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Summary

Functional Magnetic Resonance Imaging (fMRI) is an important technique for neu-
roimaging. Through the analysis of the variation of blood oxygenation level-dependent
(BOLD) signals, fMRI links the function of the brain and its underlying physical struc-
tures by using the MRI techniques. The low signal-to-noise ratio (SNR) and complexity
of the experiment poses major difficulties and challenges to the analysis of fMRI data.

This thesis presents robust (less false positive rate) and efficient (easy estimation
procedure) signal processing methods for fMRI data analysis. It aims to complement
the current methods of fMRI data analysis in order to achieve accdest¢etionof the
activated regions of the brain, betestimationof the hemodynamic response (HDR) of
the brain functions anthodellingof the dynamics of fMRI signal.

The fMRI data are first investigated under the Bayesian framework. Based on the
conventional general linear model (GLM), a flexible design matrix determination method
through sparse Bayesian learning is proposed. It integrates the advantages of both data-
driven and model-driven analysis methods. This method is then extended to incorporate

the nonstationary noise to the model. Two nonstationary noise (time-varying variance

Vii



Summary Vil

noise and fractional noise) models are examined. The covariance matrices of these two
noises share common properties and are successfully estimated using a Bayesian esti-
mator. Considering that the fMRI signal also contains drift, a modified GLM model

is proposed which could effectively model and remove the drift in the fMRI signal.
Through mathematical manipulations, updating algorithms are derived for these pro-
posed methods. The proposed Bayesian estimator could provide accurate probability
of the activation and hence avoid the multiple comparison problems encountered in the
traditional null hypothesis methods.

The second part of the thesis is focused on the estimation of the HDR of the human
brain. Both linear and nonlinear properties of the event-related fMRI experiment are
examined based on the inter-stimulus intervals (ISI). A linear spatiotemporal adaptive
filter method is proposed to model the spatial activation patterns as well as the HDR.
The equivalence of the proposed method to the canonical correlation analysis (CCA)
method is also demonstrated. It is reported that when the ISl is small, the fMRI signal
shows nonlinear properties. Thus, nonlinear methods of fMRI signal analysis are also
examined. A method based on the radial basis function (RBF) neural network is pro-
posed to regress the measured fMRI signal on the input stimulus functions. The relation
between the parameters of the RBF neural network and Volterra series are demonstrated.
The HDR is then obtained from the parameters of the RBF neural network which shows
significant advantages.

The third part of the thesis examines the nonlinear autoregressive with exogenous
inputs (NARX) neural network to model the fMRI signal. With the knowledge of exper-
imental paradigm (input) and measured data (output), the NARX neural network could
identify the complex human brain system and reconstruct the BOLD signal from noisy
fMRI signal. This results in an enhanced SNR of the measured signal and a robust

estimation of the activated regions of the brain.



Summary IX

Extensive simulation studies on synthetic as well as experimental fMRI data are car-
ried out in this thesis. Results show that these methods could complement the traditional
methods to cope with the difficulties and challenges in fMRI data analysis. This may
contribute to the better understanding of the nature of the fMRI signal as well as the

underlying mechanisms.
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Chapter

Introduction

If you know, to recognize that you know, if you don't know, to realize that

you don’t know: That is knowledge. —— Confucius

The brain is the most amazing organ in the human body and the most mysterious
as well as complex. With the development of cognitive neuroscience, many mysteries
are gradually becoming clear to us. Cognitive neuroscience reveals the relation between
cognitive processes (the immaterial mind) and the material brain [1] [2]. It shows what
happens in the brain when human beings are thinking, talking, learning, memorizing,
seeing, acting, etc. To study these cognitive processes in terms of brain-based mech-
anisms (i.e., which parts of the brain are involved, in what kind of ways, what is the
neural basis underlying these processes), many measurement methods have been devel-
oped. These measurement methods can be grouped into four categories: the drug-based
methods, lesion-based methods, electrophysiological methods and neuroimaging meth-
ods. Drug-based methods are used to study how the human brain functions under the
control of drugs. Lesion-based methods analyze the influence of naturally occurring le-
sions or that of “virtual lesions” induced by transcranial magnetic stimulation (TMS) [3]

on the brain’s functioning. Electrophysiological methods measure the action potentials



or ensemble of the brain action potentials during the execution of a specific task [4]. Itin-
cludes single-cell recordings, multiple-cells recordings, electroencephalography (EEG),
event-related potentials (ERP) and magnetoencephalography (MEG). Although these
methods show good temporal resolutions, they provide little spatial information about
the activation regions of the human brain. With the help of neuroimaging methods, these
functional images of the physiological processes can be visualized. The neuroimaging
methods include positron emission tomography (PET) and functional magnetic reso-
nance imaging (fMRI) [5]. These four categories of measurement methods in cognitive
neuroscience complement each other to give detailed structural (at which region the neu-
ral activities occur) and functional explanations (in which way the brain functions) of
the cognitive processes. Table 1.1 shows the summary of the properties of these major
methods used in the measurements of the cognitive neuroscience.

As shown in Table 1.1, fMRI possesses advantages of non-invasiveness as well as
better spatial and temporal resolution (It has better spatial resolution compared to EEG
and MEG and better temporal resolution compared to PET). It can adapt to many types of
experimental paradigms. These advantages enable fMRI to provide important informa-
tion about the brain beyond what is obtained from other techniques. Since its introduc-
tion in the early 1990s, fMRI has become the most influential modality for functional
neuroimaging. It opens new possibilities to investigate how the human brain works.
Many previously unthinkable experiments about cognition and the brain can now be
carried out in the laboratories using fMRI.

The fMRI experiments scan the whole or part of the brain repeatedly and generate a
sequence of 3-D images. Because of the size and complexity of the fMRI data, powerful
analysis methods are essential to the successful interpretation of fMRI experiments. The
main aims of the fMRI analysis are both detection and estimation. Detection means to

localize the activated regions of the human brain. Estimation, on the other hand, tries to
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1.1 Functional Magnetic Resonance Imaging 4

study the time course of an activated region related to a specific neural process. However,
difficulties such as complexity of the data, low signal-to-noise ratio (SNR) and nonlinear
properties, render the analysis of fMRI data a challenging problem. This thesis aims to
deal with these difficulties through advanced signal processing and analysis methods. In
our work, we only treat the analysis of single-subject (first-level) experiments. Gener-
alization to group studies (second-level experiments) requires further investigation and
analysis.

The rest of this chapter is organized as follows. Section 1.1 introduces the basic
properties of fMRI, including its Magnetic Resonance Imaging (MRI) fundamentals, the
physiological effects that underpin current neuroimaging techniques, its experimental
design and so on. Section 1.2 deals with the main methods that have been proposed
to analyze the fMRI data. Section 1.3 gives an overview of the thesis and discusses its

main contributions.

1.1 Functional Magnetic Resonance Imaging

The basic idea in fMRI is to use MRI to measure the changes in blood oxygenation,
which are closely related to the activities of the neurons. The development of fMRI
could be traced back to the 1920s and spans almost the whole twentieth century, from
Nuclear Magnetic Resonance (NMR) to MRI, and then to fMRI. Figure 1.1 shows some
milestones in the development of fMRI. In this section, a short overview of the concepts
related to fMRI is given. The experimental fMRI data sets used in this thesis are also

introduced.



1.1 Functional Magnetic Resonance Imaging

19241 payli suggests that nuclear particles may have angular momentum (spin).

1937 Rabi measures magnetic moment of nucleus. Coins "magnetic resonance".

1945 | Purcell and Bloch simultaneously discover nuclear magnetic resonance.

1959 Singer measures blood flow using NMR (in mice).

1971  Damadian reports differences in relaxation times for biological tissues.

1973 |auterbur publishes method for generating images using NMR gradients.
Mansfield independently publishes gradient approach to MR,

1976 Mansfield proposes echo-planar imaging.

NMR becomes MRI

1982 Thulborn and colleagues report the effects of blood oxygenation on T,* contrast
MRI scanners become clinically prevalent.
1990 Ogawa and colleagues create functional images using endogenous,

blood-oxygenation contrast.
1992 | First fMRI studies published.

Figure 1.1 Some milestones in the development of fMRI.



1.1 Functional Magnetic Resonance Imaging 6

1.1.1 Nuclear Magnetic Resonance — the Basis

MRI and fMRI are based on the NMR phenomenon. It concerns primarily the hydrogen
nuclei present in the body (most of the tissues are water-based and different tissues con-
tain different amount of water; this hydrogen density difference can be used to construct
the 3-D images of the tissues). Each hydrogen nucleus behaves as a tiny magnet, with
an angular momentum, called the spin [6]. In the absence of an external magnetic field,
the sum of the moments of a sample of molecules is zero; but in the presence of a static
magnetic fieldB,, the spins align themselves either parallel (low energy state) or anti-
parallel (high energy state) to the external static magnetic field, with a slight preference
for the first. Thus, the resulting magnetic momeét§ of a sample is oriented to the
direction of By. Figure 1.2 shows the illustration of the spins’ alignment at equilibrium
before and after a static magnetic figbd is applied.

The hydrogen nuclei also experiences a torque from the externally applied magnetic
field, which causes the spins to rotate, or precess around the direction of the external

magnetic field. The frequency of precession is given by the Larmor equation [7]:
vo = 7|Bol, (1.1)

where~ is gyromagnetic ratio (the value efdepends on the nature of the nuclei) and
the precession frequeney is called the Larmor frequency.

The energy state of the nuclei can be changed by transmitting energy to the nuclei
using a second oscillating magnetic field pulse tuned to the precession frequency of the
nuclei; it is called the resonance. This radio-frequency (RF) pBisis orthogonal to
By and rotates at the Larmor frequengyof the nuclei. As a result, the momehif of
a sample is flipped and the flip anglefis= 27y B, t, wheret is the duration of the RF
pulse. The magnetization vectdf has two componentst/, — the longitudinal com-

ponent aligned withB,, andM,,, — the transverse component in the plane orthogonal
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Figure 1.2 lllustration of the spins’ alignment at equilibrium before (left side) and after
(right side) the magnitude fiel8, is applied.
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to B,. Before applying the RF pulsB,, M is in the equilibrium state wher&l, is max-
imum andJ)/,, is zero. After applying3;, M, becomes small andl/,,, becomes large.
When B; is switched off,M will return to the equilibrium state. The recovery . to

the initial magnetizatio/, after the RF pulse (longitudinal relaxation) is characterized

by the relaxation time constaii:
M (t) = My(1 — e ¥/™). (1.2)

The decay of)M,, after the RF pulse (transverse relaxation) is characterized by the
relaxation time constant;:

M.

oy (t) = Moe ™72, (1.3)

The T relaxation is due to spin-lattice interactions and is the time it takes for the
protons to come to equilibrium with each other; d@hdrelaxation is due to spin-spin
interactions and is the time it takes for the protons to come to equilibrium with each
other. However, since the nuclei in the studied ensemble are spatially distributed, they
may experience slightly different magnetic field strength due to a number of reasons.
These local magnetic field inhomogeneities greatly accelerate the decdy, pfthe
time constant;, which is shorter thafi;, characterizes the combined effect of random
nuclei interactions and magnetic field inhomogenetities.

Two important factors govern the time at which the magnetic resonance (MR) images
are collected. The first factor is the repetition time TR, which is the time interval between
successive excitation pulses. Since the longitudinal magnetization is not fully recovered
at time TR, the transverse magnetization, which determines the detected MR signal, is
described as:

M,

Ty

(t) = My(1 — e TR/T)e=t/T2, (1.4)

The second factor is the echo time, TE, which is the time interval between the mea-

surement of the received signal and excitation of RF pulse. According to Eq. (1.4), the
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Table 1.2 Comparison of different TR, TE and pulse sequence used in different MR
contrast images.

Contrast TR TE Pulse Sequence
Proton-density long short GREBP
T intermediate short GRE/SE
T long intermediate SE
T long intermediate GRE

8GRE: gradient-echo imaging
bSE: spin-echo imaging

acquired signal is determined by:
Moy (t)|i=re = Mo(1 — e "/ T)e=TE/T2, (1.5)

From Eq. (1.5), it is shown that the MR signal depends on two quantitiés: de-
termined by the original magnetization or proton density; &nd- e~ 7%/T1)e~TE/T2
determined by the properties of the tissue being imaged (different tissues have different
time constantd; and7;). It can also be seen from Eq. (1.5) that by manipulating TR
and TE, MR images based on different contrast can be obtained. The most basic MRI
maps the distribution of hydrogen nucléi{), which is called proton density contrast.

MR images based oy, 75, or T3 relaxation times emphasize different features of the
tissue and the resulting MR images are respectively cdljedeighted,7;-weighted or
T5-weighted images. The commonly used blood oxygenation level dependent (BOLD)
fMRI relies onT; contrast and the structural anatomical image of the brain is com-
monly 7’ -weighted image. Table 1.2 summarizes the TR, TE and pulse sequence used
in different contrast based MR images.

Figure 1.3 shows three types of MR images of the same slice in the brain. The
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(a) Proton density -weighted (b) T1-weighted (c) T>-weighted

Figure 1.3 Three types of MR images of the same slice in the brain.

contrast and the imaging parameters used in these three images are respectively: a)
Proton density-weighted (TR = 6000ms, TE = 30ms)ibWweighted (TR = 600ms, TE
= 53ms); and c)l;-weighted (TR = 6000ms, TE = 105ms). All of these images are

obtained under the magnetic field 1.5 Telsa.

1.1.2 Magnetic Resonance Imaging

To spatially encode the measurements of proton derisity/» or 7, magnetic field

gradientsG(t¢) defined below are used:
G(t) = G()i+ G, (1) + G(b)k, (1.6)

whereG,(t), G,(t) andG.,(t) are respectively the magnitudes of the gradient magnetic
field alongz, y andz directions. In the equation abovej andk are unit vectors along
thez, y andz directions respectively.

This gradient field alters the precession frequency of spins depending on their spatial
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location. The total signal measured in MRI combines the changes in the net magnetiza-

tion generated at every excited voxel and it is represented as:

/// (x,y, z,t)dxdydz. a.7)

By ignoring the terms without spatial information, the acquired signal is:

R
:/ / / Mayo(,y, 2)e™ 0(CDat G G0N gy (1.8)
xJyJz

where M,o(x,y, z) is the original magnetization at spatial location y, z); G,(t),
G, (t) andG,(t) are respectively the gradient magnetic fielélg) at this spatial location
at timet. The term— [(G..(7)x + G, (7)y + G.(7)z)dr is the accumulated phase at
this location due to the gradlent fields and it is the integral of its precession frequency
from the time it is created to the time that is observed.

The MRI image formation comprises three steps. In the first step, the spins in a
particular slice are exciteslfce selection Then, the spatial distribution of the spins
in the selected slice is coded by the two-dimensional gradient impulse and this gives
the MR signal in k-spacespatial encodingywhich will be defined next. Finally, the
MR images are reconstructed from the signals in the k-spat&gé reconstruction
Figure 1.4 shows these three steps.

Suppose we want to generate an image centered at the longitudinal locatiap
(as shown in Fig. 1.5), then the total magnetizatidiiz, y) of the selected slice along

the z-direction with thicknesAz is:

z0+ 42
M) = [ 7 Moy, 2)d (19)

z
0=

Thus, after the slice selection step, Eq. (1.8) can be simplified as:

. Rt
= //M(:l:,y)e_W o (Ga(M)a+Cy(TAT) gy (1.10)
v Jy
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Figure 1.4 Three stages in the formation of MR images.
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Figure 1.5 lllustration of the slice selection.
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If we define:
t
ko (t) = - / G, ()dr, (1.11)
2 Jo
and
v t
ky(t) = g/o Gy (7)dr, (1.12)

Eqg. (1.10) can be represented as:
s(t) = / Mz, y)e= 2 OrH O gy (1.13)
zJy

This expression has a form similar to the 2-D Fourier transform. At timée
signal we receivey(t)) is simply the value of the Fourier transform &f(x, y) sampled
at the spatial frequencif, (¢), k,(t)), which is called the k-space. After sampling the
spatial frequency content in the k-space, the MR images can be reconstructed through

the inverse Fourier transform.

1.1.3 BOLD Functional MRI

The Human brain contains roughly 100 to 150 billion neurons, the activities of which
support all the cognitive, sensory and motor processes of the body [8]. Basically,
the neurons carry electrical information and interact with other neurons through their
synapse. The information is exchanged through the release of neurotransmitters. The
transmission of the information along the neuron requires the exchange of ions{e.g. K
and Na’) and the consumption of Adenosine Triphosphate (ATP). The ATP consump-
tion requires the supply of glucose and oxygen, which is provided by increase of cerebral
blood flow (CBF). Thus, the brain activity could be assessed by PET which measures
the regional CBF (rCBF). fMRI on the other hand measures another effect: the BOLD
effect.

When there is neural activity in brain, the oxygen consumption (measured in terms

of cerebral metabolic rate of oxygen (CMRQincreases, but in less amount than the
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Figure 1.6 lllustration of the change of deoxyhemoglobin content in the venous blood
when the neuron is in the baseline (left) and active (right) states. In active state, the
oversupply of oxygen by CBF results in the decrease of the concentration of deoxyhe-
moglobin.

blood flow. This results in the drop in oxygen extraction and a corresponding dilution of
deoxyhemoglobin content of the venous blood as shown in Figure 1.6.

The deoxyhemoglobin, without oxygen attached, is paramagnetic, which means that
it interacts with and distorts an applied magnetic field. At low oxygen concentrations
(baseline state), there are many paramagnetic hemoglobin molecules that locally modu-
late the main magnetic fielB, and as a consequence make the hydrogen nuclei excited
by an RF-pulse dephase faster. Hence,hdéime constant becomes shorter in areas
with low oxygen concentration and longer in areas with high oxygen concentration. MR
images reflecting th&; time constant are therefore brighter (lon@&) when a brain is
in an active state compared to the baseline state. This effect is referred to as the BOLD
effect [9][10][11]. The effect is however very small, an intensity change of around 2-5
percent in the magnetic field 1.5T is expected, and it is therefore hard to be detected.
Figure 1.7 summarizes the physiological changes during the brain activation. The actual

mechanism underlying the BOLD effect, however, is much more complicated than what
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we have demonstrated here. And more importantly, there are some other explanations

about the cause of BOLD effect. What we present here is only one possible explanation.

Functional imaging also requires fast acquisition of the images in order to understand
the fast physiological changes that are taking place in the brain. To have a high temporal
resolution, fast imaging sequences like Echo Planar Imaging (EPI) and Spiral Imaging
(SI) are commonly used in fMRI. These gradient-echo imaging techniques are sensitive
to theT’ time constant, and are capable of capturing an image slice in less than 100 mil-
liseconds and an entire brain volume in just a few seconds (2s or even less). Compared
to structural anatomical images, those acquired under the fast imaging sequences are of
relatively lower spatial resolution and after time TR, the set of brain images is acquired
again. This process results in a 4-D (three spatial dimensions plus time) spatio-temporal

dataset.

1.1.4 Hemodynamic Response

The change in MR signal following the firing of neurons is known as the hemodynamic
response (HDR), which gives the information of how the BOLD signal evolves over time

in response to the brief neuronal activity. The HDR normally has three phases [12]:

1. Initial Dip: This initial negative-going dip spans 1 to 2s and is attributed to a
transient increase in the amount of deoxyhemoglobin as neurons consume oxygen.

(This phenomenon may not be observed in the standard 1.5T magnets.)

2. Overcompensatiann this phase, more oxygen is supplied than is extracted, and
this results in a decrease of the concentration of deoxyhemoglobin, and hence

significant increase of BOLD signal.
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Figure 1.7 Physiological changes accompanying brain activation

16
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Figure 1.8 Schematic representations of the fMRI BOLD hemodynamic responses. (a)
HDR to a single short duration event; (b) HDR to a block of multiple consecutive events.

3. Undershoat Finally, the blood flow and oxygen consumption return to the base-
line level. However, the blood flow decreases more rapidly than blood volume,

causing temporary increase in deoxyhemoglobin again.

Figure 1.8 shows the representative waveforms for the hemodynamic responses to
the single event and multiple events respectively. The hemodynamic response function
(HRF) is relatively stable across sessions with the same participant in the same region,

but for different regions within the same individual or between individuals, the HDR

varies greatly [13].

1.1.5 Experimental Designs in fMRI

As shown in Figure 1.9, the fMRI experiment begins with an experimental design. The

experimental design includes hypothesis formation, choice of experimental conditions
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Figure 1.9 The basic steps in an fMRI experiment.

and presentation of stimuli to manipulate the experimental conditions. A good experi-
mental design is the key to the success of the fMRI experiment. In fMRI experiments,
two schemes of experimental designs are generally usefidble desigrand theevent-

related desigrl4]. In block design, each cognitive condition is presented repeatedly for
an extended time interval and the different conditions alternate periodically. This design
is shown to be an optimum design for brain activation detection because sufficient SNR
can be obtained. However, measuring the temporal integration of the response signals
instead of the response to individual stimuli limits the flexibility of the block design. In
event-related design, on the other hand, the discrete stimuli are presented briefly one at a
time separated by interstimulus intervals (1SI) rather than together in a block. Compared
to the block design, the event-related fMRI experimental design is more versatile and
is a suitable scheme to naturally event-related experimental tasks such as the ‘oddball’
experiments. Furthermore, the event-related design could capture the temporal proper-
ties of the response, thereby providing us with the ability to investigate the timing of
the HDR. Figure 1.10 illustrates simulated BOLD signals of block and event-related

designs.
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(b) Event-related Design.

Figure 1.10 Illustration of BOLD signals of (a) block design and (b) event-related design.
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1.1.6 Description of the Experimental Data Used in This Thesis

In this thesis, two data sets from fMRI experiments are analyzed. One is a block design
and the other is an event-related design; we will refer to these two data sets respec-
tively asDATA-BLOCKandDATA-EVENT hereafter. These data sets are obtained from
the National fMRI data center (http://www.fmridc.org) with the accession number 2-
2000-111JJRATA-BLOCK and 2-2000-11127MATA-EVENTY. In this section, a brief

description of these two fMRI experiments is presented.

DATA-BLOCK

This fMRI experiment was designed for visuospatial processing task — judgement of
line orientation [15]. In this data, 100;-weighted images were obtained with an in-
plane resolution of 3mm (Magnetic Field Strength = 1.5T, TR = 3000ms, TE = 40ms,
flip angle =90°). There are five cycles of alternating 30-sec epochs of baseline and
activation conditions in this experiment which gives a total experimental duration of
5 minutes and sample length of 10 in each epoch. During the baseline condition, the
subjects were asked to ascertain if the two stimulus lines on the screen were on the same
level. During the activation condition, the subjects were shown two stimulus lines in
the top half of the screen, and an exemplar consisting of nine radial lines arranged in a
semi-circle in the bottom of the screen. These two stimulus lines can be any two of the
nine radial lines in the exemplar. The subjects had to decide if these two stimulus lines
matched the two highlighted lines on the exemplar. This experiment activates the striate

cortex and extrastriatal cortex of the brain.
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DATA-EVENT

This real fMRI experiment was designed for detection of visual-mental imagery and
perception — transient activity in the human calcarine cortex. The functional data were
acquired using EPI with the imaging parameters: Magnetic Field Strength = 3T, TE =
40 ms, TR = 2000 ms, flip angle$9° and64 x 80 matrix. The details of the experiment

can be found in [16]. During the experiment, after hearing the name of an animal, the
subjects were told to form an image mentally; then, the subjects evaluated the charac-
teristics of the named animal after hearing an auditory instruction of a specific property
of the named animal. The total number of data points for this experiment is 308, with
several visual-mental processes. From the description of the experiment, in addition to
the visual-mental process, the subjects were also given auditory stimuli. Each of these
auditory stimuli lasting for 2 seconds are presented with fixed interval and separated 14
seconds apart (7 scans). As a result, the auditory cortex should also be activated. In this

thesis, the activation of the auditory cortex is examined.

1.2 fMRI Data Analysis

This section describes the various techniques of fMRI data analysis, including the pre-

processing, signal models and analysis methods.

1.2.1 Preprocessing
Realignment

Even though the heads of the subjects are restrained from movements physically in the
scanner and the subjects are instructed to keep as still as possible, itis inevitable that the

head may change its position during the relatively long period of scanning. This may
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pose the problem that a given voxel does not uniquely represent a specified area in the
brain. Realignment tries to reduce the effect of the head motion. This involves basically

two steps: the motion estimation and correction.

Co-registration

This step is to co-register the functional data and the structural (anatomical) data, that
is, to map the individual functional image onto anatomical image of the same subject or
onto a standard template (stereotactic normalization) and then to interpret the functional
results on the template. The commonly used templates are brain atlas provided by Ta-
lairach and Tournoux [17] or averaged brain images provided by Montreal Neurological

Institute [18].

Smoothing

Smoothing spreads the activation of a voxel to its neighboring voxels. It has two ad-
vantages [19][20]: i) to increase the SNR and ii) to make the data satisfy the later pro-
cessing assumptions, for example, the interpretation of the images as Gaussian random

field [21].

1.2.2 Modelling the fMRI Data

From an engineering perspective, fMRI data analysis can be viewed as the analysis of the
response of a system given the information about the input and output. This is shown
in Figure 1.11. The system is a black box which contains the subject undergoing the
experiment (including experimental task, other cognitive/sensory/motor tasks, motion,
etc.) and the measurement settings (including environment, BOLD effect, data acquisi-

tion, spatial reconstruction, artifacts, preprocessing etc.). Since fMRI data is a 4-D data
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Figure 1.11 fMRI data acquisition as a system with input and output.

set, it is necessary to investigate the temporal and spatial properties of the fMRI data in

order to have a full understanding of this complex data.

Temporal Modelling of fMRI Data

The measured fMRI data are often interpreted in terms of voxel time series and the
dynamic behavior of the intensity in a voxel indicates whether this voxel is active or not
in a specified experimental task. Roughly speaking, an observed voxel time series could

be decomposed as:
Observed voxel time series = BOLD response + Drift + Noise

Each of these parts are briefly explained below. In the subsequent chapters, the related

signal models are described in greater detalil.

Models for the BOLD Response

1. Boxcar model
This is the simplest BOLD response model which ignores how the system (brain
and MR-scanner) modulates the applied experimental paradigm and just use a

square-wave function to represent the observed BOLD response (only applicable
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to block design). The resulting BOLD signal(n) for a block design with the
block duratiorp is:
0, fn=1--,p2p+1,-- 3p;-- ;T =2p+1--- T—p

y(n) = .
Lofn=p+1,--.2p3p+ 1, dp;--- ;T —p+1,---,T

(1.14)

whereT' is the total number of the time points of the BOLD response.

2. Convolutive model
This model assumes the system to be linear and hence the BOLD gj(mnad the

convolution between the system impulse response and the experimental design:

yp(t) = h(t) @ s(t) = /OOO h(7)s(t — T)dr (1.15)

where® denotes the convolution operatio#(t) is the signal representing ex-
perimental paradign(t) is the impulse response called HRF. The models pro-
posed to describe the HRF waveform include the Poisson model [22], Gamma
model [23], Gaussian model [24] and difference of gamma functions model [25].
Among these models, the difference of gamma functions model could model the
undershoot of the HDR and hence it is widely used. This model is represented by:

h(t) = (d%)al exp <_(tb—_1d1)> — c(d%)az exp <_<tb—?‘l2)> (1.16)

whered; = a;b; is the time (in seconds) to the peak amplitudeh¢f). The
common choice of these parameters @re= 6, a; = 12, by = by = 0.9s and
¢ = 0.35, which can generate the canonical HRF commonly used in fMRI data

analysis.

3. Balloon model

The Balloon model is a physiologically inspired model introduced by Buxton et
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al [26]. It is a state-space model which describes the dynamics among blood
flow, blood volume and blood oxygen concentration changes. The model is in-
herently nonlinear and can be used to explain the nonlinearities appearing in the
BOLD signals. Compared to the convolutive model which is used for brain activ-
ity detection only, the Balloon model has been mainly used for understanding the
mechanisms underlying the BOLD effect. The detailed description of the Balloon
model is given in Section 6.4 where the nonlinear models of fMRI data analysis

are discussed.

4. Subspace model
This model considers the variations in the BOLD response between different sub-
jects and different brain areas by defining a linear signal subspace in which re-
alistic BOLD responses reside [37]. A BOLD response shapg can then be

realized as a linear combination of several temporal basis functions:

wherew, - -+ ,w, are the weights and,(¢),--- ,y,(t) are the basis functions.
These basis functions could be Fourier series consisting of sine and cosine func-
tions with different frequencies, or Taylor series consisting of different derivatives
and so on. It may be noted that this subspace model should be constrained to
avoid over-fitting. A general principle is that the model subspace should be as
small as possible while it still should capture the important variations in actual

BOLD response shapes.

Drift and Trends
Drift and trends are the slowly varying interferences which are generally present in

the fMRI time series. The sources of these drifts and trends are not well understood, and
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may come from the instability of the magnetic field [27], physiological processes such as
respiration and cardiac processes and so on [28]. Itis necessary to model and remove the
drifts in order to make correct inferences about the data. The most common drift model
consists of linear subspaces spanned either by a set of polynomials or a set of cosine
functions. In the fMRI analysis softwar&tatistical Parametric MappingPM) [29],
a highpass filter using discrete cosine transform (DCT) basis functions is implemented
to remove the lower frequency components (drift). In Chapter 4, the drift in the fMRI
data is modelled to reside in the subspace spanned by a few large scale wavelets and a
criterion for choosing the model order is proposed.
Noise

The random noise is basically what is left when the BOLD signal as well as the drift
or trends have been specified. This includes not only the “genuine” random physiologi-
cal noise and scanner noise, but also the residual variance due to an imperfect model as
well. The most popular model is the white Gaussian noise. Even if this is not always
specified explicitly, it is the implicit model underlying the simgi¢est methods and
correlation methods, which are widely used. However, it is found that the noise is not
independent. For this reason, we must take some care to model the correlation structure.

The simplest one is the first order autoregressive model (AR(1)):
€ = ag;—1 + 1N, (1.18)

wheres; ande;_; are the error component at time poirgnd: — 1, a is the AR(1) coef-
ficient andn; ~ N(0,02). A more complex model is AR} model or an AR(1)+white
noise model [30].
Besides these traditional noise models, thi¢—like noise or nonstationary frac-
tional noises in the fMRI data have been reported and investigated by many researchers

recently. In Chapter 3 and 4, we discuss this noise model and show how the wavelet
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transform which whitens the noise in fMRI could be used in the proposed Bayesian

estimator.

Spatial Modelling of fMRI Data

Even though it is the temporal behavior of the voxel time series that determines whether
the voxels are active or not, the voxel time series in a spatial context can be exploited to
improve the detection of the active voxels. The active areas, in general, have a spatial
extent of several millimeters, i.e., a few voxels. This causes that #tatistics orF
statistics occur above a specified threshold in a cluster manner in the SPM. Gaussian
random field theory is applied in SPM to account for the spatial correlation of the fMRI
data.
Single Voxel Model

It is the simplest model that each voxel time series is analyzed in isolation from its
neighbors. The underlying assumption is that the active brain areas are smaller than the
area covered by a single voxel.
Gaussian Model

This model is currently the most commonly used model in fMRI analysis due to its
equivalence with a pre-smoothing of the fMRI images with a Gaussian filter. The size
of the filter is commonly measured by the Full Width at Half Maximum (FWHM)- the
distance between two opposite points on the Gaussian at which the function reaches half
its maximum value.
Flexible Model

Due to the variation of the shape, the activation profile can be described as the linear

combination of several spatial basis functigis):

f(X) :wlfl(x)+"'+wmfm<x)7 (119)
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wherex represents spatial locations. When examining a voxel for activity, the voxel time
series in the neighborhood can be first weighted and averaged according to the spatial
basis functions to improve the detection accuracy. However, the flexibility of this model

may cause an over-fitting problem.

1.2.3 Data Analysis and Inference

The analysis methods of fMRI data could be divided into two categories:

1. Model-driven (hypothesis testing) metho@ikese methods assume a certain form

of the response to the experimental stimulation and then statistically test the pres-
ence or absence of the response in the analyzed data. The methods in this category
differ either by the signal estimation procedure or by the statistical method em-
ployed to assess the activation. The potential weakness of model-driven methods
is that the assumed response may be inadequate to describe the real response, thus
yielding biased conclusions. The commonly used general linear model (GLM)

method belongs to this category.

2. Data-driven (exploratory) method3hese methods consider all the voxels simul-

taneously. They search for kinds of patterns appearing in the data set, and how
these patterns are temporally/spatially structured. This information is extracted
from the data set without any prior knowledge of the experimental paradigm.

Roughly speaking, these methods can be divided into two groups: blind source
separation (BSS) and clustering. BSS tries to find a generative model of the data
which assumes that the measured signals are mixtures of different kind of sources.
Principal component analysis (PCA) [31][32], independent component analysis

(ICA) [33][34][35][36] and canonical correlation analysis (CCA) [37] methods



1.2 fMRI Data Analysis 29

are used to unmix these mixtures to obtain the source signals. By contrast, clus-
tering [38][39] and self-organizing map (SOM) techniques are based on the as-
sumption that the set of voxels can be split into different sets on which one effect

is predominant.

General Linear Model (GLM)

The GLM has been popularized by the SPM software. It is the most fundamental and
basic method to analyze the fMRI data sets. Compared to the comhteshand cor-
relation analysis, GLM could eliminate the effects that may confound the analysis by
using a suitable model.

Let y(¢) denote the measured response in one voxel of the fMRI data set at.time
We assume that the subject undergoedifferent conditions of a given experimental
paradigm. The conditions are defined by the time course of the stimulation function
s.(t), wherec=1,...,C.

The GLM assumes that the response to each experimental task is proportional to the
convolution of the stimulatior.(t) with a filter 2(¢) known as the canonical HRF dis-
cussed earlier (Eg. (1.16)). Using the assumption that the system is linear time invariant

(LTI), the most basic signal model is:

y(t) =wo+ > weh(t) @ so(t) + €(t) (1.20)

wherewy is a constanty,. is the amplitude of the responses to the stimulaade(t) is
the noise term.

Let us denotes.(t) = h(t) ® s.(t) and specify other explicative variables such as
head motion estimation during the session, or low frequency sinusoids, or the convolu-
tions of the first and second temporal derivatives of the HRIF with s.(t) to account

for the variations. We obtain a set of temporal regresso(s), with r = 1,...  R;
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whereR (> C) is the total number of regressors. Putting these regressors into a linear

model, the following equation is obtained:

R
y(t) =Y wee(t) +e(t). (1.21)
r=1
The discrete version of the GLM can be succinctly denoted in a matrix form,
y = Pw + €. (1.22)

Here,y = [y1, - ,yr|’ is the vector of observed/measured voxel values with dimen-
sionsT x 1, whereT is the length of the time series or indices of observations (e.g.
scan). w = [wy,---,wg|’ is the vector of parameters ard= [¢y, - ,e7|T is the
vector of error terms which is assumed to be norenal A/(0, 0*X). The design matrix

® (dimensionsl’ x R) is defined as:

$11 G2 ... QiR
P — ¢.21 €Z5.22 . Qb?R 7 (1.23)
¢r1 ¢r2 ... OrR

where ¢,; is the j regressor at thé" time points of the time series. Each row of
® corresponds to one time point (scan) of the regressors, and the columns represent
different explanatory variables or regressors in the model.

With the assumption thatis white noise with® = I, ® is of full column rank and

consequentlyp’ ® invertible, the least squares (LS) estimation of the paranveisr
w=(®T®) 'y (1.24)

with the covariance matrix

Ay = o?(®T®) . (1.25)
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This technique yields the best linear unbiased estimator (BLUE) [4®]@ (W) = w).
The estimated parameters are also Gaussian distributedy ice. N (w, o?(®7®) 1),
and since the variance can be consistently estimated, the statistical inference can be
made based on this.
Considering the temporal autocorrelation of the nolseA I), the following proce-

dures can be performed to make the statistical inferences easier to derive and interpret:

1. Whiten the signay together with the regression mode] this procedure requires

a careful estimation of the autocorrelation [41].
2. Estimate the noise covarian® and modify Eq. (1.24) and Eq. (1.25) by:
w=(®'Z'®) leTE 1y (1.26)
Ay = (@7 '®)"L (1.27)
This method is at the risk of biasing the result if the estimat® o poor [42].

3. Add more correlation than what is actually in the data (replace the unknown cor-
relation with known correlation), and derive a new noise covariance matrix [20].
This model has the form:

Ky = K&w + Ke (1.28)

whereK is the filter written in matrix form. Eg. (1.24) and Eq. (1.25) now be-
come:
W = ("K'K®) '®'K' 'Ky (1.29)
Ay = (PTK'K®) '@ K'KIK'K®(d'K'K®) . (1.30)
This estimate is biased, however it is argued that this bias is inferior to the bias

induced by an improper whitening [20].
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After having estimated the parameterit is possible to assess whether the elements
in w corresponding to the response are large enough to ascertain that the response truly
exists in the data. The null hypothesis here is that there is no activation anywhere in the
brain, that is,H, : ¢c’w = 0, wherec is a contrast which forms a linear combination
of the estimatesy. To justify the activation of the voxel, the null hypothesis needs to
be rejected. Under the null hypothesis, the contrast of the parameter estihétés

normally (Gaussian) distributed with meahw and variance” Ac as shown below:
W~ N(c"w,cTAgc). (1.31)

A t-statistic can then be formed by dividing a contrast of the estimated parameters
cT'Ww by its estimated standard deviation [43]:

cI'w

vclAgce

wheret,; is the Student distribution withif degrees of freedom, which is derived and

~ g (1.32)

adjusted using th&atterthwaiteapproximation [44]:

trace(RX)?

- trace(RERY) (1.33)

whereR =1 —Pg =1 — ®(®7®)"'d7 is the orthogonal projection matrix (projector
onto the residual space &). For practical applications, thtescores are then converted
to a normal variablez through standard procedures. Each voxel hdssaore orz
score, thus a statistical parametric maBMt} or SPMz} is formed. This map can
be thresholded for a certain significance valu®ealue, which is the probability that
or t is above a given threshold under the null hypothesis. Then the activated regions in
the brain can be inferred by rejecting the null hypothesis given the statistical score.

The P-value defined above is voxel-based which may create a problem when try-

ing to control the overall or family wise error (a multiple comparison problem). In
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order to control the number of false positive voxels for a given map, we should consider
map-wise threshold. If we assume that the voxels are independent, then the Bonferroni
correction procedure [45] could be applied. However, the Bonferroni correction is too
conservative since the voxels are spatially correlated. Therefore, the Gaussian random
field theory [21] is applied. The idea is that, under the null hypothesisz4nap is a
Gaussian random field, with a given smoothness. The probability of family wise error
can be approximated by the expected Euler charactetisfihis gives a new way of
setting a threshold on a smooth Gaussian random field and hence controlling the family
wise error.

For fMRI, inference can be drawn at different levels using different tests. The fol-
lowing tests pertain to different levels of inference for an activation profile, namely a
voxel, a cluster and a set level with decreasing localizing power but potentially increas-

ing sensitivity.
1. Test for the intensity of an activation (voxel level).
2. Test for both peak height and spatial extent of an activation (cluster level).
3. Test for significance of a set of regions (set level).

After the inference on single subject (first-level analysis) has been obtained, the
inference can be generalized to the population (second-level analysis or group study).
This is achieved by the success of the following two procedures. i) Spatial normaliza-
tion: The commonly used methods include whole-brain normalization, sulcal matching
and functional matching [53]. ii) Group inference: This is achieved by random-effect
analysis [21] and Bayesian analysis [66]. The basic idea is to treat the effect size or

parameters obtained in the single subject analysis as samples from a large population

1The Euler characteristic of an image is a property of the image after it has been thresholded.
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and by using random effect analysis or Bayesian analysis, the inference of the effect on

the group level can be obtained.

1.3 Thesis Contribution and Organization

This thesis presents robust and efficient algorithms for fMRI signal processing and data
analysis which is validated by both simulated and experimental fMRI data. Advanced
schemes are developed in order to achieve better detection of the activated regions of
the brain and estimation of the hemodynamic response of the brain functions. We only
consider the single-subject (first-level) analysis in this thesis. Analysis of group studies
(second-level experiments) requires further analysis.

The remainder of the thesis is divided into three parts.

The first part (Chapters 2 — 4) deals with the Bayesian analysis of fMRI data. Dif-
ferent from the traditional analysis methods which are based on the null hypothesis,
the Bayesian methods could give the accurate probability of an activation and avoid the
multiple comparison problem encountered in the traditional null hypothesis methods.

In Chapter 2, a sparse Bayesian learning method to flexibly determine the design
matrix in the GLM is proposed. The construction of the design matrix is critical to
the accurate detection of activation regions of the brain in fMRI. It should be flexible
to capture the unknown slowly varying drifts as well as robust enough to avoid over-
fitting. The method proposed in this chapter lets the data itself determine the form of
the regressors in the design matrix. It automatically finds those regressors that are rele-
vant to the generation of the fMRI data and discards the others that are irrelevant. The
approach integrates the advantages of model-driven and data-driven methods for fMRI
data analysis.

The assumption of noise stationarity in the fMRI data analysis may lead to the loss
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of crucial dynamic features of the data and thus result in inaccurate activation detection.
In Chapter 3, a Bayesian approach is proposed to analyze the fMRI data with two non-

stationary noise models (the time-varying variance noise model and the fractional noise
model). The covariance matrices of the time-varying variance noise and the fractional

noise after wavelet transform are diagonal matrices. This covariance matrix is estimated
using a Bayesian estimator which also gives an accurate estimate of the weights in the
GLM. Therefore, this method could enhance the accuracy of the detection of activated

regions in the brain.

In Chapter 4, we extend the method introduced in Chapter 3, and incorporat the drift
in the GLM. Based on the observation that the slowly varying drift resides in a sub-
space spanned only by large scale wavelets, we propose a modified GLM in the wavelet
domain under a Bayesian framework. This modified GLM estimates the activation pa-
rameters at each scale of wavelet decomposition. Then, a model selection criterion —
Confidence Interval Criterion (CIC) — based on the results from the modified GLM is
proposed to model the drift. The Bayesian estimator accurately captures the noise struc-
ture and hence results in a robust estimation of the parameters in the GLM. Besides, the
proposed model selection criterion works well and efficiently models and removes the
drift.

The second part (Chapters 5 and 6) of this thesis investigates the estimation of the
HDR under different experimental scenarios (linear and nonlinear). In Chapter 5, a
linear spatiotemporal adaptive filter is proposed to model the spatial activation patterns
as well as the HDR to the event-related stimulus. The well-known least mean square
(LMS) adaptive algorithm is used for estimating the coefficients of the spatiotemporal
filter. The method proposed is proved to be equivalent to the CCA method. It is then
extended to multiple event type scenarios to estimate the HDRs of each event type.

In Chapter 6, we investigate the nonlinear method to estimate the form of the HDR.
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The measured BOLD signals to a particular processing task (for example, rapid event-
related fMRI design) show nonlinear properties and vary with different brain regions
and subjects. In this chapter, radial basis function (RBF) neural network (a powerful
technique for modelling nonlinearities) is proposed to model the dynamics underlying
the fMRI data. The equivalence of the proposed method to the existing Volterra series
method has been demonstrated and validated in this chapter. It is shown that the first or-
der Volterra kernel which is equivalent to the HDR can be deduced from the parameters
of the RBF neural network.

The third part (Chapter 7) of this thesis is mainly focused on the modelling meth-
ods of fMRI data. Being complex and noisy, 4-D fMRI data sets show low SNR and
nonlinear properties. To enhance the SNR, signal modelling methods are proposed to
reconstruct the BOLD signal from the noisy fMRI data. To capture the nonlinear dy-
namics of the fMRI signal, nonlinear autoregressive with exogenous inputs (NARX)
neural networks are investigated to model the fMRI system from the measured fMRI
signal and available experimental designs. The NARX neural network is able to capture
the dynamics of the fMRI signal and could provide a promising method to model and
reconstruct the dynamics existing in the fMRI data.

Chapter 8 provides a summary and general conclusions of the thesis along with rec-
ommendations for future research.

This thesis could provide neuroscientists and psychologists with an advanced analy-
sis tool to cope with various difficulties faced in fMRI data analysis. This may contribute
to the better understanding of the nature of the fMRI signal and be of importance in ex-

plaining the underlying mechanisms.



Chapter 2

Sparse Bayesian Method for

Determination of Flexible Design Matrix

iIn fMRI Data Analysis

2.1 Introduction

In Section 1.2.3, we briefly introduced the model-driven and data-driven methods used
in fMRI data analysis. Both methods have their own advantages and disadvantages. The
data-driven methods are flexible especially when an appropriate data generation model
is not available. However, the necessity to explore the whole data set leads to high
computational demands and difficulties in interpreting the results. The model-driven
methods on the other hand assumes an underlying model taking into account the infor-
mation provided by the experimental paradigm; they often require less computation and
lead to an easier interpretation of the results. However, the model-driven methods may
impose an improper model on the data and lead to misinterpretation. In particular, the

BOLD response and the interferences may vary for different subjects and for different

37
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regions of the brain. The complexity of the fMRI data requires a method flexible enough
to accommodate the variations of the signal and that can adapt to different noises and
interferences.

Recent work has suggested that the combination of data-driven and model-driven
methods could give better results for fMRI data analysis. In [36], the author proposed
a hybrid approach which uses the results of ICA to form the regressors in the GLM.
In [48], the ICA with reference (ICA-R) which uses the information of the input stimuli
as reference was proposed. In [49], a semi-blind ICA of fMRI incorporating prior infor-
mation about the paradigm time course was introduced. These methods are based on the
powerful data-driven techniques and use some information of the experimental paradigm
to guide the analysis. These methods help to understand the fMRI data analysis problem
from data-driven methods towards model-driven methods.

In this chapter, a mixed model which starts with model-driven methods and utilizes
the data-driven methods to guide the selection of the regressors is proposed. This method
assumes a generalized linear model. However, instead of specifying the whole design
matrix before analysis (as in the GLM method), only the BOLD response regressor in the
design matrix is specified and the data automatically determines the remaining regres-
sors through sparse Bayesian learning. Furthermore, some evidence about the existence
of the regressors in the design matrix is obtained through the learning procedure and the
irrelevant regressors are discarded to avoid overfitting. This new method integrates the
advantages of the data-driven and model-driven methods and gives full flexibility to let

the data itself determine its regressors in the design matrix.
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2.2 General Linear Model

The aim of fMRI data analysis is to determine the activated regions of the brain (i.e. to
determine which voxels embody the BOLD responses to the experimental task). Nor-
mally, it is the temporal properties that determine whether a voxel is activated or not.
Hence, the fMRI data is processed voxel by voxel and the time series at each voxel is
investigated [50]. The GLM imposes a general linear model to the time series of each
voxel. The parameters of the model are then tested to draw a conclusion on the activation
of the voxel.

The GLM has been introduced in detail in Section 1.2.3. Here, we reiterate its
major properties for the convenience of reference. yelenote the vector of ob-
served/measured intensity changes in one voxel of the fMRI dataset, with dimensions
T x 1, whereT is the total length of the time series or indices of observations (e.g.
scans). GLM is then given by:

y=®Pw+e€ (2.1)

in whichw is a vector of parameters with dimensidis 1 which could be found by the

least square methods. = [, - -, er|T is the vector of error terms which is assumed

to be normak ~ N (0, o*I) (after prewhitening). The design matdx has dimensions

T x R with each row corresponding to one time point (scan) of the regressors, and the

columns corresponding to the different explanatory variables or regressors in the model.
In GLM, the design matrix is specified prior to the analysis and will not change

during the analysis procedure. The regressors (or the column vectors of the design

matrix) often consist of a canonical BOLD response (and its derivatives), a vector of

constant value 1 representing mean value and several discrete cosine transform (DCT)

basis functions representing the high-pass filter to remove the unwanted low-frequency

components from the data [53].
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The design matrix in GLM is not flexible and may cause problems. The number of
the DCT waveforms to be included in the design matrix should be determined carefully
before analysis. I&PM this is implemented by specifying the highpass cutoff. Gener-
ally, too many basis functions would lead to an overfitting problem, while too few basis
functions may not filter out the slowly varying interference efficiently. So, the selection
of the number of basis functions is a very tricky issue. Furthermore, the inclusion of
the canonical BOLD response regressors into the design matrix may result in a deviated
model if the voxel is not activated. For accurate detection, an efficient method is re-
quired, which could switch the BOLD response regressor ON and OFF according to the
measured data during the data learning procedure.

In the method proposed, the initial design matrix includes the BOLD response re-
gressor, the vector of constant value 1 and a set of general nonlinear functions (instead
of DCT basis fucntions) that account for the slowly varying drifts and trends. Com-
pared to the design matrix used in the GLM, the proposed model is much more flexible
due to the use of general nonlinear functions which in fact construct a flexible subspace
and could capture signal variations more efficiently. Besides, different from the GLM in
which the design matrix will not change during the whole analysis, the proposed method
could adapt/adjust the design matrix according to the data. This is implemented under
the Bayesian framework. By using the sparse Bayesian learning, the regressors could
be learned from the data automatically to best account for the observed signal. The
unwanted regressors are then removed from the design matrix to avoid the overfitting

problem.



2.3 Sparse Bayesian Learning 41

2.3 Sparse Bayesian Learning

Suppose the initial number of regressors in the design mat(ik is 2) and the design

matrix isT" x (1" + 2), which is defined as

® = [d)lvd)z"" 7¢T7b71]’ (2.2)

where the firsfl” regressors in the design matrix are flexible radial basis functions which

2U

wherei, ;7 = 1,--- T are the time points (or scan indices), anc the width of the
basis function. ThéT' + 1)th regressob is the vector of the canonical BOLD response
which is the convolution of the experimental paradigm and the HRF [53]/Zhe 2)th
regressor is a vector of constant value 1.

The aim of sparse Bayesian learning is to determine a suitable Set @fhere
M < T + 2) regressors and their corresponding weighting coefficientsSince the
noisec,,;n = 1,--- , 7T in EQ. (2.1) are assumed as independent samples of Gaussian
noise with zero mean and varianeg(for temporally correlated errors, the prewhitening
procedure is required), the output signaln = 1,--- , T is also Gaussian distributed
with variances?. With the assumption of the independence of the ougputhe likeli-

hood of the whole data set can be derived as:

1 1
plylw,o?) = (20T eXP{—T‘QHy — ®w|’} (2.4)

wherey = [y, -+ ,yr]T is the vector formed by the measured fMRI signal, which is
defined by the GLMw = [wy, - ,wy|T and® istheT x M (M < T + 2) design
matrix. For the initial settings) is equal to7 + 2 and ® has the form defined in

Eqg. (2.2).
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To avoid over-fitting, some of the parameters are constrained by defining prior prob-
ability distributions over them. Especially, the weight vectois treated as a random

variable with Gaussian prior probability (with zero-mean and variancé [54]:
p(w|a) = HN (0,a; 1) (2.5)

wherea = [ay, as, -+, a7 is a vector ofM hyperparameters. This prior probability
in Eg. (2.5) is known as an automatic relevance determination (ARD) prior [54, 55].
This prior could also be set up using the general parametric empirical Bayesian (PEB)
framework [56] by assigning a covariance basis functigrto each regression coeffi-
cientsw;. This prior means, at this time, that the best guess about the vatugi®D,
and thato; ! represents the uncertainty about this guess. Furthermore,’thand the
noise variance? are defined with uniform distributions.

The basic idea of Bayesian learning is to maximize the posterior probability over
the weightsw and the hyperparametees and o2 given the datay, i.e. maximizing

p(w, a, o?|y). This posterior is further decomposed as:

p(w, e, o’ly) = p(wly, e, 0®)p(ex, o”y). (2.6)

Maximizing the left hand side of EqQ. (2.6) is equivalent to maximizing the two probabil-
ities on the right hand side. The first probability on the right hand side is also a Gaussian

distribution given by
p(wly, a,0%) = (2m) M2 A2 exp (- %(w —wAT (w-w) @)
with the posterior covariancé and mean being
A=(c®"®+A)! (2.8)

u=o02Ad"y (2.9)
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whereA = diag(ay, ag, -+, ap).

The maximum is clearly at the mean, i.e. the best estimate of the weigists

W= u. (2.10)

The second probability on the right hand side of Eq. (2.6) is further decomposed and
its maximization is equivalent to the maximizationpéx, o2|y) o p(y|e, 0?)p(a)p(c?)
with respect tax ando?. For uniform prior distributions, the following update equations

are derived [54, 55]:

arew = 1t (2.11)
wy
— dwll?
(0,2)new — Hy ]\ZVH (213)
T — Zi:1 Vi

wherew; is thei-th element of the posterior mean vectrin Eq. (2.10) andA;; is
the i-th diagonal element of the posterior covariance maiixn Eq. (2.8),7 is the
total number of data points (in this case, the length of the fMRI time serjesgn be
interpreted as a measure of how “well-determined” its corresponding parainésdry
the data [55]. Ify; ~ 0, from Eq. (2.12) it can be seen th&t; ~ a; ', which means that
w; is highly constrained by the prior. Converselyyifa 1, «; is small andw; fits the
data.

The learning algorithm is to iteratively update Eg. (2.11) to Eg. (2.13), together
with A andw from Eq. (2.8) to Eq. (2.10) until some suitable convergence criteria are
satisfied. In practice, during the learning process, many ohitlseapproach infinity,
which means the probability densip(w;|y, a, 0*) becomes infinitely large at zero.
This shows that it is certain to some extent that the particuJashould be zero given
the data at hand. Thus, the corresponding regressor functions could be ‘pruned’ and

fewer regressors are kept to construct a suitable design matrix. These regression vectors
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are called Relevance Vectors in [54]. Specifically, the drifts and trends will be modelled
by automatically selecting a minimum number of flexible basis functions which could
capture the slow variations. The canonical BOLD response regressor may be ‘pruned’
as well given the fMRI data. Thus a method is achieved to determine a flexible design
matrix in fMRI data analysis. This method could capture the underlying slowly varying
drift in the fMRI data and avoid overfitting.

Furthermore, besides the estimation of the weight8ayesian learning also pro-
vides the estimate of the additive noise lewé&l This term is important in the statistical
evaluation of the weightsv, which are evaluated by defining a contrast veet@nd
calculatingt as [57]:

c'w

= e (2.14)

Theset obtained at each voxel are then used to form a Statistical Parametric Map and a

threshold is determined to find the activation regions of the brain.

2.4 Results and Discussion

The proposed approach was first tested on simulated data with the total number of time
points (or scans) equal to 100. These signals simulate block design fMRI signals. Fig-
ure 2.1 shows a sketch of a block design experiment and its square waveform represen-
tation. When the stimulus is applied (ON), the representing waveform has the value 1;
while when the stimulus is absent (OFF), the representing waveform has the value 0. A
comparison between the proposed approach and the conventimsalmethod is also
given. Then, this new approach is applied on the experimental fMRI data. The results

are discussed in detail in the following sections.
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Figure 2.1 lllustration of a block design and its square waveform representation.

2.4.1 Simulated Data

The aim of this study is to investigate whether the proposed approach could capture
the underlying slowly varying drift and can give some evidence to include the BOLD
response regressor in the design matrix or not. Particularly, four types of signals are

simulated and tested:

Type 1: BOLD response + Constant mean value + Noise;
Type 2: Constant mean value + Noise;
Type 3: BOLD response + Constant mean value + Drift + Noise;

Type 4: Constant mean value + Drift + Noise.

The BOLD response is simulated by assuming the brain and MR acquisition system
to be a linear system. Thus, BOLD responses are generated as the convolution of the
experimental paradigm and the HRF. The HRF is chosen as the difference between two
gamma functions as introduced in Chapter 1 (Section 1.2.2). The mean value is a ran-
domly generated constant representing the grey level of the specified voxel in the brain
image. The drift is simulated by a slowly varying sine wave. The Gaussian noise with
zero mean and variance 1 is added to the simulated signal, which results a signal-to-noise

ratio (SNR) of about-7dB.
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Figure 2.2 A simulated BOLD signal corrupted by drift and noise (Type 3) is decom-
posed by the proposed approach into different sources. (a) Simulated noisy fMRI signal;
(b) BOLD response; (c) Constant mean value; (d) Slowly varying drift; (e) Noise.
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Figure 2.2 shows the result of analyzing the Type 3 signal. Figure 2.2(a) is the sim-
ulated BOLD signal corrupted by the drift and noise. This noisy signal is decomposed
into the pure BOLD response (Fig. 2.2(b)), the constant mean value (Fig. 2.2(c)), the
slowly varying drift (Fig. 2.2(d)) and the noise (Fig. 2.2(e)) after fitting the simulated
data to the model learned by the proposed method. Initially, the design matrix has the
dimensionsl00 x 102 (7" = 100). Through sparse Bayesian learning, the proposed ap-
proach discards the irrelevant columns in the design matrix and retains only the relevant
columns. The number of final regressors in the design matrix for this simulated signal is
reduced to 4 (i.e. the final design matrix has the dimensiofis< 4), with one BOLD
response regressor (withy, = 1.2040; oy = 0.6670), one constant mean value regressor
(with w3 = —5.1650; a3 = 0.0374) and two basis functions to account for the slowly
varying drift (with w, = 1.5631; 0 = 0.3913 andw, = 2.0976; a; = 0.2215). The
values ofw;’s (different from zero) andy;’s (not too large) give us some evidence that
these four regressors are relevant regressors and the design matrix formed by these four
regressors is suitable for the simulated signal. The valudafthis signal is 4.145.

Figure 2.3 shows the result of using the proposed model determination method to
analyze the other three types of simulated signals. The simulated noisy signal is denoted
in dashed line, while the reconstructed signal is denoted in solid line. The initial de-
sign matrix is formed as in Eq. (2.2), however, during the learning process, the BOLD
response regressor as well as some of the other regressors in the design matrix may be
discarded since they are irrelevant to the generation of the data. In Fig. 2.3(a), when
there is BOLD response in the simulated signals, the corresponding regressor column is
kept in the design matrix after the learning. While in Fig. 2.3(b) and Fig. 2.3(c), when
the signal contains no BOLD response and only consists of either drift and noise or only
noise, the proposed method will automatically switch OFF the BOLD response regressor

column in the design matrix through learning. In this simulation, for Type 2 and Type 4
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Figure 2.3 The simulated signals and their reconstruction. (a) Type 1: BOLD response
corrupted by noise; (b) Type 2: No BOLD response, only noise; (c) Type 4: No BOLD

response, only noise and drift.
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Table 2.1 The error rate of differemvalue thresholds for different types of signals

t-threshold Type 1(%) Type 3(%) Type 2(%) Type 4(%)

1.0 0.25 0.85 10.45 5.70
1.5 0.65 1.85 5.25 3.25
2.0 1.95 3.80 2.50 1.60
2.5 4.05 8.05 0.75 0.60
3.0 9.60 135 0.20 0.15

signals, in most cases (aroufi@;), the BOLD response regressor is discarded through
learning and the-test values are thus 0; but in a few cases (aroli¥d), the BOLD
regressor is not discarded in the design matrix, resulting iri-tket value greater than
zero. However, thesetest values are normally small.

Table 2.1 summarizes the error rates under diffetaratiue thresholds for the four
types of simulated signals. For this simulatiaf} realizations of each type of signals
were generated and processed using the proposed method-td$tewvas carried out
under the null hypothesi#, that there is no BOLD response in the simulated signal.
Both Type | error (rejecting the null hypothesif when it is true) and Type Il error
(not rejecting the null hypothesi§, when it is false) [43] are computed. In this table,
the errors are displayed under different signal types and différest values. For Type
1 and Type 3 signals, the error rates are of Type Il error, while for Type 2 and Type
4 signals, the error rates are of Type | error. From this table, it could be seen that the
proposed method can make correct decisions with small error rates by choosing the
suitablet threshold.

A comparison of the detection ability of the proposed method and the conventional
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t-test method (it tests whether the means of the BOLD signal in the experimental con-
dition and control condition are the same) is also investigated by using receiver operator
characteristic (ROC) analysis [58]. The ROC method reflects the ability of different pro-
cessing methods to detect most of the real activations while minimizing the detection of
false activations. For ROC analysis, two values were computed: the true positive ratio
(proportion of correctly detected voxels to all voxels with added activations) and the
false positive ratio (proportion of voxels that were incorrectly recognized as active to all
voxels without added activation). The ROC curve is a plot of true positive ratio versus
false positive ratio under different threshold values. In this simulation, one slice from
the fMRI data set was used to form the background and Gaussian noise was added to
construct the 2-D time series. Simulated BOLD responses were added to specific areas
to simulate the active brain areas. For the simulated activated voxels, the signal is Type
1, while for inactivated voxels, the signal is Type 2. In this simulation, the drift is not
added. The conventionaitest and the proposed method were applied to this simulated
data. Figure 2.4 shows the ROC curves under both the conventivesti method and
the proposed Bayesian learning method.

Observing the ROC curves of Fig. 2.4, it can be seen that at the same false posi-
tive rate, the proposed method could actually detect more real activations. This clearly
proves the better performance of the proposed method compared to the conventional

t-test method.

2.4.2 Experimental fMRI Data

The proposed method is also validated on the experimental fMRI B&&X-BLOCK
introduced in Chapter 1. Figure 2.5 shows the results of both the conventitesdland

the proposed method. It is clearly seen from the figure that the visual cortical area has
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Figure 2.4 ROC curves for simulated noisy data (2D plus time).

been identified.

For the experimental fMRI data, a quantitative comparison of the performance be-
tween the proposed method and conventional method is difficult. This is because that
we lack a reference which could serve as the true activation of the brain. Therefore, we
refer to thet-test scores for a quantitative comparison. If the degrees of freedom are the
same, the highet-test score means that the false positive would be smaller under the
null hypothesis. And a method which could detect the activated regions in the brain with
higher t-test score is better compared to the other methods. As shown in Fig. 2.5, the
proposed method could detect the activated regions of the brairi-ta#t threshold.3.
However, under this threshold, the conventiantdst method cannot detect the activated
regions. If the threshold is decreased®, the activated regions of the brain could be
detected by the conventionatest method. The results that the proposed method could
detect the activation regions with less erratic points and higgtieshold values clearly

confirms that the proposed method is more robust than the conventitastimethods.
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(@) (b)

Figure 2.5 Results of fMRI data analysis to a visuospatial processing task. (a) Con-
ventionalt-test ¢ > 3.8,p < 0.05); (b) The proposed method with Sparse Bayesian
Learning ¢ > 6.3, p < 0.05).

2.5 Conclusion

In fMRI data analysis, especially in GLM, the construction of the design matrix is very
important to the data analysis. A flexible design matrix that can account for the mea-
sured data while not being too flexible to induce interference is desired. In this chapter,
the sparse Bayesian learning is applied to determine the regressors in the design ma-
trix. The initial design matrix is a very flexible one which may induce the overfitting
problem. Through sparse Bayesian learning, some confidence about the existence of
the regressors is obtained and those regressors that are unlikely present and irrelevant to
the measured fMRI data are discarded. Thus, a method to determine a flexible design
matrix is achieved. This method could capture any unknown underlying slowly varying
drift and avoid overfitting problem. It imposes a flexible model to the data, and lets the
data itself determine what the model should be like. This new method integrates the

advantages of the data-driven and model-driven methods and gives full flexibility to let
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the data itself determine its regressors in the design matrix. Validation results from both
simulated and experimental fMRI data show that the proposed method provides a much
better performance than the conventiofitdst method and enhances the ability of brain
activity detection.

The method proposed in this chapter assumes that the noise is stationary, that is,
the variance does not change with time. However, the noises in fMRI data also show
nonstationary properties. In Chapter 3, this method is generalized to cope with two types

of nonstationary noises in fMRI.



Chapter 3

fMRI Data Analysis with Nonstationary

Noise Models: A Bayesian Approach

3.1 Introduction

In the previous chapter, a flexible design matrix determination method based on sparse
Bayesian learning is proposed. This method assumes that the noise is stationary, that
is, the underlying noise model is time-invariant. However, since fMRI noise is inher-
ently time-varying, the stationarity assumption may not be appropriate considering the
complexity of the data.

In [59], a spatially nonstationary but temporally stationary spatio-temporal noise
model was developed to fit the fMRI time series. However, the nonstationarities can
also exist temporally. Several factors may induce the nonstationarities in the fMRI time
series. Neurophysiological processes, such as the number of neurons involved in a spe-
cific activity at different time points and the extraneous auditory and visual stimuli or
background memory processes, may cause the variance of the noise to change [60]. Be-

sides, the abrupt movements of the subjects are another source of the nonstationarity of

54
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the noise in fMRI [61]. For example, the abrupt movements of the lower jaw of subjects
may affect only a few consecutive fMRI images, causing the variance of these images to
be high and violating the stationarity assumption of the noise. Moreovet,/thelike

noise or nonstationary fractional noises in the fMRI data have been reported and investi-
gated by many researchers recently [62][63]. These factors show that the assumption of
stationary noise may not be realistic to cope with the complex fMRI data. The general
nonstationary noise model to incorporate the time-varying stochastic properties of fMRI
noise (such as transients and sudden changes in the fMRI data) is needed for a more
accurate fMRI data analysis.

In this chapter, two noise models (time-varying variance model [61] and fractional
noise model [63]) are investigated to capture the nonstationarities in the fMRI data.
Different from the assumption (spatially nonstationary but temporally stationary) used
in [59], these two noise models are temporally nonstationary. The covariance matrices
of the time-varying variance noise and the fractional noise after wavelet transform are
diagonal matrices. This property is investigated under the Bayesian framework. The
Bayesian methods are utilized both in single-subject (first-level) analysis [64] [65] [66]
and group studies (multi-level experiments) [67] [68]. In [64], a variational Bayesian
method was proposed to infer on the GLM for fMRI data. The haemodynamic response
basis functions in the GLM using variational Bayesian are then constrained to sensible
HRF shape in [65]. In [69], a Bayesian method with sparse spatial basis function priors
was proposed to incorporate the spatial properties of the fMRI data. In [67] and [68],
the Bayesian approach was utilized to deal with the inference problem on the hierar-
chical linear models for fMRI group analysis. These works show the advantages of the
Bayesian analysis for the fMRI data. The classical approaches, such as SPM, working
under the mechanism of rejecting or accepting the null hypothesis, have some limita-

tions. For example, the values in SPM are the probabilities of the effects under the
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null hypothesis which states there is no activation in each voxel. Theakies do not
reflect the probabilities of the actual effects when the voxel is truly activated. Bayesian
approaches, on the contrary, can give the probability that a voxel is activated or the prob-
ability that the effect is greater than some threshold value. Hence, these limitations of

the classical approaches could be overcome using the Bayesian methods.

3.2 Nonstationary Noise Models

Lety, ande, represent the the measured fMRI signal and noise at'theoxel of fMRI
data respectively. The ordinary least squares (OLS) estimator of the weight wector
in the GLM is:

WoLs) = (@7®) '@y, (3.1)

This estimator assumes that the noise is independent and identically distributed (i.i.d.)
Gaussian white noise. Clearly, this assumption is inappropriate considering the tempo-
ral auto-correlations and the nonstationary nature of the fMRI signals. To deal with the
temporal auto-correlations in the fMRI data, coloring and pre-whitening methods are
proposed [42][52]. Many nonstationary noise models [59][60][63] are also proposed to
model the noises in the fMRI data. Among these proposed noise models, two nonsta-

tionary noise models are considered in this chapter.

3.2.1 Time-varying Variance Model

The abrupt physical movements of the subjects in the fMRI experiment, such as the
lower jaw movements, may affect a few fMRI images, causing the variances of these
fMRI images to rise and breaking the stationarity assumption. In [61], the time-varying

variance noise model is introduced and it is reported that such increase in noise variance
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is multiplicative. That is, the noise interferences affect the variances in the fMRI images
multiplicatively, but not additively. Hence, the variance at each time point is modelled
as a scaled version of the overall variance in that voxel. This time-dependent noise is
modelled as a Gaussian process~ A (0, B, ') with the precision matriB,, (i.e, the

inverse of the covariance matrix) defined as:

S1 0 0
0 So ... 0
B, = Gn = SPB, (3.2)
0 0 ... ST
wheresy, so, ..., sp are the scaling parametef$,is a’l" x T scaling diagonal matrix

andp3, is a scalar representing the overall noise precision imtheoxel. This noise
precision matrix shows that the precisions (or inverse of variance) afthexel at dif-
ferent time points are scaled versions of the overall precisjoobserved in that voxel.
In [61], it is testified that the scaling change of the precision has a spatial uniformity.
This shows that if the noise of the voxels in some portion of the image changes, the
noise in all other voxels in the same image will also change to a similar degree. Thus,
although the overall variance is different in different voxels (i.e. diffefgnn different
voxels), the scaling parameters are assumed to be the same across the whole image (i.e.
the scaling matriXS is assumed to be the same for all the voxels).

Under the assumption that the precision matrix of neijses B,, = S(,,, the maxi-

mum likelihood estimate o, in the GLM is a weighted least squares (WLS) estimate:
VAVn(WLS) = (‘@TS(I))_l‘I’TSYn- (3.3)

However, the WLS estimate requires us to have an accurate estimate of the scaling matrix

S.
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A traditional methods to estimate the scaling mafimake use of the residuatg

of the ordinary least squares (OLS) estimates, where the residuals are defined as:
r, =Yy, — ®W,0s) = yn — ®(®T®) 'y, (3.4)

The overall precisions, is estimated by [44]:

~ T —rank ®)

rl'r,
wherer’r, is the sum of the squares of the residuals dndiank ®)) is the appropriate
degrees of freedom.
Considering that,r! is the estimate of the covariance matrix of the noise (i.e.
B! as shown in Eq. (3.2)), the inverse of the scaling paramsigrs= diagS™') =
1

[s7t, 5%, .-+, sp'|T is estimated by averaging these variance estimates weightégl by

over theN voxels:
N .
o _ Lo diagdur.r])
mnv N )

(3.6)

where the operator digg transforms the diagonals of a square matrix into a column
vector. N is the total number of voxels considered due to the spatial uniformity of the
scaling parameters.

Although this classical method is simple to implement, it is a biased estimate of the
scaling parameteksas shown in [61] that the precision matrixigfis not equal t&53,,.
This bias comes from the estimationsafising the residuals of the OLS estimates which
assume the covariance matrix of the residuals to be an identity matrix. This bias may
cause the value in this voxel to be invalid and hence to draw incorrect inference about
the activation status of this voxel if the noise covariance matrix is not an identity matrix.
In Section 3.3, a Bayesian estimator to accurately estimate the scaling parasristers

proposed.
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3.2.2 Fractional Noise Model

It is reported that the noise in the fMRI time series obtained under the resting or null
conditions exhibits long-range auto-correlation in time apd—like spectral proper-

ties [70]. This means that the spectral densityf|) o |f|* is with the spectral expo-
nentA < 0. One of thel/f—like processes is the fractional Brownian motion (fBm).

It is a zero mean, nonstationary, and nondifferentiable process with the auto-covariance

(r) between time; andt, defined by the Hurst exponerf#§ [71]:

1
r(ty, ta) = 552(|t1|2H + a2 — [t1 — o) (3.7)
where
H
52 = 1(1 — 20y <) (3.8)
TH

Let the length of the fMRI time series ié = 27, whereJ is an integer. Applying
the discrete wavelet transform (DWT) to both sides of the GLM, we get a GLM in the

wavelet domain [72] as follows:
v =®"w, +e) (3.9)

wherey" ande!” are the results of applying the DWT respectively to the gatand
noisee, up to the maximum scalé, and®"" is the wavelet transform applying to each
columns of the design matrik.

The wavelet transform of the noigg up to the maximum scalé is denoted as:
G,VLV = [aJ,ladJ,17dJ—1,l>dJ—1,2a te 7d1,1> T ad1,2‘7*1}T (3-10)

wherea; is the scaling coefficient (or approximation coefficient) at leveandd,,
(k = 1,---,277™) are the wavelet coefficients (or detail coefficients) at lenghn =

1, J).
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The orthonormal wavelet decomposition is an approximate whitening filter for fBm [73].
The correlation between the wavelet coefficients within any of the scales and the cross-
correlation coefficients between different scales is very small [74] and hence can be
ignored for any wavelet provided that the number of vanishing moments is sufficiently
large (greater tha@H + 1). It is also shown in [74],[75] and [76] that fdr/ f —like
noises, the wavelet coefficients, ;. at levelm and the scale coefficient;; at level.J

are normally distributed with zero mean and denoted by:

dmy ~ N(0,Va,),

m=1,---,J;k=1,.-..,2/™™ (3.11)

aji o~ N(07VIIJ)7 (3.12)
whereV, = var{d,. .} (k = 1,---,277™) is the variance of the wavelet coefficients
dm i atlevelm(m = 1,---,J) andV,, = var{a;,} is the variance of the scaling

coefficientsa,;; at the level/.
Thus, for1/f—like noises, the orthonormal wavelet decomposition behaves like a
KLT and the transformed fractional noig¥” could be modelled by Gaussian process

€V ~ N(0,V") with theT x T diagonal covariance matrix defined as:

VW = Cou(el)

Viy_y

Va4

(3.13)

The diagonal matriv" is composed of/,, (the variance of scaling coefficients
at level.J) andJ sub-matrices representing the covariance matrix of the wavelet coeffi-

cientsd,, ; atlevelm (m = J,J —1,--- ,1). From Eq.(3.11), it is seen that the wavelet
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coefficientsd,, ;. at levelm are with the same variandg,,,. Hence, the sub-matrix at
levelm is of identical valug/; at the diagonal and of dimensi@d—™ x 2/-™,

Since the wavelet function at different scales are bandpass filters and the scaling
function is a low-pass filter, it is verified in [76] that the variance of the wavelet coeffi-

cients at leveln and the scaling coefficient at levélcan be denoted as scaled version

of o2
Vdm :O'2Sdm; m = 1,2,'” ,J
(3.14)
Vo, = 02Sa,
where S, (m = 1,2,---,J) andS,, are scaling constants determined Hy[72].

Hence, the diagonal elements of the covariance maftk are scaled versions of?

and can be represented by:

Sa;

Sa

Sdy_y

Say_q

vV = . o? (3.15)

Sy

= diag‘l{(SaJ, SdJ? Sdeu Sdew B Sdl’ T 7Sd1)02}7 (316)

where diag'{-} transforms a vector into diagonals of a square matrix.

From the above descriptions, it is seen that the covariance matrix of the fractional
noise in the wavelet domain (Eq. (3.16)) has almost the same structure as the covariance
matrix of the time-varying variance noise in the time domain (see Eq. (3.2)). The only
difference is that for wavelet-transformed fractional noise, the scaling parameters at the
same level are of the same values. Since the covariance matrices have similar structure
in both cases, these two cases can be put under the same framework and in the next

section, we do not distinguish between these two cases unless it is necessary.
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3.3 Bayesian Estimator

The fMRI data analysis aims at a sensitive and robust detection of activation regions
of the brain under different sensory, motor and cognitive experiments. This requires an
accurate estimate of the weightsin the GLM. For the nonstationary noises presented

in the previous section, the WLS and OLS estimators may fail because: (i) the WLS
estimator requires an accurate estimate of the covariance matrix which is difficult and
(ii) the OLS estimator does not consider the nonstationary properties of the noise. In
Chapter 2, a Bayesian method to estimate the parametander the white Gaussian
noise with fixed variance is provided. Here, we extend the Bayesian method to the
situation where the variance of the noise is changing with the time.

The noisee ~ N(0,B™1) is assumed as a Gaussian noise with zero mean and diag-
onal precision matriB = diag " {(sy, s2,--- , s7)3} as introduced in Section 3.2 (for
both time-varying variance noise and fractional noise after wavelet transform). Aktime
(k=1,2,---,T), the noise;, are independent samples from zero-mean Gaussian with
precisions; 3 which may be different at each time pointThus, the output signaj. at
time pointk is also a Gaussian distributed process with varying precision at each time
point. With the assumption of independence of the output at different time points, the

likelihood of the whole time serieg can be derived as a multivariate Gaussian density

function:
B T/2
pyiwB) = 2 exp{- (v~ Bw)B(y - w)
~ exp{—%(y — &w) "By — ®w)}. (3.17)

We also treat the weight vectev as random and assume its prior distribution is

Gaussian with zero mean and precision madix

p(WIA) = N(0,A™") ~ exp{—%wTAW}, (3.18)



3.3 Bayesian Estimator 63

whereA is a diagonal matrix formed by/ hyperparameters as follows:
A:diag_l(Oél,O./Q,"' ,OZM>. (319)

This prior represents, at this time, the best guess about the value ¢f theight w;
is 0, anda; ' represents the uncertainty about this guess. Moreover, we specify the
hyperpriors oveA andB to be uniform.

The basic idea of a Bayesian estimator is to maximize the posterior probability over
the weightsw and the hyperparametess and B given the datay, i.e. maximizing

p(w, A, Bly). This posterior is further decomposed as:
p(w, A, Bly) = p(wly, A, B)p(A,Bly). (3.20)

Maximizing the left hand side of Eq.(3.20) is equivalent to maximizing the two proba-
bilities on the right hand side, that is, maximizipgwv |y, A, B) andp(A, Bly).

To maximize the first probability of the right hand side of Eq.(3.20), we rewrite
p(wly, A, B) according to Bayes rule,

p(w,y|A,B)
p(y|A,B)
p(y|w,B)p(w|A)
p(y|A,B)

Rather than evaluating Eq. (3.21) directly (this needs to evaluate theptgri, B)

p(wly, A, B)

(3.21)

which is not easy), we can rearrange Eq. (3.21) and obtain the probabiliti¢g, A, B)
andp(y|A, B) simultaneously as shown below (Appendix A):

p(wly AB) = (2n) F|AI Fep{ S (w - wA (w -}, (322)
and

p(y|A,B) = (2m) 2[B!+ ®AT®T|

1
exp{—5y (B + 8A187) Iy}, (3.23)
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where

A= (A +3"BP) (3.24)

and

u=A®"By. (3.25)

The maximum of the first probability(w|y, A, B) on the right hand side of Eq.(3.20)

is clearly at the mean, i.e. the best estimate of the weights
W =u. (3.26)

The second probability on the right hand side of Eq.(3.20) is further decomposed and
its maximization is equivalent to the maximizatiorpof\, Bly) o« p(y|A, B)p(A)p(B)
with respect toA andB. For uniform hyperprior distributions, it is equivalent to max-
imizing p(y|A, B) with respect to hyperparametersi = 1,--- , M in the matrixA,
the scaling parametess; i = 1,2, --- , T and overall precisio in matrix B.

It is convenient if we maximize the logarithm of this quantit{y|A, B) and ac-
cordingly the objective function becomgs= log(p(y|A, B)). Without considering the

constant term, the objective function is:
1 -1 15T 1 T —1 —157\-1
L = —§log|B + PA <I>|—§y (B +®A @) y.

Maximizing the objective functiorf with respect tav;, s; andj, the following up-

date equations are derived (The detailed derivation is given in Appendix B):

1

o = m (3.27)
1

YT tracdAGgT$,) + Ay — BW)? (529

5 - T (3.29)

trac§ A®TS®P) + (y — ®W)TS(y — &W)
whereA; is thei-th diagonal element of the posterior covariance mafrir Eq.(3.24),

w; is thei-th element of the posterior mean vectorin Eq.(3.26),¢, is thei-th row
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vector of the design matri$e and(y — ®w); is thei-th element of the estimated error
r, =y — Pw.

By iterative updating of Eq.(3.27) to Eq.(3.29), together withndw from Eq.(3.24)
and Eq.(3.26), this update algorithm converges to the optimum solution. For the time-
varying variance noise model, different voxels are assumed to have the same variance
scaling parameterg and hence at the end of each updating cyglepuld be averaged
over all the relevant voxels. For the fractional noise model, after wavelet transform, the
variance scaling parameters of the transformed noise in the wavelet domain are testi-
fied to have the same value at the same decomposition level as shown in Eq.(3.13) and
Eq.(3.14). During the updating process, the scaling parametatshe same level are
averaged to obtain an accurate estimation.

In practice, some of the;’s in Eq.(3.19) will approach infinity, which means the
w; should be zero given the data at hand. Thus, the corresponding regressor functions
could be ‘pruned’ and the remaining regressors are kept to construct a suitable design
matrix. This is the flexible design matrix determination method in the GLM for fMRI
data analysis as introduced in Chapter 2.

Having estimated the posterior probability density function of the weigh#$ each
voxel, a map of the activation regions in the brain could be obtained by computing the
posterior probability that a voxel is activated or the probability that an effect is greater
than some threshold value. Given the effect sizthe posterior probability is [56]:

1 -0 (ZTC%’) (3.30)

wherec is the contrast vector as introduced earlief;) is the normal cumulative dis-

tribution function (cdf),u and A are defined in Eq.(3.25) and Eq.(3.24), respectively.
These posterior probabilities will form posterior probability maps (PPMs) of the fMRI

activation detection.
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In the classical approach, the point estimate of the weightsy OLS and WLS
methods is used to calculate at each voxel:

cT'w
t = N (3.31)

wherew is the least-square estimate of the parametandA  is the covariance matrix
of the estimatev. The statistic is of Student’s distribution with the effective degree
of freedom (/f) as derived in [50].
Thesef values obtained at each voxel are then mapped to form statistical parametric

maps (SPMs) for further determination of the activated regions in the brain.

3.4 Results and Discussion

In this section, simulation studies are carried out to compare the performance of the pro-
posed approach to the OLS and the WLS estimators introduced in the previous sections.
Both simulated as well as experimental data are examined. We first compare the accu-
racy of the estimated weights in GLM. The activation detection ability of these methods
are then investigated. Lastly, results from the experimental fMRI data are given and

discussed.

3.4.1 Simulated Data
Time-varying variance noise

We first show that the proposed Bayesian approach could give more efficient (lower
variance) estimate of the weights than the OLS and the WLS estimators. A simu-
lated block experimental fMRI design is investigated in this study. The BOLD signal is

represented by a square waveform as shown in Fig. 2.1.
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Table 3.1 Standard deviation (SD) of estimatedn simulated data with different weight
and noise.

OLS WLS Bayesian

w=0 0.3564 0.3579 0.1673
w=0.5 03558 0.3577 0.3318
w=1 0.3527 0.3545 0.3472

i.i.d. noise

w=2 0.3527 0.3546 0.3065

w=0 0.4086 0.1153 0.0321

time-varying variance w = 0.5 0.4100 0.1162 0.0583
noise w=1 0.4101 0.1170 0.0578

w=2 04084 0.1159 0.0570

Two hundred realizations of 128-point time series (i.e. 12Bifnages with 200
(V) voxels in fMRI data sets) under different weighting of the square waveform are
generated. Both the i.i.d. noise and time-varying variance noise are then added to the
data set to simulate the noisy fMRI data. These data are fitted with a GLM model with
a design matrix@ (dimensionl 28 x 2) composed of two regressors : the constant value
1 to model the mean grey level in fMRI voxels and a square waveform to model the
experimental design. Since we are only concerned about the weight parameter related
to the square waveform regressor, only the standard deviation (SD) of this weight
reported. Table 3.1 shows the SD of the estimatander different values o# and
different noise properties.

To compare the performance of different detection methods, the standard deviation

of these estimates are calculated. The method that results in lower SD estimate is more
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accurate since a stringent confidence interval of the estimated parameter could be ob-
tained by using lower SD. From Table 3.1, it is clear that the proposed Bayesian method
always results in lower SD estimate of the weighfor all the values ofv tested no mat-

ter whether the noise is i.i.d. or time-varying variance. This implies that the Bayesian
estimator is more accurate than the OLS and WLS estimators. This improvement of our
approach comes from the fact that the Bayesian estimator not only captures the true vari-
ance structure of the noise better than OLS and WLS, but also utilizes a flexible design
matrix which is more suitable for the actual nonstationary data. Accurate regression
weights are desired since these regression weights are fitted with a hierachical linear
model for second-level analysis or random effect analysis [21]. Lower SD estimates
will give more sensitive results for these higher level analysis.

Then, the detection ability of these estimators is compared. A slice from a real fMRI
data set is used as the background image. First, the i.i.d noises are added to the simulated
fMRI data set. The detection results of these three estimators are comparable as shown in
Table 3.1 . Next, time-varying noises with same scaling parameters but different overall
variances are then added to each voxel of the data to form a 3-D fMRI time series. At
some specific regions of the image, simulated BOLD signals are added. The BOLD
signal is simulated by the convolution of the experimental paradigm and conventional
HRF, which is the difference between two gamma functions. These simulated fMRI data
are fitted by the GLM with the design matrix composed of two regressors: the simulated
BOLD response and a constant vector of value 1. For the Bayesian method, the PPM
is obtained as introduced in Section 3.3. For the OLS and WLS methods, SPMs can
be obtained. Figure 3.1 shows the detection results of simulated fMRI data using these
methods.

From Fig. 3.1, it is clear that the proposed Bayesian method is more robust and

sensitive compared to the OLS and WLS methods with more true activations and less
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(@) (b) (©)

Figure 3.1 Detection results of simulated fMRI data using different methods: (a) OLS
method with thresholded statistical parametric map (SRM) (.7, p < 0.05); (b) WLS
method with thresholded SPM ¢ 1.7, p < 0.05); (c) Bayesian method with posterior
probability map (PPM) P(effect> 0.4) > 0.9).

false activations detected (the simulated pattern is shown in Fig. 5.8 (a) as a comparison
reference). This is because the noise structure estimated by the proposed method is
closer to the true noise. To have a clearer comparison of the detection ability, the receiver
operator characteristic (ROC) analysis [58] is used to investigate the activation maps of
Bayesian, OLS and WLS methods. The ROC curve is a plot of true positive ratio (TPR)
versus false positive ratio (FPR) under different threshold values. The method that can
detect most of the real activations while minimizing the detection of false activations
is more desirable. Figure 3.2 (a) and Fig. 3.2 (b) show the ROC curves under the i.i.d.
noise and time-varying variance noise, respectively. For i.i.d. noise, the three methods
have comparable performances (Fig. 3.2 (a)). While for the time-varying variance noise,
the ROC curves (Fig. 3.2 (b)) indicate that under the same FPR, the proposed Bayesian
method could actually detect more real activations. This clearly shows the superior

performance of the proposed method compared to the OLS and WLS methods.
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Figure 3.2 ROC curves for simulated noisy data: (a) for i.i.d. noise; (b) for time-varying
variance noise.
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Fractional Noise

To investigate the effect of fractional noise Ioff —like noise, we first synthesize real-
izations of fBm noise based on the statistical model of fBm using the method introduced
in [62]. The total length of the simulated fBm nois€lis= 128 with the decomposition
level J = 7 (sinceT = 27). These noises are added to the simulated BOLD signals
to form the simulated fMRI data. The design matrix is constructed as the same as the
one introduced previously. The OLS method is first applied to the original simulated
data in the time domain (denoted as “OLS-time”). After transforming the original simu-
lated data and design matrix in the GLM into the wavelet domain as shown in Eq.(3.9),
the Bayesian method and OLS method (denoted as “OLS-wavelet”) are applied to the
transformed data in the wavelet domain. Daubechies wavelets with vanishing moments
4 (‘db4’) are used for the DWT since they are the most compactly supported wavelets
with sufficient vanishing moments to whiten the fBm noise. To compare the detection
results of different methods, the generalized least squares (GLS) estimator is also in-
vestigated. In the GLS estimator, the noise covariance matrix is known according to
the specified value off ands in EqQ.(3.7) and Eq.(3.8). This GLS method is used as a
comparison reference for the efficiency of the Bayesian method in the wavelet domain.
Table 3.2 shows the SD of estimateunder different weight valuer and differentH
using GLS, OLS-time, OLS-wavelet and Bayesian methods in the wavelet domain.
From Table 3.2, it is seen that the Bayesian method in wavelet domain is a robust
and efficient estimator when the noise considered is fBm noise. Both the OLS method
in time domain (OLS-time) and in wavelet domain (OLS-wavelet) perform worse when
the Hurst exponent/ is high since the noise assumption does not match the simulated
data. The SD of the Bayesian estimator is close to that of the GLS method, which shows

that the Bayesian estimator is an accurate estimate of the weigatsl could lead to
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Table 3.2 Standard deviation (SD) of estimatiedn simulated data with different weight
and Hurst exponent.

GLS OLS-time OLS-wavelet Bayes

H =01 0.0503 0.0518 0.0537 0.0384
H =03 0.0664 0.0881 0.0937 0.0485
w=0 H=0.5 0.0667 0.1305 0.1397 0.0484
H=0.7 0.0608 0.2389 0.2433 0.0438
H =09 0.0408 0.4499 0.3304 0.0332
H=0.1 0.0501 0.0523 0.0569 0.0529
H=0.3 0.0678 0.0868 0.1002 0.0725
w=05 H=05 00711 0.1326 0.1389 0.0797
H =07 0.0642 0.2262 0.1980 0.0700
H =09 0.0414 0.4601 0.3307 0.0491
H =01 0.0531 0.0556 0.0628 0.0551
H=0.3 0.0685 0.0874 0.0924 0.0701
w=1 H=05 00674 0.1277 0.1550 0.0730
H =07 0.0637 0.2179 0.2155 0.0686

H =09 0.0390 0.4542 0.3658 0.0442
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almost the same performance as the GLS method. In the case-0, the SD of the
Bayesian method is even lower than that of the GLS method due to the pruning property
of the proposed Bayesian method. These results show that the wavelet transform actually
whitens the noise and the diagonal error covariance matrix is accurately estimated by the
Bayesian method.

The simulated 3-D fMRI time series are also investigated. The simulated data are
generated as explained before. The difference is that the noises added here are synthe-
sized fBm noises with differentl at different voxels. Figure 3.3 shows the activation
detection results of these methods. It is clear from Fig. 3.3 that the proposed Bayesian
estimator in the wavelet domain performs better than the OLS method (in time domain
and wavelet domain) with more true activations and fewer false activations detected (the
simulated pattern is shown in Fig. 5.8 (a) as a comparison reference). The ROC curves
of the OLS method (OLS-time and OLS-wavelet) and the Bayesian method are also
given in Fig. 3.4 with a clear illustration of the better detection ability of the Bayesian

method.

3.4.2 Experimental fMRI Data

The experimental data used in this study areDAdA-BLOCKIintroduced in Chapter 1.

Figure 3.5 shows the results of applying the OLS, WLS and Bayesian methods assum-
ing the time-varying variance noise model and the Bayesian method assuming fractional
noise model. For the fractional noise model, the time series are up-sampled in order
to make the length of the time series to be a power of 2 and at the same time keep the
scaling properties of the fractional noise. From these figures, we can see that the acti-

vation of the visual cortical areas are detected. Figure 3.5 (a) and (b) are respectively
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Figure 3.3 Detection results of simulated data using fBm noise model: (a) OLS in time
domain with thresholded SPM ¢ 3.4,p < 0.001); (b) OLS in wavelet domain with
thresholded SPM¢(> 3.4,p < 0.001); (c) Bayesian method in wavelet domain with
PPM (P(effect> 1) > 0.99).
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Figure 3.4 ROC curves of OLS (in both time domain and wavelet domain) and Bayesian
(after DWT) methods for simulated fMRI data corrupted with fBm noises.
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the detection results of the OLS and WLS method with the significance pewetor-

rected. It is seen that at thislevel, the detection results may include some erratically
scattered noise. Considering the multiple comparisons problem, a stringent correction
using the Bonferroni correction [21] is used here as shown in Fig. 3.5 (c) and (d) which
illustrate that some potentially activated voxels may not be detected. Compared to the
OLS and WLS methods, the Bayesian methods perform better (Fig. 3.5 (e) and (f)). Be-
sides, the Bayesian methods provide the probabilities of the activation effect, avoiding
the problems encountered in SPM to correct or adjusptlevels due to the multiple
comparisons problem. These results show that the Bayesian estimators under these two

noise assumptions can provide alternative estimators and better detection results.

3.5 Conclusion

In fMRI data analysis, the noise is generally assumed to be stationary. However, this is
an inappropriate assumption given the complex nature of the fMRI data. The fMRI data
is sensitive to the subjects’ movements, resulting in the time-varying variance noise.
In addition, it is reported that noise in the fMRI data can be of fractional andfor 1/
like. In this chapter, a Bayesian method is proposed to detect the activated voxels under
two nonstationary noise structures (time-varying variance noise and fractional noise).
For time-varying variance noise, the variance of the noise at each time point is a scaled
version of the overall variance in that voxel. For fractional noise, the wavelet transform is
first applied as a whitening filter. The coefficients of the transformed noise are i.i.d. and
the variance at each decomposition level is a scaled version of the overall variance. Thus,
the covariance matrices of these two assumed noise models have similar structures. This
similarity led to similar estimators or updating algorithms.

The weight estimator is investigated under the Bayesian framework. This estimator
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(d) (e) ()

Figure 3.5 Results of a block visuospatial processing task fMRI data: (a) thresholded
SPM of OLS method# > 3.4, p < 0.001, uncorrected); (b) thresholded SPM of
WLS method { > 3.4, p < 0.001, uncorrected); (c) thresholded SPM of OLS method
with Bonferroni correctiont( > 7, p < 0.05, corrected); (d) thresholded SPM of WLS
method with Bonferroni correctiort (> 7, p < 0.05, corrected); (e) PPM of Bayesian
method using time-varying variance noise mode{gffect > 0.8) > 0.99); (f) PPM of
Bayesian method using fractional noise mode{dffect > 0.8) > 0.99).
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could provide a probability that a voxel is activated or the probability that the activation
of this voxel is greater than some threshold. This advantage enhances the ability to detect
activated regions of the brain and avoids the limitations of the classical methods. The
proposed methods are compared to the ordinary least squares (OLS) and the weighted
least squares (WLS) methods both on simulated as well as experimental fMRI data. The
ROC analysis validates that the proposed Bayesian methods are more accurate than the
OLS and WLS methods. These results show that the proposed Bayesian methods under
the time-varying variance noise model and the fractional noise model are efficient and
robust methods for brain activity detection in fMRI data analysis.

The method proposed in this chapter does not consider the drift in fMRI data. In the

following chapter, this method is extended to incorporate the drift into the GLM.



Chapter |

Analysis of fMRI Data with Drift:

Modified General Linear Model and

Bayesian Estimator

4.1 Introduction

As introduced in Section 1.2.2, the fMRI signal consists basically of three components:
the BOLD response related to the stimuli, drift and noise. Let the fMRI signg) be
a specific voxel measured at scan numbgwvith total 7" scans). Then, GLM of fMRI

data can be written as:
y; = wb; + fi + €; t=1,---,T (4.1)

whereb; is the explanatory BOLD response. The parameten Eq. (4.1) is a scalar
which represents the contribution of the BOLD signaltof; is the drift ande; is the

noise.

78
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Written in a matrix form, EqQ. (4.1) becomes:
y =wb +f + ¢, (4.2)
or in a traditional way (GLM in Section 1.2.3):
y = Pw + ¢, (4.3)

wherey, b, f ande are of dimension§” x 1. ® = [b, f] is the design matrix with the
dimensiond” x 2 andw = [w 1]7 is the parameter vector. The detection of the activated
voxels/regions of the human brain is based on the inference drawn from the estimation
of the parametew.

To remove the drift before proceeding to the statistical analysis, preprocessing pro-
cedures or drift models have been proposed. Some of the well-known preprocessing
techniques are the high-pass filtering [21] and the median filtering method [77]. The
drift can also be removed by introducing drift models in the GLM. These drift mod-
els assume that the drift resides in a linear subspace spanned by a set of polynomials
or a set of cosine functions [21], then the drift can be projected into this subspace and
removed. In [78], a wavelet-based semiparametric GLM was proposed to estimate the
parameters in the GLM as well as to estimate the drift. However, the accuracy of the
estimated parameters in this method is related to the accuracy of the estimation of the
noise covariance matrix. The inaccuracy of the estimation of the covariance matrix may
bias the results and lead to wrong judgements about the activation of the voxels. In this
chapter, based on the observation that the noise in fMRI is long memory fractional noise
and the slowly varying drift resides in a subspace spanned by large scale wavelets, we
examine a modified GLM in wavelet domain under Bayesian framework. By estimating
the noise covariance efficiently, the Bayesian method can give accurate estimation of the

parameters in GLM. Besides, a model selection scheme based on the results from the
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modified GLM is proposed to accurately estimate the parameite!iGLM as well as to

remove the drift efficiently.

4.2 Models

Using the discrete wavelet transform (DWT), the parameters of activateomd the drift
can be estimated efficiently. The wavelet transform is used because of the following

reasons.

1. Drift can be efficiently removed from the fMRI signal since it resides only in the

subspace spanned by large scale wavelets [78].

2. The noise in the fMRI data exhibits long-range auto-correlation in time Afietlike
spectral properties [70]. The DWT applied to this kind1gff —like processes
works as a Karhunen-lave transform (KLT) to decorrelate the fractional noise
process [79][63]. The resulting wavelet coefficients are independently Gaussian
distributed, which simplifies the estimation of the parameters and makes statistical

analysis easy.

Assume the length of the fMRI signal & = 27/, where.J is an integer. Applying
the DWT to both sides of Eq.(4.2), the GLM in the wavelet domain is of the form:

y" = wb" + %  n" (4.4)

wherey", bW, £ ande" are the results of applying the DWT respectively to the data

y, BOLD responsé, drift f and noise: up to the maximum scalé.
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4.2.1 Noise Model

The wavelet transform of the noig¥’ is:

w T
€ = [GEJJ, dﬁj’l, dEJ,Ll, dEJ,LQ, ey d€171, Ty d6172J—1] (45)

whereace s, is the scaling coefficient at level, andde,, ;. (k = 1,---,27/7™) are the
wavelet coefficients at levek (m = 1,---,.J). The noise in the fMRI time series ob-
tained under the resting or null conditions exhibit long-range auto-correlation in time
and1/ f—like spectral properties [70]. The properties of the noise is detailed in Section
3.2.2. After the wavelet transform, the transformed fractional neéieould be mod-
elled by Gaussian proceg8” ~ A(0, V) with the T x T diagonal covariance matrix

defined in Eq. (3.13) and rewritten here:

V = Cov(e")

Va4

Vay_q

= . (4.6)

4.2.2 Drift Model

The drift is assumed to vary slowly with large scales, and hence the wavelet coefficients

at fine scales are almost zero [78] as shown here:

fW = [a'f.],lydf],l7"' adeo,l?“’ adeO,ZJ*JOvOa'” 70]T (47)

whereaf;; is the scaling coefficient (or approximation coefficient) at lelighnddf,,, x
(k =1,---,277™) are the wavelet coefficients (or detail coefficients) at lenghn =
Jo, -+, J). The wavelet coefficients at levels lower thdn(i.e. fine scales) are zero

since at these levels, the drift does not vary greatly over a short interval of time.
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4.3 Modified GLM

As seen from the properties of the drift, at finer scales, the effect of drift can be ignored

and hence the GLM at finer scales becomes:
yZW = waV + (-:ZV (4.8)

wherey!”, bV ande}" are respectively wavelet decomposition coefficients at the finer
scales (scales less thdy).

However, since we do not know exactly at which level the effect of drift can be ig-
nored, an approach is to estimate the parametat different scales and use a scheme
to find a suitable level for modelling the drift as well as accurately estimating the pa-
rameter. Therefore, a modified GLM is obtained (for convenience, the superseript *
is dropped):

y = ®Pw + €, (4.9)

where the matrix® is defined as:

abJ,l
dby1

dbyy 1

(4.10)

79,270 ;

db1,1

db172.]—1

which is a block diagonal matrix of dimensiofisx (.J + 1). The block in the diagonal
of matrix ® is a vector composed of the wavelet coefficients at the same scale.

The parametew is defined by:

W = [Wyi1, Wy, ... Wy, wi]T, (4.11)
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which consists of estimates of at different levels. The parameter can be estimated
using Bayesian methods introduced in Section 3.3. Among these estimates, the estimates
of w at levels lower than/, can be thought of as good estimates because the effect of
drift can be ignored at these levels; however, other estimatesatflevel J, or levels
higher thanJ, are bad due to the effect of drift. In the next section, the schemes for
model selection are discussed.
If the effect of drift can be ignored at the levels lower than the estimateso;

(1=1,---,Jy—1) could be treated as/, — 1) observations of the unknown parameter
w. Thus, we could obtain the following observation equation:

Wy—1 1

o) (1> w+n (4.12)

l?).l 1

wheren ~ N (0, A ;,) andA , is defined as:

Ajg-1
Aj,
Ajy = o : (4.13)
N
whereA; (i = 1,---,Jy — 1) are the variances of the estimated parameigr§ =
1,---,Jo — 1) respectively, which are the lowek, — 1 diagonal elements oA in

Eqg. (3.24) obtained through Bayesian estimator.
The maximum likelihood estimate af is then given by (the detailed derivation is
given in Appendix C):

i JZI AT (4.14)
wpmL = —J_1 W, .
S A

=1
which is also Gaussian distributed with the variance:
Jo—1 1
2 . Az

s = 2 AT

=1

o (4.15)

Thus, the significance ab,;; can be tested by calculating thecores with degrees of

freedomI” — 2=7°T', which is determined by the choice of levgl In the next section,
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schemes for choosing the optimui are described. The estimation of drift is then
calculated by setting the coefficientsydt” — w,,.b" at finer scales (scales lower than

Jo) to be zeros and performing the inverse wavelet transform.

4.4 Model Selection

Model selection aims to find a suitable valiie where the effect of drift at levels lower
than J, can be ignored. Some model selection criteria have been proposed in fMRI
analysis using semiparametric GLM [78]. The first criterion is an improved version of
the Akaike information criterion (AIC) [78][80], which is represented by:

T
AIC, = log 52 + % (4.16)

wheren, is the number of wavelet coefficients used to estimate the drift and is deter-
mined by the selection of drift level, asn, = 2=/°T, 52 is the measure of the goodness

of fit and is given by the mean squared error:
~92 1 N P
6% = Zlly — b £ (4.17)

wheref is the estimated drift.
The second criterion is the Schwartz information criterion (SIC) [78][81], given by:

No log o

SIC = log 6
0go” + T

(4.18)

For every scale, AlCand SIC are calculated and the optimum scgles set to the one
which results in the minimum value of these two criteria.

Both the AIG. and SIC criteria need to calculate the estimatevofor each as-
sumed model, which is not efficient. In this thesis, we propose a more efficient criterion,
namely, the Confidence Interval Criterion (CIC) to estimate the order of the dy)faé

well as the parameter as shown below:
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1. Start from the finest scale (i.e. = 1) and set lower and upper limit, u| =

[—o0, o0l;

2. Calculate the00(1 — )% confidence interval of; given by:

iy wi] = [0i — Zaja v/ iy Wi + Zaj2v/ A
wherez, , is thez score with the probability greater tharbeingo/2;
3. Derive the overlap interval df, u| and[l;, u;| and updateél, u];

4. Judge whethery;; € [l,u]. If yes, increase by 1 and go to step 2. If not,

After finding the optimum scale of the driffy, the parametew is then estimated ac-

cording to Eq. (4.14).

4.5 Results and Discussion

45.1 Simulated Data

We first test the efficiency of the proposed approach on simulated data. A simulated
block experimental fMRI design is investigated in this study. The BOLD signal is rep-
resented by a square waveform alternating with 6 scans per block. One thousand real-
izations of fBm noise are synthesized based on the statistical model of fBm using the
method introduced in [62]. The total length of the simulated fBm noigé4s 128 with

the decomposition level = 7 (sinceT = 2”). These noises are added to the simulated
BOLD signals with different weights to form the simulated fMRI signal. Then, slowly

varying drifts which are simulated using the summation of sinusoidal waves are added
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Figure 4.1 Simulated fMRI signal.

to the simulated fMRI data. Figure 4.1 shows a realization of the synthetic fMRI signal
with the fBm noise generated using the paraméter 0.3.

The simulated fMRI signals are then decomposed using Daubechies wavelets with
vanishing moments 4 (‘db4’) since they are the most compactly supported wavelets with
sufficient vanishing moments to whiten this fBm noise. The decomposed signals in the
wavelet domain are then processed using the proposed Bayesian method introduced in
Section 3.3. The ability of the Bayesian method to estimate the noise covariance matrix
V in wavelet domain is first tested. For a comparison, the wavelet decomposition is also
applied to the simulated fBm noise and the variance at different scales is calculated as
the true value of the variance. Table 4.1 compares the estimated variance at different
scales with the true values. It is clearly seen from the table that the Bayesian estimator
accurately estimates the variances of wavelet coefficients of noise at different scales.
These accurate estimates can be used to estimate the Hurst exponéflBm noise
according to the method introduced in [74]. For this example, the estintaiecequal
to 0.2666 which is very close to the true value of 0.3.

Then the three model selection criteria are used to find the optimum scale of drift
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Table 4.1 Comparison of estimated variance of wavelet coefficients of noise at different
scale with the true value.

Scale; Estimated Value True Value

1 0.8193 0.8471
2 1.4885 1.5783
3 4.1338 4.1340
4 20.1372 21.5596

Table 4.2 Model selection of CIC, AlGnd SIC criteria.

Scalei w; Updated [/, u| AlC. SIC

1 0.6465 [—00, 0] 1.9382 0.8737

2 0.6281 [0.0876,1.2055] 0.7622 -0.0768
3 0.4617 [0.0876,1.2055] 0.7312 -0.2393
4 0.6682 [0.0876,1.0984] 0.7844 -0.2318
5 5.6985 [0.0876,1.0984] 0.8434 -0.1966

and hence an accurate estimate of the parametétor the CIC criterion, ther value

is set to be).01 and hence, > = 2.576. Table 4.2 compares the results of these three
criteria. From the table, we can see that the CIC criterion chooses the sdalde

4 sincew; ¢ [l,u| at scales. Both SIC and AIC criteria reach the minimum value at
the scale o8 and hence they give the optimum value.Bgfto be 3. Figure 4.2 shows
the estimated drift when the optimum scale of drift is set to/pe- 4. It is seen from

the figure that the estimated drift captures the properties of slowly varying drift without

tracking the variation of BOLD signal.
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Figure 4.2 Simulated fMRI signal and the estimated drift.

Table 4.3 MSE comparison of three model selection criteria with drift added.

Noise CIC AlIC, SIC

White  4.0127e-005 9.7032e-005 9.7032e-005
H =0.1 3.5144e-004 3.5144e-004 3.5144e-004
H =03 1.8624e-005 1.8820e-005 1.8820e-005
H =0.7 7.2508e-007 6.3683e-006 6.3683e-006
H =109 3.5122e-005 3.5122e-005 3.5122e-005

In order to see the effect of the choice of scdleon the accuracy of estimated
parameteto,,;,, we also compute the deviation of the estimated paramiejgr from
the true values. Table 4.3 compares the mean square errors (MSE) of the estimates
obtained from these three criteria when drift is added to the data. For completeness,
the situation without drift is also considered and the comparison results are presented in

Table 4.4.

From Table 4.3 and 4.4, itis clearly seen that the proposed CIC criterion performs as
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Table 4.4 MSE comparison of three model selection criteria without drift.

Noise CIC AlIC, SIC

White  6.5180e-005 2.9001e-004 2.9001e-004
H=0.1 0.0015 0.0015 0.0015
H =03 1.1690e-004 1.1690e-004 1.1690e-004
H =0.7 3.9381e-004 3.9381e-004 3.9381e-004
H =109 1.9526e-004 2.8953e-004 2.8953e-004

well as the AIC and SIC criterion. In some cases, it performs even better than the other
two. The difference between these criteria results from the selection of the drift model.
Regardless of the small differences among these three model selection criterion, the
MSE is small for all of them. This shows that the Bayesian method in the wavelet domain
is a robust and efficient estimator when the noise considered is fBm noise. Accurate
estimations are desired since these weights are fitted with a hierachical linear model for
second-level analysis or random effect analysis [67][56][68]. The estimate with lower

MSE will give more sensitive results for these higher level analysis.

4.5.2 Experimental fMRI Data

The experimental data used in this set of studies ar®HBA-BLOCKIintroduced in
Chapter 1. The first ten volumes (i.e. the first block) of the data are discarded due to
effects. The time series are up-sampled in order to make the I€fpt the time series

to be a power of 2 and at the same time keep the scaling properties of the fractional noise.
These data are not detrended in the preprocessing step before applying the proposed

method. Figure 4.3 shows the results of activation detection. It is clearly seen that the
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Figure 4.3 Results of the proposed method to a visuospatial processing task.§
P < 0.05).
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Figure 4.4 Time series in one voxel and the estimated drift.

activation of visual cortical areas of the brain are successfully detected. Figure 4.4 shows
the time series of one voxel in the activated regions shown in Figure 4.3. The estimated

drift is also shown here. It is seen from the figure that the proposed method successfully

captures the slowly varying drift.
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4.6 Conclusion

In the fMRI data analysis, the slowly varying drift poses a major problem for accurate
detection of the activation. The commonly used subspace models for drift may cause
overfitting problems. In this chapter, the drift is modelled to reside in the subspace
spanned by the large scale wavelets. In addition, research shows that the noise in the
fMRI data has a property of fractional noise bff—like noise. By first applying a
wavelet transform to the fMRI data as a whitening filter, we propose a modified GLM
which can estimate the parameter of activation at each scale of wavelet decomposition
by using a Bayesian estimator. Then, a model selection criterion based on the parame-
ters estimated from the modified GLM is proposed. Experiments on simulated as well as
experimental fMRI data are carried out. These results show that the proposed Bayesian
methods estimate accurately the covariance matrix of the noise and hence can give an
efficient and robust estimator for the activation parameter. Besides, by applying the pro-
posed model selection criterion, the drift in the fMRI data can be effectively estimated
and removed. These advantages obtained by modelling the drift with only a few large
wavelets can improve the brain activity detection in fMRI data analysis.

The Bayesian methods discussed till now mainly focused on the detection of the
activated regions in the brain. It is also important to investigate the time course of the
HDR to neural activities. In the following chapters (5 and 6), methods to estimate the

HDR is discussed in detalil.



Chapter 5

Adaptive Spatiotemporal Modelling and

Estimation of the Event-related fMRI

Responses

5.1 Introduction

In Chapters 2 to 4, methods to detect the activated regions of the brain are discussed. The
detection of the activated regions can give spatial information of how different locations

in the brain relate to sensory, cognitive and motor functions. In order to obtain temporal
information of the brain activity, the HDR is normally investigated. In Chapters 5 and

6, methods (both linear and nonlinear) to estimate the HDR is provided and discussed.

Estimating the HDR is of great importance in the study of human brain functions. It

reflects the temporal properties of the human brain activities. The HDR is usually esti-
mated by the signal averaging procedure [82]. It assumes that the stimuli are separated
far apart (large ISI) so that the HDRs to consecutive stimuli do not overlap. However,

considering the fact that the ISI are often a few seconds and the HDR has temporal extent
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for about 10-15 seconds [23], the HDRs to consecutive stimuli overlap and bias the re-
sults of signal averaging. Hence, procedures for removing this overlap while performing
the signal averaging are desired.

In [82], it is reported that the HDRs to consecutively presented stimuli add roughly
linearly to form the BOLD signal. This validates the means of estimating the HDR
under the linear assumption, which assumes the linear summation of responses to each
stimulus. This linear assumption is true for ISI more than 4-6 seconds; while for ISI
shorter than that, nonlinear phenomena were observed. In Chapter 6 and 7, a detailed
discussion on nonlinear estimation and modelling of fMRI data is given. In the GLM,
the HDR is estimated through a linear combination of basis functions [50][25]. The
commonly used basis functions are the Fourier series functions [83] and two gamma
functions together with their temporal and dispersion derivatives [44]. In special cases,
if the basis functions are chosen to be the non-overlapping sampling time bins during
the period of peri-stimulus time, finding the amplitudes of these basis functions boils
down to the problem of estimating a finite impulse response (FIR) [77][42]. Hence, the
estimation of the HDR is actually a deconvolution problem under the assumption that
fMRI signals are the output of a linear time-invariant (LTI) system.

Spatial information can be included into the analysis of the fMRI data to improve the
detection of activated regions of the brain since these regions span a few voxels and the
neighborhood to an activated voxel are more likely to be activated than the others. Many
methods have been developed to incorporate the time series of surrounding voxels into
the analysis to improve the SNR as well as the detection accuracy [84][85]. In this chap-
ter, a combined spatial and temporal adaptive filter method is proposed. This method
makes use of a spatial adaptive filter to improve the SNR. The spatially filtered signal
is then used as the desired signal for the temporal adaptive filter to estimate the HDR.

This proposed spatiotemporal method is proved to be equivalent to the CCA method and
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through simulations, it is shown that the method works well for HDR estimation.

5.2 HDR Function

With the assumption that the human brain and MR acquisition system could be treated
as a LTI system, the measured fMRI sigpét) at an activated voxel could be obtained

from Eq. (4.1) as shown below:
y(n) = h(n) @ s(n) + f(n) + €(n). (5.1)

Here, the convolution of the stimulus functiefr) and HDR function:(n) represents

the BOLD response. The fMRI signaln) is then the summation of the BOLD re-

sponse, driftf(n) and noise:(n). The polynomial method or median filtering method

can be used to remove the drfftn) as a preprocessing step in the fMRI analysis [77].
The HDR function is commonly described as the difference between two gamma

functions [25] as shown in Eq. (1.16) and reiterated below:

h(t) = <di1>a1 exp (%:_?‘h)) — C<diz>a2 exp <_(tb—?‘l2)) (5.2)

whered; = a;b; is the time (in seconds) to the peak amplitude:0f). The common
choice of these parameters are= 6, a; = 12, by = by = 0.9s andc = 0.35 [44],

which can generate the canonical HDR (represented. asommonly used in fMRI

data analysis. By changing the values of these parameters, different shapes of HDR can
be obtained. Figure 5.1 shows different shapes of the HDR function. For example, in
Fig. 5.1 (a),c = 0.35 andd; varies between 3 and 6. In Fig. 5.1 (ld), = 5.4 and

c varies between 0.2 and 0.5. The paramédiedetermines the delay of the response
(larger the value ofi;, larger the delay) and determines the depth of the undershoot

(larger the value of, larger the depth).
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Figure 5.1 Simulated HDR functions for different parameter settings. (a) different values
of d; while keepingec = 0.35 constant; (b) different values ofwhile keepingd, = 5.4

constant.
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The observations from the fMRI experiments reveal that the shapes of the HDR func-
tions are different for different brain regions and subjects [86]. Thus, it is desirable to
incorporate the variation of the HDR into the analysis in order to have a good detec-
tion of the activated regions of the brain. In the GLM analysis method, the variation of
the HDR is modelled through several basis functions (the canonical haemodynamic re-
sponse function, its temporal and dispersion derivatives) and it is assumed to reside in the
space spanned by these basis functions. However, in this method, these basis functions
can only capture small variations of the HDR; for large variations, it may underestimate
or even fail to capture the diversities of the HDR. In the next section, the HDRs at each
voxel are estimated using adaptive filters and it is found that these estimated HDRs can

reflect better the variation of brain responses in different regions of the brain.

5.3 Spatial and Temporal Adaptive Estimation

5.3.1 Model derivation

Considering both the spatial and temporal properties of the fMRI data, the adaptive
estimation include two processespatial smoothingatndtemporal modelling Suppose
yo(n) is then' sample of the time series at a given voxel, aath), - -- ,y.(n) are

the nt* samples of the time series of tiiesurrounding (adjacent) voxels. A spatially

smoothed signal(n) is given by

L
d(n) = szyz(n) =w'y(n) (5.3)
=0
wherew; is thei'" coefficient of the spatial filtesw = [wg, wy, - -+ ,wr]? is the weight
vector, andy(n) = [yo(n),y1(n), -+ ,yr(n)]?. If the voxels are activated, the smoothed

signal should approximate the ideal BOLD responge) to the experimental stimuli,
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Figure 5.2 lllustration of the spatial smoothing filter and temporal modelling filter.

that is
d(n) =wly(n) =r(n) + u(n) (5.4)

wherer(n) is the ideal BOLD response which is the convolution of the stimulus function
and the canonical HDRy(n) is the white noise.

The spatially smoothed signd(n) is used as the desired signal for the temporal
modelling process in Eq. (5.1). With the drift terfitn) removed (by preprocessing),

we get:

d(n) = s(n—m)hy + €(n) = h"s(n) + (n) (5.5)

m=0

wheren = PP+ 1,...,N — 1, h = [hg,hy,--- ,hp]?, ands(n) = [s(n),s(n —
1),---,s(n — P)]T is the vector formed by the delays of stimulus function. Hétés

the maximum temporal span of the HDR in time bins, which is related to the repetition
time (TR) since the fMRI signal is sampled every TR. This is actually a transversal filter
model, wheréh is the coefficient vector of the filtes(n) is the input vector or regressor
ande(n) is the unmeasurable noise, which is assumed to be white.

Figure 5.2 shows an illustration of the spatial smoothing filte) &nd temporal
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modelling filter (). The goal of the analysis is to obtain an optimum temporal filter
h, so that the resultant BOLD signal (i.a”s(n)) approximates the spatially smoothed
signald(n) and meanwhiled(n) approximates the ideal BOLD signaln) well. That

is, both the mean-square errors (M3E)e3(n)} = E{(r(n)—d(n))*} andE{e3(n)} =
E{(d(n) — h's(n))*} are minimum. Thus, the cost function to be minimized is given

by

J = B{(r(n) = d(n))*} + B{(d(n) — h"s(n))’}

= E{(r(n) —w'y(n))’} + E{(W"y(n) — h's(n))’} (5.6)

and at the optimum weights, andh,, J is minimum. Here,E|-| represents the ex-
pectation operation. The optimum weights can be found using widely used adaptive
algorithms such as the least mean square (LMS) algorithm [87, 88].

The LMS algorithm minimizes the cost functioh = €2(n) + e2(n) which is the

instantaneous coarse estimate/ofThe updating rule of the algorithm is shown below:

ex(n) =r(n) — W' (n)y(n) (5.7)

ea(n) = W' (n)y(n) — h'(n)s(n) (5.8)

W(n+ 1) = W(n) + 2mer (n)y(n) — 2mea(n)y(n) (5.9)

h(n + 1) = h(n) 4 29es(n)s(n) (5.10)
whereh(n) = [ho(n), hi(n),--- , hp(n)]T is the weight vector of the temporal mod-
elling filter, w(n) = [wo(n),w:(n), - ,w(n)]T is the weight vector of the spatial

smoothing filtery; andyu, are the step sizes which control the speed of the convergence
and the stability of the updating recursion.

Figure 5.3 shows the structure of the spatio-temporal adaptive filter. The estimation
errors,e; (n) andey(n) are fed back to the spatial adaptive filter to adjust the estimation

of the coefficientsv. The errorey(n) is fed back to the temporal modelling filter to
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Figure 5.3 Spatio-temporal adaptive modelling of the fMRI system

adjust the estimation of the coefficients, As the algorithm converges, the estimated
weights of the adaptive filtekr approximates the optimum spatial smoothing filteg),

and the weights of the temporal adaptive filkeapproximates the HDR function.

5.3.2 Extension to Multiple Events

The HDR in the above algorithm is assumed to be fixed, that is, the optimuloes not
change with time and/or with event types. Recently, some studies have shown that the
hemodynamic function may vary from trial to trial [89][90]. To account for the variabil-

ity of HDR in event-related fMRI data, several methods were proposed such as ICA to

detect the variation of single-trial HDR [89] and single-trial variable model [90] where
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the trial-to-trial variability is modelled as meaningful signal varying in the neighborhood
of the initial HDR values. The extension of the proposed spatiotemporal adaptive filter
method to model multiple event types or the time-varying effect of HDR for each trial is
detailed in the following paragraphs. In these cases, the stimulus functions are multiple
time seriess;(n),sz2(n),--- ,sy(n), and the estimation of HDRs for each event types
(multiple event types case) or different trials (time-varying casesharh,, - - - , hyy,
respectively. Here) represents the number of events in the multiple event type fMRI

experiment or the number of trials. The estimation error is

~ ~

ea(n) = d(n) — b (n)s1(n) — by (n)ss(n) — - - = i (n)su(n). (5.11)
Correspondingly, the update rule in Eq. (5.10) becomes
h;(n 4 1) = hi(n) 4 2ues(n)s;(n); i=1,2,--- M (5.12)

with x the step size. The desired sigaéh) is the output of the spatial smoothing filter
(wT(n)y(n)) as defined before. The point here is that thereMdrenodelling filters to
capture the properties of HDRs to different event types and different trials. The same
error, ex(n), is used to update the filter coefficients of all the transversal adaptive
filters.

Due to the limited number of data points in one voxel time series (normally around a
few hundred), the algorithm does not converge to the optimum value after one presenta-
tion of the entire training set (that is, one epoch in the learning process). Therefore, the
training data set is presented repeatedly (many epochs) until the algorithm converges to

the optimum solution.

5.3.3 Relation to the Canonical Correlation Analysis

In this section, we prove that minimizing the cost function in Eq. (5.6) is equivalent

to the Canonical Correlation Analysis (CCA) method. CCA is a multivariate analysis
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method [91] to detect the subcomponents of two multivariate data sets that are maxi-
mally correlated. Consider two zero mean random vecia@aedb, CCA is to find the
weight coefficientsw, andw, which maximizes the correlation between the linear
combinationsg = wla andb = w!'b. The CCA problem can be expressed as the

following maximization problem:

T
W, C(zbwb

max p(wg, wp) = (5.13)

Wa,Wp \/ WaTCaawawaCbbwb

For zero mean vectoesandb, C,, = E[aa’|, Cy, = E[bb’] andC,, = E[ab”] are
the covariance matrices. The solutioks andw, are found by solving the following
eigenvalue problems:

C,!CuC;, CraW, = p*W, (5.14)
C&)leaC;alCabv“vb = pQWb. (515)

Supposey(n) ands(n) are zero mean vectors (i.€{y(n)} = 0 andE{s(n)} = 0)
in Eq. (5.6). By taking the partial derivatives of Eg. (5.6) with respeet tthe following

can be derived:

S—VJV = 2F{y(n)(r(n) — y" (n)w)} + 2E{y(n)(y" (n)w — s" (n)h)}
= —2B{y(n)r(n)} +2E{y(n)y’ (n)}w

12E{y(n)y" (n)}w — 2E{y(n)s” (n)}h (5.16)

The reference signaln) is the result of convolution of(n) and the canonical HDR
functionsh,, thatis,”(n) = hl's(n). The temporal modelling filteh, in our model may
be represented as a scaled and noisy version of the canonicahH{DRB. h = A\h. + v,
wherew is a zero mean white noise. This means that the temporal modellingtfiiger
close to the scaled version of canonical HhRandv capture the departure from the

canonical HDR. The parameter,(0 < A < 1) indicates the neural activity, whenis
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close to zero, the temporal modelling filleis also close to zero showing that the voxel
under consideration is not activated. On the other hand, whisnclose to one, the
temporal modelling filterh, has properties in similar to those of the canonical HBR,
showing the voxel under consideration is activated. Hence, the reference signal,

can be represented as

() = () =7 (. = 7o) (P17 (5.17)

Substituting Eq. (5.17) into Eq. (5.16) and noting tikds zero mean and uncorrelated
with s(n) andy(n), Eq. (5.16) becomes

O 2By ()}h+ 4By )y ()} — 2B{y(n)s" ()}h. (5.18)

By taking the partial derivatives of Eq. (5.6) with respechtave get

oJ

S = 2B{s(n)(y" (n)w — T (n)h)}

= 2B{s(n)y’ (n)}w — 2E{s(n)s” (n)}h (5.19)

Equating Eq. (5.18) and Eq. (5.19) to zero, and represerifing= E{y(n)y”(n)},
Css = E{s(n)s”(n)}, Cs, = E{s(n)y”(n)} andC,; = E{y(n)s”(n)}, we get

1
2C,,w = (1+1)Cysh (5.20)

and

C,,w = C,h. (5.21)

The solutions to the above equations are obtained as the eigenvalue problem:

_ _ . 2N

Cy;CySCS;CsyW = )\—HW (522)
-1 -1 2 21 -

C.'C,,C;)Ch= "-h (5.23)

A1
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Comparing Eq. (5.22) and Eqg. (5.14) as well as Eq. (5.23) and Eq. (5.15), it is clear
that the canonical correlation coefficienis related to the neural activity parameien

our model:
) 2\

=7 0<a< (5.24)

P

andw, = w, w, = h, a = y(n) andb = s(n). When the neural activity occurs,
that is,\ =~ 1, the correlation coefficient also approaches 1. When there is no neural
activity, that is,\ = 0, the correlation coefficient also approaches 0. This proves the

equivalence of these two approaches.

5.4 Results and Discussion

The proposed spatio-temporal adaptive modelling method is first tested on synthetic data
and compared with the GLM method with different Gaussian smoothing width [92]. The
scenarios for single event type and multiple event types are both examined. After this,
the application of the proposed algorithm to experimental fMRI data is investigated. The

results are discussed in detail in the following sections.

5.4.1 Simulated data

The simulated BOLD signal is generated through convolution of the input stimulus sig-
nal s(n) and the HDR function described as the difference between two Gamma func-
tions which is introduced in Eq. (5.2). The input stimulus sigial) is generated as ran-
dom impulses which represent an event-related fMRI experiment. When the stimulation
is ON, s(n) = 1 and when the stimulation is OFkn) = 0. Figure 5.4 (a) illustrates

the simulated BOLD signal with the HDR function parametérs- 5.4, ¢ = 0.35. The

thick vertical lines indicating the timing of the discrete random stimuli.
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Figure 5.4 Simulated BOLD signal. (a) pure BOLD signal and the timing of the stimuli;
(b) noisy BOLD signal corrupted with Gaussian white noise.
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Estimation of the Single Event Type HDR

In the first simulation, the relation between the spatial weighting coefficients and the lev-
els of the noise variance is examined. The BOLD signal generated as shown in Fig. 5.4
(a) is first added to each voxel of tAex 3 window. Then, Gaussian noises with different
variances are added to each voxel of the window to generate the simulated voxel time
series. One of the simulated noisy voxel time series is shown in Figure 5.4 (b) with SNR
= —(.8dB.

These simulated noisy signals are then investigated by the spatio-temporal adaptive
filter. The step sizeg; andyu, are chosen to be 0.0001. After one presentation of the
entire training set, the average change of the coefficients are calculated; if this change
is very small, the algorithm converges and the updating process stops, otherwise, the
whole training data is used again until the algorithm converges. Figure 5.5 illustrates the
learning curve of LMS algorithm for spatiotemporal adaptive filter. The mean square
error is calculated at the end of each epoch (one presentation of the whole training data).
It is seen that after 100 epochs, the algorithm almost converges.

Table 5.1 shows the relation of levels of the noise variances and the coefficients of
the spatial adaptive filter after convergence. It is seen from this table that the coefficient
valuesw; of the spatial smoothing filter are approximately inversely proportional to the
noise level at each voxel. When the voxel time series are noisier compared to other
voxels, the weights are relatively smaller; while larger weights are found at the voxels
which are less noisy. This validates the adaptivity of the spatial smoothing filter to
different noise levels.

The estimated HDR is then investigated. In order to test the effe¢hofformed by
the conventional HDR function witth, = 5.4, ¢ = 0.35 as introduced in Eqg. (5.2)) on the

estimation results, the BOLD signal in this simulation is generated using the difference
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Figure 5.5 Learning curve of LMS algorithm for spatiotemporal adaptive filter.

Table 5.1 Relation of the levels of the noise variances and the coefficients of the spatial
adaptive filter for 8 x 3 window.

position noise variance coefficient$w;)
center 0.25 0.0326
top 0.01 0.5182
bottom 0.09 0.1151
left 0.49 0.0260
right 0.81 0.0121
top-left 1.00 0.0074
top-right 1.44 0.0068
bottom-left 1.96 0.0059

bottom-right 2.56 0.0052
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Figure 5.6 The HDRs estimated by the spatio-temporal adaptive filter and CCA methods.

gamma function with the following parametets = 4, ¢ = 0.35, which has a different
delay with the conventional HDR function. As before, noises with different variances
are then added to the BOLD signal to generate noisy fMRI signals. After applying
the proposed adaptive filter method, the estimated HDR is the impulse response of the
temporal modelling filterh, once the algorithm is converged. For the CCA method, the
estimated HDR is obtained from the eigenvector corresponding to the largest eigenvalue
found in Eq.(5.15). Figure 5.6 shows the results of the estimated HDR and the difference
with the conventional HDR function.

From Fig. 5.6, we can see that the similarity of the HDR estimated by the proposed
method to that estimated by the CCA method. This result validates the conclusion that
the proposed spatio-temporal adaptive filter is in fact equivalent to the CCA method. It
also can be seen from the figure théat) has no effect on the estimated HDRs. When

the conventional HDR which formgn) in the proposed algorithm is different from the
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Table 5.2 Comparison of the proposed adaptive filter method, CCA and GLM for the
estimation of HDR.

proposed method CCA GLM

NMSE 1.4150 1.2063 2.3610

actual HDR, the proposed algorithm could still work well to estimate the actual HDR
function. This is because thatn) is used as a part of the desired signal to update the
coefficients of the spatial filter and it is the spatially smoothed signal which is used as
the desired signal for the HDR estimation of the temporal filter as shown in Fig. 5.3.
The goodness-of-fit of the proposed method, CCA and GLM (with conventional
HDR function and its temporal and dispersion derivatives) to the actual HDR of the

above simulation, is evaluated using the normalized mean square error (NMSE) defined

as.
L-1/7
L hi = hy)?
NMSE = 220 i . ) (5.25)
Zi:O hz

whereh; and h; are respectively the estimated and the true values of HDR function.
Table 5.2 shows the NMSE values for the proposed method, CCA and GLM methods.
It is seen from Table 5.2 that the NMSE of the proposed adaptive filter method is
close to the CCA method and both of them are lower than the GLM method. This
means that the performance of the GLM method is inferior to the other two methods
in estimating the HDR. This is because the GLM with the conventional HDR can only
model small variations of the HDR; for large variations, the GLM lacks the flexibility to

capture the large difference between the actual HDR and the conventional HDR.
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Estimation of Multiple Event Type HDRs

Though the proposed method and the CCA method are equivalent, the advantage of the
proposed spatio-temporal method is that it is easier to extend to multiple event types
when subjects undergo multiple types of stimulation (for example, visual and auditory
stimulations). To substantiate this point, in this simulation, the scenario of two different
event types is studied by the proposed method. The two events stimulus onset functions
are randomly generated and the HDRs (HZ#Rd HDR) corresponding to these two
event types are assumed to have different deldys-(4 and6.5 respectively for HDR

and HDR in Eq. (5.2)). These two HDRs are convolved with different stimulus func-
tions, resulting in the simulated BOLD signal. Gaussian white noise is then added to
this simulated BOLD signal to generate the noisy fMRI signal with SNR = -2dB. The
generated noisy signal and the respective stimulus functions are then fed into the filter
to adaptively estimate the weights of the transversal filter as shown in Eq. (5.11) with
two temporal adaptive filters. Figure 5.7 shows the estimated HDRs for these two event
types. From this figure, it is seen that the delays of these two estimated HDRs are cor-
rectly estimated (respectively about 4 and 6.5). This clearly shows that the proposed

method can capture the difference between these two HDRs.

Comparison of Activation Detection Ability

The detection ability of the proposed spatio-temporal adaptive filter method and the
GLM method are compared. A slice from an experimental fMRI data set is used as the
background image. At some specific regions of the image, the simulated BOLD signals
generated by difference of gamma functions with different deldys= 4,5,6) are
added. Gaussian white noises with different variances are then added to each voxel of

the data to form a 3-D fMRI time series at different SNRs (ranging from -7dB to 0dB).
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Figure 5.7 Estimated HDRs to two event types using the proposed method.

These simulated fMRI data are fitted by the GLM model with the design matrix
composed of four regressors: the canonical HDR function, its temporal derivative and
dispersion derivative (these three regressors model the variation of HDR) and a constant
vector of value 1. The statistical parameter map (SPM) is then obtained based on the
t statistic calculated at each voxel and a threshold is determined to find the activation
regions of the brain. For the proposed adaptive filter method learned through the LMS
algorithm, a3 x 3 spatial window is considered. The initial values of the coefficients of
the spatial filter are assumed to b® and the initial weights of the temporal adaptive
transversal filter are chosen to be 1. The values of parametand ., in the LMS
algorithm are chosen to be 0.0001, and the training data are used repeatedly until the
algorithm converges. The reconstructed BOLD signal is then the convolution of the
estimated HDR (after convergence) and the stimulant function. The correlation coeffi-

cientsp between this reconstructed BOLD signal and the spatially smoothed signal are
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calculated at each voxel. The statistical parametric map is then formed and thresholded
to illustrate the activation regions.

Figure 5.8 shows the detection results of simulated fMRI data using these meth-
ods. Figure 5.8 (a) illustrates the simulated activation patterns. Figure 5.8 (b) is the
detection results of the GLM method without pre-smoothing. As it is clear from the
figure, this method almost fails to detect the simulated activation patterns with only a
few sporadic voxels detected as active. Figure 5.8 (c) and (d) are the detection results
of the GLM method with the image spatially smoothed by Gaussian spatial filters with
different width (Full-wWidth-Half-Maximum (FWHM) = 3 voxels for (c) and FWHM
= 5 voxels for (d)). Although Gaussian pre-smoothing gives better results compared
to the one without pre-smoothing, it loses details of the activation patterns due to the
isotropic property of Gaussian spatial smoothing, which spreads the energy of the acti-
vated voxels to the surrounding voxels. Figure 5.8 (e) shows the results of the proposed
spatio-temporal adaptive filter method. Compared to the other results, it is clear that this
method is more robust and sensitive than the GLM method with and without spatial pre-
smoothing. The proposed method can give a good estimation of the activation patterns
due to the ability to spatially adapt to the true activation patterns.

To have a clearer comparison of the detection ability, receiver operator characteristic
(ROC) analysis is used to investigate the activation maps generated by the GLM and
the proposed method. Figure 5.9 shows the ROC curves of the GLM method with and
without pre-smoothing and the proposed spatio-temporal adaptive method, respectively.
From these ROC curves, it is clear that under the same false positive ratio, the proposed
spatio-temporal adaptive filter method could actually detect more real activations. This
clearly shows that the proposed spatio-temporal adaptive filter method is a better method

for activation detection and activation patterns estimation.
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(b) (©) (d) ()

Figure 5.8 Detection results of simulated fMRI data: (a) Simulated activation pattern; (b)
GLM without spatial smoothingt(> 3); (c) GLM with spatial smoothing the FWHM

is 3 voxel ¢ > 3); (d) GLM with spatial smoothing the FWHM is 5 voxel ¢ 3); (e)
Spatio-temporal adaptive filter methga ¥ 0.3).
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Figure 5.9 ROC curves for simulated noisy data.

5.4.2 Experimental fMRI Data

The proposed spatio-temporal adaptive filtering method is also validated on the experi-
mental event-related fMRI dat® ATA-EVENTintroduced in Chapter 1). Before apply-

ing the proposed method to this experimental event-related fMRI data, the raw data are
preprocessed by the SPM software for registration and normalization. The drift in each
voxel time series is also removed. The resultant pre-processed data are analyzed using
the proposed spatio-temporal adaptive filter method. Since the TR in this experiment is
2 seconds, the number of tapsin the adaptive transversal filter is chosen to be 10 so
that the estimated HDR has a temporal extent of 18 seconds. The HDR estimated using
the proposed method is then convolved with the stimulus function resulting in the recon-
structed BOLD signal. The correlation coefficieptbetween this reconstructed BOLD
signal and the spatially smoothed signal are calculated at each voxel. Figure 5.10 shows

the results of the activation detection. The color bar shows the color corresponding to



5.5 Conclusion 114

Figure 5.10 One slice showing the activation of the auditory copex (.5).

thep from 0.5 to 1. Wherp is less than 0.5, it is represented by the original grey level
at that voxel. And the From this figure, it is clear that the activation is detected in the
auditory cortex.

Figure 5.11 shows the estimated HDRs using the proposed spatio-temporal adaptive
filter method and the CCA method to the time courses of activated voxels located respec-
tively at the left and right auditory cortex shown in Figure 5.10. From this figure, it is
seen that the estimated HDRs of the activated voxels show similar patterns of variations,
achieving the peaks at the delay of about 4-6s and then decreasing below the baseline
with the post stimulus undershoot. This validates our claim that the proposed method is

equivalent to the CCA method.

5.5 Conclusion

From the signal processing perspective, fMRI data analysis can be considered as a sys-
tem modelling problem. With the knowledge of experimental paradigm (input) and
measured data (output), this complex system (the brain and scanner) could be identified.

In this chapter, linear modelling methods are investigated for the event-related fMRI
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Figure 5.11 The estimation of HDRs for the activated voxels using the proposed adaptive
filter method and CCA method. (a) One voxel in the left auditory cortex; (b) One voxel

in the right auditory cortex.
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data.

Considered as a linear time-invariant (LTI) system, the human brain and fMRI data
acquistion can be modelled using adaptive transversal filters. It is also known that the
activation regions span several millimeters or a few voxels. Incorporating the spatial
information into our analysis can increase the detection power of the methods. The
Gaussian spatial smoothing filter is commonly used in fMRI data analysis as a prepro-
cessing step to increase the SNR. However, due to the isotropic property of the Gaussian
spatial filter, this method would blur the details of the activation patterns. In this chapter,
an adaptive spatio-temporal modelling and estimation method is proposed. Two adaptive
filters are used:i] the spatial filter to adaptively estimate the activation patternsiand (
the temporal filter to adaptively model the HDR. The weights of these filters are updated
using the well-known LMS adaptive algorithm. The relation of the proposed method to
the CCA method is also proven. Both the synthetic as well as experimental event-related
fMRI data are examined. Results from extensive simulation studies show that the pro-
posed spatio-temporal adaptive method is superior to GLM with Gaussian smoothing.
The proposed method has the ability to detect the details of the activation pattern without
blurring it. Besides, the HDR estimated by the temporal filter would capture the vari-
ation of brain responses between different brain regions and different persons. These
simulation studies suggest that the spatio-temporal adaptive filter method is a superior
approach to model and investigate the fMRI data.

With the advancement of the fMRI techniques as well as the experimental protocol,
rapid event-related fMRI experiment becomes popular these days. The ISl in this type
of fMRI experiments is less than 4-6 seconds, which violates the linear assumption
underlying the spatio-temporal adaptive filter method proposed in this chapter. For the
rapid event-related fMRI experiments, nonlinear phenomena are often observed. Thus,

in the following chapter, nonlinear methods to estimate the HDR is investigated.



Chapter 6

Estimation of the Hemodynamic

Response of fMRI Data using RBF

Neural Network

6.1 Introduction

In Chapter 5, a spatiotemporal adaptive filter is proposed to estimate the HDR under the
linear assumptions (when the ISl is larger than 4-6 seconds). However, the fMRI signals
also exhibit nonlinear properties especially in the rapid event-related fMRI experiments
when the stimulation duration or ISl is less than 4-6 seconds [95][96][97]. These non-
linearities arise from both vascular and neuronal levels [98]. Several advanced nonlinear
models have been proposed to analyze such fMRI data. The nonlinear dynamics of the
BOLD signal is first described by the Balloon model, which is a physiologically derived
model introduced by Buxton et al [26]. The couplings between blood flow and blood
oxygen concentration changes on a biological level are incorporated into this nonlinear

state-space model. The interpretability of the parameters in the Balloon model makes it

117
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a suitable model to understand the nonlinear mechanisms underlying the BOLD effect.
The Balloon model has undergone several extensions since its introduction. Friston et
al. extended the original model to include a linear interaction between synaptic activ-
ity (or electrophysiology) and the microvascular control system [20]. Recently, Buxton
et al. incorporated CMROand neural activity as new variables in the Balloon model
and described the steps linking an external stimulus to the measured BOLD and CBF
responses [99]. These physiologically derived nonlinear models have many advantages
such as meaningful interpretations of the parameters. However, it is not an easy task to
estimate the parameters in such nonlinear models. The non-physiological models de-
scribed in the following sections, on the other hand, are easier to implement and more
flexible for a better mapping of the input to the output if the signal is highly nonlinear.
The Volterra series method, which can model any dynamical input-output system,
was also proposed to analyze and estimate the HDR using the 1st and 2nd order \Volterra
kernels [25]. Though this method represents the nonlinear properties of the BOLD sig-
nal, it has a number of limitations. To obtain a better representation of the dynamical
system, higher order \Volterra kernels are required. However, the inclusion of higher or-
der Volterra kernels requires fitting a large number of parameters. Especially, the number
of terms in the kernels of the series increases exponentially with the order of the series.
Due to these difficulties and the complexity in identifying the higher order kernels, an
alternative, yet efficient method to estimate the kernels in the Volterra series is desired.
In this chapter, a novel method to the estimation of the kernels is proposed. This
method describes the non-linear dynamics of the fMRI hemodynamic response using
the radial basis function (RBF) neural network. It is known that neural network could
approximate any continuous functions to any degree of accuracy due to its universal

approximation property. Modelling the fMRI system as nonlinear and dynamical, the
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RBF neural network is capable of regressing nonlinearly the BOLD signal to the ex-
ternal stimuli. Additionally, the relationship between the parameters of the RBF neural
network and Volterra kernels is provided and the HDR could easily be estimated from
the parameters of the neural network. This provides an efficient method to calculate the
large number of parameters in the Volterra series kernels.

In the following sections, we first introduce the Volterra series model and Balloon
model for the analysis of fMRI data. Then, the RBF neural network method is utilized to
model the fMRI data and the relation of proposed neural network method to the \Volterra

series method is demonstrated.

6.2 \olterra Series Model

The measured fMRI signaj(n)(n = 0,1,--- , N — 1), can be described as a nonlinear
convolution of the stimulus functior(n), with the Volterra kernels where the nonlinear
properties are captured by the higher order kernels. The \Volterra series method to model
the fMRI signal does not include the variables such as blood volume, blood flow, oxy-
genation etc introduced in the Balloon model which makes the parameters in the model
easier to estimate. When the BOLD signal is represented in the form of a finite (2nd
order) Volterra series, the output BOLD signgl(n), can be written as a function of the

input stimuluss(n), as:

yo(n) = ag + Z ar(i)s(n— i)+ Y > as(i,j)s(n — i)s(n — j) (6.1)

i=0 j=0
where the length of the kernels i® ¢ 1). The constant, is the zeroth-order kernel.
The coefficients: () are the first-order kernels which relate the output as the weighted

sum of the present and the recent past inputs; these coefficients represent the HDR in
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fMRI. The coefficientsu,(+, -) in the above equation are the second-order Volterra ker-
nels which represent the output as the interactions between the present and/or the recent
past inputs at different time points. It can be observed the existence of the kernels
as(i,j) = as(j,1), Vi, j, due to the symmetry property. The input stimul(s) repre-
sents the timing of the external stimuli with the value equal to ‘1’ when the stimulus is
present (ON) and ‘0O’ when the stimulus is absent (OFF).

The measured fMRI signad,(n), is a noise corrupted version of the BOLD signal,

yp(n), and can be represented as:

y(n) = uys(n) + e(n) (6.2)

wheree(n) is the additive noise. The solution to the Volterra series model could be
obtained using a least-square method (assuming the noise to be white Gaussian). Sub-

stituting Eq. (6.1) into Eq. (6.2), the latter can be represented in the matrix form as:
y=U¥x+e (6.3)

where,y = [y(P),--- ,y(N — 1)]* is the measured signal of dimensigN — P) x 1;
e = [e(P),---,e(N —1)]T is the noise vector with the same dimension. The coefficient

vectorx (of dimension { x 1)) and the matrix¥ (of dimension(N — P) x L) are

respectively:
X = [a(]? al(o)v e al(P)> a2<07 O)? a2(07 1)? e a2<P7 P)]T> (64)
1 s(P) .. 5(0) 252(P) s(P)s(P—1) ... 82(0)
1 s(P+1) ... s(1 s“(P+1 s(P+1)s(P s9(1
v — .(.) (.) (. ) s( .)() f) (6.5)
1s(N=1) ... s(N—P—1) s2(N—1) s(N—1)s(N—2) ... s*(N—P)

Here, N is the total number of measured output samples,lard(P + 3)(P +2)/2

considering the symmetry of the coefficientsugf-, -). The least-squares (LS) estimate
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of the coefficientsX) is given by:
x = (PTw) ety (6.6)

It needs to be noted that for the event-related fMRI design, the mitnay become
singular because of the fact that the stimuli functign) contains only zeros and ones,
which may cause some columnsdnto be zero. Additionally, the Volterra series model
needs to specify the order to which the representation is carried out. Inclusion of higher
orders in \Volterra series allows a better representation of the dynamical system under
study. However, since all the related kernel parameters need to be estimated together
if using the LS method, inclusion of higher order \Volterra series causes the number of
parameters to be estimated to increase exponentially with the order. For example, if
the BOLD signal with TR = 1 second is modelled using Volterra series of order 3, the
number of parameters to be estimated is more than 4000 if the kernels are to capture
the temporal properties within 20 seconds after stimuli. Therefore, an efficient and ac-
curate method for the calculation of the Volterra kernels is desired. In the following
section, such a method (the RBF neural network method) is provided. Especially, the
calculation of Volterra series kernels is derived from the parameters of the RBF neural
network. Compared to the Volterra series method estimated by LS, the proposed method
could model the systems nonlinearity even when higher order kernels are needed. Also
since the kernel parameters are estimated independently, the lower order Volterra kernels
could still be accurately calculated even when the higher order Volterra kernels are not

estimated.
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6.3 Neural Networks Model

Neural networks, a powerful method for modelling nonlinear systems [100], is used in
this work to describe the nonlinear dynamics of HDR [101]. The present and the recent
past inputs are applied to the neural network and the BOLD sigmalfrom a specific

voxel is used as the desired output signal. Thus, the measured BOLD signal can be

expressed as the nonlinear function of the input stimulus as follows:
g(n) = F"(s(n)) (6.7)

where;s(n) = [s(n),s(n—1),--- , s(n—P)|T is the input vector of dimensioiP+1)x 1
formed by the present and recent past inputs with the maximum de&laghe output
9(n) is a nonlinear function (denoted /') of the input vectos(n). This functional
mapping is realized by the Radial Basis Function (RBF) network as shown in Fig. 6.1.
The universal approximation property and straightforward computation using linearly
weighted combination of single layer neurons have made RBF network a good choice in
the dynamic reconstruction applications such as the one dealt in this thesis. Moreover,
the RBF network has a simpler structure (one hidden layer) and easier to implement
compared to the multi-layer perceptrons (MLP) neural network which may require more
than one hidden layers and more time for learning the underlying nonlinearity.

Suppose there ar®/ hidden units in the RBF network, then the outg(t) of the

mapping is taken to be a linear combination of the basis functions, i.e.

M
j(n) =Y hiG(s(n), ;) (6.8)
i=1
whereh; (i = 1,---, M) are the weighting coefficients (linear output layer) and
(t = 1,---, M) are the centers of the radial basis functions. Commonly used basis

functions are Gaussian functions which are defined as:

Glsn).c) = exp = sl — i) (6.9)



6.3 Neural Networks Model 123

s(n—P+1)

s(n—P)
Input Hidden Output
Layer Layer Layer

Figure 6.1 The structure of the RBF neural network.

whereo? is the variance of théh Gaussian basis function.

The following subsection presents the equivalence of the RBF network and Volterra
series methods. This equivalence could also be generalized to the MLP with simple
structures (one hidden layer), whereas this equivalence is not so straightforward for

structures with more than one hidden layers.
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6.3.1 Relation between RBF neural network and Volterra series

According to Egs. (6.8) and (6.9)(n) can be written as,

M _ HS(")E%‘HQ
g(n) = Zhie 7
i=1
M — 1 (s(n)—c;)T (s(n)—c;
_ Zhie Uiz(() ) (s(n)—c;)
i=1
M — L (sT(n)s(n)—2sT c;,+cle;
:Zhieag(()() (n)cite; ;)
i=1
M —%CTCZ'
=y (hie o7 )e (6.10)
i=1

Here,z; is defined as:

(s"(n)s(n) — 28" (n)c;)

(Z s*(n —j) — QZ%‘S(” - j)) : (6.11)

J=0

r, = —

Q- A~

where,c; is thei-th center and;; is thej-th element ot;.
According to the Taylor series expansionetf at origin:

n

T Ty L, L3
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and substituting Eq. (6.12) into Eg. (6.10), we get

T T T e
_0151 _°22°2 _ 1v12M
gn) = (e 7 +hye 2 +---Fhye M)
P
1
Lcfer 1 —ejer 1
+2 E (hle 1 —Ch—i‘hze 72 —202'
=0
1 T 1
52 CmeM .
4+ hye u —5Cumi)s(n — 1)
Thr

P P
_701 a1l —J%CQTCQ 1
+2 Z Z h1€ ! 0_ Clzclj + h2€ 2 ;621'02]' 4 ...

1
o C]uclw 1 . .
+hye i o ——cmicyj)s(n —i)s(n — j)
M
P
1 %cl c1 1 5 Ch C2
+ E (——2h1 71 ——2h2€ 2 —
» 1 03
Jj=0
1 3 ChCM
2
)
M

g (6.13)

Comparing the above equations with Eqg. (6.1), it can be seen that the zeroth, first, and

second-order Volterra kernels can be deduced as:

_ Cr{;l o Cg§2 _ C}Cf;]\/f
ap = hie 1 +hse °2 +---+hye M (614)
1 1 .7
. el 1 —5C5C2 1
a(i) = (hle o1 —ch+h26 73 —5Cai
01 g3
__1.T 1
5 CypCM
4+ -4+ hMe ™M —2€MZ) (615)
OMm
_1.T 1 _ 1.7 1
. . 261 C1 2C2 c2
ax(1,7) = 2(hie 71 —C1ic1; + hae 72 —7C2iC2;
01 )
1 T 1
52 CrvrCM
N p —CMiCM;)
M
1 LeTe 1 — LTy
—(—2h16 d% ! —2h26 Ug :
01 03
1 —orCheMy .
M

as(7,1) = aq(i, ), Vi, J. (6.17)



6.3 Neural Networks Model 126

The above equations build the link between the Volterra series and RBF neural net-
work. This implies that the Volterra kernels can be easily deduced from the parameters
of the RBF neural network. It is also easy to extend the neural network method to de-
duce the coefficients of the third or higher order Volterra kernels if more terms from the
Taylor series are incorporated into the expansion series.

As described in the previous section, the performance of the Volterra series method
is determined by the choice of the order of Volterra series. Considering only the lower
order Volterra kernels may not capture the dynamical properties of the system well. Al-
though inclusion of higher order Volterra kernels could model the dynamic system better,
this poses the problem of higher computational complexity in identifying the higher or-
der kernels. Compared to the Volterra series method, the neural network method could
model the nonlinear dynamical system well even when the system is highly nonlinear.
Besides, to estimate the \Volterra kernels using the LS method, all the relevant \Volterra
kernels need to be estimated together and this is difficult when the order of the Volterra
kernels included is high. However, using the RBF neural network method, the lower
order Volterra kernels can be estimated from the RBF parameters (independently) with-
out the estimation of the higher order kernels. This is useful because for most cases,
we are only interested in the lower order Volterra kernels. The proposed neural network
method provides an efficient approach to estimate the lower order Volterra kernels and
at the same time capture the nonlinearities of the system. In addition, the RBF neu-
ral network method avoids the possible singularity probldmirf{ Eq. (6.6)) of the LS

method.
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6.3.2 Learning procedure

The centers; of the radial basis functions are chosen randomly from the training data set
and the variances of the basis functions are fixed according to the spread of the centers.
For fixed centerg; and variancer?, the aim of the RBF network is to find the weights

h; such that the sum-squared-error is minimized. Considering the noise presented in
the data, regularization is required to stabilize the solution [100]. The regularized RBF

network gives the following estimates of the weight vectots [hy, - - , hy|T:
h=(G'G + ) 'G"y (6.18)

where ) is the regularization parametey,is the vector representing measured fMRI

signal andG is an(NN — P) x M interpolation matrix, which is defined below:

G(s(P),c1) ... G(s(P),cy)
G — : : (6.19)
G(s(N —1),¢1) ... G(s(N —1),cp)

The regularization parameter> 0 controls the balance between fitting the data and reg-
ularization. A small value ok means the data can be fit tightly without causing a large
regularization; a large value of means a tight fit has to be sacrificed to a smoothing
output function.

Here,h and A can be estimated through Bayesian learning by iteratively updating

the following equations [102]:

Y =p(GTG +A)! (6.20)
h = %EGTy (6.21)

y=M — %trace(i]) (6.22)
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o lly — Gw|?
= 6.23
=5 (6.23)
2
A= (6.24)
W W
where,3? is the estimated variance of the noise.
The reconstructed BOLD signgl; is then calculated as:
¥, = Gh. (6.25)

One advantage of Bayesian learning of RBF neural network is that the cross-validation
to find the suitable regularization parameter is not needed, which means that all the train-
ing data can be used. This is especially useful in the fMRI time series analysis since the

number of the available data points is limited.

6.4 Balloon Model

In Chapter 1, Section 1.2.2, we have briefly introduced the Balloon model. It is a phys-
iologically inspired model introduced by Buxton et al. to describe the dynamics of the
BOLD signal [26]. In this section, a more detailed description of the Balloon model is
provided. It is used to generate the simulated BOLD signal in the simulation studies of
this chapter.

The Balloon model is a state-space model which describes the dynamics among
blood flow, blood volume and blood oxygen concentration changes. The model is in-

herently nonlinear and can be used to explain the nonlinearities appearing in the BOLD
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signals. The Balloon model is described by the following equations:

4 f _ .,
U = es—kou—ke(f—1)
: _ 1 _ 1/
o= g =or) (6.26)
i = MR vy
yw = Vo(TEy(1—q)+2(1—q/v)
\ +(2Ey — 0.2)(1 — v))

where f is the CBF is the CBV,q is the deoxyhemoglobin content (dHb) of vein,

is the flow inducing signal (these values are normalized to their values atsésthe
stimulus function ang, is the BOLD signal. The time-varying intrinsic variablgs, ¢

andu summarize the hemodynamics of the system: how the changes of the CBF, CBV
and dHb are coupled to each other and synaptic activity encoded in the stimulus function
s. The other parameters in the above equations are the neural effiejeheylow decay

ks, the flow time constant;, Grubb’s parametet, the venous transit time, the resting

net oxygen extraction fractiof, and the resting blood volume fractidg.

Putting Eq. (6.26) in a succinct way, it can be written as:

x(t) = Ax(t),s(t))
w(t) = B(x(t))

(6.27)

whereA and B are nonlinear functionsy(t) is the input signal representing the stimulus
function,x(t) = [f(t), u(t),v(t), q(t)]" is the state vector which is non-measurable and

yp(t) is the output BOLD signal. The measured fMRI signé) is represented as:

y(t) = yp(t) + e(t) (6.28)

wheree(t) is the drift and measurement noise. The schematic diagram of the Balloon

model is shown in Fig. 6.2.
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Figure 6.2 Schematic diagram for Balloon model.

6.5 Results and Discussion

6.5.1 Simulated Data

In this section, the proposed RBF neural network method was first tested on a simple
example to validate the estimation accuracy of the Volterra kernels. Then, the simulated
BOLD signal (using the Balloon model) with different noise levels and real event-related

fMRI data were investigated to reconstruct the dynamics underlying the fMRI signal.

Example

In this general example, the RBF neural network was applied to the simulated data to
identify the coefficients of the Volterra kernels. A total of 400 data points were generated

using the following Volterra series modd? (= 2):

y(n) = 24409s(n) —0.4s(n — 1)+ 0.74s(n — 2)
—0.18s(n — 1)s(n — 2) + 0.36s(n)%. (6.29)
The input signals(n) in this example is simulated by Gaussian white noise with unit

variance. Figure 6.3 shows one realization of the input sighgl (Fig. 6.3 (a)) and the

simulated output signal(n) (Fig. 6.3 (b)) using Eq. (6.29).
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Figure 6.3 One realization of the input signal and the simulated output signal using
Eq. (6.29). (a) Input signal; (b) Output signal.
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The RBF neural network with different number of hidden unité £ 50, 100, 200, 300)
(respectively represented as RBF50, RBF100, RBF200, RBF300 in Table 6.1) are inves-
tigated. The Bayesian learning procedure described in Section 6.3.2 is applied to regress
the output signad(n) on the input vectos(n) (From Eq. (6.29), the maximum delay
in the input vectos(n) is accordingly set to be 2). Th¥ centers of the RBF network
basis functions are randomly chosen from the training data set. The estimated \Volterra
kernels (using Eq. (6.14) — Eq. (6.17)) are shown in Table 6.1. Due to the symmetry of
the second-order coefficients(:, j) = ax(j, 1), we only show the estimated coefficients
wherei < j. The goodness-of-fit of the RBF neural network with different number of

hidden units is evaluated using the NMSE defined in Eqg. (5.25) and rewritten here:

L-lia .32
NMSE = Zii (Lﬁ xf’) (6.30)
=0 7

wherez; andx; are respectively the estimated value and the true value of the Volterra
kernel parameters.

From Table 6.1, it is clear that although the RBF with small number of hidden units
(RBF50) shows some estimation errors (with NMSE = 0.004 which is relatively large),
the estimation results are accurate when the number of hidden units is large (RBF100,
RBF200 and RBF300 with NMSE equalt®93 x 1074, 8.728 x 1076, and1.067 x 1075
respectively which are relatively small). This study shows that the zeroth, first, and

second-order Volterra kernels could be accurately estimated by the proposed method.

Example

To compare the proposed neural network method and Volterra series method using LS

estimation, a nonlinear signal with third-order Volterra kernels is generated according to
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Table 6.1 Estimation of Volterra kernel parametdrs= 2)

Parameters Value RBF50 RBF100 RBF200 RBF300

ag 2.40 24475 24062 24030 2.4014
a1(0) 0.90 0.8842 0.9207 0.9038  0.9055
ay(1) -0.40 -0.3511 -0.4169 -0.4020 -0.4017
a1(2) 0.74 0.7157 0.7520 0.7422  0.7423

a2(0,0) 0.36 0.2341 0.3628 0.3592  0.3569
as(0,1) 0.00 0.0191 -0.0069 -0.0004 -0.0003
as(0,2) 0.00 -0.0076 0.0046 -0.0033 -0.0029
as(1,1) 0.00 -0.0619 -0.0092 -0.0015 -0.0010
as(1,2) -0.09 -0.0890 -0.0901 -0.0901 -0.0881

as(2,2) 0.00 -0.0669 0.0111 -0.0043 -0.0040

NMSE 0.0040 1.593e-4 8.728e-6 1.067e-5
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the following equation:

y(n) = 24409s(n) —0.4s(n —1)+0.74s(n — 2) — 0.18s(n — 1)s(n — 2)
+0.365(n)* 4+ 0.765(n)s(n — 1)s(n — 2)

+0.855(n — 1)s(n — 2)? + e(n). (6.31)

As before, the input signail(n) is Gaussian white noise with variance one and the total
number of data points is 400. In this example, a small Gaussian #(@is@vith variance

0.01 is also added to generate the noisy simulated signal The maximum delay’

in the input vectos(n) is set to be 2. For the RBF neural network, 200 hidden units
(M = 200) are used to regress the simulated output sigfa) to the input signak(n)

in order to have good results. For the LS estimation method, the choice of the highest
\olterra kernel order need to be specified. The estimations with the highest assumed
order being set to 2 (LS-2) and 3 (LS-3) are examined. Table 6.2 shows the estimation
results of RBF, LS-2 and LS-3.

From Table 6.2, itis clear that the least-squares estimation is sensitive to the assump-
tion of the highest order of Volterra kernels. If the chosen order mismatches with the
actual order, the estimation results may deviate from the true values as shown in the LS-2
with large NMSE (0.1309). Including higher order \Volterra kernels into the LS method
may result in better estimation (as shown in LS-3 with small NMSE (9.8310e-007)),
however, this is difficult for fMRI data analysis since the number of parameters to be es-
timated from LS method may become enormously high with the increasing order of the
kernels included. The RBF neural network method, on the other hand, does not rely on
the choice of the order and hence could accurately estimate the \Volterra kernels even if
the order of the Volterra series is unknown (with relatively small NMSE = 1.0573e-004).

Another advantage of the RBF neural network method is that we can estimate \Volterra
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Table 6.2 Estimation of Volterra kernel parameters using RBF neural network method
and least-squares (LS) method when the highest order of Volterra series is 3.

Kernels Parameters Value RBF LS-2 LS-3

zeroth agp 2.40 24064  2.1953 2.4006

a1(0) 0.90 0.9018 0.8785 0.9013
first ay(1) -0.40 -0.3888 0.4764 -0.4013

a(2) 0.74 0.7480 0.9776  0.7388

a>(0,0) 0.36 0.3681 0.4146 0.3596

as(0,1) 0.00 0.0023 0.0252 0.0012

as(0,2) 0.00 0.0158 0.2670 0.0005
second

as(1,1) 0.00 -0.0008 0.0177 0.0000

as(1,2) -0.09 -0.0840 -0.1943 -0.0895

as(2,2) 0.00 0.0139 0.1340 -0.0001

NMSE 1.0573e-4 0.1309 9.8310e-7
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kernels at a specified order while not estimating Volterra kernels at other orders. Com-
pared to the LS method which needs to estimate all the Volterra kernels together, this
property of RBF neural network could estimate the lower order Volterra kernels indepen-
dently without estimating the higher order kernels. This is efficient because the lower
order \Volterra kernels are of our interest for most cases.

From the simulation studies on Examplel and Example2, it is shown that the pro-
posed RBF neural network method works well in the general Volterra series models.
The estimated Volterra kernels are accurate as long as enough hidden units are used in
the network structure. In the following section, a case closer to the fMRI data — the

simulated BOLD signal is tested.

Simulated BOLD Signal

In this set of simulations, the simulated BOLD signal generated using the Balloon model
is investigated using the proposed RBF neural network method. When the RBF neural
network is applied to the fMRI data, the noise involved in the fMRI signal may pose a
problem. In this section, both the Gaussian white noise and autocorrelation noise in the
fMRI data are examined.

The simulated BOLD signa}, is generated using Eq. (6.26) with the following set
of parameterse = 0.5, k; = 0.65,ky = 04,7 = 1,a = 04,E;, = 04 andV; =
0.02 [26][20] and the total duration of the simulated BOLD signal is 400s. To simulate
the event-related fMRI experiment, the input stimalare randomly generated with
each lasting for 1s. The generated BOLD signal is then sampled with uniform sampling
rate of 1s, which gives the simulated BOLD signgln). Figure 6.4(a) illustrates the
simulated BOLD signal,(n) with the thick vertical line indicating the timing of the
discrete random stimuli(n).

To test the effectiveness of the proposed method in the case of additive noise, the
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Figure 6.4 Simulated BOLD signal generated by the Balloon model and noisy BOLD
signals with different additive noise. (a) Simulated pure BOLD signal and the timing of
the stimuli; (b) Simulated noisy BOLD signal corrupted with additive Gaussian white
noise; (c) Simulated noisy BOLD signal corrupted with additive autocorrelation noise.
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noisee(n) was added to the BOLD signal}(n) generated by the Balloon model as
follows:

y(n) = y(n) +e(n) (6.32)

wheree(n) is the additive noise (Gaussian white noise or noise with temporal autocorre-
lation) andy(n) is the noisy BOLD signal. Then, the simulated input stimti) were

fed to the RBF network with the simulated noisy BOLD sigpéat) as the target signal.

The number of hidden unitd/ in the RBF neural network is set to be 200 (enough to
model the nonlinearity in the system) and the centers of the RBF are selected randomly
from the input stimuli vectors. The parameters of the RBF neural network are estimated
through the Bayesian learning. To cover the time span of the HDR, the maximum input
delay P is chosen to be 20 since the HDR lasts for about 20s and the sampling rate is 1s
in this simulation.

Figure 6.4(b) shows the simulated noisy BOLD sigp@l) with additive Gaussian
white noise. Different noise levels (with the signal-to-noise ratio (SNR) varying from
—7dB to 5dB) are added to the simulated BOLD signg(n) to generate the noisy
BOLD signaly(n). Figures 6.5 and 6.6 show the the estimated 1st (a vector of dimen-
sions21 x 1) and 2nd order (a symmetric matrix of dimensi@is< 21) Volterra kernels
of the simulated noisy BOLD signal with the SNR ef7dB and0dB respectively. It
is clear from the figures that the estimated 1st order kernel of Volterra series shows the
properties of the HDR and is analogous to the conventional HRF formed by the dif-
ference of two Gamma functions. When the noise level is high, the estimated HDR
exhibits more variations as displayed in Fig. 6.5 (a). The 2nd order kernels in these
figures indicate the effect of the interaction between adjacent inputs on output signal.

Next, the noise with temporal autocorrelation is investigated. The serial correlations
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Figure 6.5 Estimated?® (a) and2" order (b) Volterra kernels using the proposed neural
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Figure 6.6 Estimated (a) and2" order (b) Volterra kernels using the proposed neural
network method with SNR 8dB.
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in fMRI data is simulated as autoregressive with order 1 (AR(1)) plus white noise [103]:

e(n) = z(n)+n(n) (6.33)

z(n) = pz(n—1)+&(n) (6.34)

wherep is the AR(1) coefficienty)(n) and&(n) are the white noise terms)((z) ~
N(0,07),&(n) ~ N(0,0¢)). This noise model is to capture the short-range autocorrela-
tions in the fMRI data. For long-range autocorrelations in the fMRI data, a detrend pro-
cedure is often included as a preprocessing step to relax the autocorrelation noise [104].
In the following part, the short-range autocorrelation noise is investigated.

The short-range autocorrelation noise synthesized using parametefs4, 0,27 =
0.5, ag = 0.6 is added to the pure BOLD signal(n) to generate the noisy BOLD signal
y(n) as shown in Fig. 6.4(c). This simulated noisy BOLD signal is then modelled using
the RBF neural network. The parameters of the RBF neural network are chosen accord-
ing to the same scheme as introduced in the case of the Gaussian white noise. Figure 6.7
shows the estimated 1st and 2nd order Volterra kernels using the proposed RBF neural
network method. These results indicate that the RBF neural network method performs
well to estimate the Volterra kernels when the noise is of short-range temporal autocor-
relation. This shows that the short-range autocorrelation noise is not so problematic for
the proposed RBF neural network method. When the noise is of long-range autocorre-
lation, the performance of the RBF neural network would be affected by the long-range
autocorrelation and may not work well. Hence, to ensure that the RBF neural network
method works well, the fMRI data need to be detrended before applying the RBF neural

network for further processing.
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Figure 6.7 Estimated?® (a) and2" order (b) Volterra kernels using the proposed neural
network method when the additive noise is autocorrelational.

6.5.2 Experimental Data

The proposed RBF neural network method for the estimation of the hemodynamic re-
sponse is also tested on an experimental event-related fMRI B&BACEVENTIn
Chapter 1). The raw data are preprocessed by the SPM software for registration, normal-
ization and smoothing. The drift (long-range autocorrelation noise) in each voxel time
series is removed using the detrending procedure to ensure the proposed neural network
method works well.

The preprocessed fMRI signal is then applied to the RBF neural network with the
number of hidden unit8/ = 200. The measured fMRI signal at each voxel is used as the
desired signaj(n) of the RBF neural network and the input sigréh) is constructed
according to the description of the experimental design. When the stimuli are presented,
s(n) = 1; while when the stimuli are absen{;z) = 0. Since the sampling rate (TR) is
2 seconds, the maximum del&yof the input vector is chosen to be 10 in order to cover

the time span (18s) of the HDR.
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Estimation of HDR

As mentioned in the Introduction section in this chapter, the HDR varies with different
brain regions and different subjects. In this section we examine these variations. Fig-
ure 6.8 shows the estimated first order Volterra kernels of the left and right auditory
cortex for two subjects using the proposed neural network method. Clearly, the varia-
tions of the HDR between different brain regions and different subjects can be captured
using the proposed method. The estimated first order Volterra kernels show the prop-
erties of the HDR, such as a characteristic peak at around 6s. The estimated 2nd order
kernels showed the same patterns as that is shown in Fig. 6.5(b) and hence not shown
here. These figures illustrate that the proposed neural network method is able to provide
a good estimation of the HDR. In addition, it is more flexible than the conventional HDR
model formulated by the difference between two gamma functions. The gamma function
model may miss the difference in the dynamics of different regions and subjects since it
uses the same HDR model for all the voxels investigated. However, the proposed neural
network method is applied on each voxel and is able to capture the differences in BOLD

signals of different regions and subjects.

Detection of the Activated Regions

To detect the activated regions of the brain, the reconstructed BOLD sjgatathe
output of the RBF neural network is investigated. The following test at each voxel is
used as an index{) for activation detection:
R= —Hy”A (6.35)
ly =¥l
wherey is the measured fMRI signal in a voxel afids the reconstructed (or regressed)

BOLD signal in this voxel. For the inactivated voxels, the reconstructed BOLD signal
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would be almost zero since the inactivated voxels do not involve the BOLD effect cor-
responding to the external stimuli. In this case, the valug @fould be small. On the
other hand, when the voxel is activated, the reconstructed BOLD signal should capture
the dynamics corresponding to the input stimulations, thag ig; 0 and the valueR

would be large. TheR value is analogous to the SNR. Figure 6.9 shows the results of
the activated regions in the brain by thresholding thealues at each voxeR( > 0.3

is chosen to give best results). It is clear from this figure that the auditory cortex in the

brain is activated in this event-related fMRI experiment.

Figure 6.9 One slice showing the activation of the auditory coriex-(0.3).

6.6 Conclusion

The BOLD signal, as the foundation of the fMRI experiment, reflects the hemodynamic
response of the human brain. To investigate how the brain responds to the stimulus,
i.e., to study the dynamics of the human brain, system identification methods have been
proposed to identify the complex functional relation between the input stimuli and the
measured BOLD signal. Conventional methods are based on the linear system analysis

which models the BOLD signal as the convolution of the HDR and the input stimuli.
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However, this linear assumption holds only for ISl larger than 4-6 seconds. For rapid
event-related fMRI experiment, nonlinear properties of the BOLD signal are often ob-
served. This requires nonlinear methods to identify this complex (brain) system. One of
these nonlinear models is the Balloon model which is a physiologically derived one. In
this chapter, the Volterra series, which can represent any dynamical input-state-output
system, was first investigated to provide a nonparametric framework for the system iden-
tification. Then, the RBF neural network is proposed as a general method to regress the
measured BOLD signal on the input stimuli and to capture the system dynamics. The
equivalence of the proposed RBF neural network method to the Volterra kernels has
been derived. It is demonstrated that the 1st and 2nd order Volterra kernels can be easily
deduced from the coefficients of the RBF neural network. Compared to the \Volterra
series model estimated through least-squares method, the RBF neural network method
does not need to presume the highest order of the nonlinear system and hence is robust
and efficient to estimate the Volterra kernels even when the nonlinear system is of higher
order. Results from simulated as well as experimental event-related fMRI signals show
that the proposed method can successfully estimate the HDR as well as capture the non-
linear dynamics of the BOLD signal. In addition, the proposed method could estimate
the individual hemodynamic response (or the 1st order Volterra kernel) at each voxel.
This helps us to investigate the variations of the HDR with different brain regions and
different subjects.

In the next chapter, we continue our discussion of the neural network based method
to analyze the fMRI data. Specifically, a recurrent neural network is proposed to recon-

struct the BOLD signal from the measured noisy fMRI data.



Chapter ;

NARX Neural Networks for Dynamical

Modelling of fMRI Data

7.1 Introduction

In Chapter 6, a detailed discussion of the methods to model and analyze the nonlinear
dynamics of the BOLD responses have been provided. These methods can be catego-
rized into state-space models and regression models. The state-space models account
for the data by using intermediate state variables whose dynamics generate the BOLD
signals. The commonly used state-space model is the Balloon model [26]. Regression
methods model the observed BOLD signals to be some functions of the stimulation
patterns. These include multivariate autoregressive (AR) models [105], autoregressive
model with exogenous inputs (ARX) [106], specific basis functions implemented in
the General Linear Model (GLM), \Volterra kernels [20] and the RBF neural network
method introduced in Chapter 6.

In this chapter, a recurrent neural network with one or more feedback loops is in-

vestigated. This neural network has been successfully used for system modelling and

146
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identification because of their ability in approximating the nonlinearities. The nonlinear
autoregressive with exogenous inputs (NARX) neural network [107] is applied to model
and analyze event-related fMRI data. This neural network can capture the underlying
nonlinearities and hence reconstruct the dynamics of the fMRI data. The reconstructed

BOLD signal is less noisy and could facilitate the analysis.

7.2 NARX Model

The dynamical modelling of the fMRI data aims to capture the input-output mapping of
the measured noisy fMRI data. Recurrent neural networks are particularly suitable for
such applications due to their ability to identify arbitrary nonlinear dynamical systems.
In this chapter, the NARX neural networks [100] are applied to model the input-output
dynamics of the BOLD signal and hence identify this complex system. The NARX
neural networks are powerful methods to model nonlinear systems with the advantage
of faster convergence and better generalization ability [108].

Figure 7.1 shows the schematic diagram of the NARX model for reconstructing the
fMRI data. In this model, the input signa(n) is applied to the network througly — 1)
delayss(n) = [s(n), -+ ,s(n—q+1)]T. The measured fMRI signgl(n) at each voxel
is also fed back to the input viadelays,y (n) = [y(n —1),--- ,y(n — p)]*. The output

of the NARX model can be expressed as:
gp(n) = FY(y(n),s(n)) = F¥¥(x(n)) (7.1)

wherex(n) = [y(n),s(n)]” is the full input vector of sizép + ¢) x 1. The estimated
outputg,(n) is a nonlinear transformation (denoted BY") of the input vector(n).
This outputy,(n) is the estimated BOLD signal reconstructed by the NARX model from

the measured noisy fMRI signa(n).
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Figure 7.1 Schematic diagram for NARX model.

The proposed NARX model is realized through the RBF neural networks [100]. The
learning of the RBF neural networks is detailed in Section 6.3.2. When the weights of
the RBF neural networks have been found, a simulated single impulse could be fed into
the trained neural networks to estimate the HDR which is usually used in the convolution
model as the system impulse function. This estimated HDR could be compared with the
conventional HDR formed by the difference of two gamma functions to validate the

estimation ability of the NARX model.

7.3 Results and Discussion

7.3.1 Simulated Data

The simulated BOLD signal is generated using the Balloon model (Eq. (6.26)) with the
following set of parameters: = 0.5,k, = 0.65,ky = 04,7 = 1,a = 04, Ey = 0.4
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andV, = 0.02 [26][20]. The input stimulus signal(¢) is generated as random im-
pulses lasting for 1 second which represents an event-related fMRI experiment. When
the stimulation is ONs(¢) = 1 and when it is OFFs(¢) = 0. The total duration of the
simulated BOLD signal is 400s with uniform sampling period of 1s. Figure 7.2(a) illus-
trates the simulated BOLD signal with the thick vertical line indicating the timing of the
discrete random stimuli. The white Gaussian noise is added to this clean BOLD signal
resulting in a noisy BOLD signal with SNR =2.8dB which is shown in Fig. 7.2(b).
Figure 7.2(c) shows the reconstructed BOLD signal from the NARX neural networks.
The delay valuep andq in the NARX model (exact interpolation with = M = 400

for the interpolation matrix) are chosen to be 10 and 20, respectively. The value of the
input delayq was chosen to cover the time span of the HDR. In this example, the sam-

pling rate is 1s and the HDR lasts for about 20s, hence, the valys ahosen to be 20.

It is clear from Fig. 7.2 that the reconstructed BOLD signal (Fig. 7.2(c)) accurately
captures the properties of the pure BOLD response (Fig. 7.2(a)). This implies that the
network has successfully identified and modelled the dynamical behavior of BOLD sig-
nal. Then a single simulated impulse is fed into the network, producing the impulse
response at the output of the network. The impulse response is the estimated HDR to a
single stimulation. Figure 7.3 shows the results of the estimated HDRs using the trained
NARX neural networks and averaged over 20 runs. It resembles very well to the HDR
of the Balloon model (mean square error, MSE.004). We also observed that the
choice of the value of is related to the accuracy of the HDR estimationg K= 10 is
chosen, the HDR estimated by the NARX model does not fit very well (after 10s) to the
HDR simulated using the Balloon model.

To validate the modelling ability of the NARX model, the reconstructed BOLD sig-

nal from the NARX model output is compared with the noisy BOLD signal using the
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Figure 7.2 Simulated BOLD signal and its reconstruction from the NARX neural net-
work.
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Figure 7.3 The estimated HDR of the simulated data.

Ljung and Box randomness test [109]:

P*(j)
n—j

h
Qs =N(N+2)) (7.2)

whereN is the sample sizg)(j) is the autocorrelations of the residuals at jag is the
maximum lag used to calculate the test statistics. For the level of statistical significance
«, the null hypothesis of random residuals will be rejecte@;i; > x3__,(h).

Two thousand realizations of the noisy BOLD signals generated by the Balloon
model with different random stimulus functions and corrupted by the Gaussian noise
with different variances are simulated. The Ljung and Box statistic test shows that
99.65% realizations of the simulation survived the statistical td3t£ 0.05). This
clearly shows that the proposed NARX model is capable of capturing the dynamics of

the simulated BOLD signals.
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7.3.2 Experimental fMRI Data

The proposed dynamical modelling method based on the NARX neural network is first
tested on an experimental event-related fMRI datedDg€IA-EVENTIn Chapter 1). Be-
fore applying the proposed NARX modelling method to this experimental event-related
fMRI data, the raw data are preprocessed by the SPM software [29] for registration,
normalization and smoothing. The drift in each voxel time series is also removed.

To detect the activated regions of the brain, the reconstructed BOLD Sjgrsl
the output of the NARX model is investigated. For the inactivated voxels, the recon-
structed BOLD signal would be almost zero since the inactivated voxels do not involve
the BOLD effect corresponding to the external stimuli. For the activated voxels, on the
other hand, the reconstructed BOLD signal should capture the dynamics corresponding
to the input stimulations, that igy, # 0. Hence, it is desirable to use some parameters
that would indicate how probable the reconstructed BOLD sigpat 0. We introduce
the following test at each voxel as an indé¥) for activation detection:

T (7.3)
|y = 3|l

wherey is the measured fMRI signal in a voxel afigis the reconstructed BOLD signal
in this voxel. TheR value is analogous to the SNR. When the voxel is activated, the test
value R would be large; while when it is not activated, the value would be small. Since
noise existsy # ¥y, this prevents the value @t from approaching infinity. Figure 7.4
shows the results of the activated regions in the brain by thresholding trsues at
each voxel. Itis clear from this figure that the auditory cortex in the brain is activated in
this event-related fMRI experiment.

Figure 7.5 compares the estimated HDR of an activated voxel from the NARX model
with the conventional model formulated by the difference of two gamma functions. The

solid line is the estimated HDR using the NARX model (averaged over the activated
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Figure 7.4 One slice showing the activation of the auditory coriex-(0.3).

regions) and the dotted line is the HDR formulated by the difference of gamma func-
tions. These two waveforms are scaled to similar magnitudes in order to have better
comparison. From this figure, it is clear that the two HDRs are analogous to each other.
Though there are some differences between these two responses, the trends of the signal
variation are the same, for example, both of them reach the peak at around 5s after the
stimulus. The difference between these two responses reflect the ability of the proposed
method to capture the variation of the HDR. This shows that the NARX model is able to
reconstruct the dynamics of the fMRI data and provides a good estimation of the HDR.
In addition, the NARX model is more flexible than the conventional HDR model for-
mulated by means of gamma function model. The gamma function model may miss the
different dynamics between regions and subjects since it uses the same HDR model for
all the voxels investigated. However, the NARX model is trained on each voxel and is
able to capture the differences in BOLD signals between regions and subjects.

The proposed NARX reconstruction method is also tested on the experimental block
design datasetDATA-BLOCKIin Chapter 1). Figure 7.6 shows the original and the
estimated time courses reconstructed by NARX model of both activated and inactivated
voxels. From Figure 7.6, we can see that for the activated voxel, the reconstructed

signals by using the proposed NARX method can approximate the real fMRI signal
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Figure 7.5 Comparison between the estimated HDR from the NARX model and the
HDR formulated by difference of two Gamma functions.

but less noisy than the original fMRI data. For the inactivated voxel, the reconstructed
signal is almost zero since there is no BOLD signal related to the input stimulus in the
measured data. This clearly confirms that the proposed NARX method can model and

capture the complex and nonlinear properties underlying the fMRI data.

7.4 Conclusion

The objective of the fMRI data analysis is to accurately detect the activated regions of
the human brain corresponding to a specific task and also to investigate how the brain
responds to the stimulus, i.e., to study the dynamics of the human brain. The BOLD
signal, as the foundation of the fMRI experiment, reflects the hemodynamics of human
brain. How to reconstruct the BOLD signal from the noisy measured fMRI signals is of

great importance to the fMRI data analysis. From an engineering perspective, this is a
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system modelling problem, that is, to identify the complex human brain system as well
as to reconstruct the dynamics of the human brain.

In this chapter, the NARX model is proposed for the fMRI data analysis to capture
the system dynamics. With the knowledge of experimental paradigm (input) and mea-
sured data (output), the NARX neural networks are investigated to identify the complex
human brain system. The proposed scheme is realized through the RBF neural net-
works. Results from simulated as well as experimental event-related and block fMRI
data show that the proposed model can successfully capture the underlying dynamics of
the human brain. Comparison between the HDR estimated by the NARX model and the
conventional difference of gamma functions model shows the effectiveness of the NARX
model. This indicates that the NARX neural networks are good methods to model and

capture the dynamics underlying the fMRI data.



Chapter 8

Conclusion and Future Directions

8.1 Summary and Conclusions

Functional MR Imaging is an important technique for neuroimaging. It can relate the

structure of the brain to its function by using the MRI techniques to measure the human
brain function. The processing and analysis of fMRI data are challenging due to its
underlying physiological complexity. The research work presented in this thesis provide
advanced signal processing and data analysis methods to the complex fMRI data.

The major objectives of this thesis are: (i) detection of the activated regions of the
brain; (ii) estimation of the HDR and (iii) modeling the dynamics of the fMRI signal.
The fMRI data were first examined under a Bayesian framework, which could efficiently
detect the activated regions of the human brain. Then, the HDR which reflects the tem-
poral properties of human brain function was estimated through both linear and nonlin-
ear methods. Finally, the NARX neural network was proposed to model the dynamics of
fMRI signal. Through the results of both simulated as well as experimental fMRI data, it
is shown that these methods are robust, efficient and flexible. They can complement the

traditional analysis methods to cope with diverse challenges of fMRI data analysis. The
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findings from this research work could help the neurologist and psychologist interpret
better the fMRI data.

In the first part of the research, a Bayesian framework for fMRI data analysis was
provided. Compared to the hypothesis test methods, Bayesian methods have many ad-
vantages such as easy extension to group analysis and the avoidance of the multiple
comparisons problem. A sparse Bayesian learning for flexible design matrix determi-
nation in the GLM model was first proposed (Chapter 2). Through the comparison of
ROC curves, it has been shown that the sparse Bayesian method is much more robust
than the traditional GLM method. This improvement comes from the integration of the
advantages of the data-driven and model-driven methodologies. Then, this method was
extended to the scenarios where the noise variance is varying (either a time-varying noise
or a fractional noise) (Chapter 3). Comparison with OLS and WLS methods showed that
the proposed Bayesian method performs best when dealing with the nonstationary nature
of the fMRI data. This improvement is mainly because the Bayesian method could accu-
rately estimate and model the nonstationary noise structure in the fMRI data. In Chapter
4, the drift, which was modelled by a few large scale wavelets, was incorporated into
the GLM under the Bayesian framework. A modified GLM and CIC for model selection
were proposed. This method could successfully model and remove the drift in the fMRI
data in order to obtain better activation results. The proposed Bayesian methods show
significant improvement for the brain activation detection in fMRI data analysis.

The second part of the research was mainly focused on the estimation of the HDR.
A spatio-temporal adaptive linear filter method for fMRI data analysis was first inves-
tigated (Chapter 5). It was proved in our research that this method is equivalent to the
CCA method. Beyond the linear methods which are mainly suitable for fMRI experi-
ment with large ISI, nonlinear methods are of great interest especially for rapid event-

related fMRI data (or ISI less than 4-6 seconds). In Chapter 6, the RBF neural network
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was proposed to analyze the nonlinearities in the fMRI data. It was shown that the RBF
neural network is equivalent to the conventional Volterra-series method for nonlinear
system modeling, but that it is more flexible and computationally efficient. This advan-

tage is due to the universal approximation property of the RBF neural network and the
disassociation of the nonlinear terms/kernels of different orders (by using Taylor expan-
sion). This method is of considerable importance since it provides a completely new
framework for nonlinear fMRI data analysis which is required by the advent of the more

advanced and complex rapid event-related fMRI experimental design.

The third part of the research meant to model the dynamics of the fMRI data. In
Chapter 7, the NARX neural network is proposed to capture the dynamics of the fMRI
signal. With the knowledge of the experimental paradigm (input) and measured data
(output), the NARX neural network could provide us with a promising method to model
and reconstruct the dynamics existing in the fMRI data and hence identify this complex
system.

In this research, novel and powerful advanced algorithms and analysis methods for
fMRI data analysis have been proposed to cope with various difficulties that the neurolo-
gist and psychologist are facing while analyzing the measured fMRI data. The methods
and techniques introduced in this research would allow the investigators to study differ-
ent properties of the fMRI data and help to further elucidate the underlying physiological

mechanisms.

8.2 Future Directions

The Bayesian methods proposed in the first part of this thesis were based on the as-
sumption that the noise is Gaussian (in time domain or wavelet domain). However, this

assumption may have some reservations considering the complex acquisition procedure
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of fMRI data. Other noises either from the subject’s non-experimental process or from
the fMRI measurement process were not taken into account. Though the preprocessing
step such as Gaussian smoothing may make the data satisfy Gaussian assumption, the
detection ability can be improved by incorporating other factors in our model. Future
work of the Bayesian method would be to refine the noise structures in the analysis to
relax the assumption requirement. These could be done both with parametric and non-
parametric methods. Specifically, Rician noises which are proven to exist in the MR
images can be investigated.

In the second part of this thesis, methods to estimate the HDR are presented. How-
ever, since it is difficult to obtain the precise probability distribution of the reconstructed
fMRI data, a traditional significance level of the hypothesis test cannot be derived from
these methods. Future work would be needed to identify the distribution of the recon-
structed data. A possible way is to obtain extra null data (the data is recorded when the
subjects lie in the scanner and do not perform any tasks) for each fMRI experiment and
derive the probability distribution from this null data. Another promising method would
be to use parameter-free tests, such as permutation test and so on.

In chapter 7, the NARX neural network was presented to model the dynamics of
the fMRI data. Further research of this method includes: i) incorporating the spatial
data into this model; ii) analyzing the stability of the algorithm and iii) decreasing the
computational complexity. It would be interesting to see the extension of this method to
multidimensional signals as well.

Besides these future improvement of the methods, a quantitative comparison of the
performance between different methods on experimental fMRI data is desired. This
can be implemented by two ways. On the one side, a suitable criterion need to be
proposed to assess the performance of different methods on experimental fMRI data.

On the other side, these methods could be tested on some special experimental data,
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such as the retinotopic stimulation experiment. For these special experimental data, the
true activation of the brain regions could be obtained by using other methods. And these
truly activated regions can serve as the reference to compare the performance of different

detection and estimation methods.
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Appendix l \

Derivation of Eqg. (3.22) and Eq. (3.23)

From Eq. (3.17), Eqg. (3.18) and Eg. (3.21), we get:
p(wly,A,B)p(y|A,B) = p(ylw,B)p(w|A)
~ exp{—%(y —®w)'B(y — &w) — %WTAW}
~ exp{—% [(y — ®@w)"B(y — ®w) + w' Aw]}.
(A1)

Expanding the quantities in the square brackets in the exponential and grouping together

all the terms containingy, we get:
(y — ®w) ' B(y — dw) + w/ Aw
= y'By —y'Bdw — w/®'By + w/ ®"Bdw + wl Aw
= w (A+®"B®)w — y'Bdéw — w/ ®'By + y'By
— [w—(A+®"B®)'®"By]’ (A + ®"B®)[w — (A + "B®) '®"By]
+y"'[B-B®(A + ®"'B®) '®"Bly (A.2)
According to the matrix inversion lemma [88], we get:

B '+ ®A'®") "' =B -B®(A+d'BP)'®"B, (A.3)
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Eqg. (A.2) can be written as:
(y — ®w)'B(y — dw) + w/ Aw
= (w—u)A ' (w—-u)+y" B+ A '®")ly (A.4)
where
A= (A +3"BP) (A.5)
and
u=A®"By. (A.6)
Thus,
p(wly, A, B)p(y|A,B)
1 1
~ exp{—ﬁ(w —w) /A (w—u) - §yT(B_1 +®A ')y} (A7)
By inspection, we will get two Gaussian distributions:
_M _1 1 T A —1
p(wly, A,B) = 2m)7 = |A]7Z exp{—o(w —u) " A7 (W —u)}, (A.8)
and
p(y|A,B) = (2m) 2B~ + ®A'®"| 2
exp{—%yT(B1 +®A Pyl (A.9)

These are Eq. (3.22) and Eq. (3.23), respectively.



Appendix B

Derivation of Eq. (3.27) to Eq. (3.29)

In this part, we consider how to effectively compute the objective funcfiand the

derivation of the hyperparameter updates.

B.1 Compute the the objective functionl
The objective function is:
L = —% log| B! + @A '®7| — %yT(B_l + ®dA Ty, (B.1)

We first compute the first term id. According to the properties of matrix determi-

nants [110]:
|IC||A + BC™'D| = |A||C + DA 'B], (B.2)

whereA € R**¢, C € R™*" are nonsingulaB3 € R**", D € R"*%, we get:
A||B' 4+ ®A 13T = |B7!||A + TBY|. (B.3)
And this gives:
log|B™' 4+ ®A'®T| = —log|A| — log |B| — log |A], (B.4)
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B.2 Derivatives and updates 178

whereA has been defined in Eq. (A.5).
The second term in objective functidghis data dependent and we can further repre-

sent the term as:

y'B 1+ @A'®")ly = y'(B-B®(A +3"Bd) '¢'B)y
= y"B(y — ®(A + ®"B®) '3’ By)
= y'B(y — ®u)
= (y - ®u)’B(y — ®u) + u"®"By — u' ®"Bdu
= (y—®u)’B(y — ®u) + u’A'u — u"®"Bdu
= (y—®u)'B(y — ®u) + u’Au (B.5)

And thus, the objective functiof becomes:

1
L= _5[_ log |A| —log |B| —log|A| + (y — ®u)’B(y — ®u) + u’ Au]. (B.6)

B.2 Derivatives and updates

The derivative of Eq. (B.6) with respect tq is:

oL 1 oA 1
— = A S 2 B.7
e, plracd A=) — -+ ] (B.7)
— 1 1 2
= -3 (A — o + ug]. (B.8)
Setting the above equation to zero gives the estimade: of
1
The derivative of Eq. (B.6) with respect tgis:
oL 1 ON 1 )
9 = —§[trace{A 95 ) — S + B(y — ®u);] (B.10)

— ) lraceABGT g) — -+ Bly — 2w, 8.11)
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whereg; is thei th row vector of®, (y — ®u); is thei-th element of the estimated error
r, =y — Pu.

Setting the above equation to zero, we get the estimatge of

6 — 1 (B.12)
trac€ASo; ¢i) + By — Pu)?
The derivative of Eq. (B.6) with respect tois:
oL 1 ON' T T
B —E[trace(A e ) — 3 + (y — ®u)’ S(y — ®u)] (B.13)
= —%[trace{AchSq)) - % + (y — ®u)’'S(y — ®u)]. (B.14)
Setting this to zero gives the estimatetf
5= T (B.15)
~ trac§A®TS®) + (y — ®u)’S(y — ®u)’ '
where
S = diagﬁl(sl,SQ,"' ,ST>. (816)
B.3 A special case
The above derivation considers the situation where noise
y=®Pw+ € (B.17)

is assumed as ~ A/(0,B~!) which is a Gaussian noise with zero mean and diagonal
precision matrixB = diag ' {(sy, s2,--- , s7)3} = S/ (see also Eq. (3.2)).
A special case is whei = T (identity matrix), and thug ~ A(0,37I). The

Equation (B.9) still holds and represented again here:

(B.18)
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If we define the quantities

vi =1—a;Ay, (B.19)

and cancel the the paramety;, the following updating equation is obtained:
arew — It (B.20)

By substitutingS with identity matrixI in Equation (B.14), the derivative df re-

spective tQ3 is

0
% = —%[trace{A@Tq)) - % + (y — ®u)’ (y — ®u)). (B.21)

From Eq. (A.5), it can be obtained thé&f' ® = 5~'(A~! — A), and thus:
trac A®T®) = tracd A3 (AT —A))
= tracds (I — AA))
= g Z(l — ;)
= 5 Z%’ (B.22)

where~; is defined in Eq. (B.19).
Substituting Eq. (B.22) into Eq. (B.21) and noting tHgt— ®u)’ (y — ®u) =

ly — ®ul|2, Eq. (B.21) is simplified as:
or 1 T
75 = —5[6‘12%—5+ ly — ®ul?]. (B.23)

Setting the above derivative to zero gives the update equation:

T - Ez i
Py~ (524

Thus, we obtain the update equations for a special case \iherel1. Eq. (B.19),
Eq. (B.20) and Eq. (B.24) are respectively Eq. (2.12), Eqg. (2.11) and Eg. (2.13) intro-
duced in Chapter 2.



Appendix C

Derivation of Eq. (4.14)

We represent the observation equation of Eq. (4.12)

(ﬁ”j2) - (?>qﬂ4-n (C.1)

w1

as

w=hw+n (C.2)
whereh = [1,1,---,1]7 is the observation vecto, is the unknown paramete® =
[, 1,10, 2, ,w1]T is the measured data.is the additive measurement noise and

is Gaussian distributed ~ A/(0, A ;,) andA , is defined as:

Ajy—1 R
Ay, = A . (C.3)
n

The likelihood function of% given the unknown parameteris:

f(¥w) = f(¥ - huw)
.
= (2m) Ay Fexp{—5 (W — hu)TAZ (¥ ~hw)}.  (C4)
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It is clear that maximizing the above likelihood function is equivalent to minimize

the following cost function:

1

J = Q(W — hw)" A (W — hw). (C.5)

By differentiating the cost function with respectitoand the let the result to be zero,

we get:
oJ

e =h"A (W — hw) = 0. (C.6)

Then, we get the maximum likelihood estimation of the unknown paramege:
Wy, = (h"AZ'h) "W AW (C.7)

By substitutingh = [1,1,--- ,1]7, W = [y, _1, Wy, 2, -+ ,w1|T andA;, shown in

Eqg. (C.1) into Eq. (C.7), we will get:

= 3 e c®)
w = .
M i=1 Zio 1A l

which is Eq. (4.14).
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