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SUMMARY 

Hematopoiesis is defined as a biological process that gives rise to all blood lineages in 

the course of an organism’s lifespan. It is widely known that vertebrate hematopoiesis 

has two phases: a “primitive” (embryonic) phase is followed by the other “definitive” 

(adult) phase. The transient primitive wave of hematopoiesis initiates the circulation 

and mainly give rise to primitive erythrocytes and a small portion of macrophages; 

while the definitive wave of hematopoiesis generate all the blood lineages 

continuously and gives rise to the fetal and adult peripheral blood cells. However, the 

molecular mechanisms governing the generation and regulation of these two waves of 

hematopoiesis are not fully understood. Recently zebrafish (Danio rerio) has emerged 

as a pre-eminent model organism for vertebrate hematopoietic research due to its 

genetic and embryological advantages.  

This dissertation describes the genetic study of two zebrafish hematopoietic 

mutants: ugly duckling (udu) and tc-244. Phenotypic analysis of udusq1 mutant allele 

showed that udu gene was essential for primitive hematopoiesis development. Loss of 

udu gene in zebrafish led to severe hematopoietic hypoplasia phenotype. Moreover, 

FACS analysis revealed that this defect in primitive erythroid cells was caused by 

their abnormal arrest in G2-M phase during cell cycle progression. Besides, 

transplantation experiment showed that udu gene was cell autonomously required for 

this function in primitive erythroid cells. Of note, a group of molecules that are known 

to function in cell division or cell cycle regulation were fished out from yeast two-

hybrid screen as candidate interaction partners of Udu protein, thus further supporting 
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the argument that Udu may be required for regulation of cell cycle progression in 

primitive hematopoietic cells.  

Unlike udu mutant, tc-244 mutant was normal in primitive hematopoiesis but 

had severe defects in generation of definitive hematopoiesis. By whole mount in situ 

hybridization analysis of hematopoietic specific markers, it was found that definitive 

HSCs were initially specified in tc-244 mutants, but their further differentiation and 

development were impaired, leading to the absence of major lineages of definitive 

hematopoietic cells including erythroid, myeloid, and lymphoid cells. By positional 

cloning approach, the tc-244 mutant gene was mapped to a novel zebrafish gene 

zgc153228 on linkage group 7. Morpholino knockdown of zgc153228 showed similar 

morphant phenotype as tc-244 mutant, confirming that the mutant phenotype of tc-

244 was indeed caused by loss of function of zgc153228 gene. Thus, zgc153228 is 

identified as a novel factor critical for definitive hematopoiesis development.  

In conclusion, by genetic analysis of zebrafish mutants udu and tc-244 in this 

study, two novel genes (udu and tc-244) are identified as novel factors involved in the 

regulation of primitive and definitive hematopoiesis development.  
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Chapter I Introduction 

1.1 Current understanding of hematopoietic development 

1.1.1 Hematopoiesis and hematopoietic cells 

Hematopoiesis is a word derived from ancient Greek (haima blood; poiesis to make) 

which means the formation of blood. It is a biological process that produces all types 

of blood cells throughout the lifetime of an animal. In general, hematopoietic cells can 

be classified into three types: erythrocyte, leukocyte, and platelet. Erythrocytes or red 

blood cells are the most abundant cell type, and they stay within the blood vessels and 

transport oxygen and nutrition. Leucocytes or white blood cells mainly perform the 

function to combat infection and sometimes phagocytose and digest debris, and there 

are three categories of leukocytes: granulocyte, monocyte, and lymphocyte. 

Leucocytes usually migrate across the walls of small blood vessels into tissues to 

perform their tasks. Beside these two major cell types, blood also contains large 

numbers of thrombocytes or platelets. They are small and detached cell fragments 

derived from the giant megakaryocytes and adhere specifically to the endothelial cells, 

and they help to repair damaged blood vessels and aid in blood clotting. Despite their 

functional diversity, all these different types of hematopoietic cells are generated 

ultimately from a common ancestor known as hematopoietic stem cells (HSCs) 

(Kondo et al 2003).  

The hematopoietic system has been extensively studied in the past few 

decades due to its importance. On the one hand, understanding of hematopoiesis is 

critical for clinical practice. Human diseases, such as anemia, leukemia, 
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immunodeficiency, and lymphoma are all caused by defects in this process. 

Approaches to treat these disorders also require manipulation of hematopoietic cells. 

For example, bone marrow transplantation or hematopoietic stem cell replacement 

approach has been used to ameliorate the related diseases (Zon 2001). On the other 

hand, mechanisms involved in the genesis of hematopoietic system also intrigue 

scientists from a developmental viewpoint. The hematopoietic system is distinguished 

from other organ systems by its unique feature that all the mature blood cells are 

short-lived. Therefore, hematopoiesis needs to be continuous throughout life. This 

astonishing feature is fascinating topics of developmental biology. Moreover, 

hematopoiesis studies also set paradigms that are relevant to other parallel organ 

systems. Therefore, better understanding of hematopoiesis will benefit both clinical 

application and basic research.   

 

1.1.2 Model organisms of hematopoietic research 

The research of hematopoiesis began nearly a century ago and had adopted many 

different model organisms throughout its history.  

Mouse model is the most widely used system in hematopoietic research. The 

most obvious advantage of the mouse model is because it is mammalian, while other 

strengths also include the availability of antibodies for the identification and 

purification of different classes of hematopoietic cells; the variety of in vitro and in 

vivo functional assays; and the availability of genetics and genomics tools (de Bruijn 

2005). Chicken and frog are the classical non-mammalian model organisms for 

hematopoiesis research. The chicken embryo has a long-standing history in study of 
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hematopoiesis, as its accessibility and flat morphology make it well suited for the 

grafting experiments. By grafting blastoderm of chickens onto the yolk of quail, it 

was showed that the hematopoietic stem cells that last the lifetime were derived from 

the mesodermal area surrounding the aorta (Dieterlen-Lievre & Martin 1981).  The 

unique feature that made frog a valuable model organism for developmental 

hematopoiesis is the clear spatial separation of primitive and definitive hematopoiesis, 

which takes place in the ventral blood islands and dorsal lateral plate mesoderm 

respectively (Ciau-Uitz et al 2000). This spatial separation allows for the detailed 

analysis of the developmental origin of these two distinct cell populations. In addition, 

similar to the chicken, the externally development of the embryos makes it possible to 

perform grafting experiments to examine the hematopoietic potential of various 

mesodermal tissues. 

By studying all these model organisms, the major program of hematopoiesis is 

found to be conserved throughout vertebrate evolution. Details of this conserved 

process will be reviewed in the following sections to reveal our current understanding 

of hematopoiesis development.  

 

1.1.3 Origin of hematopoiesis  

Early events that lead to hematopoiesis were first revealed by fate mapping in 

Xenopus laevis. It has been shown that the blood fate map domain occupies the 

vegetal portion of the marginal zone early at 32-cell stage embryo (Lane & Smith 

1999). The marginal zone is the equatorial region of the blastula embryo, and, it will 
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pattern to form mesoderm that later gives rise to tissues such as notochord, somites, 

kidney and blood during gastrulation. Transplantation experiment between 

cytogenetically distinct embryos further suggests only ventral marginal zone is 

induced to form the hematopoietic tissue (Turpen et al 1997).   Members of the TGF-

β-related BMP family have been shown to be critical for this induction event. Over-

expression of bmp2, bmp4, bmp7 perturbs normal mesodermal patterning by causing 

an expansion of ventral mesodermal fates at the expense of more dorsal derivatives 

(Clement et al 1995; Dale et al 1992; Fainsod et al 1994; Jones et al 1992; Wang et al 

1997). Conversely, over-expression of a dominant-negative BMP receptor or 

inhibition of bmp4 expression shows an opposite phenotype (Graff et al 1994; Sasai et 

al 1995; Smith 1995). Similar result was also obtained in Bmp4 knockout mice 

(Winnier et al 1995), confirming that the vertebrate hematopoiesis arises from ventral 

mesoderm.  

 

1.1.4 Hemangioblast  

Following gastrulation, a population of ventral mesoderm cells will migrate to the 

embryonic yolk sac and form blood islands which consist of two lineages of cells, a 

population of erythroid cells surrounded by a layer of vascular endothelial cells.  This 

phenomenon had lead to the speculation of a common origin for blood and vascular 

tissue and the existence of a bipotential precursor -- hemangioblast (Pardanaud et al 

1989). In vitro culture studies of mouse embryonic stem (ES) cells have provided 

more concrete evidence in support of this hemangioblast concept. Choi and co-

workers had described the isolation of blast-colony-forming cells (BL-CFC) from 
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embryoid bodies which arise during culture of embryonic stem cells (Kennedy et al 

1997). When BL-CFCs were cultured in the presence of appropriate cytokines, they 

could give rise to both hematopoietic and endothelial cells (Choi et al 1998; Robb & 

Elefanty 1998). Furthermore, hematopoietic stem cells and endothelial cells have 

similar surface marker and gene expression, including CD34, transcription factors 

stem cell leukemia gene (Scl), and vascular endothelial growth factor receptor Flk1 

(Amatruda & Zon 1999). Scl is known to be essential for embryonic hematopoiesis, 

but it was also found to play a role in angiogenesis through analysis of chimeric Scl-/- 

mice expressing a transgene targeting lacZ to vessels (Visvader et al 1998). Mice 

bearing null mutations of Flk1 also have profound defects in both hematopoiesis and 

vasculogenesis (Shalaby et al 1997).  Although all these finding support the existence 

of hemangioblast, the unequivocal proof for this hypothesis awaits the further 

evidence such as cell tracing experiment. Moreover, isolation of these cells and 

characterization of their potential will be necessary to formally demonstrate that they 

represent the hemangioblasts (Keller et al 1999).  

 

1.1.5 Distinct waves of hematopoiesis 

In vertebrate, development of hematopoietic lineage is complex, as it occurs in two 

waves: a primitive or embryonic wave of hematopoiesis is followed by the other 

definitive or adult wave of hematopoiesis.  

In mammal and avian, the first blood cell population is formed in yolk sac, an 

extra-embryonic structure, which is the site of primitive hematopoiesis. The 

analogous region in amphibians is the ventral blood island. This transient wave of 
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hematopoiesis will initiate the circulation and mainly give rise to primitive red blood 

cells and a small portion of macrophages. These primitive erythrocytes differ from 

those found in the fetal liver and adult bone marrow in that they are large, mainly 

nucleated, and produce the embryonic forms of globin (Barker 1968; Brotherton et al 

1979). The only other hematopoietic cells present in the early yolk sac are 

macrophages (Cline & Moore 1972). They mature rapidly and express lower levels of 

some marker genes suggesting that they could represent a unique population of 

macrophages (Faust et al 1997; Keller et al 1999).   

During further development, the primitive wave is replaced by the definitive 

wave of hematopoiesis, which can generate all the blood lineages including erythroid, 

myeloid and lymphoid lineages and gives rise to the fetal and adult peripheral blood 

cells (Amatruda & Zon 1999).  It is widely accepted that definitive hematopoiesis is 

derived from an intraembryonic location known as the aorta–gonad–mesonephros 

(AGM) region. Classical experiments in the chick-quail transplantation system, 

complemented by those that used diploid-triploid Xenopus chimeras, has traced the 

origins of definitive hematopoiesis to the cells of the AGM region (Chen & Turpen 

1995). Transplantation of quail yolk sac to chick embryo showed that definitive 

hematopoiesis was exclusively of chick origin, thereby establishing the principle of 

intra-embryonic hematopoiesis (Lassila et al 1982). In the Xenopus embryo, 

transplantation of the dorso-lateral plate (the equivalent of the AGM) from a diploid 

to a reciprocal triploid embryo found diploid cells in the larval and adult blood (Chen 

& Turpen 1995). Although similar transplant studies are not feasible in mouse model, 

HSC activity is detectable after embryonic day 11 (E11) in the AGM region of mice 

upon transplantation of these cells to an irradiated adult recipient (Medvinsky et al 



Chapter I 

7 

 

1993). Definitive hematopoietic cells do not differentiate in situ in AGM, but travel to 

a fetal site of hematopoiesis. In mammals, fetal blood formation occurs in the liver 

and spleen while the adult site is bone marrow.  

However, the relationship between the primitive and definitive hematopoiesis 

remains unclear and has been the subject of intense investigation. Several groups 

using in vitro differentiation model has suggested that these two lineages share a 

common precursor (Keller et al 1998; Kennedy et al 1997; Turpen et al 1997). Recent 

finding showing that yolk sac can contribute to the definitive hematopoiesis in vivo 

also support this argument (Samokhvalov et al 2007). But the fate mapping analysis in 

xenopus clearly indicated that embryonic and adult blood was derived from distinct 

blastomeres in the 32-cell embryo (Ciau-Uitz et al 2000). Thus, the origin of two 

waves of hematopoiesis is still controversial.  Besides their origination, primitive and 

definitive hematopoiesis development also seems to be controlled by distinct 

molecular programs, as gene targeting experiments of two transcription factor c-Myb-/- 

and Runx1-/- mice both show normal yolk sac development but severely impaired 

definitive hematopoiesis (Mucenski et al 1991; Okuda et al 1996). Several other genes 

are also found to be preferentially utilized by the definitive program as well (Kitajima 

et al 1999; Porter et al 1997). In contrast, our understanding of the molecular 

mechanism that specify the primitive hematopoiesis development is poor, as analysis 

of definitive hematopoiesis in mice with targeted alleles of essential primitive specific 

genes could be complicated by early embryonic death, due to lack of primitive 

hematopoiesis (Keller et al 1999).  
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1.1.6 Hematopoietic stem cell  

The most significant feature of definitive hematopoiesis is to generate all the lineages 

of blood cells continuously. And this ability depends very much on the hematopoietic 

stem cells (HSCs), which are pluripotent cells capable of self-renewal and 

differentiation into all hematopoietic lineages (Weissman 2000). The original pool of 

HSCs is formed during embryogenesis in a complex developmental process that 

involves several anatomical sites, which finally colonize the bone marrow at birth. In 

mouse, one and a half days after blood islands appear, at about the time the yolk-sac 

blood vessels connect to the embryo proper, blood formation in the embryo is first 

observed at or near the ventral wall of dorsal aorta in the AGM region (Cumano et al 

2001). Blood-forming activity attributed to haematopoietic stem cells (HSCs) is 

evident in this region at around E10.5 (Medvinsky & Dzierzak 1996). Although the 

AGM region is recognized as the site where definitive HSC activity is detected, the 

origin of definitive HSCs is still unclear: whether they are produced de novo in this 

intraembryonic region or they are yolk sac origin and are induced to become 

definitive HSCs after they enter the AGM. The later possibility is supported by the 

recent finding that Runx1-positive yolk-sac cells do form at least part of the definitive 

HSCs that can contribute to the adult hematopoiesis by using an elegant cell labeling 

approach (Samokhvalov et al 2007). More complexly, mammalian placenta has been 

recently recognized as a niche for definitive HSCs. A striking feature of placental 

HSCs is the rapid expansion of HSC pool between E11.5 and E12.5. As a result, the 

placenta harbors over 15-fold more HSCs than does the AGM region or the yolk sac, 

suggesting that the placenta may provide a unique microenvironment for HSC 
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development (Gekas et al 2005; Ottersbach & Dzierzak 2005). However, the origin of 

placental HSCs remains mystery.  

HSCs first appear in the fetal liver at E11.5. Fetal liver is the primary fetal 

hematopoietic organ and the main site of HSC expansion and differentiation. 

However, fetal liver does not produce HSCs de novo, but it is believed to be seeded 

by circulating hematopoietic cells (Johnson & Moore 1975; Mikkola & Orkin 2006). 

During postnatal life, the definitive HSCs colonize the bone marrow, in which most 

adult HSCs are quiescent and divide only rarely to maintain an appropriate quantity of 

differentiated blood cells and to renew the HSC pool (Cheshier et al 1999).  Thus, the 

migration path of definitive HSCs also highlights the importance of the environmental 

influence on maturation of HSCs.   

 

1.1.7 Hematopoietic lineage commitment 

Hematopoietic stem cells do not jump directly from a pluripotent state into a 

commitment to just one pathway of differentiation; instead, they go through a series 

of progressive restrictions. HSCs first give rise to multipotent progenitors, cells that 

lack the capacity for self-renewal but retain multipotent. These progenitors in turn 

differentiate into precursors, which are committed to a specific hematopoietic lineage. 

Finally, these precursors will differentiate into different types of mature blood cells. 

The tentative stepwise hematopoiesis commitment route is summarized in Figure 1.1. 

Details commitment process of major hematopoietic lineages will be discussed in the 

following subsections.  
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Figure 1.1 Tentative schemes of hematopoietic lineage commitment. HSCs can be 
subdivided into pluripotent HSCs and multipotent progenitors. The circular arrow 
indicates self-renewal ability. They give rise to common lymphoid progenitors (CLPs) 
and common myeloid progenitors (CMPs), which further differentiate into different 
types of progenitors and mature blood cells.  This figure is adapted from (Reya et al 
2001). 

 

1.1.7.1 Erythropoiesis 

Production of red blood cells (erythropoiesis) is critical for the survival and 

development in vertebrate embryos (Orkin & Zon 1997), as red blood cells are 

involved in transporting oxygen and nutrition during embryogenesis. In general, the 

commitment from HSC to terminally differentiated erythrocyte involves a concerted 

progression through a common myeloid progenitor (CMP), a megakaryoctye 

/erythroid progenitor (MEP), an erythroid precursor, a proerythroblast, and an 
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erythroblast. Early erythroid progenitors are not recognizable morphologically, but 

can be detected by in vitro colony assays. The first morphologically identifiable  

precursor cell is the proerythroblast, which distinguished by its large nucleus and 

basophilic cytoplasm as revealed by Wright-Giemsa staining (Orkin & Zon 1997). 

Upon its differentiation, the proerythroblast matures progressively to the late 

erythroblast stage, characterized by a condensed nucleus and pink, hemoglobin-

containing cytoplasm.  

Despite of intensive studies on erythropoiesis, the molecular events governing 

this process are far from being understood. However, there is substantial evidence for 

involvement of some key molecules including transcription factors and cytokines in 

erythropoiesis (Baumann & Dragon 2005).  

SCL, LMO2, GATA2, c-MYB are four broad spectrum factor critical for early 

hematopoiesis and erythropoiesis. The stem cell leukemia (Scl) gene, originally 

identified in a chromosomal translocation in T-cell acute lymphoblastic leukemia 

(ALL), encodes a basic helix-loop-helix (bHLH) transcription factor (Begley et al 

1991). Gene targeting in mice has demonstrated that SCL is required for early 

hematopoiesis. Scl-/- embryos are entirely bloodless (Shivdasani et al 1995), and Scl-/- 

ES cells are unable to generate all the lineages of hematopoietic cells (Porcher et al 

1996). Moreover, SCL can build multimeric DNA-associated complex with many 

other factors to either block or enhance erythroid differentiation (Visvader et al 1997; 

Vitelli et al 2000; Wadman et al 1997). Thus, Scl is critical for both early 

hematopoiesis commitment and erythroid development. The LIM-domain-only 

protein 2 (LMO2) has similar functions as SCL in early hematopoiesis and erythroid 



Chapter I 

12 

 

lineage specification. But it does not bind DNA by itself, rather, it acts as a bridge 

between DNA-binding transcription factors such as SCL and GATA1. GATA2 is a 

transcription factor belongs to the GATA-family. Over-expression of Gata2 in 

erythroid precursors block their differentiation (Shivdasani & Orkin 1996). When 

Gata2 expression decreases, Gata1 expression increases to enable erythroid 

differentiation. Gata2 null mice are embryonic lethal due to severe anemia of early 

yolk sac hematopoiesis (Tsai et al 1994), and multipotent progenitors arising from 

Gata2 null ES cells proliferate poorly and undergo excessive apoptosis (Tsai & Orkin 

1997). Therefore, GATA2 is essential for expansion and survival of HSCs or early 

hematopoiesis progenitors. The proto-oncogene c-Myb is abundantly expressed in 

immature hematopoietic cells of erythroid, myeloid and lymphoid lineages but 

decreases as they differentiate (Perry & Soreq 2002). Forced expression of c-Myb 

inhibits erythroid differentiation, thus like Gata2 it needs to be down-regulated to 

allow terminal differentiation (Clarke et al 1988). c-Myb null mice exhibit normal 

primitive but impaired definitive hematopoiesis in the fetal liver, result in death at 

E15 (Mucenski et al 1991), suggesting that c-MYB is required for the expansion of 

definitive  progenitors.  

GATA1, FOG1 and EKLF are three important erythroid specific transcription 

factors. As an abundant hematopoietic-restricted factor, GATA1 serves as a central 

regulator for erythroid gene transcription and development (Orkin & Zon 1997). 

Gata1 null mice show complete ablation of embryonic erythropoiesis due to arrested 

maturation and apoptosis of erythroid precursors at the proerythroblast stage 

(Fujiwara et al 1996). However, Gata1 negative ES cells are capable of giving rise to 

other hematopoietic lineages, supporting its key role in erythroid commitment. Friend 
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of GATA (Fog) gene, encoding a zinc-finger protein, is isolated as a cofactor for 

GATA1. It co-expresses and cooperates with Gata1 gene to promote erythroid and 

megakaryocytic differentiation (Crispino et al 1999). Mice lacking FOG exhibit 

blocked erythropoiesis, similar to GATA1-deficient mice (Perry & Soreq 2002). The 

erythroid Kruppel-related factor (EKLF) is a zinc finger protein. EKLF recognizes a 

CACC-motif that is found in the regulatory elements of many erythroid-specific genes, 

including adult β-globin gene. Eklf null mice die before E16 of severe anemia and β-

globin deficiency (Nuez et al 1995; Perkins et al 1995). Eklf-/- erythroid cell are 

exceedingly pale with markedly reduced hemoglobin, and are extremely fragile (Nuez 

et al 1995; Perkins et al 1995). These features are very similar to those patients with 

β-thalassemia. But embryonic erythropoiesis and embryonic ε and ζ globin expression 

in Eklf null mice is normal (Perkins et al 1995), showing the critical role of EKLF in 

the activator of the adult β-globin gene in the late stages of erythropoiesis (Perry & 

Soreq 2002).  

The most important growth factor of mammalian erythropoiesis is 

glycoprotein hormone erythropoietin (EPO), which binds a distinct transmembrane 

receptor (EPOR) expressed by erythroid precursors. This intracellular signaling up-

regulates the expression of globins, transferring receptor and some membrane proteins 

that are characteristic of erythrocytes (Kendall 2001). In Epo and EpoR knockout 

mice, death occurs on embryonic days 11–13.5, owing to failure of definitive 

erythropoiesis in the liver (Rich 1994; Suzuki et al 2002; Wu et al 1995). The 

existence of erythroid progenitors in livers of these mutants indicated that EPO-EPOR 

is not required for the commitment of hematopoietic progenitors to the erythroid 
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lineage. Rather, they are crucial for proliferation, survival, and differentiation of 

erythroid precursors (Baumann & Dragon 2005). 

 

1.1.7.2 Myelopoiesis  

Granulocytes and monocytes are key mediators of innate immunity and the 

inflammatory response. Collectively, these cells and their committed progenitors are 

referred to as myeloid cells.  The development path from HSCs to differentiated 

myeloid cells is orchestrated by several steps: common myeloid progenitors (CMPs) 

derived from HSCs first give rise to separate progenitors for cells of the 

granulocyte/monocyte (GMPs) and erythrocyte/megakaryocyte lineages (MEPs). 

Then GMPs further differentiate into either granulocytes or monocytes. There is 

accumulating data showing that transcription factors are the key determinants in the 

orchestration of myeloid identity and fate during this process.  Consistently, the 

defects seen in myeloid development of mice with targeted deletions in genes 

encoding such key transcription factors are for the most part much more severe than 

the phenotypes seen in mice deficient in most other myeloid genes, such as growth 

factors and their receptors (Rosenbauer & Tenen 2007). Compared with 

erythropoiesis, there is a relatively small number of transcription factors involved in 

regulating myelopoiesis. Among them, PU.1, CCAAT/enhancer binding proteins (in 

particular C/EBPα) are two critical ones.  

PU.1 (or SPI1) is a member of ETS transcription factors family, and its 

expression is restricted to blood cells (Klemsz et al 1990). PU.1 is detectable in HSCs, 

CMPs, CLPs and B cells, but is present at high levels in mature myeloid cells  (Back 



Chapter I 

15 

 

et al 2005; Nutt et al 2005; Rosenbauer et al 2006). Binding sites for PU.1 are found 

on almost all myeloid specific promoters (Tenen et al 1997). Thus, it is believed that 

PU.1 plays an important role in myeloid development by regulating various 

downstream targets. Loss of Pu.1 in mice leads to absence of mature granulocytes and 

macrophages. These mice also exhibited a complete block in B cell differentiation 

(McKercher et al 1996; Scott et al 1994). More recent analysis has shown that the 

absence of PU.1 impairs HSC repopulation capacity and precludes differentiation into 

CMPs and CLPs when PU.1-deficient fetal liver cells were used to generate chimeric 

animals (Dakic et al 2005; Iwasaki et al 2005; Scott et al 1997). Beside its role in 

specification of early myeloid progenitor, in vitro culture assay suggests that PU.1 

also functions in cell fate decision between granulocytes and macrophages: high 

levels PU.1 favor the formation of macrophages, whereas low levels PU.1 seem to 

support granulocyte production (Dahl et al 2003).  

C/EBPα is a critical transcription factor involved in the granulopoiesis.  It 

belongs to the leucine-zipper family, and its expression is found in HSCs, myeloid 

progenitors and granulocytes, but not macrophages (Akashi et al 2000; Radomska et 

al 1998). C/EBPα knockout mice have normal numbers of CMPs but lack GMPs and 

all subsequent granulocytic stages (Zhang et al 1997; Zhang et al 2004). But 

conditional deletion of C/EBPα in GMPs allows normal granulopoiesis in vitro, which 

suggest it is only required before GMP stage (Zhang et al 2004). Therefore, C/EBPα 

is indispensable for the early granulocytic commitment.  
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1.1.7.3 Lymphopoiesis  

In mammals, the common lymphoid progenitors (CLP) derived from HSCs in the 

bone marrow are thought to first differentiate into a bipotent T/NK cell progenitor and 

another B cell progenitor (Rodewald et al 1992; Sanchez et al 1994). The bipotent 

T/NK cell progenitor will then migrates to the thymus, and give rise to another two 

subsequent lineages – NK cell lineage and T cell lineage. In thymus, T cell 

progenitors undergo a precisely orchestrated series of developmental steps to become 

mature T lymphocytes including the sequential rearrangement of antigen receptor 

gene segments, as well as change in the expression of cell-surface and intracellular 

proteins (Charles A et al 2001 ). B cell lineage is generated and developed in the 

specialized microenvironment of bone marrow in a similar process as T cells. B cell 

progenitors proceed through stages that are marked by the sequential rearrangement 

of immunoglobulin gene segments to generate a diverse repertoire of antigen 

receptors. This developmental program also involves changes in the expression of 

other cellular proteins such as CD45R (B220 in mice), CD19, CD43 (Charles A et al 

2001 ). Therefore, the whole process of lymphocytes differentiation is marked by 

successive steps in the rearrangement of antigen-receptor genes and expression of 

their protein product, as well as by change in the expression of other cell-surface and 

intracellular proteins. Moreover, these events are tightly regulated by a series of 

transcription factors to ensure the normal specification process. One of the early genes 

known to be critical for initiation of lymphoid program is Ikaros, which encodes a 

family of lymphoid-restricted zinc-finger transcription factors. Ikaros-/- mice lacked 

all T, B, and NK cells and their earliest defined progenitors (Georgopoulos et al 1994), 
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which strongly argues its important function in early lymphoid progenitor 

specification.  

Transcription factors including PU.1, E2A, EBF, and PAX5 all play distinct 

but essential role in the B cell commitment. Loss of PU.1 results in complete absence 

of B cells.  And the mechanism by which PU.1 regulate early B-cell development has 

now been show to be at least partially owing to its ability to transcriptionally activate 

the gene encoding the α chain of the receptor for cytokine interleukin-7 (IL-7α) in 

lymphoid progenitors, and IL-7 signaling is essential for the survival, proliferation 

and differentiation of B cells (DeKoter et al 2002).  E2A and EBF belong to the basic 

helix-loop-helix family transcription factors. They act coordinately to activate B cell 

specific genes and are necessary but not sufficient to generate pro-B cells 

(Sigvardsson et al 1997). Pax5 functions downstream of E2A and EBF as both a 

transcriptional activator of B-cell lineage specific genes and a repressor of genes 

associated with myeloid and other hematopoietic lineages (Wang & Spangrude 2003). 

GATA3, a zinc-finger family transcription factor, has been defined as the earliest 

transcription factor required for T cell lineage commitment. Genetic studies in mouse 

have shown that GATA3 is required for the development and survival of the earliest 

committed double negative thymocytes or their precursors (Kuo & Leiden 1999; Ting 

et al 1996). Notch signaling has also been demonstrated to be important for lymphoid 

development (Anderson et al 2001; Hoyne 2003; Radtke et al 2004). NOTCH1 is 

implicated in the determination of T versus B cell lineages. Targeted deletion of 

Notch1 resulted in a block of T-cell development, accompanied by the presence of B 

lymphocytes in the thymus (Pui et al 1999; Radtke et al 1999). And Notch ligands are 
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shown to provide key signals for T cell differentiation in the absence of an intact 

thymus (Jaleco et al 2001).  

 

1.2 Zebrafish as a model organism for hematopoietic 

research 

1.2.1 Zebrafish as a new vertebrate model organism 

Developmental biologists often rely on the use of animal models to understand the 

complex mechanism of embryology and pathogenesis of human diseases. There is a 

greater than 100-year history in utilizing mice as a model organism, primarily because 

of the striking homology between mice and human from anatomy to cell biology and 

physiology. However, early developmental events are hard to explore in mice model 

because of their intrauterine growth and small litter size. In this regard, mice model is 

only ideal for study of late-acting genes (Driever & Fishman 1996). Although forward 

mutagenesis screen is feasible in the mouse, it is prohibitively expensive in the way of 

saturation scale due to long generation times, large space requirements and laborious 

handling required in maintenance and breeding of animals. In contrast, saturation 

mutagenesis screens were successfully applied in invertebrate models such as the fruit 

fly (Drosophila melanogaster), and had led to the discovery of many developmentally 

important genes with broad-ranging vertebrate counterparts (Nusslein-Volhard & 

Wieschaus 1980). However, invertebrates lack many structures and organ systems 

that are unique in vertebrates, such as notochord, neural crest, multi-chambered heart, 

endocrine and exocrine pancreas, and multi-lineage hematopoiesis system (Haffter et 
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al 1996).  In this context, zebrafish (Danio rerio), a fresh water tropical cyprinid fish, 

has come to attention recently as a pre-eminent vertebrate model organism.  

In early 1980s, George Streisinger, the founding father of zebrafish research, 

first introduced zebrafish as a genetic system to the research community (Streisinger 

et al 1981). The zebrafish embryos are transparent, and their fertilization is external, 

so that all stages of development are accessible. The zebrafish development is rapid, 

with a heart beating by the end of the first day and most organs or at least their 

primordial are in place by five days after fertilization (Kimmel et al 1995). Moreover, 

these small fish is only 3cm long and can be raised in large numbers and lay hundreds 

of eggs at weekly intervals. Genetically, zebrafish also maintains the diploid state, an 

important difference from other fish that can be triploid or tetraploid making genetic 

analysis difficult (Bahary & Zon 1998). More importantly, many genetic techniques 

have been developed for zebrafish manipulation (Lieschke & Currie 2007), such as 

‘cloning’ (Streisinger et al 1981), mutagenesis (Chakrabarti et al 1983; Grunwald & 

Streisinger 1992; Solnica-Krezel et al 1994; Walker & Streisinger 1983), transgenesis 

(Stuart et al 1988) and genetic mapping (Streisinger et al 1986). All these advantages 

support and promote the use of zebrafish to question of vertebrate development in the 

research community.   

 

1.2.2 Hematopoiesis from zebrafish point of view 

Given the intense biomedical interest in human organ function and disease, a model 

system is often judged by how well it predicts human biology (Thisse & Zon 2002). 

Zebrafish is a vertebrate, so that the genetic program governing organogenesis is more 
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similar to that of mammals than invertebrate models. The level of evolutionary 

divergence of fish from the mammalian lineage indicates most organs in the zebrafish 

appear generally similar as that of mammals, and thus genes involved in zebrafish 

organogenesis are very likely to have their mammalian counterparts. Yet, they may 

have difference in their anatomical sites, gene expression and function which can 

modify the organ in a significant way.  

In the following section, recent findings of hematopoiesis development using 

zebrafish as a model organism will be reviewed. And this can be used as an example 

to elucidate how the combination of genetic and embryological approaches has 

proven zebrafish as a powerful model system for developmental studies, and yield 

insights into the formation and function of vertebrate tissues, organ systems and even 

into some human disease mechanisms. 

 

1.2.2.1 Primitive hematopoiesis 

Successive waves of primitive and definitive hematopoiesis occurring in anatomically 

different sites are the characteristics of vertebrate embryos (Galloway & Zon 2003). 

Unlike mammals, primitive hematopoiesis in zebrafish occurs in the intraembryonic 

region known as intermediate cell mass (ICM) (Willett et al 1999) (Figure 1.2). Fate 

mapping analyses have demonstrated that ICM origins from the ventral mesoderm of 

the early gastrulation embryos as other vertebrates (Kimmel et al 1990; Warga & 

Nusslein-Volhard 1999). Following the extensive morphological movements of 

gastrulation, the ventral mesoderm occupies the posterior and lateral regions of the 
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embryos, and this posterior lateral mesoderm (PLM) appears as bilateral stripes, 

which later migrate to the trunk midline and converge to form the ICM.  Similar to 

other vertebrates, BMP signaling is also primarily responsible for the early patterning 

event, and this is well demonstrated by the studies of several zebrafish BMP mutant 

swirl(BMP2b) (Kishimoto et al 1997), snailhouse (BMP7) (Schmid et al 2000).  

Recently, a second site of primitive hematopoiesis initiating in the anterior mesoderm 

has been characterized in zebrafish, and is named as rostral blood island (RBI) (Figure 

1.2) (Davidson & Zon 2004; Herbomel et al 1999). However, this region is only 

responsible for generating primitive myeloid cells. 

Many factors that play critical roles in mammalian hematopoiesis initiation 

and HSC specification have been identified in zebrafish and have spatiotemporal 

expression pattern comparable to their mammalian counterparts. The stem cell 

leukemia (scl) gene is extensively characterized in zebrafish largely due to its 

important role found in mammals. The expression of zebrafish scl gene is first evident 

at around 2-somite stage as short bilateral stripes in the PLM (Davidson et al 2003).  

This expression pattern also overlaps with other transcription factors including fli1, 

gata2, hhex, lmo2. Zebrafish scl has similar function as their mammalian counter- 

parts in HSC specification and erythroid differentiation (Dooley et al 2005; Juarez et 

al 2005; Liao et al 1998; Qian et al 2007). But whether these scl+ ICM precursors at 

this stage represent real hemangioblasts or merely independent populations derived 

from HSCs and angioblasts that simultaneously develop adjacent to each other is 

currently unsolved (Davidson & Zon 2004).  But one of zebrafish mutant cloche may 

hold answers to this puzzle. cloche (clo) mutation in zebrafish shows defects in both 

hematopoietic and endothelial lineages during embryogenesis (Stainier et al 1995). 
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Expression of multiple hematopoietic stem cell markers and lineage-specific markers 

is severely reduced or absent in cloche embryos; and expression of vascular markers 

is also significantly decreased (Liao et al 1998; Liao et al 1997; Thompson et al 1998).  

Therefore, cloche gene is considered to be essential for either formation or 

maintenance of the putative hemangioblasts, and it is also believed that the 

identification of cloche gene should greatly enhance our understanding regarding the 

signaling events upstream of hemangioblast.  

 

1.2.2.1.1 Primitive erythropoiesis 

The initiation of erythropoiesis is unambiguously indicated by the expression of the 

erythroid-specific transcription factor gata1 at 4-somite stage (~11 hpf) in a subset of 

scl positive cells in PLM (Davidson et al 2003). These gata1 positive erythroid 

progenitor cells undergo proliferation as they migrate towards the midline and “zip-

up” along the trunk (Davidson & Zon 2004). Fate mapping analysis using transgenic 

zebrafish in which the EGFP expression is under the control of gata1 promoter 

confirms that those gata1 positive cells ultimately give rise to the first circulating 

blood cells (Long et al 1997). The zebrafish gata1 deficient mutant vltm651 allele also 

shows a specific defect in erythroid pathway with intact hematopoiesis stem cell, 

myeloid, and lymphoid development, demonstrating the essential and conserved role 

of gata1 gene in erythropoiesis (Lyons et al 2002). Another factor that has been 

shown to be functionally required for early erythropoiesis is transcriptional 

intermediary factor 1γ (tif1γ) through the study of the zebrafish mutant moonshine. 

The moonshine (mon) mutation affects formation of embryonic erythrocytes. 
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Erythroid progenitor cells in mon mutants are initially present but fail to differentiate 

further and undergo apoptosis (Ransom et al 2004; Ransom et al 1996). Positional 

Cloning identifies mon as the zebrafish ortholog of mammalian transcriptional 

intermediary factor 1γ (TIF1γ) (Ransom et al 2004). Based on the zebrafish data, 

TIF1γ was later demonstrated to function as an important effecter of the TGFβ/Smad 

pathway in the control of mammalian erythroid differentiation (He et al 2006).   

In zebrafish, blood circulation begins at 25-26hpf, and there are approximately 

300 erythroid cells with morphology resembling proerythroblasts in the ICM at that 

time (Long et al 1997). As these primitive erythroid precursors enter the circulation, 

they mature into flattened elliptical erythrocytes. Meanwhile, these primitive 

erythrocytes express various erythroid specific genes necessary for hemoglobin 

synthesis (α- and β-embryonic globin chains, alas, fch, and urod), iron utilization 

(dmt1), and membrane stability (band3, protein 4.1r, β-spectrin) (Davidson & Zon 

2004). Although the exact lifespan of primitive erythrocytes is unknown, transfusion 

experiment suggested they can persist in circulation for at least 4 days (Weinstein et al 

1996).   

Besides the essential intrinsic factors, primitive erythropoiesis is also believed 

to be regulated by extrinsic cues. The zebrafish bloodless (bls) mutation has a 

dominant defect restricted entirely to primitive hematopoiesis (Liao et al 2002). The 

mutant fish has severe anemia within the first 4 days but completely recovers in the 

juvenile and adult stages. Erythroid progenitors are specified in bls mutant but the 

number is decreased compared to wild type, and these progenitors also fail to 

differentiate further and undergo apoptosis, indicating a defect in maintenance or 
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expansion of the primitive progenitor cells (Liao et al 2002). Transplantation 

experiment further shows that bls gene acts in a non-cell autonomous manner (Liao et 

al 2002), suggesting that bls gene encodes an extrinsic factor specifically required for 

primitive hematopoiesis development.  

 

1.2.2.1.2 Primitive myelopoiesis 

The primitive myelopoiesis takes place in the rostral blood island (RBI) which arises 

from anterior lateral mesoderm (ALM) (Figure 1.2). Like the primitive progenitors in 

the ICM, those precursors found in the RBI express similar transcription factors 

including fli1, gata2, lmo2, scl between 3- to 5-somite stage (de Jong & Zon 2005). 

Soon after that, expression of the myeloid-specific transcription factor pu.1 in a subset 

of these precursors marks the initiation of myeloid commitment in this region around 

6-somite stage. Using Nomarski microscope, the cells seen in the RBI are identified 

as macrophages based on their morphology and phagocytosis behavior (Herbomel et 

al 1999). But unlike monocyte-derived macrophages in mammals, these cells are still 

able to divide. Although these macrophages are considered as the primitive myeloid 

cells, it is unknown whether these early macrophages persist in adult zebrafish or 

whether they are replaced by a second wave of monocyte-derived macrophages (de 

Jong & Zon 2005).  Between 11- to 15-somite stage, the pu.1 positive cells migrate 

toward the head midline and form a partially converged mass of cells between the eye 

and the heart primodium (Herbomel et al 1999; Lieschke et al 2002). These cells then 

change the direction and migrate laterally, scattering into single cells across the yolk 

sac. Some of them enter the circulation via the duct of Cuvier, while others disperse 
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on various tissue surface of the yolk sac outside the blood flow (Davidson & Zon 

2004). Although pu.1 expression levels in these young macrophages decline after 18-

somite stage, additional molecular markers for macrophages such as l-plastin (an 

actin-binding protein) and lysozyme C (lyc) become expressed at this time (Bennett et 

al 2001; Liu & Wen 2002). Interestingly, prior to blood circulation, l-plastin positive 

cells are found exclusively in the yolk sac and in the mesenchyme of the head. From 

28hpf onwards, l-plastin positive cells begin to appear in the ventral region of the tail 

vein and the surrounding mesenchyme (Davidson & Zon 2004; de Jong & Zon 2005). 

It will be interesting to find whether these cells represent RBI macrophages brought 

by the blood circulation, or a second wave of hematopoietic activity initiated from the 

caudal region.  

 

1.2.2.2 Definitive hematopoiesis 

Unlike primitive hematopoiesis, the most significant feature of definitive 

hematopoiesis is its ability to generate all types of blood cells continuously 

throughout the lifetime of an animal. And this ability relies on the definitive 

hematopoietic stem cells (definitive HSCs).  In mammals, these definitive HSCs are 

found in close association with the ventral wall of the dorsal aorta in the aorta-gonad-

mesonephros (AGM) region, and then enter the circulation seeding the fetal liver and 

bone marrow.  Gene targeting studies in mice have shown that the runx1 transcription 

factor is essential for AGM derived HSC formation (Okuda et al 1996; Wang et al 

1996). Similarly, transcripts for the zebrafish runx1 ortholog are also detected in the 

ventral wall of the dorsal aorta in the AGM region between 24–48 hpf (Burns et al 
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2002; Kalev-Zylinska et al 2002) (Figure 1.2), suggesting that this site is analogous to 

the mammalian AGM region. Moreover, other hematopoietic transcription factor 

genes including c-myb (Thompson et al 1998), ikaros (Willett et al 2001), fli1 

(Lawson & Weinstein 2002), scl (Davidson & Zon 2004; Zhang & Rodaway 2007) 

and lmo2 (Zhu et al 2005) are also found to express in this region during the same 

time window. Recently, more concrete evidence come from the lineage tracing 

experiments performed by Jin et al. They showed that the fli1 positive cells in ventral 

wall of dorsal aorta were generated de novo and can contribute to the T cells found in 

the thymus, confirming that these cells represent the zebrafish counterparts of 

definitive HSCs (Jin et al 2007). The molecular mechanisms governing the definitive 

HSCs formation is also under intensive investigation. By genetic analysis, Notch and 

Hedgehog (Hh) signaling have been suggested to be critical for the specification of 

definitive HSCs. Zebrafish mutants in the Hh pathway or wild type embryos treated 

with the Hh signaling inhibitor display defects in definitive HSCs formation (Gering 

& Patient 2005). Similar, the Notch signaling mutant mind bomb also displays normal 

embryonic hematopoiesis but fails to specify adult HSCs (Burns et al 2005; Gering & 

Patient 2005). More strikingly, transient Notch activation during embryogenesis led to 

a runx1-dependent expansion of HSCs in the AGM region. In irradiated adult fish, 

Notch activity induced runx1 gene expression and increased multi-lineage 

hematopoietic precursor cells followed by the accelerated recovery of all the mature 

blood cell lineages (Burns et al 2005). 

In mammals, the definitive HSCs arising from AGM region will first migrate 

to a fetal site (fetal liver) before colonizing the adult hematopoiesis organ (bone 

marrow). However, such an equivalent site has not been identified in zebrafish so far. 



Chapter I 

27 

 

Recently, the zebrafish ventral tail region has been suggested as a possible candidate. 

Using the in vivo lineage tracing approach, definitive HSCs generated in the ventral 

wall of dorsal aorta region are traced to first migrate to this previously unappreciated 

ventral tail region (named as posterior blood island PBI or caudal hematopoietic tissue 

CHT, Figure 1.2) before they reach thymus and kidney (Jin et al 2007; Murayama et 

al 2006). Consistent with this observation, many transcription factors such as runx1, 

c-myb, scl, ikaros all express in this ventral tail region (Murayama et al 2006). But the 

exact role that PBI or CHT plays during definitive hematopoiesis is still not clear. 

Further investigation will be necessary to reveal whether it functions similarly as the 

mammalian fetal live to promote proliferation and differentiation of zebrafish 

definitive HSCs.  

 

1.2.2.2.1 Definitive erythropoiesis  

In zebrafish, the second wave of erythropoiesis is postulated to begin around 5dpf.  

This postulation is based on the phenomena that zebrafish bloodless mutant with a 

defect specific in primitive hematopoiesis starts to recovery with circulating red blood 

cells around 5dpf (Liao et al 2002). The zebrafish definitive erythrocytes are 

morphologically distinct from primitive erythrocytes; they have less cytoplasm and a 

large elongated nucleus (de Jong & Zon 2005). Like other higher vertebrates, 

zebrafish express hemoglobin with a quaternary structure (α2β2), and they undergo 

globin switching from primitive embryonic globin chains to the adult globin chains 

(Brownlie et al 2003; Chan et al 1997). The molecular program regulating the 

definitive erythropoiesis is believed to be similar as primitive erythropoiesis. 
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However, there is a paucity of mutants that are specifically defective in the definitive 

erythropoiesis. Most blood mutants identified so far have shown defects in embryonic 

hematopoiesis and are early lethal, thus rare mutant can survive to allow the 

examination their defects in the late stage.  

 

1.2.2.2.2 Definitive myelopoiesis 

The second wave of myelopoiesis in zebrafish generates different myeloid cell types 

including macrophages and several types of granulocytes (Lieschke et al 2001). 

However, the origin of definitive myelopoiesis remains unclear.  

As mentioned in the previous part, the primitive wave of myelopoiesis gives 

rise to a special group of macrophages in the RBI region, and it is believed there is a 

second wave of such activity to generate monocyte-derived macrophages as mammals. 

Upon initiation of embryonic circulation, a subset of macrophages enter the 

circulation and are distributed throughout the embryonic tissues. But whether they 

represent the definitive macrophages awaits further evidence.  

Granulopoiesis in zebrafish can give rise to two types of granulocytes: 

neutrophil and basophils/eosinophil, the later one exhibits characteristics of both 

basophils and eosinophils (Hsu et al 2001). The cytoplasm of both types of cells is 

highly granular, but only zebrafish neutrophils have segmented nuclei with typically 

2-3 lobes (Lieschke et al 2001). Expression of granulocyte-specific marker 

myeloperoxidase (mpo) is first detected at 18hpf in the presumptive neutrophilic 

precursors within the caudal ICM. Soon after that, mpo-expressing cells also appear as 
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scattered cell found on the anterior yolk sac (Bennett et al 2001; Lieschke et al 2001). 

Some of these mpo positive cells co-express pu.1, while few mpo positive cells 

coexpress l-plastin, consistent with these two molecular markers representing two 

distinct lineages. At 3dpf, mpo-expressing cells are scattered throughout the embryos 

with a prominent aggregation in the ventral tail vein region, but by 4dpf they are 

distributed throughout the embryos (Bennett et al 2001). It is unknown how long do 

these granulocytes persist in the embryo and whether they contribute to the 

granulocyte population that is found in the kidney (Davidson & Zon 2004; Willett et 

al 1999).  

 

1.2.2.2.3 Lymphopoiesis 

Lymphopoiesis is essential for the functional adaptive immune systems in vertebrates. 

Zebrafish also possesses a similar adaptive immune system as mammals, including 

having T cells, B cells, antigen-presenting cells, and natural killer-like cells (Davidson 

& Zon 2004) and similar lymphoid organs, such as thymus.  

In zebrafish, the bilateral thymus forms as outgrowths between the third and 

fourth pharyngeal arches (Davidson & Zon 2004; de Jong & Zon 2005), and first 

become populated by immature lymphoblasts around 65hpf (Willett et al 1997; 

Willett et al 1999). Lymphopoiesis is initiated by 92hpf as determined by 

recombination-activating gene (rag1 and rag2) expression in the developing 

thymocytes (Willett et al 1997). These thymocytes co-express T-cell specific markers 

transcription factor gata3 and T cell receptor alpha (tcrα) but not pax5 (B-cell 

differentiation marker), suggesting that thymocytes in the thymus at this stage are 
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restricted to T-cell lineage (Trede et al 2001). As the lymphoid cells differentiate, 

thymus also continue to increase in cellularity and reach their adult size by 1 month 

post fertilization (Lam et al 2002).  And distinct cortical and medulla region can also 

be found in the adult thymus, while mature T cell are found in the medulla, immature 

T cells expressing rag1 and rag2 localize to cortex (Lam et al 2002; Schorpp et al 

2002). Compare with T lymphopoiesis, B-cell formation is not well known in 

zebrafish partially due to lacking B cell markers. Based on the rag1 expression and 

rag2 transgenic fish, B cell development is found to be established in the pronephros 

by 19hpf detected by the expression of rag1 and cµ which encoding the heavy chain 

subunit of IgM (Danilova & Steiner 2002; Willett et al 1999).  

 

1.2.2.2.4 Thrombopoiesis 

Zebrafish thrombocytes are small round nucleated cell. (Jagadeeswaran et al 1999). 

They have aggregation and adhesion response to platelet agonists, and can be 

recognized by polyclonal antisera against human platelet markers GpIIb/IIIa and GpIb 

(Jagadeeswaran et al 1999), thus zebrafish thrombocytes are considered as the 

functional equivalent to the mammalian platelets (Gregory & Jagadeeswaran 2002; 

Jagadeeswaran et al 1999).  Consistently, many mammalian transcription factors 

involved in megakaryocyte (platelet precursor) development have also been found in 

zebrafish, including fli1, gata1, nfe2, and runx1 (Davidson & Zon 2004). However, 

little is known about the ontogeny of these thrombytes and the sites of thrombopoiesis 

in zebrafish (Davidson & Zon 2004; de Jong & Zon 2005).  Although circulating 
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thrombocytes are found in zebrafish embryos as early as 36hpf (Gregory & 

Jagadeeswaran 2002), their source or their precursor cells have not been discovered.  

 

1.2.2.3. Adult hematopoiesis 

Zebrafish kidney functions as the adult hematopoiesis organ, but in the larval stages, 

only the head kidney (pronephros) is hematopoietic active. Pronephros is first 

populated by hematopoietic cells at 4dpf (Willett et al 1999).  In the next 2 weeks, 

hematopoietic cells in the pronephros continue to expand but they are mainly 

restricted to myelo-erythroid cell lineage (Willett et al 1999). The lymphoblasts first 

appear in kidney approximately 19dpf. In adults, the entire kidney is 

hematopoietically active and all blood lineages and their precursors can be found. The 

heterogeneous hematopoietic populations organized into cellular cords surrounding 

the blood vessels between renal tubules (Davidson & Zon 2004), similar to the 

organization of mammalian bone marrow. Hematopoietic cells of the kidney marrow 

can be separated by flow cytometry into four population based on the cell size and 

granularity (Traver et al 2003).  The first population is mainly mature erythroid cells; 

the second one is a mixture of myeloid cells referred as myelomonocytic cells; the 

third fraction contain lymphoid cells, polychromatophilic erythroblasts, and mature 

thrombocytes; the last population is a collection of immature precursors of all lineages. 

Using in vivo reconsistitution assay, HSCs are found to reside in the third population 

(Traver et al 2003).  
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Figure 1.2 Major hematopoiesis sites in zebrafish. The primitive hematopoiesis 
takes place in the ICM (red) and RBI (green) region respectively.  Between 28-31hpf, 
definitive HSCs are formed in the ventral wall of dorsal aorta of the AGM region 
(purple), and then they further migrate to PBI (pink), kidney (yellow) and thymus 
(blue). Question markers indicate that the path is tentative and need further evidence. 
Adapted from (Hsia & Zon 2005). ICM: Intermediate cell mass; RBI: Rostral blood 
island; AGM: Aorta-gonad-mesonephros; PBI: Posterior blood island 
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1.3 Current genetic approaches used in zebrafish 

hematopoiesis research  

1.3.1 Forward genetic approach   

1.3.1.1 Mutagenesis screen  

In 1993, Nüsslein-Volhard initiated the first large scale forward genetic screen in 

zebrafish using the chemical mutagen N-ethyl-N-nitrosourea (ENU) at Max Planck 

institute in Tübingen, Germany (Haffter et al 1996). At the same time, a parallel effort 

was established by Marc Fishman and his colleges in Massachusetts General Hospital 

in Boston, USA (Driever et al 1996). Combined together, over 6000 mutation were 

identified with abnormal embryonic and early larval phenotypes. About 2,000 of these 

mutations were maintained for further analysis. The genetic and phenotypic analysis 

of ~1,200 mutations was presented in a series of papers in Journal Development 

(Volume 123) (Driever & Fishman 1996; Haffter et al 1996). Although these two 

mutagenesis screens had been done for more than 10 years, the resulting large number 

of mutants that are relevant to many aspects of vertebrate embryonic development 

became invaluable resource for researchers worldwide, and these efforts also establish 

zebrafish as a mainstream model system in developmental biology. As an alternative 

way, insertional mutagenesis screen using retrovirus system in zebrafish was 

developed by Nancy Hopkins and her colleges at Massachusetts Institute of 

Technology, Cambridge, Massachusetts, USA in late 1990s (Amsterdam et al 1999; 

Golling et al 2002). The Hopkins lab had isolated 550 mutants in their screen, 

representing around 400 different genes, and has cloned more than 300 of these genes 
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to date (Amsterdam et al 2004). Although the efficiency and coverage of this screen 

method is much lower than the chemical mutagenesis screening, cloning of the 

responsible mutated gene is much easier and rapid. Thus, this approach could 

facilitate the identification of important zebrafish homologues of other invertebrate 

species and cloning of ENU mutants by candidate gene approach.  

Among the available mutants from those screens, approximately 50 

independent mutants with defects in hematopoiesis comprising 26 complementation 

groups were recovered based on the gross inspection for absence of circulating blood 

or alteration in its color (Ransom et al 1996; Weinstein et al 1996). More importantly, 

many of these hematopoietic mutants also resemble human blood diseases (Table 1.1), 

which highlight the conservation between zebrafish and human in the process of 

blood formation and the potential of zebrafish to model human diseases for the 

therapeutic benefits.   

 

1.3.1.2 Genetic mapping  

The wealth of mutants from the genetic screen is accompanied by the challenge of 

identification of the affected genes.  Positional cloning and candidate gene approach 

is two commonly used methods for mapping the mutant gene.  

Positional cloning is defined as identification of a mutated gene based on its 

chromosomal map position. This method has two major steps: the first step is to 

identify a DNA sequence tightly linked to the mutation of interest; and the second 

step involves assembly of genomic clones spanning the linked region, cataloging the 

genes in the assembled region, and winnowing this list of genes until  
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Table 1.1 Zebrafish hematopoietic mutants resembling human diseases.  

Mutant Phenotype Gene Human disease Reference 

chardonnay 
 

Hypochromic 
Anemia 
 

DMT-1 
 

Microcytic anemia 
 

(Donovan et 
al 2002) 

Chablis 
/merlot 
 

Hemolytic 
anemia 
 

Band 4.1 
 

Hereditary 
elliptocytosis 
 

(Shafizadeh 
et al 2002) 

dracula Porphyria 
 

Ferrochel
atase (fch) 

Erythropoietic 
protoporphyria 

(Childs et al 
2000) 

retsina 
 

Hemolytic 
anemia 
 

Band 3 
 

Congenital 
dyserythropoietic anemia 
type II 

(Paw et al 
2003) 

sauternes 
 

Hypochromic 
anemia 
 

Alas2 
 

Sideroblastic anemia 
 

(Brownlie et 
al 1998) 

vlad tepes Early anemia Gata1 Familial dyserythropoietic 
anemia and 
throbocytopenia 

(Lyons et al 
2002) 

weissherbst 
 

Hypochromic 
anemia 
 

Ferroporti
n 1 
 

Juvenile hemochromatosis (Donovan et 
al 2000) 

yquem 
 

Porphyria 
 

Urod 
 

Hepatoerythropoietic 
porphyria 
 

(Wang et al 
1998) 

zinfandel hypochromic 
microcytic 
anemia 

Globin 
locus 

Hypochromic anemia (Brownlie et 
al 2003) 

 

 

the mutation is identified (Talbot & Hopkins 2000). For first step, a dense genetic 

map is the key requirement. The current genetic map is comprised of over 2600  

simple-sequence length polymorphisms (SSLPs) (Shimoda et al 1999). The zebrafish 

genome contains ~1.7 × 109 basepairs (Ralph Hinegardner 1972), so the average 

distance between SSLPs is currently ~650 kb. At this density, many mutations are 

within a close distance from certain SSLP marker (Talbot & Hopkins 2000). However, 
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on going efforts to further increase the marker density are still needed and will greatly 

facilitate the cloning process. The second step of positional cloning relies highly on 

high quality genome sequence information. In February 2001 the Sanger Institute 

started sequencing the genome of zebrafish, and two approaches are combined to 

obtain the sequence information. One is cloning mapping, namely to map and 

sequence clones from BAC libraries. The finished clones are manually annotated and 

accessible in Vega (http://vega.sanger.ac.uk/Danio_rerio/index.html), or FPC 

database (http://www.sanger.ac.uk/Projects/D_rerio/WebFPC/zebrafish/small.shtml). 

The other approach is whole genome shotgun (WGS), which is faster than the first 

approach, but its assemblies are automatically annotated, thus are of lesser quality. 

The sequence and maps assembled by WGS are accessible in Ensembl 

(http://www.ensembl.org/Danio_rerio/index.html). The position cloning process can 

be arduous, but it is an unbiased approach that can be applied to any gene whose 

inheritance can be traced, without prior knowledge of the gene.  

For the candidate gene approach, one examines genes with some property 

expected of the mutated locus to determine if any is disrupted in the mutants. 

Candidate gene usually is selected based on the expression pattern, knowledge of 

mutants with similar phenotypes in other organisms, and inferences about the 

biochemical pathway disrupted by the mutation (Talbot & Hopkins 2000). Especially, 

when it is combined with positional cloning, it will provide an efficient way of testing 

candidate genes, as those not linked to the mutation are excluded rapidly. Furthermore, 

phenotypic rescue assays are also commonly used to test candidate genes, and can be 

performed with either genomic DNA or in vitro synthesized full-length RNA of the 

candidates.  
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1.3.2 Reverse genetic approach  

Complementary to forward genetics, the reverse genetic approach is also widely used 

in revealing the biological function of a specific gene. Currently, antisense 

morpholino oligos is deemed as the most rapid and efficient gene knockdown 

technique in the zebrafish research community. Morpholino phosphorodiamidate 

oligonucleotides (morpholinos or MOs) are synthetic DNA analogues (Ekker & 

Larson 2001). With high affinity for RNA, MOs serve as excellent antisense reagents. 

Their efficacy is achieved via a steric block mechanism (RNAseH-independent) 

(Summerton 1999). MOs can either block translation initiation in the cytosol by 

targeting the leader and the sequences surrounding the start codon, or they can modify 

pre-mRNA splicing in the nucleus by targeting splice junctions (http://www.gene-

tools.com/node/13). This powerful method has been extensive adopted in studying 

genes involved in zebrafish hematopoiesis, especially when the mutant of the gene of 

interest is not available. As examples, knockdown of zebrafish scl and runx1 gene by 

MOs both produce very specific hematopoietic phenotypes and reveal their conserved 

roles as mammalian counterparts (Dooley et al 2005; Kalev-Zylinska et al 2002). 

However, the disadvantage for MOs is that it is a transient method and only suited for 

very early developmental stages. In addition, their injection can produce dose-

dependent toxicity, like the widespread cell death and neuronal degeneration 

(Heasman 2002). Thus, another reverse genetics method was developed in zebrafish: 

target induced local lesions in genomes (TILLING) (Wienholds et al 2002; Wienholds 

et al 2003). This method has been successfully used in other species including plants, 
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worms, fly, mice and rats (Wienholds et al 2003).  The basic procedure of this method 

involves random mutagenesis of animals which is similar to the forward genetics 

screening, followed by targeted screening for the induced mutation either by direct 

sequencing or an enzymatic cleavage method by endonuclease CEL-I (it cleaves the 

heteroduplex DNA). TILLING can be performed in a high-throughput way for 

screening of mutation in specific genes of interest. One group reported that 13 

different potential knockout zebrafish were generated in a few months using this 

method (Wienholds et al 2003). Moreover, it may identify multiple mutant alleles for 

a single gene, which will facilitate the characterization of critical domains and 

elucidation of downstream signals (de Jong & Zon 2005).   

 

1.3.3 Transgenesis 

Transgenesis approach is especially favored in the zebrafish model because of its 

optical clarity and external development.  By linking a fluorescent protein such as 

GFP or DsRed to an endogenous gene or a promoter of interest, expression can be 

easily visualized and monitored in the living fish. Currently, various hematopoietic 

specific transgenic fish have been created (Table1.3), and they have proven to be 

powerful tools in: (1) in vivo tracing of the specific cell lineage, tissue, or organ of 

development in the living embryo; (2) identification of regulatory elements; and (3) 

isolation of lineage specific cell populations by cell sorting (Heicklen-Klein et al 

2005). With the development of new lineage specific transgenic fish, the application 

will be more extensively used in the hematopoietic research.  
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Table 1.2 Hematopoietic lineage specific transgenic zebrafish lines 

Transgenic 
zebrafish 

Expression pattern Reference 

gata1-GFP Erythroid cells (Long et al 1997) 

gata2-GFP Hematopoietic progenitors (Jessen et al 1998) 

scl-GFP Hematopoietic progenitors (Jin et al 2006; Zhang & 
Rodaway 2007) 

lmo2-dsred Hematopoietic and vascular 
tissues 

(Zhu et al 2005) 

rag1-GFP Lymphoid cells (Jessen et al 1999) 

rag2-GFP Lymphoid cells (Jessen et al 1999) 

lck-GFP T-cells (Langenau et al 2004) 

cd41-GFP Thrombocytes  (Lin et al 2005) 

pu.1-GFP Myeloid cells (Hsu et al 2004; Ward et 
al 2003) 

lyc-GFP Myeloid cells (Hall et al 2007) 

 

1.4 Aims 

Despite the main frame of hematopoietic program has been established by studying 

the traditional model organisms, many questions remain partially answered. For 

example, the molecules involved in the regulation of primitive and definitive 

hematopoiesis have not been fully identified. Toward this purpose, our lab carried out 

a large scale mutagenesis and followed by a lineage specific genetic screen to search 

zebrafish mutants that were defective in either primitive or definitive hematopoiesis. 
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Among the mutants identified, two of them (ugly duckling and tc-244) are particularly 

interesting.  

This thesis describes phenotype characterization of these two zebrafish 

hematopoietic mutants: ugly duckling (udu) and tc-244, isolation of responsible gene 

in one of the mutants (tc-244) and functional analysis of udu and tc-244 genes. More 

specially, the aim of this thesis is to: 

(for the udu mutant) 

1. Perform phenotype characterization of udu mutant. The characterization data 

will reveal the detail hematopoietic defects in the udu mutant and the results 

will indicate udu’s role in hematopoiesis development. 

2. Examine the temporal and spatial expression of udu gene, and investigate 

whether udu functions cell-autonomously or non-cell autonomously in 

hematopoiesis development. 

3. Perform domain analysis of Udu protein, and design a yeast two hybrid screen 

to fish out interaction partners of Udu protein.  

4. Examine the potential candidate interaction partners, and reveal the possible 

pathway or molecular mechanism involved.  

(for the tc-244 mutant) 

5. Perform primary characterization tc-244 mutant using the available 

hematopoietic markers, and provide information about tc-244 gene for the 

candidate gene approach if possible. 
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6. Use the map-based positional cloning approach to identify the mutated gene in 

tc-244 mutant. This is the most critical step in this study.  

7. Obtain the full-length sequence of tc-244 gene, and confirm the mapping 

result by morpholino knock down or RNA rescue experiment. 

8. Determine the expression pattern of tc-244 gene and investigate tc-244’s role 

in hematopoietic development.  

It is believed that cloning and functional study of these two zebrafish mutants 

may identify novel genes or reveal the novel function of known genes involved in 

hematopoietic development. Studying of these zebrafish hematopoietic mutants 

should be of great value in identification of new pathways involved in blood 

development and improve our current understanding of hematopoiesis.  
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Chapter II Material and methods 

2.1 Zebrafish biology 

2.1.1 Zebrafish maintenance and strains used  

Both embryos and adult zebrafish used in this study were maintained in the Zebrafish 

Facility of Institute of Molecular and Cellular Biology. The general maintenance and 

breeding were carried out under standard conditions at 28.5°C and were kept under 

the photoperiod cycle set at 14 hours of day (light) and 10 hours for night (dark). 

Zebrafish strain AB was used as wild type strain for normal crossing, while WIK was 

used as mapping strain or polymorphic strain in this study.  

To prevent the pigmentation in larvae, 0.003% (30 mg/L or 0.2 mM) PTU (1-

phenyl-2-thiourea) in egg water (60 μg/mL sea salt in distilled water) is used to 

replace the normal egg water for embryos between 12-24hpf. Normally, embryos for 

manipulation are staged by the morphological criteria as described by (Kimmel et al 

1995). 

 

2.1.2 Positional Cloning 

2.1.2.1 Mapping cross 

In order to perform positional cloning, polymorphic hybrid strains was created by 

crossing the heterozygous AB(mutant)/AB founder with WIK/WIK wild type fish. 

The offspring were then raised as the F1 family, and half of them would be 
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heterozygotes. These heterozygotes were identified by multiple random intercrosses, 

and confirmed pairs were set aside to generate the F2 or mapping family (Figure 2.1). 

However, for long-term maintenance, the mutation was usually kept on the same 

strain in which mutagenesis was originally performed (in this case AB strain).  

 

2.1.2.2 Preparation of genomic DNA 

Once mapping cross was created and heterozygote mapping pairs had been identified, 

it was important to tail clip and store the DNA from the grandparents and parents. 

They are useful for analyzing polymorphisms in the subsequent mapping.  In this 

study, grandparents were sacrificed after obtaining the F2 family, and their genomic 

DNA was extracted and purified by QIAGEN Genomic-tip 100/G kit (QIAGEN, USA) 

according to the manufacturer’s instruction. Usually 10ng genomic DNA of 

grandparents was used in each PCR reaction. 

When working with embryos or tail clips from parents, they were placed 

individually into individual well of the 96-well plate. And then 50μl fish lysis buffer 

(10mM Tris pH8.0, 2mM EDTA, 0.2% Triton X-100) or 1×TE buffer (10mM Tris-Cl, 

1mM EDTA, pH8.0) with 0.5mg/ml Proteinase K was add to each well and kept 

incubated at 55°C overnight.  Followed by incubation at 98°C for 10 min to destroy 

Proteinase K. Briefly spin down lysed embryo debris and 1µl of the supernatant was 

enough for PCR analysis or can be diluted as necessary.  
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2.1.2.3 SSLP marker and PCR reaction  

To determine the genetic distance, single-sequence length polymorphism (SSLP) or 

simple sequence repeats (SSRs) microsatellite markers were used as the major type of 

mapping marker in this study. They usually have varied number of short repeat 

sequence, thus their size difference can be visualized by running the PCR products on 

the agarose gel. Most SSLP markers used in initial mapping are available in the 

MGH/CVRC Zebrafish Server (http://zebrafish.mgh.harvard.edu/zebrafish/index.htm).  

In the fine mapping stage, most polymorphic SSRs or SSLPs were identified 

manually. Fully sequence BACs were submitted to MGH-based SSR searching tool 

(http://danio.mgh.harvard.edu/userMarkers/usrInputSsr.html), and then potential 

candidates were screened between AB and WIK strain to check if they are 

polymorphic.  

The PCR reaction used to amplify the SSR or SSLP markers: 

Component Volume / 20 µl reaction 

Template (genomic DNA) 1ul of crude lyses (~10ng) 

10×PCR Buffer 2 µl 

10mM dNTP 0.4µl 

Forward Primer (10 µM) 0.4µl 

Reverse Primer (10 µM) 0.4µl 

Taq polymerase 0.4µl 

ddH2O add to 20µl 
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2.1.2.4 Initial mapping and bulk segregation analysis (BSA) 

Initial mapping or linkage scanning is to determine the chromosome or linkage group 

on which the mutation locates.  For this purpose, bulk segregation analysis (BSA) 

approach was adopted. Genomic DNA from 24 homozygous mutant embryos or 

sibling embryos of the F2 family were pooled together to make mutant and sibling 

pools respectively.  Then two independent mutant and sibling pools were used to test 

the linkage by PCR analysis of 300 SSLP markers distributed on the 25 linkage 

groups (Table 2.1).  Linkage was assumed when a WIK band present in the sibling 

pools was faint or absent in the mutant pool (Figure 2.1). Those linked SSLP markers 

isolated from BSA were further tested on individual mutant embryos to confirm the 

linkage, and then the the genetic distance between markers and mutation can be 

evaluated.    

Genetic distance (centimorgan) = recombinant number/ total meiosis events × 100 

                                                   = recombinant number/(total embryo number×2) ×100 

 

2.1.2.5 Fine mapping 

Generally speaking, the first step of fine mapping is to position the mutation between 

two closely linked flanking markers. Based on recombination mapping principle, 

markers that are far away from the mutation should yield more recombinants than 

markers that are close to the mutation. Markers that are on opposite sides of the 

mutation should give different sets or recombinants, and markers that are on the same 

side of the mutation should share recombinants. Utilizing this principle, starting from  
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Figure 2.1 Principle of bulk segregation analysis (BSA) used in initial mapping. 
The black and orange bands indicate the agarose scorable PCR bands amplified using 
SSLP marker. Difference in the WIK band intensity indicates the linkage in this 
example. (This figure is adapted from one of the figures found in 
http://www.eb.tuebingen.mpg.de/departments/3-genetics/zebrafish/robert-geisler/)  
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linked markers in the BSA, the region between two flanking markers can be narrow 

down until they are 10cM (or less) apart.   

With two good flanking markers, 1500~2000 embryos can be tested for 

recombination events with ease. Upon finishing this step, a number of recombinants 

were identified. These recombinants were re-arrayed on a new plate to create the 

recombinant panel.  The recombinant panel was then utilized for further mapping 

analysis. Primer pairs for fine mapping are listed in Table 2.2. 

 

2.1.2.6 Genomic walking 

Blast the two nearest flanking markers in Zebrafish Genome Fingerprinting Project 

(http://www.sanger.ac.uk/Projects/D_rerio/WebFPC/zebrafish/small.shtml) and 

Ensembl zebrafish genome server (http://www.ensembl.org/Danio_rerio/index.html) 

database. If both markers located in the same Contig (a collection of assembled 

BACs), then more markers between the two flanking markers are tested in order to 

find new flanking markers that are on the same BAC. If not, more markers will be 

searched on the other contigs which were supposed to be more close to the mutation 

until they fall into the same contig. Once two flanking markers are on the same BAC, 

depending on the size of the BAC, one can either directly sequence the coding region 

of candidate genes in the BAC, or further narrow the distance using new markers until 

there is one gene left between flanking markers.   
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2.1.2.7 Sequencing mutation  

For genes with known information and small exons, primers can be designed to 

amplify the exons from genomic DNA templates and proceed to sequence the PCR 

product. Alternatively, RT-PCR products form homozygous wild type and mutant 

embryos can be used for the sequence purpose as well.  
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Table 2.2 Mapping primers list for tc-244 mutant 

Marker 
Type 

Maker Name Sequence 

SSLP Z4706 (MGH) 5’-TGCATATAAAGGCACCTCCA-3’/5’-
TTTCCCCATCAACAAAGCTC-3’ 

SSLP Z1059 (MGH)  5’-CACAGCATCACGCTCTCACT-3’/5’-
TATACCGTGGAAATTTCGGG-3’ 

SSLP z43308 (MGH) 5’-TTACCCTTCCAACCCCTTTC-3’/5’- 
CCCTGTTACAGCCACTGGTT-3’ 

SSLP zK183N2-118 
(BX004863_2734) 

5’-TGCAAATACAATGCATACCG-3’/5’- 
TGCGTACAAGACGGTAACAAA-3’ 

SSLP zC226L4-1693 
( BX511061_2) 

5’-GTGATGTCTCTCGAGCTAA-3’/5’-
TTGATTGTCTTTTGTTGCTCT-3’ 

SSLP CR318603_141264 5’-GCCACCTGCTGGATGATTAC-3’/5’-
GGTTTGAGTTTGGCCTAAATTGT-3’ 

SSLP CR318603_55485 5’-CCAGGAGAGCTCGCACTAAG-3’/5’-
GACCATTGGAAAAGGGCTTC-3’ 

SSLP CR376795_108221 5’-ATGTTAATTTGAGCTCTTGA-3’/5’- 
GGGCGCATTTTCGTAGCTTT 

SSLP CR376795_97384 5’-AAGCTCTCAGATCTACTATC-3’/5’-
GGCCCTCCCACCTGTAGAAC-3’ 

SSLP CR376795_28662 5’- AACAGTGACACCCTCCTTCG-3’/5’- 
CTAGAATGTGGCCTCCCTGA-3’ 

SSLP CR318672_119281 5’-GCATTCAGATTCTGGGGTGT-3’/5’-
CGGATGAACCCATCAATCTC-3’ 

SNP CR318672-101395 5’-AACATTTGGGACTCAATCCTA-3’/5’-
TGTTGCCCACTCGTCTA 

SNP CR318672-72280 5’-AATGAACTATAAGTGTAGGCT-3’/5’-
CATCACCACGACGACTAA-3’ 

For mutation 
sequencing 

- 5’-GAGAACTCATTTGTGTCACCA-3’/5’-
TTTACTGCATTTATCCCTC-3’ 
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2.1.3 Whole mount in situ hybridization (WISH) 

Whole mount in situ hybridization (WISH) is a method used to view the location of 

nucleic acids (RNA in this case) in situ. The tissue is gently fixed so as not to disrupt 

the RNA, and then it is hybridized to a chemically or radioactively labeled RNA 

probe that is complimentary (anti-sense) to the desired mRNA of interest. The 

chemical or radioactive probe can then be detected in the tissue by antibodies to the 

chemical label or by autoradiography. When using the chemically labeled probe the 

antibody may be fluorescently labeled or can have an enzyme associated with it that 

when exposed to substrate generates a colored precipitate so that localization in cells 

is easily visualized. The WISH method for zebrafish embryos using chemically 

labeled probes in this study is described in the following paragraph.  

Zebrafish embryos at the desire stage were collected and dechorinated by 

forceps or pronase treatment. For embryos that were old than 1dpf, the working 

concentration of pronase is 1mg/ml in PBS. After dechorination, embryos were 

washed briefly by PBST (PBS with 0.1% Tween 20) and then fixed in 4% PFA 

(Paraformaldehyde in PBS) for 2 hours at RT (room temperature) or overnight in 4ºC. 

Embryos were than washed for 3 times, each time 5 minutes (3×5min) by PBST, and 

then equilibrate in 100% methanol for 5 minutes. Replace with fresh methanol and put 

at -20°C for at least 20 minutes. Rehydration was performed in 50% and 30% 

Methanol/PBST for 5 minutes each and followed by 2×5min washing in PBST. 

Embryos old than 1dpf were digested with Proteinase K (10μg/ml in PBST) at RT 

according to age (4-5dpf embryos need around 20min treatment, 2-3dpf embryos need 

around 10min or less). After a brief washing in PBST, embryos were re-fixed in 4% 

PFA for 20 minutes and washed by PBST for 2×5min. Then pre-hybridization was 
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performed by incubating embryos in HYB+ (50%formamide, 5XSSC, 50μg/ml 

Heparine, 500μg/ml tRNA, 0.1% Tween20, adjusted by citric acid to pH6.0) at 65°C 

for at least 1 hour. After pre-hybridization, HYB+ was replace by Digoxigenin(DIG)-

labled RNA probe (0.5-1µg/ml) in HYB+ solution and incubated at 65°C overnight. 

Upon finishing this step, the RNA probe was removed, and embryos were washed as 

following: 2x30 min in 2×50%formamide/2×SSCT at 65°C, 3×20 min in 2XSSCT at 

65°C, 2×30 min in 0.2×SSCT at 65°C, and 2x 5min in MABT (100mM maelic acid, 

150mM NaCl adjust to pH7.5, 0.1% Tween20) at RT. After this intensive washes, 

embryos were blocked by in blocking buffer (2% lamb serum, 2%BMB in MABT) for 

at least 1 hr at RT, and followed by incubation with anti-DIG-AP antibody solution 

(1:5000 dilution in the blocking buffer) O/N at 4°C. Subsequently the embryos were 

washed with MABT for 6x20 min and buffer9.5T (0.1M Tris-HCl, pH9.5, 50mM 

MgCl2, 10mM NaCl and 0.1% Tween20) for 2x10 min. The embryos were stained 

with NBT/BCIP substrate solution (one tablet in 10ml H2O or NBT 0.30mg/ml, BCIP 

0.15mg/ml) in the dark from 1/2 hr to O/N at 4°C depending on the probe used. The 

reaction was stopped by washing the embryos twice with PBST for 10 min each, 

followed by fixing with 4% PFA for 1 hr. After 1 hr washes with PBST, the embryos 

were equilibrated in 70% glycerol at 4°C O/N for imaging. 

 

2.1.4 Hemoglobin staining with o-dianisidine  

Hemoglobin can function as pseudo-peroxidase, in the presence of H2O2, colorless o-

dianisidine can be quickly oxidized and turn to brownish color. 2dpf live embryos 

were incubated with o-dianisidine staining buffer [0.6mg/ml o-dianisidine (2,3-

Diphosphoglyceric acid fast blue B, free base, Sigma), 0.01M sodium acetate (pH 4.5), 
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0.65% H2O2, and 40% (v/v) ethanol] in dark for 15 min (Detrich et al 1995). The 

staining was then observed under the light microscope. For imagining purpose, 

embryos were fixed by 4%PFA and then equilibrated in 70% glycerol.  

 

2.1.5 Microinjection of Morpholino  

Morpholino oligos (MO) are short chains of Morpholino subunits comprised of a 

nucleic acid base, a morpholino ring and a non-ionic phosphorodiamidate intersubunit 

linkage (Figure 2.2). With high affinity for RNA, MOs serve as excellent antisense 

reagents. Their efficacy is achieved via a steric block mechanism (RNAseH-

independent) (Summerton 1999). Normally, 18-25mer morpholinos complementary to 

sequence between 5’UTR through the first 25 bases 3’ of the AUG start site or 

spanning certain exon/intron boundaries is designed to either inhibit translation or 

modify pre-mRNA splicing.  

 

Figure 2.2 Structures of DNA and morpholino oligonucleotides. R and R’ denote 
continuation of the oligomer chain in the 5’ or 3’ direction respectively. 
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Morpholino powder (300 nanomoles) (Gene Tools, USA) was usually 

dissolved in the 60 µl sterile water to make 5mM stock solution. For injection purpose, 

the 5mM stock solution was diluted into different working concentration, which 

varied for different MO. Then 1-2nl of MO in working concentration was injected 

into one-cell stage embryos by microinjection.  

Table 2.3 Morpholinos used in this study 

Gene name Morpholino 
name 

Morpholino sequence  Injection quantity 

zgc153228 zgc153228-
i4e5 

5’AGCTCCTAAACAGAA
AGACCGGATA 3’ 

1nl of 0.1mM (equal to 
around 0.1nm) 

N/A Standard 
control 

5'CCTCTTACCTCAGTTA
CA ATTTATA 3'’ 

1nl of 0.1mM (equal to 
around 0.1nm) 

 

2.1.6 Transplantation 

Donor embryos were injected with 5% rhodamine-dextran (dextran, 

tetramethylrhodamine and biotin, 10,000 MW, lysine fixable, Molecular Probes) in 

0.2M KCl at one-cell stage. Injected embryos were allowed to develop at 28.5°C for 

around 3 hours and then dechorionated manually with forceps in an agarose ramp, 

covered with 1X Danieau buffer (5.8mM NaCl, 0.07mM KCl, 0.04mM MgSO4, 

0.06mM Ca(NO3)2, 0.5mM HEPES pH7.6). 15-30 donor cells from each embryo were 

transplanted into the dechorionated host embryos of the same stage by micro 

manipulator. The manipulated donor embryos were saved for genotyping analysis. 

Contribution of the rhodamine-dextran-labeled donor cells to the circulating blood 

cells in the host embryos was scored at around 30hpf under fluorescent microscope. 
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2.1.7 Cryo-section 

Fixed or stained embryos were first transferred into molten agar-sucrose solution 

(1.5% agar, 5% sucrose) in a detached cap of eppendorf tube. Needles were used to 

adjust samples in desired orientation in the slowly hardening agar. After the agar 

block solidified, a small block was cut with razor to mount the sample in proper 

position. The block was then transferred into 30% sucrose solution and incubated at 

4 °C overnight. Subsequently, the block was placed on the frozen surface of a layer of 

tissue freezing medium cryostat on the prechilled tissue holder. The block was then 

coated with one drop of cryostat and frozen in liquid nitrogen until the block had 

solidified completely. The frozen block was placed into a cryostat chamber for 30 

minutes to be equilibrated with chamber temperature of -25 °C. Normally, 10-15 

micron-thick sections were made and placed on poly-lysine coated slides. The slides 

were dried on a 42 °C hot plate for about 30 minutes. The sections were fixed briefly 

with 4% PFA/PBS for 10 minutes and washed 3 times in PBS for 5 minutes each. 

Afterwards, the sections can be processed for further procedures or embedded in 

several drops of glycerol and covered with cover slip for observation. 

 

2.1.8 Whole mount cell death assay 

2.1.8.1 Acridine orange staining 

Apoptotic cells can be stained by the addition of DNA fluorochromes which are able 

to cross the intact plasma membrane, such as acridine orange, a nucleic acid selective 

fluorescent cationic dye.  
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Zebrafish embryos (younger than 2dpf) were dechorionated and placed in 5 

µg/ml of acridine orange in egg water (Abdelilah et al 1996). After 30 minutes of 

staining embryos were washed with egg water and viewed under fluorescence 

microscope.  

 

2.1.8.2 TUNEL assay 

Terminal transferase dUTP nick end labeling (TUNEL) is a common method for 

detecting DNA fragmentation that results from apoptosis. The assay relies on the 

presence of nicks in the DNA which can be identified by terminal transferase, an 

enzyme that will catalyze the addition of dUTPs that are labeled with fluorescence or 

secondarily antibody. This method is also used in zebrafish, but some modifications 

are made for whole mount assay.  

Embryos were fixed in 4% PFA and dehydrated in PBS/methanol series: 50%, 

70%, 95%, and 100% followed by incubation in 100% acetone at –20ºC for 10 

minutes.  And these embryos were rinsed with PBST for 3×5 min, and then they were 

treated by fresh permeabilisation solution (0.1% Triton X-100, 0.1% sodium citrate) 

for 15 minutes and proteinase K treatment (10µg/ml, 20-30 min). After these steps, 

embryos were fixed again in 4% PFA followed by three rinses in PBST (5 min each). 

Embryos were then assayed by using the In Situ Cell Death Detection Kit, Fluorescein 

(Roche, Switzerland) according to the instruction manual. 

 

2.1.9 Whole mount immunofluorescent staining 
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Embryos were fixed in 4% PFA/PBS for 2-4 hours at room temperature, and then they 

were rinsed PBS. To improve the penetration of antibodies, fixed embryos were 

treated with cold acetone (-20ºC, to remove lipids from cell membrane) for 5-10 

minutes followed by washes with deionised water once and PBS three times for 10 

minutes each. To block non-specific sites, embryos were incubated in PBDT (PBS 

with 0.1% TritonX-100 and 1%DMSO) plus 2% lamb serum for 1hr at RT. The 

embryos were then incubated with primary antibody in the same blocking buffer 

(1:400 dilution of polyclonal rabbit anti-βe1-globin serum in this study) for overnight 

at 4 ºC. After removing the primary antibody, embryos were washed in PBST briefly 

for 2 times and additional 4 times for 30 minutes each. The embryos were then 

incubated with an appropriate secondary antibody (1:400 diluted fluorochrome-

conjugated Alexa Fluo 488 goat anti-rabbit IgG antibody in this study) for overnight 

at 4ºC. After incubation with the secondary antibody, the embryos were washed with 

PBDT and analyzed with fluorescence microscope.  

 

2.1.10 Embryos preparation for flow cytometry analysis  

The 24hpf udusq1-/- mutant and sibling embryos (300-400/each pool) obtained from 

crosses of adult udu+/-/Tg(-5.0scl:EGFP)sq1 and udu+/- fish were separated based on the 

morphological phenotype and disaggregated in cold 0.9X PBS with 5% FBS. The cell 

suspensions were passed through a 70 µm-pore size filter and spun at 1000 rpm for 5 

min. The pellets were re-suspended in 1ml Dispase (1U/ml in PBS)  (Gibco, USA) and 

incubated at 37 °C for 20 min. After addition of 1ml washing buffer (Hanks buffered 

saline solution containing 20% calf serum, 5mM CaCl2 and 50µg/ml DNAse), the cell 

suspensions were spun at 1000rpm for 5 min and re-suspended in PBS. After passing 



Chapter II  

  58

through a 40 µm-pore size filter, 106 cells/ml samples were applied for FACS analysis 

(Beckton Dickinson).  

For cytology analysis, about 1-2 x 105 sorted GFP+ cells were cyto-centrifuged 

at 500rpm for 5 min onto glass slides and subjected to May-Grunwald/Giemsa 

staining. For cell cycle analysis, cell suspensions (1 x 106 cells) were spun at 1000rpm 

for 5 min, re-suspended in 1ml warmed (37 °C) DMEM (Gibco, USA) supplemented 

with 2% Fetal Calf Serum, 10mM HEPES buffer (Gibco, USA), and 5µg/ml Hoechst 

33342 (Sigma, USA), and incubated at 37 °C for 1hr. The cells were then put on ice 

immediately, spun down at 1000rpm for 5 min at 4 °C, re-suspended in ice-cold 

HBSS (Hanks Balanced Salt Solution from Gibco) with 2% Fetal Calf Serum and 

10mM HEPES buffer (Gibco, USA), and finally subjected to cell cycle analysis by 

FACS. 

 

2.1.11 May-Grunwald/Giemsa staining 

The cytospined slides was covered with 1ml May-grunwald stain solution [May-

grunwald solution (BDH Chemicals Ltd, UK):ethanol = 1:3] for 5 minutes followed 

by staining with 1ml Giemsa stain solution [Giemsa solution (BDH Chemicals Ltd, 

UK):Phosphate buffer = 1:20] for 20minutes with gently shaking. Then the slides 

were washed by slow running water and dried in the air.  
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2.2 General DNA application  

2.2.1 Restriction endonuclease digestion  

Restriction enzyme digestion was used to screen recombinant clones and release 

specific DNA fragments. All the restriction enzymes used in the study were purchased 

from New England Biolabs, Promega, (USA). All digestions were performed at 37 °C 

or 25°C for 2 hours or overnight, with proper restriction buffers respectively.  

 

2.2.2 Recovery DNA fragment from agarose gel 

QIAquick Gel Extraction Kit (QIAgen, USA) was used to recover or purify DNA 

fragments ranging from 100 bp to 10 kb from agarose gel according to manufacturer’s 

instructions. The DNA fragment could be PCR products, plasmids and DNA after RE 

digestion. Briefly, the gel slide containing the interested DNA band was cut from the 

gel and transferred into Buffer (1g to 3ml) and melted at 50 °C for 10 minutes and 

then loaded into a QIAquick spin column. The column was centrifuged at 14,000 rpm 

for 1 minute, washed by adding 0.75 ml of Buffer PE, and spun again. The residual 

Buffer PE was removed by spinning at 14,000 rpm for another 1 minute after 

discarding the flowthrough. Then 30 μl of H2O was added to the column and then 

incubated at room temperature for 2 minute. DNA fragment was eluted into a 1.5-ml 

centrifuge tube by centrifugation at 14,000 rpm for 1 minute.  

 

2.2.3 Ligation and transformation 
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DNA ligation reaction was carried out typically in 10 or 20 μl of volume, containing 

10X ligation buffer (New England Biolabs or Promega, USA), insert DNA, vector 

DNA and T4 DNA ligase. The molar ratio of insert-to-vector DNA was usually 3:1. 

Ligation reaction was incubated RT for 15min if using quick ligation system, other at 

4 °C overnight or 16°C for 4 hours. 

The E.coli DH5α competent cells were thawed on ice and usually 2μl out of 

10ul of ligation reaction was added and mixed by gentle pipetting. This mixture was 

then incubated on ice for 30 minutes. After being heated at 42 °C for 60 seconds, the 

tube was cooled immediately on ice for 2 minutes. 900μl of LB medium was then 

added into the mixture. After being incubated at 37 °C for 45 minutes with shaking at 

200 rpm, 1/10 and 9/10 of the transformation reaction mixture was spread onto two 

separate LB plates supplemented with appropriate antibiotics in order to produce 

proper density of transformant colonies. The plates were incubated at 37 °C overnight.  

 

2.2.4 Plasmid DNA preparation 

Small-scale preparation of plasmid DNA was carried out using QIAgen Miniprep kit 

(QIAGEN, USA), with the processing of alkaline lysis followed by the binding of 

plasmid DNA to a positive charged silica-based resin. DNA was then re-dissolved and 

eluted in low salt buffer or water. Firstly, the bacteria in LB liquid medium with 

appropriate antibiotics were harvested by centrifugation at 5,000 rpm for 5 minute. 

The bacterial pellet was then re-suspended in 250 μl P1 Cell Resuspension Solution 

(containing RNaseA). 250 μl P2 Cell Lysis Solution was added to the bacterial 

suspension and mixed by gently inverting the tube for several times. Then this 
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mixture was neutralized by adding 350 μl of N3 Neutralization Buffer and inverting 

the tube 4–6 times. After being centrifuged at 13,000 rpm for 10 minutes, the 

supernatant was transferred into a fresh mini-column provided in kit and was 

centrifuged at 13,000 rpm for 1 min. The flow-through was discarded. After adding 

750μl Buffer PE, the column was centrifuge at 13,000 rpm for 1 minute. Then the 

flow-through was discarded again and the column was centrifuge at 13,000 rpm for 

additional 1 minutes. Then the column was transferred to a new microcentrifuge tube. 

To elute plasmid DNA, 100μl water was added into the column for 1 minute’s 

incubation at room temperature, followed by centrifugation at 13,000 rpm for 1 

minute. 

 

2.2.5 PCR and sub-cloning 

Standard PCR was performed in a volume of 50μl reaction. Each reaction included 

5μl of 10X PCR buffer, 0.5μl of 10 mM dNTP, 0.5μl of 10uM forward primer, 0.5μl 

of 10uM reverse primer, 1- 5U Taq polymerase and template DNA. A typical 

program used for amplifying 1 kb DNA product was as follows: denaturation at 94 °C 

for 3 minutes for 1 cycle, followed by 35 cycles of (denaturing at 94 °C for 30 

seconds, annealing at 60 °C for 1 minute and extending at 72 °C  for 1 minutes) and 

final extension at 72 °C for 10 minutes. The extension time was increased 1 min per 1 

kb if the desired product was larger than 1 kb. Usually, the recovered PCR products 

can be directly cloned into the pGEM T-Easy or pDrive vector system (Promega, 

USA) by T-A cloning. Alternatively, the restrict enzyme digestion sites can be also 

designed in the primer sequence, then PCR product is directly cloned into digested 

vector accordingly.  
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List of Primers and constructs used in this study 

pGBKT7-Fishbait 5’-CGGAATTCCCTCCTCCGCGCAGTTT-3’ /5’-
CGGGATCCACGGCAGGGTTCAGTCC-3’ 
 

pGBKT7-FishSANT 5'-CGGAATTCAAGCACAGCCGAGATG-3' /5'-
CGGGATCCCGGCAGGGTTCAGTC-3' 
 

pGBKT7-FishPAH 5’-CGGAATTCCCTCCTCCGCGCAGTTT-3’ /5’-
CGGGATCCTCTTCATCTCGGCTGT-3’ 
 

zgc153228-T-easy 5’-GAATTGTTTTTACTG0ACGTCC-3’ /5’-
ACAATGGTGAGGCCTAA-3’ 
 

 

Zgc153228-e4i4-FP: 5’ GTG GCG TAC TCG GAC ATT GT 3’ 

Zgc153228-e4i4-RP: 5’-AGGGTGGCACTGCGTTCAAG-3’ 

 

ELF1α-FP: 5’-CTTCTCAGGCTGACTGTGC-3’ 

ELF1α-RP: 5’-CCGCTAGCATTACCCTCC-3’ 

 

2.3 RNA application 

2.3.1 RNA extraction from zebrafish embryos 

Total RNA was isolated from dechorionated zebrafish embryos using RNeasy mini kit 

(Qiagen, Germany). Samples were first lysed and homogenized in denaturing 

guanidine isothiocyanate (GITC) containing buffer which inactivates RNases and thus 

ensure isolation of intact RNA. Ethanol was added to the lysate to provide appropriate 

binding condition and then applied to RNeasy mini column for further purification. 

The zebrafish embryos were collected at desired stages and placed in 1.5 ml 

Eppendorf tube. Excess liquid was siphoned out from the tube. 350 μl of RLT buffer 
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was added into the tube and the embryos were pulverized. The lysate was then spun 

down at 14000 rpm, RT, for 3 mins. The supernatant was decanted into a sterile 1.5 

ml Eppendorf tube. 350 μl of 70% ethanol was added into the clear lysate and mixed 

well. This mixture was transferred to an RNeasy mini spin column sitting in a 2 ml 

collection tube. The column was then spun at 10000 rpm for 15 sec. The flow through 

was discarded. 350 μl of RW1 buffer was pipetted into the RNeasy column to wash, 

the column was centrifuged at 10000 rpm for 15 sec. The flow through was discarded. 

80 μl of RNase-free DNAse (Qiagen, Germany) incubation mix was then added 

directly onto the RNeasy silica-gel membrane and allowed to stand on the bench at 

room temperature for 15 mins. Afterwhich, another 350 μl RW1 buffer was added 

into the RNeasy column and spun down at 10000 rpm for 15 sec. The flow through 

was discarded. 500 μl of RPE buffer was pipetted on the column and spun down at 

10000 rpm for 15 sec. The flow through was discarded and the washing step was 

repeated with another 500 μl of RPE buffer. The column was then spun at 10000 rpm 

and for 2 mins and the flow through discarded. The column was then spun down for 

an additional 1 min to remove any residual trace of ethanol. Column was then 

transferred to a sterile 1.5 ml Eppendorf tube. Total RNA was eluted by the addition 

of 40 μl of RNase-free water onto the RNeasy membrane and spun for 2 mins.  

RNA was quantified by optical density reading at 260 nm and 280 nm using 

UV- 1601 spectrophotometer (Shimadzu, Japan). One unit of OD260 is equivalent to 

40 ug/ml of RNA, OD260:OD280 ratios >2.0 indicate good quality of RNA products.  

 

2.3.2 Reverse transcription and cDNA synthesis 
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Reverse transcription was performed using SuperScript™ II RNase H Reverse 

Transcriptase (Invitrogen). A 20 µl reaction volume was prepared by adding 

following components into a nuclease-free microcentrifuge tube:  1 µl Oligo(dT)12-18 

(500 µg/ml), 1 ng to 5 µg total RNA, 1µl dNTP Mix (10 mM each), and top up with 

distilled water to 12µl. Heat mixture to 65 °C for 5 min and quick chill on ice. Collect 

the contents of the tube by brief centrifugation. 4µl 5×First-strand buffer, 2µl 

DTT(0.1M)  and 1 μl (200 units) of SuperScript II RT were added and mixed gently, 

followed by incubation at 42°C for 1 hour. Inactivate the reaction by heating at 70°C 

for 15 min. The cDNA can now be used as a template for amplification in PCR. 

However, amplification of some PCR targets (>1 kb) may require the removal of 

RNA complementary to the cDNA. To remove RNA complementary to the cDNA, 

add 1 µl (2 units) of E. coli RNase H and incubate at 37°C for 20 min. 

 

2.3.4 In vitro transcription  

Plasmid DNAs were linearized by the appropriate restriction enzyme and then 

purified using the PCR purification kit (Qiagen). 1μg linerized plasmid DNA was 

used for a 20ul-reaction of in vitro transcription, which also contained 1μl RNA 

polymerase (SP6 or T7 or T3 from Stratagene), 1μl RNase inhibitor (Roche), 2μl 10X 

DIG RNA labeling mix (Roche), 4μl 5X reaction buffer (Stratagene), and nuclease 

free water. After incubation in a 37°C water bath for 2 hr, 1μl RNase-free DNase I 

(Roche) was added to the reaction for further incubation at 37°C for 20 min. The 

reaction was stopped by 1µl 0.5M EDTA (pH 8) and the RNA products were 

precipitated with 2.5µl 4M LiCl and 75µl 100% ethanol at -80°C for 30 min followed 

by centrifugation at 4°C for 30min at 12,000 rpm. After washed with 70% cold 
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ethanol, the RNA pellet was air-dried and resuspended in 20µl sterile DEPC water. 

0.5μl of the RNA probe was loaded onto a 1% agarose gel to determine its quality and 

quantity. Finally, the probe was dissolved in WISH hybridization buffer (50% 

formamide, 5XSSC, 0.92mM citric acid, 0.1% Tween20, 50μg/ml heparin and 

500μg/ml tRNA) at a final concentration of 0.5μg per ml and stored at -20°C.  

Table 2.4 RNA probes generated by in vitro transcription in this study and their 

constructs information  

Marker gene Vector Linearizing 
enzyme 

RNA 
polymerase 

Region of cDNA 
sequence 

rag1 PBluescript KS+ BamHI T7 1426-2944 

foxn1 pGEM-Teasy StyI SP6 131-828 

scl pGEM-Teasy PstI T7 4-1125 

lmo2 pGEM-Teasy SalI T7 872-1643 

band3 pGEM-Teasy BamHI SP6 1174-3378 

βe1-globin PBluescript SK+ XbaI T7 30-584 

pu.1 pGEM-Teasy SacII SP6 1-1005 

mpo pGEM-Teasy ApaI SP6 44-2325 

l-plastin pBluescript KS+ ApaI T3 404-800 

lysozyme C pBluescript KS+ xhoI T7 - 

udu pcDNA3.1(-) Asp718 T7 30-6708 

c-myb pGEM-Teasy SalI T7 - 

runx1 pDrive XbaI T7 91-1384 

zgc153228 pGEM-Teasy SalI T7 25-2229 
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2.4 Yeast Biology 

2.4.1 Yeast transformation  

2.4.1.1 Small scale yeast transformation 

Colonies (2–3 mm diameter) from YPDA or SD plate were inoculated into 1 ml 

YPDA or SD medium. After vortexing it vigorously for 5 min, the mixture was 

transferred into a flask containing 50 ml of YPD or the appropriate SD medium. This 

liquid culture was incubated at 30ºC for 16–18 hr with shaking at 250 rpm to 

stationary phase (OD600>1.5). Then overnight culture was diluted as 1:10 to bring the 

OD600 up to 0.2–0.3.  Incubate the new culture at 30ºC for 3 hr with shaking (230 

rpm). At this point, the OD600 should be 0.4–0.6.Place cells in 50-ml tubes and 

centrifuge at 1,000 x g for 5 min at room temperature. Discard the supernatants and 

thoroughly resuspend the cell pellets in sterile TE or distilled H2O. Centrifuge at 

1,000 x g for 5 min at room temperature and decant the supernatant. The cell pellet 

was resuspended in 1.5 ml of freshly prepared, sterile 1X TE/1X LiAc. 0.1 ml of these 

yeast competent cells was added to a new 1.5 ml tube with 0.1 µg of plasmid DNA 

and 0.1 mg of herring testes carrier DNA, followd by vortexing to mix well all the 

component.  Add 0.6 ml of sterile PEG/LiAc solution to the same tube and vortex at 

high speed for 10 sec. Keep the tube at 30ºC for 30 min with shaking at 200 rpm. 

Then 70 µl DMSO was added and mixed well by gentle inversion. The mixture was 

heat shocked for 15 min in a 42ºC water bath and chilled on ice for 1–2 min. 

Centrifuge the cells for 5 sec at 14,000 rpm at room temperature. Remove the 

supernatant. Re-suspend cells in 0.5 ml of sterile 1X TE buffer. 100 µl was used for 
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plating on SD agar plate that will select for the desired transformants. Incubate the 

plate up-side-down at 30ºC until colonies appear (generally, 2–4 days). 

2.4.1.2 Library scale yeast transformation 

Confirmed bait colony from glycerol stock were inoculated into 150ml SD-Trp 

medium. This liquid culture was incubated at 30ºC for 16–18 hr with shaking at 250 

rpm to stationary phase (OD600>1.5). Then overnight culture was diluted as 1:10 to 

bring the OD600 up to 0.2–0.3.  Incubate the 1L new culture at 30ºC for 3 hr with 

shaking (230 rpm). At this point, the OD600 should be 0.4–0.6.Place cells in 500ml 

tubes and centrifuge at 1,000 x g for 5 min at room temperature. Discard the 

supernatants and thoroughly resuspend the cell pellets with 500ml sterile TE or 

distilled H2O. Centrifuge at 1,000 x g for 5 min at room temperature and decant the 

supernatant. The cell pellet was resuspended in 8 ml of freshly prepared sterile 1× 

TE/1×LiAc. Mix the 0.1-0.5mg Library DNA with 20mg of herring testes carrier 

DNA, followd by adding 8ml competent cell, mix well by vortexing. Add 60 ml of 

freshly prepared sterile PEG/LiAc solution to the same tube and vortex at high speed 

for 10 sec. Keep the tube at 30ºC for 30 min with shaking at 200 rpm. Then add 7ml 

of DMSO and mix well by gentle inversion. Heat shock for 15 min in a 42ºC water 

bath and Chill cells on ice for 1–2 min. Centrifuge cells for 5 minutes at 1000 rpm at 

room temperature. Remove the supernatant. Re-suspend cells in 10 ml YPDA.  To test 

the transformation efficiency, spread 100 ml of a 1:1,000, 1:100, and 1:10 dilution 

onto 100-mm SD/–Leu/–Trp plates. The rest of transformation culture was spread to 

around 50 150mm SD/-Trp/-Leu/-His/-Ade plates (~200µl/plate). Keep all the plates 

up-side-down at 30ºC. After 3-5 day, the colonies began to appear, re-streak  them to 
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the new SD/-Trp/-Leu/-His/-Ade/X-α-gal. Allow the plates to grow for about two 

weeks for weak interaction colonies.  

 
Calculation of transformation efficiency: 
 
Count colonies (cfu) growing on the SD/–Leu/–Trp dilution plate that has between 
30–300 cfu. 
 

 
 

 
 
 

2.4.2 Yeast Colony PCR and sequencing of library inserts 

A medium size colony (2 – 3 mm) on the SD/-Trp/-Leu/-His/-Ade/X-α-gal plate was 

transferred into 30μL 0.2% (w/v) SDS and then vortex for 15 seconds. Then it was 

heated at 90°C for 4 mins and spin down at 14000 rpm for 1min at RT. 1 μl of the 

supernatant is enough for 50 μL PCR reactions. The T7 sequencing primer was used 

to sequence the PCR products.  

 

2.4.4 Yeast plasmid isolation and transformation into E.coli 

Select the colony of interest (result from screening), and inoculate single colony into 

3ml of SD/-Leu and grow it for 16-24 at 30ºC. The culture was harvested by 

centrifugation at 5000×g for 5 min, and resuspend in 250 µl Buffer P1 containing 0.1 

mg/ml RNase A. Then the cell suspension was transfer to a 1.5 ml microcentrifuge 

tube containing 50–100 µl of acid-washed glass beads (Sigma G-8772), and vortexed 

vigorously for 5 min. Let the tube stand to allow the beads to settle and transfer 

supernatant to a fresh 1.5 ml microcentrifuge tube. Next 250 µl lysis buffer P2 was 
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added to the tube and invert gently 4–6 times to mix. The mixture was incubated at 

room temperature for 5 min. After that, 350µl neutralization buffer N3 was added to 

the tube and invert immediately but gently 4–6 times. The whole lysate was 

centrifuged for 10 min at maximum speed in a tabletop microcentrifuge (13,000 rpm 

or ≥10,000 x g). The cleared lysate from the above step was transfer to QIAprep Spin 

Column and centrifuged for 30–60s. Then QIAprep Spin Column was washed by 0.75 

ml of Buffer PE and centrifuging 30–60s. After discard the flow-through, the column 

was centrifuged for an additional 1 min to remove residual wash. To elute DNA, 25μl 

water was added into the column for 1 minute’s incubation at room temperature, 

followed by centrifugation at 14,000 rpm for 1 minute. Although the typical yield is 

up to 1 µg, it is hard to check the plasmid DNA on the gel directly.  

The plasmid prepared can be directly used for normal transformation into 

ultracompetent DH5α E.coli cells, usually 2–5 µl of elute is enough to yield tens to 

hundreds of clones.  
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Chapter III The novel zebrafish udu gene is essential 

for primitive hematopoietic cell development 

3.1 Characterization of hematopoietic defects in udusq1 

mutant 

3.1.1 General morphological phenotype of udusq1 mutant 

To study the genetic programs governing vertebrate hematopoiesis, our lab had 

carried out a forward genetic screen in search of zebrafish mutants having defects in 

hematopoiesis. Among the hematopoiesis-defective mutants recovered, one mutant 

line wz260 exhibited a morphologic phenotype similar to that of zebrafish mutant ugly 

duckling (udutu24) isolated from the Tübingen large-scale screen (Hammerschmidt et 

al 1996). Complementation analysis further confirmed that wz260 was a new allele of 

udutu24, thus this mutant allele was renamed as udusq1. As both udu alleles displayed 

similar phenotype, only udusq1 was used for detail analysis in this study.  

 The udusq1 mutant embryo began to show morphological phenotype from 

20hpf. At 24hpf, it can be clearly distinguished from the wild type siblings, as its 

body axis became short and its tail was not properly extend but bent downwards 

(Figure 3.1A-B). Besides, udusq1 mutant could not initiate the circulation, and the 

cardiac edema was obvious in 2dpf mutant embryos although heart beating was 

largely normal in the udusq1 mutant (Figure 3.1C-D). The severity of phenotype 

increased over the course of time leading up to embryonic lethality of udusq1 mutant at 

around 7-10dpf. Although udutu24 was isolated from Tübingen screen as a mutant 
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defective in morphogenesis and tail formation, the hematopoietic defects in the udusq1 

mutant are the major focus in this study.  

 

Figure 3.1 Morphology of udusq1 mutant. (A-D) Lateral views of live wild type 
sibling (A, C) and the udusq1-/- mutant (B, D) embryos of 24hpf (A, B) and 2dpf (C, 
D). 

 

3.1.2 Primitive hematopoietic hypoplasia in udusq1 mutant 

Visual inspection under microscope revealed that there were very few blood cells in 

the udusq1 mutants. Moreover, they never initiated the circulation, which normally 

occurs around 26hpf. This hypoplasia phenotype was further confirmed by 

hemoglobin staining with o-dianisidine. Figure 3.2M-N clearly shows that the 

hemoglobin level in the 2dpf udusq1 mutant is severely reduced, and majority of the 

blood cells found in the heart, tail and yolk surface of wild type embryos are absent in 

the udusq1 mutants.  

To explore the primitive hematopoietic defects in depth, expression of early 

hematopoietic marker gene scl was examined by whole mount in situ hybridization 
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(WISH) in udusq1 mutant. As shown in Figure 3.2A-B, there is no difference of scl 

expression in both ICM and RBI region between udusq1 and wild type siblings before 

10-somite stage. This result indicates that udu gene is dispensable for the initiation of 

primitive hematopoiesis. However, from 18-somite stage onwards, expression of scl 

gene in udusq1 mutant began to decrease. By 22hpf, primitive erythropoiesis was 

significantly affected in udusq1 mutants shown by the expression of erythroid specific 

transcription factor gata1 (Figure 3.2C-D). Notably, the band3 transcript, encoding an 

erythrocyte-specific membrane protein critical for erythrocyte maturation (Paw et al 

2003), was almost undetectable in udusq1 embryos (Figure 3.2E-F). Intriguingly, it was 

found that βe3-globin expression remained relatively normal or only slightly reduced 

in 22hpf udusq1 embryos (Figure 3.2G-H). These observations indicate that the ICM 

region of 22hpf udusq1 embryos contains hematopoietic cells expressing hemoglobin, 

but they are not normally differentiated erythrocytes. Thus, aberrance in erythrocytes 

differentiation in udusq1 mutants is suggested to be the main reason that causes 

dramatic decrease of band3 expression and eventually leads to red blood cell (RBC) 

hypoplasia at later stages of development as indicated by reduced βe3-globin 

expression from 30hpf onwards in udusq1 mutants (Figure 3.2I-L).  
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Figure 3.2 Primitive erythroid hypoplasia of udusq1 mutant. WISH of scl (A, B), 
gata1 (C, D), band3 (E, F), and βe3-globin (G-L) expression in wild type siblings (A, 
C, E, G, I and K) and udusq1 mutants (B, D, F, H, J and L). O-dianisidine staining is 
performed in 2dpf wild type (M) and udusq1-/- (N) embryos. All embryos are in lateral 
views with anterior to the left. 
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Figure 3.3 Primitive myelopoiesis is defective in the udusq1 mutant. WISH of pu.1 
(A, B, C and D), mpo (E and F), and lyc (G and H) expression of 10-somite (10s) (A 
and B) and 24hpf (C-H) wild type (A, C, E, G) and udusq1 mutant embryos (B, D, F, 
H). All embryos are in lateral views with anterior to the left. The red arrows indicate 
the ectopic expression in ICM region.  

 

The initiation of primitive myelopoiesis was also not affected in the udusq1 

mutant indicated by the normal expression of pu.1 in RBI before 10-somite stage 

(Figure 3.3A-B). However, as the development proceeds, the expression of myeloid 

markers exhibited significant reduction. At 24hpf, WISH of pu.1, mpo, and lyc 

showed the number of primitive myeloid cells was dramatically reduced in the yolk 

sac surface (Figure 3.3C-H). Of note, both pu.1 and mpo expressed ectopically in the 
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ICM region between 24hpf and 30hpf (Figure 3.3C-F). However, such ectopic 

expression was not seen for two other myeloid markers lyc (Figure 3.3G-H) and l-

plastin (data not shown). In zebrafish, there is a reciprocal negative regulatory 

relationship between gata1 and pu.1 (Rhodes et al 2005). Pu.1 and Gata1 proteins 

antagonize the expression of each other, thus the transient ectopic expression of pu.1 

and mpo is very likely due to decreased gata1 expression in the ICM region. The 

absence of ectopic l-plastin and lyc expression in udusq1 mutants further supports the 

argument, showing that those hematopoietic cells in ICM region expressing pu.1 and 

mpo did not alter their fate but remained in the early immature erythroid precursor 

stage.  

 

3.1.3 Primitive udusq1-/- erythroid cells have impaired proliferation 

and differentiation abilities.  

To further illustrate the cellular defects of the hematopoietic hypoplasia in udusq1 

mutant, TUNEL assay and acridine orange staining were used to check whether this 

phenotype was due to abnormal apoptosis in the udusq1-/- mutant. As shown in Figure 

3.4, there was extensive cell death occurred in the CNS region in udusq1-/- mutant from 

18hpf onwards. However, no significant increased apoptosis was observed in the ICM 

region (Figure 3.4A-F). Thus, this result demonstrates that hematopoietic hypoplasia 

in udusq1 mutant is not due to the abnormal apoptosis of hematopoietic cells. Rather, it 

is very likely that aberrance in cell proliferation may account for this hematopoietic 

phenotype found in udusq1 mutant.  
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Figure 3.4 Acridine orange staining of cell death in udusq1 embryos. Acridine 
orange staining of 18hpf (A-B), 24hpf (C-D) and 30hpf (E-F) wild type siblings (A, C, 
and E) and udusq1 embryos (B, D, and F). All embryos are orientated with anterior to 
the right. 

 

To investigate this issue, udusq1+/- heterozygous mutant fish was out-crossed 

with the Tg(-5.0scl:EGFP)sq1 (referred to as Tg(5'5kbscl:EGFP) in the original paper) 

transgenic fish, in which the expression of the enhanced green fluorescent protein 

(EGFP) reporter gene is under the control of scl promoter (Jin et al 2006). The 
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resulting udusq1+/-/Tg (-5.0scl: EGFP)sq1 was then mated with heterozygous udusq1+/- 

fish. Then GFP positive hematopoietic cells from 24hpf udusq1-/-/Tg (-5.0scl: EGFP)sq1 

and sibling/Tg(-5.0scl:EGFP)sq1 embryos were collected by the fluorescent activated 

cell sorting (FACS) (Figure 3.5A and D) and were subsequently subjected to cell 

cycle analysis. DNA content analysis using Hoechst 33342 staining revealed that, 

while sibling hematopoietic cells displayed 45.06%, 43.93% and 11.01% of cells in 

G1/G0, S and G2/M phases, respectively (Figure 3.5B), udusq1-/- mutant hematopoietic 

cells exhibited abnormal accumulation in G2/M (43.16%) and reduction in G1/G0 

(32.13%) and S (24.71%) phases (Figure 3.5E). Moreover, cytology analysis using 

these sorted cells further showed that wild type GFP+ cells consisted of mainly 

erythroid cells in various levels of differentiation (more differentiated cell exhibited a 

round central nucleus, chromatin condensation, and were smaller in size) and a small 

portion of myeloid cells (characterized by their irregular nucleus) (Figure 3.5C). In 

contrast, GFP+ cells in the udusq1-/- mutant, which were mainly erythroid cells, were 

much larger in cell size and lacked chromatin condensation (Figure 3.5F), and were 

similar to those found at the 16hpf wild type embryos. This feature of nuclear-

cytoplasm asynchrony in the mutant cells is a characteristic of abnormal 

megaloblastic erythroid cells found in human patients with megaloblastic anemia 

(Wickramasinghe 2006). Taken together, these results demonstrate that primitive 

udusq1-/- erythroid cells are defective in cell proliferation and differentiation abilities. 
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Figure 3.5 Primitive erythroid cells in udusq1-/- mutant are defective in cell 
proliferation and differentiation. FACS profile of cell suspension from 24hpf wild 
type sibling (A) and udusq1-/- mutant (D). Y-axis indicates the intensity of the GFP 
expression and X-axis represents cell size. The GFP-positive hematopoietic cells in A 
(total of 5,394 cells) (B) and D (total of 6,874 cells) (E) are subjected to DNA content 
analysis by Hochest33342 staining. The percentages of cells in each phase of cell 
cycle are given. May-Grunwald/Giemsa staining analysis (magnification x1000) of 
sorted GFP+ cells in A (C) and D (F). Black and red arrows in C indicate erythroid 
and myeloid cells respectively.  
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3.2 udu gene functions cell autonomously in primitive 

erythropoiesis 

The mutated gene of udusq1 mutant had been mapped to be a novel zebrafish gene (Liu 

et al 2007). The full-length cDNA of this udu gene was used as the template for in 

vitro transcription to make the RNA probe for WISH. Using this probe, udu transcript 

was detected as early as one-cell stage in zebrafish embryos by WISH (Figure 3.6). 

The maternal udu mRNA retained robust expression during blastula stage, and it 

diminished at the onset of the gastrulation (~6hpf). When segmentation started, the 

udu transcript, presumably the zygotic mRNA, began to re-appear in a ubiquitous 

manner, and was subsequently enriched in CNS as well as ICM from 18-somite stage 

onwards (Figure 3.6). At 24hpf udu mRNA was also detected in part of the kidney 

ducts, which was further confirmed by cryo-section (Figure 3.6J).  

At 24hpf, although the expression of udu gene in ICM region seemed to be 

weaker than the expression in the nearby kidney, it did co-localize with βE1-globin 

protein expression (Figure 3.6K-M), confirming that udu did express in ICM region. 

Thus, from the temporal and spatial expressions of udu gene, it is very likely that Udu 

plays a cell-autonomous role during primitive hematopoiesis development. To prove 

this speculation, early transplantation experiment was performed. Both udusq1 mutant 

and wild type sibling embryos were injected with rhodamine-dextran dye at one cell 

stage as the donor embryos. When these donors grew to high stage (~3.3hpf), around 

15-30 cells were taken out from each udusq1 mutant or sibling embryo and then 

transplanted into the same stage wild type host embryos respectively. Then chimeric 

host embryos were allowed to develop to around 1.5dpf when blood circulation can be 
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Figure 3.6 Temporal and spatial expression of the udu gene during early 
zebrafish development. (A-I) Lateral views of WISH of udu expression in one-cell 
(A), 2.5hpf (B), 4hpf (C), 6hpf (D), 10hpf (E), 12hpf (F), 14hpf (G), 18hpf (H), and 
24hpf (I) embryos. White and black arrows indicate ICM region and the anterior 
region of kidney ducts respectively. Embryos in A-D are orientated with animal pole 
on top whereas embryos in E-I are orientated with anterior to the left. Cryo-section is 
also performed on 24hpf embryo in (I) to show its expression in kidney ducts (J) and 
ICM region (K) more clearly. Moreover, immunofluorescent staining of βe1globin (L) 
shows co-localization with udu expression (L) in ICM region (M).   
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 easily observed under microscope. Contribution of donor cells to the circulating 

blood cells in the host embryos was scored by counting the number of the rhodamine-

dextran labeled cells (with red fluorescence) in the circulation under fluorescent 

microscope. The transplantation result was summarized in Table 3.1. As shown in this 

table, when donor cells were derived from wild type sibling, 42% (50/119) of the 

recipients bared the rhodamine-dextran labeled donor cells in circulation. And of 

these 42% recipients, 20% (10/50) contained 10 to 30 circulating donor cells and 22% 

(11/50) had more than 30 circulating donor cells. In contrast, if the udu sq1 mutant 

cells were used as donors, only 26.7% (16/60) of the host embryos had the donor cells 

contributing to the blood circulation. More importantly, none of these embryos 

contained more than 10 circulating rhodamine-dextran labeled blood cells. However, 

the ratios of wild type sibling and udu-/- mutant donor cells contribute to other tissues 

such as muscle are similar (72.3% and 76.7% respectively). Thus, this transplantation 

result demonstrates that udusq1 cells can contribute to the wild type hosts, but at a 

much lower ratio and in much fewer numbers, indicating that udusq1 cells have the 

ability to specify into erythroid cells but fail to proliferate and differentiate further. 

This data is also consistent with the previous characterization result that udu is 

dispensable for the initiation of hematopoiesis, but necessary for the differentiation 

and maturation of hematopoietic cells. From this transplantation experiment, it is 

concluded that udu gene does play a cell-autonomous role in the development of 

primitive erythropoiesis.  
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Table 3.1 Summary of cell transplantation analysis 

Donor  Number 
of hosts 

No. (%) of hosts with donor-derived tissue 

Muscle 
contribution 

Blood contribution 

Total >30 
blood 
cells 

11-30 
blood 
cells 

1-10 
blood 
cells 

Sibling 119 86 (72.3%) 50(42%) 11 10 29 

udusq1 -/- 60 46(76.7%) 16(26.7%) 0  0  16  

 

 

3.3 Fishing out the interaction partners of Udu protein 

In order to find the mammalian homologues of zebrafish Udu protein, BLAST search 

was performed in NCBI database, and the BLAST result revealed that zebrafish Udu 

protein had the highest homology to human and mouse GON4L protein (Figure 3.7). 

Sequence alignment between these three homologues showed that there were several 

highly conserved regions (Figure 3.8). The first three conserved regions were named 

as CR-1, CR-2 and CR-3, because they shared no obvious similarity to any of the 

known domains although they were highly conserved among three species. The fourth 

and fifth regions (from a. a 1538 to 1740) were predicted to consist of four α-helices 

respectively, and their protein structure was very similar to the PAH domain found in 

yeast SIN3 protein (Wang et al 1990), and thus were designated as PAH-like (PAH-L) 

1 and 2 domain. PAH domain is known as Paired Amphipathic Helix Repeat and is 

composed of four paired amphipathic α-helices. This domain is distantly related to the 

helix-loop-helix motif, which mediates protein-protein interaction (Spronk et al 2000). 

The yeast SIN3 protein and its mammalian homologues SIN3A and Sin3B interact 
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through the PAH domain with numerous sequence specific transcription factors and 

recruit histone deacetylases to suppress downstream target gene transcription 

(Silverstein & Ekwall 2005). Thus, zebrafish Udu protein probably form complexes 

with interaction partners via PAH-L domain similarly. The solution structure 

(IUG2_A) of the last conserved region of the mouse GON4L 

(www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=1ug2) 

revealed that this conserved region resembled the SANT (SW13, ADA2, N-Cor and 

TFIIIB-like domain) or Myb-DNA binding domain.  The SANT and Myb-DNA 

binding (Myb-DB) domains have a similar overall structure but confer distinct 

functions (Boyer et al 2004). The Myb-DB domain usually contains two to three 

tandem repeats, and it recognizes and binds specific DNA sequence; whereas SANT 

domain usually consists of one to two repeats and is found in the subunits of many 

chromatin remodeling complexes as the histone-tail-binding module. Considering the 

fact that the Udu protein contains only one repeat of this domain, this conserved 

region in Udu protein may resembles the SANT domain in its biological function, and 

was named as SANT-L domain. 
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Figure 3.7 Alignment of zebrafish Udu, human and mouse GON4L proteins. 
Identical amino acids are labeled in red whereas homologous residues, which are 
scored if they are within a single group of neutral (A, C, G, P, S, T), hydrophobic (I, L, 
M, V), acidic (D, E, N, Q), basic (H, K, R), or aromatic (F, W, Y), are indicated in 
yellow.  

 

 

 

Figure 3.8 Domain structure of zebrafish Udu protein.  Zebrafish Udu protein 
(2055a.a) contains six conserved regions: CR-1, CR-2, CR-3, PAH-L1, PAH-L2 and 
SANT-L.  
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Based on the sequence alignment and domain analyses result one may expects 

that two PAH-L and SANT-L domain in Udu protein can function as the interaction 

domains. Thus, in order to find interaction partners of zebrafish Udu protein, yeast 

two hybrid screen (Y2H) was performed. The bait plasmid containing both PAH-L 

and SANT-L domain of zebrafish udu gene was constructed (pGBKT7-fishbait) and 

transformed into yeast strain AH109. The toxicity and transcriptional activation test of 

this bait protein was negative. The library used in this screen was a zebrafish cDNA 

library generated from a pool of 18hpf, 28hpf, and 48hpf wild type embryos. The 

efficiency of this screen was 6.25×103 cfu/µgDNA. Total clone number screened was 

~2×106, and around 300 clones were positive for the high stringency test (base on the 

-trp-leu-his-ade selection). To minimize the false positive clone number, all of them 

were further inoculated onto the new plates with X-α-gal for the lacZ reporter, which 

added another layer of stringency control. And more than 95% of the clones were still 

positive. Thus, a total of 276 positive clones were obtained from this screen. By 

sequencing and blast analyses, these positive clones represent ~150 unique cDNAs.  

To facilitate identification of candidate partners among this large number of 

positive clones, all the known unique clones were examined in detail and were further 

classified into five major groups based on their cDNA information. As shown in 

Table 3.2, the first group of molecules is basically composed of enzymes or molecules 

involved in metabolisms. But their relationship with Udu protein is not clear. The 

second group of Y2H result is known as neuronal factors; a total of 15 molecules 

belong to this group. They are all related with neuronal development and 

differentiation. As shown in the previous data (Figure 3.4), udusq1 mutant had very 

obvious cell death and degeneration phenotype in the CNS region, therefore some of 

the molecules in this group may be the key interaction partners responsible for the 



Chapter III 

  88

neuronal phenotype, and thus warrant for further analysis. The third group has only 4 

molecules, they are known to function in cell division and cell cycle regulation, and 3 

of them were picked repeatedly from the screen, indicating the strong interaction 

between them and Udu protein. Of note, this finding is consistent with the 

characterization result that udusq1-/- erythroid cells are found to be severely impaired in 

the cell cycle progression. Thus, it is reasonable to speculate that this group of 

molecules may function as the interaction partner of Udu protein in maintaining the 

normal blood cell proliferation and differentiation. Moreover, among them, 

minichromosome maintenance protein Mcm3 and Mcm4 have similar expression 

pattern as Udu in zebrafish (expression data from ZFIN http://zfin.org/cgi-

bin/webdriver?MIval=aa-xpatselect.apg), suggesting that they are very likely to 

interact with Udu protein in vivo. The fourth group is mainly composed of molecules 

known as muscle factors, many of which are giant structure proteins. Although udu 

mutant has somite and muscle defect, whether Udu plays a role in muscle 

development through interaction with these molecules is currently unclear. The rest of 

candidates found in this screen belong to the last group; they are either unknown 

protein or known protein with functions not belonging to any of the above groups. 

Thus they are classified as the last group.  

As the bait protein used for this two hybrid screen was designed to include 

both PAH-L and SANT-L domain, it is also important to determine whether the 

candidate molecules interact with one of them or both of them. Several molecules 

from different groups in Table 3.2 were selected to do individual hybrid test with bait 

construct containing only SANT-L domain (pGBKT7-fishSANT) or PAH-L domain 

(pGBKT7-fishPAH). Interestingly, all the candidate molecules tested so far interacted 

only with PAH-L domain but not SANT-L domain. Thus, this result appears to 
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confirm the domain analyses result that PAH is the major protein interaction domain 

in Udu protein.   

Table 3.2 Summary of clones from yeast two hybrid screen  

  Identity of the clone Clone number 

E
nz

ym
e 

or
 m

ol
ec

ul
es

 in
vo

lv
ed

 in
 m

et
ab

ol
is

m
 

PREDICTED: Danio rerio similar to diacylglycerol 
kinase, delta  1-1,  

Danio rerio propionyl-Coenzyme A carboxylase, 
alpha polypeptide(pcca) 

1-27, 3-49, 3-50, 4-
6, 4-34, 4-36, 4-52, 
6-34 

Danio rerio 3-hydroxyisobutyrate dehydrogenase 
(hibadh) 

2-19, 2-30, 2-42, 3-
3, 3-4, 3-21 

PREDICTED: Danio rerio similar to butyrobetaine 
(gamma) 2-oxoglutarate dioxygenase 1 (gamma-
butyrobetaine hydroxylase) transcript variant 3 

1-30, 2-28, 3-22, 4-
37-1 

Danio rerio AU RNA binding protein/enoyl-
Coenzyme A hydratase (auh) 6-10,  

Danio rerio ADP-ribosylation factor 1 like 6-12,  

PREDICTED: Danio rerio similar to Protein kinase 
C-binding protein NELL2 precursor (NEL-like 
protein 2) (Nel-related protein 2) 6-35,  

Danio rerio NAD(P)H dehydrogenase, quinone 1 
(nqo1) 6-39,  

N
eu

ro
na

l F
ac

to
rs

  

Danio rerio midkine-related growth factor b (mdkb) 
or pleiotrophin 2 1-29,  

Danio rerio green-sensitive opsin 1 (grops1) 1-19,  

Danio rerio nocA related zinc finger 1 (nlz1) 
2-1, 2-3, 2-43, 5-19, 
5-38, 6-48 

Danio rerio ribonucleoprotein (elrD) OR Danio rerio 
ELAV (embryonic lethal, abnormal vision, 
Drosophila)-like 4 (Hu antigen D) (elavl4) 2-39,  
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Danio rerio dachshund c (dachc) 3-27, 

PREDICTED: Danio rerio similar to centrosome 
protein cep290 (LOC560588) 3-36, 

Danio rerio ELAV (embryonic lethal, abnormal 
vision, Drosophila)-like 3 (Hu antigen C) (elavl3) 5-8,  

Danio rerio thrombospondin 4 (thbs4) 6-13,  

Danio rerio laminin, alpha 1 (lama1) 6-15,  

Danio rerio retinoschisis (X-linked, juvenile) 1 (rs1) 6-20,  

Danio rerio reticulon 1-c (rtn1), alternatively spliced  6-22,  

PREDICTED: Danio rerio similar to Protein kinase 
C-binding protein NELL2 precursor (NEL-like 
protein 2) (Nel-related protein 2) 6-35,  

Danio rerio odd Oz/ten-m homolog 4 (odz4) 6-21,  

Danio rerio HuG (hug) 6-46,  

Danio rerio ELAV (embryonic lethal, abnormal 
vision, Drosophila)-like 1 (Hu antigen R) 7-30,  

M
ol

ec
ul

es
 r

el
at

ed
 w

ith
 c

el
l d

iv
is

io
n Danio rerio similar to Kinesin-like protein KIF2C 

(Mitotic centromere-associated kinesin) (MCAK)  
1-5, 2-7, 2-47, 4-18, 
4-47 

Danio rerio MCM4 minichromosome maintenance 
deficient 4, mitotin 1-6, 3-12, 3-30, 5-3, 

PREDICTED: Danio rerio similar to BUB1 budding 
uninhibited by benzimidazoles 1 homolog beta  

1-20, 1-32, 2-25, 4-
46, 4-49, 5-27, 5-
35, 7-9, 7-25, 2-9 

Danio rerio MCM3 minichromosome maintenance 
deficient 3 (S. cerevisiae) (mcm3) 6-23,  

M
us

cl
e 

Fa
ct

or
s Danio rerio profilin 2 like  1-3,  

PREDICTED: Danio rerio similar to Nebulin 
(LOC555656) 

2-17-1, 5-7, 5-18, 5-
37, 7-17, 5-21, 6-
31, 5-37, 4-37-2 
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PREDICTED: Danio rerio similar to titin isoform N2-
B  1-31, 2-21 

Danio rerio tropomyosin 4 (tpm4), transcript variant 1 2-29,  

PREDICTED: Danio rerio myosin, heavy polypeptide 
1, skeletal muscle (myhz1) 2-36, 4-3 

Danio rerio myosin, light polypeptide 2, skeletal 
muscle (mylz2) 5-6,  

Danio rerio myosin, light polypeptide 9, like (myl9l), 
mRNA 6-37,  

Danio rerio troponin I type 2 (skeletal, fast) (tnni2) 5-5,  

PREDICTED: Danio rerio similar to Myomesin 2 
(LOC571300) 5-11,  

PREDICTED: Danio rerio similar to Filamin A 
(Alpha-filamin) (Filamin 1) (Endothelial actin-
binding protein) (Actin-binding protein 280) (ABP-
280) (Nonmuscle filamin) 6-14, 5-20 

PREDICTED: Danio rerio similar to gamma filamin  4-10,  

PREDICTED: Danio rerio similar to myosin binding 
protein C, fast-type 7-19,  

O
th

er
s a

nd
 u

nk
no

w
n 

Danio rerio hairy/enhancer-of-split related with 
YRPW motif 2 (hey2) 3-17, 1-15 

Danio rerio calponin 2 (cnn2) mRNA 

1-33, 2-18, 2-33, 2-
48, 3-23,  4-19, 5-
26 

Danio rerio protein arginine methyltransferase 1 
(prmt1) 

1-24, 2-10, 2-14, 2-
20, 2-23, 2-41, 3-
11, 3-34, 4-24, 5-
16,  

Danio rerio coactivator-associated arginine 
methyltransferase 1(carm1) 1-14, 2-2 

PREDICTED: Danio rerio similar to STAT6  1-34,  

Danio rerio heterogeneous nuclear ribonucleoprotein 2-15, 2-35, 3-37, 4-
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U-like 1(hnrpul1) 51 

PREDICTED: Danio rerio similar to ankyrin repeat 
domain 15 3-1,  

PREDICTED: Danio rerio similar to striated muscle 
preferentially expressed protein  4-8, 4-40, 3-35 

Danio rerio transferrin-a (tfa) 3-43,  

Danio rerio bcl2-like (bcl2l) 4-2,  

Danio rerio SNW domain containing 1 (snw1) or ski 
interactiong protein 4-14, 5-9 

Danio rerio digestive-organ expansion factor (def) 5-13,  

Danio rerio bromodomain containing 8 5-22, 5-30,  

Danio rerio thrombospondin 4 (thbs4) 6-13,  

Danio rerio upstream transcription factor 2, c-fos 
interacting (usf2) 7-7, 

PREDICTED: Danio rerio similar to CXXC finger 6 
1-35, 3-31, 4-7, 2-6, 
2-11, 3-20, 4-44 

PREDICTED: Danio rerio similar to elastin 
microfibril interfacer 2 (LOC571391) 6-24, 5-39, 3-33 

Danio rerio ripply3 (ripply3) possiblely 3-24,  

PREDICTED: Danio rerio similar to oxysterol-
binding protein-like protein 6  3-40, 4-48 

Danio rerio actin related protein 2/3 complex, subunit 
5A 3-45,  

Danio rerio TRK-fused gene 3-52, 4-41 

Danio rerio bcl2-like (bcl2l) 4-2,  

Danio rerio polymerase (RNA) I polypeptide C 
(polr1c) or Danio rerio RNA polymerase I 140 kDa 
subunit 4-16,  

Danio rerio mitchondrial cyt b gene for cytochrome b  4-33,  
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PREDICTED: Danio rerio similar to centrosome-
associated protein 350 (LOC564120) 6-4, 

Danio rerio proteasome (prosome, macropain) 
subunit, beta type, 3 (psmb3) 6-5,  

Danio rerio protein disulfide isomerase-related protein 
P5 precursor (pdip5) 6-28,  

Danio rerio hypoxia-inducible factor 1, alpha subunit, 
like (hif1al) 6-33,  

Danio rerio kelch-like 12 (Drosophila) (klhl12) 6-1,  

Danio rerio kinesin-like protein 2 (knsl2) 7-4,  

  

3.4 Discussion  

In this study, I have showed that the udu gene, which encodes a novel zebrafish 

protein containing two PAH-L repeats and a SANT-L domain, plays an important role 

in primitive hematopoiesis development.  

 

3.4.1 Function of udu gene in early embryogenesis 

Although WISH showed that udu RNA was ubiquitously expressed throughout early 

development, udu gene appeared to be dispensable for early embryogenesis as well as 

initiation of primitive hematopoiesis. Considering udu RNA is maternally deposited 

in embryos and remains robust until gastrulation stage, absence of early phenotype in 

the udusq1 mutant is possibly due to the functional compensation of maternal udu 

RNA. In order to test this possibility, one morpholino was designed to block the 

translation of Udu protein, but the morphant phenotype was very similar to the 
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zygotic mutant and no early phenotype in embryogenesis was observed. One possible 

explanation for this result is that Udu simply does not play a major part in early 

development. The second possibility is due to the maternal effect that had been also 

reported by other group (Gore et al 2005). They found that injection of antisense 

morpholinos targeting zebrafish Nodal-related morphogen Squint (Sqt) into fertilized 

embryos resulted in similar phenotype as zygotic sqt mutants. But injection of the 

same morpholinos into oocytes can cause severe loss of dorsal structures which is not 

seen in the zygotic sqt mutant embryos. Thus, one may expect earlier or more severe 

phenotypes if maternal udu RNA is removed in oocytes. Alternatively, more delicate 

primodial germ-cell replacement approach described by Ciruna et al can be used to 

address this issue in the future (Ciruna et al 2002), this approach will generate mutant 

completely devoid of maternal RNA.  

 

3.4.2 Identification of udu as a novel factor essential for primitive 

hematopoiesis  

Characterization data of udusq1 mutant strongly suggests that zebrafish udu gene is 

critical for primitive hematopoiesis. And this requirement of Udu in erythroid 

development seems to restrict to the lineage differentiation stage. The specification of 

early hematopoietic progenitors is not affected in the udusq1-/- mutant, but the 

subsequent erythroid lineages development is highly dependent on the functional udu 

gene. Hematopoietic specific factors such as scl, lmo2, and gata1 all show a gradual 

decrease after 10-somite stage in udusq1-/- mutant; while those late hematopoietic 

markers for more differentiated erythroid cells such as band3 is more severely 

affected in udusq1-/- mutant. FACS and DNA content analysis further confirm that 
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udusq1-/- hematopoietic cells are abnormally blocked in the cell cycle progression. 

Therefore, loss of udu gene blocks erythroid cells differentiation and makes them not 

only abnormally stay at the precursors stages but also with impaired proliferation 

ability.  However, it is not clear whether Udu is only required in a special time 

window during erythropoiesis or is consistently necessary for all the stages of 

erythroid development. This is possible to be tested in the mammalian in vitro culture 

system if the mammalian homologue of zebrafish udu functions similarly in 

hematopoiesis development.  

Compared with erythropoiesis, the role of Udu in myelopoiesis is less well 

understood in this study, especially their defects at the cellular level. The 

characterization data found that initiation of myelopoiesis was normal in the udusq1 

mutant, but further development of primitive myeloid cells was also significantly 

affected shown by severely reduced marker gene expression. However, it is not clear 

that whether loss of udu gene also lead to block of cell cycle progression in myeloid 

cells. There are several limitations for understanding the cellular defects of primitive 

myeloid cells in udusq1 mutant. The scl promoter droved GFP transgenic line is not 

suitable for FACS analysis in this case, as most GFP positive hematopoietic cells are 

erythroid cells. Besides, cell number of primitive myeloid lineage is also much less 

than erythroid lineage, which is another challenge for FACS. Alternatively, udu 

splicing morphants in the myeloid specific transgenic background (such as pu.1 

transgenic line) can be used to explore the cellular defect of udusq1-/- myeloid cells 

using FACS approach in the future.  
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3.4.3 Cell autonomous role of udu gene in primitive hematopoiesis  

In this study, both the expression pattern of udu gene and early transplantation 

experiment suggest that udu gene functions cell autonomously to regulate the 

primitive erythropoiesis. In the transplantation experiment, donor cells taken from 

both wild type sibling and udusq1-/- mutant were placed into wild type host embryos, 

then contribution of the donor cells to the circulating blood cells in the hosts was 

scored as the main criteria. The conclusion from this transplantation is that udu gene 

is cell autonomously required for primitive erythroid development. However, it is 

difficult to assay the contribution of donor cells to the host myeloid cells due to lack 

of myeloid specific transgenic line as the donors and the lower number of myeloid 

cells. Although whether udu gene play a cell autonomous role in primitive myeloid 

development is not clear at the current stage, similar phenotype found in the 

myelopoiesis and erythropoiesis in the udusq1-/- mutants indicates that udu gene may 

function similarly in both process.  

The transplantation experiment performed in this study (mutant → wild type) 

suggests that udu gene functions cell autonomously in erythroid development, 

however, the possibility that udusq1-/- erythroid cells are defective due to the 

combination of both cell and non-cell autonomous effects can not be ruled out. This 

hypothesis can be proved by reverse transplantation, which evaluates the contribution 

of wild type donors to udusq1-/- mutant hosts. However, udusq1 mutants have other 

defects including short body axis and abnormally formed somites and tail, and blood 

circulation is never initiated though residual blood cells usually can be found in udusq1 

mutant. In such a mutant background, it will be impossible to evaluate the 

contribution of wild type donors to the mutant hosts by observing circulating blood 
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cells directly. Other evaluation method, such as checking the erythroid markers 

expression, is not feasible as all the erythroid markers tested have residual expression 

in udusq1 mutant. But it is possible to use the absence of ectopic pu.1 and mpo 

expression in the ICM region as a criterion for assaying contribution of wild type cells 

to the mutant blood cells in the future. If udu gene function only cell autonomously in 

the erythroid development, absence of ectopic pu.1 or mpo expression is expected 

when wild type cells contribute to the udusq1-/- mutant host in the ICM region. 

Otherwise, non-cell autonomous effect of udu gene is also suggested.  

 

3.4.4 The potential interaction partners of Udu protein   

Based on the sequence alignment and structure analyses, Udu protein contains a 

putative SANT-L domain. It is known that most of the SANT domain containing 

molecules interact with histone tails to achieve their roles in chromatin remodeling 

(de la Cruz et al 2005). But none of the histone proteins were fished out in the yeast 

two hybrid screen in this study. There are two possible explanations for this result.  

One possibility is that the udu SANT-L domain does interact with histone proteins, 

but the interaction ability of PAH-L domain is so strong that somehow it interferes 

with or masks the function of SANT-L domain. An alternative explanation would be 

that the SANT-L domain does not function as the real SANT domain and rather it 

functions as the Myb-DB domain in the Udu case. And this hypothesis needs be 

further tested. 

Among the clones fished out from yeast two hybrid screens, zebrafish Mcm4 

and Mcm3 protein emerged as very interesting candidates. The MCM proteins were 
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originally identified as proteins required for minichromosome maintenance in yeast 

Saccharomyces cerevisiae (Maine et al 1984). In eukaryotes, MCM2 through -7 is a 

family of six highly conserved and structurally related proteins, which form the key 

component of pre-replication complex (preRC) as the replication-licensing factors for 

DNA duplication during the cell cycle (Maiorano et al 2006). Besides as part of the 

preRC at origins during replication initiation, MCM proteins also act during 

elongation, presumably as a helicase at replication forks (Labib et al 2000; Moyer et 

al 2006). But the in vivo analysis of MCM proteins functions in multicellular 

organism has been scarce. Recently Ryu et al reported isolation of zebrafish mcm5 

mutant (Ryu et al 2005). They found that in retina mcm5 expression was maintained 

only in proliferative retinal cells but down- regulated in differentiated cells. 

Consistently, prolonged S phase and cell-cycle-exit failure have been detected in 

mcm5 mutant retina cells (Ryu et al 2005). Although detail studies of zebrafish mcm3 

and mcm4 have not been reported, their expression has been characterized and 

available in ZFIN expression database.  Both mcm3 and mcm4 genes have a similar 

expression pattern as udu gene. In early stage, they express ubiquitously but decrease 

gradually after 1dpf with expression only in the certain region of brain. Moreover, 

comparison of expression profile between wild type and udusq1 mutant by microarray 

analysis also identify a series of MCM protein as potential targets including mcm2, 

mcm4 and mcm3 (Liu et al 2007). Taken together, zebrafish Mcm3 and Mcm4 protein 

are very possible to be the real interaction partners of Udu protein. However, their in 

vivo interaction needs to confirmed, for example by immunoprecipitation, in the 

future. And mcm3 and mcm4 morphants can be examined to provide further evidence 

as well.   
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 Chapter IV Characterization and positional cloning 

of zebrafish tc-244 mutant 

4.1 tc-244 mutant exhibits a definitive specific phenotype 

Tc-244 is another interesting mutant isolated from our lab’s forward genetic screen. 

By visual inspection under optical microscope, tc-244 mutant was indistinguishable 

from wild type siblings before 3.5dpf. But after that homozygous tc-244 mutants 

gradually display a phenotype of smaller head and eyes, also with intensified eye 

color compared with wild type siblings (Figure 4.1A-B). From 5dpf onwards, the 

speed of blood circulation in some mutant larvae began to decrease and they 

eventually died by 10-14dpf.  

 

Figure 4.1 Morphology of tc-244 mutant. Lateral views of live wild type sibling (A) 
and homozygous tc-244 mutant (B) larva of 5dpf. 

 

Consistent with the normal morphology and behavior of tc-244 mutant before 

3.5dpf, the expression of hematopoietic marker βe1-globin for erythroid cells and lyc 

for myeloid cells also showed no difference between mutants and wild type siblings 

before 3.5dpf (Figure 4.2), suggesting that primitive hematopoiesis is largely normal 

in the tc-244 mutant.  
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Figure 4.2 Primitive hematopoiesis is normal in tc-244 mutant. WISH showed that 
the expression level of hematopoietic markers βe1-globin (A, B) and lyc (C, D) was 
similar in 2dpf wild type (A, C) and homozygous tc-244 mutant (B, D). 

 

From 4dpf onwards, although there was no obvious abnormality found in the 

tc-244 mutants by visual inspection of blood circulation, some marker genes 

expression pattern did reveal significant difference between homozygous tc-244 

mutant and wild type siblings. As shown in the Figure 4.3A-B, the expression of 

recombination-activating gene1 (rag1), which catalyzes the rearrangement of 

immunoglobulin genes in immature B lymphocytes and T cell receptor genes in 

immature T lymphocytes respectively (Willett et al 1997), was totally lost in the tc-

244 mutant thymus (Figure 4.3B). rag1 gene is considered as one of the early markers 

for lymphoid lineage development, thus this result implies that tc-244 mutant is 

defective in lymphoid development. Of note, the specification of T lymphocytes 

highly depends on signals from their residential environment-thymus, therefore the 

thymus marker foxnI (whnb), which is indispensable for thymic epithelial cell 

differentiation (Boehm et al 2003; Trede et al 2001), was used to examine the thymus 

development of tc-244 mutants. The wild type siblings expressed foxnI at the third 
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pharyngeal branchial arch and exhibited a scattered pattern (Figure 4.3C), but in the 

tc-244 mutant, foxnI expression was severely condensed and was more obvious to 

detect in the same region (Figure 4.3D). This abnormal condensed expression pattern 

in tc-244 mutant indicates the thymic rudiment and epithelial cells are specified but 

the thymus primordial is not expanded probably due to lack of lymphoid cells 

colonization in the tc-244 mutant. Thus based on these results, it is concluded that the 

lymphoid lineage is not properly specified in the tc-244 mutants. 

 

Figure 4.3 Lymphoid lineage development is defective in tc-244 mutant. Rag1 
expression is detected in 4.5dpf wt (A) but not in the 4.5dpf tc-244 mutant (B). foxnI 
expression exhibits a scattered pattern in 4dpf wt (C) and a condensed pattern in 4dpf 
tc-244 mutant (D). Red arrow indicates the rag1 expression in thymus. Yellow circles 
indicate foxnI expression in the third pharyngeal branchial arch.  

 

To further examine whether the defects in tc-244 mutant restrict to the 

lymphoid lineage or other lineages of definitive hematopoiesis are also affected in this 

mutant, the expression of erythroid specific βe1-globin and myeloid specific lyc genes 

were selected as markers to check the tc-244 mutants. Indeed, the expression level of 
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both markers was significantly down-regulated in 5dpf tc-244 mutants. In wild type 

siblings, βe1-globin marked erythroid cells were found mainly in the pharyngeal 

arches, PBI, and kidney (Figure 4.4A). But most of these erythroid cells in the tc-244 

mutant were absent, especially in the kidney and PBI region (Figure 4.4B). Similarly, 

lyc marked myeloid cells mainly resided in kidney and scattered across the ventral 

posterior tail in the wild type (Figure 4.4C), but in tc-244 mutant lyc expression was 

also lost (Figure 4.4D). Taken together, these data demonstrate that major lineages of 

definitive hematopoiesis were all severely impaired in the tc-244 mutants, suggesting 

that loss of tc-244 probably disrupts the early events of definitive lineages 

specification.  

 

Figure 4.4 Definitive erythroid and myeloid lineage development is defective in 
tc-244 mutant. WISH of βe1 globin (A-B) and lyc (C-D) expression in 5dpf wt (A, C) 
and tc-244 mutant (B, D) larvae. The red arrows indicate the expression in kidney.  

 

To investigate this possibility, the expression of runx1 and c-myb, two marker 

genes of definitive HSCs, was examined. In 35hpf tc-244 mutant, definitive HSCs 

associated with the ventral wall of dorsal aorta in the AGM region seemed to be 
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properly specified in tc-244 mutant shown by the normal expression of c-myb (Figure 

4.5A-B) and runx1 (data not shown, pattern similar as c-myb). However, from 3dpf 

onwards, c-myb expression began to decrease significantly in tc-244 mutants. In 5dpf 

wild type siblings, c-myb was expressed strongly in thymus, kidney, and PBI (Figure 

4.5C), but this pattern was not seen in the tc-244 mutant (Figure 4.5D). Consistently, 

the expression of transcription factor scl which is essential for HSCs specification also 

showed similar result (Figure 4.5E-F), especially in the PBI region (Figure 4.5G-H). 

Taken together, these results suggest that although definitive HSCs were initially 

formed, their survival or further differentiation was impaired in the tc-244 mutants, 

which led to the absence of major lineages of definitive hematopoietic cells including 

erythroid, myeloid and lymphoid cells.  
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Figure 4.5 Definitive HSCs development is affected in tc-244 mutant. WISH of c-
myb expression in 35hpf wild type sibling (A), tc-244 mutant (B), 5dpf wild type 
sibling (C) and tc-244 mutant (D). WISH of scl expression in 5dpf wt (E) and tc-244 
mutant (F). Black arrows indicate the ventral wall of dorsal aorta region. Red and blue 
arrows indicate kidney and thymus region respectively. The red rectangles in PBI 
region of (E) and (F) are magnified as (G) and (H).  
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4.2 Positional Cloning of tc-244 mutant 

4.2.1 tc-244 gene locates on linkage group 7 

To clone the tc-244 mutant gene, positional cloning was used as the major approach 

in this study. Firstly, a polymorphic hybrid strain was created by out-crossing a 

female heterozygous tc-244 fish of AB strain (tc-244+/-♀) with a wild type male fish 

(wik9♂) of WIK strain. Their progenies were used as the mapping family. 9 pairs of 

heterozygous tc-244 parents in chimeric AB/WIK background from this mapping 

family were identified by random in-crosses, and then ~ 2000 homozygous tc-244 

mutant embryos (tc-244-/-) from these 9 pairs of parents were collected and used in the 

mapping analysis. 

As the first step of positional cloning, bulk segregation analysis (BSA) 

(principle of BSA refer to Figure 2.1) was employed to locate the tc-244 mutation to a 

certain chromosome or linkage group. As shown in Figure 4.6A-B, BSA analysis of 

two independent pools of homozygous tc-244 mutant and sibling embryos showed 

that the tc-244 mutant pools gave rise to the dominant AB band for both SSLP 

markers z4706 and z1059, indicating that tc-244 mutation was linked with these two 

markers which located on linkage group 7. This result was then confirmed by testing 

individual homozygous tc-244 embryos from one of the mutant pools of BSA analysis 

(Figure 4.6C-D). In order to determine the rough genetic distance and direction 

between these two SSLP markers and tc-244 mutation on the genetic map, more 

single embryos were tested. As a result, there were 2 single recombinants identified 

for z4706 and 26 single recombinants plus 1 double recombinant identified for z1059 
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in a sample panel of 95 homozygous tc-244 mutant embryos. Moreover, the 

recombinants of z4706 and z1059 were not overlapped, 

 

Figure 4.6 Linkage scanning of tc-244 mutant. Bulk segregation analysis (BSA) 
result indicates that SSLP z4706 (A) and z1059 (B) on linkage group7 are linked with 
tc-244 mutation. Single embryo test confirms the BSA result. There is no 
recombinants for SSLP z4706 (C) and 9 recombinants for SSLP z1059 (D) in the 24 
individual embryos from one the mutant pool used in BSA analysis. Wik indicates the 
grandparent band of WIK strain, and AB indicates the grandparent band of AB strain. 
Yellow arrows indicate the recombinants in the single embryos test.  

z4706

Wik  AB Mut 
pool1 

Sib 
pool1 

Mut 
pool2

Sib 
pool2

z1059

Wik AB Mut 
pool1

Sib 
pool1 

Mut 
pool2 

Sib 
pool2

A B

C  z4706

Wik AB

D  z1059

Wik AB 



Chapter IV 

  107

 showing that z4706 and z1059 located at the opposite direction to the tc-244 mutation 

with a rough genetic distance of 1 centimorgen (cM) and 14.7cM respectively. To 

facilitate mapping analysis, z4706 was designated as north marker, and z1059 as 

south marker. And these two SSLP markers can be easily located on the current 

zebrafish genetic map provided by MGH/CVRC Zebrafish Server (Figure 4.7). 

Because the genetic distance between z4706 and z1059 was more than 10cM, it was 

too far to do the fine mapping using these two SSLP markers. Thus all the available 

SSLP markers between z4706 and z1059 in the MGH map were screened for 

polymorphism, and only one marker z43308 was found, and this marker was a south 

marker and was roughly 11cM far from the tc-244 mutation (Figure 4.7). 

Unfortunately, no more available SSLPs can be used to further narrow down the 

distance between north and south markers on the current genetic map. In summary, 

according to the initial mapping result, tc-244 gene is mapped on linkage group 7 

between SSLP marker z4706 and z43308, with a rough genetic distance of 12cM 

between them. 
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Figure 4.7 Part of the genetic map of linkage group 7. Flanking SSLP markers 
z4706, z1059 and z43308 are in red rectangles. The tc-244 mutation locates between 
z4706 and z43308. (Adapted from MGH server) 
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4.2.2 tc-244 gene is mapped to a novel zebrafish gene 

Although the zebrafish genome sequencing project has not been finished yet, a large 

part of the assembled contig (ctg) and scaffold sequence is already available in sanger 

zebrafish fingerprinting database (FPC) and Ensembl zebrafish genome server 

(Ensembl). In order to take advantage of these databases, the two flanking markers 

were used to blast the database, and z4706 was found to hit ctg676 (BAC zK11F12), 

and z43308 was on ctg697 (BAC zC191G21). Several contigs were found to locate 

between them, and some fully sequenced BACs on those contigs were used for SSLP 

searching. One marker (named as zK183N2-118) on the BAC zK183N2/ctg675 was 

found to be polymorphic, and among the 96 homozygous tc-244 embryos tested, there 

were 4 single recombinants with a genetic distances around 2cM south from tc-244 

mutation. Thus, zK183N2-118 and z4706 markers were very closely linked with tc-

244 mutation. Moreover, the genetic distance between these two markers and the tc-

244 mutation was suitable for the further fine mapping as well as the starting point of 

genomic walk. 

Screen of 1910 homozygous tc-244 embryos using z4706 (North marker) and 

zk183N2-118 (South marker) yields 34 north recombinants and 74 south 

recombinants respectively. As the sequencing project is still under construction, there 

are a lot gaps and mis-assembled region in the current assemblies, and unfortunately, 

z4706 and zK183N2-118 located on the separated contigs that were not overlapped. 

Thus genomic walk from the north contig or BAC to the south contig or BAC was 

necessary.  Meanwhile, more fully sequenced BACs in contig 675 and 676 were 

screened for SSLP markers to further narrow down the distance to facilitate the 

genomic walk. As a result, zC226L4-1693 on BAC BX511061 was identified as a 
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south marker more close to the mutation, and it located on the same ctg676 as north 

marker z4706 in the newly released FPC database. In this latest version of FPC, 

ctg676 was a very large contig containing hundreds of BACs, but most of them were 

not fully sequenced yet. In order to find more close flanking markers and begin the 

genomic walk, a simplified contig composed of only sequenced BACs of ctg676 was 

constructed by testing the representative markers from each BAC or aligning BAC 

ends directly (Figure 4.8). A series of SSLP and SNP markers were identified by 

screening those BACs in this simplified ctg676, and polymorphic markers were 

further used to test the recombinant rate of homozygous tc-244 mutants. Finally, tc-

244 mutation was mapped to a region covered by three BACs between markers 

CR318603_55485 and CR318672_119281 (Figure 4.9). There were 8 candidate genes 

found in this region according to the Ensembl database. But all of them were not well 

characterized and candidate gene approach was very difficult to apply in this case 

with very limited gene information. Thus, more straightforward approach, sequencing 

the coding region of these candidate genes, was used. Finally, one nonsense point 

mutation in the novel gene zgc153228 was identified, and it was a T to G transition 

causing a premature stop codon (TAT → TAG) in the transcript (Figure 4.10). No 

other mutation was found in the region. Therefore, the positional cloning result 

strongly suggests that the mutated gene in tc-244 mutant is zgc153288. 
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Figure 4.10 A nonsense mutation is detected in zgc153228 gene. The point 
mutation is a T to G transition indicated by black rectangles.  

  

4.3 Cloning the full-length of zgc153228 gene 

In the Ensemble database, there are several ESTs mapped in the region of zgc153228. 

Based on the EST information, a full-length cDNA of zgc153228 was amplified by 

RT-PCR (zgc153228-b). Another full-length cDNA clone of zgc153288 is also 

available (zgc153228-a) in NCBI database.  However, a comparison of these two 

cDNA sequence revealed a 48 basepairs gap region (Figure 4.11). Therefore, it seems 

that zgc153228 has at least two forms of transcripts (zgc153228-a and -b). Alignment 

of these two transcripts sequence with the genomic sequence also revealed the gene 

structure of these two transcripts as shown in Figure 4.12A. zgc153228-a was 48bp 

shorter than zgc153228-b. This 48bp gap region was part of the exon4 in zgc153228-b, 

but it became part of intron4 in zgc153228-a. RT-PCR using primer pair specifically 

flanking this gap region (e4i4FP and RP) revealed the expression pattern of these two 

forms (Figure 4.12B). zgc153228-a was the only type of transcript expressed before 

6.5hpf, but after that zgc153228-b began to express and both transcripts existed in 
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relatively similar ratio until 3dpf. However, from 3dpf onwards, zgc153228-b became 

the dominant form. Based on this pattern, it is very likely that zgc153228-a is the 

maternal form; while zgc153228-b most probably is the zygotic form. 

 

zgc153228-a      ------------------------------------------------------------ 

zgc153228-b      GAATTGTTTTTACTGACGTCCAATTTTGTATATATTTTTATACAATCATACGCTTTATTA 60 
                                                                              
 
zgc153228-a      ------------------------------------------------------------ 
zgc153228-b      TAATATAATTCCAAGTTTAATGAGAAAAAAATAAGTGTTTGAAATCATTTATTTGTCGAG 120 
                                                                              
 
zgc153228-a      ------------------------------------ATTTTTCGGAAGTGACAAGCGAGG 24 
zgc153228-b      GAACCACTTCATGTCACGTGACGAAGGCAAGCGCGGGCATTTCGGAAGTGACAAGCGAGG 180 
                                                        ********************* 
 
zgc153228-a      CAGATTGAGTGTCTCATGAAAACAATTCTGTTTTCCGAGGGTAACAAACTATCTCTGAAG 84 
zgc153228-b      CAGATTGAGTGTCTCATGAAAACAATTCTGTTTTCCGAGGGTAACAAACTATCTCTGAAG 240 
                 ************************************************************ 
 
zgc153228-a      TGTGAGCCACAACCACATAAGCAGCCATGCTGGACGGGGCTCAGTTTATTGAGGCGTTGT 144 
zgc153228-b      TGTGAGCCACAACCACATAAGCAGCCATGCTGGACGGGGCTCAGTTTATTGAGGCGTTGT 300 
                 ************************************************************ 
 
zgc153228-a      CACGGTTGGGTTACCCACGGGCTTCAATGCTGAAATGTTCAGAGTTTGACTGGTTATTTG 204 
zgc153228-b      CACGGTTGGGTTACCCACGGGCTTCAATGCTGAAATGTTCAGAGTTTGACTGGTTATTTG 360 
                 ************************************************************ 
 
zgc153228-a      ACACAGCACCAGATAACCTGCACCTTTTACGCATTGTCTGCAACCGCCTGAAACGCTGCA 264 
zgc153228-b      ACACAGCACCAGATAACCTGCACCTTTTACGCATTGTCTGCAACCGCCTGAAACGCTGCA 420 
                 ************************************************************ 
 
zgc153228-a      ATGTTTTAGCACCAGAAGAATTGCAAGCGTACAAGTCACTACAAGAGTCTGGGAAACCAA 324 
zgc153228-b      ATGTTTTAGCACCAGAAGAATTGCAAGCGTACAAGTCACTACAAGAGTCTGGGAAACCAA 480 
                 ************************************************************ 
 
zgc153228-a      TTTTAGATGAGGCCACACTGGCTGAGCTGCTTAAAACCTGTTTGCCCGCGGATGGGGGTT 384 
zgc153228-b      TTTTAGATGAGGCCACACTGGCTGAGCTGCTTAAAACCTGTTTGCCCGCGGATGGGGGTT 540 
                 ************************************************************ 
 
zgc153228-a      TCGGGTCACAGAGCTGTTCTTCACTGGGGGGAGAAGGAACTGTTACAATTGAGGAACTTG 444 
zgc153228-b      TCGGGTCACAGAGCTGTTCTTCACTGGGGGGAGAAGGAACTGTTACAATTGAGGAACTTG 600 
                 ************************************************************ 
 
zgc153228-a      AGACAGAACTTCAAGCCCTCCGTAAGGAAAAGCAGCTAAAACAACGCAGACTCAACAAGC 504 
zgc153228-b      AGACAGAACTTCAAGCCCTCCGTAAGGAAAAGCAGCTAAAACAACGCAGACTCAACAAGC 660 
                 ************************************************************ 
 
zgc153228-a      TGCAAATGCAAGCAGCCAGCTGGGGTGCAAACTCCTCTCTGTCCCAAATGCTGCTGCAGG 564 
zgc153228-b      TGCAAATGCAAGCAGCCAGCTGGGGTGCAAACTCCTCTCTGTCCCAAATGCTGCTGCAGG 720 
                 ************************************************************ 
 
zgc153228-a      AAGGAGACAATAAAGTAAAGGATGCCAACTCTGCCCTAGCAGCCGAAAATGCATACACCA 624 
zgc153228-b      AAGGAGACAATAAAGTAAAGGATGCCAACTCTGCCCTAGCAGCCGAAAATGCATACACCA 780 
                 ************************************************************ 
 
zgc153228-a      ATTCAGCTCTAGACAACCTGTCAAAGGAGACCACCAAACTGGCTGGCTTTTTCCAAAGTG 684 
zgc153228-b      ATTCAGCTCTAGACAACCTGTCAAAGGAGACCACCAAACTGGCTGGCTTTTTCCAAAGTG 840 
                 ************************************************************ 
 
zgc153228-a      ATCTTTCTAATTCCCTAAGGAGCAAAGATGGTGCCTCTCCATCTTTAGGTCTTCAATCAG 744 
zgc153228-b      ATCTTTCTAATTCCCTAAGGAGCAAAGATGGTGCCTCTCCATCTTTAGGTCTTCAATCAG 900 
                 ************************************************************ 
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zgc153228-a      GGAGCCCAGTGCTCTTCTCTCAGTGTCCTCTAGAGCCTTTCCTCCATCAACAGGAGCAAT 804 
zgc153228-b      GGAGCCCAGTGCTCTTCTCTCAGTGTCCTCTAGAGCCTTTCCTCCATCAACAGGAGCAAT 960 
                 ************************************************************ 
 
zgc153228-a      TTACCAAAACTCTGGCTTCATACACACAGCGTCAATTCTTTCAGGGAATCTCTGACTTAA 864 
zgc153228-b      TTACCAAAACTCTGGCTTCATACACACAGCGTCAATTCTTTCAGGGAATCTCTGACTTAA 1020 
                 ************************************************************ 
 
zgc153228-a      TGGAGACCTCGACTTTCAGTCGCTCCCAGATGACCAATCTGAGCTGTTGCAGTGAGAATG 924 
zgc153228-b      TGGAGACCTCGACTTTCAGTCGCTCCCAGATGACCAATCTGAGCTGTTGCAGTGAGAATG 1080 
                 ************************************************************ 
 
zgc153228-a      GGAAAGAGGTGGATGAAGAACTAGTGGAGCTTAGGAAGAAGGAGATGGCACAACTGCAGT 984 
zgc153228-b      GGAAAGAGGTGGATGAAGAACTAGTGGAGCTTAGGAAGAAGGAGATGGCACAACTGCAGT 1140 
                 ************************************************************ 
 
zgc153228-a      GGGCATTTATAGTGGCTCAATACCAGGTGGTGAAAGAGAAAGCTGAAGAGAATGGTGACA 1044 
zgc153228-b      GGGCATTTATAGTGGCTCAATACCAGGTGGTGAAAGAGAAAGCTGAAGAGAATGGTGACA 1200 
                 ************************************************************ 
 
zgc153228-a      AGACAGCAAAAGAGTGGCTTATCCAGCGATTGAACAGCAGCTCAGAGGCTGTGCACTACT 1104 
zgc153228-b      AGACAGCAAAAGAGTGGCTTATCCAGCGATTGAACAGCAGCTCAGAGGCTGTGCACTACT 1260 
                 ************************************************************ 
 
zgc153228-a      CGCCGATGAGCAGACTTGAGCCTGACCTACGCTCTGAGATCACATCAGTTCAGTTTGAAA 1164 
zgc153228-b      CGCCGATGAGCAGACTTGAGCCTGACCTACGCTCTGAGATCACATCAGTTCAGTTTGAAA 1320 
                 ************************************************************ 
 
zgc153228-a      TTCAATCTCTTTTGTTAGACCCAGTCCGCTCTGCATTACGAGACTGTGCACGTCTTCTTA 1224 
zgc153228-b      TTCAATCTCTTTTGTTAGACCCAGTCCGCTCTGCATTACGAGACTGTGCACGTCTTCTTA 1380 
                 ************************************************************ 
 
zgc153228-a      ACATCCCTGTGGTGCGTGGTGATCTCGCTCTTCAGGTAGCCAGGCAAAATTACCTCGCTT 1284 
zgc153228-b      ACATCCCTGTGGTGCGTGGTGATCTCGCTCTTCAGGTAGCCAGGCAAAATTACCTCGCTT 1440 
                 ************************************************************ 
 
zgc153228-a      CCAGACAGACTGAGGTTCGTGACCAGCTTCTCCATCAAAAAGCCTTTTTTGAACTTTTAC 1344 
zgc153228-b      CCAGACAGACTGAGGTTCGTGACCAGCTTCTCCATCAAAAAGCCTTTTTTGAACTTTTAC 1500 
                 ************************************************************ 
 
zgc153228-a      GTCTGGCCCAGGATGCAGAGCTTCTGAGAGGAAAGAGGGTGATGGGGCAAATTAATGACA 1404 
zgc153228-b      GTCTGGCCCAGGATGCAGAGCTTCTGAGAGGAAAGAGGGTGATGGGGCAAATTAATGACA 1560 
                 ************************************************************ 
 
zgc153228-a      TTGTGGAGAGGCTGGAGGGAGCAACACAAGATGCTACTCAAAGAGAAAACACTTTGACAC 1464 
zgc153228-b      TTGTGGAGAGGCTGGAGGGAGCAACACAAGATGCTACTCAAAGAGAAAACACTTTGACAC 1620 
                 ************************************************************ 
 
zgc153228-a      AATCTCACTTGACTGAAGACCCCTTCCTTGGTGCTAATGCTAATCAACAGGTCATCAGCT 1524 
zgc153228-b      AATCTCACTTGACTGAAGACCCCTTCCTTGGTGCTAATGCTAATCAACAGGTCATCAGCT 1680 
                 ************************************************************ 
 
zgc153228-a      CCAAGGACACAGCCTTTACCAGGTTGCTCCAGATGCTTGAGTTGGGAAAAGCATCCACAA 1584 
zgc153228-b      CCAAGGACACAGCCTTTACCAGGTTGCTCCAGATGCTTGAGTTGGGAAAAGCATCCACAA 1740 
                 ************************************************************ 
 
zgc153228-a      ACAGAGAGGATCCATTTCAAACTTACAGTAAGCTGGAAACTGCAGCCTCCAAACTACAAG 1644 
zgc153228-b      ACAGAGAGGATCCATTTCAAACTTACAGTAAGCTGGAAACTGCAGCCTCCAAACTACAAG 1800 
                 ************************************************************ 
 
zgc153228-a      AGGATTTGATCACTGTACAAGAGGCTTTGGATGGAGCAAGACAAGAGCAGGCTTATACTG 1704 
zgc153228-b      AGGATTTGATCACTGTACAAGAGGCTTTGGATGGAGCAAGACAAGAGCAGGCTTATACTG 1860 
                 ************************************************************ 
 
zgc153228-a      GAGCTCGATTAGAACGTGACCGAGATGCACTTGACCAAGTGGCGTACTCGGACATTGTGC 1764 
zgc153228-b      GAGCTCGATTAGAACGTGACCGAGATGCACTTGACCAAGTGGCGTACTCGGACATTGTGC 1920 
                 ************************************************************ 
 
zgc153228-a      AGCCTCTCCTGAGGCCGCAGG--------------------------------------- 1785 
zgc153228-b      AGCCTCTCCTGAGGCCGCAGGTATGTGCTACAGCCACACCTGCACTGGAGCTCTGCCCAC 1980 
                 *********************                                        
 
zgc153228-a      ---------AGCTCACAATAGTTGTTGATGAACTGGAGGTCAAGCAGAAGACCCTGTATA 1836 
zgc153228-b      ATGCACAGGAGCTCACAATAGTTGTTGATGAACTGGAGGTCAAGCAGAAGACCCTGTATA 2040 
                          *************************************************** 
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zgc153228-a      TGCTTCTTCAGGAGATAGTTGGGGACTTGAAAACCAAACGCGGAAGGCTTGAACGCAGTG 1896 
zgc153228-b      TGCTTCTTCAGGAGATAGTTGGGGACTTGAAAACCAAACGCGGAAGGCTTGAACGCAGTG 2100 
                 ************************************************************ 
 
zgc153228-a      CCACCCTGCGGAGAGAGAGGGAACTGTATGTCTATTTTCATCTGGACCCAAGATTACTCA 1956 
zgc153228-b      CCACCCTGCGGAGAGAGAGGGAACTGTATGTCTATTTTCATCTGGACCCAAGATTACTCA 2160 
                 ************************************************************ 
 
zgc153228-a      ACAGAGCAGTAAGAGATATAGAGGCTCAAGCAGGGGTTATGTAGAATCAAATCTCATTTC 2016 
zgc153228-b      ACAGAGCAGTAAGAGATATAGAGGCTCAAGCAGGGGTTATGTAGAATCAAATCTCATTTC 2220 
                 ************************************************************ 
 
zgc153228-a      TCCACTCCAACCAACATGTACAGCTTCCTGCACAAATTATATAACTGAGAAATCAATGCC 2076 
zgc153228-b      TCCACTCCAACCAACATGTACAGCTTCCTGCACAAATTATATAACTGAGAAATCAATGCC 2280 
                 ************************************************************ 
 
zgc153228-a      CTGTTGGTTAGGCCTCACCATTGTTGCTTCTGTAGGTCTCGTATGTAGATCTGTATTATC 2136 
zgc153228-b      CTGTTGGTTAGGCCTCACCATTGTTGCTTCTGTAGGTCTCGTATGTAGATCTGTATTATC 2340 
                 ************************************************************ 
 
zgc153228-a      TGCTGTTCTTTAGGTATGTTAACAAATTTGTATTCAGTACCTAGATTAACATTAATCTGC 2196 
zgc153228-b      TGCTGTTCTTTAGGTATGTTAACAAATTTGTATTCAGTACCTAGATTTACATTAATCTGC 2400 
                 *********************************************** ************ 
 
zgc153228-a      AATTGTACTTTAACAGATGTTCCATAATTTGTATAAATCATGTTGTTAGTTTATTTGGTG 2256 
zgc153228-b      AATTGTACTTTAACAGATGTTCCATAATTTGTATAAATCATGTTGTTAGTTTATTTGGTG 2460 
                 ************************************************************ 
 
zgc153228-a      ATTAACAGATGTATCCTTGTTAATAAATATTTGTTATCTCAAAAAAAAAAAAAAAAAAAA 2316 
zgc153228-b      ATTAACAGATGTATCCTTGTTAATAAATATTTGTTATCTCAGCAA--------------- 2505 
                 *****************************************  **                

Figure 4.11 Alignment of two zgc153228 transcripts. The cDNA sequence of 
zgc153228-a and zgc153228-b is aligned. The gap region within coding sequence is 
highlighted in red.  
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Figure 4.12 zgc153228 has two forms of transcripts. (A) The gene structure and (B) 
expression pattern of two transcripts. e4i4FP and e4i4RP indicate the primer pair for 
amplifying the gap region. i4e5MO indicates the splicing morpholino target region. 
The mutation site of tc-244 mutant is marked in red.   
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Analysis of zgc153288 protein sequence identified a Signal peptidases I 

signature 3 pattern (SPASE_I_3) of PeptidaseS26A family (a.a149-162) and two 

coiled-coil domains (a.a102-139, and a.a 498-529). The function of most 

peptidasesS26 family proteins is the processing of newly-synthesised secreted 

proteins. They remove the hydrophobic, N-terminal signal peptides as the proteins are 

translocated across membranes (Dalbey & Von Heijne 1992). The SPASE_I_3 

signature corresponds to a conserved region of unknown biological significance 

located in the C-terminal section of all these peptidase proteins 

(http://www.expasy.org/prosite/PDOC00418). Coiled-coil domain is a typical hyper-

secondary structure formed by two or more α-helices that are wound around each 

other in either a parallel or anti-parallel configuration (Lupas & Gruber 2005). 

Proteins with this domain contribute to the broad range of biological functions such as 

forming the intermediate filaments in the dynamic skeletal networks of the cytoplasm 

and nuclear lamina, and mediating the function of transcriptional regulators  (Barbara 

et al 2007). 

Mammalian homologues of zebrafish zgc153228 were also identified by blast 

search in NCBI database. The human protein IT1 (or C4orf15 protein) and mouse 

hypothetical protein LOC231123 are the most conserved candidates by alignment 

with the protein sequence of zebrafish zgc153228 (Figure 4.13). However, both of 

these mammalian homologues are considered as the novel proteins with unknown 

functions.  
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Figure 4.13 Alignment of human IT1, mouse hypothetical protein LOC231123, 
and zebrafish zgc153228 protein sequence.  

 

4.4 Expression pattern of zgc153228  

In order to have an idea of the temporal and spatial expression pattern of zgc153228 

gene, full-length zygotic form of zgc153228 was in vitro transcribed to make RNA 

probe for whole mount in situ hybridization analysis. And the expression pattern of 

zgc153228 by WISH was shown in Figure 4.14. zgc153228 expressed as early as one-

cell stage, and remained robust expression until gastrulation stage, when it seemed to 

enrich in the embryonic shield region. After that the expression of zgc153228 was 

ubiquitously detected with an obvious enrichment in the brain. From 1dpf onwards, 

the expression of zgc153228 decreased gradually and restricted mainly in the brain. 

Thus, this pattern implies that zgc153228 is an embryonically expressed gene, and its 

function may be critically involved in embryonic development.  
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Figure 4.14 zgc153228 gene expresses ubiquitously during embryonic 
development. WISH of zgc153228 expression in 1-cell stage (A), 4hpf (B), 6hpf (C), 
18hpf (D), 1dpf (E), 2dpf (F), 3dpf (G), 4dpf (H) wild type embryos. Embryos in A-C 
are orientated with animal pole on top whereas embryos in D-H are orientated with 
anterior to the left. 

 

4.5 Morpholino knockdown of zgc153228 

To confirm that the tc-244 mutant phenotype was indeed caused by the mutation in 

zgc153228 gene, one antisense morpholino oligo (i4e5MO) targeted to modify the 

splicing of zgc153228 mRNA was designed at the intron4/exon5 boundary (Figure 

4.12A) and injected into the one-cell stage wild type embryos. As expected, the 

morphant phenotype was very similar to the tc-244 mutant based on the WISH result 

of c-myb and lyc expression (Figure 4.15A-F). In all the injected embryos, 48% 
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(24/50) of the morphants had almost null expression of c-myb in both kidney and PBI 

region (Figure 4.15B), while 52% (26/50) of them showed decreased c-myb 

expression (Figure 4.15C). Similarly, 46.5% (20/43) of the morphants lost lyc 

expression (Figure 4.15E); the rest 53.5% (23/43) had different level of decreased lyc 

expression (Figure 4.15F). Besides, the neuronal phenotype of small head and small 

eyes were also seen in these morphants. Thus, the zgc153228 splicing morphant 

highly mimicked the tc-244 mutant phenotype. RT-PCR result confirmed that the 

zygotic transcript (zgc153228-b) in i4e5 morphant was significantly reduced 

compared with the control morphants (Figure 4.15G). Therefore, loss of function 

mutation in zebrafish gene zgc153228 indeed causes the tc-244 mutant phenotype. 

Thus, zgc153228 gene is referred to as tc-244 gene.  
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4.6 Discussion 

4.6.1 tc-244 is a definitive hematopoietic mutant 

Characterization results in this study suggest that tc-244 mutant is specifically 

defective in generation of definitive wave of hematopoiesis, because the early forming 

tissues and primitive hematopoiesis development is largely normal in the tc-244 

mutants. Majority of the zebrafish hematopoietic mutants isolated so far have defects 

both in primitive and definitive hematopoiesis; while most of the definitive 

hematopoiesis specific genes, in contrast, have been identified in the mice by reverse 

genetic approach. Thus, exploration of molecular mechanism controlling the 

definitive hematopoiesis development is impeded due to lack of definitive 

hematopoiesis specific mutants. According to the characterization data, tc-244 mutant 

is an interesting mutant model for studying definitive hematopoiesis, especially the tc-

244 gene has been mapped to a novel zebrafish gene.   

In this study, it was showed that definitive HSCs in tc-244 mutant were 

initially formed in the ventral wall of DA in the AGM region, but their further 

development was impaired and major lineages of definitive hematopoiesis were 

absent. There are several possibilities for these defects: one possibility is that loss of 

tc-244 gene specifically disrupts the definitive HSCs specification such as affecting 

its proliferation and survival ability. Currently, Notch-runx and Hedgehog pathway 

has been implicated in the maintenance and specification of definitive HSCs, thus the 

relationship between tc-244 and these known pathways may be explored in detail in 

the future. Besides, CD41 has been recently reported to be a marker for hematopoietic 

stem cells in zebrafish (Kissa et al 2008). Thus crossing the transgenic CD41 to tc-
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244 mutant may help further analyze the HSCs defects in the tc-244 mutant. The 

second possibility is that definitive HSCs in tc-244 mutant can specify into 

progenitors of different lineages but they are defective in their homing abilities which 

prevent them from migrating to the proper niches. As we known, definitive 

hematopoiesis occurs in several different anatomical sites in vertebrates. In zebrafish, 

definitive HSCs are generated de novo in the AGM region and then migrate to PBI, 

thymus, and kidney for further proliferation and differentiation. Thus, the migration 

defect may also cause the mutant phenotype if tc-244 gene is required for such 

functions. Lineage tracing approach may be used in the future to help to address this 

possibility. The third possibility is that although definitive HSCs and their progenitors 

for the subsequent lineages are properly specified and homed, the microenvironments 

or niches for their growth and differentiation are defective in the tc-244 mutant. The 

transplantation experiment can be used to examine whether tc-244 mutant phenotype 

is caused by such non-cell autonomous effect. For example, if PBI is defective and 

cannot provide certain signals required for further development of those progenitors, 

they may die and the mutant phenotype is expected. In order to define the real cause 

for the defects found in tc-244 mutants, more detail characterization is needed in the 

future.  

 

4.6.2 Cloning of tc-244 mutant gene  

For cloning of chemical mutagenezied zebrafish mutants, there are mainly two 

approaches: positional cloning and candidate gene approach. In general, cloning by 

the candidate gene approach begins with an in depth analysis of phenotype, then these 

phenotypic analysis of gene function will be combined with the information about the 
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approximate genetic map location. Finally, candidate gene will be confirmed by 

sequencing or complementary rescue experiment. In the tc-244 mutant case, this 

approach had also been tried but it was difficult. Firstly, the current phenotype 

characterization information of tc-244 mutant is helpless in predicting the detail gene 

function. Secondly, few definitive specific genes are reported so far, and many 

zebrafish homologues of mammalian candidates have not been characterized due to 

lack of genome sequence information. Thus, positional cloning is adopted as the 

major approach to map the mutated gene in tc-244 mutant.  

Positional cloning is the classical method of forward genetics, and has been 

used in both plant and animal models. In zebrafish, many mutants have been mapped 

using this approach as well. Based on the mapping experience of tc-244 mutant, 

marker technology and genome information are considered as most critical parameters 

for a successful cloning. The marker technology used in the study is SSLP (or SSR) 

and SNP. SSLP is favored over SNP in most cases, as it is simple to use and relatively 

cheap. But in the fine mapping stage, SNP is also highly recommended because the 

chance of finding a polymorphic SNP is larger than finding a polymorphic SSLP, 

especially in zebrafish due to lack of inbreed strains. For the genome information, 

although the zebrafish genome sequencing project hasn’t been finished yet, a large 

part of automated or manually annotated sequence is available in the public database. 

Thus combining information from both genetic map and physical map is especially 

useful in positional cloning. But it is noted that many gaps and mis-assembled 

sequence frequently present in the current database, most of which has not been 

manually annotated. Thus manually verification of the assembly is also necessary in 

some cases.  
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It is believed that positional cloning and candidate gene approach will be 

combined more efficiently in mapping zebrafish mutant in the future as the 

sequencing project completes and more zebrafish genes are characterized. 

 

4.6.3 Functional implication of tc-244 gene 

By antisense morpholino knockdown approach, it was confirmed that tc-244 mutant 

phenotype was indeed caused by loss of function of zebrafish novel gene zgc153228. 

Complementary zgc153228 RNA rescue of tc-244 mutant will also be performed in 

the future to provide additional evidence. Moreover, as zgc153228 gene has two 

forms of transcripts, the relationship between these two forms and their function will 

be interesting topics in the future, especially regarding to the hematopoiesis 

phenotype.  

 Currently, a lot of genes that are critical for hematopoiesis development have 

shown their conserved roles across the vertebrate species. The human and mouse 

homologues of zebrafish tc-244 were identified by blast, but it is not clear whether 

they are orthologs of tc-244 since both of them are novel gene with unknown 

functions. Therefore, functional assay may be applied in zebrafish system or 

mammalian system to analysis if they have a similar biological function and represent 

the real orthologs of tc-244 gene.  

Domain analysis revealed a signal peptidases I signature 3 pattern 

(SPASE_I_3) of PeptidaseS26A family in the zgc153228 protein. Peptidase family 

S26A is also named as signal peptidase I family. Many signal peptidases identified 

belong to this family, and their function is the processing of newly synthesized 
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secreted proteins. Therefore, although the exact function of SPASE_I_3 pattern in this 

peptidase family protein is unknown, it is possible that zgc153228 also has proteolysis 

activity as other members of this family. And this possibility will be tested in the 

future. However, it is not clear whether zgc153228 function as a signal peptidase 

protein. Signal peptidases are membrane proteins, thus the cellular localization of 

zgc153228 should be examined to provide more information to help clarifying this 

issue. Eukaryotic signal peptidases commonly function as oligomeric complexes 

containing two divergent copies of the catalytic monomer 

(http://merops.sanger.ac.uk/cgi-bin/merops.cgi?id=S26). Interestingly, two coiled-coil 

domains were also identified in zgc153228 protein. Many coiled-coil containing 

proteins are known to form dimers with each other through their coiled-coil regions, 

thus the coiled-coil region may facilitate its oligomerization if zgc153228 functions as 

a signal peptidase.   

According to the temporal and spatial expression pattern of tc-244, it seems 

that tc-244 gene ubiquitously expresses in the embryonic stages, and gradually 

exhibits an enriched pattern in the brain in larvae. Although it does not show a 

hematopoietic-specific pattern, it is believed tc-244 gene express in the hematopoietic 

cells and organs similar as other tissues in the embryonic stages. However, whether 

tc-244 plays a cell-autonomous role in definitive hematopoiesis development await 

transplantation data in the future. Interestingly, the human homologue IT1 has an EST 

expression profile 

(http://www.ncbi.nlm.nih.gov/UniGene/ESTProfileViewer.cgi?uglist=Hs.368454) 

showing that IT1 expresses in adult blood, kidney, lymph node, spleen, and thymus. 

Thus, it will be interesting to explore whether tc-244 gene also has a role in adult 

hematopoietic system.  
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Chapter V Conclusion 

udu and tc-244 are two newly isolated zebrafish hematopoietic mutants from our lab’s 

forward genetic screen. This thesis describes the detail phenotype analysis of these 

two mutants and study of the roles of their responsible genes in hematopoiesis 

development.  

The first part of this thesis is focused on the zebrafish ugly duckling (udu) 

mutant allele udusq1. Characterization results of this mutant allele strongly suggest that 

loss of udu gene leads to the defective proliferation and differentiation abilities in the 

primitive hematopoietic cells. Moreover, this defect in primitive erythroid cells is 

revealed due to their abnormal arrest in the G2-M phase during cell cycle progression. 

The expression pattern of udu gene and transplantation experiments further 

demonstrate that udu gene is cell-autonomously required for primitive erythropoiesis. 

However, non-cell autonomous effect of udu gene in primitive hematopoiesis 

development is not excluded and need further studies.  

In order to elucidate the molecular mechanism that how udu gene affects the 

primitive hematopoietic development, yeast two hybrid screen was performed to fish 

out the candidate interaction partners of Udu protein. As a result, hundreds of positive 

clones were obtained from this screen, and they were classified into several groups by 

sequencing and blast analysis. Consistent with the characterization result that udusq1-/- 

erythroid cells were found to be impaired in the cell cycle progression, a group of 

molecules that are known to function in cell division or cell cycle regulation has been 

found from the yeast two hybrid screen.  Interestingly, some of them also had similar 
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expression pattern as Udu, thus they are very likely to function as the real interaction 

partners of Udu protein in vivo.  

Taken together, these findings reveal that udu gene is a novel factor essential 

for primitive hematopoiesis development in zebrafish, and it plays important roles in 

regulating primitive erythroid proliferation and differentiation. The candidate 

interaction partners found by Y2H provide the valuable insight into the molecule 

mechanism that udu gene may regulate the cell cycle progression of primitive 

hematopoietic cells.  Although it is widely accepted that the genetic program of 

primitive hematopoiesis is established through mesoderm induction and patterning, 

stem cell specification, and lineage differentiation, critical elements governing these 

major steps are yet to be identified. Thus identification of zebrafish udu gene has 

added to the existing knowledge about genetic regulation of primitive hematopoiesis 

development, and provides new information for understanding the proliferation and 

differentiation of hematopoietic cells.  

Although the above results strongly suggest Udu as an important regulator of 

hematopoietic development, the mechanism of how udu gene regulates the primitive 

erythroid cell cycle progression is still not clear. One of the very promising ways to 

elucidate the molecule mechanisms of udu is to further analysis those candidate 

molecules (especially mcm proteins) from the yeast two hybrid screen. The in vivo 

interaction test between them and Udu protein will provide key evidence of Udu’s 

role in regulating cell cycle progression, and morpholino knockdown results of those 

candidates can be compared with the mutant phenotype to provide further clues. 

Finally, mutation analysis of critical interaction region will be performed to prove that 
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the interaction between the candidates and Udu protein is critical for the function of 

Udu.  

In the second part of the thesis, another mutant tc-244 was examined in detail 

and found to be specifically deficient in definitive hematopoiesis. The phenotype 

analysis results showed that tc-244 mutant was normal in primitive hematopoiesis but 

had severe defects in generation of major definitive lineages including erythroid, 

myeloid and lymphoid cells. A closer examination revealed that definitive HSCs 

initially formed in the AGM region, but their further development was impaired in the 

tc-244 mutants, thus leading to the absence of major lineages of definitive 

hematopoietic cells. Using positional cloning approach, tc-244 mutant gene was 

mapped to locate on linkage group 7, and a nonsense point mutation (T to G transition) 

was identified in a novel zebrafish gene zgc153228 in tc-244 mutant genomic DNA. 

Morpholino knockdown of zgc153228 showed similar morphant phenotype as tc-244 

mutant, confirming that the mutant phenotype of tc-244 was indeed caused by loss of 

function of zgc153228 gene. Using whole mount in situ hybridization, zgc153228 was 

found to express ubiquitously in the early embryonic stages, implying that its function 

may be critically involved in embryonic development including the hematopoietic 

system.   Interestingly, zgc153228 has two different transcripts that probably 

correspond to the maternal and zygotic form of zgc153228 gene.  

According to the characterization data, tc-244 mutant is an interesting model 

for the definitive hematopoiesis development research. Currently, few mutants from 

either ENU or insertional screen are implicated in definitive lineages specification and 

differentiation, especially the early events of this process. Moreover, tc-244 mutant 

gene is identified by positional cloning, thus making functional study of this tc-244 
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gene in zebrafish possible. Traditionally, understanding of definitive hematopoiesis 

development in zebrafish largely relies on the knowledge from the mammalian model. 

However, tc-244 gene is apparently a novel gene firstly identified in zebrafish, and 

blast analysis revealed that it had mammalian homologues with unknown function as 

well.  Therefore, the work described in the second part of this thesis leads to 

identification of a novel gene involved in genetic regulation of definitive 

hematopoiesis development. 

As many other novel genes identified in zebrafish, it remains unclear how tc-

244 gene participate in genetic network of definitive hematopoietic development 

currently. Moreover, although tc-244 gene was detected to express ubiquitously in the 

embryonic stage, it is uncertain whether this gene functions cell autonomously or non-

cell autonomously in definitive lineage development, transplantation approach wil be 

used to solve this issue in the future. Besides, domain analysis identified a signal 

peptidases I signature 3 pattern (SPASE_I_3) of PeptidaseS26A family in tc-244 

protein, however it is not clear whether tc-244 protein function as a signal peptidase. 

The cellular localization of this protein will be explored in the future to provide more 

evidences for this argument. Finally, functional studies will be performed to reveal the 

relevance between zebrafish tc-244 gene and its mammalian homologues, especially 

their roles in the definitive hematopoiesis development.  

In conclusion, by genetic analysis of zebrafish mutants udu and tc-244 in this 

study, two novel genes (udu and tc-244) are identified as novel factors involved in the 

regulation of primitive and definitive hematopoiesis development.  
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