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SUMMARY 

 

Stochastic global optimization is an active research area due to its ability to 

provide the best possible solutions to the highly non-linear, non-convex and 

discontinuous objective functions. The broad objective of this study is to develop, apply 

and evaluate reliable and efficient stochastic global optimization methods for chemical 

engineering applications. Two benchmark problems similar to phase equilibrium 

calculations have also been proposed and studied in this thesis. 

  

After reviewing the literature, a method, namely, random tunneling algorithm 

(RTA) is selected, implemented and evaluated for benchmark problems involving 2 to 20 

variables and a few to hundreds of local minima. Its potential is then tested for chemical 

engineering applications, namely, phase equilibrium calculations via Gibbs free energy 

minimization and parameter estimation in models. Phase equilibrium problems 

considered include vapor-liquid, liquid-liquid and vapor-liquid-liquid examples involving 

several components and popular thermodynamic models, and parameter estimation 

problems consist of up to 34 variables. RTA successfully located global minimum for 

most the examples but its reliability is found to be low for problems with a local 

minimum comparable to the global minimum.  

 

Subsequently, two methods, namely, differential evolution (DE) and tabu search 

(TS) have been evaluated for benchmark problems, phase equilibrium calculations and 

phase stability problems. The results show that DE is more reliable in locating the global 

 vii



minimum compared to TS whereas the latter is computationally more efficient than the 

former for the examples tested.  

 

 Guided by the insight obtained from DE and TS, a new method, namely, 

differential evolution with tabu list (DETL) is proposed by integrating the strong features 

of DE and TS. DETL is initially tested over many of benchmark problems involving 

multiple minima. The results show that the performance of DETL is better compared to 

DE, TS and the recent modified differential evolution (MDE). DETL is then evaluated 

for challenging phase equilibrium calculations and parameter estimation problems in 

differential and algebraic systems. It is also evaluated for many non-linear programming 

problems (NLPs) having constraints and different degrees of complexity, and several 

mixed-integer non-linear programming problems (MINLPs) which involve process 

design and synthesis problems. Overall, the performance of DETL is found to be better 

than that of DE, TS and MDE.  

 

 Finally, a transformation for the objective function is proposed to enhance the 

reliability of stochastic global optimization methods. The proposed transformation is 

implemented with DE, and is evaluated for several test functions involving multiple 

minima. Although the proposed transformation is found to be better than a recent 

transformation in the literature, further investigation is required to improve its 

effectiveness for problems with more variables.  

 viii



Comprehensive evaluation of the selected stochastic optimization methods, and 

the new method, benchmark problems and transformation proposed in this study are of 

interest and use to the global optimization community. 
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CHAPTER 1 

INTRODUCTION  

 

1.1 Importance of Global Optimization 

 

Many practical engineering problems can be posed as optimization problems 

for which a global optimal solution is desired. Global optimization methods are 

important in many applications because even slightly better solutions can translate 

into large savings in time, money and/or resources. In several modeling applications, 

they are required for correct prediction of process behavior. Literature abounds a 

range of applications of global optimization from estimating the amount of 

chlorophyll concentration in vegetation (Yatsenko et al., 2003) to the design of Earth-

Mars transfer trajectories (Vasile et al., 2005). Global optimization techniques are 

typically general and can be applied to complex problems in engineering design 

(Grossmann, 1996), business management (Arsham, 2004), bio-processes (Banga et 

al., 2003), computational biology (Klepeis and Floudas, 2003), computational 

chemistry (Floudas and Pardalos, 2000), structural optimization (Muhanna and 

Mullen, 2001), computer science (Sexton et al., 1998), operations research (Faina, 

2000), exploratory seismology (Barhen et al., 1997), process control and system 

design (Floudas, 2000a) etc. 

 

 The aim of global optimization is to find the solution in the region of interest, 

for which the objective function achieves its best value, the global optimum. Global 

minimization aims at determining not just a local minimum but the minimum among 

the minima (smallest local minimum) in the region of interest. In contrast to local 
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optimization for which the attainment of the local minimum is decidable (via gradient 

equal to zero and Hessian matrix is positive definite), no such general criterion exists 

in global optimization for asserting that the global minimum has been reached.  

 

Significant advances in optimization were made in the early 1940's and many 

of them are limited to linear programming until late 1960s. However, the assumption 

of linearity is restrictive in expressing the real world applications due to the need for 

non-linear expressions in the models. Initially, non-linear programming problems are 

addressed and solved to global optimality using local optimization techniques under 

certain convexity assumptions (Minoux, 1986). However, many of these problems are 

often modeled via non-convex formulations that exhibit multiple optima. As a result, 

application of traditional local optimization techniques to such problems fails to 

achieve the global solution, thus requiring global optimization.  

 

For example, consider a nonlinear function , where  

is a one dimensional vector with bounds -5 to 2. As shown in Figure 1.1, the function 

has 5 local minima (points a, b, c, d and e in the figure) among which the global 

minimum is at  (point ‘e’) with function value 

[
⎭
⎬
⎫

⎩
⎨
⎧

++−= ∑
=

5

1i
ix)1i(sinf ] x

97.1x −= 8851.2f −= . Any local 

optimization technique like steepest descent method, conjugate gradient method, 

Newton method or quasi-Newton method can provide only the local minimum (a or b 

or c or d) but not the global minimum unless the initial guess is near the global 

minimum. 
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Figure 1.1   Schematic of the non-linear function, f(x) with multiple minima 

 

Let us consider a global optimization technique, namely, tunneling method 

(Levy and Montalvo, 1985). The method starts with an initial guess '  and uses a 

local minimization technique such as gradient descent or Newton’s method to find the 

nearest local minimum . Then the tunneling phase will be switched on and it 

calculates the zeros of the tunneling function such that x

1x'

'a'

1 ≠ x2, but f(x1) = f(x2) (as 

shown in Figure 1.1). The zero of the tunneling function ’x2’ is used as the starting 

point for the next minimization phase and the second lowest minimum (point c) will 

be located. The cycle of minimization phase and tunneling phase is repeated until it 

finds the global minimum at 'e'. Generally, the tunneling algorithm will terminate 

after a specified maximum number of iterations.  

 

The first collection of mathematical programming papers in global 

optimization (in English literature) is published in the seventies (Dixon and Szego, 

1975 and 1978). The benefits that can be obtained through global optimization of non-
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convex problems motivated several researchers in this direction (e.g., van Laarhoven 

and Aarts, 1987; Floudas and Pardalos, 1996; Glover and Laguna, 1997; Bard, 1998; 

Tuy, 1998; Haupt and Haupt, 1998; Sherali and Adams, 1999; Floudas, 2000a and b; 

Horst et al., 2000; Tawarmalani et al., 2002; Zabinsky, 2003; and Price et al. 2005) 

and the publication of the journal, "Journal of Global Optimization" by Kluwer 

Academic Publishers since 1991. 

 

1.2 Classification of Global Optimization Methods 

 

Global optimization methods can be broadly classified into two categories, 

namely, deterministic methods and stochastic methods (Pardalos et al., 2000; Horst 

and Pardalos, 1995). The former methods provide guaranteed solution under certain 

conditions whereas stochastic methods provide a weak asymptotic guarantee but often 

generate near-optimal solutions quickly. Deterministic methods exploit analytical 

properties of the function such as convexity and monotonic feature whereas stochastic 

methods require little or no assumption over the optimization problem such as 

continuity of function. Deterministic methods generate a deterministic sequence of 

points in the search space whereas stochastic methods generate random points in the 

search space. These two classes of optimization methods illustrate the trade-off 

between the ability to find the exact answer quickly and the ability to generate near-

optimal solutions quickly. There are many deterministic and stochastic methods, 

which can be further classified into several groups as shown in Figure 1.2. Each group 

of methods is briefly introduced below. 
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Branch and Bound 
Algorithms 

Interval Methods 

Homotopy Methods 

Trajectory Methods 

Deterministic Methods 

Simulated Annealing 

Two-phase Methods 

Random Search Methods 

Random Function Methods 

Meta-heuristic Methods 

Taboo Search 

Genetic Algorithms 

Stochastic Methods 

Global Optimization Methods 

Differential Evolution 

Outer Approximation 
Methods 

Lipschitz Optimization 

Ant Colony 
Optimization 

Particle Swarm 
Optimization 

 

Figure 1.2: Classification of global optimization methods  
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Besides global optimization model in the methods shown in Figure 1.2, there 

are different types of models, which use some special properties of the objective 

function (Horst and Pardalos, 1995). They are difference of convex optimization 

problems (objective function is expressed as a difference of two convex functions), 

monotonic optimization problems (function is monotonically increasing or 

decreasing), quadratic optimization problems (quadratic objective function), 

multiplicative programming problems (objective function is expressed as a product of 

convex functions), fractional programming problems (ratio of two functions) etc. 

 

Deterministic methods 

 

 There are six types of methods under this category namely, branch and bound 

algorithms, outer approximation methods, Lipschitz optimization, interval methods, 

homotopy methods and trajectory methods.  

 

Branch and Bound Algorithms: The main principle behind branch and bound 

(B&B) algorithms is the “divide and conquer” technique known as branching and 

bounding (Adjiman et al., 1998; and Edgar et al., 2001). The method starts by 

considering the original problem with the complete feasible region known as the root 

problem. Branching is carried out by making the total feasible region into different 

partitions wherein objective function in each partition is bounded using a suitable 

convex underestimation function. The algorithm is applied recursively to the sub-

problems until a suitable termination condition is satisfied. For example, consider a 

non-linear function, f(x), where x is a two dimensional vector with bounds 

 6



 
                                                                                                                 Chapter 1 Introduction                        

.2x,x0 21 ≤≤  Let the initial feasible region is partitioned into four smaller rectangles 

thus forming B&B tree shown in Figure 1.3. 

 

Level 1 Level 1  

1 

0

2 3 4

5 6

(3, 2.2) 

(3.2, 3.1)  (2.9, 2.6)  

(3.1, 2.3)  (3.4, 2.2)  (3, 2.4)  

Level 2  

(3.5, 2.1)  

Figure 1.3:  Branch and bound tree 

 

 The root problem with the original feasible region corresponds to the node ‘0’ 

in Level 1. Then the problem is partitioned into four sub problems (branching) 

representing four nodes in the Level 2. The numbers in the brackets represent the 

upper and lower bounds of the objective function corresponding to each node 

respectively. The lower and upper bounds for each node are obtained respectively by 

minimizing the corresponding convex underestimation function over its partition and 

evaluating the original function at the minimum of the underestimation function. The 

smallest upper bound obtained over all partitions is retained as the “incumbent”, the 

best point found so far. Thus the upper bound corresponding to node ‘3’ is the best 

point obtained in Level 2. The branching is again repeated by selecting a node with 

the smallest upper bound in the current level (node ‘3’ in Level 2) thus resulting 

nodes ‘5’ and ‘6’. The lower bounds over these partitions are obtained again by 

solving the corresponding convex underestimation functions. It is clear from Figure 

1.3 that the lower bound at node 6 (3.1) exceeds the incumbent value that has been 
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stored previously (3.0), a function value lower than 3 cannot be found by further 

branching from node 6 and is not considered for branching again. The branching step 

is repeated from node 5 until the difference between the incumbent f  value and the 

lower bound at each node is smaller than the user defined tolerance. 

 

The advantage of B & B method is that it provides mathematical guarantee to 

the global optimum under certain conditions whereas the main difficulty of this 

algorithm lies in finding a suitable convex underestimation function. For a general 

non-convex function f(x) over the domain [xu, xl], the convex under-estimator, U(x), 

is given by 

 U(x) = f(x) +      1.1 )xx)(xx( i
u
ii

l
i

N

1i
i −−∑

=

α

 where x is an N-dimensional state vector and αi is a positive scalar value. Since the 

quadratic term in the above function is convex, all the non-convexities in the original 

function can be subdued by choosing a large value for αi. The major difficulty comes 

in choosing the value for αi. There are many applications of B&B methods in both 

combinatorial and continuous optimization (Horst and Pardalos, 1995) including 

phase equilibrium problems (McDonald, 1995a, b and c). 

 

Outer Approximation Methods: Outer Approximation (OA) is a technique in 

which the original feasible set is approximated by a sequence of simpler relaxed sets 

(Horst and Tuy, 1996). In this technique, the current approximating set is improved by 

a suitable additional constraint. For example, let the initial feasible set, D is relaxed to 

a simpler set, D1 containing D, and the original objective function is minimized over 

the relaxed set (D1). If the solution of the relaxed problem is in 'D', then the problem 
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is solved; otherwise, an appropriate portion of D1 is cut off by an additional constraint 

resulting a new relaxed set D2, which is a better approximation of D compared to D1. 

Then the earlier relaxed set (D1) is replaced by a new one (D2) and the procedure is 

repeated. These methods are used as basic methods in many fields of optimization 

particularly in combinatorial optimization. The main disadvantage of these methods is 

that the size of the sub-problem increases from iteration to iteration, since in each step 

a new constraint is added to the existing set of constraints. The applications of OA 

methods include minimizing concave functions over convex sets (Hoffman, 1981; and 

Tuy, 1983) and mixed-integer non-linear programming problems (Duran and 

Grossmann, 1986). 

 

Lipschitz Optimization: Lipschitz optimization solves global optimization 

problems in which the objective function and constraints are given explicitly and have 

a bounded slope (Hansen and Jaumard, 1995). In other words, a real function, f, 

defined on a compact set, X, is said to be Lipschitz if it satisfies the condition 

Xx,x;xxL)x(f)x(f 212121 ∈∀−≤−      1.2 

where L is called as Lipschitz constant and ||.|| denotes the Euclidean norm. The first, 

best known and most studied algorithm for univariate Lipschitz optimization is called 

as Piyavskii's algorithm. It is a sequential algorithm which constructs a saw-tooth 

cover iteratively for the objective function (Figure 1.4), f, and evaluates f at a point 

corresponding to a minimum of this saw-tooth cover.  
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f (xi) 
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x 
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Figure 1.4: Saw-tooth cover in Lipschitz optimization 

 

Thus at each iteration, the lowest tooth is found and the function is evaluated 

at the lowest point of this tooth, which is then split into two smaller teeth. The 

algorithm stops when the difference between estimated objective function value (F) 

using Lipschitz constant and the incumbent value does not exceed the tolerance 'ε'. 

Pinter has published several papers (Pinter, 1992) on Lipschitz optimization 

addressing the convergence issues, algorithms for the n-dimensional case and 

applications. The main draw back of these methods is that the number of sub-

problems (i.e., the number of teeth in the lower bounding function) may become very 

large and scanning their list to find the sub-problem with the lowest lower bound is 

time consuming, particularly for large dimensional problems. The typical situation 

where Lipschitz optimization algorithms are most adequate is i) if the problem has 

only a few variables, and (ii) if specific knowledge of the problem that allows finding 

Lipschitz constant or fairly accurate estimate of Lipschitz constant is available. The 

applications (Wingo, 1984; Love et al., 1988; and Hansen and Jaumard, 1995) include 
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parameterization of statistical models, black-box design of engineering systems, 

location and routing problems. 

 

Interval Methods: Interval methods (Hansen, 1992) mainly deal with interval 

numbers, interval arithmetic and interval analysis instead of real numbers, real 

arithmetic and real analysis used in general. The initial interval should be large 

enough to enclose all feasible solutions. There are many applications of interval 

methods such as parameter estimation problems, circuit analysis problems (Horst and 

Pardalos, 1995) and phase stability analysis (Burgos-Solórzano et al., 2003) problems. 

The main advantage of this method is it provides guaranteed global minimum and it 

controls all kinds of errors (round-off errors, truncation errors etc.). 

 

The interval method starts with searching for stationary points in the given 

initial interval with the powerful root inclusion test based on interval-Newton method. 

This test determines with mathematical certainty if an interval contains no stationary 

or a unique stationary point. If neither of these results is proven, then the initial 

interval is again divided into two subintervals and the same procedure is repeated. The 

method terminates if the bounds over the solutions are sufficiently sharp or no further 

reduction of the bounds occurs. On completion, the algorithm provides the narrow 

enclosures of all the stationary points in the given initial interval with sharp bounds so 

that global optimum can easily be determined. This method finds all the global and 

local optima in the given feasible region unlike finding only one solution by many 

other methods.  
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The main drawbacks of interval methods are large computational time and 

inconvenient to deal with intervals in the programming. The reason for large 

computational time is due to the Newton method which finds all the stationary points 

in the region. Some eliminating techniques (Hansen, 1992) are used in order to reduce 

the computational time. These eliminating procedures reduce the search region by 

eliminating all or part of the current box (interval) using different techniques such as 

calculating the gradient, performing non-convexity check using Hessian matrix and 

calculating upper bound over the global minimum. Besides these techniques, the 

number of iterations can also be reduced by introducing slope function in the Newton 

method which is called as slope interval Newton method (Hansen, 1992). 

 

Homotopy Methods: Homotopy methods are important in solving a system of 

non-linear equations (Forster, 1995). They start with solving a simple problem and 

then deforming it into the original complicated problem. During this deformation or 

homotopy, the solution paths of the simple problem and deformed problems are 

followed to obtain the solution for the original complicated problem. The homotopy 

function consists of a linear combination of two functions: the original function, f(x) = 

0 whose solution is to be calculated and a function, g(x) = 0 for which a solution is 

known or can be readily calculated. The homotopy function can be defined as H(x, t) 

= t f(x) + (1 - t) g(x) = 0, where t is the homotopy parameter which allows the 

tracking of solution path from the simple problem to the solution of the original 

complex problem.  As the parameter, t is gradually varied from 0 to 1 and H(x, t) = 0 

is solved using a suitable method, the series of solutions to H(x, t) = 0 traces a path to 

the solution of the original function f(x) = 0. Both the original and simple functions 

(f(x) and g (x)) are combined and formulated into an initial value problem in ordinary 
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differential equations, and is solved by suitable method to obtain solution to the 

original function. Based on the selection of g(x), there are different types of homotopy 

methods: Newton homotopy and fixed point homotopy. These methods provide 

guaranteed convergence to a solution if it exists and a continuous path for the 

homotopy function (i.e., H (x,t)) from t = 0 to t = 1 (Sun and Seider, 1995) also exists. 

However, homotopy methods does not provide guarantee to all multiple solutions. 

The main advantage of homotopy methods is that they can be applied to complicated 

systems where nothing is known a priori about the solution, and the disadvantage is 

computationally expensive. Applications of these methods include solving economic 

equilibrium models, generalized plane stress problem (Forster, 1995) and phase 

equilibrium problems (Sun and Seider, 1995). 

 

Trajectory Methods: These methods construct a set of trajectories in the 

feasible region in such a way that at least some of the solutions of the given problem 

lie on these paths (Diener, 1995). In most of the cases, these trajectories are obtained 

by solving ordinary differential equations of first or second order. Based on the 

definition of the trajectory, there are several methods such as Griewank’s method, 

Snyman-Fatti method, Branin’s method and Newton leaves method. For example, 

Snyman-Fatti algorithm solves the following second order differential equation 

i
0

i
0 x)0(xandx)0(xwith),x(f)t(x &&&& ==∇−=                           (1.3) 

Here, the trajectory is the motion of a particle of unit mass in an N-dimensional 

conservative force field. The algorithm starts with an initial value taken in the feasible 

region and solves the differential equations by searching along the trajectory. The 

trajectory will be terminated whenever it finds a function value which is equal to or 

approximately equal to the function value at the starting point i.e., the trajectory 
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terminates before it retraces itself. The best point found along the trajectory is 

recorded and is used as the next starting point from which the differential equations 

are solved again. The algorithm terminates after a specified number of samplings and 

declares the current overall minimum as the global minimum. The trajectory methods 

escape from the local minimum by climbing up-hills which is inherent in the physical 

models that they approximate. They can also be modified by including stochastic 

elements like random choices of initial data. The main disadvantage of trajectory 

methods is they do not work well if many local minima are present. Reported 

applications (Diener, 1995) of trajectory methods include parametric optimization, 

artificial neural network training and broadcasting.   

 

Stochastic methods 

 

Four main classes of stochastic methods are: two-phase methods, random 

search methods, random function methods and meta-heuristic methods (Boender and 

Romeijn, 1995). 

 

Two-phase Methods: Two-phase methods consist of a global phase and a local 

phase (Pardalos et al., 2000). In the global phase, the objective function is evaluated at 

a number of randomly sampled points in the feasible region. In the local phase these 

sample points are improved by using any one of the local optimization techniques. 

The best local optimum found will be the estimate of the global optimum. Two-phase 

methods are most successful for the problems with only a few local minima and the 

problem should have enough structure which facilitates the use of efficient local 
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search. Their main difficulty is that they may find the same local minimum many 

times.  

 

Tunneling methods (Levy and Montalvo, 1985) also come under two-phase 

methods which consist of a tunneling phase (global phase) and a local phase. The 

local phase finds an improved point in the neighborhood of the initial guess by using a 

standard local optimization technique. The tunneling phase explores the new regions 

of attraction by calculating the zeros of the tunneling function, which are then used as 

a new initial guess for the local optimization technique. The cycle of tunneling and 

local phases are repeated for specified number of iterations and the current overall 

optimum to date is declared as a global optimum. 

 

Most of the two-phase methods can be viewed as the variants of the multi-start 

algorithm, which consists of generating a sample of points from a uniform distribution 

over the feasible region. The multi-start algorithms provide asymptotic convergence 

to the global minimum, which is the fundamental convergence that is provided by all 

stochastic methods. Clustering methods (Boender and Romeijn, 1995), developed 

mainly to improve efficiency of the multi-start algorithms, try to identify the different 

regions of attraction of the local optima, and start a local search from each region of 

attraction. It identifies different regions of attraction by grouping mutually close 

points in one cluster. Clusters are formed in a step-wise fashion, starting from a seed 

point, which may be the unclustered point with the lowest function value or the local 

optimum found by applying a local optimization technique to the starting point. Points 

are then added to the cluster through application of a clustering rule. The two most 

popular clustering techniques are density clustering (Rinnooy Kan and Timmer, 
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1987a and b) and single linkage clustering (Timmer, 1984). In density clustering, the 

objective function is approximated by a quadratic function whereas the single linkage 

clustering does not fix any shape to the clusters a priori.  

 

Multi-Level Single-Linkage (MLSL) algorithm combines the computational 

efficiency of clustering methods with the theoretical merits of multi-start algorithms. 

In this method, local search procedure is applied to every sample point, except if there 

is another sample point within some judiciously chosen critical distance with a better 

function value. The main task in the MLSL is choosing the critical distance such that 

the method converges with minimum effort. The above two-phase methods aim at 

finding all the local optima and then select the best one as the global optimum. Hence, 

these methods do not work well when the function have a large number of local 

optima. 

 

Random Search Methods: These methods consist of algorithms which 

generate a sequence of points in the feasible region following some pre-specified 

probability distribution or sequence of probability distributions (Boender and 

Romeijn, 1995). They are very flexible such that they can be easily applied to ill-

structured problems for which no efficient local search procedures exist. Pure random 

search (PRS) is the simplest algorithm among the random search methods. It consists 

of generating a sequence of uniformly distributed points in the feasible region, while 

keeping track of the best point that was already found. This algorithm offers a 

probabilistic asymptotic guarantee that the global minimum will be found with 

probability one as the sample size grows to infinity. Next to PRS in random search 

methods is the pure adaptive search, which differs from PRS in the way that it forces 
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improvement in each iteration. In this algorithm, a better region is identified and a 

uniformly distributed iteration point is generated in it. Number of iteration points 

needed to find the global optimum by pure adaptive search increases only linearly 

with dimension. The main difficulties of PRS are constructing the better region and 

generating a point that is uniformly distributed in it.  

 

 The third important algorithm in random search methods is the adaptive search 

algorithm which differs from the pure adaptive search by generating iteration points 

from a sequence of Boltzmann distributions. The advantage of this algorithm is that 

sampling is done from the feasible region instead of from the better regions as defined 

in the pure adaptive search. This avoids the two main difficulties (i.e., constructing 

better regions and generating a uniformly distributed point in it) of pure random 

search. The fourth one is a direct search algorithm proposed by Luus and Jaakola 

(1973), which uses random search points and systematic region reduction in locating 

the global optimum. The algorithm has been shown to have high reliability in locating 

the global optimum for numerous optimization problems (Luus, 2000). Even though 

there are improvements of each random search algorithm, these algorithms generally 

require high computational effort. 

 

Random Function Methods: In the Random Function approach (Boender and 

Romeijn, 1995), the objective function is assumed to be a stochastic process, which is 

defined as a probability distribution over a class of functions.  The stochastic process 

is mainly characterized by a correlation function between the function values at each 

pair of points in the feasible region. This correlation function is used to choose the 

next point to evaluate the function value. The parameters of the correlation function 
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are estimated during each cycle of the algorithm. Random function approach is useful 

for problems where the evaluation of objective function is computationally intensive. 

The difficulty of this algorithm lies in specifying the stochastic process that is 

consistent with the properties of the actual function (i.e., continuity and/or 

differentiability) and also in determining the explicit expressions for the correlation 

function.  

 

Meta-heuristic Methods: Meta-heuristic methods are mainly developed based 

on the processes observed in physics and biology. Among the many such methods, the 

most important are Simulated Annealing, Tabu Search, Genetic Algorithms, 

Differential Evolution, Ant Colony Optimization and Particle Swarm Optimization. 

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a stochastic method based on 

analogy to the annealing of metals. Consider a solid crystal that has been heated to 

molten state and then cooled until it solidifies. If the temperature is reduced rapidly, 

irregularities appear in the crystal structure of the cooling solid and the energy level of 

the solid is higher than in perfectly structured crystal. If the material is cooled slowly 

keeping the temperature at a steady level for some time so that the material can reach 

thermal equilibrium with its environment, the energy level attained by the solid will 

be at its minimum. Based on this concept, SA diversifies the search, both in selecting 

a move/point to evaluate and in deciding whether or not to accept a move. The basic 

SA algorithm uses the Metropolis criterion to accept a move, in which down hill is 

always accepted and uphill moves are accepted with a probability 

of . When the temperature is high, many uphill moves are 

accepted, thereby preventing the method being trapped in local minima. The 

advantages of SA are very easy to implement, robust and applicable to a very general 

)T/movevalue(exp −
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class of optimization problems. The other advantage of SA is it converges to the 

global minimum in asymptotic time (Yang, 2000); however, care should be taken 

while choosing the parameter values, which are problem-dependent. 

 

Taboo (or tabu) search (TS) is a meta-heuristic method which has been 

successfully applied to combinatorial optimization problems (Glover, 1989 and 1990). 

There are relatively few applications of this method to continuous problems. Taboo 

search consists of forbidden (taboo) moves which guide and improve the search in the 

solution space. The main idea is that the set of all candidate solutions generated in a 

given iteration, should not only depend on the current iteration point but also be 

modified by comparing them with the candidate solutions in the tabu list and 

excluding the candidate solutions that are nearer to the points in the tabu list. Thus TS 

avoids repeated visits to the same points in the search space. After a few iterations, 

several promising areas are identified and intensive search is carried out from the 

most promising area. Although TS has computationally proven successful (Pardalos et 

al., 2000), it does not guarantee the global optimum. 

 

 Genetic Algorithms (GA) are developed based on the mechanics of natural 

genetics and natural selection (Holland, 1975). Their main principle is the ‘survival of 

the fittest’, which means that good points are allowed to continue to the next 

generation while the less desirable points are discarded from further calculations. 

Initially, GA starts with a population of random points in the feasible region. These 

random points will undergo three main operations, namely, reproduction, crossover 

and mutation. In the reproduction, a mating pool, in which the points with good 

fitness will have more copies than the ones having lower fitness value, is formed. 
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Crossover is an operation which introduces some randomness into the population such 

that the algorithm can escape from the local optima. In this operation, new members 

(points or strings) are formed by exchanging the information among two members of 

the mating pool. Mutation operation involves making changes in the selected member 

directly; the main idea is to change the member by a small amount such that local 

searches will be promoted if there is any local optimum nearby. After reproduction, 

crossover and mutation, the new members obtained represent the next generation and 

the same process is repeated many times. Several attempts have been made to 

improve the efficiency of GA such as compact GA (Harik et al., 1999) which uses 

less memory compared to the original GA and there are many applications of GA in 

different disciplines (Babu, 2004).  

 

Differential Evolution (DE) (Storn and Price, 1997) is similar to GA in 

principle but it is simpler in its structure and easy to implement. It is a population 

based direct search algorithm, and each generation/cycle of DE consists of mutation, 

crossover and selection steps as in GA. The basic difference between GA and DE is 

that the search is guided by crossover in the former whereas it is governed by the 

mutation in the latter. In DE, a mutant individual for the selected member of the 

current population (also known as target individual) is generated by adding the 

weighted difference of two random individuals to a third random individual in the 

population. The elements of the mutant individual thus obtained are copied to the 

target individual using crossover constant to produce a trial individual, known as 

crossover operation. The better one between the trial and target individuals is selected 

based on a greedy criterion such as the objective function value, for the next 

generation, and is called as selection operation. The fitness (objective function value) 
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of the individuals is improved over the generations, finally converging to an optimum. 

DE is found to be faster compared to GA (Karaboga and Cetinkaya, 2004), and its 

applications include digital filter design, neural network learning, crystallographic 

characterization and optimal design of shell and tube heat exchangers (Price and 

Storn, 2006).   

 

Ant Colony Optimization (ACO) (Dorigo et al., 1996; and Mathur et al., 2000) 

is developed by mimicking the way ants establish a shortest route from the nest to the 

food and back. While moving from one place to another in an ant colony, ants 

communicate themselves by laying down a chemical substance known as pheromone, 

on its path. For example, an ant lays down varying quantities of pheromone while 

searching for its destination (foodstuff point). Another randomly moving ant in the 

colony can detect this path and follows it with a high probability while simultaneously 

depositing its own pheromone on its path. More pheromone on this path increases the 

probability of the path being followed by other ants, thus a shortest route is 

established from the nest to the food and back. 

 

The above concept is implemented in ACO by introducing artificial ants called 

agents. Initially, the given feasible region of the optimization problem is divided into 

a specific number of regions, called as nodes. The fitness of these nodes is calculated 

by evaluating objective function at various randomly generated points, and nodes are 

sorted based on their fitness. Each ant starts from a randomly selected node and 

chooses a path based on the amount of pheromone present on possible paths from the 

starting node (i.e., higher probability for the paths with more pheromone). Each ant 

then reaches the next node and selects the next path in a similar way and continues 
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until it reaches starting node, and the whole journey is referred as a cycle. The 

improvement in the fitness value is analyzed for each cycle and the quantity of 

pheromone is adjusted accordingly (i.e., path with better fitness values receives more 

pheromone and vice versa). The number of cycles is repeated until most of the ants 

select the same path in every cycle i.e., until a converged solution, optimum, is 

obtained. The reported applications of ACO in chemical engineering include design 

and scheduling of batch plants (Jayaraman et al., 2000), and dynamic optimization of 

chemical processes (Zhang et al., 2005). 

 

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 2001) is a recent 

bio-inspired technique originated from the social behavior of bird flocking and fish 

schooling since these mechanisms are found to have an optimizing characteristic. In 

PSO, a swarm or population of particles fly through the given N-dimensional problem 

space according to stochastic update rules. Initially, a swarm is generated randomly 

over the given feasible region. The objective function is evaluated at each particle in 

the swarm, and as the particles fly through the solution space (i.e., from one iteration 

to next iteration), each particle remembers its own best position (in terms of function 

value) that it has ever found, known as local best solution. Each particle also 

remembers the best solution obtained by any particle in the swarm, known as the 

global best solution. In every iteration, velocity of each particle in the swarm is 

updated using both the local and global best solutions obtained from the previous 

iteration. As the number of iterations increases, the swarm settles down near to a 

better solution, and is considered as the optimum value obtained. The chemical 

engineering applications of PSO include dynamic analysis of chemical processes 
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(Ourique et al., 2002) and process synthesis and design problems (Yiqing et al., 

2007). 

 

1.3 Motivation and Scope of the Work 

 

Since the advent of non-linear optimization in late 60's, several developments 

and applications of global optimization can be found in engineering discipline 

including chemical engineering. The reason is that mathematical programming is an 

active and vibrant research in chemical engineering. This trend has existed for several 

decades and appears to be increasing (Grossmann, 1996). Global optimization 

methods play a significant role  (Floudas, 2000a; Grossmann and Biegler, 2004; 

Biegler and Grossmann, 2004; and Floudas et al., 2005) in many practical chemical 

engineering applications, which include heat exchanger network synthesis (Zamora 

and Grossmann, 1998; Bjork and Westerlund, 2002; and Lin and Miller, 2004a), 

phase equilibrium problems (McDonald and Floudas, 1997; Nichita et al., 2002a and 

b; Teh and Rangaiah, 2003; and Burgos-Solorzano et al., 2004), parameter estimation 

problems (Esposito and Floudas, 1998; Gau and Stadtherr, 2000; Esposito and 

Floudas, 2000; and Katare et al., 2004), optimization of integrated process design and 

control (Moles et al., 2003), design of alternative refrigerants (Sahinidis et al., 2003) 

and solvents (Sinha et al., 1999; and Wang and Achenie, 2002;), phase stability 

analysis (Hua et al., 1998; Harding and Floudas, 2000; Henderson et al, 2001; and  

Balogh et al., 2003),  process network problems (Queseda and Grossmann, 1995; and 

Lee and Grossmann, 2001), computer aided molecular design (Patkar and 

Venkatasubramanian, 2003; and Lin et al., 2005), global optimization of dynamic 

systems (Jockenhoevel et al., 2003; and Papamichail and Adjiman, 2004;) and process 
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synthesis, design and control problems (Ryoo and Sahinidis, 1995; Adjman et al., 

2000; Floudas, 2000a; Costa and Oliveira, 2001; and Angira and Babu, 2006). 

 

  Though deterministic techniques have been used for many applications in 

chemical engineering, they are mostly problem specific and require additional 

properties (such as continuity) of the objective function/constraints. On the other 

hand, stochastic methods are attracting greater attention and interest from several 

researchers (e.g., Ku and Karimi, 1991; Patel et al., 1991; Salcedo, 1992; Floquet et 

al., 1994; Garrard and Fraga, 1998; Sundaram and Venkatasubramanian, 1998; Yu et 

al., 2000; Rangaiah, 2001; Banga et al., 2002; Patkar and Venkatasubramanian, 2003; 

Banga et al., 2003; Teh and Rangaiah, 2003; Bhushan and Karimi, 2004; Lin and 

Miller, 2004a and b; and Babu and Angira, 2006) as they (i) generally require little or 

no additional assumptions on the optimization problem,  (ii) can handle non-linear 

and non-convex objective functions and constraints, and (iii) provide acceptable 

solutions with probabilistic convergence guarantee to the global optimum. Stochastic 

methods are particularly attractive for challenging global optimization problems 

which does not have any known structure, known as black-box optimization models 

(Pardalos et al., 2000) and problems with expensive objective function evaluations 

(Jones et al., 1998). Inspired by the potential of stochastic global optimization 

techniques to address generic, complex optimization problems, this research is 

devoted to the study of several stochastic optimization methods for chemical 

engineering applications. The two main objectives and scope of the study are outlined 

in the following. 
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(i) Evaluation of Promising Stochastic Global Optimization Techniques 

for Chemical Engineering Applications 

 

Many chemical engineering problems involve optimization of highly non-

linear and non-convex objective function/constraints. As a result, these problems will 

have multiple solutions and the use of local optimization methods fail to find the 

global optimum. On the other hand, several stochastic global optimization methods 

have been proposed and successfully applied to many applications of interest in 

engineering. In this study, promising stochastic global optimization algorithms 

namely, RTA (Jiang et al., 2002), TS (Chelouah and Siarry, 2000) and DE (Storn and 

Price, 1997), which are shown to be efficient and reliable in the literature, have been 

evaluated for benchmark and chemical engineering applications. Evaluation has been 

carried out fairly, systematically and thoroughly. Chemical engineering applications 

studied include phase equilibrium calculations via Gibbs free energy minimization, 

phase stability analysis using tangent plane distance function and parameter 

estimation in models using error-in-variables approach. Phase equilibrium problems 

are important in the design, simulation and optimization of chemical processes 

whereas parameter estimation problems play a vital role in developing good 

mathematical models. The examples considered for phase equilibrium calculations 

and phase stability problems involve multiple components, multiple phases and 

popular thermodynamic models whereas parameter estimation problems considered 

involve up to 34 variables.  

 

New Benchmark Problems Similar to Phase Equilibrium Calculations: The 

challenging feature of phase equilibrium calculations by free energy minimization is 
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the presence of comparable minima (i.e., function values at a local and global minima 

are close to each other) in these problems. Although there are many benchmark 

problems in the literature with characteristics such as flat objective function and huge 

number of local minima, none of them represents the comparable minima as in phase 

equilibrium calculations. On the other hand, testing of methods with phase 

equilibrium problems require chemical engineering background and careful 

implementation. Hence, motivated from the unique characteristic of phase equilibrium 

calculations, two new benchmark problems having comparable minima are proposed 

and employed. 

 

(ii) Developing a Reliable and Efficient Stochastic Global Optimization  

       Technique    

 

Stochastic global optimization methods play an important role in practical 

global optimization (Zabinsky, 1998) as they are usually quite simple to implement 

and use, and they do not require transformation of the original problem. Among the 

many, the popular stochastic methods are: GA, SA, DE and TS. Experience with them 

shows that each of them has a unique feature of escaping from a local minimum 

and/or computational efficiency. The main feature of both GA and DE is the ability to 

escape from a local minimum using crossover and mutation operations especially for 

highly non-convex and non-differentiable functions. Unlike GA and DE, SA starts 

from a single point, and is analogous to the physical process known as annealing in 

which a material changes its state to reach the lowest-energy state. The main feature 

of SA is its up-hill moves by accepting some inferior points also during the search, in 

order to escape from the local minima. The main feature of TS is avoiding re-visits to 
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the same place during the search, thus providing good computational efficiency. All 

the aforementioned methods have been successfully applied to many applications in 

engineering and other fields (e.g., Merz et al., 1999; Teh and Rangaiah, 2003; Katare 

et al., 2004; Faber et al., 2005; and Mayer et al., 2005).Though GA, DE, SA and TS 

have their own merits, they sometimes get trapped into local minima. 

 

To overcome the drawbacks of each method, several studies have considered 

integration of stochastic methods such as GA, SA and TS particularly for 

combinatorial optimization (Kim et al., 1997; and Mantawy et al., 1999). In this 

study, a careful and comprehensive attempt has been made to identify and combine 

the strong features of DE, TS and SA, to develop a new method with good reliability 

as in DE along with good computational efficiency of TS. DE has been chosen instead 

of GA because it is easy to implement and found to be computationally efficient 

compared to GA (Karaboga and Cetinkaya, 2004). The concept of TS is implemented 

using tabu list which keeps track of the previously visited points and eliminates re-

visits during the search. An attempt has also been made to combine the concept of 

SA; however, the performance of the algorithm is not improved. Two versions (one 

with tabu list in the evaluation step and another with tabu list in the generation step of 

DE) of the new integrated method are thoroughly tested over many multi-modal test 

functions, challenging phase equilibrium calculations and parameter estimation 

problems in differential and algebraic systems. The better version with tabu list in the 

generation step of DE is then evaluated for many non-linear programming (NLP) and 

mixed-integer non-linear programming (MINLP) problems often encountered in 

chemical engineering practice. 
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A Transformation to Enhance the Reliability of Stochastic Global 

Optimization Methods: Though stochastic methods have been successfully used for 

many applications, their reliability may be affected at times due to the highly non-

linear and non-convex nature of the objective function. In order to enhance the 

reliability of these methods, a new transformation of the original objective function is 

proposed in this study. It transforms the original objective function in such a way that 

the current local minimum becomes the global maximum while other better local 

minima are not affected. The effectiveness of the transformation is studied with DE 

on several test functions; however, the transformation can be used along with any 

stochastic global optimization methods. 

 

1.5 Outline of the Thesis 

 

There are 7 chapters in this thesis. Following this introduction, Chapter 2 

describes the implementation and evaluation of RTA for benchmark functions and 

chemical engineering applications. Chapter 3 describes the evaluation and comparison 

of popular stochastic methods, DE and TS for benchmark, phase equilibrium and 

phase stability problems. Chapter 4 introduces the proposed stochastic method, DE 

with tabu list (DETL) and its application to a wide range of test functions, phase 

equilibrium calculations and parameter estimation problems in differential and 

algebraic systems. The application of DETL to several NLPs and MINLPs is 

presented in Chapter 5. Chapter 6 describes the proposed transformation to enhance 

the reliability of stochastic global optimization methods. Finally, conclusions of this 

study and future works are outlined in Chapter 7.
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CHAPTER 2 

IMPLEMENTATION AND EVALUATION OF RANDOM 

TUNNELING ALGORITHM*

 

Random tunneling algorithm (RTA) is a global optimization algorithm based 

on the concepts of terminal repeller and unconstrained subenergy tunneling (TRUST) 

algorithm. Even though RTA and TRUST seem to be efficient and attractive for 

benchmark problems involving 2 to 8 variables, they have not been evaluated for 

benchmark problems involving 10 to 20 variables and for chemical engineering 

applications. In this study, RTA has been implemented with some changes in the 

global phase and used it to solve the benchmark problems with 2 to 20 variables and a 

few to hundreds of local minima. The results show that RTA is comparable to or 

better than many other methods reported in the literature. The potential of RTA for 

chemical engineering applications, namely, phase equilibrium calculations using 

Gibbs free energy minimization and parameter estimation in models, is then studied. 

Phase equilibrium problems considered include vapor-liquid, liquid-liquid and vapor-

liquid-liquid examples involving several components and popular thermodynamic 

models and parameter estimation problems involve up to 34 variables. RTA 

successfully located global minimum for most of the examples but the reliability of 

the method is low for problems having a local minimum comparable to the global 

minimum. 

 

 

                                                 
* This chapter is based on the paper – Mekapati Srinivas and Rangaiah, G. P. Implementation 
and evaluation of random tunneling algorithm for chemical engineering applications, 
Computers and Chemical Engineering, 30, pp. 1400-1415. 2006. 
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2.1 Introduction 

 

Global optimization is playing an important role in the chemical engineering 

applications, particularly in the design of chemical process systems (Floudas, 2000a). 

In general, global optimization methods can be broadly classified into two categories:  

deterministic and stochastic (Pardalos et al., 2000). Many global optimization 

methods, each having its own special features suitable to a particular problem have 

been developed, and some of the recent unconstrained minimization methods are 

reviewed below. 

 

Barhen (1997) proposed a deterministic global optimization algorithm known 

as terminal repeller and unconstrained subenergy tunneling (TRUST). It builds on two 

main concepts: subenergy tunneling and non-Lipschitzian terminal repellers. The 

former transforms the objective function in such a way that points whose value is 

greater than the current local minimum are approximately zero. The transformation 

preserves all properties relevant for optimization. The repeller makes the system to 

escape from the current local minimum and explores a new valley with better function 

value. The algorithm has been applied to benchmark problems up to 3 variables and 

on a seismology problem. The results of Barhen (1997) show that TRUST is faster 

than all other methods reported in the literature. RoyChowdhury et al. (2000) 

proposed hybridization of gradient descent algorithm with dynamic tunneling 

(GRDT) method for global optimization. This method consists of two phases: iterative 

phase and initialization phase. The former phase implements steepest descent 

technique to locate a local minimum whereas the latter uses dynamic tunneling 

concept to find a better point for next local descent. The algorithm has been tested for 
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10 benchmark functions involving up to 6 variables. The results show that 

performance of GRDT is comparable with other methods in the literature. 

 

Oblow (2001) proposed Stochastic Pijavskij Tunneling (SPT) algorithm for 

global optimization. The method is based on TRUST method and combines a series of 

local descents with stochastic searches. SPT uses a rejection-based stochastic 

procedure to locate new local minima and a fixed Lipschitz like constant is used to 

reject unpromising regions in tunneling. The algorithm can be easily implemented in 

low dimensional case and is less effective in high dimensional case without further 

heuristics. Several approximations for parameters of the algorithm are proposed by 

Oblow (2001) to improve the method. The algorithm has been used to solve a 

seismology problem and the results show that SPT is competitive with other methods 

in the literature. Cai and Shao (2002) proposed a fast annealing evolutionary 

algorithm (FAEA) which combines the concept of population in genetic algorithms 

(GA) with annealing procedure in simulated annealing (SA). A fast annealing 

technique is used in FAEA and a diversification strategy is applied during every 

annealing step in order to avoid entrapment in local minima. The algorithm has been 

applied to bench mark problems and Lennard-Jones molecular clusters up to 13 

atoms. The results show that reliability and efficiency of FAEA is high when 

compared with modified genetic algorithm and SA. 

 

Toh (2002) proposed a global optimization method using monotonic 

transformation (MTT). The transformation magnifies the relative ordering of global 

and local minima, and the regions that contain global minima are identified using 

level sets. Then the original unconstrained problem is reformulated as a constrained 
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one and is solved using penalty function method. The method has been applied to 

training an artificial neural network problem and the results show that it is reliable in 

locating the global minimum. Groenwold and Snyman (2002) proposed two global 

optimization algorithms to minimize an unconstrained objective function through the 

modeling of dynamic search trajectories. The first one is Snyman-Fatti (SF) algorithm 

which models the trajectory of a motion of a particle of unit mass in a n-dimensional 

conservative force field. The second one is modified bouncing ball (MBB) algorithm 

that models the trajectory of a projectile in a conservative gravitational field. The 

above two methods are modified to increase the likelihood of convergence to a lower 

local minimum. The performance of MBB is effective for Rastrigin and Shubert 

functions whereas SF algorithm is effective for Shekel family of functions.  

 

Jiang et al. (2002) proposed a random tunneling algorithm (RTA) which is 

also based on TRUST method. It is a two-phase optimization method in which a 

global phase is carried out by random tunneling and a local phase by gradient 

optimization with BFGS (Broyden, Fletcher, Goldfarb and Shanno) method. In the 

global phase, the system is perturbed randomly from the last local minimum and a set 

of simultaneous differential equations are solved to find a better point to begin the 

descent again. The method is used to evaluate the Lennard-Jones molecular clusters 

problem and the results show that RTA located global minimum of Lennard-Jones 

clusters of up to 20 atoms successfully.  

 

 The computational efficiency (in terms of number of function and gradient 

evaluations) of the above global optimization methods for several test functions as 

reported by researchers in the literature is summarized in Table 2.1. The numbers in 
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RTA is mainly based on the concepts of subenergy transformation and 

terminal repeller in the terminal repeller and unconstrained subenergy tunneling 

(TRUST) algorithm. The tunneling method was first introduced by Levy and 

Montalvo (1985). It is composed of a sequence of cycles, where each cycle has two 

phases: a local minimization phase and a tunneling phase. In the former phase, a 

minimization algorithm such as gradient descent or Newton’s method is used to 

minimize the given objective function f(x) to locate a local minimum x*. In the 

tunneling phase, the method searches for the zeros of the tunneling function such that 

x0 ≠ x*, but f(x0) = f(x*). Then the zero point is used as the starting point for the next 

cycle, and the process is repeated sequentially until a stopping criterion such as failure 

to find a zero within the prescribed CPU time is met. The last local minimum thus 

found is declared to be the global minimum.  

the Table 2.1 represent the function and gradient evaluations required to locate the 

global minimum of the corresponding test functions. Even though TRUST and SPT 

seem to be faster, they did not include the gradient calls and are not tested for 

functions having more than 3 variables. From Table 2.1, it is clear that RTA is 

efficient among all other methods. Motivated from the above comparison (Table 2.1), 

RTA has been chosen for thoroughly evaluating its performance for benchmark and 

challenging chemical engineering applications. 
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Table 2.1: Comparison of computational efficiency of different global optimization methods 

Function* BR CA GP RA2 RA5 SH H3 H6 GW2 GW8 Reference 

FAEA 4850 --- 5125 5964 --- 6700 5280 18, 090 --- --- 
Cai and 

Shao, 2002. 

MTT 57 44 --- 363 --- 239 213 787 --- --- Toh, 2002. 

SF 3922 426 2092 4799 --- 8491 933 1025 --- --- 
Groenwold and 

Snyman, 2002. 

MBB 286 213 592 1873 --- 1057 973 499 --- --- 
Groenwold and 

Snyman, 2002. 

TRUST # 55 31 103 59 --- 72 55    Barhen, 1997 

GRDT 466 290 5175 822 --- 502 2811 963 --- --- 
RoyChowdhury, 

2000. 

SPT # 67 26 123 140 --- 150 75 --- --- --- Oblow, 2001. 

RTA 23 135 113 383 687 202 60 196 281 465 Jiang et al., 2002. 

Note: The number in each cell represents the function and gradient calls required to locate the global minimum of the test 
function by an algorithm, and blank (---) represents no results are available in the literature. * BR - Branin, CA - 6 hump 
camelback, GP - Goldstein and Price, RA2 and RA5 - Rastrigin 2 and 5 variables, SH - Shubert, H3 and H6 - Hartman 3 and 6 
variables, GW2 and GW8 - Griewank 2 and 8 variables. # Gradient calls are not included in this method.   
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Different from the above approach, TRUST (Cetin et al. 1993) is a 

deterministic algorithm which has been applied successfully in exploratory 

seismology. The method introduces two concepts, namely, subenergy tunneling and 

non-Lipschitzian terminal repellers, which in turn make the search to escape from the 

last local minimum. The subenergy tunneling transforms the objective function f(x) as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−+
=

a))(x)f̂(exp(1
1log)x(x,E *

sub               (2.1) 

where is a positive constant, and xa )f(xf(x)(x)f̂ *−= * is the current local minimum. 

The transformation converts all the points whose value is greater than or equal to the 

current local minimum to approximately equal to zero and preserves all other points 

whose value is less than the current local minimum (Figure 2.1). In other words, 

 has the same critical points and the same relative ordering of the local and 

global minima as f(x). In Figure 2.1, the dashed line shows the transformation of the 

objective function f(x) according to equation 2.1. The terminal repeller term is a 

penalty function that converts the current local minimum to a local maximum. The 

transformation involved is 

)x(x,E *
sub

(x))f̂H()x(xρ3/4)()x(x,E 4/3**
rep −−=               (2.2) 

where  is a positive constant and H is the heaviside function, which is equal to 1 for 

positive values of the argument ( ) and is 0 otherwise. Here, x

ρ

(x)f̂ * is treated as an 

equilibrium point. The repeller term repels the dynamic system 

( ))x(f̂(H)xx()x(g
dt
dx 3/1*−ρ== ) from the equilibrium point, x*, by perturbing to x' 

which violates the Lipschitz condition ( +∞<
∂

∂
x

)g(x*

). Thus the system escapes from 
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the current local minimum in finite time. Finally, the virtual objective function 

combines both subenergy tunneling and terminal repeller terms as follows. 

( )*xx,Ex*)(x,Ex*)E(x, repsub +=               (2.3) 

The dynamic system that is to be solved is the gradient of   which is given by *)x,x(E

N 1,2,...,i(x));f̂H()xρ(x
a)(x)f̂exp(1

1
x

)x(fx 1/3*

i
i =−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=&  

                          … (2.4) 

where N is the number of variables in the given problem.  

 

 

Figure 2.1: Schematic diagram of TRUST showing the original function, f(x), 
subenergy transformation, Esub (x, x*) in equation 2.1 and virtual objective 

function, E (x, x*) in equation 2.3 
 
 

The tunneling phase of the algorithm starts by perturbing the system from the 

current local minimum x* to x' (as shown in Figure 2.1). The perturbation is carried 

out by adding a small positive value  to the local minimum (xd ' = x*+d). Then the 

repeller term makes the dynamic system flow down over the virtual surface escaping 
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from x* to find a better point xnew (Figure 2.1) where the argument of the Heaviside 

function is negative. Then the local minimization is started from xnew to find the next 

local minimum xnew
*. The algorithm starts with one of the boundary points as a 

starting point and terminates when the dynamic system flows out of the other 

boundary. Thus TRUST sweeps the whole domain in one dimensional case and finds 

the global minimum. 

 

The implementation of TRUST (Barhen et al. 1997) in multi-dimensional case 

differs from one dimensional case by solving gradient of subenergy tunneling 

function (equation 1) in the local minimization phase and performing one-dimensional 

(1D) search in the tunneling phase along each dimension. For the later, one has to 

integrate the following differential equation in the tunneling phase  

;)]f(x-)x̂H[f()xρ(xx *
i

1/3*
iii

μμ−=&  i = 1, 2, …, N             (2.5) 

where the last local minimum is  and  represents that all components of  

except i are fixed. The algorithm terminates when no better point 

( 0 ) is found in the tunneling phase and declares the last local 

minimum as the global minimum. A direct extension of 1D search to multi-

dimensional optimization does not guarantee that the global minimum will always be 

found (Cetin et al., 1993; Barhen et al., 1997). Diller and Verlinde (1999) have 

studied TRUST algorithm for the purpose of molecular docking along with other 

algorithms and reported that the performance of TRUST was not up to expectation. 

*
ix μ

ix̂ x

))x(f)x̂(f( *
i <− μ

 

Even though TRUST and RTA seem to be efficient and attractive for 

benchmark problems involving 2 to 8 variables (Barhen et al., 1997; Jiang et al., 

2002), they have not been evaluated for benchmark problems involving 10 to 20 
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variables (Table 2.1) and for chemical engineering applications. In this work, RTA is 

implemented with some changes in the global phase and without introducing the 

population, and then tested for many benchmark problems and for selected chemical 

engineering applications such as phase equilibrium calculations and parameter 

estimation in models. The changes in global phase include the random perturbation 

and implementing uniform grid search instead of solving a system of differential 

equations. The population is not introduced because application problems that are 

solved consist of fewer local minima (less than the minima in benchmark problems) 

and Jiang et al. (2002) too did not use population for solving benchmark problems. 

 

2.2 Implementation of Tunneling 

 

RTA has been implemented in a slightly different way here for achieving 

computational efficiency. The first change in the global phase which is also known as 

tunneling phase is in the random perturbation from the current local minimum x*. The 

random perturbation of Jiang et al. (2002) is given by 

]N...,,2,1[i)xr(x λSxx l
i

u
ii

*
i

'
i ∈∀−+=               (2.6) 

where  and  are the upper and lower bounds of the iu
ix l

ix th element of the state vector 

x,  represents the magnitude of perturbation which can have a value between 0 and 

1, r is a random number in the interval 0 and 1, and is a sign variable determining 

the direction of tunneling with -1 or 1. The above perturbation may generate a point 

that is out of the feasible region and requires boundary violation check every time the 

system is perturbed. In order to overcome this problem, random perturbation in this 

work has been implemented in the following way  

λ

iS

N]...,2,[1,i)xr(ulbλxx *
ii

*
i

'
i ∈∀−+=               (2.7) 
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where  can be chosen randomly either upper or lower bound of element of the 

x vector. The above perturbation indirectly eliminates S

iulb thi

i in equation 2.6. 

 

The second change is in the type of search implemented in the random 

tunneling instead of solving the system of differential equations (equation 2.4) from 

the perturbed point x' as in RTA. Here, uniform grid search has been implemented 

because the dynamic system which is to be solved approximates to either gradient 

descent phase or tunneling phase (Cetin et al., 1993) based on the value of  as 

discussed below. 

(x)f̂

i) When f(x) ≥ f(x*) i.e., , the exponential term in equation 2.4 

rapidly tends to zero (i.e., 

0(x)f̂ ≥

0x/*)x,x(Esub ≅∂∂ ). In other words, the 

subenergy function is nearly flat and approximately zero in magnitude in 

the neighborhood of x*. As the magnitude of subenergy function is 

negligible compared to that of the repeller term, the dynamic system 

behaves approximately as 

N...,,2,1i;)xx(x 3/1*
i =−≅ ρ&              (2.8) 

ii) When  i.e., , the gradient multiplier term 

(equation 2.4) is approximately unity, the repeller 

term is equal to zero and the dynamic system behaves as 

)x(f)x(f *< 0)x(f̂ <

)])a)x(f̂exp(1/[1( ++

⎟
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⎞

⎜
⎝
⎛

∂
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−≅
x

)x(fxi&                 (2.9) 

The above analysis shows that when  (tunneling phase) the system is not 

using any function information in order to generate the next search point. If any better 

point is explored (i.e., ), then RTA stops the tunneling phase and provides 

0)x(f̂ ≥

0)x(f̂ <
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this better point to the local minimization phase. It is also unclear how the dynamic 

system (equation 2.4) with n first order differential equations has been solved 

simultaneously in RTA using random step sizes for each dimension (Jiang et al., 

2002). Our numerical experience with TRUST of Cetin et al. (1993) for benchmark 

problems showed that selection of time step in solving the differential equations is 

important and no guidelines are available for choosing it. In addition, solution of 

differential equations (equation 2.4) needs gradient evaluation at each step which 

involves significant computational effort if the gradient is calculated numerically. 

Based on the previous analysis and due to the unavailability of the TRUST and RTA 

programs, a simple uniform grid search has been employed in the tunneling phase.  

 

The third change is the insertion of one-dimensional (1D) search along each 

coordinate axis from the perturbed point (x') in addition to the search towards the 

random perturbed point from the last local minimum (x*). All the searches have been 

performed using uniform grid search. The main reason for adding 1D search is that 

the random search (i.e., search towards the perturbed point) was unable to solve 

Rastrigin functions in which the distribution of local minima is along the co-ordinate 

axes. The direction reversals in RTA are taken care by perturbing the system again 

from the last local minimum. 

 

The above tunneling technique can be explained from the contour diagrams 

shown in Figure 2.2a and b. The contour diagram of modified Himmelblau function 

(mHB) (Deb, 2002) in Figure 2.2a shows that there are three local minima for this 

function, and the global minimum (GM) is at )2,3(x= with a function value of zero. 

The local minima LM1, LM2 and LM3 are at x = (-3.763429, -3.266052), (-2.787063, 
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3.128204) and (3.581492, -1.820800) with function values 7.367345, 3.487127 and 

1.504353 respectively.  The mHB function also has one maximum point and two 

saddle points which are not of interest here.  

 

For example, consider the second local minimum (LM2) as the current local 

minimum (x*). The contour plot (Figure 2.2b) shows the better regions that are to be 

explored. These regions have function values that are lower than f(x*). Now the 

tunneling phase starts by perturbing the system from x* to x' as shown in Figure 2b. 

Random tunneling (RT) is performed from x* towards x' and it continues until it finds 

a better point (i.e. any point in the better regions) or hits the boundary. In this case RT 

was unable to find a better point and 1D search is started from the perturbed point, x'. 

As the choice of dimension to be explored first in 1D search can be random, first 

dimension (along x1 in Figure 2.2b) is considered as the starting direction in this 

study. This 1D search successfully identified a point (b in Figure 2.2b) in the better 

region, thus escaping from the last local minimum. Tunneling phase returns this better 

point as a new initial guess to the local minimization phase to find an improved point 

in its neighborhood. As can be seen from Figure 2.2b, both random tunneling and 1D 

search may fail to explore better regions. In such cases, tunneling phase returns 

perturbed point (x') as a new initial guess to the local minimization phase and 

tunneling will be repeated by perturbing the system from the best minimum among 

the local minima found. 
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(a) 

 
 

(b) 

 
 

Figure 2.2: (a) Contour diagram and (b) Schematic of tunneling for modified 
Himmelblau function 
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2.3 Description of the Algorithm 

 

The main stages of the algorithm are local minimization phase and tunneling 

phase. The algorithm (Figure 2.3) starts with the selection of values of parameters, 

namely, magnitude of perturbation (λ), step size (ss) for uniform grid search, 

maximum number of perturbations during a particular tunneling phase (ps) and the 

maximum number of tunneling phases (tp). Then a point  is generated randomly in 

the feasible region and is optimized using a fast convergent quasi-Newton technique 

to obtain the current local minimum (x

x

*) in the neighborhood of x.  Tunneling phase is 

started from this local minimum which comprises of three steps. The first step is 

random perturbation (equation 2.7) from the current local minimum and the second 

step involves tunneling from the perturbed point using uniform grid search until it hits 

the boundary. The third step consists of 1D tunneling from the perturbed point along 

each coordinate axis as follows. Suppose, for example, search is along the first 

coordinate axis. Then all remaining elements of x (i.e., xi for i = 2, 3, …, N) are kept 

at the perturbed point x' and search is performed using specified step size towards the 

upper bound of the first coordinate until it hits the boundary. After hitting the upper 

boundary, direction of the search is reversed towards the lower boundary starting 

from x' and search continues until it hits the boundary. The same process is repeated 

for all elements of x.  

 

The three steps of the tunneling phase are repeated until the number of 

perturbations reaches the maximum number (ps) or a better point (f(x) < f(x*)) is 

found. If any such point is found, then the tunneling phase gets terminated and sends 

this better point as the new initial guess to the next local minimization phase else the  
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Yes 

No 

No 

Yes 

Yes 

No 

Tunneling phase

Start

Set parameters λ, ss, ps and tp 

Generate a random point in the feasible region and 
set it as the initial guess

Local minimization using quasi-Newton technique 

i. Random perturbation from the best local 
minimum 

ii. Random tunneling (i.e., tunneling towards 
perturbed point) with uniform grid search 

iii. 1D tunneling from the perturbed point with 
uniform grid search 

Has maximum number of 
perturbations (ps) 

exceeded? 

Any better point found 
during steps i, ii and iii? 

Set last perturbed point as the better point 

Has maximum number 
of tunneling phases (tp) 

reached?
Set the better point as 
the new initial guess 

Stop and print results 
 

Figure 2.3: Flowchart of RTA implemented in this study 
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last perturbed point will be the new initial guess. In the local minimization step, a new 

local minimum is found and compared with the previous local minima, and the best 

minimum is taken as the current local minimum for the subsequent tunneling phase. 

The cycle of local minimization and tunneling is repeated until the number of 

tunneling phases reaches the maximum specified number (tp). The algorithm then 

terminates declaring the last/best local minimum as the global minimum. 

 

2.4 Benchmark Problems 

 

The RTA in Figure 2.3 is programmed in FORTRAN with the IMSL 

subroutine: DBCONF for quasi-Newton method in the local minimization phase. This 

subroutine calculates the gradient numerically and approximates the Hessian matrix 

with BFGS update. The RTA is tested for many benchmark problems (Jiang et al., 

2002; Deb, 2002; Teh and Rangaiah, 2002 and Trefethen 2002.) with number of 

variables in the range 2 to 20 and a few to hundreds of local minima. For consistency, 

all decision variables in each function are normalized to the range [0, 1] using their 

bounds, in the program. A brief description of the functions is given below and the 

global minima are in Table 2.2 

1. Branin function (BR): 

 f(x) =          (2.10)10xcos)8/11(10]6x)/5(x)4/1.5(x[ 1
2

1
2
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2
2 +π−+−π+π−

 where search domain is .15x0,10x5 21 ≤≤≤≤−  

2 Camelback function (CA): 

f(x) =                                  (2.11) 2
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where the search domain is .5x,x5 21 ≤≤−  
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3. Goldstein and Price function (GP): 

f(x) =  )]x3xx6x14x3x1419()1xx(1[ 2
2212

2
11

2
21 ++−+−+++

)]x27xx36x48x12x3218()x3x2(30[ 2
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2
11

2
21 +−++−−+×       (2.12) 

where the search domain is .2x,x2 21 ≤≤−  

4. Rastrigin (RA2, RA5, RA10, RA15 and RA20) function: 

f(x) =              (2.13) ))x2cos(10x(n10 i

N

1i

2
i π−+∑

=

where the search domain is 12.5x12.5 i ≤≤−  and n = 2, 5, 10, 15 or 20. 

5. Shubert function (SH): 
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where the search domain is .10x,x10 21 ≤≤−  

6. Modified Himmelblau function (mHB): 

f(x) =          (2.15) ])2x()3x[(1.0)7xx()11xx( 2
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where the search domain is .6x,x6 21 ≤≤−  

7. Hartmann (H3 and H6) function: 
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where c, a and p are constants whose values are given in Torn and Zilinskas 

(1989) and the search domain is .1x0 i ≤≤  

8. Griewank (GW2 and GW8) function: 

f(x) = 1
i

x
cos

d
x i

N

1i

N

1i

2
i +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∏∑

==

             (2.17) 

where d = 200 and 600 for N = 2 and 8 respectively and the search domain is  

.600x600 i ≤≤−  
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9. Rosenbrock (ROS10, ROS15 and ROS20) function: 

f(x) =             (2.18) [ ]∑
−

=
+ −+−
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2
i

2
1i

2
i )1x()xx(100

where the search domain is 10x5 i ≤≤−  and n = 10, 15 or 20. 

10. Zakharov (Z10, Z15 and Z20) function: 

f(x) =            (2.19) 
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where the search domain is 10x5 i ≤≤−  and n = 10, 15 or 20. 

11. Trefethen problem: 

)yx(
4
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22

y

+++

−+++=
   

             … (2.20)      

 where the search domain is -1 ≤ x, y ≤ 1. 

 

The efficiency of RTA for the above benchmark functions is evaluated based on 

number of function and gradient calls (NFG) required to obtain the global minimum. 

The termination criterion is achievement of the global minimum with an accuracy of 

10-6 in the function value (absolute difference). All these are chosen for comparing 

performance of RTA in this study with the performance results of global optimization 

methods in the literature. 
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Table 2.2: Global minimum for benchmark problems 

Function Dimension (N) Global minimum Remarks 

BR 2 
0.397887 at x = {9.42478, 

2.475} 

Three global 

minima 

CA 2 
-1.031628 at x = {0.089842,-

0.712656} 
Six local minima 

GP 2 3 at x = {0, -1} Four local minima 

RA 2, 5,10,15,20 0 at x = {0, ..., 0} 
More than 50 local 

minima 

mHB 2 0 at x = {3, 2} Four local minima 

SH 2 
-186.7309 at x= {0.0217, -

0.9527} 

18 global minima; 

760 local minima 

H3 3 
-3.86278 at x = {0.11464, 

0.555649, 0.852547} 
Four local minima 

H6 6 
-3.3223 at x= {0.201, 0.150, 

0.477, 0.275, 0.311, 0.657} 
Four local minima 

GW 2, 8 0 at x = {0, …, 0} 
Several hundreds 

of local minima 

ROS 10, 15, 20 0 at x = {1, …..,1} 
Several local 

minima 

Z 10, 15, 20 0 at x = {0,…..,0} 
Several local 

minima 

Trefethen 2 
-3.306868 at x = {-0.024403} 

and y = {0.210612} 

Several hundreds 

of local minima 

 

 

2.5 Phase Equilibrium Problems 

 

One important application of global optimization is phase equilibrium 

calculations which play a significant role in the design, simulation and optimization of 

chemical processes. Development of robust and efficient methods for the calculation 

of phase equilibrium has long been a challenge and still it is. Basically, methods for 
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multiphase equilibrium calculations can be categorized into two types. The first type 

is the simultaneous equation-solving approach and the second one is Gibbs free 

energy minimization approach. In the former approach, a set of non-linear equations 

arising from mass balances and phase equilibrium relations are solved whereas Gibbs 

free energy function is minimized in the second approach. The equality of chemical 

potential criterion, which is only the necessary condition for free energy 

minimization, is used in the equation-solving approach which makes the method 

inadequate for finding the global minimum. A significant effort has been expended in 

equation-solving approach (e.g., Ohanomah and Thompson, 1984a, b and c; Joulia et 

al., 1986; Bullard and Beigler, 1993; and Teh and Rangaiah, 2002). The modern trend 

is the treatment of phase equilibrium problems by direct minimization of Gibbs free 

energy. The difficulty of phase equilibrium calculations arises due to the highly non-

linear and non-convex form of the objective function, which gives no guarantee that 

the global minimum will be found by local optimization methods. Thus, a global 

optimization method is needed for reliable multiphase equilibrium calculations.  

 

Gibbs free energy minimization for phase equilibrium calculations is first 

introduced by White et al. (1958). Since then several researchers have used different 

optimization techniques for phase equilibrium problems and a comprehensive review 

of these techniques can be found in Teh and Rangaiah (2003). Recently, Nichita et al. 

(2002a and b) applied the two-phase tunneling method of Levy and Montalvo (1985) 

for phase equilibrium calculations. In this study, the calculation of multiphase 

equilibria is organized in a stepwise manner which combines phase stability analysis 

by minimization of the tangent plane distance function with phase splitting 

calculations. The results show that the tunneling method is efficient and reliable for 
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solving multiphase equilibria and the stability problems. However, tunneling method 

was not used for free energy minimization in a single step, which is more challenging. 

 

Teh and Rangaiah (2002) compared selected methods of equation solving 

approach and free energy minimization approach for phase equilibrium calculations. 

Typical examples covering vapor-liquid equilibrium (VLE), liquid-liquid equilibrium 

(LLE) and vapor-liquid-liquid equilibrium (VLLE) problems with popular 

thermodynamic models are studied in this paper. The results show that genetic 

algorithm (GA) followed by modified simplex method of Nelder and Mead (NM) is 

more reliable and desirable than equation solving methods when there are multiple 

minima especially for VLLE calculations. Teh and Rangaiah (2003) studied a version 

of Taboo search (TS) namely, enhanced continuous TS (ECTS) for phase equilibrium 

calculations via Gibbs free energy minimization. The results show that both TS and 

GA have high reliability in locating the global minimum, and that TS requires less 

number of function evaluations than GA. 

 

The expression for total free energy, G can be simplified for different 

situations by eliminating constant terms for a particular system (Teh and Rangaiah, 

2002). If vapor and liquid phases are described by different thermodynamic models, 

then the dimensionless free energy for a non-reacting system is given by 

( )[ ] ( )[ ]∑∑ ∑
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where the superscript,  and  refer to liquid phase k and vapor phase 

respectively. The first term in the above equation refers to only liquid phases 

)k(L V

 50



 
                                                                         Chapter 2 Random Tunneling Algorithm 

assuming activity coefficient models. For equation of state models describing all 

liquid and vapor phases, the above equation can be written as 

( )[ ] ( )[ ]∑∑ ∑
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If only liquid phases exist, then equation 2.21 can be simplified by ignoring 

(which does not change for a particular example) and the second term for vapor 

phase can be eliminated. Then the equation becomes 
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In the equations 2.21 – 2.23, decision variables are number of moles of component  

in phase k ( ), np is the number of phases at equilibrium, nc is the total number of 

components in the system,  and  are the activity and partial fugacity coefficients 

of component  in phase 

i

k
in

k
iγ

k
iϕ̂

i k  respectively.  and  are the saturated vapor pressure 

and mole fraction in vapor phase of component i. More information about the 

formulation can be found in Rangaiah (2001).  

sat
iP iy

 

At physical equilibrium (i.e., without any chemical reaction), moles of each 

component should be conserved and the number of moles of each component (  

should be non-negative. Hence, free energy minimization should satisfy the following 

constraints and bounds. 

k
in )

nc...,,2,1iFzn i
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1k
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i ==∑
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            (2.24) 

nc...,,2,1iFzn0 i
k
i =≤≤             (2.25) 

The above constrained minimization problem can be transformed into an 

unconstrained minimization problem by introducing the variables (for i = 1,2,…, k
iβ
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np-1; k = 1,2,…, np) instead of mole numbers (for i = 1,2,…, nc; k = 1,2,…, np) as 

the decision variables. The new variables, β  are bounded between 0 and 1 and are 

related to the mole numbers  by 

Phase equilibrium examples considered in this study include VLE, LLE and 

VLLE examples involving multiple components (2 to 10 components) and popular 

thermodynamic models. The feed composition, operating conditions and the 

thermodynamic models used for each example are given in Tables 2.3a-2.3c. Global 

minimum and local minima for all these examples are given in Teh and Rangaiah 

(2003). Along with local minima, there are trivial solutions for several examples at 

which equilibrium composition equals to the feed composition (Teh and Rangaiah, 

2002).

 

The lower bound of the variables is taken as 1×10-15 instead of 0 to avoid the 

numerical difficulties associated with the Gibbs free energy function when the 

number of moles of a component in a phase is equal to zero.  

The equality constraints are eliminated by the introduction of equations 2.26 – 2.28 

thus reducing the number of decision variables from nc×np to nc×(np-1). The bounds 

on the decision variables are set as: 

             (2.26) 

             (2.28) 

            (2.29) 

          (2.27) 
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Table 2.3a: Selected examples for vapor-liquid equilibrium (VLE) 

No. Mixture Feed Pressure & 
Temperature Model Reference 

1 Methane (1), propane (2) F = 1.0 mole; = {0.68, 0.32} iz 100 bar, 277.6 K SRK Hua et al. (1998) 

Carbon dioxide (1), methane (2) 
F = 1.0 mole 

iz = {0.20, 0.80} 60.8 bar, 220 K PR Hua et al. (1998) 2 

F = 1.0 mole 
iz = {0.0187, 0.9813} 40.53 bar, 190K SRK Hua et al. (1998) 3 Hydrogen sulfide (1), methane (2) 

F = 1.0 mole 
iz = {0.15, 0.30, 0.55} 76 bar, 270 K PR Hua et al. (1998) 4 Nitrogen (1), methane (2), ethane (3) 

F = 1.0 mole 
iz = {0.4989, 0.0988,0.4023} 

48.6 bar, 
227.55 K PR Sun & Seider 

(1995) 
Methane (1), carbon dioxide (2), 

Hydrogen sulfide (3) 5 

F = 1.0036 mole 
iz = {0.34359, 0.30293, 0.34718} 0.1 atm, 300 K Ideal (V) 

NRTL (L) 
Castillo & 

Grossman (1981) 6a Benzene (1), acetonitrile (2), water (3) 

Benzene (1), acetonitrile (2), water (3) 
F = 1.0036 mole 

iz = {0.34359, 0.30293, 0.34718} 0.1 atm, 300 K Ideal (V) 
UNIFAC (L) --- 6b 

F = 9.38529 moles 
iz = {0.78112, 0.00930, 0.20958} 

607.95kPa, 
100.79 K PR PRO/II (1993) 7 Nitrogen (1), argon (2), oxygen (3) 

Methane (1), ethane (2), propane (3), 
i-butane (4), n-butane (5), i-pentane (6), 

n-pentane (7), n-hexane (8), 
n-pentadecane (9) 

F = 0.96890 moles 
iz = {0.61400, 0.10259, 0.04985, 

0.00898, 0.02116, 0.00722, 
0.01187, 0.01435, 0.16998} 

19.84 atm, 
314 K 

 
SRK Castillo & 

Grossman (1981) 8 

9 
Mixture of 10 hydrocarbons 

(for more details, see Teh and Rangaiah, 
2002) 

F =35.108 moles 3998.98 kPa, 
287.48 K PR Hyprotech (1998) 
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No. Mixture Feed Pressure & 

Temperature Model Reference 

No. Mixture Feed Pressure & 
Temperature Model Reference 

Table 2.3b: Selected examples for liquid-liquid equilibrium (LLE) 

10a n-butyl-acetate (1), water (2) 
F = 1.0 mole 

iz = {0.50, 0.50} 1.0 atm, 298 K NRTL Heidemann & 
Mandhane (1973) 

10b n-butyl-acetate (1), water (2) 
F = 1.0 mole 

iz = {0.50, 0.50} 1.0 atm, 298 K UNIFAC McDonald & 
Floudas (1997) 

11 Toluene (1), water (2) 
F = 1.0 mole 

iz = {0.50, 0.50} 1.0 atm, 298 K NRTL Castillo & 
Grossman (1981) 

12 Furfural (1), 2,2,4-trimethyl pentane (2),
Cyclohexane (3) 

F = 1.0 mole 
iz = {0.10, 0.10, 0.80} 1.0 atm, 298 K UNIQUAC Prausnitz et al. 

(1980) 

13 Toluene (1), water (2), aniline (3) 
F = 0.9987 mole 

iz = {0.29989, 0.20006,0.50005} 1.0 atm, 298 K NRTL Castillo & 
Grossman (1981) 

 

Table 2.3c: Selected examples for vapor-liquid-liquid equilibrium (VLLE) 

14 Benzene (1), acetonitrile (2), water (3) 
F = 1.0 036 moles 

iz = {0.34359, 0.30923, 0.34718} 
0.769 atm, 

333 K 
Ideal (V) 
NRTL (L) 

Castillo & 
Grossman (1981) 

15 Methanol (1), methyl acetate (2), 
water (3) 

F = 1.0 mole 
iz = {0.15, 0.45, 0.40} 

0.965 atm, 
325 K 

Ideal (V) 
UNIFAC (L)

McDonald & 
Floudas (1997) 

F
Ethanol (1), benzene (2), water (3) 16 

= 1.0 mole 
iz = {0.20, 0.35, 0.45} 

1.0 atm, 
338 K 

Ideal (V) 
UNIFAC (L)

Prokopakis & 
Seider (1983) 
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2.6 Parameter Estimation Problems 

 

Parameter estimation problems are important in developing good 

mathematical models that are used in the design, control and optimization of chemical 

processes. Often, non-linear models are necessary for simulating chemical processes. 

There are many methods such as method of least squares and maximum likelihood 

criterion for estimating the parameters in non-linear models (Bard, 1974). Due to the 

highly non-linear nature of the models, the optimization problem becomes non-

convex that results in local minima. Hence, standard methods using local 

minimization techniques to solve these problems can not provide the best set of values 

for model parameters (Gau and Stadtherr, 2000). Thus global optimization is needed 

for parameter estimation problems. Two parameter estimation problems: modeling of 

VLE (Stadtherr, 2002) of a binary system: benzene (1) - hexaflourobenzene (2), and 

Kowalik problem (Moore et al., 1992), both having multiple minima, are considered 

in this study. 

 

An error-in-variables formulation (Schwetlick and Tiller, 1985; Esposito and 

Floudas, 1998; and Stadtherr, 2002) which accounts for errors in all measured 

variables rather than in the dependent variables only, was used for the VLE parameter 

estimation problem. Wilson equation is used to describe the non-ideality of liquid in 

VLE. The objective function is 
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where the decision variables are energy parameters (θ1 and θ2), mole fractions of 

component 1 in the liquid phase ( 1x~ ) and system temperature ( T~ ) at different 
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measurements (m).  and  are the measured data from the experiments 

(Stadtherr, 2002).  and 

ii,1i,1 P,y,x iT

P1y1x ,, σσσ Tσ  are the standard deviations associated with the 

measurement of the respective variables in the subscript. 1y~  and P~  can be calculated 

from 

)T~()px(1γ)T~(px~γ
)T~(px~γ

y~
0
222

0
111

0
111

1 −+
=                      (2.31) 

)T~(p)x~1()T~(px~P~ 0
212

0
111 −γ+γ=                       (2.32) 

where )T~(p0
1  and )T~(p0

2 are pure component vapor pressures given by Antonie 

equation, and  and  are the activity coefficients given by Wilson equation. More 

information about the problem can be found in Stadtherr (2002).  

1γ 2γ

 

The first two terms on the right hand side of equation 2.30 are quadratic and 

convex in nature but the remaining two terms are highly nonlinear and non-convex 

with respect to decision variables. The variables are θ1, θ2, i,1x~  and iT~  ( ) 

thus resulting in 2m+2 variables. Here, 

m,...,2,1i=

16m =  and the total number of variables is 

34. The bounds over variables are chosen using plus and minus three standard 

deviations of measurement error (i.e., ]3x,3x[x~ xi,1xi,1i,1 σ+σ−∈  and 

]3T,3T[T~ TiTii σ+σ−∈ ). The bounds over θ  ( ]2000,1000[−∈θ ) are taken in order 

to cover both local minima but is narrower compared to the original interval used by 

Stadtherr (2002). The function values at local and global minimum for 34 variable 

problem are respectively 161.3 and 19.999 (Stadtherr, 2002). The problem is also 

solved by taking temperature as constant in which case the number of variables is 18. 

For the reduced problem, the local and global minimum value is found to be 237.7569  
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Table 2.4: Global and local minima for VLE parameter estimation problem with 
18 variables 

 

 Number Global 
minimum 

Local 
minimum 

i x1,i x1,i

1 0.086732 0.085284 

2 0.131225 0.129663 

3 0.161842 0.160430 

4 0.170457 0.169120 

5 0.218721 0.218025 

6 0.261657 0.261784 

7 0.356726 0.359261 

8 0.365194 0.367967 

9 0.404097 0.408022 

10 0.542825 0.550108 

11 0.638787 0.646827 

12 0.704562 0.711688 

13 0.830610 0.832218 

14 0.857743 0.857756 

15 0.911106 0.908110 

16 0.959139 0.955368 

 θ θ 

θ1 -435.184 272.370 

θ2 1052.632 -273.696 

Note: Function values at local and global minima 
are 237.7569 and 26.7209 respectively. 
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and 26.7209 respectively. These stationary points are confirmed to be minima by 

calculating gradient and Eigen values of the Hessian matrix. The global and local 

minimum for 34 and 18 variables examples are given in Stadtherr (2002) and in Table 

2.4 respectively.  

 

The objective function for Kowalik problem (Moore et al., 1992) is given by  
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where  and  are the parameters to be optimized, and and are 

constants (Moore et al., 1992). The values of local minima and global minimum are 

available in Esposito and Floudas (1998).  

321 x,x,x 4x a b

 

2.7 Results and Discussion 

 

2.7.1 Parameter Tuning 

 

Benchmark problems CA, GP, SH, H3, H6, GW, R15 and R20 are used for 

tuning the parameters of RTA, which are magnitude of perturbation (λ), step size (ss) 

and maximum number of perturbations (ps). The parameter, maximum number of 

tunneling phases (tp), is not included in the tuning because achieving the global 

minimum (with an accuracy of 10-6 in function value) is used as the termination 

criterion for comparison with other methods in the literature. The parameters are 

tuned to find the global minimum with good success rate and less number of function 

and gradient evaluations (NFG). Tuning is carried out by varying one parameter at a 

time while keeping all other parameters at their nominal values.  The nominal values 
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are chosen as λ = 0.5, ss = 0.1 and ps = 1 based on the preliminary experience with 

RTA by solving some benchmark problems. The optimal parameter values obtained 

are λ = 1, ss = 0.1 and ps = 1 except for Rastrigin (RA5, RA10, RA15 and RA20) 

functions for which λ = 0.001 and ss = 0.01. The change in the optimal values of λ 

and ss for Rastrigin functions is due to the distribution of local minima along the 

coordinate axes which makes it difficult for tunneling phase to explore better regions 

especially in high dimensional problems. The use of 1D search along with small 

magnitude of perturbation (λ) provides an advantage in exploring these better regions. 

With a small λ, the perturbed point will be near the local minimum and 1D search 

successfully identifies the better region even if random tunneling fails.  

 

The parameters for phase equilibrium problems are tuned by selecting 

examples 10a, 14 and 15 which are found to be difficult by Teh and Rangaiah (2002). 

The tuning is carried out by varying one variable while keeping others fixed at their 

nominal values. The nominal value for tp is chosen as 20 based on the preliminary 

experience with benchmark problems. The optimal parameter values obtained for 

phase equilibrium problems are λ = 1, ss = 0.02, ps = 1 and tp = 15. The optimal step 

size (ss) obtained is smaller compared to benchmark problems (optimum ss = 0.1), 

which may be due to the presence of a few but comparable minima in phase 

equilibrium problems. As the minima are comparable, better regions will be very 

small. To explore these regions in the tunneling phase, a smaller step size in the 

uniform grid search is needed. 

 

For the parameter estimation problems studied, the optimal parameter values 

(λ, ss and ps) obtained are the same as those for benchmark problems. The maximum 
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number of tunneling phases (tp) obtained is 5 for both VLE parameter estimation 

problems and Kowalik problem. Even though the number of variables is high in VLE 

parameter estimation problems when compared to the phase equilibrium problems, 

the step size is high and the maximum number of tunneling phases is low. This may 

be due to the presence of local and global minima with quite different function values 

contrary to the comparable minima in phase equilibrium problems. As the local and 

global minima have quite different function values, it is expected that better region 

with respect to local minimum will be large enough such that even a large step size 

(ss) and a few number of tunneling phases are sufficient to explore them.  

 

For comparison purposes, the parameter estimation problems have also been 

solved by genetic algorithm followed by quasi-Newton minimization (GA-QN) and 

tabu search followed by quasi-Newton minimization (TS-QN).  More information 

about the implementation of GA-QN and TS-QN can be found in Rangaiah (2001) 

and Teh and Rangaiah (2003) respectively. The parameters of these algorithms are 

tuned using both VLE modeling problems and Kowalik’s problem.  The optimal 

parameter values available in the literature (Teh and Rangaiah (2003) for TS-QN and 

Rangaiah (2001) for GA-QN) are taken as the nominal values and tuning is carried 

out for each parameter while keeping the rest fixed at their nominal values. The 

optimal parameters obtained for TS-QN are: Nt and Np (tabu and promising list size) 

= 10; εt and εp (tabu and promising radius) = 0.05; Nip (initial population size) = 15N 

where N is the dimension of the problem; hn (length of the hyper-rectangle) = 0.75; 

and Itermax (maximum number of iterations) = 50N; and for GA-QN, they are: NP 

(population size) = 15N; Pcross (probability of crossover) = 0.8; Pmut (probability of 

mutation) = 0.6 and Genmax (maximum number of generations) = 35N. 
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2.7.2 Performance of RTA for Benchmark Problems 

 

The benchmark problems are solved 100 times, each time by generating 

different initial estimate randomly in the feasible region. The achievement of global 

minimum with desired accuracy (i.e., absolute difference in the function value is ) 

is considered as the termination criterion for comparison with other methods and the 

gradient of the function is calculated numerically. All the results are summarized in 

Table 2.5a and b, and are compared in terms of NFG required to locate the global 

minimum, with TRUST, gradient descent with dynamic tunneling (GRDT), fast 

annealing evolutionary algorithm (FAEA), tunneling method and RTA (Jiang et al., 

2002) in the literature. The blank in this table indicates no results are available in the 

literature for the respective functions. The results of RTA (this work), RTA (Jiang et 

al., 2002) and tunneling method include gradient calls whereas the results of FAEA 

(does not require gradient), reported results of TRUST did not include gradient calls 

and no information is available for GRDT in RoyChowdhury et al. (2000). The results 

in Table 2.5a represent the average over 100 trials for RTA (this work), RTA (Jiang et 

al., 2002) and FAEA. The results of TRUST and tunneling method are the average of 

2

610−

n
 (where n is the number of variables) trials and average over 4 trials respectively, 

and no information is available for GRDT. The results show that RTA (this work) is 

slightly inefficient compared to TRUST but better than GRDT, FAEA and tunneling 

method. The computational efficiency of RTA (this work) is low compared to TRUST 

probably because the later did not include the gradient calls (which could be more 

than one-half of the number of function calls) and also the results are the average of 

maximum 8 trials. Results for TRUST and RTA (Jiang et al., 2002) could not be 

validated by us as their programs and the parameters employed are not available.  

 61



 
                                                                         Chapter 2 Random Tunneling Algorithm 

 

Table 2.5a: Average NFG for benchmark problems (< 10 variables) 

Function TRUST# GRDT FAEA Tunneling
method 

RTA 
(Jiang et 
al., 2002) 

RTA 
(this work) 

BR 55 466 394 --- 23 24 

CA 31 290 303 13,891 135 76 

SH 72 502 446 1,644 202 301 

GP 103 5,175 490 --- 113 130 

mHB --- --- --- --- --- 209 

RA2 59 822 544 --- 383 656 

RA5 --- --- 2,762 --- 687 2,092 

H3 --- 2,811 488 --- 60 63 

H6 --- 963 2,229 --- 196 146 

GW2 --- --- 7,804 --- 281 1,306 

GW8 --- --- --- --- 465 2,381 

Trefethen --- --- --- --- --- 21,081 
#Gradient calls are not included in this method. Results for TRUST, GRDT, FAEA 
and Tunneling method are taken from Barhen et al. (1997), RoyChowdhury et al. 

(2000), Cai and Shao (2002) and Levy and Montalvo (1985) respectively. 
 
 

Table 2.5b: Average NFG for benchmark problems (≥  10 variables) 

Function RTA (this work) 

ROS10 399 

RA10 9,604 

Z10 238 

ROS15 606 

RA15 23,511 

Z15 437 

ROS20 646 

RA20 41,726 

Z20 673 
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The NFG for the RTA (this work) is comparable with RTA (Jiang et al., 2002) 

for most of the two dimensional functions except for Rastrigin and Griewank 

functions. This is due to the presence of many local minima and their distribution in 

these problems. As the number of local minima is high, number of tunneling phases 

will be more, which includes 1D search along all coordinate axes contributing to more 

NFG. Even though coordinate search in the tunneling phase contributes to more NFG, 

for certain functions like Rastrigin, convergence to the global minimum could not be 

achieved using random tunneling alone. This may be due to the distribution of local 

minima along coordinate axes in Rastrigin functions, which made us to include 1D 

search in the tunneling phase. Even though Shubert function has 760 local minima, 

NFG is less because it does not have comparable minima (i.e., function values at local 

and global minima are close to one another) like in Rastrigin function; also, it has 

many global minima (18) at different locations and finding any one of them is 

sufficient. This causes the gradient based minimization technique (quasi-Newton 

method) to locate the global minimum easily thus requiring less NFG. In case of 

Rastrigin function, local minimization traps in one of the local minima and the 

tunneling phase faces difficulty in exploring better regions thus requiring larger NFG. 

The NFG for Trefethen problem is high because of the associated huge number of 

local minima.  

 

The results for the benchmark problems with greater than or equal to 10 

variables are given in Table 2.5b. Results are given only for RTA (this work) as no 

information is available in the literature on TRUST, GRDT, FAEA, and RTA (Jiang 

et al., 2002) for these functions. All the results are average over 100 trials. As the 

number of variables is increasing NFG is increasing for these functions especially for 

 63



 
                                                                         Chapter 2 Random Tunneling Algorithm 

Rastrigin functions. This is due to the increase in complexity with more number of 

variables. The NFG for Rosenbrock and Zakharov functions are lower even for 20 

variables when compared to Rastrigin functions, probably due to lower number of 

local minima when compared to Rastrigin functions. 

 

2.7.3 Performance of RTA for Phase Equilibrium Calculations 

 

Each one of these examples is solved 25 times, each time starting from a 

different point randomly chosen in the entire feasible region. All the examples are 

solved with RTA using two types of termination criterion: one with convergence to 

the global minimum (with an accuracy of 10-6 in function value) referred as RTA-GM 

and another with general stopping criterion (i.e., the algorithm terminates when the 

maximum number of tunneling phases (tp), is reached) referred as RTA-GS. In RTA-

GM, the algorithm terminates whenever it finds the global minimum or the number of 

tunneling phases reaches 600. The results are given in Tables 2.6a and 2.6b which 

include both objective function calls and the function calls required for the gradient 

(NFE), which is calculated numerically. The average NFE is calculated based on the 

successful runs only. For all problems, the number of phases at equilibrium is chosen 

correctly and the present study is limited to calculation of phase compositions and 

number of moles of each phase at equilibrium. Results by RTA are compared with 

those of TS-QN and GA-QN, which are taken from Teh and Rangaiah (2003). The 

comparison is made in terms of reliability (success rate i.e., number of times the 

algorithm successfully identified global minimum out of 25 trials) and computational 

efficiency (NFE required in locating the global minimum).  
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Two-phase equilibrium (VLE and LLE) calculations 

 

The results for two-phase equilibrium examples are given in Table 2.6a and 

the success rate is 100% for all the methods unless otherwise stated. RTA-GM located 

the global minimum for all the examples with 100% success rate except for example 

9. This is because of comparable minima in this example. The reliability and 

computational efficiency of RTA-GM are better when compared with RTA-GS.  NFE 

of RTA-GM is 3 to 33 times less than RTA-GS. This is because in case of general 

stopping criterion, the algorithm has to run for the maximum number of tunneling 

phases (tp) even though it finds the global minimum in just a few number of tunneling 

phases. To improve the efficiency, RTA-GS is tried with tp = 10 also. As the 

maximum number of tunneling phases decrease (from 15 to 10), success rate and NFE 

also decrease. This is because, as tp decreases, search points for all the tunneling 

phases and number of local minimization phases decrease resulting in low success 

rate and low NFE. Hence, tp = 15 is needed for better reliability. 

 

The success rate of RTA-GS (with tp = 15) is 100% for all the examples 

except for example 12 (96% success rate). This is due to the presence of comparable 

minima (function values at global minimum and at trivial solution are -0.360353 and -

0.354340 respectively) which poses difficulty in identifying better regions in the 

tunneling phase.  For example 9, all methods failed to locate the global minimum due 

to the very close objective function value (-161.5364) at trivial solution to the 

function value at global minimum (-161.5416). The reliability of RTA-GS is 

comparable to both TS-QN and GA-QN; although its computational efficiency is  
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Table 2.6a: Average NFE for VLE and LLE examples 

RTA-GS 
Number RTA-GM 

tp = 10 tp = 15 
TS-QN GA-QN 

1 206 2,034 3,345 1,412 20,017 

2 496 1,674a 2,513 1,349 20,018 

3 390 1,801b 2,806 1,187 20,024 

4 1,071 2,807c 4,068 1,777 20,238 

5 130 2,882 4,393 1,511 20,027 

6a 275 3,919 5,907 1,616 20,089 

6b 270 3,878 5,800 1,648 20,088 

7 786 3,124b 4,605 1,894 20,054 

8 1,118 14,555 21,924 10,040 20,515 

9 Trivial Trivial Trivial Trivial Trivial 

10a 469 1,834 2,744 1,425 20,018 

10b 99 2,163 3,249 1,369 20,024 

11 104 2,229 3,346 1,367 20,026 

12 1,212 2,668c 4,052a 1,571 20,028d

13 610 3,427 5,166 1,719 20,069 
a Success rate = 96%;  b Success rate = 92%; c Success rate = 84%; d  

Success rate = 76%. 
 

lower than TS-QN, it is better than GA-QN for two-phase equilibrium examples 

tested. NFE of RTA-GS is 4 to 7 times less than GA-QN but is 2 to 4 times more than 

TS-QN. NFE of RTA-GS for example 8 is more than that with GA-QN, and is mainly 

due to the use of general stopping criterion in this example. Even though RTA-GS has 

located the global minimum in just one tunneling phase in example 8, the algorithm 

continues for maximum number of tunneling phases (tp) which increases the NFE. 
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Three-phase equilibrium (VLLE) problems 

 

  The results for three phase equilibrium (VLLE) problems are given in Table 

2.6b. RTA-GM located the global minimum for all the examples with 100% success 

rate. The reliability of RTA-GM is better than RTA-GS but computational efficiency 

is less compared to RTA-GS. NFE by RTA-GM are 1.2 times less, 1.7 and 5.04 times 

more than RTA-GS for examples 14, 15 and 16 respectively. The main reason for 

more NFE is the presence of comparable minima in these examples (Teh and 

Rangaiah, 2003). Example 14 has a constrained minimum with function value -

1.407855 compared to the global minimum with function value -1.408518. For 

examples 15 and 16, function values at local and global minima are -1.334404 and -

1.334461, and are -1.233294 and -1.235896 respectively. As the minima are 

comparable, better region as shown in Figure 2.2b becomes smaller and smaller 

making it extremely difficult for tunneling phase to explore. This increases the 

number of tunneling phases (around 50 for example 14 to 550 for example 16) to 

explore better regions thus contributing to more NFE. 

 

 RTA-GS is evaluated with both tp = 15 (optimal maximum number of 

tunneling phases) and 50 to observe its effect on success rate and NFE. As the 

maximum number of tunneling phases increase (from 15 to 50), both success rate and 

NFE increase. This is due to the intensive search resulting from more number of 

tunneling phases. The reliability of RTA-GS in locating the global minimum for these 

examples is low when compared to TS-QN and GA-QN even though computational 

efficiency of RTA-GS is comparable to TS-QN and is better than GA-QN. This is due 

to the comparable minima in these examples.  
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The results of RTA are compared with Simulated Annealing (SA) and 

tunneling method for some examples available in literature. The results of SA taken 

from Rangaiah (2001) are average over 100 trials but no such information is provided 

for results of tunneling method in Nichita et al. (2002). The stopping criterion used for 

SA is similar to that of RTA-GS (i.e., maximum number of iterations) but is different 

for tunneling method. The success rate of SA for examples 8 and 10a is 100%, and is 

low (52%) for example 15 due to comparable minima in that example. The NFE of 

SA for these examples (8, 10a and 15) is 134767, 34543 and 99737 respectively, and 

is high compared to that of RTA. This is because of the different escaping 

mechanisms from local minima in the corresponding methods. SA climbs the hills to 

explore potential (global) regions whereas RTA tunnels the hills thus providing good 

computational efficiency compared to SA. 

 

 



 
                                                                         Chapter 2 Random Tunneling Algorithm 

 69 

Table 2.6b: Average number of function evaluations and success rate: VLLE examples 

RTA-GS 
RTA-GM 

tp = 15 tp = 50 
TS-QN GA-QN 

No. 

NFE Succes
s rate NFE Success 

rate NFE Success 
rate NFE Success 

rate NFE 

14 7,711# 56 9,442 92 31,512 100 5,615 100 20,212 

15 15,526# 52 8,696 64 28,547 100 5,627 84 20,254 

16 36,856# 12 7,308 36 24,375 80 5,479 100 20,262 

# Success rate is 100%. 
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 Although the stopping criterion was different for RTA and tunneling method, 

comparison is made for completeness. The NFE took by tunneling method for 

examples 2, 3 and 4 are 739, 645 and 4831 respectively. NFE of tunneling method is 

low compared to RTA for examples 2 and 3, and probably because of the way these 

examples were solved by the corresponding methods. Nichita et al. (2002a) used a 

two-step procedure: solving the corresponding phase stability problem (minimization 

of tangent plane distance function (TPDF) by tunneling method) followed by a flash 

calculation (by Newton’s method) using the solutions obtained from TPDF 

minimization whereas RTA has been applied directly to the minimization of Gibbs 

free energy function. Generally, the non-linearity and the number of variables of 

phase stability problems are less compared to those of corresponding Gibbs free 

energy functions. Apart from the work of Nichita et al. (2002a), there have been a few 

successful applications of tunneling method of Levy and Montalvo (1985) in the 

literature. These applications include Barron et al. (1996), Kanzow (2000), Merlitz 

and Wenzel (2002) and Gomez et al. (2003) but it was not clear whether these 

problems have comparable minima as in phase equilibrium problems.  

 

2.7.4 N-dimensional Test Function 

 

To provide a benchmark problem with a global minimum very comparable to 

the next higher minimum (similar to phase equilibrium problems), a modified n-

dimensional test function is developed in this work and is given by  

f(x) =                      (2.34) ∑∑
==

+−+−
N

1i

2
i

N

1i
i

2
i

4
i )90353.2x()x5x16x()2/1( α
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where search domain is -5 ≤ xi ≤ 5 and the function has 2n minima including the 

global minimum which is at xi = -2.90353 for i = 1, 2, …, n. This function is 

developed from the n-dimensional test function given in Cetin et al. (1993). As α 

value changes (0, 0.3 and 0.4304) in equation 2.34, the minima become comparable 

and are given in Table 2.7 for 4-variables case.  

 

Table 2.7: Minima for the modified n-dimensional test function (4variables) 

Number α = 0 α = 0.3 α = 0.4304 

1 -114.254506 -143.564453 -156.653489 

2 -114.254506 -143.564453 -156.653489 

3 -114.254506 -143.564453 -156.653489 

4 -114.254506 -143.564453 -156.653489 

5 -128.391225 -147.931190 -156.657214 

6 -128.391225 -147.931190 -156.657214 

7 -128.391225 -147.931190 -156.657214 

8 -128.391225 -147.931190 -156.657214 

9 -128.391225 -147.931190 -156.657214 

10 -128.391225 -147.931190 -156.657214 

11 -142.527944 -152.297926 -156.660938 

12 -142.527944 -152.297926 -156.660938 

13 -142.527944 -152.297926 -156.660938 

14 -142.527944 -152.297926 -156.660938 

15 -100.117787 -139.197716 -156.649765 

16 -156.664663 -156.664663 -156.664663 
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At α = 0.4304, the minima are comparable; the fractional change in the 

function value from the global minimum to the nearest local minimum is around 

0.005% to 0.001% compared to around 0.2 to 0.003% in phase equilibrium problems. 

The contour plots of the original and modified N-dimensional test functions are 

shown in Figures 2.4 and 2.5. For plotting, bounds over the variables are tightened to 

-4 ≤ xi ≤ 4 for clarity while retaining all the minima. The contours of both the test 

functions are similar except change in the function values. For the one dimensional 

case, the function values at local minimum (LM in Figure 4) are -25.029446 and -

39.162441 for the original test function and modified one respectively. The global 

minimum (GM in Figure 2.4) is at function value -39.166165 for both the test 

functions. For the two dimensional case, the function values at the local minima 

(LM1, LM2 and LM3 in Figure 5) are -50.058893, -64.195612, and -64.195612 for 

the original test function, and are -78.324882, -78.328607, and -78.328607 for the 

modified one. The global minimum (GM in Figure 2.5) is at function value -

78.332331 for both the test functions.  Besides these minima, these functions also 

have one maximum and 4 saddle points (Figure 2.5), which are not of interest here. 
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Figure 2.4: Original and modified N-dimensional test functions in one 
dimensional case 
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(a)   

 
 

(b) 

 
 
 

Figure 2.5: Contour plots of (a) Original and (b) Modified test functions 
in two dimensional case 
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Table 2.8: Average NFE and success rate of RTA (with general stopping criterion): modified N-dimensional test function 

α = 0 α = 0.3 α = 0.4304 

Variables 
Difference* Success 

rate NFE Difference* Success 
rate NFE Difference* Success 

rate NFE 

2 18.0 100 2,650 5.57 100 2,688 4.75×10-3 99 2,839 

4 9.02 91 5,496 2.79 81 5,634 2.37×10-3 68 5,833 

6 6.02 46 8,784 1.86 33 9,042 1.58×10-3 22 9,209 

8 4.51 16 12,590 1.39 10 12,922 1.19×10-3 8 13,012 

10 3.61 5 16,727 1.11 4 17,146 9.51×10-4 1 17,354 

* Difference represents the percentage change in function value from the global minimum to the nearest local minimum. 
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RTA with general stopping criterion is then tested on the modified n-

dimensional test function with the optimal parameter values obtained for the phase 

equilibrium problems. The function is solved 1000 times, each time with a randomly 

generated initial estimate, for more precise results. The results are given in Table 2.8 

in terms of success rate and NFE required in locating the global minimum. Average 

NFE is calculated based on the successful runs only. As the minima become 

comparable (i.e., α = 0 to 0.4304), success rate decreases. This is because better 

regions become smaller and tunneling phase faces difficulty in exploring them. As the 

number of variables increases, the complexity increases resulting in low success rate 

for problems having more than 4 variables. The success rate is 100% in case of 2 

variables (same as in phase equilibrium examples 1, 2, 3, 10a and 10b) but decreases 

as the number of variables increases (as in examples 14, 15 and 16).  

 

2.7.5 Performance of RTA for Parameter Estimation Problems 

 

Both VLE modeling problems and Kowalik’s problem are solved 25 times, 

each time with a randomly generated different initial estimate. All the examples are 

solved with both RTA-GM, RTA-GS, GA-QN and TS-QN. The results are given in 

Table 2.9 and the success rate of all the methods is 100% unless otherwise stated. 

NFE for these problems include function calls for both objective function and gradient 

evaluations, and are the average over successful runs only. The corresponding CPU 

times for each problem are given in brackets. Note that the computer system 

employed in this study is Pentium 4 (CPU 2.8 GHz, 512MB RAM) for which MFlops 

(million floating point operations per second) for the LINPACK benchmark program 

(at http:// www.netlib.org) for a matrix of order 500 are 243.  
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Table 2.9: Average NFE and CPU time for parameter estimation problems 

RTA-GS 
Examples RTA-GM 

tp = 3 tp = 5 
TS-QN GA-QN 

VLE – 18 variables 78,113 
(3.07) 

189,155 
(7.78) 

305,864 
(12.38) 

20,349 
(1.57) 

174,473 
(9.51) 

VLE – 34 variables 348,696 
(13.97) 

723,171a

(31.50) 
1,150,505 

(47.89) 
40,789 
(3.79) 

617,628 
(47.08) 

Kowalik problem 474 
(0.002) 

1,166 
(0.004) 

1,834 
(0.007) 

1,501 
(0.012) 

6,177 
(0.066) 

Note: a Success rate is 92%. 

 

All methods have successfully solved the parameter estimation problems with 

100% success rate. The reliability of RTA-GM and RTA-GS for VLE problems is 

high even though they involve 18 to 34 variables. This is because function values at 

the local and global minima are quite different which allows the tunneling phase to 

explore them successfully. The results show that TS-QN is superior compared to both 

RTA and GA-QN in terms of computational efficiency. The NFE of RTA-GM is less 

than that of GA-QN, and that of RTA-GS is higher compared to GA-QN. The CPU 

time taken by RTA-GS (tp = 3) for VLE problems is less compared to GA-QN even 

though NFE of the former is more than that of the latter. This could be because of 

additional steps required for crossover and mutation in GA-QN. In a similar way, the 

time taken by RTA-GM for VLE -18 variables problem is less than that of TS-QN for 

VLE – 34 variables problem even though the latter took less NFE compared to that of 

former. This may be because of extra time taken for comparison of each search point 

with those of tabu and promising lists in TS-QN. As expected, NFE increases with 

number of variables from 18 to 34 for all the methods. Results for Kowalik’s problem 

show that the reliability of all methods including RTA is very good with 100% 

success rate. NFE for solving Kowalik’s problem by interval analysis is 545,900 
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(Moore et al., 1992), which is very high compared to that of RTA, TS and GA 

methods. VLE modeling problems and Kowalik problem are also evaluated by RTA 

with tp = 3 along with the optimal maximum number of tunneling phases (i.e., tp = 5) 

to observe its effect on success rate and NFE required to locate the global minimum. 

The effect is as expected – success rate and NFE increase with tp. 

 

2.8 Summary 

 

RTA was implemented and evaluated for benchmark, phase equilibrium and 

parameter estimation problems. The tunneling phase of RTA was implemented with 

uniform grid search and 1D search along the coordinate axes. The results for 

benchmark problems involving 2 to 20 variables with a few to hundreds of local 

minima show that the computational efficiency of RTA is comparable to or better 

than other methods in the literature. They also show that number of function calls is 

high for some functions especially for Rastrigin function due to the presence of more 

local minima and their distribution along the coordinate axes in those functions. RTA 

was then tested on two and three-phase equilibrium problems with several 

components and different thermodynamic models, and using two types of termination 

criterion: convergence to global minimum (RTA-GM) and general stopping criterion 

(RTA-GS). The results show that reliability and computational efficiency of RTA-

GM are better than RTA-GS. The reliability of RTA-GS is comparable to TS-QN and 

GA-QN, and its computational efficiency is lower than TS-QN but is better than GA-

QN for VLE and LLE examples. The reliability of RTA-GS for VLLE examples is 

lower than both TS-QN and GA-QN even though its computational efficiency is 

comparable to TS-QN and is better than GA-QN. This is due to the presence of 

comparable minima in phase equilibrium problems which make it challenging for the 
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tunneling phase to explore new regions with lower function value. A benchmark 

problem having comparable minima as in phase equilibrium problems, was proposed 

and used for testing RTA. VLE parameter estimation problems having 18 and 34 

variables, and minima with different function values, have also been studied. Both 

RTA-GM and RTA-GS located the global minimum for these examples successfully 

even though number of variables is high compared to phase equilibrium problems. 

The four parameter Kowalik problem has also been solved by RTA with 100% 

success rate. Even though RTA solved many phase equilibrium examples and 

parameter estimation problems successfully, the reliability of the algorithm needs to 

be improved especially for VLLE examples and example 9, where all methods (TS-

QN, GA-QN and RTA) failed to locate the global minimum. This study shows that 

RTA is attractive for application problems which do not have comparable global and 

local minima. 
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CHAPTER 3 

EVALUATION OF DIFFERENTIAL EVOLUION AND  

TABU SEARCH*

 

Phase equilibrium calculations (PEC) and phase stability (PS) problems play a 

crucial role in the simulation, design and optimization of separation processes such as 

distillation and extraction. The former involve the global minimization of Gibbs free 

energy function whereas the latter requires the global minimization of tangent plane 

distance function (TPDF). In this work, two promising global optimization 

techniques: differential evolution (DE) and tabu search (TS) have been evaluated and 

compared, for the first time, for benchmark, PEC and PS problems. A local 

optimization technique is used at the end of both TS and DE to improve the accuracy 

of the final solution. Benchmark problems involve 2 to 20 variables with a few to 

hundreds of local minima whereas PEC and PS problems consist of multiple 

components with comparable minima. PEC involves both vapor-liquid, liquid-liquid 

and vapor-liquid-liquid equilibria with popular thermodynamic models. The results 

show that DE is more reliable but computationally less efficient compared to TS for 

benchmark, PEC and PS problems tested. 

 

 

                                                 
* This chapter is based on the paper – Mekapati Srinivas and Rangaiah, G. P. A study of 
differential evolution and tabu search for benchmark, phase equilibrium and phase stability 
problems, Computers and Chemical Engineering, 31, pp. 760-772. 2007a. 
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3.1 Introduction 

 

Phase equilibrium calculations (PEC) and phase stability (PS) problems have 

to be solved a very large number of times in the design and analysis of chemical 

processes. For a system with specified components, composition, temperature and 

pressure, PEC involves the calculation of number of moles of each phase and its 

composition at equilibrium whereas PS analysis determines the stability of the system. 

There are mainly two different approaches for PEC: equation solving approach and 

Gibbs free energy minimization approach. The former involves solving a system of 

non-linear equations resulting from mass balances and equilibrium relationships 

whereas the latter involves the minimization of highly non-linear Gibbs free energy 

function. Even though equation solving approach seems to be faster and simple, the 

solution obtained in this method may not correspond to the true minimum of Gibbs 

free energy function. Also, it needs a priori knowledge of phases existing at 

equilibrium. Hence, Gibbs free energy minimization is the desirable approach for 

PEC. 

 

The concept of Gibbs free energy minimization was first proposed by White et 

al. (1958), stating that a necessary condition for a given system to be at equilibrium is 

that the total Gibbs free energy must be at the global minimum. The objective 

function in this approach is highly non-linear and non-convex necessitating reliable 

and efficient global optimization. Several researchers have applied different global 

optimization methods using this approach and a review of these studies can be found 

in Teh and Rangaiah (2003). Recently, Nichita et al. (2002a) employed a tunneling 

method for PEC. In this method, the calculations are organized in a stepwise manner, 
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combining PS analysis by minimization of tangent plane distance function (TPDF) for 

phase splitting calculations. The tunneling method has two phases: a local bounded 

minimization using a limited memory quasi-Newton method and a tunneling phase to 

find a better initial estimate for the next phase of local minimization. The results show 

that the tunneling method is efficient and reliable for solving multiphase equilibrium 

problems. Iglesias-Silva et al. (2003) proposed an algebraic method that includes 

Gibbs free energy minimization for PEC. The method uses orthogonal derivatives, the 

tangent plane condition and mass balances to reduce the Gibbs minimization 

procedure to a task of finding the solution of a system of non-linear equations. The 

results show that the method has good convergence rate. Burgos-Solórzano et al. 

(2004) solved the problem by combining reliable deterministic techniques such as 

interval Newton technique with local optimization procedure. The deterministic 

techniques validate the results obtained from the local optimization technique and 

provide corrective feedback until the right result is found. The results show that the 

procedure is good for high pressure chemical and multiphase equilibrium using cubic 

equation of state models. In these cited works, there is no rigorous comparison of the 

proposed methods with others in the literature. 

 

Most often PEC needs a priori information about the number of phases 

existing at equilibrium. Some of the methods (e.g., Gautam and Seider, 1979) explore 

all possible number of phases in a systematic manner. Initially the method assumes a 

small number of phases and checks for the stability of phases. If they are stable the 

method retains the phases else a new phase will be added. A PS problem can be 

formulated as either minimization problem or an equivalent non-linear equation 

solving problem. However, the conventional solution techniques are initialization 
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dependent and may converge to a local or trivial solution based on the initial guess. 

Baker et al. (1982) proposed the tangent plane criterion often used for PS analysis. 

The criterion states that a hypothetical phase is thermodynamically stable provided 

the tangent plane generated at the given composition lies below the molar Gibbs free 

energy surface for all the compositions. The problem can be formulated as the 

minimization of TPDF, which is a non-linear and non-convex objective function 

requiring global optimization. A review of several works using the tangent plane 

criterion for PS problems can be found in Rangaiah (2001). 

 

Tessier et al. (2000) implemented interval Newton technique for PS analysis. 

The examples are modeled by non-random two liquid (NRTL) and universal quasi-

chemical (UNIQUAC) thermodynamic models. They also proposed two 

enhancements for interval Newton method. The results indicate that the computational 

efficiency of the enhanced methods is better compared to the original one. Nichita et 

al. (2002b) used a global optimization method namely, tunneling method for PS 

analysis. The problem has been formulated both in conventional approach (i.e., 

composition space) and in reduced variable approach. The results show that the 

method is reliable in solving the PS problems. Balogh et al. (2003) used a modified 

TPDF such that the zeros of the objective function become its minima, since it is 

advantageous to search for minima with known zero minimum value. They employed 

a method namely, stochastic sampling and clustering to locate the minima of the 

modified TPDF. The results show that the method is able to solve small to moderate 

size problems in an efficient and reliable way.  
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However, most of the methods employed for PEC and PS problems are local 

in nature and relatively few stochastic global optimization techniques have been 

explored for these problems. Stochastic methods are usually quite simple to 

implement and use, and they do not require transformation of the original problem. 

Furthermore, these techniques can locate the vicinity of global solutions with relative 

efficiency compared to deterministic techniques (Moles et al., 2003). Among the 

many, differential evolution (DE) (Storn and Price, 1997) and tabu search (TS) 

(Chelouah and Siarry, 2000) are some of the most promising methods reported in the 

literature. Even though they have been tested for several applications in chemical 

engineering and other fields (e.g., Lin and Miller, 2004a and b; Mayer et al., 2005; 

and Bingul, 2004), they have not been applied to PEC and PS problems except Teh 

and Rangaiah (2003) who studied PEC problems by TS. Also, DE and TS have not 

been comprehensively compared for benchmark problems. Hence, in this work, both 

DE and TS are first evaluated and compared for benchmark problems with 2 to 20 

variables but involving a few to hundreds of local minima. The methods are then 

tested for PEC and PS problems involving multiple components, multiple phases and 

popular thermodynamic models. The evaluation includes both reliability and 

computational efficiency using practical stopping criteria. 

 

3.1.1 Differential Evolution  

 

DE (Storn and Price, 1997) is a population based direct search method. The 

algorithm implemented in this study (Figure 3.1) starts with specifying the 

parameters, namely, amplification factor (A), crossover constant (CR), type of 

strategy, population size (NP), maximum number of successive iterations (Scmax)  
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Figure 3.1: Flow chart of DE-QN  
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without improvement in the best function value and maximum number of generations 

(Genmax). The initial population is randomly generated using the uniformly distributed 

random numbers to cover the entire solution space. The individuals are checked for 

the boundary violation to see if any individual is generated in the infeasible region; 

the infeasible points are replaced by generating new individuals. The objective 

function values of all the individuals are calculated and the best point is determined. 

Then the three main steps: mutation, crossover and selection on the population, are 

carried out. Mutation and crossover operations are performed to diversify the search 

thus escaping from the local minima. The mutant vector is generated for each 

randomly chosen target vector Xi, G by 

Vi, G+1 = Xr1, G + A (Xr2, G – Xr3, G);         i = 1, 2, 3, …, NP.            (3.1) 

where r1, r2 and r3 belongs to the set {1, 2, 3, …, NP} and Xr1, G, Xr2, G and Xr3, G 

represents the three random individuals chosen in the current generation, G, to 

produce the mutant vector for the next generation, Vi, G+1. The random numbers r1, r2 

and r3 should be different from the running index, i, and hence NP should be ≥ 4 to 

allow mutation. A is a real value between 0 and 2 which controls the amplification of 

the differential variation between the two random vectors.  

 

In the crossover step, the trial vector, Ui, G+1 is produced by copying some 

elements of the mutant vector, Vi, G+1 to the target vector, Xi, G with probability equal 

to CR. As illustrated in Figure 3.2, a random number (ran) is generated for each 

element of the target vector. If ran ≤ CR, the element of mutant vector is copied else 

the target vector element is copied. After mutation and cross over operations, the trial 

vector competes with the target vector for selection into the next generation. A greedy 

criterion based on objective function value is used to screen the trial vector. If the trial  
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Figure 3.2: Schematic diagram of crossover operation; for continuous lines, 
 ran ≤ CR, and for dotted lines, ran > CR 

 

vector has a better value compared to the target vector, it replaces the target vector in 

the population thus allowing the best solution into further generations. The process of 

mutation, crossover and selection is repeated until a termination criterion such as 

maximum number of generations is satisfied. The algorithm then terminates providing 

the best point that has been explored over all the generations. The best point is further 

refined using a fast convergent quasi-Newton method to achieve the best minimum 

which is declared to be the global minimum. 

 

3.1.2 Tabu Search 

 

TS, first developed by Glover (1989, 1990), has been widely used for 

combinatorial optimization (Youssef et al., 2001) but its use is very limited in 

continuous optimization (Hu, 1992; Chelouah and Siarry, 2000; Teh and Rangaiah, 

2003; Lin and Miller, 2004a and b). TS is a meta heuristic that guides the heuristics to 

escape from the local minima. The main concepts of TS include diversification and 
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identifying the most promising region. The diversification step performs an 

exhaustive search in the entire solution space by generating solutions that are not seen 

before. To implement this, TS maintains both tabu list (consisting of unpromising 

points) and promising list to avoid repeated visits to the same place in the search 

region, which in turn improves the computational efficiency. After a specified 

maximum number of iterations, in-depth search known as intensification is performed 

from the most promising point. 

 

The TS algorithm (Figure 3.3) starts with the selection of values for the 

parameters: tabu list size (Nt), promising list size (Np), tabu and promising radii (εt 

and εp), length of the hyper-rectangle (hn), initial population size (NPinit), number of 

neighbors (Nneigh), maximum number of successive iterations (Scmax) without 

improvement in the best function value and maximum number of iterations (Itermax). 

The algorithm then randomly generates a population of specified size and evaluates 

the objective function value at each individual. The best point is filled into the 

promising list and the remaining will be sent to the tabu list. The best point found is 

selected as the current centroid (s) of the hyper-rectangle, which is used to generate 

neighbors to explore for better points in the neighborhood. The generation of 

neighbors can be executed in many ways, i.e., either by using hyper-circles or hyper-

rectangles etc. In this study, hyper-rectangles have been used to generate the 

neighbors. A detailed explanation about the generation of neighbors using hyper-

rectangles is available in Teh and Rangaiah (2003). The neighbors are then compared 

with the points in tabu and promising lists, and only those points away from the latter 

are evaluated. The rejection of the neighbors which are nearer to the points in tabu 

and promising lists improves the computational efficiency of TS avoiding repeated  
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Figure 3.3: Flow chart of TS-QN  
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visits to the same place during the search. The algorithm selects the best point found 

in the current iteration as the centroid of the hyper-rectangle to generate neighbors for 

the next iteration. The best point in the current iteration is accepted even if it is worse 

than that of the previous iterations to avoid entrapment in the local minima. The 

process of generating neighbors is repeated and the tabu and promising lists are 

updated in each iteration. Once the tabu/promising list is filled, the next 

tabu/promising point will be placed in the first position of tabu/promising list and 

subsequent positions are occupied by the remaining points. Thus both tabu and 

promising lists are updated dynamically during the search to keep the latest point(s) in 

the list by replacing the earliest-entered point(s). After a specified number of 

iterations, most promising area is identified and is further investigated by 

intensification step. Generally, a local optimization technique is used in this step; a 

fast convergent quasi-Newton technique is used in this study. The algorithm then 

terminates by declaring the final solution as the global minimum. 

 

3.2 Implementation of DE and TS 

 

A Matlab code for DE is taken from the website 

http://www.icsi.berkeley.edu/~storn/code.html, and a boundary violation check is 

implemented in the code. For the local minimization step, an in-built subroutine from 

the Matlab optimization tool box namely, FMINCON is used. The objective function 

for DE code is written in FORTAN and simple gateway functions are used to call it 

from the Matlab. This is adopted as all our programs for PEC and PS are in 

FORTRAN. For TS, the FORTRAN code developed by Teh and Rangaiah (2003) is 

used; it uses the IMSL subroutine namely, DBCONF for the local minimization step. 
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Both FMINCON and DBCONF employ the fast convergent quasi-Newton method 

with BFGS update for the Hessian matrix. For the first time, a local optimization 

technique is used with DE in this study, and a similar work is done for TS by Teh and 

Rangaiah (2003). The minimization technique at the end of these methods is executed 

to find the final solution accurately and efficiently. 

 

3.3 Benchmark Problems 

 

Several benchmark problems having 2 to 20 variables and a few to several 

hundreds of local minima are used to evaluate both DE followed by quasi-Newton 

method (DE-QN) and TS followed by quasi-Newton method (TS-QN). A brief 

description of the functions and the global minima are given in Table 3.1.  

 

Table 3.1: Details of the benchmark problems 
 

Function Number of 
variables (N) Global minimum Remarks 

Goldstein and Price 
function (GP2) 

2 3 at x = {0, -1} Four local 
minima 

Easom function 
(ES2) 

2 -1 at x = { ππ, } Several local 
minima 

Shubert function 
(SH2) 

2 -186.7309 at x =  
{-0.8427, -0.1889} 

18 global minima; 
760 local minima 

Hartmann function 
(H3) 

3 
-3.86278 at x = 

{0.114614, 0.555649, 
0.852547} 

Four local 
minima 

Rosenbrock 
function (ROSN) 2,5,10 and 20 0 at x = {1, …, 1} Several local 

minima 
Zakharov function 

(ZAKN) 2,5,10 and 20 0 at x = {0, …, 0} Several local 
minima 

 

 

Two types of stopping criteria are used in this study. They are maximum 

number of iterations/generations (Itermax in TS-QN and Genmax in DE-QN) (referred 
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as stopping criterion 1 (SC1)) and maximum number of iterations/generations or 

maximum number of successive iterations/generations (Scmax) without improvement 

in the best function value (referred as stopping criterion 2 (SC2)). Several published 

studies (e.g., Cai and Shao, 2002) employed convergence to the global minimum as a 

stopping criterion. On the contrary, we used SC1 and SC2 because, in reality, global 

minimum of application problems is unknown a priori. The performance of the two 

methods is evaluated based on both reliability (measured in terms of how many times 

the algorithm located the global minimum out of 100 trials, referred as success rate 

(SR)) and computational efficiency (measured in terms of average number of function 

evaluations (NFE) in all the 100 trials). The gradient is calculated numerically and the 

NFE includes the function calls for evaluating both the objective function and the 

numerical gradient for the quasi-Newton method. 

 

3.3.1 Parameter Tuning 

 

Test functions GP2, ES2, SH2, ROS5, ROS10 and ROS20 have been selected to 

tune the parameters of TS-QN and DE-QN to find the global minimum with good 

reliability and computational efficiency. The nominal parameter values chosen for 

TS-QN are Nt and Np =10; εt and εp = 0.01; hn = 0.5; NPinit = 20N, where N is the 

dimension of the problem; Nneigh = 2N (subject to a minimum of 10 and a maximum 

of 30); Scmax = 5N and Itermax = 50N, and for DE-QN, A = 0.4; CR = 0.1; NP = 50; 

Scmax = 5N and Genmax = 50. The nominal values for TS-QN and DE-QN are chosen 

based on the optimum values available in Chelouah and Siarry (2000), and 

preliminary numerical experience with some of the benchmark problems respectively. 

The tuning is performed by varying one parameter at a time while the rest are fixed at 

 91



 
                                                                       Chapter 3 Differential Evolution and Tabu Search                        

their nominal/recent optimum values. The optimal parameters obtained for TS-QN 

and DE-QN are given in Table 3.2. The optimal parameters found for TS-QN are the 

same as its nominal parameters. This may be because the nominal parameters are 

chosen based on the optimal settings given in Chelouah and Siarry (2000). The 

optimal NP obtained for DE-QN is independent of N because the effect of N is 

accounted via Genmax and the size range (up to 20 variables) of the problems 

considered in this study.  

 

Table 3.2: Optimal parameter values for TS-QN and DE-QN 
 

Parameters Benchmark 
problems 

Phase equilibrium 
calculations 

Phase stability 
problems 

TS-QN 
Nt and Np 10 10 10 
εt and εp 0.01 0.02 0.02 

NPinit 20N 20N 20N 
Nneigh

* 2N 2N 2N 
hn 0.5 0.5 0.5 

Itermax 50N 100N min {50N, 100} 
Scmax 6N 2N 2N 

DE-QN 
A 0.5 0.3 0.3 

CR 0.5 0.9 0.9 
NP 50 min {50N, 200} min {50N, 100} 

Genmax 20N 75 50 
Scmax 10N 12N 6N 

 
* Nneigh is restricted to a minimum of 10 and a maximum of 30 for benchmark and 
PEC problems, and to 20 to 30 for PS problems to have good reliability and 
computational efficiency. 
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3.3.2 Results and Discussion 

 

The results for solving the benchmark problems by TS-QN and DE-QN are 

given in the Tables 3.3a and 3.3b. Each benchmark problem is solved 100 times, each 

time by generating a random initial estimate. The results are compared in terms of SR 

and NFE, which is the average of all 100 trials. It is evident from Table 3.3a that the 

reliability of DE-QN is better compared to TS-QN, for both SC1 and SC2. This is 

perhaps due to the different escaping mechanisms associated with these two methods. 

DE performs mutation and crossover over a set of individuals (i.e., population), 

whereas TS accepts the best point in each iteration as the new centroid of the hyper-

rectangle for generating neighbors even though it is worse than the previous best 

points in order to escape from the local minima. The reliability of TS-QN is less for  

ES2 function because the function is flat everywhere in the feasible region except near 

the center (global minimum region). As the function is flat, all the neighbors 

generated in TS-QN will have the same value trapping the search in that region, 

whereas DE-QN explored the global minimum region by generating different new 

individuals by the process of mutation and crossover. The reliability of both TS-QN 

and DE-QN for Shubert function is high even though it has 760 local minima. This 

may be because locating one of the several global minima (around 18) in this example 

is sufficient to achieve the best function value. The reliability of TS-QN is less for 

Rosenbrock functions because of narrow global minimum region in these functions. 

 

Even though reliability of DE-QN is more than TS-QN, its computational 

efficiency is less compared to TS-QN (Table 3.3a). NFE for DE-QN is 1.05 (ZAK20) 

to 3.11 times (H3) more than that for TS-QN using SC1, and is 1.05 (ZAK20) to 7.95  
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Table 3.3a: Success rate (SR) and Number of Function Evaluations (NFE) for 
solving benchmark problems by DE-QN and TS-QN 

 
TS-QN DE-QN 

SC1 SC2 SC1 SC2 Function 
SR NFE SR NFE SR NFE SR NFE 

GP2 100 918 99 301 100 2,026 100 1,998 
ES2 90 1,040 85 433 100 2,072 76 1,747 
SH2 100 1,033 92 355 99 3,051 100 1,790 

ROS2 100 1,059 100 475 100 2,065 100 2,065 
ZAK2 100 1,009 100 343 100 2,077 100 2,048 

H3 100 987 100 386 100 3,071 100 3,071 
ROS5 78 2,799 79 2,081 100 5,177 100 5,171 
ZAK5 100 2,629 100 1,294 100 5,093 100 5,093 
ROS10 78 8,578 78 8,541 100 10,213 100 10,210
ZAK10 100 8,491 100 8,473 100 10,143 100 10,125
ROS20 75 22,074 75 22,074 98 20,394 95 20,338
ZAK20 100 19,157 100 19,157 100 20,238 100 20,234

 
 
 
 

Table 3.3b: SR and NFE using DE-QN and TS-QN with same Nneigh/NP (= 20) 
and Itermax/Genmax (=50N) 

 
TS-QN DE-QN Function SR NFE SR NFE 

GP2 100 1,384 100 2,036 
ES2 83 1,683 100 2,027 
SH2 100 1,621 100 2,056 

ROS2 100 1,603 100 2,124 
ZAK2 100 1,542 100 2,027 

H3 100 2,021 100 3,039 
ROS5 76 4,002 100 5,021 
ZAK5 100 4,142 100 5,061 
ROS10 87 8,395 99 10,185 
ZAK10 100 8,268 100 10,092 
ROS20 81 18,499 96 20,308 
ZAK20 100 15,603 100 20,020 
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times (H3) more than that of TS-QN using SC2. This could be because of avoiding 

repeated visits to the same place in TS by keeping track (i.e., by maintaining tabu and 

promising lists) of the previous search points which in turn improves its 

computational efficiency. NFE for both TS-QN and DE-QN increases with the 

number of variables due the increase in the size of the solution space which makes 

both the algorithms to generate more points.  

 

DE-QN and TS-QN have also been evaluated using SC2. The computational 

efficiency and reliability (Table 3.3a) are better and comparable using SC2 compared 

to that of SC1 for both DE-QN and TS-QN. NFE of DE-QN using SC1 is 1.01 

(ZAK2) to 1.7 times (H3) more compared to SC2; similarly, NFE of TS-QN is 1.34 

(ROS5) to 3.05 times (GP2) more compared to SC2 for TS-QN. This is because the 

algorithms will terminate if the best function value does not change successively after 

the specified Scmax iterations/generations resulting in good computational efficiency 

with SC2.  

 

The performance of TS-QN and DE-QN is also compared by keeping the 

similar parameters (i.e., Nneigh and Itermaxt in TS-QN; NP and Genmax in DE-QN) to the 

same value. The values chosen are: Nneigh and NP  = 20; and Itermax and Genmax = 

50N, and the remaining (algorithm-specific) parameters are chosen from Table 3.2. 

The algorithms are compared using SC1 so that another parameter Scmax need not be 

included. From the results given in Table 3.3b, it is clear that the reliability (i.e., SR) 

of DE-QN is better compared to that of TS-QN, whereas the computational efficiency 

(NFE) of the latter is better than that of DE-QN for all the functions tested. Thus, the 

relative performance of TS-QN and DE-QN with similar parameter values is the same 
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as that with optimal parameters. Tables 3a and 3b show that SR and NFE for TS-QN 

with similar parameter values are inferior to those with optimal parameters for smaller 

problems. On the other hand, SR and NFE for DE-QN with similar parameter values 

(Table 3.3b) are comparable to those with optimal parameters (Table 3.3a). These 

findings highlight the challenges in tuning parameters and the possibility of different 

sets of optimal parameters. In this study, parameters are tuned carefully and 

systematically to ensure a fair comparison of the methods.  

 

3.4 Phase Equilibrium Problems 

 

The details of mathematical formulation for these problems are discussed 

under section 2.5 (Chapter 2). Phase equilibrium examples considered in this study 

include vapor-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE) and vapor-

liquid-liquid equilibrium (VLLE) examples involving multiple components (2 to 8 

components) and popular thermodynamic models. The feed composition, operating 

conditions and the thermodynamic models used for each example, and global and 

local minima for all these examples are given in Teh and Rangaiah (2003). In this 

Chapter (and in subsequent Chapters also), only the difficult examples (i.e., examples 

with multiple minima) are chosen from Teh and Rangaiah (2003) for evaluation of 

both DE and TS since these examples pose real challenge to the global optimization 

algorithms. Along with local minima, there are trivial solutions for several examples 

at which equilibrium composition equals to the feed composition (Teh and Rangaiah, 

2002). 
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3.4.1 Parameter Tuning 

 

Examples 5, 9 and 10 are selected for tuning the parameters of TS-QN and 

DE-QN, which are shown to be difficult in Teh and Rangaiah (2002). The parameters 

are tuned one at a time keeping others fixed at their nominal/recent optimum values. 

The optimal parameters obtained for TS-QN and DE-QN are given in Table 3.1. The 

difference in the values of the parameters (A, CR and Genmax  for DE-QN, and εt, εp 

and Itermax for TS) compared to those for benchmark problems is due to the presence 

of a few but comparable minima (i.e., function values at last local minimum and the 

global minimum are close to each other) in the PEC examples.  

 

3.4.2 Results and Discussion 

 

All the examples are solved 100 times each, starting from a different point 

randomly chosen each time in the feasible region. In this and subsequent Chapters, all 

the application problems are solved 100 times each for consistency and better 

evaluation, compared to 25 times in the earlier Chapter.  Both DE-QN and TS-QN are 

evaluated based on two types of stopping criteria: SC1 and SC2. The results are 

shown in Table 3.4a and are given in terms of reliability (i.e., SR) and computational 

efficiency (i.e., NFE), and are average over all the 100 trials. The study here is limited 

to the calculation of equilibrium compositions and the number of phases existing at 

equilibrium is assumed to be known a priori. 

 

Table 3.4a shows that DE-QN is able to solve all but one example tested with 

100% success rate with both SC1 and SC2. The reliability of TS-QN is comparable to 
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DE-QN for all the VLE and LLE examples except for example 8. This is due to the 

presence of comparable minima (function values at the global minimum and at the 

trivial solution are -0.360353 and -0.354340 respectively) in this example. The 

reliability of TS-QN is low for example 10 (VLLE) also because of its comparable 

minima (function value at the local and global minima are -1.235896 and -1.233294 

respectively). The SR of TS-QN for this example is lower compared to example 8 

because of the very close function values at the local and global minima and more 

number of variables (6 for example 10 and 3 for 8). As the function value at local 

minimum is close to that of the global minimum, the algorithm traps into local 

minimum either because of the premature convergence or due to the difficulty in 

escaping from the local minimum because of the narrow better regions (i.e., regions 

where the function value is less than that of the local minimum) resulting low SR. 

 

For example 4, both DE-QN and TS-QN failed to locate the global minimum 

because of the comparable minima (function value at the local and global minima are 

-161.5364 and -161.5416) and the increase in dimensionality (10 variables). Overall, 

reliability of DE-QN is better compared to TS-QN indicating that the escaping 

mechanism of DE is better than that of TS-QN using SC1. The NFE of DE-QN is 2.69 

(example 9) to 7.24 (example 8) times more than that of TS-QN. Even though the 

reliability of DE-QN is more, its computational efficiency is inferior to TS-QN. This 

is because of avoiding revisits to the same place during the search in TS-QN. For all 

examples, NFE increases with number of variables (example 2 with 2 variables to 

example 10 with 6 variables) for both TS-QN and DE-QN due to the associated large 

solution space.   
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Table 3.4a: SR and NFE for solving phase equilibrium problems by DE-QN and 
TS-QN 

 
TS-QN DE-QN 

SC1 SC2 SC1 SC2 Example 
number* SR NFE SR NFE SR NFE SR NFE 

Vapor-liquid equilibrium problems 
1(2) 99 1,348 99 1,348 100 7,608 88 6,345 
2(6a) 96 1,618 96 1,618 100 11,421 100 11,421 
3(6b) 96 1,639 96 1,639 100 11,424 100 11,424 
4(9) --- --- --- --- --- --- --- --- 

Liquid-liquid equilibrium problems 
5(11a) 98 1,432 98 1,432 100 7,600 100 6,788 
6(11b) 100 1,359 100 1,359 100 7,625 100 7,076 
7(12) 100 1,367 100 1,367 100 7,621 100 7,510 
8(13) 94 1,575 94 1,575 100 11,417 99 11,359 

Vapor-liquid-liquid equilibrium problems 
9(17) 100 5,648 100 5,648 100 15,215 100 15,215 
10(18) 81 5,486 81 5,486 100 15,226 100 15,226 

* The number in the brackets refers to the example number in Teh and Rangaiah 
(2003). This study considers only the more difficult examples from the previous work. 

 

 

Table 3.4b: Comparison of CPU times for DE-QN and TS-QN with those in the 
literature 

 
Computation time in seconds Example number 

and details TS-QN DE-QN Reported 
(Estimate)* 

Reference 

1 (VLE, PR) 0.022 0.122 0.643 (0.232) Hua et al. (1998) 
5 (LLE, NRTL) 0.018 0.090 0.234 (0.026) 

6 (LLE, UNIFAC) 0.024 0.156 0.370 (0.042) 
9 (VLLE, UNIFAC) 0.201 0.201 8.800 (1.001) 

McDonald and 
Floudas (1997) 

* The number in the brackets is the estimated CPU time, based on MFlops using 
LINPACK benchmark problem, for the computer (Pentium 4, CPU 2.8 GHz and 512 
MB RAM) used in the present study.  
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As shown in Table 3.4a, the reliability and computational efficiency of DE-

QN using SC2 is comparable and slightly better compared to SC1. This is because the 

algorithm terminates if the best function value does not change even after Scmax 

number of generations in SC2. For TS-QN, there is no improvement in the 

computational efficiency using SC2 because the maximum number of iterations 

(Itermax) is reached before the specified number of Scmax iterations, causing the 

algorithm to terminate. Note that both the methods can be used with different 

thermodynamic models (such as activity coefficient and equation of state models) for 

describing the physical equilibrium. 

 

The CPU times of DE-QN and TS-QN are also compared with interval 

Newton and branch and bound methods for a few examples available in Hua et al. 

(1998) and McDonald and Floudas (1997) respectively. The computer system used in 

the present study is Pentium 4 (CPU 2.8 GHz, 512MB RAM). The average (over 10 

trials) MFlops (million floating point operations per second) of this computer for the 

LINPACK benchmark program (available at http://www.netlib.org) for a matrix of 

order 500 is 211.  The computer systems used in Hua et al. (1998) and McDonald and 

Floudas (1997) are Sun Ultra 1/170 workstation and HP9000/730 respectively, and 

the corresponding MFlops for the LINPACK benchmark program for a matrix of 

order 100 are 24 and 76-75 respectively (Teh and Rangaiah, 2003). Therefore, the 

computer system used in this study is about 2.8 and 8.8 times faster than Sun Ultra 

1/170 and HP9000/730 respectively. The order of the matrix in the present LINPACK 

benchmark program (at http://www.netlib.org) is higher (500), and is used for the 

computer in this study compared to the earlier (100) used for computers of Hua et al. 

(1998) and McDonald and Floudas (1997), to cope with current high-speed 
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computers. Although the difference in the matrix orders may have some effect on 

MFlops, this is not considered here. The CPU times (in seconds) for DE-QN, TS-QN, 

interval Newton, and branch and bound methods are compared in Table 3.4b; the 

numbers in the brackets represent the corresponding CPU time (estimated using the 

factors based on MFlops) for the computer system used in this study. CPU time taken 

by TS-QN is less compared to all other methods because of its lesser NFE; CPU time 

of DE-QN is less than that of interval Newton method for example 1. Though CPU 

time of branch and bound method is less than that of DE-QN for examples 5 and 6, it 

is higher for example 9, probably due to the number of variables in them (number of 

variables for examples 5, 6 and 9 is 2, 2 and 6 respectively). The number of nodes in 

branch and bound method increases exponentially with number of variables, resulting 

in more computational time.  

 

3.5 Phase Stability Problems 

 

For a given temperature (T) , pressure (P) and composition x = (x1, x2, x3, …, 

xnc),  the molar Gibbs free energy, g of the system is given as the summation of the 

product of mole fraction and partial molar Gibbs free energy, iG  for all components 

(Rangaiah, 2001): 

∑
=

=
nc

1i
iiGxg                   (3.2) 

The tangent plane, t at a specified composition x* = {x1
*, x2

*, x3
*, …, xnc

*) is given as: 

∑
=

=
nc

1i

*
iiGxt                   (3.3) 

where superscript * represents evaluation at composition x*. The TPDF can be 

expressed as: 
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∑
=

−=−=
nc

1i

*
iii )GG(xtgH                 (3.4) 

Depending on the expressions of iG and *
iG , different forms of H exist. If the non-

ideality of the phase is described by fugacity approach, then the dimensionless H can 

be expressed as: 

[ ]∑
=

φ−φ=
nc

1i

*
i

*
iiii )xln()xln(xH                 (3.5) 

where  represents the fugacity coefficient of the component i in the given phase. If 

the excess Gibbs free energy approach is used to represent the non-ideality, then the 

dimensionless H can be expressed as: 

iφ

[ ]∑
=

γ−=
nc

1i

*
iL

*
iii )xln()x(lnxH                 (3.6) 

where  represents the activity coefficient of component i in the liquid phase L. 

Depending upon the approach, the objective function is either equation 3.5 or 3.6 and 

the constraints are: 

iLγ

∑
=

nc

1i
ix = 1                  (3.7) 

and      0 ≤ xi ≤ 1                  (3.8) 

 

The decision variables in PS problems are xi for i = 1, 2, …, nc. The 

constrained problem can be transformed into an unconstrained problem by 

introducing the variables, βi (for i = 1, 2, …, nc-1) instead of mole fractions xi (for i = 

1, 2,…, nc) similar to equations 7 to 9. To avoid the computational difficulties, the 

lower bounds are taken as 10-15 instead of 0. The examples considered (Rangaiah, 

2001) include multiple components and different thermodynamic models. Several 

compositions are considered for each example. The number of components, feed 
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composition, temperature and pressure of all these examples can be found in 

Rangaiah (2001) except for example 5 (Table 3.5) taken from Castillo and Grossman 

(1981). The global minimum, comparable minimum (i.e., the local minimum with 

function value very close to that of the global minimum) and the composition at the 

comparable minimum for all these cases are given in Table 3.6. The composition at 

the global minimum for the first four examples can be found in Rangaiah (2001) 

while that for 5th example in Table 3.5.  

 

Table 3.5: Details of the phase stability example 5 – toluene (1), water (2) and 
aniline (3) at 298 K and 1.0 atm (Castillo and Grossman, 1981) 

 
Feed composition, 

xi
* Global solution 

Composition Component Liquid 
1 

Liquid 
2 

Objective 
function 

value 
x 

1 1 0.29989 - -0.29454012 0.000067
 2 0.20006 -  0.996865
 3 0.50005 -  0.003068
2 1 0.34673 0.00009 0.0 0.346740
 2 0.07584 0.99495  0.075840
 3 0.57742 0.00496  0.577420

 

 

3.5.1 Parameter Tuning 

 

Compositions 2, 4 and 5 of Example 2, which are found to be difficult in the 

preliminary trials, are chosen to tune the parameters of TS-QN and DE-QN. For PS 

examples, a random way of generating neighbors from the centroid in TS-QN is also 

studied along with the systematic way (using hyper-rectangles) of generating 

neighbors. This is because, for some examples, generation of neighbors using hyper-

rectangles did not give good reliability, perhaps due to the distribution of local and 
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global minima in these examples. As shown in Figure 3.4, the problem (2nd example, 

5th composition) has a local minimum at β = (0.692780, 0.0129963) and the global 

minimum at β = (0.278990, 0.682251) with function values 1.323587×10-6 and 0 

respectively. Initially the TS-QN using hyper-rectangles to generate neighbors found 

a best point (‘+’ point in Figure 3.4) in the local minimum region and set it as a new 

centroid of hyper-rectangles to generate neighbors. As the local minimum is close to 

the boundary, the distribution of neighbors (‘o’ points in Figure 3.4) is not spread to 

the global minimum region (i.e., one side of the hyper-rectangle becomes the lower 

boundary of the variables forcing many points near the boundary). To circumvent this 

difficulty, a random way of generating neighbors (‘*’ points in Figure 3.4) is 

implemented to explore better points in the global minimum region for these 

problems. A mixed (generating half of the total number of neighbors using hyper-

rectangles and the rest randomly) way of generating neighbors is also studied. 

 

For PS problems, the optimal values of parameters (Table 3.2) obtained for TS-

QN are the same as those for PEC except Itermax = 50N. The optimal parameters of 

DE obtained are given in Table 3.2. The parameters Itermax and Genmax are less 

compared to PEC because the number of decision variables is less compared to PEC 

for these problems. 
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Table 3.6: Global and comparable minima for PS problems 
 
Function value Composition Global minimum Comparable minimum 

Example 1 (1) 
1 -0.03246624 0 at {0.5; 0.5} 
2 -0.21418620 No local minimum. 
3 -0.07427426 -6.06283×10-3 at {0.39221; 0.60778} 
4 -0.00671171 0 at {0.65; 0.35} 
5 -0.00070557 0 at {0.93514; 0.06486} 
6 0 1.11127×10-3  at {0.93476; 6.5230×10-2} 

Example 2 (2) 
1 -0.11395074 0 at {0.4; 0.3; 0.3} 
2 -0.05876117 -4.11636×10-6 at {0.61986; 0.00562; 

0.37452} 
3 -0.22827470 -2.71678×10-3 at {0.20145; 0.43018; 

0.368351} 
4 -0.02700214 -3.09637×10-6 at {0.03001; 0.00211; 

0.96788} 
5 0.0 1.323587×10-6 at {0.69280; 0.00399; 

0.30321} 
Example 3 (3) 

1 -0.00395983 1.08905×10-2 at {0.11520; 0.88479} 
2 -0.08252179 -5.68944×10-2 at {0.11813; 0.88186} 
3 -0.00246629 0 at {0.112; 0.888} 

Example 4 (4) 
1 -1.48621570 -1.48554 at {0.94672; 4.35930e-2; 

7.85484×10-3; 1×10-15; 1.2478×10-3 ; 
1.96839×10-4; 2.63986×10-4; 1.20802×10-4} 

Example 5 
1 -0.29454012 0 at {0.29989; 0.20006; 0.50005} 
2 0 No local minimum. 
Note: The number in the brackets refers to the example number in Rangaiah 

(2001). 
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Figure 3.4: Generation of neighbors for example 2 (composition 5) using hyper- 
rectangles (points with ‘o’) and randomly (points with ‘*’) from the best point 

(point with ‘+’) at β = {0.69280; 0.01298} 
 

 

3.5.2 Results and Discussion 

 

All the PS examples are solved 100 times, each time from a different 

randomly chosen point in the feasible region. Initially, the examples are solved with 

SC1 to study the performance of TS-QN with different ways of generating neighbors 

and the results (averaged over all the 100 trials) of TS-QN and DE-QN are given in 

Table 3.7. The results for TS-QN are given for three types of generating neighbors: 

TS-S-QN (systematic using hyper-rectangles), TS-R-QN (randomly) and TS-M-QN 

(mixed). 
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Table 3.7: SR and NFE for solving phase stability problems by DE-QN, TS-S-
QN, TS-M-QN and TS-R-QN using SC1 

 

Composition NFE for 
TS-S-QN 

NFE for 
TS-M-QN 

NFE for 
TS-R-QN 

NFE for 
DE-QN 

Example 1 
1 567 (99%) 360 684 2,568 
2 563 330 645 2,562 
3 465 361 681 2,566 
4 571 332 642 2,569 
5 583 324 640 2,557 
6 581 325 639 2,567 

Example 2 
1 1196 1890 1,989 5,112 
2 1,273 (64%) 1768 2,023 5,115 
3 1272 1956 2,035 5,116 
4 1,240 (91%) 1810 1,987 5,111 
5 1,277 (84%) 1,878 (85%) 1,984 (76%) 5,114 

Example 3 
1 569 645 757 2,584 
2 577 523 759 2,582 
3 558 646 758 2,582 

Example 4 
1 2,100 2203 2,767 5,143 

Example 5 
1 1,306 1095 2,048 5,120 
2 1,280 1026 1,981 5,108 

Note: SR is 100% for all cases except for those given in the brackets. 

 

The results in Table 3.7 show that both DE-QN and TS-QN have high 

reliability in locating the global minimum. The reliability of DE-QN is comparable to 

TS-M-QN and TS-R-QN, and is better than TS-S-QN. This shows that the systematic 

way of generating neighbors has less reliability for these problems. The SR of TS-M-

QN, TS-R-QN and DE-QN are 100% for all examples except for 2nd example with 5th 

composition for which TS-QN with all types of generating neighbors is low compared 

to DE-QN. This is because of the presence of comparable minima (function value at 

the local and global minima are 1.32358×10-6 and 0 respectively) in this example. 

Consequently, the better region becomes narrower and narrower causing failure of 

 107



 
                                                                       Chapter 3 Differential Evolution and Tabu Search                        

TS-QN to locate the global minimum region, whereas DE-QN is able to explore the 

global minimum region with its escaping mechanism (mutation and crossover). 

 

The computational efficiency of TS-M-QN and TS-S-QN is better compared 

to TS-R-QN. This may be because some neighbors in the mixed type of generation 

may be close enough such that they are near to the points in the tabu list which in turn 

avoids repeated evaluations. Even though DE-QN is more reliable than TS-QN, the 

latter is computationally more efficient than the former. The NFE of DE-QN is around 

2.3 times (4th example) to 7.1 times (1st example, 1st composition) more than TS-M-

QN. This is due to avoiding repeated visits to the same place by keeping track of the 

previous points during the search. 

 

The examples are also solved with SC2 for TS-M-QN (found to be the best 

among all TS-QN tried) and DE-QN. The results (Table 3.8) show that there is no 

improvement in the computational efficiency of TS-M-QN using SC2 compared to 

that of SC1, because the maximum number of iterations is reached before the 

specified Scmax number of iterations. This also indicates that the parameter Itermax is 

fine tuned. The results (Table 3.8) show that the computational efficiency of DE-QN 

using SC2 is better than that of SC1, and is due to the termination of the algorithm 

once the specified Scmax number of iterations is reached irrespective of maximum 

number of iterations. NFE of DE-QN with SC1 is 1.1 (2nd example, 2nd composition) 

to 4.0 times (1st example, 6th composition) more compared to that of SC2.  For 

example 4, the NFE of DE-QN is the same with both SC1 and SC2. This is because  
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Table 3.8: Comparison of SR and NFE for solving phase stability 
problems by DE-QN and TS-M-QN using SC1 and SC2 

 
TS-M-QN DE-QN Composition SC1 SC2 SC1 SC2 

Example 1 
1 360 360 2,568 755 
2 330 330 2,562 779 
3 361 361 2,566 869 
4 332 332 2,569 727 
5 324 324 2,557 647 
6 325 325 2,567 643 

Example 2 
1 1,890 1,890 5,112 3,808(99%) 

2 1,768 1,768 5,115 4,624(96%) 

3 1,956 1,956 5,116 4824 
4 1,810 1,810 5,111 4024 
5 1,878 (85%) 1,878 (85%) 5,114 3,642(99%) 

Example 3 
1 645 645 2,584 716 
2 523 523 2,582 764 
3 646 646 2,582 698 

Example 4 
1 2,203 2,203 5,143 5,143 

Example 5 
1 982 982 5,120 5,018 
2 910 910 5,108 3,566 

Note: SR is 100% for all the cases except for those given in the brackets. 
 

here the optimum Scmax value (i.e., 6N ≅  48) is high because of more number of 

variables and the number of iterations reaches its maximum number (i.e., Itermax = 50 

for these problems) earlier than Scmax, terminating the algorithm. For example 5, the 

NFE of DE-QN for composition 1 is higher than that of composition 2 even though 

optimum Scmax value is the same for both of them. This may be because the 1st 

composition has a comparable minimum, and whereas the 2nd composition does not 

have any local minimum. 

 

 The effect of generation of neighbors by random and mixed way is also 

studied for the benchmark problems and PEC using SC1. The results averaged over 
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100 trials (Table 3.9a and 3.9b) show that the performance of generation of neighbors 

using hyper-rectangles is better compared to mixed and random way of generations 

even though the mixed way is computationally more efficient than the others. They 

also show that the reliability of TS-M-QN for Rosenbrock functions is slightly better 

compared to TS-S-QN. These are due to the distribution of minima, which depends on 

the problem type, and hence generalizing for all types of functions is difficult. The 

mixed way of generating neighbors seems to be suitable for problems such as PS 

problems where the local minimum is near the boundary and also far away from the 

global minimum. 
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Table 3.9a: Comparison of performance of TS-QN with different types of 
neighbor generation for benchmark problems 

 
TS-S-QN# TS-M-QN# TS-R-QN#

Function 
SR NFE SR NFE SR NFE 

GP2 100 918 100 571 100 1,060 
ES2 90 1,040 15 580 33 1,065 
SH2 100 1,033 95 569 99 1,059 

ROS2 100 1,059 100 611 100 1,096 
ZAK2 100 1,009 100 561 100 1,050 

H3 100 987 100 548 100 994 
ROS5 78 2,799 86 1,656 84 2,901 
ZAK5 100 2,629 100 1409 100 2,649 
ROS10 78 8,578 80 6,326 82 11,218 
ZAK10 100 8,491 100 5,323 100 10,298 
ROS20 75 22,074 83 36,141 78 36,259 
ZAK20 100 19,157 100 30,668 100 30,662 

# TS-S-QN, TS-M-QN and TS-R-QN represent respectively systematic (using hyper-
rectangles), mixed and random way of generation of neighbors. 

 
 
 
 

Table 3.9b: Comparison of performance of TS-QN with different types of 
neighbors generation for phase equilibrium calculations 

 
TS-S-QN# TS-M-QN# TS-R-QN#Example 

number SR NFE SR NFE SR NFE 
Vapor-liquid equilibrium 

1 99 1,348 94 1,018 100 1,947 
2 96 1,618 95 1,545 95 2,029 
3 96 1,639 92 1,094 90 1,985 
4 --- --- --- --- --- --- 

Liquid-liquid equilibrium 
5 98 1,432 97 1,051 99 2,002 
6 100 1,359 100 1,072 100 2,023 
7 100 1,367 100 1,091 100 2,039 
8 94 1,574 87 1,058 99 1,943 

Vapor-liquid-liquid equilibrium 
9 100 5,648 100 5,097 100 7,639 
10 81 5,486 9 3,985 24 7,601 

# TS-S-QN, TS-M-QN and TS-R-QN represent respectively systematic (using hyper-
rectangles), mixed and random way of generation of neighbors. 
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3.6 Summary 

 

Two most promising methods namely, DE and TS have been implemented 

along with a local minimization method (QN) at the end to refine the solution, and 

evaluated for benchmark, PEC and PS problems. Initially both DE-QN and TS-QN 

are tested on benchmark problems comprising of 2 to 20 variables and a few to 

hundreds of local minima. The algorithms are then evaluated and compared for PEC 

involving multiple components and phases with popular thermodynamic models. Both 

the methods successfully located the global minima with DE-QN being more reliable 

compared to TS-QN and the latter being computationally more efficient than the 

former for both benchmark and PEC problems. For example 4 of PEC, both DE-QN 

and TS-QN failed to locate the global minimum. The methods are then tested for PS 

problems involving multiple components. The generation of neighbors in TS is 

implemented in three different ways: using hyper-rectangles, mixed and random way 

of generation, to study their effectiveness. The reliability of DE-QN and TS-QN for 

PS problems is high and the computational efficiency of the latter is better than the 

former for these problems. The mixed way of generating neighbors is also studied for 

benchmark problems and PEC, and the results show that systematic way of generating 

neighbors is suitable for these problems. In summary, results of this study show that 

the escaping mechanism (via mutation and crossover) in DE-QN is more effective 

than that of TS-QN, and that TS-QN is computationally more efficient than DE-QN, 

perhaps due to avoiding revisits to the same place during the search. 
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CHAPTER 4 

DIFFERENTIAL EVOLUTION WITH TABU LIST FOR GLOBAL 

OPTIMIZATION*

 

Stochastic global optimization and their applications are attracting greater 

attention and interest in the recent past as they provide better solutions with relatively 

less computational effort. Among the many popular methods, differential evolution 

(DE), proposed by Storn and Price (1997), is a population-based direct search 

algorithm for non-linear and non-differentiable functions, and has found numerous 

applications due its simplicity, easy to use and faster convergence. In this work, we 

attempted to improve the computational efficiency of DE by implementing the 

concept (i.e., avoiding re-visits during the search) of tabu search (TS) using the tabu 

list in the generation step of DE; it also provides diversity among the members of the 

population. DE with tabu list (DETL) is initially tested on several benchmark 

problems involving a few to thousands of local minima and 2 to 20 variables. It is 

then tested on challenging phase equilibrium calculations followed by parameter 

estimation problems in dynamic systems known to have multiple minima. The results 

show that the performance of DETL is better compared to DE and TS for benchmark, 

phase equilibrium and parameter estimation problems.  

 

 

                                                 
* This chapter is based on the paper – Mekapati Srinivas and Rangaiah, G. P. Differential 
evolution with tabu list for global optimization and its application to phase equilibrium and 
parameter estimation problems, Industrial and Engineering Chemistry Research, 46, pp. 
3410-3421, 2007b.  
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4.1 Introduction 

 

Global optimization is an active research area due to its ability to furnish the 

best possible solutions for highly non-linear and non-convex objective functions. In 

general, global optimization techniques can be classified into two categories: 

deterministic and stochastic methods (Pardalos et al., 2000). The former methods 

provide guaranteed global optimum using certain properties of the objective function 

such as the continuity, whereas the latter do not require such properties of the 

objective function and yet can provide global solutions. Stochastic methods are 

usually quite simple to implement and use, and they do not require transformation of 

the original problem. Furthermore, these techniques can locate the vicinity of the 

global solutions with relative efficiency compared to deterministic techniques (Moles 

et al., 2003). Among the many stochastic methods reported in the literature, genetic 

algorithm (GA) and differential evolution (DE) are a few of the popular ones. GA was 

initially developed by Holland (1975); since then, it has been used for many 

applications in diversified fields. DE, which is relatively new compared to GA, was 

first proposed by Storn and Price (1997). The working principle of DE is the same as 

that of GA but it is simple, easy to use and its the convergence rate is shown to be 

faster compared to GA (Karaboga and Cetinkaya, 2004).  

 

 Since 1997, several modifications have been proposed to DE to improve its 

performance further. Lee et al. (1999) proposed two modifications to the original DE, 

and used them to solve the dynamic optimization problems. The first modification 

includes the use of local search in deciding the optimum mutation parameter and the 

second one systematically reduces the search space by introducing heuristic 
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constraints. The results show that the convergence of the modified DE is better 

compared to the original one. Chiou and Wang (1999) proposed hybrid differential 

evolution (HDE) for static and dynamic optimization problems. HDE consists of two 

additional steps compared to original DE, namely, acceleration and migration phases 

to improve the convergence rate without decreasing the diversity among the 

individuals. Hendtlass (2001) proposed swarm differential evolution, which combines 

both particle swarm optimization and differential evolution algorithms. The 

performance of swarm DE was shown to be better compared to both DE and PSO 

alone for benchmark test functions.  

 

Chiou et al. (2004) used the concept of ant colony search for the proper 

mutation parameter in HDE, and applied it to solve large capacitor placement 

problems. The results show that the proposed method performs better than HDE and 

Simulated Annealing (SA). Liu and Lampinen (2005) proposed fuzzy adaptive 

differential evolution, which uses fuzzy logic controllers to adapt the search 

parameters for the mutation and crossover operations. The results of the proposed 

algorithm for standard test functions show that it is better than the original DE. 

Bergey and Ragsdale (2005) proposed a modification to DE such that it utilizes 

selection pressure to develop off-springs that are more fit to survive than those 

generated from purely random operators. The proposed modification improves the 

computational efficiency of the original DE. Teo (2006) proposed dynamic self 

adaptive populations in DE. Experimental results with De-Jong’s functions showed 

that the proposed algorithm with self-adaptive populations produced highly 

competitive results compared to the conventional DE. Bhat et al. (2006) proposed an 

improved DE (IDE) for parameter estimation in bio-filter modeling; it uses simplex-
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based method to search for better solutions once the globally optimal region is 

identified. Their results show that IDE is twice as fast as the original DE. Babu and 

Angira (2006) proposed modified DE (MDE) for optimization of non-linear chemical 

process problems. MDE maintains only one population compared to two in the 

original DE. In MDE, the population is updated as and when a better member is 

generated instead of waiting until generating all members for the new population. The 

results show that the convergence rate of MDE is faster compared to the original DE. 

  

In this work DE is modified with the concept of Tabu Search (TS) (i.e., 

avoiding revisits to the same place during the search) to improve the computational 

efficiency; it also improves the diversity among members of the population and 

eventually contributes to the computational efficiency. Re-visits during the search in 

DE are avoided by using tabu list (which keeps track of previous search points that 

are already evaluated) and hence the proposed method is named as Differential 

Evolution with Tabu List (DETL). An attempt has also been made to combine the 

concept of SA into DETL, however, the performance of DETL is not improved by 

including SA concept and hence only the special features of DE and TS are included 

in DETL. Another reason for not including SA concept is to minimize the number of 

parameters in DETL as the SA concept requires three additional parameters. Initially, 

the concept of TS is used in the evaluation step of DE and is applied to several 

benchmark problems and application problems such as phase equilibrium calculations 

(Mekapati and Rangaiah, 2006a; this paper is included in Appendix A for ready 

reference). Subsequently, to improve the performance further, the concept of TS is 

implemented in the generation step of DE. The resulting DETL is then tested on a 

wide variety of test functions which involve 2 to 20 variables and a few to thousands 
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of local minima. The method is then tested on challenging phase equilibrium 

calculations (Teh and Rangaiah, 2003) followed by parameter estimation problems in 

dynamic systems (Esposito and Floudas, 2000). The results are compared to those of 

TS, DE and MDE algorithms. 

 

4.2 Differential Evolution with Tabu List (DETL) 

 

In general, the basic DE consists of three steps: generation, evaluation and 

selection. The generation step involves producing the off-springs (new individuals) by 

mutation and crossover operations whereas the evaluation step calculates the fitness 

(objective function) value of each member of the new population. The selection step 

allows only those individuals of the current generation that have better fitness value, 

to proceed to the next generation. The process of generation, evaluation and selection 

steps are repeated until either the best fitness value (global solution) is found or up to 

the specified maximum number of generations. 

 

 The concept of TS is implemented in the generation step of DE (i.e., after 

crossover and mutation) to improve the computational efficiency and also to improve 

the diversity among the individuals. The members of the current generation are 

produced one at a time as in MDE (Babu and Angira, 2006) to have a better 

convergence rate and to facilitate the implementation of TS. The concept of TS is 

implemented in DE by using tabu list (with two additional parameters, namely, tabu 

radius (tr) and tabu list size (tls) which keeps track of the previous evaluated points 

such that re-visits during the search are avoided. After generating a new member of 

the current population, it is compared to the already evaluated points in the tabu list in 
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terms of the Euclidean distance. If the Euclidean distance is smaller than the specified 

value (tabu radius), which indicates that the objective function value at the new and at 

one of the points in tabu list are probably close to each other, the newly generated 

point is rejected considering that it may not give new information about the objective 

function except increasing number of function evaluations (NFE). The rejected point 

is replaced by generating a new individual until the Euclidean distance between the 

new point and to all points in tabu list is greater than the tabu radius. The process of 

generating new individuals including checking their closeness to those in the tabu list, 

is repeated until all members of the population are produced. The number of points in 

the tabu list is specified by the parameter tabu list size (tls) and how far the new 

points should be from those in the tabu list is decided by the parameter tabu radius 

(tr). Thus by implementing TS concept in the generation step of DE, unnecessary 

function evaluations are avoided while maintaining the diversity in the population. 

 

 The motivation and working principle of DETL are explained by considering 

the modified Himmelblau (mHB) (Deb, 2002) function which has 4 minima (Figure 

4.1), and the global minimum is at x = {3, 2} with a function value of zero. The 

members of the population using the conventional DE (points marked with ‘o’) and 

with DETL (points marked with ‘*’) after 2 generations are shown in Figure 4.1. 

More diversity can be observed among the members of DETL compared to DE which 

consequently helps DETL to explore the global region earlier compared to DE. NFE 

(averaged over 100 trials) required by DE to locate the global minimum for this 

function is 6991, whereas DETL (with tr = 1×10-6 and tls 30) took about 41% less 

NFE (4098, averaged over 100 trials). In both these cases, the stopping criterion used 
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is ‘convergence to the global minimum (i.e., achieving the global minimum with an 

absolute error of 10-6 or less in the function value)’.  
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Figure 4.1: Contour diagram of modified Himmelblau (mHB) function; ‘ ’ and 
‘ ’ denotes the points generated by DE and DETL respectively. GM is the 

global minimum whereas LM1, LM2 and LM3 are the local minima. 
 

 

A local optimization technique is included at the end of DE and DETL and it 

is found that NFE required by DE and DETL for mHB function is 5884 and 3771 

(around 16% less for DE and 8% less for DETL compared to the NFE without local 

optimization) respectively. Hence, we opted to use a local optimization technique at 

the end of a global optimization throughout this study, to find the final solution 

accurately and efficiently. In this study, a gradient-based quasi-Newton method is 

used for local optimization; and the gradient is calculated numerically. Alternately, 

one can use any direct search method as in Bhat et al. (2006). However, for local 
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optimization, direct search methods are known to be less efficient than the gradient-

based methods. 

 

4.2.1 Description of the method 

 

 DETL begins with the selection of values for parameters: population size 

(NP), amplification factor (A), crossover constant (CR), tls, tr, maximum number of 

generations (Genmax) and successive maximum number of generations (Scmax) without 

improvement in the best function value. The algorithm (Figure 4.2) generates the 

initial population of size NP using uniformly distributed random numbers to cover the 

entire feasible region. The objective function is evaluated at each individual and the 

best one is captured. The evaluated individuals/points are then sent to the tabu list, 

which will be used to ensure that the algorithm does not search again close to these 

points.  

 

 The three main steps: mutation, crossover and selection of DE are performed 

on the population during each generation/iteration. For this, a mutant individual is 

generated for each randomly chosen target individual (Xi, J) in the population by 

 Vi, J+1 = Xr1,J + A (Xr2, J – Xr3, J) i = 1, 2, ..., NP             (4.1) 

where Xr1, J, Xr2, J  and Xr3, J are the three random individuals chosen in the population 

of the current generation J, to produce the mutant individual (Vi, J+1) for the next 

generation (i.e. for J+1). The random numbers r1, r2 and r3 should be different from 

the running index, i and hence NP should be 4 or more for mutation. The mutation 

parameter or amplification factor, A has a value between 0 and 2, and controls the 

amplification of the differential variation between the two random individuals. In the  
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No 

Yes 

Set the parameter values 

Generate the population and evaluate the objective 
function at each individual 

Send the evaluated points to the tabulist 

Set generation (J)  = 1 

Set i = 1 

For each target individual (i), generate 
a trial individual through mutation and 

crossover operations 

Evaluate objective function  

Update the tabulist 

Selection between target 
and trial individual 

Local optimization from the best point 

Check boundary violations of the trial 
individual and correct them

Perform tabu check. 
Is Euclidean distance 

< tabu radius?

i = i+1. 
Is i > Population 

size (NP)? 

Is stopping 
criterion satisfied?

J = J+1 

No 

Print results and stop  

Figure 4.2: Flowchart of DETL  
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crossover step, a trial individual is generated by copying some elements of the mutant 

individual to the target individual with a probability of CR. A boundary violation 

check is performed to check the feasibility of the trial individual; if any bound is 

violated, the trial individual is either replaced by generating a new individual or 

forced to the nearest boundary (lower or upper). The trial individual is then compared 

with the points in the tabu list. If it is near to any of the points in the tabu list, the trial 

individual is rejected and another point is generated through mutation and crossover 

operation. 

 

Objective function is evaluated at the trial individual only if it is away from all 

the points in the tabu list. After each evaluation, the tabu list is updated dynamically 

to keep the latest point(s) in the list by replacing the earliest entered point(s). In the 

selection step, a greedy criterion such as fitness (i.e., objective function) value is used 

to select the better one of the trial and target individuals. If the trial individual is 

selected, it replaces the target individual in the population immediately and may 

participate in the subsequent mutation and crossover operations. If the target 

individual is better, then it remains in the population and may participate in the 

subsequent mutation and crossover operations.  

 

The process of generation, evaluation and selection is repeated NP times in 

each generation. The algorithm runs until the stopping criterion such as maximum 

number of generations (Genmax) or maximum number of successive generations 

(Scmax) without improvement in the best function value, is satisfied. The best point 

thus obtained over all the generations is further refined using a local optimization 

technique, and is declared as the global optimum. 
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4.3  Benchmark Problems 

 

 The performance of DETL is tested initially by employing it to solve several 

benchmark problems (Storn and Price, 1997; Deb, 2002; and Teh and Rangaiah, 

2003) involving a few to thousands of local minima and 2 to 20 variables. These test 

functions are grouped into two types: moderate and difficult functions. Functions 

having a few to several local minima are grouped under ‘moderate’ whereas those 

with hundreds to thousands of local minima are treated as ‘difficult’. This is because 

the chance of trapping into a local minimum is high for a function having huge 

number of local minima compared to the one with fewer minima. The exceptions are 

Shubert (SH) and modified Himmelblau (mHB) functions. SH is grouped under 

moderate functions even though it has hundreds of local minima due to the numerous 

global minima (18) it has, whereas mHB is grouped under difficult functions even 

though it has 4 local minima because it has small global minimum region compared to 

local minimum regions. Features of the moderate and difficult functions and their 

global minima are summarized in Table 4.1. Variables in all the test functions (and 

application problems described later) are normalized between 0 and 1, inside the 

program.
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Table 4.1: Benchmark Problems 

# Moderate functions; * Difficult functions. 

 

Function Dimension and 
Domain Function  Global 

Minimum Remarks 
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4.4 Phase Equilibrium Calculations 

 

Phase equilibrium calculations play a significant role in the design, simulation 

and optimization of chemical processes. Development of robust and efficient method 

for phase equilibrium problems has long been a challenge and still it is. The objective 

is to calculate the number of moles of each component in each phase at equilibrium 

given the pressure, temperature, components and feed composition. In general, 

methods for multiphase equilibrium calculations can be categorized into two types: 

equation-solving approach and Gibbs free energy minimization (Teh and Rangaiah, 

2002). In the former approach, a set of non-linear equations arising from mass 

balances and equilibrium relationships are solved whereas Gibbs free energy function 

is minimized in the latter approach. The equality of chemical potential criterion, 

which is only the necessary condition for free energy minimization, is used in 

equation-solving approach which makes the method inadequate to find the global 

optimum. Hence, several researchers have applied deterministic (e.g., McDonald and 

Floudas, 1995a; and Burgos-Solórzano et al., 2004) and stochastic (e.g., Rangaiah, 

2001) global optimization methods to Gibbs free energy minimization; a review of 

these works can be found in Teh and Rangaiah (2003).  

 

Recently, Nichita et al. (2002a) applied a tunneling method for PEC. In this 

method, the calculations are organized in a stepwise manner: solving PS analysis by 

minimization of tangent plane distance function (TPDF) using tunneling method 

followed by flash calculation using Newton-Raphson method. The results show that 

the tunneling method is reliable and efficient for multiphase equilibrium problems. 

However, tunneling method is not tested for the direct Gibbs free energy 
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minimization in a single step. Iglesias-Silva et al. (2003) proposed an algebraic 

method for PEC which includes free energy minimization when the number of phases 

is known a priori. The method uses orthogonal derivatives, the tangent plane 

condition and mass balances to reduce the Gibbs free energy minimization to solving 

a system of non-linear equations. The results show that the method has good 

convergence rate. Burgos-Solórzano et al. (2004) solved phase equilibrium 

calculations by combining reliable deterministic techniques such as interval Newton 

technique with local optimization procedure. Their results show that the procedure is 

good for high pressure chemical and multiphase equilibrium using cubic equation of 

state models. Mekapati and Rangaiah (2006b) evaluated random tunneling algorithm 

(RTA) with some modifications for phase equilibrium calculations by free energy 

minimization in one step. The results show that RTA successfully located the global 

minimum for most of the examples but the reliability of the method is low for 

problems having a local minimum value comparable to the global minimum value. 

More details of the mathematical formulation for these problems are discussed under 

section 2.5 (Chapter 2).  

 

Phase equilibrium examples considered in this study include vapor-liquid 

equilibrium (VLE), liquid-liquid equilibrium (LLE) and vapor-liquid-liquid 

equilibrium (VLLE) examples involving multiple components (2 to 8 components) 

and popular thermodynamic models. The feed composition, operating conditions and 

the thermodynamic models used for each example, and global and local minima for 

all these examples are available in Teh and Rangaiah (2003), and hence not repeated 

here. Along with local minima, there are trivial solutions for several examples at 
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which equilibrium composition equals to the feed composition (Teh and Rangaiah, 

2002). 

 

4.5 Parameter Estimation Problems 

  

Parameter estimation in models plays a significant role in developing better 

mathematical models, which are used for understanding and analyzing the physical, 

chemical and biological systems. Parameter estimation involves fitting the model to 

experimental data by minimizing the objective function such as sum of squared errors 

(SSE) between the experimental and predicted values. The objective function 

becomes non-convex if the model is highly non-linear and the use of traditional 

optimization techniques such as steepest descent, Newton and quasi-Newton methods 

fail to provide the best (global) solution. Hence, application of global optimization to 

estimating the parameters in dynamic systems is receiving greater attention and 

interest in the recent past. Esposito and Floudas (2000) applied branch and bound 

method for parameter estimation in differential and algebraic systems (Tjoa and 

Biegler, 1991) using both collocation based and integration approaches. The results 

showed the potential of branch and bound method for solving parameter estimation 

problems. Later, Katare et al. (2004) studied the same problems using GA combined 

with a local optimization technique (hybrid GA), and their results show that GA is 

computationally efficient compared to branch and bound method. In this study, DETL 

is evaluated for parameter estimation problems in dynamic systems studied by 

Esposito and Floudas (2000) and Katare et al. (2004), and its performance is 

compared to that of DE, TS and MDE. Example names, differential equations 

associated with each example and bounds on parameters are summarized in Table 4.2. 
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More details about the data, number of local and global minima are given in Esposito 

and Floudas (2000). 

 

Table 4.2: Parameter Estimation Problems 

Example 
Number Application Differential 

Equations 
Bounds on 
Parameters 

1 
First order 
irreversible 

chain reaction 2211
2

11

zz
dt

dz

z
dt

dz

θ−θ=

θ−=
 0 ≤ θ ≤ 10 

2  
First order 
reversible 
reaction 

3422
3

3423211
2

2211
1

zz
dt

dz

zz)(z
dt

dz

zz
dt

dz

θ−θ=

θ+θ+θ−θ=

θ+θ−=

 
0 ≤ θ1, θ2 ≤ 

10 
10 ≤ θ3, θ4 ≤ 

50 

3  
Catalytic 

cracking of gas 
oil 22

2
11

2

2
131

1

zz
dt

dz

z)(
dt

dz

θ−θ=

θ+θ−=
 0 ≤ θ ≤ 20 

4  
Methanol-to-
hydrocarbon 

process 
14

2152

152113

13
2152

212112

143
2152

21
1

1

z
zz)(
)zz(z

dt
dz

z
zz)(
)zz(z

dt
dz

z
zz)(

z2
dt

dz

θ+
+θ+θ

θ+θ
=

θ+
+θ+θ
−θθ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ+θ+

+θ+θ
θ

−θ−=

 0 ≤ θ ≤ 20 

)1z(z
dt

dz

)z1(z
dt

dz

122
2

211
1

−θ=

−θ=
 Lokta-Volterra 

problem 5  0.1 ≤ θ ≤ 10 

 

 

4.6 Implementation and Evaluation of DETL 

  

The code for DETL is written in FORTRAN and the codes for TS and DE are 

taken from Teh and Rangaiah (2003), and the website 

www.icsi.berkeley.edu/~storn/code.html respectively. The code for MDE is obtained 

by implementing the updation of the population after generating each individual in the 

DE code itself. A local optimization technique (quasi-Newton) is used at the end of all 

the three methods to improve the computational efficiency and accuracy of the final 
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solution. For the quasi-Newton method, a subprogram, DBCONF in the IMSL 

software is used; this subprogram uses BFGS formula to update the Hessian matrix. 

For one of the examples (example 2 in Table 4.2) in parameter estimation problems, a 

direct search method, namely, Nelder-Mead Simplex method is used for local 

optimization. This is because the objective function is found to be flat near the global 

minimum region resulting inaccurate solution with gradient-based methods combined 

with numerical derivatives. To solve the differential equations in parameter estimation 

problems, the IMSL subprogram: DIVPAG based on Gear’s method, is used.  

 

 The methods are evaluated based on both reliability and computational 

efficiency in locating the global minimum. Reliability is measured in terms of success 

rate (SR) (i.e., number of times the algorithm located the global minimum to the 

specified accuracy out of 100 trials) and the computational efficiency is measured in 

terms of number of function evaluations (NFE) required to locate the global 

minimum. NFE is the average over only the successful runs out of 100 trials, and 

include both the function calls for evaluating the objective and the function calls for 

the numerical gradient in the local optimization. The stopping/termination criterion 

used in this study is the maximum number of generations (Genmax) or maximum 

number of successive generations (Scmax) without improvement in the best function 

value. This criterion is used instead of convergence to the global minimum as a 

stopping criterion because, in practical applications, global minimum is unknown ‘a 

priori’ and also accurately. A trial/run is said to be successful only if the global 

optimum is obtained with an absolute error of 10-6 or less in the objective function 

value. 
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4.7 Parameter Tuning 

  

The parameters of DE, TS, MDE and DETL are tuned consistently using test 

functions which are found to be challenging in the preliminary trials; GP, ES, ROS5, 

ROS10 and ROS20 are chosen for moderate functions whereas RA10, RA20, GW10 and 

GW20 are selected for difficult functions. Examples 5, 9 and 10 are chosen for phase 

equilibrium calculations and Lokta-Volterra (example 5 in Table 4.2) problem is 

chosen for parameter estimation problems. Tuning is carried out by varying one 

parameter at a time while keeping the rest fixed at their nominal/recent optimum 

values. The nominal parameter values chosen for TS are: Nt=Np=10, εt=εp=0.01, 

hn=0.5, NPinit=20N (where N is the dimension of the problem), Nneigh=2N (subjected 

to a minimum of 10 and maximum of 30), Scmax=5N and Itermax=50, and for DE, 

A=0.4, CR=0.1, NP=50, Scmax=5N and Genmax=50. The same parameter values are 

used for MDE and DETL also; and the additional parameters in DETL are tr = 1×10-8 

and tls = 10. The nominal values are chosen based on the optimum values available in 

the literature for TS (Chelouah and Siarry, 2000), and based on the preliminary 

numerical experience for DE and DETL.  

 

The optimal parameter values obtained for all the methods are given in Table 

4.3. The optimal parameter values obtained for DE are equally valid for MDE as 

mentioned in the literature (Babu and Angira, 2006). Even though the stopping 

criterion used for MDE in this study is different from that in Babu and Angira (2006), 

the fast convergence nature of MDE can be captured via the parameter Scmax (i.e., as 

MDE converges faster, Scmax reaches its optimum value earlier compared to DE thus 

giving lower NFE compared to DE). The optimum values for DETL are kept the same 
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as for DE and MDE except for additional parameters tr and tls to have a fair 

comparison; tr and tls are tuned separately and the optimum values are given in Table 

4.3.  

 

Table 4.3: Optimal Values of Parameters in TS, DE, MDE and DETL 

Benchmark Problems Parameters Moderate Difficult PEC PEP 

TS 
Nt and Np 10 10 10 10 
εt and εp 0.01 0.01 0.02 0.01 

NPinit 20N 100N 20N 20N 
Nneigh 2N 2N 2N 2N 

hn 0.5 0.5 0.5 0.5 
Itermax 50N 100N 100N 50N 
Scmax 6N 50N 2N 6N 

DE, MDE and DETL 
A 0.5 0.2 0.3 0.7 

CR 0.5 0.5 0.9 0.5 
NP 20 20 Min {40N, 120} 30 

Genmax 30N 60N 70 40N 
Scmax 7N 12N 7N 15N 

tr* N×10-3 N×10-6 N×10-3 N×10-3

tls* 50 50 50 50 
* These are the two additions parameters in DETL and not involved in DE and MDE. 
  

The optimum parameter values obtained for TS for moderate functions are the 

same as the nominal parameter values because the latter have been taken from 

Chelouah and Siarry (2000), which are already proven to be optimum. The optimal 

values of a few parameters are slightly different from one set of problems to another 

set due to the different characteristics of each group (i.e., moderate functions have few 

local minima, difficult functions have huge number of local minima, phase 

equilibrium calculations have comparable minima and parameter estimation problems 

have several minima). In this study, tuning is carried out to obtain the optimal 

parameter values for each set of problems rather than for each problem so that they 

are applicable to other problems of similar nature. 
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4.8 Results and Discussion 

 

4.8.1 Benchmark problems 

 

Moderate functions: Each benchmark problem is solved 100 times, each time 

with a different random number seed, which will change the initial estimate(s) in the 

subsequent iterations, and the performance of each algorithm is compared in terms of 

SR and NFE. The results are averaged over 100 trials and are given in Table 4.4. It is 

clear from these results that SR of DE is better than that of TS except for Easom 

function, whereas the computational efficiency of the latter is better than that of the 

former. This could be probably because of the different escaping mechanisms from 

the local minim associated with each method. DE, MDE and DETL use crossover and 

mutation operations whereas TS uses the best point found in the current generation to 

generate neighbors for the next generation even though it is worse than those obtained 

in the previous iterations.  

 

SR of TS and DE is less for Easom functions because of the flat objective 

function. As the function becomes flat, the neighbors generated in TS will have the 

same value leading to trapping of the search in that region. On the other hand, MDE 

and DETL escaped from the flat region with the help of mutation and crossover. 

Despite having the same escaping mechanism as in MDE and DETL, SR of DE is 

even less than that of TS for this function. This could be because of the optimum 

value obtained for the parameter, Scmax considering several moderate functions rather 

than based on a single function, may not be the optimum for Easom function. For 

example, using maximum number of generations (Genmax for DE and Itermax for TS)  
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Table 4.4: Results for Benchmark Problems – Moderate Functions 

DE TS MDE DETL Function SR NFE SR NFE SR NFE SR NFE*

GP 100 1107 99 301 100 1068 100 740  
(711+29) 

ES 76 2430 85 433 97 2370 97 1615 
(1586+29) 

SH 96 720 92 355 98 702 100 740 
(707+33) 

ROS2 100 780 100 475 100 803 100 767 
(709+58) 

ZAK2 100 1218 100 343 100 1209 100 468 
(450+18) 

H3 100 1846 100 386 100 1826 100 845 
(799+46) 

ROS5 97 3025 79 2081 98 3102 95 2958 
(2768+190) 

ZAK5 100 3054 100 1294 100 3026 100 1329 
(1236+93) 

ROS10 97 6677 78 8541 95 6675 96 6536 
(5895+641) 

ZAK10 100 6124 100 8473 100 6039 100 2890 
(2639+251) 

ROS20 95 14326 75 22074 92 14383 92 13507 
(11140+2367)

ZAK20 100 12627 100 6893 19157 100 12041 100 (6167+726) 
 

* The two numbers in brackets are respectively NFE required for DETL excluding 
local optimization and NFE for local optimization. 
 
 
 
alone as a stopping criterion (i.e., instead of using both Genmax and Scmax), SR of DE 

increased to 100% with NFE of 3224 whereas SR of TS is still at 90% with NFE of 

1040. On the other hand, both MDE and DETL achieved high SR (97%) with the 

same Scmax value. This might be because of the early updating of population in MDE 

compared to DE and the diversity introduced by TS concept in DETL. The reliability 

of all the methods is high for Shubert function though it has huge number (760) local 

minima. This is possibly due to the 18 global minima it has, and reaching any one of 

them is sufficient to achieve the best solution. Global search by TS seems to be 
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affected by narrow global minimum region resulting in SR of 75-80% for Rosenbrock 

functions. 

 

 Even though TS has low SR, its NFE is less compared to DE especially for 

small variable (<10 variables) problems, probably because of avoiding re-visits during 

the search in TS. Though NFE of DE is higher than that of TS for most of the 

functions, it is less for Rosenbrock and Zakharov functions with more variables. This 

may be because of narrow global minimum regions associated with Rosenbrock 

functions, which in turn require large Itermax value for TS (because Itermax is tuned 

based on the challenging functions in the moderate group which include Rosenbrock 

functions also). Though TS located global minimum region for Zakharov functions in 

a few iterations, NFE is high for these functions as the algorithm terminates only after 

satisfying termination criterion (either Itermax or Scmax).  

 

 The results for MDE are also given in Table 4.4. They show that the reliability 

of MDE is almost comparable to that of DE while NFE of the former is less than that 

of the latter. This is due to the updation of population members after generating each 

individual compared to the original DE, in which population updating is carried out 

only after generating all members. Also, NFE required by MDE in this study (Table 

4.4) is less than those given in Babu and Angira (2006) for the same functions. This is 

because of the different stopping criterion used in this study (i.e., maximum number 

of generations or maximum number of successive generations without improvement 

in the objective function value) compared to the convergence to the global minimum 

used by Babu and Angira (2006), the use of local optimization technique at the end 
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and the results in this study are based on the average of 100 trials whereas results in 

Babu and Angira (2006) are based on average of 10 trials only. 

 

SR of DETL is comparable to that of DE and MDE, and its NFE is less than 

that of both DE and MDE. For DETL, NFE without local optimization and NFE 

required for local optimization technique are also given in the last column of Table 

4.4; these details indicate that NFE required by local optimization is around 7% in the 

overall NFE, and is slightly high (around 10%) for Rosenbrock functions due to the 

presence of narrow global minimum regions associated with them. The percentage 

reduction in NFE of DETL compared to DE and MDE are given in Table 4.5. Though 

the percentage reduction in NFE for Rosenbrock functions is only around 2 to 6%, it 

is high for Zakharov functions (around 45 to 50%). One exception is Shubert function 

for which NFE of DETL is slightly higher (as can be seen by the negative value in 

Table 4.5) compared to DE and MDE. Overall, an average reduction of 29% and 25% 

in NFE of DETL is achieved compared to DE and MDE respectively. This shows the 

potential of DETL especially for engineering applications where objective function 

evaluation requires considerable computational time. 
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Table 4.5: % Reduction in NFE of DETL for Benchmark Problems –  
Moderate Functions 

Function Compared 
to DE 

Compared to 
MDE 

GP 33 31 
ES 34 32 
SH -3 -5 

ROS2 2 4 
ZAK2 62 61 

H3 54 54 
ROS5 2 5 
ZAK5 56 56 
ROS10 2 2 
ZAK10 53 52 
ROS20 6 6 
ZAK20 45 4 

 

Note: % Reduction = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
MDEorDEofNFE

DETLofNFEMDEorDEofNFE ×100 

 

Difficult functions: The performance results for difficult functions (Table 4.6) 

show that the reliability of DE is significantly better than that of TS; SR of TS is zero 

for half of these problems and low SR for the others: mHB, RA2, GW5, GW15 and 

GW20. TS failed to locate the global minimum in almost all cases, being trapped into 

local minima because of huge number of local minima associated with these 

functions. On the contrary, DE escaped from the local minima using mutation and 

crossover resulting high SR (≈ 90%). The reliability of MDE and DETL is also high 

and comparable to that of DE. This is because escaping mechanism from the local 

minima is the same in all the three (DE, MDE and DETL) methods.  

 

The NFE of MDE is slightly less than that of DE, and that of DETL is less 

than both DE and MDE (Table 4.6). The NFE of all methods is increasing with the 

number of variables due to the increase in solution space which makes all the 

algorithms to generate more number of points to locate the potential regions.  
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Table 4.6: Results for Benchmark Problems – Difficult Functions 

DE TS MDE DETL Function SR NFE SR NFE SR NFE SR NFE*

MHB 89 1334 65 1531 88 1325 97 1607 
(1581+26) 

RA2 81 2312 34 1960 83 2310 100 1409 
(1383+26) 

RA5 100 6048 --- --- 100 6049 97 3767 
(3675+92) 

RA10 98 12076 --- --- 95 12067 99 7977 
(7757+220) 

RA15 95 18106 --- --- 94 18092 91 13080 
(12751+329)

RA20 89 24107 --- --- 74 24105 83 20003 
(19578+425)

GW5 90 6097 12 5068 91 6104 94 6056 
(5959+97) 

GW10 97 12245 --- --- 95 12160 95 11875 
(11617+258)

GW15 100 18036 7 41705 98 18029 100 11991 
(11507+484)

GW20 99 23999 31 13363 56101 100 23383 100 (12602+761)
* The two numbers in brackets are respectively NFE required for DETL excluding 

local optimization and NFE for local optimization. 
 

 

On average, NFE required by the local optimization in DETL (Table 4.6) is 

around 3% for these functions. The average percentage reduction in NFE for DETL 

compared to DE and MDE are given in Table 4.7. NFE of DE and MDE is less 

compared to that of DETL for mHB function. This may be because of the premature 

convergence of DE and MDE to local minima resulting less NFE along with less SR 

(88-89%) compared to DETL (97%). For difficult benchmark problems, the average 

percentage reduction in NFE by DETL is 22% and 21% compared to DE and MDE 

respectively. 
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Table 4.7: % Reduction in NFE of DETL for Benchmark Problems –  
Difficult Functions 

Function Compared 
to DE 

Compared to 
MDE 

MHB -20 -21 
RA2 39 39 
RA5 38 38 
RA10 34 34 
RA15 28 28 
RA20 17 17 
GW5 1 1 
GW10 3 2 
GW15 34 33 
GW20 44 43 

Note: % Reduction = ⎟⎟
⎠

⎞

⎝

−
MDEorDEofNFE

DETLofNFEMDEorDEofNFE
⎜⎜
⎛ ×100 

 

 

The performance of DETL is also compared to the other methods (DE, MDE 

and TS) by plotting convergence curves between (i) average (over 100 trials) of |X-

X*| versus the number of iterations, and (ii) average NFE (over 100 trials) versus the 

number of iterations. Here, X is the best (global) solution obtained by the algorithm in 

the trial and X* is the true global optimum (Table 4.1). As shown in Figure 4.3a, the 

convergence of DETL is faster compared to DE, TS and MDE for mHB function. 

Norm of |X-X*| using DETL after 20th iteration is 0.6774 whereas that of DE, MDE 

and TS is 2.018, 1.774 and 2.018 respectively. Even though the norm of MDE is 

lower than that of DE, it is higher than that of DETL. NFE required by DE, TS, MDE 

and DETL after 120 iterations is 2400, 1334, 2400 and 2119 respectively. This clearly 

shows that the diversity introduced in DE using TS concept has considerable 

influence on its performance. The convergence of MDE is slightly better than that of 

DE but is less that that of DETL. The convergence curve of TS is faster in the initial 

iterations (the average norm dropped to 2.078) itself but it does not improve over 
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further iterations as it is stuck at the local minima. The results in Figure 4.3a to 4.3c 

are given for up to the maximum number of iterations, and is different for TS and 

other methods (Table 4.2).  

 

NFE of DE, MDE and DETL are almost same in the initial stages whereas that 

of DETL is decreasing as the number of generations increase (Figure 4.3a). As the 

number of generations increase, members of the population come close to one another 

to a potential (global) region and so many newly generated members will be near to 

those in the tabu list and these members are not evaluated in DETL resulting in low 

NFE. The convergence curves for GP function are given Figure 4.3b. DETL shows 

faster convergence compared to TS after a few initial iterations, DE and MDE overall 

the iterations. Though NFE of DETL is high for this function compared to TS, it is 

less than that of both DE and MDE. The flat profile of Average NFE with DETL 

shows the function evaluations are getting reduced as the members become close 

enough. The convergence curves for RA2 function given in Figure 4.3c, show that the 

convergence rate of DETL is faster compared to DE, MDE and TS resulting less NFE 

compared to all the methods (Table 4.6). Though the convergence rate of TS is faster 

compared to DETL in the earlier iterations, it does not improve much in further 

iterations and it is stuck at the local minima. These results show that the efficiency of 

DETL is high compared to DE, MDE and DETL especially for the functions having 

huge number of local minima (such as Rastrigin functions). Though the improvement 

in the convergence of DETL is not the same for all the functions, its performance is 

always better than that of DE and MDE. 
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Figure 4.3: Convergence profiles for solving (a) modified Himmelblau, (b) 

Goldstein and Price, and (c) Rastrigin functions, by TS, DE, MDE and DETL. 

 

 

4.8.2 Phase Equilibrium Calculations 

 

 All the results obtained from solving each phase equilibrium problem 100 

times are summarized in Table 4.8. The reliability of DE, MDE and DETL is high, 

and is better compared to TS; the one exception is example 4 for which all methods 

fail. SR of TS is around 100% for both Vapor-liquid equilibrium (VLE) and Liquid-

liquid equilibrium (LLE) examples except for example 8 due to the presence of 

comparable minima (function value at global minimum and trivial solution is -

0.360253 and -0.354340 respectively). As the minima are comparable, better regions 

(i.e., regions where the function value is better than that of the last local 
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minimum)become narrower and narrower, and the algorithm fails to explore them 

resulting in low SR. For vapor-liquid-liquid equilibrium (VLLE) examples, SR of TS 

is low compared to DE, MDE and DETL due to the presence of comparable minima 

(objective function value at local and global minima are -1.334404 and -1.334461 for 

example 9, and are -1.233294 and -1.235896 for example 10 respectively) and more 

number of variables (6). Reliability of DE, MDE and DETL is close to 100% for all 

phase equilibrium examples which shows their superiority over TS in escaping from 

the local minima. In general, the characteristic of comparable minima in these 

examples poses a challenge to any optimization technique. 

 

 Though TS has low SR, it is computationally efficient compared to the other 

methods studied, probably because of avoiding re-visits during the search in TS. The 

SR of DE is higher compared to that of TS whereas its NFE is less than that of TS. 

NFE of MDE is comparable to that of DE. Despite having high SR, DETL requires 

less NFE compared to both DE and MDE. On average, NFE required by local 

optimization technique in DETL is only around 2% of the total NFE. The percentage 

reduction in NFE of DETL compared to both DE and MDE is given in Table 4.9. By 

implementing the concept of TS in DE, we are able to reduce the NFE of DETL, on 

average, by 39% less compared to that of DE, and by 40% less compared to that of 

MDE, which is a significant reduction. 
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Table 4.8: Results for Phase Equilibrium Calculations 

DE TS MDE DETL Example SR NFE SR NFE SR NFE SR NFE*

Vapor-liquid equilibrium 

1 (2) 96 3426 99 1348 96 3930 98 2118 
(2081+37) 

2 (6a) 100 8564 96 1618 100 8564 100 3436 
(3324+112)

3 (6b) 100 8571 96 1639 100 8572 100 3506 
(3391+115)

4 (9) --- --- --- --- --- --- --- --- 
Liquid-liquid equilibrium 

5 (11a) 96 2562 98 1432 98 2678 96 2070 
(2020+50) 

6 (11b) 100 5187 100 1359 100 5365 100 2187 
(2152+35) 

7 (12) 100 5182 100 1367 100 5152 100 2291 
(2223+68) 

8 (13) 98 7978 94 1575 100 7776 97 5463 
(5387+76) 

Vapor-liquid-liquid equilibrium 

9 (17) 99 8690 68 5648 98 8717 96 7588 
(7354+234)

10 (18) 100 8689 81 7545 5486 99 8692 100 (7366+179)
* The two numbers in brackets are respectively NFE required for DETL excluding 
local optimization and NFE for local optimization. 
 
 

Table 4.9: % Reduction in NFE of DETL for Phase Equilibrium Calculations 

Example 
number 

Compared 
to DE 

Compared to 
MDE 

1 38 46 
2 60 60 
3 59 59 
4 --- --- 
5 19 23 
6 58 59 
7 56 56 
8 32 30 
9 13 13 
10 13 13 

Note: % Reduction = ⎟⎟
⎠

⎞

⎝

−
MDEorDEofNFE

DETLofNFEMDEorDEofNFE
⎜⎜
⎛ ×100 
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4.8.3 Parameter Estimation Problems 

 

 The results of solving parameter estimation problems summarized in Table 

4.10 show that SR of all the tested methods is 100% for all examples except for 

example 5. This could be because of the highly non-convex nature of the objective 

function in this example (see Figure 5 in Esposito and Floudas, 2000). SR of TS is 

less for Example 5 whereas that of DE, DETL and MDE is high. SR of MDE is 

slightly less than that of DE for this example. This may be because of the premature 

convergence due to the early updating of the population in MDE. SR of DETL is high 

and equal to that of DE for example 5. For example 2, we have used a direct search 

method for local optimization, namely, Nelder-Mead Simplex method instead of 

gradient-based quasi-Newton method. This is to achieve accurate final solution as this 

function seems to be flat near the global solution resulting slightly inaccurate 

solutions (absolute error of 10-4 instead of specified 10-6 or less in the objective 

function value) with gradient-based methods. Overall, the computational efficiency of 

TS is better than that of DE, MDE and DETL despite its low SR for example 5. 

 

 Table 4.10: Results for Parameter Estimation Problems 

DE TS MDE DETL Example SR NFE SR NFE SR NFE SR NFE*

1 100 2434 100 585 100 2433 100 1098 
(1061+37) 

2 100 5032 100 1851 100 5017 100 5028 
(4830+198)

3 100 3694 100 585 100 3749 100 3615 
(3493+122)

4 100 6158 100 2702 100 6148 100 6151 
(6022+129)

5 91 2023 63 699 86 1883 92 1891 
(1837+54) 

* The two numbers in brackets are respectively NFE required for DETL excluding 
local optimization and NFE for local optimization. 
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Though DE has good reliability, it took more NFE compared to TS. MDE has 

less NFE compared to DE, but has slightly low SR compared to DE for example 5 due 

to premature convergence. On the other hand, by implementing the concept of TS in 

DE, DETL achieved good reliability as in DE with less NFE compared to both DE 

and MDE. NFE of DETL is almost comparable to that of both DE and MDE for 

examples 2 and 4. NFE required for local optimization technique in DETL is around 

3% (on average) for parameter estimation problems solved. The percentage reduction 

in NFE of DETL, on average, is 13% less compared to DE and 12% less compared to 

MDE for these functions (Table 4.11). 

 

Table 4.11: % Reduction in NFE of DETL for Parameter Estimation Problems 

Example 
number 

Compared to 
DE 

Compared to 
MDE 

1 55 55 
2 ≈ 0 (-8×10-4) ≈ 0 (-2×10-3) 
3 2 4 
4 ≈ 0 (1×10-3) ≈ 0 (-5×10-4) 
5 7 ≈ 0 (4×10-3) 

Note: % Reduction = ⎟⎟
⎠

⎞

⎝

⎛ −
MDEorDEofNFE

DETLofNFEMDEorDEofNFE
⎜⎜ ×100 
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4.9 Summary 

  

A new method, namely, DETL is proposed by effectively integrating the 

effective features of DE and TS. It is first tested over a set of benchmark problems, 

divided into two categories: moderate and difficult, in terms of both reliability and 

computational efficiency. The results show that the performance of DETL is better for 

both moderate and difficult functions compared to DE, TS and MDE. The method is 

then evaluated for challenging phase equilibrium calculations involving multiple 

components and multiple phases. DETL located the global minimum successfully for 

these problems with high reliability (close to 100%) and with 39% less NFE 

compared to DE and 40% less NFE compared to MDE. It is then applied for 

parameter estimation in dynamic systems; the results show that the SR of DETL is 

almost 100% with NFE which is 26% and 13% less than that of DE and MDE 

respectively for these problems. Overall, the performance of DETL is better than that 

of DE, TS and MDE algorithms. With the significant reductions, it is very attractive 

for engineering applications where the objective function evaluation involves 

extensive calculations. 
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CHAPTER 5 

DIFFERENTIAL EVOLUTION WITH TABU LIST FOR 

SOLVING NLPs AND MINLPs*

 

Differential evolution (DE), a population-based direct search algorithm is 

gaining popularity in the recent past due to its simplicity and ability to handle non-

linear, non-differentiable and non-convex functions. In this study, a method, namely, 

differential evolution with tabu list (DETL) is presented for solving constrained 

optimization problems encountered in chemical engineering. It incorporates the 

concept of tabu search (TS) (i.e., avoiding re-visits during the search) in DE mainly to 

improve its computational efficiency. DETL is initially applied to many non-linear 

programming problems (NLPs) involving 2 to 13 variables and up to 38 constraints. It 

is then tested on several mixed-integer non-linear programming problems (MINLPs) 

encountered in chemical engineering practice. The results show that the performance 

of DETL is better than that of DE and the modified differential evolution (MDE) of 

Babu and Angira (2006) for both NLPs and MINLPs. 

 

 

                                                 
* This chapter is based on the paper – Mekapati Srinivas and Rangaiah, G. P. Differential 
evolution with tabu list for solving non-linear and mixed-integer non-linear programming 
problems, Industrial and Engineering Chemistry Research, 46, pp. 7126-7135. 2007c. 
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5.1 Introduction 

 

Many process design, synthesis, control and scheduling problems in 

engineering involves formulating and solving non-linear programming (NLP) or 

mixed-integer non-linear programming (MINLP) problems with constraints. 

Examples from chemical engineering area include heat exchanger networks (Floudas 

et al., 1986), pooling problem (Aggarwal and Floudas, 1988), utility and refrigeration 

systems (Shelton and Grossmann, 1986) and evaporation systems (Hillenbrand, 

1984). In general, the problem can be stated as: 

Minimize  f (x, y) 

Subject to  hi (x, y) = 0,  i = 1, 2, …, m1 

     gj (x, y) ≥ 0, j = 1, 2, …, m2 

     xl
k ≤ xk ≤ xu

k, k = 1, 2, …, N 

     yl
k ≤ yk ≤ yu

k, k = 1, 2, …, (p – N)  

where x and y are vectors representing continuous and discrete variables, and h and g 

are equality and inequality constraints respectively. Number of equality constraints, 

inequality constraints, continuous variables and discrete variables is respectively m1, 

m2, N and (p-N). The challenging characteristic of NLP/MINLP problems is the 

existence of non-convexities either because of the objective function and/or 

constraints. Use of traditional local optimization techniques to these problems lead to 

local solutions and hence the study of global optimization techniques to NLP/MINLP 

problems is of immense interest in the recent past (e.g., Adjiman et al., 1997; Angira 

and Babu, 2006; Danish et al., 2006).  
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Generally, global optimization techniques can be broadly divided into two 

types: deterministic and stochastic. Several deterministic algorithms have been 

proposed for the solution of NLP/MINLP problems in the literature (e.g., Kocis and 

Grossmann, 1988; Floudas et al., 1989; Ryoo and Sahinidis, 1995; and Adjiman et al., 

1997). Kocis and Grossmann (1988) have solved MINLP problems using outer 

approximation/equality relaxation (OA/ER) algorithm. OA/ER consists of two phases 

such that in phase I non-convexities that cut off the global optimum are systematically 

identified with local and global tests. In phase II, a new master problem is solved to 

locate the global optimum which may have been overlooked in phase I. Floudas et al. 

(1989) proposed an approach to solve NLP and MINLP problems, which involves the 

decomposition of the variable set into two sets: complicating and non-complicating 

variables. The decomposition of the original problem induces special structure in the 

resulting sub-problems and a series of these sub-problems are solved based on the 

generalized Benders decomposition for the global optimum. Ryoo and Sahinidis 

(1995) proposed a branch-and-bound-based method for MINLP problems. It is based 

on the solution of a sequence of convex underestimating sub-problems generated by 

evolutionary subdivision of the search region. Adjiman et al. (1997) proposed two 

new global optimization techniques for MINLP problems involving functions that are 

twice-differentiable in continuous variables. Both the techniques are based on the α-

branch-and-bound (αBB) global optimization algorithm (Adjiman and Floudas, 1996) 

for twice-differentiable NLP problems.  

 

Most of the above deterministic methods provide mathematical guarantee to 

provide the global optimum while exploiting the mathematical structure of the given 

problem such that the original problem is decomposed into a number of sub-problems 
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which can be solved easily. On the other hand, stochastic methods are problem 

independent and converge to the global optimum with probability approaching one as 

their running time goes to infinity (Torn and Zilinskas, 1989). Further, they are 

applicable to non-convex and/or non-continuous functions.  

 

Das et al. (1990) studied four different versions of simulated annealing (SA) 

for scheduling of serial, multi-product batch processes; of the four versions of SA 

studied, Metropolis algorithm with the Aarts and van Laarhoven annealing schedule 

was found to give the best results. Ku and Karimi (1991) investigated the usefulness 

of SA for solving batch process scheduling problems. The results show that SA is 

versatile and powerful for solving different forms of batch process scheduling 

problems. Salcedo (1992) proposed an adaptive random search method for NLP and 

MINLP problems. The results obtained reveal the adequacy of random search 

methods for non-convex NLPs and small to medium scale MINLPs in chemical 

engineering. Cardoso et al. (1997) proposed an SA approach for the solution of 

MINLP problems. The method combines the original Metropolis algorithm 

(Metropolis et al., 1953) with the non-linear simplex method of Nelder and Mead 

(1965). The proposed approach is shown to be reliable and efficient especially for 

larger scale and ill-conditioned problems. Jayaraman et al. (2000) applied ant colony 

framework for optimal design of batch plants, and has found it to be robust to locate 

the optimum with less than 0.04% error. Yu et al. (2000) proposed a new algorithm 

combining both genetic algorithm (GA) and simulated annealing (SA) to solve large 

scale system energy integration problems. Their results show that the new algorithm 

can converge faster than either SA or GA alone, and has higher probability in locating 

the global optimum.  
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Costa and Oliveira (2001) examined both GAs and evolutionary strategies 

(ES) for MINLP problems. Their results show that ES exhibit difficulties in highly 

constrained problems but, in general, they are efficient in terms of function 

evaluations compared to GA and SA-based M-SIMPSA of Cardoso et al. (1997). Lin 

and Miller (2004b) studied tabu search (TS) for the solution of NLP and MINLPs. 

Several constraint handling techniques and initial values for key parameters of TS are 

also described in this work. The results demonstrate the effectiveness of TS for 

chemical engineering problems. Danish et al. (2006) presented modified GA by 

combining various effective schemes (such as simulated binary crossover, polynomial 

mutation and variable elitism operators) proposed by several researchers. Modified 

GA is then used to solve several multi-product batch plant design problems and 

results reported are comparable to or better than those in the literature (Grossmann 

and Sargent, 1979). 

 

Lampinen (2002) applied DE for solving non-linear constrained functions, and 

his results demonstrate the ability of DE for NLPs. Recently, Angira and Babu (2006) 

have applied a modified differential evolution (MDE) for solving seven problems in 

process synthesis and design. Their results show that MDE converges faster than the 

original DE of Storn and Price (1997). Due to the simplicity, ease of use and faster 

convergence properties of DE compared to GA (Karaboga and Cetinkaya, 2004), the 

former has been used for many applications. In this study, a hybrid method, namely, 

differential evolution with tabu list (DETL) is presented for solving several NLP and 

MINLP problems in chemical engineering practice. It incorporates the concept of TS 

(i.e., avoiding re-visits during the search) in DE mainly to improve its computational 

efficiency. DETL is inspired by our experience with both DE and TS (e.g., Srinivas 
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and Rangaiah, 2005 and 2007a); the results for benchmark, phase equilibrium and 

phase stability problems show that DE is more reliable than TS, whereas the latter is 

efficient than the former, primarily due to tabu list and avoiding re-visits. 

 

5.2 Description of DETL 

  

The motivation and working principle of DETL are discussed under section 

4.2 (Chapter 4). DETL begins with the selection of values for parameters: population 

size (NP), amplification factor (A), crossover constant (CR), tls, tr, maximum number 

of generations (Genmax) and maximum number of successive generations (Scmax) 

without improvement in the best function value. The algorithm (Figure 5.1) generates 

the initial population of size NP using uniformly distributed random numbers to cover 

the entire feasible region. The objective function and the constraints are evaluated at 

each individual and the best one is captured. The evaluated individuals/points are then 

sent to the tabu list, which will be used to ensure that the algorithm does not search 

again close to these points.  

 

 The three main steps: mutation, crossover, and selection of DE are performed 

on the population during each generation/iteration. For this, a mutant individual is 

generated for each randomly chosen target individual (Xkk) in the population by 

 Vkk, gen+1 = Xr1 + A (Xr2 – Xr3);     kk = 1, 2, ..., NP             (5.1) 

where Xr1, Xr2  and Xr3 are the three randomly chosen individuals from the current 

population to produce the mutant individual (Vkk, gen+1). The random numbers r1, r2 

and r3 should be different from the running index (kk), and hence NP should be 4 or  
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Yes 

No 

Yes 

No 

Yes 

Set the parameter values 

Generate the population and evaluate the objective 
function and constraints at each individual 

Send the evaluated points to the tabulist 

Set generation (gen) = 1

Set kk = 1 

For each target individual (kk), 
generate a trial individual through 
mutation and crossover operations 

Evaluate objective function and 
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Local optimization from the best point 
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Figure 5.1: Flowchart of DETL 
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more for mutation. The mutation parameter or amplification factor, A has a value 

between 0 and 2, and controls the amplification of the differential variation between 

two random individuals. In the crossover step, a trial individual is generated by 

copying some elements of the mutant individual to the target individual with a 

probability of CR. A boundary violation check is performed to check the feasibility of 

the trial individual; if any bound is violated, the trial individual is either replaced by 

generating a new individual or forced to the nearest boundary (lower or upper). The 

trial individual is then compared with the points in the tabu list. If it is near to any of 

the points in the tabu list, the trial individual is rejected and another point is generated 

through mutation and crossover operation. 

 

Objective function and constraints are evaluated at the trial individual only if it 

is away from all the points in the tabu list. After each evaluation, the evaluated point 

is sent to the tabu list. For example, consider a population of size 30 and tabu list of 

size 20. Once the first member of the population is generated (i.e., until it is not near 

to any of the points in the tabu list) and evaluated, it is placed in the first position of 

the tabu list and the subsequent points will be placed in the corresponding positions. 

Then, the 21st evaluated point replaces the first point in the tabu list and the 

subsequent points occupy the corresponding positions. Thus the tabu list in DETL is 

updated dynamically during the search to keep the latest point(s) in the list by 

replacing the earliest-entered point(s). In the selection step, a greedy criterion such as 

fitness (i.e., objective function) value is used to select the better one of the trial and 

target individuals. If the trial individual is selected, it replaces the target individual in 

the population immediately and may participate in the subsequent mutation and 
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crossover operations. If the target individual is better, then it remains in the 

population and may participate in the subsequent mutation and crossover operations.  

 

The process of generation, evaluation and selection is repeated NP times in 

each generation. The algorithm runs until the stopping criterion such as maximum 

number of generations (Genmax) or maximum number of successive generations 

(Scmax) without improvement in the best function value, is satisfied. The best point 

thus obtained over all the generations is further refined using a local optimization 

technique, and is declared as the global optimum. 

 

5.3 Handling Integers and Binary Variables 

 

Within the optimization algorithm, integers and binary variables are also 

represented as continuous variables, and converted into integers for evaluating the 

objective function and constraints. In this study, integers are handled by rounding the 

continuous variables to the nearest integers in contrast to the truncation as in Angira 

and Babu (2006). Truncation always takes the nearest lower integer value whereas 

rounding method has equal probability to choose between nearest lower and nearest 

upper integer values; the latter is unbiased and thus reasonable. For example, if the 

continuous variable has a value of 2.6 in one case and 2.4 in the second case, then 

truncation takes the nearest lower integer (2) in both the cases whereas rounding takes 

the nearest higher integer (3) in the first case and nearest lower integer (2) in the 

second case. Binary variables are also handled in the same way as for integers except 

that their bounds are restricted to 0 and 1.   
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5.4 Handling Constraint and Boundary Violations 

 

In this study, all equality constraints are eliminated by using them to solve for 

suitable variables and substituting the resulting expressions in the objective function 

and/or constraints. The reformulated problem for each example is also stated in 

Appendix B. All inequality constraints are handled using the most popular penalty 

function method. Penalty function method converts the constrained problem into an 

unconstrained one by penalizing the infeasible solutions using penalty weights. A 

high value (1×106) is used for the penalty weight for all the problems in this study. If 

any constraint is violated, the absolute value of the constraint violation is multiplied 

by the penalty weight and is added/subtracted to the objective function, depending 

upon the minimization or maximization. If many constraints are violated, then each 

absolute violation is first multiplied with the penalty weight, and all of them are 

added/subtracted from the objective function value. 

 

Boundary violations are often encountered while performing mutation 

operation in DE, MDE and DETL. In this study, each and every member violating 

variable bounds is handled by replacing them with a new member generated randomly 

between the lower and upper bounds of variables. This approach is referred as random 

generation (RG) in this work. For MINLPs, another approach, namely, forcing to 

bounds (FB) in which the boundary violations are forced to the nearest lower/upper 

boundaries, is also used. This is because many MINLP problems have global 

solutions at the bounds of decision variables; hence, using FB approach will improve 

the reliability and efficiency at times. In addition to the RG and FB approaches, a 

mixed approach in which approximately 50% of the boundary violations are corrected 
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using RG approach and the remaining with FB approach, is also used for the MINLPs 

tested. This is achieved by implementing RG and FB approach alternatively. 

 

5.5 Implementation and Evaluation 

 

The FORTRAN code of DE is taken from the website: 

www.icsi.berkeley.edu/~storn/code.html, and is modified for MDE (as stated in Babu 

and Angira (2006), to update the population once the better solution is found instead 

of waiting for the whole population as in DE) and then for DETL by including the 

tabu list and tabu check. A local optimization technique is used at the end of all the 

three methods to improve the computational efficiency and accuracy of the final 

solution. The subprogram, DNCONF in the IMSL software is used for local 

optimization. For MINLP examples 7 and 8, FSQP program obtained from AEM 

Design (www.aemdesign.com) is used for local optimization to avoid the unexpected 

fatal errors and consequent program termination experienced with DNCONF. Both 

DNCONF and FSQP are based on SQP method and use numerical (finite difference) 

gradient. As both these programs do not handle binary and integer variables, they are 

kept at the optimal solution obtained by each global algorithm (DE, MDE and DETL) 

and only the continuous variables are refined using the local optimization. It is 

reasonable to assume that the solution found by the global method does not require 

refining binary and integer variables. 

 

The methods are evaluated based on both reliability and computational 

efficiency in locating the global optimum. Reliability is measured in terms of success 

rate (SR) (i.e., number of times the algorithm located the global optimum to the 
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specified accuracy out of 100 trials). Computational efficiency is measured in terms 

of number of function evaluations (NFE) required to locate the global optimum. NFE 

is the average over only the successful runs out of 100 trials, and includes the function 

calls for evaluating the objective and for the numerical gradient in the local 

optimization. All the constraints are also evaluated at each function evaluation. NFE 

is a better indicator than the computational (CPU) time since function evaluation in 

many applications requires extensive calculations and CPU time is dependent on the 

computer and implementation. The stopping/termination criterion used in this study is 

the maximum number of generations (Genmax) or maximum number of successive 

generations (Scmax) without improvement in the best function value. These criteria are 

used instead of convergence to the global minimum as a stopping criterion because, in 

practical applications, global minimum is unknown ‘a priori’ and also accurately. A 

trial/run is said to be successful only if the global optimum is obtained with an 

absolute error of 10-5 or less in the objective function value.  

 

5.6 Non-linear Programming Problems (NLPs) 

  

The applicability of DETL for NLPs is tested by solving many test functions 

and engineering design problems taken from the literature (Deb, 2000; Babu and 

Angira, 2006; and Ryoo and Sahinidis, 1995). The examples are carefully chosen so 

that they have at least two of the following features: (i) multiple minima, (ii) narrow 

feasible region, and (iii) employed in the recent studies. Problems with no known 

multiple minima are specifically excluded since this study focuses on global 

optimization for problems with multiple minima. Number of 

binary/integer/continuous variables and equality/inequality constraints in each  
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Table 5.1: Characteristics of the NLP and MINLP problems studied 
 

NLPs 

Example 
Constraints 
(equality + 
inequality) 

Variables 
(binary+ 

integer + real)
Reference 

1 2 (0+2) 2 (0+0+2) Deb (2000) 
2 38 (0+38) 5 (0+0+5) Himmelblau (1972) 
3 9 (0+9) 13 (0+0+13)  Deb (2000) 
4 6 (0+6) 8 (0+0+8) Deb (2000) 
5 4 (0+4) 7 (0+0+7) Deb (2000) 
6 6 (0+6) 5 (0+0+5) Deb (2000) 
7 8 (0+8) 10 (0+0+10) Deb (2000) 

8a,* 5 (4+1) 6 (0+0+6) Ryoo and Sahinidis (1995) 
9a 0 2 (0+0+2) Umeda and Ichikawa (1971) 
10 1 (0+1) 2 (0+0+2) Sahinidis and Grossmann (1991) 
11* 2 (2+0) 4 (0+0+4) Ryoo and Sahinidis (1995) 
12* 7 (5+2) 10 (0+0+10) Visweswaran and Floudas (1990) 
13* 2 (2+0) 3 (0+0+3) Ryoo and Sahinidis (1995) 
14 4 (0+4) 2 (0+0+2) Ryoo and Sahinidis (1995) 
15 2 (0+2) 2 (0+0+2) Ryoo and Sahinidis (1995) 
16* 6 (3+3) 6 (0+0+6) Ryoo and Sahinidis (1995) 

MINLPs 

1b,c,d 2 (0+2) 2 (1+0+1) Ryoo and Sahinidis (1995) 
2b,c,d,e,* 2(1+1) 3 (1+0+2) Kocis and Grossmann (1987) 
3b,c,d 3 (0+3) 3(1+0+2) Floudas (1995) 
4b,c,d,* 9 (5+4) 4(1+0+3) Kocis and Grossmann (1989) 
5b,c,d,e 9 (0+9) 7 (3+0+4) Floudas (1989) 
6b,c 3 (0+3) 5 (0+2+3) Cardoso et al. (1997) 
7f 13 (0+13) 10 (0+3+7) Salcedo (1992) 
8f 61 (0+61) 22 (0+6+16) Salcedo (1992) 

Note: Some of the examples are also given and used by (a) Babu and Angira (2006), 
(b) Angira and Babu (2006), (c) Costa and Oliveira (2001), (d) Cardoso et al. (1997), 
(e) Salcedo (1992) and (f) Grossmann and Sargent (1979)  
 
* The number of variables and inequality constraints for the reformulated problem are 
given in Appendix B.  
 
 

example is summarized in Table 5.1. The mathematical formulation, global and local 

optima for each of these problems are given in Appendix B. Some of the problems 

presented in the literature (e.g., example 2 in Deb, 2000; examples 10 and 12 in Ryoo 

and Sahinidis, 1995) have typographical errors; hence, the reference from which an 

example is obtained is also given in Table 5.1. Example 1 is the Himmelblau function 
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with two non-linear constraints. The feasible region is a narrow, crescent-shaped 

(Deb, 2000) and only 0.7% of the total search space defined by bounds, posing a 

significant challenge to optimization problems. Example 2 is the maximization of the 

net profit of a wood-pulp plant. It has many (38) constraints resulting from material 

and energy balances and several empirical equations. Example 3 is relatively an easy 

problem with the objective function and constraints being linear or quadratic. 

Example 4 is the design of a heat exchanger network problem. Michalewicz (1995) 

found this problem difficult to solve. Example 5 has feasible region of only about 

0.5% of the total search space. Examples 6 and 7 are the test functions with non-linear 

objective function and constraints. Example 8 is a reactor network design problem. It 

is difficult to solve as it has a comparable local minimum (i.e., the local minimum 

value is very close to the global minimum value). Example 9 is the maximization of 

the yield of a product with respect to reaction time and temperature in a continuous 

stirred tank reactor. Example 10 is a test function with bilinear constraint. Examples 

11 and 12 are the design of an insulated tank and pooling problems respectively. 

Example 13 has bilinearities whereas examples 14 and 15 are quadratically 

constrained problems with linear and quadratic objective functions. Example 16 is the 

design of a three-stage process system with recycle. 

 

5.6.1 Parameter Tuning 

 

The parameters of DE, MDE and DETL (i.e., CR, A, NP, Genmax, Scmax, tr and 

tls) are tuned using examples 2, 4, 6, 8 and 9 which are found to be difficult in the 

preliminary testing. Tuning is carried out by varying one parameter at a time with the 

remaining parameters fixed at their nominal or recent optimal values, in order to 
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achieve good reliability and also computational efficiency. The nominal parameter 

values are chosen based on the preliminary numerical experience, are CR = 0.5, A = 

0.5, NP = 20, Genmax = 50, Scmax = 5N (where N is the dimension of the problem) for 

both DE and MDE, and tr = 1×10-6 and tls = 20 which are the additional parameters in 

DETL. The range of values used for each parameter while tuning are 0.1 to 2 for A, 

0.1 to 1 for CR, 20 to 100 for NP, 50N to 500N for Itermax, and 10N to 20N for Scmax, 

with a minimum of 6 and a maximum of 10 points in the range. Although the 

parameters can be fine tuned for each example as performed in Angira and Babu 

(2006), a common set of optimal parameters is used for each group (NLPs and 

MINLPs) in this study to find optimal parameters valid for a class of problems. They 

will be more useful in new applications. 

 

Table 5.2: Optimal values of parameters in DE, MDE and DETL 

Parameter NLPs MINLPs 
DE and MDE 

Amplification factor (A) 0.6 0.5 
Crossover constant (CR) 0.6 0.7 

Population size (NP) 20 20 
Maximum number of generations (Genmax) 100N 40N 

Max. number of successive generations without 
improvement in the best function value (Scmax) 10N 10N 

DETL 
Tabu radius (tr) N×10-3 N×10-2

Tabu list size (tls) 20 20 
 

 

All the decision variables are normalized, within the optimization program, between 0 

and 1 for consistency, and values reported for tabu radius (tr) in this study are for use 

with the normalized variables. The optimal parameter values obtained for NLPs are 

summarized in Table 5.2. The optimal parameters of MDE and DETL (except the 

additional parameters tr and tls, which are tuned separately) are kept same as those 
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obtained for DE for a fair comparison. Even then, if any algorithm (DE, MDE or 

DETL) converges faster, it will be captured by Scmax termination criterion; when the 

algorithm converges faster, this criterion is satisfied earlier resulting in less NFE. 

 

5.6.2 Results and Discussion 

 

All the examples are solved 100 times, each time with a randomly generated 

initial estimate. These initial estimates may or may not be feasible (i.e., constraints 

may not be satisfied). The boundary violations are handled using RG approach for all 

NLPs since most of these problems have global solutions inside the bounds of the 

decision variables. The performance results (SR and NFE) are presented in Table 5.3. 

Success rate of DE, MDE and DETL is 100% for examples 1 to 7 (except for example 

4) even though some of them have narrow feasible regions (examples 1 and 5) and 

one of them (example 2) has many (38) constraints. This shows the reliability of the 

escaping mechanism (crossover and mutation) in these methods to escape from the 

local minima. For example 4, the global optimum obtained in this study at x = 

(579.3006, 1359.9706, 5109.9704, 182.0177, 295.6011, 217.9823, 286.4165, 

395.6011) with f = 7049.247720, is slightly better than that with f = 7049.330923 

reported in Deb (2000). In a few of the trials, both MDE and DETL converged to a 

solution at x = (579.3199, 1355.3417, 5114.5942, 182.0188, 295.4162, 217.9811, 

286.6025, 395.4162) with f = 7049.255921. This could be due to the flat objective 

function near the global solution thus leading the gradient-based optimization 

technique (DNCONF used in this study) converge somewhat prematurely in a few 

trials. For examples 1 to 3 and 5 to 7, NFE for DETL is less among the methods tested 

which clearly shows the benefit of avoiding re-visits using the tabu list in DE.  

 162



 
                                                                                       Chapter 5 DETL for NLPs and MINLPs                        

Table 5.3: SR and NFE of DE, MDE and DETL for NLPs 

DE MDE DETL Example 
number SR NFE SR NFE SR NFE 

1 100 1981 100 1910 100 1132 
2 100 10002 100 10043 100 6607 
3 100 26074 100 26074 100 21144 
4 100 12926 97 13723 95 13209 
5 100 9455 100 9347 100 7282 
6 100 9651 100 9487 100 7013 
7 100 13892 100 13260 100 12183 
8 90 1710 98 1993 98 1493 
9 75 3348 72 3552 77 1998 
10 100 3530 100 3823 100 1370 
11 99 3692 97 3609 96 1521 
12 100 8024 100 8661 100 4433 
13 99 868 99 1055 100 425 
14 100 2409 100 2421 100 1650 
15 86 2114 77 2379 78 1689 
16 100 5427 100 5481 100 2924 

 

 

For example 4, NFE for DETL is fewer than that for MDE and is slightly 

higher compared to DE. Although MDE is expected to converge faster compared to 

DE (Babu and Angira, 2006), NFE for the former is slightly more or comparable to 

that for the latter for examples 2 and 4; however, for examples 1, 5, 6 and 7, MDE 

requires slightly fewer NFE compared to DE. This shows that the concept of early 

updating the members of a population in MDE compared to DE may not improve 

computational efficiency at times.  

 

For example 8, SR of DE is slightly less (90%) than that (98%) of MDE and 

DETL because of the presence of comparable minima (i.e., the objective function 

value at the local and global minimum is -0.3881 and -0.38881 respectively, a 

difference of < 0.2%) in this example. Once any algorithm reaches a comparable local 

minimum, exploring regions where the function value is better compared to that at the 
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local minimum becomes very difficult resulting in low SR. For example 9, SR of all 

the methods is less, at around 75%. This is because of the existence of a ridge (creates 

numerous local solutions) as shown in Babu and Angira (2006) for this example. For 

examples 8 and 9, NFE for MDE is slightly more than that for DE, and that for DETL 

is the least. SR of DE, MDE and DETL is almost 100% for examples 10 to 16 except 

for example 15. Though all these methods were able to escape from two of the local 

minima (at f = 10.631 and at f = 10.354) in example 15, they were trapped in a 

constrained minimum at x = {2.60555, 0} with f = -86.422205 in several trials 

resulting in low SR. NFE for MDE is slightly more than that for DE whereas DETL 

requires the lowest NFE for examples 10 to 16. 

 

Overall, SR of DETL is high and comparable to that of DE and MDE, and its 

NFE is fewer than that for both DE and MDE. The percentage reduction in NFE for 

DETL compared to that for DE and MDE is summarized in Table 5.4. NFE for DE is 

slightly less compared to MDE for many examples tested, making the average 

reduction in NFE for MDE compared to DE negative (-4.2%). On the other hand, the 

average reduction in NFE for DETL compared to DE and MDE is 33% and 35% 

respectively. 

 

The comparable performance of DE and MDE found in this study is different 

from the finding of Babu and Angira (2006). The best results (NFE) reported for DE 

and MDE in the previous study are respectively 37,810 and 31,877 for example 4, 

2074 and 1860 for example 8, and  7996 and 7351 for example 9; SR is either 99 or 

100%. In other words, percentage reduction in NFE of MDE compared to DE is 16%, 

10% and 8% for example 4, 8 and 9 respectively. The other two constrained NLP 
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examples tested by Babu and Angira (2006) have no known local minima, and hence 

are not selected in the present study.  

 

Table 5.4: Percentage reduction in NFE for NLPs 

Example 
number 

MDE Compared 
to DE 

DETL Compared 
to DE 

DETL Compared to 
MDE 

1 3.58 42.86 40.73 
2 -0.41 33.94 34.21 
3 0 18.91 18.91 
4 -6.17 -2.19 3.75 
5 1.04 22.90 22.09 
6 1.69 27.33 26.08 
7 4.55 12.30 8.12 
8 -16.55 12.69 25.09 
9 -6.09 40.32 43.75 
10 -8.30 61.19 64.16 
11 2.25 58.80 57.86 
12 -7.94 44.75 48.82 
13 -21.54 51.04 59.72 
14 -0.49 31.51 31.85 
15 -12.54 20.10 29.00 
16 -0.99 46.12 46.65 

Average -4.24 32.66 35.05 
 

 

The differences in the results of DE and MDE in Babu and Angira (2006) and 

in the present study are due to several reasons: (i) termination criterion (convergence 

to the global minimum is used in Babu and Angira (2006) whereas general 

termination criteria - Genmax and Scmax are used in this study), (ii) use of common set 

of optimal parameters for a set of functions in this study instead of for each function 

as in Babu and Angira (2006), (iii) use of local optimization at the end of each 

algorithm in this study, and (iv) NFE is calculated based on only the successful trials 

out of 100 in this study instead of calculating based on all 100 trials as in Babu and 

Angira (2006). The last one is to avoid under-estimating NFE since convergence to a 
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local minimum in the failed runs takes fewer NFE. In general, evaluation of the 

methods in this study is more realistic and has a wider applicability. 

 

5.7 Mixed-Integer Non-linear Programming Problems (MINLPs) 

 

The applicability and efficiency of DETL is also tested using several MINLPs 

related to process synthesis and design studied by different authors. Most of these 

problems are non-convex optimization problems and involve binary and integer 

variables. Examples 1 and 3 are process synthesis and process flow-sheeting problems 

respectively with non-convexities in the first constraint. Example 2 is also a process 

synthesis/design problem with non-linear equality constraint. Example 4 is a two-

reactor problem, where the selection is to be made among two candidate reactors for 

minimizing the cost of producing a desired product. Example 5 is process synthesis 

problem whereas example 6 is a process design problem having multiple global 

solutions. Examples 7 and 8 refer to the optimum design of multi-product batch plants 

with several local minima. Number of binary/integer/real variables and 

equality/inequality constraints in each example as well as the reference from which it 

is taken are summarized in Table 5.1. The mathematical formulation, global and local 

optima for each of the problems are given in Appendix B. 

 

5.7.1 Parameter Tuning 

 

All the parameters of DE, MDE and DETL are tuned based on examples 2 to 4 

which are found to be difficult in the preliminary trials. The optimal parameter values 

obtained for each method for MINLPs are also given in Table 5.2. The optimal values 
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are slightly different from those obtained for NLPs. This could be due to the less 

number of variables and constraints in MINLP examples (example 8) compared to 

NLP examples studied. All the examples are solved 100 times, each time with a 

randomly generated initial estimate. The three approaches - RG, FB and Mixed, for 

boundary violations are also tested. The performance results (SR and NFE) for all the 

three methods are given in Table 5.5.   

 

5.7.2 Results and Discussion 

 

SR of all the three methods is close to 100% for example 1 using RG 

approach. SR is not affected using FB approach for both DE and DETL, and is 

slightly decreased for MDE; MDE is converged to the nearest local minimum (f = 

2.236067) in 11 out of 100 trials. This could be because of the premature convergence 

associated with early updating of population members in each generation compared to 

that of DE. For example 2, SR of all methods is less using RG approach. Most of the 

failed runs converged to a solution at x = 0.852605 and y = 0 with f = 2.557816, 

which is somewhat comparable to the function value at the global minimum (2.124). 

By forcing the violated members to the nearest bounds (i.e., using FB approach), SR 

of all the methods is increased for example 2. SR of MDE is less compared to that of 

both DE and DETL although it requires less NFE compared to that for DE for 

example 2. On the other hand SR of DETL is high (94%) and its NFE is significantly 

less compared to that for both DE and MDE for this example. This clearly shows the 

efficiency obtained using the tabu list in DE (i.e., DETL).  
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Table 5.5: SR and NFE of DE, MDE and DETL using RG, FB and Mixed 
approaches for MINLPs 

 
DE MDE DETL Example 

Number Approach SR NFE SR NFE SR NFE 

RG 100 1435 95 1531 100 660 
FB 97 1394 90 1414 100 635 1 

Mixed 97 1467 94 1554 100 665 
RG 65 1431 55 1416 74 772 
FB 92 1551 83 1533 94 495 2 

Mixed 80 1445 78 1487 85 715 
RG 94 2358 84 2385 86 1359 
FB 39 1890 34 1827 75 1176 3 

Mixed 62 2078 52 2276 82 1433 
RG 59 2347 57 2367 51 2148 
FB 96 1934 89 1687 91 726 4 

Mixed 95 2191 95 2202 95 1582 
RG 84 5624 67 5624 94 2804 
FB 80 5624 72 5624 84 1777 5 

Mixed 87 5624 83 5624 93 2800 
RG 100 4024 100 4024 100 4027 
FB 100 1220 100 1213 100 1005 6 

Mixed 100 1426 100 1341 100 1444 
RG 0 --- 0 --- 0 --- 
FB 75 8056 67 7998 60 7021 7 

Mixed 10 7552 14 7411 10 6532 
RG 0 --- 0 --- 0 --- 
FB 100 300108 100 296909 96 298738 7#

Mixed 100 251600 92 122946 88 119413 
RG 0 --- 0 --- 0 --- 
FB 99 380730 93 402588 96 297635 8#

Mixed 59 361454 32 286109 15 247396 
 

# These results were obtained with the following parameter values: A = 0.9, CR = 0.6, 
NP = 100, Genmax = 300N, Scmax = 20N, tr = N×10-2 and tls = 100. 

 

For example 3, SR of DE, MDE and DETL using RG approach is better 

compared to that of FB approach. This is because most of the failed runs converged to 

a local solution at x = {0.2, -1} and y = 0 with f = 1.25, where two variables (x2 and 

y) are at their bounds resulting in poor performance of FB approach. Note that only 

the binary variable is at a bound (i.e., y = 1) at the global optimum. SR of DETL is 

comparable to that of DE and MDE with RG approach, and is better than that of both 
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DE and MDE using FB approach for this example. The latter could be because of the 

tabu list in DETL, which avoided many function evaluations at the local solution thus 

increasing the probability of locating the global solution (SR is 71%, 32% and 39% 

for DETL, MDE and DE). On the other hand, NFE for DETL is less than that for both 

DE and MDE using both approaches (RG and FB) for this example. 

 

For example 4, SR with FB approach is found to be better compared to RG for 

all the three methods. For example 5, SR of both DE and DETL using RG approach is 

better compared to FB approach, whereas SR of MDE is better with FB approach 

compared to RG approach. Besides many local minima reported in Ryoo and 

Sahinidis (1995) for example 5, a new local minimum at x = {0.2, 0.8, 1.5} and y = 

{0, 1, 1, 1} with f = 5.636852 is also observed in this study. NFE for DE and MDE 

are same using both the approaches (RG and FB) for this example. This is because the 

termination criterion: Genmax is satisfied before the Scmax criterion. On the other hand, 

DETL has high SR compared to MDE and comparable to that of DE, and its NFE is 

less than that for both DE and MDE for example 5. For example 6, SR of DE, MDE 

and DETL is 100% using both RG and FB approaches. This could be due to the 

presence of many global minima and locating one of them is sufficient to achieve the 

best solution. NFE of all the methods is reduced using FB approach compared to RG 

approach for this example because three variables are at their bounds at global 

solution which makes FB approach to converge faster compared to RG.  

 

For example 7, SR is zero with RG approach, and it is 60-75% with FB 

approach for all the methods. For example 8, SR is zero for both RG and FB 

approaches with all the methods. These results show that examples 7 and 8 are 
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complex due to the associated large number of variables, constraints and local minima 

(Salcedo, 1992) compared to examples 1 to 6. In order to improve the performance of 

the algorithms, their parameters are re-tuned for examples 7 and 8, and the good 

parameters values obtained are: A = 0.9, CR = 0.6, NP = 100, Genmax = 300N, Scmax = 

20N, tr = N×10-2 and tls = 100. The results with the re-tuned parameter values for 

examples 7 and 8 are also given Table 5.5. SR with FB approach is improved and is 

close to 100% whereas it is still at zero with RG approach for all the methods for 

these two examples. This is because many decision variables (5 for both examples 7 

and 8) are at their bounds at the global solution, and handling boundary violations by 

FB approach (i.e., setting to the nearest boundary value) resulted in better 

performance. In addition to the high SR, NFE of DETL is fewer compared to both DE 

and MDE for examples 7 and 8.  

 

These results show that FB approach is comparable to or better than RG 

approach except for example 3. In addition to RG and FB approaches, a mixed 

approach is also tested for all MINLPs in this study and the results are given in Table 

5.5. With the mixed approach, as expected, SR and NFE of DE, MDE and DETL are 

generally between those obtained using RG and FB approaches. 

 

In general, SR of DETL is comparable to that of DE and MDE, and its NFE is 

less than that of both DE and MDE. NFE for MDE is comparable to that for DE for 

most of the MINLPs with an average reduction of 3% compared to DE (Table 5.6). 

The percentage reduction in NFE for DETL compared to DE and MDE using RG, FB 

and Mixed approaches is given in Table 5.6. On average, DETL requires 41% and  
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Table 5.6: Percentage reduction in NFE for MINLPs  

Example 
Number Approach MDE Compared to 

DE 
DETL Compared 

to DE 
DETL Compared 

to MDE 
RG -6.69 54.01 56.89 
FB -1.43 54.45 55.09 1 

Mixed -5.93 54.67 57.21 
RG 1.05 46.05 45.48 
FB 1.16 68.09 67.71 2 

Mixed -2.91 50.52 51.92 
RG -1.15 42.37 43.02 
FB 3.33 37.78 35.63 3 

Mixed -9.53 31.04 37.04 
RG -0.85 8.479 9.25 
FB 12.77 62.46 56.97 4 

Mixed -0.5 27.75 28.11 
RG 0 50.14 50.14 
FB 0 68.40 68.40 5 

Mixed 0 50.21 50.21 
RG 0 -0.07 -0.075 
FB 0.57 17.62 17.15 6 

Mixed 5.96 -1.26 -7.68 
FB 1.07 81.58 81.38 7#

Mixed 51.13 52.54 2.87 
FB -5.74 21.82 26.07 8#

Mixed 22.77 33.22 13.53 
Average 2.96 41.45 38.47 

 

38% fewer NFE compared to the original DE and the recent MDE, respectively. The 

results obtained for DE and MDE implemented in this study (Table 5.5) are different 

from those reported in Angira and Babu (2006). This could be due to several reasons 

stated under the NLPs section along with two additional reasons: (i) the results in this 

study are based on 100 trials compared to only 10 trials in Angira and Babu (2006), 

and ii) integers are handled by rounding the continuous variables to the nearest 

integers in this study compared to truncating in Angira and Babu (2006). This shows 

the need for thorough comparison of MDE and DE using practical stopping criterion, 

common set of parameters and more trials as in this study to bring out the relative 

merits of methods for applications where the global minimum is unknown a priori. 
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5.8 Summary 

 

A method, namely, DETL, by combining the concepts of TS and DE is 

presented for finding the global minimum of NLP and MINLP problems in chemical 

engineering. DETL is tested for many NLP problems having different degrees of 

complexity. The results show that SR of DETL is high, and is comparable to that of 

DE and MDE in locating the global solutions with fewer NFE. The average reduction 

in NFE of DETL compared to both DE and MDE is about 34% for the NLPs studied. 

DETL is then applied to MINLPs which involve process design and synthesis 

problems. The results show that the SR of DETL is comparable to that of DE and 

MDE while its NFE, on average, is around 40% less than that of both DE and MDE. 

Overall, the performance of DETL is significantly better compared to both DE and 

MDE in terms of NFE for finding the global minimum of NLPs and MINLPs.  
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CHAPTER 6 

A NEW TRANSFORMATION FOR STOCHASTIC GLOBAL 

OPTIMIZATION METHODS*

 

In this work, a new transformation of the given objective function is proposed 

in order to facilitate escaping from a local minimum and thus improve the reliability 

of stochastic global optimization methods. The main features of the proposed 

transformation are: it preserves the relative ordering of local and global minima as in 

terminal repeller and unconstrained subenergy tunneling (TRUST) algorithm (Barhen 

et al., 1997), it transforms the current local minimum to a global maximum so that the 

optimization method escapes from the current local minimum, and it is simple. The 

transformation involves two steps: transforming the objective function such that the 

transformed function value becomes zero where the original function value is greater 

than or equal to that of the current local minimum, and building a concave envelope 

such that the algorithm escapes from the local minimum. The proposed transformation 

is implemented with one of the popular evolutionary algorithms, differential evolution 

(DE), and is evaluated for several test functions. A benchmark problem similar to 

phase equilibrium calculations is also proposed and studied. 

 

 

 

                                                 
* This chapter is based on the paper – Mekapati Srinivas and Rangaiah, G. P. An effective 
transformation for enhancing the stochastic global optimization methods, Presented at AIChE 
Annual Meeting, Nov. 2006, San Francisco, USA. 
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6.1 Introduction 
 

 

Smoothening of the given objective function and tracing the global optimum is 

of interest, particularly in protein structure prediction. In general, protein folding 

problems are addressed computationally by minimizing the potential energy over all 

possible protein structures, and the structure with the lowest potential energy is 

presumed to be the most stable protein structure. The objective function (potential 

energy) of the protein folding problem is usually complex since the number of local 

minima increases exponentially with the problem dimension. There are several 

smoothing techniques proposed especially for protein structure prediction which 

include diffusion equation method (Kostrowicki and Piela, 1991), packet annealing 

method (Shalloway, 1992) and effective energy simulated annealing method 

(Coleman, 1993). These methods apply the transformation to the probability 

distributions instead of applying directly to the given objective function. Wu (1996) 

proposed a method that transforms the given non-linear objective function into a class 

of gradually deformed but smoother or easy functions, and it can be applied directly 

to the given objective function. In practice, all the above smoothening techniques can 

be used only if the integral of the given objective function exists otherwise a modified 

function is considered instead.  

 

Barhen et al. (1997) proposed a method, namely, TRUST which involves the 

sub-energy transformation of the given objective function followed by repelling 

mechanism to escape from the local minimum. This transformation modifies the given 

function in such a way that it becomes flat where the objective function value is 

greater than the current local minimum while preserving the better local minima 
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(Figure 2.1). The results of TRUST for several test functions showed that it is fast 

(Barhen et al., 1997) compared to other methods in the literature. Our numerical 

experience with TRUST for some of the test functions shows that choosing 

parameters in the algorithm is critical in achieving the global solution efficiently. 

 

 Parsopoulos et al. (2001) proposed a two-step transformation for the objective 

function, known as stretching technique, to avoid convergence of any stochastic 

algorithm to the local minima. The transformation is applied along with the particle 

swarm optimization (PSO) for two test functions and an application problem 

involving training of neural networks. The results show that the reliability of PSO is 

improved with the transformation. Toh (2002) proposed a monotonic transformation 

of the given objective function which magnifies the relative ordering of global and 

local minima. Based on this transformation, regions that contain the global solutions 

are identified using a level set and then a global descent algorithm is applied within 

this level set for global optimal solutions. Numerical experiments with several test 

functions and application to neural network problems show that the proposed 

transformation provides good convergence for simple penalty-based constrained 

search algorithms (Toh, 2002).  

 

Parsopoulos and Vrahatis (2004) proposed a transformation-based approach to 

locate all the global solutions of an objective function using PSO. Their approach uses 

both the deflection and stretching techniques in Parsopoulos et al. (2001) along with 

an additional concept, namely, repulsion technique to avoid difficulties arising from 

the artificial local minima (i.e., the minima not present in the original objective 

function, but are created by the transformation) induced by the former techniques. 
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Experimental results with a few problems in science and economic theory show that 

the proposed approach is effective in locating more than one global solution 

(Parsopoulos and Vrahatis, 2004). 

 

 In this study, a new transformation for the objective function is proposed to 

enhance the reliability of the stochastic global optimization methods. It facilitates any 

stochastic method to escape from the local minimum by converting it into a global 

maximum. The proposed transformation is tested for several test functions involving 2 

to 10 variables and a few to hundreds of local minima. In addition, a benchmark 

problem similar to phase equilibrium problems is also proposed and studied.  

 

6.2 Proposed Transformation 

 

In order to improve the reliability of stochastic global optimization methods, a 

transformation of the given objective function with the following features is proposed 

in this study. 

i) Simple with minimal number of parameters 

ii) Preserves the relative ordering of local and global minima as in 

TRUST algorithm (Barhen et al., 1997), and 

iii) Transforms the current local minimum into a global maximum and 

creates a concave envelope which helps a stochastic optimization 

algorithm to escape from a local minimum. 

 

Let us consider that a stochastic global optimization method converged to a 

local minimum, x*, of the given objective function which has still better minima (i.e., 
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minima where the objective function value is better than that at x*). In order to escape 

from the current local minimum (x*), the proposed transformation is: 
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where c is the single parameter of the transformation and “sgn” is the signum function 

(equal to -1, 0 and +1 for negative, zero and positive argument value respectively). 

The first part in the right hand side (RHS) of equation 6.1 transforms the given 

objective function such that function values greater than the current local minimum 

(f(x*)) become equal to zero while function values less than or equal to f(x*) are 

preserved. The second part in the RHS of equation 6.1 converts the local minimum to 

a global maximum so that the method escapes from the local minimum. 

 

 The effect of the proposed transformation can be illustrated using the test 

function: modified Himmelblau function (mHB, equation 2.15). As shown in Figure 

6.1a, mHB is highly non-linear and non-convex with 4 local minima (LM1, LM2, 

LM3 and GM) respectively at x = (-3.763429, -3.266052), (-2.787063, 3.128204), 

(3.581492, -1.820800) and (3, 2) with function values 7.367345, 3.487127, 1.504353 

and 0. Consider a stochastic global optimization method reached LM1 and the 

proposed transformation is applied with respect to LM1. The effect of first part in the 

RHS of equation 6.1 is to make the transformed function flat with zero value where 

the original objective function values are greater than that (7.367345) at LM1 (Figure 

6.1b). The effect of the whole transformation (including both the terms in the RHS of 

equation 6.1) is shown in Figure 6.1c, which includes the concave envelope 

developed due to the second term in the RHS of equation 6.1. The local minimum 
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(LM1) has become the global maximum for the given function which makes the 

stochastic global optimization method to escape from LM1 and thus increases the 

probability of locating better minima (LM2, LM3 or GM). 

 

The proposed transformation has two advantages over that in the literature 

(Parsopoulos et al., 2001): (i) only one parameter compared to 3 parameters in the 

transformation of Parsopoulos et al. (2001), and (ii) it does not create any new local 

minima. Though the first part in the RHS of equation 6.1 is similar to that (equation 

2.3) in TRUST algorithm, it does not require gradient of the function and the 

proposed transformation does not create new local minima (Figure 2.1). 

 
 
 

  
 

Figure 6.1a: Modified Himmelblau function  
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Figure 6.1b: Effect of 1st part in RHS of equation 6.1 for mHB function 
 
 
 
 

 
 

Figure 6.1c: Effect of the proposed transformation (equation 6.1) for mHB 
function 
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6.3 Implementation and Evaluation 

 

In this study, the proposed transformation is applied with one of the 

evolutionary algorithms, namely, differential evolution (DE); however, it is equally 

applicable with any stochastic method such as genetic algorithms (GA), simulated 

annealing (SA), and tabu search (TS). To facilitate easy implementation, the proposed 

transformation is used at the end of DE i.e., after the local minimization step of DE 

(Figure 3.1). This is because DE alone may not provide accurate solution and the use 

of transformation after DE (without local optimization) may result in exploring the 

better regions in the same valley (i.e., a better function value but in the same optimum 

region). However, it can be implemented even at different stages (i.e., after a specified 

number of generations along with a local optimization technique) of DE. For local 

optimization, a fast convergent quasi-Newton method is used here. The 

transformation in the literature (Parsopoulos et al., 2001) is also implemented with 

DE, and the results obtained are compared with that of the proposed transformation.  

 

The main steps in the implementation of DE with the proposed/literature 

transformation are: 

Step 1: Apply DE with local optimization as shown in Figure 3.1. 

Step 2: Check the solution obtained; if the global minimum is not obtained, 

perform the proposed/literature transformation, else go to step 5.  

Step 3: Re-initialize certain percentage of the population in DE. 

Step 4: Apply DE with local optimization (Figure 3.1) to the transformed 

objective function. 
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Step 5: Check the solution obtained; if the global minimum is obtained, declare 

the trial as successful, else declare it as failure.  

From the above steps, it is clear that a priori information about the global optimum is 

required to apply the proposed/literature transformation. Hence, in this study, several 

test functions with known global minimum are chosen for evaluating the performance 

of the proposed and literature transformations, and this approach is similar to that of 

Parsopoulos et al. (2001). 

 

 Although the transformation is proposed mainly to improve the reliability, its 

performance is evaluated both in terms of improvement in the reliability (measured 

via success rate (SR) i.e., number of times DE located the global optimum out of 100 

trials), and computational efficiency (measured via number of function evaluations 

(NFE) required to locate the global optimum) of DE. The termination criterion used 

for DE is the maximum number of generations i.e., Genmax. Note that the proposed 

transformation is implemented only for unsuccessful trials (i.e., where DE converged 

to a local minimum) of DE out of 100.  

 

6.4 A Benchmark Problem Similar to Phase Equilibrium Calculations 

 

Phase equilibrium problems have a characteristic of a few but comparable 

minima i.e., the function values at local and global minima are close to each other. In 

addition, the local minimum in these problems is some times in a narrow valley. 

Although there are many benchmark problems available in the literature with different 

characteristics (such as flat objective function and huge number of local minima), 

none of them represents the comparable minima as in phase equilibrium problems. 
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Motivated from the unique characteristic of phase equilibrium problems, a benchmark 

problem, namely, modified N-dimensional test (mNDT) function is developed in the 

earlier study (Chapter 2). Though mNDT function has comparable minima, they are 

huge in number (i.e. increases exponentially with dimension of the problem) in 

contrast to a few minima in phase equilibrium problems. Hence, in this chapter, a 

benchmark problem with a few but comparable minima is developed to represent a 

corresponding test function for phase equilibrium problems.  

 

The new benchmark problem is developed from the Rosenbrock function since 

it has a few minima and also narrow global minimum region as in phase equilibrium 

problems. The minima in Rosenbrock function are made comparable by adding a 

multiplier (α/N) to the quadratic term: 
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where ‘α’ is a constant and ‘N’ is the dimension of the problem. Both Rosenbrock 

function and the modified Rosenbrock (mROS) function do not have local minima up 

to and including 3 variables but they have several local minima (many of them are 

constrained minima) beginning from 4 variables. The minima in the mROS function 

are made comparable to the global minimum by decreasing the effect of quadratic 

term via α, but the global minimum is unaffected (i.e., 0 at xi = 1 for i = 1, 2, …, N). 

This can be seen in Table 6.1 for the 5 variables case; as α/N decreases, the objective 

function becomes slightly flat and the minima become comparable but the global 

minimum is the same. The comparable minima for mROS function are given in Table 

6.2 for α = 1.5×10-3; the difference in function value between the nearest local and the 

global minimum is in the range 1.39×10-3 to 3×10-4 for 4 to 20 variables, and is within 

the range of phase equilibrium (2.28×10-2 to 5.7×10-5) problems studied earlier. 
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Table 6.1: Trend of comparable minima with α for the modified Rosenbrock 
function (5 variables case) 

 
α 1 2.5×10-2 1.5×10-2 5×10-3 1.5×10-3

Local 
minimum 3.930839 1.972×10-2 1.183×10-2 3.944×10-3 1.183×10-3

Global 
minimum 0.0 0.0 0.0 0.0 0.0 

 

 
Table 6.2: Function values at the comparable minimum for the modified 

Rosenbrock function with α = 1.50×10-3

 
Number of 

variables (N) 
Function value at the 
comparable minimum 

4 1.394×10-3

5 1.183×10-3

6 9.968×10-4

8 7.498×10-4

10 5.999×10-4

12 4.999×10-4

14 4.2857×10-4

16 3.75×10-4

18 3.333×10-4

20 3×10-4

             Note: The global minimum is 0.0 at xi = 1 for i = 1, 2, …, N. 

 

6.5 Application to Benchmark Problems 

 

Test functions, namely, Rastrigin (RA2), Easom (ES), mHB, mNDT (Chapter 

2) along with mROS function are chosen for studying the proposed transformation 

since these functions are found to have low SR with DE in our previous studies 

(Chapter 4). 
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6.5.1 Results and Discussion 

 

The parameter values used for DE are same as the optimum values obtained 

earlier (Chapter 4) (i.e., CR = 0.2, A = 0.5, NP = 20 and Genmax = 60N). The proposed 

transformation has one parameter, c, and is tuned using ES, mHB and RA2 functions. 

The results are given in Table 6.3. SR and NFE for DE without implementing the 

transformation are 89% and 1986, 88% and 1338, and 74% and 2351 respectively for 

ES, mHB and RA2 functions. The results in Table 6.3 show that the improvement in 

SR of DE with transformation is slightly affected by c for both ES and mHB functions 

whereas it is same for RA2 function. The NFE for DE with the transformation is 

nearly unaffected for both ES and mHB functions, and it is same for RA2 for all 

values of c. This is because SR of RA2 is same for all values of c, and the NFE is 

calculated based on only the successful trials out of 100. Overall, the performance of 

the proposed transformation is only slightly affected by the parameter, c, and a value 

of 0.01 is chosen for further study.  

 

Table 6.3: Effect of the parameter, c, on the performance of DE  

Proposed  transformation 
ES mHB RA2

Parameter (c) 
value SR NFE SR NFE SR NFE 

0.1 96 1969 91 1423 82 2447 
0.01 96 1974 97 1372 82 2447 
0.001 94 1978 93 1346 82 2447 
0.0001 96 1952 93 1435 82 2447 

                                    

 

In order to see the effect of re-initialization (in step 3 of the algorithm on page 

177), the proposed transformation and the transformation of Parsopoulos et al. (2001) 

are studied with 25%, 50% and 100% of the whole population in DE being re-
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initialized for ES, mHB and RA2 functions, and the results are given in Tables 6.4a 

and b. For the transformation of Parsopoulos et al. (2001), the reported values 

( ) are employed here. SR of DE without the 

transformation is respectively 89%, 88% and 74% for ES, mHB and RA

10
21 10and1,10000 −=== μγγ

2 functions. 

The improvement in SR of DE for both ES and RA2 functions increases (from 6 to 9% 

for ES, and 0 to 20% for RA2) with the proposed transformation, and is nearly 

constant (at 2% and 1% respectively for ES and RA2) for the transformation of 

Parsopoulos et al. (2001), with decrease in the percentage of the population re-

initialized. The improvement in SR of DE for mHB function decreases for both the 

transformations with decrease in percentage of the population re-initialized. This 

could be because of the distribution and the number of local minima in the respective 

functions. ES is a flat function with the local minimum located near to the center, 

mHB has narrow global minimum region and RA2 has huge number of local minima 

with the global minimum at center.  

 

Table 6.4a: Effect of re-initialization on SR of DE 
 

With the proposed 
transformation 

With the transformation in 
the literature 

 (Parsopoulos et al., 2001) 

Percentage of 
the population 
re-initialized ES mHB RA2 ES mHB RA2

100 95 98 74 91 92 75 
50 95 97 80 91 87 74 
25 98 92 94 91 88 75 

 

 

NFE for DE without transformation is 1986, 1338 and 2351 for ES, mHB and 

RA2 functions respectively. The results in Table 6.4b show that NFE for DE is 

slightly affected by the decrease in the percentage of population re-initialized using 

the proposed transformation and is nearly constant using the transformation of 
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Parsopoulos et al. (2001). It is also observed that NFE for DE (Table 6.4b) with the 

proposed transformation is slightly higher compared to that with the transformation of 

Parsopoulos et al. (2001). Based on the performance (SR and NFE in Tables 6.4a and 

b) results obtained, both the transformations are studied with 25% of the population in 

DE being re-initialized for the benchmark problems.  

 

Table 6.4b: Effect of re-initialization on NFE for DE  
 

With the proposed 
transformation 

With the transformation in 
the literature 

 (Parsopoulos et al., 2001) 

Percentage of 
the population 
re-initialized ES mHB RA2 ES mHB RA2

100 1955 1512 2350 1980 1319 2309 
50 1978 1372 2447 1997 1323 2351 
25 1979 1399 2591 1970 1353 2366 

 

 

The performance results (SR and NFE) of DE with and without transformation 

for all the test functions studied are summarized in Table 6.5. NFE given is the 

average over successful trials out of 100 trials. SR of DE is improved by around 8% 

for both ES and mHB functions with the proposed transformation, compared to 2-4% 

with the transformation of Parsopoulos et al. (2001). SR of DE is improved around 

20% for RA2 function with the proposed transformation and is very high compared to 

that (1%) with the transformation of Parsopoulos et al. (2001). This clearly shows that 

the proposed transformation has higher chance of escaping from the local minima 

compared to that of Parsopoulos et al. (2001).  

 

SR of DE for the modified Rosenbrock and modified N-dimensional test 

functions are also given in Table 6.5. Functions, mROS2 and mROS3, are not used in 

this study since they don’t have multiple minima. SR of DE is improved around 12% 
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for mROS4, and the improvement decreases as the number of variables increases from 

4 to 10 for both the transformations. This is because as the number of variables 

increases, though the transformation facilitates to escape from the local minimum, DE 

could not find the better regions where the function value is better than that at the 

current local minimum. 

 

 For the mNDT2 function, SR of DE is improved around 7% using both the 

transformations, and there is practically no improvement from 4 variables onwards. 

The improvement in the SR of DE for mNDT functions using both the 

transformations is less compared to that of mROS functions. This is because the 

number of local minima increases exponentially with the dimension of the problem in 

mNDT functions compared to only several local minima in mROS functions. It is also 

observed that, the improvement in SR of DE using both the transformations is almost 

comparable. 

 

NFE for DE with and without transformation for both the proposed 

transformation and the transformation of Parsopoulos et al. (2001) are also given in 

Table 6.5. The NFE with either transformation is more than that without 

transformation for almost for all functions tested except for ES and mNDT2. This is 

because DE is applied twice for the failure cases whereas it is applied only once for 

successful trials with DE applied to the original objective function (see the algorithm 

on page 177). The NFE with the proposed transformation is slightly high compared to 

that with the transformation of Parsopoulos et al. (2001), for most of the functions. 

This could be because the concave envelope created (Figure 6.1c) by the proposed 

transformation has a smaller gradient requiring more NFE for DE to escape from the 
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current local minimum. It is also observed that the average NFE with both the 

transformations increases with the number of variables. 

 

Table 6.5: SR and NFE of DE with and without transformations 
 

SR NFE 
WT WT Function WOT 

Proposed Literature* WOT Proposed Literature* 
ES 89 97 91 1986 1979 1970 

mHB 88 96 92 1338 1399 1353 
RA2 74 94 75 2351 2591 2366 

       
mROS4 79 91 91 4951 5379 5380 
mROS5 79 88 89 7348 7763 7642 
mROS6 85 93 92 9940 10,664 10,291 
mROS7 89 94 93 12,998 13,464 13,184 
mROS8 90 94 93 16,259 16,823 16,636 
mROS9 90 94 92 19,957 20,582 20,280 
mROS10 91 94 92 24,242 24,888 24,235 

       
mNDT2 58 65 65 2070 2043 2015 
mNDT3 70 71 71 3561 3564 3577 
mNDT4 59 59 60 4822 4822 4846 
mNDT5 55 55 55 6027 6027 6027 
mNDT6 39 39 39 7227 7227 7227 
mNDT7 33 33 33 8428 8428 8428 
mNDT8 24 24 24 9629 9629 9629 
mNDT9 19 19 19 10,830 10,830 10,830 
mNDT10 14 14 14 12,031 12,031 12,031 

Note: WOT – Without Transformation; WT – With Transformation; ES – Easom; 
mHB – modified Himmelblau; RA2 – Rastrigin 2 variables; mROS2 to mROS10 – 
modified Rosenbrock function with 2 to 10 variables; and mNDT2 to mNDT10 – 
modified N-dimensional test function with 2 to 10 variables. * - Results obtained 
using the transformation of Parsopoulos et al. (2001). 
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6.6 Summary 

 

A transformation for the objective function to enhance the reliability of 

stochastic global optimization methods and a benchmark problem similar to phase 

equilibrium calculation, are proposed. The proposed transformation is studied with 

one of the evolutionary algorithms, DE, over several test functions involving up to 10 

variables. The results show that the proposed transformation is more reliable and 

require slightly more NFE compared to the transformation of Parsopoulos et al. 

(2001). It is also found that the performance of the proposed transformation is less 

sensitive to the only parameter it has. The performance of both the transformations 

decreases as the number of variables in the objective function increases, and so further 

study is needed to enhance them. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

 

In this thesis, several recent stochastic global optimization methods have been 

carefully implemented and evaluated comprehensively for chemical engineering 

applications. In addition, a method, namely, differential evolution with tabu list 

(DETL) and two benchmark problems are proposed and studied. The major 

contributions and conclusions are summarized below. 

 

1. The recent random tunneling algorithm (RTA) has been implemented and its 

potential is evaluated for benchmark problems involving 2 to 20 variables and 

challenging chemical engineering applications such as phase equilibrium 

calculations using Gibbs free energy minimization and parameter estimation in 

models. The results show that the reliability of RTA is comparable to or less than 

that of tabu search (TS) and genetic algorithms (GA), and its computational 

efficiency is lower than that of TS but is better than that of GA.  

2. Subsequently, two promising stochastic algorithms, differential evolution (DE) 

and TS have been implemented with a local optimization technique at the end, and 

evaluated for benchmark, phase equilibrium calculations and phase stability 

problems. The neighbors in TS are generated in three different ways: using hyper-

rectangles, mixed and random way of generation to study their effectiveness. 

Among the three ways for neighbors generation, TS using hyper-rectangles is 

found to be better for benchmark and phase equilibrium calculations, whereas TS 
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using mixed way is found to be better for phase stability problems. Overall, the 

reliability of DE is found to be better than that of TS whereas the latter has better 

computational efficiency compared to the former. 

3. DETL is proposed by effectively integrating the strong features of DE and TS. It 

is then thoroughly tested over a wide range of test functions, phase equilibrium 

calculations and parameter estimation problems in differential and algebraic 

systems. DETL successfully located the global minimum of all these problems 

with high reliability and around 30% less number of function evaluations (NFE) 

compared to both DE and the modified differential evolution (MDE) (Babu and 

Angira, 2006). Overall, the performance of DETL is better than that of stand alone 

DE and TS algorithms. 

4. DETL is then evaluated for non-linear programming problems (NLPs) and mixed-

integer non-linear programming problems (MINLPs) with constraints, often 

encountered in chemical engineering practice. The results show that the reliability 

of DETL is high with around 35% and 51% less NFE compared to both DE and 

MDE respectively for NLPs and MINLPs tested. Overall, the performance of 

DETL is significantly better than that of DE and MDE for NLPs and MINLPs. 

5. A transformation for the objective function to enhance the reliability of stochastic 

global optimization methods is proposed and studied with DE for several test 

functions. The reliability of DE is improved with the proposed transformation, and 

is better compared to the transformation in literature (Parsopoulos et al., 2001). 

6. Two benchmark problems having comparable minima as in phase equilibrium 

calculations and phase stability problems have been proposed and studied. One of 

them, modified N-dimensional test function (mNDT) is more difficult with 
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numerous minima compared to the other, modified Rosenbrock function (mROS) 

with a few minima. 

 

7.2 Recommendations for Future Works 

 

Stochastic global optimization and its applications have wide scope for many 

studies in chemical engineering; some possible future works are outlined below. 

 

DETL for Multi-Objective Optimization: Most of the times, the real-world 

applications involve more than a single objective and it is often very hard to formulate 

these problems into a single objective optimization problem due to the conflicting 

objectives. In general, these problems are now solved by considering all the objectives 

separately, and are known as multi-objective optimization (MOO) or multi-criteria 

optimization or vector optimization problems. MOO has numerous applications in 

chemical engineering (Bhaskar et al., 2000; and Tarafder et al., 2005) which include 

the MOO of industrial hydrogen plants (Rajesh et al., 2001), styrene reactor (Yee et 

al., 2003; and Babu et al., 2005), hydrocracker (Bhutani et al., 2006), fed-batch 

reactors (Sarkar and Modak, 2005) etc. The multiple conflicting objectives in MOO 

problems lead to a set of optimal solutions called the Pareto-optimal solutions, and 

none of them can be said to be better than another without additional information 

about the problem. These solutions provide more flexibility and choices to the 

decision-maker to choose a particular solution for implementation. MOO problems 

become even more complex if the objective functions are highly non-linear and non-

convex. Over the years, several algorithms have been developed to address MOO 
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problems (e.g., Miettinen, 1999; and Deb, 2001); these include the well known 

evolutionary algorithms. 

 

In the present study, DETL has been developed and tested for several single 

objective optimization problems, and its performance is found to be better than DE, 

MDE and TS. Though DETL has been used for single objective, it has the capability 

of solving MOO problems too as it can generate a set of optimal solutions along with 

ability to handle non-linear and non-convex objective functions. Therefore, the study 

of DETL for MOO problems is one of the interesting and recommended works.  

 

Auto-tuning of DETL parameters: Tuning of parameters is a crucial step and is 

essential while evaluating the performance of any stochastic global optimization 

method. For example, in our studies, the parameters of the algorithms (RTA, DE, TS 

and DETL) are tuned for each set of functions (i.e., benchmark, phase equilibrium 

calculations and parameter estimation in models etc.,) by considering a few difficult 

functions in the respective groups. However, one can improve the performance of 

each of these methods by fine tuning the parameters for each problem as in Angira 

and Babu (2006) and Cai and Shao (2002). 

 

Fine tuning the parameters of a given algorithm for an application requires 

additional effort by the user not only in terms of exploring several parameter values 

but also some understanding of the algorithm and its parameters. Hence, working 

towards auto-tuning (i.e., the algorithm performs tuning on its own) of parameters in 

an optimization method plays a major role in achieving better performance of the 

method while encouraging more practitioners to optimize their processes. Several 
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studies have addressed this issue, particularly for evolutionary algorithms (Hinterding, 

1995; Tan et al., 2001; Shi et al., 2003; Liu and Lampinen, 2005; and Teo, 2006). The 

two important approaches are: adaptation and self-adaptation. Adaptation involves 

changing values of parameters based on some feedback from the search whereas self-

adaptation treats the parameters of the algorithm as additional decision variables in 

the optimization problem. Although these approaches increase the complexity of the 

algorithm/problem, results from the above studies show that the convergence property 

of evolutionary algorithms can be improved with auto-tuning of the parameters along 

with easy implementation for the end-user. Therefore, auto-tuning of parameters in 

DETL is recommended as one of the potential future works. 

 

DETL for Dynamic Optimization: Dynamic optimization is becoming particularly 

important in chemical engineering and the applications (Balsa-Canto et al., 2005; and 

Papamichail and Adjiman, 2004) include (i) estimating kinetic parameters of reactions 

which is essential for the design and control of chemical and bio systems, (ii) optimal 

control of batch and semi-batch reactors, and (iii) start-up and shut-down of 

processes. 

 

Numerous local solutions exist even for rather simple dynamic optimization 

problems (Luus and Cormack, 1972), and hence the use of traditional gradient-based 

algorithms has the possibility of getting trapped into local optimum. Consequently, 

there has been growing interest in developing global optimization algorithms for these 

problems (Horst and Pardalos, 1995). Several deterministic algorithms such as αBB 

method (Esposito and Floudas, 2000) and spatial branch and bound method 

(Papamichail and Adjiman, 2004) have been considered for dynamic optimization. 
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Though these methods provide mathematical guarantee to the global optimum, they 

need extensive and exhaustive search requiring more computational resources. On the 

other hand, several stochastic global optimization algorithms (Carrasco and Banga, 

1997; Luus and Hennessy, 1999; Luus, 2000; Hanke and Li, 2000; Sarkar and Modak, 

2003; and Angira and Santosh, 2006) have been successfully applied to the dynamic 

optimization, which include iterative dynamic programming, integrated controlled 

random search method, direct search procedure of Luus and Jaakola (1973), simulated 

annealing and evolutionary algorithms such as GA and DE.  

 

In this study, DETL is found to be computationally efficient compared to DE 

and TS for the dynamic optimization problems tested (Chapter 4). So a thorough 

study of DETL over a wide range of dynamic optimization problems is recommended 

for a future work. 

 

Comprehensive Study of the Proposed Transformation: In this study, a 

transformation for the objective function has been proposed (Chapter 6) to enhance 

the reliability of the stochastic global optimization methods. The proposed 

transformation is tested with one of the stochastic method, DE, for several test 

functions. It was found that the success rate (SR) of DE is improved and is better 

compared to the transformation of Parsopoulos et al. (2001). Though the reliability of 

DE is improved for the benchmark problems tested, the performance of the proposed 

transformation needs to be evaluated/improved in several ways: (i) by implementing 

and studying the proposed transformation even in the intermediate stages (i.e., after 

every specified number of generations) in addition to the final stage (as implemented 

in this study) to explore a suitable combination for DE, (ii) modifying the proposed 
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transformation in order to improve SR of DE for problems with more variables, and 

(iii) studying the proposed transformation with other stochastic methods such as TS 

and DETL especially for the examples where SR of these methods is low.  
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Abstract 
Stochastic methods have attracted growing interest in the recent past as they require less computational 
effort to provide the global optima. Some of the well known methods are Genetic Algorithm (GA), 
Differential Evolution (DE) and Tabu search (TS). Each of these methods has a unique feature of 
escaping from the local minima and/or improved computational efficiency. Though each of these 
methods has its own advantage(s), they may be trapped in the local minima at times because of the 
highly non-linear nature of the objective function. In this work, an integrated stochastic method (ISM) 
is proposed by identifying and then integrating the strong features of DE and TS. A local optimization 
technique is used at the end to improve the accuracy of the final solution and computational efficiency 
of the algorithm. The performance of ISM is tested on many benchmark problems and challenging 
phase equilibrium calculations. The former contain a few to hundreds of local minima whereas the 
latter has comparable minima. The results show that the performance of ISM is better compared to DE 
and TS. 
 
Keywords:  Differential evolution; Taboo search; Integrated stochastic method; Benchmark problems; 
Phase equilibrium calculations 

1. Introduction 
Global optimization methods and their applications are attracting greater attention and interest due to 
the non-convex nature of the objective functions and the need to find the global optimum. In general, 
these methods can be classified into two categories: deterministic and stochastic (Pardalos et al., 2000). 
The former methods guarantee the global optimum under certain conditions whereas the latter do not. 
However, stochastic methods do not require such restrictive conditions, find global optimum with good 
success rate and are also computationally more efficient than the latter. Among the many, DE (Storn 
and Price, 1997) and TS (Chelouah and Siarry, 2000) are some of the promising methods reported in 
the literature. DE is a population based direct search method especially for non-linear and non-
differentiable continuous functions. It mimics biological evolution by performing mutation, crossover 
and selection steps as in GA to escape from the local minima. The main advantages of DE are its 
capability to escape from the local minima with a few parameters and fast convergence to the global 
optimum compared to GA (Karaboga and Cetinkaya, 2004). TS, developed by Glover (1989) for 
combinatorial optimization, has been used for continuous optimization (Teh and Rangaiah, 2003). It is 
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a meta heuristic algorithm that guides the heuristics to escape from the local minima. The main feature 
of TS is it avoids re-visits to the same place during the search thus providing good computational 
efficiency. Both DE and TS have their own merits and limitations. In this study, an attempt has been 
made to identify and combine the strong features of DE and TS, to develop a new method (ISM) with 
good reliability as in DE along with good computational efficiency like in TS. To the best of authors' 
knowledge, this is the first attempt to develop an integrated method combining the strengths of selected 
stochastic methods. ISM is tested thoroughly and systematically on benchmark and phase equilibrium 
problems. 

2. Description of ISM 
ISM is developed by combining the reliable escaping mechanism of DE (i.e., mutation, crossover and 
selection steps) with the concept of TS (i.e., avoiding the re-visits during the search using tabu list). 
This is because our extensive experience showed that DE is more reliable compared to TS whereas the 
latter is computationally efficient than the former. The authors have chosen DE instead of GA because 
the former has only a few parameters and computationally efficient compared to GA (Karaboga and 
Cetinkaya, 2004). The proposed algorithm works better compared to DE and TS alone because by 
implementing TS concept in DE, i.e., ISM avoids the revisits to the same place during the search 
providing good computational efficiency while preserving the good reliability of DE. For example, the 
number of function evaluations taken by ISM and DE for Easom function to locate the global minimum 
up to a six decimal accuracy is 1855 and 2135 respectively. 
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ISM (Figure 1) starts 
by choosing the 
optimal values for 
the parameters: 
population size (NP), 
amplification factor 
(A), crossover 
constant (CR), tabu 
list size (tls), tabu 
radius (tr) and 
maximum number of 
generations (Mgen). 
The algorithm 
initially generates a 
population of size 
NP using uniformly 
distributed random 
numbers to cover the 
entire feasible 
region. A boundary 
violation check is 
performed to see if 
any infeasible 
solution is generated; 
the infeasible points 
are replaced by 
generating new 
individuals.  

Figure 1: Flow chart of ISM 
The objective function is evaluated at each individual, and the best point is captured. The evaluated 
points are then sent to the tabu list, which will be used to ensure that the algorithm does not search 
again close to these points. The three main steps: mutation, crossover and selection are performed on 
the population. The mutant individual is generated for each randomly chosen target individual (Xi, G) in 
the population by 

Vi, G+1 = Xr1, G + A (Xr2, G – Xr3, G);  i = 1, 2, 3, …, NP         (1) 
where Xr1, G, Xr2, G and Xr3, G are the three random individuals chosen in the population of the current 
generation G, to produce the mutant individual for the next generation, Vi, G+1. The random numbers r1, 
r2 and r3 should be different from the running index, i and hence NP should be ≥ 4 to do mutation. A 
has a value between 0 and 2, controls the amplification of the differential variation between two 
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random individuals. In the crossover step, a trial individual is produced by copying some elements of 
the mutant individual to the target individual with a probability equal to crossover constant (CR). The 
trial individual is then compared with the points in tabu list and is rejected if it is nearby to those in 
tabu list for the next step. The new individual then competes with Xi ,G for a place in the next 
generation; generally, a greedy criterion such as objective function value is used to select the best point 
for further generations. The tabu list is updated and the process of mutation, crossover and selection is 
repeated until a stopping criterion such as Mgen is satisfied. The best point found over all the 
generations is further refined using a local optimization technique, namely, quasi-Newton method.  

3. Implementation and evaluation of ISM 
The code for ISM is developed in FORTRAN and the performance of the method is compared to that 
of DE, GA and TS. The FORTRAN codes for TS and GA are taken from Teh and Rangaiah (2003), 
and DE code is taken from the website http://www.icsi.berkeley.edu/~storn/code.html. A local 
optimization technique is used at the end of each of these methods to improve the computational 
efficiency. For the quasi-Newton method, an inbuilt IMSL subroutine is used. The methods are 
evaluated based on the reliability and computational efficiency in locating the global optimum. The 
reliability is measured in terms of success rate (SR) i.e., the number of times the algorithm successfully 
located the global optimum out of 100 trials. A run is said to be successful only if the global optimum 
is obtained with a fractional error of 10-6 in the objective function value. The computational efficiency 
is measured in terms of number of function evaluations (NFE) required to locate the global optimum. 
The gradient in the local optimization is calculated numerically, and the NFE includes both the function 
calls for evaluating the objective and function calls for the gradient. 

4. Application to benchmark problems 
To asses the performance of ISM, it has been applied to several benchmark problems involving 2 to 20 
variables and a few to hundreds of local minima. A brief description of these functions and their global 
minima are given in Teh and Rangaiah (2003). The stopping criterion used is the maximum number of 
generations, and not convergence to the global minimum. We have used the former because, in reality, 
global minimum of application problems is unknown a priori.  The parameters of DE, GA, TS and ISM 
are tuned using six out of twelve test functions. The optimal parameters thus obtained are used for the 
remaining functions too. The tuning is performed to achieve good reliability and computational 
efficiency, and is performed by varying one parameter at a time while the rest are fixed at their 
nominal/recent optimum values. The nominal values of parameters in all the methods are chosen based 
on the literature and preliminary experience with some of the functions. 
4.1. Results and discussion 
The results for solving benchmark problems by TS, DE, GA and ISM are given in Table 1. Each 
problem is solved 100 times, each time by generating a random initial estimate. The results are 
compared in terms of SR and NFE, which is the average over 100 trials. SR is 100% unless otherwise 
stated.  

Table 1: SR and NFE for different test functions 
GA DE TS ISM Functions#

NFE NFE SR NFE SR NFE 
GP 20013 3224 100 918 100 976 
ES 20007 3224 90 1040 100 2401 
SH 20007 3246 100 1033 100 2252 

ROS2 20038 3247 99 2021 100 1799 
Z2 20003 3223 100 1009 100 420 
H3 20009 4824 100 987 100 812 

ROS5 20197 8194c 76 5275 99 4463 
Z5 20077 8026 100 2629 100 1110 

ROS10 21977a 16661d 74 17051 97 6303 
Z10 20246 16031 100 8491 100 2477 

ROS20 25378b 34294e 82 44869 99 12341 
ZAK20 21170 32041 100 19157 100 5715 

Note 1: SR is 94, 89, 99, 98 and 96 at a, b, c, d and e respectively. Note 2: # GP – Goldstein and Price; ES – Easom; 
SH – Shubert; H3 – Hartmann 3 variable; ROS2, ROS5, ROS10 and ROS20 – Rosenbrock 2, 5, 10 and 20 

variables; Z2, Z5, Z10, Z20 – Zakharov 2, 5, 10 and 20 variables. 
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It is clear from Table 1 that the reliability of ISM is equal to that of DE, GA and is better than that of 
TS. This is perhaps due to the different escaping mechanisms from local minima corresponding to each 
method. To escape from local minimum, ISM performs mutation and crossover over a set of 
individuals as in DE and GA whereas TS makes use of best point obtained in the current iteration to 
generate neighbors for the next generation, even though it is worse than the best points obtained in the 
previous iterations. The reliability of TS is less for Easom function because of the flat objective 
function. As the function is flat, all the neighbors generated in TS will have the same function value 
trapping the search in that region. On the contrary, GA, DE and ISM located the global minimum 
region with the help of mutation and crossover. The reliability of all the methods is high for Shubert 
function though it has 760 local minima. This may be because locating one of the several global 
minima (around 18) is sufficient to achieve the best function value. The reliability of TS for 
Rosenbrock functions is less because of the associated narrow global minimum region. NFE of DE and 
GA is more than that of ISM by a factor of 1.34 (ES) to 7.67 (Z2) and 2.05 (ROS20) to 20.5 (GP) 
respectively. NFE of ISM is less compared to TS for high dimension problems (a factor of 0.36 
(ROS10) to 0.27 (ROS20)), even though it is more for low dimension problems (a factor of 1.06 (GP) 
to 2.3 (ES)). Overall, the computational efficiency of ISM is better compared to DE, GA and is 
comparable to that of TS. Both DE and GA are highly reliable but the former seems to be 
computationally efficient than the latter. Though TS has low NFE for low dimensional problems, its 
reliability is less compared to that of ISM and DE. By implementing TS concept in DE i.e., in ISM, we 
are able to maintain reliability as in DE and at the same time with low NFE. The NFE is increasing 
with number of variables (ROS2 to ROS20) with all the methods due to increase in the size of solution 
space which makes all the algorithms to generate more number of points to locate potential (global) 
regions. 

5. Application to phase equilibrium problems 
Phase equilibrium calculations play a significant role in the design, simulation and optimization of 
chemical process. Development of robust and efficient method for phase equilibrium has long been a 
challenge and still it is. The objective is to calculate the number of moles of each phase and its 
composition at equilibrium given the pressure, temperature, components and feed composition. 
Basically, methods for multiphase equilibrium calculations can be categorized into two types: equation-
solving approach and Gibbs free energy minimization. The modern trend is the treatment of phase 
equilibrium problems by direct minimization of Gibbs free energy. The objective function in this 
approach is a highly non-linear and non-convex requiring reliable and efficient global optimization. 
Several researchers have applied different global optimization methods both deterministic (Burgos-
Solórzano et al., 2004) and stochastic (Rangaiah, 2001) using this approach. A review of the works on 
free energy minimization, and problem formulation can be found in Teh and Rangaiah (2003). The 
examples considered in this study include vapor-liquid equilibrium (VLE), liquid-liquid equilibrium 
(LLE) and vapor-liquid-liquid equilibrium (VLLE) problems involving multiple components and 
popular thermodynamic models. More information about the examples and local and global minima 
can be found in Teh and Rangaiah (2003). Parameters of DE, GA, TS and ISM are tuned in a similar 
way as for the benchmark problems. Three out of 10 examples are chosen for tuning, and the optimal 
parameters thus obtained are used to solve the remaining functions. 
5.1. Results and discussion 
 

Table 2: SR and NFE of different methods for solving phase equilibrium problems 
TS ISM Example 

number 
Problem 

Type GA DE SR NFE NFE 
1 (2) VLE (2)  20017a 7607 99 1348 5882 
2 (6a) VLE (3) 20084 11440 96 1618 5660 
3 (6b) VLE (3) 20086 11445 96 1639 5755 
4 (9) VLE (9) --- --- --- --- --- 

5 (11a) LLE (2)  20017b 7628 98 1432 6534 
6 (11b) LLE (2) 20024 7619 100 1359 5255 
7 (12) LLE (2) 20026 7624 100 1367 5352 
8 (13) LLE (3)  20025c 11436 94 1575 9838 
9 (17) VLLE (6)  20238d 15351 68 5648 12965 

10 (18) VLLE (6)  20262 15355 81 5486 12723 
Note: SR is 99, 97, 73 and 75 at a, b, c and d respectively. Bracketed number in the 1st column represents example 

number in Teh and Rangaiah (2003) and that in the 2nd column refers to the dimension of the problem. 
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Each example is solved 100 times, each time starting from a different randomly chosen point in the 
feasible region, and the performance results of the methods are summarized in Table 2. SR is 100% 
unless otherwise stated. The reliability of ISM and DE is 100% for all examples except for example 4, 
and is slightly less for GA especially for examples 8 and 9. The reliability of TS is comparable to that 
of ISM and DE for VLE and LLE problems except for example 8. This is due to the presence of 
comparable minima (i.e., function values at the trivial and global minimum are -0.35430 and -0.360353 
respectively) in that example. As the minima are comparable, better regions where the function value is 
less than the local minimum become narrower and narrower and the algorithm fails to explore good 
points causing low SR. On the other hand, ISM and DE were able to escape from the local minimum 
with their mutation and crossover mechanisms. For example 4, all the methods failed because of 
comparable minima (function values at local and global minima are -161.5364 and -161.5416 
respectively) and more number of variables (9). For VLLE, the reliability of TS is less compared to 
ISM and DE because of the comparable minima (stated in Teh and Rangaiah, 2003) in these problems. 
The reliability and computational efficiency of DE is better compared to GA. Computational efficiency 
of ISM is better compared to both DE and GA but is less than that of TS. NFE of GA and DE is more 
than that of ISM by a factor of 1.6 to 3.8 and 1.2 to 2.0 respectively. NFE of ISM is more than that of 
TS by a factor of 2.3 (example 9) to 4.6 (example 5). Although TS has good computational efficiency, 
its reliability is less for VLLE problems. On the other hand, ISM has good reliability like DE and is 
also more efficient than DE. Overall, the performance of ISM is better than that of GA, DE and TS. 
Comparison of CPU times with stochastic (i.e., GA and TS) and deterministic methods for some of 
these examples can be found in Teh and Rangaiah, 2003. 

6. Conclusions and Future work 
A new method, namely, ISM is developed by effectively integrating the strong features of DE and TS. 
The method is first tested for a set of benchmark problems involving 2 to 20 variables and a few to 
hundreds of local minima, and then for challenging phase equilibrium calculations involving several 
components and multiple phases. ISM successfully located the global minimum for all the problems, 
and the performance of ISM is better than that of GA, DE and TS. Our future work includes the 
implementation of simulated annealing concept in ISM to improve its performance further and its 
application to various problems such as phase stability analysis and parameter estimation in models.  
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APPENDIX B 

Mathematical Formulation of NLPs and MINLPs in Chapter 5 

 

NLP Problems 

 Example 1: Minimize ( ) ( )22
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The first constraint is active at the global solution: f = 13.662216 at x = {2.246770, 

2.380847}. 
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1988.84x25
0966.287x193

75.134x0
88.288x6.68

3855.906x4148.704

5

4

3

2

1

≤≤
≤≤

≤≤
≤≤

≤≤

   

Though x is not appearing in the objective function, z is indirectly related to x. The 

terms zj, cj, aj and bj are given in Himmelblau (1972). The global optimum reported in 

Himmelblau (1972) and Deb (2000) are respectively at x = {705.1803, 68.60005, 

102.90001, 282.324999, 37.585041} with f = -1.90513 and at x = {707.337769, 

68.600273, 102.900146, 282.024841, 84.198792} with f = -1.91460. It was found that 

one of the constraints ( 0z6.110
c

62212
1

17

≥−− ) is violated (has a value of -62.771183) 

at the latter solution and hence the former one (which satisfies all constraints) is used 

in this study. 
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Six of the constraints are active at the global solution: x = {1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 

3, 1} with f = -15. 

 

Example 4:  Minimize 321 xxx ++  
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All six constraints are active at the global solution: x = {579.3167, 1359.943, 

5110.071, 182.0174, 295.5985, 217.9799, 286.4162, and 395.5979} with f = 

7049.330923. 

 

Example 5: Minimize 
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Two of the constraints (1st and 4th) are active at the global solution: x = {2.330499, 

1.951372, -0.477541, 4.365726, -0.624487, 1.038131, 1.594227} with f = 680.630057. 
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 Example 6: Minimize       
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Two of the constraints (2nd and 5th) are active at the global solution: x = {78, 33, 

29.995, 45, 36.776} with f = -30665.5. 
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Six of the eight constraints are active at the global solution: x = {2.171996, 2.363683, 

8.773926, 5.095984, 0.990654, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927} 

with f = 24.306209. 

 

Example 8:  Minimize 4x−    
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where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908 and k4 = 0.9k3. The global 

solution is at x = {0.771462, 0.516997, 0.204234, 0.388812, 3.036505, 5.096052} 

with f = -0.388812. The local solutions reported in Ryoo and Sahinidis (1995) for this 

problem are at x = {0.390, 0.390, 0.375, 0.375, 16, 0} with f = -0.375 and at x = {1, 

0.393, 0, 0.388, 0, 16} with f = -0.3881. The reformulated problem after eliminating 

the equality constraints is given in Babu and Angira (2006). 
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where the rate constants (ki) are given by 

321
i
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−
= . The data for Ci and Ei are given in 

both Umeda and Ichikawa (1971) and Babu and Angira (2006). This example has two 

global solutions at (t, T) = {0.0781, 978.96} and {0.0757, 983.3} with f = 0.42308. 

 

Example 10:  Minimize  21 xx +−  
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The global minimum is at x = {6, 0.666667} with f = -6.666667. There is one local 

minimum at x = {1, 4} with f = -5. 
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The global solution is at x = {0, 94.177866, 80, 0} with f = 5194.866243 and there is 

one local solution at x = {15.954, 29.404, 5.864, 669.148} with f = 5339.253. In this 

study, the upper bound for the x4 is taken as 1000 which covers both local and global 

minima. The equality constraints are eliminated by solving them for x3 and x4. The 

resulting reformulated problem has 2 variables and 3 inequality constraints, and is:  
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Example 12:  Minimize 62195 x10x16x6x15x9 +++−−  
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The global minimum is at x = {0, 100, 0, 100, 0, 100, 0, 100, 200, 1} with f = -400, 

and one local minimum is at x = {50, 0, 50, 0, 100, 50, 50, 0, 0, 3} with f = -100. 

There are infinite local solutions to this test problem with a function value of zero at x 

= {0, 0, 0, 0, 0, 0, 0, 0, 0, a}, where 1 ≤ a ≤ 3.  The equality constraints are eliminated 
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by solving them for x4, x7, x8, x9 and x10. The resulting reformulated problem has 5 

variables and 12 inequality constraints, and is: 

Minimize 6521 x5x6xx9 −++−  
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Example 13:  Minimize  6.0
2

6.0
1 x35x35 +

  Subject to 

   

300x100
17x0
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The global solution is at x = {0, 16.666667, 100} with f = 189.311627, and there is a 

local solution at x = {33.333, 0, 300} with f = 286.943.  The equality constraints are 

 234



eliminated by solving them for x1 and x3. The resulting reformulated problem has 1 

variable and 3 inequality constraints, and is: 

  Minimize 6.0
2
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2
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Example 14: Minimize  21 xx +  

  Subject to 
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2
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The global minimum is at x = {-1.414214, -1.414214} with f = -2.828427. There are 

two local minima at x = {-1, 0} and x = {1, 0} with function values -1 and 1 

respectively. 

 

Example 15:  Minimize  2
21
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4
1 xx24x14x −+−

  Subject to 
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≤−+−
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This problem has three local solutions at x = {2.60555, 10}, at x = {0.840, 0.386} and 

at x = {0.732, 0} with function values -86.422205, 10.631 and 10.354 respectively. 

The global solution is at x = {-3.173599, 1.724533} with f = -118.704860. 

 

Example 16:  Minimize  6543
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The global solution is at x = {0.166667, 2, 4, 0.5, 0, 2} with f = -13.410904 and a 

local solution is reported with f = -4.259 in Ryoo and Sahinidis (1995).  The equality 

constraints are eliminated by solving them for x4, x5 and x6. The resulting 

reformulated problem has 3 variables and 8 inequality constraints, and is:  
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MINLP Problems 

Example 1: Minimize yx2 +  

  Subject to 

    

{ }1,0y
6.1x0
6.1yx

0yx25.1 2

=
≤≤
≤+

≤−−

The global solution is at x = 0.5 and y = 1 with f = 2. There is a local minimum at x = 

1.118 and y = 0 with f = 2.236. 

 

Example 2:  Minimize 21 xx2y ++−  

  Subject to 
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The global solution is at x = {1.375, 0.375}, y = 1 with f = 2.124. The local solution is 

at x = {0.853, 0.853}, y = 0 with f = 2.558. The reformulated problem after 

eliminating the equality constraint is given in Costa and Oliveira (2001). 

 

Example 3:  Minimize ( ) 8.05.0x5y7.0 2
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  Subject to 
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The global solution is at x = {0.94194, -2.1}, y = 1 with f = 1.07654. The local 

solution noticed at x = {0.2, -1}, y = 0 with f = 1.25. 

 

Example 4:  Minimize x5v6v7y5.5y5.7 2121 ++++  
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    { }1,0y,y
0v,v,z,z,x,x

21

212121

=
≥

The global solution is at y2 = 0, z2 = 0, v1 = 3.514237, v2 = 0 with function value 

99.2396. The problem has a sub-optimal solution at x = {0, 15}, y = {0, 1}, v = {0, 

4.479} with f = 107.376. The reformulated problem after eliminating the equality 

constraints is given in Costa and Oliveira (2001). 
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The problem has a global solution at x = {0.2, 0.8, 1.907878} and y = {1, 1, 0, 1} 

with f = 4.579582. The highly non-linear nature of the problem results in many local 

solutions which are reported in Ryoo and Sahinidis (1995). 
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Example 6: Maximize
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where a1 to a12 are constants, and are given in Angira and Babu (2006). There are 

many global solutions at x1 = 27, x3 = 27, y1 = 78 with f = 32217.4 for any 

combination of x2 and y2.  

 

Examples 7 and 8: Minimize   ∑
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where Pj is the integer. N is the number of products, M is the number of processing 

stages, Qi is the production rate, Pj is the number of parallel units, Rj is the unit size, 
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BBi is the batch size, TLi is the cycle time, H is the horizon time, Sij is the size factor, tij 

is the processing time and αj and βj are the cost coefficients. The bounds over TLi and 

BiB  are calculated as in the following. 
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Number of variables is M+N and the constraints are 2MN+1. N=2 and M=3 for 

example 7, and N=5 and M=6 for example 8. The data for the constants and the 

information about the local and global minima for both examples 7 and 8 are given in 

Salcedo (1992). 
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