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SUMMARY 

 

Substance P (SP) is an important neuropeptide implicated in neurogenic 

inflammation. The role of SP and neurokinin-1 receptor (NK1R) in experimentally-

induced acute pancreatitis has been investigated using a NK1R antagonist. The results 

summarized below are the major findings of the present work. 

 

1.  The effects of neurokinin receptor antagonists, CP96,345 (NK1R antagonist), 

GR159897 (neurokinin-2 receptor antagonist) and SB-222200 (neurokinin-3 receptor 

antagonist), as well as calcitonin-gene related peptide (CGRP) receptor antagonist, 

CGRP (8-37), on caerulein-induced AP were investigated. CP96,345, the NK1R 

antagonist significantly reduced the plasma amylase level and tissue myeloperoxidase 

activities in the pancreas and the lungs. On the other hand, treatments with NK2R, 

NK3R and CGRP receptor antagonists did not produce any effect. The results 

suggested that the SP-NK1R system is important for the development of AP.  

 

2.  In the pancreas, CP96,345 treatment resulted in the suppression of the elevated 

SP concentration, preprotachykinin-A (PPT-A) gene mRNA expression, NK2R 

mRNA expression, and NK1R mRNA and protein expression. In the lungs, the 

antagonist was found to suppress the increase in SP concentration, PPT-A mRNA 

expression and preprotachykinin-C gene (PPT-C) mRNA expression. However, the 

antagonist treatment further promoted the accumulation of pulmonary NK1R mRNA 

and protein expression. These data have provided valuable information regarding the 

regulation of tachykinins and neurokinin receptors during AP.  
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3.  Pancreatic acinar cells were isolated and incubated with caerulein, SP or 

CP96,345, alone or in combination. Incubation with 10-7 M caerulein for 1 hour 

caused the inhibition of amylase release and the elevation of PPT-A and NK1R 

mRNA expression. On the other hand, SP incubation resulted only in the increase of 

PPT-A mRNA expression. CP96,345 blocked PPT-A mRNA expression. 

 

4. The effect of CP96,345 on the regulation of expression of the adhesion 

molecules ICAM-1, VCAM-1, E-selectin and P-selectin was investigated. The mRNA 

expression of these four adhesion molecules was upregulated in the pancreas during 

AP. Treatment with CP96,345 effectively reduced the mRNA expression of P-selectin 

and E-selectin but not ICAM-1 and VCAM-1. In the lung, ICAM-1, E- and P-selectin 

mRNA expression increased during AP. CP96,345 treatment suppressed this 

elevation. A similar expression pattern was seen by immunohistochemical (IHC) 

reactivity.  This study has provided important information on the relationship between 

NK1R activation and the regulation of adhesion molecules.  

 

5. Our findings on the difference in pancreatic and pulmonary expression of 

neurokinin receptors, tachykinins and adhesion molecules have suggested a 

differential regulation of inflammatory response in the pancreas and the lungs. It is 

remarkably interesting as this is the first evidence of the presence of a differential 

pattern of regulation in the inflammation in the pancreas and the lungs in AP. 

 

6.  The leukocyte-endothelial interaction in the pancreatic microcirculation in AP 

was visualized using intravital microscopy. Significant increases in rolling and 
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adherent leukocytes and a decrease in rolling velocity were observed in AP. 

Treatment with CP96,345 resulted in decreases in rolling and adherent leukocytes. 

 

In conclusion, neurogenic inflammation (NI) plays a key role in the development of 

AP and associated lung injury. The blockade of SP-NK1R system, the major 

component of NI, has been proven to be effective in the treatment of AP and 

associated lung injury in a mouse model of AP. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

1.1 Overview 

 

Pancreatitis is inflammation of the pancreas. This condition occurs when the 

pancreatic tissue is auto-digested by the digestive enzymes that are produced and 

abnormally activated within the pancreas. In severe cases, there may be bleeding into 

the gland, infection and cysts. Moreover, enzymes and toxins may enter the systemic 

circulation and cause subsequent injuries to vital organs such as the heart, lungs, liver 

and kidney, which might lead to death. This medical condition can be described as 

acute or chronic. It can occur as a sudden, painful attack; or a persistent condition 

progressing over a period of years in individuals with pancreatic damage from 

previous episodes of acute pancreatitis (AP). The acute form of pancreatitis occurs 

suddenly and it can become severe, with many life-threatening complications. In most 

cases, the patients recover completely. Nevertheless, if the pancreas is subjected to 

continual insult, such as persistent consumption of alcohol, severe acute and chronic 

forms of pancreatitis may develop. 

 

The present literature review discusses the nature of acute and chronic forms of 

pancreatitis, the pathophysiology, the various inflammatory mediators implicated and 

the role of neurogenic inflammation in pancreatitis. 
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1.2 ACUTE PANCREATITIS (AP) 

 

Numerous accounts of illnesses in history might have suggested the occurrence of AP, 

a unique example being the death of Alexander the Great in 323BC (Sbarounis, 1997; 

Breimer, 1998). A trend of rising incidence of this clinical condition has been 

recognized over the past several decades (McKay et al., 1999; Sandler et al., 2002). 

The incidence of AP varies considerably between regions and is estimated at 5-80 per 

100,000 people (Mayerle et. al, 2005; Kingsnorth and O'Reilly, 2006). In Germany, 

the incident rate is about 2 cases per 10,000 people (Lankisch et al., 2002). In Finland, 

the frequency is about 7 cases per 10,000 people (Jaakkola and Nordback, 1993). It 

ranks 14th among the leading gastrointestinal causes of death in the United States, and 

it remains one of the top three causes of gastrointestinal inpatients hospital admissions 

in the United States (Russo et al., 2004; Shaheen et al., 2006). As a result, it imposes 

an enormous economic burden in the healthcare system, leading to more than $2 

billion direct cost in United States annually (Sandler et al., 2002; Russo et al., 2004). 

 

The majority of patients (75%) experience the mild form of AP, in which the 

pancreatic tissue (usually) recovers, as the condition is self-limited. Nevertheless, it 

causes death in 50 % of the remaining severe cases (Bhatia et al., 2000a; Bhatia et al., 

2001a; Bhatia M, 2002a). 

 

The cardinal symptom is upper abdominal pain that may last for a few days. Typically 

the pain is central, persistent, and 'boring' in nature, which sometimes radiates through 

to the back. It is usually aggravated by eating, especially foods high in fat, and worse 

when lying down, and partly relieved by sitting forward. Usually the pain builds up 
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over half to one hour, and remains stable for hours to days. This is often associated 

with nausea and vomiting. The upper abdomen of the patient is often tender and 

swollen. There are often other symptoms associated with AP, such as abdominal 

distension (fluid leaks into the space at the back of organs, pushing them to protrude 

forward), mild fever and increased heart rate. Respiratory problems can also occur in 

patients due to 'under-breathing'. The patient often feels and looks very sick. Bruising 

around the navel and along the flanks may be seen in severe attacks due to bleeding in 

the pancreas. The patient may become dehydrated and have hypotension, which can 

lead to shock, and even death due to organ failure (Kingsnorth and O'Reilly, 2006). 

 

The diagnosis of AP is usually made using serological tests, for examples, serum 

lipase, serum amylase and serum liver enzymes profile (alanine aminotransferase/ 

aspartate aminotransferase) are elevated. The lipase assay is usually more sensitive 

and specific than the amylase assay. There may be abnormalities in the serum levels 

of ions like calcium, magnesium, sodium, potassium, and bicarbonate. Gallstones and 

swollen pancreas may be detected using abdominal ultrasound technique. However, in 

50% of the case, the pancreas can not be visualized due to obesity and overlying 

bowel gas. A dynamic (bolus) computed tomographic (CT) scan of the abdomen can 

be performed when the diagnosis is uncertain, as well as in cases of moderate-to-

severe pancreatitis (Neoptolemos et al., 1984). 

 

1.2.1 Etiologies of AP 

 

There are several causes known to trigger the development of AP. As shown in Table 

1.1, etiologies of AP can be classified into six major categories (Buchler et al., 2004; 
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Steinberg WM, 1997). On the worldwide basis, gallstones / biliary tract disease 

(obstructive cause) is the primary etiologic cause, followed by alcoholism (toxins 

cause). Together, they account for about 80% of patients diagnosed with AP. The 

individual contribution of each appears to be related to the patient population being 

studied; that is, alcoholism is most common in inner-city populations, especially in 

Scandinavia and the United States; biliary tract disease is more common in the more 

affluent suburban areas. Gallstones are the most common cause accounting for 45% 

of cases in Western Europe, Asia and United States. Estimated population incidences 

for acute gallstone pancreatitis in the USA range from 45 to 65 per 10000 person 

years depending on the criteria used to diagnose gallstone pancreatitis (Schwartz J, 

2004). The passing of gallstones into the bile duct and temporarily lodging at the 

sphincter of Oddi, causes pancreatic duct pressure built-up. The risk of a stone 

causing pancreatitis is inversely proportional to its size.  

 

Pancreatitis is clearly linked to alcohol abuse. It occurs mainly in habitual drinkers 

who have been drinking for at least a decade. It typically manifests after a drinking 

binge or a heavy meal (Keddie and Corson, 1966). Although there have been reports 

describing a large amount of alcohol load precipitating a first attack, routine 

alcoholics remain the norm rather than the exception. However, there is no general 

explanation for the predisposition of certain alcoholics to this disease. 

 

The remaining 10 to 20% of patients with AP have this disease either due to unknown 

causes (idiopathic), or in association with a variety of processes (miscellaneous causes 

like metabolic, drugs, vascular, hereditary/genetic, trauma etc). Vascular causes of the 

inflammation of the pancreas can be due to the formation of atherosclerotic emboli to 
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the pancreatic arterial tree, episodes of severe hypotension, or vasculitis (for example, 

in systemic lupus erythematosus). Infectious causes of pancreatitis are usually rare. 

They can be divided into those caused by viruses (for examples, mumps, 

cytomegalovirus, etc.) and bacteria (for examples, mycobacteria and leptospirosis). 

Fungi like Cryptococcus can also cause microabscesses in the pancreas. In 

underdeveloped countries where parasites like Ascaris are prevalent, it becomes a 

common source of pancreatitis. The hereditary type of AP is also known as familial 

pancreatitis. This is passed on by autosomal dominant transmission and it is rarely 

encountered. These patients often develop chronic pancreatitis over time and have an 

increased risk of developing pancreatic cancer.  

 

1.2.2 Complications of AP 

 

There are few complications in mild AP, while severe AP can be fatal. Complications 

of severe AP are either generalised (for examples, lung or kidney failure, sepsis, 

circulatory collapse, thrombosis, metabolic and haematological complications) or 

localised (for examples, pancreatic necrosis, pancreatic cyst formation, and 

development of fistulas) (Beckingham and Bornman, 2001; Kingsnorth and O'Reilly, 

2006). 

 

1.2.3 Treatment for AP 

 

No causal treatments for pancreatitis are known. Patients with AP are primarily given 

symptomatic treatments like intravenous fluids and pain medications in the hospital. 

Patients in the intensive care units are closely monitored for heart, lungs and kidney 
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failure (Besselink et al., 2007). In cases where there is pancreatic necrosis, surgery 

may be necessary to remove the damaged tissue if a secondary infection develops. AP 

caused by gallstones may require surgical removal of the gallbladder by 

cholecystectomy. The pancreas usually recovers after the removal of the gallstones 

(Beckingham and Bornman, 2001; Kingsnorth and O'Reilly, 2006). 
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CATEGORY 
 

 
EXAMPLES 

 
Mechanical 
 

 
Gallstones*, duct obstruction / stenosis, pancreatic cancer, trauma, 
endoscopic retrograde cholangiopancreatography (ERCP) 
 

 
Toxins / 
Metabolic 
 

 
Alcohol*, scorpion venom,  organophosphorus insecticides, hyper-
calcemia / lipidemia (types I, IV, V), drugs 
 

 
Vascular 
 

 
atheroembolism, ischemia, cardiovascular shock, vasculitis 
(Systemic Lupus Erythematosus, polyarteritis) 
 

 
Infectious 
 

 
Viruses, bacteria, fungi, parasites 

 
Hereditary / 
Genetic 

 
Autosomal dominant- abnormal gene / chromosome 7g, mutations 
in trypsin / trypsin inhibitor genes, cystic fibrosis transmembrane 
conductance regulator gene (CFTR) 
 

 
Idiopathic 

 
 

 
Undetermined cause, postoperative pancreatitis 

 
Table 1.1 Etiologies of AP (* most commonly encountered). 
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1.3 PATHOPHYSIOLOGY OF AP 

 

The physiological function of the exocrine pancreas includes the synthesis and 

secretion of digestive enzymes into the small intestine for carbohydrate, fat, and 

protein metabolism. Many of these enzymes are proteases that are synthesized as 

proenzymes (zymogens) that require a proteolytic activation through cleavage of their 

propeptide by the brush–border endoprotease enteropeptidase (enterokinase). Further 

activation of trypsinogen and other zymogens into their active forms is carried out by 

a positive feedback mechanism through the trypsin (active form). Thus, until it is 

activated for digestion in the small intestine, trypsinogen and other pancreatic 

proteases remain inactive under physiological conditions. 

 

1.3.1  Early Events in AP 

 

AP involves a complex cascade of events that starts in the pancreatic acinar cells. 

Despite advances in understanding of the disease, the exact pathogenesis of AP 

remains a subject of scientific debate. About a century ago, Chiari suggested that 

acute necrotizing pancreatitis was due to autodigestion of exocrine tissue by 

proteolytic and lipolytic enzymes (Chiari, 1896). From then onwards, the most 

common and widely accepted hypothesis has been based on the concept of an 

inappropriate activation of digestive zymogens in the pancreas. This is usually caused 

by an injury or disruption of the pancreatic acini, which results in the leakage of 

pancreatic enzymes (trypsin, chymotrypsin and elastase) into pancreatic tissue 

(Pandol, 2005; Bhatia et al., 2005; Halangk and Lerch, 2005; Halangk and Lerch, 

2004; Steer, 1999). The activated proteases (trypsin and elastase) and lipase 
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autodigest pancreatic tissue and cell membranes, causing edema, vascular damage, 

hemorrhage and necrosis (Bhatia et al., 2005a). 

 

Questions on why, where and how the activation of zymogen starts within the acinar 

cell still remain the topics of research interest and debate. So far, several pathways are 

postulated to be involved in the intracellular activation of pancreatic zymogens to 

active forms (Gorelick and Otani, 1999). These include: (1) trypsinogen 

autoactivation to trypsin, (2) cleavage of trypsinogen to trypsin by the lysosomal 

hydrolase cathepsin B (CTSB), (3) diminished activity of the intracellular pancreatic 

trypsin inhibitor, (4) leakage of zymogens and lysosomal enzymes into the cytoplasm 

and subsequent proteolytic activation, (5) shunting of zymogens into membrane-

bound compartments that contain active proteases, (6) uptake and processing of 

secreted zymogens by endocytic pathways, and (7) enhanced susceptibility of 

zymogens to proteolysis because of oxidation or decondensation (Gorelick and Otani, 

1999). Trypsinogen autoactivation (Figarella et al., 1988), CTSB activation of 

trypsinogen (Gorelick and Otani, 1999), inappropriate activation of trypsinogen 

(Naruse S., 2003) and disturbances in calcium (Ca2+) signaling have received the most 

attention. 

 

1.3.2 Trypsinogen Autoactivation 

 

In the mechanism of trypsinogen autoactivation, trypsin-induced trypsinogen 

activation represents the event that initiates AP (Whitcomb et al., 1996). In the results 

of some recent studies, it is suggested that trypsinogen activation occurs 

intracellularly along the normal secretory pathway within small cytoplasmic vacuoles 
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that contain lysosomal markers and release trypsin into the cytoplasm in a time-

dependent fashion (Bruno MJ, 2001). Further investigations are needed to better 

understand the role of these cytoplasmic vacuoles. Observations have suggested that 

progressive disassembly of microtubules and filaments in the acinar cells cause a 

blockage of luminal exocytosis, with subsequent accumulation of zymogen granules 

(Jungermann et al., 1995). However, in a recent study, the investigators concluded 

that autoactivation of trypsinogen is not an initiating factor for the intrapancreatic 

proteolytic cascade (Halangk et al., 2002). Using a cell-permeant, highly specific, and 

reversible trypsin inhibitor, researchers were able to completely inhibit trypsin 

activity in isolated rat pancreatic acini or lobules. The conversion of trypsinogen to 

trypsin in response to supramaximal caerulein remains completely unaffected by the 

presence of a specific trypsin inhibitor and thus by the presence or absence of free 

trypsin activity within the acinar cells. Thus, more studies are needed to establish the 

precise role of autoactivation of trypsinogen in AP. 

 

1.3.3 CTSB Activation of Trypsinogen 

 

There are many data that support the possible role of lysosomal cysteine proteinase 

CTSB in the molecular mechanisms of intracellular trypsinogen activation: 1) in vitro 

activation of trypsinogen by CTSB (Figarella et al., 1988); 2) Redistribution of CTSB 

into a zymogen granule-containing subcellular compartment was detected during the 

initial phase of AP (Hofbauer et al., 1998b); 3) Detection of lysosomal enzymes in 

secretory organelles by immunogold electron microscopy (for example, trypsinogen 

in the experimental AP) (Hofbauer at al., 1998b); 4) Reduced trypsin activity and 

pancreatic injury after in experimental secretagogue-induced pancreatitis in CTSB-
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deficient mice (Halangk et al., 2000). These findings have provided evidence that 

CTSB may play an important role in trypsinogen activation within the pancreas and 

the initiation of AP. However, an incomplete protection against trypsinogen activation 

and pancreatic injury may suggest that other unknown mechanisms may be involved 

in the trypsinogen activation in early AP. 

 

1.3.4 Inappropriate Activation of Trypsinogen 

 

In the healthy pancreas, there are several safety mechanisms to cope with the risk of 

autoactivation of zymogens, which can lead to autodigestion (Naruse S, 2003). 

Usually, trypsinogen is activated by enterokinase only when it is secreted into the 

duodenum. At this point, trypsin is still able to autoactivate trypsinogen. Pancreatic 

secretory trypsin inhibitor (PSTI) is present in secretory granules of acinar cells, 

which binds to the active site of trypsin and inhibits trypsin activity. The molar ratio 

of PSTI to trypsin was estimated to be 1: 10 (Naruse, 2003). This inhibitory 

mechanism is no longer effective, when more than 10% of trypsinogen is activated. 

Thus, any disorders or agents that cause abnormalities in this natural protective 

mechanism can cause pancreatitis (Naruse, 2003). 

 

1.3.5 Involvement of Ca2+ signaling 

 

Ca2+ plays an important role in the early phase AP. Pancreatitis induced by caerulein 

hyperstimulation and by pancreatic duct obstruction has been shown to cause a rise in 

intracellular Ca2+ and a disruption of acinar cell Ca2+ signaling. This is associated 

with acinar cell vacuolization and the intracellular trypsinogen activation events that 
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occur in early AP (Bhatia et al., 2001; Raraty et al., 2000; Mooren et al., 2003). While 

there is clear evidence that intracellular Ca2+ takes part in intracellular trypsinogen 

activation, it is still unclear whether the change in Ca2+ signaling alone is sufficient 

for this effect. Incubation of pancreatic acini with thapsigargin (Ca2+-ATPase 

inhibitor) resulted in trypsinogen activation in one (Raraty et al., 2000) but not 

another study (Saluja et al., 1999). Therefore, more investigation is required to clearly 

understand the role of Ca2+ in trypsinogen activation. Furthermore, acidic pH and 

presence of Ca2+ are important in trypsinogen autoactivation (Figarella et al., 1988). 

In addition, the affinity of PSTI is higher at neutral pH and is reduced at lower pH. 

Therefore, the generation of low-pH compartments within the acinar cell during 

experimental pancreatitis may be important to trypsinogen activation (Figarella et al., 

1988). 

 

1.4  INFLAMMATORY MEDIATORS 

 

The pathogenesis of AP involves the interplay of local and systemic immune 

responses that are often difficult to characterize. There is an intricate balance between 

localized tissue damage with the systemic production of proinflammatory and anti-

inflammatory mediators. The critical players in this interaction include the 

proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-

6, platelet activating factor (PAF), chemokines, adhesion molecules and substance P 

(Rinderknecht H, 1988; Bhatia et al., 2000a; Bhatia et al., 2001a; Bhatia M, 2002a). 

Anti-inflammatory mediators like IL-10 and complement component C5a, have also 

been shown to be intimately involved in the inflammatory response to AP. The 

expression of several cytokines (IL-1β, IL-6, and TNF-α) is mediated via receptor-
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induced pathways, and are most commonly regulated by transcription factors such as 

nuclear factor kappa B (NF-κB) (Algul et al., 2002; Mercurio and Manning, 1999). 

 

1.4.1  NF-κB 

 

The exact cellular mechanism by which the cytokines are activated by NF-κB is not 

completely known, although the activity of NF-κB is mediated by the activation and 

translocation of NF-κB hetero- and homodimers into the nucleus (Algul et al., 2002; 

Thanos and Maniatis, 1995). Upon activation, degradation of the inhibitory element of 

NF-κB releases the latter, resulting in the translocation of NF-κB into the nucleus, 

where it activates gene transcription. Activation of NF-κB and decreased expression 

of the inhibitory element of NF-κB have been demonstrated in caerulein-induced 

pancreatitis in rats (Gukovsky et al., 1998; Han and Logsdon, 2000; Grady et al., 

1997; Bhatia et al., 2002b). Considering the important role proinflammatory cytokines 

play in AP, NF-κB has been investigated by researchers as a potential therapeutic 

target. One report (Steinle et al., 1999) showed that inhibition of NF-κB enhanced 

tissue injury and inflammation while others found that this inhibition attenuates 

severity or even improves survival in different experimental models of AP (Ethridge 

et al., 2002; Satoh et al., 1999; Dunn et al., 1997). In a recent study, NF-κB was 

directly activated within the pancreas using adenoviral-mediated transfer of an active 

subunit, RelA/p65, delivered by intraductal injection (Chen et al., 2002). In this study, 

activation of NF-κB within the pancreas was sufficient for the initiation of an 

inflammatory response. Despite conflicting results with this transcription factor, NF-
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κB remains an important eukaryotic transcription factor, whose precise function in the 

pathophysiology of AP has yet to be determined by future research. 

 

1.4.2 TNF-α and IL-1β 

 

Levels of both these proinflammatory mediators are elevated at the onset and during 

the progress of AP (Uhl et al., 2002; Bhatia et al., 2000a; Bhatia et al., 2001a; Bhatia 

M, 2002a; Fink and Norman, 1997; Hirota et al., 2000; Norman et al., 1995). 

Naturally occurring soluble tumour necrosis factor (TNF) receptors (sTNFR) and IL-

1ra, by neutralizing the activity of TNF-α and IL-1β, respectively, act as anti-

inflammatory mediators (Uhl et al., 2002; Bhatia et al., 2000a; Bhatia et al., 2001a; 

Bhatia et al., 2002a; Fink and Norman, 1997; Hirota et al., 2000; Norman et al., 

1995). Pancreatic acinar cells have been shown to produce and release TNF-α 

(Gukovskaya et al., 1997). On induction of AP, knockout mice lacking receptors for 

IL-1β or/ and TNF-α have significantly improved survival when compared to wild-

type mice (Denham et al., 1997). Moreover, the inhibition of IL-1β and TNF-α has 

been shown to attenuate the severity of pancreatitis in different experimental models 

of AP. Blockade of the IL-1 receptor before or soon after induction of pancreatitis is 

associated with decreased severity of pancreatitis and reduced intrinsic pancreatic 

damage. Also, neutralization of TNF-α with a polyclonal antibody significantly 

reduces the severity of AP in rats. Strategies that interfere with TNF-α or IL-1β 

translation, intracellular processing and release rather than antagonizing their effects 

also decrease the severity of an attack in experimental models (Hughes et al., 1996). 

On the other hand, combined augmentation of serum IL-1β and TNF-α in AP, exerts 

synergistic proinflammatory effects (Mayer et al., 2000). 
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1.4.3 IL-6 

 

IL-6 is a proinflammatory cytokine that is produced by a wide range of cells including 

monocytes/macrophages, endothelial cells, fibroblasts and smooth muscle cells in 

response to stimulation by endotoxin, IL-1β and TNF-α (Uhl et al., 2002; Bhatia et 

al., 2000a; Bhatia et al., 2001a; Bhatia M, 2002a). It is also produced by periacinar 

myofibroblasts in response to TNF-α and IL-1β (Jambrik et al., 2002). IL-6 levels are 

raised in a number of acute conditions such as burns, major surgery, and sepsis. 

Plasma levels of IL-6 correlate with hemodynamic abnormalities (cardiac output, left 

ventricular filling) characteristic in AP in the rabbit (Leser et al., 1991). 

Administration of IL-6 induces pyrexia. IL-6 levels are raised in patients with AP and 

correlate with disease severity (Pezzilli et al., 1998; Suzuki et al., 2000). Transgenic 

mice overexpressing human IL-6 are more susceptible to AP, and in these mice a 

monoclonal anti- IL-6 antibody has a protective effect (Shimada et al., 2002). 

 

1.4.4 IL-8 

 

 IL-8 is a strong neutrophil attractant that belongs to the C-x-C chemokine family 

(Bhatia et al., 2000). It is produced by phagocytes and mesenchymal cells exposed to 

inflammatory stimuli, such as IL-1 or TNF, and activates neutrophils inducing 

chemotaxis, exocytosis and the respiratory burst (Baggiolini and Clark-Lewis, 1992). 

In AP, it has been reported that anti-IL-8 antibody reduces lung damage, but not the 

inflammatory condition in the pancreas (Bhatia et al., 2000). Its high concentrations 

have been observed in the lungs of patients with ARDS (Oppenheim et al, 1991; 
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Miller et al., 1992). It has been demonstrated that in bronchoalveolar lavage, levels of 

IL-8 are significantly higher in patients who have developed ARDS (Donnelly et al., 

1993). Anti-interleukin 8 and interleukin-8 complexes has also been suggested to be a 

clinical marker for ARDS (Kurdowska et al., 2002). 

 

1.4.5 IL-10 

 

IL-10 is an anti-inflammatory cytokine (Uhl et al., 2002; Bhatia et al., 2000a; Bhatia 

et al., 2001a; Bhatia M, 2002a). In cultured monocytes, IL-10 upregulates interleukin-

1 receptor antagonist (IL-1ra) and sTNFR production, reduces IL-8 and monocyte 

chemoattractant protein-1 (MCP-1) levels (Seitz et al., 1995). Experimentally, IL-10 

was found to reduce the extent of inflammation as well as the mortality associated 

with AP (Rongione et al., 1997a; Dembinski et al., 2001). Employing recombinant IL-

10 in experimental models of AP, the animals were found to be protected to a 

significant extent (Rongione et al., 1997b; Van Laethem et al., 1995). Pre-treatment 

with synthetic IL-10 agonist in rabbits also lowers the extent of lung injury and 

mortality from this condition (Osman et al., 1998). Conversely, IL-10 gene deletion 

(Gloor et al., 1998), or administration of anti-IL-10 monoclonal antibody (Van 

Laethem et al., 1998) resulted in mice more susceptible to AP. In one study of clinical 

AP, serum IL-10 levels were found to be increased to a greater extent in the mild, as 

against severe, AP (Pizzelli et al., 1997). Yet, three other studies reported that IL-10 

levels correlate with the severity of AP (Chen et al., 1999; Berney et al., 1999; 

Wereszczynska-Siemiatkowska et al., 2003). Two clinical trials involving IL-10 have 

been carried out in patients with postendoscopic retrograde cholangiopancreatography 

pancreatitis. In both trials, patients received either recombinant IL-10 or placebo 
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before endoscopic retrograde cholangiopancreatography. During the course of the 

condition, one study reported no significant difference in clinical outcome between 

the two groups (Dumot et al., 2001) while the other reported a significant protection 

by IL-10 (Deviere et al., 2001). Even in the study by Deviere et al. (Deviere et al., 

2001), only 2 patients had severe AP (developed organ failure or had an inpatient stay 

greater than 10 days). Therefore it is at present uncertain if IL-10 will reduce the 

severity of AP in patients with severe disease from other causes. 

 

1.4.6 PAF 

 

Platelet-activating factor (PAF) is a potent low molecular weight pro-inflammatory 

phospholipid released by a number of cell types that include platelets, epithelial cells, 

mast cells, macrophages, endothelial cells (Uhl et al., 2002; Bhatia et al., 2000a; 

Bhatia et al., 2001a; Bhatia M, 2002a, Bhatia and Moochhala, 2004a). PAF has been 

linked to the pathogenesis of AP and associated lung injury (Hofbauer et al., 1998a). 

The study by Hofbauer and co-workers showed that an upregulation of PAF in blood, 

pancreatic and lung tissues during pancreatitis, and terminating PAF action by 

hydrolase significantly ameliorate acinar cell injury and necrosis (Hofbauer et al., 

1998a). Similarly in other independent studies, it was observed that PAF plays an 

important role in the pathogenesis by causing or increasing the severity of AP (Zhou 

et al., 1993; Konturek et al., 1992; Emmanuelli G, 1989). Lexipafant, a PAF 

antagonist has been used to improve organ failure or mortality of pancreatitis patients 

in clinical trial as far as phase II study (Kingsnorth et al., 1995). However, its 

development was terminated in phase III trial, as the drug failed to demonstrate the 

favorable efficacy (McKay CJ, 2002).  
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1.4.7 C5a 

 

C5a is a potent pro-inflammatory anaphylatoxin and chemoattractant that is derived 

from C5 through both the classical and alternative pathways of complement 

activation. It stimulates smooth muscle contraction, increases blood flow and 

enhances vascular permeability (Gerard and Gerard, 1994), thus generally viewed as a 

pro-inflammatory mediator (Bhatia et al., 2000a; Bhatia et al., 2001a; Bhatia M, 

2002a; Hopken et al., 1996; Bozic et al., 1996). Paradoxically, C5a acts as an anti-

inflammatory mediator during AP in mice (Bhatia et al., 2001b). In this study, 

removal of either C5a receptors or C5 resulted in a worsening of the severity of 

pancreatitis in mice, as measured from the parameters used to evaluate the severity of 

AP. 

 

1.4.8 Chemokines 

 

Chemokines are chemoattractant cytokines (8-10kDa) that are critical for the 

activation and directing leukocytes to areas of injury during inflammation (Baggiolini 

et al., 1997). Chemokines have been shown to play an important role in the 

pathophysiology of AP in several studies (Rau et al., 1997; Shokuhi et al., 2002). 

Levels of IL-8, GRO-α and ENA-78 are elevated during AP (Rau et al., 1997; 

Shokuhi et al., 2002). These chemokines are also good predictors of the severity of 

the disease (Rau et al., 1997; Shokuhi et al., 2002). Cytokine-induced neutrophil 

chemoattractant (CINC) is the rat homologue of the human chemokine GRO-α. The 

circulating levels of CINC are raised in severe experimental AP (Brady et al., 2002), 

18 



and treatment with neutralizing antibody against CINC attenuated pancreatitis-

associated lung injury in rats (Bhatia et al., 2000b). Similarly, MIP-1α/RANTES 

receptor: CCR1 knockout mice were protected from pancreatitis-associated lung 

injury though there was little effect on pancreatic injury (Gerard et al., 1997). In 

addition, treatment with Met-RANTES, a CCR1 antagonist reduced the severity of 

pancreatitis-associated lung injury, with little effect on pancreatic damage (Bhatia et 

al., 2003c).  

 

1.4.9 Adhesion molecules 

 

Recruitment of leukocytes to sites of inflammation and tissue injury is characterized 

by a highly coordinated and well-regulated process that largely occurs in one region 

of the microvasculature, the post-capillary venules. Adhesion molecules expressed on 

the surface of endothelial cells in postcapillary venules and leukocytes serve to enable 

an orderly sequence of cell-cell interactions that sustain leukocyte adherence to 

vascular endothelium and the subsequent transendothelial migration into inflamed 

tissue. These adhesive interactions are regulated by sequential activation of three 

different families of adhesion molecules expressed on the surface of leukocytes and 

endothelial cells: the selectin family (E-, P-, and L-selectins), immunoglobulin G 

superfamily (ICAM-1&2, VCAM-1, PECAM-1 and MAdCAM-1), and the integrin 

family (LFA-1, Mac-1 and VLA-4) (Panes and Granger, 1998). It was demonstrated 

that levels and expression of P-selectin, E-seletin, ICAM-1, VCAM-1, LFA-1 and 

Mac-1 were upregulated and enhanced in AP (Lundberg et al., 2000; Sunamura et al., 

1999; Uhlmann et al., 2001; Sun et al., 2006; Lau et al., 2007). The severity of AP can 

be effectively suppressed by immunoneutralization of adhesion molecules (Wang et 
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al., 1999). In rodent, inactivation of adhesion molecules by monoclonal antibodies 

significantly enhances capillary blood flow in the pancreas, reduces leukocyte rolling 

and stabilizes capillary permeability (Frossard et al., 1999). The interaction of 

leukocytes and endothelial cells via adhesion molecules seems to be an early and rate-

limiting component of the microvascular dysfunction that accompanies the early 

events of AP. Although the therapeutic potential of inhibiting adhesion molecules is 

only beginning to be investigated, it is likely that new chemical agents that are 

designed to target this component of the inflammatory response will soon be tested in 

the clinics. 

 

1.5 NEUROGENIC INFLAMMATION (NI) 

 

In 1910, Bruce observed that the inflammatory response induced by the application of 

mustard oil in the conjuctival sac in experimental animals could be suppressed by 

sensory nerve ablation (Bruce, 1910; Bruce, 1913). These early studies of the sensory 

neuron–related inflammatory reaction led to the concept of neurogenic inflammation 

(NI), referring to both increased vascular permeability and vasodilatation caused by 

the release of neuropeptides by capsaicin-sensitive sensory neurons (Jancso et al., 

1967). NI was recognized as a nervous system-induced physiological process of 

inflammation. 

 

The neuropeptides released act on the vasculature at the peripheral level to cause the 

vasodilatation of arterioles, the extravasation of plasma protein from post-capillary 

venules, and the adhesion of leukocytes to endothelial cells of venules (Geppetti and 

Holzer, 1996). Additional tissue-specific responses produced by neurogenic 
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inflammatory mechanisms include smooth muscle relaxation/contraction in the 

urinary bladder, urethra and iris, inotropic and chronotropic effect on the heart, 

bronchoconstriction in the airways and other effects (Geppetti and Holzer, 1996).  

 

Peptide-containing primary sensory neurons are characterized by their unique 

sensitivity to the pungent substance present in the plants of the genus Capsicum, 

known as capsaicin (Szallasi and Blumberg, 1999). The cloning of the channel 

operated by capsaicin, the ‘vanilloid receptor-1’ (VR-1) (Caterina et al., 1997) has 

clarified the molecular basis of the selective action of capsaicin on sensory neurons. 

This seven transmembrane domain protein is a non-selective cation channel, whose 

endogenous stimulants are heat (>43°C), protons (Bevan and Geppetti, 1994) and 

possibly high anandamide concentrations (Zygmunt et al., 1999). At low 

concentration, capsaicin has been used as a tool to study NI due to its ability to cause 

the release of sensory neuropeptides. However, capsaicin is neurotoxic at higher 

concentrations, and therefore wipes the source of neuropeptides that are required for 

NI responses (Szallasi and Blumberg, 1999). The specific excitatory/desensitizing 

effect of capsaicin on these neurons is the reason why they have been defined as 

‘capsaicin-sensitive’ (Szolcsanyi and Mozsik, 1984). 

 

A large variety of agents can stimulate both afferent and ‘efferent’ (neurogenic 

inflammation) functions of primary sensory neurons (Geppetti and Holzer, 1996; 

Geppetti P, 1993; Holzer P, 1988; Maggi CA, 1991). These stimuli include: autacoids 

(prostanoids, leukotrienes, histamine and serotonin) (Saria et al., 1983), changes in the 

extracellular milieu, such as increased temperature (Caterina et al., 1997), osmolarity 

(Piedimonte et al., 1993), lowering of the pH (Geppetti P et al., 1991), inflammatory 
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or tissue injury conditions like anaphylaxis (Bertrand and Geppetti, 1996). In 

particular, substance P (SP) produces inflammation in several important models of 

tissue injury in the airways (Advenier et al., 1997; Bertrand and Geppetti, 1996; 

Geppetti P, 1993). These inflammatory responses may be limited by the activation of 

inhibitory receptors on sensory nerves (Maggi CA, 1991). These receptors include 

histamine H3, adenosine A1, 5-HT1B/D, dopamine D2 receptors and many other 

receptors (Maggi CA, 1991). Agonists for these receptors may, thus, be considered as 

anti-inflammatory agents. On the other hand, tachykinin receptor antagonists are 

regarded as potential anti-inflammatory drugs. Besides SP, other neuropeptides that 

are implicated in NI include calcitonin gene-related peptide (CGRP), vasoactive 

intestinal polypeptide (VIP) and neuropeptide Y (NPY) (Karanth et al., 1991).  
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Figure 1.1  Molecular pathways of neurogenic inflammation. SP, substance P; 
NKA, neurokinin A; HK-1, hemokinin-1; ET-3, endothelin-3; CGRP, calcitonin 
gene–related peptide; NK1R, neurokinin-1 receptor; EDNRB, endothelin 
receptor type B; CALCR, calcitonin receptor; NO, nitric oxide.  
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1.6 TACHYKININS AND NEUROKININ RECEPTORS  
 

1.6.1 Mammalian tachykinins (TK) 

 

To date, there are six TKs identified in mammals. They are substance P (SP), 

neurokinin A, neurokinin B, neuropeptide K (NPK), neuropeptide γ (NPγ) and 

hemokinin-1. NPK and NPγ are N terminally extended forms of NKA. The primary 

structures of TKs are listed in Table 1.2. These closely related peptides are 

characterized by the presence of the common C-terminal, amino acid sequence 

FXGLM-NH2. Characteristically, all the TK peptides are aminopeptides with their C-

terminal methionine amidated. While the amino acid sequence of SP, NKA and NKB 

is identical in all mammals where it has been studied, the sequence of HK-1 appears 

to vary among the mouse, rat and human (Zhang et al., 2000; Kurtz et al., 2002). 

 

1.6.1.1  Substance P 

 

Seventy five years ago, an unidentified chemical was described by von Euler and 

Gaddum in alcoholic extracts of equine brain and intestine that exhibited a strong 

stimulant effect on the jejunum and a hypotensive action in the rabbit that was 

different from any substance then reported to stimulate the gastrointestinal tract. The 

extract was referred to as “P” on the tracings and the protocols (van Euler and 

Gaddum, 1931). While numerous studies of its action were conducted using semi-

purified preparations, much effort was made to isolate the active substance. Pure SP 

was isolated from bovine hypothalamus and its structure was established by Chang 

and Leeman 40 years later (Chang and Leeman, 1970). Over the first 50 years since 

its discovery, this peptide has been one of the most extensively studied active 
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peptides. For many years, SP was regarded as the only mammalian TK that was 

considered as a neuropeptide, until the isolation of neurokinin A and neurokinin B in 

1983 (Kangawa et al., 1983; Kimura et al., 1983).  

 

SP is a peptide that made up of 11 amino acids: HRPKPQQFFGLM-NH2 (MW: 

1340). Its expression is almost exclusively confined to central and peripheral nervous 

systems, and it is involved in the transmission of pain, the rapid contractions of the 

gastrointestinal smooth muscle, and the modulation of inflammatory and immune 

reactions. It is derived from the product of pre-protachykinin-A (PPT-A) gene (Carter 

et al., 1994, Figure 1.2). SP is released from its precursor protein by the actions of 

convertases. Cleavage sites for the convertases on the PPT gene product are doublets 

of cationic residues. The COOH-terminal then undergoes amindation by the action of 

peptidyl-Gly-α-amidating monoxygenase using Gly as the amide donor after the 

cleavage of the Arg-Lys (Harmar et al., 1980; Harmar and Keen, 1982). SP is then 

transported into storage vesicles and axonally transported to terminal endings 

(Merighi et al., 1988; Plenderleith et al., 1990; Brimijoin et al., 1980).  

 

Although a number of enzymes are involved in the in vitro metabolism of SP, neutral 

endopeptidase (NEP: metalloendopeptidase EC.3.4.24.11) and angiotensin-converting 

enzyme (ACE: EC.3.4.15.1) are probably the enzymes most commonly involved in 

the metabolism of SP within the periphery (Nadel JA, 1991). NEP has been 

demonstrated to be involved in the metabolism of SP in the brain (Hooper and Turner, 

1987). 
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Tachykinins Peptide Sequence 

Substance P RPKPQQFFGLM-NH2 

Neurokinin A HKTDSFVGLM-NH2 

Neuropeptide K DADSSI/VEKQVALLKALYGHGQISHKRHKTDSFVGLM-NH2 

Neuropeptide V DAGHGQISHKRHKTDSFVGLM-NH2 

Neurokinin B DMHDFFVGLM-NH2 

Hemokinin-1 (Human) TGKASQFFGLM-NH2 

Hemokinin-1 (Rodent) RSRTRQFYGLM-NH2 

 
 
Table 1.2 Sequences of Mammalian Tachykinins 
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NPK 
NKA SP 

β-PPT-A (CNS/PNS) 

α-PPT-A (CNS) 

1 2 4 5 63 7Genes 

PPT-A PPT-B 
(CNS/PNS) 

1 2 4 53 7

mRNA 

γ-PPT-A (CNS/PNS) 

1 2 5 63 7

1 2 4 5 63 7

Peptides SP SP/NKA/NPK SP/NPK/NPγ NKB HK-1

PPT-C 
(PNS) 

 

Figure 1.2  Schematic representation of the biosynthesis of SP and related 
peptides. PPT-A gene encodes for SP, NKA, NPK and NPγ, PPT-B gene encodes 
for NKB and PPT-C gene encodes for HK1. PPT-B, pre-protachykinin B; PPT-
C, pre-protachykinin C; CNS, central nervous system; PNS, peripheral nervous 
system. 
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1.6.1.2  Neurokinin A (NKA) 
 

The isolation and identification of NKA from porcine spinal cord was first reported 

by Kimura and co-workers in 1983 (Kimura et al., 1983). The peptide was also known 

as neurokinin α (Kimura et al., 1983), substance K (Nawa et al., 1984) or neuromedin 

L (Minamino et al., 1984). Both NKA and SP are derived from the same neurokinin 

precursors, the beta or gamma pre-protachykinin A (β-PPT-A and γ-PPT-A; Figure 

1.2), and are expressed in and released from the peripheral sensory or autonomic 

neurons. The peptide sequence of this decapeptide is:  

 

H- HKTDSFVGLM -NH2. 

 

Although NKA acts as an agonist on all three types of neurokinin receptors, it has the 

highest affinity towards the NK2R among the known TK (Regoli et al., 1990). It is a 

potent bronchocontrictor in guinea-pigs (Tatemoto et al., 1985) and human (Advenier 

et al., 1987). Besides, NKA has potent effect on micturition reflex and duodenum 

motility (Maggi et al., 1987). In isolated organs, NKA is a potent stimulant of the 

smooth muscle in the pulmonary artery, duodenum, gall bladder, bronchus, trachea, 

vas deferens and urinary bladder (Regoli et al., 1990). Other possible roles of NKA 

include immunomodulation (Zhang et al., 2006; Bost, 2004), inflammation (Marriott, 

2004; Evangelista, 2001; Campos and Calixto, 2000) and neuromodulation (Chahl, 

2006). 

 

Clear differences exist between SP and NKA susceptibility to metabolism. A study 

has demonstrated that NKA is resistant to hydrolysis by both ACE and 

dipeptidyl(amino)peptidase IV (Hooper and Turner, 1987; Wang et al., 1991). 

28 



Although NKA is hydrolyzed by plasma (Wang et al., 1991) and endothelial 

aminopeptidase M (Wang et al., 1994), such hydrolysis gives rise to a smaller active 

metabolite NKA(4-10). The actual inactivation of circulating NKA may depend on 

the slow metabolism by low levels of plasma and endothelial NEP-24.11 and/or other 

unidentified enzymes (Wang et al., 1994). 

 

1.6.1.3  Neurokinin B (NKB) 

 

Besides NKA, Kimura and coworkers have also reported the presence of another TK 

peptide in the porcine spinal cord (Kimura et al., 1983). The peptide was named 

neurokinin β (Kimura et al., 1983) or neuromedin K (Kangawa et al., 1983). At the 

satellite symposium of the International Union of Pharmacology (IUPHAR, London) 

in 1984, the name neurokinin B (NKB) was recommended and this nomenclature is 

widely adopted today.  

 

The peptide sequences of NKA and NKB only differ in the first three amino acids 

from the amino-end. However, NKB is derived from a different gene, pre-

protachykinin B (PPT-B) (Bonner et al., 1987; Figure 1.2). This peptide is widely 

distributed in the CNS (Munekata E, 1991), particularly in the cerebral cortex 

(Munekata E, 1991). Besides it is also found in some of the sensory neurons in the 

peripheral tissues including the gastrointestinal system (Tateichi et al., 1990). The 

function of NKB in the brain remains unclear, although it has been suggested to be 

implicated in anxiety (Ribeiro et al., 1999) and sensory transmission (Zerari et al., 

1997). In rats, NKB causes contraction of the hepatic portal vein (Mastrangelo et al., 

1987), venoconstriction of the mesenteric beds (D’Orleans-Juste et al., 1991) and 

29 



increases the heart rate (Thompson et al., 1998). More recently, Page and co-workers 

(2000) identified the presence of NKB mRNA in the human placenta, suggesting the 

involvement of the peptide in women suffering from pre-eclampsia, with plasma NKB 

levels correlating well with blood pressure. The metabolism of NKB has not been 

studied but it was proposed that the peptide may also be a substrate for NEP and ACE 

(Khawaja and Rogers, 1996). 

 

1.6.1.4  Hemokinin-1 (HK-1) 

 

The fourth mammalian TK was discovered in 2000 in mouse and was named 

hemokinin-1 (HK-1, Zhang et al., 2000). This decapeptide has the peptide sequence of 

TGKASQFFGLM-NH2 in human and RSRTRQFYGLM-NH2 in the rodents (Page 

NM, 2004). It is a product of the PPT-C gene (Figure 1.2), the third TK gene (Zhang 

et al., 2000). Strong expression of PPT-C was found mainly in the bone marrow, 

uterus and skeletal muscle (Page et al., 2003). Nevertheless, moderate tachykinin 4 

gene (TAC4) expression was also detected in spleen, lungs, kidney and testis (Page 

NM, 2004). Although HK-1 and SP have almost equal affinity towards human NK1R, 

the decapeptide has stronger affinities towards human NK2R and NK3R than SP 

(Kurtz et al., 2002; Page et al., 2003; Duffy et al., 2003; Belluci et al., 2002). 

 

The first reported pharmacological action of HK-1 was its ability to improve the 

survival of bone marrow cell in primary cultures and stimulate their proliferation. 

This effect was not observed with SP (Zhang et al., 2000), which led to speculation 

that a novel neurokinin receptor might exist (Page, 2004). However, HK-1 has been 

found to produce most of the effects of SP that are mediated by NK1R (Page NM, 
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2004). Due to the difference in the expression patterns of SP and HK-1 (nervous 

system cf peripheral tissues), HK-1 is often considered as the endogenous peripheral 

SP-like endocrine/paracrine agonist where SP is not expressed. 

 

1.6.2 Neurokinin-1 receptor (NK1R) 

 

The NK1R was cloned in 1989 (Yokota et al., 1989). The deduced amino acid 

sequence (407 amino acid residues) possesses seven putative membrane spanning 

domains and shows a sequence similarity to the members of G-protein-coupled 

receptors. Transfection of human NK1R in CHO cells has suggested that the receptor 

couples to Gq/11, Gαs and Gα0. Cloned NK1R displayed a very high degree of 

sequence homology among species that include human, mouse, rats and guinea-pig 

(Gerard et al., 1993). Stimulation of the NK1R activates phospholipase Cβ (PLCβ), 

which leads to intracellular inositol 1,4,5-trisphophate (IP3) turnover and followed by 

subsequent elevation of intracellular Ca2+. Therefore, the elevated Ca2+ would in turn 

regulate downstream gene transcriptions (Regoli et al., 1994).  

 

NK1R is widely distributed in the central nervous system (CNS), with highest 

expression in the superior coliculus and caudate-putamen, and moderate to low levels 

in the hypothalamus, olfactory bulb, hypothalamus, inferior colliculus, hippocampus, 

substantia nigra, cerebral cortex, septum, striatum, mesencephalon and dorsal horn of 

the spinal cord (Shults et al., 1984; Dam and Quirion, 1986). In the peripheral nervous 

system (PNS), NK1R has been found in the intrinsic and extrinsic neurons of the gut 

(Sternini et al., 1995; Costa et al., 1986), in unmyelinated axons in glabrous skin 

(Carlton et al., 1996) and in rodent dorsal root ganglia (DRG) (Dray and Pinnock, 
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1982; Li and Zhao, 1998). In the gut, the cell bodies of the extrinsic enteric neurons 

are located in the nodose and DRG ganglia (Baron et al., 1983 ) and their terminals 

innervate primarily the arterial vascular system (Holzer and Holzer-Petsche, 1997b), 

and are thought to be involved in NI processes.  

 

NK1R mediates most of the actions of SP and it has been an important target for drug 

discovery for the past twenty years. Antagonists of the receptor have been 

investigated for the treatment of various conditions including pain, depression, 

anxiety, migraine, chemotherapy-induced emesis and NI. 

 

1.6.3 Neurokinin-2 receptor (NK2R) 

 

The presence of NK2R (formerly known as the substance K receptor) was first 

reported by Buck and co-workers using radioligand binding assays (Buck et al., 

1984). The cloning of NK2R was completed by Sasai and Nakanishi in 1989 (Sasai 

and Nakanishi, 1989). The rat NK2R consists of 390 amino acid residues (molecular 

weight, Mr = 43,851) and belongs to the family of seven transmembrane G-protein-

coupled receptors. The receptor is also known as “neurokinin A-susceptive” due to its 

high affinity with NKA (Patacchini et al., 2004). 

 

Although NK2R has limited presence in the CNS (Bensaid et al., 2001), it was found 

in the spinal cord and CNS (Hagan et al., 1993) and may be involved in, for example, 

pain processing (Xu et al., 1991; Nagy et al., 1993; Santucci et al., 1993) and anxiety 

(Stratton et al., 1993). The receptor is found mainly in the peripheral organs including 

the gastrointestinal tract and ferret airway smooth muscle (Tsuchida et al., 1990; 
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Meini et al., 1993). In the rat duodenum, the stimulation of NK2R causes smooth 

muscle relaxation (Giuliani et al., 1988). Due to its capability to regulate 

gastrointestinal motility and inflammatory response, NK2R has been a target for drug 

discovery for the treatment of diseases such as irritable bowel syndromes, chronic 

constipation, ulcerative colitis and Crohn’s disease (Lecci et al., 2004; Lecci et al., 

2006). 

 

1.6.4 Neurokinin-3 receptor (NK3R) 

 

The NK3R has been cloned from rat (Shigemoto et al., 1990, 452 amino acid 

residues) and human (Buell et al., 1992; Huang et al., 1992; Takahashi et al., 1992; 

465 amino acid residues). The primary sequence of the two receptors shows 88% 

identity with 7 variant positions in putative TM segments (Gerard et al., 1993). Both 

the rat and human NK3R are considerably longer compared to NK1R and NK2R 

receptors. The information of the molecular determinants of interaction between 

ligands and the NK3R protein is almost confined to one study by Gether and co-

workers (Gether et al., 1993a), providing information of the structural requirements of 

the rat NK3R protein which determine the binding affinity for NKB and senktide in a 

series of rat NK1/NK 3 chimeric receptor constructs. 

 

The NK3R is defined as the mediator of those biological actions encoded by the C-

terminal sequence of TK, for which NKB is a more potent agonist than NKA or SP. 

Studies on the expression of mRNA for NK3R have indicated a limited, albeit 

sizeable, expression in some peripheral tissues (Tsuchida et al., 1990). The expression 

and distribution of NK3R in the PNS is limited, as compared to that of NK1R and 
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NK2R. In sharp contrast, NK3R are abundantly expressed in the CNS and spinal cord: 

in various regions of the brain the expression of NK3R is clearly distinct from that of 

other neurokinin receptors, while in some areas NK3 and NK l receptors are co-

expressed (Tsuchida et al., 1990; Stoessl and Hill, 1990; Otsuka and Yoshioka, 1993 

for review). CNS areas enriched with NK3R are the cerebral cortex (laminae IV-V of 

frontoparietal cortex), the solitary nucleus, the interpeduncular nucleus, the habenula 

and the ventral tegmental area; in the spinal cord, the expression of NK3R seems 

limited to the dorsal horns, mRNA encoding for NK3R has also been detected in 

various regions of human brain while expression in peripheral tissues is very low or 

absent (Buell et al., 1992). 

 

Functional responses to NK3R selective agonists have been detected in the 

longitudinal and circular muscle layers of the guinea-pig ileum and colon to produce 

indirect smooth muscle contraction/relaxation by releasing various mediators (Laufer 

et al., 1986; Laufer et al., 1988; Maggi et al., 1993e), direct smooth muscle 

contraction in the rat portal vein (Mastrangelo et al., 1986), rat oesophagus (Stables et 

al., 1991) and rat uterus (Barr et al., 1991) and neuronal depolarization in the guinea-

pig superior cervical ganglia (Seabrook et al., 1992) and tracheobronchial ganglia 

(Myers and Undem, 1993). 

 

1.7 Antagonism of Neurokinin receptors 

 

The search for agents to inhibit the neurokinin-TK system started in the 1960’s when 

Schroeder and co-workers reported weak peptide antagonists of SP (Schroeder et al., 

1965). The first non-peptide antagonist, CP96,345 was synthesized by Pfizer Inc. 
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nearly thirty years later (Snider et al., 1991). CP96,345 is a selective antagonist of 

NK1R with low affinities for NK2R and NK3R (Snider et al., 1991). This was 

followed by the discoveries of other NK1R antagonists including CP99,994 (Pfizer 

Inc.), Vestipitant and Casopitant (GlaxoSmithKline Plc.), Aprepitant (EMEND; 

Merck Research Laboratories), Lanepitant (Lilly Research Laboratories), Dapitant 

(Sanofi-Aventis), FK888 (Fujisawa Pharmaceutical Co., Ltd.,) and so on. Although 

the receptor is implicated in a large number of pathological conditions, the 

developments of these antagonists have been limited to the treatment of pain, anxiety, 

depression, chemotherapy-induced emesis, psychosis and irritable bowel syndrome 

(IBS). So far, only Aprepitant, Vestipitant and Casopitant have been proven to be 

effective in the treatment of chemotherapy-induced emesis (FDA Center for Drug 

Evaluation and Research). The use of NK1R antagonists in depression and anxiety is 

also being investigated.  

 

The human NK2R has been validated as an attractive target for the treatment of a 

number of conditions in the respiratory, gastrointestinal and genitourinary systems. 

The first selective NK2R antagonist, SR-48968 (Saredutant) has been in development 

by Sanofi-Synthélabo in 1992 (Emonds-Alt et al., 1992). The compound is currently 

in Phase III clinical trial for the treatment of depression and Phase IIb clinical trial for 

the treatment of irritable bowel syndrome (IBS) (Ashburn and Gupta, 2006). Menarini 

Pharmaceutical is also developing its NK2R antagonist, Nepadutant in Phase IIa for 

IBS. Pfizer Inc. is also developing its NK2R antagonist (UK-224671), but mainly for 

the treatment of urinary incontinence (MacKenzie et al., 2002).  
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SR-142801 represents the first non-peptide NK3R antagonist synthesized by Sanofi-

Synthelabo in 1995 (Emonds-Alt et al., 1995). There are two NK3R antagonists that 

are currently in the late stage of the development, namely Talnetant 

(GlaxoSmithKline Plc) and Osanetant (Sanofi-Aventis), showing efficacy in the 

treatment of schizophrenia, anxiety and psychosis. However, these drugs are also 

being investigated for the treatment of IBS and over-reactive bladder (FDA Center for 

Drug Evaluation and Research). 

 

1.8 Aims 

 

Although there are a number reports that suggested a possible role of NI in AP, the 

pathway by which NI aggravates AP is still unknown. In light of a previous study that 

demonstrated the importance of tachykinins and neurokinin receptors in the 

development of AP and associated lung injury using PPT-A knockout mouse (Bhatia 

et al., 1998), I investigated the relationship between the activation of tachykinin-

neurokinin receptors systems and the pathological events that take place during AP 

and associated lung injury. The following are the aims of the studies described in this 

thesis: 

 

1. To examine the effects of CP96,345 (NK1R antagonist), GR159897 (NK2R 

antagonist), SB-222200 (NK3R antagonist) and CGRP (8-37) (CGRP receptor 

antagonist) on caerulein-induced AP. The goal is to understand the role of 

neuropeptide receptors in AP and associated lung injury and to examine the potential 

of using neurokinin receptors and CGRP receptor as potential therapeutic targets for 

the treatment of AP and the associated lung injury. 
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 2. To study the effect of CP96,345 on the expression of TK and neurokinin 

receptors in AP using in vitro isolated acinar cells and an in vivo mouse model of AP. 

This will provide important information for the understanding of the role of SP and 

NK1R, as well as the contribution of other TK and neurokinin receptors in AP and 

associated lung injury. 

 

3. To investigate the effect of CP96,345 on the expression of adhesion molecules 

in AP. This will enhance our understanding of the role of SP and NK1R in the 

regulation of the downstream inflammatory cascades mediated by adhesion molecules 

during AP and the associated lung injury.  
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CHAPTER 2 

 

ROLE OF NEUROPEPTIDE RECEPTORS IN ACUTE PANCREATITIS AND 

ASSOCIATED LUNG INJURY  

 

 

2.1 INTRODUCTION 

 

It is widely recognized that NI is one of the most important processes in the 

development and aggravation of AP (Liddle and Nathan, 2004; Hegde and Bhatia, 

2005; Nathan et al., 2002). The primary sensory neurons, which release neuropeptides 

and trigger the early events of AP, are characterized by their unique sensitivity to the 

pungent principle component contained in the plants of the genus Capsicum, known 

as the capsaicin (Szallasi and Blumberg, 1999). The molecular basis of the selective 

action of capsaicin on these sensory neurons has been solved by the cloning of the 

channel operated by capsaicin, the Transient Receptor Potential Vanilloid-1 (TRPV-1) 

(Caterina et al., 1997; Liddle and Nathan, 2004). TRPV1 is a nonselective-cation 

channel with a preference for Ca2+ that is expressed by a subset of primary spinal 

afferent neurons containing the neuropeptides such as TK and CGRP (Liddle and 

Nathan, 2004; Szolcsanyi J, 2004). It has been shown recently that TRPV-1 is 

important in mediating NI in caerulein-induced pancreatitis in rats, due to the release 

of neuropeptides upon its activation (Hutter et al., 2005). 

 

Among the neuropeptides released from the primary sensor neurons, SP has attracted 

most attention. SP is a member of the TK family. Subsequent to its release, SP binds 

primarily, but not exclusively, to NK1R on the surface of effector cells and, in 
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addition to being a mediator of pain, acts as a pro-inflammatory mediator in many 

inflammatory states including asthma, immune-complex-mediated lung injury, 

experimental arthritis, and IBS (Bhatia et al., 2000a; Bhatia et al., 2001a; Bhatia, 

2002a; Bhatia, 2003a; Bhatia and Moochhala, 2004a; Bhatia, 2004b). Knockout mice 

deficient in NK1R and in the PPT-A gene are protected against pancreatitis and 

associated lung injury (Bhatia et al., 1998a; Bhatia et al., 2003b; Grady et al., 2000). 

These findings suggest an important pro-inflammatory role for NI and NK1R in acute 

pancreatitis and associated lung injury. Besides SP, two other TK, NKA and NKB are 

also believed to be involved in inflammatory conditions of the gastrointestinal tract 

(Regoli et al., 1990; Marriott I, 2004; Evangelista S 2001; Campos and Calixto, 2000; 

Tateichi et al., 1990). However, their roles in AP are still unclear. 

 

In addition to the TK, CGRP is another neuropeptide implicated in AP (Wick et al., 

2006a; Warzecha et al., 2001; Warzecha et al., 1999). The peptide has been shown to 

produce a protective effect against AP in rats when given before the pancreatic injury 

(Warzecha et al., 1999; Dembinski et al., 2003). However, it aggravated the condition 

in rats when it was administered during AP (Warzecha et al., 2001, Warzecha et al., 

2000). On the other hand, antagonism of rat CGRP receptors has been demonstrated 

to attenuate pain transmission in AP (Wick et al., 2006a; Wick et al., 2006b). Since 

the role of CGRP in AP was only investigated by two groups of scientists and the 

findings were controversial and inconclusive, further investigations of the action of 

this peptide are required. 

 

Pancreatitis induced by supramaximal exocrine stimulation with the synthetic CCK 

analog caerulein, first described by Lampel and Kern in 1977, is characterized by 
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marked interstitial edema, leukocyte infiltration, hyperamylasemia, and severe 

disturbances of acinar cell morphology and the secretory process. Similar changes are 

seen in human pancreatitis, which in the great majority of cases presents as an 

edematous inflammatory process that regresses without development of fulminant 

necrotizing disease (Fernández-del, 1993). Pancreatic acinar cells have been shown to 

possess two classes or states of cholecystokinin (CCK) receptors – high affinity and 

low affinity receptors (Sankaran et al., 1982; Sankaran et al., 1980; Honda et al., 

1987; Sato et al., 1989; Stark et al., 1989). The high affinity site is thought to mediate 

normal pancreatic secretion and growth, while the low affinity site is responsible for 

supramaximal inhibition of secretion and AP (Niederau et al., 1994). Because of its 

self-limited character, caerulein-induced pancreatitis offers the attractive possibility to 

observe the sequence of events that may lead to and cause premature protease 

activation before widespread autodigestion prevents any systematic investigation. 

 

In this chapter, I have examined the potential of using neurokinin receptors and CGRP 

receptor as potential therapeutic targets for the treatment of AP and the associated 

lung injury in mice. To that end, I have investigated the effect of pharmacological 

intervention against the neurokinin receptors using CP96,345 (NK1R antagonist), 

GR159897 (NK2R antagonist), SB222200 (NK3R antagonist), and the CGRP 

receptor using CGRP (8-37) (CGRP antagonist), on pancreatic and lung injury in AP 

induced by caerulein hyperstimulation in mice. 
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2.2 MATERIALS AND METHODS 

 

2.2.1 Antagonists and other chemicals 

 

Caerulein, the decapeptide analog of cholecystokinin (CCK) was purchased from 

Bachem California (Torrance, CA), NK1R antagonist CP96,345 was a gift from 

Pfizer Diagnostics (USA), NK2R antagonist GR159897, NK3R antagonist SB-

222200 and CGRP receptor antagonist CGRP(8-37) were purchased from Sigma-

Aldrich Chemicals USA (St. Louis, Mo) (Table 2.1). Tetramethylbenzidine (TMB) 

was purchased from Kirkegaard & Perry Laboratories (KPL, Gaithersburg, MD), and 

pentobarbitone sodium (Nembutal®) was obtained from Ceva Chemicals (Ceva 

Chemicals Australia Pty. Ltd, NSW, Australia). Heparin Leo® was from Leo Pharma 

(Ballerup, Denmark). 10% pH-neutral, phosphate-buffered formalin solution was 

bought from JT Baker (NJ, USA), α-amylase reagent (InfinityTM Liquid Amylase 

Reagent) was purchased from Thermo Trace Electron Corp (Waltham, MA, USA). 

Haemotoxylin, eosin solution, neo-clear and neo-mount were purchased from Merck 

KGaA (Darmstadt, Germany). 0.9% NaCl, hexadecylmethylammonium bromide, 

sulphuric acid, salmon testes DNA and Hoechst dye no. 33256 (bisBenzimidine) were 

purchased from Sigma-Aldrich Chemicals USA (St. Louis, Mo). Both caerulein and 

CP96,345 were freshly prepared in 0.9%  NaCl, while GR159897, SB-222200 and 

CGRP8-37 were dissolved in dimethyl sulfoxide (DMSO) immediately before use.  
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2.2.2 Animal model and treatment protocol 

 

All experiments were approved by the Animal Research Ethics Committee of 

National University of Singapore and performed in accordance with established 

International Guiding Principles for Animal Research. Experiments were performed 

on male Balb C mice weighing between 20-25g. Mice obtained from the National 

University of Singapore Laboratory Animal Centre were housed under climate-

controlled conditions with a 12-hour alternate light/dark cycle. They were fed 

standard laboratory chow and allowed to drink water ad libitum throughout the 

experiment. Mice were randomly assigned to control or experimental groups. The 

experimental group was further subdivided into three groups with equal number of 

mice (n = 10 or more). The first group was given the respective antagonist half an 

hour before the first caerulein injection (prophylaxis treatment group), to simulate the 

clinical situation in which the prevention of AP (idiopathic) is important before its 

likely occurrence, for example, in patients who have undergone surgical procedures 

on or near pancreas. The second group was given the same antagonist one hour after 

the first caerulein injection immediately at the onset of AP (therapeutic treatment 

group) to simulate the clinical situation in which patients developed AP before 

admission to hospital. The last group was given caerulein-only to simulate untreated 

AP (caerulein group). 

 

Caerulein was administered to mice in 10 consecutive intraperitoneal (i.p.) injections 

of saline (control) or saline containing a supramaximally stimulating concentration of 

caerulein (hourly injections of 50μg/kg). The time course of caerulein-induced AP has 

been investigated previously (Lau et al., 2005). The 10 hourly-injection group 
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represented the severe form of AP, in which secondary lung injury would be 

developed. CP96,345 at 2.5mg/kg has been found to block NK1R and consequent NI 

in several earlier studies (Sakamoto et al., 1993; Pothoulakis et al., 1994; Castagliuolo 

et al., 1997; Robledo and Witten, 1999). GR159897 at 0.12mg/kg, SB-222200 at 

2mg/kg and CGRP (8-37) at 0.06mg/kg have been described in the literature and 

found to be effective in vivo (Beresford et al., 1995; Dakhama et al., 2005; Medhurst 

et al., 1997; Okajima et al., 2004). One hour after the last caerulein injection animals 

were sacrificed by an i.p. injection of a lethal dose of pentabarbitone sodium 

Nembutal® (90 mg kg-1, three times the dose for surgical anesthesia). Blood samples 

were drawn from the right ventricles using heparinised syringe and centrifuged to 

obtain the plasma. These plasma samples were then kept for amylase activity 

determination. Besides, both the pancreas and lung were rapidly isolated and each of 

them was cut into two portions: 1) about 40mg of tissue, which was rapidly frozen in 

liquid nitrogen and kept at -70°C for myeloperoxidase (MPO) and DNA analyses; 2) 

the remaining tissues were fixed in 10% pH-neutral, phosphate-buffered formalin 

solution for histology study.  

 

2.2.3 Plasma amylase activities determination 

 

Plasma amylase activities were assayed using the substrate 4,6-ethylidene (G7)-p-

nitrophenyl (G1)-α1-D-maltoheptoside (Thermo Trace Electron Corp., Waltham, MA, 

USA) following the manufacturer’s instructions. In short, the substrate was added to 

the plasma sample in 40:1 volume ratio in a microplate and the absorbance at 405nm 

was measured at different time intervals using Tecan SpectraFluor Plus Multiple-

Detection microplate reader (Austria Gesellschaft M.B.H). The amylase activity was 
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then calculated based on the milimolar absorption of p-nitrophenol at 405nm (Bhatia 

et al., 1998a; Bhatia et al., 2003b; Pierre et al., 1976). 

 

2.2.4 Myeloperoxidase activity determination 

 

Neutrophil sequestration in pancreas and lung in mice was quantified by measuring 

the respective tissue myeloperoxidase (MPO) activity. The determination was carried 

out as described previously (Bhatia et al., 1998a; Bhatia et al., 1998b; Bhatia et al., 

2003b; Bhatia et al., 2000b; Bhatia et al., 2003c) with slight modifications. Briefly, 

each tissue sample initially stored at -70°C was thawed at 4ºC. The tissue was then 

homogenized in 20mM sodium phosphate buffer (pH 7.4) using a Polytron 

homogenizer. The homogenate was centrifuged at 13,000 g for 10 minutes at 4°C. 

The subsequent pellet was resuspended in 50mM sodium phosphate buffer (pH 6.0) 

comprising 0.5% hexadecylmethylammonium bromide (Sigma). The resultant 

suspension was subjected to four freeze-thaw cycles before it was sonicated for 40 

seconds on ice. This is followed by centrifugation at 13,000 g for 10 min at 4°C to 

acquire the supernatant for MPO assay.  The reaction mixture, consisting of the 

extracted enzyme, 1.6 mM TMB, 80 mM sodium phosphate buffer (pH 5.4) and 0.3 

mM hydrogen peroxide, was incubated at 37°C for 2 minutes. Equal volume of 2N 

H2SO4 was added to quench the reaction. The absorbance at 405nm was measured 

using the Tecan spectrophotometry autoanalyzer. This absorbance was then corrected 

for the DNA content of the respective samples and results were expressed as fold 

increase over control group. 
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2.2.5 DNA content assay 

 

The determination of the DNA quantity of the sample crude homogenates was 

performed fluorometrically by using Hoechst dye 33256 by the method described by 

Labarca and Paigen (Labarca and Paigen, 1980) using salmon testes DNA as standard. 

Briefly, both the samples and standards  (0 to 0.4 µg/ml) were allowed to incubate 

with 1% Hoechst dye solution for 10 minutes in the dark before the absorbance was 

read on the Tecan spectrofluorometry autoanalyzer (excitationλ = 360nm, emissionλ = 

450nm). The standard curve was plotted using Microsoft Excel and the concentration 

of DNA in the samples was calculated by the linear equation obtained using linear 

regression. 

 

2.2.6 Histological examination 

 

The pancreas and lung tissues harvested were fixed overnight at room temperature in 

10 % pH-neutral, phosphate-buffered formalin solution. The fixed tissues were 

subsequently processed using the Leica TP1020 automatic tissue processor (Leica 

Microsystems Nussloch GmbH, Germany), and embedded in paraffin blocks. Sections 

of 5 μm were cut using a Leica RM2125 manual rotary microtome (Leica 

Microsystems Nussloch GmbH, Germany) after which they were stained with 

haematoxylin and eosin (H&E).  The slides were then coverslipped with Neo-mount 

before they were viewed under a Carl-Zeiss Axioskop 40 microscope system (Carl 

Zeiss, Göttingen, Germany), which was connected to an IBM personal computer. 

Images were examined using AxioVision Software for Life Sciences to qualitatively 

estimate tissue injury / necrosis characterized by: 1) oedema, vacuolization and 
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destruction of histoarchitecture of whole or parts of the acini and alveoli for pancreas 

and lung respectively; and 2) inflammatory cells infiltration at the necrotic areas in 

both pancreatic and lung tissues. This allows assessment of the degree of 

morphological changes during inflammation in both organs as previously described 

(Bhatia et al., 1998a; Bhatia et al., 1998b; Bhatia et al., 2003b; Bhatia et al., 2000b; 

Bhatia et al., 2003c). 

 

2.2.7 Data analysis method 

 

The results are expressed as mean ± standard error of mean (SEM). In all figures, 

vertical bars denote the SEM and the absence of such bars indicates that the SEM is 

too small to illustrate. The significance of changes was evaluated by analysis of 

variance (ANOVA) when comparing three or more groups. If ANOVA indicated a 

significant difference, the data were analyzed by using Tukey’s method as a post hoc 

test for the difference between groups. A P-value of < 0.05 was considered to indicate 

a significant difference. All statistical analyses were performed using SPSS version 

14.0 for Windows (Chicago, Illinois USA). 
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Receptor 

 
Antagonist 

 
MW 

 
Chemical Structure 

NK1R CP96,345 412.67 

 

 

NK2R GR159897 414.55 

 

NK3R SB-222200 
 

380.48 

 

 

CGRP CGRP (8-37) 3125.59

 

VTHRLAGLLSRSGGVVKN- 

NFVPTNVGSKAF-NH2 

 

Table 2.1 Chemical structures and molecular weights of antagonists of 
neurokinin receptors and CGRP receptor. 
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2.3 RESULTS 

 

2.3.1 Effect of CP96,345 treatment on pancreatic injury in AP 

 

Evidence of pancreatic injury in AP induced by intraperitoneal administration of 

caerulein at a dose of 50 μg/kg hourly for 10 h was confirmed by an 10-fold increase 

in plasma amylase (Fig. 2.1A), and 3-fold increase in pancreatic MPO activity as a 

measure of neutrophil infiltration (Fig. 2.1B) in mice treated with caerulein in 

comparison to control mice treated with i.p. normal saline. In animals administered 

CP96,345 either before starting caerulein administration or 1 hour after the first 

injection of caerulein and plasma amylase levels were significantly attenuated 

compared to animals treated with caerulein alone. MPO activity in the pancreas was 

also reduced in mice tested with CP96,345 either prophylactically or therapeutically. 

Histological examination of pancreas sections supported protection by CP96,345 

treatment on AP (Fig. 2.2). Tissue damage in the pancreas of the caerulein treated 

group (Fig 2.2B) was demonstrated by the increase in neutrophil infiltration, edema 

and pancreatic acinar cell necrosis when compared to the untreated sections. 

 

2.3.2 Effect of GR159897 treatment on pancreatic injury in AP 

 

Neither prophylactic nor therapeutic treatment with NK2R antagonist, GR159897, 

produced any protective effect against caerulein-induced AP. Plasma amylase and 

pancreatic MPO activities remained elevated (Figure 2.4A&B). This was supported 

by histological examination of H&E stained pancreas sections (Figure 2.5).   
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2.3.3 Effect of SB-222200 treatment on pancreatic injury in AP 

 

Treatment with SB-222200 had no effect on the plasma amylase level (Fig. 2.7A). 

When given as a prophylactic treatment, the quinolinecarboxamide compound did not 

change the degree of neutrophil infiltration as indicated by the pancreatic MPO 

activity (Fig 2.7B) and histological examination (Fig 2.8). Unexpectedly, significant 

higher (3-fold) MPO activity as observed when the antagonist was administered after 

the induction of AP. Pancreatic histological sections also appeared to show that the 

NK3R antagonist did not offer any protection against AP (Fig 2.8). 

 

2.3.4 Effect of CGRP (8-37) treatment on pancreatic injury in AP 

 

When given at 60μg/kg i.p., CGRP receptor antagonist did not affect the progression 

of AP. Elevation of plasma amylase level and pancreatic MPO activity was not affect 

by CGRP (8-37) given either prophylactically or therapeutically (Fig 2.10A&B). The 

pancreatitis morphology was not apparently altered by the inhibition of CGRP 

receptor (Fig 2.11). 

                                                       

2.3.5 Effect of CP96,345 treatment on AP-associated lung injury 

 

Lungs from mice treated with caerulein had increased levels of MPO activity (2.3-

fold) in comparison to control animals treated with saline suggesting neutrophil 

infiltration as a result of the pancreatitis (Fig. 2.1C). Administration of CP96,345 

either 30 min before or 1 hour after the first caerulein injection significantly reduced 
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lung MPO levels (Fig. 2.1C). Alveolar thickening and infiltration of inflammatory 

cells in the lung following induction of AP was observed in the caerulein-only group. 

Treatment with CP96,345 were protect against AP-associated lung injury (Fig 2.3). 

 

2.3.6 Effect of GR159897 treatment on AP-associated lung injury 

 

The effect of GR159897 treatment on lung MPO activity is shown in Figure 2.4C. 

Caerulein treatment significantly increased the MPO activity and prophylactic 

treatment with the NK2R antagonist further increased the enzyme level (1.5-fold). 

However, histological examination did not reveal a similar trend (Figure 2.6). 

GR159897 did not affect the morphology that is characteristic of AP. 

 

2.3.7 Effect of SB-222200 treatment on AP-associated lung injury 

 

There was no significant reduction in the lung MPO activity in SB-222200 treated AP 

mice (Fig. 2.7C). H&E staining suggested that both the prophylactic and therapeutic 

treatment with the antagonist did not protect lung tissue from inflammatory damage 

(Fig. 2.9). 

 

2.3.8 Effect of CGRP (8-37) treatment on AP-associated lung injury 

 

Lung MPO activity (Fig 2.10C) increased significantly with caerulein treatment 

compared to the control group, and was not affected by the treatment with the peptide 

antagonist. Morphological examination demonstrated that the peptide had no effect on 

AP-associated lung injury (Fig. 2.12). 
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C) 

Figure 2.1 Effects of CP96,345 on A) Plasma amylase activity; B) Pancreatic 
MPO activity; C) Lung MPO activity in AP. Mice were given 10 hourly 
injections of caerulein (50μg/kg, i.p.). CP96,345 was administered at 2.5 mg/kg 
i.p. either 30 min before (prophylactic treatment) or 1 hour after (therapeutic 
treatment) the first caerulein injection. Bar charts represent mean value + SEM 
of at least 10 animals. 
+ indicates P < 0.05 when caerulein-treated animals were compared with saline 
treated animals.  
* indicates P < 0.05 when CP96,345-treated animals were compared with 
caerulein-treated animals. 
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Figure 2.2 Morphological changes in mouse pancreas on induction of AP 
with/without treatment with CP96,345. Tissue damage in the pancreas of the 
caerulein treated group (B) was demonstrated by the increase in neutrophil 
infiltration, edema and pancreatic acinar cell necrosis. (A) Control: no 
pancreatitis; (B) caerulein-induced AP; (C) caerulein-induced AP in mice 
administered CP96,345 30 minutes before the first caerulein injection; and (D) 
caerulein-induced AP in mice administered CP96,345 1 hour after the first 
caerulein injection. Scale bars = 20μm. 
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Figure 2.3 Morphological changes in mouse lung on induction of AP 
with/without treatment with CP96,345. Alveolar thickening and infiltration of 
inflammatory cells in the lung (B) following induction of AP. (A) Control: no 
pancreatitis; (B) caerulein-induced AP; (C) caerulein-induced AP in mice 
administered CP96,345 30 minutes before the first caerulein injection; and (D) 
caerulein-induced AP in mice administered CP96,345 1 hour after the first 
caerulein injection. Scale bars = 20μm. 
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Figure 2.4 Effects of GR159897 on A) Plasma amylase activity; B) Pancreatic 
MPO activity; C) Lung MPO activity in AP. Mice were given 10 hourly 
injections of caerulein (50μg/kg, i.p.). GR159897 was administered at 0.12mg/kg 
i.p. either 30 minutes before (prophylactic treatment) or 1 hour after 
(therapeutic treatment) the first caerulein injection. Bar charts represent mean 
value ± SEM of at least 10 animals. 
+ indicates P < 0.05 when caerulein-treated animals were compared with saline 
treated animals. 
* indicates P < 0.05 when GR159897-treated animals were compared with 
caerulein-treated animals. 
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Figure 2.5 Morphological changes in mouse pancreas on induction of AP 
with/without treatment with GR159897. (A) Control: no pancreatitis; (B) 
caerulein-induced AP; (C) caerulein-induced AP in mice administered 
GR159897 30 minutes before the first caerulein injection; and (D) caerulein-
induced AP in mice administered GR159897 1 hour after the first caerulein 
injection. Scale bars = 20μm. 
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Figure 2.6 Morphological changes in mouse lungs on induction of AP 
with/without treatment with GR159897. (A) Control: no pancreatitis; (B) 
caerulein-induced AP; (C) caerulein-induced AP in mice administered 
GR159897 30 minutes before the first caerulein injection; and (D) caerulein-
induced AP in mice administered GR159897 1 hour after the first caerulein 
injection. Scale bars = 20μm. 
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Figure 2.7 Effects of SB-222200 on A) Plasma amylase activity; B) Pancreatic 
MPO activity; C) Lung MPO activity in AP. Mice were given 10 hourly 
injections of caerulein (50μg/kg, i.p.). SB-222200 was administered at 2mg/kg i.p. 
either 30 minutes before (prophylactic treatment) or 1 hour after (therapeutic 
treatment) the first caerulein injection. Bar charts represent mean value ± SEM 
of at least 10 animals. 
+ indicates P < 0.05 when caerulein-treated animals were compared with saline 
treated animals. 
* indicates P < 0.05 when SB-222200-treated animals were compared with 
caerulein-treated animals. 
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Figure 2.8 Morphological changes in mouse pancreas on induction of AP 
with/without treatment with SB-222200. (A) Control: no pancreatitis; (B) 
caerulein-induced AP; (C) caerulein-induced AP in mice administered SB-
222200 30 minutes before the first caerulein injection; and (D) caerulein-induced 
AP in mice administered SB-222200 1 hour after the first caerulein injection. 
Scale bars = 20μm. 
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Figure 2.9 Morphological changes in mouse lungs on induction of AP 
with/without treatment with SB-222200. (A) Control: no pancreatitis; (B) 
caerulein-induced AP; (C) caerulein-induced AP in mice administered SB-
222200 30 minutes before the first caerulein injection; and (D) caerulein-induced 
AP in mice administered SB-222200 1 hour after the first caerulein injection. 
Scale bars = 20μm. 
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Figure 2.10 Effects of CGRP (8-37) on A) Plasma amylase activity; B) 
Pancreatic MPO activity; C) Lung MPO activity in AP. Mice were given 10 
hourly injections of caerulein (50μg/kg, i.p.). CGRP (8-37) was administered at 
0.06mg/kg i.p. either 30 minutes before (prophylactic treatment) or 1 hour after 
(therapeutic treatment) the first caerulein injection. Bar charts represent mean 
value ± SEM of at least 10 animals. 
+ indicates P < 0.05 when caerulein-treated animals were compared with saline 
treated animals. 
* indicates P < 0.05 when CGRP (8-37)-treated animals were compared with 
caerulein-treated animals. 
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Figure 2.11 Morphological changes in mouse pancreas on induction of AP 
with/without treatment with CGRP (8-37). (A) Control: no pancreatitis; (B) 
caerulein-induced AP; (C) caerulein-induced AP in mice administered CGRP (8-
37) 30 minutes before the first caerulein injection; and (D) caerulein-induced AP 
in mice administered CGRP (8-37) 1 hour after the first caerulein injection. 
Scale bars = 20μm. 
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Figure 2.12 Morphological changes in mouse lungs on induction of AP 
with/without treatment with CGRP (8-37). (A) Control: no pancreatitis; (B) 
caerulein-induced AP; (C) caerulein-induced AP in mice administered CGRP (8-
37) 30 minutes before the first caerulein injection; and (D) caerulein-induced AP 
in mice administered CGRP (8-37) 1 hour after the first caerulein injection. 
Scale bars = 20μm. 

 62



2.4 DISCUSSION 

 

TK have been implicated in a number of inflammatory conditions (Liddle and Nathan, 

2004; Bhatia, 2003a; Regoli et al., 1990; Marriott, 2004; Evangelista, 2001; Campos 

and Calixto, 2000; Tateichi et al., 1990). For this reason, their receptors, the 

neurokinin receptors have been important targets in drug discovery for the past thirty 

years. SP is a major mediator of NI in several tissues, including skin, cardiovascular 

tissue, cephalic structures, respiratory tract, genitourinary tract, and gastrointestinal 

tract (Bhatia, 2003a). NKA and NKB have also been shown to play a part in 

inflammatory conditions (Bhatia, 2003a; Regoli et al., 1990; Marriott, 2004; 

Evangelista, 2001; Campos and Calixto, 2000; Tateichi et al., 1990). On the basis of 

previous studies with NK1 receptor knockout mice and PPT-A knockout (SP- and 

NKA-deficient) mice we have proposed a pro-inflammatory contribution of SP and/or 

NKA in the pathogenesis of AP and associated lung injury. In those studies, mice 

genetically deficient in the NK1 receptor or the PPT-A gene were protected against 

AP and associated lung injury (Bhatia et al., 1998a; Bhatia et al., 2003b). 

 

In this study, I have made use of the antagonists of neurokinin receptors to investigate 

the effect of receptor blockage on the development and progression of AP. CP96,345, 

GR159897 and SB-222200 are valuable compounds that are often used to study the 

NK1R, NK2R and NK3R systems, respectively (Snider et al., 1991; Beresford et al., 

1995; Medhurst et al., 1997). The present findings have shown the effect of 

pharmacological treatment with CP96,345 (prophylactic and therapeutic) on the 

severity of AP and associated lung injury in mice. Prophylactic, as well as therapeutic, 

treatment with CP96,345 significantly protected the mice against AP. This was 
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evident by a substantial attenuation in hyperamylasemia and pancreatic MPO activity 

as well as by histological evidence of reduced pancreatic injury. On the other hand, 

treatment with GR159897 or SB-222200, either prophylactic or therapeutic, did not 

produce any protective effect against AP. Similar finding was observed in another 

study, where NK2R and NK3R blockade were unable to prevent pulmonary tissue 

injury during inflammation induced by hydrogen sulfide (Bhatia et al., 2006). One 

interesting finding is that when SB-222200 was given after the induction of AP, a 

further increase in pancreatic MPO activity was observed (Fig. 2.7B). However, an 

increase in leukocytes was not observed by histological examination. The significance 

of this finding requires further investigations. 

 

Recently, two groups of scientists reported the involvement of CGRP and its receptor 

in the pathogenesis of AP (Wick et al., 2006a,b; Warzecha et al., 1999, 2000, 2001). 

Although the exact role of CGRP in AP has not been fully understood, it is clear that 

the peptide is a component of NI that might affect the severity of the condition. 

Therefore, in this study, we employed a peptide CGRP antagonist, CGRP (8-37), to 

investigate this component of NI. However, our results suggested that the 

involvement of CGRP in AP was minimal, as both the plasma amylase and the 

pancreatic MPO activity remained elevated even with the treatment of this antagonist 

(Fig 2.10A&B). These results were substantiated by histological examination of 

pancreas sections. 

 

Severe AP was also associated with lung injury that is characterized by sequestration 

of neutrophils within the lung (that is, increased lung MPO activity) after 10 hourly 

injections of caerulein. Prophylactic, as well as therapeutic treatment with CP96,345, 
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but not GR159897, SB-222200 or CGRP (8-37), protected mice almost completely 

against AP-associated lung injury. This suggested that NK1R, but not NK2R, NK3R 

or CGRP receptor, is also implicated in systemic organ damage following AP. 

 

The mechanisms by which SP acts to amplify the severity of pancreatitis are not clear. 

From studies probing the role of SP in inflammatory processes involving other tissues, 

one might suspect that this neuropeptide acts primarily on endothelial cells to increase 

vascular permeability and promote edema formation (Grady et al., 2000; Lei et al., 

1992). Although this explanation could account for the finding that treatment with 

CP96,345 lessens the increased pulmonary vascular permeability noted in 

pancreatitis-associated lung injury, it would not account for some of the other effects 

of NK1 receptor deletion that we have noted including (i) diminished acinar-cell 

injury as evidenced by histological evidence from pancreas sections, (ii) decreased 

sequestration of neutrophils in the pancreas, and (iii) decreased sequestration of 

neutrophils in the lung. The observation that expression of NK1R in the pancreas is 

increased during caerulein-induced pancreatitis (Bhatia et al., 1998a), has suggested 

that the pro-inflammatory effects of SP may be directly exerted on the acinar cells. It 

is also tempting to speculate that this phenomenon could explain the role of SP and 

NK1 receptors in pancreatitis-associated lung injury, that is, that SP acting via NK1 

receptors on acinar cells to enhance the severity of acinar-cell injury, and the 

subsequent increased release of pro-inflammatory mediators from the pancreas leads 

to increased lung injury. Results presented in this chapter strongly suggest that NK1R 

antagonists may potentially be of use for the treatment of AP and its systemic 

complications. 
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CHAPTER 3 

 

EFFECT OF CP96,345 ON THE EXPRESSION OF TACHYKININS AND 

NEUROKININ RECEPTORS IN ACUTE PANCREATITIS  

 

 

3.1 INTRODUCTION 

 

The involvement of TK involvement in inflammatory conditions has received 

considerable attention (Maggi, 1997; Bhatia, 2003a; Campos and Calixto, 2000; 

Weinstock, 2004; Liddle and Nathan, 2004; O’Connor et al., 2004). SP, NKA and 

NKB are the primary TK, with each peptide showing high binding affinity for NK1R, 

NK2R and NK3R respectively (Patacchini et al, 2004). Among these, SP and NK1R 

have been implicated in the pathogenesis of AP (Bhatia et al., 2005a; Bhatia et al., 

1998a; Bhatia et al., 2003b). SP is an eleven-amino acid peptide member of the TK 

family and is distributed throughout the central and peripheral nervous systems. This 

neuropeptide binds preferentially to NK1R on the vasculature and causes 

vasodilatation, plasma extravasation and leukocyte adhesion (Grady et al., 2000). 

Recent studies show that NI mediated by SP binding to NK1R plays a crucial role in 

the pathogenesis of AP and pancreatitis-associated lung injury in mice and rats (Grady 

et al., 2000; Maa et al., 2000). Knockout mice deficient in SP and NK1R were found 

to be resistant to the development of severe AP (Bhatia et al., 1998a; Bhatia et al., 

2003b). However, the mechanism by which NK1R and SP amplifies the severity of 

pancreatitis is still unclear. 
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The method of isolating of pancreatic acinar cells using collagenases was first 

developed by Amsterdam and Jamieson in the early 1970s (Amsterdam and Jamieson, 

1972; Amsterdam and Jamieson, 1974). Isolated acinar cells have been employed to 

study the effect of various biological and chemical agents on function and cell 

signaling at the level of individual cells. By incubating with high concentration of 

caerulein, isolated pancreatic acinar cells simulate some of the events found in AP in 

vivo (Leach et al., 1991). Pancreatic acinar cells have been shown to possess two 

classes or states of cholecystokinin (CCK) receptors – high affinity and low affinity 

receptors (Sankaran et al., 1982; Sankaran et al., 1980; Honda et al., 1987; Sato et al., 

1989; Stark et al., 1989). The high affinity site is thought to mediate normal 

pancreatic secretion and growth, while the low affinity site is responsible for 

supramaximal inhibition of secretion and AP (Niederau et al., 1994).  

 

In the present chapter, I investigated the mRNA expression of pre-protachykinin 

genes and neurokinin receptors, as well as the protein expression of NK1R during AP 

with the treatment of NK1R antagonist. This will provide important information for 

the understanding of the role of SP and NK1R, as well as the contribution of other TK 

and neurokinin receptors in AP. In addition, I also studied the effect of caerulein and 

SP on receptor and protein expression, as well as the secretory properties of isolated 

acinar cells. This was followed by an attempt to use a NK1R antagonist to modulate 

acinar cells responses. 
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3.2  MATERIALS AND METHODS 

 

3.2.1 Materials 

 

Trizol® reagent was bought from Invitrogen (Invitrogen, Carlsbad, CA USA) while 

chloroform, isopropyl alcohol, ethanol, methanol, trifluoroacetic acid were purchased 

from Merck KGaA (Darmstadt, Germany). Acetonitrile was obtained from Lab-Scan 

(Lab-Scan, Belfast, UK). Diethylpyrocarbonate (DEPC) and bovine serum albumin 

(BSA) were bought from Sigma-Aldrich Chemicals USA (St. Louis, Mo, USA). 

Ethidium bromide, iScriptTM cDNA Synthesis Kit and iQTM Supermix, certified 

molecular biology agarose and EZ load™ molecular ruler were bought from Bio-Rad 

(Bio-Rad, Hercules, CA, USA). Collagenase Type IV was purchased from 

Worthington Biochemical Corporation (Worthington Biochemical Corporation, 

Lakewood, NJ, USA). 0.01% soybean trypsin inhibitor and HEPES were obtained 

from Sigma (Sigma Chemical Co., St. Louis, MO, USA). MyCycler™ personal 

thermal cycler and Sub-Cell GT gel electrophoresis system were from Bio-Rad (Bio-

Rad, Hercules, CA, USA). Primers for RT-PCR analysis were custom synthesized by 

Sigma-Proligo Singapore Pte. Ltd. 3,3 -diaminobenzidine (DAB) was purchased from 

Sigma-Aldrich Chemicals USA (St. Louis, Mo). SP enzyme immunoassay kit and 

C18 cartridge columns were purchased from Bachem California (Torrance, CA, 

USA). UVP GelDoc-It Imaging System and LabWorks Software were purchased 

from UVP (Upland, CA, USA). Applied Biosystems Prism® 7000 Sequence 

Detection System was purchased from Applied Biosystems (Foster City, CA, USA). 

Other reagents and chemicals were of analytical grade. 
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3.2.2 Induction of AP 

 

AP was induced in mice as described in Section 2.2.2. One hour after the last 

caerulein injection animals were sacrificed by a lethal dose of i.p. pentabarbitone (90 

mg/kg, three times the dose for surgical anaesthesia). Pancreas and lungs tissues were 

collected for total RNA extraction, SP analysis or immunohistochemistry. 

 

3.2.3 Preparation of pancreatic acini 

 

Pancreatic acini were obtained from Balb/C mouse (20-25g) pancreas (3 pancreas per 

study, 100-120mg per pancreas) by collagenase digestion method following a slightly 

modified Oliver’s procedure (Oliver C., 1980). Briefly, mice were killed by instant 

cervical dislocation and the pancreas were isolated, dissected free of mesenteric fat 

and washed in sodium HEPES buffer (140 mM NaCl, 4.7 mM KCl, 1.13 mM MgCl2, 

10 mM glucose, 0.05% w/v soybean trypsin inhibitor and 10 mM HEPES; pH 7.2). 

The parenchyma of the pancreas was then infused with a syringe containing freshly 

prepared collagenase buffer (buffer A: sodium HEPES buffer containing 1 mM CaCl2, 

0.1% w/v  BSA and 200 IU/ml collagenase type IV). Subsequently, the distended 

tissue were minced and incubated in a water bath at 37°C for 10 minutes, shaking at 

180 cycles per minute to allow further tissue digestion. Detached acini were then 

dissociated by passing the suspension several times through a fine pipette tip. The 

dissociated pancreatic acinar cells was passed through a solution of 50 mg/ml BSA by 

centrifugation at 1,000 × g, 4°C for 1 minute. The pellet collected was washed three 

times with sodium HEPES buffer before the acinar cells were resuspended in the 
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same buffer for subsequent experiments. The freshly prepared acinar cells were kept 

on ice and used in an experiment within 2 hours after their extraction. Cell viability 

was determined by Trypan blue exclusion assay.  

 

3.2.4 Pancreatic acini experiments 

 

The prepared acinar cells were evenly distributed into microcentrifuge tubes 

containing buffer A. The cells were incubated with various doses of caerulein (from 

10-13 M to 10-6 M) and/or SP (from 10-10 M to 10-5 M) for one hour at 37°C in a 

shaking water bath. At the end of the incubation, a small portion of the acinar cell 

suspension from each tube was taken out to check for cell viability by Trypan blue 

exclusion assay. The cell suspensions remaining in the tubes were spun at 3,000 × g at 

4°C for 5 minutes. The resultant supernatants were used for immediate amylase assay, 

while the pellets were kept for DNA assay, SP ELISA assay, RT-PCR and 

immunofluorescence study. In order to study the role of NK1R in acini, acini were 

preincubated in the presence of CP96,345 (working concentration of 10-6 M) at 37°C 

in a shaker water bath for half an hour before the initiation of the treatment with 

caerulein and/or SP. 

 

3.2.5 Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) 

 

Total RNA was isolated from the pancreas and the lungs using Trizol® reagent 

according to the manufacturer’s instructions with modifications (Bhatia et al., 2005b). 

Briefly, pancreatic or pulmonary tissues were isolated and rapidly ground and 

homogenized in 1.5 ml of Trizol® reagent using a Potter-Elvejhem homogenizer on 
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ice. The homogenate was centrifuged at 10,000 × g for 10 minutes at -10 °C to 

remove insoluble materials. 0.3ml of chloroform was added to the supernatant and 

shaken vigorously by hand for 15 seconds. The mixture was then centrifuged at 

10,000 × g for 10 minutes at -10 °C to separate the aqueous and organic phases. The 

colourless upper aqueous phase was separated from the organic phase. 0.75ml of 

isopropanol was added to the aqueous phase and the solution was incubated at room 

temperature (approximately 20°C) for 10 minutes to allow precipitation of RNA. 

After RNA was pelleted by centrifugation (10 000 × g for 10 minutes at -10°C), the 

pellet was washed by resuspension in 70% v/v ethanol, re-pelleted and dissolved in 

RNase/DNase-free water.  

 

Similarly, the extraction of total mRNA from the pelleted acinar cells was carried out 

using TriZol ® reagent. Briefly, pelleted acinar cells were treated with 1ml of 

TriZol® reagent and homogenized using a Potter-Elvejhem homogenizer at room 

temperature. 0.2ml of chloroform was added to supernatant and shaken vigorously by 

hand for 15 seconds. The mixture was then centrifuged at 10,000 × g for 10 minutes at 

4°C to separate the aqueous and organic phases. 0.5ml of isopropanol was added to 

the aqueous phase and the solution was incubated at room temperature for 10 minutes 

to allow the precipitation of RNA. After RNA was pelleted and washed by 

resuspension in 70% v/v ethanol, repelleted and redissolved in RNase/DNase-free 

water. The amount of RNA was quantitated by absorbance at 260 nm (1 OD = 40 

μg/ml) in triplicate measurements, and the integrity was verified by ethidium bromide 

staining of 18S and 28S rRNA bands on a denaturing agarose gel.  
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RT-PCR was performed using iScriptTM, according to the manufacturer’s protocols. 

Briefly, total RNA (1μg) was added to the reaction mixture containing iScript reverse 

transcriptase, 5 × iScript reaction mix and nuclease-free water. The final volume was 

20μl. Reverse transcription was carried out at 25°C for 5 minutes, 42°C for 30 

minutes, followed by 85°C for 5 minutes.  The cDNA synthesized from 1μg of total 

RNA was used as a template for a typical PCR amplification by iQ™ Supermix. The 

PCR primers (Table 3.1) for detection of NK2R, NK3R, PPT-A and PPT-C were 

synthesized by Sigma-Proligo Singapore Pte. Ltd. (Singapore). The primers were 

intron-spanning, such that genomic DNA contamination was excluded. cDNA 

synthesized from 1μg total RNA was included in a typical PCR. The reaction mixture 

was first subjected to 95°C for 3 minutes for the activation of iTaq DNA polymerase. 

This was followed by an optimal cycle of amplifications (Table 3.1), consisting of 

denaturation at 95°C for 30 seconds, optimal annealing temperature (Table 3.1) for 30 

seconds and extension at 72°C for 30 seconds. r18S was chosen as the internal 

standard. PCR amplification was performed in MyCyclerTM (Bio-Rad, Hercules, CA). 

The PCR products were analysed on 1% w/v agarose gels containing 0.05 mg/100 ml 

ethidium bromide running at 80V for 20 minutes. The gels were visualized using UVP 

GelDoc-It Imaging System and analyzed by LabWorks Software. 

 

3.2.6 Real-time PCR of NK1R mRNA  

 

Real-time-PCR was carried out as described previously with modifications 

(Shrikhande et al., 2001). The reactions were done on an Applied Biosystems Prism® 

7000 Sequence Detection System. The synthesis of cDNA from the extract mRNA 

was carried out using Applied Biosystems (ABI) Taqman® Reverse Transcription 
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Reagents according to the manufacturer’s instructions. Briefly, 1μg of the extracted 

RNA was incubated with the reverse transcription reaction mixture at 25°C for 10 

minutes followed by 48°C for 30 minutes. The reaction was inactivated at 95°C for 10 

minutes. The reverse transcription reaction mixture consisted of Taqman® RT buffer, 

5.5mM MgCl2, 500μM of each of the four dNTPs, 2.5μM random hexamers and 25U 

of MultiScribe™ Reverse Transcriptase in a final volume of 20μl. The product was 

then stored at 4°C for not longer than 1 week. Real time amplification of NK1R 

cDNA was carried out using Applied Biosystems Prism 7000 Sequence Detection 

System. The synthesized cDNA was used in the subsequent PCR amplification, which 

were carried out in a final volume of 25μl containing 12.5μl of Taqman® Universal 

PCR master mix, 900nM of each of the two primers (NK1R assay-on-demand), 

250nM of Taqman® MGB probe and cDNA sythesised from 1µg of total RNA. The 

same thermal-cycling profile was used for both NK1R and r18S probes. The mixture 

was allowed to incubate for 2 minutes at 50°C via AmpErase® UNG for uracil N-

glycosylase reaction to remove PCR carry-over decontamination (Longo et al., 1990). 

This was followed by 10 minutes activation of the AmpliTaq polymerase at 95°C, and 

45 cycles of 95°C for 30 seconds and 60°C for 1 minute. All experiments were 

performed in triplicate. The threshold level was determined as 10 standard deviations 

above the mean of baseline fluorescence emission calculated from cycles 3 to 15. The 

threshold cycle (Ct) was defined as the cycle number at which the fluorescence 

emission level exceeds the threshold level (Heid et al., 1996). Endogenous reference 

was carried out using Taqman® Rodent r18S control reagent. The initial amount of 

NK1R cDNA normalized to the endogenous reference (r18S cDNA) was proportional 

to the value given by the expression: 2-ΔCt (ΔCt represents the difference in Ct values 
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for the NK1R and the r18S). The arbitrary value was then compared for the value 

obtained from the control group and expressed as fold increase over control. 

 

3.2.7 Measurement of SP levels 

 

Pancreas and lung samples taken from in vivo studies were homogenized in 1.0 ml 

ice-cold assay buffer for 20 seconds. The homogenates were centrifuged (13, 000 × g, 

20 minutes, 4°C) and the supernatants were collected. In studies using isolated acinar 

cells, pelleted acinar cells were homogenized in 2 ml ice-cold phosphate buffer 

(50mM sodium phosphate buffer (pH7.0), 150mM NaCl and 10nM sodium EDTA) 

for 20 seconds using a polytron homogenizer. The homogenates were centrifuged 

(13,000 × g, 20 minutes, 4 °C) and the supernatants were collected. The supernatants 

were then adsorbed on C18 cartridge columns as described (Bhatia et al., 1998a) and 

the adsorbed peptides were eluted with 1.5 ml 75% v/v acetonitrile. The samples were 

freeze-dried and reconstituted in assay buffer. SP content was then determined using 

an ELISA kit (Bachem) according to the manufacturer’s instructions and expressed as 

ng/μg DNA. SP can be measured in the range of 0-10 ng/ml in this assay.  This value 

was then corrected for the DNA content of the respective samples and results were 

expressed as fold increase over control group. DNA assay was performed 

fluorometrically, using Hoechst dye 33256 according to the method of Labarca and 

Paigen (Labarca and Paigen, 1980), using salmon testis DNA as standard (as 

described in Section 2.2.5) 
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3.2.8 Immunohistochemistry of pancreas and lung paraffin sections 

 

The pancreas and lung tissues harvested were fixed overnight at room temperature in 

10 % pH-neutral, phosphate-buffered formalin solution. The fixed tissues were 

subsequently processed using the Leica TP1020 automatic tissue processor (Leica 

Microsystems Nussloch GmbH, Germany), and embedded in paraffin blocks. Sections 

of 5 µm were cut using a Leica RM2125 manual rotary microtome (Leica 

Microsystems Nussloch GmbH, Germany) after which immunostaining was carried 

out. The paraffin sections were dewaxed in two changes of Histoclear, hydrated 

through a decreasing graded series of ethanol and finally washed with Tris buffered 

saline (TBS) immediately prior to use. The endogenous peroxidase activity was 

quenched with 0.3% H2O2. Then, sections were incubated with blocking buffer (3% 

BSA in TBS) for 1 hour, and washed for three times. This was followed by 2 hours 

incubation at room temperature with the rabbit polyclonal anti-mouse NK1R antibody 

(1:200, Chemicon, USA). Subsequently the slides were washed at the end of the first 

incubation. The sections were then incubated in horseradish peroxidase-conjugated 

secondary monoclonal anti-rabbit antibody (1:100, Sigma-Aldrich, USA) for 30 

minutes at room temperature. After the second incubation, slides were washed again 

before treatment with the chromogen for visualization. Finally, slides were treated 

with 3,3’-diaminobenzidine (DAB) for 10 minutes, rinsed, counterstained with 

hematoxylin. The slides were then dehydrated in ehtanol, cleared in Histoclear, and 

coverslipped with Neo-mount before they were viewed under Carl-Zeiss Axioskop 40 

microscope system (Carl Zeiss, Göttingen, Germany). Negative controls were 

included by replacing of the primary antibody with non-immune serum. Antibodies 
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were diluted in TBS at pH7.2. This buffer was also used in all washes (3 × 5 minutes), 

and incubations are all carried out at room temperature (25°C).  

 

3.2.9    Immunofluorescence for NK1R in pancreatic acini 

 

Pancreatic acini were centrifuged at 3,000 × g, 4°C for 5 minutes, after which the 

supernatant was kept for substance P-ELISA assay and amylase analysis. 500μl 3.7% 

paraformaldehyde was added to the cell pellet and resuspended. The mixture was then 

incubated at room temperature for 10 minutes to allow complete fixation of the acinar 

cells. This is followed by the addition of an excess amount of PBS to stop the fixation. 

The cells were then centrifuged and washed twice with PBS. At this stage, the fixed 

acinar cells were either stored in 4°C (for up to 1 week) or used immediate for 

immunofluorescence staining. 

 

Fixed acinar cells were pipetted onto poly-lysine coated glass slides and centrifuged at 

180 × g in a Medite Cytofuge (StatSpin Inc., USA) for 10 minutes at room 

temperature. The acinar cells attached on the slides were gently washed twice with 

PBS. Subsequently, the slides were blocked in blocking buffer (1% BSA in PBS) for 

10 minutes at room temperature, followed by another round of washing (3 × 3 

minutes) using PBS. Primary antibody (1:200; rabbit polyclonal anti-mouse NK1R 

antibody, Chemicon, USA) was then added to the slides and allowed to incubate for 2 

hours in room temperature. The slides were washed three times in PBS and incubated 

with 1:200-diluted rhodamine-conjugated goat antirabbit IgG secondary antibody 

(Santa Cruz Biotechnology) for another 30 minutes. After another 3 washes with PBS, 

 76



the slides were coversliped and examined under a fluorescent microscope. The cell 

surface localization of NK1R was examined qualitatively. 

 

3.2.10 Supernatant amylase activities determination 

 

To determine the concentration of amylase released by acinar cells, the cell free 

supernatant was collected after the 1 hour incubation and analysed as described in 

Section 2.2.3. 

 

3.2.11 Data analysis method 

 

The results are expressed as mean ± standard error of mean (SEM). In all figures, 

vertical bars denote the SEM and the absence of such bars indicates that the SEM is 

too small to illustrate. The significance of changes was evaluated by analysis of 

variance (ANOVA) when comparing three or more groups. If ANOVA indicated a 

significant difference, the data were analyzed by using Tukey’s method as a post hoc 

test for the difference between groups. A P-value of < 0.05 was considered to indicate 

a significant difference. All statistical analyses were performed using SPSS version 

14.0 for Windows (Chicago, Illinois USA). 
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Gene Primer Sequence Optimal 
Conditions Size 

r18S 

sense:  
5’-GTAACCCGTTGAACCCCATT-3’ 
antisense:  
5’-CCATCCAATCGGTAGTAGCG-3’ 

Lung: 22 cycles 
Pancreas: 
22 cycles 

Annealing: 59°C 

150 bp 

NK2R 

sense: 
5’-TGCTGTCATCTGGCTGGTAG-3’ 
antisense:  
5’-TCTTCCTCGGTTGGTGTCCC-3’ 

Lung: 42 cycles 
Pancreas: ND 

Annealing: 61°C 

546 bp 
 

NK3R 

sense: 
5’-TTCCTGGTAAACCTGGCTTTCTCC-3’ 
antisense:  
5’-AGACCTGTTGGATGTATTTCCACCT-3’ 

Lung: ND 
Pancreas: ND 

Annealing:65°C 
645 bp 

PPT-A 

sense:  
5’-ACCTGCTCCACTCCTGCACCGCGGCCAAG-3’ 
antisense:  
5’-GAACTGCTGAGGCTTGGGTCTTCGGGCGAT-3’ 

Lung: 43 cycles 
Pancreas: 
42 cycles 

Anealing: 68°C 
 

239 bp 

PPT-C 

sense: 
5’-AACTGGCTTTTGGTGCAGAG-3’ 
antisense: 
5’-AGTGCTACACGTTGCTGGTG-3’ 

Lung: 40 cycles 
Pancreas: ND 

Annealing: 64°C 

322 bp 
 

 
Table 3.1 PCR primer sequences, optimal amplification cycles, optimal 
annealing temperatures and product sizes.  
ND: not detected at any annealing conditions. 
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3.3  RESULTS 

 

3.3.1   Effect of CP96,345 on pancreatic and pulmonary SP levels and PPT-A mRNA 

expression in AP 

 

Figure 3.1 and 3.2 show the SP concentration in the pancreas and lungs respectively. 

Treatment with CP96,345 alone did not affect the SP level in either pancreas or lungs. 

As expected, hyperstimulation of the pancreas by caerulein resulted in an increase of 

SP concentrations in both organs. Administration of CP96,345 significantly 

suppressed the accumulation of SP during caerulein hyperstimulation in the pancreas. 

Densitometry analysis of the PCR products on agarose gels shows that the pancreatic 

and pulmonary PPT-A mRNA expression increased three-fold in caerulein induced 

AP. Treatment with CP96,345 resulted in a significant decrease in gene expression 

(Figure 3.3). 

 

3.3.2   Effect of CP96,345 on pancreatic and pulmonary NK1R mRNA and NK1R 

protein expression  in AP 

 

Expression of NK1R during AP was investigated using real-time PCR (Figure 3.4) 

and immunohistochemistry (Figures 3.5 & 3.6). Changes in NK1R mRNA expression 

correlated well with protein expression, in which NK1R was localized extensively on 

acinar and alveolar cells in the pancreas (Figure 3.5) and lungs (Figure 3.6), 

respectively, and endothelial cells in both tissues. Low level of NK1R was detected in 

normal pancreas and lung (Figures 3.5 & 3.6). During AP, increased localizations of 

NK1R on the cell surface of pancreatic acinar cells and alveolar cells were observed. 
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This was demonstrated by the increase in brown staining. A significant increase in 

NK1R mRNA and protein expression in both pancreas and lungs during AP was 

observed. However, treatment with CP96,345 led to differential changes in mRNA 

and protein expression in the two organs. In the pancreas, NK1R expression was 

suppressed when CP96,345 was administered prophylactically or therapeutically, with 

prophylactic CP96,345 treatment producing greater suppression. On the other hand, 

further increases in NK1R mRNA and protein expression were observed in the lungs 

when the mice with AP were treated with the antagonist. In general, the 

immunohistochemical examination of the relavant slides appeared to support the 

changes in NK1R mRNA data. 

 

3.3.3   Pancreatic and pulmonary NK2R and NK3R mRNA expression 

 

NK2R mRNA expression was not detected in normal pancreas (Figure 3.7). However, 

up-regulation of receptor mRNA expression was observed during AP. Treatment with 

the antagonist resulted in further accumulation of NK2R mRNA in the pancreas. In 

the lungs, down-regulation of NK2R mRNA expression was observed in mice with 

AP (Figure 3.8). Treatment with CP96,345 reversed the downregulation (Figure 3.8). 

NK3R mRNA was undetected in normal pancreas and lungs in both control mice and 

AP mice. However, strong NK3R mRNA expression was observed in the brain 

(Figure 3.10).  
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3.3.4  Effect of CP96,345 on pancreatic and pulmonary PPT-C mRNA in AP 

 

PPT-C mRNA expression was observed in lungs (Figure 3.9) but not found in the 

normal or inflamed pancreas (Figure 3.9). During AP, increased PPT-C mRNA 

expression was detected in the lungs and CP96,345 treatment suppressed this 

increase, a profile similar to that of PPT-A. 

 

3.3.5 Effect of caerulein, SP and CP96,345 on acinar cell amylase secretion 

 

Figure 3.11 demonstrates the change in acinar cells amylase secretion in response to 

caerulein or SP. SP at any concentration between 10-13 M to 10-7 M did not affect the 

amylase concentration in the supernatant. However, there was a biphasic dose-

response relationship between caerulein concentration and amylase secretion. At 10-10 

M, caerulein caused the highest rate of amylase release from acinar cells. However, 

the secretion of amylase was inhibited at higher concentrations of caerulein. At the 

supramaximal concentration (10-7 M), caerulein inhibited the release of amylase from 

acinar cells. The treatment with NK1R antagonist did not affect the inhibition of 

amylase release caused by caerulein hyperstimulation (Fig. 3.12). 

 

3.3.6 Effect of caerulein, SP and CP96,345 on acinar cell PPT-A mRNA expression  

 

An inverted bell shape curve was observed with the PPT-A mRNA expression when 

acinar cells were incubated with increasing concentrations of caerulein (Fig. 3.13). 

Interestingly, maximum PTT-A mRNA expression was detected at 0.1μM – the 

supramaximal concentration of caerulein at which the release of amylase from acinar 
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cells was inhibited (Fig. 3.14). On the other hand, SP dose-dependently increased the 

expression of PPT-A mRNA in acinar cells and reached a plateau at concentrations 

higher that 1μM. Although both caerulein and SP caused an increase in PPT-A 

mRNA expression, their effects were not additive when both peptides were added at 

the same time (Fig. 3.14). Nevertheless, when acinar cells were pre-treated with 

CP96,345 30 minutes before the introduction of caerulein (10-7 M) and/or SP (10-6 

M), no increase in PPT-A mRNA was detected. SP concentrations in the acinar cells 

and in the supernatant were measured in the caerulein and/or CP96,345 treated 

groups. However, no change in SP level was observed (Fig. 3.15). 

 

3.3.7 Effect of caerulein, SP and CP96,345 on acinar cell NK1R mRNA expression  

 

The change in NK1R mRNA expression with increasing caerulein or SP 

concentration is illustrated in Figure 3.16. Small, but significantly higher NK1R 

mRNA expression was again seen when the acinar cells were exposed to 0.1μM 

caerulein. SP treatment caused a small apparent increase in the mRNA expression but 

the results did not reach statistical significance. Although the small increase in NK1R 

mRNA was abolished in the presence of CP96,345, the changes (1.56 ± 0.27 fold cf 

1.82 ± 0.25 fold), the difference was too small and therefore inconclusive (Fig. 3.17). 

Immunofluorescent staining did not show any significant effect of caerulein or SP on 

NK1R intensity on the acinar cell surface (Fig. 3.18). Low level of NK1R was 

fluorescently labeled on the cell surface of pancreatic acinar cells (Fig. 3.18). There 

was no significant difference in NK1R staining (fluorescence on cell surface – 

background fluorescent) observed among the treatment groups. 
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Figure 3.1 SP levels in pancreas of mice with AP, treated with prophylactic/ 
therapeutic CP96,345. Control: Saline only; CP96,345: CP96,345 (2.5mg/kg); 
Caerulein: 10 consecutive hourly caerulein (50µg/kg/hr) injections; CP96,345 
Prophylactic: CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; 
CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 minutes after first caerulein 
injection. Bar charts represent mean value ± SEM of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 3.2 SP levels in the lungs of mice with AP, treated with prophylactic/ 
therapeutic CP96,345. Control: Saline only; CP96,345: CP96,345 (2.5mg/kg); 
Caerulein: 10 consecutive hourly caerulein (50µg/kg/hr) injections; CP96,345 
Prophylactic: CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; 
CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 minutes after first caerulein 
injection. Bar charts represent mean value ± SEM of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 3.3 PPT-A mRNA expression in pancreas (hollow bars) and lungs 
(shaded bars) of mice with AP, treated with prophylactic/ therapeutic CP96,345.  
Control: Saline only; CP96,345: CP96,345 (2.5mg/kg); Caerulein: 10 consecutive 
hourly caerulein (50µg/kg/hr) injections; CP96,345 Prophylactic: CP96,345 
(2.5mg/kg) 30 minutes before caerulein injections; CP96,345 Therapeutic: 
CP96,345 (2.5mg/kg) 60 minutes after first caerulein injection. Bar charts 
represent mean value ± SEM of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 3.4 NK1 receptor mRNA expression in pancreas (hollow bars) and 
lungs (shaded bars) of mice with AP, treated with prophylactic/ therapeutic 
CP96,345.  Control: Saline only; CP96,345: CP96,345 (2.5mg/kg); Caerulein: 10 
consecutive hourly caerulein (50µg/kg/hr) injections; CP96,345 Prophylactic: 
CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; CP96,345 
Therapeutic: CP96,345 (2.5mg/kg) 60 minutes after first caerulein injection. Bar 
charts represent mean value ± SEM of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 3.5 Immunohistochemistry staining of pancreas sections (5µm) using 
polyclonal anti-mouse NK1 receptor antibody. Low level of NK1R was detected 
in normal pancreas. During AP, increased localization of NK1R on the cell 
surface of pancreatic acinar cells was observed. This was demonstrated by the 
increase in brown staining in the caerulein-only group. (A) Saline only; (B) 
CP96345 (2.5mg/kg); (C) 10 consecutive hourly caerulein (50µg/kg/hr) injections; 
(D) CP96345 (2.5mg/kg) 30 minutes before caerulein injections; (E) CP96345 
(2.5mg/kg) 60 minutes after first caerulein injection; (F) Negative control 
(absence of primary antibody). Scale bars = 20μm. 
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Figure 3.6 Immunohistochemistry staining of lung sections (5µm) using 
polyclonal anti-mouse NK1 receptor antibody. Low level of NK1R was detected 
in normal lung. During AP, increased localization of NK1R on the cell surface of 
alveolar cells was observed. This was demonstrated by the increase in brown 
staining in the caerulein-only group. (A) Saline only; (B) CP96345 (2.5mg/kg); 
(C) 10 consecutive hourly caerulein (50µg/kg/hr) injections; (D) CP96345 
(2.5mg/kg) 30 minutes before caerulein injections; (E) CP96345 (2.5mg/kg) 60 
minutes after first caerulein injection; (F) Negative control (absence of primary 
antibody). Scale bars = 20μm. 
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Figure 3.7 NK2 receptor mRNA expression in pancreas of mice with AP, 
treated with prophylactic/ therapeutic CP96,345.  Control: Saline only; 
CP96,345: CP96,345 (2.5mg/kg); Caerulein: 10 consecutive hourly caerulein 
(50µg/kg/hr) injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes 
before caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 
minutes after first caerulein injection. Bar charts represent mean value ± SEM 
of at least 8 animals. 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 3.8 NK2 receptor mRNA expression in the lungs of mice with AP, 
treated with prophylactic/ therapeutic CP96,345.  Control: Saline only; 
CP96,345: CP96,345 (2.5mg/kg); Caerulein: 10 consecutive hourly caerulein 
(50µg/kg/hr) injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes 
before caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 
minutes after first caerulein injection. Bar charts represent mean value ± SEM 
of at least 8 animals. 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 3.9 PPT-C mRNA expression in pancreas and lungs of mice with AP, 
treated with prophylactic/ therapeutic CP96,345.  Control: Saline only; 
CP96,345: CP96,345 (2.5mg/kg); Caerulein: 10 consecutive hourly caerulein 
(50µg/kg/hr) injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes 
before caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 
minutes after first caerulein injection. No expression of the gene was detected in 
pancreas. Bar charts represent mean value in lung ± SEM of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05).
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Figure 3.10 Absence of NK3R mRNA expression in normal and AP pancreas 
and lung of mouse.
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mRNA expression 

 

NK1R NK2R NK3R PPT-A PPT-C SP 
(ELISA)

Target 
Organs CP96,345 

AP CP AP CP AP CP AP CP AP CP AP CP 
 

Prophylactic 
 

↑ ↓ ↑ ↑↑ ND ND ↑ ↓ ND ND ↑ ↓  
Pancreas 

  
Therapeutic 

 
↑ ↓ ↑ ↑↑ ND ND ↑ ↓ ND ND ↑ ↓ 

 
Prophylactic 

 
↑ ↑↑ ↓ ↓ ND ND ↑ ↓ ↑ ↓ ↑ ↓  

Lung 
  

Therapeutic 
 

↑ ↑↑ ↓ ↓ ND ND ↑ ↓ ↑ ↓ ↑ ↓ 

 

Table 3.2 Summary of the changes mRNA expression during AP. Upward 
arrows represent increase in mRNA expression. Downward arrows represent 
decrease in mRNA expression. ND: not detected. 
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Figure 3.11 Dose-response relationship between the increasing caerulein/SP 
concentration (10-13 M to 10-7M) and the release of amylase from pancreatic 
acinar cells. A bell-shaped curve was observed with the maximum amylase 
activity measured at 10-10 M caerulein. SP did not affect the amylase secretion. 
Data points represent mean value ± SEM of at least 8 animals. 
 
* indicates significantly different from control group (P <0.05). 
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Figure 3.12 Effects of caerulein and/or SP incubation, in the presence or 
absence of CP96,345, on the release of amylase from the pancreatic acinar cells. 
Bar charts represent mean value ± SEM of at least 8 experiments. 
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Figure 3.13 Dose-response relationship between the increasing caerulein (10-13 
M to 10-6M) / SP (10-10 M to 10-5M) concentration and the change in PPT-A 
mRNA expression in pancreatic acinar cells. Data points represent mean value ± 
SEM of at least 8 animals. 
 
* indicates significantly different from control group (caerulein treatment) (P 
<0.05). 
+ indicates significantly different from control group (SP treatment) (P <0.05). 
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Figure 3.14 Effects of caerulein and/or SP incubation, in the presence or 
absence of CP96,345, on the expression of PPT-A mRNA. Significant increase in 
PPT-A mRNA was observed with caerulein and/or SP treatment, which could be 
blocked by NK1R antagonist. Bar charts represent mean value ± SEM of at least 
8 experiments. 
 
* indicates significantly different from control group (P <0.05). 
# indicates significantly different from caerulein-only group (P <0.05).  
+ indicates significantly different from SP-only group (P <0.05). 
§ indicates significantly different from caerulein/SP treated group (P <0.05). 
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Figure 3.15 Effect of caerulein, in the presence or absence of CP96,345, on SP 
levels in the A) acinar cells; B) supernatant. Bar charts represent mean value ± 
SEM of at least 8 experiments. 
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Figure 3.16 Dose-response relationship between the increasing caerulein (10-13 
M to 10-6M) / SP (10-10 M to 10-5M) concentration and the change in NK1R 
mRNA expression in pancreatic acinar cells. Data points represent mean value ± 
SEM of at least 8 animals. 
 
* indicates significantly different from control group (caerulein treatment) (P 
<0.05). 
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Figure 3.17 Effects of caerulein and/or SP incubation, in the presence or 
absence of CP96,345, on the expression of NK1R mRNA. Significant increase in 
NK1R mRNA was observed when the acinar cells were treated with caerulein. 
Bar charts represent mean value ± SEM of at least 8 experiments. 
 
* indicates significantly different from control group (P <0.05). 
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Figure 3.18 Effect of caerulein, SP and CP96,345, on NK1R expression. Low 
level of NK1R was fluorescently labeled on the cell surface of pancreatic acinar 
cells. There was no significant difference in NK1R staining (fluorescence on cell 
surface – background fluorescent) observed among the treatment groups.  
Scale bars (red) = 10 μm 
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3.4  DISCUSSION 

 

The up-regulation of SP levels in the pancreas and the lungs of AP mice induced by 

caerulein has been shown in Chapter 2. Caerulein, a CCK analog, at the physiological 

concentration activated the high affinity site that is believed to mediate normal 

pancreatic enzyme secretion (Fig 3.11). When given at supramaximal concentrations, 

caerulein stimulates the second low affinity receptor and resulting in the inhibition of 

enzyme secretion and AP (Fig 3.11) (Niederau et al., 1994). In the present study, I 

have further investigated the effect of the NK1R antagonist CP96,345 on SP levels in 

the pancreas and lungs. Patients with AP for the most part seek medical attention 

within 12–18 hours of the onset of pain, although some patients may present later. In 

patients with a severe attack, the effects of distant organ damage (such as lung injury) 

are often not fully established and only become apparent over the following 48 hours. 

Potentially, there is thus a therapeutic window between hospital presentation and the 

development of distant organ dysfunction. A similar therapeutic window exists in 

experimental models of AP (Bhatia et al., 2000a; Bhatia et al., 2005a; Bhatia et al., 

2003b). Therefore, in this study CP96,345 was administered, either prophylactically 

or therapeutically, either before (prophylactic treatment) or after (therapeutic 

treatment) initiation of the pancreatic injury, but in both cases before the lung injury 

could set in. 

 

We found that both prophylactic and therapeutic treatments of CP96,345 resulted in 

suppression of elevated SP levels in both organs (Fig 3.1 & 3.2). Similarly, there was 

an up-regulation of PPT-A gene expression in both pancreas and lungs (Fig 3.3). PPT-

A is the gene that codes for SP (Holzer and Holzer-Petsche, 1997a) and its deletion 
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has been shown to offer protection against AP (Bhatia et al., 2003b). This finding 

suggests that SP levels and PPT-A gene expression in both the pancreas and lungs 

appear to be closely related to the severity of pancreatitis. The increases in SP and 

PPT-A gene expression were also detected some inflammatory conditions, such as 

allergic asthma (de Vries et al., 2006), arthritis (Garrett et al., 1995), trichinosis 

(Swain et al., 1992) and keratoconjunctivitis (Lambiase et al., 1997). In addition, the 

production of SP may be modulated by NK1R activation, as treatment with CP96,345 

resulted in the inhibition of PPT-A gene expression and SP production. Although SP 

is mainly found in the neuronal cells, numerous reports have described its co-

existence with NK1R in non-neuronal cells (Milner et al., 2004; Watanbe et al., 2002; 

Maghni et al., 2003; Lai et al., 2002; Bae et al., 2002; Qian et al., 2001; Germonpre et 

al., 1999) and have suggested that the possible role of endogenous SP production in 

the modulation of inflammation in an autocrine and/or paracrine pattern (Watanabe et 

al., 2002; Maghni et al., 2003; Qian et al., 2001, Germonpre et al., 1999). The 

regulation of SP production by the activation of NK1R was also observed in the in 

vitro studies where isolated acinar cells treated with caerulein or SP or in combination 

of the two peptides, acinar cells responded with increased PPT-A mRNA expression, 

which could be blocked by the co-administration of the NK1R antagonist, CP96,345 

(Fig 3.14).  

 

The expression profile of NK1R in AP using real time-PCR and 

immunohistochemistry was generated. Real-time PCR was employed to overcome the 

problem of low expression level of NK1R in the pancreas (Bhatia et al., 1998a). In the 

pancreas, caerulein-induced AP resulted in the elevation of NK1R mRNA expression, 

which could be impeded by treatment with CP96,345 (Fig 3.4). Up-regulation of 
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tissue NK1R expression has also been described in many inflammatory conditions, 

such as asthma (Adcock et al., 1993), irritable bowel syndrome (La et al., 2005, ter 

Beek et al., 2007) and allergic contact dermatitis (El-Nour et al., 2006). 

Immunohistochemistry of the pancreas with anti-NK1R antibody reinforced this 

finding, with the CP96,345-treated group showing apparently weaker immunostaining 

than the untreated AP group (Fig 3.5). Although the isolated acinar cell study 

demonstrated a similar trend, the change in NK1R expression over a 1 hour period 

was too small to reach any statistical significant (Fig 3.16 to 3.18). On the other hand, 

a different expression profile was observed in the lungs, with an elevation of NK1R 

mRNA in AP observed with administration of CP96,345 (Fig 3.4). This result was 

supported by immunohistochemistry (Fig 3.6).  

 

In addition to NK1R, other members of the neurokinin receptor family were also 

examined in the mouse model of AP. NK3R mRNA expression was only detected in 

brain but not in the lungs and pancreas (Figure 3.10), suggesting that its main role is 

in the CNS. NK2R mRNA expression was detected in normal lungs (the alveolar 

cells) (Adcock et al., 1993) and inflamed pancreas (acinar cells) and lungs. In normal 

pancreas, NK2R mRNA expression was not detected (Fig 3.7). During AP, an 

increase in NK2R mRNA expression in the pancreas was observed but down-

regulation of NK2R mRNA expression in the lungs was detected. In the pancreas, 

treatment with CP96,345 resulted in further NK2R mRNA expression. On the other 

hand, receptor mRNA expression in the lung was reversed to normal levels following 

treatment with CP96,345 (Fig 3.8). The significance of these findings is unknown and 

requires further investigation. However, these results show a differential regulation of 
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TK and neurokinin receptor expression in the pancreas and lungs in AP and point to a 

differential regulation of local and systemic (lung) inflammation in AP.  

 

It is known that the PPT-A gene codes for SP and NKA, PPT-B codes for NKB 

(Patacchini et al., 2004) and PPT-C codes for the newly discovered HK-1 (Zhang et 

al., 2000). SP and haemokinin bind primarily to NK1R, NKA to NK2R and NKB to 

NK3R. Since NK3R was not detected in the pancreas and lungs, we did not include 

NKB/PPT-B expression was not evaluated in the present study. However, RT-PCR of 

PPT-C mRNA expression was carried out and the expression was detected in the lung 

but not the pancreas. The absence of PPT-C in normal mouse pancreas has been 

reported previously (Kurtz et al., 2002). Moreover, pulmonary but not pancreatic 

PPT-C mRNA expression was up-regulated during AP and CP96,345 treatment 

suppressed this elevation, further supporting the possibility of a differential regulation 

of inflammation in the pancreas and lungs during AP and associated lung injury. 

 

The mechanism by which tachykinins participate in the pathophysiology of AP is 

unknown. However, it is clear that SP and the NK1R play an important role and the 

NK1R antagonist represents a promising therapeutic tool for the treatment of AP 

(Bhatia et al., 1998a; Bhatia et al., 2003b). The present study provides a deeper 

insight into the changes in and regulation of the TK system, during AP and in 

response to treatment with NK1R antagonist. The findings reinforce the key role of 

SP and NK1R in this inflammatory condition. However, the differential regulation of 

NK1R expression in pancreas and lung in response to the antagonist treatment might 

indicate a different nature of the inflammatory responses (neurogenic vs non-

neurogenic) in the two organs (Fig 3.4). In addition to NK1R, the present results also 
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suggest the possible involvement of NK2R in the pathogenesis of AP, which is also 

expressed differentially in the pancreas and lungs during AP. On the other hand, the 

distribution of PPT-C expression suggests its importance in AP-associated lung 

injury, but not in the inflammatory insult to the pancreas. 

 

A differential pattern of regulation of the inflammation is remarkably interesting, as 

this is the first evidence that, even though TK play a key role in the pathogenesis of 

pancreatitis and associated lung injury, in AP they may well be acting by different 

mechanisms in augmenting pancreatic and lung injury. In light of these results, we 

postulated the existence of two different organ-specific modulations of inflammatory 

response in the pancreas and the lungs during AP. In Chapter 4, we shall continue to 

investigate the consequences of these different organ-specific regulations on 

expression of several important cell surface adhesion molecules that are critical in 

directing inflammatory cells to the sites of injury in AP.  
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CHAPTER 4 

 

EFFECT OF CP 96,345 ON THE EXPRESSION OF ADHESION 

MOLECULES IN AP  

 

4.1 INTRODUCTION 

 

AP is an acute inflammatory process of the pancreas, with variable involvement of 

other regional tissues or remote organ systems. It is a common inflammatory disorder 

with increasing incidence over the past few decades (Bhatia et al., 2000a). Most cases 

develop as a result of biliary disease or excess alcohol consumption. The severity of 

this disease ranges from mild, localized, self-limiting pancreatic inflammation to 

systemic inflammatory response syndrome (SIRS) with fatal consequences. Current 

knowledge on the pathophysiology of AP has been reviewed recently (Bhatia et al., 

2005a). Despite advances in knowledge of the aetiologies and pathophysiology of AP, 

as well as advances in intensive care management for patients with severe AP, the 

mortality rate is still high and improvement in treatment is still unsatisfactory (Imrie 

and McKay, 1999). 

 

SP and its receptor, NK1R have been implicated in the pathogenesis of AP by 

mediating NI. (Bhatia et al., 2005a; Bhatia et al., 1998a; Bhatia et al., 2003b). Studies 

have shown that NI mediated by the binding of SP to NK1R plays a crucial role in the 

pathogenesis of AP and pancreatitis-associated lung injury in mice and rats (Lau et 

al., 2005; Grady et al., 2000; Maa et al., 2000). Knock-out mice deficient in SP and 

NK1R were found to be resistant to the development of severe AP (Bhatia et al., 
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1998a; Bhatia et al., 2003b). In addition, treatment with NK1R antagonists has 

beenshown to be effective in suppressing the progression of the inflammatory 

condition (Chapter 2 and 3). Nevertheless, the exact mechanism by which NK1R and 

SP amplifies the severity of pancreatitis remains to be elucidated. This work requires 

further investigation into the other components in the inflammatory cascade. 

 

Leukocyte recruitment is a hallmark feature of inflammation and is characterized by a 

sequence of events that bring about extravasation of leukocytes, through leukocyte-

endothelial interactions. Upon activation, leukocytes roll and adhere to the 

endothelium through the interactions between selectins (E- and P-selectins) or 

adhesion molecules (ICAM-1, VCAM-1) with their respective counter ligands. This is 

followed by the emigration of leukocytes to the site of injury under the influence of 

chemotactic agents. It was demonstrated that levels and expression of ICAM-1, 

VCAM-1, P- and E-selectin were upregulated and enhanced in AP (Lundberg et al., 

2000a; Sunamura et al., 1999; Lundberg et al., 2000b; Uhlmann et al., 2001). 

Immunoneutralization of adhesion molecules has been proven to be effective in the 

treatment of experimental AP (Wang et al., 1999). Administration of monoclonal 

antibody against ICAM-1 to rats with acute severe pancreatitis significantly enhances 

capillary blood flow in the pancreas, reduces leukocyte rolling and stabilizes capillary 

permeability (Frossard et al., 1999). Moreover, blocking VCAM-1 decreases 

leukocyte adherence and recruitment into the lung, hence reducing lung injury in 

severe AP (Callicutt et al., 2003). However, the relationship between NK1R blockade 

and leukocyte activation during AP is largely unknown. 
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In this chapter, I have investigated the effect of the NK1R antagonist, CP96,345, on 

the mRNA and protein expression of various adhesion molecules implicated in AP. 

This will provide important information for the understanding of the role of SP and 

NK1R in the regulation of the downstream inflammatory cascades mediated by 

adhesion molecules during AP.  
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4.2 MATERIALS AND METHODS 

 

4.2.1 Materials 

 

Rat anti-mouse ICAM-1 (CD54) monoclonal antibody was purchased from 

Chemicon, CA, USA. Rat anti-mouse VACM-1 (CD106) polyclonal antibody was 

purchased from Serotec, UK. Rabbit anti-mouse E-selectin polyclonal antibody and 

goat anti-mouse P-selectin polyclonal antibody were obtained from Biovision, CA, 

USA. 

 

4.2.2 Induction of AP 

 

AP was induced in mice as described in Section 2.2.2. One hour after the last 

caerulein injection animals were sacrificed by a lethal dose of i.p. pentabarbitone (90 

mg/kg, three times the dose for surgical anaesthesia). Pancreas and lungs tissues were 

collected for total RNA extraction, SP analysis or immunohistochemistry. 

 

4.2.3 Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) 

 

Reserve transcription polymerase chain reactions (RT-PCRs) were carried out as 

described in Section 3.2.5. The PCR primers (Table 4.1) for detection of ICAM-1, 

VCAM-1, E-selectin and P-selectin were synthesized by Proligo, Singapore. cDNA 

synthesized from 1 µg total RNA was included in a typical PCR. The reaction mixture 

was first subjected to 95 °C for 3 minutes for the activation of polymerase. This was 

followed by an optimal cycle of amplification (Table 4.1), consisting of 95 °C for 30 
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seconds, optimal annealing temperature (Table 4.1) for 30 seconds and 72 °C for 30 

seconds. PCR amplification was performed in MyCycler™ (Biorad, Hercules, CA). 

PCR products were analysed on 1% w/v agarose gels containing 0.05 mg/100 ml 

ethidium bromide. 

 

4.2.4 Immunohistochemistry with cryosections 

 

One hour after the last caerulein injection, the mice were euthanized with sodium 

pentobarbital (90 mg/kg, three times the dose for surgical anesthesia) and perfused 

transcardially with heparinized 10 ml of 0.1M PBS at pH 7.4. Immediately after PBS 

perfusion, the pancreas was harvested, mounted and embedded in Optimal Cutting 

Temperature (OCT) compound (Ames Co., Division of Miles Laboratories, Elkhart, 

IN) in liquid nitrogen, and stored at -70°C for no more than 2 weeks. In addition, a 

mixture of OCT compound and PBS (1:2) was slowly infused into the trachea until 

the lungs were completely inflated under visual inspection, whereupon the lungs were 

removed and immediately mounted and embedded in OCT compound and placed in 

liquid nitrogen, and store at -70°C for no more than 2 weeks.  

 

Pancreas or the lungs were sectioned on a Leica CM1800 cryostat (Leica 

Microsystems Nussloch GmbH, Germany) to obtain sections of 7µm thickness, which 

were then transferred to polylysine (0.1% v/v in distilled water) coated slides. The 

tissue slides were then fixed in ice-cold acetone for 10 minutes, washed, and air-dried. 

The sections were then kept at -70°C for no more than 1 month. During 

immunostaining, the cold sections were rinsed in TBS several times before the 

endogenous peroxidase activity was quenched with 0.3% H2O2. The slides were then 
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incubated with blocking buffer (3% BSA in TBS) for 1 hour to block non-specific 

binding sites, and washed with TBS. This was followed by incubation with the 

primary antibody diluted to the optimal working concentrations and in the optimal 

conditions (Table 4.2). After that, the sections were washed, and incubated in 

horseradish peroxidase-conjugated secondary antibodies for 30 minutes at room 

temperature. Finally, the slides were treated with DAB for 10 minutes, rinsed, 

counterstained with haematoxylin, dehydrated through graded alcohols, cleared in 

Histoclear, and coverslipped with Neomount. Negative controls were included by 

omitting the primary antibodies or substituting them with non-immune serum in order 

to check the specificity of the immunostaining (Figure 4.9). Antibodies were diluted 

in TBS at pH7.2. This buffer was also used in all washes (3 × 5 minutes), and all 

incubations are carried out at room temperature (25°C). The sections were then 

examined using Carl-Zeiss Axioskop 40 microscope system (Carl Zeiss, Göttingen, 

Germany) for qualitative assessment. 

 

4.2.5 Data analytical method 

 

Data are expressed as the mean ± SEM. In all figures, vertical error bars denote the 

SEM. The significance of differences between groups was evaluated by analysis of 

variance (ANOVA), with post hoc Tukey's test when comparing three or more groups. 

A P value of less than 0.05 was considered to indicate a statistically significant 

difference. 
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Gene Primer Sequence Optimal Conditions Size 

r18S sense:  

5’-GTAACCCGTTGAACCCCATT-3’ 

antisense:  

5’-CCATCCAATCGGTAGTAGCG-3’ 

Lung: 22 cycles 

Pancreas: 22 cycles 

Annealing: 59°C 

150 bp 

ICAM-1 sense:  

5’- CAACTGGAAGCTGTTTGAGCTG -3’ 

antisense:  

5’- TAGCTGGAAGATCGAAAGTCCG -3’ 

Lung: 33 cycles 

Pancreas: 35 cycles 

Anealing: 60°C 

 

437 bp 

VCAM-1 sense: 

5’- CCTCACTTGCAGCACTACGGGCT -3’ 

antisense: 

5’- TTTTCCAATATCCTCAATGACGGG -3’ 

Lung: 34 cycles 

Pancreas: 36 cycles 

Annealing: 60°C 

441 bp 

E-selectin sense: 

5’- AGCTACCCATGGAACACGAC -3’ 

antisense:  

5’- TGCAAGCTAAAGCCCTCATT -3’ 

Lung: 35 cycles 

Pancreas: 36 cycles 

Annealing: 60°C 

622 bp 

 

P-Selectin sense: 

5’- TACGAGCTGGACGGACCCG -3’ 

antisense:  

5’- GGCTGGCACTCAAATTTACAGC -3’ 

Lung: 34 cycles 

Pancreas: 36 cycles 

Annealing: 60°C 

181 bp 

 
Table 4.1 PCR primer sequences, optimal amplification cycles, optimal 
annealing temperatures and product sizes for ICAM-1, VCAM-1, E- and P-
selectins. 
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Antigen Working dilution Optimal Conditions Duration 

ICAM-1 
1:200 (pancreas) 

1:8000 (for lung) 
Humidified chamber at room temperature 2 hours 

VCAM-1 1:40 Humidified chamber at room temperature 2 hours 

E-selectin 1:20 Humidified chamber at 4°C 24 hours 

P-selectin 1:20 Humidified chamber at 4°C 24 hours 

 
Table 4.2 Immunohistochemistry antibody working dilutions and optimal 
incubation conditions based on preliminary studies. 
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4.3 RESULT 
 

4.3.1 Effect of CP96,345 treatment on pancreatic and pulmonary ICAM-1 mRNA 

expression and ICAM-1 protein expression in AP 

 

Figure 4.1 shows the relative ICAM-1 mRNA level in the pancreas and the lungs. 

Hyperstimulation of the pancreas by caerulein resulted in an increase in ICAM-1 

mRNA expression in both organs (2 to 3-fold). Administration of CP96,345 

significantly attenuated the elevation of mRNA level in lung, but had no effect on the 

mRNA expression in pancreas. This is in contrast with the immunohistochemistry 

staining results (Figure 4.2), in which prophylactic CP96,345 treatment showed an 

apparent reduction in the immunoreactivity at the endothelial layer of the blood 

vessels in both the pancreas and the lungs. 

 

4.3.2 Effect of CP96,345 treatment on pancreatic and pulmonary VCAM-1 mRNA 

expression and VCAM-1 protein expression in AP 

 

In the pancreas, 10 consecutive hourly injections of caerulein results in a 2.5 fold 

increase in VCAM-1 mRNA expression (Figure 4.3). When CP96,345 was 

administered prophylactically, no significant change in the VCAM-1 expression was 

observed. Immunohistochemistry staining, however, demonstrated a apparent decline 

in VCAM-1 immunoreactivity in prophylactic treatment group (Figure 4.4). In the 

lungs, RT-PCR and immunohistochemistry (Figure 4.4) showed that VCAM-1 level 

was not affected by both caerulein and/or CP96,345 treatments. 
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4.3.3 Effect of CP96,345 treatment on pancreatic and pulmonary E-selectin mRNA 

expression and E-selectin protein expression in AP 

 

E-selectin mRNA expression (Figure 4.5) correlated well with apparent protein 

expression (Figure 4.6). E-selectin mRNA and protein expression were not detected in 

normal pancreas. During AP, E-selectin was upregulated above 3.5-fold and localized 

extensively on the endothelial layer of the blood vessels in pancreas and the lungs, as 

well as the connective tissues between the acinar cells in the pancreas. Reduction of 

E-selectin mRNA and apparent protein expression in the pancreas and the lungs was 

observed in the CP96,345 prophylactic treatment group. Therapeutic treatment with 

the antagonist significantly reduced the E-selectin mRNA expression in the lungs but 

not in the pancreas. 

 

4.3.4 Effect of CP96,345 treatment on pancreatic and pulmonary P-selectin mRNA 

expression and P-selectin protein expression in AP 

 

A 2.2-fold increase in the P-selectin mRNA expression was observed in the pancreas 

during AP (Figure 4.7). Significant reduction in P-selectin expression was detected in 

mice treated with prophylactic CP96,345. Immunohistochemical analysis of P-selectin 

revealed a similar trend (Figure 4.8). An apparent increased P-selectin 

immunoreactivity was observed particularly in the endothelial layer and the 

surrounding connective tissues of the blood vessels in the pancreas. In the lungs, P-

selectin mRNA expression increased 3.3-fold during AP and the prophylactic 

antagonist treatment significantly lowered the mRNA expression (Figure 4.7). 

Increased expression of P-selectin in the blood vessel endothelial layer and 
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surrounding connective tissue was observed during AP and the antagonist appeared to 

reduce the protein expression (Figure 4.8).   
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Figure 4.1 ICAM-1 mRNA expression in the pancreas (hollow bars) and 
lungs (shaded bars) of mice with AP, treated with prophylactic/ therapeutic 
CP96,345. Control: Saline only; Caerulein: 10 consecutive hourly caerulein 
(50µg/kg) injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes 
before caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 
minutes after first caerulein injection. Bar charts represent mean value ± SEM 
of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 

 118



 
 
Figure 4.2 Immunohistochemistry staining of pancreas (A-D) and lung (E-H) 
sections (7µm) using monoclonal anti-ICAM-1 antibody. (A and E) Saline only; 
(B and F) 10 consecutive hourly caerulein (50µg/kg/hr) injections; (C and G) 
CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; (D and H) CP96,345 
(2.5mg/kg) 60 minutes after first caerulein injection. Scale bars = 20μm. 
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Figure 4.3 VCAM-1 mRNA expression in the pancreas (hollow bars) and lung 
(shaded bars) of mice with AP, treated with prophylactic/ therapeutic CP96,345. 
Control: Saline only; Caerulein: 10 consecutive hourly caerulein (50µg/kg) 
injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes before 
caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 minutes 
after first caerulein injection. Bar charts represent mean value ± SEM of at least 
8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 4.4 Immunohistochemistry staining of pancreas (A-D) and lung (E-H) 
sections (7µm) using polyclonal anti-VCAM-1 antibody. (A and E) Saline only; 
(B and F) 10 consecutive hourly caerulein (50µg/kg) injections; (C and G) 
CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; (D and H) CP96,345 
(2.5mg/kg) 60 minutes after first caerulein injection. Scale bars = 20μm. 
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Figure 4.5 E-selectin mRNA expression in the pancreas (hollow bars) and 
lung (shaded bars) of mice with AP, treated with prophylactic/ therapeutic 
CP96,345. Control: Saline only; Caerulein: 10 consecutive hourly caerulein 
(50µg/kg) injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes 
before caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 
minutes after first caerulein injection. Bar charts represent mean value ± SEM 
of at least 8 animals. ND: Not detected. 
1 E-selectin values of the pancreas are expressed as fold increase over caerulein 
group. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
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Figure 4.6 Immunohistochemistry staining of pancreas (A-D) and lung (E-H) 
sections (7µm) using polyclonal anti-E-selectin antibody. (A and E) Saline only; 
(B and F) 10 consecutive hourly caerulein (50µg/kg) injections; (C and G) 
CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; (D and H) CP96,345 
(2.5mg/kg) 60 minutes after first caerulein injection. Scale bars = 20μm. 
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Figure 4.7 P-selectin mRNA expression in the pancreas (hollow bars) and 
lung (shaded bars) of mice with AP, treated with prophylactic/ therapeutic 
CP96,345. Control: Saline only; Caerulein: 10 consecutive hourly caerulein 
(50µg/kg) injections; CP96,345 Prophylactic: CP96,345 (2.5mg/kg) 30 minutes 
before caerulein injections; CP96,345 Therapeutic: CP96,345 (2.5mg/kg) 60 
minutes after first caerulein injection. Bar charts represent mean value ± SEM 
of at least 8 animals. 
* indicates significantly different from the Control group (P < 0.05). 
# indicates significantly different from the Caerulein group (P < 0.05). 
 

 124



 
 
Figure 4.8 Immunohistochemistry staining of pancreas (A-D) and lung (E-H) 
sections (5µm) using polyclonal anti-P-selectin antibody. (A and E) Saline only; 
(B and F) 10 consecutive hourly caerulein (50µg/kg) injections; (C and G) 
CP96,345 (2.5mg/kg) 30 minutes before caerulein injections; (D and H) CP96,345 
(2.5mg/kg) 60 minutes after first caerulein injection. Scale bars = 20μm. 
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Figure 4.9 Negative controls slides of immunohistochemistry staining of 
pancreas (A-D) and lung (E-H) sections (5µm) in the absence of primary 
antibody. (A and E) absence of anti-ICAM-1 antibody; (B and F) absence of anti-
VCAM-1 antibody; (C and G) absence of anti-E-selectin antibody; (D and H) 
absence of anti-P-selectin antibody. Scale bars = 20μm. 
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4.4 DISCUSSION 

 

The recruitment of leukocytes to the site of tissue injury is an important component of 

inflammation. It is achieved by a complex interaction between adhesion molecules 

under the influence of various chemoattractants. This multi-step process involves 

leukocyte rolling, adhesion and emigration on the endothelium to reach the site of 

tissue injury. It is believed that leukocyte rolling is mediated by selectins (Rosen, 

1993) and leukocyte adhesion is regulated by integrins (van der Flier and Sonnenberg, 

2001). Since the treatment with CP96,345, an NK1R specific antagonist has been 

effective in reducing the severity of AP (Chapter 2 and Chapter 3), it is likely that the 

treatment with the NK1R antagonist may affect the regulation of integrin-associated 

ligands and selectins. Therefore, we investigated the effect of NK1R blockade on the 

expression of integrin-associated ligands (ICAM-1 and VCAM-1) and selectins (E-

selectin and P-selectin) in the pancreas and lung during AP. 

 

In the pancreas, ICAM-1, VCAM-1, E-selectin and P-selectin mRNA expression were 

upregulated during caerulein-induced AP. Previous studies have demonstrated similar 

findings (Genovese et al., 2006; Liu et al., 2005; Cuzzocrea et al., 2003). The mRNA 

expression of ICAM-1 and VCAM-1 were not affected by the antagonist treatment. 

However, their immunoreactivity appeared to be reduced with the antagonist 

treatment. ICAM-1 and VCAM-1 expression are known to be associated with the 

severity of organ injury in animal models of AP (Lundberg et al., 2000b; Frossard et 

al., 1999; Werner et al., 1999). ICAM-1, in particular, plays a crucial part in 

neutrophil adhesion to the endothelium (Lorant et al., 1991; Wetheimer et al., 1992). 

On the other hand, both prophylactic and therapeutic treatment with CP96,345 
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significantly reduced the mRNA and apparent protein expression of E- and P-

selectins, with prophylactic administration of the antagonist producing a stronger 

effect. Selectins have been identified as important markers of AP (Miskovitz, 2001; 

Powell et al., 2001). E-selectin level has been shown to correlate well with the degree 

of organ dysfunction in AP patients, while P-selectin level is significantly higher in 

the non-survivors (Powell et al., 2001). Together, these results may imply that the 

blockade of NK1R has significant role on leukocyte rolling and adherence in 

pancreatic microcirculation. Therefore, it is clear that CP96,345 treatment is effective 

in preventing the progression of the disease by interfering with the expression of these 

pro-inflammatory molecules. 

 

One of the major causes of death in AP patients is lung injury that clinically manifests 

as acute respiratory distress syndrome (ARDS). Therefore, the effect of CP96,345 

treatment on the expression of the four adhesion molecules in the lungs were 

investigated. ICAM-1, E-selection and P-selectin mRNA and apparent protein 

expression were significantly elevated during AP. The treatment with the NK1R 

antagonist effectively reduced the elevated levels, with prophylactic administration of 

the compound offering a stronger effect. However, pulmonary VCAM-1 expression 

was not affected during AP and CP96,345 administration. It has been shown in a 

previous study that the treatment with NK1R receptor antagonist, SR140333, did not 

affect the VCAM-1 levels in the lungs in rat model of airway inflammation (Kang et 

al., 2002). Evidence of a differential regulation of the neurokinin system in pancreas 

and lung in caerulein-induced AP has been generated in Chapter 3. The results of the 

present study provide further evidence of the differential regulation of the 
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inflammatory responses in pancreas and lung in AP, especially in terms of the role of 

different adhesion molecules in the pancreas and lung. 

 

In conclusion, these findings have shown that the NK1R antagonist, CP96,345, is 

effective in reducing pancreatitic and pulmonary expression of adhesion molecules 

implicated in AP. Therefore, NK1R blockade represents a promising therapeutic 

approach to the treatment of AP. Besides, these results have also demonstrated a 

differential regulation of the expression of adhesion molecules in the pancreas and the 

lung in AP. 
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CHAPTER 5 

 

EFFECT OF CP96,345 ON LEUKOCYTE RECRUITMENT IN AP  

 

5.1 INTRODUCTION 

 

The recruitment of leukocytes from the circulation is an important process that occurs 

during inflammation. The trafficking of leukocytes cross the endothelium is divided 

into several distinct steps that are tightly regulated. This multi-step paradigm was 

originally proposed by Butcher (Butcher, 1991) and further elaborated on by Springer 

(Springer, 1994). The accumulation of leukocytes in an inflamed tissue is a result of 

the trans-endothelial migration cascade activated by the adhesive interactions between 

leukocytes and endothelial cells. During this process, the transient weak interaction 

between adhesion molecules on leukocytes and the endothelium will allow the 

leukocytes to slow down and roll along the endothelial surface. This is followed by 

the firm adherence of leukocytes onto the endothelial cells when the leukocytes come 

into close proximity with the endothelium. Upon the activation by chemotactic 

cytokines, leukocytes emigrate out of the vasculature and respond to the direction-

specific stimuli that guide them to the inflammatory source (Foxman et al., 1997; van 

Buul and Hordijk, 2004). 

 

In 1929, a German pharmacologist Philipp Ellinoer and a German anatomist, August 

Hirt, invented a modified fluorescence microscopy method to examine fluorescent-

labeled structures in specimens from most living organs. The instrument constructed 

was later given the name - "intravital microscope", and it was considered as the first 
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epi-fluoresence (or incident-light excitation) microscope (Ellinoer and Hirt, 1929; 

Ellinoer and Hirt, 1932). Since then, intravital fluorescence video-microscopy has 

been established as a versatile technique for the study of leukocyte-endothelium 

interactions and blood flow at the level of the microcirculatory unit using fluorescent 

markers such as rhodamine 6G (Rh6G), which selectively attach to circulating 

leukocytes (Lehr et al. 1993a; Lehr et al. 1993b; Menger et al. 1992a,b). 

 

In this chapter, I investigated the effect of 10 hourly injections of caerulein on the 

leukocyte-endothelium interaction in pancreatic post-capillary venules during AP, 

using Rhodamine 6G and an intravital microscope. It was found that the treatment 

with the NK1R antagonist effectively suppressed the recruitment of leukocytes into 

inflamed pancreatitic tissue.  
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5.2 MATERIALS AND METHODS 

 

5.2.1 Materials 

 

Rh6G was purchased from Sigma-Aldrich Chemicals USA (St. Louis, Mo). The 

mixture of ketamine and medetomindine was obtained from the Animal Holding Unit, 

National University of Singapore. Other reagents and chemicals were of analytical 

grade.  

 

5.2.2 Induction of AP 

 

AP was induced in mice as described in Section 2.2.2. One hour after the last 

caerulein injection animals were anaesthetized by a dose of i.p. ketamine and 

medetomindine mixuture (56mg/kg ketamine and 0.75mg/kg medetomindine).  All 

experiments were approved by the Animal Research Ethics Committee of National 

University of Singapore and performed in accordance with established International 

Guiding Principles for Animal Research. Immediately after the examination of the 

pancreatic microcirculation, the animals (n=8 per treatment group) were euthanized 

by cervical dislocation.  

 

5.2.3 Evaluation of pancreatic microcirculation 

 

Microvascular changes of the pancreas during AP were assessed by intravital 

microscopy as described previously with modifications (Hartwig et al., 2000). For the 

in vivo staining of leukocytes, 0.01% w/v Rh6G was freshly prepared in 0.9% saline. 
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Briefly, after 10 hourly-caerulein injections, animals were given 0.1ml of the Rh6G 

solution through tail intravenous injection, 10 minutes before the start of the 

microcirculation examination. Anaesthetized animals were placed on a special 

anatomically constructed heating plate in order to maintain their body temperature at 

37°C ± 1°C (Fig 5.1). A midline laparotomy was performed on the mice and the 

pancreas with the duodenal loop was gently exteriorized in a horizontal position.  The 

organ was then kept hydrated by bathing it in an immersion chamber maintained at 

37°C ± 1°C with Ringers solution (sodium chloride, 118mM; potassium chloride, 

4.7mM; sodium bicarbonate, 25mM; calcium chloride, 2.5mM; magnesium sulphate,  

1.2mM; glucose 10mM; EDTA 0.026mM) (Figure 5.1). The pancreas was gently laid 

flat and placed in between two glass slides that exert minimum pressure on the tissue 

while reducing the movements/vibrations due to breathing. 

 

5.2.4 Intravital microscope system 

 

The pancreatic microcirculation was examined under a fluorescence video-

microscopy system (Eclipse PhysioStation E600FN, Nikon Corporation, Japan) with a 

xenon lamp, attached to a filter system for epi-illumination (Green light excitationλ 

=525nm,  emissionλ = 555nm). The pancreatic microcirculation was observed with 

nCFI Fluor ×20W water immersion objective lens (Nikon Corporation, Japan). 

Microscopic images were captured via CoolSNAP HQ monochrome cooled CCD 

video camera (Roper Scientific Inc., USA) and recorded onto a personal computer for 

subsequent offline analysis. This playback analysis of video recordings was 

performed in a blinded fashion using a computer-assisted microcirculation analysis 

program, Metamorph™ Imaging System (Molecular Devices Corporation, USA). 
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Single unbranched post-capillary venules with diameters ranging from 18 to 40 μm in 

three different areas on the same pancreas were investigated. Venular diameter was 

measured online using a video caliper in the computer program.  

 

5.2.5 Offline video images evaluation 

 

According to their interaction with the endothelial lining, the numbers of rolling and 

adherent neutrophils were determined offline during playbacks of the recorded 

images. Rolling neutrophils (rollers) were defined as those leukocytes that moved at a 

velocity less than two-thirds of that of the majority of the cells in the centerline of the 

venule. Leukocyte rolling velocity was determined from the time required for a 

leukocyte to traverse a given distance along the length of the venule. For leukocyte 

velocity measurements, the distance through which a labeled leukocyte traveled 

within two subsequent video frames was divided by the known video frame time 

interval. The mean leukocyte velocity expressed as μm/second in each venule was 

calculated by averaging the velocity of 10 to 15 leukocytes in the same venule. In 

addition, the mean white blood cell velocity in each area was calculated by averaging 

the mean velocity of the three areas in the same pancreas. A neutrophil was 

considered to be adherent (stickers) to venular endothelium if it did not move or 

detach from the endothelium within the 30-second observation period and were 

expressed as the number of cells per 100 μm of the vessel segment studied (Lehr et 

al., 1993a,b; Menger et al., 1992a,b) 

 

 

 

 134



5.2.6 Data analysis method 

 

The data are expressed as mean ± SEM. In all figures, vertical bars denote the SEM 

and the absence of such bars indicates that the SEM is too small to illustrate. The 

significance of changes was evaluated by analysis of variance (ANOVA) when 

comparing three or more groups. If ANOVA indicated a significant difference, the 

data were analyzed by using Tukey’s method as a post hoc test for the difference 

between groups. A P-value less than 0.05 was considered to indicate a significant 

difference. All statistical analyses were performed using SPSS version 14.0 for 

Windows (Chicago, Illinois USA). 
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Intravital Microscope

Ringer’s solution (37°C)

← Ringer’s solution (37°C)

 

 

Figure 5.1 Examination of the pancreatic microcirculation in mice using 
intravital microscope.  
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5.3 RESULTS  

 

5.3.1 Effect of CP96,345 treatment on leukocyte activation in the pancreas in AP 

 

After 10 hourly caerulein injections, clear morphological characteristics of acute 

pancreatitis were observed. In the post-capillary venules of the pancreas, the number 

of rolling leukocytes increased by more than 25 times as compared to the saline 

treated animals (Table 5.1). In addition, these leukocytes were rolling at a 

significantly slower speed (2.5-fold) compared to the control group (Table 5.1). These 

changes increased the chance of leukocyte-endothelium interaction, and as a result, 

more leukocytes adhered to the endothelium of the blood vessel (Lehr  et al., 1993a).  

 

Animals treated with CP96,345 showed a reduced degree of inflammation in the 

pancreas. Treatments with CP96,345 effectively suppressed the pro-inflammatory 

behaviour of the leukocytes, with both prophylactic and therapeutic treatments 

producing similar effect on leukocyte-endothelium interaction. The number of rolling 

leukocytes in both groups was reduced to about 50% of that of the caerulein treated 

group. Additionally, the rolling velocity was normalized by blockade of NK1R (Table 

5.1). Figure 5.2 shows the images of a section of a post-capillary venule taken at two 

different time points (3 seconds apart).  
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Parameters 

Control Caerulein 
CP96,345 

Prophylactic 

CP96,345 

Therapeutic 

 

Rolling Leukocytes Flux 

(cells/minute) 

9.13±2.15 232.50±11.50a 102.00±12.42a,b 132.75±10.48a,b

 

Rolling Velocity (μm/s) 
21.53±1.09 10.56±1.21a 25.32±6.08b 23.88±3.92b

 

Adherent Leukocytes 

(cells/100μm) 

0.33±0.21 7.00±1.46a 3.67±0.33a,b 4.67±0.91a,b

 
a indicates significantly different from the Control group (P < 0.05). 

b indicates significantly different from the Caerulein group (P < 0.05). 

 

Table 5.1: Leukocytes rolling and adherent properties in post-capillary venules 
during AP and the effect of CP96,345 (n=8). 
 
 

 138



 

 

 

 

 

 

 

R 

A

A

A

R 

3 seconds later

A

25μm 

25μm 

 

Figure 5.2 Post-capillary venule in the pancreas of an AP-mouse observed 
under intravital microscope at two different time points. Leukocytes were 
labeled using Rh6G. Rolling leukocytes (R) and adherent leukocytes (A) were 
classified and counted according to the pre-defined criteria. Two images were 
taken 3 seconds apart. The arrow in the lower image represents the movement 
path of the rolling leukocyte in the 3 minutes interval. 
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5.4 DISCUSSION 

 

Intravital microscopy has been regarded as a valuable tool for the study of in vivo 

leukocyte behaviours during inflammation (Sumen et al., 2004; Broide and 

Sriramarao, 2001; Kubes and Ward, 2000; Ley K, 1996). The method has been used 

in the past to study the pancreatic microcirculatory impairment in experimentally 

induced AP (Zhou et al., 2002; Foitzik et al., 2002; Hartwig et al., 2000; Foitzik et al., 

1999; Yamauchi et al., 1996). In the present study, this method was employed to 

visualize the effect of the NK1R antagonist on leukocyte-endothelium interaction in 

pancreatic microcirculation in vivo, by labeling the leukocytes using fluorescent 

Rh6G.  

 

After 10 hourly caerulein injections, the mice developed severe AP. Real-time 

investigation revealed that the number of rolling leukocytes in the pancreatic post-

capillary venules increased more than 25 times as compared to the saline treated 

animals (Table 5.1). These leukocytes rolled on the endothelial surface at a velocity 

less than two-thirds of that of the majority of the cells. Besides, they were rolling at a 

significantly slower speed and therefore had higher chance to interact and adhere to 

the endothelium. CP96,345 treatment significantly reduced the number of rolling 

leukocytes and restored the rolling speed to normal. This result correlates well with 

the reduction in neutrophils infiltration in antagonist treated animals described in 

Chapter 2 (section 2.3.1, MPO activity). Although the number of adherent leukocytes 

was also lowered by almost half in the antagonist treated groups, the reduction was 

approximately proportionate to the smaller number of rolling leukocytes. These 

results could suggest that NK1R signaling has a more pronounced effect on leukocyte 
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rolling than on leukocyte adhesion. Similar observation was noticed in Chapter 4 

where the inhibition of SP receptor had a larger effect on the adhesion molecules 

responsible for rolling (E- and P-selectins; Lay K, 1989; Butcher EC, 1991; Springer 

TA, 1994; Lay and Tedder, 1995) than those related to adhesion (ICAM-1 and 

VCAM-1; Crook et al., 2002; Tamatani and Miyasaka, 1990; van der Flier and 

Sonnenberg, 2001). 

 

The highly regulated process of leukocyte recruitment involves the participation of a 

wide range of adhesion proteins and signaling molecules. Comparing the present 

results with the adhesion molecule expression study in Chapter 4, there is an apparent  

discrepancy between the increase in the number of rolling leucocytes (observed in 

intravital microscopy) and the increase in the adhesion molecules expression 

(measured using immunohistochemistry and RT-PCR). A possible explaination for 

this observation is that the protective effect of CP96,345 is mediated by the change in 

the regulation of a number of adhesion molecules, and ICAM-1, VCAM-1, E-selectin 

and P-selectin, are only a few of the major contributors of the recruitment process. 

Indeed, SP has been shown to affect the levels of other adhesion molecules such as 

lymphocyte function-associated antigen-1 (LFA-1) (Reinke EK et al., 2006; Kang BN 

et al., 2004), integrin alpha-5 (Nakamura M et al., 1998) and complement receptor-

associated OKM1 molecule (Dianzani C et al., 2003). The role and regulation of these 

molecules are being studied in other inflammatory conditions, and further 

investigation of the role of these molecules in AP is required. 

 

In conclusion, this data once again demonstrates the effectiveness of a NK1R 

antagonist in the treatment of experimentally-induced AP in mice. The increase in 
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leukocyte-endothelium interaction (rolling and adhesion) could be significantly 

suppressed by the blockade of NK1R with CP96,345.  
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CHAPTER 6 

 

GENERAL DISCUSSION 

 

The involvement of the sensory nervous system in inflammation was first described 

more than a century ago (Bayliss WM, 1901). It was however, not until the 1960s 

when scientists re-visited the idea of NI and discovered the use of capsaicin to block 

NI (Chapman and Goodell, 1964; Jancso et al., 1967). In 1975, a group of Swedish 

scientists demonstrated the localisation of SP in some sensory nerves by 

immunohistochemical techniques (Hökfelt et al., 1975a; Hökfelt et al., 1975b). 

Subsequently, SP was shown to increase Evan-blue dye leakage from the circulation 

of rats (Chahl LA, 1977) and sensory nerves that innervate the pancreas were found to 

be SP-immunoreactive (Larsson LI, 1979). Clinical investigations have described the 

changes in gastrodoudenal mucosa and pancreas SP levels in patients with the chronic 

form of pancreatitis (Domschke et al., 1988; Buchler et al., 1992). However, the clear 

connection between SP and AP was first described only recently using NK1R 

knockout mice (Bhatia et al., 1998a). 

 

While the importance of SP and NK1R has been shown using genetically modified 

mice, it is also important to find out whether targeting the NK1R in normal animals 

using a specific receptor antagonist will produce a beneficial effect. Beside NK1R, it 

is also useful to understand the possible roles of other TK peptides and their receptors 

in AP. Therefore, the effect of pharmacological intervention against the neurokinin 

receptors on pancreatic and lung injuries in AP in mice was investigated, using 

CP95,345, GR159897 and SB-222200, the specific antagonists of NK1R, NK2R and 
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NK3R respectively. AP induced in mice by hyperstimulation of caerulein responded 

positively to prophylactic and therapeutic treatments with CP96,345, as shown by 

lowered plasma amylase levels and tissue myeloperoxidase (MPO) activity. In 

addition, pulmonary injury caused by the systemic inflammatory response associated 

with AP was also abolished by the inhibition of NK1R. This has again demonstrated 

the important role of SP and NK1R in the development of AP. On the other hand, the 

blockade of NK2R and NK3R did not have any protective action. These results have 

eliminated the possible involvement of NKA-NK2R and NKB-NK3R systems in AP. 

A previous study, using the Evans blue and Monastral blue dye-leakage method, 

reported a protective effect of treatment with a NK1R antagonist, but not with NK2R 

and NK3R antagonists, in caerulein-induce AP in rats (Grady et al., 2000).  

 

The changes in gene expression of inflammatory mediators have been observed in 

most inflammatory diseases, including AP (Iovanna JL, 1996; Keim et al., 1994). 

Therefore, it is crucial to recognize these changes in order to understand how the body 

reacts to the pathological condition. This has led me to investigate the effect of AP on 

the expression of neurokinin receptors and TK, since the activation of NK1R by SP 

has been shown to aggravate AP. It is known that the PPT-A gene codes for SP 

(Patacchini et al., 2004) and PPT-C codes for HK-1 (Zhang et al., 2000): both 

peptides act on NK1R. My results show that the PPT-A (pancreas and lungs) and 

PPT-C (lungs only) mRNA expression were upregulated during AP. In addition, using 

ELISA, an increase in SP concentrations in the pancreas and the lungs were also 

evident. HK-1 ELISA has not been described due to a lack of a specific antibody 

against HK-1 that does not cross react with SP. Since the release of SP (and probably 

HK-1) would worsen AP, this positive feedback mechanism is likely to be responsible 
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for the extended activation of NK1R. The treatment with CP96,345 suppressed the 

expression of PPT-A and PPT-C mRNA expression.  

 

Since the early 1970s, scientists have been investigating the cellular physiology of 

acinar cells isolated from the pancreas using collagenase digestion (Amsterdam and 

Jamieson, 1972; Amsterdam and Jamieson, 1974). This has facilitated the study of the 

effects of various biological and chemical agents on the function and cellular 

signalling at the level of individual cells. Since then, many improved versions of the 

method have been reported and the protocol described by Oilver has been most 

widely employed (Oliver, 1980). By using this technique, isolated pancreatic acinar 

cells have been shown to simulate some of the events found in the in vivo model of 

AP in the presence of caerulein, (Leach et al., 1991). In this work, I have made use of 

the isolated acinar cells to study the effect of NK1R antagonism on the changes that 

occur during caerulein-induced AP. The biphasic dose-response relationship of 

caerulein on the release of amylase from acinar cells demonstrated in Chapter 3 has 

supported the reported existence of high affinity and low affinity CCK binding sites 

(Sankaran et al., 1982; Sankaran et al., 1980; Honda et al., 1987; Sato et al., 1989; 

Stark et al., 1989). At the supramaximal concentration (activation of the low affinity 

binding site), caerulein would cause the inhibition of enzyme secretion and AP 

(Niederau et al., 1994), which could be overcome by the pre-treatment of CP96,345. 

Besides, in order to compare the findings observed in in vivo animal model of AP 

(Chapter 3), the effect of caerulein, SP and CP96,345, when given alone or in 

combinations, on the expression of PPT-A and NK1R mRNA in acinar cells was also 

investigated. Elevation of PPT-A mRNA expression was observed as soon as 1 hour 

after caerulein and/or SP treatment which could be abolished by 30 minutes pre-
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incubation of CP96,345. This is in agreement with the previous data. On the other 

hand, minimal change in NK1R mRNA expression was noted in the presence of 

caerulein. One explanation for the difference seen between the in vivo and the in vitro 

results is that the regulation of NK1R expression is a slow process, which requires 

more time before significant change to be detected. 

 

I went on to investigate the changes in the expression of NK1R, NK2R and NK3R 

expression in AP and the effect of CP96,345 treatment on those changes. NK1R 

mRNA (real-time PCR) and possibly protein (immunohistochemistry staining) 

expression were elevated during AP in both pancreas and lungs. A similar pattern of 

NK1R immunoreactivity was observed previously (Bhatia et al, 1998a). This has 

represented an important mechanism that might facilitate the magnification of the 

initial signal of AP. Again, NK1R antagonist treatment resulted in significant 

reduction in NK1R mRNA and possibly protein expression. On the other hand, NK2R 

receptor mRNA expression was upregulated in the pancreas but downregulated in the 

lungs. Administration of CP96,345 has provided data that are not easily explainable: 

NK2R mRNA expression in pancreas was further upregulated, while the expression in 

lungs was reversed back to normal. The significance of these findings is not clear and 

requires further investigation, which is beyond the scope of this thesis. However, this 

points to a differential regulation of inflammatory response in the lungs and 

challenges the classical theory that equals pulmonary inflammation as an extension of 

pancreatitic inflammation. NK3R expression was not detected in both pancreas and 

lungs. Limited or negligible NK3R expression in peripheral tissues has been reported 

previously (Tsuchida et al., 1990; Buell et al., 1992). 
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Figure 6.1 Summary of investigated events. 
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Leukocyte recruitment to the site of injury is a characteristic event during AP that 

consists of a series of events to bring about extravasation of leukocytes from the 

circulation. It requires the interaction between adhesion molecules that present on 

both the leukocytes and the endothelial cells under the influence of chemoattractants. 

Since the treatment with CP96,345 antagonist has demonstrated the protective effect 

against severe AP (Chapter 2 and 3), I postulated that NK1R antagonist may also 

influence the regulation of various adhesion molecules and affect the mode of 

leukocyte-endothelial interaction. Four well-known adhesion molecules from the 

immunoglobulin superfamily (ICAM-1 and VCAM-1) and the selectins family (E-

selectin and P-selectin) were investigated. My findings have shown that, except for 

VCAM-1 in the lungs, all four adhesion molecules were upregulated in the pancreas 

and the lungs during AP. These results have served as a validation of our methods, 

since similar observations have been described previously (Lundberg et al., 2000a; 

Sunamura et al., 1999; Lundberg et al., 2000b; Uhlmann et al., 2001; Kang et al., 

2002). Using these validated techniques, I have demonstrated that the treatment of 

CP96,345 has significantly suppressed the elevated selectins levels and had little 

effect on the expression of ICAM-1 and VCAM-1 in the pancreas. In the lungs, 

VCAM-1 level was not affected during AP and the treatment of NK1R antagonist 

inhibited the increase in ICAM-1, E- and P-selectins expression caused by AP-

associated lungs injury.   

 

Although the data from PCR and immunohistochemistry staining have provided 

invaluable information on the regulation of a few important adhesion molecules, it 

remained difficult to predict the outcome of the complex and not well-understood 

mechanism of leukocyte-endothelial interaction. However, the invention of the epi-
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fluorescent intravital microscopy method has enabled scientists to examine samples in 

living animals under a microscope (Ellinger and Hirt, 1929; Ellinger and Hirt, 1932). 

In recent years, intravital microscopy has enabled study of leukocyte recruitment to 

the site of inflammation (Heit et al., 2006; Beck et al., 2007). Using Rh6G to label the 

circulating leukocytes, I have successfully visualized the leukocyte-endothelial 

interaction in the pancreatic post-capillary venules in AP with intravital microscopy. 

It was interesting to find that the number of rolling and adherent leukocytes increased 

significantly after 10 hourly injections of caerulein as compared to the normal animal. 

Besides, the average velocity of the rolling leukocytes was nearly half of that in saline 

treated animals, indicating a strong leukocyte-endothelial interaction. As expected, 

with the treatment of NK1R antagonist, significant reduction in rolling and adherent 

leukocytes was observed, and the rolling velocity was reversed to the normal level. 

However, even though the adherent leukocytes were reduced by 50% in the antagonist 

treated groups, it was roughly in proportion to the decrease in rolling leukocytes. This 

has indirectly suggested that NK1R inhibition has more significant influence on 

leukocyte rolling than on leukocyte adherence. These data were in line with my 

mRNA expression and immunohistochemistry findings where the blockade of NK1R 

had a larger effect on the adhesion molecules responsible for rolling (E- and P-

selectins; Lay K, 1989; Butcher EC, 1991; Springer TA, 1994; Lay and Tedder, 1995) 

than those related to adhesion (ICAM-1 and VCAM-1; Crook et al., 2002; Tamatani 

and Miyasaka, 1990; van der Flier and Sonnenberg, 2001). 

 

By comparing the difference in pancreatic and pulmonary expression of neurokinin 

receptors, TK and adhesion molecules, I have several lines of evidence showing a 

differential regulation of inflammatory response in the pancreas and the lungs. This 
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evidence includes (A) the upregulation of normally absent NK2R in the pancreas and 

the downregulation of NK2R in the lungs; (B) the upregulation of pulmonary PPT-C 

mRNA expression in AP compared to the absence of the mRNA in the pancreas; (C) 

the suppression of the elevated ICAM-1 in the lungs by CP96,345 which was not 

observed in the pancreas in AP; and (D) the upregulation of VCAM-1 in the pancreas 

and not in the lungs in AP. This is the first evidence of the presence of a differential 

pattern of regulation in the inflammation in the pancreas and the lungs in AP.  

  

In summary, I have demonstrated that the prognosis of AP and associated lung injury 

can be improved by targeting the SP-NK1R system, the most well-known component 

of NI. We have successfully established the relationship between the NK1R activation 

and the expression of various genes and proteins that are related to the disease 

progression. The use of isolated pancreatic acinar cells has provided insight into the 

events that occur at the level of acinar cell in AP. In addition, we have also visualized 

the events of leukocyte recruitment using the intravital microscopy. Differential 

regulation of gene and protein expression in the pancreas and the lungs in AP has 

been observed, which could be due to the different mechanism of the inflammatory 

responses (neurogenic versus non-neurogenic) in the two organs. A better 

understanding of the role of NI in the pathogenesis of AP and associated lung injury 

will help in the development of new therapeutic options for the treatment of this life-

threatening condition.  
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