereas

RankList original is very efficient when updating. As time series data is mainly

historical data, that is, it is seldom to insert/delete a value for the past period,

52

 0

 10

 20

 30

 40

 50

 60

 10 15 20 25 30 35 40 45 50

S
p
ac

e
(M

B
)

Percentage of Intersection Points (%)

Dataset
RankListoriginal

RankListsimplified

RankList (0.9)

RankList (0.75)

RankList (0.6)

RankList (0.45)

RankList (0.3)

Figure 5.6: Space requirement of RankList

RankList simplified structure is a good choice when answering topband queries.

5.2 Experiments on Topband Queries

In this section, we present the results of the second set of experiments that

compare the proposed Rank original and Rank simplified methods (rank methods

for short) with the nested SQL and top-k methods to answer topband queries.

We use Oracle9i as the underlying relational database system to store the dataset

and create an index on the attribute time.

We map the RankList original and RankList simplified structures to rela-

tional tables called Rank original and Rank simplified respectively, and issue SQL

queries on these relations as described in Section 4.2. The ⌈k⌉-topband queries

used for the nested method and the top-k method are similar to the nested SQL

query and the top-k query described in Section 4.1. We use the method in [7] to

estimate the distance for the range query at various time points in top-k query

53

approach.

 1

 10

 100

 1000

 10000

 10 15 20 25 30 35 40 45 50

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Percentage of intersection points (%)

Ranksimplified

Rankoriginal

Nested

Top-k

Figure 5.7: Effect of number of intersection points with the response time in log
scale

5.2.1 Effect of Number of Intersection Points

We first study the effect of the number of intersection points. Figure 5.7 shows

the time taken by the three methods in log scale. We observe that the runtimes of

the Rank original, nested SQL and the top-k approaches are not affected by the

increase in the number of intersection points. This is expected since Rank original

needs to search the same number of entries regardless of the number of intersec-

tion points, whereas the last two approaches require a complete database scan

regardless of the number of intersection points. In contrast, the time taken by the

Rank simplfied approach is a small fraction of that required by the SQL and top-k

methods and it takes less time than Rank original method. This is expected as

less tuples are searched by this method.

54

5.2.2 Effect of Query Selectivity

The selectivity of ⌈k⌉-topband queries is determined by the value of k and the

length of the query interval.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

k

Ranksimplified

Rankoriginal

Nested

Top-k

(a) varying k

 0.1

 1

 10

 100

 1000

 10000

 5000 6000 7000 8000 9000 10000

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Length of Query Interval

Ranksimplified

Rankoriginal

Nested

Top-k

(b) varying length of query interval

Figure 5.8: Effect of query selectivity with the response time in log scale

We first study the performance of the four approaches by varying the value

of k in the queries. Figure 5.8(a) shows that the nested approach and top-k

55

approach are not affected by k. This is because the number of tuples processed

is the same regardless of the value of k. In contrast, the time taken by the

proposed Rank original and Rank simplified approaches increase as k increases.

This is because as k becomes larger, more tuples need to be processed to retrieve

results.

Next, we vary the length of the query interval. The result is shown in Fig-

ure 5.8(b). We observe that the runtime of all four approaches increase as the

length of the query interval increases. This is expected as more tuples are pro-

cessed. However, the Rank original and Rank simplified approaches outperform

the nested and the top-k approaches by a large margin. Rank simplified further

outperforms Rank original method as less tuples are processed.

5.2.3 Scalability

The size of a time series dataset is determined by the number of time points

and the number of time series in the database. We first investigate the effect of

varying number of time series in the dataset. Figure 5.9(a) shows the time taken

by all the four approaches to process ⌈k⌉-topband queries where k=50.

We observe that the runtime increases with the number of time series. The

Rank simplified and Rank original approaches outperform the nested and top-k

approach by a factor of 1000 and 100 respectively. The poor performance of nested

and top-k approach is due to many wasted computations and large intermediate

results at every time point. Note that when the number of time series exceeds

400, the top-k approach performs even worse than the nested approach. This

is mainly due to the time needed to compute the search distances for each time

point.

Next, we vary the number of time points in the dataset. The length of the

56

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 150 200 250 300 350 400 450 500

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Number of Time Series

Ranksimplified

Rankoriginal

Nested

Top-k

(a) varying number of time series

 1

 10

 100

 1000

 10000

 1 1.2 1.4 1.6 1.8 2

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

Number of Time Points (105)

Ranksimplified

Rankoriginal

Nested

Top-k

(b) varying number of time points

Figure 5.9: Scalability with the response time in log scale

57

query interval is fixed at 10,000. Figure 5.9(b) shows that the time taken by

all four approaches are independent of the underlying dataset size. Clearly, the

proposed approach is efficient and scalable.

5.2.4 Experiments on k*-topband queries

We also carry out a similar set of experiments to evaluate the cost of process-

ing k*-topband queries. Similar trends and effects are observed as the various

parameters are varied (see Fig. 5.10). The nested SQL approach takes a shorter

time to process k*-topband queries compared to processing k*-topband queries

because aggregation is not needed in the subquery. Furthermore,the proposed

Rank simplified method takes longer time than the Rank original approach to

process k*-topband queries because we need to compute the rank of the specified

time series at each time point. Overall, the time taken by the rank approach is

still less than the nested approach by a large factor.

Overall, the rank approach outperforms the nested SQL and the top-k ap-

proaches. This is due because the rank method is able to prune the non-promising

time series the moment their rank falls below k. This allows the elimination of a

large number of time series as more time points are processed. In contrast, the

top-k approach is unable to perform such elimination.

5.3 Experiments on Real World Datasets

In this final set of experiments, we demonstrate how topband queries are useful

in two real world scenarios.

Stock Dataset. In Chapter 1, we introduce a less restrictive version of topband

58

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5000 6000 7000 8000 9000 10000
R

es
p

o
n

se
 T

im
e

(s
ec

o
n

d
)

Length of Query Interval

Ranksimplified

Rankoriginal

Nested

(a) varying length of query interval

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100 150 200 250 300 350 400 450 500

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

)

Number of Time Series

Ranksimplified

Rankoriginal

Nested

(b) varying number of time series

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 1.2 1.4 1.6 1.8 2

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

)

Number of Time Points (105)

Ranksimplified

Rankoriginal

Nested

(c) varying number of time points

Figure 5.10: Experiments on k*-topband queries

59

query by applying smoothing technique. In this set of experiment, We first ex-

amine the effect of smoothing on a real world stock dataset [27] and its tradeoff

on precision and recall. The stock dataset records the daily prices for 408 stocks

from 1995 to 2003. We retrieve the opening and closing prices for each stock and

compute their gains for each day. The percentage of number of intersection is

30.4% for this dataset.

We first examine the search time as the smoothing threshold varies from 0.3

to 1. Figure 5.11 shows that the time taken to search the RankList simplified

increases as the threshold increases. This is expected as the number of en-

tries will increase when increasing threshold value. It takes less time to search

RankList simplified than searching RankList original since less entries in

RankList simplified.

Next we examine the space requirement as well as the the tradeoff of the

smoothing method. We define the precision and recall of topband queries as

follows:

precision =
nt

nt + nf

× 100% (5.1)

recall =
nt

nt + nm

× 100% (5.2)

where nt is the number of time series that are correctly retrieved for a given

topband query, nf is the number of time series which are wrongly retrieved, and

nm is the number of time series which should have been retrieved but are not.

We vary the smoothing threshold from 0.3 to 1 and record the recall and preci-

sion of the topband query as well as the space requirement of the RankList simplified

and RankList original structures. As expected, the space requirements for the

60

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

p
o
n
se

 T
im

e
(s

ec
o
n
d
)

threshold

RankListsimplified

RankListoriginal

Figure 5.11: Time to search RankList for stock dataset

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
p
ac

e
(M

B
)

threshold

RankListsimplified

RankListoriginal

Dataset

Figure 5.12: Space of RankList for stock dataset

61

 0

 20

 40

 60

 80

 100

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n
 (

%
)

threshold

1995

1996

1997

1998

1999

2000

2001

2002

2003

Figure 5.13: Precision vs. smoothing threshold for the stock dataset

RankList simplified structure decreases as the threshold is decreased (see Fig-

ure 5.12). The recall is 100% for all values of the smoothing threshold. Figure 5.13

shows that the precision decreases as the threshold is decreased. Furthermore,

when the threshold decreases beyond 0.6, the loss of precision accelerates. At

this threshold of 0.6, a space reduction of 73.3% is obtained.

Next, we compute the average gains of all the stocks over the same period

and issue a top-k query to retrieve a set of k stocks, where k varies from 10 to

50. We also issue topband queries to retrieve a second set of k stocks over the

period 1997 - 2000. We compare the performance of these two sets of stocks over

the period of 2001 - 2003 by computing their gains for each year as well as their

total gains over the three years. Table 5.2 shows that the set of stocks retrieved

by topband queries consistently attain higher gains than the stocks retrieved by

top-k queries. This further strengthens our confidence in the ability of topband

queries to identify the potential merits of a portfolio of stocks.

62

k 2001 2002 2003 Total

10 8.3% 16.4% 34.8% 18%
20 6.76% 9.8% 17.97% 10.6%
30 7.5% 9.6% 6.75% 8.2%
40 10.9% 11.9% 13.3% 11.8%
50 5.2% 4% 7.2% 5.1%

Table 5.2: Percentage gains of stocks retrieved by topband over top-k queries.

Student Dataset. We obtain a 8-year student dataset from our department.

This dataset has 3800 records that capture the students’ GPA for each semester.

Other attribute in the records include studentID, gender, entrance exam code

and year of enrolment.

We group the students according to their year of enrolment and issue ⌈k⌉-

topband queries to retrieve the top 20% students that show consistent perfor-

mance throughout their undergraduate studies. Figure 5.14(a) shows the per-

centage of consistent performers grouped by entrance exam code (after normal-

ization). The entrance exam code gives an indication of the education background

of the students.

We observe that from 1998 to 2000, the majority of the consistent performers

(top 20%) are students with an entrance code 61. However, from 2001 onwards,

the top consistent performers shifted to students with entrance code 66. An in-

vestigation reveals that due to the change in the educational policy, the admission

criteria for students with entrance code 61 has been relaxed, leading to a decline

in the quality of this group of students. This trend has been confirmed by the

data owner. Students with entrance code of 66 have in the past not been ranked

highly. The sudden increase in quality of this group of students is unexpected and

has motivated the user to gather more information to explain this phenomena.

Figure 5.14(b) shows the consistent performers grouped by gender. We ob-

63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1998 1999 2000 2001 2002 2003

P
er

ce
n
ta

g
e

o
f

S
tu

d
en

ts
 (

%
)

Year of Matriculation

10

60

61

66

70

80

(a) group by entrance exam code

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1998 1999 2000 2001 2002 2003

P
er

ce
n
ta

g
e

o
f

S
tu

d
en

ts
 (

%
)

Year of Matriculation

Female

Male

(b) group by gender

Figure 5.14: Top 20% students for each batch

64

serve that there is no specific trend separating the male and female consistent

performers. This result dispels the commonly held belief that females do not per-

form well in computer science subjects. Publishing this statistics will certainly

encourage females to apply to engineering/computer science faculties.

65

Chapter 6

Conclusion and Future Work

Motivated by the need to answer top k (or bottom k) queries over a period of

time, we have introduced a new class of topband queries for time series dataset.

The ⌈k⌉-topband query retrieves the set of time series that is always within top

k for all time points in the specified time interval T. We have also discussed a

less restricted version of ⌈k⌉-topband query, that is, k*-topband, which retrieves

a set of time series which always outperforms a particular time series over some

time interval. Depending on the application, the formulation of topband queries

can be relaxed to retrieve a set of time series which are within top k in at least

T’ time points.

We have examined how topband queries can be answered using standard

nested SQL approach as well as top-k methods. In order to evaluate topband

queries efficiently, we have designed a structure to capture the rank information

of the time series data. The proposed structure can be easily implemented on

any relational database system. The results of extensive experiments on both

synthetic and real world datasets indicate that the proposed approach is efficient

and scalable, and it outperforms the SQL and Top-k methods by a large magin.

66

We have also demonstrated that topband queries can be applied directly to se-

lect a portfolio of stocks that have potential as well as identify shifts in student

quality.

Research into topband queries is quite new. To the best of our knowledge,

this is the first piece of work to address this problem. While the rank based

method is effective is improving the performane of topband queries, the trade-off

lies in the space complexity. In the worst case, where every time series intersects

with each other at every time point, the space required will increase dramatically.

We have shown that applying smoothing techniques such as the Haar Wavelet

Transform is able to reduce the space requirement. Future work could include the

incorporation of statistics information and error tolerance in order to accelerate

the overall processing time and reduce space complexity.

67

Bibliography

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in se-

quence databases. Int. Conference on Foundations of Data Organization and

Algorithms, pages 69–84, 1993.

[2] R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait. Querying shapes of

histories. VLDB, pages 502–514, 1995.

[3] H. Andre-Jonsson and D. Z. Badal. Using signature files for querying time-

series data. PKDD, pages 211–220, 1997.

[4] D. Berndt and J. Clifford. Using dynamic time warping to find patterns

in time series. AAAI-94 Workshop on Knowledge Discovery in Databases,

pages 229–248, 1994.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. IEEE

ICDE, pages 421–430, 2001.

[6] N. Bruno, S. Chaudhuri, and L. Gravano. Performance of multiattribute

top-k queries on relational systems. Tech. Rep. CUCS-021-00, 2000.

[7] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over re-

lational databases: Mapping strategies and performance evaluation. ACM

TODS, pages 153–187, 2002.

68

[8] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-

accessible databases. IEEE ICDE, pages 369–380, 2002.

[9] M. J. Carey and D. Kossmann. Processing top n and bottom n queries.

IEEE Data Engineering Bulletin, pages 12–19, 1997.

[10] M. J. Carey and D. Kossmann. Reducing the braking distance of an sql

query engine. VLDB, 1998.

[11] K. Chan and W. Fu. Efficient time series matching by wavelets. IEEE ICDE,

pages 126–133, 1999.

[12] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. VLDB,

pages 397–410, 1999.

[13] C.-M. Chen and Y. Ling. A sampling-based estimator for top-k selection

query. IEEE ICDE, 2002.

[14] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series. PKDD,

pages 88–100, 1997.

[15] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top n

queries. VLDB, pages 411–422, 1999.

[16] R. Fagin. Combining fuzzy information from multilple systems. PODS,

pages 216–226, 1996.

[17] R. Fagin. Fuzzy queries in multimedia database systems. PODS, pages 1–10,

1998.

[18] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for

middleware. ACM PODS, pages 102–113, 2001.

69

[19] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence

matching in time-series database. ACM SIGMOD, pages 419–429, 1994.

[20] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best

matches in logarithmic time. ACM Transactions on Mathemtical Software,

pages 209–266, 1977.

[21] A. C. Gilbert, Y. Kotidis, and S. Muthukrishnan. Surfing wavelets on

streams: One-pass summaries for approximate aggregate queries. VLDB,

pages 79–88, 2001.

[22] Y.-W. Huang and P. S. Yu. Adaptive query processing for time-series data.

ACM SIGKDD, pages 282–286, 1999.

[23] E. Keogh. Exact indexing of dynamic time warping. VLDB, pages 406–417,

2002.

[24] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani. Locally adaptive

dimensionality reduction for indexing large time series databases. ACM

SIGMOD, 2001.

[25] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality

reduction for fast similarity search in large time series databases. Knowledge

and Information Systems.

[26] E. Keogh and M. Pazzani. Derivative dynamic time warping. In First SIAM

International Conference on Data Mining, 2001.

[27] E. J. Keogh and T. Folias. The ucr time series data mining archive.

70

[28] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc

queries in large datasets of time sequences. ACM SIGMOD, pages 289–300,

1997.

[29] C. Li, K.-C. Chang, L. F. Ilyas, and S. Song. Ranksql: Query algebra and

optimization for relational top-k queries. ACM SIGMOD, pages 131–142,

2005.

[30] S. Park, S.-W. Kim, and W. W. Chu. Segment-based approach for subse-

quence searches in sequence databases. SAC, pages 248–282, 2001.

[31] D. Rafiei and A. Mendelzon. Similarity-based queries for time-series data.

ACM SIGMOD, pages 13–24, 1997.

[32] D. Rafiei and A. Mendelzon. Efficient retrieval of similar time sequences

using dft. Int. Conference on Foundations of Data Organization, pages 249–

257, 1998.

[33] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. ACM

SIGMOD, pages 71–79, 1995.

[34] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with

probabilistic guarantees. VLDB, 2004.

[35] T. Welch. Bounds on the information retrieval efficiency of static file struc-

tures. Technical Report 88, MIT, 1971.

[36] D. Wu, D. Agrawal, and A. E. Abbadi. Efficient retrieval for browsing large

image databases. ACM CIKM, pages 11–18, 1996.

[37] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time

sequences under time warping. IEEE ICDE, pages 201–208, 1998.

71

