
EXPLORING LINEAR SIZE-CHANGE

TERMINATING PROGRAMS

n>100

n

r r’

n’=n−10

c c’=c−1

r r’

c

n’=n+11

c’=c+1

f91n<100

ac

b

n

δ

δ

HUGH ANDERSON

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statement

I, Hugh Anderson, declare that this thesis is my own work and that, to the best
of my knowledge, it contains no material substantially overlapping with material
submitted for the award of any other degree at any institution, except where due
acknowledgment is made in the text.

Hugh Anderson

i

Acknowledgments

I would principally like to thank Dr Khoo Siau-Cheng for his suggestions and con-
tinual encouragement throughout the development of this thesis, and of course those
times that he paid for lunch! I found that the challenges he set for me from time
to time helped me immeasurably. Thanks Siau-Cheng, for all the things you have
taught me, for being positive, and for always finding answers when we were stuck!

Thanks also to Lindsay Groves, Thiagu, KwangKeun and Wei-Ngan for their com-
ments. Martin, Roland, Stefan and Jin-Song provided spirited lunch-time solace.
During their visit(s) to NUS, Gill Dobbie, Gabriel Ciobanu, Luke Ong, John McCal-
lum, Krzysztof Apt, Bruce Brown and Dines Bjørner challenged me to get finished,
and also provided numerous off-the-cuff suggestions that were invaluable. I’d like to
thank my co-authors, Stefan, Beatrice, Siau-Cheng and Gabriel; my colleagues and
friends at NUS: Bim and Atreyi, Joxan, Tiow Seng, Min Yen, Thiagu, Sandeep, Eng
Wee, Wei-Ngan, Theresa, Colin, Martin S, Frank, Sun Teck, Razvan, Siau-Cheng’s
lunch group (Beatrice, David, Ping, Meng...), the PL&S lab and the team at Spinel-
lis. Neil Jones initially proposed the form of the time-cost problem [Jon03], and I
should not forget my dear students, and Rhys, Tim and Clive.

Finally, my thanks to the National University of Singapore for sponsoring my study,
and for employing me for the period of my candidature.

ii

Dedication

To my dear family, Rebecca, Boyd, Ford and Judge. Rebecca and I have enjoyed
each other’s company for 36 years or so, and now we have three sons to amuse us.
The last few years have had their ups and downs, but throughout this time Rebecca
and the kids have supported my activities, even when it meant Dad wasn’t home for
dinner.

iii

Contents

Statement i

Acknowledgements ii

Dedication iii

Abstract viii

I Prologue 1

1 Introduction 2

1.1 Motivation . 2

1.2 Termination, and other difficult problems 4

1.3 The road followed in this thesis . 6

2 Termination analysis and related work 7

2.1 Program analysis . 7

2.2 Preliminary notions . 8

2.2.1 The notion of termination . 8

2.2.2 Functional versus other programming styles 9

iv

2.2.3 Decidable theories . 9

2.3 General termination analysis . 13

2.3.1 Traditional imperative termination analysis 15

2.3.2 Termination and term-rewrite systems 16

2.3.3 Termination and logic programming 17

2.3.4 Termination and other programming styles 18

2.4 Size-change termination analysis . 20

2.5 Type inference for generation of SCGs 26

2.5.1 Type systems and analysis . 27

2.6 Type directed implementation for size-change graphs 28

2.6.1 Notation and syntax for typing 29

2.6.2 Type inference rules for size-change graphs 30

2.6.3 SCT termination analysis using size-type inference 32

2.7 Preliminary definitions . 35

2.7.1 The language . 35

2.7.2 Affine relations and Presburger formulæ 36

2.8 Commentary . 38

II Body 39

3 Affine-based analysis 40

3.1 Affine-based size-change termination 41

3.2 Affine-based termination analysis . 46

3.2.1 Associating affine with abstract graphs 47

3.2.2 Affine-based closure algorithm 49

3.2.3 A sample widening operator . 51

v

3.3 Properties of affine-based termination analysis 53

3.3.1 Termination of the analysis algorithm 53

3.3.2 Accuracy of the analysis algorithm 54

3.3.3 Correctness of the analysis algorithm 54

3.4 Examples using affine termination analysis 56

3.4.1 First example - constant size cancellation 56

3.4.2 Second example - linear combinations of source parameters . . 58

3.4.3 Third example - context analysis 59

3.5 δSCT (Delta size-change termination) 60

3.6 Commentary . 61

4 Extending affine size-change termination 62

4.1 Introduction . 62

4.2 Extended size-change graphs . 63

4.2.1 Capturing function return values: Value SCGs 64

4.3 Refining the graph composition algorithm 65

4.3.1 Deriving an approximation to the CFG for traces 67

4.3.2 Adding counters to restrict graph composition 69

4.4 From well-founded types to boundedness 71

4.4.1 Bounded termination . 73

4.5 Summary of changes to affine-SCT . 76

4.6 Termination analysis examples . 77

4.6.1 Termination for f91 . 77

4.6.2 Termination of Ackermann’s function 79

4.6.3 Termination for function X . 80

4.6.4 Functions which cannot be analyzed 81

4.7 Related work . 81

4.7.1 Avery’s SCT . 81

4.7.2 Cook’s Terminator . 83

4.8 Commentary . 84

vi

5 Time and stack costs for SCT programs 85

5.1 Introduction . 85

5.1.1 Preliminaries . 87

5.2 Runtime analysis . 88

5.2.1 Characterization as a quantifier-elimination problem 90

5.2.2 Quantifier elimination . 91

5.2.3 Tool support . 94

5.3 Calculating other program costs . 95

5.3.1 Stack depth calculation . 95

5.3.2 Relative runtime costs . 96

5.4 Exponential program costs . 97

5.4.1 Explanation of the form of the relation 98

5.4.2 Using the relation for exponential runtimes 101

5.4.3 Exponential examples . 102

5.5 Commentary . 104

III Conclusion 105

6 Concluding remarks 106

6.1 Research directions . 106

6.1.1 Improving the algorithms . 107

6.1.2 Other application areas . 108

6.1.3 Extending and changing the formalisms 108

6.2 Summary of contribution . 109

Bibliography 111

vii

Abstract

This thesis explores an area of research into the analysis of a particular set of pro-
grams. The set of programs is known as the “linear size-change terminating” pro-
grams, a significant subset of all programs, whose termination can be decided with
an automated technique: size-change termination analysis. This analysis technique
begins by generating size-change graphs from program sources, which are then ana-
lyzed using graphical analysis techniques.

The work outlines progressive research developments, firstly replacing the traditional
size-change graphs used in size-change termination analysis, with affine-based graphs,
in which affine relations among parameters are expressed by Presburger formulæ. In
this approach, the data-types of the parameters that control the termination of a
program must be well-founded, and (eventually) reducing. The termination analysis
is extended in various ways to include not just reducing well-founded parameters,
but those which are bounded in some domain. This development is termed “Bounded
termination”, and extends the set of size-change terminating programs. Finally, the
polynomial and exponential runtime and stack depth costs of a subset of the programs
can be precisely calculated.

The thesis concludes with an outline of some possibilities of future research directions.

viii

List of Tables

2.1 The simplest language syntax . 29

2.2 Inference rules for simple variables . 30

2.3 Inference rules for simple functions . 30

2.4 Inference rules for function application 31

2.5 Inference rules for the rest of the language 31

2.6 The language syntax, extended with operators 36

2.7 Syntax of Presburger formulæ . 36

3.1 Abstract graphs for the example program 48

3.2 Definition of E(ri) . 52

3.3 Definition of K(r′j) . 52

4.1 CFG generation rules for single function definition 67

4.2 Extra counters derived from the CFG P→ a | bXcYdP | eZfQ 70

5.1 Extended language syntax . 87

5.2 Inference rules for Tarski formulæ . 93

ix

List of Figures

2.1 LJB size-change graph for function f calling g 21

2.2 LJB size-change graphs . 22

2.3 Control-flow graph for functions . 22

2.4 LJB size-change graphs for functions f ◦G g and g ◦G f 23

2.5 Ordering of the operators for LJB graph composition 23

2.6 LJB size-change graphs for function c 25

2.7 Overview of LJB size-change termination analysis 26

2.8 Simple SCG for Ackermann function call 29

2.9 Final SCGs for example programs . 33

3.1 Overview of affine-SCT analysis . 42

3.2 Ordering of the operators for Abstract graph composition 47

3.3 Relationships between f , g, Ff and Fg 55

4.1 The value and call SCGs for the f91 function 64

4.2 Composition of nested call . 64

4.3 A hierarchy of program traces . 66

4.4 Counters for extended SCGs of the f91 function 70

4.5 Overview of changes to affine SCT for bounded termination 72

x

4.6 Flow graph for sample program, with size-change graphs 82

5.1 Trajectories of guard variables with time 99

xi

Part I

Prologue

1

Chapter 1
Introduction

This thesis outlines a particular area of research into the use of arithmetic techniques
for the analysis of programs, for the purpose of discovering termination, runtime
and stack depth properties. There are many avenues in the general area of program
analysis, and in this thesis, related work in this area is outlined, and then various
specific new avenues are developed, including:

1. A translation of the size-change graphs used in size-change program termination
analysis, to affine-based graphs, in which affine relations among parameters are
expressed by Presburger formulæ.

2. Extensions of the affine-based termination analysis in various ways including
one using bounds. These extensions allow for the parameters to be integers
(rather than just naturals), and to increase or decrease towards some explicit
or implicit bound.

3. The use of affine-based size-change graphs to derive an explicit program runtime
measure.

In all, these developments provide useful and practical extensions to existing work
on termination and runtime analysis, and have been presented at various conferences
over the last few years, listed in the summary at the end of this section.

1.1 Motivation

At one stage of my life, I spent a lot of time consulting and developing software
projects for embedded and distributed systems. From this experience I developed

2

1.1. MOTIVATION

a personal, rather cynical, view that the software industry was in a state of crisis,
with software continuing to be produced that is buggy, and prone to failure. There is
nothing new in this, and industry pundits have been harping on this theme for many
years.

Computer hardware, by contrast, is unlikely to fail in the same way, provided it is
used within its design constraints. In general when computer hardware fails, it fails
completely and one is left in no doubt that the hardware needs replacement. Erratic
faults are unlikely to be caused by hardware failures.

However, again my personal view, the way forward to improve software is for us
to adopt formal methods to ensure that our software works correctly. My thesis
coincides strongly with this personal view, and in some sense is my attempt to try
to develop mathematical tools for software which leave us in no doubt about the
correctness or otherwise of software and systems. Let me expand on this.

The complexity of computer software, and the undesired interactions between pro-
grams and operating systems continue to give rise to catastrophic software failures.
There is no known silver bullet [Bro95] for software developers, but formal methods
(i.e. mathematical methods) have been effective in the development, analysis and
testing of software.

It is by now well established that techniques such as testing do not yield the required
silver bullets. A famous (36 year old) quote from Edsger Dijkstra that is often
mentioned in this context is: “Program testing can be used to show the presence of
bugs, but never to show their absence” [Dij70]. In keeping with other engineering
disciplines, the adoption of mathematical approaches to establishing or ensuring the
properties of programs is a sensible approach, yielding greater assurance. If a software
product’s adherence to a specification is at the level of a formal mathematical proof,
then this may be the best level of assurance that may be achieved. In a contentious
paper [MLP79], DeMillo, Lipton and Perlis argue that most proofs are just outlines
of proofs crafted to persuade others of the correctness of an assertion, and that the
process of proof is a social process as much as a formal process. However, my view
is that something is better than nothing.

Consider the following formal-methods approaches:

Refinement - The refinement calculus elaborated by Morgan in [Mor94] and Back
and von Wright in [BvW98] provides a formal way of deriving code directly from
specifications using mathematically justified transformation rules. The resultant code
is guaranteed to match the original specification: correctness by construction. In the
refinement calculus approach, specifications and programs are considered equivalent,
a program just being a more concrete version of a specification.

Analysis - An alternative approach is to attempt to confirm properties of existing
code by analysis of the program using representations of the semantics of the code
components. In this approach, the meaning of the program is represented in an

3

1.2. TERMINATION, AND OTHER DIFFICULT PROBLEMS

abstract manner, and mathematical techniques are used to derive properties of the
code. These properties may be considered to be partial specifications of the code.

Exhaustive Testing - If the testing of a program is exhaustive, then we can raise
our assurance to the level of a proof. However, in general, it is not possible to exhaus-
tively check any but the most trivial programs. However a suitably abstract model
may be exhaustively tested for a particular property of interest, and model-checking
techniques [McM93, CGP99] have had success in modeling protocols, electronic cir-
cuits, and parallel programs.

Given this classification, the research strategy used here lies in the middle approach,
using mathematical techniques on representations of the program. The focus is in a
specific area of this kind of program analysis: termination, runtime and stack depth
cost calculations.

1.2 Termination, and other difficult problems

The focus of this thesis is on certain difficult problems found in computer science.
One such problem is that of the termination of a program or function. In the obvious
initial scenario, a system implementor or designer may need assurance that a function
or group of functions will always finish running. If it does not, and perhaps endlessly
loops, this may cause a system to fail. In reactive systems, we may have a main
function which is intended to run forever, but would still have a requirement that the
functions it calls terminate.

However, termination appears in other contexts as well. For example, in RT (Real-
Time) systems, the stability of the whole system may be dependant on the timely
completion of a response to an impulse. In [AAMK06], ideas of termination and
runtime analysis are applied to a-priori verification of the stability of a PID (Propor-
tional, Integral, Derivative) controller, implemented in an RT system as a succession
of timed interrupt response routines. Stability for PID systems is traditionally calcu-
lated using Matlab, but with the assumption that all the components of the system
are analog devices. In a computer driven PID controller, responses and measurements
are discrete approximations, taken at specific times. The reason that this particular
analysis is interesting is that it copes with the discrete nature of the computer driven
PID system, rather than approximating it as in Matlab.

Another context for termination analysis is found in the termination of program gen-
eration. For example, in [GJ05], the authors outline the use of termination analysis
in program specialization. Given a program P, and a partition of the known values
of the input data s, a new program Ps is generated. This program is a specialized
version of the original program, which efficiently generates the expected results for
the known values. If the input data does not belong to the set s, the program will
revert to the non-specialized code. Program generators of this form have been suc-
cessful in generating far more efficient code than simple generators that just follow

4

1.2. TERMINATION, AND OTHER DIFFICULT PROBLEMS

the original source program structure. A vital point about these generators is that it
is imperative to ensure that the program specialization process itself terminates.

The general problem of testing a program for termination is a difficult one, and there
can be no program that decides if any arbitrary program terminates. Such a program
is called a decider, and no decider can be developed for testing if an arbitrary program
terminates. This is of course one of the founding results from computer science, Alan
Turing’s undecidability result [Tur37].

However, a semi-decider can be written for problems such as the termination problem.
A semi-decider will always terminate (sic), and can return either YES - the program
terminates, or NO - the program may (or may not) terminate. Such a semi-decider
is useful if it returns a decision quickly.

There are many approaches to discovering if a program terminates, discussed else-
where in this thesis. However, this thesis starts with size-change termination (SCT),
the size-change termination technique [LJBA01] which requires each (possibly infi-
nite) cyclic chain of function calls to have a chain of parameter changes in which each
parameter either reduces in size or stays the same, and in which the total chain must
reduce. In addition, the parameter values must be drawn from well-founded sets.
The size-change termination technique has been shown to be PSPACE-complete.

The thesis begins by introducing the idea of expressing size-change termination
in terms of affine relations between arbitrary combinations of inter-procedural pa-
rameters, rather than the traditional expression of size-change termination which
uses explicit size comparison (less-than or less-than-or-equal) between specific inter-
procedural parameters. This idea also provides a way of including in the analysis
other aspects of the program, for example the conditional expressions in an if-then-
else.

In bounded-termination, the affine SCT is extended to include arbitrary bounds
expressed as linear constraints, a sufficient condition is established which ensures
that a cyclic chain of function calls monotonically moves the parameters towards
some bound which terminates the chain of calls. In short parameters may be integers
(not well founded), and size changes might increase or reduce.

Turing’s result for termination is extended by Rice’s theorem [Ric53], which asserts
that any (non-trivial) assertion about arbitrary functions is undecidable. For example
the runtime of a function is a non-trivial assertion and hence undecidable, and so
obviously the calculation of program runtimes is another difficult problem.

A subset of the set of terminating programs (the linear size-change terminating ones)
may have runtimes that can be calculated automatically with a decision procedure.
In particular, if the runtime is polynomial in the program parameters, or if it has
a certain exponential form, then the runtime and stack depth may be calculated
automatically.

5

1.3. THE ROAD FOLLOWED IN THIS THESIS

1.3 The road followed in this thesis

In summary, this thesis begins by re-casting size-change termination in terms of affine
graphs. These graphs allow for more refined analysis, including the effects of the
conditionals in programs. The thesis continues with improvements to the approach
including size-change termination over integers, termed bounded size-change termi-
nation. Having developed the affine-SCT framework sufficiently, the thesis shows an
approach to calculating the runtime or stack depth of bounded size-change terminat-
ing programs.

There are three parts to the thesis. Part I (Prologue) introduces the work, and in
Chapter 2 continues with related and foundational work, along with some of the
notation used in the later analysis. Section 2.2 introduces preliminary notions of
termination and decidable theories used throughout the thesis. Section 2.3 surveys
various methods of automatic termination analysis. Section 2.4 describes in detail
the size-change termination analysis technique. Section 2.5 shows how type inference
can be used to derive size-change information, and finally Section 2.7 defines the lan-
guage used for programs in the thesis, and Presburger formulæ, and gives preliminary
definitions of operations over affine relations useful for calculation using affine-based
graphs.

Part II (Body) has three chapters, describing in detail the contribution of this thesis.
In Chapter 3 a translation of size-change graphs to affine-based graphs useful for
program termination analysis is introduced along with the algorithm for affine ter-
mination analysis. This section is largely based on work done in 2003, and reported
in [AK03a] and [AK03b], but extended here for clarification. Chapter 4 extends this
approach, allowing the technique to be used on non well-founded datatypes, and to
allow an argument that variables can approach some arbitrary bound, rather than
the zero bound used in well-founded size-change termination. This section is reported
on in [KA05], but again clarified and extended in this thesis. Chapter 5 discusses
time and stack cost calculation. This work is published in [AKAL05, AKL07].

Finally Part III (Conclusion) summarizes the contribution of the research and the
proposed continuation direction.

6

Chapter 2
Termination analysis and related work

Here are brief outlines of foundational work directly related to this thesis. In par-
ticular the use of program analysis, decidable theories, and type inference to derive
arithmetic and size-change information useful in the analysis of program properties,
will each be introduced. Various techniques for program termination analysis are
outlined, in particular the size-change termination technique of [LJBA01]. The nota-
tion and concepts common to size-change termination, and the affine based analysis
are progressively introduced while explaining this related work.

2.1 Program analysis

Programs are analyzed for different purposes. Sometimes the analysis is performed
to confirm some properties that our program must possess. Programs may also be
analyzed to allow optimizations of the program (for example, by moving computations
out of loops). However, even though the purpose of the analysis may vary, the
method of analysis in general follows a two-step process. Firstly, the programs are
used to derive an abstract view of the program amenable to (mathematical) analysis.
Secondly, the abstract view is analyzed using some algorithm that is guaranteed to
return an answer.

There are many forms of program analysis, with examples including Hoare reason-
ing [Hoa69], in which axioms and inference rules are applied to program sources
augmented with pre and postconditions of the program statements, and abstract in-
terpretation introduced by Cousot and Cousot in [CC77] (see also [CH78]), in which
an iterative fixed point computation can be used to derive variable interdependencies.
The book [NNH99] gives a good overview of program analysis. In this book, Nielson
et. al. classify the field into four main analysis approaches: data-flow, constraint-
based, abstract interpretation, and type and effect systems.

7

2.2. PRELIMINARY NOTIONS

In constraint-based program analysis, the source of the program is used to derive
sets of constraints for a property of interest. The constraints may then be solved
by an efficient tool. Heintze and Aiken explored set-based analysis in [Hei92] and
[Aik99], where program variables are viewed as sets of values. A calculus of set
constraints is used to carry out an analysis. The general style of program analysis
developed here follows in the same vein, but with deviations in some areas. For
example, constraints are often simple inequalities or equalities. This is so that the
solutions of the constraints are decidable. In [RR00], Rugina and Rinard use more
general symbolic polynomial constraint systems in performing memory and array
bounds analysis. In this thesis, more general symbolic polynomial constraint systems
are considered, although the application area is runtime and stack-depth analysis.

The close associations of new languages and their type systems have clear benefits,
including early detection of program errors through static type checking, the support
of large-scale software construction through interface type checking, and assurance
or runtime safety through type checking. Pierce’s book [Pie02] surveys the relation
between types and programming languages, providing a basis for the type and effect
systems used for program analysis. Type systems are formalized through axioms and
inference rules, and may be used to generate conservative type information about a
program.

Dependent type systems [DP97] are a class of type systems in which the types depend
on the values of the terms. A subclass of dependent type systems are the size-
type systems, in which the types depend on some expression of the size of a term.
In [HPS96], Hughes, Pareto and Sabry introduced the use of sized types for the
correctness of reactive systems. In [CK00], Chin and Khoo use size-type inference
systems and efficient calculation of constraints over programs.

2.2 Preliminary notions

In this section, some preliminary ideas are introduced. The first explains the notion of
termination used throughout the thesis. The second explains the use of the functional
style throughout the rest of the thesis. Finally, the particular utility of decidable
theories in program analysis is explained, introducing the two main theories used in
the thesis.

2.2.1 The notion of termination

The term termination arises often in algorithm and program analysis. It is associated
with assurance that a given program or part of a program will not just keep on running
forever. If it were to do so, other important activities may not occur, or they may
be delayed, by the processor wasting execution cycles on this faulty program.

8

2.2. PRELIMINARY NOTIONS

There is a small difference between the notion of termination employed in this thesis,
and a more standard notion of termination. In the context introduced here, there is
no differentiation between the termination of a program, and error conditions. For
example, consider a program over natural numbers which reduces a value for ever
like this:

f (x) = if true then

f (x− 1);

In the context of traditional SCT, this is considered a terminating program. The
program cannot run forever, as eventually the (natural) number x will be reduced
to zero, and the operation to subtract 1 from zero is not defined over the naturals.
The runtime support for the program is presumed to generate an exception, and the
program will terminate. As can be seen, in this sense there is no differentiation be-
tween a program which terminates normally, and another program which terminates
through an exception/error condition.

2.2.2 Functional versus other programming styles

The functional style adopted in the thesis can easily accommodate imperative and
other styles of programming, and it is just a matter of personal choice that the
functional style is used here. Other authors have recast the number-of-function-calls
used for termination of simple functional languages in other programming styles.

For example, in [Ave06] SCT is discussed using a C-like language with for loops. In
[TG05] SCT is applied to the termination of term-rewrite systems.

2.2.3 Decidable theories

Decidable arithmetic theories form a useful tool for reasoning about programs. In
this thesis, “Presburger first-order theory” is used, and “quantifier elimination in the
theory of real closed fields”. Both of these are decidable, and projected future work
is to use the conjectured decidability of exponential real closed fields [Wei00].

Presburger integer arithmetic

Presburger integer arithmetic (PIA), first described in [Pre27], but reprinted in En-
glish in [Pre91], is a particular axiomatization of a first order theory of arithmetic
over integers in which addition is the only operation. In this arithmetic, the elements
are the constant 0, integer variables, binary addition +, the relations <,≤,=,≥, >

9

2.2. PRELIMINARY NOTIONS

and the quantifiers and connectives of first-order predicate calculus. A formula such
as x ≥ 3y is allowed, because this is x ≥ y + y + y, but it is not possible to write
x ≥ yz. A sentence in the Presburger theory might be something like ∀ x ∃ y : x ≥ 3y.
Within the theory, it is possible to formulate all sorts of useful assertions about a
program. For example it is possible to assert that an array index variable i is always
less than the size of the array. However, it is not possible to formulate notions (say)
of primality or divisibility.

Presburger arithmetic is consistent (i.e. all provable statements in Presburger arith-
metic are true), and complete (i.e. all true statements in Presburger arithmetic are
provable from the axioms). However, in the present context the most important
property of the theory is that it is decidable (i.e. there is an algorithm which decides
if any given statement in Presburger arithmetic is true or false). The decidability of
Presburger arithmetic is shown using successive quantifier elimination.

When Presburger arithmetic is restricted to the non-negative integers, it is termed
Presburger natural arithmetic (PNA). PNA is in some sense more fundamental than
PIA, as any integer variable x may be represented using the difference between two
natural variables xa−xb. In addition there is a Presburger rational arithmetic (PRA)
defined over the rationals, which is also decidable.

Any decision algorithm for Presburger arithmetic has a worst-case runtime of at least
22kn

[FR74], where n is the length of a sentence, and k is some constant greater than
0. Note that it requires more than polynomial or even exponential run time. The

best known upper bound on such an algorithm is 222n

[Opp78].

However, in practice, these super-exponential runtimes rarely occur, and in [NO78]
an expression simplifier is shown which uses the simplex algorithm on a variant of
Presburger arithmetic, with exponential worst-case run time for specially constructed
problems, but a much better average run time. Such simplex-based approaches are
practical in most cases.

The Omega library [KMP+96] is an example of an efficient implementation of C++
classes to manipulate sets of numbers and tuple relations, with constraints that can
be described by Presburger (PIA) formulæ. For example, the following session shows
how the Omega Calculator may be used to define two sets, S (the set of integers from
0 to 9) and T (the set of integers from 1 to 9) and then show how the two sets are
related, specifically that T ⊆ S, but not vice-versa.

[hugh@pnp176-44 hugh]$ oc

Omega Calculator v1.2

S := { [x] : x>=0 && x<10 };

T := { [y] : y>1 && y<10 };

S subset T;

False

T subset S;

True

10

2.2. PRELIMINARY NOTIONS

The library can also be used to define and manipulate tuple relations. In the following
example, two simple relations are defined, and then we can take the composition of
the two relations.

[hugh@pnp176-44 hugh]$ oc

Omega Calculator v1.2

F := { [m] -> [m’]: m’=m+1 };

G := { [n] -> [n’]: n’=n-2 };

F.G;

{[m] -> [m-1] }

In the example, F represents the set of pairs {(m,m′) | m′ = m + 1} and G represents
the set of pairs {(n, n′) | n′ = n − 2}. The composition of the two relations is the
set {(m,m′) | m′ = m − 1}. Note that in the Omega Calculator, the variables and
expressions range over the integers Z.

Apart from standard Presburger simplification, the Omega library also includes effi-
cient implementations of various other high-level operations, such as ones to discover
upper and lower bounds on inexact relations, and provide various forms of convex
hulls approximating a relation.

The authors of the Omega library state that they have no reason to believe that their

method will provide better worst-case performance than 222
n

, but that the method
may be more efficient in many simple cases that occur in their applications [KMP+96].

QE in the First-order Theory of Real Closed Fields

A real closed field is an ordered field F in which every non-negative element of F has
a square root in F, and any polynomial of odd degree with coefficients in F has at
least one root in F.

Tarski’s theorem [Tar51] tells us that the theory of real closed fields, provides for elim-
ination of quantifiers, and hence it is a complete and decidable theory. What this
means is that given a formula with quantified variables, there is a decision procedure
which will give an equivalent solution formula from the original one, with no quanti-
fied variables. For example, we can remove the quantifier x from ∃ x : ax2 +bx+c = 0,
giving the solution a 6= 0 ∧ 4ac − b2 ≤ 0.

Unfortunately, quantifier elimination has high complexity. Tarski’s original strategy
for eliminating quantifiers is impractical for large problems, as the complexity is

high: no tower 222
...

n

can bound the execution time of the algorithm if n is the size
of the problem. The problem in general is doubly exponential [DH88] in the number
of quantifiers. In 1973, Collins discovered a more efficient algorithm for quantifier
elimination [Col75].

11

2.2. PRELIMINARY NOTIONS

The algorithm is called CAD (Cylindrical Algebraic Decomposition), and the max-
imum computing time is of the order of (mn)kr

dk where k is some constant, r is the
number of variables, m is the number of polynomials, n is the maximum degree of
the polynomials, and d is the maximum length of any integer coefficient of any such
polynomial. If r is fixed, then the time is dominated by a polynomial in m, n and
d. This may still seem to have a high complexity, but CAD has been implemented
and shown to be capable of solving non-trivial problems. Many practical problems
can be cast as problems in quantifier elimination, and in this thesis, we characterize
a problem in termination and runtime as a QE problem, and exploit CAD software
systems to discover solutions. A computer software system for performing quantifier
elimination automatically is the redlog package [DS97] which can be added to the
computer algebra system reduce.

Here is an example of QE using the redlog system on ∃ x : ax2 + bx + c = 0:

[hugh@pnp176-44 hugh]$ /usr/local/reduce/reduce

load package redlog;

rlset OFSF;

ex1 := rlqea ex({x}, (a*x^2+b*x+c=0));

ex1 := {{a = 0 and b = 0 and c = 0,{x = infinity1}},

2

{4*a*c - b <= 0 and a <> 0,

2

- sqrt(- 4*a*c + b) - b

{x = ----------------------------}},

2*a

2

{4*a*c - b <= 0 and a <> 0,

2

sqrt(- 4*a*c + b) - b

{x = -------------------------}},

2*a

- c

{a = 0 and b <> 0,{x = ------}}}

b

After initializing the system, the rlqea function is used on the redlog representation
of ∃ x : ax2 + bx + c = 0:

ex1 := rlqea ex({x}, (a*x^2+b*x+c=0));

The rlqea function performs quantifier elimination on the formula, providing a pos-
sible answer. The resultant value is stored in the ex1 variable. The output shows

12

2.3. GENERAL TERMINATION ANALYSIS

that either a = b = c = 0 in which case x can have any value, or that a 6= 0 and

4ac− b2 ≤ 0 and x = ±
√

b2−4ac−b
2a , or finally that a = 0 6= b and x =−c

b .

In this thesis, quantifier elimination is used to derive program runtime measures.
However other techniques such as the Gröbner basis method can be used to discover
similar program invariants [SSM04]. In [Kap04], the author compares a theory of
Presburger arithmetic, a theory involving parametric Gröbner bases, and Tarski’s
theory of real closed fields, and claims that the last theory is the most expressive,
and generates stronger invariants than the Gröbner basis approach.

On reflection, effective cost calculations may result from a more detailed investiga-
tion of the use of the Gröbner basis method in our application domain, using its
computational efficiencies to outweigh the lack of expressiveness.

Real exponential fields?

The decidability result for the real closed fields, and the success of the practical appli-
cation of CAD, give rise to the following question, posed by Weispfenning: “Can this
result be extended to a language including in addition the real exponential function
ex?”. There is a conditionally positive answer to this [Wei00].

Of more interest though is that by restricting the form of the exponential expressions,
there is a decidability result that is still unconditional [Wei99]. In this restricted
form there are complex expressions containing ex, and linear relations between the
variables. Weispfenning has shown a suitable algorithm, with an implementation in
redlog [Wei00].

The reason that this is of interest in this thesis, is that many programs/algorithms
have exponential runtimes that may be expressed in this form.

2.3 General termination analysis

The analysis of programs for termination is of particular interest to computer scien-
tists. We are all familiar with the meta-equation

totalCorrectness = partialCorrectness + Termination

which reminds us of the special place held by termination analysis, clearly partitioning
a program correctness argument into two camps. Floyd and Hoare provided two of
the seminal papers [Flo67, Hoa69] formalizing program language theory.

13

2.3. GENERAL TERMINATION ANALYSIS

Floyd points out the role of termination when assigning meaning to programs:

... and in particular, if the program ever halts, the proposition on the
path leading to the selected exit will be true. Thus, we have a basis for
proofs of relations between input and output in a program. The attentive
reader, however, will have observed that we have not proved that an exit
will ever be reached; ... [Flo67]

Later, Floyd points out that

Because no infinite decreasing sequence is possible in a well-ordered set,
the program must sooner or later terminate. Thus we prove termination,
a global property of a flowchart, by local arguments, just as we prove the
correctness of an algorithm. [Flo67]

Floyd’s approach is to associate the values of program variables with elements in a
well founded set, with execution of the program resulting in inevitable reduction of
the related elements in the set. This approach can also be applied to multisets, with
multiset orderings [DM79].

In [Hoa69], Hoare also explored logical foundations of computer programs, and clearly
separated these two concerns (although he seemed to prefer the term conditional
correctness, rather than partial correctness). He clearly separates the termination of
the program from the correctness:

Another deficiency in the rules and axioms quoted above is that they give
no basis for a proof that a program successfully terminates.
... Thus the notation “P{Q}R” should be interpreted “provided that the
program successfully terminates, the properties of its results are described
by R.” [Hoa69]

In “The Science of Programming”, Gries develops a formal approach to the devel-
opment of programs, and mentions the termination problem in the context of con-
structing loops such that they terminate:

Strategy for developing a loop: Develop guarded commands, creating
each command so that it makes progress towards termination and creating
the corresponding guard to ensure that the invariant is maintained. The
process of developing guarded commands is finished when enough of them
have been developed ... [Gri81]

14

2.3. GENERAL TERMINATION ANALYSIS

In Gries work, the (slightly different) notation {Q}S{R} is used, where the meaning
is that the execution of S begun in any state satisfying the predicate Q terminates
in a state satisfying R. An equivalent notion is given by the notation Q⇒ wp(S,R).
The term wp(S,R) is the weakest precondition of S with respect to R, and represents
the set of all states such that execution begun in any one will terminate with R true.

There are many approaches to termination analysis, and it has been studied in a range
of programming arenas. Each of these approaches have common features, but exploit
unique qualities of the particular programming style. In the remainder of this section,
brief introductions are given to these approaches to termination analysis. In each of
the arenas, the terminology changes and notations are different, but in general, the
underlying idea is to automatically find some relation between the program and a
well-founded ordering such that execution of the program leads to reduction through
the ordering.

2.3.1 Traditional imperative termination analysis

Traditionally, there are two concepts of termination, termed strong and weak ter-
mination [Dij82]. A strongly terminating system must terminate within some finite
amount of time. A weakly terminating system must terminate, but there may be no
upper bound on the time it will take.

In [Gri79], Gries succinctly formalizes two methods of performing strong and weak
termination analysis using the predicate transformer (weakest-precondition) seman-
tics as follows:

1. Strong Termination. Derive an integer function t(x̃) of the program variables
x̃, show that t ≥ 0 whenever the loop is still executing, and show that each
execution of the loop body decreases t by at least 1. For a loop do B → S od
with invariant P this means proving that

(P ∧ B)⇒ t ≥ 0 AND {P ∧ B}T := t; S {t ≤ T − 1}

where T is a new variable.

2. Weak Termination. Choose a “well-founded” set (W,�), i.e., � is a partial
ordering with the property that for any w in W there is no infinite chain w �
w1 � w2 � Then choose a function f (x̃) of the program variables x̃, and
prove that

{P ∧ B} w̃ := x̃; S {f (w̃) � f (x̃)}

where w̃ is a new set of variables.

These methods are not particularly amenable to automatic analysis, as in each case
a function has to be derived, appropriate for the program being analysed (“Derive
an integer function...”, “Choose a well founded set...”). The methods are however
appropriate for (human) guided proofs of termination.

15

2.3. GENERAL TERMINATION ANALYSIS

2.3.2 Termination and term-rewrite systems

Term rewrite systems [BN98] have a clear relationship to equational logic systems.
In an equational system there are equality rules (l = r) and in an expression, it is
possible to always replace a left-hand side of a rule (l) with a right hand side (r) and
vice-versa. By contrast, in a term rewrite system, rules can only be applied one way
(l → r). An (l) can be replaced with a (r) in an expression, but not vice-versa. The
term redex (reducible expression) is used to refer to an instance of the left-hand side
of a rule.

This mechanism of rewriting in a directed fashion forms a basic computational model,
amenable to analysis. Strong results (perhaps confluence/termination) from term-
rewrite systems can be applied to programming languages. For example, it can be
shown that a certain class of TRS’s always terminates, then this may lead to a certain
subset of functional or logic programs also always terminating.

Termination for term rewrite systems can be shown by considering two rewrite rules
for numbers:

x + 0 → x (2.1)

x + s(y) → s(x + y) (2.2)

then it would be possible to have the following sequence of reductions, applying the
rules to any redexes:

s(0) + s(s(0)) → s(s(0) + s(0)) using rule 2.2
→ s(s(s(0) + 0)) using rule 2.2
→ s(s(s(0))) using rule 2.1

At this stage the reductions terminate, as there are no more rewrite rules that may
be applied. Thus, termination for a term rewrite system over a set T of all the terms
t is defined if there are no infinite derivations t1 → t2 → t3 Proofs of termination
for term rewrite systems must take into account that the ordering of reductions may
be non-deterministic.

In [Der87, Der95], Dershowitz shows various techniques for discovering if a term
rewrite system terminates. Examples are:

❖ The application of any rule to any redex of term t decreases the number of
symbols |t| in the term.

❖ (More generally) Any measure [[·]] : T → W such that s→ t ⇒ [[t]] ≺ [[s]], where
≺ is a well-founded ordering on W, for example

f (f (x)) → f (g(f (x)))

terminates because the measure number-of-adjacent-fs decreases.

16

2.3. GENERAL TERMINATION ANALYSIS

❖ (Lexicographic) Orderings of well-founded orderings, for example

f (f (x)) → g(f (x))
g(g(x)) → f (x)

terminates by considering the pair 〈|t| ,#f 〉, where #f is the number of f s.

❖ (Interpretation) Assigning an n-ary function [[f]] :Wn →W to each n-ary func-
tion f (W is a well-founded set), such that x > y⇒ [[f]](. . . x . . .) > [[f]](. . . y . . .),
and for each symbol f , for all the variables x̄ appearing in l and r, [[l]] > [[r]]. For
example, with a set of differentiation rules containing

D(xy) → (y× xy−1 × Dx) + (xy × (ln x)× Dy)
D(ln x) → Dx/x

we could use positive integer polynomial interpretations such as

[[Dx]] = [[x]]2 [[x/y]] = [[x]] + [[y]]
[[xy]] = [[x]] + [[y]] [[x]] = x

[[ln x]] = [[x]] + 1

Interpreting the terms result in reducing sequences. For example, the left-hand
side of the second differentiation rule D(ln x) is interpreted as (x + 1)2, whereas
the right hand side of this rule is interpreted as x2 + x. Since (x + 1)2 > x2 + x
(for positive x) every application of this rule will result in a reduction of this
interpretation. All the differentiation rules can be interpreted using a polyno-
mial interpretation like this. Note that integer polynomial interpretations like
this do not form a general termination technique (they cannot be applied to
programs that do not terminate in polynomial time - an exponential system
may need exponential interpretations).

Note that in [Der95] Dershowitz shows 33 examples of term rewrite systems, with 33
different techniques to show termination. More detail may be found in [Der87], and
an automated termination prover in [GTSKF04].

These approaches (and others like them) seem a little ad-hoc in nature. Given a
particular term-rewrite system, there is no clear indication which technique should
be applied to show termination. As such, automatic termination checkers have to try
a range of techniques, using heuristics to suggest which techniques are appropriate
for a particular system.

2.3.3 Termination and logic programming

In the logic programming (LP) arena, there is considerable research, summarized
in [DD94, Apt97] including the structure of termination proofs, and techniques to
handle mutual recursion, and loop detection.

17

2.3. GENERAL TERMINATION ANALYSIS

In LP, an atom without variables is termed a ground atom, and the set of all such
ground instances is termed the Herbrand base BP underlying the program P. A
unique identifying characteristic of LP termination analysis is that it is performed in
reference to the query, or a set of queries of interest.

LP inherits the same sort of non-deterministic rule application found in term rewrite
systems, but the terms in a term rewrite system may not be directly mapped to the
atoms of an LP computation. For example, the obvious rules for an append(x,y,z)
program to append x and y giving z, can be shown to obey a well-founded order, and
so if these rules were found in a term-rewrite system, append would be terminating.
However, the semantics of LP is such that it is possible to query append without
ground input, to derive all pairs of lists; obviously non-terminating.

LP termination has had many successes, and termination analysis is a normal part
of LP software systems.

In the interpretation of logic programs, the computation method is known as SLD-
resolution, a computation method based on replacement and unification. The se-
quence of steps is called an SLD-derivation. An initial notion of termination of logic
programs is a strong one based on finite SLD-derivations from ground queries. How-
ever, this notion is not all that useful, as the normal mode of use of LP in (say) prolog
involves using non-ground queries. In the LP world, classes of non-ground queries
are checked for specific programs.

In the analysis of termination of LP, it is common to associate atoms with natural
numbers, by using a mapping [Bez93]. These mappings are known as level mappings.
A level mapping |·| : BP → N for a program is a function which maps ground atoms
to natural numbers. |A| is called the level of A.

Level mapping is also defined in reference to non-ground atoms, by considering if it
is bound with respect to some level mapping. Clauses in P are described as recurrent
with respect to a particular level mapping |·| if for every variable-free instance B ←
A1, . . . ,An of a clause from P, for all i ≤ n, |B| > |Ai|. P is termed recurrent if
it is recurrent with respect to some level mapping for P. Given these concepts, if
every query is bounded, then every SLD-derivation from a recurrent program P will
terminate.

The TermiLog system [LSS97] is an example of a system for SICStus Prolog, which
automatically checks the termination of queries to logic programs. The authors claim
that more than 82% of the programs were correctly checked.

This is necessarily a very brief introduction to termination in logic programming, but
the field may be explored more deeply in [CT97, CT99, DLSS99, DLSS01, LS97].

2.3.4 Termination and other programming styles

In the functional programming arena, most functional languages allow the construc-
tion of divergent recursive expressions which will not terminate. By limiting the

18

2.3. GENERAL TERMINATION ANALYSIS

language, it is possible to ensure termination. For example, a theory of inductive
types [CP90] may be used for termination. If any function f defined over an induc-
tive type θ is restricted in the form of the definition to one using the elimination rule
of θ, then the function is known to terminate. An alternative form of recursion known
as guarded by destructors [Gim95] limits recursive calls to be applied to ever-reducing
terms.

In the Mercury system for termination of Mercury logic-functional programs [SSS97],
a measure of the difference in total size between the input parameters and output
arguments is constructed for each procedure. The measures for the procedure input
parameters and output arguments are solved as a set of linear inequalities, and if
they reduce for each procedure then the program terminates. In this approach, it
may be that the constraints do not lead to a reducing solution, and in this case
nothing can be said about the termination properties of the program. The “total
size difference” argument can be viewed as a coarse-grained size-change termination
analysis argument.

Note: The term size requires some explanation. In this context it refers
to any well-founded ordering over the arguments to a function. For ex-
ample, if the type of the argument was a natural number, then the size
of this could be its value, and the size of this natural number cannot be
reduced indefinitely, as eventually it will reach zero and may no longer
be reduced. If the type of the arguments were an inductively defined list
of items, then the size cannot reduce indefinitely, as eventually it may no
longer be reduced. Both of these types are well-founded, and it is on the
use of these types that the termination argument relies.

Colón and Sipma [CS01, CS02] use linear ranking functions to prove termination of
program loops in an imperative framework. An invariant generator automatically
extracts linear ranking functions (over well-founded domains) for the program vari-
ables from each loop. The existence of any such ranking function implies that the
program loop must terminate. The approach has been applied to reasonably large
Java software systems (30,000 lines), and automatically confirms the termination of
about a third of the program loops.

In [CPR06], a path and context-sensitive analysis is performed on C code (specifi-
cally Windows device drivers), using the Terminator tool. It has been applied to
large program fragments. Terminator constructs over-approximated linear ranking
functions on demand (rather than all at once), iterating between this construction,
and checking that at least one of the ranking functions reduces. In analyses like
these, least fixpoints correspond to reachability: eventually the state is reached. By
contrast, greatest fixpoints correspond to properties that should always hold. In the
case of Terminator, the checking process is a greatest fixpoint operation.

19

2.4. SIZE-CHANGE TERMINATION ANALYSIS

2.4 Size-change termination analysis

In 2001, Lee, Jones and Ben-Amram introduced a deceptively simple and yet beau-
tiful termination analysis technique [LJBA01], giving a complexity analysis of the
algorithm used in the technique (it is PSPACE-complete). The method derives from
the observation that, in the case of a program with program values drawn from
well-founded sets:

“a program terminates on all inputs if every infinite call sequence would
cause an infinite descent in some program values” [LJBA01].

Size-change termination is not a general termination method, but it is still useful, and
it is particularly interesting because it appears to subsume some other termination
criterion such as lexicographic descent [BA02]. Size-change termination analysis is an
active area of research, with extensions for higher-order analysis [JB, SJ05, Blu04],
for integer programs [Ave06, BA06], and applied to term-rewrite systems [TG05] as
well as functional and imperative languages.

In the SCT framework, there are a finite number of functions, with the underly-
ing data types of at least some of the parameters expected to be well-founded. In
addition, the only technique for repetition is recursion. Given this framework, the
intuition behind the size-change termination method is clear.

Consider a non-terminating program. This program can only be non-terminating
through an infinite recursion through at least one function entry point, since the
number of different functions is finite. Considering the chain of possible function
calls within each one of those functions, and the size-change of each of its parameters
between successive calls, then if any one of those parameters reduces on each call,
there is a conflict. In particular, if it reduces infinitely often, then the data is not
well-founded. As a result of this, it is possible to assert that: “if every infinite call
sequence in a program would cause an infinite descent in some program values then
the program terminates on all inputs”.

In this form of size-change termination analysis (hereafter termed LJB analysis after
the authors of [LJBA01, Lee02]), size-change graphs approximate the relation be-
tween the sizes of each of the source parameters and destination arguments for each
call to a function. In the size-change graph, only the following information about each
destination argument is recorded: it is the same size (=) as some source parameter;
(i.e. m = x), it is smaller (↓ or <) than some source parameter; (i.e. o < y), it is

either the same size or smaller (↓ or ≤) than some source parameter; (i.e. p ≤ z), or
finally it is larger, or has no clearly defined relation to the source parameters (unknown
or >).

These simple relations are the only ones used to form the size-change graphs, and
this style of size-change graph will be referred to as an LJB size-change graph.

20

2.4. SIZE-CHANGE TERMINATION ANALYSIS

Definition 1 An LJB size-change graph is a size-change graph, with each destination

argument having a simple relation (=, ↓,↓ or unknown) to some source parameter.

When it is necessary to refer to a particular relation in a size-change graph the

notation src
op
→ dest is used (where op ∈ {=, ↓ ↓,unknown}). For example in Figure

2.1, we have x
=
→ m and y

↓
→ o.

x m

y n

o

=

Gfg

Figure 2.1: LJB size-change graph for function f calling g

This may be visualized with a graphical representation like that shown in Figure 2.1.
In this graph, function f (x, y) is calling function g(m, n, o), the first argument is the
same size as x (=), the second has no relation to the parameters of f (unknown), and
the third is always smaller than y (↓). Note that in the graphical representations of

the size-change graphs, the symbols ↓ and ↓ are used instead of < and ≤.

An LJB size-change graph can also be encoded by specifying a tuple relation between
the source parameters and destination arguments, although the existing literature
normally uses the graphical representation just given.

Definition 2 The syntax for a tuple relation is

{[x̄]→ [ȳ] : R}

where x̄ and ȳ are lists of tuple elements, with x̄ corresponding to the source parame-
ters, and ȳ corresponding to the destination arguments. R is a conjunction of simple
relations between an element of x̄ and ȳ: yi op xj where op ∈ {=,≤, <}. Note that

when using the tuple relation notation we use < and ≤ instead of ↓ and ↓, and also
that if a relation is unknown, then it is not shown. It was only included to show the
weakest relation between tuple elements.

We could use the tuple relation notation just given to express the LJB size-change
graph in Figure 2.1 as

{[x, y] → [m, n, o] : m = x ∧ o < y]

21

2.4. SIZE-CHANGE TERMINATION ANALYSIS

Consider the following functions:

f (x, y) = if x ≥ 0 then

y
else

g(x, 0, y − 1);
g(m, n, o) = if o = 0 then

m + n + 1
else

f (m + 1, o);

Figure 2.2(a) specifies that in function f (x, y), calling function g(m, n, o), the first
argument is the same size as x (=), the second has no relation to the parameters of f
(unknown), and the third is always smaller than y (↓). Similarly for the other function
in Figure 2.2(b). The unknown relation is not drawn on the diagrams.

x m

y n

o

=

Gfg

(a) Call g

m

n

o

x

y
=

Ggf

(b) Call f

Figure 2.2: LJB size-change graphs

The two graphs may then be used to analyze the mutually recursive functions for
termination. A non-terminating sequence beginning with function f would involve
an infinite succession of calls to (alternately) the functions f and g.

At this stage, the flow-of-control of the program is of interest in the discussion,
although for the purposes of size-change termination, only the flow of control of
function calls needs to be recorded. In the illustrative example, a possibly infinite
call sequence may be expressed as the expressions (fg)n or f (gf)n.

gf

f g

G

G

fg

Figure 2.3: Control-flow graph for functions

22

2.4. SIZE-CHANGE TERMINATION ANALYSIS

An alternative way that this flow-of-control can be expressed is by drawing a control-
flow graph, such as that seen in Figure 2.3. In this figure the arcs are annotated with
the corresponding size-change graph.

When the control flow of a program is such that (say) a function calls another function
which then calls a third function, the net effect of the composition of the size-change
graphs for the functions is of interest. There are only a finite number of different
compositions of graphs. A transitive closure of these size-change graphs must be
calculated to ensure that the behaviour of all sequences of function calls is analyzed,
and this closure may be computed in a conventional fashion by composing any possible
pairs of graphs, and checking if the composite graph is a new one, or just a repetition
of an existing one. Pairs of graphs are continually composed until no new graphs are
created.

Consider the idempotent graphs, the graphs that when composed with themselves
result in the same graph (note again that there will be formal definitions of graphs,
idempotency and graph composition later). These can be viewed as graphs that
represent a recursive chain of calls through a particular function entry point. For
each of these idempotent graphs, examine the size-change information. If all of them
have at least one parameter that reduces, then it is possible to conclude that the
program terminates on all inputs.

x

y

x

y

x m

y n

o

= m

n

o

x

y
=

G G G

x m

y n

o

=

G

m

n

o

x

y
=

G G

m

n

m

n

o o

fg gf ff

fggf gg

Figure 2.4: LJB size-change graphs for functions f ◦G g and g ◦G f

Composite graphs are constructed as shown in Figure 2.4. The graph composition
is easy to understand by inspection of the diagrams, and a formal definition of LJB
graph composition is given using the tuple relation notation.

< unknown= <<

Figure 2.5: Ordering of the operators for LJB graph composition

23

2.4. SIZE-CHANGE TERMINATION ANALYSIS

When composing graphs, the matching operators on a continuous path through the
composite graph are compared, and used to generate a new operator. For this gener-
ation process, there is an obvious ordering of the operators, as seen in Figure 2.5. For

example, in the lower graph composition in Figure 2.4, we have o
=
→ y and y

↓
→ o′,

and the final operator is the maximum of the two operators: d=, ↓e. This generates

the final relation o
↓
→ o′.

Definition 3 LJB graph composition ◦G: The composition of two LJB graphs such
as r1 = {[x̄]→ [ȳ] : D1} and r2 = {[ȳ]→ [̄z] : D2} is a new LJB graph

r = r1 ◦G r2 = {[x̄]→ [̄z] : D}

with D =
∧

i di, and for each element di = zj op xk there exists a matching y such that

xk
op1→ y ∈ r1 and y

op2→ zj ∈ r2. The new operator op is the maximum of op1 and op2.
(op = dop1, op2e given the ordering defined before). Note that the unknown relation in
either op1 or op2 results in the unknown relation in op if there are no other matching
relations, as it is the largest relation.

When function f calls function g the corresponding graph is Gfg, and when function
g calls function f the corresponding graph is Ggf . The sequence of f calling g calling
f again has a corresponding graph Gff = Gfg ◦G Ggf . Note that the use of the
composition operator here is reversed from some other presentations, to correspond
with the time sequence of the function calls, with a ◦G b corresponding to the call a
followed by the call b.

The graphs in Figure 2.4 show the results of the two successive calls, and demonstrate
that the y (in function f) or o (in function g) parameter must reduce. The sequences
with graphs Gff = Gfg ◦G Ggf and Ggg = Ggf ◦G Gfg must occur infinitely often in
any possible infinite call sequences. As a result, since every infinite call sequence
in a program would cause an infinite descent in a program value, then the program
terminates on all inputs.

Note that during this argument, the only information that needs to be recorded is
the (possibly infinite) call sequences; i.e. one aspect of the flow-of-control in the
program, and the size change for parameters during each function call.

The size-change termination argument is independent of other factors such as the
condition tests in if-then-else statements, or the precise changes in data values. It
is only dependent on the above two elements. This is surprising when you are first
introduced to size-change termination.

The technique is simple, and by itself can often automatically show termination with-
out appealing to higher-level reasoning techniques. For example, it is common to use
a lexicographic ordering to demonstrate termination of a function, and such a func-
tion may require some inspection to determine a suitable ordering of the parameters.

24

2.4. SIZE-CHANGE TERMINATION ANALYSIS

The following recursive countdown function c can be inspected, and termination con-
firmed by noting that the lexicographic ordering h:t:o (hundreds:tens:ones) always
reduces on every call1. Note that each call is annotated to emphasize that information
related to each call is captured independently.

c(h, t, o) = if h + t + o = 0 then

0
else

if o = 0 then

if t = 0 then

c1(h− 1, 9, 9)
else

c2(h, t − 1, 9)
else

c3(h, t, o − 1);

However the LJB size-change termination method is independent of this order, and is
able to successfully confirm termination for the countdown example without guidance.

h

t

o

h h h h h

t t t t

o o o o o

=

=

=

t

G G Gcc1 cc2 cc3

Figure 2.6: LJB size-change graphs for function c

In any given program there is a limit in the number of LJB size-change graphs and
hence in their compositions. A transitive closure procedure can be used to generate
all the different size-change graphs for a program, by using LJB graph composition
over all reachable paths. When a graph is idempotent (i.e. G = G ◦G G), then
there is no need to generate more graphs like G ◦G G ◦G G. This closure of the size-
change graphs for the countdown function is shown in Figure 2.6, and each graph is
idempotent, and has a reducing parameter.

The central theorem of the LJB size-change graph construction algorithm for estab-
lishing termination, explained and proved in [LJBA01], is:

Theorem 1 Program P is not size-change terminating iff S contains G : f → f such

that G = G ◦G G and G has no arc of the form x
↓
→ x, where S is the set of possible

size-change graphs.

1This function is chosen deliberately to highlight the suitable lexicographic ordering.

25

2.5. TYPE INFERENCE FOR GENERATION OF SCGS

This theorem gives rise to a relatively efficient technique for automatically deriv-
ing termination properties from a closure computation over the size-change graphs,
without appealing to higher-level reasoning techniques such as lexicographic ordering.

Figure 2.7: Overview of LJB size-change termination analysis

Figure 2.7 shows a summary of the flow of (LJB-style) SCT analysis, starting from
the initial program source, which is analyzed to obtain the initial SCGs. A closure
algorithm is applied to these SCGs, leading to a final set of SCGs. Only the idempo-
tent SCGs are examined, to see if each one has a reducing arc, representing a reducing
parameter.

2.5 Type inference for generation of SCGs

Tool support for the approaches to termination and run time analysis in this thesis
raise some implementation issues. This section presents an approach to the inference
of size-change graphs, within a dependent/sized types framework. In the approach,
un-annotated recursive functions are typed, using a specialised set of type inference

26

2.5. TYPE INFERENCE FOR GENERATION OF SCGS

rules. The resultant type annotations either directly indicate that the function termi-
nates, or may be used to attempt to derive the termination properties of the function
using the techniques described here.

2.5.1 Type systems and analysis

The process of effective abstraction underlies most facets of software production and
analysis. The study of type systems has been useful in this context, providing mech-
anisms to statically determine program properties.

Type inference refers to finding the types of the expressions in a program at compile
time, without explicit type annotations added to the source of the program. It
derives from type inference for the simply typed lambda calculus of Church. Curry
developed a type inference mechanism for the calculus, but now the Hindley/Damas-
Milner algorithm [Hin69, Mil78, DM82] is normally used to perform type inference
for modern typed languages.

One focus of the theory of types involves the construction of types dependent on
terms. This is known as the theory of dependent types. A sub-theory of this involves
types that also define the size of the type. These sized types may indicate the length
of a list, or the size of an array or some other measure of interest. Dependent types
and sized types are used in various areas of program analysis and have been shown
to provide effective mechanisms for abstraction. The area of interest for this thesis
is in the use of dependent types to establish termination properties of programs.

For example, program termination has been explored within type analysis frame-
works, in [Xi02], where Xi annotates program fragments to assist in termination
analysis, and a well-typed program must terminate. In Xi’s approach, the annota-
tions indicate a metric to be used for establishing a decreasing sequence, and hence
termination. The approach has been embedded in Dependent ML (DML), and pro-
vides a facility to add metrics to type annotations for functions.

There are two main variants of the use of dependent/sized types. Firstly, it has
been used in the context of annotating programs and then checking properties of the
program. Secondly, type rules can be directly used to infer the types.

Program annotation/type checking variant: Most presentations of dependent
types concentrate on the use of the theory to provide much more precise type informa-
tion about program fragments. For example, dependent types have been embedded
in languages as annotations to programs, with automated type-checkers verifying the
consistency of the annotations [XP99, Xi98, Aug98]. The technique commonly re-
sults in verification of program properties, which can then be used to optimize the
program in some way - for example verification of valid array-bounds access, leading
to the elimination of runtime array-bounds checks.

This process (annotation of programs followed by type-consistency checks) requires
a level of formal evaluation of the annotations. The annotations are considered to

27

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

be constraints over program fragments, and type-consistency is a process of finding
a satisfaction set for the constraints. In general this is a hard problem, as the for-
mal evaluation of the annotations and derivation of satisfaction may require proofs.
However most implementations of the theory use a simple notion of constraints (such
as sets of linear inequalities) which have solutions that are known to be tractable. In
[XP99], Xi presents a general constraint domain framework, but only considers its
use with linear relations over integers.

Program inference/type construction variant: Other presentations, by con-
trast, develop techniques for deriving sized type information by inference (that is
- with no annotations). In [CK00], Chin and Khoo present algorithms which infer
size information from an un-annotated program fragment. The algorithms deduce
sized types for expressions, restricted by affine constraints over variables. These con-
straints are checked for satisfaction using the Omega library, which manipulates the
integer tuple relations and sets. The result of this is the inference of size information
over program fragments, with no prior annotations. The approach adopted in this
research is to use the second variant, type inference, to extract size-change graphs
automatically from program sources.

2.6 Type directed implementation for size-change graphs

To demonstrate the use of dependent/sized types in generating size-change graphs,
a very simple function definition language is used with simple functions like suc,
head, and cons. This language makes the arithmetic “size” operations explicit (in
particular, the pred and tail functions directly map to a size reduction), and shows
how they are used in typing rules. An example of the use of this language is the
following implementation of Ackermann’s function:

ack(m, n) = if iszero(m) then

succ(n)
else

if iszero(n) then

ack(pred(m), 1)
else

ack(pred(m), ack(m,pred(n)));

Static dependent type inference analysis is then performed on a sequence of these
function definitions, returning a mapping for each function. The mappings either
indicate termination, or return complex structured types. For example - given the
function above, static dependent type inference analysis returns the following struc-
ture:

28

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

1. ("ack", [("ack", [(0, ↓); (-, -)]),

("ack", [(0, =); (1, ↓)]),

("ack", [(0, ↓); (-, -)])])

This indicates that the termination of function ack is dependent on three other
(named) functions. The mapping for the ack function is a representation of the three
size-change graphs for this function. For example, in the first line of the structure,
(”ack”, [(0, ↓); (-, -)]) represents the size-change graph shown in Figure 2.8.

ack

m m

n n

ack

Figure 2.8: Simple SCG for Ackermann function call

The two dependent-type pairs (0, ↓) and (-, -) represent the changes in the two
parameters to the call to the ack function. The first pair (0, ↓), represents that
this parameter is dependent on the zeroth parameter of the parent function (m) and
reduces, and the second pair indicates no discovered dependence for this parameter.

2.6.1 Notation and syntax for typing

The simple language is specified in Table 2.1.

v ∈ Var 〈Well founded variables〉
f , g, h ∈ FName 〈Function names〉
c ∈ Const 〈Constants〉
t ∈ Term 〈Terms〉

t ::= if t0 then t1 else t2
| x | c | f (t1, . . . , tn)

d ∈ Decl 〈Definitions〉
d ::= f (x1, . . . , xn) = t

Table 2.1: The simplest language syntax

The language allows new functions to be defined, and has in addition, the predefined
functions iszero, notzero, succ, pred, head, tail and cons which operate over the (well
founded) variables. These functions have their normal meanings, and are commonly
found in simple functional languages with natural numbers and lists.

In the following description of the type environment for this simple language, the
following notation is used: t or ti refer to the terms, T or Ti refer to the type of terms,
v or vi refer to the variables, C or Ci refer to constants, and v` refers to the value of
a variable v when used in a term within a function.

29

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

2.6.2 Type inference rules for size-change graphs

The style of inference used for type analysis is borrowed here in order to generate
size-change graphs. The conventional type of a term is not recorded, but instead its
size“relative to”parameter variables. To show the general idea, consider the inference
of a term containing a parameter m. The type of a parameter m is the pair (m`,=), in
which m` represents the value of the parameter at the time it was instantiated, and
= indicates that the size is unchanged. If there was a more complex term, its type
might be (n`, ↓), indicating that the size is less than the parameter n. The simplest
dependent types are deduced from the use of the simple variable type inference rules
as seen in Table 2.2.

Γ ` v : (v`,=) T-var
Γ ` C : (−,−) T-constant

Γ ` iszero(t) : (−,−) T-iszero
Γ ` notzero(t) : (−,−) T-notzero

Table 2.2: Inference rules for simple variables

In addition, there are rules for the simple functions suc, pred, head, tail and cons as
seen in Table 2.3.

Γ ` t : (v`,=)

Γ ` cons(t, []) : (v`,=)
T-cons1

Γ ` t : (v`, ↓)
Γ ` cons(t, []) : (v`, ↓)

T-cons2

Γ ` cons(t1, t2) : (−,−) T-cons3
Γ ` t : (v`,=)

Γ ` pred(t) : (v`, ↓)
T-pred1

Γ ` t : (v`, ↓)
Γ ` pred(t) : (v`, ↓)

T-pred2
Γ ` t : (−,−)

Γ ` pred(t) : (−,−)
T-pred3

Γ ` succ(t) : (−,−) T-succ
Γ ` t : (v`,=)

Γ ` head(t) : (v`, ↓)
T-head1

Γ ` t : (v`, ↓)
Γ ` head(t) : (v`, ↓)

T-head2
Γ ` t : (−,−)

Γ ` head(t) : (−,−)
T-head3

Γ ` t : (v`,=)

Γ ` tail(t) : (v`, ↓)
T-tail1

Γ ` t : (v`, ↓)
Γ ` tail(t) : (v`, ↓)

T-tail2

Γ ` t : (−,−)

Γ ` tail(t) : (−,−)
T-tail3

Table 2.3: Inference rules for simple functions

30

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

Dependent types such as the ones just given are simple types. More complex typing
rules are needed for function application as seen in Figure 2.4. The last two rules
are not strictly needed, but provide a little more type information for simple single-
parameter functions.

Γ ` t1 : T1 Γ ` t2 : T2 . . . Γ ` tn : Tn
Γ ` f (t1, t2, . . . , tn) : [(f, [T1,T2, . . . ,Tn])]

T-app1

Γ ` t : (v`,=) Γ ` f : (f , [(0, ↓)])
Γ ` f (t) : (v`, ↓)

T-app2

Γ ` t : (v`, ↓) Γ ` f : (f , [(0, ↓)])
Γ ` f (t) : (v`, ↓)

T-app3

Table 2.4: Inference rules for function application

Lastly there are rules for the remaining components of the language. The rules in
Table 5.2 collect more complex type/size-change information.

Γ ` t : T
Γ ` f (a, . . . , n) = t : (f, [T])

T-def

Γ ` t1 : T1 Γ ` t2 : T2 Γ ` t3 : T3

Γ ` if t1 then t2 else t3 : [T1,T2,T3]
T-if

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` t1 ; t2 : [T1,T2]
T-seq

Table 2.5: Inference rules for the rest of the language

The preceding rules give a mechanism for automatically inferring the size-change
information about functions. In the case that the resultant type of a function f is like
(f , [X, . . . ,Z]) where each component of X . . . Z is a simple type, then it is possible to
conclude that the function terminates. Why? Because it makes no function calls.

In the case that the resultant type of a function f is like (f , [X, . . . ,Z]) where at least
one component of X . . . Z is a complex type, then it it is not possible to conclude that
the function terminates. However, the type information collected in [X, . . . ,Z] may
be enough to attempt to calculate the termination properties of the function.

31

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

2.6.3 SCT termination analysis using size-type inference

The SCT termination analysis process may be performed in four steps. The four
steps are: (1) Inference - collect the size-change graph information; (2) Flattening -
simplify the information, removing anything not relevant; (3) Closure - construct the
transitive closure of the graphs for each function; (4) Check - examine the graphs,
and try to deduce termination properties.

The approach is shown by considering the following three functions:

ack(m, n) = if iszero(m) then

succ(n)
else

if iszero(n) then

ack(pred(m), 1)
else

ack(pred(m), ack(m,pred(n)));
f (x, y) = if iszero(x) then

y
else

g(x, y, 0);
g(u, v,w) = if notzero(v) then

g(u,pred(v), succ(succ(w)))
else

f (pred(u),w);

Using these functions, here is this four-step process:

Inference. Using the type inference rules given before, the following dependent
type/size-change information is derived:

[("ack", [(-,-),

(-,-),

[(-,-),

("ack", [(0, ↓); (-, -)]),

("ack", [(0, ↓),

("ack", [(0, =); (1, ↓)])

])

]

]),

[("f", [(-,-),(1,=),("g",[(0,=),(1,=),(-,-)])]),

("g", [(-,-),("g",[(0,=),(1,↓),(-,-)]),

("f",[(0,↓),(2,=)])])

]

]

32

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

This has extra information, which could possibly be used for more advanced ter-
mination inference techniques than that described here. In the approach described
here however, the structure can be flattened, and then only retain the function call
size-change information.

Flatten the types. The process of type inference collects extra information, which
is not needed for the algorithm for termination inference used here. The flattening
operation removes extra information, by removing simple types at the first level,
and any types at third and greater levels (we do not need size changes within size
changes).

After flattening, we have:

[("ack", [("ack", [(0, ↓); (-, -)]),

("ack", [(0, =); (1, ↓)]),

("ack", [(0, ↓); (-, -)])

]),

("f", [("g", [(0,=),(1,=),(-,-)])]),

("g", [("g", [(0,=),(1,↓),(-,-)]),

("f", [(0,↓),(2,=)])

])

]

This type information may be seen to map directly to the expected size-change graphs,
as seen in Figure 2.9.

ack

m m

n n

ack ack

m m

n n

ack ack

m m

n n

ack

=

f g

x

y

u

v

=

=

g

v

u

v

g

u =

g f

u

v

ww w w

x

y
=

Figure 2.9: Final SCGs for example programs

Construct the closures. For each of the size-change dependent types, the transitive
closure of the size-change graphs is constructed. Two graphs gab and gbc may be
composed to construct a new graph by considering the effect of function b calling

33

2.6. TYPE DIRECTED IMPLEMENTATION FOR SIZE-CHANGE GRAPHS

function c. The resultant size-change graph gac = gab ◦G gbc represents the relation
between the original parameters of function a and the values used to call function c.

The closure may be computed in a conventional fashion using Nuutila’s technique
[Nuu94]:

1. Compute the strongly connected components of the graph. If two vertices u
and v are strongly connected, then u and v are reachable from each other.

2. Construct the condensation graph. A condensation graph is a new graph in
which each new vertex corresponds to a strongly connected component and
there exists an edge connecting any of the vertices in the pairs of components.

3. Compute the transitive closure on the condensation graph:

foreach Vertex u ∈ CondensationGraph
foreach Vertex v ∈ Adjacent(u)

if v 6∈ Successor(u) then

Successor(u) = Successor(u) ∪ {v} ∪ Successor(v);

The transitive closure of our example functions is:

[("ack", [("ack", [(0, ↓); (-, -)]),

("ack", [(0, =); (1, ↓)])

]),

("f", [("g", [(0,=),(1,=),(-,-)])]),

("g", [(0,=),(1,↓),(-,-)]),

("f", [(0,↓),(-,-)])

]),

("g", [("g", [(0,=),(1,↓),(-,-)]),

("f", [(0,↓),(2,=)])

])

]

The final phase of the algorithm involves inspecting the idempotent graphs:

Termination. In this case, the size-change termination argument is used. Consider
a non-terminating program. This program can only be non-terminating through
an infinite recursion through (at least one) function, since the number of different
functions is finite.

A second step is to consider the chain of possible function calls within each one of
those functions, and determine the size change of each of its parameters between
successive calls. If any one of those parameters reduces on each call, then there is a
conflict. If it reduces infinitely often, then the data is not well-founded.

34

2.7. PRELIMINARY DEFINITIONS

As a result of this negative argument, we restate a simple observation that may be
made over a program which precludes it from being non-terminating:

”if every infinite call sequence in a program would cause an infinite descent
in some program values then the program terminates on all inputs”

The transitive closure G of all the size-change graphs is constructed, before looking
at the idempotent graphs in this closure - i.e. the graphs gff ∈ G : gff = gff ◦G gff .
The graphs could be viewed as a representation of a recursive chain of calls through
a particular function (f) entry point. For each of these idempotent graphs, the size
change information is examined. If all of them have at least one parameter that
reduces (x, ↓), then there is a conflict, and the program terminates on all inputs. If
there is an idempotent graph with no parameter that reduces on all inputs, then
nothing can be said about the program. It may terminate, it may not. Returning to
the example, the idempotent graphs are the following:

[("ack", [("ack", [(0, ↓); (-, -)]),

("ack", [(0, =); (1, ↓)])]),

("f", [("f", [(0,↓),(-,-)])]),

("g", [("g", [(0,=),(1,↓),(-,-)])])

]

For each of these, there is a reducing parameter, and hence all three functions termi-
nate on all inputs.

The core of this section was to construct the SCGs found in the sort of program
termination analysis outlined in [LJBA01], within a dependent/sized-types frame-
work. This leads to an approach to verifying program termination on un-annotated
programs.

2.7 Preliminary definitions

In this section the language used for programs is extended with primitive opera-
tors, along with affine relations and Presburger formulæ. Preliminary definitions and
notation for affine functions are introduced.

2.7.1 The language

In order to show the mechanism behind the termination analysis, the simple first-
order functional language is extended in Table 2.6. Additional language features
could be included in the subject language, but as these will only complicate the
generation of the initial set of size-change graphs, but not the analysis, they will not
be included in the discussion.

35

2.7. PRELIMINARY DEFINITIONS

x ∈ Var 〈Variables〉
op ∈ {<,≤,=,≥>} 〈Primitive operators〉
f , g, h ∈ FName 〈Function names〉
c ∈ Const 〈Constants〉
e ∈ Exp 〈Expressions〉

e ::= if e0 then e1 else e2

| x | c | e1 op e2 | f (e1, . . . , en)
d ∈ Decl 〈Definitions〉

d ::= f (x1, . . . , xn) = e

Table 2.6: The language syntax, extended with operators

As mentioned before, the functional style adopted in the thesis can easily accommo-
date imperative and other styles of programming, and it is just a matter of personal
choice to use the functional style.

2.7.2 Affine relations and Presburger formulæ

The term “affine relation” is used in this thesis in the same sense as that of Karr’s
early paper which provided an algorithm for computing affine relationships between
variables of a program [Kar76].

Definition 4 An affine relation is a property of the form a0 +
∑k

i=1 aixi ≤ 0 or

a0 +
∑k

i=1 aixi = 0 where x1, . . . , xk are integer program variables, and a0, . . . , ak are
integer constants.

Affine relations are captured using Presburger formulæ, a class of logical formulæ
built from affine constraints over the integers, the quantifier ∃, and ∧, ∨ and ¬. In
this context, if the parameters are of the natural (well-founded) type, then the affine
relations have an extra constraint D which restricts the variables to be positive.

Formulæ: φ ∈ F 〈Formulæ〉
φ ::= ψ | {[v1, . . . , vm]→ [w1, . . . ,wn] : ψ}
ψ ::= δ | ¬ψ | ∃ v.ψ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

Size Formulæ: δ ∈ Fb 〈Boolean expressions〉
δ ::= T | F | a1 = a2 | a1 6= a2

| a1 < a2 | a1 > a2 | a1 ≤ a2 | a1 ≥ a2

a ∈ Aexp 〈Arithmetic expressions〉
a ::= n | v | n ? a | a1 + a2 | −a

n ∈ Z 〈Integer constants〉

Table 2.7: Syntax of Presburger formulæ

36

2.7. PRELIMINARY DEFINITIONS

The tuple relations have explicitly identified source and destination parameters, and
the syntax is defined in Table 2.7.

An affine tuple relation is interpreted as a set of pairs satisfying the affine relation.
For example, the following affine tuple relation φ = {[m, n]→ [p] : p = m+n+1 ∧ D}
can be interpreted as a subset of N2×N. Some of the pairs belonging to this set are:
([1, 0], [2]), ([3, 4], [8]).

This interpretation enables us to talk about subset inclusion between set solutions of
affine tuple relations. It induces a partial ordering relationship among the affine rela-
tions, and corresponds nicely to the implication relation between two affine relations,
when viewed as Presburger formulæ. As a result, φ implies the relation

φ′ = {[m, n]→ [p] : p > m + n ∧ D}

because the set generated by φ is a subset of that generated by φ′, denoted by φ ⊆ φ′.
Subset notation is adopted as relation implication.

Operations over affine tuple relations. The first operation of interest is the
composition operation for affine tuple relations. This operation is meaningful only
when interpreting an affine tuple relation as a binary relation over two sets of param-
eters. The idea of composing two relations, as in φ1 ◦F φ2, is to identify the second
parameter set of φ1 with the first parameter set of φ2.

Definition 5 Affine tuple relation composition is defined as follows:

φ1 ◦F φ2
def
= {(x̄, z̄) | ∃ ȳ : (x̄, ȳ) ∈ φ1 ∧ (ȳ, z̄) ∈ φ2}

Thus, for composition over two affine relations φ1 ◦F φ2 to be definable, the number
of parameters in the first set of φ2 must be the same as the number of parameters in
the second set of φ1.

Fact 1. The composition operator over affine relations with the same set of param-
eters preserves any monotonic ordering of the parameters: if we had (x̄, x̄′) ◦F (x̄′, x̄′′)
and an ordering2 over the parameters � such that x̄ � x̄′ and x̄′ � x̄′′, then x̄ � x̄′′.

The second operation of interest is the union of affine tuple relations. This is defin-
able when all the affine relations have the same set of parameters, modulo variable
renaming.

Definition 6 The union of affine tuple relations is given by:

φ1 ∪ φ2
def
= {(x̄, ȳ) | (x̄, ȳ) ∈ φ1 ∨ (x̄, ȳ) ∈ φ2}

2For example if each individual parameter in the first set was less than the corresponding param-
eter in the second set.

37

2.8. COMMENTARY

Fact 2. The union operation over a set of affine relations is monotone. In fact, the
union operation computes the least upper bound of the set of affine relations, if all
affine relations with the same set of parameters are considered as a lattice partially
ordered by set inclusion.

The third operation of interest is the transitive closure operation over an affine rela-
tion.

Definition 7 The transitive closure over an affine tuple relation φ is as follows:

φ+ def
=

⋃

i≥0 φ
i

where φi means composing φ with itself i times.

Note that for the closure operation to work properly, φ must be represented as a
relation over two sets of parameters, with both sets of equal size. Facts 1 and 2,
indicate that the transitive closure operation is monotone.

Fact3. The transitive closure operation is idempotent. That is, φ+ ◦F φ
+ = φ+.

2.8 Commentary

In this chapter, the groundwork has been laid for the contribution of this thesis.
In particular, the use of program analysis, decidable theories, and type inference
to derive arithmetic and size-change information useful in the analysis of program
properties has been outlined. Various techniques for program termination analy-
sis were described, in particular the size-change termination technique of [LJBA01].
In explaining this related work, the notation and concepts common to size-change
termination, and the affine based analysis have been introduced.

38

Part II

Body

39

Chapter 3
Affine-based analysis

This section introduces affine-based SCT analysis, an improvement over the LJB-
analysis introduced previously.

A more refined representation of size-change relations can widen the set of size-change
terminating functions. Presburger formulæ, or affine relations in particular, can be
a good candidate for encoding size-change graphs, for the following three reasons:

1. They allow the capturing of constant changes in parameter size. The effect of
constant increment and decrement may be canceled out during the analysis.

2. They can express size change of a destination argument by a linear combination
of source parameters. This enables more accurate representation of size change.

3. They can constrain the size change information with information about call
context, thus naturally extending the analysis to be context-sensitive.

To illustrate that this termination analysis is strictly more powerful than the LJB-
analysis, three example programs in the simple first-order function definition language
are listed below. They can be successfully analyzed for termination by the more
refined analysis, but are outside the scope of LJB-analysis.

The first example alternately increases and reduces a parameter on successive function
calls corresponding to the first reason given.

40

3.1. AFFINE-BASED SIZE-CHANGE TERMINATION

f (m) = if m ≤ 0 then

1
else

ga(m + 1);
g(n) = if n ≤ 0 then

1
else

fa(n− 2);

An example of the second reason given is the following function in which the LJB-
analysis is unable to establish that the first argument must decrease:

k(m, n) = if m ≤ 0 then

1
else

ka(m− n, n + 1);

An example of the third reason given is the following function in which the variables
are all natural numbers, and only one of the two calls can be performed, constrained
by the condition m < n. The LJB-analysis fails to establish termination:

j(m, n) = if m + n = 0 then

0
else

if m < n then

ja(m− 1, n + 1)
else

jb(m + 1, n − 1);

Affine relations can capture size-change information, and the soundness and termi-
nation of affine-relation based termination analysis is shown in the following sections.

3.1 Affine-based size-change termination

In affine-based size-change termination, size-change graphs are translated to affine-
based graphs, in which affine relations among parameters are expressed by Presburger
formulæ. The correctness of the translation is shown by defining the size-change graph
composition in terms of affine relation manipulation, and identifying the idempotent
size-change graphs with transitive closures in affine relations.

41

3.1. AFFINE-BASED SIZE-CHANGE TERMINATION

An affine-based termination analysis is developed, in which more refined termina-
tion size-change information is admissible by affine relations. Specifically, the affine-
related analysis improves the effectiveness of the termination analysis by capturing
constant changes in parameter sizes, affine relationships of the sizes of the source
parameters, and contextual information pertaining to function calls.

This approach widens the set of size-change terminating functions: all LJB size-
change terminating programs are still detectable using affine-based size-change ter-
mination, and there are affine-based size-change terminating programs not found by
LJB-analysis.

Figure 3.1: Overview of affine-SCT analysis

Figure 3.1 shows a summary of the flow of (affine-style) SCT analysis, starting from
the initial program source, which is analyzed to obtain initial affine SCGs. A closure
algorithm (algorithm T) is applied to these affine SCGs, leading to a final set of SCGs
(termed abstract SCGs). Only the idempotent abstract SCGs are examined, to see
if each one has a reducing arc, representing a reducing parameter.

Size-change information is represented using the notation and syntax of the Omega
calculator and library [KMP+96], which can manipulate Presburger formulæ. The

42

3.1. AFFINE-BASED SIZE-CHANGE TERMINATION

graphs thus represented are termed affine size-change graphs.

Definition 8 (Affine graph) An affine size-change graph is a size-change graph
such that each destination argument is constrained by the source parameters arranged
in an affine relation.

Such a graph is sometimes termed an affine tuple relation, mapping n-tuples to m-
tuples constrained by an affine formula.

In an affine size-change graph, the possible relations between a source parameter m
and a destination argument m′ can be any expression represented by a Presburger
formula. For example, m′ ≤ 2m − 4 is a valid relation in an affine size-change graph.
The syntax introduced previously will be used:

{[x̄]→ [ȳ] : P}

where P is the Presburger formula.

Definition 9 Affine graph composition ◦F is just the affine tuple relation composition
defined in Section 2.7.2.

The LJB size-change graphs described in [LJBA01] may be translated to the affine
size-change graph form. A definition of the LJB-graph composition is provided in
terms of operations on affine relations.

Given two lists of source parameters and destination arguments, consider a set G and
a set F of (respectively) all possible LJB-graphs and affine graphs generated from
these lists. A translation that maps LJB-graphs to affine graphs is defined as follows:

Definition 10 (g2a Translation) For each edge ei in g ∈ G, translation g2a :: G →
F produces an affine relation ri according to the following translation:

ei ri

m
=
→ n 7→ n = m

m
↓
→ n 7→ n < m

m
=

↓
→ n 7→ n ≤ m

In addition, constraints are associated with each source parameter xj and destination
argument yk (xj ≥ 0 and yk ≥ 0 respectively), giving:

g2a(g) = {[x1, . . . , xm]→ [y1, . . . , yn] : (
∧

i

ri) ∧ D}

D = (
∧

j

xj ≥ 0) ∧ (
∧

k

yk ≥ 0)

43

3.1. AFFINE-BASED SIZE-CHANGE TERMINATION

Note that edges with the unknown symbol are not mapped to any constraint, since the
symbol implies no knowledge about how the parameter size is changed. As before,
the relation D specifies the boundary constraints, and asserts that all parameters take
non-negative values. Also note that g2a is an injection, and that as a result, for an
affine graph h containing only affine relations of the form ri, g2a−1 exists.

In order to show the correctness of the translation, an abstraction function is defined
from affine graphs to LJB-graphs.

Definition 11 (Abstraction a2g) The abstraction a2g : F → G is defined as fol-
lows:

a2g(a) = g2a−1(π(a))

where π is defined as follows:

π(a) = {[x1, . . . , xm]→ [y1, . . . , yn] : r ∧ D};
r = {

∧

(yj op xi) | a ⊆ P(xi, yj, op), 1 ≤ i ≤ m,
1 ≤ j ≤ n, op ∈ {=, <,≤}};

P(u, v, op) = {[x1, . . . , xm]→ [y1, . . . , yn] : v op u ∧D};

Note that the result returned is the smallest in G satisfying a.

The function π is composed of projection functions that project a graph a onto a
rectangular polygon enclosing a. This polygon is made up of affine relations of the
following forms: y op x where y is a destination argument, x is a source parameter,
and op is either =, <, or ≤. In addition, all source parameters and destination
arguments are constrained to be non-negative. It is easy to show that the function
π, and consequently a2g, are monotone. An example of the use of the function π is

π({[x, y] → [x′, y′] : x′ = x + 2 ∧ x′ = y− 1}) = {[x, y] → [x′, y′] : x′ < y}

where the π function retains exactly the information used in LJB-analysis.

Function π enjoys the following properties:

1. ida ⊆ π.

2. It is idempotent : π ◦ π = π.

3. For any a1, a2 ∈ F ,

π(a1 ◦F a2) ⊆ π(a1) ◦F π(a2).

It is now possible to provide a definition of LJB-graph composition in terms of affine-
graph operations, and give a characterization of the idempotent LJB-graphs using
affine graphs.

44

3.1. AFFINE-BASED SIZE-CHANGE TERMINATION

Lemma 1 (LJB-graph composition ◦G) For all g1, g2 ∈ G,

g1 ◦G g2 = a2g(g2a(g1) ◦F g2a(g2))

Proof: The g2a translation is just an encoding of LJB size-change graphs in affine
tuple relation form, and from the definition of ◦F, and assuming the graphs are
composable, then g2a(g1) ◦F g2a(g2) contains the set of points

{(x̄, z̄) | ∃ ȳ : (x̄, ȳ) ∈ g1 ∧ (ȳ, z̄) ∈ g2}

Now consider each constituent element xi op1 yj, yj op2 zk in g2a(g1) ◦F g2a(g2). These
elements combine to form a new element xi op zk where op takes the weakest of the
operators op1 and op2 (drawn from {=,≤, <,unknown}), and thus the resultant
composed affine graph is an encoding of the expected LJB size-change graph g1 ◦G g2.
It remains to show that for any LJB size-change graph, the a2g operation leaves it
unchanged, by noting that in this case π is the identity function. �

Functions a2g and g2a are “tightly” related, in the following sense:

Let idF be the identity function on F , and idG that of G. The following holds:

g2a ◦ a2g ⊆ idF

a2g ◦ g2a = idG

The following theorem relates the idempotent LJB-graph to affine graphs:

Theorem 2 (Idempotent Graphs) Let g ∈ G and a = g2a(g).

g ◦G g = g if and only if π(a) = a and a = a+.

Proof: (⇒) Suppose g◦Gg = g, we show that π(a) = a and a = a+, where a = g2a(g).

To show that π(a) = a, note that a comprises a constraint of the form yj op xi, which
is identical to P(xi, yj, op), the constituents of the result of applying π to any graph.
Consequently, applying π on a will not modify any of a’s constraints. Thus, π(a) = a.

To show that a = a+, the approach is to show that a =
⋃

i>0 ai using the subset
inclusion relation. Since

⋃

i>0 ai = a∪
⋃

i>0 ai+1, thus a ⊆
⋃

i>0 ai. To show the other
way round, the assumption that g ◦G g = g is used, giving that π(a ◦F a) = a:

a2g (g2a(g) ◦F g2a(g)) = g
⇔ g2a−1(π(a ◦F a)) = g2a−1(π(a)) [Definition of g2a]
⇔ g2a−1(π(a ◦F a)) = g2a−1(a) [π(a) = a]
⇔ π(a ◦F a) = a [g2a−1 injective over range of π]

45

3.2. AFFINE-BASED TERMINATION ANALYSIS

To show by induction that ai ⊆ a for all i > 0:

Case i = 1, clearly a ⊆ a.

Inductive case: Assume that an ⊆ a, then

an+1 = an ◦F a
⊆ π(an ◦F a) [property 3.1.1]
⊆ π(an) ◦F π(a) [property 3.1.3]
⊆ a ◦F π(a) [Induction hypothesis]
= a ◦F a
⊆ π(a ◦F a) [property 3.1.1]
⊆ a [assumption]

Hence a is a upper bound of ai
i>0, and therefore

⋃

i>0 ai ⊆ a.

Thus, a = a+.

(⇐) Given that a = g2a(g). Assume that π(a) = a, and a = a+, the approach is to
show that g ◦G g = g. Equivalently, to show that π(a ◦F a) = a.

Since a = a+, by the property of transitive closure, a ◦F a = a. So, it is necessary to
show that π(a) = a, but this is the assumption for this case. �

3.2 Affine-based termination analysis

The affine-based termination analysis is computed in a similar fashion to the LJB-
analysis. The analysis begins with the set of affine graphs representing parameter
size-change for each function call in the program. Consequently, arguments’ size
changes are captured during the analysis for all possible call sequences. This change
is computed by composing the existing affine size-change graphs in all the legitimate
combinations.

The Omega library [KMP+96] can calculate the composition of affine relations effi-
ciently, and assist in the calculation of the closure for a set of such relations.

For example, consider the following program:

f (m) = if m ≤ 0 then

1
else

ga(m + 1);
g(n) = if n ≤ 0 then

1
else

fa(n− 2);

46

3.2. AFFINE-BASED TERMINATION ANALYSIS

The corresponding affine size-change graphs for the call to function g in f (let’s label
it ga), and the call to function f in g (label it fa), are encoded with two affine relations
using the Omega library representation as follows:

ga = {[m]→ [m′] : m′ = m + 1 ∧ D}

fa = {[n]→ [n′] : n′ = n− 2 ∧ D}

In each of these representations, the source parameters and destination arguments
have one member each, constrained by a relation expressed as a Presburger formula.
The first expresses that the destination m′ must be one more than the source m. The
second expresses that the destination n′ must be two less than the source n. From
this it can be seen that the information about size reduction is captured, and also
the size of parameter changes, and perhaps other more subtle relationships. There
already exist well-documented ways for extracting affine relations from a program for
other purposes. For example, [KS02] describes a contextual analysis to retrieve such
information using sized types.

3.2.1 Associating affine with abstract graphs

A crucial administrative task in ensuring termination of the analysis is the association
of each affine graph with an abstract graph. This could be viewed as a process of
classifying the affine size-change graphs. The elements of the abstract size-change
graphs provide the different classifications, and the affine graphs provide concrete
instances of some of these classifications. An abstract graph is defined as follows:

Definition 12 (Abstract graph) An affine size-change graph is called an abstract
graph if all its parameters are non-negative, and each of its destination parameters yi

can only be related to the source parameters xj in a simple relation yi op xj, where op ∈
{≤, <,=,≥, >}. Moreover, there is no other affine relation among the parameters.

The set of affine graphs produced from LJB-graphs via the translation g2a is a set of
abstract graphs. To obtain a more accurate termination analysis, this set of abstract
graphs must be extended to include those of which the destination parameter can
have size greater than some source parameters.

>

=

<<

>

Figure 3.2: Ordering of the operators for Abstract graph composition

Graph composition for abstract graphs is similar to LJB graph composition, except
that the new operator will be the least upper bound of the other operators, using the

47

3.2. AFFINE-BASED TERMINATION ANALYSIS

ordering of operators in Figure 3.2. For example, if we have o
>
→ y and y

≥
→ o′, the

final operator is o
>
→ o′, but if we had o

>
→ y and y

≤
→ o′, the final operator would be

o
>
→ o′ (i.e. the relation is unknown).

Given a program, it is possible to generate all its possible abstract graphs A repre-
senting the parameter size changes between the function entry and call points. Let
F be the corresponding affine graphs that can be realized from the program. Each
affine graph may then be associated with an abstract graph in A, as follows:

∀ f ∈ F , a ∈ A, associate(f , a)
def
= a =

⋂

i{ri | f ⊆ ri, ri ∈ A}

where φ1 ∩ φ2
def
= {(x̄, ȳ) | (x̄, ȳ) ∈ φ1 ∧ (x̄, ȳ) ∈ φ2}. If two graphs 〈f , a〉 are associated

in this way, then f is contained in a. The associated abstract graph a thus obtained
is minimum, in that any other abstract graph that contains the affine graph f will
also contain a. Consequently, it is called the minimum association.

It is important to point out that, in the implementation of the algorithm, not just
the association of graphs is maintained, but also (approximated) information about
call sequences leading to the creation of that particular graph. This call-sequence
information is used to see if a particular graph composition is legal.

Consider the example given on page 46. The minimal set of possible abstract graphs
A for the program is A = {A1,A2, . . . ,A12}, given in Table 3.1.

For the label ga: For the label fa:
A1 = {[m]→ [m′] : m′ < m}
A2 = {[m]→ [m′] : m′ ≤ m}
A3 = {[m]→ [m′] : m′ = m}
A4 = {[m]→ [m′] : m′ ≥ m}
A5 = {[m]→ [m′] : m′ > m}
A6 = {[m]→ [m′]}

A7 = {[n]→ [n′] : n′ < n}
A8 = {[n]→ [n′] : n′ ≤ n}
A9 = {[n]→ [n′] : n′ = n}
A10 = {[n]→ [n′] : n′ ≥ n}
A11 = {[n]→ [n′] : n′ > n}
A12 = {[n]→ [n′]}

Table 3.1: Abstract graphs for the example program

In the table, for clarity, the boundary constraints D are omitted. The initial set of
affine graphs for the functions is F = {F1,F2} where:

F1 = {[m]→ [m′] : m′ = m + 1}

F2 = {[n]→ [n′] : n′ = n− 2}

The elements F1 and F2 are concrete instances of the elements A5 and A7 of A, as

{[m]→ [m′] : m′ = m + 1} ⊆ {[m]→ [m′] : m′ > m}

{[n]→ [n′] : n′ = n− 2} ⊆ {[n]→ [n′] : n′ < n}

48

3.2. AFFINE-BASED TERMINATION ANALYSIS

and each affine graph is associated with its classification using the set of pairs

C = {(F1,A5), (F2,A7)}

The process of classifying the affine size-change graphs using the abstract size-change
graphs, leads to a finite number of affine size-change graphs. This property is used
in the proof of termination of the termination analysis algorithm.

3.2.2 Affine-based closure algorithm

The core of the termination analysis is the algorithm T :

Classify initial affine graphs into C′;
C := ∅;

while C′ 6= C do {

C := C′;
F′ := generate(C);
foreach g ∈ F′ {

(r,Ag) := classify(g, C′);
if idempotent(g,Ag) then

g := g+;

g := 5(hull(r ∪ g));
if r =⊥ then

C′ := C′ ∪ (g,Ag)
else

C′ := (C′\(r,Ag)) ∪ (g,Ag);
}

}

The algorithm T builds the closure of the new set of affine size-change graphs F,
and uses a simple technique, constructing the compositions of the existing affine
size-change graphs until no new affine graphs are created.

The main idea of the algorithm, ignoring the termination issues, can be described
using the following metaphor: recall that each affine graph can be associated with
a minimum abstract graph. Imagine each abstract graph (there are a finite number
of them) as a container, which will contain those affine graphs under its minimal
association. The containers will have a cap labeled with the corresponding abstract
graph. Thus, some containers will be considered as idempotent containers when they
are labeled/capped with an idempotent abstract graph.

Initially, only the initial set of affine graphs will be kept in some of the containers.
At each iteration of the algorithm, a composition operation will be performed among
all legitimate pairs of affine graphs, including self-composition. The resulting set of

49

3.2. AFFINE-BASED TERMINATION ANALYSIS

affine graphs will again be placed in the respective containers they are (minimally)
associated with. Assume that such an iteration process will eventually terminate,
with no more new affine graphs created. Non-empty idempotent containers are then
identified, checking their cap to see if the idempotent abstract graphs labeled therein
contain a decreasing edge. If all these idempotent abstract graphs have decreasing
edges, then it can be concluded that the associated program terminates. If one of
these graphs does not have a decreasing edge, then it can be concluded that the
associated program does not belong to the size-change terminating programs.

Suppose each affine size-change graph is associated with its classification, using the
set of pairs C = {(F1,Aj), (F2,Ak), . . .}. This set grows in size as the algorithm runs,
but has a maximum size determined by the size of A. The function classify returns
a pair (r,Ak), with r a null graph1 if this classification has not been made before, or
with the previous value for the affine size-change graph if this classification has been
made before.

classify(g,C)
def
=

{

(r,Ag) if (r,Ag) ∈ C ∧ 5(g) ⊆ 5(r)
(⊥,Ag) otherwise

The function 5 performs a widening operation to produce an affine graph that is
larger than the argument graph. This is a common technique used in ensuring finite
generation of abstract values. The idea of using a widening operator to control
termination is not new, and can be found in (for example) [CH78, NNH99]. Widening
operators normally have two operands, for example 5(d1, d2), which widens d2 with
respect to d1, keeping the constraints in d2 that are already in d1. However, for this
context, the first operand is just the abstract graph, and since this can be derived
from the associated affine graph (using g2a), it has been elided.

The function generate returns a new set consisting of all the original affine size-change
graphs, and any new ones constructed by composing any possible pairs of existing
size-change graphs. Given a set of classifications C, the function generate can extract
the set of current affine graphs F = {g | (g,A) ∈ C}, and then return all legitimate
compositions:

generate(C)
def
= {g1 ◦F g2 | (g1, g2) ∈ (F × F) ∧ legitimate(g1, g2)} ∪ F

Note that the legitimate compositions only include those which result in a legitimate
call sequence, as is the case for LJB-analysis. In addition, the function may be
deemed to be inefficient, as it can generate graphs that identify the same cycle; for
example (g → f) ◦ (f → g) and (f → g) ◦ (g → f), starting at different points in
the same cycle. However, both graphs must be retained, as later compositions may
need to use either one of the cycles. At this stage the details of the legitimate test is
deferred, as it is explored in more detail in Chapter 4. In the event that a graph g
is idempotent, the transitive closure g+ of the graph is kept, reflecting the idea that
any idempotent graph may result in an infinite series of calls through itself.

1A null graph has all relations unknown, and the notation ⊥ is used for such a graph. Note that
⊥ ∪ g = g.

50

3.2. AFFINE-BASED TERMINATION ANALYSIS

The function idempotent checks if a graph g and its self composition g ◦F g are both
minimally associated with the same abstract graph Ag:

idempotent(g,A)
def
= associate(g,A) ∧ associate(g ◦F g,A)

The algorithm maintains at most one affine graph in each container. When a new
graph is found to belong to an existing non-empty container, it is combined with
the existing graph in the container, using the union, hull, and widening operations.
Finally, the algorithm’s main structure C is continually updated into C′ until it reaches
a fixed point.

3.2.3 A sample widening operator

In order to guarantee termination for the algorithm, a widening operation is used, to
guarantee the stabilization of the affine graph in that container under graph compo-
sition. The particular widening operator outlined here is an exhaustive one, which
retains as much information as possible from the container of affine graphs. Note
that a simpler widening may do just as well for many termination problems.

To better understand how the widening operator5 is defined, first note that the affine
constraints in an affine graph can be divided into three sets: the boundary constraints
(D), the contextual constraints (K) for the context in which the call represented by
the affine graph is called, noting that there are no destination arguments in these
constraints, and the output constraints (E) which constrain the destination arguments
by other variables, such as source parameters.

Furthermore, a constraint over a destination argument yj can be expressed as

yj op Σkakxk − Σlblx′l + c

where op ∈ {=, <,>,≤,≥}, xk, x′l are source parameters, ak, bl ≥ 0 and c is any
integer.

Given that the affine relations in an affine graph a can be divided into three sets of
constraints, D, K, and E , as described above.

Definition 13 The widening operator 5 applying over a is defined as:

5(a) = {[x1, . . . , xm]→ [y1, . . . , yn] : (
∧

i E(ri)) ∧D ∧ (
∧

j K(r′j)) | ri ∈ E , r′j ∈ K}

where E(ri) is a function defined in Table 3.2 (assuming c > 0).

and K(r′j) is a function defined in Table 3.3(assuming c > 0, and m and n are arbitrary
variables).

51

3.2. AFFINE-BASED TERMINATION ANALYSIS

Form of ri Conditions E(ri)

y op x + c op ∈ {=, >,≥} y op x + c
y = Σkakxk + c ak > 0, k > 1

∧

k y ≥ akxk + c
y > Σkakxk + c ak > 0, k > 1

∧

k y > akxk + c
y ≥ Σkakxk + c ak > 0, k > 1

∧

k y ≥ akxk + c
y op x− c op ∈ {=, <,≤} y op x− c
y = x− (Σlblxl)− c bl > 0, l > 0 y ≤ x− c
y < x− (Σlblxl)− c bl > 0, l > 0 y < x− c
y ≤ x− (Σlblxl)− c bl > 0, l > 0 y ≤ x− c

all other forms true

Table 3.2: Definition of E(ri)

Form of r′j Conditions K(r′j)

m op n op ∈ {=, <,>,≤,≥} m op n
m op c op ∈ {=, >,≥} m op c

all other forms true

Table 3.3: Definition of K(r′j)

Imagine the mn-tuple relations in m + n-space. For example if a source tuple had two
parameters (x, y) and the destination arguments just one (z) then one could imagine a
3-space, with the axes x,y and z. The widening operation projects an arbitrary affine
relation onto each of the two axes x and y. A relation such as z = x + y + 4 would be
widened to

z ≥ x + 4 ∧ z ≥ y + 4

The widening operator 5 defined on page 51 is monotone and idempotent. Further-
more, for any a ∈ F ,5(a) ⊆ π(a).

In addition to being monotone, 5 also ensures the generation of a finite number of
affine graphs which are less precise than the initial one. For instance, if an application
of 5 produces an affine graph having the following constraint:

y ≥ 5x1 + 2x2 + 3

then, there are only a finite number of constraints which are of identical form

y ≥ Σkakxk + c

and are less precise, namely:

y ≥ d1x1 + d2x2 + d3

where 0 < d1 < 5, 0 < d2 < 2 and 0 < d3 < 3. This finiteness in the number of
less precise constraints guarantees that iterative computation of affine graphs will
stabilize in a finite number of steps.

52

3.3. PROPERTIES OF AFFINE-BASED TERMINATION ANALYSIS

An affine graph of the following form is said to be in stable form:

{[x1, . . . , xm]→ [y1, . . . , yn] : Er ∧ D ∧ Kr}

where Er and Kr are conjunctions of constraints of the forms described by the range
of functions E and K respectively.

Given an affine graph g defined in a stable form, there are a finite number of affine
graphs of identical form which are less precise than g.

3.3 Properties of affine-based termination analysis

The termination, accuracy and correctness of the analysis algorithm are briefly dis-
cussed below.

3.3.1 Termination of the analysis algorithm

The key components of the analysis algorithm ensure that the algorithm terminates.
The following proof uses the finite cardinality of the size-change graphs, and the
monotonic nature of the graph operations.

Theorem 3 The algorithm T terminates.

Proof: The algorithm terminates when C′ is no longer changing. C′ can change in
only two ways, either by creating an association for a new abstract graph Ag, or by
replacing an existing set element (r,Ag) with a new (g′,Ag). Proof of termination is
done here by showing that neither of these actions can be done an infinite number of
times.

Addressing the first point, the cardinality of the set C′ is finite, bounded by the
cardinality of the set of abstract graphs A. As a result of this, C′ cannot continue
increasing in size forever, and hence we cannot keep adding in a new association
(g′,Ag).

Addressing the second point, consider the replacement of an existing set element
(r,Ag) with a new set element (g′,Ag). From the algorithm, we know that

g′ = 5(hull(r ∪ g))

Thus g′ is in stable form. Since any update of g′ (in further iterations of the algorithm)
will result in an affine graph, g′′, which cannot be more precise than g′ (by Property
3), and the application of 5 ensures that g′′ is also in stable form, by Property 4,
there exists a finite number of iterations in which the update of the affine graph will
stabilize. This completes the termination proof. �

53

3.3. PROPERTIES OF AFFINE-BASED TERMINATION ANALYSIS

3.3.2 Accuracy of the analysis algorithm

Having established that the analysis algorithm terminates, it is easy to verify that
the analysis computes more accurate information than the LJB-analysis.

To see that, drop all the contextual information in the initial affine graphs collected,
by making all such contextual information true. Then replace the widening operator
5 in the analysis by π defined in Definition 11. This turns those affine graphs, which
are associated with idempotent abstract graphs, into their respective abstract graphs
during the analysis. With these changes, the analysis mimics the computation of
LJB-analysis.

3.3.3 Correctness of the analysis algorithm

The correctness argument for SCT is presented in [LJBA01]. The overall strategy
used for analyzing a program is to construct an abstract representation of the pro-
gram, such that a property of the abstract representation captures the termination
of the original program. The term correctness here requires that the abstract repre-
sentation must conservatively2 represent the behaviour of the original program. The
abstract representation in SCT, is a set of idempotent SCGs which conservatively
record the change of sizes of program parameters at all possible program points
which could lead to infinite cyclic loops. The property of interest is that in each of
these SCGs, at least one of the parameters must reduce, and if this property holds,
then the corresponding program must terminate.

The abstract representation in affine SCT, is a set of idempotent affine SCGs which
conservatively record the change of sizes of program parameters at all possible pro-
gram points which could lead to infinite cyclic loops. The key components of the
analysis algorithm ensure that the algorithm computes correctly, that is, that the
final idempotent graphs represent the possible affine size-change information for a
superset of all possible candidate infinite program traces. This can be confirmed by
noting that the closure algorithm generates all possible idempotent (cyclic) graph
compositions, and that at each stage a conservative graph is retained.

To show that the analysis computes conservative size-change information, at this
stage the notion of precise tuple relations is introduced. Consider the precise tuple
relations f = {[x̄] → [ȳ]} and g = {[ȳ] → [̄z]}, representing exactly the realizable
values of source and destination parameter-vectors for successive calls at location f
and g, the affine relations Ff and Fg derived from each of them, and the composition
f ◦ g meaning “the effect of successively calling f and then g”.

Definition 14 Precise tuple relation composition is affine tuple relation composition:

φ1 ◦ φ2
def
= φ1 ◦F φ2

2In this context, conservative means that if a property holds for the conservative representation,
then it must also hold for the original program.

54

3.3. PROPERTIES OF AFFINE-BASED TERMINATION ANALYSIS

By appealing to the interpretation of affine relations as sets of pairs of program
parameter-vector values, we have that f ⊆ Ff and g ⊆ Fg. For example, if we
had a function with the precise relation f = {[x] → [y] : y = x − 2} an associated
affine graph might be Ff = {[x] → [y] : y ≤ x − 2}, and f ⊆ Ff . In short, Ff is a
safe (or conservative) approximation to the program, as whenever a pair of program
parameter-vector values (x̄, ȳ) is in f , it is also in Ff .

At the time the initial affine graphs are derived from the program source, the graphs
are safe (by construction) approximations to the precise representation of the pro-
gram. As long as the operations performed on the affine graphs retain this safe
approximation property, the analysis is deemed correct. The significant operations
are those of affine graph composition, and the closure and widening operations. The
affine graph composition may be visualized as in Figure 3.3, where we see a diagram
which shows the expected relationships between f , g, Ff and Fg. We have to prove
that the affine composition Ff ◦F Fg is still a safe approximation to f ◦ g.

f ◦ g f ◦ g-

⊆ ⊆ ⊆

Ff ◦F Fg Ff ◦F Fg-

Figure 3.3: Relationships between f , g, Ff and Fg

Theorem 4 (Safe approximation for ◦F) If f and g are precise tuple relations
representing exactly the realizable values of source and destination parameters, and
Ff and Fg are affine relations derived from each of them such that f ⊆ Ff and g ⊆ Fg,
then f ◦ g ⊆ Ff ◦F Fg.

Proof: From definition 14 we have that f ◦g = f ◦F g. The proof that f ◦F g ⊆ Ff ◦F Fg

comes directly from the monotonicity of affine composition:

f ⊆ Ff

⇒ f ◦F g ⊆ Ff ◦F g ⊆ Ff ◦F Fg

and so f ◦ g ⊆ Ff ◦F Fg. �

The transitive closure operation φ+ over affine tuple relations is monotone (see Sec-
tion 2.7.2), and so if f ⊆ Ff , then f + ⊆ F+

f . As a result F+
f is a safe approximation

to f +. The widening operation 5 over affine tuple relations is monotone (see Section
3.2.3), and as a result 5(Ff) is a safe approximation to f .

Consequently, all operations performed on the graphs ensure that analysis only gen-
erates graphs that are safe approximations to the initial program, and the correctness
for affine-SCT is established.

55

3.4. EXAMPLES USING AFFINE TERMINATION ANALYSIS

3.4 Examples using affine termination analysis

The three examples given at the beginning of the chapter are revisited. Each one is
an example of a program that cannot be tested using SCT analysis, but succumbs to
affine SCT analysis.

3.4.1 First example - constant size cancellation

The first example from this chapter is repeated here, to show how constant change
cancellation is captured, and how the analysis is done.

f (m) = if m ≤ 0 then

1
else

ga(m + 1);
g(n) = if n ≤ 0 then

1
else

fa(n− 2);

The following two affine size-change graphs are extracted from the source. Note that
the constraints D (which specify that all the parameter values must be greater than,
or equal to zero), have been omitted for clarity:

F1 = {[m]→ [m′] : m′ = m + 1}

F2 = {[n]→ [n′] : n′ = n− 2}

The initial value for C is

c1 = {(F1,A5), (F2,A7)}

The first call to generate returns the following new affine size-change graphs:

F3 = {[n]→ [n′] : n′ = n− 1} (from the sequence faga)
F4 = {[m]→ [m′] : m′ = m− 1} (from the sequence gafa)

Since these are idempotent, calculate the closure of F3 and F4:

F′
3 = {[n]→ [n′] : n′ < n}

F′
4 = {[m]→ [m′] : m′ < m}

56

3.4. EXAMPLES USING AFFINE TERMINATION ANALYSIS

After this first iteration, C has the value

c2 = {(F1,A5), (F′
3,A7), (F′

4,A1)}

where A1 = {[m] → [m′] : m′ < m}. After a few more iterations there is one more
graph, and C has a stable value. The new graph is:

F5 = {[m]→ [n′] : n′ ≤ m} (from the sequence ga(faga)
+)

In summary, the following table shows the initial affine and abstract graphs. Note
that the constraints D have again been omitted for clarity, and the column headed
“Id” indicates if the graph can be composed with itself, and if so, if the result is
idempotent:

Sequence Id Initial affine graphs Initial abstract graphs

ga No F1 = {[m]→ [m′] : m′ = m + 1} {[m]→ [m′] : m′ > m}
fa No F2 = {[n]→ [n′] : n′ = n− 2} {[n]→ [n′] : n′ < n}

These graphs are used as the initial graphs in the algorithm T , which then goes about
generating all the possible graphs through affine-graph composition. These lead to a
final classification of affine graphs into containers as follows:

Sequence Id Final affine graphs Final abstract graphs

ga No F1 = {[m]→ [m′] : m′ = m + 1} {[m]→ [m′] : m′ > m}
(faga)

+ Yes F′
3 = {[n]→ [n′] : n′ < n} {[n]→ [n′] : n′ < n}

(gafa)+ Yes F′
4 = {[m]→ [m′] : m′ < m} {[m]→ [m′] : m′ < m}

ga(faga)
+ No F5 = {[m]→ [n′] : n′ ≤ m} {[m]→ [n′] : n′ ≤ m}

The composition of any pairing of these graphs generates no new affine or abstract
graphs. The idempotent functions are F′

3 and F′
4, which each have a reducing param-

eter, and so it can be concluded that the size-change termination property applies to
this function.

In general, using this technique it is possible to capture termination for all the func-
tions captured by the LJB technique, and also some others. In other words termina-
tion is captured for a larger set of programs.

57

3.4. EXAMPLES USING AFFINE TERMINATION ANALYSIS

3.4.2 Second example - linear combinations of source parameters

The second example from this chapter is repeated here, to show how linear combina-
tions of source parameters are captured, and how the analysis is done.

k(m, n) = if m ≤ 0 then

1
else

ka(m− n, n + 1);

The following affine size-change graph is extracted from the source. Note that the
constraints D have again been omitted for clarity:

F1 = {[m, n]→ [m′, n′] : m′ = m− n ∧ n′ = n + 1}

Note that F1 ⊆ A1 but F1 6⊆ A2. The first call to generate returns the following new
affine size-change graph from the sequence kaka:

F1 = {[m, n]→ [m′, n′] : m′ = m− 2n− 1 ∧ n′ = n− 2 ∧ m > 2n}

Note that F2 ⊆ A1 and F2 ⊆ A2, so F2 is in a different classification (We choose
the strongest classification, and A2 ⊂ A1). Since F2 is idempotent, the closure is
calculated:

F′
2 = {[m, n]→ [m′, n′] : m′ < m}

After this first iteration, C has the value

c2 = {(F1,A1), (F2,A2)}

There are no more graphs, and C has a stable value. The following table shows the
initial affine and abstract graph:

Initial affine graph Initial abstract graph

F1 = {[m, n]→ [m′, n′] : m′ = m− n ∧ n′ = n + 1} {[m, n]→ [m′, n′] : m′ ≤ m}

These graphs are used as the initial graphs in the algorithm T , which then goes about
generating all the possible graphs through affine-graph composition. These lead to a
final classification of affine graphs into containers as follows:

Final affine graphs Final abstract graphs

F1 = {[m, n]→ [m′, n′] : m′ = m− n ∧ n′ = n + 1} {[m, n]→ [m′, n′] : m′ ≤ m}
F2 = {[m, n]→ [m′, n′] : m′ < m} {[m, n]→ [m′, n′] : m′ < m}

The composition of any pairing of these graphs generates no new affine or abstract
graphs. The idempotent function is F2, which has a reducing parameter, and so it
can be concluded that the size-change termination property applies to this function.

58

3.4. EXAMPLES USING AFFINE TERMINATION ANALYSIS

3.4.3 Third example - context analysis

Chin and Khoo [CK00] have explored the use of the Omega calculator to infer other
properties of arbitrary functions, and it seems appropriate to extend the termination
analysis using this sort of inference. Consider the third example from this chapter:

j(m, n) = if m = 0 ∨ n = 0 then

0
else

if m < n then

ja(m− 1, n + 1)
else

jb(m + 1, n− 1);

It is easy to convince yourself that this function terminates, as only the first or the
second recursive call to j will be made. However, the LJB size-change termination
method cannot be applied, and similarly for the improvement to the LJB method
just explored. The composition of the two size-change graphs (F3 = F1 ◦ F2) will be:

F1 = {[m, n]→ [m′, n′] : m′ = m− 1 ∧ n′ = n + 1}

F2 = {[m, n]→ [m′, n′] : m′ = m + 1 ∧ n′ = n− 1}

F3 = {[m, n]→ [m, n]}

Termination cannot be inferred from this, as the composition of the two calls has
no reducing parameters. However, extra information can be included that we can
capture from the code segment. For example, the first call is only performed when
m < n. The second call is only performed when m ≥ n. By including this information
in the constraining affine relation, the new calculation of the composition is:

F1 = {[m, n]→ [m′, n′] : m′ = m− 1 ∧ n′ = n + 1 ∧ m < n}

F2 = {[m, n]→ [m′, n′] : m′ = m + 1 ∧ n′ = n− 1 ∧ m ≥ n}

F′
3 = {[m, n]→ [m′, n′] : False}

The result of the calculation of the composition of the functions indicates that this
situation cannot occur (i.e. it is not possible for the two calls to occur). These lead
to a final classification of affine graphs into containers as follows:

Final affine graphs Final abstract graphs

F′
1 = {[m, n]→ [m′, n′] : m′ < m ∧ m < n} {[m, n]→ [m′, n′] : m′ < m}

F′
2 = {[m, n]→ [m′, n′] : n′ < n ∧ m ≥ n} {[m, n]→ [m′, n′] : n′ < n}

Each of these is idempotent, and has a reducing parameter, and hence the function
terminates. Again, by collecting and keeping more information, termination can be
deduced for this function.

59

3.5. δSCT (DELTA SIZE-CHANGE TERMINATION)

3.5 δSCT (Delta size-change termination)

In [BA06], Ben-Amram discusses in detail an approach similar to that adopted in this
thesis, extending SCT to work with more refined changes in size. The approach uses
constant size changes of parameters, introducing a new form of size-change graph,
termed a δSCT graph (delta-S-C-T), which records the size of changes (+1,−3, . . .).
SCT is viewed as a restricted form of δSCT and Ben Amram argues that δSCT is
more expressive than SCT.

The article proves that the decision problem for δSCT is undecidable by a reduction
from a known undecidable problem, but then continues by suggesting another restric-
tion. This new (conservative) restricted set of graphs (the fan-in-free δSCT graphs)
is more expressive than SCT, but is similarly decidable. The author proves that it
is PSPACE-complete, and gives a closure-based algorithm for determining if a set of
graphs is δSCT

The paper formally defines an annotated CFG (ACG) and the size-change graph
(SCG), abstract states and state-transition sequences, safety of SCGs (conservative
abstractions), multipaths and threads in a multipath, along with infinite-descent and
the δSCT condition. Having defined these, a theorem is developed which asserts that
if an ACG is safe and satisfies δSCT, then no reachable state-transition sequence can
be infinite.

The δSCT approach is satisfying in that it is a graph-theoretic result, similar to the
original LJB approach, and amenable to complexity (and decidability) analysis. By
contrast the affine SCT approach relies on widening operators for termination of the
algorithm, and on the decidability of Presburger arithmetic.

Both approaches are more expressive than SCT, but are not related otherwise - it
is possible to construct examples that are δSCT, but not affine-SCT, and it is also
possible to construct examples that are affine-SCT and not δSCT. In the two examples
below, the function to the left is affine SCT, but not δSCT. The function to the right
is δSCT, but not affine SCT.

k(m, n) = if ... then k(m, n) = if ... then

... ...

else else

k(m− n, n + 1); if ... then

k(m− 2, n + 1)
else

k(m + 1, n− 1);

Another significant difference between the two approaches is that the affine approach
allows us to include in other information about the program (for example the condi-
tional tests). This feature has proven useful in the analysis of many functions.

60

3.6. COMMENTARY

3.6 Commentary

This section presented an approach to improve the analysis of program termination
properties based on the size-change termination method. Size-change graphs were en-
coded using Presburger formulæ representing affine relations, leading to more refined
size-change graphs admissible by these affine relations. The algorithm for calculating
the closure of the affine size-change graphs has been shown to terminate. Conse-
quently, this affine-related analysis improves the effectiveness of the LJB termination
analysis by capturing constant changes in parameter sizes, and affine relationships of
the sizes of the source parameters. The approach widens the set of functions that are
size-change terminating.

The way in which closures are found is different from the normal approach of finding
closures and fixed points. Conventionally, program analysis will attempt to find a
closure for each function definition, such as those found in [CK00] and in the work
on termination done for the Mercury system [SSS97], and many works on program
analysis, for example [Hei92, Aik99, CH78].

In this approach, the ultimate closure is expressed in terms of several closures called
the idempotent graphs. This is similar to the idea of polyvariant program analysis
[VB99, Con93], but differs in that there are also some graphs around during the
analysis which cannot be made idempotent, yet are important for closure building.
There are two ways to obtain polyvariant information for termination analysis: one
way is to make use of the constraint enabling the call. Such constraints are com-
monly obtained from the conditional tests of the code leading to the call. The use
of Presburger formulæ enables such information to be easily included in the analysis,
resulting in a context-sensitive analysis [NNH99, Shi88].

Another way to capture polyvariant information is to capture the possible function
call sequence, such as a function g can be called from another function f , but not
from k. The LJB-analysis uses this information to achieve polyvariant analysis. While
this information can be captured in the algorithm (by creating more distinct abstract
graphs with call sequence information), it is not presented here. As it is, the termi-
nation analysis deals with a set of mutually recursive functions at a time. It would
be interesting to investigate the modularity of the analysis, so that each function can
be analyzed separately, and the results from various functions be composed to yield
the final termination result. One such opportunity is to integrate the affine-based
termination analysis with a type-based system.

The use of constraints in expressing argument change enables termination to be
considered beyond the well-founded method. For example, through constraints, it
is possible to express the fact that an increasing argument can be bounded above.
This idea has been explored in the work on sized typing in [CK00]. The bounded-
increment of an argument is also investigated in [CS02], which computes a linear
ranking function for a loop-based program.

61

Chapter 4
Extending affine size-change termination

Building on the affine SCT approach introduced in Chapter 3, the size-change princi-
ple is complemented with a technique which allows the analysis of functions in which
the return values are relevant to termination. A second new technique controls the
composition of graphs in the algorithm T , so that they more closely mirror the al-
lowed call sequences. A final technique applies to functions in which repeated guarded
calls are made, with call arguments that monotonically change and (in some sense)
approach the boundary of the guard. This final approach can be viewed as an exten-
sion of affine size-change termination beyond the original well-founded approach. The
analysis techniques exploit the decidability and expressive power of affine constraints.
These techniques significantly extend the set of programs that are size-change ter-
minating, allowing analysis of programs in a first order, strict functional language
computing over the integers.

4.1 Introduction

In this section, significant extensions and variations to affine SCT analysis are de-
scribed which exploit the capability of affine constraints and produce a more precise
set of composite SCGs. The resulting analysis can handle functions in which return
values are relevant to termination, and can also be applied to guarded functions which
terminate through exceeding bounds. This is done with:

1. techniques for the construction and evaluation of more refined SCGs, and

2. a new approach to handle function call sequences that repeatedly change a
value that approaches, and eventually exceeds, some bound.

62

4.2. EXTENDED SIZE-CHANGE GRAPHS

These changes are a conservative extension of the affine-graph based size-change ter-
mination analysis: any program that previously could be shown to be size-change
terminating can still be analysed. However, the new analysis can also show termina-
tion for many other functions.

At this stage McCarthy’s 91 function [MM70] is introduced. Both LJB and affine-SCT
style analyses work for many functions but not for the 91 function. It is different
because the returned value of the function is relevant to its termination. For this
reason it is used as a vehicle to demonstrate the techniques. The following annotated
code shows the 91 function:

f91(n) = if n > 100 then

n− 10a

else

f91c(f91b(n + 11));

The function has the property that for all n ≤ 101, the returned value of the function
is 91 (and hence the name). Analysis of this function using LJB-analysis is not
possible, as the SCG for function call c has no information relating the size of the
parameter n and the call argument. The enhanced termination-detection ability is
made possible by extending the affine graphs to include a result value to capture
the return of function calls at specific affine-graphs, and a sufficient condition for
detecting that the change of a call argument is bounded.

4.2 Extended size-change graphs

The proposed extension to SCGs can be visualized as in Figure 4.1. There are two
parts: the upper part, called the base, is the original SCG, while the lower part is the
extension. Affine relations may also be specified over the extension. In affine tuple
relation form:

Definition 15 An extended affine SCG is

G′ = {[x, e]→ [y, e′] : (
∧

i ri) ∧ D ∧ (
∧

j sj) ∧ D
′}

where ri
def
= yi op δi(x1, . . . , xm, e1, . . . , en), δ is an affine relation over the input pa-

rameters and the extension elements ē, and op ∈ {≤, <,=,≥, >}. The constraints
D restrict the elements to be greater than zero: xk ≥ 0 and yi ≥ 0. The extension
contains elements ei, e′i of e, e′, which are arguments/parameters used to record extra

information about the graph, and sj
def
= e′j op δj(x1, . . . , xm, e1, . . . , en). As for the affine

SCGs, the constraints D′ restrict the elements to be greater than zero: ej ≥ 0 and
e′j ≥ 0.

Note that this extended affine graph is still an ordinary affine graph, and does not
affect the termination analysis method developed in Chapter 3.

63

4.2. EXTENDED SIZE-CHANGE GRAPHS

4.2.1 Capturing function return values: Value SCGs

Since the language used in this thesis is a functional language, it seems appropriate
to capture the returned values of functions. Sometimes these returned values are re-
quired for termination analysis (as in the f91 function). The first extension proposed
here is to add in a global result value for function calls to the extension to the SCG.

Figure 4.1: The value and call SCGs for the f91 function

To reflect the effect of a function result value on a following call, the return of function
call is represented by an affine graph, called a value graph. The original size-change
graphs are called call graphs. As an example, the value graph, Ga, for the f91 function
is shown in Figure 4.1, signifying the return of value n− 10 from a call.

Accompanying Ga are two call graphs available in the f91 function: Gb and Gc

signifying two recursive calls in the function definition. Note that the graph Gc

indicates a transfer of value from the result source (r) to the parameter destination
(n). The corresponding affine relations are expressed as follows:

Ga = {[n, r, c] → [n′, r′, c′] : r′ = n− 10}

Gb = {[n, r, c] → [n′, r′, c′] : n′ = n + 11}

Gc = {[n, r, c] → [n′, r′, c′] : n′ = r}

The effect of a nested function call using the return value of previous call can be
described by composing a value graph with a call graph, as in the case of the f91
function call shown in Figure 4.2.

Figure 4.2: Composition of nested call

64

4.3. REFINING THE GRAPH COMPOSITION ALGORITHM

Note the composed graph shows a decrease in the f91’s only argument, n. This reflects
the transfer of a value to a call c from some last recursive call. The corresponding
tuple relation is expressed as follows:

Gac = {[n, r, c] → [n′, r′, c′] : n′ = n− 10}

It is worth noticing that only some, and not all, of the returns to functions are
captured in value graphs. Specifically, only the return of the last call in a series of
nested calls is captured. Semantically, returns from a series of nested calls transfer
the result from callees back to the callers, and this information is ignored in order
to maintain clarity in this exposition. This results in a simpler classification of call
sequences, as we will see in the following section.

Value graphs are composed with call graphs to construct new call graphs which are
used as the initial call graphs for the closure algorithm T . The value graphs are not
used otherwise, and only appear at the beginning of the analysis.

It is possible to simply compose value SCGs with any call graphs, add these into the
pool of existing call SCGs, and apply the LJB or affine-SCT analyses on this SCG
pool to compute the termination of the f91 function. However, the result will not be
satisfactory (ie., termination of f91 cannot be detected). In addition, the composition
of Ga with Gb is problematic, as this sequence (ab) cannot occur in any run of the
program.

The analysis is therefore extended to take advantage of other information available
from static analysis of the program functions: call sequences and relative numbers of
calls.

4.3 Refining the graph composition algorithm

In LJB SCT analysis, the composition operation is applied to any SCGs in a current
“pool” of graphs, so given the call graphs Gab, Gac, Gb and Gc, the approach is
to consider all possible compositions, corresponding to all possible label sequences
(traces) for the program.

Definition 16 A trace is a sequence of labelled program points.

The affine SCT algorithm constructs new affine SCGs by composing (labelled) graphs,
and (if they are idempotent) taking the transitive closure. The traces can be com-
pactly represented using the RE (regular expression) syntax, with brackets as needed.
Given (say) a graph Gx, the trace is recorded as x, unless Gx is idempotent, in which
case the closure is calculated, and the trace recorded as x+. If the new graph is
composed with (say) Gy, the new trace is x+y. If this is idempotent, then the trace

65

4.3. REFINING THE GRAPH COMPOSITION ALGORITHM

becomes (x+y)+. It is easy to see that the traces constructed by the algorithm T ,
and analyzed by affine SCT, form a regular language.

Many of these compositions may be inappropriate. For example, in the f91 case, it
is obvious that a function return will not be followed by a call at label b, and so
the composition Gab should therefore be ruled out. By limiting the possible ways of
composing a value graph with a call graph, it is possible to exclude the generation of
graphs representing illegal call sequences.

A representation of the language of the allowed label sequences for LJB SCT would
be LSCT = (ab | ac | b | c)+. When checking if two graphs can be composed, a
candidate composition (GabGb for example) could be checked to see if the trace is an
allowed subsequence: abb ⊆ LSCT. In this case, the language LSCT is very permissive,
allowing all subsequences. In the f91 example just given, a better language would be
LRE = (ac | b)∗a, but the problem is how to automatically find a language which is
as small as possible, but contains all possible traces of the program.

SCTL

L

L

L

LPROGRAM

CFG

Easier to
analyse

Harder to
analyse

Abstract
More

refined/precise
More

RE+COUNT

RE

Figure 4.3: A hierarchy of program traces

Figure 4.3 shows a hierarchy of program traces. At the bottom is LPROGRAM the
sequence of calls allowed by the actual program - this is the most refined or precise
language. If we use a CFG to represent the allowable traces, then we have the less
precise, more abstract language LCFG - it allows all the legal traces, but may allow
some other traces. The other categories considered in the hierarchy are LRE+COUNT

the regular expression (RE) sub-traces restricted by a counter, LRE the RE sub-
traces, and LSCT the method used by traditional SCT which includes traces for all
composable functions.

It is useful to construct more accurate traces. If L1, L2 and L3 are progressively
more abstract languages representing the allowable traces for a sequence of calls for
a program P, then L1 ⊆ L2 ⊆ L3, and if a (termination) property holds for L3, then
the property will hold for L1. However, if the property does not hold for the language
L3, then the property could be checked for L2 and so on. In summary, analysis of

66

4.3. REFINING THE GRAPH COMPOSITION ALGORITHM

a more refined trace may be slower or more difficult, but it can be used to derive
termination properties for a larger set of programs.

4.3.1 Deriving an approximation to the CFG for traces

A CFG corresponding to the call/return traces for a set of functions may be mechani-
cally extracted from the source of the functions, each function fi generating a grammar
rule such as Fi → X | Y | Z | ... where X,Y, . . . represent alternate paths through this
function, and each X,Y, . . . is a term of the form aAbBcC . . . where a, b, . . . represent
labels for each unique call or return found in a function, and A,B, . . . are identi-
fiers for the rules for each of the other functions. The A,B, . . . identifiers represent
non-terminals in the expression, and the a, b, . . . identifiers represent terminals.

The process can be formalized using the rules in Table 4.1.

{f : F} ∪ Γ ` e : E
Γ ` f = e : F → E

CFG-def
Γ ` ea : Ea Γ ` eb : Eb

Γ ` ea; eb : EaEb
CFG-comp

Γ ` ea : Ea Γ ` eb : Eb

Γ ` ea, eb : EaEb
CFG-args

Γ ` e : E f : F ∈ Γ

Γ ` fa(e) : EaF
CFG-call

Γ ` ea : a
CFG-return (ea is a return expression)

Γ ` b : B Γ ` ea : Ea Γ ` eb : Eb

Γ ` if b then ea else eb : B(Ea | Eb)
CFG-ifthen

Table 4.1: CFG generation rules for single function definition

The environment Γ keeps the association between a function f and its associated
non-terminal F. The rules can easily be extended for multiple function definitions,
with mutual recursion. Applying the rules to the f91 program yields:

F → (a | bFcF)

The form of the CFG is a little difficult to relate back to the program. For the
purposes of clarity in exposition, the f91 function is presented again as a flattened
recursive procedure using global variables for the returned values for the functions.
This flattened version has the same call trace structure, but the form has a clear
relation back to the CFG for the function.

67

4.3. REFINING THE GRAPH COMPOSITION ALGORITHM

After flattening, the f91 function becomes:

global int result;
f91(n) = if n > 100 then

result := n− 10a

else {

f91b(n + 11);
f91c(result)

};

The flattened syntax reveals the clear relation between the program, and the CFG
representing the trace of the sequence of labeled calls and returns to the function.

The purpose of constructing trace representations of the program is to control the
generation of size-change graphs, allowing us to exclude any graphs which cannot
represent any part of the behaviour of the program. This may be done by testing
the labels for the two candidate SCGs (say Gx+ and Gy) to see if x+y ⊆ LPROGRAM,
where LPROGRAM is the language of realizable traces for the program. If the graphs
pass this membership test, they are composable, and the new graph is annotated
with the trace: Gx+y. Note that the language of candidate traces is always a regular
expression.

The CFG representation for allowable traces is reasonably precise, but not directly
used for controlling the generation of size change graphs, as the above membership
test is not decidable: If L(g) is the language generated by a grammar g, G is a
context-free grammar, and R is regular, then L(R) ⊆ L(G) is not decidable (found as
a theorem in [HMU01]).

It may be that for specific choices of G and R, the problem is decidable, but since the
general problem is undecidable, a regular grammar is constructed, approximating the
CFG which represents the possibly infinite traces for the program. This must be a
superset of the language for the CFG to be useful in our context, and if R1 and R2 are
regular expressions, then L(R1) ⊆ L(R2) is decidable and has quadratic complexity
[HMU01]. This sort of approximation is described in [Ned97, PW97], and the GRM
library [AMR04] is an efficient toolset to create regular approximations to CFLs.

The GRM library toolset takes a CFG such as the f91 one F → a | bFcF, and
automatically produces the regular grammar F → acF | bF | a, corresponding to the
traces found in the regular expression (ac | b)∗a. This is a superset of the allowable
set of traces, and is termed LRE. A candidate composition of graphs GC may be
efficiently checked to see if it is in this set of traces by checking if C ⊆ LRE (quadratic
complexity). Note that if the membership test fails, then the candidate trace C is
definitely not allowed by the program. Note also that the membership test may
succeed sometimes when a candidate is not in LPROGRAM. This means that an illegal
graph composition has been accepted.

68

4.3. REFINING THE GRAPH COMPOSITION ALGORITHM

A set of initial graphs can be mechanically derived by starting with the component
value and call graphs, and then applying the membership test to the composition of
each value graph with each call graph. Any valid combinations are added to the list
of initial graphs. Once this process is complete, any initial graphs with a trace that
is not an initial trace of the function are removed, along with any value graphs.

For the f91 function the component graphs are Ga, Gb and Gc. The only valid
composition of a value graph with a call graph is Gac because ac ⊆ (ac | b)∗a. Note
that bc 6⊆ (ac | b)∗a. The initial graphs at this stage are thus Ga, Gb, Gc and Gac. The
graph Gc has a trace which is not an initial trace of the function and so is removed.
In addition the graph Ga is a value graph and so is removed. Finally the initial affine
graphs for f91 are Gb and Gac.

The regular grammar F → acF | bF | a is automatically derived, and approximates
the CFG for the f91 function, corresponding to the traces found in the regular expres-
sion (ac | b)∗a. This language of traces may be used to restrict the composition of new
graphs, and closely approximates the call structure in the original program. By con-
trast, LJB graph composition would consider the language generated by F → bF | cF.

4.3.2 Adding counters to restrict graph composition

One of the identifying characteristics of a CFG (as opposed to a regular grammar),
is it’s counting ability. For example, CFGs can be used to describe the strings anbn

(for example ab or aaabbb, where the number of a’s is the same as the number of b’s).
The CFG for this is P→ ε | aPb. No regular language can describe these strings.

In this thesis the illustrative functional programming language is described in Table
2.6 using the Backus-Naur formalism (BNF), which is a meta-syntax for context-free
grammars. As such, CFGs can be used to describe all possible call sequences for the
language. However, the method used in the algorithm T can only construct graphs
representing call sequences that form a regular expression, with no counting ability.

Counting is important. Consider the f91 function (again). The function call fb occurs
before fc, and so the number of fb calls is greater than, or equal to the number of calls
fc. In terms of the annotated affine graphs, the number of compositions including Gb

is greater than, or equal to the number of compositions including Gac. In terms of the
traces, the number of b’s is greater than, or equal to the number of ac’s (#b ≥ #ac).

The counting behaviour of the CFG can be simulated by adding new parameters,
called counters (denoted by c1 . . . cn) in the extended part of each initial graph.

The extended size-change graph in Figure 4.4 has a counter c for the graphs Gb and
Gac. Every composition involving Gb increments the destination counter c. On the
other hand, every composition involving Gac results in a decrement of the counter.
With this arrangement, a composed graph is considered legal if it is composed from

69

4.3. REFINING THE GRAPH COMPOSITION ALGORITHM

Figure 4.4: Counters for extended SCGs of the f91 function

other legal graphs and its counter destination remains positive. Such legal graphs
mimic a (set of) legal call trace(s). With the counters and their constraints, the affine
SCGs for Gb and Gac are:

Gac = {[n, r, c] → [n′, r′, c′] : n′ = n− 10 ∧ c′ = c− 1 ∧ c ≥ 0 ∧ c′ ≥ 0}
Gb = {[n, r, c] → [n′, r′, c′] : n′ = n + 11 ∧ c′ = c + 1 ∧ c ≥ 0 ∧ c′ ≥ 0}

Counters can be mechanically included in a set of the initial graphs. For each recursive
choice branch in the CFG for a function, allocate a counter for each embedded non-
terminal. This counter is used to limit the relative number of calls made by the
(terminal) call graphs on either side of the non-terminal. Each occurrence of left-
hand call increases the counter by 1, and each occurrence of right-hand call decreases
the counter by 1. The generation of any new affine graph g is limited by presetting the
counter cg value to 0 before constructing the composition, and by placing a contextual
constraint cg > 0 on the graph for the right-hand call.

For example, given a CFG representing the traces for a function p:

P→ a | bXcYdP | eZfQ

the component graphs generated would be Ga, Gb, Gc, Gd, Ge and Gf . The algorithm
just described adds three counters CX, CY and CZ to all the component graphs, adding
constraints to each graph to ensure the required restrictions.

Ga Gb Gc Gd Ge Gf Restriction Constraint

CX = +1 −1 = = = #b ≥ #c CX ≥ 0

CY = = +1 −1 = = #c ≥ #d CY ≥ 0

CZ = = = = +1 −1 #e ≥ #f CZ ≥ 0

Table 4.2: Extra counters derived from the CFG P→ a | bXcYdP | eZfQ

Table 4.2 shows the three extra counters that are added, showing the restriction that
each is associated with, and the constraint added to the affine graph to ensure this
restriction. The entry “=” in the table entry (CX,Ga) indicates that SCG Ga has

70

4.4. FROM WELL-FOUNDED TYPES TO BOUNDEDNESS

an arc from CX → C′
X with C′

X = CX. The entry “+1” in the table entry (CX,Gb)
indicates that SCG Gb has an arc from CX → C′

X with C′
X = CX + 1. Note also that

in the SCGs for the functions x(), y(), z() and q() corresponding to the non-terminals
X, Y, Z and Q, the counters CX, CY and CZ are appended to the corresponding SCGs,
with each arc from C → C′ having C′ = C.

As before, the extended affine size-change graphs add some time to the closure al-
gorithm, but do not affect the algorithm otherwise. However, the counter extension
enhances the analysis in two ways.

1. When composing two candidate affine graphs that belong to LRE, if the result
of the composition would result in the constraint going negative, then the com-
position fails, and returns false, representing an empty relation. In this case,
the candidate composition is (correctly) excluded and discarded.

2. Even if the composition succeeds, the counters continue to record the relative
frequency of the function calls, perhaps resulting in some other graph being
excluded at a later stage.

In summary, counters allow the (RE) graphs to record the relative frequency of
function calls. The resultant language LRE+COUNT is more refined than LRE, and
more closely approximates LCFG.

4.4 From well-founded types to boundedness

With the introduction of affine constraints, it becomes feasible to lay the termination
decision upon the concept of boundedness rather than (strictly) inductively defined
variables. In the original paper on size-change termination [LJBA01], the principal
concern was with program values drawn from well-founded sets. If it was possible to
establish that every infinite sequence of function/procedure calls would result in an
infinite descent in some program values, then termination was established.

However, this does not (for instance) handle the case where every infinite sequence of
function/procedure calls would result in an infinite increase in some values, which are
bounded above by some condition that inhibits the respective calls. We thus accept
that either monotonically increasing and bounded above or monotonically decreasing
and bounded below is sufficient to establish the termination property. This is realized
by changing the presentation of size-change termination to include a guard, derived
from the source program, in any idempotent function specification.

An example of this from the f91 function is in the argument which establishes that
a series of calls to function f91b always terminates. The affine size-change graph Gb

for call f91b is Gb = {[n] → [n′] : n′ = n + 11}, and when the guard derived from the

71

4.4. FROM WELL-FOUNDED TYPES TO BOUNDEDNESS

source program is included (n ≤ 100), then there is a graph of the form bω : n′ > n,
where bω represents possibly infinitely many recursive calls to f91b. The graph is
evaluated in two steps: first that n is monotonically increasing in f91b, and second
that n ≤ 100 guards all calls to f91b. As a result of these two statements it can be
said that f91b is terminating (i.e., ω is finite).

To record this property, attach a guard to the graphs, derived from a static analysis
of the program. Given a graph Gb : n′ > n that is guarded by the condition n ≤ 100,
then this will be denoted by b[n≤100] : n′ > n for notational brevity, and when the
meaning is clear.

Figure 4.5: Overview of changes to affine SCT for bounded termination

In Figure 4.5 the changes to the affine SCT algorithm are illustrated, with guards
associated with the abstract SCGs, and with a new termination test at the end. The
test for this is referred to here as reduction-termination.

72

4.4. FROM WELL-FOUNDED TYPES TO BOUNDEDNESS

4.4.1 Bounded termination

At this stage a formal treatment of a new property over the guarded graphs is given,
the property of bounded-termination. In previous work on size-change termination,
an infinite reduction of a well-founded type led to an impossibility argument for the
graph; as no such infinite reduction can occur, then it can be concluded that the
corresponding function call cannot occur infinitely often.

A similar argument can be made over guarded graphs, and Theorem 5 asserts a
sufficient condition to establish bounded-termination.

In this treatment, all functions are assumed to be of the form

f (x̄)
def
=

b1 → f1(ȳ1)
b2 → f2(ȳ2)
. . .
else . . .

where the terms b1, b2 represent guards for each recursive function call, limited to
conjunctions of simple affine relationships between the elements of x̄. This restriction
ensures that there are no holes in the domains of the functions. The terms ȳ1, ȳ2

represent the parameters to the corresponding call to the function, where ȳ = x̄[ψ],
[ψ] = [y1 7→ δ1(x1, x2, . . .), y2 7→ δ2(x1, x2, . . .), . . .] and δ1, δ2 represent affine relations
over the input parameters, as in the affine relationships in Chapter 3.

The graphs g1, g2 . . . for such a function can again be given in affine relationship
form: g1 = {[x̄] → [ȳ1]}, and the notation {[x̄] → [ȳ1]}[b1] represents the guarded
graph. Note the close association between the functions and the graphs. In the
following the phrase “recursive graph” is used when it would be more accurate to say
“the graph associated with a recursive function call...”.

Some preliminary definitions for the domain and range restrictions associated with
recursive graphs are needed first.

Definition 17 The domain restriction function �: P X × (X ↔ Y) → (X ↔ Y) is
defined by

∀D : P X; G : (X ↔ Y) • D � G = {(x̄, ȳ) : G | x̄ ∈ D}

Definition 18 The range restriction function �: (X ↔ Y) × P Y → (X ↔ Y) is
defined by

∀G : (X ↔ Y); R : P Y • G � R = {(x̄, ȳ) : G | ȳ ∈ R}

In addition, a new set is defined, the restricted domain of a graph, which is defined
over self recursive monotonically changing guarded graphs. This allows bounded ter-
mination to be defined.

73

4.4. FROM WELL-FOUNDED TYPES TO BOUNDEDNESS

Definition 19 A self recursive graph g = {[x̄] → [ȳ]} corresponding to a function
call f (ȳ) is strictly monotonically changing (or order-preserving) under an
ordering A and over a continuous domain r, if whenever x̄ A ȳ, then f (x̄) A f (ȳ).

The ordering A does not need to be defined here, but could be any ordering captured
by a testable condition (given later). This testable condition captures orderings
over common linear transformations of program variables, including simple ones (like
counting up and down), more complex ones involving linear combinations of variables,
and even/odd relations.

Definition 20 Given a self-recursive graph g defined over a domain R, the re-
stricted domain Ω(gn,R) of recursive graph g is defined by

Ω(gn,R)
def
= {v ∈ domain(g) | ({v} � gn

� R) 6= ∅}

(Note that gn means g composed with itself n times: g ◦ g ◦ g ◦ . . . ◦ g).

Definition 21 A recursive and monotonically changing graph g over a domain R is
bounded-terminating by R if, for all v ∈ R

∃ n > 0 : ({v} � gn
� R) = ∅

The idea here is that the restricted domain in some sense defines the allowable set
of input values for the graph gn, and if this set is empty, then the graph g cannot be
applied to itself n times:

∀ n ∈ N, v ∈ R : ({v} � gn
� R) = Ø⇒ ({v} � gn+1

� R) = Ø

During the analysis, the function f is approximated by a (monotonically changing)
affine relation. Consequently, the domain R must be restricted such that bounded-
termination of an approximation of f inevitably implies boundedness of repeated
calls to f during runtime. A sufficient condition that ensures this is the definition of
a continuous domain R below:

Definition 22 Given a recursive and monotonically changing affine relation g over
a domain R, let R̄ be the complement of R. The domain R is said to be a continuous
domain if, for all v 6∈ R,

∀ n > 0 : range({v} � gn) ⊆ R̄

74

4.4. FROM WELL-FOUNDED TYPES TO BOUNDEDNESS

A testable condition may now be established, sufficient to assert that a function f
(and its approximation g) is bounded-terminating. Bounded termination is closely as-
sociated with function termination in that if a function is bounded-terminating, then
it must be terminating. However, bounded termination subsumes the reduction-
termination test used for size-change termination (that at least one parameter re-
duces). Any reduction-terminating graph is bounded-terminating, but a bounded-
terminating graph may not be reduction-terminating. As usual, if bounded termina-
tion cannot be established, then nothing is known.

Theorem 5 Given a self recursive graph g which is monotonic under an ordering A

and over a continuous domain R, then if

R ⊆ Ω(R � g+
� R̄,>)

then g is bounded-terminating by R1.

The intuition here is that the term R � g+
� R̄ specifies all the graphs that must have

a range outside the guard of the function call f corresponding to the graph g. If the
guard is a subset of the restricted domain Ω, then all initial values for the function
must lead out of the restricted domain, leading to termination of the recursive call.

Proof: Suppose g is not bounded-terminating, then by the definition of bounded-
termination and the continuous property of R, there exists a value v1 ∈ R such that
∀ n : ({v1} � gn

� R) 6= ∅, and

∃ v2, . . . , vi, . . . : gi(v1) = vi+1 ∧ ∀ j > 1 : vj ∈ R

st. v1 A v2 A . . . A vi A . . . (∵ g is monotone)

⇒ ∀ i > 0 : vi 6∈ Ω(R � gi
� R̄,>)

⇒ vi 6∈
⋃

i>0

Ω(R � gi
� R̄,>)

⇒ vi 6∈ Ω(R � g+
� R̄,>)

This contradicts a premise of the theorem, since R ⊆ Ω(R � g+
� R̄,>) and vi ∈ R,

then it must be that vi ∈ Ω(R � g+
� R̄,>). Thus it is concluded (by contradiction)

that g is bounded-terminating by R. �

This theorem provides a mechanism for testing if a final size-change graph for guarded
function calls leads to a terminating program. The test is not computationally ex-
pensive, requiring only domain and range restriction and set inclusion to an existing
graph in the final step of termination analysis.

In summary, the graphs have been extended with a guard derived from a static analy-
sis of the program. This guard is used in the final step of the size-change termination

1The top > is just R ∪ R̄.

75

4.5. SUMMARY OF CHANGES TO AFFINE-SCT

algorithm, allowing the analysis of both monotonically decreasing and bounded be-
low, as well as monotonically increasing and bounded above, or combinations of these.
A testable sufficient condition has also been established, which can test if an arbitrary
self-recursive guarded call is bounded-terminating. This test is surprisingly general,
capturing many indicators of termination including ones that rely on even/odd tests,
and exceeding or reducing bounds.

4.5 Summary of changes to affine-SCT

In summary, affine size-change termination has been changed by improving algorithm
T , and by a new test performed on the final set of idempotent affine SCGs. The
changes to algorithm T are as follows:

1. Component size-change graphs derived from the source of a program are ex-
tended with extra parameters, to record other information about the program.

2. The component size-change graphs are annotated with a regular expression
representing the trace for the graph. For example, composing ga with gb, and
then taking the transitive closure will result in g(ab)+ .

3. The component size-change graphs are also annotated with a guard expression,
representing the guard for the initial element of the trace. For notational con-
venience, the affine graph g(ab)+ with the guard n > 10 is written as (ab)+[n>10].

4. Value graphs, corresponding to function return values, are added to the compo-
nent size-change graphs in the first step of the algorithm, but are immediately
composed with a matching call graph (corresponding to a following function
call). This results in a larger set of initial graphs for the algorithm T .

5. A regular expression LRE which approximates the CFG representation of the
call structure for the program is constructed. In addition, counters are added
to the component size-change graphs.

6. The test for allowable composition of two graphs ga and gb is the function

legitimate(ga, gb)
def
= ab ⊆ LRE ∧ Cx ≥ 0, where Cx are the counters associated

with the function calls.

The changes above do not change affine-SCT in essence, but make the analysis more
precise. The other significant change is in the test performed after the closure algo-
rithm T is complete. In affine-SCT, the test is that each remaining idempotent SCG
has a reducing parameter, termed reduction-termination, and closely following the
technique used for LJB SCT. In the extended system, each remaining idempotent
SCG g[r] (abstract graph g associated with bound r), is tested using the bounded-
termination test:

r ⊆ Ω(r � g+
� r̄,>)

76

4.6. TERMINATION ANALYSIS EXAMPLES

4.6 Termination analysis examples

The termination analysis for bounded termination mirrors the analysis for affine
SCGs. The major step of the termination analysis is the algorithm T , which builds
a closure of an initial set of affine size-change graphs, constructing compositions of
existing affine size-change graphs until no new affine graphs are created. After the
algorithm T terminates, then the second step is to examine the resultant set of graphs,
and establish if each idempotent recursive call graph is bounded-terminating.

The function generate in the algorithm T returns a new set of affine size-change
graphs constructed by composing any possible pairs of existing size-change graphs.
Intuitively, the legitimate compositions only include those which result in a legitimate
call sequence, as is the case for LJB-analysis. Here, the counters are preset to 0 before
composition, and remain non-negative at the end of composition.

The second step of the termination analysis is to identify those non-empty idempo-
tent containers, and then check to see if the affine graphs therein contain a varying
component that matches the guard for that abstract graph. The test derived from
Theorem 5 is computationally inexpensive, and captures many indicators of termina-
tion including ones that rely on even/odd tests, and increasing or reducing arguments
towards a guard. If all these idempotent graphs pass the test, then it can be con-
cluded that the associated program terminates. If one of these graphs does not pass
the test, it can be concluded that the associated program does not belong to the
size-change terminating programs. The affine-based analysis described here captures
more information from a program, and is still known to terminate.

In summary, at each iteration graph composition is done repetitively until a fixed
point is reached. If the result shows that the function terminates, then the algorithm
halts. If not, the size-change graphs are abstracted, and the graph-composition pro-
cess is repeated. In the worst case, the repetitive abstraction of the size-change graphs
will result in abstract graphs that mimic LJB size-change graphs, and the composi-
tion will degenerate into the usual LJB-graph composition. Thus, the termination
property is determined in the same way as for LJB-analysis.

4.6.1 Termination for f 91

The f91 function is repeated here, along with it’s annotations. All the steps of the
analysis for the f91 function are automatic.

f91(n) = if n > 100 then

n− 10a

else

f91c(f91b(n + 11));

77

4.6. TERMINATION ANALYSIS EXAMPLES

The CFG for the f91 function is P → a | bPcP. The following table shows the call
and value affine graphs for each component of the trace:

Trace Component affine graphs

aval {[n, r, c]→ [n′, n− 10, c]}

bcall {[n, r, c]→ [n + 11, r′′, c + 1]}

ccall {[n, r, c]→ [r, r′′, c− 1]}

The possibly infinite traces of the CFG are approximated by LRE. A counter c is
also included to control the frequency of occurrence of c’s with respect to b’s. From
a static analysis of the program, the affine graph aval is restricted in it’s domain to
n > 100 and the affine graph bcall is restricted in it’s domain to n ≤ 100.

These restrictions are used to generate the initial extended affine graphs:

Trace Initial extended affine graphs

ac {[n, r, c]→ [n− 10, r′′, c− 1] : n > 100 ∧ c > 0}

b {[n, r, c]→ [n + 11, r′′, c + 1] : n ≤ 100}

These graphs are used as the initial graphs in the algorithm T , which then goes about
generating all the possible graphs. These lead to a final classification of graphs into
containers as follows:

Trace Final affine graphs Abstract graph

(ac)+ {[n, r, c]→ [n′, r′, c′] : n′ ≤ n− 10 ∧ c > 0} (ac)+[c>0]: n′ < n ∧ c′ < c

b+ + b+(ac)+ {[n, r, c]→ [n′, r′, c′] : n′ ≥ n + 1 ∧ c ≥ 0} b+
[n≤100]: n′ > n

The composition of any pairing of these graphs generates no new affine or abstract
graphs, and so the algorithm T terminates, to be followed by the second step of the
analysis of the resultant containers.

First, identify monotonicity of those idempotent graphs. This can be easily deter-
mined from the respective abstract graphs. Next, test each one using r1 = {c | c > 0}
and r2 = {n | n ≤ 100}:

r1 ⊆ Ω(r1 � (ac)+ � r̄1,>)

r2 ⊆ Ω(r2 � b+
� r̄2,>)

The final result may now be asserted: the f91 function terminates for all traces.

Note the interesting termination argument for the ac call. It relies on the encoding
of the nesting level of the call sequence in the graph. It is not actually necessary to
check ac for termination; it is only possible to have an infinite sequence of ac calls if
it was preceded by an infinite sequence of b calls.

78

4.6. TERMINATION ANALYSIS EXAMPLES

4.6.2 Termination of Ackermann’s function

The termination of Ackermann’s function can be derived by LJB analysis, but it is
interesting to consider its evaluation within the new framework. The function is:

ack(x, y) = if x ≤ 0 then

y + 1a

else if y > 0 then

ackc(x − 1, ackb(x, y − 1))
else

ackd(x− 1, 1);

The CFG for the core of the ack function is P → a | bPcP | dP, and the (possibly)
infinite traces are approximated by P2 → a | acP2 | bP2 | dP2. The following table
shows the call and value affine graphs for each component:

Trace Component affine graphs

aval {[x, y, r, c] → [x′, y′, y + 1, c]}
bcall {[x, y, r, c] → [x, y− 1, r′, c + 1]}

ccall {[x, y, r, c] → [x− 1, r, r′′, c− 1]}

dcall {[x, y, r, c] → [x− 1, 1, r′, c + 1]}

Observe that in any trace of the function, there must be more b’s or d’s than there are
ac’s. From a static analysis of the program, the affine graph aval is restricted in it’s
domain to x ≤ 0. The affine graph bcall is restricted in it’s domain to x > 0 ∧ y > 0.
The affine graph dcall is restricted in it’s domain to x > 0 ∧ y ≤ 0. These restrictions
are used to generate the initial graphs:

Trace Initial extended affine graphs

ac {[x, y, r, c] → [x′ − 1, y + 1, r′′, c− 1] : x ≤ 0 ∧ c > 0}

b {[x, y, r, c] → [x, y − 1, r′, c + 1] : x ≥ 1 ∧ y ≥ 1}

d {[x, y, r, c] → [x − 1, 1, r′, c + 1] : x ≥ 1 ∧ y ≤ 0}

These graphs are used as the initial graphs in the algorithm T , which then goes about
generating all the possible graphs through affine-graph composition. These lead to a
final classification of affine graphs into containers as follows:

Trace Abstract graph

(ac)+ (ac)+[c>0]: c′ < c

b+ + b+d+(ac)+ b+
[x>0∧y>0]: x′ = x ∨ y′ < y

d+ + d+(ac)+ d+
[x>0∧y≤0]: x′ < x

79

4.6. TERMINATION ANALYSIS EXAMPLES

The composition of any pairing of these graphs generates no new affine or abstract
graphs, and so the algorithm T terminates, to be followed by the second step of
the analysis of the resultant containers. Test each one using r1 = {c | c > 0},
r2 = {(x, y) | x > 0 ∧ y > 0} and r3 = {(x, y) | x > 0 ∧ y ≤ 0}:

r1 ⊆ Ω(r1 � (ac)+ � r̄1,>)

r2 ⊆ Ω(r2 � b+
� r̄2,>)

r3 ⊆ Ω(r3 � d+
� r̄3,>)

The final result is: the ack function terminates for all traces.

4.6.3 Termination for function X

For contrast, here is a function X which merges the call structure of Ackermann’s
function and the f91 function:

X (x, y) = if x > 0 then

Xd(x − 1, y + 1)
else if y ≤ 100 then

Xc(x− 1,Xb(x, y + 11))
} else;

y− 10a;

The CFG for the core of the X function is P → a | bPcP | dP, and the (possibly)
infinite traces are approximated by P2 → a | acP2 | bP2 | dP2. The following table
shows the call and value affine graphs for each component of the trace:

Trace Component affine graphs

aval {[x, y, r, c] → [x′, y′, y− 10, c]}
bcall {[x, y, r, c] → [x, y + 11, r′, c + 1]}

ccall {[x, y, r, c] → [x − 1, r, r′′, c− 1]}

dcall {[x, y, r, c] → [x − 1, y + 1, r′, c + 1]}

As before, by examination of the CFG, the restrictions generate the initial extended
affine graphs. These graphs are used as the initial graphs in the algorithm T , which
then goes about generating all the possible graphs. These lead to a final classification
of affine graphs into containers as follows:

Trace Abstract graph

(ac)+ (ac)+[c>0]: c′ < c

b+ + b+(ac)+ b+
[x≤0∧y≤100]: y′ > y ∨ x′ < x

d+ + d+(ac)+ d+
[x>0]: x′ < x

80

4.7. RELATED WORK

The composition of any pairing of these graphs generates no new affine or abstract
graphs, and so the algorithm T terminates, to be followed by the second step of
the analysis of the resultant containers. Test each one using r1 = {c | c > 0},
r2 = {(x, y) | x ≤ 0 ∧ y ≤ 100}and r3 = {(x, y) | x > 0}:

r1 ⊆ Ω(r1 � (ac)+ � r̄1,>)

r2 ⊆ Ω(r2 � b+
� r̄2,>)

r3 ⊆ Ω(r3 � d+
� r̄3,>)

The final result is: the X function terminates for all traces.

4.6.4 Functions which cannot be analyzed

There are of course many functions which terminate, but which fail the test. Func-
tions in which the change of size of parameters is not relevant to the termination
will fail any attempt at size-change termination analysis. In addition, if the size-
change is not affine, or the testable condition does not represent a half-space, then
the technique is unlikely to return a positive result.

If a function’s termination is dependant on two separate values returned by two
different function calls, then the technique will not work.

4.7 Related work

Bounded size-change termination is an approach to the analysis of integer programs
for termination that is both path and context sensitive. The analysis is guaranteed
to terminate, and in addition, it retains accurate information about both the change
in values of parameters, and the call structure of the program. The following two
sections briefly outline related work in this area.

4.7.1 Avery’s SCT

In [Ave06], Avery introduces another approach to SCT, specifically directed at han-
dling non-well-founded data types. This work is thus clearly related to the work on
bounded size-change termination introduced in this chapter and Avery refers to my
bounded termination work in his paper.

In Avery’s approach, an abstract interpretation over the domain of convex polyhedra
in the style of [CC77] is combined with size-change graph techniques. Avery has
implemented his technique for an imperative C-like language with integers. The
specific language used for illustration of the method has no function calls, stack or

81

4.7. RELATED WORK

dynamic memory. The size-change graphs detail the change in a store of program
variables from one block of the program to another. Consider the following C code:

for (j = 0; j− 1 < N; j + +) ;

A flow graph is constructed with program points and constrained arcs. Two size-
change graphs are constructed as in Figure 4.6.

j

1: j=0;

2: j−i<N

4: return3: j++;

A: N−j+1>0

N

i

j

N

i

j

N

i

N

i

j

Figure 4.6: Flow graph for sample program, with size-change graphs

The store for this program fragment is just the three variables N, i and j, and the
only two program points that modify the store are the points 1 and 3. The SCG for
program point 3 has an increasing value for variable j, and (all other values being
constant) so N − j + i reduces. This SCG represents the program paths that lead
from the (constrained) arc A back to A, and since this is bounded from below (by
0), A can only be visited finitely many times. As a result of this the arc A may
be removed, and the remaining flow graph has no cycles, and hence the program
terminates. The constraint for the arc A is derived directly from the conditional,
but if the loop was nested within others, the constraints are more complex, and are
derived using abstract interpretation invariant discovery. In Avery’s SCT, the graphs
are standard LJB SCT graphs, although including as well the ↑ relation. Termination
is guaranteed in the same way as for LJB SCT.

The restriction placed on arcs in the flow graph corresponds to the approach in this
thesis of annotating the graphs with guards, although in Avery’s work the restric-
tions are derived from the abstract interpretation, and include information related to
enclosing program paths. In the bounded-termination approach in this chapter, this

82

4.7. RELATED WORK

information is kept in the affine graphs. Avery’s SCGs correspond with the abstract
SCGs in this chapter, but during composition of these SCGs, any affine relationships
between program variables are lost.

The approach for bounded SCT is different, but it is interesting to note that the
bounded-termination test captures not only computations where the guard is a convex
polyhedron, but also computations where the guard relies on even/odd properties.

4.7.2 Cook’s Terminator

Recent work by Byron Cook [CPR06, CPR07], based on Podelski’s transition invari-
ants [PR04], has made dramatic headway into the termination analysis of conven-
tional programming languages. The analysis is path and context-sensitive, and is
performed on C code (specifically Windows device drivers), using the Terminator

tool. It has been applied to large program fragments of up to 35,000 lines of code.

Terminator identifies a series of program cutpoints (specifically the beginning of
while-loops, and function entry points), and constructs an initial (finite) set of over-
approximated linear, well-founded, ranking relations. It then enumerates over all
possible paths from each cutpoint, and for each it enumerates all possible pairs of
states along that path, checking if the associated transition relation is a subset of one
of the well-founded relations. If a state pair along a path is not a subset of one of
the relations, then Terminator synthesizes new ranking relations, and restarts the
analysis.

Since the ranking relations are generated on demand (rather than all at once), the
termination of the process cannot be guaranteed, but even so, the tool has been
able to analyse large program fragments successfully. Bounded size-change termina-
tion guarantees termination of the algorithm, but as yet is only applied to a simple
language. Terminator can analyse C programs with pointers and aliases.

Terminator requires that state pairs along the path are a subset of a well founded
relation, and it is easy to construct programs that (by default) cannot be analysed,
in part because the path analysis is not exhaustive. For example, if a loop permutes
variable values, there may be no well founded relation, and the analysis will falsely
accuse a program fragment of not terminating. If the permutation is (say) just a pair
of variables swapped, then by unrolling the loop once, a well founded relation may be
found. If the permutation was more complex, then the loop may need to be unrolled
some more.

By contrast, bounded SCT analysis can handle any such program, because it has
an automatic technique for constructing all idempotent sequences between cutpoints
(function entry points). A concrete example of this is given below, in both while-
loop form (on the left) and functional form (on the right). The variables m, n follow
a sequence at the while cutpoint (alternatively the entry point of function f) like
this: 〈3,−1〉, 〈−4, 1〉, 〈5,−1〉, 〈−6, 1〉, 〈7,−1〉 until m reaches 1000. Bounded SCT

83

4.8. COMMENTARY

analysis automatically shows termination generating a single idempotent guarded
abstract graph.

if (m > 0) then g(m) = if m > 0 then

n = 1; f (m,−1);
while m < 1000 { f (m, n) = if m < 1000 then

m = n− m; f (n− m,−n);
n = −n;

}

Though Terminator could analyse this code by unrolling the loop once, this seems
an ad-hoc solution to the problem. The bounded SCT method of generating all
possible idempotent sequences back to a cutpoint may benefit Terminator’s overall
analysis, by extending its path analysis.

4.8 Commentary

The size-change principle has been extended with new techniques which allow the
analysis technique to be applied to functions in which the return values are relevant
to termination. In addition, the idea that termination can be derived for a changing
argument that is bounded has been formally expressed. The use of guards associ-
ated with the abstract graphs enable us to extend this directly into the termination
argument, without the limitations implied by the previous technique of constraints
over program arguments. A new test for bounded-termination using this approach
subsumes the previous test for (only) reducing parameters, is computationally inex-
pensive, and captures termination properties for a wide range of guarded recursive
calls, including ones where the guard depends on even/odd properties, or combina-
tions of increasing and decreasing parameters.

The combination of these approaches significantly extends the set of programs that
are size-change terminating.

84

Chapter 5
Time and stack costs for SCT programs

The preceding chapters have established the usefulness of affine size-change analysis
for determining the termination property. The same style of analysis is also capable
of compactly recording and calculating other properties of programs, including their
runtime, maximum stack depth, and (relative) path time costs. In this chapter precise
polynomial bounds on such costs are calculated on programs, by a characterization as
a problem in quantifier elimination. The technique relies on a decision procedure, and
is complete for a class of size-change terminating programs with limited-degree poly-
nomial costs. An extension to the technique allows the calculation of some classes of
exponential-cost programs. The new technique is demonstrated by recording the cal-
culation in numbers-of-function (or procedure) calls for a simple definition language,
but it can also be applied to functional and imperative languages. The technique is
automated within the reduce computer algebra system.

5.1 Introduction

Polynomial runtime properties are considered essential in many applications. The
ability to calculate such properties statically and precisely will contribute significantly
to the analysis of complex systems. In real-time systems, the time-cost of a function
or procedure may be critical for the correct operation of a system, and may need
to be calculated for validation of the correct operation of the system. For example,
a device-driver may need to respond to some device state change within a specified
amount of time.

In other applications, the maximum stack usage may also be critical in (for example)
embedded systems. In these systems, the memory available to a process may have
severe limitations, and if these limits are exceeded the behaviour of the embedded
system may be unpredictable. An analysis which identifies the maximum depth of

85

5.1. INTRODUCTION

nesting of function or procedure calls can solve this problem, as the system developer
can make just this amount of stack available.

A third motivation for calculating polynomial runtime properties is to calculate more
precise relative costs of the individual calls. For example in a flow analysis of a
program it may be interesting to know which calls are used most often, with a view
to restructuring a program for efficiency. In this scenario, the relative costs between
the individual calls is of interest. In the gcc compiler, a static branch predictor [BL93]
uses heuristics to restructure the program code, optimizing the location of code for a
branch more likely to occur. The approach described here can calculate more precise
relative costs to improve these heuristics.

Wilhelm [Wil04] uses integer linear programming techniques to estimate WCET
(Worst Case Execution Times) for programs. The estimates are not precise, as the
use of abstract interpretation results in approximations to the WCET. However, the
technique has been applied to large systems.

In this chapter the automatic and precise calculation of each of these costs is explored
through static analysis of the source of programs which are known to be affine size-
change terminating (as in Chapter 3), where the focus is on recording parameter
size-changes only. The overall approach has three steps: firstly, assume a (degree
k) polynomial bound related to the runtime or space cost, where the polynomial
variables are the parameter sizes; secondly, derive from the source a set of equations
constrained by this bound; thirdly, solve the equations to derive the precise runtime.

If the equations reduce to a vacuous result, then the original assumption of the degree
of the polynomial must have been incorrect, and the process is repeated with a degree
k + 1 assumption. This technique is surprisingly useful, and it is possible to derive
precise runtime bounds on non-trivial programs.

It is also possible to calculate the time or space costs for a subclass of exponential
costs, in particular those of the form φ1 · Kφ2 + φ3 where φ1, φ2 and φ3 are each a
limited-degree polynomial in the parameter sizes, and K ∈ < is a constant.

There has been some research into runtime analysis for functional programs. For ex-
ample, [San90] explores a technique to evaluate a program’s execution costs through
the construction of recurrences which compute the time-complexity of expressions
in functional languages. It focuses on developing a calculus for costs, and does not
provide automated calculations. In [Gro01], Grobauer explores the use of recur-
rences to evaluate a DML program’s execution costs. The focus in this thesis is more
with decidability aspects and precise time-costs than either of these approaches. In
[AAMK06], ideas of termination and runtime analysis are applied to a-priori verifi-
cation of the stability of a PID controller, implemented in a real-time system as a
succession of timed interrupt response routines. The (functional) control program
is reduced to a set of recurrences, which are solved to derive a worst case execution
time.

86

5.1. INTRODUCTION

An alternative approach is to limit the language in some way to ensure a certain
runtime complexity. For example, in [Hof99], Hofmann proposes a restricted type
system which ensures that all definable functions may be computed in polynomial
time. The system uses inductive datatypes and recursion operators. In this work,
time and stack costs of arbitrary functions or procedures are calculated through
analysis of size-change information. A compact summary of a general technique for
the calculation of time and space efficiency is found in the book [RH03] by Van Roy
and Haridi, where recurrence relations are used to model the costs of the language
elements of the programming language. There is unfortunately no general solution
for an arbitrary set of recurrence relations, and in practice components of the costs
are ignored, capturing at each stage only the most costly recurrence, and leading to
big-O analysis.

Here the technique is improved for a specific class of functions, calculating more pre-
cise bounds than those derived from big-O analysis. By exploiting a-priori knowledge
that a particular function terminates, and that the (polynomial) degree of the partic-
ular function is bounded, a formula representing the runtime (or stack depth) of the
function is derived, with constant unknowns. By using quantifier elimination on this
formula, an assignment to the unknowns is discovered, and after substitution back in
the original formula, the time (or stack depth) cost of the program is discovered.

In the approach presented here, runtime is measured in terms of the number of calls
to each procedure in a simple definition language. This is an appropriate measure,
as the language does not support iteration constructs, and recursive application of
procedures is the only way to construct iteration. Note that this approach does not
restrict the applicability of the technique. Any iteration construct can be expressed
as a recursion with some simple source transformation.

5.1.1 Preliminaries

The language used earlier is modified, to specify a linear guard expression as seen in
Table 5.1.

v ∈ Var 〈Variables〉
f , g, h ∈ PName 〈Procedure names〉
n ∈ Z 〈Integer constants〉
β ∈ Guard 〈Boolean expressions〉

β ::= α | ¬β | β1 ∨ β2 | β1 ∧ β2

α ::= T | F | e1 = e2 | e1 6= e2 | e1 < e2 | e1 > e2 | e1 ≤ e2 | e1 ≥ e2

e ∈ AExp 〈Expressions〉
e ::= n | v | n ? e | e1 + e2 | −e

s ∈ Stat 〈Statements〉
s ::= if β then s1 else s2 | s1;s2 | f (e1, . . . , en) | ~

d ∈ Decl 〈Definitions〉
d ::= f (x1, . . . , xn) = s;

Table 5.1: Extended language syntax

87

5.2. RUNTIME ANALYSIS

This language is still in some sense an abstract language, omitting any parts not
relevant to the runtime. In addition, the expressions are given as if they were all
integer values, when in fact they refer to expressions based on the size of the data
types of the language. For example, a list may be represented here by a size integer
representing the length of the list, and list concatenation represented by addition of
the size values. The boolean expressions are referred to as guards to highlight that
they limit (or guard) function calls: a function call only being made if the guard is
true. Finally, an important point is that the language only admits affine relations
between the program variables and expressions.

5.2 Runtime analysis

In the process of size-change termination analysis described in [LJBA01], arbitrary
sets of functions are processed, constructing a finite set of idempotent SCGs (Size-
Change Graphs). These SCGs characterize the function, and detail all the ways in
which a particular function entry point may be re-entered. In the following descrip-
tion, the functions are all derived from an affine SCT (Size-Change Termination)
analysis, and hence are known to terminate. A subclass of these functions in which
the conditional tests are linear, termed LA-SCT (Linear-affine SCT programs) define
the class of programs analysed here. Limiting the analysis to this class of functions
is not a severe restriction, as it is common for conditionals to be linear.

The first step is to formally define the runtime of such functions. The term ȳ refers to
the vector (y1, . . . , yn). For the sake of notational brevity, a contextual notation is used
to represent an expression containing at most one function call. For an expression
containing a function call f (ȳ), the corresponding contextual notation is C[f (ȳ)]. For
an expression containing no call, the corresponding contextual notation is C[].

Definition 23 Given an LA-SCT program p with program parameters x̄ and body ep

and input arguments n̄, the runtime of p, B(p)[n̄/x̄],1 is defined by the runtime of ep

inductively as follows:

B(s1; s2)[n̄/x̄]
def
= B(s1)[n̄/x̄] + B(s2)[n̄/x̄]

B(if g then s1 else s2)[n̄/x̄]
def
= if g[n̄/x̄] then B(s1)[n̄/x̄] else B(s2)[n̄/x̄]

B(C[])[n̄/x̄]
def
= 0

B(C[f (m̄)])[n̄/x̄]
def
= B(ef)[m̄/ȳ] + 1 (where ef is the body of f (ȳ))

Note that the last definition above is recursive, and so the above definition may not be
efficiently directly used for calculating the runtime B(p). Instead, the implementation
of analysis tools to evaluate the runtime generates a symbolic bound using other
techniques. In practical terms, the runtime definition indicates that function calls

1[n̄/x̄] means that the values for n̄ replace the parameters x̄ in the body of the function.

88

5.2. RUNTIME ANALYSIS

are being counted as the only measure of runtime. Such calls are the only difficult
part of a runtime calculation, as other program constructs add constant time delays.
To clarify this presentation, the definition of runtime is limited to just recording the
function calls.

In the case of a function f (x̄) containing only a direct call h(ȳ), where ȳ = x̄[ψ],
with substitution [ψ] = [y1 7→ δ1(x1, x2, . . .), y2 7→ δ2(x1, x2, . . .), . . .] and δ1, δ2 Aexp

expressions (represented by affine relations) over the input parameters, we have:

B(f (x̄)) = B(h(x̄[ψ])) + 1

The primary interest is in runtimes that can be expressed as a polynomial in the
parameter variables.

Definition 24 The degree-k polynomial runtime Bk(p) of an LA-SCT program p with
m parameters x = x1, . . . , xm is a multivariate degree-k polynomial expression:

Bk(p)
def
= c1xk

1 + c2xk
2 + . . . + cmxk

m + cm+1xk−1
1 x2 + . . .+ cn

=
∑

cix
i1
1 . . . x

im
m

where ci ∈ Q, i1 + . . . + im ≤ k, i1 . . . im ≥ 0.

An example of such a degree-2 polynomial runtime for a program p(x, y) is

B2(p) = x + 1
2y2 + 3

2y

An assumption of the runtime of a program p is denoted by A(p) and the actual
runtime by B(p).

Definition 25 An assumption A(p) of a polynomial runtime of an LA-SCT program
p with m parameters x = x1, . . . , xm is a multivariate polynomial expression:

A(p)
def
= c1xk

1 + c2xk
2 + . . .+ cmxk

m + cm+1xk−1
1 x2 + . . . + cn

=
∑

cix
i1
1 . . . x

im
m

where ci ∈ Q, i1 + . . . + im ≤ k, i1 . . . im ≥ 0, but the terms c1 . . . cn are unknown.

A(p) contains all possible terms of degree at most k formed by the product of param-
eters of p. The assumption A(p) and the bound B(p) are related when an assignment
[θ] to the constants c1 . . . cn has been found such that B(p) = A(p)[θ].

89

5.2. RUNTIME ANALYSIS

Initially, assume a polynomial upper bound of degree k on the running time of such a
program p(x, y, . . .). This upper bound for the particular program p will be denoted
by Ak(p). If a program p had two parameters x and y, then

A1(p) = c1x + c2y + c3

A2(p) = c1x2 + c2y2 + c3xy + c4x + c5y + c6

A3(p) = c1x3 + c2y3 + c3x2y + c4xy2 + c5x2 + c6y2 + c7xy + c8x + c9y + c10

In this presentation, runtime behaviour is captured by deriving sets of equations of
the form Ak(p(x̄)) =

∑

(Ak(fi(x̄[ψi])) + 1) for each of the sets of calls fi which are calls
isolated and identified by the same guard. The substitution [ψi] relates the values of
the input parameters to p to the values of the input parameters on the call fi. Note
that with this formulation, each substitution is linear, and thus cannot change the
degree of the equation.

5.2.1 Characterization as a quantifier-elimination problem

The sets of assumptions and runtimes presented in the previous section are universally
quantified over the parameter variables, and this leads to the idea of formulating this
problem as a QE (quantifier-elimination) one. Consider the following program p1

operating over the naturals with parameters x, y ∈ N:

p1(x, y) = if (x = 0 ∧ y ≥ 1) then

p1a(y, y− 1)
else

if (x ≥ 1) then

p1b(x − 1, y)
else

~ ; // ... exit ...

Once again, for clarity, the different calls are annotated. so it is possible to identify
the specific function calls. In the guarded notation used in the previous chapter, this
program would correspond to the following, which clarifies the guards over the calls
to the function, and provides annotations for each of the recursive calls:

p1(x, y)
def
=

(x = 0 ∧ y ≥ 1) → p1a(y, y− 1)
(x ≥ 1) → p1b(x− 1, y)
(x = 0 ∧ y = 0) → . . .

The runtime properties for each path through the program p1 can be represented
with the following three equations, the first corresponding to the call p1a, the second
to the call p1b, and the third corresponding to the function return (a runtime of 0):

A2(p1)[x 7→ y, y 7→ y− 1]− A2(p1) + 1 = 0
A2(p1)[x 7→ x− 1]− A2(p1) + 1 = 0

A2(p1) = 0

90

5.2. RUNTIME ANALYSIS

For all values of x and y, the equations reduce to:

−c1x2 + (c1 + c3)y2 − c3xy− c4x + (c4 − c3 − 2c2)y + c2 − c5 + 1 = 0
c1 − 2c1x− c3y− c4 + 1 = 0

c1x2 + c2y2 + c3xy + c4x + c5y + c6 = 0

To find suitable values for the (real-valued) coefficients c1 . . . c6, the process involves
eliminating the universally quantified elements of the equalities (i.e. x and y) .

There are several advantages of this QE formulation of the problem. Firstly, there
is an automatic technique for solving sets of polynomial equalities and inequalities
of this form, developed by Alfred Tarski in the 1930’s, but first fully described in
1951 [Tar51]. Tarski gives a decision procedure for a theory of elementary algebra
of real numbers. Quantifier elimination is part of this theory, and after eliminating
the quantifiers x and y in the above expressions, what remains are constraints over
the values of the coefficients. However, the algorithm is not particularly efficient,
although more recent methods are usable.

Secondly, precise analysis may be performed by including in the guards for each of
the paths. For example, the QE problem can be expressed as the single formula2

(universally quantified over x and y):
(

x = 0
∧ y ≥ 1

)

⇒ A2(p1)[x 7→ y, y 7→ y− 1]− A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]− A2(p1) + 1 = 0

∧

(

x = 0
∧ y = 0

)

⇒ A2(p1) = 0

In [Kap04], the author clearly shows how quantifier elimination may be used to
generate program invariants using either a theory of Presburger arithmetic, a theory
involving parametric Gröbner bases, or Tarski’s theory of real closed fields. This
last theory is the most expressive, and a claim is made that the approach is more
widely applicable, and generates stronger invariants than the Gröbner basis approach
in [SSM04].

The construction here is different, and in a different field (program running time
rather than program invariants). Expressions are constructed which characterize
the program run time as a constraint quantified over the program parameters. The
constraint constants are then solved by QE, and algebraic simplification (if needed).

5.2.2 Quantifier elimination

In 1973, Tarski’s method was improved dramatically by the technique of Cylindrical
Algebraic Decomposition (CAD) first described in [Col75]. The book [Ce98] has a

2The derivation of this particular form will be explained in the next subsection.

91

5.2. RUNTIME ANALYSIS

good introduction to the method, which leads to a quantifier free formula for a first
order theory of real closed fields. In this theory, atomic formulæ may be of the
form φ1 = φ2 or φ1 > φ2, where φ1 and φ2 are arbitrary polynomials with integer
coefficients. They may be combined with the boolean connectives ⇒, ∧, ∨ and ¬,
and variables may be quantified (∀ and ∃).

Definition 26 A Tarski formula T is any correctly formed sentence in the first order
theory of real closed fields. Note that quantifier elimination is decidable in this theory.

The approach here is to construct a particular subset of Tarski formulæ, T[A(p)],
where A(p) is an assumption of the polynomial runtime of an LA-SCT program.

Definition 27 The Tarski formulæ T[A(p)] are of the form

T[A(p)] =

∀ x, y, . . . g1 ⇒ F1

∧ g2 ⇒ F2

∧

where g1, g2, . . . identify different paths from p(x) to enclosed function calls fi(y)3

(where ȳ = x̄[ψ] with [ψ] an affine substitution). F1,F2, . . . are formulæ derived from
the program p source such that

∀ x : gj ⇒ (Fj ⇔ (Ak(p(x̄)) =
∑

i Ak(fi(x̄[ψi])) + 1))

The inference rules in Table 5.2 can be used to automatically generate these “Tarski”
formulæ from an arbitrary input program. They are presented in a form much like
typing rules, where the type for a statement s is replaced by the runtime cost A(s).
The context (or environment) Γ is a list which specifies the parameters in the enclosing
function.

Note that each application of a rule preserves the runtime of the statement. In
addition, a substitution [ψ] is applied in context, and is dependent on both the
enclosing functions parameter names, and the (fresh) names for any other parameters.

This set of rules produces a guarded expression form for the assumed runtime A(p).
This is then transformed to a normal form, by first flattening the expression (dis-
tributing the guards outwards), and then distributing A(p) in.

For example, for the program p1 the above rules generate

A2(p1) =

(x = 0 ∧ y = 0) : 0
∧ (x = 0 ∧ y ≥ 1) : A2(p1)[x 7→ y, y 7→ y− 1] + 1
∧ (x ≥ 1) : A2(p1)[x 7→ x− 1] + 1

3Note that they must cover the parameter space of interest and be distinct.

92

5.2. RUNTIME ANALYSIS

Γ ` g(x̄[ψ]) : A(g)[ψ] + 1 B-call

` ˜ : 0 B-nocall

Γ, 〈x̄〉f ` s : A(s)

Γ ` f (x̄)
def
= s : A(s)

B-def

Γ ` s1 : A(s1) Γ ` s2 : A(s2)

Γ ` if c then s1 else s2 :

{

c : A(s1)
∧ ¬c : A(s2)

B-if

Γ ` s1 : A(s1) Γ ` s2 : A(s2)
Γ ` s1; s2 : A(s1) + A(s2)

B-seq

Γ ` p : A(p) Γ ` f (x̄)
def
= s : A(s)

Γ ` p ; f (x̄)
def
= s : (A(s) ∪ A(p))

B-defs

Table 5.2: Inference rules for Tarski formulæ

and the equation T[A2(p1)] derived is thus (for all x and y):

(

x = 0
∧ y = 0

)

⇒ A2(p1) = 0

∧

(

x = 0
∧ y ≥ 1

)

⇒ A2(p1)[x 7→ y, y 7→ y− 1]− A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]− A2(p1) + 1 = 0

and the task now is to reduce this to an expression without the quantifiers x and
y, and then find any example of c1 . . . c6 satisfying the resultant expression. This
example is termed the assignment [θ] = [c1 7→ . . . , c2 7→ . . . , . . .].

The following theorem asserts that the assignment [θ] derived from the formula
T[Ak(p)], when applied to the assumption Ak(p), correctly represents the runtime
Bk(p) of any LA-SCT program p with a degree-k polynomial runtime.

Theorem 6 If Bk(p) is the degree-k polynomial runtime of affine SCT program p
with parameters x̄, and Ak(p) is a degree-k polynomial assumption of the runtime of
LA-SCT program p, and [θ] is the assignment derived from T[Ak(p)], then

∀ n̄ : Ak(p)[θ][n̄/x̄] ≡ Bk(p)[n̄/x̄]

Proof: By structural induction over the form of Bk(p)[n̄/x̄]. �

93

5.2. RUNTIME ANALYSIS

5.2.3 Tool support

There exist a range of tools capable of solving this sort of reduction. The tool QEPCAD
[ea] is an implementation of quantifier elimination by partial CAD developed by Hoon
Hong and his team over many years.

Another system is the redlog package [DS97] which can be added to the computer
algebra system reduce, and may be used to eliminate quantifiers giving completely
automatic results.

The following sequence shows redlog commands that specify the runtime for program
p1:

1: A2p1 := c1*x^2+c2*y^2+c3*x*y+c4*x+c5*y+c6;

2: path1 := sub(x=y,y=y-1,A2p1)-A2p1+1;

3: path2 := sub(x=x-1,A2p1)-A2p1+1;

Line 1 of the above sequence defines the A2p1 assumption of the runtime bounds
B2 of the program. In lines 2 and 3, A2(p1)[x 7→ y, y 7→ y − 1] − A2(p1) + 1 and
A2(p1)[x 7→ x − 1] − A2(p1) + 1 (the sub command in reduce performs a series of
substitutions in the expression A2p1).

The following sequence shows the redlog commands to solve the problem:

4: TA2p1 := rlqea ex({c1,c2,c3,c4,c5,c6},

rlqe all({x,y},

((x=0 and y=0) impl A2p1=0) and

((x=0 and y>=1) impl path1=0) and

((x>=1) impl path2=0)));

5: B2p1 := sub(part(part(TA2p1,1),2),A2p1);

In line 4 of the above sequence, the inner rlqe function performs quantifier elimination
on the equation T[A2(p1)], returning the following relations between the constants
c1 . . . c6:

c4 = 1 ∧ 2c2 − c4 = 0 ∧ c2 − c5 = −1 ∧ c1, c3, c6 = 0

In this example, c1 . . . c6 are uniquely determined, and can be found easily with a few
simple reductions, but in the general case, the constraints over the constants may
lead to many solutions. The redlog package can also be used to find an instance of a
solution to an existentially quantified expression, and hence the outer rlqea function
above, which returns an instance of a solution to the above relations existentially
quantified over c1 . . . c6: ∃ c1 . . . c6 : T[A2(p1)].

94

5.3. CALCULATING OTHER PROGRAM COSTS

The solution returned by redlog is

TA2p1 := {{true,{c1=0, c2=1/2, c3=0, c4=1, c5=3/2, c6=0}}}

This corresponds to the assignment

[θ] = [c1 7→ 0, c2 7→
1
2 , c3 7→ 0, c4 7→ 1, c5 7→

3
2 , c6 7→ 0]

Finally, in line 5, the solution instance is substituted back in the original assumption
A2(p1) = c1x2 + c2y2 + c3xy + c4x + c5y + c6, giving

B2(p1) = A2(p1)[c1 7→ 0, c2 7→
1

2
, c3 7→ 0, c4 7→ 1, c5 7→

3

2
, c6 7→ 0]

= x +
1

2
y2 +

3

2
y

The example given above appears to lead more naturally to a constraint logic pro-
gramming [JL87] based solution to these sort of problems, but most such systems
can normally only handle linear equations, not the polynomial ones used here.

There are constraint solving systems, for example RISC-CLP(Real) [Hon93], which
use (internally) CAD quantifier elimination to solve polynomial constraints. How-
ever, here the discussion is restricted to just the underlying techniques, rather than
cluttering up the discussion with other, perhaps confusing, properties of constraint
solving systems.

5.3 Calculating other program costs

So far the presentation has been limited to examples which calculate polynomial run-
times for programs. However, the technique is also useful for deriving other invariant
properties of programs, such as the maximum stack depth and the relative runtime
costs.

5.3.1 Stack depth calculation

Consider program p2:

p2(x, y) = if (x = 0 ∧ y ≥ 1) then

p2a(y, y − 1);
p2b(0, y − 1)

else

if (x ≥ 1) then

p2c(x − 1, y)
else

~ ; // ... exit ...

95

5.3. CALCULATING OTHER PROGRAM COSTS

Note that this program has a sequential composition of two function calls, and an
exponential runtime cost. An interesting question for this program is to calculate its
maximum stack depth. The maximum stack depth is defined to be the maximum
nesting level of a function. The depth D of our class of programs is calculated in
precisely the same way as the runtime B, with only a minor change.

In the event of sequential composition of the two functions, the system does not
record the sum of the runtimes, but the maximum value:

Γ ` s1 : A(s1) Γ ` s2 : A(s2)

Γ ` s1; s2 : max(A(s1),A(s2))
B-seq

This corresponds with a Tarski formula for a polynomial solution like this:

∀ x, y : (x = 0 ∧ y ≥ 1 ∧ D[ψ2a] ≥ D[ψ2b]) ⇒ (D[ψ2a]− D + 1 = 0)
∧ (x = 0 ∧ y ≥ 1 ∧ D[ψ2a] < D[ψ2b]) ⇒ (D[ψ2b]− D + 1 = 0)
∧ (x ≥ 1) ⇒ (D[ψ2c]− D + 1 = 0)

Given the formula, redlog immediately finds the stack depth cost4:

D(p2) = x + 1
2y2 + 3

2y

5.3.2 Relative runtime costs

The third motivation for this approach was to derive relative costs for the different
possible paths through a program. Consider program p1 (again):

p1(x, y) = if (x = 0 ∧ y ≥ 1) then

p1a(y, y− 1)
else

if (x ≥ 1) then

p1b(x − 1, y)
else

~ ; // ... exit ...

Consider the question “In program p1, which function is called more often, and what
are the relative costs for each call?”. This could be used in compiler optimization,
improving the efficiency of the code by re-ordering and placing more commonly used
functions nearby.

4Coincidentally, this value is the same as the runtime for program p1.

96

5.4. EXPONENTIAL PROGRAM COSTS

The same approach may be used, calculating B for each path. The equation T[A(p1a)]
for the program choosing the first function call may be written as (for all x and y):

(

x = 0
∧ y = 0

)

⇒ A2(p1) = 0

∧

(

x = 0
∧ y ≥ 1

)

⇒ A2(p1)[x 7→ y, y 7→ y− 1]− A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]− A2(p1) = 0

⇒ B2(p1a) = y

The equation T[A(p1b)] for the program choosing the second function call may be
written as (for all x and y):

(

x = 0
∧ y = 0

)

⇒ A2(p1) = 0

∧

(

x = 0
∧ y ≥ 1

)

⇒ A2(p1)[x 7→ y, y 7→ y− 1]− A2(p1) = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 7→ x− 1]− A2(p1) + 1 = 0

⇒ B2(p1b) = x +
1

2
(y2 + y)

Note that the sum of B2(p1a) and B2(p1b) is exactly B2(p1) derived for the whole
program, as expected.

5.4 Exponential program costs

The presentation so far has concentrated on LA-SCT programs with costs that may be
expressed as polynomials over the program variables. However many such programs
have costs that are exponential rather than polynomial. For example, consider the
following program:

p3(x, y, n) = if (x 6= 0 ∧ n ≥ 1) then

p3a(x− 1, y, n)
else

if (x = 0 ∧ n > 1) then

p3b(2y + n, 2y, n − 1)
else

~ ; // ... exit ...

97

5.4. EXPONENTIAL PROGRAM COSTS

This program has a runtime of B(p3) = y2n + 1
2n2 + 3

2n + x− 2y− 2, not immediately
apparent by observation. The technique such as just described relies on repeat-
edly trying ever higher degree polynomial time costs, and would never discover this
runtime. The runtime of programs of this form may be discovered however. An
automated tool can be fed with an input having a generic form like this:

B(p3) = φ1 · Kφ2 + φ3

and the solution (if it exists) will be found. This exponential form is used in a similar
manner to the previous polynomial style analysis. An exponential runtime A for a
program p is assumed, initially for a base of K, and using polynomials of (say) degree
2. The assumed runtime is thus A(p) = φ1 · Kφ2 + φ3, where φ1, φ2 and φ3 are three
polynomials of degree 2.

The three polynomials bear a peculiar relationship to each other due to the linearity
of the parameter relationships. For example, for any single recursive call path, since
the changes in the parameters are linear, then the runtime for this call path cannot be
exponential. As a result of this, for any single recursive call path, φ3[ψ]−φ3 +1 = 0,
and in the case of a base of K, the following (non-exponential) relation holds:

(φ1[ψ] = φ1 ∧ φ2[ψ] = φ2)
∨ (φ1[ψ] = Kφ1 ∧ φ2[ψ] = φ2 − 1)
∨ (Kφ1[ψ] = φ1 ∧ φ2[ψ] = φ2 + 1)

The relation is true if and only if the exponential component of the runtime is φ1 ·Kφ2.
This relation can be seen to be in the same polynomial form used before, and it can
be plugged into the same software package, and be reduced in the same way, yielding
polynomials φ1, φ2 and φ3 which can define the exponential runtime for the program.

5.4.1 Explanation of the form of the relation

The explanation of the form of this relation has three steps. Firstly, for any single
guarded recursive path, the runtime must be linear. Secondly, since the runtime for
the whole program is a sum of an exponential and a polynomial, then (for this guarded
recursive path) the exponential part of the runtime must be constant. Finally, the
relation is true if and only if the exponential component of the runtime is φ1 · Kφ2 .

Step 1: Linearity for a single guarded recursive path

At this stage it is shown that any terminating single recursive call, with linear integer
parameter changes, and with a linear guard over the call, must run in linear (or sub-
linear) time. The complexity of simple (tail-recursive) functions like these have been
studied in many places [CA69, Cob64, Mac71, MM69, MR67, Rit63, Yam62], sum-
marised in Cook’s Turing award lecture [Coo83]. However none of these approaches
precisely answers this linearity question.

98

5.4. EXPONENTIAL PROGRAM COSTS

Consider a simplified situation, where a program is of the form

p(x̄)
def
=

{

xi > 0 → p(x̄[ψ])
xi ≤ 0 → ∼

Once again [ψ] is assumed to be a linear substitution, the guard defines a half-space
for the xi parameter, and this program must be known to terminate. Consider the
parameter xi: the possibilities are that it is constant (in which case the program must
terminate immediately), or that it changes at some rate, and eventually reaches the
terminating condition.

Ignoring the constant case, a successive series of t linear substitutions would at least
result in a linear change in xi (for example, by adding a constant value c to xi, we
would have the tth value being xi + tc). However, it can also result in more complex
changes in xi (for example, if xi is multiplied by some constant value k, then the tth

value would be ktxi). The relationship between t and xi can be summarized using a

notion of domination, where xi dominates t if |xi|
t → +∞ as t→ +∞, indicating that

(in the limit) the xi parameter changes at a faster speed than (in a sense) time. As
an example of the case where xi dominates t, consider the following program:

p(x, y)
def
=

{

y > 0 → p(x − 1, x + y)
y ≤ 0 → ∼

For any invocation of this program p(a, b), it is easy to derive a relation between t
(the number of function calls, and hence time), and y, the parameter of interest. In
this case, it is t2 − (2a + 1)t + 2y − 2b = 05. Note how the y term dominates the
t: y has to change faster than t. Figure 5.1(a) shows a plot of the trajectory of y
varying with time t for an invocation of p(5, 5). Since the boundary of the halfspace
(guard) condition is fixed, and since this program terminates, it is easy to see that
this program terminates in sub-linear time.

20

10

15

5

5 10

t

y

(a) Sub linear example

5

1

2

3

4

t
1 2 3 54 6 7 8 9

y

(b) Linear example

Figure 5.1: Trajectories of guard variables with time

5Imagine an extra program parameter t, with an initial value of zero, and which is increased by
1 on each function call. An initial call p(a, b, 0) will have a second call p(a − 1, a + b, 1), a third call

p(a − 2, 2a + b − 1, 2). The tth call is p(a − t, ta + b − t2−t
2
, t), giving the relationship between y and t.

99

5.4. EXPONENTIAL PROGRAM COSTS

As an example of the case where xi and t do not dominate each other, consider the
following program:

p(x, y)
def
=

{

y > 0 → p(y, x − 1)
y ≤ 0 → ∼

For any invocation of this program p(a, b), again it is easy to derive a relation between
t and y, the parameter of interest. In this case it is

t2 + 4ty− (2a + 2b− 1)t + 4y2 − (4a + 4b− 2)y + 6a + 6b = 0

Note how the y and t terms are the same order. Figure 5.1(b) shows a plot of
the trajectory of y for this program varying with time t for an invocation of p(4, 4)
(the roots are y = 7−t

2 and y = 8−t
2). Since the boundary of the halfspace (guard)

condition is fixed, and since this program terminates, it is easy to see that this
program terminates in linear time.

It is now appropriate to consider more complex guard tests, and it is clear that for
any program Pguard (annotating the program with the guard):

B(Px>0∧y>0) = min(B(Px>0),B(Py>0))

B(Px>0∨y>0) < B(Px>0) + B(Py>0)

and so any terminating single recursive call, with linear integer parameter changes,
and with a linear guard over the call, must run in linear (or sub-linear) time.

If the conditions are relaxed, it will no longer be the case that the functions run in
linear time. For example if rationals were allowed, both in the variables, and in the
coefficients of the linear expressions, it becomes possible to construct a function which
changes xi in a sub-linear (perhaps logarithmic) fashion, and as a result, the guard
variable xi will be dominated by t. As an example of this case where t dominates a
program variable (not possible with integer variables and coefficients), consider the
following program over rational variables x and y:

p(x, y)
def
=

{

y > 0 → p(3
4x, y − x)

y ≤ 0 → ∼

For any invocation of this program p(a, b), the relation between t and y, the parameter
of interest is:

y− b + a(1 +
∑

t

(

3
4

)t
) = 0

This has time dominating the guard variable y: t has to change faster than y, and as
a result the program runs in more-than linear time.

In summary, when constructing the equations to represent a particular recursive call,
it can be assumed that while this call is being made successively, the runtime change
will be no more than linear.

100

5.4. EXPONENTIAL PROGRAM COSTS

Step 2: Exponential part is constant

In the analysis of exponential runtimes, a runtime (for the whole program), of the
form φ1 ·Kφ2 +φ3 is assumed. This runtime applies to each individual recursive call,
as well as to the program as a whole. For a program like

p(x̄)
def
=

b1 → p1(x̄[ψ1])
b2 → p2(x̄[ψ2])

bn → ∼

then A(p) is assumed to be φ1 · Kφ2 + φ3, and this runtime applies not only to the
whole program, but also to each individual recursive call p1, p2 and so on. However,
for any successive sequences of calls to p1, the change in B(p) must be linear, and will
be subsumed by the term φ3 in A(p). As a result, during a sequence of calls to p1,
the term φ1 ·Kφ2 must be constant, and this may be exploited in forming the formula
T[A(p)].

Step 3: Form of the relation

Unfortunately, quantifier elimination from exponentials directly is not efficient. How-
ever, the particular form here can be re-expressed in polynomial form. Consider a
single recursive call, and the effect on A(p). Before the call, A(p) = φ1 ·Kφ2 +φ3, and
if the call made a linear substitution, then A(p) = φ1[ψ] · Kφ2[ψ] + φ3[ψ] + 1 (i.e. 1
call has been made).

But during this call, the exponential part must have remained constant, so that
φ1Kφ2 = φ1[ψ] · Kφ2[ψ] (and of course φ3 = φ3[ψ] + 1). Consider the exponentials:
this can happen if φ1[ψ] = φ1 ∧ φ2[ψ] = φ2. But it can also happen if φ1[ψ] = Kφ1 ∧
φ2[ψ] = φ2 − 1, and also in the case that Kφ1[ψ] = φ1 ∧ φ2[ψ] = φ2 + 1. In a sense
these equations define the exponential φ1Kφ2. This explains the use of the following
expression in the formula T[A(p)], avoiding direct use of exponential terms, but still
keeping the essence of the exponential term. For each single recursive call path:

φ3[ψ]− φ3 + 1 = 0
∧

(φ1[ψ] = φ1 ∧ φ2[ψ] = φ2)
∨ (φ1[ψ] = Kφ1 ∧ φ2[ψ] = φ2 − 1)
∨ (Kφ1[ψ] = φ1 ∧ φ2[ψ] = φ2 + 1)

5.4.2 Using the relation for exponential runtimes

This relationship between the polynomials may be exploited by constructing the equa-
tions in a similar form to the presentation for polynomial runtime analysis, solving

101

5.4. EXPONENTIAL PROGRAM COSTS

them in a similar manner, and finally deriving a sample solution. The redlog package
is used to define

φ1 = c1x2 + c2y2 + c3n2 + c4xy + c5xn + c6yn + c7x + c8y + c9n + c10

φ2 = c11x2 + c12y2 + c13n2 + c14xy + c15xn + c16yn + c17x + c18y + c19n

φ3 = c21x2 + c22y2 + c23n2 + c24xy + c25xn + c26yn + c27x + c28y + c29n + c30

A = φ1 · K
φ2 + φ3

The substitutions [ψ3a] = [x 7→ x− 1] and [ψ3b] = [x 7→ 2y + n, y 7→ 2y, n 7→ n− 1] for
the two paths are applied to φ1, φ2 and φ3, yielding the primed polynomials, and the
equation T[A(p3)] for program p3 may be written as (for all x, y and n):

„

x, y > 0
∧ n ≥ 0

«

⇒

0

B

B

B

B

@

φ3[ψ3a] − φ3 + 1 = 0
∧

0

@

(φ1[ψ3a] = φ1 ∧ φ2[ψ3a] = φ2)
∨ (φ1[ψ3a] = Kφ1 ∧ φ2[ψ3a] = φ2 − 1)
∨ (Kφ1[ψ3a] = φ1 ∧ φ2[ψ3a] = φ2 + 1)

1

A

1

C

C

C

C

A

∧

0

@

x = 0
∧ y > 0
∧ n ≥ 0

1

A ⇒

0

B

B

B

B

@

(φ3[ψ3b] − φ3 + 1 = 0)
∧

0

@

(φ1[ψ3b] = φ1 ∧ φ2[ψ3b] = φ2)
∨ (φ1[ψ3b] = Kφ1 ∧ φ2[ψ3b] = φ2 − 1)
∨ (Kφ1[ψ3b] = φ1 ∧ φ2[ψ3b] = φ2 + 1)

1

A

1

C

C

C

C

A

T[A(p3)] is easily manipulated by redlog, removing the quantifiers x, y and n, and
suggesting an assignment that gives a family of solutions for the bounds:

A(p3) = αy2n + 1
2n2 + 3

2n + x− 2y + c30

where α indicates that any value here might be a solution, and c30 is unknown. To
constrain the solution further, boundary cases for the system are added, for example
A(p3(0, 1, 1)) = 0, A(p3(0, 2, 1)) = 0, giving:

B(p3) = y2n + 1
2n2 + 3

2n + x− 2y− 2

5.4.3 Exponential examples

The program p2 introduced in subsection 5.3.1, is repeated here:

p2(x, y) = if (x = 0 ∧ y ≥ 1) then

p2a(y, y − 1);
p2b(0, y − 1)

else

if (x ≥ 1) then

p2c(x − 1, y)
else

~ ; // ... exit ...

102

5.4. EXPONENTIAL PROGRAM COSTS

The QE formulation is automatic and simple, deriving the equation for the runtime
cost T[A(p2)] for all x and y:

(x = 0 ∧ y ≥ 1) ⇒ (φ2[ψ2a] + φ3[ψ2b] − φ3 + 2 = 0)

∧ (x ≥ 10 ∧ y ≥ 0) ⇒

0

B

B

B

B

@

(φ3[ψ2c] − φ3 + 1 = 0)
∧

0

@

(φ1[ψ2c] = φ1 ∧ φ2[ψ2c] = φ2)
∨ (φ1[ψ2c] = Kφ1 ∧ φ2[ψ2c] = φ2 − 1)
∨ (Kφ1[ψ2c] = φ1 ∧ φ2[ψ2c] = φ2 + 1)

1

A

1

C

C

C

C

A

Given two independent base cases, redlog immediately finds the runtime cost:

B(p2) = 4 ∗ 2y + x− y− 4

It is relatively easy to automatically derive exponential runtimes for programs like
these, with polynomials of small degree, and the following examples illustrate a range
of programs operating over naturals, with their automatically generated runtime
costs.

Program 4:

p4(x, y) = if (y ≤ 0) then

ga(x, 0)
else

p4a(x + y, y − 1);
g(x, y) = if (x ≤ 0) then

~ // ... exit ...

else

gb(x− 1, y + 1);

The solution returned by redlog is that B2(p4) = x + 1
2y2 + 3

2y + 1.

Program 5:

p5(x, y) = fa(x, y, y + 1);
f (x, y, z) = if (y = z ∧ x > y− z) then

fb(x− 1, y, z)
else if (x = y− z ∧ y 6= 0) then

fc(−x, y − 1, z)
else if (x < y ∧ y 6= 0) then

fd(x + 1, y, z)
else if (y < z ∧ x = y) then

fe(x, y, y)
else

~ ; // ... exit ...

The solution returned by redlog is that B2(p5) = y2 + 3y− x + 1.

103

5.5. COMMENTARY

Program 6:

p6(x, y, z) = if (x 6= 0 ∧ z ≥ 1) then

p6a(x− 1, y + 1, z)
else if (x = 0 ∧ z ≥ 1) then

p6b(2y, 2y, z − 1)
else

~ // ... exit ...

The solution returned by redlog is that B2(p6) = 1
6 ((x + y)4z + 6z + 2x − 4y − 6).

5.5 Commentary

A technique for calculating precise bounds on the runtime of a class of programs
which are known to terminate has been explored. The technique begins with an
assumption of the form and degree of the runtime, and is complete in the sense that
if the program p is LA-SCT, and if the runtime is of the form Bk(p), then a solution
will be found.

The technique has application in the areas of precise runtime analysis, stack depth
analysis for embedded systems, and in calculations of the relative execution path time
(for compiler optimization). A prototype tool has been implemented, which accepts
a limited ML-like programming language, and is described in [AKL07].

The technique is safe and complete for the particular class of programs we have
considered. A particular form of exponential time-costs can be also relatively easily
solved. In the case of the limited class of exponential time-costs, these solutions
may still be expressed in terms of some unknowns, but these unknowns are resolved
immediately by considering independent boundary cases for the function.

104

Part III

Conclusion

105

Chapter 6
Concluding remarks

In this concluding section the current direction of this research is outlined, with a
summary of the contribution of the thesis.

6.1 Research directions

The research directions taken so far have been fairly fruitful, and the results are
useful. Practical techniques for deciding termination properties of a large class of
arbitrary programs have been developed, and also techniques for calculating (at least
some of) their precise time and space complexities. Some preliminary steps towards
tool support have been taken.

However the research has opened up many new questions, and there seem to be many
paths to take:

1. Improving the algorithms

(a) Finding better ways to reduce the complexity explosion problem

(b) Integrating the techniques with other program analysis methods

2. Other application areas: optimizing compilers and general analysis

3. Improving, extending and changing the formalisms

106

6.1. RESEARCH DIRECTIONS

6.1.1 Improving the algorithms

Each of the algorithms given here has room for improvement. In particular, the SCT
algorithm has a complexity exponential in the number of variables, and the affine-
SCT algorithm is no different. Improvements can be made by reducing the number
of variables, and as well, the techniques for time and space cost calculation may be
improved.

Reducing complexity. The affine SCT algorithm given in Section 3 seems to be
a good compromise between preciseness and complexity. In the examples given, the
translation and abstraction functions result in a complexity similar to that from
LJB-analysis. By altering the translation and abstraction functions to give more
precise analysis we can do a better analysis, at the expense of efficiency. However,
the explosion of affine-graphs may make for intractable solutions.

Approaches to reducing the complexity are needed for the affine SCT algorithm,
although even with six or more variables for each function and multiple entry points
to multiple functions, the affine-based analysis is still very fast.

However, the cost analysis of (say) functions with 100 parameters, 100 variables and
many entry points is not solvable using current systems. To manage such systems
a suitable approach is to identify only those parameters and variables and entry
points that are relevant to the cost analysis of the functions. The result of the graph
composition and closure algorithm clearly identifies those parameters that are still
relevant at each stage. A variation of the graph composition and closure algorithm
could only carry through those parameters that are still relevant at each stage, giving
a possible mechanism for reducing the complexity. In addition, the graph composition
and closure algorithm is in some sense compositional: once a graph has been shown
to be terminating, it can be used for the analysis of other functions which call it,
without having to re-compute the closure.

The general problems of finding solutions for sets of polynomial equalities and in-
equalities have been studied for many years, and computational algebraic geometry
is considered one of the core subjects of the pure mathematics curriculum.

In the work on time and space costs introduced in Chapter 5, the edge of the field has
been explored, constructing an obvious (affine-space) geometrical system with known
solutions. It is possible that a more cultured look at the geometries generated by this
(or a similar) construction may lead to the use of other (more effective) techniques.

Integration with other analysis techniques. The geometric/arithmetic tech-
niques exploited in this work are used largely on their own. The general method
is a translation of some analysis method to make use of computationally efficient
geometric/arithmetic techniques.

However, by integrating these techniques with other program analysis tools it may
be possible to improve the analysis. Towards this end, the development of a “safe”

107

6.1. RESEARCH DIRECTIONS

programming interface to the theorem prover HOL is in progress [Ng04]. The import
of this project is that it fixed some inadequacies1 of the PROSPER toolkit [DCN+03],
allowing a relatively simple programming interface to be used between a theorem
prover and a program analysis tool.

This API may be used to integrate the computationally efficient geometric/arithmetic
program analysis techniques with other ones found in a HOL system for program
analysis. This may work both ways, improving the termination, time or space cost
analysis, and/or improving the HOL system program analysis.

6.1.2 Other application areas

At this stage, having established some results in a particular area, the general ap-
proach may have application in other areas not yet considered in detail. Consider
the two possible application areas: optimizing compilers and general invariants.

Most modern compilers perform a flow analysis of the programs they are compiling,
with a view to restructuring a program for efficiency. In the gcc compiler, a static
branch predictor [BL93] uses heuristics to restructure the program code, optimizing
the location of code for a branch more likely to occur.

It should be possible to integrate the precise time-cost calculation from Section 5
with a traditional static branch predictor in a compiler such as gcc, and verify the
improvement to the resultant code.

6.1.3 Extending and changing the formalisms

The time (or space) cost calculated can be considered to be a program variable of a
kind. It is possible to imagine a variable τ , which is the current value of time, and
which increments by some amount for every instruction, and then use techniques to
discover the relationship between τ and the other program variables. In a preliminary
investigation into this, using the polynomial QE approach explored in Chapter 5, it
was possible to calculate some other non-linear relationships (such as log or min).

For example, the system could discover an invariant polynomial relationship between
the program variables, and if it discovered (say) that τ2 − x = 0, then we interpret
this to mean that the runtime is τ = log2x. At this stage there appear to be some
problems with the compositionality of the approach. In addition, τ is different from
program variables in the sense that it only grows, and in the analysis this property is
exploited. For instance, if the solution to a relationship between x and other program
variables has two solutions a and b, then if x is a program variable it can have either

1The original API was unstable, and did not allow for persistent client programs. The new API
is more stable, and allows clients to re-connect at any time.

108

6.2. SUMMARY OF CONTRIBUTION

the value a or b. However, if x is the program runtime, then the runtime is the
minimum value of a and b, as once the program has terminated, it has terminated!

It is of interest to further study the relationship between time and traditional program
invariants, with a view to clarify the advantages gained by separating time from
traditional program invariants.

The termination results achieved so far apply directly to programs in a simple first-
order functional language. The time and space cost results apply to a subset of
these programs, where the guards for function calls are linear, and where the costs
are restricted to either being a multi-variate polynomial in the program variables, or
a restricted class of exponential costs. Weakening these restrictions will widen the
applicability of the methods.

The direct calculation of exponential costs is also interesting. The time and space
cost analysis can calculate exponential costs having a generic form like this:

B(p) = φ1 · Kφ2 + φ3

where φ1, φ2 and φ3 are three polynomials. This allows for a runtime with quite
a complex exponential form, but fails to capture many exponential cost programs.
For example, the venerable Fibonacci function has exponential costs of the following
form:

B(fib) = φ1 · K
φ2

1 + φ3 · K
φ4

2 + φ5

A quick check with reduce shows that given K1 and K2, it is possible to automatically
derive φ1 . . . φ5. However it is not clear how to solve the general case of such programs.
Some steps towards using QE in real exponential fields for this application have been
taken.

Other classes of exponential programs may be amenable to a similar style of automatic
calculation.

6.2 Summary of contribution

The thesis has three contributions to termination and size-change analysis, each con-
tribution briefly summarized below.

The first contribution is an approach to improve the analysis of program termina-
tion properties based on the size-change termination method. Size-change graphs
are encoded using Presburger formulæ representing affine relations, giving more re-
fined size-change graphs. The algorithm for calculating the closure of the affine
size-change graphs has been shown to terminate. Consequently, this affine-related
analysis improves the effectiveness of the LJB termination analysis by capturing con-
stant changes in parameter sizes, and affine relationships of the sizes of the source
parameters.

109

6.2. SUMMARY OF CONTRIBUTION

The way in which closures are found is different from the normal approach of finding
closures and fixed points. In this approach, the ultimate closure is expressed in
terms of several closures called the idempotent graphs. This is similar to the idea
of polyvariant program analysis [VB99, Con93], but differs in that there are also
some graphs around during the analysis which cannot be made idempotent, yet are
important for closure building. There are two ways to obtain polyvariant information
for termination analysis: one way is to make use of the constraint enabling the call.
Such constraints are commonly obtained from the conditional tests of the code leading
to the call. The use of Presburger formulæ enables such information to be easily
included in the analysis (as in Chapter 3), resulting in a context-sensitive analysis
[NNH99, Shi88].

The second contribution is that the size-change principle has been extended with new
techniques which allow the analysis technique to be applied to functions in which the
return values are relevant to termination. In addition, the idea that termination can
be derived for a changing argument that is bounded has been formally expressed. The
use of guards associated with the abstract graphs enable us to extend this directly into
the termination argument, without the limitations implied by the previous technique
of constraints over program arguments. A new test for bounded-termination using
this approach subsumes the previous test for (only) reducing parameters, is computa-
tionally inexpensive, and captures termination properties for a wide range of guarded
recursive calls, including ones where the guard depends on even/odd properties, or
combinations of increasing and decreasing parameters.

The third contribution is a technique for calculating precise bounds on the runtime
of a class of programs, which are known to terminate. The technique begins with
an assumption of the form and degree of the runtime, and is complete in the sense
that if the program p is LA-SCT, and if the runtime is of the form Bk(p) (a limited-
degree polynomial in the program parameters), then a solution will be found. The
technique has application in the areas of precise runtime analysis, stack depth analysis
for embedded systems, and in calculations of the relative execution path time (for
compiler optimization). A restricted class of exponential runtimes may also be derived
using the same approach.

The techniques provide useful and practical approaches to the problems of termina-
tion and runtime analysis.

110

Bibliography

[AAMK06] S. Andrei, H. Anderson, G. Manolache, and S.C. Khoo. Runtime
and Termination Analysis by Program Inversion. Technical Report
TRA8/06, National University of Singapore, August 2006.

[Aik99] A. Aiken. Introduction to Set Constraint-Based Program Analysis. Sci-
ence of Computer Programming, 35(1999):79–111, 1999.

[AK03a] H. Anderson and S.C. Khoo. Affine-based Size-change Termination. In
Atsushi Ohori, editor, APLAS 03: Asian Symposium on Programming
Languages and Systems, pages 122–140, Beijing, 2003. Springer Verlag.

[AK03b] H. Anderson and S.C. Khoo. Affine-Based Size-Change Termination.
Technical Report TRA9/03, National University of Singapore, Septem-
ber 2003.

[AKAL05] H. Anderson, S.C. Khoo, S. Andrei, and B. Luca. Calculating Polyno-
mial Runtime Properties. In APLAS 05: Asian Symposium on Program-
ming Languages and Systems, pages 230–246, 2005.

[AKL07] H. Anderson, S.C. Khoo, and Y. Liu. A Tool for Calculating Exponen-
tial Runtimes. In Proceedings of the 9th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC-
2007), 2007.

[AMR04] C. Allauzen, M. Mohri, and B. Roark. A General Weighted Grammar
Library. In CIAA, pages 23–34, 2004.

[Apt97] K.R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[Aug98] L. Augustsson. Cayenne - a language with dependent types. In Inter-
national Conference on Functional Programming, pages 239–250, 1998.

[Ave06] J. Avery. Size-change termination and bound analysis. In Masami
Hagiya and Philip Wadler, editors, FLOPS, volume 3945 of Lecture
Notes in Computer Science, pages 192–207. Springer, 2006.

111

BIBLIOGRAPHY

[BA02] A.M. Ben-Amram. General Size-Change Termination and Lexicographic
Descent. In Torben Mogensen, David Schmidt, and I. Hal Sudborough,
editors, The Essence of Computation: Complexity, Analysis, Transfor-
mation. Essays Dedicated to Neil D. Jones, volume 2566 of Lecture Notes
in Computer Science, pages 3–17. Springer-Verlag, 2002.

[BA06] A.M. Ben-Amram. Size-Change Termination with Difference Con-
straints. submitted for publication, 2006.

[Bez93] M. Bezem. Strong Termination of Logic Programs. Journal of Logic
Programming, 15(1-2):79–97, 1993.

[BL93] T. Ball and J.R. Larus. Branch Prediction For Free. In SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
300–313, 1993.

[Blu04] W. Blum. Termination analysis of lambda calculus and a subset of
core ML. Master’s thesis, University of Oxford, http://william.famille-
blum.org/, september 2004.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA, 1998.

[Bro95] F.P. Brooks. The Mythical Man-Month: Essays on Software Engineer-
ing, 20th Anniversary Edition. Addison-Wesley Professional, August
1995.

[BvW98] R-J. Back and J. von Wright. Refinement Calculus A Systematic Intro-
duction. Springer, 1998.

[CA69] S.A. Cook and S.O. Aanderaa. On the Minimum Computation Time of
Functions. Transactions of the AMS, 142:291–314, 1969.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, CA, USA, January 1977. ACM
Press, New York, NY.

[Ce98] B.F. Caviness and J.R. Johnson (eds.). Quantifier Elimination and
Cylindrical Algebraic Decomposition. Springer, 1998.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT
Press, 1999.

[CH78] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints
Among Variables of a Program. In Conference Record of the Fifth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New
York, NY.

112

BIBLIOGRAPHY

[CK00] W.N. Chin and S.C. Khoo. Calculating Sized Types. In Partial Evalu-
ation and Semantic-Based Program Manipulation, pages 62–72, 2000.

[Cob64] A. Cobham. The Intrinsic Computational Difficulty of Functions. In
Proceedings of the 1964 Congress for Logic, Methodology, and the Phi-
losophy of Science, pages 24–30. North-Holland, 1964.

[Col75] G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindri-
cal Algebraic Decomposition. In H. Brakhage, editor, Automata Theory
and Formal Languages, volume 33 of Lecture Notes in Computer Science,
pages 134–183, Berlin, 1975. Springer.

[Con93] C. Consel. Polyvariant Binding-Time Analysis For Applicative Lan-
guages. In Partial Evaluation and Semantic-Based Program Manipula-
tion, pages 66–77, 1993.

[Coo83] S.A. Cook. An overview of computational complexity. Commun. ACM,
26(6):400–408, 1983.

[CP90] T. Coquand and C. Paulin. Inductively Defined Types. In P. Martin-Lof
and G. Mints, editors, Proceedings of COLOG’88, volume 417 of Lecture
Notes in Computer Science, pages 50–66. ACM, Springer, 1990.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for
Systems Code, 2006.

[CPR07] B. Cook, A. Podelski, and A. Rybalchenko. Proving Thread Termina-
tion. In J. Ferrante and K.S. McKinley, editors, PLDI’07 : Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language De-
sign and Implementation, pages 320–330, San Diego, CA, USA, 2007.
ACM.

[CS01] M. Colón and H. Sipma. Synthesis of Linear Ranking Functions. In
TACAS 2001: Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
67–81, London, UK, 2001. Springer-Verlag.

[CS02] M. Colón and H. Sipma. Practical Methods for Proving Program Termi-
nation. In 14th International Conference on Computer Aided Verifica-
tion (CAV), volume 2404 of Lecture Notes in Computer Science, pages
442–454. Springer, 2002.

[CT97] M. Codish and C. Taboch. A Semantic Basis for Termination Analysis of
Logic Programs and Its Realization Using Symbolic Norm Constraints.
In Michael Hanus, Jan Heering, and Karl Meinke, editors, Algebraic and
Logic Programming, 6th International Joint Conference, ALP ’97–HOA
’97, Southampton, U.K., September 3–5, 1997, volume 1298 of Lecture
Notes in Computer Science, pages 31–45. Springer, 1997.

113

BIBLIOGRAPHY

[CT99] M. Codish and C. Taboch. A Semantic Basis for Termination Analysis
of Logic Programs. The Journal of Logic Programming, 41(1):103–123,
1999. preliminary (conference) version in LNCS 1298 (1997).

[DCN+03] L. A. Dennis, G. Collins, M. Norrish, R. J. Boulton, K. Slind, and T. F.
Melham. The prosper toolkit. International Journal on Software Tools
for Technology Transfer, 4(2):189–210, 2003.

[DD94] D. De Schreye and S. Decorte. Termination of Logic Programs: the
never-ending story. The Journal of Logic Programming, 19-20:199–260,
1994.

[Der87] N. Dershowitz. Termination of Rewriting. Journal of Symbolic Compu-
tation, 3(1-2):69–116, 1987.

[Der95] N. Dershowitz. 33 Examples of Termination. In H. Comon and J.-
P. Jouannaud, editors, French Spring School of Theoretical Computer
Science Advanced Course on Term Rewriting (Font Romeux, France,
May 1993), volume 909, pages 16–26, Berlin, 1995. Springer-Verlag.

[DH88] J.H. Davenport and J. Heintz. Real quantifier elimination is doubly
exponential. Journal of Symbolic Computation, 5(1-2):29–35, 1988.

[Dij70] E.W. Dijkstra. Notes on Structured Programming. EWD249: circulated
privately, April 1970.

[Dij82] E.W. Dijkstra. On weak and strong termination. In Selected Writings
on Computing: A Personal Perspective, pages 355–357. Springer-Verlag,
1982.

[DLSS99] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. Auto-
matic Termination Analysis of Programs Containing Arithmetic Predi-
cates. Electronic Notes in Theoretical Computer Science, 30(1), 1999.

[DLSS01] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. A General
Framework for Automatic Termination Analysis of Logic Programs. Ap-
plicable Algebra in Engineering, Communication and Computing, 12(1–
2):117–156, 2001.

[DM79] N. Dershowitz and Z. Manna. Proving Termination with Multiset Or-
derings. Commun. ACM, 22(8):465–476, 1979.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In POPL ’82: Proceedings of the 9th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 207–212, New
York, NY, USA, 1982. ACM Press.

[DP97] P. Dybjer and A. Pitts, editors. Syntax and Semantics of Dependent
Types, volume Semantics of Logics of Computation. Cambridge Univer-
sity Press, 1997.

114

BIBLIOGRAPHY

[DS97] A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets com-
puter logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic
and Algebraic Manipulation), 31(2):2–9, 1997.

[ea] H. Hong et al. http://www.cs.usna.edu/~qepcad/B/QEPCAD.html.

[Flo67] R. W. Floyd. Assigning meanings to programs. Proceedings of Symposia
in Applied Mathematics, 19:19–31, 1967.

[FR74] M.J. Fischer and M.O. Rabin. Super-Exponential Complexity of Pres-
burger Arithmetic. In SIAMAMS: Complexity of Computation: Proceed-
ings of a Symposium in Applied Mathematics of the American Mathe-
matical Society and the Society for Industrial and Applied Mathematics,
1974.

[Gim95] E. Gimenez. Codifying Guarded Definitions with Recursion Schemes. In
P. Dybjer and B. Nordstrom, editors, Proceedings of TYPES’94, volume
996 of Lecture Notes in Computer Science, pages 39–59. ACM, Springer,
1995.

[GJ05] A.J. Glenstrup and N.D. Jones. Termination Analysis and
Specialization-Point Insertion in Offline Partial Evaluation. ACM Trans-
actions on Programming Languages and Systems, 27(6):1147–1215, 2005.

[Gri79] D. Gries. Is Sometimes Ever Better Than Always? ACM Trans. Pro-
gram. Lang. Syst., 1(2):258–265, 1979.

[Gri81] D. Gries. The Science of Programming. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1981. GRI d 81:1 1.P-Ex.

[Gro01] B. Grobauer. Cost Recurrences for DML Programs. In International
Conference on Functional Programming, pages 253–264, 2001.

[GTSKF04] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated
Termination Proofs with AProVE. In Proceedings of the 15th Inter-
national Conference on Rewriting Techniques and Applications (RTA-
04), volume 3091 of Lecture Notes in Computer Science, pages 210–220.
Springer, 2004.

[Hei92] N. Heintze. Set Based Program Analysis. PhD thesis, CMU, 1992.

[Hin69] J.R. Hindley. An Abstract Form of the Church-Rosser Theorem. I. J.
Symb. Log., 34(4):545–560, 1969.

[HMU01] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, Reading, Mas-
sachusetts, 2001.

[Hoa69] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Com-
munications of the ACM, 12:576–580, 1969.

115

BIBLIOGRAPHY

[Hof99] M. Hofmann. Linear Types and Non-Size-Increasing Polynomial Time
Computation. In Logic in Computer Science, pages 464–473, 1999.

[Hon93] H. Hong. RISC-CLP(Real): Constraint Logic Programming over Real
Numbers. In F. Benhamou and A. Colmerauer, editors, Constraint Logic
Programming: Selected Research. MIT Press, 1993.

[HPS96] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reac-
tive Systems Using Sized Types. In ACM Principles of Programming
Languages, St Petersburg, Florida, January 1996.

[JB] N. Jones and N. Bohr. Termination Analysis of the Untyped λ-Calculus.

[JL87] J. Jaffar and J-L. Lassez. Constraint Logic Programming. In POPL,
pages 111–119, 1987.

[Jon03] N. Jones. Private communication. email, June 2003.

[KA05] S.C. Khoo and H. Anderson. Bounded Size-Change Termination. Tech-
nical Report TRB6/05, National University of Singapore, June 2005.

[Kap04] D. Kapur. Automatically Generating Loop Invariants Using Quantifier
Elimination. In Proceedings of the 10th International Conference on
Applications of Computer Algebra. ACA and Lamar University, July
2004.

[Kar76] M. Karr. Affine Relationships Among Variables of a Program. Acta Inf.,
6:133–151, 1976.

[KMP+96] P. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Won-
nacott. The Omega Library Version 1.1.0 Interface Guide. Technical
report, University of Maryland, College Park, November 1996.

[KS02] S.C. Khoo and K. Shi. Output Constraint Specialization. ACM SIG-
PLAN ASIA Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 106–116, September 2002.

[Lee02] C.S. Lee. Program Termination Analysis in Polynomial Time. In Don
Batory, Charles Consel, and Walid Taha, editors, Generative Program-
ming and Component Engineering: ACM SIGPLAN/SIGSOFT Confer-
ence, GPCE 2002, volume 2487 of Lecture Notes in Computer Science,
pages 218–235. ACM, Springer, October 2002.

[LJBA01] C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Prin-
ciple for Program Termination. In Proceedings of the 28th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, volume 28, pages 81–92. ACM press, January 2001.

[LS97] N. Lindenstrauss and Y. Sagiv. Automatic Termination Anal-
ysis of Logic Programs (with detailed experimental results).
http://www.cs.huji.ac.il/∼naomil/, 1997.

116

BIBLIOGRAPHY

[LSS97] N. Lindenstrauss, Y. Sagiv, and A. Serebrenik. TermiLog: A System for
Checking Termination of Queries to Logic Programs. In Orna Grumberg,
editor, Computer Aided Verification, 9th International Conference, CAV
’97, Haifa, Israel, Jun 22–25, 1997, volume 1254 of Lecture Notes in
Computer Science, pages 444–447. Springer, 1997.

[Mac71] M. Machtey. Classification of computable functions by primitive recur-
sive classes. In STOC ’71: Proceedings of the third annual ACM sym-
posium on Theory of computing, pages 251–257, New York, NY, USA,
1971. ACM Press.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell Massachusetts, 1993.

[Mil78] R. Milner. A Theory of Type Polymorphism in Programming. Journal
of Computer and System Sciences, 17:348–375, August 1978.

[MLP79] R.A. De Millo, R.J. Lipton, and A.J. Perlis. Social Processes and Proofs
of Theorems and Programs. Communications of the ACM, 22:271–280,
1979.

[MM69] E. M. McCreight and A. R. Meyer. Classes of computable functions
defined by bounds on computation: Preliminary Report. In STOC ’69:
Proceedings of the first annual ACM symposium on Theory of computing,
pages 79–88, New York, NY, USA, 1969. ACM Press.

[MM70] Z. Manna and J. McCarthy. Properties of Programs and Partial Function
Logic. Machine Intelligence, 5:27–37, 1970.

[Mor94] C.C. Morgan. Programming from Specifications. Prentice Hall Interna-
tional Series in Computer Science, 1994.

[MR67] A.R. Meyer and D.M. Ritchie. The complexity of loop programs. In
Proceedings of the 1967 22nd national conference, pages 465–469, New
York, NY, USA, 1967. ACM Press.

[Ned97] M-J Nederhof. Regular Approximations of CFLs: A grammatical view.
In International Workshop on Parsing Technologies, pages 159–170,
1997.

[Ng04] W. Ng. Safe interface to a theorem prover. Honours year thesis, April
2004.

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[NO78] G. Nelson and D.C. Oppen. A simplifier based on efficient decision algo-
rithms. In POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 141–150, New
York, NY, USA, 1978. ACM Press.

117

BIBLIOGRAPHY

[Nuu94] E. Nuutila. An Efficient Transitive Closure Algorithm for Cyclic Di-
graphs. Information Processing Letters, 52(4):207–213, 1994.

[Opp78] D.C. Oppen. A 222
pn

Upper Bound on the Complexity of Presburger
Arithmetic. J. Comput. Syst. Sci., 16(3):323–332, 1978.

[Pie02] B.C. Pierce. Types and Programming Languages. MIT Press, 2002.

[PR04] A. Podelski and A. Rybalchenko. Transition Invariants. In LICS ’04:
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS’04), pages 32–41, Washington, DC, USA, 2004. IEEE
Computer Society.

[Pre27] M. Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die addition als einzige Operation
hervorstritt. Comptes Rendus du Premier Congrès des Mathèmaticiens
des Pays Slaves, (Warsaw, Poland), pages 92–101, 1927.

[Pre91] M. Presburger. On the Completeness of a Certain System of Arithmetic
of Whole Numbers in Which Addition Occurs as the Only Operation.
History of Philosophy and logic, 12(2):225–233, 1991. Translated from
the German and with commentaries by Dale Jacquette.

[PW97] F.C.N. Pereira and R.N. Wright. Finite-State Approximation of Phrase-
Structure Grammars. In Emmanuel Roche and Yves Schabes, editors,
Finite-State Language Processing, pages 149–173. MIT Press, Cam-
bridge, 1997.

[RH03] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Com-
puter Programming. The MIT Press, 2003.

[Ric53] H. Rice. Classes of Recursively Enumerable Sets and their Decision
problems. Transactions of the American Mathematical Society, 74:358–
366, 1953.

[Rit63] R. W. Ritchie. Classes of Predictably Computable Functions. Transac-
tions of the AMS, 106:139–173, 1963.

[RR00] R. Rugina and M.C. Rinard. Symbolic Bounds Analysis of Pointers,
Array Indices, and Accessed Memory Regions. In SIGPLAN Conference
on Programming Language Design and Implementation, pages 182–195,
2000.

[San90] D. Sands. Complexity Analysis for a Lazy Higher-Order Language. In
Proceedings of the Third European Symposium on Programming, number
432 in LNCS, pages 361–376. Springer-Verlag, May 1990.

[Shi88] O. Shivers. Control Flow Analysis in Scheme. ACM SIGPLAN Notices,
7(1):164–174, 1988.

118

BIBLIOGRAPHY

[SJ05] D. Sereni and N.D. Jones. Termination Analysis of Higher-Order Func-
tional Programs. In Proceedings of the Third Asian Symposium on Pro-
gramming Languages and Systems (APLAS 2005), volume 3780 of Lec-
ture Notes in Computer Science, pages 281–297. Springer-Verlag, 2005.

[SSM04] S. Sankaranarayanan, H. Sipma, and Z. Manna. Non-linear loop in-
variant generation using Gröbner bases. In Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages 318–
329, 2004.

[SSS97] C. Speirs, Z. Somogyi, and H. Sondergaard. Termination Analysis for
Mercury. In Static Analysis Symposium, pages 160–171, 1997.

[Tar51] A. Tarski. A decision method for elementary algebra and geometry. In
A decision method for elementary algebra and geometry. Prepared for
publication by J.C.C. Mac Kinsey. Berkeley, 1951.

[TG05] R. Thiemann and J. Giesl. The size-change principle and dependency
pairs for termination of term rewriting. Appl. Algebra Eng. Commun.
Comput., 16(4):229–270, June 2005.

[Tur37] A.M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proc. LMS, Series 2, 42:230–265, 1936-1937.

[VB99] W. Vanhoof and M. Bruynooghe. Binding-time Analysis for Mercury. In
International Conference on Logic Programming, pages 500–514, 1999.

[Wei99] V. Weispfenning. Mixed Real-Integer Linear Quantifier Elimination. In
ISSAC: Proceedings of the ACM SIGSAM International Symposium on
Symbolic and Algebraic Computation (formerly SYMSAM, SYMSAC,
EUROSAM, EUROCAL) (also sometimes in cooperation with the Sym-
bolic and Algebraic Manipulation Groupe in Europe (SAME)), 1999.

[Wei00] V. Weispfenning. Deciding linear-exponential problems. SIGSAM Bull.,
34(1):30–31, 2000.

[Wil04] R. Wilhelm. Timing Analysis and Timing Predictability. In FMCO,
pages 317–323, 2004.

[Xi98] H. Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University, 1998.

[Xi02] H. Xi. Dependent Types for Program Termination Verification. Journal
of Higher-Order and Symbolic Computation, 15:91–131, October 2002.

[XP99] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 214–227, San Antonio, January 1999.

119

BIBLIOGRAPHY

[Yam62] H. Yamada. Real-Time Computation and Recursive Functions Not Real-
Time Computable. IRE Transactions on Electronic Computers, 11:753–
760, 1962.

120

