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Summary

Functional Magnetic Resonance Imaging (fMRI) is an important technique for neu-

roimaging. Through the analysis of the variation of blood oxygenation level-dependent

(BOLD) signals, fMRI links the function of the brain and its underlying physical struc-

tures by using the MRI techniques. The low signal-to-noise ratio (SNR) and complexity

of the experiment poses major difficulties and challenges to the analysis of fMRI data.

This thesis presents robust (less false positive rate) and efficient (easy estimation

procedure) signal processing methods for fMRI data analysis. It aims to complement

the current methods of fMRI data analysis in order to achieve accuratedetectionof the

activated regions of the brain, betterestimationof the hemodynamic response (HDR) of

the brain functions andmodellingof the dynamics of fMRI signal.

The fMRI data are first investigated under the Bayesian framework. Based on the

conventional general linear model (GLM), a flexible design matrix determination method

through sparse Bayesian learning is proposed. It integrates the advantages of both data-

driven and model-driven analysis methods. This method is then extended to incorporate

the nonstationary noise to the model. Two nonstationary noise (time-varying variance

vii



Summary viii

noise and fractional noise) models are examined. The covariance matrices of these two

noises share common properties and are successfully estimated using a Bayesian esti-

mator. Considering that the fMRI signal also contains drift, a modified GLM model

is proposed which could effectively model and remove the drift in the fMRI signal.

Through mathematical manipulations, updating algorithms are derived for these pro-

posed methods. The proposed Bayesian estimator could provide accurate probability

of the activation and hence avoid the multiple comparison problems encountered in the

traditional null hypothesis methods.

The second part of the thesis is focused on the estimation of the HDR of the human

brain. Both linear and nonlinear properties of the event-related fMRI experiment are

examined based on the inter-stimulus intervals (ISI). A linear spatiotemporal adaptive

filter method is proposed to model the spatial activation patterns as well as the HDR.

The equivalence of the proposed method to the canonical correlation analysis (CCA)

method is also demonstrated. It is reported that when the ISI is small, the fMRI signal

shows nonlinear properties. Thus, nonlinear methods of fMRI signal analysis are also

examined. A method based on the radial basis function (RBF) neural network is pro-

posed to regress the measured fMRI signal on the input stimulus functions. The relation

between the parameters of the RBF neural network and Volterra series are demonstrated.

The HDR is then obtained from the parameters of the RBF neural network which shows

significant advantages.

The third part of the thesis examines the nonlinear autoregressive with exogenous

inputs (NARX) neural network to model the fMRI signal. With the knowledge of exper-

imental paradigm (input) and measured data (output), the NARX neural network could

identify the complex human brain system and reconstruct the BOLD signal from noisy

fMRI signal. This results in an enhanced SNR of the measured signal and a robust

estimation of the activated regions of the brain.



Summary ix

Extensive simulation studies on synthetic as well as experimental fMRI data are car-

ried out in this thesis. Results show that these methods could complement the traditional

methods to cope with the difficulties and challenges in fMRI data analysis. This may

contribute to the better understanding of the nature of the fMRI signal as well as the

underlying mechanisms.
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Chapter 1
Introduction

If you know, to recognize that you know, if you don’t know, to realize that

you don’t know: That is knowledge. —— Confucius

The brain is the most amazing organ in the human body and the most mysterious

as well as complex. With the development of cognitive neuroscience, many mysteries

are gradually becoming clear to us. Cognitive neuroscience reveals the relation between

cognitive processes (the immaterial mind) and the material brain [1] [2]. It shows what

happens in the brain when human beings are thinking, talking, learning, memorizing,

seeing, acting, etc. To study these cognitive processes in terms of brain-based mech-

anisms (i.e., which parts of the brain are involved, in what kind of ways, what is the

neural basis underlying these processes), many measurement methods have been devel-

oped. These measurement methods can be grouped into four categories: the drug-based

methods, lesion-based methods, electrophysiological methods and neuroimaging meth-

ods. Drug-based methods are used to study how the human brain functions under the

control of drugs. Lesion-based methods analyze the influence of naturally occurring le-

sions or that of “virtual lesions” induced by transcranial magnetic stimulation (TMS) [3]

on the brain’s functioning. Electrophysiological methods measure the action potentials

1
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or ensemble of the brain action potentials during the execution of a specific task [4]. It in-

cludes single-cell recordings, multiple-cells recordings, electroencephalography (EEG),

event-related potentials (ERP) and magnetoencephalography (MEG). Although these

methods show good temporal resolutions, they provide little spatial information about

the activation regions of the human brain. With the help of neuroimaging methods, these

functional images of the physiological processes can be visualized. The neuroimaging

methods include positron emission tomography (PET) and functional magnetic reso-

nance imaging (fMRI) [5]. These four categories of measurement methods in cognitive

neuroscience complement each other to give detailed structural (at which region the neu-

ral activities occur) and functional explanations (in which way the brain functions) of

the cognitive processes. Table 1.1 shows the summary of the properties of these major

methods used in the measurements of the cognitive neuroscience.

As shown in Table 1.1, fMRI possesses advantages of non-invasiveness as well as

better spatial and temporal resolution (It has better spatial resolution compared to EEG

and MEG and better temporal resolution compared to PET). It can adapt to many types of

experimental paradigms. These advantages enable fMRI to provide important informa-

tion about the brain beyond what is obtained from other techniques. Since its introduc-

tion in the early 1990s, fMRI has become the most influential modality for functional

neuroimaging. It opens new possibilities to investigate how the human brain works.

Many previously unthinkable experiments about cognition and the brain can now be

carried out in the laboratories using fMRI.

The fMRI experiments scan the whole or part of the brain repeatedly and generate a

sequence of 3-D images. Because of the size and complexity of the fMRI data, powerful

analysis methods are essential to the successful interpretation of fMRI experiments. The

main aims of the fMRI analysis are both detection and estimation. Detection means to

localize the activated regions of the human brain. Estimation, on the other hand, tries to
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study the time course of an activated region related to a specific neural process. However,

difficulties such as complexity of the data, low signal-to-noise ratio (SNR) and nonlinear

properties, render the analysis of fMRI data a challenging problem. This thesis aims to

deal with these difficulties through advanced signal processing and analysis methods. In

our work, we only treat the analysis of single-subject (first-level) experiments. Gener-

alization to group studies (second-level experiments) requires further investigation and

analysis.

The rest of this chapter is organized as follows. Section 1.1 introduces the basic

properties of fMRI, including its Magnetic Resonance Imaging (MRI) fundamentals, the

physiological effects that underpin current neuroimaging techniques, its experimental

design and so on. Section 1.2 deals with the main methods that have been proposed

to analyze the fMRI data. Section 1.3 gives an overview of the thesis and discusses its

main contributions.

1.1 Functional Magnetic Resonance Imaging

The basic idea in fMRI is to use MRI to measure the changes in blood oxygenation,

which are closely related to the activities of the neurons. The development of fMRI

could be traced back to the 1920s and spans almost the whole twentieth century, from

Nuclear Magnetic Resonance (NMR) to MRI, and then to fMRI. Figure 1.1 shows some

milestones in the development of fMRI. In this section, a short overview of the concepts

related to fMRI is given. The experimental fMRI data sets used in this thesis are also

introduced.
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Figure 1.1 Some milestones in the development of fMRI.
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1.1.1 Nuclear Magnetic Resonance – the Basis

MRI and fMRI are based on the NMR phenomenon. It concerns primarily the hydrogen

nuclei present in the body (most of the tissues are water-based and different tissues con-

tain different amount of water; this hydrogen density difference can be used to construct

the 3-D images of the tissues). Each hydrogen nucleus behaves as a tiny magnet, with

an angular momentum, called the spin [6]. In the absence of an external magnetic field,

the sum of the moments of a sample of molecules is zero; but in the presence of a static

magnetic fieldB0, the spins align themselves either parallel (low energy state) or anti-

parallel (high energy state) to the external static magnetic field, with a slight preference

for the first. Thus, the resulting magnetic momentM0 of a sample is oriented to the

direction ofB0. Figure 1.2 shows the illustration of the spins’ alignment at equilibrium

before and after a static magnetic fieldB0 is applied.

The hydrogen nuclei also experiences a torque from the externally applied magnetic

field, which causes the spins to rotate, or precess around the direction of the external

magnetic field. The frequency of precession is given by the Larmor equation [7]:

v0 = γ|B0|, (1.1)

whereγ is gyromagnetic ratio (the value ofγ depends on the nature of the nuclei) and

the precession frequencyv0 is called the Larmor frequency.

The energy state of the nuclei can be changed by transmitting energy to the nuclei

using a second oscillating magnetic field pulse tuned to the precession frequency of the

nuclei; it is called the resonance. This radio-frequency (RF) pulseB1 is orthogonal to

B0 and rotates at the Larmor frequencyv0 of the nuclei. As a result, the momentM of

a sample is flipped and the flip angle isθ = 2πγB1t, wheret is the duration of the RF

pulse. The magnetization vectorM has two components:Mz — the longitudinal com-

ponent aligned withB0, andMxy — the transverse component in the plane orthogonal
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Figure 1.2 Illustration of the spins’ alignment at equilibrium before (left side) and after
(right side) the magnitude fieldB0 is applied.
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to B0. Before applying the RF pulseB1, M is in the equilibrium state whereMz is max-

imum andMxy is zero. After applyingB1, Mz becomes small andMxy becomes large.

WhenB1 is switched off,M will return to the equilibrium state. The recovery ofMz to

the initial magnetizationM0 after the RF pulse (longitudinal relaxation) is characterized

by the relaxation time constantT1:

Mz(t) = M0(1− e−t/T1). (1.2)

The decay ofMxy after the RF pulse (transverse relaxation) is characterized by the

relaxation time constantT2:

Mxy(t) = M0e
−t/T2 . (1.3)

The T1 relaxation is due to spin-lattice interactions and is the time it takes for the

protons to come to equilibrium with each other; andT2 relaxation is due to spin-spin

interactions and is the time it takes for the protons to come to equilibrium with each

other. However, since the nuclei in the studied ensemble are spatially distributed, they

may experience slightly different magnetic field strength due to a number of reasons.

These local magnetic field inhomogeneities greatly accelerate the decay ofMxy; the

time constantT ∗
2 , which is shorter thanT2, characterizes the combined effect of random

nuclei interactions and magnetic field inhomogeneities.

Two important factors govern the time at which the magnetic resonance (MR) images

are collected. The first factor is the repetition time TR, which is the time interval between

successive excitation pulses. Since the longitudinal magnetization is not fully recovered

at time TR, the transverse magnetization, which determines the detected MR signal, is

described as:

Mxy(t) = M0(1− e−TR/T1)e−t/T2 . (1.4)

The second factor is the echo time, TE, which is the time interval between the mea-

surement of the received signal and excitation of RF pulse. According to Eq. (1.4), the
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Table 1.2 Comparison of different TR, TE and pulse sequence used in different MR
contrast images.

Contrast TR TE Pulse Sequence

Proton-density long short GREa/SEb

T1 intermediate short GRE/SE

T2 long intermediate SE

T ∗
2 long intermediate GRE

aGRE: gradient-echo imaging
bSE: spin-echo imaging

acquired signal is determined by:

Mxy(t)|t=TE = M0(1− e−TR/T1)e−TE/T2 . (1.5)

From Eq. (1.5), it is shown that the MR signal depends on two quantities:M0, de-

termined by the original magnetization or proton density; and(1 − e−TR/T1)e−TE/T2

determined by the properties of the tissue being imaged (different tissues have different

time constantsT1 andT2). It can also be seen from Eq. (1.5) that by manipulating TR

and TE, MR images based on different contrast can be obtained. The most basic MRI

maps the distribution of hydrogen nuclei (1H), which is called proton density contrast.

MR images based onT1, T2 or T ∗
2 relaxation times emphasize different features of the

tissue and the resulting MR images are respectively calledT1-weighted,T2-weighted or

T ∗
2 -weighted images. The commonly used blood oxygenation level dependent (BOLD)

fMRI relies onT ∗
2 contrast and the structural anatomical image of the brain is com-

monly T1-weighted image. Table 1.2 summarizes the TR, TE and pulse sequence used

in different contrast based MR images.

Figure 1.3 shows three types of MR images of the same slice in the brain. The
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(a) Proton density -weighted (b) T1-weighted (c) T2-weighted

Figure 1.3 Three types of MR images of the same slice in the brain.

contrast and the imaging parameters used in these three images are respectively: a)

Proton density-weighted (TR = 6000ms, TE = 30ms); b)T1-weighted (TR = 600ms, TE

= 53ms); and c)T2-weighted (TR = 6000ms, TE = 105ms). All of these images are

obtained under the magnetic field 1.5 Telsa.

1.1.2 Magnetic Resonance Imaging

To spatially encode the measurements of proton density,T1, T2 or T ∗
2 , magnetic field

gradientsG(t) defined below are used:

G(t) = Gx(t)i + Gy(t)j + Gz(t)k, (1.6)

whereGx(t), Gy(t) andGz(t) are respectively the magnitudes of the gradient magnetic

field alongx, y andz directions. In the equation above,i, j andk are unit vectors along

thex, y andz directions respectively.

This gradient field alters the precession frequency of spins depending on their spatial
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location. The total signal measured in MRI combines the changes in the net magnetiza-

tion generated at every excited voxel and it is represented as:

s(t) =

∫

x

∫

y

∫

z

Mxy(x, y, z, t)dxdydz. (1.7)

By ignoring the terms without spatial information, the acquired signal is:

s(t) =

∫

x

∫

y

∫

z

Mxy0(x, y, z)e−iγ
R t
0 (Gx(τ)x+Gy(τ)y+Gz(τ)z)dτdxdydz, (1.8)

whereMxy0(x, y, z) is the original magnetization at spatial location(x, y, z); Gx(t),

Gy(t) andGz(t) are respectively the gradient magnetic fieldsG(t) at this spatial location

at timet. The term−γ
∫ t

0
(Gx(τ)x + Gy(τ)y + Gz(τ)z)dτ is the accumulated phase at

this location due to the gradient fields and it is the integral of its precession frequency

from the time it is created to the time that is observed.

The MRI image formation comprises three steps. In the first step, the spins in a

particular slice are excited (slice selection). Then, the spatial distribution of the spins

in the selected slice is coded by the two-dimensional gradient impulse and this gives

the MR signal in k-space (spatial encoding) which will be defined next. Finally, the

MR images are reconstructed from the signals in the k-space (image reconstruction).

Figure 1.4 shows these three steps.

Suppose we want to generate an image centered at the longitudinal locationz = z0

(as shown in Fig. 1.5), then the total magnetizationM(x, y) of the selected slice along

the z-direction with thickness∆z is:

M(x, y) =

∫ z0+∆z
2

z0−∆z
2

Mxy0(x, y, z)dz. (1.9)

Thus, after the slice selection step, Eq. (1.8) can be simplified as:

s(t) =

∫

x

∫

y

M(x, y)e−iγ
R t
0 (Gx(τ)x+Gy(τ)y)dτ)dxdy. (1.10)



1.1 Functional Magnetic Resonance Imaging 12

Figure 1.4 Three stages in the formation of MR images.

Figure 1.5 Illustration of the slice selection.
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If we define:

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ, (1.11)

and

ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ, (1.12)

Eq. (1.10) can be represented as:

s(t) =

∫

x

∫

y

M(x, y)e−i2π(kx(t)x+ky(t)y)dxdy. (1.13)

This expression has a form similar to the 2-D Fourier transform. At timet, the

signal we receive (s(t)) is simply the value of the Fourier transform ofM(x, y) sampled

at the spatial frequency(kx(t), ky(t)), which is called the k-space. After sampling the

spatial frequency content in the k-space, the MR images can be reconstructed through

the inverse Fourier transform.

1.1.3 BOLD Functional MRI

The Human brain contains roughly 100 to 150 billion neurons, the activities of which

support all the cognitive, sensory and motor processes of the body [8]. Basically,

the neurons carry electrical information and interact with other neurons through their

synapse. The information is exchanged through the release of neurotransmitters. The

transmission of the information along the neuron requires the exchange of ions (e.g. K+

and Na+) and the consumption of Adenosine Triphosphate (ATP). The ATP consump-

tion requires the supply of glucose and oxygen, which is provided by increase of cerebral

blood flow (CBF). Thus, the brain activity could be assessed by PET which measures

the regional CBF (rCBF). fMRI on the other hand measures another effect: the BOLD

effect.

When there is neural activity in brain, the oxygen consumption (measured in terms

of cerebral metabolic rate of oxygen (CMRO2)) increases, but in less amount than the
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Figure 1.6 Illustration of the change of deoxyhemoglobin content in the venous blood
when the neuron is in the baseline (left) and active (right) states. In active state, the
oversupply of oxygen by CBF results in the decrease of the concentration of deoxyhe-
moglobin.

blood flow. This results in the drop in oxygen extraction and a corresponding dilution of

deoxyhemoglobin content of the venous blood as shown in Figure 1.6.

The deoxyhemoglobin, without oxygen attached, is paramagnetic, which means that

it interacts with and distorts an applied magnetic field. At low oxygen concentrations

(baseline state), there are many paramagnetic hemoglobin molecules that locally modu-

late the main magnetic fieldB0 and as a consequence make the hydrogen nuclei excited

by an RF-pulse dephase faster. Hence, theT ∗
2 time constant becomes shorter in areas

with low oxygen concentration and longer in areas with high oxygen concentration. MR

images reflecting theT ∗
2 time constant are therefore brighter (longerT ∗

2 ) when a brain is

in an active state compared to the baseline state. This effect is referred to as the BOLD

effect [9][10][11]. The effect is however very small, an intensity change of around 2-5

percent in the magnetic field 1.5T is expected, and it is therefore hard to be detected.

Figure 1.7 summarizes the physiological changes during the brain activation. The actual

mechanism underlying the BOLD effect, however, is much more complicated than what
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we have demonstrated here. And more importantly, there are some other explanations

about the cause of BOLD effect. What we present here is only one possible explanation.

Functional imaging also requires fast acquisition of the images in order to understand

the fast physiological changes that are taking place in the brain. To have a high temporal

resolution, fast imaging sequences like Echo Planar Imaging (EPI) and Spiral Imaging

(SI) are commonly used in fMRI. These gradient-echo imaging techniques are sensitive

to theT ∗
2 time constant, and are capable of capturing an image slice in less than 100 mil-

liseconds and an entire brain volume in just a few seconds (2s or even less). Compared

to structural anatomical images, those acquired under the fast imaging sequences are of

relatively lower spatial resolution and after time TR, the set of brain images is acquired

again. This process results in a 4-D (three spatial dimensions plus time) spatio-temporal

dataset.

1.1.4 Hemodynamic Response

The change in MR signal following the firing of neurons is known as the hemodynamic

response (HDR), which gives the information of how the BOLD signal evolves over time

in response to the brief neuronal activity. The HDR normally has three phases [12]:

1. Initial Dip : This initial negative-going dip spans 1 to 2s and is attributed to a

transient increase in the amount of deoxyhemoglobin as neurons consume oxygen.

(This phenomenon may not be observed in the standard 1.5T magnets.)

2. Overcompensation: In this phase, more oxygen is supplied than is extracted, and

this results in a decrease of the concentration of deoxyhemoglobin, and hence

significant increase of BOLD signal.



1.1 Functional Magnetic Resonance Imaging 16

Figure 1.7 Physiological changes accompanying brain activation
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Figure 1.8 Schematic representations of the fMRI BOLD hemodynamic responses. (a)
HDR to a single short duration event; (b) HDR to a block of multiple consecutive events.

3. Undershoot: Finally, the blood flow and oxygen consumption return to the base-

line level. However, the blood flow decreases more rapidly than blood volume,

causing temporary increase in deoxyhemoglobin again.

Figure 1.8 shows the representative waveforms for the hemodynamic responses to

the single event and multiple events respectively. The hemodynamic response function

(HRF) is relatively stable across sessions with the same participant in the same region,

but for different regions within the same individual or between individuals, the HDR

varies greatly [13].

1.1.5 Experimental Designs in fMRI

As shown in Figure 1.9, the fMRI experiment begins with an experimental design. The

experimental design includes hypothesis formation, choice of experimental conditions
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Figure 1.9 The basic steps in an fMRI experiment.

and presentation of stimuli to manipulate the experimental conditions. A good experi-

mental design is the key to the success of the fMRI experiment. In fMRI experiments,

two schemes of experimental designs are generally used: theblock designand theevent-

related design[14]. In block design, each cognitive condition is presented repeatedly for

an extended time interval and the different conditions alternate periodically. This design

is shown to be an optimum design for brain activation detection because sufficient SNR

can be obtained. However, measuring the temporal integration of the response signals

instead of the response to individual stimuli limits the flexibility of the block design. In

event-related design, on the other hand, the discrete stimuli are presented briefly one at a

time separated by interstimulus intervals (ISI) rather than together in a block. Compared

to the block design, the event-related fMRI experimental design is more versatile and

is a suitable scheme to naturally event-related experimental tasks such as the ‘oddball’

experiments. Furthermore, the event-related design could capture the temporal proper-

ties of the response, thereby providing us with the ability to investigate the timing of

the HDR. Figure 1.10 illustrates simulated BOLD signals of block and event-related

designs.
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(b) Event-related Design.

Figure 1.10 Illustration of BOLD signals of (a) block design and (b) event-related design.
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1.1.6 Description of the Experimental Data Used in This Thesis

In this thesis, two data sets from fMRI experiments are analyzed. One is a block design

and the other is an event-related design; we will refer to these two data sets respec-

tively asDATA-BLOCKandDATA-EVENT, hereafter. These data sets are obtained from

the National fMRI data center (http://www.fmridc.org) with the accession number 2-

2000-111JJ (DATA-BLOCK) and 2-2000-11127 (DATA-EVENT). In this section, a brief

description of these two fMRI experiments is presented.

DATA-BLOCK

This fMRI experiment was designed for visuospatial processing task – judgement of

line orientation [15]. In this data, 100T ∗
2 -weighted images were obtained with an in-

plane resolution of 3mm (Magnetic Field Strength = 1.5T, TR = 3000ms, TE = 40ms,

flip angle =90o). There are five cycles of alternating 30-sec epochs of baseline and

activation conditions in this experiment which gives a total experimental duration of

5 minutes and sample length of 10 in each epoch. During the baseline condition, the

subjects were asked to ascertain if the two stimulus lines on the screen were on the same

level. During the activation condition, the subjects were shown two stimulus lines in

the top half of the screen, and an exemplar consisting of nine radial lines arranged in a

semi-circle in the bottom of the screen. These two stimulus lines can be any two of the

nine radial lines in the exemplar. The subjects had to decide if these two stimulus lines

matched the two highlighted lines on the exemplar. This experiment activates the striate

cortex and extrastriatal cortex of the brain.
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DATA-EVENT

This real fMRI experiment was designed for detection of visual-mental imagery and

perception — transient activity in the human calcarine cortex. The functional data were

acquired using EPI with the imaging parameters: Magnetic Field Strength = 3T, TE =

40 ms, TR = 2000 ms, flip angle =90o and64×80 matrix. The details of the experiment

can be found in [16]. During the experiment, after hearing the name of an animal, the

subjects were told to form an image mentally; then, the subjects evaluated the charac-

teristics of the named animal after hearing an auditory instruction of a specific property

of the named animal. The total number of data points for this experiment is 308, with

several visual-mental processes. From the description of the experiment, in addition to

the visual-mental process, the subjects were also given auditory stimuli. Each of these

auditory stimuli lasting for 2 seconds are presented with fixed interval and separated 14

seconds apart (7 scans). As a result, the auditory cortex should also be activated. In this

thesis, the activation of the auditory cortex is examined.

1.2 fMRI Data Analysis

This section describes the various techniques of fMRI data analysis, including the pre-

processing, signal models and analysis methods.

1.2.1 Preprocessing

Realignment

Even though the heads of the subjects are restrained from movements physically in the

scanner and the subjects are instructed to keep as still as possible, it is inevitable that the

head may change its position during the relatively long period of scanning. This may
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pose the problem that a given voxel does not uniquely represent a specified area in the

brain. Realignment tries to reduce the effect of the head motion. This involves basically

two steps: the motion estimation and correction.

Co-registration

This step is to co-register the functional data and the structural (anatomical) data, that

is, to map the individual functional image onto anatomical image of the same subject or

onto a standard template (stereotactic normalization) and then to interpret the functional

results on the template. The commonly used templates are brain atlas provided by Ta-

lairach and Tournoux [17] or averaged brain images provided by Montreal Neurological

Institute [18].

Smoothing

Smoothing spreads the activation of a voxel to its neighboring voxels. It has two ad-

vantages [19][20]: i) to increase the SNR and ii) to make the data satisfy the later pro-

cessing assumptions, for example, the interpretation of the images as Gaussian random

field [21].

1.2.2 Modelling the fMRI Data

From an engineering perspective, fMRI data analysis can be viewed as the analysis of the

response of a system given the information about the input and output. This is shown

in Figure 1.11. The system is a black box which contains the subject undergoing the

experiment (including experimental task, other cognitive/sensory/motor tasks, motion,

etc.) and the measurement settings (including environment, BOLD effect, data acquisi-

tion, spatial reconstruction, artifacts, preprocessing etc.). Since fMRI data is a 4-D data
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Figure 1.11 fMRI data acquisition as a system with input and output.

set, it is necessary to investigate the temporal and spatial properties of the fMRI data in

order to have a full understanding of this complex data.

Temporal Modelling of fMRI Data

The measured fMRI data are often interpreted in terms of voxel time series and the

dynamic behavior of the intensity in a voxel indicates whether this voxel is active or not

in a specified experimental task. Roughly speaking, an observed voxel time series could

be decomposed as:

Observed voxel time series = BOLD response + Drift + Noise.

Each of these parts are briefly explained below. In the subsequent chapters, the related

signal models are described in greater detail.

Models for the BOLD Response

1. Boxcar model

This is the simplest BOLD response model which ignores how the system (brain

and MR-scanner) modulates the applied experimental paradigm and just use a

square-wave function to represent the observed BOLD response (only applicable
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to block design). The resulting BOLD signalyb(n) for a block design with the

block durationp is:

yb(n) =





0, if n = 1, · · · , p; 2p + 1, · · · , 3p; · · · ; T − 2p + 1, · · · , T − p

1, if n = p + 1, · · · , 2p; 3p + 1, · · · , 4p; · · · ; T − p + 1, · · · , T

(1.14)

whereT is the total number of the time points of the BOLD response.

2. Convolutive model

This model assumes the system to be linear and hence the BOLD signalyb(t) is the

convolution between the system impulse response and the experimental design:

yb(t) = h(t)⊗ s(t) =

∫ ∞

0

h(τ)s(t− τ)dτ (1.15)

where⊗ denotes the convolution operation,s(t) is the signal representing ex-

perimental paradigm,h(t) is the impulse response called HRF. The models pro-

posed to describe the HRF waveform include the Poisson model [22], Gamma

model [23], Gaussian model [24] and difference of gamma functions model [25].

Among these models, the difference of gamma functions model could model the

undershoot of the HDR and hence it is widely used. This model is represented by:

h(t) =
( t

d1

)a1

exp
(−(t− d1)

b1

)
− c

( t

d2

)a2

exp
(−(t− d2)

b2

)
(1.16)

wheredj = ajbj is the time (in seconds) to the peak amplitude ofh(t). The

common choice of these parameters area1 = 6, a2 = 12, b1 = b2 = 0.9s and

c = 0.35, which can generate the canonical HRF commonly used in fMRI data

analysis.

3. Balloon model

The Balloon model is a physiologically inspired model introduced by Buxton et
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al [26]. It is a state-space model which describes the dynamics among blood

flow, blood volume and blood oxygen concentration changes. The model is in-

herently nonlinear and can be used to explain the nonlinearities appearing in the

BOLD signals. Compared to the convolutive model which is used for brain activ-

ity detection only, the Balloon model has been mainly used for understanding the

mechanisms underlying the BOLD effect. The detailed description of the Balloon

model is given in Section 6.4 where the nonlinear models of fMRI data analysis

are discussed.

4. Subspace model

This model considers the variations in the BOLD response between different sub-

jects and different brain areas by defining a linear signal subspace in which re-

alistic BOLD responses reside [37]. A BOLD response shapeyb(t) can then be

realized as a linear combination of several temporal basis functions:

yb(t) = w1y1(t) + · · ·+ wnyn(t) (1.17)

wherew1, · · · , wn are the weights andy1(t), · · · , yn(t) are the basis functions.

These basis functions could be Fourier series consisting of sine and cosine func-

tions with different frequencies, or Taylor series consisting of different derivatives

and so on. It may be noted that this subspace model should be constrained to

avoid over-fitting. A general principle is that the model subspace should be as

small as possible while it still should capture the important variations in actual

BOLD response shapes.

Drift and Trends

Drift and trends are the slowly varying interferences which are generally present in

the fMRI time series. The sources of these drifts and trends are not well understood, and
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may come from the instability of the magnetic field [27], physiological processes such as

respiration and cardiac processes and so on [28]. It is necessary to model and remove the

drifts in order to make correct inferences about the data. The most common drift model

consists of linear subspaces spanned either by a set of polynomials or a set of cosine

functions. In the fMRI analysis software,Statistical Parametric Mapping(SPM) [29],

a highpass filter using discrete cosine transform (DCT) basis functions is implemented

to remove the lower frequency components (drift). In Chapter 4, the drift in the fMRI

data is modelled to reside in the subspace spanned by a few large scale wavelets and a

criterion for choosing the model order is proposed.

Noise

The random noise is basically what is left when the BOLD signal as well as the drift

or trends have been specified. This includes not only the “genuine” random physiologi-

cal noise and scanner noise, but also the residual variance due to an imperfect model as

well. The most popular model is the white Gaussian noise. Even if this is not always

specified explicitly, it is the implicit model underlying the simplet-test methods and

correlation methods, which are widely used. However, it is found that the noise is not

independent. For this reason, we must take some care to model the correlation structure.

The simplest one is the first order autoregressive model (AR(1)):

εi = aεi−1 + ηi, (1.18)

whereεi andεi−1 are the error component at time pointi andi− 1, a is the AR(1) coef-

ficient andηi ∼ N (0, σ2). A more complex model is AR(p) model or an AR(1)+white

noise model [30].

Besides these traditional noise models, the1/f−like noise or nonstationary frac-

tional noises in the fMRI data have been reported and investigated by many researchers

recently. In Chapter 3 and 4, we discuss this noise model and show how the wavelet



1.2 fMRI Data Analysis 27

transform which whitens the noise in fMRI could be used in the proposed Bayesian

estimator.

Spatial Modelling of fMRI Data

Even though it is the temporal behavior of the voxel time series that determines whether

the voxels are active or not, the voxel time series in a spatial context can be exploited to

improve the detection of the active voxels. The active areas, in general, have a spatial

extent of several millimeters, i.e., a few voxels. This causes that thet statistics orF

statistics occur above a specified threshold in a cluster manner in the SPM. Gaussian

random field theory is applied in SPM to account for the spatial correlation of the fMRI

data.

Single Voxel Model

It is the simplest model that each voxel time series is analyzed in isolation from its

neighbors. The underlying assumption is that the active brain areas are smaller than the

area covered by a single voxel.

Gaussian Model

This model is currently the most commonly used model in fMRI analysis due to its

equivalence with a pre-smoothing of the fMRI images with a Gaussian filter. The size

of the filter is commonly measured by the Full Width at Half Maximum (FWHM)– the

distance between two opposite points on the Gaussian at which the function reaches half

its maximum value.

Flexible Model

Due to the variation of the shape, the activation profile can be described as the linear

combination of several spatial basis functionsfi(x):

f(x) = w1f1(x) + · · ·+ wmfm(x), (1.19)
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wherex represents spatial locations. When examining a voxel for activity, the voxel time

series in the neighborhood can be first weighted and averaged according to the spatial

basis functions to improve the detection accuracy. However, the flexibility of this model

may cause an over-fitting problem.

1.2.3 Data Analysis and Inference

The analysis methods of fMRI data could be divided into two categories:

1. Model-driven (hypothesis testing) methods: These methods assume a certain form

of the response to the experimental stimulation and then statistically test the pres-

ence or absence of the response in the analyzed data. The methods in this category

differ either by the signal estimation procedure or by the statistical method em-

ployed to assess the activation. The potential weakness of model-driven methods

is that the assumed response may be inadequate to describe the real response, thus

yielding biased conclusions. The commonly used general linear model (GLM)

method belongs to this category.

2. Data-driven (exploratory) methods: These methods consider all the voxels simul-

taneously. They search for kinds of patterns appearing in the data set, and how

these patterns are temporally/spatially structured. This information is extracted

from the data set without any prior knowledge of the experimental paradigm.

Roughly speaking, these methods can be divided into two groups: blind source

separation (BSS) and clustering. BSS tries to find a generative model of the data

which assumes that the measured signals are mixtures of different kind of sources.

Principal component analysis (PCA) [31][32], independent component analysis

(ICA) [33][34][35][36] and canonical correlation analysis (CCA) [37] methods
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are used to unmix these mixtures to obtain the source signals. By contrast, clus-

tering [38][39] and self-organizing map (SOM) techniques are based on the as-

sumption that the set of voxels can be split into different sets on which one effect

is predominant.

General Linear Model (GLM)

The GLM has been popularized by the SPM software. It is the most fundamental and

basic method to analyze the fMRI data sets. Compared to the commont test and cor-

relation analysis, GLM could eliminate the effects that may confound the analysis by

using a suitable model.

Let y(t) denote the measured response in one voxel of the fMRI data set at timet.

We assume that the subject undergoesC different conditions of a given experimental

paradigm. The conditions are defined by the time course of the stimulation function

sc(t), wherec = 1, . . . , C.

The GLM assumes that the response to each experimental task is proportional to the

convolution of the stimulationsc(t) with a filter h(t) known as the canonical HRF dis-

cussed earlier (Eq. (1.16)). Using the assumption that the system is linear time invariant

(LTI), the most basic signal model is:

y(t) = w0 +
C∑

c=1

wch(t)⊗ sc(t) + ε(t) (1.20)

wherew0 is a constant,wc is the amplitude of the responses to the stimulusc andε(t) is

the noise term.

Let us denoteφc(t) = h(t) ⊗ sc(t) and specify other explicative variables such as

head motion estimation during the session, or low frequency sinusoids, or the convolu-

tions of the first and second temporal derivatives of the HRFh(t) with sc(t) to account

for the variations. We obtain a set of temporal regressorsφr(t), with r = 1, . . . , R;
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whereR (≥ C) is the total number of regressors. Putting these regressors into a linear

model, the following equation is obtained:

y(t) =
R∑

r=1

wrφr(t) + ε(t). (1.21)

The discrete version of the GLM can be succinctly denoted in a matrix form,

y = Φw + ε. (1.22)

Here,y = [y1, · · · , yT ]T is the vector of observed/measured voxel values with dimen-

sionsT × 1, whereT is the length of the time series or indices of observations (e.g.

scan). w = [w1, · · · , wR]T is the vector of parameters andε = [ε1, · · · , εT ]T is the

vector of error terms which is assumed to be normalε ∼ N (0, σ2Σ). The design matrix

Φ (dimensionsT ×R) is defined as:

Φ =




φ11 φ12 . . . φ1R

φ21 φ22 . . . φ2R

...
...

.. .
...

φT1 φT2 . . . φTR




, (1.23)

whereφij is the jth regressor at theith time points of the time series. Each row of

Φ corresponds to one time point (scan) of the regressors, and the columns represent

different explanatory variables or regressors in the model.

With the assumption thatε is white noise withΣ = I, Φ is of full column rank and

consequentlyΦTΦ invertible, the least squares (LS) estimation of the parameterw is:

ŵ = (ΦTΦ)−1ΦTy (1.24)

with the covariance matrix

Λŵ = σ2(ΦTΦ)−1. (1.25)
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This technique yields the best linear unbiased estimator (BLUE) [40] ofw (E(ŵ) = w).

The estimated parameters are also Gaussian distributed, i.e.,ŵ ∼ N (w, σ2(ΦTΦ)−1),

and since the variance can be consistently estimated, the statistical inference can be

made based on this.

Considering the temporal autocorrelation of the noise (Σ 6= I), the following proce-

dures can be performed to make the statistical inferences easier to derive and interpret:

1. Whiten the signaly together with the regression modelΦ; this procedure requires

a careful estimation of the autocorrelation [41].

2. Estimate the noise covarianceΣ, and modify Eq. (1.24) and Eq. (1.25) by:

ŵ = (ΦTΣ−1Φ)−1ΦTΣ−1y (1.26)

Λŵ = σ2(ΦTΣ−1Φ)−1. (1.27)

This method is at the risk of biasing the result if the estimate ofΣ is poor [42].

3. Add more correlation than what is actually in the data (replace the unknown cor-

relation with known correlation), and derive a new noise covariance matrix [20].

This model has the form:

Ky = KΦw + Kε (1.28)

whereK is the filter written in matrix form. Eq. (1.24) and Eq. (1.25) now be-

come:

ŵ = (ΦTKTKΦ)−1ΦTKTKy (1.29)

Λŵ = σ2(ΦTKTKΦ)−1ΦTKTKΣKTKΦ(ΦTKTKΦ)−1. (1.30)

This estimate is biased, however it is argued that this bias is inferior to the bias

induced by an improper whitening [20].
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After having estimated the parameterw, it is possible to assess whether the elements

in w corresponding to the response are large enough to ascertain that the response truly

exists in the data. The null hypothesis here is that there is no activation anywhere in the

brain, that is,H0 : cTw = 0, wherec is a contrast which forms a linear combination

of the estimateŝw. To justify the activation of the voxel, the null hypothesis needs to

be rejected. Under the null hypothesis, the contrast of the parameter estimatescT ŵ is

normally (Gaussian) distributed with meancTw and variancecTΛŵc as shown below:

cT ŵ ∼ N (cTw, cTΛŵc). (1.31)

A t-statistic can then be formed by dividing a contrast of the estimated parameters

cT ŵ by its estimated standard deviation [43]:

cT ŵ√
cTΛŵc

∼ tdf (1.32)

wheretdf is the Student distribution withdf degrees of freedom, which is derived and

adjusted using theSatterthwaiteapproximation [44]:

df =
trace(RΣ)2

trace(RΣRΣ)
(1.33)

whereR = I−PΦ = I−Φ(ΦTΦ)−1ΦT is the orthogonal projection matrix (projector

onto the residual space ofΦ). For practical applications, thet scores are then converted

to a normal variablez through standard procedures. Each voxel has at score orz

score, thus a statistical parametric mapSPM{t} or SPM{z} is formed. This map can

be thresholded for a certain significance value orP value, which is the probability thatz

or t is above a given threshold under the null hypothesis. Then the activated regions in

the brain can be inferred by rejecting the null hypothesis given the statistical score.

The P-value defined above is voxel-based which may create a problem when try-

ing to control the overall or family wise error (a multiple comparison problem). In
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order to control the number of false positive voxels for a given map, we should consider

map-wise threshold. If we assume that the voxels are independent, then the Bonferroni

correction procedure [45] could be applied. However, the Bonferroni correction is too

conservative since the voxels are spatially correlated. Therefore, the Gaussian random

field theory [21] is applied. The idea is that, under the null hypothesis, thez-map is a

Gaussian random field, with a given smoothness. The probability of family wise error

can be approximated by the expected Euler characteristic1. This gives a new way of

setting a threshold on a smooth Gaussian random field and hence controlling the family

wise error.

For fMRI, inference can be drawn at different levels using different tests. The fol-

lowing tests pertain to different levels of inference for an activation profile, namely a

voxel, a cluster and a set level with decreasing localizing power but potentially increas-

ing sensitivity.

1. Test for the intensity of an activation (voxel level).

2. Test for both peak height and spatial extent of an activation (cluster level).

3. Test for significance of a set of regions (set level).

After the inference on single subject (first-level analysis) has been obtained, the

inference can be generalized to the population (second-level analysis or group study).

This is achieved by the success of the following two procedures. i) Spatial normaliza-

tion: The commonly used methods include whole-brain normalization, sulcal matching

and functional matching [53]. ii) Group inference: This is achieved by random-effect

analysis [21] and Bayesian analysis [66]. The basic idea is to treat the effect size or

parameters obtained in the single subject analysis as samples from a large population

1The Euler characteristic of an image is a property of the image after it has been thresholded.



1.3 Thesis Contribution and Organization 34

and by using random effect analysis or Bayesian analysis, the inference of the effect on

the group level can be obtained.

1.3 Thesis Contribution and Organization

This thesis presents robust and efficient algorithms for fMRI signal processing and data

analysis which is validated by both simulated and experimental fMRI data. Advanced

schemes are developed in order to achieve better detection of the activated regions of

the brain and estimation of the hemodynamic response of the brain functions. We only

consider the single-subject (first-level) analysis in this thesis. Analysis of group studies

(second-level experiments) requires further analysis.

The remainder of the thesis is divided into three parts.

The first part (Chapters 2 – 4) deals with the Bayesian analysis of fMRI data. Dif-

ferent from the traditional analysis methods which are based on the null hypothesis,

the Bayesian methods could give the accurate probability of an activation and avoid the

multiple comparison problem encountered in the traditional null hypothesis methods.

In Chapter 2, a sparse Bayesian learning method to flexibly determine the design

matrix in the GLM is proposed. The construction of the design matrix is critical to

the accurate detection of activation regions of the brain in fMRI. It should be flexible

to capture the unknown slowly varying drifts as well as robust enough to avoid over-

fitting. The method proposed in this chapter lets the data itself determine the form of

the regressors in the design matrix. It automatically finds those regressors that are rele-

vant to the generation of the fMRI data and discards the others that are irrelevant. The

approach integrates the advantages of model-driven and data-driven methods for fMRI

data analysis.

The assumption of noise stationarity in the fMRI data analysis may lead to the loss
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of crucial dynamic features of the data and thus result in inaccurate activation detection.

In Chapter 3, a Bayesian approach is proposed to analyze the fMRI data with two non-

stationary noise models (the time-varying variance noise model and the fractional noise

model). The covariance matrices of the time-varying variance noise and the fractional

noise after wavelet transform are diagonal matrices. This covariance matrix is estimated

using a Bayesian estimator which also gives an accurate estimate of the weights in the

GLM. Therefore, this method could enhance the accuracy of the detection of activated

regions in the brain.

In Chapter 4, we extend the method introduced in Chapter 3, and incorporat the drift

in the GLM. Based on the observation that the slowly varying drift resides in a sub-

space spanned only by large scale wavelets, we propose a modified GLM in the wavelet

domain under a Bayesian framework. This modified GLM estimates the activation pa-

rameters at each scale of wavelet decomposition. Then, a model selection criterion –

Confidence Interval Criterion (CIC) – based on the results from the modified GLM is

proposed to model the drift. The Bayesian estimator accurately captures the noise struc-

ture and hence results in a robust estimation of the parameters in the GLM. Besides, the

proposed model selection criterion works well and efficiently models and removes the

drift.

The second part (Chapters 5 and 6) of this thesis investigates the estimation of the

HDR under different experimental scenarios (linear and nonlinear). In Chapter 5, a

linear spatiotemporal adaptive filter is proposed to model the spatial activation patterns

as well as the HDR to the event-related stimulus. The well-known least mean square

(LMS) adaptive algorithm is used for estimating the coefficients of the spatiotemporal

filter. The method proposed is proved to be equivalent to the CCA method. It is then

extended to multiple event type scenarios to estimate the HDRs of each event type.

In Chapter 6, we investigate the nonlinear method to estimate the form of the HDR.
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The measured BOLD signals to a particular processing task (for example, rapid event-

related fMRI design) show nonlinear properties and vary with different brain regions

and subjects. In this chapter, radial basis function (RBF) neural network (a powerful

technique for modelling nonlinearities) is proposed to model the dynamics underlying

the fMRI data. The equivalence of the proposed method to the existing Volterra series

method has been demonstrated and validated in this chapter. It is shown that the first or-

der Volterra kernel which is equivalent to the HDR can be deduced from the parameters

of the RBF neural network.

The third part (Chapter 7) of this thesis is mainly focused on the modelling meth-

ods of fMRI data. Being complex and noisy, 4-D fMRI data sets show low SNR and

nonlinear properties. To enhance the SNR, signal modelling methods are proposed to

reconstruct the BOLD signal from the noisy fMRI data. To capture the nonlinear dy-

namics of the fMRI signal, nonlinear autoregressive with exogenous inputs (NARX)

neural networks are investigated to model the fMRI system from the measured fMRI

signal and available experimental designs. The NARX neural network is able to capture

the dynamics of the fMRI signal and could provide a promising method to model and

reconstruct the dynamics existing in the fMRI data.

Chapter 8 provides a summary and general conclusions of the thesis along with rec-

ommendations for future research.

This thesis could provide neuroscientists and psychologists with an advanced analy-

sis tool to cope with various difficulties faced in fMRI data analysis. This may contribute

to the better understanding of the nature of the fMRI signal and be of importance in ex-

plaining the underlying mechanisms.



Chapter 2
Sparse Bayesian Method for

Determination of Flexible Design Matrix

in fMRI Data Analysis

2.1 Introduction

In Section 1.2.3, we briefly introduced the model-driven and data-driven methods used

in fMRI data analysis. Both methods have their own advantages and disadvantages. The

data-driven methods are flexible especially when an appropriate data generation model

is not available. However, the necessity to explore the whole data set leads to high

computational demands and difficulties in interpreting the results. The model-driven

methods on the other hand assumes an underlying model taking into account the infor-

mation provided by the experimental paradigm; they often require less computation and

lead to an easier interpretation of the results. However, the model-driven methods may

impose an improper model on the data and lead to misinterpretation. In particular, the

BOLD response and the interferences may vary for different subjects and for different

37
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regions of the brain. The complexity of the fMRI data requires a method flexible enough

to accommodate the variations of the signal and that can adapt to different noises and

interferences.

Recent work has suggested that the combination of data-driven and model-driven

methods could give better results for fMRI data analysis. In [36], the author proposed

a hybrid approach which uses the results of ICA to form the regressors in the GLM.

In [48], the ICA with reference (ICA-R) which uses the information of the input stimuli

as reference was proposed. In [49], a semi-blind ICA of fMRI incorporating prior infor-

mation about the paradigm time course was introduced. These methods are based on the

powerful data-driven techniques and use some information of the experimental paradigm

to guide the analysis. These methods help to understand the fMRI data analysis problem

from data-driven methods towards model-driven methods.

In this chapter, a mixed model which starts with model-driven methods and utilizes

the data-driven methods to guide the selection of the regressors is proposed. This method

assumes a generalized linear model. However, instead of specifying the whole design

matrix before analysis (as in the GLM method), only the BOLD response regressor in the

design matrix is specified and the data automatically determines the remaining regres-

sors through sparse Bayesian learning. Furthermore, some evidence about the existence

of the regressors in the design matrix is obtained through the learning procedure and the

irrelevant regressors are discarded to avoid overfitting. This new method integrates the

advantages of the data-driven and model-driven methods and gives full flexibility to let

the data itself determine its regressors in the design matrix.
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2.2 General Linear Model

The aim of fMRI data analysis is to determine the activated regions of the brain (i.e. to

determine which voxels embody the BOLD responses to the experimental task). Nor-

mally, it is the temporal properties that determine whether a voxel is activated or not.

Hence, the fMRI data is processed voxel by voxel and the time series at each voxel is

investigated [50]. The GLM imposes a general linear model to the time series of each

voxel. The parameters of the model are then tested to draw a conclusion on the activation

of the voxel.

The GLM has been introduced in detail in Section 1.2.3. Here, we reiterate its

major properties for the convenience of reference. Lety denote the vector of ob-

served/measured intensity changes in one voxel of the fMRI dataset, with dimensions

T × 1, whereT is the total length of the time series or indices of observations (e.g.

scans). GLM is then given by:

y = Φw + ε (2.1)

in whichw is a vector of parameters with dimensionsR×1 which could be found by the

least square methods.ε = [ε1, · · · , εT ]T is the vector of error terms which is assumed

to be normalε ∼ N (0, σ2I) (after prewhitening). The design matrixΦ has dimensions

T × R with each row corresponding to one time point (scan) of the regressors, and the

columns corresponding to the different explanatory variables or regressors in the model.

In GLM, the design matrix is specified prior to the analysis and will not change

during the analysis procedure. The regressors (or the column vectors of the design

matrix) often consist of a canonical BOLD response (and its derivatives), a vector of

constant value 1 representing mean value and several discrete cosine transform (DCT)

basis functions representing the high-pass filter to remove the unwanted low-frequency

components from the data [53].
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The design matrix in GLM is not flexible and may cause problems. The number of

the DCT waveforms to be included in the design matrix should be determined carefully

before analysis. InSPM, this is implemented by specifying the highpass cutoff. Gener-

ally, too many basis functions would lead to an overfitting problem, while too few basis

functions may not filter out the slowly varying interference efficiently. So, the selection

of the number of basis functions is a very tricky issue. Furthermore, the inclusion of

the canonical BOLD response regressors into the design matrix may result in a deviated

model if the voxel is not activated. For accurate detection, an efficient method is re-

quired, which could switch the BOLD response regressor ON and OFF according to the

measured data during the data learning procedure.

In the method proposed, the initial design matrix includes the BOLD response re-

gressor, the vector of constant value 1 and a set of general nonlinear functions (instead

of DCT basis fucntions) that account for the slowly varying drifts and trends. Com-

pared to the design matrix used in the GLM, the proposed model is much more flexible

due to the use of general nonlinear functions which in fact construct a flexible subspace

and could capture signal variations more efficiently. Besides, different from the GLM in

which the design matrix will not change during the whole analysis, the proposed method

could adapt/adjust the design matrix according to the data. This is implemented under

the Bayesian framework. By using the sparse Bayesian learning, the regressors could

be learned from the data automatically to best account for the observed signal. The

unwanted regressors are then removed from the design matrix to avoid the overfitting

problem.
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2.3 Sparse Bayesian Learning

Suppose the initial number of regressors in the design matrix is(T + 2) and the design

matrix isT × (T + 2), which is defined as

Φ = [φ1, φ2, · · · , φT ,b,1], (2.2)

where the firstT regressors in the design matrix are flexible radial basis functions which

are further defined as Gaussian:

φi(j) = exp
(
− 1

2v2
(i− j)2

)
, (2.3)

wherei, j = 1, · · · , T are the time points (or scan indices), andv is the width of the

basis function. The(T + 1)th regressorb is the vector of the canonical BOLD response

which is the convolution of the experimental paradigm and the HRF [53]; the(T + 2)th

regressor is a vector of constant value 1.

The aim of sparse Bayesian learning is to determine a suitable set ofM (where

M ≤ T + 2) regressors and their corresponding weighting coefficientsw. Since the

noiseεn; n = 1, · · · , T in Eq. (2.1) are assumed as independent samples of Gaussian

noise with zero mean and varianceσ2 (for temporally correlated errors, the prewhitening

procedure is required), the output signalyn; n = 1, · · · , T is also Gaussian distributed

with varianceσ2. With the assumption of the independence of the outputyn, the likeli-

hood of the whole data set can be derived as:

p(y|w, σ2) =
1

(2πσ2)T/2
exp{− 1

2σ2
‖y −Φw‖2} (2.4)

wherey = [y1, · · · , yT ]T is the vector formed by the measured fMRI signal, which is

defined by the GLM;w = [w1, · · · , wM ]T andΦ is theT × M (M ≤ T + 2) design

matrix. For the initial settings,M is equal toT + 2 andΦ has the form defined in

Eq. (2.2).
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To avoid over-fitting, some of the parameters are constrained by defining prior prob-

ability distributions over them. Especially, the weight vectorw is treated as a random

variable with Gaussian prior probability (with zero-mean and varianceα−1) [54]:

p(w|α) =
M∏
i=1

N (0, α−1
i ) (2.5)

whereα = [α1, α2, · · · , αM ]T is a vector ofM hyperparameters. This prior probability

in Eq. (2.5) is known as an automatic relevance determination (ARD) prior [54, 55].

This prior could also be set up using the general parametric empirical Bayesian (PEB)

framework [56] by assigning a covariance basis functionQi to each regression coeffi-

cientswi. This prior means, at this time, that the best guess about the value ofwi is 0,

and thatα−1
i represents the uncertainty about this guess. Furthermore, theαi’s and the

noise varianceσ2 are defined with uniform distributions.

The basic idea of Bayesian learning is to maximize the posterior probability over

the weightsw and the hyperparametersα andσ2 given the datay, i.e. maximizing

p(w, α, σ2|y). This posterior is further decomposed as:

p(w, α, σ2|y) = p(w|y, α, σ2)p(α, σ2|y). (2.6)

Maximizing the left hand side of Eq. (2.6) is equivalent to maximizing the two probabil-

ities on the right hand side. The first probability on the right hand side is also a Gaussian

distribution given by

p(w|y, α, σ2) = (2π)−M/2|Λ|−1/2 exp
(
− 1

2
(w − u)TΛ−1(w − u)

)
(2.7)

with the posterior covarianceΛ and meanu being

Λ = (σ−2ΦTΦ + A)−1 (2.8)

u = σ−2ΛΦTy (2.9)
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whereA = diag(α1, α2, · · · , αM).

The maximum is clearly at the mean, i.e. the best estimate of the weightsw is

ŵ = u. (2.10)

The second probability on the right hand side of Eq. (2.6) is further decomposed and

its maximization is equivalent to the maximization ofp(α, σ2|y) ∝ p(y|α, σ2)p(α)p(σ2)

with respect toα andσ2. For uniform prior distributions, the following update equations

are derived [54, 55]:

αnew
i =

γi

ŵ2
i

(2.11)

γi = 1− αiΛii (2.12)

(σ2)new =
‖y −Φŵ‖2

T −∑M
i=1 γi

(2.13)

whereŵi is the i-th element of the posterior mean vectorŵ in Eq. (2.10) andΛii is

the i-th diagonal element of the posterior covariance matrixΛ in Eq. (2.8),T is the

total number of data points (in this case, the length of the fMRI time series),γi can be

interpreted as a measure of how “well-determined” its corresponding parameterŵi is by

the data [55]. Ifγi ≈ 0, from Eq. (2.12) it can be seen thatΛii ≈ α−1
i , which means that

ŵi is highly constrained by the prior. Conversely, ifγi ≈ 1, αi is small andŵi fits the

data.

The learning algorithm is to iteratively update Eq. (2.11) to Eq. (2.13), together

with Λ andŵ from Eq. (2.8) to Eq. (2.10) until some suitable convergence criteria are

satisfied. In practice, during the learning process, many of theαi’s approach infinity,

which means the probability densityp(wi|y, α, σ2) becomes infinitely large at zero.

This shows that it is certain to some extent that the particularwi should be zero given

the data at hand. Thus, the corresponding regressor functions could be ‘pruned’ and

fewer regressors are kept to construct a suitable design matrix. These regression vectors
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are called Relevance Vectors in [54]. Specifically, the drifts and trends will be modelled

by automatically selecting a minimum number of flexible basis functions which could

capture the slow variations. The canonical BOLD response regressor may be ‘pruned’

as well given the fMRI data. Thus a method is achieved to determine a flexible design

matrix in fMRI data analysis. This method could capture the underlying slowly varying

drift in the fMRI data and avoid overfitting.

Furthermore, besides the estimation of the weightsw, Bayesian learning also pro-

vides the estimate of the additive noise levelσ2. This term is important in the statistical

evaluation of the weightsw, which are evaluated by defining a contrast vectorc and

calculatingt as [57]:

t =
cT ŵ√
cTΛc

. (2.14)

Theset obtained at each voxel are then used to form a Statistical Parametric Map and a

threshold is determined to find the activation regions of the brain.

2.4 Results and Discussion

The proposed approach was first tested on simulated data with the total number of time

points (or scans) equal to 100. These signals simulate block design fMRI signals. Fig-

ure 2.1 shows a sketch of a block design experiment and its square waveform represen-

tation. When the stimulus is applied (ON), the representing waveform has the value 1;

while when the stimulus is absent (OFF), the representing waveform has the value 0. A

comparison between the proposed approach and the conventionalt-test method is also

given. Then, this new approach is applied on the experimental fMRI data. The results

are discussed in detail in the following sections.
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Square Wave

Time/Volume

Figure 2.1 Illustration of a block design and its square waveform representation.

2.4.1 Simulated Data

The aim of this study is to investigate whether the proposed approach could capture

the underlying slowly varying drift and can give some evidence to include the BOLD

response regressor in the design matrix or not. Particularly, four types of signals are

simulated and tested:

Type 1: BOLD response + Constant mean value + Noise;

Type 2: Constant mean value + Noise;

Type 3: BOLD response + Constant mean value + Drift + Noise;

Type 4: Constant mean value + Drift + Noise.

The BOLD response is simulated by assuming the brain and MR acquisition system

to be a linear system. Thus, BOLD responses are generated as the convolution of the

experimental paradigm and the HRF. The HRF is chosen as the difference between two

gamma functions as introduced in Chapter 1 (Section 1.2.2). The mean value is a ran-

domly generated constant representing the grey level of the specified voxel in the brain

image. The drift is simulated by a slowly varying sine wave. The Gaussian noise with

zero mean and variance 1 is added to the simulated signal, which results a signal-to-noise

ratio (SNR) of about−7dB.
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Figure 2.2 A simulated BOLD signal corrupted by drift and noise (Type 3) is decom-
posed by the proposed approach into different sources. (a) Simulated noisy fMRI signal;
(b) BOLD response; (c) Constant mean value; (d) Slowly varying drift; (e) Noise.
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Figure 2.2 shows the result of analyzing the Type 3 signal. Figure 2.2(a) is the sim-

ulated BOLD signal corrupted by the drift and noise. This noisy signal is decomposed

into the pure BOLD response (Fig. 2.2(b)), the constant mean value (Fig. 2.2(c)), the

slowly varying drift (Fig. 2.2(d)) and the noise (Fig. 2.2(e)) after fitting the simulated

data to the model learned by the proposed method. Initially, the design matrix has the

dimensions100× 102 (T = 100). Through sparse Bayesian learning, the proposed ap-

proach discards the irrelevant columns in the design matrix and retains only the relevant

columns. The number of final regressors in the design matrix for this simulated signal is

reduced to 4 (i.e. the final design matrix has the dimensions100 × 4), with one BOLD

response regressor (withw4 = 1.2040; α4 = 0.6670), one constant mean value regressor

(with w3 = −5.1650; α3 = 0.0374) and two basis functions to account for the slowly

varying drift (with w2 = 1.5631; α2 = 0.3913 andw1 = 2.0976; α1 = 0.2215). The

values ofwi’s (different from zero) andαi’s (not too large) give us some evidence that

these four regressors are relevant regressors and the design matrix formed by these four

regressors is suitable for the simulated signal. The value oft for this signal is 4.145.

Figure 2.3 shows the result of using the proposed model determination method to

analyze the other three types of simulated signals. The simulated noisy signal is denoted

in dashed line, while the reconstructed signal is denoted in solid line. The initial de-

sign matrix is formed as in Eq. (2.2), however, during the learning process, the BOLD

response regressor as well as some of the other regressors in the design matrix may be

discarded since they are irrelevant to the generation of the data. In Fig. 2.3(a), when

there is BOLD response in the simulated signals, the corresponding regressor column is

kept in the design matrix after the learning. While in Fig. 2.3(b) and Fig. 2.3(c), when

the signal contains no BOLD response and only consists of either drift and noise or only

noise, the proposed method will automatically switch OFF the BOLD response regressor

column in the design matrix through learning. In this simulation, for Type 2 and Type 4
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Figure 2.3 The simulated signals and their reconstruction. (a) Type 1: BOLD response
corrupted by noise; (b) Type 2: No BOLD response, only noise; (c) Type 4: No BOLD
response, only noise and drift.
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Table 2.1 The error rate of differentt-value thresholds for different types of signals

t -threshold Type 1(%) Type 3 (%) Type 2 (%) Type 4 (%)

1.0 0.25 0.85 10.45 5.70

1.5 0.65 1.85 5.25 3.25

2.0 1.95 3.80 2.50 1.60

2.5 4.05 8.05 0.75 0.60

3.0 9.60 13.5 0.20 0.15

signals, in most cases (around90%), the BOLD response regressor is discarded through

learning and thet-test values are thus 0; but in a few cases (around10%), the BOLD

regressor is not discarded in the design matrix, resulting in thet-test value greater than

zero. However, theset-test values are normally small.

Table 2.1 summarizes the error rates under differentt-value thresholds for the four

types of simulated signals. For this simulation,104 realizations of each type of signals

were generated and processed using the proposed method. Thet-test was carried out

under the null hypothesisH0 that there is no BOLD response in the simulated signal.

Both Type I error (rejecting the null hypothesisH0 when it is true) and Type II error

(not rejecting the null hypothesisH0 when it is false) [43] are computed. In this table,

the errors are displayed under different signal types and differentt-test values. For Type

1 and Type 3 signals, the error rates are of Type II error, while for Type 2 and Type

4 signals, the error rates are of Type I error. From this table, it could be seen that the

proposed method can make correct decisions with small error rates by choosing the

suitablet threshold.

A comparison of the detection ability of the proposed method and the conventional
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t-test method (it tests whether the means of the BOLD signal in the experimental con-

dition and control condition are the same) is also investigated by using receiver operator

characteristic (ROC) analysis [58]. The ROC method reflects the ability of different pro-

cessing methods to detect most of the real activations while minimizing the detection of

false activations. For ROC analysis, two values were computed: the true positive ratio

(proportion of correctly detected voxels to all voxels with added activations) and the

false positive ratio (proportion of voxels that were incorrectly recognized as active to all

voxels without added activation). The ROC curve is a plot of true positive ratio versus

false positive ratio under different threshold values. In this simulation, one slice from

the fMRI data set was used to form the background and Gaussian noise was added to

construct the 2-D time series. Simulated BOLD responses were added to specific areas

to simulate the active brain areas. For the simulated activated voxels, the signal is Type

1, while for inactivated voxels, the signal is Type 2. In this simulation, the drift is not

added. The conventionalt-test and the proposed method were applied to this simulated

data. Figure 2.4 shows the ROC curves under both the conventionalt-test method and

the proposed Bayesian learning method.

Observing the ROC curves of Fig. 2.4, it can be seen that at the same false posi-

tive rate, the proposed method could actually detect more real activations. This clearly

proves the better performance of the proposed method compared to the conventional

t-test method.

2.4.2 Experimental fMRI Data

The proposed method is also validated on the experimental fMRI data (DATA-BLOCK)

introduced in Chapter 1. Figure 2.5 shows the results of both the conventionalt-test and

the proposed method. It is clearly seen from the figure that the visual cortical area has
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Figure 2.4 ROC curves for simulated noisy data (2D plus time).

been identified.

For the experimental fMRI data, a quantitative comparison of the performance be-

tween the proposed method and conventional method is difficult. This is because that

we lack a reference which could serve as the true activation of the brain. Therefore, we

refer to thet-test scores for a quantitative comparison. If the degrees of freedom are the

same, the highert-test score means that the false positive would be smaller under the

null hypothesis. And a method which could detect the activated regions in the brain with

higher t-test score is better compared to the other methods. As shown in Fig. 2.5, the

proposed method could detect the activated regions of the brain witht-test threshold6.3.

However, under this threshold, the conventionalt-test method cannot detect the activated

regions. If the threshold is decreased to3.8, the activated regions of the brain could be

detected by the conventionalt-test method. The results that the proposed method could

detect the activation regions with less erratic points and highert-threshold values clearly

confirms that the proposed method is more robust than the conventionalt-test methods.
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(a) (b)

Figure 2.5 Results of fMRI data analysis to a visuospatial processing task. (a) Con-
ventionalt-test (t > 3.8, p < 0.05); (b) The proposed method with Sparse Bayesian
Learning (t > 6.3, p < 0.05).

2.5 Conclusion

In fMRI data analysis, especially in GLM, the construction of the design matrix is very

important to the data analysis. A flexible design matrix that can account for the mea-

sured data while not being too flexible to induce interference is desired. In this chapter,

the sparse Bayesian learning is applied to determine the regressors in the design ma-

trix. The initial design matrix is a very flexible one which may induce the overfitting

problem. Through sparse Bayesian learning, some confidence about the existence of

the regressors is obtained and those regressors that are unlikely present and irrelevant to

the measured fMRI data are discarded. Thus, a method to determine a flexible design

matrix is achieved. This method could capture any unknown underlying slowly varying

drift and avoid overfitting problem. It imposes a flexible model to the data, and lets the

data itself determine what the model should be like. This new method integrates the

advantages of the data-driven and model-driven methods and gives full flexibility to let
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the data itself determine its regressors in the design matrix. Validation results from both

simulated and experimental fMRI data show that the proposed method provides a much

better performance than the conventionalt-test method and enhances the ability of brain

activity detection.

The method proposed in this chapter assumes that the noise is stationary, that is,

the variance does not change with time. However, the noises in fMRI data also show

nonstationary properties. In Chapter 3, this method is generalized to cope with two types

of nonstationary noises in fMRI.



Chapter 3
fMRI Data Analysis with Nonstationary

Noise Models: A Bayesian Approach

3.1 Introduction

In the previous chapter, a flexible design matrix determination method based on sparse

Bayesian learning is proposed. This method assumes that the noise is stationary, that

is, the underlying noise model is time-invariant. However, since fMRI noise is inher-

ently time-varying, the stationarity assumption may not be appropriate considering the

complexity of the data.

In [59], a spatially nonstationary but temporally stationary spatio-temporal noise

model was developed to fit the fMRI time series. However, the nonstationarities can

also exist temporally. Several factors may induce the nonstationarities in the fMRI time

series. Neurophysiological processes, such as the number of neurons involved in a spe-

cific activity at different time points and the extraneous auditory and visual stimuli or

background memory processes, may cause the variance of the noise to change [60]. Be-

sides, the abrupt movements of the subjects are another source of the nonstationarity of

54
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the noise in fMRI [61]. For example, the abrupt movements of the lower jaw of subjects

may affect only a few consecutive fMRI images, causing the variance of these images to

be high and violating the stationarity assumption of the noise. Moreover, the1/f−like

noise or nonstationary fractional noises in the fMRI data have been reported and investi-

gated by many researchers recently [62][63]. These factors show that the assumption of

stationary noise may not be realistic to cope with the complex fMRI data. The general

nonstationary noise model to incorporate the time-varying stochastic properties of fMRI

noise (such as transients and sudden changes in the fMRI data) is needed for a more

accurate fMRI data analysis.

In this chapter, two noise models (time-varying variance model [61] and fractional

noise model [63]) are investigated to capture the nonstationarities in the fMRI data.

Different from the assumption (spatially nonstationary but temporally stationary) used

in [59], these two noise models are temporally nonstationary. The covariance matrices

of the time-varying variance noise and the fractional noise after wavelet transform are

diagonal matrices. This property is investigated under the Bayesian framework. The

Bayesian methods are utilized both in single-subject (first-level) analysis [64] [65] [66]

and group studies (multi-level experiments) [67] [68]. In [64], a variational Bayesian

method was proposed to infer on the GLM for fMRI data. The haemodynamic response

basis functions in the GLM using variational Bayesian are then constrained to sensible

HRF shape in [65]. In [69], a Bayesian method with sparse spatial basis function priors

was proposed to incorporate the spatial properties of the fMRI data. In [67] and [68],

the Bayesian approach was utilized to deal with the inference problem on the hierar-

chical linear models for fMRI group analysis. These works show the advantages of the

Bayesian analysis for the fMRI data. The classical approaches, such as SPM, working

under the mechanism of rejecting or accepting the null hypothesis, have some limita-

tions. For example, thep values in SPM are the probabilities of the effects under the
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null hypothesis which states there is no activation in each voxel. Thesep values do not

reflect the probabilities of the actual effects when the voxel is truly activated. Bayesian

approaches, on the contrary, can give the probability that a voxel is activated or the prob-

ability that the effect is greater than some threshold value. Hence, these limitations of

the classical approaches could be overcome using the Bayesian methods.

3.2 Nonstationary Noise Models

Letyn andεn represent the the measured fMRI signal and noise at thenth voxel of fMRI

data respectively. The ordinary least squares (OLS) estimator of the weight vectorwn

in the GLM is:

ŵn(OLS) = (ΦTΦ)−1ΦTyn. (3.1)

This estimator assumes that the noise is independent and identically distributed (i.i.d.)

Gaussian white noise. Clearly, this assumption is inappropriate considering the tempo-

ral auto-correlations and the nonstationary nature of the fMRI signals. To deal with the

temporal auto-correlations in the fMRI data, coloring and pre-whitening methods are

proposed [42][52]. Many nonstationary noise models [59][60][63] are also proposed to

model the noises in the fMRI data. Among these proposed noise models, two nonsta-

tionary noise models are considered in this chapter.

3.2.1 Time-varying Variance Model

The abrupt physical movements of the subjects in the fMRI experiment, such as the

lower jaw movements, may affect a few fMRI images, causing the variances of these

fMRI images to rise and breaking the stationarity assumption. In [61], the time-varying

variance noise model is introduced and it is reported that such increase in noise variance
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is multiplicative. That is, the noise interferences affect the variances in the fMRI images

multiplicatively, but not additively. Hence, the variance at each time point is modelled

as a scaled version of the overall variance in that voxel. This time-dependent noise is

modelled as a Gaussian processεn ∼ N (0,B−1
n ) with the precision matrixBn (i.e, the

inverse of the covariance matrix) defined as:

Bn =




s1 0 . . . 0

0 s2 . . . 0

...
...

. ..
...

0 0 . . . sT




βn = Sβn (3.2)

wheres1, s2, . . . , sT are the scaling parameters,S is a T × T scaling diagonal matrix

andβn is a scalar representing the overall noise precision in thenth voxel. This noise

precision matrix shows that the precisions (or inverse of variance) of thenth voxel at dif-

ferent time points are scaled versions of the overall precisionβn observed in that voxel.

In [61], it is testified that the scaling change of the precision has a spatial uniformity.

This shows that if the noise of the voxels in some portion of the image changes, the

noise in all other voxels in the same image will also change to a similar degree. Thus,

although the overall variance is different in different voxels (i.e. differentβn in different

voxels), the scaling parameters are assumed to be the same across the whole image (i.e.

the scaling matrixS is assumed to be the same for all the voxels).

Under the assumption that the precision matrix of noiseεn is Bn = Sβn, the maxi-

mum likelihood estimate ofwn in the GLM is a weighted least squares (WLS) estimate:

ŵn(WLS) = (ΦTSΦ)−1ΦTSyn. (3.3)

However, the WLS estimate requires us to have an accurate estimate of the scaling matrix

S.
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A traditional methods to estimate the scaling matrixS make use of the residualsrn

of the ordinary least squares (OLS) estimates, where the residuals are defined as:

rn = yn −Φŵn(OLS) = yn −Φ(ΦTΦ)−1ΦTyn. (3.4)

The overall precisionβn is estimated by [44]:

β̂n =
T − rank(Φ)

rT
nrn

, (3.5)

whererT
nrn is the sum of the squares of the residuals and (T−rank(Φ)) is the appropriate

degrees of freedom.

Considering thatrnr
T
n is the estimate of the covariance matrix of the noise (i.e.

B−1
n as shown in Eq. (3.2)), the inverse of the scaling parameterssinv = diag(S−1) =

[s−1
1 , s−1

2 , · · · , s−1
T ]T is estimated by averaging these variance estimates weighted byβn

over theN voxels:

ŝinv =

∑N
n=1 diag(βnrnr

T
n )

N
, (3.6)

where the operator diag(·) transforms the diagonals of a square matrix into a column

vector. N is the total number of voxels considered due to the spatial uniformity of the

scaling parameters.

Although this classical method is simple to implement, it is a biased estimate of the

scaling parameterss as shown in [61] that the precision matrix ofrn is not equal toSβn.

This bias comes from the estimation ofs using the residuals of the OLS estimates which

assume the covariance matrix of the residuals to be an identity matrix. This bias may

cause thet value in this voxel to be invalid and hence to draw incorrect inference about

the activation status of this voxel if the noise covariance matrix is not an identity matrix.

In Section 3.3, a Bayesian estimator to accurately estimate the scaling parameterss is

proposed.
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3.2.2 Fractional Noise Model

It is reported that the noise in the fMRI time series obtained under the resting or null

conditions exhibits long-range auto-correlation in time and1/f−like spectral proper-

ties [70]. This means that the spectral densityS(|f |) ∝ |f |λ is with the spectral expo-

nentλ < 0. One of the1/f−like processes is the fractional Brownian motion (fBm).

It is a zero mean, nonstationary, and nondifferentiable process with the auto-covariance

(r) between timet1 andt2 defined by the Hurst exponent (H) [71]:

r(t1, t2) =
1

2
δ2(|t1|2H + |t2|2H − |t1 − t2|2H) (3.7)

where

δ2 = Γ(1− 2H)
cos(πH)

πH
. (3.8)

Let the length of the fMRI time series beT = 2J , whereJ is an integer. Applying

the discrete wavelet transform (DWT) to both sides of the GLM, we get a GLM in the

wavelet domain [72] as follows:

yW
n = ΦWwn + εW

n (3.9)

whereyW
n andεW

n are the results of applying the DWT respectively to the datayn and

noiseεn up to the maximum scaleJ , andΦW is the wavelet transform applying to each

columns of the design matrixΦ.

The wavelet transform of the noiseεn up to the maximum scaleJ is denoted as:

εW
n = [aJ,1, dJ,1, dJ−1,1, dJ−1,2, · · · , d1,1, · · · , d1,2J−1 ]T (3.10)

whereaJ,1 is the scaling coefficient (or approximation coefficient) at levelJ , anddm,k

(k = 1, · · · , 2J−m) are the wavelet coefficients (or detail coefficients) at levelm (m =

1, · · · , J).
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The orthonormal wavelet decomposition is an approximate whitening filter for fBm [73].

The correlation between the wavelet coefficients within any of the scales and the cross-

correlation coefficients between different scales is very small [74] and hence can be

ignored for any wavelet provided that the number of vanishing moments is sufficiently

large (greater than2H + 1). It is also shown in [74],[75] and [76] that for1/f−like

noises, the wavelet coefficientsdm,k at levelm and the scale coefficientaJ,1 at levelJ

are normally distributed with zero mean and denoted by:

dm,k ∼ N (0, Vdm),

m = 1, · · · , J ; k = 1, · · · , 2J−m (3.11)

aJ,1 ∼ N (0, VaJ
), (3.12)

whereVdm = var{dm,k} (k = 1, · · · , 2J−m) is the variance of the wavelet coefficients

dm,k at level m(m = 1, · · · , J) and VaJ
= var{aJ,1} is the variance of the scaling

coefficientsaJ,1 at the levelJ .

Thus, for1/f−like noises, the orthonormal wavelet decomposition behaves like a

KLT and the transformed fractional noiseεW
n could be modelled by Gaussian process

εW
n ∼ N (0,VW ) with theT × T diagonal covariance matrix defined as:

VW = Cov(εW
n )

=




VaJ
VdJ �

VdJ−1

VdJ−1

�

... 0
B@

Vd1

...
Vd1

1
CA




.

(3.13)

The diagonal matrixVW is composed ofVaJ
(the variance of scaling coefficients

at levelJ) andJ sub-matrices representing the covariance matrix of the wavelet coeffi-

cientsdm,k at levelm (m = J, J − 1, · · · , 1). From Eq.(3.11), it is seen that the wavelet
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coefficientsdm,k at levelm are with the same varianceVdm. Hence, the sub-matrix at

levelm is of identical valueVdm at the diagonal and of dimension2J−m × 2J−m.

Since the wavelet function at different scales are bandpass filters and the scaling

function is a low-pass filter, it is verified in [76] that the variance of the wavelet coeffi-

cients at levelm and the scaling coefficient at levelJ can be denoted as scaled version

of σ2:

Vdm = σ2Sdm ; m = 1, 2, · · · , J

VaJ
= σ2SaJ

(3.14)

whereSdm (m = 1, 2, · · · , J) and SaJ
are scaling constants determined byH [72].

Hence, the diagonal elements of the covariance matrixVW are scaled versions ofσ2

and can be represented by:

VW =




SaJ
SdJ

SdJ−1

SdJ−1

...
Sd1

...
Sd1




σ2 (3.15)

= diag−1{(SaJ
, SdJ

, SdJ−1
, SdJ−1

, · · · , Sd1 , · · · , Sd1)σ
2}, (3.16)

where diag−1{·} transforms a vector into diagonals of a square matrix.

From the above descriptions, it is seen that the covariance matrix of the fractional

noise in the wavelet domain (Eq. (3.16)) has almost the same structure as the covariance

matrix of the time-varying variance noise in the time domain (see Eq. (3.2)). The only

difference is that for wavelet-transformed fractional noise, the scaling parameters at the

same level are of the same values. Since the covariance matrices have similar structure

in both cases, these two cases can be put under the same framework and in the next

section, we do not distinguish between these two cases unless it is necessary.
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3.3 Bayesian Estimator

The fMRI data analysis aims at a sensitive and robust detection of activation regions

of the brain under different sensory, motor and cognitive experiments. This requires an

accurate estimate of the weightsw in the GLM. For the nonstationary noises presented

in the previous section, the WLS and OLS estimators may fail because: (i) the WLS

estimator requires an accurate estimate of the covariance matrix which is difficult and

(ii) the OLS estimator does not consider the nonstationary properties of the noise. In

Chapter 2, a Bayesian method to estimate the parameterw under the white Gaussian

noise with fixed variance is provided. Here, we extend the Bayesian method to the

situation where the variance of the noise is changing with the time.

The noiseε ∼ N (0,B−1) is assumed as a Gaussian noise with zero mean and diag-

onal precision matrixB = diag−1{(s1, s2, · · · , sT )β} as introduced in Section 3.2 (for

both time-varying variance noise and fractional noise after wavelet transform). At timek

(k = 1, 2, · · · , T ), the noiseεk are independent samples from zero-mean Gaussian with

precisionskβ which may be different at each time pointk. Thus, the output signalyk at

time pointk is also a Gaussian distributed process with varying precision at each time

point. With the assumption of independence of the output at different time points, the

likelihood of the whole time seriesy can be derived as a multivariate Gaussian density

function:

p(y|w,B) =
|B|T/2

(2π)T/2
exp{−1

2
(y −Φw)TB(y −Φw)}

∼ exp{−1

2
(y −Φw)TB(y −Φw)}. (3.17)

We also treat the weight vectorw as random and assume its prior distribution is

Gaussian with zero mean and precision matrixA:

p(w|A) = N (0,A−1) ∼ exp{−1

2
wTAw}, (3.18)
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whereA is a diagonal matrix formed byM hyperparameters as follows:

A = diag−1(α1, α2, · · · , αM). (3.19)

This prior represents, at this time, the best guess about the value of theith weight wi

is 0, andα−1
i represents the uncertainty about this guess. Moreover, we specify the

hyperpriors overA andB to be uniform.

The basic idea of a Bayesian estimator is to maximize the posterior probability over

the weightsw and the hyperparametersA andB given the datay, i.e. maximizing

p(w,A,B|y). This posterior is further decomposed as:

p(w,A,B|y) = p(w|y,A,B)p(A,B|y). (3.20)

Maximizing the left hand side of Eq.(3.20) is equivalent to maximizing the two proba-

bilities on the right hand side, that is, maximizingp(w|y,A,B) andp(A,B|y).

To maximize the first probability of the right hand side of Eq.(3.20), we rewrite

p(w|y,A,B) according to Bayes rule,

p(w|y,A,B) =
p(w,y|A,B)

p(y|A,B)

=
p(y|w,B)p(w|A)

p(y|A,B)
. (3.21)

Rather than evaluating Eq. (3.21) directly (this needs to evaluate the termp(y|A,B)

which is not easy), we can rearrange Eq. (3.21) and obtain the probabilitiesp(w|y,A,B)

andp(y|A,B) simultaneously as shown below (Appendix A):

p(w|y,A,B) = (2π)−
M
2 |Λ|− 1

2 exp{−1

2
(w − u)TΛ−1(w − u)}, (3.22)

and

p(y|A,B) = (2π)−
T
2 |B−1 + ΦA−1ΦT |− 1

2

exp{−1

2
yT (B−1 + ΦA−1ΦT )−1y}, (3.23)
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where

Λ−1 = (A + ΦTBΦ) (3.24)

and

u = ΛΦTBy. (3.25)

The maximum of the first probabilityp(w|y,A,B) on the right hand side of Eq.(3.20)

is clearly at the mean, i.e. the best estimate of the weightsw is

ŵ = u. (3.26)

The second probability on the right hand side of Eq.(3.20) is further decomposed and

its maximization is equivalent to the maximization ofp(A,B|y) ∝ p(y|A,B)p(A)p(B)

with respect toA andB. For uniform hyperprior distributions, it is equivalent to max-

imizing p(y|A,B) with respect to hyperparametersαi; i = 1, · · · ,M in the matrixA,

the scaling parameterssi; i = 1, 2, · · · , T and overall precisionβ in matrixB.

It is convenient if we maximize the logarithm of this quantityp(y|A,B) and ac-

cordingly the objective function becomesL = log(p(y|A,B)). Without considering the

constant term, the objective function is:

L = −1

2
log |B−1 + ΦA−1ΦT | − 1

2
yT (B−1 + ΦA−1ΦT )−1y.

Maximizing the objective functionL with respect toαi, si andβ, the following up-

date equations are derived (The detailed derivation is given in Appendix B):

αi =
1

Λii + ŵ2
i

(3.27)

si =
1

trace(ΛβφT
i φi) + β(y −Φŵ)2

i

(3.28)

β =
T

trace(ΛΦTSΦ) + (y −Φŵ)TS(y −Φŵ)
(3.29)

whereΛii is thei-th diagonal element of the posterior covariance matrixΛ in Eq.(3.24),

ŵi is the i-th element of the posterior mean vectorŵ in Eq.(3.26),φi is the i-th row
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vector of the design matrixΦ and(y −Φŵ)i is thei-th element of the estimated error

rb = y −Φŵ.

By iterative updating of Eq.(3.27) to Eq.(3.29), together withΛ andŵ from Eq.(3.24)

and Eq.(3.26), this update algorithm converges to the optimum solution. For the time-

varying variance noise model, different voxels are assumed to have the same variance

scaling parameterssi and hence at the end of each updating cycle,si could be averaged

over all the relevant voxels. For the fractional noise model, after wavelet transform, the

variance scaling parameters of the transformed noise in the wavelet domain are testi-

fied to have the same value at the same decomposition level as shown in Eq.(3.13) and

Eq.(3.14). During the updating process, the scaling parameterssi at the same level are

averaged to obtain an accurate estimation.

In practice, some of theαi’s in Eq.(3.19) will approach infinity, which means the

wi should be zero given the data at hand. Thus, the corresponding regressor functions

could be ‘pruned’ and the remaining regressors are kept to construct a suitable design

matrix. This is the flexible design matrix determination method in the GLM for fMRI

data analysis as introduced in Chapter 2.

Having estimated the posterior probability density function of the weightsw at each

voxel, a map of the activation regions in the brain could be obtained by computing the

posterior probability that a voxel is activated or the probability that an effect is greater

than some threshold value. Given the effect sizeγ, the posterior probability is [56]:

1−Ψ
(γ − cTu√

cTΛc

)
(3.30)

wherec is the contrast vector as introduced earlier,Ψ(·) is the normal cumulative dis-

tribution function (cdf),u andΛ are defined in Eq.(3.25) and Eq.(3.24), respectively.

These posterior probabilities will form posterior probability maps (PPMs) of the fMRI

activation detection.
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In the classical approach, the point estimate of the weightsw by OLS and WLS

methods is used to calculate at at each voxel:

t =
cT ŵ√
cTΛŵc

(3.31)

whereŵ is the least-square estimate of the parameterw andΛŵ is the covariance matrix

of the estimatêw. The statistict is of Student’st distribution with the effective degree

of freedom (df ) as derived in [50].

Theset values obtained at each voxel are then mapped to form statistical parametric

maps (SPMs) for further determination of the activated regions in the brain.

3.4 Results and Discussion

In this section, simulation studies are carried out to compare the performance of the pro-

posed approach to the OLS and the WLS estimators introduced in the previous sections.

Both simulated as well as experimental data are examined. We first compare the accu-

racy of the estimated weights in GLM. The activation detection ability of these methods

are then investigated. Lastly, results from the experimental fMRI data are given and

discussed.

3.4.1 Simulated Data

Time-varying variance noise

We first show that the proposed Bayesian approach could give more efficient (lower

variance) estimate of the weightsw than the OLS and the WLS estimators. A simu-

lated block experimental fMRI design is investigated in this study. The BOLD signal is

represented by a square waveform as shown in Fig. 2.1.
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Table 3.1 Standard deviation (SD) of estimatedŵ on simulated data with different weight
and noise.

OLS WLS Bayesian

i.i.d. noise

w = 0 0.3564 0.3579 0.1673

w = 0.5 0.3558 0.3577 0.3318

w = 1 0.3527 0.3545 0.3472

w = 2 0.3527 0.3546 0.3065

w = 0 0.4086 0.1153 0.0321

time-varying variance w = 0.5 0.4100 0.1162 0.0583

noise w = 1 0.4101 0.1170 0.0578

w = 2 0.4084 0.1159 0.0570

Two hundred realizations of 128-point time series (i.e. 128 (T ) images with 200

(N ) voxels in fMRI data sets) under different weighting of the square waveform are

generated. Both the i.i.d. noise and time-varying variance noise are then added to the

data set to simulate the noisy fMRI data. These data are fitted with a GLM model with

a design matrixΦ (dimension128× 2) composed of two regressors : the constant value

1 to model the mean grey level in fMRI voxels and a square waveform to model the

experimental design. Since we are only concerned about the weight parameter related

to the square waveform regressor, only the standard deviation (SD) of this weightw is

reported. Table 3.1 shows the SD of the estimateŵ under different values ofw and

different noise properties.

To compare the performance of different detection methods, the standard deviation

of these estimates are calculated. The method that results in lower SD estimate is more
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accurate since a stringent confidence interval of the estimated parameter could be ob-

tained by using lower SD. From Table 3.1, it is clear that the proposed Bayesian method

always results in lower SD estimate of the weightw for all the values ofw tested no mat-

ter whether the noise is i.i.d. or time-varying variance. This implies that the Bayesian

estimator is more accurate than the OLS and WLS estimators. This improvement of our

approach comes from the fact that the Bayesian estimator not only captures the true vari-

ance structure of the noise better than OLS and WLS, but also utilizes a flexible design

matrix which is more suitable for the actual nonstationary data. Accurate regression

weights are desired since these regression weights are fitted with a hierachical linear

model for second-level analysis or random effect analysis [21]. Lower SD estimates

will give more sensitive results for these higher level analysis.

Then, the detection ability of these estimators is compared. A slice from a real fMRI

data set is used as the background image. First, the i.i.d noises are added to the simulated

fMRI data set. The detection results of these three estimators are comparable as shown in

Table 3.1 . Next, time-varying noises with same scaling parameters but different overall

variances are then added to each voxel of the data to form a 3-D fMRI time series. At

some specific regions of the image, simulated BOLD signals are added. The BOLD

signal is simulated by the convolution of the experimental paradigm and conventional

HRF, which is the difference between two gamma functions. These simulated fMRI data

are fitted by the GLM with the design matrix composed of two regressors: the simulated

BOLD response and a constant vector of value 1. For the Bayesian method, the PPM

is obtained as introduced in Section 3.3. For the OLS and WLS methods, SPMs can

be obtained. Figure 3.1 shows the detection results of simulated fMRI data using these

methods.

From Fig. 3.1, it is clear that the proposed Bayesian method is more robust and

sensitive compared to the OLS and WLS methods with more true activations and less
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(a) (b) (c)

Figure 3.1 Detection results of simulated fMRI data using different methods: (a) OLS
method with thresholded statistical parametric map (SPM) (t > 1.7, p < 0.05); (b) WLS
method with thresholded SPM (t > 1.7, p < 0.05); (c) Bayesian method with posterior
probability map (PPM) (P (effect> 0.4) > 0.9).

false activations detected (the simulated pattern is shown in Fig. 5.8 (a) as a comparison

reference). This is because the noise structure estimated by the proposed method is

closer to the true noise. To have a clearer comparison of the detection ability, the receiver

operator characteristic (ROC) analysis [58] is used to investigate the activation maps of

Bayesian, OLS and WLS methods. The ROC curve is a plot of true positive ratio (TPR)

versus false positive ratio (FPR) under different threshold values. The method that can

detect most of the real activations while minimizing the detection of false activations

is more desirable. Figure 3.2 (a) and Fig. 3.2 (b) show the ROC curves under the i.i.d.

noise and time-varying variance noise, respectively. For i.i.d. noise, the three methods

have comparable performances (Fig. 3.2 (a)). While for the time-varying variance noise,

the ROC curves (Fig. 3.2 (b)) indicate that under the same FPR, the proposed Bayesian

method could actually detect more real activations. This clearly shows the superior

performance of the proposed method compared to the OLS and WLS methods.
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Figure 3.2 ROC curves for simulated noisy data: (a) for i.i.d. noise; (b) for time-varying
variance noise.
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Fractional Noise

To investigate the effect of fractional noise or1/f−like noise, we first synthesize real-

izations of fBm noise based on the statistical model of fBm using the method introduced

in [62]. The total length of the simulated fBm noise isT = 128 with the decomposition

level J = 7 (sinceT = 2J ). These noises are added to the simulated BOLD signals

to form the simulated fMRI data. The design matrix is constructed as the same as the

one introduced previously. The OLS method is first applied to the original simulated

data in the time domain (denoted as “OLS-time”). After transforming the original simu-

lated data and design matrix in the GLM into the wavelet domain as shown in Eq.(3.9),

the Bayesian method and OLS method (denoted as “OLS-wavelet”) are applied to the

transformed data in the wavelet domain. Daubechies wavelets with vanishing moments

4 (‘db4’) are used for the DWT since they are the most compactly supported wavelets

with sufficient vanishing moments to whiten the fBm noise. To compare the detection

results of different methods, the generalized least squares (GLS) estimator is also in-

vestigated. In the GLS estimator, the noise covariance matrix is known according to

the specified value ofH andσ in Eq.(3.7) and Eq.(3.8). This GLS method is used as a

comparison reference for the efficiency of the Bayesian method in the wavelet domain.

Table 3.2 shows the SD of estimatêw under different weight valuew and differentH

using GLS, OLS-time, OLS-wavelet and Bayesian methods in the wavelet domain.

From Table 3.2, it is seen that the Bayesian method in wavelet domain is a robust

and efficient estimator when the noise considered is fBm noise. Both the OLS method

in time domain (OLS-time) and in wavelet domain (OLS-wavelet) perform worse when

the Hurst exponentH is high since the noise assumption does not match the simulated

data. The SD of the Bayesian estimator is close to that of the GLS method, which shows

that the Bayesian estimator is an accurate estimate of the weightsw and could lead to
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Table 3.2 Standard deviation (SD) of estimatedŵ on simulated data with different weight
and Hurst exponent.

GLS OLS-time OLS-wavelet Bayes

w = 0

H = 0.1 0.0503 0.0518 0.0537 0.0384

H = 0.3 0.0664 0.0881 0.0937 0.0485

H = 0.5 0.0667 0.1305 0.1397 0.0484

H = 0.7 0.0608 0.2389 0.2433 0.0438

H = 0.9 0.0408 0.4499 0.3304 0.0332

w = 0.5

H = 0.1 0.0501 0.0523 0.0569 0.0529

H = 0.3 0.0678 0.0868 0.1002 0.0725

H = 0.5 0.0711 0.1326 0.1389 0.0797

H = 0.7 0.0642 0.2262 0.1980 0.0700

H = 0.9 0.0414 0.4601 0.3307 0.0491

w = 1

H = 0.1 0.0531 0.0556 0.0628 0.0551

H = 0.3 0.0685 0.0874 0.0924 0.0701

H = 0.5 0.0674 0.1277 0.1550 0.0730

H = 0.7 0.0637 0.2179 0.2155 0.0686

H = 0.9 0.0390 0.4542 0.3658 0.0442
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almost the same performance as the GLS method. In the case ofw = 0, the SD of the

Bayesian method is even lower than that of the GLS method due to the pruning property

of the proposed Bayesian method. These results show that the wavelet transform actually

whitens the noise and the diagonal error covariance matrix is accurately estimated by the

Bayesian method.

The simulated 3-D fMRI time series are also investigated. The simulated data are

generated as explained before. The difference is that the noises added here are synthe-

sized fBm noises with differentH at different voxels. Figure 3.3 shows the activation

detection results of these methods. It is clear from Fig. 3.3 that the proposed Bayesian

estimator in the wavelet domain performs better than the OLS method (in time domain

and wavelet domain) with more true activations and fewer false activations detected (the

simulated pattern is shown in Fig. 5.8 (a) as a comparison reference). The ROC curves

of the OLS method (OLS-time and OLS-wavelet) and the Bayesian method are also

given in Fig. 3.4 with a clear illustration of the better detection ability of the Bayesian

method.

3.4.2 Experimental fMRI Data

The experimental data used in this study are theDATA-BLOCKintroduced in Chapter 1.

Figure 3.5 shows the results of applying the OLS, WLS and Bayesian methods assum-

ing the time-varying variance noise model and the Bayesian method assuming fractional

noise model. For the fractional noise model, the time series are up-sampled in order

to make the length of the time series to be a power of 2 and at the same time keep the

scaling properties of the fractional noise. From these figures, we can see that the acti-

vation of the visual cortical areas are detected. Figure 3.5 (a) and (b) are respectively



3.4 Results and Discussion 74

(a) (b) (c)

Figure 3.3 Detection results of simulated data using fBm noise model: (a) OLS in time
domain with thresholded SPM (t > 3.4, p < 0.001); (b) OLS in wavelet domain with
thresholded SPM (t > 3.4, p < 0.001); (c) Bayesian method in wavelet domain with
PPM (P (effect> 1) > 0.99).
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Figure 3.4 ROC curves of OLS (in both time domain and wavelet domain) and Bayesian
(after DWT) methods for simulated fMRI data corrupted with fBm noises.
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the detection results of the OLS and WLS method with the significance levelp uncor-

rected. It is seen that at thisp level, the detection results may include some erratically

scattered noise. Considering the multiple comparisons problem, a stringent correction

using the Bonferroni correction [21] is used here as shown in Fig. 3.5 (c) and (d) which

illustrate that some potentially activated voxels may not be detected. Compared to the

OLS and WLS methods, the Bayesian methods perform better (Fig. 3.5 (e) and (f)). Be-

sides, the Bayesian methods provide the probabilities of the activation effect, avoiding

the problems encountered in SPM to correct or adjust thep levels due to the multiple

comparisons problem. These results show that the Bayesian estimators under these two

noise assumptions can provide alternative estimators and better detection results.

3.5 Conclusion

In fMRI data analysis, the noise is generally assumed to be stationary. However, this is

an inappropriate assumption given the complex nature of the fMRI data. The fMRI data

is sensitive to the subjects’ movements, resulting in the time-varying variance noise.

In addition, it is reported that noise in the fMRI data can be of fractional and/or 1/f -

like. In this chapter, a Bayesian method is proposed to detect the activated voxels under

two nonstationary noise structures (time-varying variance noise and fractional noise).

For time-varying variance noise, the variance of the noise at each time point is a scaled

version of the overall variance in that voxel. For fractional noise, the wavelet transform is

first applied as a whitening filter. The coefficients of the transformed noise are i.i.d. and

the variance at each decomposition level is a scaled version of the overall variance. Thus,

the covariance matrices of these two assumed noise models have similar structures. This

similarity led to similar estimators or updating algorithms.

The weight estimator is investigated under the Bayesian framework. This estimator



3.5 Conclusion 76

(a) (b) (c)

(d) (e) (f)

Figure 3.5 Results of a block visuospatial processing task fMRI data: (a) thresholded
SPM of OLS method (t > 3.4, p < 0.001, uncorrected); (b) thresholded SPM of
WLS method (t > 3.4, p < 0.001, uncorrected); (c) thresholded SPM of OLS method
with Bonferroni correction (t > 7, p < 0.05, corrected); (d) thresholded SPM of WLS
method with Bonferroni correction (t > 7, p < 0.05, corrected); (e) PPM of Bayesian
method using time-varying variance noise model (P (effect> 0.8) > 0.99); (f) PPM of
Bayesian method using fractional noise model (P (effect> 0.8) > 0.99).
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could provide a probability that a voxel is activated or the probability that the activation

of this voxel is greater than some threshold. This advantage enhances the ability to detect

activated regions of the brain and avoids the limitations of the classical methods. The

proposed methods are compared to the ordinary least squares (OLS) and the weighted

least squares (WLS) methods both on simulated as well as experimental fMRI data. The

ROC analysis validates that the proposed Bayesian methods are more accurate than the

OLS and WLS methods. These results show that the proposed Bayesian methods under

the time-varying variance noise model and the fractional noise model are efficient and

robust methods for brain activity detection in fMRI data analysis.

The method proposed in this chapter does not consider the drift in fMRI data. In the

following chapter, this method is extended to incorporate the drift into the GLM.



Chapter 4
Analysis of fMRI Data with Drift:

Modified General Linear Model and

Bayesian Estimator

4.1 Introduction

As introduced in Section 1.2.2, the fMRI signal consists basically of three components:

the BOLD response related to the stimuli, drift and noise. Let the fMRI signal beyi at

a specific voxel measured at scan numberi (with total T scans). Then, GLM of fMRI

data can be written as:

yi = wbi + fi + εi; i = 1, · · · , T (4.1)

wherebi is the explanatory BOLD response. The parameterw in Eq. (4.1) is a scalar

which represents the contribution of the BOLD signal toyi, fi is the drift andεi is the

noise.

78
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Written in a matrix form, Eq. (4.1) becomes:

y = wb + f + ε, (4.2)

or in a traditional way (GLM in Section 1.2.3):

y = Φw + ε, (4.3)

wherey, b, f andε are of dimensionsT × 1. Φ = [b, f ] is the design matrix with the

dimensionsT×2 andw = [w 1]T is the parameter vector. The detection of the activated

voxels/regions of the human brain is based on the inference drawn from the estimation

of the parameterw.

To remove the drift before proceeding to the statistical analysis, preprocessing pro-

cedures or drift models have been proposed. Some of the well-known preprocessing

techniques are the high-pass filtering [21] and the median filtering method [77]. The

drift can also be removed by introducing drift models in the GLM. These drift mod-

els assume that the drift resides in a linear subspace spanned by a set of polynomials

or a set of cosine functions [21], then the drift can be projected into this subspace and

removed. In [78], a wavelet-based semiparametric GLM was proposed to estimate the

parameters in the GLM as well as to estimate the drift. However, the accuracy of the

estimated parameters in this method is related to the accuracy of the estimation of the

noise covariance matrix. The inaccuracy of the estimation of the covariance matrix may

bias the results and lead to wrong judgements about the activation of the voxels. In this

chapter, based on the observation that the noise in fMRI is long memory fractional noise

and the slowly varying drift resides in a subspace spanned by large scale wavelets, we

examine a modified GLM in wavelet domain under Bayesian framework. By estimating

the noise covariance efficiently, the Bayesian method can give accurate estimation of the

parameters in GLM. Besides, a model selection scheme based on the results from the
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modified GLM is proposed to accurately estimate the parameterw in GLM as well as to

remove the drift efficiently.

4.2 Models

Using the discrete wavelet transform (DWT), the parameters of activationw and the drift

can be estimated efficiently. The wavelet transform is used because of the following

reasons.

1. Drift can be efficiently removed from the fMRI signal since it resides only in the

subspace spanned by large scale wavelets [78].

2. The noise in the fMRI data exhibits long-range auto-correlation in time and1/f−like

spectral properties [70]. The DWT applied to this kind of1/f−like processes

works as a Karhunen-Loéve transform (KLT) to decorrelate the fractional noise

process [79][63]. The resulting wavelet coefficients are independently Gaussian

distributed, which simplifies the estimation of the parameters and makes statistical

analysis easy.

Assume the length of the fMRI signal isT = 2J , whereJ is an integer. Applying

the DWT to both sides of Eq.(4.2), the GLM in the wavelet domain is of the form:

yW = wbW + fW + nW (4.4)

whereyW , bW , fW andεW are the results of applying the DWT respectively to the data

y, BOLD responseb, drift f and noiseε up to the maximum scaleJ .
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4.2.1 Noise Model

The wavelet transform of the noiseεW is:

εW = [aεJ,1, dεJ,1, dεJ−1,1, dεJ−1,2, · · · , dε1,1, · · · , dε1,2J−1 ]T (4.5)

whereaεJ,1 is the scaling coefficient at levelJ , anddεm,k (k = 1, · · · , 2J−m) are the

wavelet coefficients at levelm (m = 1, · · · , J). The noise in the fMRI time series ob-

tained under the resting or null conditions exhibit long-range auto-correlation in time

and1/f−like spectral properties [70]. The properties of the noise is detailed in Section

3.2.2. After the wavelet transform, the transformed fractional noiseεW could be mod-

elled by Gaussian processεW ∼ N (0,V) with theT × T diagonal covariance matrix

defined in Eq. (3.13) and rewritten here:

V = Cov(εW )

=




VaJ
VdJ �

VdJ−1

VdJ−1

�

... 0
B@

Vd1

...
Vd1

1
CA




. (4.6)

4.2.2 Drift Model

The drift is assumed to vary slowly with large scales, and hence the wavelet coefficients

at fine scales are almost zero [78] as shown here:

fW = [afJ,1, dfJ,1, · · · , dfJ0,1, · · · , dfJ0,2J−J0 , 0, · · · , 0]T (4.7)

whereafJ,1 is the scaling coefficient (or approximation coefficient) at levelJ , anddfm,k

(k = 1, · · · , 2J−m) are the wavelet coefficients (or detail coefficients) at levelm (m =

J0, · · · , J). The wavelet coefficients at levels lower thanJ0 (i.e. fine scales) are zero

since at these levels, the drift does not vary greatly over a short interval of time.
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4.3 Modified GLM

As seen from the properties of the drift, at finer scales, the effect of drift can be ignored

and hence the GLM at finer scales becomes:

yW
i = wbW

i + εW
i (4.8)

whereyW
i , bW

i andεW
i are respectively wavelet decomposition coefficients at the finer

scales (scales less thanJ0).

However, since we do not know exactly at which level the effect of drift can be ig-

nored, an approach is to estimate the parameterw at different scales and use a scheme

to find a suitable level for modelling the drift as well as accurately estimating the pa-

rameter. Therefore, a modified GLM is obtained (for convenience, the superscript ‘W ’

is dropped):

y = Φw + ε, (4.9)

where the matrixΦ is defined as:

Φ =




abJ,1

dbJ,1

...
dbJ0,1

...
db

J0,2J−J0

...
db1,1

...
db

1,2J−1




, (4.10)

which is a block diagonal matrix of dimensionsT × (J + 1). The block in the diagonal

of matrixΦ is a vector composed of the wavelet coefficients at the same scale.

The parameterw is defined by:

w = [wJ+1, wJ , . . . , wJ0 , . . . , w1]
T , (4.11)
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which consists of estimates ofw at different levels. The parameterw can be estimated

using Bayesian methods introduced in Section 3.3. Among these estimates, the estimates

of w at levels lower thanJ0 can be thought of as good estimates because the effect of

drift can be ignored at these levels; however, other estimates ofw at levelJ0 or levels

higher thanJ0 are bad due to the effect of drift. In the next section, the schemes for

model selection are discussed.

If the effect of drift can be ignored at the levels lower thanJ0, the estimateŝwi

(i = 1, · · · , J0− 1) could be treated as(J0− 1) observations of the unknown parameter

w. Thus, we could obtain the following observation equation:



ŵJ0−1

ŵJ0−2

...
ŵ1


 =

(
1
1
...
1

)
w + n (4.12)

wheren ∼ N (0,ΛJ0) andΛJ0 is defined as:

ΛJ0 =




ΛJ0−1

ΛJ0−2

...
Λ1


 , (4.13)

whereΛi (i = 1, · · · , J0 − 1) are the variances of the estimated parametersŵi (i =

1, · · · , J0 − 1) respectively, which are the lowerJ0 − 1 diagonal elements ofΛ in

Eq. (3.24) obtained through Bayesian estimator.

The maximum likelihood estimate ofw is then given by (the detailed derivation is

given in Appendix C):

ŵML =

J0−1∑
i=1

Λ−1
i∑J0−1

k=1 Λ−1
k

ŵi, (4.14)

which is also Gaussian distributed with the variance:

σ2
ŵML

=

J0−1∑
i=1

Λ−1
i

(
∑J0−1

k=1 Λ−1
k )2

. (4.15)

Thus, the significance of̂wML can be tested by calculating thet scores with degrees of

freedomT − 2−J0T , which is determined by the choice of levelJ0. In the next section,
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schemes for choosing the optimumJ0 are described. The estimation of drift is then

calculated by setting the coefficients ofyW − ŵMLb
W at finer scales (scales lower than

J0) to be zeros and performing the inverse wavelet transform.

4.4 Model Selection

Model selection aims to find a suitable valueJ0, where the effect of drift at levels lower

thanJ0 can be ignored. Some model selection criteria have been proposed in fMRI

analysis using semiparametric GLM [78]. The first criterion is an improved version of

the Akaike information criterion (AIC) [78][80], which is represented by:

AICc = log σ̂2 +
T + n0

T − n0 − 2
(4.16)

wheren0 is the number of wavelet coefficients used to estimate the drift and is deter-

mined by the selection of drift levelJ0 asn0 = 2−J0T , σ̂2 is the measure of the goodness

of fit and is given by the mean squared error:

σ̂2 =
1

T
‖y − ŵMLb− f̂‖ (4.17)

wheref̂ is the estimated drift.

The second criterion is the Schwartz information criterion (SIC) [78][81], given by:

SIC = log σ̂2 +
n0 log n0

T
. (4.18)

For every scale, AICc and SIC are calculated and the optimum scaleJ0 is set to the one

which results in the minimum value of these two criteria.

Both the AICc and SIC criteria need to calculate the estimate ofw for each as-

sumed model, which is not efficient. In this thesis, we propose a more efficient criterion,

namely, the Confidence Interval Criterion (CIC) to estimate the order of the drift (J0) as

well as the parameterw as shown below:
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1. Start from the finest scale (i.e.i = 1) and set lower and upper limits[l, u] =

[−∞,∞];

2. Calculate the100(1− α)% confidence interval ofwi given by:

[li, ui] = [ŵi − zα/2

√
Λi, ŵi + zα/2

√
Λi]

wherezα/2 is thez score with the probability greater thanz beingα/2;

3. Derive the overlap interval of[l, u] and[li, ui] and update[l, u];

4. Judge whether̂wi+1 ∈ [l, u]. If yes, increasei by 1 and go to step 2. If not,

J0 = i + 1.

After finding the optimum scale of the driftJ0, the parameterw is then estimated ac-

cording to Eq. (4.14).

4.5 Results and Discussion

4.5.1 Simulated Data

We first test the efficiency of the proposed approach on simulated data. A simulated

block experimental fMRI design is investigated in this study. The BOLD signal is rep-

resented by a square waveform alternating with 6 scans per block. One thousand real-

izations of fBm noise are synthesized based on the statistical model of fBm using the

method introduced in [62]. The total length of the simulated fBm noise isT = 128 with

the decomposition levelJ = 7 (sinceT = 2J ). These noises are added to the simulated

BOLD signals with different weights to form the simulated fMRI signal. Then, slowly

varying drifts which are simulated using the summation of sinusoidal waves are added
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Figure 4.1 Simulated fMRI signal.

to the simulated fMRI data. Figure 4.1 shows a realization of the synthetic fMRI signal

with the fBm noise generated using the parameterH = 0.3.

The simulated fMRI signals are then decomposed using Daubechies wavelets with

vanishing moments 4 (‘db4’) since they are the most compactly supported wavelets with

sufficient vanishing moments to whiten this fBm noise. The decomposed signals in the

wavelet domain are then processed using the proposed Bayesian method introduced in

Section 3.3. The ability of the Bayesian method to estimate the noise covariance matrix

V in wavelet domain is first tested. For a comparison, the wavelet decomposition is also

applied to the simulated fBm noise and the variance at different scales is calculated as

the true value of the variance. Table 4.1 compares the estimated variance at different

scales with the true values. It is clearly seen from the table that the Bayesian estimator

accurately estimates the variances of wavelet coefficients of noise at different scales.

These accurate estimates can be used to estimate the Hurst exponentH of fBm noise

according to the method introduced in [74]. For this example, the estimatedH is equal

to 0.2666 which is very close to the true value of 0.3.

Then the three model selection criteria are used to find the optimum scale of drift
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Table 4.1 Comparison of estimated variance of wavelet coefficients of noise at different
scale with the true value.

Scalei Estimated Value True Value

1 0.8193 0.8471

2 1.4885 1.5783

3 4.1338 4.1340

4 20.1372 21.5596

Table 4.2 Model selection of CIC, AICc and SIC criteria.

Scalei ŵi Updated [l, u] AIC c SIC

1 0.6465 [−∞,∞] 1.9382 0.8737

2 0.6281 [ 0.0876, 1.2055] 0.7622 -0.0768

3 0.4617 [ 0.0876, 1.2055] 0.7312 -0.2393

4 0.6682 [0.0876, 1.0984] 0.7844 -0.2318

5 5.6985 [0.0876, 1.0984] 0.8434 -0.1966

and hence an accurate estimate of the parameterw. For the CIC criterion, theα value

is set to be0.01 and hencezα/2 = 2.576. Table 4.2 compares the results of these three

criteria. From the table, we can see that the CIC criterion chooses the scaleJ0 to be

4 sinceŵ5 /∈ [l, u] at scale5. Both SIC and AICc criteria reach the minimum value at

the scale of3 and hence they give the optimum value ofJ0 to be 3. Figure 4.2 shows

the estimated drift when the optimum scale of drift is set to beJ0 = 4. It is seen from

the figure that the estimated drift captures the properties of slowly varying drift without

tracking the variation of BOLD signal.
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Figure 4.2 Simulated fMRI signal and the estimated drift.

Table 4.3 MSE comparison of three model selection criteria with drift added.

Noise CIC AICc SIC

White 4.0127e-005 9.7032e-005 9.7032e-005

H = 0.1 3.5144e-004 3.5144e-004 3.5144e-004

H = 0.3 1.8624e-005 1.8820e-005 1.8820e-005

H = 0.7 7.2508e-007 6.3683e-006 6.3683e-006

H = 0.9 3.5122e-005 3.5122e-005 3.5122e-005

In order to see the effect of the choice of scaleJ0 on the accuracy of estimated

parameterŵML, we also compute the deviation of the estimated parameterŵML from

the true values. Table 4.3 compares the mean square errors (MSE) of the estimates

obtained from these three criteria when drift is added to the data. For completeness,

the situation without drift is also considered and the comparison results are presented in

Table 4.4.

From Table 4.3 and 4.4, it is clearly seen that the proposed CIC criterion performs as
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Table 4.4 MSE comparison of three model selection criteria without drift.

Noise CIC AICc SIC

White 6.5180e-005 2.9001e-004 2.9001e-004

H = 0.1 0.0015 0.0015 0.0015

H = 0.3 1.1690e-004 1.1690e-004 1.1690e-004

H = 0.7 3.9381e-004 3.9381e-004 3.9381e-004

H = 0.9 1.9526e-004 2.8953e-004 2.8953e-004

well as the AICc and SIC criterion. In some cases, it performs even better than the other

two. The difference between these criteria results from the selection of the drift model.

Regardless of the small differences among these three model selection criterion, the

MSE is small for all of them. This shows that the Bayesian method in the wavelet domain

is a robust and efficient estimator when the noise considered is fBm noise. Accurate

estimations are desired since these weights are fitted with a hierachical linear model for

second-level analysis or random effect analysis [67][56][68]. The estimate with lower

MSE will give more sensitive results for these higher level analysis.

4.5.2 Experimental fMRI Data

The experimental data used in this set of studies are theDATA-BLOCKintroduced in

Chapter 1. The first ten volumes (i.e. the first block) of the data are discarded due toT1

effects. The time series are up-sampled in order to make the length (T ) of the time series

to be a power of 2 and at the same time keep the scaling properties of the fractional noise.

These data are not detrended in the preprocessing step before applying the proposed

method. Figure 4.3 shows the results of activation detection. It is clearly seen that the
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Figure 4.3 Results of the proposed method to a visuospatial processing task (t > 5.3
P < 0.05).
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Figure 4.4 Time series in one voxel and the estimated drift.

activation of visual cortical areas of the brain are successfully detected. Figure 4.4 shows

the time series of one voxel in the activated regions shown in Figure 4.3. The estimated

drift is also shown here. It is seen from the figure that the proposed method successfully

captures the slowly varying drift.



4.6 Conclusion 91

4.6 Conclusion

In the fMRI data analysis, the slowly varying drift poses a major problem for accurate

detection of the activation. The commonly used subspace models for drift may cause

overfitting problems. In this chapter, the drift is modelled to reside in the subspace

spanned by the large scale wavelets. In addition, research shows that the noise in the

fMRI data has a property of fractional noise or1/f−like noise. By first applying a

wavelet transform to the fMRI data as a whitening filter, we propose a modified GLM

which can estimate the parameter of activation at each scale of wavelet decomposition

by using a Bayesian estimator. Then, a model selection criterion based on the parame-

ters estimated from the modified GLM is proposed. Experiments on simulated as well as

experimental fMRI data are carried out. These results show that the proposed Bayesian

methods estimate accurately the covariance matrix of the noise and hence can give an

efficient and robust estimator for the activation parameter. Besides, by applying the pro-

posed model selection criterion, the drift in the fMRI data can be effectively estimated

and removed. These advantages obtained by modelling the drift with only a few large

wavelets can improve the brain activity detection in fMRI data analysis.

The Bayesian methods discussed till now mainly focused on the detection of the

activated regions in the brain. It is also important to investigate the time course of the

HDR to neural activities. In the following chapters (5 and 6), methods to estimate the

HDR is discussed in detail.



Chapter 5
Adaptive Spatiotemporal Modelling and

Estimation of the Event-related fMRI

Responses

5.1 Introduction

In Chapters 2 to 4, methods to detect the activated regions of the brain are discussed. The

detection of the activated regions can give spatial information of how different locations

in the brain relate to sensory, cognitive and motor functions. In order to obtain temporal

information of the brain activity, the HDR is normally investigated. In Chapters 5 and

6, methods (both linear and nonlinear) to estimate the HDR is provided and discussed.

Estimating the HDR is of great importance in the study of human brain functions. It

reflects the temporal properties of the human brain activities. The HDR is usually esti-

mated by the signal averaging procedure [82]. It assumes that the stimuli are separated

far apart (large ISI) so that the HDRs to consecutive stimuli do not overlap. However,

considering the fact that the ISI are often a few seconds and the HDR has temporal extent

92
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for about 10-15 seconds [23], the HDRs to consecutive stimuli overlap and bias the re-

sults of signal averaging. Hence, procedures for removing this overlap while performing

the signal averaging are desired.

In [82], it is reported that the HDRs to consecutively presented stimuli add roughly

linearly to form the BOLD signal. This validates the means of estimating the HDR

under the linear assumption, which assumes the linear summation of responses to each

stimulus. This linear assumption is true for ISI more than 4-6 seconds; while for ISI

shorter than that, nonlinear phenomena were observed. In Chapter 6 and 7, a detailed

discussion on nonlinear estimation and modelling of fMRI data is given. In the GLM,

the HDR is estimated through a linear combination of basis functions [50][25]. The

commonly used basis functions are the Fourier series functions [83] and two gamma

functions together with their temporal and dispersion derivatives [44]. In special cases,

if the basis functions are chosen to be the non-overlapping sampling time bins during

the period of peri-stimulus time, finding the amplitudes of these basis functions boils

down to the problem of estimating a finite impulse response (FIR) [77][42]. Hence, the

estimation of the HDR is actually a deconvolution problem under the assumption that

fMRI signals are the output of a linear time-invariant (LTI) system.

Spatial information can be included into the analysis of the fMRI data to improve the

detection of activated regions of the brain since these regions span a few voxels and the

neighborhood to an activated voxel are more likely to be activated than the others. Many

methods have been developed to incorporate the time series of surrounding voxels into

the analysis to improve the SNR as well as the detection accuracy [84][85]. In this chap-

ter, a combined spatial and temporal adaptive filter method is proposed. This method

makes use of a spatial adaptive filter to improve the SNR. The spatially filtered signal

is then used as the desired signal for the temporal adaptive filter to estimate the HDR.

This proposed spatiotemporal method is proved to be equivalent to the CCA method and
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through simulations, it is shown that the method works well for HDR estimation.

5.2 HDR Function

With the assumption that the human brain and MR acquisition system could be treated

as a LTI system, the measured fMRI signaly(n) at an activated voxel could be obtained

from Eq. (4.1) as shown below:

y(n) = h(n)⊗ s(n) + f(n) + ε(n). (5.1)

Here, the convolution of the stimulus functions(n) and HDR functionh(n) represents

the BOLD response. The fMRI signaly(n) is then the summation of the BOLD re-

sponse, driftf(n) and noiseε(n). The polynomial method or median filtering method

can be used to remove the driftf(n) as a preprocessing step in the fMRI analysis [77].

The HDR function is commonly described as the difference between two gamma

functions [25] as shown in Eq. (1.16) and reiterated below:

h(t) =
( t

d1

)a1

exp
(−(t− d1)

b1

)
− c

( t

d2

)a2

exp
(−(t− d2)

b2

)
(5.2)

wheredj = ajbj is the time (in seconds) to the peak amplitude ofh(t). The common

choice of these parameters area1 = 6, a2 = 12, b1 = b2 = 0.9s andc = 0.35 [44],

which can generate the canonical HDR (represented ashc) commonly used in fMRI

data analysis. By changing the values of these parameters, different shapes of HDR can

be obtained. Figure 5.1 shows different shapes of the HDR function. For example, in

Fig. 5.1 (a),c = 0.35 andd1 varies between 3 and 6. In Fig. 5.1 (b),d1 = 5.4 and

c varies between 0.2 and 0.5. The parameterd1 determines the delay of the response

(larger the value ofd1, larger the delay) andc determines the depth of the undershoot

(larger the value ofc, larger the depth).
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Figure 5.1 Simulated HDR functions for different parameter settings. (a) different values
of d1 while keepingc = 0.35 constant; (b) different values ofc while keepingd1 = 5.4
constant.
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The observations from the fMRI experiments reveal that the shapes of the HDR func-

tions are different for different brain regions and subjects [86]. Thus, it is desirable to

incorporate the variation of the HDR into the analysis in order to have a good detec-

tion of the activated regions of the brain. In the GLM analysis method, the variation of

the HDR is modelled through several basis functions (the canonical haemodynamic re-

sponse function, its temporal and dispersion derivatives) and it is assumed to reside in the

space spanned by these basis functions. However, in this method, these basis functions

can only capture small variations of the HDR; for large variations, it may underestimate

or even fail to capture the diversities of the HDR. In the next section, the HDRs at each

voxel are estimated using adaptive filters and it is found that these estimated HDRs can

reflect better the variation of brain responses in different regions of the brain.

5.3 Spatial and Temporal Adaptive Estimation

5.3.1 Model derivation

Considering both the spatial and temporal properties of the fMRI data, the adaptive

estimation include two processes:spatial smoothingandtemporal modelling. Suppose

y0(n) is thenth sample of the time series at a given voxel, andy1(n), · · · , yL(n) are

thenth samples of the time series of theL surrounding (adjacent) voxels. A spatially

smoothed signald(n) is given by

d(n) =
L∑

i=0

wiyi(n) = wTy(n) (5.3)

wherewi is theith coefficient of the spatial filter,w = [w0, w1, · · · , wL]T is the weight

vector, andy(n) = [y0(n), y1(n), · · · , yL(n)]T . If the voxels are activated, the smoothed

signal should approximate the ideal BOLD responser(n) to the experimental stimuli,
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Figure 5.2 Illustration of the spatial smoothing filter and temporal modelling filter.

that is

d(n) = wTy(n) = r(n) + u(n) (5.4)

wherer(n) is the ideal BOLD response which is the convolution of the stimulus function

and the canonical HDR,u(n) is the white noise.

The spatially smoothed signald(n) is used as the desired signal for the temporal

modelling process in Eq. (5.1). With the drift termf(n) removed (by preprocessing),

we get:

d(n) =
P∑

m=0

s(n−m)hm + ε(n) = hT s(n) + ε(n) (5.5)

wheren = P, P + 1, . . . , N − 1, h = [h0, h1, · · · , hP ]T , ands(n) = [s(n), s(n −
1), · · · , s(n − P )]T is the vector formed by the delays of stimulus function. Here,P is

the maximum temporal span of the HDR in time bins, which is related to the repetition

time (TR) since the fMRI signal is sampled every TR. This is actually a transversal filter

model, whereh is the coefficient vector of the filter,s(n) is the input vector or regressor

andε(n) is the unmeasurable noise, which is assumed to be white.

Figure 5.2 shows an illustration of the spatial smoothing filter (w) and temporal
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modelling filter (h). The goal of the analysis is to obtain an optimum temporal filter

ho so that the resultant BOLD signal (i.e.hT s(n)) approximates the spatially smoothed

signald(n) and meanwhile,d(n) approximates the ideal BOLD signalr(n) well. That

is, both the mean-square errors (MSE)E{e2
1(n)} = E{(r(n)−d(n))2} andE{e2

2(n)} =

E{(d(n) − hT s(n))2} are minimum. Thus, the cost function to be minimized is given

by

J = E{(r(n)− d(n))2}+ E{(d(n)− hT s(n))2}

= E{(r(n)−wTy(n))2}+ E{(wTy(n)− hT s(n))2} (5.6)

and at the optimum weightswo andho, J is minimum. Here,E[·] represents the ex-

pectation operation. The optimum weights can be found using widely used adaptive

algorithms such as the least mean square (LMS) algorithm [87, 88].

The LMS algorithm minimizes the cost function̂J = e2
1(n) + e2

2(n) which is the

instantaneous coarse estimate ofJ . The updating rule of the algorithm is shown below:

e1(n) = r(n)− ŵT (n)y(n) (5.7)

e2(n) = ŵT (n)y(n)− ĥT (n)s(n) (5.8)

ŵ(n + 1) = ŵ(n) + 2µ1e1(n)y(n)− 2µ1e2(n)y(n) (5.9)

ĥ(n + 1) = ĥ(n) + 2µ2e2(n)s(n) (5.10)

whereĥ(n) = [ĥ0(n), ĥ1(n), · · · , ĥP (n)]T is the weight vector of the temporal mod-

elling filter, ŵ(n) = [ŵ0(n), ŵ1(n), · · · , ŵL(n)]T is the weight vector of the spatial

smoothing filter,µ1 andµ2 are the step sizes which control the speed of the convergence

and the stability of the updating recursion.

Figure 5.3 shows the structure of the spatio-temporal adaptive filter. The estimation

errors,e1(n) ande2(n) are fed back to the spatial adaptive filter to adjust the estimation

of the coefficientsŵ. The errore2(n) is fed back to the temporal modelling filter to
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Figure 5.3 Spatio-temporal adaptive modelling of the fMRI system

adjust the estimation of the coefficients,ĥ. As the algorithm converges, the estimated

weights of the adaptive filter̂w approximates the optimum spatial smoothing filter (wo),

and the weights of the temporal adaptive filterĥ approximates the HDR function.

5.3.2 Extension to Multiple Events

The HDR in the above algorithm is assumed to be fixed, that is, the optimumho does not

change with time and/or with event types. Recently, some studies have shown that the

hemodynamic function may vary from trial to trial [89][90]. To account for the variabil-

ity of HDR in event-related fMRI data, several methods were proposed such as ICA to

detect the variation of single-trial HDR [89] and single-trial variable model [90] where
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the trial-to-trial variability is modelled as meaningful signal varying in the neighborhood

of the initial HDR values. The extension of the proposed spatiotemporal adaptive filter

method to model multiple event types or the time-varying effect of HDR for each trial is

detailed in the following paragraphs. In these cases, the stimulus functions are multiple

time series,s1(n), s2(n), · · · , sM(n), and the estimation of HDRs for each event types

(multiple event types case) or different trials (time-varying cases) areĥ1, ĥ2, · · · , ĥM ,

respectively. Here,M represents the number of events in the multiple event type fMRI

experiment or the number of trials. The estimation error is

e2(n) = d(n)− ĥT
1 (n)s1(n)− ĥT

2 (n)s2(n)− · · · − ĥT
M(n)sM(n). (5.11)

Correspondingly, the update rule in Eq. (5.10) becomes

ĥi(n + 1) = ĥi(n) + 2µe2(n)si(n); i = 1, 2, · · · ,M (5.12)

with µ the step size. The desired signald(n) is the output of the spatial smoothing filter

(ŵT (n)y(n)) as defined before. The point here is that there areM modelling filters to

capture the properties of HDRs to different event types and different trials. The same

error, e2(n), is used to update the filter coefficients of all theM transversal adaptive

filters.

Due to the limited number of data points in one voxel time series (normally around a

few hundred), the algorithm does not converge to the optimum value after one presenta-

tion of the entire training set (that is, one epoch in the learning process). Therefore, the

training data set is presented repeatedly (many epochs) until the algorithm converges to

the optimum solution.

5.3.3 Relation to the Canonical Correlation Analysis

In this section, we prove that minimizing the cost function in Eq. (5.6) is equivalent

to the Canonical Correlation Analysis (CCA) method. CCA is a multivariate analysis
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method [91] to detect the subcomponents of two multivariate data sets that are maxi-

mally correlated. Consider two zero mean random vectorsa andb, CCA is to find the

weight coefficientswa andwb which maximizes the correlationρ between the linear

combinations,a = wT
a a and b = wT

b b. The CCA problem can be expressed as the

following maximization problem:

max
wa,wb

ρ(wa,wb) =
wT

a Cabwb√
wT

a CaawawT
b Cbbwb

. (5.13)

For zero mean vectorsa andb, Caa = E[aaT ], Cbb = E[bbT ] andCab = E[abT ] are

the covariance matrices. The solutionsŵa andŵb are found by solving the following

eigenvalue problems:

C−1
aa CabC

−1
bb Cbaŵa = ρ2ŵa (5.14)

C−1
bb CbaC

−1
aa Cabŵb = ρ2ŵb. (5.15)

Supposey(n) ands(n) are zero mean vectors (i.e.E{y(n)} = 0 andE{s(n)} = 0)

in Eq. (5.6). By taking the partial derivatives of Eq. (5.6) with respect tow, the following

can be derived:

∂J

∂w
= −2E{y(n)(r(n)− yT (n)w)}+ 2E{y(n)(yT (n)w − sT (n)h)}

= −2E{y(n)r(n)}+ 2E{y(n)yT (n)}w

+2E{y(n)yT (n)}w − 2E{y(n)sT (n)}h (5.16)

The reference signalr(n) is the result of convolution ofs(n) and the canonical HDR

functionshc, that is,r(n) = hT
c s(n). The temporal modelling filter,h, in our model may

be represented as a scaled and noisy version of the canonical HDRhc, i.e. h = λhc +v,

wherev is a zero mean white noise. This means that the temporal modelling filterh is

close to the scaled version of canonical HDRhc andv capture the departure from the

canonical HDR. The parameter,λ (0 ≤ λ ≤ 1) indicates the neural activity, whenλ is
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close to zero, the temporal modelling filterh is also close to zero showing that the voxel

under consideration is not activated. On the other hand, whenλ is close to one, the

temporal modelling filter,h, has properties in similar to those of the canonical HDR,hc,

showing the voxel under consideration is activated. Hence, the reference signal,r(n),

can be represented as

r(n) = hT
c s(n) = sT (n)hc = sT (n)

(
h− v

λ

)
(5.17)

Substituting Eq. (5.17) into Eq. (5.16) and noting thatv is zero mean and uncorrelated

with s(n) andy(n), Eq. (5.16) becomes

∂J

∂w
= −2

λ
E{y(n)sT (n)}h + 4E{y(n)yT (n)}w − 2E{y(n)sT (n)}h. (5.18)

By taking the partial derivatives of Eq. (5.6) with respect toh, we get

∂J

∂h
= 2E{s(n)(yT (n)w − sT (n)h)}

= 2E{s(n)yT (n)}w − 2E{s(n)sT (n)}h (5.19)

Equating Eq. (5.18) and Eq. (5.19) to zero, and representingCyy = E{y(n)yT (n)},
Css = E{s(n)sT (n)}, Csy = E{s(n)yT (n)} andCys = E{y(n)sT (n)}, we get

2Cyyw = (1 +
1

λ
)Cysh (5.20)

and

Csyw = Cssh. (5.21)

The solutions to the above equations are obtained as the eigenvalue problem:

C−1
yy CysC

−1
ss Csyŵ =

2λ

λ + 1
ŵ (5.22)

C−1
ss CsyC

−1
yy Cysĥ =

2λ

λ + 1
ĥ (5.23)
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Comparing Eq. (5.22) and Eq. (5.14) as well as Eq. (5.23) and Eq. (5.15), it is clear

that the canonical correlation coefficientρ is related to the neural activity parameterλ in

our model:

ρ2 =
2λ

λ + 1
, (0 ≤ λ ≤ 1) (5.24)

andwa = w, wb = h, a = y(n) andb = s(n). When the neural activity occurs,

that is,λ ≈ 1, the correlation coefficientρ also approaches 1. When there is no neural

activity, that is,λ ≈ 0, the correlation coefficientρ also approaches 0. This proves the

equivalence of these two approaches.

5.4 Results and Discussion

The proposed spatio-temporal adaptive modelling method is first tested on synthetic data

and compared with the GLM method with different Gaussian smoothing width [92]. The

scenarios for single event type and multiple event types are both examined. After this,

the application of the proposed algorithm to experimental fMRI data is investigated. The

results are discussed in detail in the following sections.

5.4.1 Simulated data

The simulated BOLD signal is generated through convolution of the input stimulus sig-

nal s(n) and the HDR function described as the difference between two Gamma func-

tions which is introduced in Eq. (5.2). The input stimulus signals(n) is generated as ran-

dom impulses which represent an event-related fMRI experiment. When the stimulation

is ON, s(n) = 1 and when the stimulation is OFF,s(n) = 0. Figure 5.4 (a) illustrates

the simulated BOLD signal with the HDR function parametersd1 = 5.4, c = 0.35. The

thick vertical lines indicating the timing of the discrete random stimuli.
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(a) Pure BOLD signal
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(b) Noisy BOLD signal

Figure 5.4 Simulated BOLD signal. (a) pure BOLD signal and the timing of the stimuli;
(b) noisy BOLD signal corrupted with Gaussian white noise.
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Estimation of the Single Event Type HDR

In the first simulation, the relation between the spatial weighting coefficients and the lev-

els of the noise variance is examined. The BOLD signal generated as shown in Fig. 5.4

(a) is first added to each voxel of the3×3 window. Then, Gaussian noises with different

variances are added to each voxel of the window to generate the simulated voxel time

series. One of the simulated noisy voxel time series is shown in Figure 5.4 (b) with SNR

=−0.8dB.

These simulated noisy signals are then investigated by the spatio-temporal adaptive

filter. The step sizesµ1 andµ2 are chosen to be 0.0001. After one presentation of the

entire training set, the average change of the coefficients are calculated; if this change

is very small, the algorithm converges and the updating process stops, otherwise, the

whole training data is used again until the algorithm converges. Figure 5.5 illustrates the

learning curve of LMS algorithm for spatiotemporal adaptive filter. The mean square

error is calculated at the end of each epoch (one presentation of the whole training data).

It is seen that after 100 epochs, the algorithm almost converges.

Table 5.1 shows the relation of levels of the noise variances and the coefficients of

the spatial adaptive filter after convergence. It is seen from this table that the coefficient

valuesŵi of the spatial smoothing filter are approximately inversely proportional to the

noise level at each voxel. When the voxel time series are noisier compared to other

voxels, the weights are relatively smaller; while larger weights are found at the voxels

which are less noisy. This validates the adaptivity of the spatial smoothing filter to

different noise levels.

The estimated HDR is then investigated. In order to test the effect ofr(n) (formed by

the conventional HDR function withd1 = 5.4, c = 0.35 as introduced in Eq. (5.2)) on the

estimation results, the BOLD signal in this simulation is generated using the difference
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Figure 5.5 Learning curve of LMS algorithm for spatiotemporal adaptive filter.

Table 5.1 Relation of the levels of the noise variances and the coefficients of the spatial
adaptive filter for a3× 3 window.

position noise variance coefficients(ŵi)

center 0.25 0.0326

top 0.01 0.5182

bottom 0.09 0.1151

left 0.49 0.0260

right 0.81 0.0121

top-left 1.00 0.0074

top-right 1.44 0.0068

bottom-left 1.96 0.0059

bottom-right 2.56 0.0052
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Figure 5.6 The HDRs estimated by the spatio-temporal adaptive filter and CCA methods.

gamma function with the following parametersd1 = 4, c = 0.35, which has a different

delay with the conventional HDR function. As before, noises with different variances

are then added to the BOLD signal to generate noisy fMRI signals. After applying

the proposed adaptive filter method, the estimated HDR is the impulse response of the

temporal modelling filter,h, once the algorithm is converged. For the CCA method, the

estimated HDR is obtained from the eigenvector corresponding to the largest eigenvalue

found in Eq.(5.15). Figure 5.6 shows the results of the estimated HDR and the difference

with the conventional HDR function.

From Fig. 5.6, we can see that the similarity of the HDR estimated by the proposed

method to that estimated by the CCA method. This result validates the conclusion that

the proposed spatio-temporal adaptive filter is in fact equivalent to the CCA method. It

also can be seen from the figure thatr(n) has no effect on the estimated HDRs. When

the conventional HDR which formsr(n) in the proposed algorithm is different from the
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Table 5.2 Comparison of the proposed adaptive filter method, CCA and GLM for the
estimation of HDR.

proposed method CCA GLM

NMSE 1.4150 1.2063 2.3610

actual HDR, the proposed algorithm could still work well to estimate the actual HDR

function. This is because thatr(n) is used as a part of the desired signal to update the

coefficients of the spatial filter and it is the spatially smoothed signal which is used as

the desired signal for the HDR estimation of the temporal filter as shown in Fig. 5.3.

The goodness-of-fit of the proposed method, CCA and GLM (with conventional

HDR function and its temporal and dispersion derivatives) to the actual HDR of the

above simulation, is evaluated using the normalized mean square error (NMSE) defined

as:

NMSE =

∑L−1
i=0 (ĥi − hi)

2

∑L−1
i=0 h2

i

(5.25)

whereĥi andhi are respectively the estimated and the true values of HDR function.

Table 5.2 shows the NMSE values for the proposed method, CCA and GLM methods.

It is seen from Table 5.2 that the NMSE of the proposed adaptive filter method is

close to the CCA method and both of them are lower than the GLM method. This

means that the performance of the GLM method is inferior to the other two methods

in estimating the HDR. This is because the GLM with the conventional HDR can only

model small variations of the HDR; for large variations, the GLM lacks the flexibility to

capture the large difference between the actual HDR and the conventional HDR.



5.4 Results and Discussion 109

Estimation of Multiple Event Type HDRs

Though the proposed method and the CCA method are equivalent, the advantage of the

proposed spatio-temporal method is that it is easier to extend to multiple event types

when subjects undergo multiple types of stimulation (for example, visual and auditory

stimulations). To substantiate this point, in this simulation, the scenario of two different

event types is studied by the proposed method. The two events stimulus onset functions

are randomly generated and the HDRs (HDR1 and HDR2) corresponding to these two

event types are assumed to have different delays (d1 = 4 and6.5 respectively for HDR1

and HDR2 in Eq. (5.2)). These two HDRs are convolved with different stimulus func-

tions, resulting in the simulated BOLD signal. Gaussian white noise is then added to

this simulated BOLD signal to generate the noisy fMRI signal with SNR = -2dB. The

generated noisy signal and the respective stimulus functions are then fed into the filter

to adaptively estimate the weights of the transversal filter as shown in Eq. (5.11) with

two temporal adaptive filters. Figure 5.7 shows the estimated HDRs for these two event

types. From this figure, it is seen that the delays of these two estimated HDRs are cor-

rectly estimated (respectively about 4 and 6.5). This clearly shows that the proposed

method can capture the difference between these two HDRs.

Comparison of Activation Detection Ability

The detection ability of the proposed spatio-temporal adaptive filter method and the

GLM method are compared. A slice from an experimental fMRI data set is used as the

background image. At some specific regions of the image, the simulated BOLD signals

generated by difference of gamma functions with different delays (d1 = 4, 5, 6) are

added. Gaussian white noises with different variances are then added to each voxel of

the data to form a 3-D fMRI time series at different SNRs (ranging from -7dB to 0dB).
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Figure 5.7 Estimated HDRs to two event types using the proposed method.

These simulated fMRI data are fitted by the GLM model with the design matrix

composed of four regressors: the canonical HDR function, its temporal derivative and

dispersion derivative (these three regressors model the variation of HDR) and a constant

vector of value 1. The statistical parameter map (SPM) is then obtained based on the

t statistic calculated at each voxel and a threshold is determined to find the activation

regions of the brain. For the proposed adaptive filter method learned through the LMS

algorithm, a3× 3 spatial window is considered. The initial values of the coefficients of

the spatial filter are assumed to be1/9 and the initial weights of the temporal adaptive

transversal filter are chosen to be 1. The values of parameterµ1 andµ2 in the LMS

algorithm are chosen to be 0.0001, and the training data are used repeatedly until the

algorithm converges. The reconstructed BOLD signal is then the convolution of the

estimated HDR (after convergence) and the stimulant function. The correlation coeffi-

cientsρ between this reconstructed BOLD signal and the spatially smoothed signal are
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calculated at each voxel. The statistical parametric map is then formed and thresholded

to illustrate the activation regions.

Figure 5.8 shows the detection results of simulated fMRI data using these meth-

ods. Figure 5.8 (a) illustrates the simulated activation patterns. Figure 5.8 (b) is the

detection results of the GLM method without pre-smoothing. As it is clear from the

figure, this method almost fails to detect the simulated activation patterns with only a

few sporadic voxels detected as active. Figure 5.8 (c) and (d) are the detection results

of the GLM method with the image spatially smoothed by Gaussian spatial filters with

different width (Full-Width-Half-Maximum (FWHM) = 3 voxels for (c) and FWHM

= 5 voxels for (d)). Although Gaussian pre-smoothing gives better results compared

to the one without pre-smoothing, it loses details of the activation patterns due to the

isotropic property of Gaussian spatial smoothing, which spreads the energy of the acti-

vated voxels to the surrounding voxels. Figure 5.8 (e) shows the results of the proposed

spatio-temporal adaptive filter method. Compared to the other results, it is clear that this

method is more robust and sensitive than the GLM method with and without spatial pre-

smoothing. The proposed method can give a good estimation of the activation patterns

due to the ability to spatially adapt to the true activation patterns.

To have a clearer comparison of the detection ability, receiver operator characteristic

(ROC) analysis is used to investigate the activation maps generated by the GLM and

the proposed method. Figure 5.9 shows the ROC curves of the GLM method with and

without pre-smoothing and the proposed spatio-temporal adaptive method, respectively.

From these ROC curves, it is clear that under the same false positive ratio, the proposed

spatio-temporal adaptive filter method could actually detect more real activations. This

clearly shows that the proposed spatio-temporal adaptive filter method is a better method

for activation detection and activation patterns estimation.
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(a)

(b) (c) (d) (e)

Figure 5.8 Detection results of simulated fMRI data: (a) Simulated activation pattern; (b)
GLM without spatial smoothing (t > 3); (c) GLM with spatial smoothing the FWHM
is 3 voxel (t > 3); (d) GLM with spatial smoothing the FWHM is 5 voxel (t > 3); (e)
Spatio-temporal adaptive filter method (ρ > 0.3).
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Figure 5.9 ROC curves for simulated noisy data.

5.4.2 Experimental fMRI Data

The proposed spatio-temporal adaptive filtering method is also validated on the experi-

mental event-related fMRI data (DATA-EVENTintroduced in Chapter 1). Before apply-

ing the proposed method to this experimental event-related fMRI data, the raw data are

preprocessed by the SPM software for registration and normalization. The drift in each

voxel time series is also removed. The resultant pre-processed data are analyzed using

the proposed spatio-temporal adaptive filter method. Since the TR in this experiment is

2 seconds, the number of tapsP in the adaptive transversal filter is chosen to be 10 so

that the estimated HDR has a temporal extent of 18 seconds. The HDR estimated using

the proposed method is then convolved with the stimulus function resulting in the recon-

structed BOLD signal. The correlation coefficientsρ between this reconstructed BOLD

signal and the spatially smoothed signal are calculated at each voxel. Figure 5.10 shows

the results of the activation detection. The color bar shows the color corresponding to
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Figure 5.10 One slice showing the activation of the auditory cortex (ρ > 0.5).

theρ from 0.5 to 1. Whenρ is less than 0.5, it is represented by the original grey level

at that voxel. And the From this figure, it is clear that the activation is detected in the

auditory cortex.

Figure 5.11 shows the estimated HDRs using the proposed spatio-temporal adaptive

filter method and the CCA method to the time courses of activated voxels located respec-

tively at the left and right auditory cortex shown in Figure 5.10. From this figure, it is

seen that the estimated HDRs of the activated voxels show similar patterns of variations,

achieving the peaks at the delay of about 4-6s and then decreasing below the baseline

with the post stimulus undershoot. This validates our claim that the proposed method is

equivalent to the CCA method.

5.5 Conclusion

From the signal processing perspective, fMRI data analysis can be considered as a sys-

tem modelling problem. With the knowledge of experimental paradigm (input) and

measured data (output), this complex system (the brain and scanner) could be identified.

In this chapter, linear modelling methods are investigated for the event-related fMRI
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Figure 5.11 The estimation of HDRs for the activated voxels using the proposed adaptive
filter method and CCA method. (a) One voxel in the left auditory cortex; (b) One voxel
in the right auditory cortex.
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data.

Considered as a linear time-invariant (LTI) system, the human brain and fMRI data

acquistion can be modelled using adaptive transversal filters. It is also known that the

activation regions span several millimeters or a few voxels. Incorporating the spatial

information into our analysis can increase the detection power of the methods. The

Gaussian spatial smoothing filter is commonly used in fMRI data analysis as a prepro-

cessing step to increase the SNR. However, due to the isotropic property of the Gaussian

spatial filter, this method would blur the details of the activation patterns. In this chapter,

an adaptive spatio-temporal modelling and estimation method is proposed. Two adaptive

filters are used: (i) the spatial filter to adaptively estimate the activation patterns and (ii )

the temporal filter to adaptively model the HDR. The weights of these filters are updated

using the well-known LMS adaptive algorithm. The relation of the proposed method to

the CCA method is also proven. Both the synthetic as well as experimental event-related

fMRI data are examined. Results from extensive simulation studies show that the pro-

posed spatio-temporal adaptive method is superior to GLM with Gaussian smoothing.

The proposed method has the ability to detect the details of the activation pattern without

blurring it. Besides, the HDR estimated by the temporal filter would capture the vari-

ation of brain responses between different brain regions and different persons. These

simulation studies suggest that the spatio-temporal adaptive filter method is a superior

approach to model and investigate the fMRI data.

With the advancement of the fMRI techniques as well as the experimental protocol,

rapid event-related fMRI experiment becomes popular these days. The ISI in this type

of fMRI experiments is less than 4-6 seconds, which violates the linear assumption

underlying the spatio-temporal adaptive filter method proposed in this chapter. For the

rapid event-related fMRI experiments, nonlinear phenomena are often observed. Thus,

in the following chapter, nonlinear methods to estimate the HDR is investigated.



Chapter 6
Estimation of the Hemodynamic

Response of fMRI Data using RBF

Neural Network

6.1 Introduction

In Chapter 5, a spatiotemporal adaptive filter is proposed to estimate the HDR under the

linear assumptions (when the ISI is larger than 4-6 seconds). However, the fMRI signals

also exhibit nonlinear properties especially in the rapid event-related fMRI experiments

when the stimulation duration or ISI is less than 4-6 seconds [95][96][97]. These non-

linearities arise from both vascular and neuronal levels [98]. Several advanced nonlinear

models have been proposed to analyze such fMRI data. The nonlinear dynamics of the

BOLD signal is first described by the Balloon model, which is a physiologically derived

model introduced by Buxton et al [26]. The couplings between blood flow and blood

oxygen concentration changes on a biological level are incorporated into this nonlinear

state-space model. The interpretability of the parameters in the Balloon model makes it

117
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a suitable model to understand the nonlinear mechanisms underlying the BOLD effect.

The Balloon model has undergone several extensions since its introduction. Friston et

al. extended the original model to include a linear interaction between synaptic activ-

ity (or electrophysiology) and the microvascular control system [20]. Recently, Buxton

et al. incorporated CMRO2 and neural activity as new variables in the Balloon model

and described the steps linking an external stimulus to the measured BOLD and CBF

responses [99]. These physiologically derived nonlinear models have many advantages

such as meaningful interpretations of the parameters. However, it is not an easy task to

estimate the parameters in such nonlinear models. The non-physiological models de-

scribed in the following sections, on the other hand, are easier to implement and more

flexible for a better mapping of the input to the output if the signal is highly nonlinear.

The Volterra series method, which can model any dynamical input-output system,

was also proposed to analyze and estimate the HDR using the 1st and 2nd order Volterra

kernels [25]. Though this method represents the nonlinear properties of the BOLD sig-

nal, it has a number of limitations. To obtain a better representation of the dynamical

system, higher order Volterra kernels are required. However, the inclusion of higher or-

der Volterra kernels requires fitting a large number of parameters. Especially, the number

of terms in the kernels of the series increases exponentially with the order of the series.

Due to these difficulties and the complexity in identifying the higher order kernels, an

alternative, yet efficient method to estimate the kernels in the Volterra series is desired.

In this chapter, a novel method to the estimation of the kernels is proposed. This

method describes the non-linear dynamics of the fMRI hemodynamic response using

the radial basis function (RBF) neural network. It is known that neural network could

approximate any continuous functions to any degree of accuracy due to its universal

approximation property. Modelling the fMRI system as nonlinear and dynamical, the
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RBF neural network is capable of regressing nonlinearly the BOLD signal to the ex-

ternal stimuli. Additionally, the relationship between the parameters of the RBF neural

network and Volterra kernels is provided and the HDR could easily be estimated from

the parameters of the neural network. This provides an efficient method to calculate the

large number of parameters in the Volterra series kernels.

In the following sections, we first introduce the Volterra series model and Balloon

model for the analysis of fMRI data. Then, the RBF neural network method is utilized to

model the fMRI data and the relation of proposed neural network method to the Volterra

series method is demonstrated.

6.2 Volterra Series Model

The measured fMRI signal,y(n)(n = 0, 1, · · · , N − 1), can be described as a nonlinear

convolution of the stimulus function,s(n), with the Volterra kernels where the nonlinear

properties are captured by the higher order kernels. The Volterra series method to model

the fMRI signal does not include the variables such as blood volume, blood flow, oxy-

genation etc introduced in the Balloon model which makes the parameters in the model

easier to estimate. When the BOLD signal is represented in the form of a finite (2nd

order) Volterra series, the output BOLD signal,yb(n), can be written as a function of the

input stimulus,s(n), as:

yb(n) = a0 +
P∑

i=0

a1(i)s(n− i) +
P∑

i=0

P∑
j=0

a2(i, j)s(n− i)s(n− j) (6.1)

where the length of the kernels is (P + 1). The constanta0 is the zeroth-order kernel.

The coefficientsa1(·) are the first-order kernels which relate the output as the weighted

sum of the present and the recent past inputs; these coefficients represent the HDR in
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fMRI. The coefficientsa2(·, ·) in the above equation are the second-order Volterra ker-

nels which represent the output as the interactions between the present and/or the recent

past inputs at different time points. It can be observed the existence of the kernels

a2(i, j) = a2(j, i),∀i, j, due to the symmetry property. The input stimuluss(n) repre-

sents the timing of the external stimuli with the value equal to ‘1’ when the stimulus is

present (ON) and ‘0’ when the stimulus is absent (OFF).

The measured fMRI signal,y(n), is a noise corrupted version of the BOLD signal,

yB(n), and can be represented as:

y(n) = yb(n) + e(n) (6.2)

wheree(n) is the additive noise. The solution to the Volterra series model could be

obtained using a least-square method (assuming the noise to be white Gaussian). Sub-

stituting Eq. (6.1) into Eq. (6.2), the latter can be represented in the matrix form as:

y = Ψx + e (6.3)

where,y = [y(P ), · · · , y(N − 1)]T is the measured signal of dimension(N − P )× 1;

e = [e(P ), · · · , e(N −1)]T is the noise vector with the same dimension. The coefficient

vectorx (of dimension (L × 1)) and the matrixΨ (of dimension(N − P ) × L) are

respectively:

x = [a0, a1(0), · · · a1(P ), a2(0, 0), a2(0, 1), · · · a2(P, P )]T , (6.4)

Ψ =




1 s(P ) ... s(0) s2(P ) s(P )s(P−1) ... s2(0)

1 s(P+1) ... s(1) s2(P+1) s(P+1)s(P ) ... s2(1)

...
...

...
...

...
...

...
...

1 s(N−1) ... s(N−P−1) s2(N−1) s(N−1)s(N−2) ... s2(N−P )


 . (6.5)

Here,N is the total number of measured output samples, andL = (P +3)(P +2)/2

considering the symmetry of the coefficients ofa2(·, ·). The least-squares (LS) estimate
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of the coefficients (̂x) is given by:

x̂ = (ΨTΨ)−1ΨTy. (6.6)

It needs to be noted that for the event-related fMRI design, the matrixΨ may become

singular because of the fact that the stimuli functions(n) contains only zeros and ones,

which may cause some columns inΨ to be zero. Additionally, the Volterra series model

needs to specify the order to which the representation is carried out. Inclusion of higher

orders in Volterra series allows a better representation of the dynamical system under

study. However, since all the related kernel parameters need to be estimated together

if using the LS method, inclusion of higher order Volterra series causes the number of

parameters to be estimated to increase exponentially with the order. For example, if

the BOLD signal with TR = 1 second is modelled using Volterra series of order 3, the

number of parameters to be estimated is more than 4000 if the kernels are to capture

the temporal properties within 20 seconds after stimuli. Therefore, an efficient and ac-

curate method for the calculation of the Volterra kernels is desired. In the following

section, such a method (the RBF neural network method) is provided. Especially, the

calculation of Volterra series kernels is derived from the parameters of the RBF neural

network. Compared to the Volterra series method estimated by LS, the proposed method

could model the systems nonlinearity even when higher order kernels are needed. Also

since the kernel parameters are estimated independently, the lower order Volterra kernels

could still be accurately calculated even when the higher order Volterra kernels are not

estimated.
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6.3 Neural Networks Model

Neural networks, a powerful method for modelling nonlinear systems [100], is used in

this work to describe the nonlinear dynamics of HDR [101]. The present and the recent

past inputs are applied to the neural network and the BOLD signaly(n) from a specific

voxel is used as the desired output signal. Thus, the measured BOLD signal can be

expressed as the nonlinear function of the input stimulus as follows:

ŷ(n) = FNN(s(n)) (6.7)

where,s(n) = [s(n), s(n−1), · · · , s(n−P )]T is the input vector of dimension(P+1)×1

formed by the present and recent past inputs with the maximum delayP . The output

ŷ(n) is a nonlinear function (denoted byFNN ) of the input vectors(n). This functional

mapping is realized by the Radial Basis Function (RBF) network as shown in Fig. 6.1.

The universal approximation property and straightforward computation using linearly

weighted combination of single layer neurons have made RBF network a good choice in

the dynamic reconstruction applications such as the one dealt in this thesis. Moreover,

the RBF network has a simpler structure (one hidden layer) and easier to implement

compared to the multi-layer perceptrons (MLP) neural network which may require more

than one hidden layers and more time for learning the underlying nonlinearity.

Suppose there areM hidden units in the RBF network, then the outputŷ(n) of the

mapping is taken to be a linear combination of the basis functions, i.e.

ŷ(n) =
M∑
i=1

hiG(s(n), ci) (6.8)

wherehi (i = 1, · · · ,M) are the weighting coefficients (linear output layer) andci

(i = 1, · · · ,M) are the centers of the radial basis functions. Commonly used basis

functions are Gaussian functions which are defined as:

G(s(n), ci) = exp
(
− 1

σ2
i

‖s(n)− ci‖2
)

(6.9)
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Figure 6.1 The structure of the RBF neural network.

whereσ2
i is the variance of theith Gaussian basis function.

The following subsection presents the equivalence of the RBF network and Volterra

series methods. This equivalence could also be generalized to the MLP with simple

structures (one hidden layer), whereas this equivalence is not so straightforward for

structures with more than one hidden layers.
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6.3.1 Relation between RBF neural network and Volterra series

According to Eqs. (6.8) and (6.9),ŷ(n) can be written as,

ŷ(n) =
M∑
i=1

hie
− ‖s(n)−ci‖2

σ2
i

=
M∑
i=1

hie
− 1

σ2
i

(s(n)−ci)
T (s(n)−ci)

=
M∑
i=1

hie
− 1

σ2
i

(sT (n)s(n)−2sT (n)ci+cT
i ci)

=
M∑
i=1

(
hie

− 1

σ2
i

cT
i ci

)
exi (6.10)

Here,xi is defined as:

xi = − 1

σ2
i

(sT (n)s(n)− 2sT (n)ci)

= − 1

σ2
i

(
P∑

j=0

s2(n− j)− 2
P∑

j=0

cijs(n− j)

)
, (6.11)

where,ci is thei-th center andcij is thej-th element ofci.

According to the Taylor series expansion ofexi at origin:

exi =
∞∑

n=0

xn
i

n!
= 1 + xi +

1

2!
x2

i +
1

3!
x3

i + · · · (6.12)
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and substituting Eq. (6.12) into Eq. (6.10), we get

ŷ(n) = (h1e
− cT

1 c1

σ2
1 + h2e

− cT
2 c2

σ2
2 + · · ·+ hMe

− cT
M cM

σ2
M )

+2
P∑

i=0

(h1e
− 1

σ2
1

cT
1 c1 1

σ2
1

c1i + h2e
− 1

σ2
2

cT
2 c2 1

σ2
2

c2i

+ · · ·+ hMe
− 1

σ2
M

cT
M cM 1

σ2
M

cMi)s(n− i)

+2
P∑

i=0

P∑
j=0

(h1e
− 1

σ2
1

cT
1 c1 1

σ4
1

c1ic1j + h2e
− 1

σ2
2

cT
2 c2 1

σ4
2

c2ic2j + · · ·

+hMe
− 1

σ2
M

cT
M cM 1

σ4
M

cMicMj)s(n− i)s(n− j)

+
P∑

j=0

(− 1

σ2
1

h1e
− 1

σ2
1

cT
1 c1 − 1

σ2
2

h2e
− 1

σ2
2

cT
2 c2 − · · ·

− 1

σ2
M

hMe
− 1

σ2
M

cT
M cM

)s(n− j)2

+ · · · · · · (6.13)

Comparing the above equations with Eq. (6.1), it can be seen that the zeroth, first, and

second-order Volterra kernels can be deduced as:

a0 = h1e
− cT

1 c1

σ2
1 + h2e

− cT
2 c2

σ2
2 + · · ·+ hMe

− cT
M cM

σ2
M (6.14)

a1(i) = 2(h1e
− 1

σ2
1

cT
1 c1 1

σ2
1

c1i + h2e
− 1

σ2
2

cT
2 c2 1

σ2
2

c2i

+ · · ·+ hMe
− 1

σ2
M

cT
M cM 1

σ2
M

cMi) (6.15)

a2(i, j) = 2(h1e
− 1

σ2
1

cT
1 c1 1

σ4
1

c1ic1j + h2e
− 1

σ2
2

cT
2 c2 1

σ4
2

c2ic2j

+ · · ·+ hMe
− 1

σ2
M

cT
M cM 1

σ4
M

cMicMj)

−(
1

σ2
1

h1e
− 1

σ2
1

cT
1 c1

+
1

σ2
2

h2e
− 1

σ2
2

cT
2 c2

+ · · ·

+
1

σ2
M

hMe
− 1

σ2
M

cT
M cM

)δ(i− j) (6.16)

a2(j, i) = a2(i, j),∀i, j. (6.17)
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The above equations build the link between the Volterra series and RBF neural net-

work. This implies that the Volterra kernels can be easily deduced from the parameters

of the RBF neural network. It is also easy to extend the neural network method to de-

duce the coefficients of the third or higher order Volterra kernels if more terms from the

Taylor series are incorporated into the expansion series.

As described in the previous section, the performance of the Volterra series method

is determined by the choice of the order of Volterra series. Considering only the lower

order Volterra kernels may not capture the dynamical properties of the system well. Al-

though inclusion of higher order Volterra kernels could model the dynamic system better,

this poses the problem of higher computational complexity in identifying the higher or-

der kernels. Compared to the Volterra series method, the neural network method could

model the nonlinear dynamical system well even when the system is highly nonlinear.

Besides, to estimate the Volterra kernels using the LS method, all the relevant Volterra

kernels need to be estimated together and this is difficult when the order of the Volterra

kernels included is high. However, using the RBF neural network method, the lower

order Volterra kernels can be estimated from the RBF parameters (independently) with-

out the estimation of the higher order kernels. This is useful because for most cases,

we are only interested in the lower order Volterra kernels. The proposed neural network

method provides an efficient approach to estimate the lower order Volterra kernels and

at the same time capture the nonlinearities of the system. In addition, the RBF neu-

ral network method avoids the possible singularity problem (Ψ in Eq. (6.6)) of the LS

method.
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6.3.2 Learning procedure

The centersci of the radial basis functions are chosen randomly from the training data set

and the variances of the basis functions are fixed according to the spread of the centers.

For fixed centersci and varianceσ2
i , the aim of the RBF network is to find the weights

hi such that the sum-squared-error is minimized. Considering the noise presented in

the data, regularization is required to stabilize the solution [100]. The regularized RBF

network gives the following estimates of the weight vector,h = [h1, · · · , hM ]T :

h = (GTG + λI)−1GTy (6.18)

whereλ is the regularization parameter,y is the vector representing measured fMRI

signal andG is an(N − P )×M interpolation matrix, which is defined below:

G =




G(s(P ), c1) . . . G(s(P ), cM)

...
. ..

...

G(s(N − 1), c1) . . . G(s(N − 1), cM)


 (6.19)

The regularization parameterλ > 0 controls the balance between fitting the data and reg-

ularization. A small value ofλ means the data can be fit tightly without causing a large

regularization; a large value ofλ means a tight fit has to be sacrificed to a smoothing

output function.

Here,h andλ can be estimated through Bayesian learning by iteratively updating

the following equations [102]:

Σ = β2(GTG + λI)−1 (6.20)

ĥ =
1

β2
ΣGTy (6.21)

γ = M − λ

β2
trace(Σ) (6.22)
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β2 =
‖y −Gŵ‖2

N − γ
(6.23)

λ =
γβ2

ŵT ŵ
(6.24)

where,β2 is the estimated variance of the noise.

The reconstructed BOLD signalyB is then calculated as:

ŷb = Gĥ. (6.25)

One advantage of Bayesian learning of RBF neural network is that the cross-validation

to find the suitable regularization parameter is not needed, which means that all the train-

ing data can be used. This is especially useful in the fMRI time series analysis since the

number of the available data points is limited.

6.4 Balloon Model

In Chapter 1, Section 1.2.2, we have briefly introduced the Balloon model. It is a phys-

iologically inspired model introduced by Buxton et al. to describe the dynamics of the

BOLD signal [26]. In this section, a more detailed description of the Balloon model is

provided. It is used to generate the simulated BOLD signal in the simulation studies of

this chapter.

The Balloon model is a state-space model which describes the dynamics among

blood flow, blood volume and blood oxygen concentration changes. The model is in-

herently nonlinear and can be used to explain the nonlinearities appearing in the BOLD
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signals. The Balloon model is described by the following equations:





ḟ = u

u̇ = εs− ksu− kf (f − 1)

v̇ = 1
τ
(f − v1/α)

q̇ = 1
τ
(f 1−(1−E0)1/f

E0
− v1/α−1q)

yb = V0(7E0(1− q) + 2(1− q/v)

+(2E0 − 0.2)(1− v))

(6.26)

wheref is the CBF,v is the CBV,q is the deoxyhemoglobin content (dHb) of vein,u

is the flow inducing signal (these values are normalized to their values at rest),s is the

stimulus function andyb is the BOLD signal. The time-varying intrinsic variablesf, v, q

andu summarize the hemodynamics of the system: how the changes of the CBF, CBV

and dHb are coupled to each other and synaptic activity encoded in the stimulus function

s. The other parameters in the above equations are the neural efficiencyε, the flow decay

ks, the flow time constantkf , Grubb’s parameterα, the venous transit timeτ , the resting

net oxygen extraction fractionE0 and the resting blood volume fractionV0.

Putting Eq. (6.26) in a succinct way, it can be written as:





ẋ(t) = A(x(t), s(t))

yb(t) = B(x(t))
(6.27)

whereA andB are nonlinear functions,s(t) is the input signal representing the stimulus

function,x(t) = [f(t), u(t), v(t), q(t)]T is the state vector which is non-measurable and

yb(t) is the output BOLD signal. The measured fMRI signaly(t) is represented as:

y(t) = yb(t) + e(t) (6.28)

wheree(t) is the drift and measurement noise. The schematic diagram of the Balloon

model is shown in Fig. 6.2.
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Figure 6.2 Schematic diagram for Balloon model.

6.5 Results and Discussion

6.5.1 Simulated Data

In this section, the proposed RBF neural network method was first tested on a simple

example to validate the estimation accuracy of the Volterra kernels. Then, the simulated

BOLD signal (using the Balloon model) with different noise levels and real event-related

fMRI data were investigated to reconstruct the dynamics underlying the fMRI signal.

Example

In this general example, the RBF neural network was applied to the simulated data to

identify the coefficients of the Volterra kernels. A total of 400 data points were generated

using the following Volterra series model (P = 2):

y(n) = 2.4 + 0.9s(n)− 0.4s(n− 1) + 0.74s(n− 2)

−0.18s(n− 1)s(n− 2) + 0.36s(n)2. (6.29)

The input signals(n) in this example is simulated by Gaussian white noise with unit

variance. Figure 6.3 shows one realization of the input signals(n) (Fig. 6.3 (a)) and the

simulated output signaly(n) (Fig. 6.3 (b)) using Eq. (6.29).
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Figure 6.3 One realization of the input signal and the simulated output signal using
Eq. (6.29). (a) Input signal; (b) Output signal.
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The RBF neural network with different number of hidden units (M = 50, 100, 200, 300)

(respectively represented as RBF50, RBF100, RBF200, RBF300 in Table 6.1) are inves-

tigated. The Bayesian learning procedure described in Section 6.3.2 is applied to regress

the output signaly(n) on the input vectors(n) (From Eq. (6.29), the maximum delayP

in the input vectors(n) is accordingly set to be 2). TheM centers of the RBF network

basis functions are randomly chosen from the training data set. The estimated Volterra

kernels (using Eq. (6.14) – Eq. (6.17)) are shown in Table 6.1. Due to the symmetry of

the second-order coefficientsa2(i, j) = a2(j, i), we only show the estimated coefficients

wherei ≤ j. The goodness-of-fit of the RBF neural network with different number of

hidden units is evaluated using the NMSE defined in Eq. (5.25) and rewritten here:

NMSE =

∑L−1
i=0 (x̂i − xi)

2

∑L−1
i=0 x2

i

(6.30)

wherex̂i andxi are respectively the estimated value and the true value of the Volterra

kernel parameters.

From Table 6.1, it is clear that although the RBF with small number of hidden units

(RBF50) shows some estimation errors (with NMSE = 0.004 which is relatively large),

the estimation results are accurate when the number of hidden units is large (RBF100,

RBF200 and RBF300 with NMSE equal to1.593×10−4, 8.728×10−6, and1.067×10−5

respectively which are relatively small). This study shows that the zeroth, first, and

second-order Volterra kernels could be accurately estimated by the proposed method.

Example

To compare the proposed neural network method and Volterra series method using LS

estimation, a nonlinear signal with third-order Volterra kernels is generated according to
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Table 6.1 Estimation of Volterra kernel parameters (P = 2)

Parameters Value RBF50 RBF100 RBF200 RBF300

a0 2.40 2.4475 2.4062 2.4030 2.4014

a1(0) 0.90 0.8842 0.9207 0.9038 0.9055

a1(1) -0.40 -0.3511 -0.4169 -0.4020 -0.4017

a1(2) 0.74 0.7157 0.7520 0.7422 0.7423

a2(0, 0) 0.36 0.2341 0.3628 0.3592 0.3569

a2(0, 1) 0.00 0.0191 -0.0069 -0.0004 -0.0003

a2(0, 2) 0.00 -0.0076 0.0046 -0.0033 -0.0029

a2(1, 1) 0.00 -0.0619 -0.0092 -0.0015 -0.0010

a2(1, 2) -0.09 -0.0890 -0.0901 -0.0901 -0.0881

a2(2, 2) 0.00 -0.0669 0.0111 -0.0043 -0.0040

NMSE 0.0040 1.593e-4 8.728e-6 1.067e-5
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the following equation:

y(n) = 2.4 + 0.9s(n)− 0.4s(n− 1) + 0.74s(n− 2)− 0.18s(n− 1)s(n− 2)

+0.36s(n)2 + 0.76s(n)s(n− 1)s(n− 2)

+0.85s(n− 1)s(n− 2)2 + e(n). (6.31)

As before, the input signals(n) is Gaussian white noise with variance one and the total

number of data points is 400. In this example, a small Gaussian noisee(n) with variance

0.01 is also added to generate the noisy simulated signaly(n). The maximum delayP

in the input vectors(n) is set to be 2. For the RBF neural network, 200 hidden units

(M = 200) are used to regress the simulated output signaly(n) to the input signals(n)

in order to have good results. For the LS estimation method, the choice of the highest

Volterra kernel order need to be specified. The estimations with the highest assumed

order being set to 2 (LS-2) and 3 (LS-3) are examined. Table 6.2 shows the estimation

results of RBF, LS-2 and LS-3.

From Table 6.2, it is clear that the least-squares estimation is sensitive to the assump-

tion of the highest order of Volterra kernels. If the chosen order mismatches with the

actual order, the estimation results may deviate from the true values as shown in the LS-2

with large NMSE (0.1309). Including higher order Volterra kernels into the LS method

may result in better estimation (as shown in LS-3 with small NMSE (9.8310e-007)),

however, this is difficult for fMRI data analysis since the number of parameters to be es-

timated from LS method may become enormously high with the increasing order of the

kernels included. The RBF neural network method, on the other hand, does not rely on

the choice of the order and hence could accurately estimate the Volterra kernels even if

the order of the Volterra series is unknown (with relatively small NMSE = 1.0573e-004).

Another advantage of the RBF neural network method is that we can estimate Volterra
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Table 6.2 Estimation of Volterra kernel parameters using RBF neural network method
and least-squares (LS) method when the highest order of Volterra series is 3.

Kernels Parameters Value RBF LS-2 LS-3

zeroth a0 2.40 2.4064 2.1953 2.4006

first

a1(0) 0.90 0.9018 0.8785 0.9013

a1(1) -0.40 -0.3888 0.4764 -0.4013

a1(2) 0.74 0.7480 0.9776 0.7388

second

a2(0, 0) 0.36 0.3681 0.4146 0.3596

a2(0, 1) 0.00 0.0023 0.0252 0.0012

a2(0, 2) 0.00 0.0158 0.2670 0.0005

a2(1, 1) 0.00 -0.0008 0.0177 0.0000

a2(1, 2) -0.09 -0.0840 -0.1943 -0.0895

a2(2, 2) 0.00 0.0139 0.1340 -0.0001

NMSE 1.0573e-4 0.1309 9.8310e-7
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kernels at a specified order while not estimating Volterra kernels at other orders. Com-

pared to the LS method which needs to estimate all the Volterra kernels together, this

property of RBF neural network could estimate the lower order Volterra kernels indepen-

dently without estimating the higher order kernels. This is efficient because the lower

order Volterra kernels are of our interest for most cases.

From the simulation studies on Example1 and Example2, it is shown that the pro-

posed RBF neural network method works well in the general Volterra series models.

The estimated Volterra kernels are accurate as long as enough hidden units are used in

the network structure. In the following section, a case closer to the fMRI data – the

simulated BOLD signal is tested.

Simulated BOLD Signal

In this set of simulations, the simulated BOLD signal generated using the Balloon model

is investigated using the proposed RBF neural network method. When the RBF neural

network is applied to the fMRI data, the noise involved in the fMRI signal may pose a

problem. In this section, both the Gaussian white noise and autocorrelation noise in the

fMRI data are examined.

The simulated BOLD signalyb is generated using Eq. (6.26) with the following set

of parameters:ε = 0.5, ks = 0.65, kf = 0.4, τ = 1, α = 0.4, E0 = 0.4 andV0 =

0.02 [26][20] and the total duration of the simulated BOLD signal is 400s. To simulate

the event-related fMRI experiment, the input stimulis are randomly generated with

each lasting for 1s. The generated BOLD signal is then sampled with uniform sampling

rate of 1s, which gives the simulated BOLD signalyb(n). Figure 6.4(a) illustrates the

simulated BOLD signalyb(n) with the thick vertical line indicating the timing of the

discrete random stimulis(n).

To test the effectiveness of the proposed method in the case of additive noise, the
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Figure 6.4 Simulated BOLD signal generated by the Balloon model and noisy BOLD
signals with different additive noise. (a) Simulated pure BOLD signal and the timing of
the stimuli; (b) Simulated noisy BOLD signal corrupted with additive Gaussian white
noise; (c) Simulated noisy BOLD signal corrupted with additive autocorrelation noise.
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noisee(n) was added to the BOLD signalyb(n) generated by the Balloon model as

follows:

y(n) = yb(n) + e(n) (6.32)

wheree(n) is the additive noise (Gaussian white noise or noise with temporal autocorre-

lation) andy(n) is the noisy BOLD signal. Then, the simulated input stimulis(n) were

fed to the RBF network with the simulated noisy BOLD signaly(n) as the target signal.

The number of hidden unitsM in the RBF neural network is set to be 200 (enough to

model the nonlinearity in the system) and the centers of the RBF are selected randomly

from the input stimuli vectors. The parameters of the RBF neural network are estimated

through the Bayesian learning. To cover the time span of the HDR, the maximum input

delayP is chosen to be 20 since the HDR lasts for about 20s and the sampling rate is 1s

in this simulation.

Figure 6.4(b) shows the simulated noisy BOLD signaly(n) with additive Gaussian

white noise. Different noise levels (with the signal-to-noise ratio (SNR) varying from

−7dB to 5dB) are added to the simulated BOLD signalyb(n) to generate the noisy

BOLD signaly(n). Figures 6.5 and 6.6 show the the estimated 1st (a vector of dimen-

sions21×1) and 2nd order (a symmetric matrix of dimensions21×21) Volterra kernels

of the simulated noisy BOLD signal with the SNR of−7dB and0dB respectively. It

is clear from the figures that the estimated 1st order kernel of Volterra series shows the

properties of the HDR and is analogous to the conventional HRF formed by the dif-

ference of two Gamma functions. When the noise level is high, the estimated HDR

exhibits more variations as displayed in Fig. 6.5 (a). The 2nd order kernels in these

figures indicate the effect of the interaction between adjacent inputs on output signal.

Next, the noise with temporal autocorrelation is investigated. The serial correlations
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Figure 6.5 Estimated1st (a) and2nd order (b) Volterra kernels using the proposed neural
network method with SNR =−7dB.
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Figure 6.6 Estimated1st (a) and2nd order (b) Volterra kernels using the proposed neural
network method with SNR =0dB.
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in fMRI data is simulated as autoregressive with order 1 (AR(1)) plus white noise [103]:

e(n) = z(n) + η(n) (6.33)

z(n) = ρz(n− 1) + ξ(n) (6.34)

whereρ is the AR(1) coefficient,η(n) and ξ(n) are the white noise terms (η(n) ∼
N(0, σ2

η), ξ(n) ∼ N(0, σ2
ξ )). This noise model is to capture the short-range autocorrela-

tions in the fMRI data. For long-range autocorrelations in the fMRI data, a detrend pro-

cedure is often included as a preprocessing step to relax the autocorrelation noise [104].

In the following part, the short-range autocorrelation noise is investigated.

The short-range autocorrelation noise synthesized using parametersρ = 0.4, σ2
η =

0.5, σ2
ξ = 0.6 is added to the pure BOLD signalyb(n) to generate the noisy BOLD signal

y(n) as shown in Fig. 6.4(c). This simulated noisy BOLD signal is then modelled using

the RBF neural network. The parameters of the RBF neural network are chosen accord-

ing to the same scheme as introduced in the case of the Gaussian white noise. Figure 6.7

shows the estimated 1st and 2nd order Volterra kernels using the proposed RBF neural

network method. These results indicate that the RBF neural network method performs

well to estimate the Volterra kernels when the noise is of short-range temporal autocor-

relation. This shows that the short-range autocorrelation noise is not so problematic for

the proposed RBF neural network method. When the noise is of long-range autocorre-

lation, the performance of the RBF neural network would be affected by the long-range

autocorrelation and may not work well. Hence, to ensure that the RBF neural network

method works well, the fMRI data need to be detrended before applying the RBF neural

network for further processing.
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Figure 6.7 Estimated1st (a) and2nd order (b) Volterra kernels using the proposed neural
network method when the additive noise is autocorrelational.

6.5.2 Experimental Data

The proposed RBF neural network method for the estimation of the hemodynamic re-

sponse is also tested on an experimental event-related fMRI data (DATA-EVENTin

Chapter 1). The raw data are preprocessed by the SPM software for registration, normal-

ization and smoothing. The drift (long-range autocorrelation noise) in each voxel time

series is removed using the detrending procedure to ensure the proposed neural network

method works well.

The preprocessed fMRI signal is then applied to the RBF neural network with the

number of hidden unitsM = 200. The measured fMRI signal at each voxel is used as the

desired signaly(n) of the RBF neural network and the input signals(n) is constructed

according to the description of the experimental design. When the stimuli are presented,

s(n) = 1; while when the stimuli are absent,s(n) = 0. Since the sampling rate (TR) is

2 seconds, the maximum delayP of the input vector is chosen to be 10 in order to cover

the time span (18s) of the HDR.
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Estimation of HDR

As mentioned in the Introduction section in this chapter, the HDR varies with different

brain regions and different subjects. In this section we examine these variations. Fig-

ure 6.8 shows the estimated first order Volterra kernels of the left and right auditory

cortex for two subjects using the proposed neural network method. Clearly, the varia-

tions of the HDR between different brain regions and different subjects can be captured

using the proposed method. The estimated first order Volterra kernels show the prop-

erties of the HDR, such as a characteristic peak at around 6s. The estimated 2nd order

kernels showed the same patterns as that is shown in Fig. 6.5(b) and hence not shown

here. These figures illustrate that the proposed neural network method is able to provide

a good estimation of the HDR. In addition, it is more flexible than the conventional HDR

model formulated by the difference between two gamma functions. The gamma function

model may miss the difference in the dynamics of different regions and subjects since it

uses the same HDR model for all the voxels investigated. However, the proposed neural

network method is applied on each voxel and is able to capture the differences in BOLD

signals of different regions and subjects.

Detection of the Activated Regions

To detect the activated regions of the brain, the reconstructed BOLD signalŷ at the

output of the RBF neural network is investigated. The following test at each voxel is

used as an index (R) for activation detection:

R =
‖ŷ‖

‖y − ŷ‖ (6.35)

wherey is the measured fMRI signal in a voxel andŷ is the reconstructed (or regressed)

BOLD signal in this voxel. For the inactivated voxels, the reconstructed BOLD signal
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Figure 6.8 Estimated1st order Volterra kernels of the left and right auditory cortex for
two subjects. (a) Subject 1; (b) Subject 2.
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would be almost zero since the inactivated voxels do not involve the BOLD effect cor-

responding to the external stimuli. In this case, the value ofR would be small. On the

other hand, when the voxel is activated, the reconstructed BOLD signal should capture

the dynamics corresponding to the input stimulations, that is,ŷ 6= 0 and the valueR

would be large. TheR value is analogous to the SNR. Figure 6.9 shows the results of

the activated regions in the brain by thresholding theR values at each voxel (R > 0.3

is chosen to give best results). It is clear from this figure that the auditory cortex in the

brain is activated in this event-related fMRI experiment.

Figure 6.9 One slice showing the activation of the auditory cortex (R > 0.3).

6.6 Conclusion

The BOLD signal, as the foundation of the fMRI experiment, reflects the hemodynamic

response of the human brain. To investigate how the brain responds to the stimulus,

i.e., to study the dynamics of the human brain, system identification methods have been

proposed to identify the complex functional relation between the input stimuli and the

measured BOLD signal. Conventional methods are based on the linear system analysis

which models the BOLD signal as the convolution of the HDR and the input stimuli.
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However, this linear assumption holds only for ISI larger than 4-6 seconds. For rapid

event-related fMRI experiment, nonlinear properties of the BOLD signal are often ob-

served. This requires nonlinear methods to identify this complex (brain) system. One of

these nonlinear models is the Balloon model which is a physiologically derived one. In

this chapter, the Volterra series, which can represent any dynamical input-state-output

system, was first investigated to provide a nonparametric framework for the system iden-

tification. Then, the RBF neural network is proposed as a general method to regress the

measured BOLD signal on the input stimuli and to capture the system dynamics. The

equivalence of the proposed RBF neural network method to the Volterra kernels has

been derived. It is demonstrated that the 1st and 2nd order Volterra kernels can be easily

deduced from the coefficients of the RBF neural network. Compared to the Volterra

series model estimated through least-squares method, the RBF neural network method

does not need to presume the highest order of the nonlinear system and hence is robust

and efficient to estimate the Volterra kernels even when the nonlinear system is of higher

order. Results from simulated as well as experimental event-related fMRI signals show

that the proposed method can successfully estimate the HDR as well as capture the non-

linear dynamics of the BOLD signal. In addition, the proposed method could estimate

the individual hemodynamic response (or the 1st order Volterra kernel) at each voxel.

This helps us to investigate the variations of the HDR with different brain regions and

different subjects.

In the next chapter, we continue our discussion of the neural network based method

to analyze the fMRI data. Specifically, a recurrent neural network is proposed to recon-

struct the BOLD signal from the measured noisy fMRI data.



Chapter 7
NARX Neural Networks for Dynamical

Modelling of fMRI Data

7.1 Introduction

In Chapter 6, a detailed discussion of the methods to model and analyze the nonlinear

dynamics of the BOLD responses have been provided. These methods can be catego-

rized into state-space models and regression models. The state-space models account

for the data by using intermediate state variables whose dynamics generate the BOLD

signals. The commonly used state-space model is the Balloon model [26]. Regression

methods model the observed BOLD signals to be some functions of the stimulation

patterns. These include multivariate autoregressive (AR) models [105], autoregressive

model with exogenous inputs (ARX) [106], specific basis functions implemented in

the General Linear Model (GLM), Volterra kernels [20] and the RBF neural network

method introduced in Chapter 6.

In this chapter, a recurrent neural network with one or more feedback loops is in-

vestigated. This neural network has been successfully used for system modelling and

146
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identification because of their ability in approximating the nonlinearities. The nonlinear

autoregressive with exogenous inputs (NARX) neural network [107] is applied to model

and analyze event-related fMRI data. This neural network can capture the underlying

nonlinearities and hence reconstruct the dynamics of the fMRI data. The reconstructed

BOLD signal is less noisy and could facilitate the analysis.

7.2 NARX Model

The dynamical modelling of the fMRI data aims to capture the input-output mapping of

the measured noisy fMRI data. Recurrent neural networks are particularly suitable for

such applications due to their ability to identify arbitrary nonlinear dynamical systems.

In this chapter, the NARX neural networks [100] are applied to model the input-output

dynamics of the BOLD signal and hence identify this complex system. The NARX

neural networks are powerful methods to model nonlinear systems with the advantage

of faster convergence and better generalization ability [108].

Figure 7.1 shows the schematic diagram of the NARX model for reconstructing the

fMRI data. In this model, the input signals(n) is applied to the network through(q− 1)

delays,s(n) = [s(n), · · · , s(n− q +1)]T . The measured fMRI signaly(n) at each voxel

is also fed back to the input viap delays,y(n) = [y(n− 1), · · · , y(n− p)]T . The output

of the NARX model can be expressed as:

ŷb(n) = FNN(y(n), s(n)) = FNN(x(n)) (7.1)

wherex(n) = [y(n), s(n)]T is the full input vector of size(p + q) × 1. The estimated

outputŷb(n) is a nonlinear transformation (denoted byFNN ) of the input vectorx(n).

This output̂yb(n) is the estimated BOLD signal reconstructed by the NARX model from

the measured noisy fMRI signaly(n).
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Figure 7.1 Schematic diagram for NARX model.

The proposed NARX model is realized through the RBF neural networks [100]. The

learning of the RBF neural networks is detailed in Section 6.3.2. When the weights of

the RBF neural networks have been found, a simulated single impulse could be fed into

the trained neural networks to estimate the HDR which is usually used in the convolution

model as the system impulse function. This estimated HDR could be compared with the

conventional HDR formed by the difference of two gamma functions to validate the

estimation ability of the NARX model.

7.3 Results and Discussion

7.3.1 Simulated Data

The simulated BOLD signal is generated using the Balloon model (Eq. (6.26)) with the

following set of parameters:ε = 0.5, ks = 0.65, kf = 0.4, τ = 1, α = 0.4, E0 = 0.4
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andV0 = 0.02 [26][20]. The input stimulus signals(t) is generated as random im-

pulses lasting for 1 second which represents an event-related fMRI experiment. When

the stimulation is ON,s(t) = 1 and when it is OFF,s(t) = 0. The total duration of the

simulated BOLD signal is 400s with uniform sampling period of 1s. Figure 7.2(a) illus-

trates the simulated BOLD signal with the thick vertical line indicating the timing of the

discrete random stimuli. The white Gaussian noise is added to this clean BOLD signal

resulting in a noisy BOLD signal with SNR =−2.8dB which is shown in Fig. 7.2(b).

Figure 7.2(c) shows the reconstructed BOLD signal from the NARX neural networks.

The delay valuesp andq in the NARX model (exact interpolation withN = M = 400

for the interpolation matrix) are chosen to be 10 and 20, respectively. The value of the

input delayq was chosen to cover the time span of the HDR. In this example, the sam-

pling rate is 1s and the HDR lasts for about 20s, hence, the value ofq is chosen to be 20.

It is clear from Fig. 7.2 that the reconstructed BOLD signal (Fig. 7.2(c)) accurately

captures the properties of the pure BOLD response (Fig. 7.2(a)). This implies that the

network has successfully identified and modelled the dynamical behavior of BOLD sig-

nal. Then a single simulated impulse is fed into the network, producing the impulse

response at the output of the network. The impulse response is the estimated HDR to a

single stimulation. Figure 7.3 shows the results of the estimated HDRs using the trained

NARX neural networks and averaged over 20 runs. It resembles very well to the HDR

of the Balloon model (mean square error, MSE= 0.004). We also observed that the

choice of the value ofq is related to the accuracy of the HDR estimation. Ifq = 10 is

chosen, the HDR estimated by the NARX model does not fit very well (after 10s) to the

HDR simulated using the Balloon model.

To validate the modelling ability of the NARX model, the reconstructed BOLD sig-

nal from the NARX model output is compared with the noisy BOLD signal using the
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(a) Simulated pure BOLD signal and the timing of the stimuli.
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(b) Simulated noisy BOLD signal.
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(c) Reconstructed BOLD signal from the noisy BOLD signal.

Figure 7.2 Simulated BOLD signal and its reconstruction from the NARX neural net-
work.
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Figure 7.3 The estimated HDR of the simulated data.

Ljung and Box randomness test [109]:

QLB = N(N + 2)
h∑

j=1

ρ2(j)

n− j
(7.2)

whereN is the sample size,ρ(j) is the autocorrelations of the residuals at lagj, h is the

maximum lag used to calculate the test statistics. For the level of statistical significance

α, the null hypothesis of random residuals will be rejected ifQLB > χ2
1−α(h).

Two thousand realizations of the noisy BOLD signals generated by the Balloon

model with different random stimulus functions and corrupted by the Gaussian noise

with different variances are simulated. The Ljung and Box statistic test shows that

99.65% realizations of the simulation survived the statistical test (P = 0.05). This

clearly shows that the proposed NARX model is capable of capturing the dynamics of

the simulated BOLD signals.
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7.3.2 Experimental fMRI Data

The proposed dynamical modelling method based on the NARX neural network is first

tested on an experimental event-related fMRI data set(DATA-EVENTin Chapter 1). Be-

fore applying the proposed NARX modelling method to this experimental event-related

fMRI data, the raw data are preprocessed by the SPM software [29] for registration,

normalization and smoothing. The drift in each voxel time series is also removed.

To detect the activated regions of the brain, the reconstructed BOLD signalŷb at

the output of the NARX model is investigated. For the inactivated voxels, the recon-

structed BOLD signal would be almost zero since the inactivated voxels do not involve

the BOLD effect corresponding to the external stimuli. For the activated voxels, on the

other hand, the reconstructed BOLD signal should capture the dynamics corresponding

to the input stimulations, that is,̂yb 6= 0. Hence, it is desirable to use some parameters

that would indicate how probable the reconstructed BOLD signalŷb 6= 0. We introduce

the following test at each voxel as an index (R) for activation detection:

R =
‖ŷb‖

‖y − ŷb‖ (7.3)

wherey is the measured fMRI signal in a voxel andŷb is the reconstructed BOLD signal

in this voxel. TheR value is analogous to the SNR. When the voxel is activated, the test

valueR would be large; while when it is not activated, the value would be small. Since

noise exists,y 6= ŷb, this prevents the value ofR from approaching infinity. Figure 7.4

shows the results of the activated regions in the brain by thresholding theR values at

each voxel. It is clear from this figure that the auditory cortex in the brain is activated in

this event-related fMRI experiment.

Figure 7.5 compares the estimated HDR of an activated voxel from the NARX model

with the conventional model formulated by the difference of two gamma functions. The

solid line is the estimated HDR using the NARX model (averaged over the activated
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Figure 7.4 One slice showing the activation of the auditory cortex (R > 0.3).

regions) and the dotted line is the HDR formulated by the difference of gamma func-

tions. These two waveforms are scaled to similar magnitudes in order to have better

comparison. From this figure, it is clear that the two HDRs are analogous to each other.

Though there are some differences between these two responses, the trends of the signal

variation are the same, for example, both of them reach the peak at around 5s after the

stimulus. The difference between these two responses reflect the ability of the proposed

method to capture the variation of the HDR. This shows that the NARX model is able to

reconstruct the dynamics of the fMRI data and provides a good estimation of the HDR.

In addition, the NARX model is more flexible than the conventional HDR model for-

mulated by means of gamma function model. The gamma function model may miss the

different dynamics between regions and subjects since it uses the same HDR model for

all the voxels investigated. However, the NARX model is trained on each voxel and is

able to capture the differences in BOLD signals between regions and subjects.

The proposed NARX reconstruction method is also tested on the experimental block

design dataset (DATA-BLOCK in Chapter 1). Figure 7.6 shows the original and the

estimated time courses reconstructed by NARX model of both activated and inactivated

voxels. From Figure 7.6, we can see that for the activated voxel, the reconstructed

signals by using the proposed NARX method can approximate the real fMRI signal
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Figure 7.5 Comparison between the estimated HDR from the NARX model and the
HDR formulated by difference of two Gamma functions.

but less noisy than the original fMRI data. For the inactivated voxel, the reconstructed

signal is almost zero since there is no BOLD signal related to the input stimulus in the

measured data. This clearly confirms that the proposed NARX method can model and

capture the complex and nonlinear properties underlying the fMRI data.

7.4 Conclusion

The objective of the fMRI data analysis is to accurately detect the activated regions of

the human brain corresponding to a specific task and also to investigate how the brain

responds to the stimulus, i.e., to study the dynamics of the human brain. The BOLD

signal, as the foundation of the fMRI experiment, reflects the hemodynamics of human

brain. How to reconstruct the BOLD signal from the noisy measured fMRI signals is of

great importance to the fMRI data analysis. From an engineering perspective, this is a
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Figure 7.6 Time courses of an activated and an inactivated voxel for the real block ex-
perimental fMRI data.
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system modelling problem, that is, to identify the complex human brain system as well

as to reconstruct the dynamics of the human brain.

In this chapter, the NARX model is proposed for the fMRI data analysis to capture

the system dynamics. With the knowledge of experimental paradigm (input) and mea-

sured data (output), the NARX neural networks are investigated to identify the complex

human brain system. The proposed scheme is realized through the RBF neural net-

works. Results from simulated as well as experimental event-related and block fMRI

data show that the proposed model can successfully capture the underlying dynamics of

the human brain. Comparison between the HDR estimated by the NARX model and the

conventional difference of gamma functions model shows the effectiveness of the NARX

model. This indicates that the NARX neural networks are good methods to model and

capture the dynamics underlying the fMRI data.



Chapter 8
Conclusion and Future Directions

8.1 Summary and Conclusions

Functional MR Imaging is an important technique for neuroimaging. It can relate the

structure of the brain to its function by using the MRI techniques to measure the human

brain function. The processing and analysis of fMRI data are challenging due to its

underlying physiological complexity. The research work presented in this thesis provide

advanced signal processing and data analysis methods to the complex fMRI data.

The major objectives of this thesis are: (i) detection of the activated regions of the

brain; (ii) estimation of the HDR and (iii) modeling the dynamics of the fMRI signal.

The fMRI data were first examined under a Bayesian framework, which could efficiently

detect the activated regions of the human brain. Then, the HDR which reflects the tem-

poral properties of human brain function was estimated through both linear and nonlin-

ear methods. Finally, the NARX neural network was proposed to model the dynamics of

fMRI signal. Through the results of both simulated as well as experimental fMRI data, it

is shown that these methods are robust, efficient and flexible. They can complement the

traditional analysis methods to cope with diverse challenges of fMRI data analysis. The

157
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findings from this research work could help the neurologist and psychologist interpret

better the fMRI data.

In the first part of the research, a Bayesian framework for fMRI data analysis was

provided. Compared to the hypothesis test methods, Bayesian methods have many ad-

vantages such as easy extension to group analysis and the avoidance of the multiple

comparisons problem. A sparse Bayesian learning for flexible design matrix determi-

nation in the GLM model was first proposed (Chapter 2). Through the comparison of

ROC curves, it has been shown that the sparse Bayesian method is much more robust

than the traditional GLM method. This improvement comes from the integration of the

advantages of the data-driven and model-driven methodologies. Then, this method was

extended to the scenarios where the noise variance is varying (either a time-varying noise

or a fractional noise) (Chapter 3). Comparison with OLS and WLS methods showed that

the proposed Bayesian method performs best when dealing with the nonstationary nature

of the fMRI data. This improvement is mainly because the Bayesian method could accu-

rately estimate and model the nonstationary noise structure in the fMRI data. In Chapter

4, the drift, which was modelled by a few large scale wavelets, was incorporated into

the GLM under the Bayesian framework. A modified GLM and CIC for model selection

were proposed. This method could successfully model and remove the drift in the fMRI

data in order to obtain better activation results. The proposed Bayesian methods show

significant improvement for the brain activation detection in fMRI data analysis.

The second part of the research was mainly focused on the estimation of the HDR.

A spatio-temporal adaptive linear filter method for fMRI data analysis was first inves-

tigated (Chapter 5). It was proved in our research that this method is equivalent to the

CCA method. Beyond the linear methods which are mainly suitable for fMRI experi-

ment with large ISI, nonlinear methods are of great interest especially for rapid event-

related fMRI data (or ISI less than 4-6 seconds). In Chapter 6, the RBF neural network
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was proposed to analyze the nonlinearities in the fMRI data. It was shown that the RBF

neural network is equivalent to the conventional Volterra-series method for nonlinear

system modeling, but that it is more flexible and computationally efficient. This advan-

tage is due to the universal approximation property of the RBF neural network and the

disassociation of the nonlinear terms/kernels of different orders (by using Taylor expan-

sion). This method is of considerable importance since it provides a completely new

framework for nonlinear fMRI data analysis which is required by the advent of the more

advanced and complex rapid event-related fMRI experimental design.

The third part of the research meant to model the dynamics of the fMRI data. In

Chapter 7, the NARX neural network is proposed to capture the dynamics of the fMRI

signal. With the knowledge of the experimental paradigm (input) and measured data

(output), the NARX neural network could provide us with a promising method to model

and reconstruct the dynamics existing in the fMRI data and hence identify this complex

system.

In this research, novel and powerful advanced algorithms and analysis methods for

fMRI data analysis have been proposed to cope with various difficulties that the neurolo-

gist and psychologist are facing while analyzing the measured fMRI data. The methods

and techniques introduced in this research would allow the investigators to study differ-

ent properties of the fMRI data and help to further elucidate the underlying physiological

mechanisms.

8.2 Future Directions

The Bayesian methods proposed in the first part of this thesis were based on the as-

sumption that the noise is Gaussian (in time domain or wavelet domain). However, this

assumption may have some reservations considering the complex acquisition procedure
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of fMRI data. Other noises either from the subject’s non-experimental process or from

the fMRI measurement process were not taken into account. Though the preprocessing

step such as Gaussian smoothing may make the data satisfy Gaussian assumption, the

detection ability can be improved by incorporating other factors in our model. Future

work of the Bayesian method would be to refine the noise structures in the analysis to

relax the assumption requirement. These could be done both with parametric and non-

parametric methods. Specifically, Rician noises which are proven to exist in the MR

images can be investigated.

In the second part of this thesis, methods to estimate the HDR are presented. How-

ever, since it is difficult to obtain the precise probability distribution of the reconstructed

fMRI data, a traditional significance level of the hypothesis test cannot be derived from

these methods. Future work would be needed to identify the distribution of the recon-

structed data. A possible way is to obtain extra null data (the data is recorded when the

subjects lie in the scanner and do not perform any tasks) for each fMRI experiment and

derive the probability distribution from this null data. Another promising method would

be to use parameter-free tests, such as permutation test and so on.

In chapter 7, the NARX neural network was presented to model the dynamics of

the fMRI data. Further research of this method includes: i) incorporating the spatial

data into this model; ii) analyzing the stability of the algorithm and iii) decreasing the

computational complexity. It would be interesting to see the extension of this method to

multidimensional signals as well.

Besides these future improvement of the methods, a quantitative comparison of the

performance between different methods on experimental fMRI data is desired. This

can be implemented by two ways. On the one side, a suitable criterion need to be

proposed to assess the performance of different methods on experimental fMRI data.

On the other side, these methods could be tested on some special experimental data,
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such as the retinotopic stimulation experiment. For these special experimental data, the

true activation of the brain regions could be obtained by using other methods. And these

truly activated regions can serve as the reference to compare the performance of different

detection and estimation methods.
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Appendix A
Derivation of Eq. (3.22) and Eq. (3.23)

From Eq. (3.17), Eq. (3.18) and Eq. (3.21), we get:

p(w|y,A,B)p(y|A,B) = p(y|w,B)p(w|A)

∼ exp{−1

2
(y −Φw)TB(y −Φw)− 1

2
wTAw}

∼ exp{−1

2

[
(y −Φw)TB(y −Φw) + wTAw

]}.

(A.1)

Expanding the quantities in the square brackets in the exponential and grouping together

all the terms containingw, we get:

(y −Φw)TB(y −Φw) + wTAw

= yTBy − yTBΦw −wTΦTBy + wTΦTBΦw + wTAw

= wT (A + ΦTBΦ)w − yTBΦw −wTΦTBy + yTBy

=
[
w − (A + ΦTBΦ)−1ΦTBy

]T
(A + ΦTBΦ)

[
w − (A + ΦTBΦ)−1ΦTBy

]

+yT
[
B−BΦ(A + ΦTBΦ)−1ΦTB

]
y (A.2)

According to the matrix inversion lemma [88], we get:

(B−1 + ΦA−1ΦT )−1 = B−BΦ(A + ΦTBΦ)−1ΦTB, (A.3)
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Eq. (A.2) can be written as:

(y −Φw)TB(y −Φw) + wTAw

= (w − u)TΛ−1(w − u) + yT (B−1 + ΦA−1ΦT )−1y (A.4)

where

Λ−1 = (A + ΦTBΦ) (A.5)

and

u = ΛΦTBy. (A.6)

Thus,

p(w|y,A,B)p(y|A,B)

∼ exp{−1

2
(w − u)TΛ−1(w − u)− 1

2
yT (B−1 + ΦA−1ΦT )−1y} (A.7)

By inspection, we will get two Gaussian distributions:

p(w|y,A,B) = (2π)−
M
2 |Λ|− 1

2 exp{−1

2
(w − u)TΛ−1(w − u)}, (A.8)

and

p(y|A,B) = (2π)−
T
2 |B−1 + ΦA−1ΦT |− 1

2

exp{−1

2
yT (B−1 + ΦA−1ΦT )−1y}. (A.9)

These are Eq. (3.22) and Eq. (3.23), respectively.



Appendix B
Derivation of Eq. (3.27) to Eq. (3.29)

In this part, we consider how to effectively compute the objective functionL and the

derivation of the hyperparameter updates.

B.1 Compute the the objective functionL
The objective function is:

L = −1

2
log |B−1 + ΦA−1ΦT | − 1

2
yT (B−1 + ΦA−1ΦT )−1y. (B.1)

We first compute the first term inL. According to the properties of matrix determi-

nants [110]:

|C||A + BC−1D| = |A||C + DA−1B|, (B.2)

whereA ∈ Rs×s, C ∈ Rr×r are nonsingular,B ∈ Rs×r, D ∈ Rr×s, we get:

|A||B−1 + ΦA−1ΦT | = |B−1||A + ΦTBΦ|. (B.3)

And this gives:

log |B−1 + ΦA−1ΦT | = − log |Λ| − log |B| − log |A|, (B.4)
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whereΛ has been defined in Eq. (A.5).

The second term in objective functionL is data dependent and we can further repre-

sent the term as:

yT (B−1 + ΦA−1ΦT )−1y = yT (B−BΦ(A + ΦTBΦ)−1ΦTB)y

= yTB(y −Φ(A + ΦTBΦ)−1ΦTBy)

= yTB(y −Φu)

= (y −Φu)TB(y −Φu) + uTΦTBy − uTΦTBΦu

= (y −Φu)TB(y −Φu) + uTΛ−1u− uTΦTBΦu

= (y −Φu)TB(y −Φu) + uTAu. (B.5)

And thus, the objective functionL becomes:

L = −1

2
[− log |Λ| − log |B| − log |A|+ (y −Φu)TB(y −Φu) + uTAu]. (B.6)

B.2 Derivatives and updates

The derivative of Eq. (B.6) with respect toαi is:

∂L
∂αi

= −1

2
[trace(Λ

∂Λ−1

∂αi

)− 1

αi

+ u2
i ] (B.7)

= −1

2
[Λii − 1

αi

+ u2
i ]. (B.8)

Setting the above equation to zero gives the estimate ofαi:

αi =
1

Λii + u2
i

. (B.9)

The derivative of Eq. (B.6) with respect tosi is:

∂L
∂si

= −1

2
[trace(Λ

∂Λ−1

∂si

)− 1

si

+ β(y −Φu)2
i ] (B.10)

= −1

2
[trace(ΛβφT

i φi)− 1

si

+ β(y −Φu)2
i ], (B.11)
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whereφi is thei th row vector ofΦ, (y −Φu)i is thei-th element of the estimated error

rb = y −Φu.

Setting the above equation to zero, we get the estimate ofsi:

si =
1

trace(ΛβφT
i φi) + β(y −Φu)2

i

(B.12)

The derivative of Eq. (B.6) with respect toβ is:

∂L
∂β

= −1

2
[trace(Λ

∂Λ−1

∂β
)− T

β
+ (y −Φu)TS(y −Φu)] (B.13)

= −1

2
[trace(ΛΦTSΦ)− T

β
+ (y −Φu)TS(y −Φu)]. (B.14)

Setting this to zero gives the estimate ofβ:

β =
T

trace(ΛΦTSΦ) + (y −Φu)TS(y −Φu)
, (B.15)

where

S = diag−1(s1, s2, · · · , sT ). (B.16)

B.3 A special case

The above derivation considers the situation where noiseε in

y = Φw + ε (B.17)

is assumed asε ∼ N (0,B−1) which is a Gaussian noise with zero mean and diagonal

precision matrixB = diag−1{(s1, s2, · · · , sT )β} = Sβ (see also Eq. (3.2)).

A special case is whenS = I (identity matrix), and thusε ∼ N (0, β−1I). The

Equation (B.9) still holds and represented again here:

αi =
1

Λii + u2
i

. (B.18)
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If we define the quantities

γi = 1− αiΛii, (B.19)

and cancel the the parameterΛii, the following updating equation is obtained:

αnew
i =

γi

u2
i

. (B.20)

By substitutingS with identity matrixI in Equation (B.14), the derivative ofL re-

spective toβ is

∂L
∂β

= −1

2
[trace(ΛΦTΦ)− T

β
+ (y −Φu)T (y −Φu)]. (B.21)

From Eq. (A.5), it can be obtained thatΦTΦ = β−1(Λ−1 −A), and thus:

trace(ΛΦTΦ) = trace(Λβ−1(Λ−1 −A))

= trace(β−1(I−ΛA))

= β−1
∑

(1− αiΛii)

= β−1
∑

i

γi (B.22)

whereγi is defined in Eq. (B.19).

Substituting Eq. (B.22) into Eq. (B.21) and noting that(y −Φu)T (y −Φu) =

‖y −Φu‖2, Eq. (B.21) is simplified as:

∂L
∂β

= −1

2
[β−1

∑
i

γi − T

β
+ ‖y −Φu‖2]. (B.23)

Setting the above derivative to zero gives the update equation:

β =
T −∑

i γi

‖y −Φu‖2
. (B.24)

Thus, we obtain the update equations for a special case whereB = βI. Eq. (B.19),

Eq. (B.20) and Eq. (B.24) are respectively Eq. (2.12), Eq. (2.11) and Eq. (2.13) intro-

duced in Chapter 2.



Appendix C
Derivation of Eq. (4.14)

We represent the observation equation of Eq. (4.12)



ŵJ0−1

ŵJ0−2

...
ŵ1


 =

(
1
1
...
1

)
w + n (C.1)

as

ŵ = hw + n (C.2)

whereh = [1, 1, · · · , 1]T is the observation vector,w is the unknown parameter,̂w =

[ŵJ0−1, ŵJ0−2, · · · , ŵ1]
T is the measured data.n is the additive measurement noise and

is Gaussian distributedn ∼ N (0,ΛJ0) andΛJ0 is defined as:

ΛJ0 =




ΛJ0−1

ΛJ0−2

...
Λ1


 . (C.3)

The likelihood function of̂w given the unknown parameterw is:

f(ŵ|w) = f(ŵ − hw)

= f(n)

= (2π)−
J0
2 |ΛJ0|−

1
2 exp{−1

2
(ŵ − hw)TΛ−1

J0
(ŵ − hw)}. (C.4)
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It is clear that maximizing the above likelihood function is equivalent to minimize

the following cost function:

J =
1

2
(ŵ − hw)TΛ−1

J0
(ŵ − hw). (C.5)

By differentiating the cost function with respect tow and the let the result to be zero,

we get:
∂J

∂w
= hTΛ−1

J0
(ŵ − hw) = 0. (C.6)

Then, we get the maximum likelihood estimation of the unknown parameterw as:

ŵML = (hTΛ−1
J0

h)−1hTΛ−1
J0

ŵ (C.7)

By substitutingh = [1, 1, · · · , 1]T , ŵ = [ŵJ0−1, ŵJ0−2, · · · , ŵ1]
T andΛJ0 shown in

Eq. (C.1) into Eq. (C.7), we will get:

ŵML =

J0−1∑
i=1

Λ−1
i∑J0−1

k=1 Λ−1
k

ŵi, (C.8)

which is Eq. (4.14).
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