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Summary

In par with the progress in computer technology, is the demand for numerical model-

ing and simulation of physical phenomena. Simulation of electromagnetic effects using

computers has become essential for understanding the physical behaviour and charac-

terising the performance of complex radio frequency (RF) and microwave systems. Ef-

ficient computational electromagnetics (CEM) techniques and algorithms are evolving,

harnessing both the physical and mathematical properties of electromagnetic fields and

Maxwell’s equations. Finite methods are numerical techniques which seek solution of

Maxwell’s equations in the differential form. The finite methods focused in this thesis

are the finite difference time domain (FDTD), the finite element time domain (FETD)

methods and the hybrid methods based on the two. Hybrid finite methods retain the ad-

vantages of a particular method and overcome its disadvantages by hybridising it with

an alternate method. One such hybrid method is the hybrid FETD-FDTD method which

retains the efficiency of FDTD method in modeling simple homogeneous shapes and

overcomes stair-casing errors in modeling curved and intricate geometrical structures

using the FETD method which, in general, is based on unstructured grids. In this thesis

improvements to the FETD and the hybrid FETD-FDTD methods are proposed along

with the successful application of the hybrid method for modeling and simulation of

radiation from antennas.

Two kinds of numerical instability are observed in the hybrid method viz., a) weak-

instability and b) severe numerical instability. The weak instability is inherent to the

FETD method using edge element basis functions and manifests in the electric field

solution as a gradient vector field which grows linearly with time. The problem of

linear time growth is analogous to the problem of appearance of non-physical modes

v



in the eigenvalue modeling of electromagnetic resonators. The reason for the linear

growth in the FETD solution is investigated and a novel method to eliminate the occur-

rence of such weak-instability using divergence-free constraint equations is proposed.

The proposed constraint equations could directly be extended to eigenvalue problems as

well. Efficient implementation of the constraint equations using tree-cotree decomposi-

tion of the finite element mesh is proposed. The success of the method in computing a

divergence-free solution is demonstrated both in the context of FETD and the eigenvalue

modeling of electromagnetic resonators.

The second kind of instability is inherent to the strategy adopted in hybridising the

FETD and FDTD methods. This instability is severe and renders the hybrid method

infeasible for practical applications. A detailed investigation on the numerical stability

of the hybrid method with different hybridisation schemes available in literature based

on the eigenvalues of the global iteration matrix is carried out. The equivalence between

a particular case of FETD and the FDTD method which leads to symmetric coefficient

matrices in the hybrid update equation of the stable FETD-FDTD method is demon-

strated. The condition for numerical stability is then obtained by the von Neumann

analysis of the hybrid time-marching scheme.

Another improvement proposed to the FETD method is the treatment of hanging

variables specifically in the context of rectangular and hexahedral elements. Due to

Galerkin-type treatment of the hanging variables, the resulting FETD method has the

same conditions of stability as those of the regular FETD method. A novel method of

FDTD subgridding with provable numerical stability can then be achieved by having the

interface between coarse and fine grids of the subgridding mesh in the FETD region and

treating the fine element unknowns on the interface as hanging variables. Numerical ex-

amples indicating the potential of the subgridding method with 1:2 and 1:4 refinements

are demonstrated. Furthermore, the analytical lower bound on the level of numerical

reflections due to the difference in numerical dispersion in fine and coarse grids, in a

vi



general subgridding method is proposed. The level of numerical reflections introduced

in the proposed method is compared with the analytical lower bound. The proposed

subgridding method can reuse existing mesh generation tools available for the FDTD

method and is suitable for modeling of geometrically fine features with a finer grid.

The FETD method on unstructured grids could be employed for modeling geomet-

rically fine features as well. In this case, however, special requirements on the unstruc-

tured mesh generation exist. To have a conformal transition from unstructured to struc-

tured region pyramidal elements are used. A simple strategy for automatic hybrid mesh

generation for the 3-D hybrid FETD-FDTD method is developed. The FETD solution

in the unstructured region is further improved by using hierarchical higher order basis

functions. The FETD method is extended to support modeling of ports with transverse

electromagnetic mode of excitation. The developed numerical codes are successfully

applied for the computation of the modal reflection coefficient, input impedance and

radiation pattern of real world antennas and benchmark problems.
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CHAPTER 1

INTRODUCTION

Maxwell’s equations, unifying the laws of electricity and magnetism, accurately de-

scribe macroscopic electromagnetic field phenomena. The discipline of computational

electromagnetics (CEM) deals with numerical methods for solving Maxwell’s equations

leading to the characterization of complex electromagnetic systems. Efficient numerical

tools give engineers and designers an upper hand of assessing the performance of their

design ahead of physical prototyping and measurement. Most common and popular

numerical methods in CEM can broadly be classified into two classes viz., frequency

domain and time domain methods. While frequency domain methods seek electromag-

netic field solution under the time harmonic or steady state conditions, time domain

methods capture the transient response of electromagnetic fields. Both classes have

their own pros and cons. It is not possible to generalise the superiority of a particu-

lar method over the others. Major advantages of time domain methods over frequency

domain methods are

a. A single simulation with appropriate input waveform is sufficient to characterize

the electromagnetic behaviour of a system over a wideband of frequencies,

b. Transient field phenomena are well captured, and

c. Materials with non-linearity can be handled only using a time-domain based nu-

merical method.
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On the other hand, extra effort is needed in formulating time domain methods to

model dispersive media where the material properties change with frequency. In sum-

mary, the applicability of the numerical method depends on the problem to be simulated.

Of the two popular frequency domain techniques, the field formulation of finite element

method (FEM) is based on seeking the solution of the vector Helmholtz equation with

the physical electric ( and/or magnetic ) field as the unknown, while the method of mo-

ments (MoM) technique is based on seeking the solution of the electromagnetic fields

by setting up an integral equation with the electric ( and/or magnetic ) current density

as the physical unknown.

In the time domain regime, the finite difference time domain (FDTD) [1] is the most

popular and established method and is based on seeking direct solution of Maxwell’s

two curl equations for electric and magnetic fields on a discretized grid. The simiplic-

ity and the efficiency of this method has led to its popularity and several books have

appeared on the topic [2–4]. The algorithm has the following key advantages viz., a)

it is explicit in nature, i.e., the solution does not require any matrix inversion; b) mesh

generation is relatively easy as compared to unstructured mesh generation; c) ability to

handle material inhomogeneity is inherent; d) Courant condition for numerical stability

is well established; and e) easier implementation of Perfectly Matched Layer (PML)

to model unbounded problems. However, major limitation of the method lies with the

staircasing errors due to the structured cartesian nature of the computational grid. The

modeled geometry must conform to the grid which is in contrast to numerical methods

based on unstructured grids, such as FEM. Over the past decade much effort has been

put in extending FEM to the time domain regime [5–13]. Many possible formulations

are possible and these techniques are collectively knowns as time domain finite element

methods. Both FDTD and FEM along with other methods based on them, which seek

solution to Maxwell’s equations in the differential form, are called as finite methods.
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The finite element time domain (FETD) method [8, 10] is a particular class of time do-

main finite element method having an advantage of unconditional numerical stability.

The method is robust and most of the frequency domain concepts can be extended to

the time domain. However, the method has not gained equal popularity as the FDTD

method because of its two major disadvantages. The first is in the modeling of un-

bounded medium using PML which is complicated, inefficient and often numerically

unstable with no rigorous condition for numerical stability. The second disadvantage,

relatively less severe than the first, is the implicit time update equation which requires

a sparse matrix solution during each time step. To overcome this loss in efficiency and

to enable accurate modeling of geometries, a hybrid method in which the region in the

vicinity of the geometry is meshed using unstructured grids conforming to the geometry,

while the rest of the physical domain is modelled using traditional FDTD method with

Cartesian grids, needs to be used. Such hybrid methods to overcome staircasing errors

in FDTD using FETD were proposed in [14–17]. In [15], the 3-D FDTD method is hy-

bridised with FETD on tetrahedral elements but the resulting algorithm is numerically

unstable. In [18, 19], based on the equivalence of FDTD and a particular case of FETD

method a stable hybrid 3-D FETD-FDTD method was proposed.

The focus of this thesis is in the development and subsequent applications of effi-

cient hybrid time domain finite methods for the numerical solution of time dependent

Maxwell’s equations. The two finite methods focused are FDTD and FETD methods.

The applications of the developed hybrid methods are targeted at, but not restricted to

the modeling and simulation of radiation from antennas. The organisation of the thesis

is as follows.

In Chapter 2, both FDTD and FETD methods are reviewed and the basic idea of

hybridising FDTD with unstructured FETD method proposed earlier in literature is pre-

sented. Two kinds of numerical instability is possible in the hybrid method viz., a)

weak-instability and b) severe numerical instability. The weak instability, where the
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solution grows linearly with time is inherent to the FETD method using edge element

basis functions. In Chapter 3, the reason for the linear growth in the solution and a novel

method to eliminate the occurrence of such weak-instability using divergence-free con-

straint equations is proposed. It is found that the problem of linear time growth is anal-

ogous to the problem of appearance of non-physical modes in the eigenvalue modeling

of electromagnetic resonators. The proposed method for suppressing weak instability in

the FETD method can directly be applied to the problem of cavity modeling to suppress

the occurrence of spurious modes in the eigenvalue solution. An efficient implemen-

tation of the constraint equation using tree-cotree decomposition of the finite element

mesh is also presented.

It is possible to have different techniques to hybridise the FDTD and unstructured

FETD methods. Often the resulting hybrid method is numerically unstable with the so-

lution exhibiting severe instability rendering the hybrid method unfeasible for practical

problems. In Chapter 4, a detailed investigation on the numerical stability of the hy-

brid method with different hybridisation schemes available in literature is presented. In

particular, the stability of stable hybrid FETD-FDTD method is investigated in detail.

The equivalence between a particular case of FETD and the FDTD method which leads

to symmetric coefficient matrices in the hybrid update equation is demonstrated. The

condition for numerical stability is then obtained by analysing the eigenvalues of the

global iteration matrix of the hybrid time-marching scheme.

In Chapter 5, a novel method of FDTD subgridding with provable numerical sta-

bility is proposed. The subgridding formulation relies on a) having a stable hybrid

FDTD-FETD method with structured rectangular or hexahedral elements in the FETD

region and b) extending the concept of “hanging variables” to the FETD method. Due

to Galerkin-type treatment of the hanging variables in the FETD method, the resulting

FETD method has the same conditions of stability as those of regular FETD method.

By having the interface between coarse and fine grids of the subgridding mesh in the
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FETD region and treating the fine element unknowns on the interface as hanging vari-

ables, a stable FDTD subgridding method is achieved. Numerical reflections introduced

in the subgridding method are investigated. A procedure for obtaining the analytical

lower bound on the level of numerical reflections due to the difference in numerical

dispersion in fine and coarse grids, in a general subgridding method is proposed. The

proposed subgridding method can reuse the existing mesh generation tools available for

the FDTD method and is suitable to model geometrically fine features with a finer grid.

Alternatively, for modeling geometries with fine details, the FETD method on un-

structured grids could be employed. In Chapter 6, the application of the 3-D hybrid

FETD-FDTD method with automatic hybrid mesh generation is presented. The numer-

ical code developed is targeted for modeling and simulation of radiation from antennas.

The application of the basic hybrid method is extended by modeling ports with trans-

verse electromagnetic mode of excitation in the FETD method. Hierarchical higher

order basis functions are used in the unstructured finite element region for better field

representation and use of a coarser mesh. Computation of the modal reflection co-

efficient, input impedance and radiation pattern of real world antennas and the results

obtained for benchmark problems are presented. Though examples of antenna modeling

are considered, the application of the method can be extended to other areas of numer-

ical modeling such as wave scattering and radar cross section (RCS) analysis, electro-

magnetic compatibility modeling, analysis of passive microwave circuits and studies in

dosimetry and tissue interaction.
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CHAPTER 2

TIME DOMAIN FINITE METHODS FOR SOLUTION OF
MAXWELL’S EQUATIONS

2.1 Maxwell’s Equations

The physics of time varying electric and magnetic fields are described by a collective

set of equations known as Maxwell’s equations [20]. The set of four equations that

describe macroscopic electromagnetic phenomena in an arbitrary medium are

∇× ~E = −∂ ~B

∂t
(2.1)

∇× ~H =
∂ ~D

∂t
+ ~J (2.2)

∇ · ~D = ρ (2.3)

∇ · ~B = 0 (2.4)

where ~E = ~E(~r, t) is the electric field, ~H denotes the magnetic field, ~D denotes the

electric flux density, ~B represents the magnetic flux density, ~J represents the electric

current intensity, and ρ denotes the charge density. In above set of equations and in

the rest of this thesis, the dependence of the physical quantities on space ~r and time

t is implied and not shown explicitly. Eq. (2.1) is the Faraday’s law and (2.2) is the

Ampere’s law. Eqs. (2.3) and (2.4) are Gauss’ laws for electric flux and magnetic flux,

respectively. The Gauss’ laws can be derived from Eqs. (2.1) and (2.2) using continuity

equation that relates ρ to ~J based on the conservation of charge [21] given as
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∇ · ~J +
∂ρ

∂t
= 0. (2.5)

The electric (magnetic) flux and the electric (magnetic) field intensity are related by

the constitutive relations. For a simple isotropic, non-dispersive, linear medium, the

following constitutive relations hold good viz.,

~D = ε0εr
~E (2.6)

~B = µ0µr
~H (2.7)

where εr and µr are the dielectric constant and relative permeability of the medium,

while ε0 and µ0 are the permittivity and permeability of vacuum or free space. In con-

ductive media, the electric field gives rise to a conduction current ~Jc which leads to the

following additional relationship

~Jc = σ ~E (2.8)

where σ is the electrical conductivity of the medium. In case of insulators, σ = 0 and

for perfect electrical conductors (PEC), σ = ∞. Materials in general with εr 6= 1 and

σ 6= 0 are called lossy dielectrics. In the case of lossy dielectrics, the current density ~J

in (2.2) has two components viz.,

~J = ~Jc + ~Ji (2.9)

where ~Ji is the impressed or excitation current density. It is this physical quantity that

generates the time varying electric and magnetic fields governed by Eqs. (2.1)-(2.4).

There are many possible solutions which satisfy the Maxwell’s equations and it is

the boundary conditions which lead to a unique solution for a given problem. There are

certain properties which the physical field quantities exhibit across material interfaces

between regions with different εr and(or) µr. These properties can be summarised as
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follows

n̂× ( ~E1 − ~E2) = 0 (2.10)

n̂× ( ~H1 − ~H2) = 0 (2.11)

n̂ · ( ~D1 − ~D2) = 0 (2.12)

n̂ · ( ~B1 − ~B2) = 0 (2.13)

which implies that the tangential component of the electric and magnetic fields is con-

tinuous across material interfaces. Similarly the normal component of the electric mag-

netic flux is continuous. n̂ is a normal to the interface. Such physical properties dictate

the choice of mathematical functions to be used to represent the particular field quantity.

A particular boundary condition, often used to model highly conductive media is the

PEC boundary condition. In case of materials with high conductivity, the skin depth is

so low that it is valid to approximate the skin depth to be zero i.e., the induced surface

currents are restricted to the surface of the conductor. In this case no fields are sustained

inside the medium and the boundary condition is

n̂× ~E = 0 (2.14)

meaning the tangential component of the electric field on PEC surface is zero.

Another boundary condition that the electric and magnetic fields satisfy at infinity is

the Sommerfeld radiation condition, given by

lim
r→∞

r

[

∇× ~E +
1

c
r̂ × ∂ ~E

∂t

]

= 0. (2.15)

Finally, initial conditions are required for a unique solution with respect to the time

variable and this requires the electric and magnetic fields to be known at time t = 0.

The finite methods are a class of numerical techniques which seek solution of Maxwell’s

equations in differential form as in (2.1)-(2.4) subject to specific boundary conditions as

dictated by the physical problem being simulated.
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2.2 Finite Difference Time Domain Method

The finite-difference time-domain (FDTD) method is a powerful numerical electro-

magnetic method in solving real life problems in electromagnetics. Introduced by Kane

Yee [1] in 1966, this method is a direct solution to the Maxwell’s time dependent curl

equations. Since then the method has been widely used to simulate and study different

electromagnetic phenomena and several books have appeared on the topic [2–4]. The

method treats the electric and magnetic field components sampled discretely both in

space and time, in a finite volume of space as the physical unknown. The electric field

grid is offset from the magnetic field grid both in space and time discretizations. On this

discrete staggered grid, application of the central difference to approximate the spatial

and temporal derivative that appear in the Maxwell’s equations leads to a set of field

equations which update the field components at any given time instant at any point in

the grid in terms of the past field components. In other words the resulting time-update

equations for the field components are explicit.

2.2.1 Field Update Equations

To derive the time update equation, we start from the Maxwell’s two curl equations

(2.1) and (2.2) coupled with the constitutive relationships for an isotropic lossy medium

as

∇× ~E = −µ
∂ ~H

∂t
(2.16)

∇× ~H = ε
∂ ~E

∂t
+ σ ~E + ~Ji (2.17)
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Ex (i+1/2, j, k)

Ex (i+1/2, j+1, k)

Ex (i+1/2, j, k+1)
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Ey (i, j+1/2, k) Ey (i+1, j+1/2, k)

Ey (i, j+1/2, k+1) Ey (i+1, j+1/2, k+1)

Ez (i, j, k+1/2) Ez (i+1, j, k+1/2)

Ez (i, j+1, k+1/2) Ez (i+1, j+1, k+1/2)

Hz (i+1/2, j+1/2, k)

Hz (i+1/2, j+1/2, k+1)

Hx (i, j+1/2, k+1/2) Hx (i+1, j+1/2, k+1/2)

Hy (i+1/2, j, k+1/2)

Hy (i+1/2, j+1, k+1/2)

x

y
z

Figure 2.1: Yee cell showing the staggered E and H field unknowns.
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The two equations represent a set of six scalar differential equations, which in a Carte-

sian coordinate system are given by

µ
∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y

µ
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
(2.18)

ε
∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
− σEx − Jx

ε
∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
− σEy − Jy

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σEz − Jz.

The six field components and the six source components are continuous in space and

time. To apply finite difference approximation to solve the above set of differential

equations, both the unknown and the impressed current source are discretized both in

space and time. Let the discrete time step be denoted as ∆t and the space step along x, y

and z be ∆h. Given a continuous scalar function f(x, y, z, t), we denote the discrete

function fn
i,j,k as f(i∆h, j∆h, k∆h, n∆t). The spatial and temporal derivative operators

on the continuous function is approximated as

∂f

∂t

∣

∣

∣

∣

(i∆h,j∆h,k∆h,n∆t)

≈
f

n+1/2
i,j,k − f

n−1/2
i,j,k

∆t
(2.19)

∂f

∂x

∣

∣

∣

∣

(i∆h,j∆h,k∆h,n∆t)

≈
fn

i+1/2,j,k − fn
i−1/2,j,k

∆h
. (2.20)

Using the Taylor’s series expansion, it can be shown that the above approximations

are second order accurate, meaning that when either the time step or the space step is

reduced by a factor of N , the error in the approximation decreases by a factor of N 2.

Fig. 2.1 shows a unit cell of Yee’s staggered grid. The fields are offset such that the

a fully explicit finite difference scheme with second order accuracy can be achieved.

Using the finite difference approximations for the derivative operators in (2.18), the
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following update equations for Hx and Ex components are obtained:

H
n+1/2
x(i,j+1/2,k+1/2) =H

n−1/2
x(i,j+1/2,k+1/2)

+
∆t

µ∆h

[

En
y(i,j+1/2,k+1) − En

y(i,j+1/2,k) − En
z(i,j+1,k+1/2) + En

z(i,j,k+1/2)

]

En+1
x(i+1/2,j,k) =

[

2ε− σ∆t

2ε + σ∆t

]

En
x(i+1/2,j,k)

+
2∆t

(2ε + σ∆t)∆h

[

H
n+1/2
z(i+1/2,j+1/2,k) −H

n+1/2
z(i+1/2,j−1/2,k)

−H
n+1/2
y(i+1/2,j,k+1/2) + H

n+1/2
y(i+1/2,j,k−1/2)

]

−
[

2∆t

2ε + σ∆t

]

Jn+1
x(i+1/2,j,k).

Similar updates for Hy, Hz, Ey and Ez components can be obtained. Thus the FDTD

update equations reduce to a fully explicit time marching scheme in which the field

component at the current time instant is a function of surrounding field components in

the previous time step. For such an explicit time marching scheme, to ensure numerical

stability, ∆t is limited to ∆h by the Courant-Friedrich-Lewy or CFL condition [22]

given as

∆t ≤ ∆h

v
√

3
(2.21)

where v is the speed of light in the medium. The choice of ∆h depends on the desired

accuracy. To avoid significant dispersion errors, ∆h is set between λmin/10− λmin/30

where λmin is the wavelength in the medium at the highest frequency of interest.

In a source free region with the absence of free electric charges and with zero elec-

tric and magnetic fields as the initial conditions, it can be shown that the FDTD update

equations lead to a solution with net electric and magnetic flux leaving an Yee cell to

be zero for all time steps. Thus, even though the Gauss’ laws viz., (2.3) and (2.4) are

not explicitly enforced in the FDTD algorithm, the resulting update equations implicitly

ensure the electric and magnetic fluxes to be divergence-free.
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2.2.2 Unbounded Media and Perfectly Matched Layer

In an unbounded medium, the radiated fields must satisfy the radiation boundary

condition given in (2.15). Since the radiation boundary condition is imposed at r →∞,

to implement this boundary condition, an infinite computational grid needs to be used

which is impractical. The grid needs to be of finite size for implementation in a com-

puter. In this case, the field components at the boundary of the finite grid need special

treatment such that boundary conditions based on (2.15), called Absorbing Boundary

Conditions (ABCs) are satisfied. ABCs of different orders of accuracy can be devised

and implemented based on approximations of (2.15). However, depending on the order,

such ABCs have perfect absorption of planewaves for only a limited number of angles

of incidence and the levels of reflection at other angles could be significant. Hence,

the applicability of such ABCs are limited. Berenger [23] proposed a lossy hypotheti-

cal material medium that has no reflection for any angle of incidence and appropriately

called the perfectly matched layer (PML). PML could be used to truncate the computa-

tional grid. With the PML medium being lossy, all the absorbed waves are attenuated

significantly with properly chosen electrical and magnetic conductivities. Berenger’s

PML is hypothetical and the solution satisfies modified Maxwell’s equations based on

the concept of “coordinate stretching” [24]. Alternatively, Sack et. al. [25] proposed a

physical anisotropic medium with particular form of material tensor for perfect trans-

mission properties. Though the PML was introduced for frequency domain FEM, the

method has been adopted for FDTD [26] and extensively applied since. In [27] it was

shown that the formulations for both Berenger’s PML and anisotropic PML lead to the

same modified Helmholtz equation. However, the solution for Berenger’s PML is non-

Maxwellian with non-zero divergence where as anisotropic PML leads to a solution with

divergence condition satisfied as in the real physical solution. Moreover, the formulation

of the PML could be easily extended to truncate domain boundary with inhomogeneity

as in half space problems. Due to these reasons, the anisotropic PML is a good choice
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to terminate FDTD grid. Consider an interface of free space and PML normal to the

z− axis. For a plane wave to be absorbed without any reflection, the material medium

should be of the form

¯̄ε = ε0





sz 0 0
0 sz 0
0 0 s−1

z



 and ¯̄µ = µ0





sz 0 0
0 sz 0
0 0 s−1

z



 (2.22)

where sz is in general complex. For such a choice of material tensor, the reflection-

less property is independent of the angle of incidence, frequency and polarization of the

incident wave. When the computational grid is completely surrounded by PML, apart

from PML termination on six sides, edge and corner PML regions exist. The material

properties of an anisotropic PML is then given as

¯̄ε = ε0





sysz

sx
0 0

0 sxsz

sy
0

0 0 sxsy

sz



 and ¯̄µ = µ0





sysz

sx
0 0

0 sxsz

sy
0

0 0 sxsy

sz



 . (2.23)

For the medium to absorb, the incident plane wave loss terms need to be introduced by

choosing

sξ = 1 +
σξ

jωε0

, ξ = x, y, z (2.24)

where σξ is the conductivity along the ξ axis and is variant only with ξ. Different

possible choices of sξ lead to different types of PML. For instance, in the case of the

Complex Frequency Shifted PML, sξ = kξ +
σξ

αξ+jωε0

with additional parameters kξ and

αξ introduced, better absorption efficiency can be achieved. Even for the simplest choice

as in (2.24), it is immediately observed that the PML is dispersive in nature. In FDTD,

being a time domain method, special treatment is needed to handle such a dispersive

media. Implementation of the PML in the FDTD method by introducing additional

variables for the electric flux ~D and magnetic flux ~B is straight forward [26]. The key

to the efficient implementation on PML in the FDTD method is to define constitutive

14



relationships such that the frequency dependent terms are decoupled making it easy to

transform the resulting equations to the time domain. Specifically, defining

~D ≡





Dx

Dy

Dz



 = ε0





sz

sx
0 0

0 sx

sy
0

0 0 sy

sz









Ex

Ey

Ez



 , (2.25)

which leads to

∇× ~H ≡





∂
∂y

Hz − ∂
∂z

Hy
∂
∂z

Hx − ∂
∂x

Hz
∂
∂x

Hy − ∂
∂y

Hx



 = jω





sy 0 0
0 sz 0
0 0 sx









Dx

Dy

Dz



 . (2.26)

The transformation of (2.26) and (2.25) to time domain with sξ as in (2.24) and the sub-

sequent discretization using central differencing lead to efficient explicit update equa-

tions for ~D and ~E [26]. The update equations for Dx and Ex components are

Dn+1
x(i+1/2,j,k) =

2ε0 − σy∆t

2ε0 + σy∆t
Dn

x(i+1/2,j,k)

+
2ε0∆t

(2ε0 + σy∆t)∆h

[

H
n+1/2
z(i+1/2,j+1/2,k) −H

n+1/2
z(i+1/2,j−1/2,k)

−H
n+1/2
y(i+1/2,j,k+1/2) + H

n+1/2
y(i+1/2,j,k−1/2)

]

En+1
x(i+1/2,j,k) =

2ε0 − σz∆t

2ε0 + σz∆t
En

x(i+1/2,j,k)

+
2ε0∆t

(2ε0 + σz∆t)ε0

[(

1 +
σx∆t

2ε0

)

Dn+1
x(i+1/2,j,k)

−
(

1− σx∆t

2ε0

)

Dn
x(i+1/2,j,k)

]

.

Similar update equations for the magnetic field, with the magnetic flux defined appro-

priately, can be obtained.

2.2.3 Far-field Computation

The FDTD method being a finite method, is inherently a near-field technique which

computes the fields within a finite region of interest. In radiation and scattering prob-

lems, it is necessary to know the far-zone fields to compute radiation pattern or radar
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cross section (RCS) pattern. To extract the far-zone fields from the near field solution,

near-field to far-field (NFFF) transformation based on the surface equivalence principle

needs to be applied. It is possible to have two types of formulations viz., a) Time do-

main NFFF transformation and b) Frequency domain NFFF transformation. The time

domain NFFF transformation is efficient to compute the far-field pattern over a band

of frequencies at a specific direction, as in the case of monostatic RCS or antenna gain

computation. The frequency domain NFFF transformation is efficient to compute the

complete radiation or scattering pattern at a few discrete frequency points. Both the

formulations involve a closed virtual surface S around the antenna or scatterer geom-

etry. In case of radiation problems, the antenna with the excited source is enclosed by

S. In the case of scattering problems, a total-field/scattered-field boundary condition is

implemented which divides the computational region into a) total-field region enclosing

the scatterer with both the incident and scattered fields and b) scattered-field region en-

closing the total-field region where scattered field solution alone is present. The surface

S is then placed in the scattered-field region to compute the far-zone scattered fields.

From the tangential electric and magnetic fields on this surface, equivalent electric and

magnetic currents are computed. With the equivalent currents as the source and using

free space Green’s function, the radiated or scattered electric field in the far-zone is com-

puted. In the frequency domain NFFF transformation, the electric field in the far-zone

is computed as

~E(~r, ω) =
jωµ0

4πr

∮

S

{

r̂ × r̂ ×
[

n̂× ~H(~r′, ω)
]

− 1

η0

r̂ ×
[

n̂× ~E(~r′, ω)
]

}

× exp

[

−jω(r − r̂ · ~r′)
c

]

ds′ (2.27)

where ~r is the observation point, ~r′ is the source point on the virtual surface S and n̂ is

the unit outward normal to S. The tangential electric and magnetic fields on the surface

S in (2.27) are in the frequency domain. In the discrete implementation of (2.27) with in

the FDTD method, the closed surface S is chosen as a box conforming with the electric
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field grid. Form the time domain fields on the center of each patch of the surface S,

computed by a simple average of the neighbouring fields, the frequency domain fields

at a particular frequency ω are obtained by a computationally efficient running-sum

implementation of the discrete Fourier transform. Subsequently, the surface integral in

(2.27), is carried out across all the patches on S.

In the time domain NFFF transformation, the time domain equivalent of (2.27)

which involves the time domain Green’s function is employed to extract the far-zone

fields directly in the time domain. Specifically, by defining

~W (~r, t) =
1

4πrc

∂

∂t

[∮

S

n̂×
[

~H (~r′, t− τd)
]

dS ′
]

(2.28)

~U(~r, t) = − 1

4πrc

∂

∂t

[∮

S

n̂×
[

~E (~r′, t− τd)
]

dS ′
]

(2.29)

with the retardation time τd = r−~r′·r̂
c

, the far-zone electric field is computed as follows

Eθ(~r, t) ∼= −η0Wθ(~r, t)− Uφ(~r, t) (2.30)

Eφ(~r, t) ∼= −η0Wφ(~r, t) + Uθ(~r, t). (2.31)

Update equations based on the discretization of (2.28) and (2.29) with central differenc-

ing in time and with linear interpolation of temporal samples in the apportioning of time

delayed electric and magnetic currents can be obtained [28].

2.3 Finite Element Time Domain Method

The finite element method (FEM) is a robust mathematical technique that has been

extensively used for the numerical solutions to many kinds of boundary value problems

often encountered in different areas of engineering and mathematical physics [29]. In

computational electromagnetics, FEM was initially applied for the time-harmonic solu-

tion of Maxwell’s equations [30], [31] and has been successful in modeling real world

problems. These developments have lead to development of many commercial CEM
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tools for full wave electromagnetic analysis. Over the past decade, the extension of FEM

to the time domain has been explored by many researchers [5–12] and aspects of differ-

ent techniques collectively referred to Time Domain Finite Element Methods (TDFEM)

have been reviewed in [13]. The class of TDFEM formulated based on the second order

vector Helmholtz equation with the electric field as physical quantity [8, 10] is referred

to as finite element time domain (FETD) method . The underlying physical equation is

similar to that of frequency domain based FEM formulation.

2.3.1 Vector Wave Equation

The vector wave equation or the vector Helmholtz equation can be obtained from

Maxwell’s equations by either eliminating the electric or the magnetic field. Eliminating

the magnetic field in (2.1) and (2.2), we obtain

∇× 1

µr

∇× ~E + εr
1

c2

∂2 ~E

∂t2
= −µ0

∂ ~Ji

∂t
, in Ω. (2.32)

For the sake of simplicity, only lossless media are considered. It is straight forward to

extend the formulation to lossy media. For the time being it is assumed that the domain

boundary is PEC. Hence the boundary conditions and initial conditions for the solution

is

n̂× ~E = 0 on Γ (2.33)

~E|t=0 = 0 (2.34)

∂ ~E

∂t

∣

∣

∣

∣

∣

t=0

= 0. (2.35)
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2.3.2 Function Spaces and Galerkin’s Method

We seek a solution of ~E with in a space of admissible vector functions H(curl, Ω)

such that the solution satisfies (2.32) . The physical properties of ~E are vital to choose

the admissible function space. In order to have both ~E and ~B to have finite energy, it is

necessary that any vector function ~u ∈ H(curl, Ω) and ∇ × ~u to be square integrable,

i.e.,

~E ∈ H(curl, Ω) =

{

~u|
∫

Ω

[

|~u|2 + |∇ × ~u|2
]

<∞
}

. (2.36)

Moreover by the medium boundary interface condition on the tangential component of

the electric field as in (2.10), ~u ∈ H(curl, Ω) must have tangentially continuity across

material interfaces. Finally, the PEC boundary condition on Γ requires every vector

function ~u ∈ H(curl, Ω) to have zero tangential component along the boundary Γ. For

every trial vector ~u ∈ H(curl, Ω), there is a corresponding non-zero residual

R(~u) = ∇× 1

µr

∇× ~u + εr
1

c2

∂2~u

∂t2
+ µ0

∂ ~Ji

∂t
(2.37)

By testing the residual with testing functions in a suitable testing function space, which

in this case isH(curl, Ω), the Galerkin statement is obtained as follows :

Seek ~u(t) ∈ H(curl, Ω) such that

B(~v, ~u) =

∫

Ω

~v ·
[

∇× 1

µr

∇× ~u + εr
1

c2

∂2~u

∂t2
+ µ0

∂ ~Ji

∂t

]

dΩ = 0

∀~v ∈ H(curl, Ω) and t ∈ (0, T ).

(2.38)

Using vector Green’s theorem in (2.38), the following weak form is obtained as

Seek ~u(t) ∈ H(curl, Ω) such that

B(~v, ~u) =

∫

Ω

[

∇× ~v · 1

µr

∇× ~u + εr
1

c2
~v · ∂

2~u

∂t2
+ µ0~v ·

∂ ~Ji

∂t

]

dΩ

−
∫

Γ

~v · 1

µr

(∇× ~u)× n̂ ds = 0,

∀~v ∈ H(curl, Ω) and t ∈ (0, T ).

(2.39)
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The surface integral term in (2.39) is a consequence of the Green’s theorem and vanishes

because n̂ × ~v = 0 along Γ. The finite element procedure is then to generate a finite

dimensional subspace Vh ⊂ H(curl, Ω) by partitioning or discretizing Ω into a finite set

of elements. Such a discretization of Ω is denoted as Ωh. The superscript h denotes the

maximum edge length of the finite element discretization. The discrete equivalent of

(2.39) is then

Seek ~uh(t) ∈ Vh such that

∫

Ω

[

∇× ~vh ·
1

µr

∇× ~uh + εr
1

c2
~vh ·

∂2~uh

∂t2
+ µ0~vh ·

∂ ~Ji

∂t

]

dΩ = 0,

∀~vh ∈ Vh and t ∈ (0, T ).

(2.40)

The next step is to choose appropriate and suitable spatial vector basis functions that

span the finite dimensional subspace Vh defined on the discretization Ωh. The vector

basis functions are denoted as ~Wi (i = 1 · · ·N with N being the degrees of freedom).

The trial and testing functions in (2.40) are expanded using these basis functions as

~uh(t) =
N
∑

i=1

ui(t) ~Wi , ~vh =
N
∑

i=1

vi
~Wi

where ui(t) is the time varying coefficient of the basis function ~Wi in the expansion of

uh(t). The condition that (2.40) holds true for all ~vh ∈ Vh leads to the following system

of semi-discrete ordinary differential equations which is still continuous in time viz.,

T
1

c2

d2u

dt2
+ Su + f = 0 (2.41)

where u = [u1(t)u2(t) · · · uN(t)]t is a vector of time dependent coefficients and

20



Sij =

∫

Ω

∇× ~Wi ·
1

µr

∇× ~Wj dΩ (2.42)

Tij =

∫

Ω

~Wi · εr
~Wj dΩ (2.43)

fi = µ0

∫

Ω

~Wi ·
∂ ~J

∂t
dΩ. (2.44)

S is the stiffness matrix and T the mass matrix. It is easy to see from definition of T that

it is a positive definite matrix. However, S matrix is positive semi-definite. The zero

eigenvalues are due to the non-zero null space of the curl (∇×) operator. The vector

f is called the source or the excitation vector with the impressed electric current as the

source term.

2.3.3 Spatial Discretisation and Vector Finite Element Basis Func-
tions

In the FEM formulation, the domain Ω is discretized into finite elements. Trian-

gular and rectangular finite elements are widely used in 2-D and similarly tetrahedral

and rectangular brick elements are popular choices in 3-D. Unstructured mesh gener-

ators, using triangular and tetrahedral elements, can represent the modeled geometry

accurately. Rectangular and brick elements, similar to the FDTD Yee cell, are used

in structured Cartesian mesh generators which apply stair-case approximations on the

modeled geometry. The robustness of FEM is that it is not essential that only a particu-

lar finite element should be used in the discretization of Ω. Hybrid meshes with two or

more kinds of finite elements can be used, as long as the basis functions ( which span

Vh ⊂ H(curl, Ω)) are well defined. The lowest order basis functions which span Vh are

termed as edge vector basis functions or edge elements [32], [33]. These basis functions

are the same as Whitney 1-form elements, useful in interpolating vector fields using

the circulation of the field along the edges of the element [34, 35]. These vector basis

functions are associated with each edge of the finite element mesh and have a constant
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tangential component along that edge. The tangential component across other edges is

zero. This property of the basis function ensures the tangential continuity of the vec-

tor field it represents and hence makes it a suitable choice for representing the electric

field. Another important property of this basis function is to be able to span a gradient

space. When nodal basis functions are used in seeking FEM solution for the Helmholtz

equation, spurious modes occur and corrupt the approximate numerical solution. When

tangential vector finite elements, which span a the gradient vector field are used, the

frequencies of the spurious modes are at zero or DC [36].

In the case of triangular and tetrahedral elements, edge element basis functions are

defined as

~Wij = ξi∇ξj − ξj∇ξi (2.45)

where ξi is the scalar linear Lagrange interpolation polynomial associated with node i

i.e., ξi is a linear function being unity at node i and zero at the other nodes of the triangle

or tetrahedron. ~Wij is the basis function associated with the edge formed by the nodes

i and j. The plot of the 3 basis functions of a particular triangular element is shown in

Fig. 2.2. It is seen that each basis function, as desired, has tangential component across

its associated edge alone and only normal component along the other edges. Moreover,

edge elements have the property of

∫ j

i

~Wij · ~dl = 1. (2.46)

For this reason, the coefficient of the edge basis function is simply the circulation of the

electric field along its associated edge. To have the coefficient of basis functions which

represent directly the electric field along its associated edge, the basis function defined

in (2.45) is simply scaled as

~Nij = lij ~Wij = lij [ξi∇ξj − ξj∇ξi] (2.47)

where lij is the length of the associated edge. Another property of the edge element
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Figure 2.2: Edge element basis functions on a triangular element.

basis functions is that the divergence of each basis function within an element is zero.

However, within a tetrahedral element, vector functions with non-zero divergence i.e.,

those vector functions which are gradients of scalar fields, can be represented using

these basis functions. In fact, it is because of these gradient fields, which span the null

space of the curl operator, that the frequency of the spurious modes is reduced to zero

frequency [36]. Edge element basis functions can similarly be defined on rectangular

and hexahedral elements. In the case of rectangular elements, the basis functions are

defined as

~Wij = ξi∇(ξj + ξk)− ξj∇(ξi + ξl)

= êij (ξi + ξj) (2.48)

where êij is a unit vector along the nodes i and j. ξi is a linear scalar function with unity

at node i and zero at other three nodes of the rectangle. The plot of the vector basis

functions on a 2-D rectangular element is shown in Fig. 2.3. These basis functions have

finite support, basically in the two elements sharing the associated edge. Such local

finite support of the basis function, typical in FEM, leads to system matrices which are

sparse.

Vector basis functions are complete to order p when any vector function in their

function space and the curl of the function are polynomials of utmost degree p. In the
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Figure 2.3: Edge element basis functions on a rectangular element.

case of the edge elements it is easy to see that the curl of the basis function is a constant.

Hence, edge element basis functions are complete to order zero and are called the zeroth

order basis functions. In terms of convergence, they exhibit second order accuracy with

respect to the mesh size i.e., the error in the numerical solution is O(h2). It is possible

to construct higher order basis functions which are of two types viz., a) hierarchical

basis functions [37] and b) interpolatory basis functions [38]. With hierarchical basis

functions, it is possible to have a finite element mesh with different orders of basis

functions for different elements. For this reason, hierarchical basis functions are suitable

for p− adaptive mesh refinement. The advantage of interpolatory basis functions over

hierarchical is that such basis functions have high linear independence leading to a well-

conditioned mass matrix. This is not generally the case in hierarchical basis functions

even though it is possible to construct higher order basis functions with good linear

independence [39].

With respect to the assembly of finite element mass and stiffness matrices in a com-

puter implementation, there are many possible approaches. For edge elements on rectan-

gular and hexahedral elements the matrices can be computed analytically [31]. Similar

closed form representation of the matrices for edge elements, in terms of the coordinates

of the three nodes of an arbitrary triangle or four nodes of an arbitrary tetrahedron is

possible. Alternatively, assembling the matrices using numerical integration rules such

as Gaussian quadrature rules for triangular and tetrahedral elements can be adopted, but
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seldom used as this approach is more CPU intensive. However, computing the elemental

matrices using appropriate numerical integration rules can offer other advantages such

as improvements in the condition of the matrices. For instance in [40], GaussLobat-

toLegendre quadrature rules are used resulting in a block diagonal mass matrix which

is trivial to invert. The most efficient way to compute element matrices, especially for

hierarchical higher order basis functions, is by having universal matrices as described

in [37] which are independent of the triangular or tetrahedral element. For arbitrary ele-

ments, the matrices can be obtained from the universal matrices. The method of having

universal matrices is easy to extend to higher order hierarchical basis functions.

2.3.4 Temporal Discretization

Many possible time integration schemes are possible for the temporal discretization

of the second order ordinary differential equations in (2.41) [8, 10]. In particular, the

Newmark-beta formulation is attractive since it leads to a scheme which is uncondi-

tionally stable and has second order accuracy in the discrete approximation [41]. By

applying Newmark-beta scheme, (2.41) is approximated as

T
1

c2∆t2
[

un+1 − 2un + un−1
]

+ S
[

βun+1 + (1− 2β)un + βun−1
]

+
[

βfn+1 + (1− 2β)fn + βfn−1
]

= 0

(2.49)

where β is a constant and ∆t is the time step size and n indicates the time index i.e.,

un = [u1(n∆t) u2(n∆t) · · · uN(n∆t)]t. The above discretization leads to the following

update equation for the unknown coefficients at time step n + 1

[

T + βc2∆t2S
]

un+1 =
[

2T− (1− 2β)c2∆t2S
]

un

−
[

T + βc2∆t2S
]

un−1

− c2∆t2
[

βfn+1 + (1− 2β)fn + βfn−1
]

(2.50)

25



In [10] it is shown that (2.50) is numerically stable for β ≥ 1
4
. The Newmark-beta

method is a particular case of general implicit two-step recurrence algorithms discussed

in [13] with parameter Θ1 = 0 and Θ2 = β
2
. A truncation error of O(∆t2) is achieved

when β = 1
4
.

Based on the respective positive definite and positive semi-definite properties of T

and S matrix, the proof for the unconditional stability of the implicit update equation

(2.50) was shown in [10] using an eigenvalue analysis of the iteration matrix. Similar

proof for unconditional stability using modal decomposition can be obtained [13]. Un-

conditional stability implies that there is no upper bound for ∆t dictated by the spatial

discretization size, unlike the FDTD method which is conditionally stable. The choice

of ∆t is based on the accuracy requirement and based on heuristic assumptions is often

set as 0.1
fmax

where fmax is the highest frequency of interest. Such a time step corresponds

to one-tenth the time period of a signal with frequency fmax.

2.3.5 Matrix Solution Techniques

The FETD update equation (2.50) being implicit in nature requires a solution of a

matrix equation of the form

Ax = b (2.51)

where A = T + βc2∆t2S, x is the unknown basis function coefficients at the current

time step, and b is the excitation vector containing the source term and the solution at

the previous time steps. Either a direct solver or an iterative solver could be used for

the matrix solution. The fact that the matrix A is symmetric positive definite (s.p.d)

guarantees a Cholesky factorization of the form

A = LLt (2.52)

to exist. L is the Cholesky factor of A. In case of a direct solver, the complete Cholesky

factor is computed and the matrix solution is subsequently obtained in two steps viz.,
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a forward substitution and a backward substitution. The computational complexity of

Cholesky factorization in terms of floating point operations is O(N 2) and the memory

requirement is O(N
3

2 ). Each forward or backward substitution requires O(N
3

2 ) flops.

As the number of unknowns increases it is expensive both in terms of storage of the

complete Cholesky factor and flops involved in a matrix solution step. In such a case, it

is efficient to use an iterative solver such as Conjugate Gradient solver. Such a Krylov

subspace based solver requires a matrix-vector multiplication to be performed during

each iteration till a specified convergence criteria is met. The storage requirement in

this case is the storage requirement of the original matrix A which is O(N) and the

number of flops required is O(nCGN) where nCG is the number of iterations in conju-

gate gradient method for the solution to converge. The convergence criteria is set on the

relative residual defined as

res =
‖b−Axn‖
‖b‖ (2.53)

where xn is the solution at the nth iteration of the conjugate gradient method. When

the relative residual is below certain specified tolerance δ, the iterative solver is said

to have converged. The matrix A being s.p.d. in nature, the CG iterations are guaran-

teed to converge. nCG depends on the condition number of A denoted as κ(A) which

in turn is dependent on the electrical size of the elements and the quality of the mesh.

As A is a normal matrix, the condition number is defined as the ratio of the maximal

and minimal eigenvalues of A. The stiffness matrix, S being positive semi-definite,

the minimal eigenvalue of A is bounded by the minimal eigenvalue of the mass matrix

T. The matrix T in general, is well conditioned for a good quality mesh and κ(T) is

bounded for a uniform finite element mesh. However, in the case of the stiffness ma-

trix S, its condition number is inversely proportional to the finite element mesh size h

as κ(S) ∝ 1
h2 . To illustrate this fact, an example of 1 cm×1 cm×1 cm PEC cavity,

discretized with tetrahedral elements is considered. Fig. 2.4 shows the dependence of
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Figure 2.4: Maximum eigenvalues of S and T matrices of simple rectangular PEC
cavity.

the maximum eigenvalues of S and T matrices for the cavity under different discretiza-

tion sizes h. Also, the number of zero eigenvalues of S increases when the mesh size

h is decreased. Thus, the condition number of S and hence of A deteriorates when

the mesh is refined, with ∆t being fixed by the maximum frequency of interest. For

large κ(A), nCG ∝
√

κ(A) [9], [42] and hence the number of iterations for the CG

method to converge increases when the mesh size is electrically small. This problem

can be mitigated to a degree by having ∆t bound to ∆h i.e., with c∆t
∆h

= C where C

is a constant. However, such a condition limits the full potential of the unconditional

stability of FETD. An alternate solution is to use a preconditioned conjugate gradient

(PCG) solver to overcome, to a certain extent, the problems of high condition number

of the system matrix. This method is based on constructing an effective preconditioner

M and applying the CG method on a modified problem of the form

M−1Ax = M−1b. (2.54)
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When the preconditioner M approximates the original matrix A and its inverse is easier

to compute, then the conjugate gradient method on the modified system is highly effi-

cient compared to the original system of equations. An incomplete Cholesky factor of A

which essentially is computed by Guassian elimination but modified based on strategies

such as “drop tolerance” and (or) “levels of fill” with benefits of reduced memory re-

quirements and flops at the cost of a crude approximation to A, often performs well as a

highly efficient preconditioner. In this case, the preconditioner M = RRt ≈ A is never

explicitly constructed; instead the incomplete Cholesky factor R is computed. The

matrix-vector multiplication operations of the form M−1z is simply performed by for-

ward and backward substitutions using R. An efficient preconditioner is one for which

κ(M−1A) is bounded and independent of the mesh size h. The ideal pre-conditioner,

constructed using the complete Cholesky factorization of A, requires only one iteration

in the PCG solver irrespective of the mesh size h. However, this comes under the cost of

high memory requirement, as mentioned earlier. Incomplete factorization on the other

hand decreases the memory requirement in storing the preconditioner but at the cost of

increased CG iterations. Thus, in choosing a preconditioner, there is a trade off between

memory requirement and CPU time. In the decomposition of A, re-ordering of the un-

known indexes results in significant improvements in the sparsity of resulting R. Many

reordering schemes such as minimal degree ordering or nested dissection are available.

Sparse matrix solver packages such as TAUCS [43] have built in interfaces to different

reordering algorithms. One such powerful re-ordering routine is METIS which is based

on nested-dissection/minimum-degree re-ordering [44].

Fig. 2.5 and Fig. 2.6 illustrate the advantages of matrix re-ordering in improving

the sparsity of the Cholesky factor. Fig. 2.5(a) shows the sparsity pattern of the typical

system matrix A for a finite element mesh with arbitrary ordering of edges. Fig. 2.5(b)

shows the sparsity of the complete Cholesky factor, L, which is a lower triangular ma-

trix. It is observed that the number of non-zero entries is 464,082. Fig. 2.6(a) shows
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Figure 2.5: System matrix A with arbitrary ordering and its corresponding Cholesky
factor.
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Figure 2.6: Re-ordered matrix A using nested dissection/minimum-degree re-ordering
and its corresponding Cholesky factor.
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the sparsity pattern of the re-ordered A matrix using the METIS package. Fig. 2.6(b)

shows the Cholesky factor of the re-ordered A matrix. It is observed that the number of

non-zero entries is 23,846, nearly 20 times lesser non-zero entries than the case without

re-ordering. Such significant improvements in the sparsity can be observed even in the

case of incomplete Cholesky factorization. Matrix re-ordering not only reduces memory

requirement in storing L or R but also reduces CPU time in the PCG solution, since the

number of flops for each matrix-vector multiplication is reduced with increase in spar-

sity. The system matrix A being independent of time needs to be assembled only once.

The construction of the pre-conditioner with the matrix re-ordering and factorization

steps needs to be performed only once after the assembly of A and before the starting

of the time-stepping procedure. Usually the number of time steps is large. Hence the

computational requirements in setting up the matrix pre-conditioner is negligible com-

pared to the time-stepping procedure and significant reduction in CPU time and memory

requirements can be achieved.

It is possible to formulate a TDFEM based technique starting from the two first or-

der Maxwell’s curl equations (2.1) and (2.2) [6, 45], similar to the FDTD method. Such

a formulation can lead to an explicit time marching alleviating the need for matrix in-

version at each time step. However, the resulting algorithm is conditionally stable with

the conditions of stability dictated by the lowest edge length in the unstructured mesh.

The choice a time-step cannot be generalized in this case and the maximum time step

allowed is dependent on the problem to be simulated and the finite element mesh used.

2.3.6 Absorbing Boundary Condition

To model unbounded problems, similar to the case in FDTD method, ABCs or PML

are two possible approaches which can be adopted. The first order ABC, frequently

31



used in frequency domain FEM [46], is given by

n̂×∇× ~E = jk0γt
~E (2.55)

where k0 = jω/
c

is the free space wave-number and γt~u = n̂ × ~u × n̂ is the tangential

trace operator. In other words, γt~u is the tangential component of ~u along the surface.

The corresponding first order ABC in the time domain is

n̂×∇× ~E =
1

c

∂

∂t
γt

~E. (2.56)

It is fairly simple to incorporate the first order ABC in (2.56) with in the FETD formu-

lation. For trial vector functions ~u which satisfy (2.56), the surface integral term which

appears in the Galerkin testing, as in (2.39), can be written as

∫

Γabc

~v · (∇× ~u)× n̂ ds = −
∫

Γabc

~v · (n̂×∇× ~u) ds

= −1

c

∂

∂t

∫

Γabc

(n̂× ~v) · (n̂× ~u) ds. (2.57)

The discrete Galerkin statement in this case is then

Seek ~uh(t) ∈ Vh ⊂ H(curl, Ω) such that

∫

Ω

[

∇× ~vh ·
1

µr

∇× ~uh + εr
1

c2
~vh ·

∂2~uh

∂t2
+ µ0~vh ·

∂ ~Ji

∂t

]

dΩ

+
1

c

∂

∂t

∫

Γabc

(n̂× ~vh) · (n̂× ~uh) ds = 0,

∀~vh ∈ Vh and t ∈ (0, T ).

(2.58)

After expanding the trial and testing functions using basis functions and following a

similar procedure as in Sec. 2.3.2, the following system of ordinary differential equa-

tions is obtained,

T
1

c2

d2u

dt2
+ R

1

c

du

dt
+ Su + f = 0 (2.59)

where S,T and f are defined in (2.42),(2.43) and (2.44), respectively; and R is defined

as

Rij =

∫

Γabc

n̂× ~Wi · n̂× ~Wj ds. (2.60)
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The Newmark-beta scheme for temporal discretization can be extended to the gen-

eral case of the second-order ordinary differential equations [10]. Applying the scheme

to (2.59) results in the following implicit update equation
[

T +
1

2
c∆tR + βc2∆t2S

]

un+1 =
[

2T− (1− 2β)c2∆t2S
]

un

−
[

T− 1

2
c∆tR + βc2∆t2S

]

un−1

− c2∆t2
[

βfn+1 + (1− 2β)fn + βfn−1
]

.
(2.61)

It is possible to derive, in general the mth order ABC [46]; and its implementation

within the FETD method involves deriving the time domain equivalent of the ABC and

devising a suitable temporal discretization schemes for deriving the update equations.

The property of unconditional stability is not necessarily maintained for the resulting up-

date equations. The second order ABC was implemented in FETD method in [11] with

only a marginal improvement in performance compared to the first-order ABC [47]. For

this reason, the implementation of PML as in FDTD methods within the FETD frame-

work has been investigated.

2.3.7 Perfectly Matched Layer

Implementation of PML in the FETD method has not attracted as much attention as

the FDTD counterpart. In general the PML medium is a dispersive anisotropic tensor.

To reduce the complexity in time domain analog of the constitutive relationship, either

non-dispersive case [48] or approximation of the frequency dependence [49] has been

considered. The dispersive nature of the PML has been modeled accurately in [50, 51]

using recursive convolutions evaluated with assumption that the field is a piece-wise

constant [50] or piece-wise linear [51] with time. The implementation, though offers

a good absorption efficiency than ABCs, no rigorous proof of stability exists and often

suffers from numerical instability [51]. In [52], a novel method of implementing the
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anisotropic PML by using modifying basis functions was proposed. Common to all the

different implementations is the increased computational complexity and lack of theo-

retical proof of numerical stability.

2.4 Hybridising FDTD with FETD

The implementation of PML in FETD method is not trivial and straight forward

unlike the case with the FDTD method. Moreover, it is shown in [9] that, the computa-

tional complexity of the 3-D FETD algorithm in terms of CPU time with a fixed physical

simulation time is O(N
3

2 ) and is slightly less efficient than FDTD which has complex-

ity O(N
4

3 ) where the number of unknowns N ∝ 1
∆h

3
. Though FETD has marginally

higher complexeity than FDTD, the method has an inherent advantage that the funda-

mental source of errors in FDTD viz., the stair-stepping approximations of the modelled

geometry is eliminated. This issue of stair-casing errors has been a subject of research

for more than a decade and many algorithms such as the Finite-Volume Time-Domain

(FVTD), FDTD methods for non-orthogonal grids [53] and conformal FDTD methods

for curved PEC structures [54,55] have been proposed. The disadvantage of these meth-

ods is that the computational efficiency of the FDTD method for Cartesian grids is lost,

requiring substantially more CPU time and memory to solve a problem and are often

restrictive to a particular class of problems. Improvements to FDTD for large prob-

lems by hybridizing with higher-order techniques such as pseudospectral time-domain

(PSTD) [56] have recently been proposed. Hybrid methods to overcome staircasing

errors in FDTD using FETD were initially proposed in [14–17]. For such algorithms,

efficient unstructured mesh generation tool is a fundamental requirement. In [15], the 3-

D FDTD algorithm is hybridized by modelling curved boundaries with tetrahedral edge

elements. A second order accurate interpolation is performed to obtain the unknowns

on the Finite element domain boundaries, which do not conform to the finite difference
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grid. In this section, the 2-D FETD-FDTD hybrid algorithm for the TE case is reviewed.

The hybridization procedure and the linkage between the finite element and the finite

difference domains are detailed. As will be seen later, the discussed method is numer-

ically unstable. However, it will be shown in Chapter 4 that the implementation of the

stable hybrid FETD-FDTD method proposed in [18], is similar in procedure to the one

discussed in the following section.

2.4.1 Formulation: 2-D TEz Case

The physical space is split into two domains viz., the FD domain, ΩFD and the

FE domain, ΩFE . ΩFD has both electric field EFD and magnetic field HFD unknowns

while ΩFE has only electric field unknowns EFE . The boundary of ΩFE , Γe
FE conforms

to the electric field grid of ΩFD and the corresponding electric field unknowns on it are

denoted as EFD
Γ ⊂ EFD. EFD

Γ are the boundary values for the solution in ΩFE . ΩFE

is triangulated in such a way so that, Γe
FD conforms with the mesh in ΩFE and has the

electric field unknowns on it denoted as EFE
Γ ⊂ EFE . The magnetic field unknowns in

ΩFD that require EFE
Γ and EFD

Γ for updating, are denoted as HFD
Γ ⊂ HFD. A sample

discretization and domain boundaries with the corresponding unknowns are shown in

Fig. 2.7.

As in traditional FDTD formulation, the Maxwell’s two curl equations are used in

ΩFD and the second order vector wave equation is used in ΩFE to arrive at the update

equations for the unknowns in the respective domains. For the sake of simplicity, both

domains are considered to be lossless, non-dispersive, isotropic and homogeneous. In
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Figure 2.7: Boundaries of the FE and FD domains and the corresponding notations used
for unknowns.

ΩFD, for the 2-D TEz case (with Ex, Ey and Hz components) the FDTD update equa-

tions are given as

H
n+1/2
z(i+1/2,j+1/2) = H

n−1/2
z(i+1/2,j+1/2) −

∆t

µ0∆h





En
y(i+1,j+1/2) − En

y(i,j+1/2)

−En
x(i+1/2,j+1) + En

x(i+1/2,j−1)



 (2.62)

En+1
x(i+1/2,j) = En

x(i+1/2,j) +
∆t

ε0∆h

[

H
n+1/2
z(i+1/2,j+1/2) −H

n+1/2
z(i+1/2,j−1/2)

]

− ∆t

ε0

Jn+1
x(i+1/2,j)

(2.63)

En+1
y(i,j+1/2) = En

y(i,j+1/2) +
∆t

ε0∆h

[

H
n+1/2
z(i+1/2,j+1/2) −H

n+1/2
z(i−1/2,j+1/2)

]

− ∆t

ε0

Jn+1
y(i,j+1/2).

(2.64)

In (2.62), for the update of Hz ∈ HFD
Γ , the electric field unknowns (Ex, Ey) ∈

EFD
Γ ∪ EFE

Γ are used. In ΩFE we proceed from the second order vector wave equation

as in (2.32) with the source term ~Ji = 0 and the following Dirichlet boundary condition

viz.,

n̂× ~E × n̂ = EFD
Γ , on Γe

FE. (2.65)
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In (2.65), EFD
Γ , the FDTD solution on Γe

FE is time varying. Hence, (2.65) represents a

time varying Dirichlet boundary condition. Using edge element basis functions to span

the electric field in ΩFE and applying the Faedo-Galerkin process discussed in Sec.

2.3.2, results in a system of o.d.e given as in (2.41) with the finite element matrices S

and T defined as in (2.42) and (2.43), respectively. In this case, the excitation vector

f has contributions due to the boundary condition in (2.65) and unlike the definition in

(2.44), is given as

fi =
∑

ej∈Γe
FE

[

Tij
1

c2

d2EFD
Γ(j)

dt2
+ SijE

FD
Γ(j)

]

(2.66)

where EFD
Γ(j) is the finite difference unknown associated with the edge ej on Γe

FE .

Using the Newmark-beta method as in Sec.2.3.4 for the temporal discretization and

with f given by (2.66), an implicit update equation of the electric field unknowns in ΩFE

is obtained as

Aen+1 = Ben −Aen−1 − c2∆t2fn+1 (2.67)

with

A = T + c2∆t2βS

B = 2T− c2∆t2(1− 2β)S;

and fn+1 evaluated using the temporal discretization of (2.66) and given as

fn+1
i =

∑

ej∈Γe
FE











Tij

c2∆t2

[

EFD
Γ

∣

∣

n+1
(j) − 2 EFD

Γ

∣

∣

n
(j) + EFD

Γ

∣

∣

n−1
(j)

]

+Sij

[

β EFD
Γ

∣

∣

n+1
(j) + (1− 2β) EFD

Γ

∣

∣

n

(j)
+ β EFD

Γ

∣

∣

n−1

(j)

]











.

(2.68)

Eq. (2.67) is the required matrix equation to be solved during each time step to

obtain the electric field solution in ΩFE , subject to the time varying boundary condition

(2.65) appearing in the excitation vector f as in (2.68). The steps involved during each

time step in the hybrid FETD-FDTD algorithm can be summarized as
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1. HFD
∣

∣
n+1/2 are updated using (2.62), with HFD

Γ

∣

∣
n+1/2 updated using EFD

Γ

∣

∣
n

and EFE
Γ

∣

∣
n.

2. PMC boundary conditions in ΩFD, if any, are enforced on HFD
∣

∣
n+1/2.

3. EFD
∣

∣
n+1, which include EFD

Γ

∣

∣
n+1 are updated using (2.63) and (2.64).

4. PEC boundary conditions in ΩFD, if any, are enforced on EFD
∣

∣
n+1.

5. EFD
Γ

∣

∣
n+1 being the boundary values of ΩFE , are integrated into the finite element

update equation using (2.68).

6. Matrix equation (2.67) is solved to update EFE
∣

∣
n+1.

7. EFE
Γ

∣

∣
n+1 ⊂ EFE

∣

∣
n+1 is made available for the next update of HFD

Γ .

In step 1 of the time-stepping procedure, the solution in ΩFE penetrates into ΩFD,

and in step 5, the solution in ΩFD penetrates into ΩFE . Steps 1-4 are the traditional

FDTD time marching procedure. With regard to implementation, the basic code to im-

plement the field updating procedure can be used as such without any modification,

provided that in step 7, the unknowns EFE
Γ

∣

∣
n+1 are mapped onto the corresponding

unknowns in the electric field grid in ΩFD. It should be noted that while linking the

unknowns between the two domains, the directions of the unknowns have to match

globally. This can be easily ensured by using the direction of the unknown in ΩFD as

the reference. If the edge associated to the particular unknown is opposite in direction

in ΩFE , then its associated unknown is multiplied by -1 while mapping onto the corre-

sponding unknown in ΩFD.

2.4.2 Numerical Examples and Results

In order to highlight the efficiency and accuracy of the hybrid algorithm, the solu-

tions for scattering by a circular PEC cylinder for TEz incidence obtained using FDTD
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and the hybrid algorithm are compared with the analytical results. The scattered Hz

component by a PEC cylinder can be evaluated analytically [57] in cylindrical coordi-

nates in terms of Bessel and Hankel functions as

Hs
z (ω, ρ, φ) = −H0

+∞
∑

n=−∞
j−n J ′

n(βa)

H
(2)′
n (βa)

H(2)
n (βρ)ejnφ (2.69)

where β = ω
√

µ0ε0 and a is the radius of the circular cross-section. For a given

waveform p(t) of the incident plane wave which, in this example, is a differentiated

Gaussian pulse, let P (ω) be its Fourier transform. To obtain the corresponding time

domain scattered waveform, the scattered field computed in the frequency domain us-

ing (2.69) is weighted with P (ω) and an inverse Fourier transform is applied subse-

quently. The radius of the circular cylinder in this example is arbitrarily chosen as

0.125m. The frequency band of interest is 800 − 2000 MHz. Three different cell sizes

viz., λmin/20 = 7.5mm, λmin/30 = 5mm and λmin/40 = 3.75mm are chosen. Total

Field/ Scattered field formulation is implemented to solve for the scattered field directly

in a single FDTD simulation. For the FDTD simulations, the cylinder geometry is ap-

proximated to conform to the Cartesian grid using stair-casing, as shown in Fig. 2.8.

The time domain scattered Hs
z component at (ρ = 0.18m,φ = 180◦) for the various

cases is shown in Fig. 2.9(a) along with the analytical solution. In Fig. 2.9(b), the error

in the solution as compared to the analytical solution is shown. The 20 cells/λ case has

an error as high as -12 dB. For the hybrid case, the physical dimension of ΩFE is chosen

to be a box of 0.3 m×0.3 m and the hybrid geometry for ∆h = λmin/20 is shown in

Fig. 2.10. The average length of each edge in the triangulation of ΩFE is close to the

FDTD cell size in all cases. Also, since the geometry is PEC, no unknowns are required

for the space inside the geometry. The hybrid mesh generator developed uses the Tri-

angle [58] code for triangular mesh generation. The hybrid mesh generator ensures that

the requirements on the interface between ΩFE and ΩFD are maintained. The solution

obtained using the hybrid algorithm is shown in Fig. 2.11. The insets in Fig. 2.9(a) and

Fig. 2.11(a) magnify the tail of the first reflection from the PEC cylinder. It is seen that
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Figure 2.8: FDTD mesh for the circular PEC cylinder geometry with the total field/
scattered field regions.

significant ripple is observed in the FDTD solution and its level decreases with finer

mesh. Even in the case with ∆h = λmin/40 the ripple is noticeable. Clearly, this ripple

is due to the stair-case approximation of the curved geometry, and is totally absent in the

hybrid case. On observing Fig. 2.9(b) and Fig. 2.11(b), it is noticed that an improvement

of at least 15dB in the solution error is seen in all cases when compared to the corre-

sponding FDTD results. The performance of the hybrid algorithm with ∆h = λmin/20

is much better than the FDTD solution with ∆h = λmin/40.

To better illustrate the advantages of the FETD-FDTD method, a comparison of the

efficiency of the hybrid method with regular FDTD is shown in Fig. 2.12. The depen-

dence of error in the solution with the number of unknowns and the corresponding CPU

time is shown. The root mean square error in the scattered time domain Hz component
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Figure 2.9: Time domain Hz solution using FDTD method for various cell sizes com-
pared to the analytical solution.
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Figure 2.10: Hybrid mesh for the circular PEC cylinder geometry with the total field/
scattered field regions.
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Figure 2.11: Time domain Hz solution using hybrid FETD-FDTD method for various
cell sizes compared to the analytical solution.

in the backscattered direction, defined by

erms =

[

1

Nt

Nt
∑

n=0

∣

∣Hn
z −Hanal

z (n∆t)
∣

∣

2

]
1

2

(2.70)

is used as the performance index in terms of error in the solution. Nt is the total number

of time steps. These results are for a square ΩFE as shown in Fig. 2.10. It is much de-

sired to have ΩFE as closely bounded to the curved geometry as possible, in which case

much better performance in terms of CPU time than the results shown in Fig. 2.12 can

be achieved. However, even for the current example, it is observed from Fig. 2.12(a),

that firstly, for a given number of unknowns, the error in the FDTD solution is higher

than the error in the hybrid solution. Secondly, the rate at which the error in the FETD-

FDTD hybrid solution reduces with increase in the number of unknowns is higher than

the FDTD solution. In the circular cylinder geometry, the errors due to stair-case ap-

proximations in the FDTD method are significant even at the levels of refinements of

λ/40. In Fig. 2.12(b) the CPU time required for a certain level of error in the solution is
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shown. The hybrid method with PCG solver using incomplete Cholesky factor as pre-

conditioner requires lower CPU time than the hybrid case with just a CG solver without

any pre-conditioner. The FDTD method in general requires lower CPU time. However,

with the error in the solution as the criteria, it is observed that the FDTD method requires

finer mesh size, would need much more CPU time than the hybrid case to generate a

solution with similar error. Moreover, by confining ΩFE closely to the curved regions

would reduce the CPU time for the hybrid method significantly.

In the previous example of scattering by a circular PEC cylinder, comparisons of

near-field solutions among the FDTD, Hybrid and analytical methods were made. In

the next example, monostatic RCS of a PEC cylinder with square cross-section is con-

sidered. Two different angles of incidence viz., φi = 45◦ and φi = 30◦ are considered.

The hybrid mesh used for the two cases is shown in Fig. 2.13. Although it is possible

to have the same geometry for the two cases and changing the angle of the incident

plane wave in the total-field / scattered-field formulation, for convenience φi is set as

0◦ for both cases and the geometry is rotated. The diagonal of the square cross-section

is 0.25 m. A 2-D time domain NFFF transformation [59] is applied on a virtual sur-

face in the scattered field region to obtain the scattered far-zone Hz component in the

back-scattered direction. Subsequently, the backscattered RCS is computed over the

frequency band of interest, which in this example is 800 − 2000 MHz. In Fig. 2.14,

the results for monostatic RCS obtained using the hybrid method is compared with the

FDTD and method of moments solutions. ∆h is set as λmin/40 for both the FDTD and

the hybrid methods. As expected, the hybrid results are in better agreement with the

method of moment solution [60]. In Fig. 2.15, a good agreement with MoM results in

the case of φi = 30◦ is observed.
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Figure 2.12: Comparison of efficiency of hybrid FETD-FDTD method with FDTD
method.
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Figure 2.13: Hybrid mesh for computation of monostatic RCS from a rectangular PEC
cylinder.
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Figure 2.14: Comparison of monostatic RCS with φi = 45◦ obtained using FDTD
method, hybrid FETD-FDTD method and method of moments.
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Figure 2.15: Comparison of monostatic RCS with φi = 30◦ obtained using the hybrid
FETD-FDTD method and method of moments.

2.4.3 Numerical Instability

Temporal instabilities arise in the hybrid FETD-FDTD algorithm [14], [61]. It

is very interesting to note that the Newmark-β scheme is unconditionally stable for

β ≥ 0.25. The FDTD algorithm by itself is conditionally stable. However, the hy-

brid algorithm is unstable. Two kinds of numerical instability are observed in hybrid

FETD-FDTD methods. One is the severe numerical instability and the other is the rel-

atively weak-instability where the solution grows linearly with ti me. The reason for

linear growth is the appearance of spurious modes in the form of solenoidal fields in the

electric field solution. A novel method for suppressing the occurrence of these spurious

modes is proposed and discussed in detail in Chapter 3.

The late time instability is inherently due to the hybridization of FETD and FETD

methods. In Fig. 2.16, the effect of late time instability in the hybrid method presented

in the previous section is illustrated. The time history of the scattered Hz component by

a PEC cylinder is shown. Though the computations in the previous section were based

on terminating the simulation before the onset of the numerical instability, in general, it
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Figure 2.16: Time domain scattered Hz component showing numerical instability.

is not trivial to predict when the instability will appear. In [62] filtering techniques are

proposed to control the stability of the algorithm. However, a need to have a numerically

stable hybridization scheme with well defined conditions of stability is of importance

for the successful extensive application of the method for modeling real life problems.

A detailed analysis of the stability of the hybrid algorithm for different hybridization

and the ability to achieve conditional stability will be left as the topic for Chapter 4.

2.5 Concluding Remarks

The two fundamental finite methods viz., the FDTD method and the FETD method

having advantages over each other with regard to efficiency and errors in numerical

modeling can be combined to achieve a robust time domain hybrid method. Applying

FETD method to model structures with intricate geometric details and FDTD method

for solution in relatively simple regions, stair-casing errors can be completely eliminated

at a reasonable increase in computational cost. The hybrid method was shown to have

better accuracy for a given number of unknowns and computational time. The problem
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of weak and severe instability encountered in the hybrid method is the topic discussed

in Chapters 3 and 4.
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CHAPTER 3

DIVERGENCE-FREE SOLUTION WITH EDGE ELEMENTS
USING CONSTRAINT EQUATIONS

3.1 Introduction

In the FEM formulation, the second order vector Helmholtz equation is the govern-

ing equation. As seen in the Sec. 2.3, Maxwell’s two curl equations are combined to

arrive at the vector Helmholtz equation and the divergence-free conditions in (2.3) and

(2.4) are not explicitly enforced. A vector field solution for Helmholtz equation need not

necessarily satisfy the divergence-free conditions. In general, irrotational vector fields,

which are gradient of scalar fields, form a solution to the Helmholtz equation but fail to

satisfy the divergence-free conditions of Maxwell’s equations. In the FEM formulation,

the divergence-free condition is neither implicitly enforced unlike the FDTD method,

nor is explicitly enforced. As long as the vector function space spanned by the vector

finite element basis functions span such gradient fields, the numerical solution is cor-

rupted with non-physical modes which satisfy Helmholtz equation. Such non-physical

modes are termed as “spurious modes”. Edge element basis functions span a discrete

gradient space and hence the FEM solution obtained with edge element basis functions

are corrupted with spurious modes. However unlike the case of spurious modes in

nodal finite elements, these spurious modes occur only at zero frequency [36]. In case

of higher order vector basis functions [32], the basis functions are explicitly decoupled

into irrotational and solenoidal spaces. When the irrotational basis functions are not

employed, spurious modes do not appear. However, in the case of edge elements, such
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explicit discrete Helmholtz decomposition is not possible. In this case, to eliminate

the appearance of spurious modes, special formulation typically by imposing additional

constraints are necessary.

In this chapter, the manifestation of the problem of spurious modes in two contexts

viz., a) as zero eigenvalues in the modeling of electromagnetic resonators and b) as

linear time growth in the FETD solution, is presented. A novel method of imposing

constraint equations to eliminate the appearance of the spurious modes is proposed and

to demonstrate the technique, cavity resonator modeling is considered. Further more,

the constraint equations can be efficiently imposed by the tree-cotree decomposition of

the finite element mesh. Successful application of the technique in eliminating the zero

eigenvalues and in eliminating late time linear time growth in FETD solution using edge

elements, both in the context of cavity modeling is presented. The contents of this chap-

ter with the examples shown were published in [63] and [64].

3.2 Manifestation of Spurious Modes

3.2.1 DC Modes of Electromagnetic Resonators

FEM is well established in modeling of electromagnetic cavity resonators to identify

the resonant frequencies and the corresponding modal field distribution. While explor-

ing new avenues in FEM, modeling of such problems is handy and informative. These

problems involve modeling of a bounded region where typically the walls of the res-

onator are PECs. The resonant frequencies of resonators with simple shapes such as

rectangular or cylindrical resonators can be computed analytically. This enables one to

compare the FEM solution with analytical results and identify potential drawbacks such

as appearance of spurious modes.

Consider Maxwell’s equations in a source-free and lossless region Ω, as shown in

Fig. 3.1. If the boundary, ∂Ω, is formed entirely by either perfect electric conductors
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Figure 3.1: A lossless resonator with inhomogeneous materials included within. The
boundary of the resonator is assumed to be either perfect electric or perfect magnetic
conductors.

(PECs) or perfect magnetic conductors (PMCs), the electric and magnetic fields in Ω

satisfy:
∇× ~E = −jωµ0 [µr] ~H; ∇× ~H = jωε0 [εr] ~E

∇ ·
(

[µr] ~H
)

= 0 ∇ ·
(

[εr] ~E
)

= 0

}

in Ω

γt
~E |ΓE

= 0 γt
~H |ΓH

= 0

(3.1)

where the tangential trace operator is defined by γt~u |Γ = n̂× ~u× n̂ , with n̂ as the unit

outward surface normal from Ω. Note that in (3.1), the PEC and the PMC boundaries

are denoted by ΓE and ΓH , respectively. In the next section, the application of edge

elements in solving for the resonant modes of the lossless cavity is presented.

By eliminating the magnetic field, ~H , from Maxwell’s two curl equations in (3.1),

the following transformed eigenvalue problem is obtained:

∇× [µr]
−1∇× ~E − k2 [εr] ~E = 0 in Ω,

γt
~E |ΓE

= 0;
(

[µr]
−1∇× ~E

)

× n̂ |ΓH
= 0.

(3.2)

where k2 = ω2

c2
. For k2 6= 0 , equation (3.2) does imply the divergence free condition,∇·

(

[εr] ~E
)

= 0. However, in the case of ~E = ∇φ, we have k2 = 0. Subsequently, the
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divergence-free condition may no longer hold. The variational statement for (3.2) is

Seek ~E ∈ H0 (curl; Ω) and k2 ∈ R such that

a
(

~v, ~E
)

− k2
(

~v, [εr] ~E
)

Ω
= 0

∀~v ∈ H0 (curl; Ω) .

(3.3)

The admissible function space for the trial and testing function space H0 (curl; Ω)

is defined by H0 (curl; Ω) =

{

~v

∣

∣

∣

∣

∫

Ω

(

|~v|2 + |∇ × ~v|2
)

dΩ <∞; γt~v |ΓE
= 0

}

. More-

over, the bilinear form a (~v, ~u) and the inner product (~v, ~u)Ω are:

a (~v, ~u) =

∫

Ω

(

∇× ~v • 1

[µr]
∇× ~u

)

dΩ,

(~v, ~u)Ω =

∫

Ω

(~v • ~u) dΩ.

(3.4)

However, as discussed in [65], there are three groups of eigen-pairs for the eigenvalue

problem stated in (3.3), as follows:

group 1: k2 6= 0, ∇ ·
(

[εr] ~E
)

= 0

group 2: k2 = 0, ∇ ·
(

[εr] ~E
)

= 0

group 3: k2 = 0, ∇ ·
(

[εr] ~E
)

6= 0.

(3.5)

Both groups 1 and 2 are physical eigenmodes of the resonators. The number of eigen-

modes in group 2 is one less than the number of separated PECs. Eigenmodes in group

3 do not satisfy completely the Maxwell’s equations, specifically the divergence-free

condition of electric field as in (2.3), and we refer to them as DC spurious modes. In

employing edge elements to approximate the eigenmodes of (3.3), the number of DC

spurious modes is the same as the number of “free nodes”. The free nodes are referred

to as the vertex nodes that are not on PECs. In the case of a resonator without PEC,

the nodes that are not designated as the reference grounding nodes are the free nodes.

To suppress these DC spurious modes, we modify (3.2) into a constrained eigenvalue

problem as:
∇× [µr]

−1∇× ~E − k2 [εr] ~E = 0 in Ω

γt
~E |ΓE

= 0;
(

[µr]
−1∇× ~E

)

× n̂ |ΓH
= 0

with ∇ •
(

[εr] ~E
)

= 0 in Ω.

(3.6)
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Moreover, the corresponding variational statement becomes:

Seek ~E ∈ H0 (curl; Ω) and k2 ∈ R such that

a
(

~v, ~E
)

− k2
(

~v, [εr] ~E
)

Ω
= 0

∀~v ∈ H0 (curl; Ω)

subject to
(

∇φ, [εr] ~E
)

Ω
= 0 ∀φ ∈ H1

0 (Ω)

(3.7)

where

H1
0 (Ω) =







u

∣

∣

∣

∣

∣

∣

∫

Ω

(

|u|2 + |∇u|2
)

dΩ <∞; u |ΓE
= 0







. (3.8)

The constrained equation
(

∇φ, [εr] ~E
)

Ω
= 0,∀φ ∈ H1

0 (Ω), used to enforce the divergence-

free condition, ensures ∇ •
(

[εr] ~E
)

= 0 in a distributional (or weak) sense.

In the FEM, the resulting generalized eigenvalue problem involves sparse symmetric

matrices and the Lanczos algorithm is an efficient technique for computing its eigenval-

ues and eigenvectors [66]. In the context of cavity modeling without spurious modes,

a constrained Lanczos algorithm was introduced in [65]. The method was based on

restricting the Krylov subspace of the Lanczos algorithm and hence the resulting eigen-

vectors, by enforcing the divergence-free (solenoidal) condition of electric flux in a

weak sense. This restriction was carried out by devising a projection operator which

removes gradient fields in the Ritz vector obtained in each iteration of the Lanczos algo-

rithm. The use of projection operator would involve the construction of finite element

matrices corresponding to nodal basis functions and necessitate the solution of a Poisson

problem in each iteration of the Lanczos algorithm. In [67], to harness the use of read-

ily available scalable sparse eigenvalue solvers such as ARnoldi PACKage (ARPACK),

a spectral shift method was proposed. In this technique, the original eigenvalue prob-

lem is modified such that the non-physical eigenvalues are shifted to the middle of the

spectrum. The shift is such that the solenoidal eigenmodes are unaffected. This method

involves construction of mixed finite element matrices using nodal and edge elements
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in solving the Poisson equation. Constraint equations proposed in this Chapter allevi-

ate the need to construct matrices other than those required in the original eigenvalue

problem. No new basis functions other than the edge elements are involved in the cur-

rent formulation. The idea is similar to that in [65] in that it relies on the fact that the

solution is orthogonal to the null space of the curl operator. However, instead of re-

stricting each Ritz vector using the projection operator, a method of applying constraint

equations directly on the Krylov vector involved in the matrix solution of the Ritz vec-

tor is developed. The resulting Ritz vector is such that its corresponding field solution

is orthogonal to the null space of the curl operator. As will be seen in the sections to

follow, the proposed constraint equations can be efficiently imposed by the Tree-Cotree

splitting of the finite element mesh, and operating on the tree variables alone. More-

over, since the occurrence of non-physical zero eigenvalues are completely suppressed,

a shift-and-invert strategy with negative shift results in a positive definite system matrix,

which can be solved efficiently using the preconditioned conjugate gradient algorithm.

Also, the proposed constraint equations can be directly integrated along with ARPACK

via the “reverse communication interface” [68].

3.2.2 Linear Time Growth in FETD

The problem of field solution with non-zero divergence arising when using edge

elements, manifests as a linear time growth in the FETD method [62]. Similar to the

eigenvalue problem, in the FETD method we seek the solution of the time dependent

vector Helmholtz equations as in (2.32). Eq. (2.32) has a non-trivial solution of the

form ~E = t∇φ which grows linearly with time. Analogous to the eigenvalue problem,

it is the gradient field supported by the edge element basis functions which introduce a

linear time growth. Subsequently, the divergence-free condition of the electric flux no

longer holds.
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The number of spurious modes that contribute to the linear time growth is the same

as the number of the “free nodes”. To suppress the appearance of the spurious modes

and hence suppress the linear time growth, the governing equation (2.32) is modified as

∇× 1

µr

∇× ~E + εr
1

c2

∂2 ~E

∂t2
~E = 0 in Ω

γt
~E |ΓE

= 0;
(

1
µr
∇× ~E

)

× n̂ |ΓH
= 0

with ∇ •
(

[εr] ~E
)

= 0 in Ω.

(3.9)

The corresponding variational statement of the modified governing equation in (3.9) is

Seek ~E ∈ H0 (curl; Ω) such that
∫

Ω

[

∇× ~v · 1

µr

∇× ~u + εr
1

c2
~v · ∂

2~u

∂t2

]

dΩ = −
∫

Ω

µ0~v ·
∂ ~Ji

∂t
dΩ

∀~v ∈ H0(curl, Ω) and t ∈ (0, T )

subject to
(

∇φ, εr
~E
)

Ω
= 0 ∀φ ∈ H1

0 (Ω) .

(3.10)

In [62], instead of applying an additional constraint on the electric field solution, the

governing equation was modified as

(

∇× 1

µr

∇×+δ

)

~E +
εr

c2

∂2

∂t2
~E = 0 (3.11)

such that the non-trivial solution, which is ~E = ∇φ cos(ωδt) with ωδ = c
√

δ/µrεr, does

not grow with time. The choice of δ is based on numerical experiments. In the current

approach, instead of modifying the governing equation, the divergence free condition in

(3.10) is applied as a constraint equation while seeking the field solution.

3.3 Discrete Divergence-Free Condition

3.3.1 Implementation Using Edge Elements

Following the finite element discretization procedure of Sec. 2.3.3, the trial and test

vector functions are sought within a finite dimensional subspace Vh ⊂ H0(curl; Ω),

which is the span of the well-adopted edge element basis functions. Subsequently, we

have a finite dimensional approximation to the variational statement in (3.7) :
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Seek ~Eh ∈ Vh ⊂ H0 (curl; Ω) and kh ∈ R such that

a
(

~vh, ~Eh
)

−
(

kh
)2
(

~vh, [εr] ~Eh
)

Ωh
= 0

∀~vh ∈ Vh

subject to
(

∇φh, [εr] ~Eh
)

Ωh
= 0 ∀φh ∈ Πh

(

⊂ H1
0 (Ω)

)

.

(3.12)

Moreover, it is evident that Πh =
{

uh ∈ H1
0

(

Ωh
)

, uh |K ∈ P 1
K

}

. The notation uh |K

means the restriction of function uh in a tetrahedral element K ∈ Ωh; whereas P 1
K

denotes all linear polynomials within element K ∈ Ωh. According to the deRham-

complex [35], it can be shown that ∇Πh ⊂ Vh - the so-called “inclusion condition”

[69]. The first part of Eq. (3.12) is well-documented and corresponds to a generalized

eigenmatrix equation:

Se = k2Te (3.13)

where S and T are defined in (2.42) and (2.43), respectively.

Similarly, for the FETD method, the finite dimensional approximation of the varia-

tional statement (3.10) is

Seek ~Eh ∈ Vh ∈ H0 (curl; Ω) such that
∫

Ω

[

∇× ~vh · 1

µr

∇× ~uh + εr
1

c2
~vh · ∂

2~uh

∂t2

]

dΩ = −
∫

Ω

µ0~v
h · ∂

~Ji

∂t
dΩ

∀~v ∈ Vh and t ∈ (0, T )

subject to
(

∇φh, [εr] ~Eh
)

Ωh
= 0 ∀φh ∈ Πh

(

⊂ H1
0 (Ω)

)

.

(3.14)

The first part of (3.14) leads to the same matrix equation as in (2.41) and time update

equations as in (2.50) can be obtained. The matrix structure of the constraint equation,

i.e., the second part of (3.12) and (3.14), will be discussed in the next section.

It is to be noted that in discrete finite dimensional applications, the discrete Helmholtz

decomposition [70] is analogous to the continuous version for any vector-valued func-

tions. Specifically, for the finite dimensional space, Vh, which is the span of edge
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Figure 3.2: A sample triangular finite element mesh in 2-D with an arbitrary tree-cotree
partitioning of the mesh.

element basis functions, we have Vh = ∇Πh ⊕Rh where

∇Πh = {∇φ|φ ∈ H1
0(Ω

h), φ |K ∈ P 1
K} (3.15)

and Rh ≡
(

∇Πh
)⊥

is the space of discrete divergence-free finite elements [71]. The

function space (F)⊥ denotes the orthogonal complement of F . In general, the eigen-

value solution of (3.13) leads to exactly Nn

(

= dim(∇Πh)
)

number of spurious solu-

tions with zero eigenvalues. In the eigenvalue problem, to suppress the occurrence of

these spurious DC solutions, when using the Lanczos/Arnoldi algorithm, we need to im-

pose constraint equations in addition to the generalized eigenmatrix equation in (3.13).

Similarly, in the FETD method in addition to the implicit update equation in (2.50)

additional constraint equation needs to be imposed to suppress the linear time growth.

Before presenting the implementation of the constraint equation, the discrete gradient

and integration matrix forms are introduced in the following section.
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3.3.2 Discrete Gradient and Integration Matrix Forms

Resonators without PECs ( ΓE = ∅)

The procedure to construct the discrete gradient operator, expressed in matrix form,

and its inverse, the discrete integration operator will be described. For simplicity,

we shall illustrate the construction through a two-dimensional example, as shown in

Fig. 3.2. Fig. 3.2 shows a simple triangular finite element mesh with a total of 16 edges.

The FEM mesh can also be viewed as a graph. The edges are divided into two groups,

tree and cotree edges, via the minimum spanning tree algorithm [72]. For example, in

Fig. 3.2, the tree edges are the thicker and darker edges, whereas the cotree edges are

the lighter ones. A tree is a set of connected edges which do not form a loop. It is

not coincidental that the number of tree edges is the same as the number of free vertex

nodes [73] (in Fig. 3.2, there are 8 tree edges and 8 free vertex nodes). Notice that

in Fig. 3.2, we have arbitrarily assigned the left-lowest node to be the reference node,

which corresponds to ground (zero potential). In general cases where perfect electric

conductors (PECs) are present, it is customary to assign ground to all PECs. Note that

the tree-cotree decomposition in Fig. 3.2 is not unique and other forms of decomposition

are also possible.

Consider ~uh ∈ ∇Πh ⊂ Vh, then

Ne−1
∑

i=0

ui
~Wi =

Nn−1
∑

m=0

φm∇ςm. (3.16)

Equation (3.16) provides the basis to construct the discrete gradient operator. It is ob-

served that
∫

edge i={j,k}

Ne−1
∑

l=0

ul
~Wl · d~l =

∫

edge i={j,k}

Nn−1
∑

m=0

φm∇ςm · d~l

⇒ ui = φk − φj.

(3.17)
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From the property of edge elements in (2.46), it is seen that the coefficient ui of the edge

element basis can be interpreted physically as circulation, namely,

ui =

∫

edge i={j,k}

~u • d~l. (3.18)

Hence, referring to Fig. 3.2, the relation between the circulation and the potential values

can be expressed as











e0

e1
...

e15











=











0 0 1 0 0 0 0 0
−1 0 1 0 0 0 0 0

. . . . . . . . . . . .
0 0 0 0 0 0 −1 1





















φ0

φ1
...

φ7











or e = Gφ (3.19)

Note that the discrete gradient matrix G is very sparse, with every row having at

most two non-zero entries, which are either 1 or -1. In analogy to the continuous case

the following properties hold true, viz.,

ker(∇×) = range(∇)⇒ SG = 0

ker(∇·) = range(∇×)⇒ GTS = 0
(3.20)

where ker (•) and range (•) are the respective null and range spaces of the operator •.

As can be seen from (3.19), the dimension of the discrete gradient matrix is Ne × Nn

and is not invertible. However, if we focus on the portion of the gradient matrix, which

relates the tree edges to the nodal potential values, we have

Gt =

























0 0 1 0 0 0 0 0
−1 0 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 −1 0 0 1 0 0 0
0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 −1 0 0 1
0 0 0 0 0 −1 1 0

























(3.21)

where the subscript t represents the tree partition. The inverse of Gt is defined as the

discrete integration matrix Σ. To compute the discrete integration matrix Σ, we can
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simply invert Gt. Alternatively it can be assembled from the fact that each nodal poten-

tial value, φm, can be obtained by collecting the circulation along the tree path starting

from the reference node to the vertex m. The rows and columns of Σ correspond to

the free nodes and tree edges, respectively. In the ith row of Σ, every non-zero column

entry corresponds to an edge which is in the path along the tree to the ith node from

the reference node. These entries are either +1 or -1, depending on the direction of the

tree edge (whether the edge is in the same or opposite direction along the path from the

reference node). Considering φ3, by inspection of Fig. 3.2, we have φ3 = e0 − e1 + e2.

Through similar procedures, the following result can be obtained:

[

φ0 φ1 φ2 φ3 φ4 φ5 φ6 φ7

]T
=

























1 −1 0 0 0 0 0 0
1 0 0 −1 1 −1 0 1
1 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0
1 0 0 0 1 −1 0 1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 0 1 −1 1 1

















































e0

e1

e2

e3

e4

e5

e6

e7

























or

φ = Σet (3.22)

Notice that indeed ΣGt = I as we expected. Moreover, by (3.20) and (3.19), the

dimension of the null space of S is the same as the number of free nodes, Nn.

Resonator with Multiple PECs

In Fig. 3.3, we show a resonator with two separate PECs together with a finite ele-

ment triangulation. Note that a common ground for both PECs needs to be assigned and

the tree-cotree partition is built accordingly. Since all spurious DC modes correspond

to gradient fields with all PECs having the same potential values, there are only three

free vertexes and hence only three non-physical spurious DC modes. The corresponding

tree-cotree markings of the edge elements are also shown in Fig. 3.3. The three spurious

DC modes can be completely determined through three independent potential values by
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Moreover, the corresponding integration matrix is

Σ = G−1
t =





1 −1 0
1 0 0
1 0 1



 . (3.24)

3.3.3 Discrete Constraint Equations

The discrete constrained equations for the edge elements are described in this sec-

tion. It can be formally stated as: An edge element vector ~uc

(

= uT
c W

)

∈ Vh is called

a constrained vector if and only if:

(~g, [εr] ~uc)Ω = gTTuc = 0, ∀~g
(

= gTW
)

∈ ∇Πh. (3.25)
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Since ~g ∈ ∇Πh, according to (3.19), there exists a φ
(

= φT ς
)

∈ Πh, such that g = Gφ.

Therefore, the constrained equation (3.25) becomes

φTGTTuc = 0 ∀φ ∈ R
Nn . (3.26)

Hence, from Eq. (3.26), we conclude that an edge element vector ~uc

(

= uT
c W

)

∈ Vh

is a constrained vector iff

GTTuc = 0. (3.27)

In practice, the constrained equations can be enforced through any of the following

forms

GT (aS + bT)uc = 0, a, b ∈ R, b 6= 0. (3.28)

Equation (3.28) can be established through (3.27) and (3.20).

3.3.4 Efficient Implementation Using Tree-Cotree Splitting

Typically, a matrix solution is necessary to compute an edge element solution vector.

This is true both in the eigenvalue problem when Lanczos algorithm is used to compute

the eigenvalues and in the FETD method with an implicit update at each time-step. The

general system of equation to be solved is of the form

(aS + bT)e = f . (3.29)

As long as the electric field solution vector computed from (3.29) satisfies (3.28), the

solution is constrained and is free from contamination by the spurious modes or gradi-

ent fields. There are many possible ways of implementing the constraint such that the

solution of (3.29) satisfies (3.27) or (3.28). Here we discuss three approaches.

The first procedure would be to operate on the solution vector e after seeking the

solution of (3.29). The constraint equation to remove the gradient terms in this case is

e = (aS + bT)−1f

e← e−G(GTTG)−1GtTe.
(3.30)
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The implementation of (3.30) requires the inversion of (GtTG) which is positive

definite.

The second procedure would be to operate on the excitation vector f instead of the

solution vector e. In the following, we devise a constraint equation to be imposed on f

such that e satisfies (3.28). For this, consider e that satisfies (3.28), i.e.,

GT (aS + bT) e = 0⇔ GT f = 0. (3.31)

Equation (3.31) is the necessary constraint equation to be imposed on f such that the

solution of (3.29) leads to e being constrained and free from contamination by gradi-

ent fields. A possible approach to impose the constraint in (3.31) on f is to apply the

following transformation to f before seeking the matrix solution viz.,

f ← f −G(GTG)−1Gtf

e = (aS + bT)−1f .
(3.32)

The implementation in (3.32) requires solution of the matrix system (GTG). Note that

GTG is invertible.

For an efficient implementation of the constraint in (3.31) without the need for ad-

ditional matrix solution is the third approach, based on the tree-cotree splitting of the

finite element mesh. Once the tree-cotree partitioning is performed, the constraint in

(3.31) can be rewritten as
[

GT
t GT

c

]

[

ft
fc

]

= 0 (3.33)

where the subscripts t and c represent tree and cotree edges, respectively. As shown in

previous section, Gt is a Nn ×Nn square matrix and is invertible with its inverse given

by the integrator operator, i.e., Σ = G−1
t . Given any f , it can be constrained to satisfy

(3.33) by simply setting the tree variables in f , i.e., ft in terms of the cotree variables fc,

and results in a modified/constrained f ′ as

f =

[

ft
fc

]

⇒ f ′ =

[

f ′t = −ΣTGT
c fc

fc

]

. (3.34)
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Note that in (3.34), GT
c fc involves only addition and subtraction operations. Also,

when Σ is explicitly constructed, multiplication by Σ involves once again only addition

and subtraction operations. Moreover, imposing the constraint in (3.34) by the tree-

cotree splitting involves the tree variables only. For a typical Delaunay Tessellation, the

number of edges averages about 7.3 times the number of nodes [74]. Since the number

of tree variables is one less than the number of nodes, the operation in (3.34) involves

only approximately 14% of the total number of edges variables. Therefore, the extra

cost in performing the constraint equations is minimal, while it completely suppresses

the occurrence the gradient fields or DC spurious modes in the field solution.

3.4 Eigenvalue Problem

3.4.1 Constraint Equations with Lanczos Algorithm

The shift-and-invert Lanczos algorithm for the generalized eigenvalue problem of

(3.13) with a shift of σ computes the eigenvalues around σ and their corresponding

eigenvectors. In each iteration of the algorithm, the Ritz vector r is generated as a

solution of a system

(S− σT)r = q. (3.35)

As long as the Ritz vectors computed from (3.35) satisfy (3.28), the resulting eigenvec-

tor (spanned by the Ritz vectors) is constrained and is free from contamination by the

DC spurious modes. Note that (3.35) is in the same form as (3.29) with a = 1 and

b = −σ. The ARPACK package is a popular and extensively used implementation of

the shift-and-invert Lanczos algorithm. The numerical results obtained for the cavity

problems with and without physical DC modes are presented in the next section. The

eigenvalue solver used to generate the results is based on ARPACK, and its “reverse
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communication interface” feature [68] is utilized. This feature allows the user to pro-

vide matrix-dependent operations. The shift-and-invert mode operation of ARPACK for

solution of (3.35) needs the user to provide two operations, viz.,

(a) Matrix vector multiplication of the form q← Tr̄, and

(b) Matrix solution of a linear system of the form

r← (S− σT)−1q̄;

where r̄ and q̄ are computed by scaling r and q respectively, and are handled by the

ARPACK code. The Ritz vector lies in the Krylov subspace constructed using r̄. By

operation (b), for r̄ and hence r to be constrained, we need to enforce (3.34) on q.

Consequently, the operation (a) is followed by constraining the tree variables of q as in

(3.34). This is the additional operation involved in the eigenvalue solver, as compared

to that of the normal unconstrained case. Moreover, the initial guess vector, typically

generated randomly, has to be constrained as well. For the shift σ in operation (b), when

σ is positive, (S− σT) is indefinite. However, since the constraint equations eliminate

non-physical zero eigenvalues, setting σ to be negative would still result in the computa-

tion of positive eigenvalues (and physical zero eigenvalues, if any). When σ is negative,

(S−σT) is positive definite. The matrix solution in operation (b) can then be performed

efficiently using a preconditioned conjugate gradient (PCG) algorithm with incomplete

Cholesky factor as a preconditioner. A good value of σ would be σ = −αk̄2
min (we

have chosen α = 0.1 in our computations). k̄min is the estimated wavenumber of lowest

mode (excluding the physical DC modes), whose wavelength corresponds to twice the

maximum dimension of the cavity. Seeking a matrix solution of a positive definite sys-

tem instead of the traditional need to solve for an indefinite system is the fundamental

advantage of the proposed method. Though an iterative solver could be employed for

the matrix solution, the results reported in this thesis are obtained using a direct solver

for the matrix solution in operation (b). It is to be noted that in the case of an iterative
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Figure 3.5: Geometry of rectangular resonator enclosing a PEC box (shaded). All di-
mension are in cm.

solver like PCG, the residual for convergence must be much smaller than the tolerance

specified for the ARPACK code. With a tolerance of 1e-6 for the ARPACK code, a

residual of 1e-8 for the convergence of the CG solver is sufficient to suppress the occur-

rence of spurious DC modes.
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3.4.2 Numerical Results

The first example considered is a typical ridged cavity [31] shown in Fig. 3.4. The

maximum dimension of the cavity is lmax =
√

12 + 0.752 + 0.52 = 1.3463 cm. There-

fore, the lowest wavenumber is estimated to be k̄min = 2π
2lmax

= 2.3335. Subsequently,

the shift is σ = −0.1k̄2
min = −0.54453. The finite element mesh has 549 tetrahedral

elements and the number of edge unknowns is 495 out of which 56 correspond to tree

edges. The first 8 eigenvalues obtained, both with and without constraint equations, are

shown in Table 3.1. It is observed that the constraint equations completely eliminate

the occurrences of zero eigenvalues, whereas the unconstrained case shows 6 spuri-

ous modes with zero eigenvalues. A good measure of the irrotational components in

the eigenvector solution e is err(e) =
∥

∥GTTe
∥

∥. By (3.27), when e corresponds to a

divergence-free solution, err(e) = 0. This measure is also shown in Table 3.1, where

it is observed that in the constrained case, err(e) = 0 is negligible for all eigenvectors.

However, for the unconstrained case, this measure is significant even for the eigenmodes

with non-zero eigenvalues. This is because the solution for the physical modes are ob-

tained from the Ritz vectors contaminated by the solution of non-physical DC modes.

The number of iterations for the ARPACK code to converge for the unconstrained case

(with randomly generated initial vector) was 132; and for the constraint case (with ran-

domly generated divergence-free initial vector) was 149. The reason for more iterations

in the constrained case is simply due to the higher resonant modes, which are farther

away from the shift and therefore require more Krylov vectors to converge.

Cavity with Physical DC Mode

In some cavities, physical DC modes are present. The number of such modes is

always one less than the number of perfect electric conductors (PECs). To highlight the

fact that the constraint equations eliminate only the spurious and not the physical DC

solution, an example of a 3-D rectangular resonator with a PEC box enclosed within
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is presented. The geometry is shown in Fig. 3.5. The outer PEC box has a dimension

of 1 cm × 0.5 cm × 2 cm, and the inner PEC box has a dimension of 0.5 cm × 0.1

cm × 1 cm. Thus, there are two PEC conductors and hence one physical DC mode is

present. The volume between the two conductors is discretized into 723 tetrahedral ele-

ments. The number of edge unknowns is 593 out of which 43 correspond to tree edges.

The results of the eigenvalue solver without and with constraint equations are given in

Table 3.2. The measure curl(e) in Table 3.1 is the L2-norm of the curl of the eigenvec-

tor i.e, curl(e)= ‖Se‖. The unconstrained solver computes five eigenvectors with zero

eigenvalues. Since all five eigenvectors lie in the null space of the curl operator (ob-

served from the measure, curl(e)), it is not possible to detect the physical eigenmode.

However, in the case of the eigensolver with constraint equations, the spurious modes

are eliminated and only one physical eigenmode with zero eigenvalue is obtained. This

mode, like the rest of the modes has no irrotational component, as verified by err(e)

tabulated in Table 3.2. With a tolerance of 1e-6 and for a total of 8 eigenmodes, the

ARPACK code converged in 105 iterations for the unconstrained case and 112 itera-

tions for the constrained case.

3.5 Suppressing Linear Time Growth in FETD

3.5.1 Constraint Equations with Conjugate Gradient Solver

In the FETD method, the implicit update equation from (2.50) is of the form

[

T + βc2∆t2S
]

un+1 = f . (3.36)

As long as un+1 computed from (3.36) satisfies (3.28), the resulting electric flux is

divergence-free. Note that (3.36) is in the same form as (3.29) with a = 1 and b =

βc2∆t2. Thus the constraint (3.34) needs to be applied on f before seeking the matrix

solution in (3.36). The constraint on f is sufficient to obtain a divergence free solu-

tion when a direct solver is used for matrix solution. When iterative solvers are used,
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Table 3.1: First 8 lowest eigenvalues of ridged cavity computed without and with con-
straint equations

Mode Ref. [31] Unconstrained Constrained

No. k(cm−1) err(e) k(cm−1) err(e)

1 4.999 0.000 1.281 4.987 0.248e-12

2 7.354 0.000 1.068 7.292 0.227e-12

3 7.832 0.000 1.180 7.833 0.264e-12

4 7.942 0.000 1.056 7.863 0.205e-12

5 7.959 0.000 1.092 7.960 0.260e-12

6 8.650 0.000 1.077 8.606 0.166e-12

7 8.916 4.987 0.034 9.083 0.181e-12

8 9.103 7.292 0.002 9.154 0.187e-12

Table 3.2: First 8 lowest eigenvalues of rectangular resonator enclosing a PEC box
computed without and with constraint equations

Mode No. Unconstrained Constrained

k(cm−1) err(e) curl(e) k(cm−1) err(e) curl(e)

1 0.000 1.214 0.000 0.000 0.145e-12 0.000

2 0.000 1.463 0.000 2.179 0.153e-12 1.422

3 0.000 1.169 0.000 3.165 0.167e-12 3.053

4 0.000 1.578 0.000 3.317 0.136e-12 3.257

5 0.000 1.475 0.000 3.959 0.130e-12 4.637

6 2.179 0.005 1.423 4.129 0.180e-12 5.324

7 3.165 0.011 3.053 4.274 0.162e-12 5.285

8 3.317 0.030 3.257 5.313 0.152e-12 8.232
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only in the ideal case with no rounding-off errors, applying the constraint equation on

the Krylov vector would lead to a divergence-free solution. Due to the finite precision

representation of real numbers, gradient fields could be introduced during the Krylov

iterations of the CG solver. When preconditioned CG solvers are used with a good pre-

conditioner such as the incomplete Cholesky factor, only few Krylov iterations are re-

quired for convergence and applying the constraint equation on the Krylov vector would

suffice for a divergence-free solution. When a CG solver without any preconditioner is

used, an implementation of divergence-free condition as in (3.30) can be employed once

in a few time steps to remove any gradient terms introduced due to round-off error in the

Krylov iterations. The proposed constraint equations have been derived from the case

of discrete-space continuous-time framework, allowing its extension to both eigenvalue

problems and FETD method. In [75], the discrete origin of linear time growth based on

the eigenvalues and eigenvectors of the amplification matrix of the FETD method under

the case of discrete-space discrete-time is demonstrated. Constraint equations, similar

in principle to the proposed method, have been derived in [75].

3.5.2 Numerical Results

To illustrate the suppression of the linear time growth using constraint equations, we

consider the case of a ridged cavity, the same as the one considered in Sec. 3.4.2 and

as shown in Fig. 3.4. The cavity is excited by a divergence-free electric current with a

Gaussian pulse waveform located at an arbitrary edge of the tetrahedral mesh. When

creating the tree-cotree edges of the mesh, the source edges must be part of the co-tree

set. Preconditioned CG solver is used with a preset tolerance of 1e-6. The incomplete

Cholesky factor has a drop tolerance of 1e-2. The iterative solver takes 4 iterations to

converge. The time history of the electric field at an arbitrary location is recorded. The

discrete Fourier transform of this time domain signal reveals the resonant frequencies of

the cavity as spectral peaks. In Fig. 3.6, the spectra of the electric fields within the cavity
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Figure 3.6: Spectrum of electric field showing different resonant modes for the solution
without and with divergence-free constraint equations.

for both cases, viz. without constraint and with divergence free constraint equation are

compared. The inset magnifies the low frequency region, where it is observed that

the unconstrained case is corrupted by the gradient vector functions with linear time

dependence.

Note that the linear time growth reflects as 1
k2 in the spectral domain (see inset of

Fig. 3.6). Also the spectral peaks indicating the resonant frequencies are in agreement

with the results from the eigenvalue solver in Table. 3.1. In Fig. 3.7, the power content

of the DC terms (k = 0 ) in the electric field solution with respect to time is shown. The

DC power increases with time in the case of the unconstrained solution. For the con-

strained case, there is no DC power as the spurious modes are completely suppressed

by the constraint equations.
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Figure 3.7: Power content of DC terms in the electric field solution without and with
divergence-free constraints.

3.6 Conclusions

Gradient vector fields satisfy vector Helmholtz equations but they fail to satisfy the

divergence-free condition of electric flux, required by Maxwell’s equations. When edge

element basis functions, which span a discrete gradient space, are employed for the finite

element solution, gradient vector field appears as spurious modes. Such spurious modes

manifest as unphysical DC modes in eigenvalue problems. In FETD method, such spuri-

ous modes give rise to a linear time growth, a form of weak-instability. A novel method

to eliminate such spurious modes using “divergence-free” constraint equations is devel-

oped. This method of imposing constraint such that the computed electric flux solution

is divergence-free does not involve any other basis functions other than the edge ele-

ments. The weak form of the divergence-free nature of the electric flux translates to the

corresponding constraint equations imposed on the Krylov vector that either generates
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the Ritz vector in the Lanczos/Arnoldi algorithm in the context of eigenvalue problems

or electric field solution in the CG solver in the context of FETD method. The method to

impose the constraint equations efficiently using the tree-cotree partitioning of the finite

element mesh has been presented. In eigenvalue problems, an added advantage achieved

is the ability to use negative shift in the Lanczos algorithm with shift-and-invert strategy.

This results in solving a positive definite matrix which otherwise is indefinite. Numer-

ical examples verify conclusively the elimination of spurious modes in the solution of

the eigenvalue problem.
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CHAPTER 4

STABILITY OF HYBRID FETD-FDTD METHOD

4.1 Introduction

A fundamental requirement of a numerical method for solution of partial differential

equations is convergence. By convergence, when the time step and spatial step sizes are

reduced to zero in a particular relative rate, the numerical solution should converge to

the exact solution. To have a convergent scheme, it is necessary that the approximations

of the differential operators in arriving at the numerical scheme are consistent. The trun-

cation errors in the approximation of the differential operators must vanish in the limit

as the step size tends to zero. For initial value problems, however, consistency alone

does not guarantee convergence. By the Lax Equivalence theorem [76], which states

that a consistent finite difference approximation for a well-posed initial value problem

is convergent if and only if it is stable. Thus numerical stability is of paramount impor-

tance in devising a convergent numerical method for solution of initial value problems.

Apart from being necessary for a convergent numerical method, numerical stability of

a time marching method is vital for wider applications of such methods for real world

problems. Explicit schemes in general exhibit conditional stability whereas in the case

of implicit schemes such as the Newmark-beta scheme, unconditional stability can be

achieved under specific choice of parameters. To arrive at conditions for numerical sta-

bility of a particular finite method, the Fourier analysis or more popularly called von

Neumann analysis [77] based on the eigenvalues of the amplification matrix of the time

marching scheme can be applied. An alternate procedure, without the need of explicitly
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constructing the amplification matrix, is based on the modal decomposition of the up-

date scheme and subsequent use of z−transform and the Routh-Hurwitz criteria [29] to

arrive at conditions for numerical stability. The procedure of investigating the numer-

ical stability and some of the results obtained in this chapter have been published in [78].

4.2 Investigation of Stability

To investigate the stability of the hybrid FETD-FDTD method, the update equations

of the unknowns in ΩFD and ΩFE are combined and a single two-step time update equa-

tion is obtained. Based on the update equation a global iteration or amplification matrix

for the hybrid algorithm can be obtained. Subsequent study of the eigenvalues of the

amplification matrix reveals the behaviour of numerical stability. In this Chapter, sev-

eral different hybridization schemes are considered. The effect of each scheme on the

coefficient matrices of the update equation is seen. The von Neumann condition that

the magnitude of the largest eigenvalue, also called as the spectral radius, of the am-

plification matrix is less than or equal to one, is the necessary and sufficient condition

for stability of finite difference schemes with normal amplification matrix [77]. A real

matrix A is normal if ATA = AAT . When the amplification matrix is not normal as in

the FETD method and the hybrid method, the condition for stability is necessary but not

sufficient [76]. The additional condition for stability in this case is that the eigenvalues

with multiplicity greater than one have magnitude strictly less than one [41]. However,

when the magnitude of the largest eigenvalue, also called the spectral radius of the am-

plification matrix is greater than one, the scheme is numerically unstable. The stability

investigation for different hybridization schemes, performed in this Chapter helps in the

identification of such numerically unstable schemes.
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4.2.1 Hybrid Update Equation

The numerical stability of a time-marching algorithm represented by

vn+1 = G(∆t, ∆h)vn (4.1)

where vn is the unknown at time n∆t can be investigated by analyzing the eigenvalues

of the global iteration or amplification matrix G. The necessary condition for stability

is ρ(G) ≤ 1, where ρ(G) = |λmax
G | is the spectral radius of the matrix G [76].

The hybrid FETD-FDTD method, as discussed in Sec.2.4 decomposes the compu-

tational domain into ΩFD and ΩFE . The electric field unknowns are distributed in ΩFD

and ΩFE . The notations for the variables used in arriving at the hybrid update equation

are shown in Table. 4.2.1. To obtain the global iteration matrix G for the hybrid algo-

rithm, the update equations for the unknowns in ΩFD and ΩFE have to be combined.

Typically, in the case of finite difference method on uniform Cartesian grid such as the

FDTD method, the eigenvalues of the global iteration matrix can be computed analyti-

cally by representing the solution in the spectral domain. In the case of finite element

method with unstructured mesh, it is not possible to compute the eigenvalues of G ana-

lytically. In the investigation of stability of different schemes, the eigenvalues of G are

computed for a particular case of sample hybrid mesh. However, for certain schemes,

based on the spectral properties of update coefficient matrices, rigorous conditions for

stability can be obtained. The analysis to follow is for the 2-D TEz case and can be

extended to 3-D case with out any limitation.

The magnetic and electric field FDTD update equations for the unknowns in ΩFD,

given by (2.62), (2.63) and (2.64) can be written in a matrix form as follows

h
n+1/2
FD = h

n−1/2
FD −Ae

FD





eFD

eFE

eFD





n

(4.2)





eFD

eFE

eFD





n+1

=





eFD

eFE

eFD





n

+ Ah
FDh

n+1/2
FD . (4.3)
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Table 4.1: Notations used for stability analysis.
Variable Description
hFD Magnetic field unknowns in ΩFD

eFD Electric field unknowns in ΩFD

eFE Electric field unknowns in ΩFE

eFD Electric field unknowns on the boundary of ΩFD

eFE Electric field unknowns on the boundary of ΩFE

In general, the matrix Ah
FD and Ae

FD are sparse. For Maxwell’s equations in the lossless

case, the non-zero entries of Ah
FD are±∆t/(µ0∆h) and those of Ae

FD are±∆t/(ε0∆h).

Here, ∆t is the time step size and ∆h is the space step size. The matrix AFD =

Ah
FDAe

FD can be viewed as the discrete ∇ × ∇× operator scaled by (c2∆t2). By

eliminating hFD from the FDTD update equations, the electric field update equation in

ΩFD is





eFD

eFE

eFD





n+1

=





2I−A11 −A12 0

−At
12 2I−A22 −A23

0 −At
23 2I−A33









eFD

eFE

eFD





n

−





eFD

eFE

eFD





n−1

(4.4)

where

AFD =





A11 A12 0

At
12 A22 A23

0 At
23 A33



 = Ah
FDAe

FD.

From the FETD update equation as in (2.50), the implicit update equation for the

unknowns in ΩFE is written as




M22 M23 M24

Mt
23 M33 M34

Mt
24 Mt

34 M44









eFE

eFD

eFE





n+1

=





N22 N23 N24

Nt
23 N33 N34

Nt
24 Nt

34 N44









eFE

eFD

eFE





n

−





M22 M23 M24

Mt
23 M33 M34

Mt
24 Mt

34 M44









eFE

eFD

eFE





n−1

.(4.5)
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The matrices M and N are given as

M =





M22 M23 M24

Mt
23 M33 M34

Mt
24 Mt

34 M44



 = T + βc2∆t2S

N =





N22 N23 N24

Nt
23 N33 N34

Nt
24 Nt

34 N44



 = 2T− (1− 2β)c2∆t2S

where T and S are the mass and stiffness matrices for the electric field basis functions

as defined in (2.47).

In the hybrid method, eFD is updated using (4.5) and eFE is update using (4.4). The

update equation for the hybrid algorithm can then be written by combining Eqs. (4.4)

and (4.5) as

Q1e
n+1 = Q0e

n −Q1e
n−1 (4.6)

where

Q1 =









I 0 0 0

0 I 0 0

0 Mt
23 M33 M34

0 Mt
24 Mt

34 M44









(4.7)

Q0 =









2I−A11 −A12 0 0

−At
12 2I−A22 −A23 0

0 Nt
23 N33 N34

0 Nt
24 Nt

34 N44









(4.8)

and

e =









eFD

eFE

eFD

eFE









.

The two-step hybrid update equation in (4.6) can be written in the form of (4.1) using

the following substitution

vn =

(

en

en−1

)

; (4.9)

which results in the following iteration matrix,

G =

(

Q−1
1 Q0 −I

I 0

)

. (4.10)
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The eigenvalues of G, λG, can be computed efficiently by computing the eigenvalues of

a lower order matrix Q−1
1 Q0, say λQ. It can be shown that λG can be computed from

λQ as

λG =
λQ

2
±
√

(

λQ

2

)2

− 1. (4.11)

Upon assembling the matrices Q0 and Q1 for a given hybrid mesh, the eigen values of

the iteration matrix λG and hence ρ(G) can be computed. ρ(G) ≤ 1 is a necessary

condition for stability, though not sufficient, since G is not a normal matrix.

4.2.2 Hybridization Schemes

Depending on the hybridization of FDTD method with FETD, the matrix structure

of the hybrid update equation in (4.6) varies. The first scheme considered is based on

the initial formulation proposed in [14, 16, 61] and discussed in Sec. 2.4. This method

is referred to as Scheme I. For this scheme all the entries in the update coefficient ma-

trices Q0 and Q1 are non-zero and sparse. A sample mesh for this scheme is shown in

Fig. 4.1(a). An alternate scheme based on the same principle as Scheme I is to discretise

the overlapping region at the interface of ΩFD and ΩFE with a particular triangulation

as shown in Fig. 4.1(b). For this scheme, referred to as Scheme II, M23 = N23 = 0 in

(4.7) and (4.8). Note that there is no coupling between eFD and eFE under the special

case of triangulation.

Scheme III follows the strategy proposed in [79] and the hybrid mesh for this case

is shown in Fig. 4.2. Hybrid mesh generation for this scheme is relatively simple since

the scheme only requires the boundary of ΩFE to conform with the electric field grid of

ΩFD, unlike Schemes I and II where the interior boundary elements of the finite element

triangulation in ΩFE need to be constrained such that they overlap with the electric field

grid of ΩFD. However, Scheme III would require the magnetic field (Hz component)
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Figure 4.1: Hybrid mesh for Schemes I and II.

inside the FE region, to be updated as

H
n+1/2
z(i+1/2,j+1/2) = H

n−1/2
z(i+1/2,j+1/2) −

∆t

µ0Ak

2
∑

i=0

lki e
k
i (4.12)

where Ak is the area of the kth triangular element which contains the point ((i +

1/2)∆h, (j + 1/2)∆h). lki is the length of the ith edge and ek
i is the corresponding

unknown edge vector in the clockwise direction obtained from the solution in ΩFE . Eq.

(4.12) is obtained by applying ∇× operator on the triangular finite element with lin-

ear edge vector basis functions. Note that (4.12) can also be obtained starting from the

integral form of Faradays law, assuming Hz to be constant within the element. This

scheme is different from the other schemes considered and does not have the same form

of update coefficients as in (4.7) and (4.8). The eigenvalue analysis is not performed

for this scheme though an implementation of the scheme is carried out to compare its

performance in terms of stability with the other schemes studied. In [80], Scheme II

was shown to introduce less unphysical reflections in the numerical solution and hence

to have better accuracy compared to Schemes I and III.

Schemes IV and V are different from Schemes I and II in that instead of triangu-

lar elements, rectangular elements are used in the interface region of ΩFD and ΩFE .
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Figure 4.2: Hybrid mesh for Scheme III

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

x  [m]

y 
 [m

]

Figure 4.3: Hybrid mesh for Schemes IV and V

It immediately follows that M24 = N24 = 0 in (4.7) and (4.8) for this particular

choice of discretization where there is no coupling between the basis functions asso-

ciated with eFE and eFE . The hybrid mesh for this case is shown in Fig. 4.3 where

the shaded region is the interface of ΩFD and ΩFE discretized using rectangular finite

elements. Thus ΩFE is discretized with both triangular and rectangular elements. The

finite element mass and stiffness matrices for both triangular and rectangular elements

can be computed analytically. For Scheme IV, the exact mass and stiffness matrices

for the rectangular elements are used. In the case of Scheme V, the integration over

rectangular elements is performed using trapezoidal rule of numerical integration. This

81



scheme is the 2-D equivalent of the scheme proposed in [18]. The use of trapezoidal

integration leads to a diagonal mass matrix, as will be seen in Sec. 4.4. This leads to

M23 = βc2∆t2S23 in (4.7) and N23 = −(1 − 2β)c2∆t2S23 in (4.8). Further more, for

the time integration using the Newmark-beta method, the parameter β is set as zero for

the rectangular elements resulting in M23 = 0 and N23 = −c2∆t2S23 in (4.8). When

β = 0, the temporal discretization is the same as the second order accurate central dif-

ferencing. In fact, following this procedure on rectangular elements results in a update

scheme which is equivalent to FDTD method and is the key for a stable hybridization

of FETD method with FDTD method.

4.3 Numerical Experiments

To investigate the eigenvalues of the global iteration matrix for the different hy-

bridization schemes, the sample hybrid meshes in Figs. 4.1 (a), and 4.1(b) and Fig. 4.3

are considered. In all the cases, the hybrid mesh is truncated by a PEC. The update

coefficient matrices Q0 and Q1 are assembled for the different schemes with ∆t = ∆h
c
√

2
.

The eigenvalues of Q−1
1 Q0 is computed initially followed by computation of λG using

(4.11). The distributions of eigenvalues in the complex plane, for Schemes I, II, IV and

V are shown in Figs. 4.4, 4.5, 4.6 and 4.7 respectively.

Ideally, all eigenvalues should lie on the unit circle in the complex plane. If any of

the eigenvalue is inside the unit circle, then the numerical scheme is dissipative (which

should not be the case when dealing with Maxwell’s equations in lossless media). If

any of the eigenvalue is outside the unit circle, then the scheme is numerically unstable.

In Table 4.3, the spectral radius and the percentage of eigenvalues lying outside the

unit circle for the four schemes are compared. It is seen that the spectral radius of the

iteration matrix for Scheme V is unity, while for the other schemes it exceeds unity.
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Figure 4.4: Distribution of eigenvalues of the iteration matrix in Scheme I for the mesh
shown in Fig. 4.1(a)
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Figure 4.5: Distribution of eigenvalues of the iteration matrix in Scheme II for the mesh
shown in Fig. 4.1(b)
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Figure 4.6: Distribution of eigenvalues of the iteration matrix in Scheme IV for the mesh
shown in Fig. 4.3
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Figure 4.7: Distribution of eigenvalues of the iteration matrix in Scheme V for the mesh
shown in Fig. 4.3
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Table 4.2: Eigenvalue statistics of the iteration matrix in different schemes.
Scheme I Scheme II Scheme IV Scheme V

ρ(G) 1.04423 1.030587 1.000703 1
% of |λG| > 1 12.54 8.07 1 0

Thus Schemes I, II and IV are numerically unstable. Scheme V on the other hand

satisfies the von Neumann stability condition.

To further verify the conclusions on stability based on the above analysis, the time

domain field solution for each of the hybrid schemes is computed. The problem is

modeled as a square cavity excited by a differentiated Gaussian pulse shaped electric

current, positioned at the same location for all the schemes. The Hz(t) component at

a particular location inside the 2-D cavity, for the different schemes including Scheme

III, is shown in Fig. 4.8. It is clearly observed that instabilities arise within 1000 time

steps for Schemes I, II and III, and for Scheme IV, it starts to appear around 60,000 time

steps. Scheme V does not exhibit any numerical instability, being consistent with the

eigenvalue analysis.

4.4 Stability of Scheme V

In Scheme V, instead of analytically evaluating the exact elemental Se and Te ma-

trices of the rectangular elements, numerical integration is used. Specifically, the trape-

zoidal integration is used. When numerical integration is employed, additional errors

are introduced in the finite element matrices. However, any numerical integration rule

with a particular order of accuracy is acceptable as long as the order of convergence

achieved if exact integration were to be used, is preserved [81]. In the case of second

order hyperbolic equations such as the vector Helmholtz equation, O(h2p) convergence

is achieved with basis functions of order p with the integrals in the Galerkin framework
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Figure 4.8: Solution of Hn
z component inside a 2-D square cavity obtained using differ-

ent hybridization schemes.

evaluated exactly to the order of 2(p−1) [82]. In the case of linear basis functions, with

p = 1 to maintain the order of convergence of O(h2), it is sufficient for the numerical

integration to have an order O(h) accuracy. The two point trapezoidal rule has accuracy

of order O(h3) and hence can be employed for evaluating the mass and stiffness matri-

ces without any loss in the order of convergence achieved with exact integration when

edge element basis functions are used. With the trapezoidal rule, the elements of Te and

Se are evaluated as

T e
ij =

∆h2

4

3
∑

k=0

~Ni|nk
· εr

~Nj|nk
(4.13)

Se
ij =

∆h2

4

3
∑

k=0

∇× ~Ni|nk
· 1

µr

∇× ~Nj|nk
(4.14)

where the basis functions and their curls are evaluated only at the 4 nodes of the rect-

angular element. The elemental matrices of a reference rectangular element with edge

86



0n 1n

2n3n

0e

1e

2e 3e

Figure 4.9: Reference node and edge numbering on a rectangular element.

and node numbering as in Fig. 4.9 are given in [83] as

Te =
∆h2

2
I (4.15a)

Se =









1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1









(4.15b)

where I is an identity matrix of dimension four. In the case of the mass matrix, the

use of trapezoidal integration rule is equivalent to “mass-lumping” where the resulting

matrix is diagonal, while the Se is the same as the one with exact integration [84]. The

stiffness matrix is unaffected since the curl of the basis function is constant in the 2-D

case and hence trapezoidal rule and exact integration lead to the same stiffness matrix.

However, this is not true with hexahedral element in 3-D as will be seen in Sec. 4.6.

The four eigenvalues of the single rectangular element i.e., the eigenvalues of the

generalized system See = λeT
ee, are obtained using a symbolic computation tool as

[

0, 0, 0, 8
∆h2

]

. The zero eigenvalues correspond to the gradient field or the null space of

Se and there are three modes consistent with the number of free nodes. The maximum

eigenvalue is λmax
e = 8

∆h2 , by which the following identity

etSee ≤ 8

∆h2
etTee (4.16)
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Figure 4.10: 2-D FDTD stencil with electric field as unknown

hold good for any vector e.

4.4.1 Equivalence between FETD and FDTD Methods

To illustrate the equivalence of the FDTD and FETD methods in the special case of

Scheme V, consider two adjacent Yee cells as shown in Fig. 4.10. With the magnetic

field unknown eliminated, Fig. 4.10is essentially the finite difference stencil for the up-

date of En+1
y(i,j+1/2). From (2.64), the regular FDTD update for En

y(i,j+1/2) in the absence

of electric current is

En
y(i,j+1/2) = En−1

y(i,j+1/2) +
∆t

ε0∆h

[

H
n−1/2
z(i+1/2,j+1/2) −H

n−1/2
z(i−1/2,j+1/2)

]

. (4.17)

Subtracting (4.17) from the update for En+1
y(i,j+1/2) leads to

En+1
y(i,j+1/2) − 2En

y(i,j+1/2) + En−1
y(i,j+1/2) =

∆t

ε0∆h

[

(H
n+1/2
(i+1/2,j+1/2) −H

n−1/2
(i+1/2,j+1/2))− (H

n+1/2
(i−1/2,j+1/2) −H

n−1/2
(i−1/2,j+1/2))

]

.

(4.18)
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Using the magnetic field update equation of (2.62) in (4.18), the update of En+1
y(i,j+1/2) is

given as

En+1
y(i,j+1/2) = 2En

y(i,j+1/2)

− c2∆t2

∆h2

(

1 −1 −1 2 −1 1 −1
)























En
x(i−1/2,j)

En
x(i−1/2,j+1)

En
y(i−1,j+1/2)

En
y(i,j+1/2)

En
x(i+1/2,j)

En
x(i+1/2,j+1)

En
y(i+1,j+1/2)























− En−1
y(i,j+1/2) (4.19)

which is in a form similar to (4.4).

The implicit FETD update equation in (2.50) with β = 0 is given as

Ten+1 =
[

2T− c2∆t2S
]

en −Ten−1. (4.20)

Note that with mass lumping, T is diagonal, so (4.20) leads to an explicit update equa-

tion. Treating the stencil in Fig. 4.10 as two rectangular finite elements and using the

elemental matrices in (4.15), the FETD update equation in (4.20) leads to the following

update equation for En+1
y(i,j+1/2)

∆h2En+1
y(i,j+1/2) = 2∆h2En

y(i,j+1/2)

− c2∆t2
(

1 −1 −1 2 −1 1 −1
)























En
x(i−1/2,j)

En
x(i−1/2,j+1)

En
y(i−1,j+1/2)

En
y(i,j+1/2)

En
x(i+1/2,j)

En
x(i+1/2,j+1)

En
y(i+1,j+1/2)























−∆h2En−1
y(i,j+1/2). (4.21)

Equation (4.19), scaled by ∆h2 is the same as the FETD update in (4.21). Thus it is

seen that FETD on rectangular elements with trapezoidal rule for evaluating element

matrices and using central differencing for temporal discretization (β = 0) leads to an
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update scheme that is equivalent to the FDTD scheme with magnetic field eliminated.

4.4.2 Condition for Stability

With the equivalence of the FDTD method and FETD method established, it is easy

to see the following equivalence between the sub-matrices in (4.24) viz.,

∆h2A23 = c2∆t2ST
23. (4.22)

After the scaling of the FDTD update equation with ∆h2, we can express the coefficient

matrices of the hybrid update equation as

Q1 =









∆h2I 0 0 0

0 ∆h2I 0 0

0 0 M33 M34

0 0 Mt
34 M44









=









T11 0 0 0

0 T22 0 0

0 0 T33 T34 + c2∆t2

4
S34

0 0 Tt
34 + c2∆t2

4
St

34 T44 + c2∆t2

4
S44









(4.23)

Q0 =









∆h2(2I−A11) −∆h2A12 0 0

−∆h2At
12 ∆h2(2I−A22) −∆h2A23 0

0 Nt
23 N33 N34

0 0 Nt
34 N44









=









2T11 − c2∆t2S11 −c2∆t2S12 0 0

−c2∆t2St
12 2T22 − c2∆t2S22 −c2∆t2S23 0

0 −c2∆t2St
23 2T33 − c2∆t2S33 − c2∆t2

2
S34

0 0 − c2∆t2

2
St

34 2T44 − c2∆t2

2
S44









(4.24)

Both Q0 and Q1 are symmetric matrices with real eigenvalues. Hence, λQ, the eigen-

value of Q−1
1 Qo is real. Using the fact that λQ is real in (4.11), the condition |λG| ≤ 1

is equivalent to |λQ| ≤ 2.
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In what is to follow, the condition on ∆t such that |λQ| ≤ 2 is satisfied is derived.

Consider the generalized eigenvalue problem of the form

Se = ζTe (4.25)

where T and S are the mass and stiffness matrices assembled over triangular and rect-

angular elements. With S being positive semi-definite and T being positive definite,

ζ ≥ 0. From the generalized eigenvalue equation Q0e = λQQ1e, written in the form

[

2T− c2∆t2(1− 2β)S
]

e = λQ

[

T + c2∆t2βS
]

e (4.26)

one can establish the relation between ζ and λQ as

λQ =
2 + 2ζβc2∆t2 − ζc2∆t2

1 + ζβc2∆t2
(4.27)

For the implicit case with β = 1/4 in (4.27), it can be shown that λQ decreases monoton-

ically with ζ i.e., ∂λQ

∂ζ
≤ 0,∀ζ ≥ 0 which leads to the bounds of λQ as |λQ| ≤ 2,∀ζ ≥ 0.

Thus, implicit FETD with β = 1
4

satisfies the von Neumann condition for stability and

leads to unconditionally stability. The result is in agreement with the conditions for

stability of the Newmark-beta scheme derived in [10].

For the explicit case with β = 0 in (4.27) , we have

λQ = 2− ζc2∆t2. (4.28)

From (4.28), λmax
Q = 2 since ζ ≥ 0. Thus λmax

Q = 2 for any choice of ∆t, for both

implicit and explicit FETD. However, for the explicit case, the condition that λmin
Q = −2

in (4.28) leads to the condition that

ζ ≤ 4

c2∆t2
. (4.29)

Based on the fact that the assembly of matrices T and S is over K finite elements

which are either explicit (rectangular) or implicit (triangular) elements, the following

inequality hold true viz.,

K
∑

k=1

etSke ≤ ζmax

K
∑

k=1

etTke (4.30)
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where ζmax is the maximum eigenvalue of the generalized system (4.25). Tk and Sk

are the elemental mass and stiffness matrices of the kth element. Considering the above

inequality for the case of expicit rectangular elements alone along with the condition in

(4.29) for λmin
Q ≥ −2 leads to condition

K
∑

k=1

etSke ≤
4

c2∆t2

K
∑

k=1

etTke. (4.31)

Based on the identity in (4.16) for each explicit rectangular element, equation (4.31) is

satisfied under the condition that

λmax
e =

8

∆h2
≤ 4

c2∆t2
(4.32)

which leads to the condition on ∆t as

∆t ≤ ∆h

c
√

2
. (4.33)

With the choice of ∆t as in (4.33), the resulting eigenvalues of Q−1
1 Q0 is bounded as

|λQ| ≤ 2 resulting in |λG| ≤ 1. Thus (4.33) is the necessary condition for numerical

stability and the condition is the same as the Courant criteria for stability of the FDTD

method in 2-D. The same condition for stability as FDTD case is expected due to the

equivalence between the FDTD method and the special case of FETD method on rect-

angular elements. The hybridization of FETD and FDTD methods using Scheme V,

leading to well defined condition for stability, is referred to as the stable FETD-FDTD

method.

In the numerical experiments in the previous section, ∆t was set such that (4.33)

is satisfied. The above derivation of condition of stability explains the reason why the

eigenvalues of the amplification matrix were right on the unit circle in the complex plane

for Scheme V as shown in Fig. 4.7. Similar procedure to arrive at the condition of sta-

bility based on the assembly of the system matrices over finite elements using the modal

decomposition technique is shown in [18]. Note that the implementation of the hybrid

FETD-FDTD method remains the same as discussed in Sec. 2.4.1.
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Figure 4.11: Hybrid mesh used in computation of scattering by NACA64A410 Airfoil

The amplification matrix of the stable FETD-FDTD method is not normal and is

not unitarily diagonalizable. When the amplification matrix is non-diagonalizable, in

spite of having all eigenvalues with unit magnitude, the solution can permit polynomial

growth with respect to time [85]. In [75], the spectral properties of the amplification

matrix of the FETD method is investigated and the discrete origin of the linear time

growth, discussed in the previous Chapter is demonstrated. The same procedure can be

extended to the hybrid FETD-FDTD method and we can conclude that the condition for

stability in (4.33) can permit a linear time growth (due to accumulation of numerical

round off errors) and the technique of constraint equations developed in Chapter 3, to

mitigate the problem in FETD method can be extended to the hybrid method as well.

4.5 Example and Results

To highlight the application of the stable FETD-FDTD method, the computation of

2-D TEz scattering from an NACA64a410 Airfoil is considered. The length of the airfoil

is 1m which corresponds to 5λ at 1.5 GHz. The hybrid mesh used in this computation

is shown in Fig. 4.11 where the fine triangular discretization along the trailing edge

of the airfoil can be observed. For triangulation in ΩFE , the Triangle code [58] has

been used. The incident plane wave is an x̂- directed differentiated Gaussian pulse with
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Figure 4.12: Comparison of backscattered RCS over the frequency range 0.2 GHz - 1.5
GHz

significant spectral content in the band of 0.2 GHz - 1.5 GHz. The FDTD grid size is

set as ∆x = ∆y = 0.01 m. A Total-Field/Scattered-Field boundary is implemented in

ΩFD and time domain NFFF transformation [2] is performed to obtain far zone scattered

electric field components. A direct solver using a complete Cholesky factorization of

the implicit matrix is employed for the update of unknowns in ΩFE .

The 2-D backscattered RCS over the frequency range of 0.2 GHz-1.5 GHz is shown

in Fig. 4.12. The results are compared with the frequency domain based method of

moments solution [60]. A good agreement is observed across the entire band. In Fig.

4.13 the bistatic RCS pattern at 1.5 GHz, obtained using the stable hybrid FETD-FDTD

algorithm, is compared with the results obtained using method of moments. Deviations

in the solution could be attributed to the relatively coarse cell size of λ/20 at 1.5 GHz

used in ΩFD as compared to the λ/80 mesh size used in the MoM computation and the

inherent dispersion errors in the finite methods.
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Figure 4.13: Comparison of bistatic RCS of the airfoil at 1.5 GHz

4.6 Extension to 3-D

It is seen in the 2-D case that for a stable hybrid algorithm, the finite element re-

gion must have both triangular and rectangular elements. Extending to the 3-D case,

both tetrahedral and hexahedral elements are needed in the finite element region. While

generating a hybrid mesh with both hexahedral elements and tetrahedral elements, two

possible interfaces between the structured and unstructured regions can be considered

as in Figs. 4.14(a) and (b). While the case in Fig. 4.14(b) requires the need for the

introduction of additional pyramidal elements and the need for the construction of vec-

tor basis functions on pyramids, the case of Fig. 4.14(a) alleviates the need for using

pyramidal elements. The case of Fig. 4.14(a) has non-conforming unknowns (shown

in dashed-line) on the interface along the diagonal of the rectangular faces. In [14], a

second order accurate interpolation was used to update these diagonal unknowns using

the FDTD solution on the four edges of the rectangular face. The method is similar
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(a) Non-matching interface (b) Matching interface with pyramidal el-
ement

Figure 4.14: Interface between structured finite difference and unstructured finite ele-
ment regions in 3-D

to Schemes I and II in the aspect that the FDTD solution is used as the time varying

Dirichlet boundary condition for the FETD solution. As seen in the earlier analysis,

the resulting algorithm is numerically unstable. Numerical instability can be suppressed

using filtering techniques [62] but often limits the application of the method [80]. On

the other hand, the case in Fig. 4.14(b) with the availability of vector basis functions

on pyramids, is similar to the 2-D FETD-FDTD case. A stable hybrid method can be

achieved, provided that similar to the 2-D case, FETD scheme on hexahedral elements

equivalent to FDTD scheme in 3-D exists. Following the same procedure as in the 2-D

case viz., by using trapezoidal rule for evaluation of mass and stiffness matrices of a

hexahedral element and using central differencing for temporal discretization, the re-

sulting FETD update equations are the same as the 3-D FDTD update equations. Based

on this fact, the FETD method and FDTD method can be hybridised [86], similar to

the 2-D case with the mesh transition from the unstructured to structured region as in

Fig. 4.14(b). Consider an arbitrary hexahedral element with dimensions lx, ly and lz

along the respective coordinate directions. Using the trapezoidal rule for integration,
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the elemental matrices are evaluated as

T e
ij =

lxlylz
8

8
∑

k=0

~Ni|nk
· εr

~Nj|nk
(4.34)

Se
ij =

lxlylz
8

8
∑

k=0

∇× ~Ni|nk
· 1

µr

∇× ~Nj|nk
. (4.35)

The basis function and its curl are evaluated only at the nodes of the hexahedral element.

With the edge and node numbering of the reference element as in [31], the elemental

matrices are given as

Te =
lxlylz

4





I

I

I



 (4.36a)

Se =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 (4.36b)

where

Sξξ =
lξ
2

[

lη
lζ

K1 +
lζ
lη

K2

]

Sξη = ST
ξη = − lζ

2
K3

with

K1 =









1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1









K2 =









1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1









K3 =









1 0 −1 0
−1 0 1 0
0 1 0 1
0 −1 0 −1









;

and ξ, η and ζ being cyclic permutation of the coordinates x, y and z respectively. It

is seen that unlike the 2-D case, Se with trapezoidal integration is different from the

matrix obtained using exact integration given in [31]. Note that unlike the 2-D case, the

curl of the basis function varies within the volume of the hexahedral element. As an
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(a) ~W01 (b) ∇× ~W01

Figure 4.15: An edge element basis function and its curl on a hexahedral element.

illustrative example, an edge element ~W01 and its curl ∇× ~W01 are shown in Fig. 4.15

where it can be seen that ~W01 has component along edge {0,1}. In Fig. 4.16, the finite

difference stencil to update an electric field unknown is shown. Fig. 4.16(a) shows the

FDTD stencil with the dual grid having the magnetic field. The electric field unknown

of interest is updated using the surrounding magnetic fields (Ampere’s law) while those

magnetic field unknowns are updated using the surrounding electric field (Faraday’s

law) resulting in a final stencil as shown in Fig. 4.16(a). In the FETD method, all the

four hexahedral elements having the electric field unknown of interest as the common

edge are considered as in Fig. 4.16(b). Using the elemental matrices obtained using

the trapezoidal integration, for all the four hexahedral elements, the resulting stencil is

the same as the one for the FDTD method. The update coefficients of both FDTD and

FETD can be shown to be the same, following the same procedure as in the 2-D case.

The eigenvalues of the generalized system Sex− λTex = 0 for the case of a hexa-

hedral element with elemental matrices obtained using trapezoidal integration are com-

puted using Mathematica and the unique eigenvalues are obtained as

[

0, 4

(

1

l2x
+

1

l2y

)

, 4

(

1

l2y
+

1

l2z

)

, 4

(

1

l2z
+

1

l2x

)

, 4

(

1

l2x
+

1

l2y
, +

1

l2z

)]

.
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(a) FDTD (b) FETD

Figure 4.16: Stencil to update electric field unknown using FDTD and FETD methods.

There are seven zero eigenvalues, consistent with the number of free nodes. The maxi-

mum eigenvalue is λmax
e = 4

(

1
l2x

+ 1
l2y

, + 1
l2z

)

with multiplicity 2. When lx = ly = lz =

∆h, λmax
e = 12

∆h2 . Following the same stability analysis procedure for the 2-D case dis-

cussed in Sec. 4.4, the stability condition similar to (4.32) is obtained in the 3-D case as

follows

λmax
e =

12

∆h2
≤ 4

c2∆t2
(4.37)

which leads to the condition on ∆t as

∆t ≤ ∆h

c
√

3
. (4.38)

This result can be obtained following the same procedure of the 2-D analysis, since the

3-D FETD-FETD method with transition of mesh from the unstructured to the struc-

tured region as in Fig. 4.14(b) results in the hybrid update equation in the same form

as that of the 2-D case. Condition in (4.38) is again the same as Courant criteria for

numerical stability of FDTD method in 3-D a consequence of the equivalence between
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the special case of FETD method and the FDTD method. Thus the hybrid 3-D FETD-

FDTD method has the same conditions of numerical stability as the 3-D FDTD method.

4.7 Concluding Remarks

A framework based on the eigenvalue analysis to study the numerical stability of

hybrid FETD-FDTD algorithm is developed. Construction of global iterative matrix

for the hybrid algorithm is presented. Numerical experiments based on the eigenvalue

analysis of the iteration matrix for different hybridization schemes on sample hybrid

meshes revealed that Scheme V satisfies the von Neumann stability condition. The

stability of Scheme V is due to the equivalence between FETD and FDTD methods.

The derivation of the stability condition for the hybrid FETD-FDTD method shows the

method to have the same conditions of stability as the FDTD method both in 2-D and

3-D.
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CHAPTER 5

HANGING VARIABLES AND FETD BASED FDTD
SUBGRIDDING METHOD

5.1 Introduction

The finite element method provides a rigorous framework for a priori error estima-

tion and hence a robust error control using adaptive mesh refinement. h-adaptive mesh

refinement involves reducing the size of the elements with relatively high estimated er-

ror. The process of refinement by merely splitting an element into smaller elements

could lead to a mesh with bad quality resulting in the manifestation of problems due to

low frequency instability such as poor rate of convergence of iterative solvers. On the

contrary, when nesting of elements is used for mesh refinement, good mesh quality is

guaranteed. However, in this case, hanging variables are introduced and they require

special treatment. Recently, the concept of hanging variables in the context of vector

basis functions was introduced in frequency domain FEM to handle nested triangular

and tetrahedral elements [87], leading to an efficient mesh refinement in h-adaptive

finite element solvers [88]. In this Chapter, the formulation of hanging variables to

the FETD method with linear rectangular and hexahedral edge elements is presented.

Inspired by [87], the edge element basis functions associated with the hanging vari-

ables are constrained to ensure proper field continuity resulting in the construction of

so-called intergrid boundary operator. The mass and stiffness matrices are then obtained

by a Galerkin-type operation using the intergrid boundary operator. As a result, the final

mass and stiffness matrices have spectral properties similar to traditional finite element
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Figure 5.1: Rectangular elements with hanging edges (dashed) across the interface be-
tween coarse and fine elements

matrices. Based on these spectral properties, the conditions for numerical stability of

both implicit and explicit FETD methods with hanging variables can be established.

Moreover, with a successful procedure for the treatment of hanging variables in FETD

method, it is possible to develop an FDTD subgridding method with the interface region

between the coarse and fine grids, handled by the FETD method with hanging variables.

The resulting FDTD subgridding algorithm is guaranteed to be numerically stable with

well defined condition for numerical stability. The development and application of such

a subgridding method is presented in this Chapter. The contents of this Chapter with the

examples shown were published in [83].

5.2 Hanging Variables in FETD

Consider the 2-D case of rectangular elements as shown in Fig. 5.1 showing single

level of nesting of the coarse element. Hanging variables, associated with edges shown

in dashed arrow are present at the interface between the coarse element and the fine

elements. The treatment of hanging variables applied in this section is very general.

It allows transitions from a coarse element to a fine element with more than one level

of nesting. However, for the purposes of describing the method and demonstrating the
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approach, the case with single level of nesting where the edge length of the coarse

element is twice the edge length of the fine element is considered.

Let ch be the coefficients associated with the fine elements and c2h be that associated

with the coarse elements, i.e.,

ch =

[

ch
i

ch
b

]

and c2h =

[

c2h
i

c2h
b

]

(5.1)

where subscript i corresponds to the interior unknowns and subscript b corresponds

to the boundary unknowns on the coarse-fine grid interface. Thus, with reference to

Fig. 5.1, ch
b corresponds to the dashed arrows and c2h

b to the solid arrows. ch
b repre-

sent the hanging variables. The continuity conditions across the boundary are imposed

by restricting the fine boundary unknowns (hanging variables) in terms of the coarse

boundary unknowns, as follows

ch
b = Ibc

2h
b (5.2)

where Ib is the intergrid boundary operator. To have a valid intergrid boundary operator,

certain conditions need to be satisfied by the basis functions on the coarse and the fine

elements [87]. The fine elements with hanging variables must be equipped with proper

basis functions such that condition of tangential continuity of the field can be satisfied

across the interface. Violation of this condition would lead to appearance of spurious

modes, similar to the one encountered when nodal finite element basis functions are

used to represent the electric field. In the current case, with the coarse and fine elements

being topologically similar, retaining the original edge element basis functions for a

rectangular element should suffice to ensure continuity of the fields across the interface.

To construct Ib for 2-D rectangular elements, with reference to Fig. 5.2(a), the coarse

element basis function associated with edge {0,1} is given in terms of the fine element

basis functions, as follows.

~W 2h
0,1 = ~W h

0,4 + ~W h
4,1 +

1

2

(

~W h
7,8 + ~W h

8,5

)

. (5.3)
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Let ch
wi,j be the coefficient associated with basis function ~W h

i,j . By (5.3), continuity is

ensured along the edge {0,1}, if the coefficient of the coarse element basis is the same

as that of the two finite element basis functions associated with edge {0,4}, and edge

{4,1}, i.e., when

ch
w0,4 = c2h

w0,1 (5.4a)

ch
w4,1 = c2h

w0,1. (5.4b)

From this relationship, Ib can be constructed.

For the case of 3-D hexahedral element, with reference to Fig. 5.2(b), let face

{0,1,5,4} be on the interface of coarse and fine elements. Thus, edges {0,8}, {8,1},

{13,14}, {14,15}, {4,22} and {22,5} form a set of 6 x-directed hanging variables and

edges {0,13},{13,4}, {8,14}, {14,22}, {1,15} and {15,5} form a set of z-directed hang-

ing variables. The coarse element basis function associated with x-directed edges viz.,

edges {0,1} and {4,5} are given in terms of the fine element basis functions, as follows

~W 2h
0,1 = ~W h

0,8 + ~W h
8,1

+
1

2

(

~W h
11,12 + ~W h

12,9 + ~W h
13,14 + ~W h

14,15

)

+
1

4

(

~W h
20,21 + ~W h

21,16

)

(5.5a)

~W 2h
4,5 = ~W h

4,22 + ~W h
22,5

+
1

2

(

~W h
25,26 + ~W h

26,23 + ~W h
13,14 + ~W h

14,15

)

+
1

4

(

~W h
20,21 + ~W h

21,16

)

. (5.5b)
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Figure 5.2: Reference rectangle and hexahedral element subdivision with node number-
ing and the intergrid boundary.

From (5.5), the relationships between the coefficients of x-directed fine and coarse

boundary basis functions are given by

ch
w0,8 = c2h

w0,1 (5.6a)

ch
w8,1 = c2h

w0,1 (5.6b)

ch
w13,14 =

1

2
c2h
w0,1 +

1

2
c2h
w4,5 (5.6c)

ch
w14,15 =

1

2
c2h
w0,1 +

1

2
c2h
w4,5 (5.6d)

ch
w4,22 = c2h

w4,5 (5.6e)

ch
w22,5 = c2h

w4,5. (5.6f)

Similarly, another 6 relationships between the coefficients of the z-directed fine and

coarse boundary basis functions can be derived. Subsequently, Ib can be constructed for

the hanging variables on the face {0,1,5,4}.

In the FETD formulation, we start from the time-dependent vector Helmholtz equa-

tion. Applying the Faedo-Galerkin process and assembling the finite element matrices
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over all the rectangular elements, a system of equations is obtained as follows:

Traw
1

c2

d2craw

dt2
+ Srawcraw = 0 (5.7)

where

Traw =









T2h
ii T2h

ib

T2h
ib

T T2h
bb

Th
bb Th

bi

Th
bi

T Th
ii









,

Sraw =









S2h
ii S2h

ib

S2h
ib

T S2h
bb

Sh
bb Sh

bi

Sh
bi

T Sh
ii









,

craw =









c2h
i

c2h
b

ch
i

ch
b









;

and the unknowns craw include the hanging variables and the assembly of Sraw and

Traw is over all elements treating the hanging variables as unknowns without applying

the constraint in (5.2).

To obtain a valid system with proper field continuity satisfied across the interface,

the constraint in (5.2) is imposed in the form of a restriction operator R that involves

the intergrid boundary operator Ib. The restriction operator is given by

R =





I 0 0 0
0 I Ib

T 0
0 0 0 I



 . (5.8)

The resulting system is

Tvalid
1

c2

d2c

dt2
+ Svalidc = 0 (5.9)

where

Svalid =RSrawRT (5.10a)

=





S2h
ii S2h

ib

S2h
ib

T S2h
bb + IT

b Sh
bbIb IT

b Sh
bi

Sh
bi

T Ib Sh
ii





Tvalid =RTrawRT (5.10b)

=





T2h
ii T2h

ib

T2h
ib

T T2h
bb + IT

b Th
bbIb IT

b Th
bi

Th
bi

T Ib Th
ii




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and

c =





c2h
i

c2h
b

ch
i



 .

The final assembled system does not involve any hanging variables or unknowns

on the fine grid interface boundary. The operation in (5.10) can be viewed as a conse-

quence of restricting both the trial and testing finite element function spaces such that

the constraint on the hanging variables given by (5.2) is satisfied and there by the vector

functions in both the trial and testing function spaces have tangential continuity along

the interface of coarse and fine elements. In this regard, the current treatment of hanging

variables is based on a Galerkin-type operation.

5.2.1 Time Stepping and Stability

In this section the numerical stability of implicit and explicit temporal discretizations

of (5.9) is analysed. As in regular FETD, the Newmark-beta scheme can be used to

discretise (5.9). From the definition of the restriction matrix R in (5.8), it is obvious

that

RTx 6= 0 ∀x 6= 0. (5.11)

To investigate the spectral properties of Tvalid, for any x 6= 0, consider,

xTTvalidx = xT (RTrawRT )x

= (RTx)TTraw(RTx) (5.12)

> 0.

Therefore, Tvalid is positive definite. Note that (5.11) and the fact that Traw is positive

definite, i.e., xTTrawx > 0,∀x 6= 0, are used in arriving at (5.12). Similarly, Svalid is

positive semi-definite. Hence, the conditions of stability for the Newmark-beta method

apply to the current FETD with hanging variables. Unconditionally stable 2nd order
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accurate time stepping is achieved by setting β = 1
4
.

In the case of explicit FETD (central differencing for time), a special case of New-

mark -beta method with β = 0, the condition for stability as in [13] is

∆t ≤ 2
√

λv
m

(5.13)

where λv
m is the maximum eigenvalue of the system Svalidx = λTvalidx, or equivalently

the spectral radius of T−1
validSvalid. Let xm be the corresponding eigenvector xm, i.e.,

xT
mSvalidxm = λv

mxT
mTvalidxm. (5.14)

Similarly, let λr
m be the spectral radius of T−1

rawSraw. Then, for any x̄

x̄TSrawx̄ ≤ λr
mx̄TTrawx̄. (5.15)

By following the same procedure in (5.12) with x̄m = RTxm, (5.14) leads to

x̄T
mSrawx̄m = λv

mx̄T
mTrawx̄m. (5.16)

After using (5.16) and setting x̄ = x̄m, (5.15) leads to the following inequality

λv
m ≤ λr

m. (5.17)

Eq. (5.17) gives the upper bound of λv
m by which, a more stringent condition for stability

can be obtained from (5.13) as follows

∆t ≤ 2
√

λr
m

. (5.18)

From the generalized eigenvalues of mass and stiffness matrices of hexahedral ele-

ments obtained using trapezoidal integration rule, shown in Sec. 4.6, we have

λr
m = 4c2

√

1

∆x2
f

+
1

∆y2
f

+
1

∆z2
f

(5.19)

leading to the condition for stability as

∆t ≤ 1

c

[√

1

∆x2
f

+
1

∆y2
f

+
1

∆z2
f

]−1

(5.20)
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Figure 5.3: Sample mesh with hanging variables for computing the number of zero
eigenvalues.

where ∆xf , ∆yf and ∆zf are the dimensions of the hexahedral elements in the fine

region. Eq. (5.20) is the same Courant-Friedrichs-Levy (CFL) condition for FDTD in

the fine region. Thus, a time-step satisfying the CFL limit ensures the stability of the

explicit FETD algorithm with hanging variables. The result is expected since the explicit

FETD is equivalent to the FDTD method. However, it is verified that the treatment of

hanging variables following the Galerkin principles does guarantee numerical stability.

5.2.2 Dimension of Gradient Space

To illustrate the dimension of the gradient space embedded in the constrained finite

element space, by the current treatment of hanging variables, a simple mesh as shown

in Fig. 5.3 is considered. The edge length of the fine element is ∆hf . The valid mass

and stiffness matrices for the nine edge element unknowns are constructed. The nine

eigenvalues of the generalized system are then computed to be

[

0, 0, 0, 0, 0, 0,
39±

√
321

12∆h2
f

,
6

∆h2
f

]

.
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Figure 5.4: Mesh of ridged waveguide with rectangular elements and hanging variables.

It is seen that the dimension of the gradient space or equivalently the number of zero

eigenvalues is six. The total number of nodes is eight. With one reference node for

zero potential, the number of free nodes is seven. However, with respect to Fig. 5.3

the gradient function ∇ξ7 is not present in the constrained finite element space. Hence

the number of free nodes is six with each node i having a corresponding gradient field

spanned by the constrained edge element basis functions. The maximum eigenvalue is

λv
m = 6

∆h2

f

. In the case of the raw system with the unconstrained hanging variables as

unknowns, λr
m = 8

∆h2

f

as established in Sec. 4.6. It is seen that the result is consistent

with (5.17).

5.2.3 Implementation

In the 2-D case with rectangular elements, Eq (5.4) shows that each hanging variable

maps only to its corresponding coarse element unknown. In other words, each row of Ib

has exactly a non-zero entry that is equal to 1 (at the column corresponding to the coarse
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Figure 5.5: Resonant frequencies of the ridged waveguide.

element unknown). In this case, Tvalid and Svalid can be constructed directly in the im-

plementation. In the conventional finite element assembly procedure, edges of the fine

elements that constitute a hanging variable are numbered as their corresponding coarse

edges. Thus, the final mass and stiffness matrices (Tvalid, Svalid) can be assembled di-

rectly without the need to compute Sraw,Traw and R. Moreover, if Traw is diagonal,

then Tvalid is also diagonal. Hence the FETD update remains explicit.

However, in the 3-D case, two types of hanging variables exist viz.,

• Hanging edges with only one corresponding coarse edge which contributes a sin-

gle non-zero entry to the corresponding column of Ib. Edge {0,8} in Fig. 5.2 is an

example.

• Hanging edges with two corresponding coarse edges which contribute entries of

1
2

to each corresponding column of Ib. Edge {13,14} in Fig. 5.2 is an example.

This is observed from the relationship between coefficients of the fine edges and the

corresponding coarse edge as given in (5.6). As in the 2-D case, explicit construction
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of R can still be avoided. In this case, the restriction operator is generated for each

element, and the element matrices associated with Tvalid and Svalid are computed from

(5.10) during the assembly of the global mass and stiffness matrices on all elements.

Thus, as compared to conventional finite element assembly procedure, the necessary

additional operations are the matrix multiplications in (5.10) for each fine element that

has a hanging variable. However, though Traw can be diagonalized via the process of

mass lumping, the resulting Tvalid is not diagonal, due to the nature of Ib. This means

that the update equations associated with the unknowns on the grid boundary are im-

plicit. The dimension of this implicit block is equal to the number of coarse edges on

the coarse-fine grid interface, which is less than the total number of unknowns in the

FETD region. These unknowns require a sparse matrix solution, which can be per-

formed efficiently by Cholesky factorization of the implicit block. Note that the implicit

block is symmetric positive definite and its complete Cholesky factor exists. It should

be noted that the factorization of this matrix does not increase the complexity of the

method. One can assume that the number of unknowns at the coarse-fine interface is

proportional to N 2/3, where N is the number of volume unknowns. The computational

cost of the sparse factorization is proportional to N , and the additional storage costs of

the factorized matrix is N 2/3 log N . Thus, the overall complexity of the method is the

same as the traditional FDTD.

5.2.4 Ridged Waveguide Example

To validate the treatment of hanging variables in FETD method, a sample problem

of computing the cutoff frequencies of a ridged waveguide is considered. The cross-

section of the waveguide and the 2-D mesh is shown in Fig. 5.4. The area in the vicinity

of the ridge, chosen arbitrarily, has fine elements. For this 2-D case, when explicit FETD

is employed, in spite of the restriction operation, the time update is explicit requiring
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only matrix-vector multiplications during each time step. The time step is chosen such

that the Courant criteria with the edge length of fine element is satisfied. The waveguide

is excited by a differentiated Gaussian pulse. Fourier transform of the electric field sam-

pled at an arbitrarily chosen location is shown in Fig. 5.5. The resonant peaks obtained

using the FETD method is in a good agreement with the cutoff frequencies of the same

structure obtained from a generalized eigenvalue problem on a triangular mesh with

edge element basis functions. The time domain solution does not have any spurious

modes which are inconsistent with the eigenvalue solution indicating that the treatment

of hanging variables does not corrupt the numerical solution with unphysical modes.

Though not shown, no signs of numerical instability were observed in the time domain

response.

5.2.5 Rectangular Resonator Example

The second example is a 3-D case of rectangular resonant cavity structure. In this

example, though explicit FETD is used, the interface unknowns form an implicit block

and matrix solution is obtained using complete factorization. The dimensions of the

cavity is 1 cm×1 cm×2 cm. The computational domain is split into two regions, as

shown in the inset of Fig. 5.6. The coarse element size is 0.2 cm and the fine element

size is 0.1 cm. Hanging variables are present in the interface surface on the z = 1 cm

plane. The spectrum of the electric field at a point inside the cavity is shown in Fig. 5.6.

In Table 5.1, the first five cutoff wavenumbers are compared to the analytical solution.

It is observed that the error in the numerical solution is less than 2%. The simulation

was carried out for half a million times steps with a CFL number of 0.9999. No signs

of numerical instabilities were observed.
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Figure 5.6: Spectrum of electric field inside the rectangular resonant cavity.

Table 5.1: First 5 cutoff wavenumbers for rectangular resonant cavity

Mode Analytical Numerical %Error

TE101, TE011 3.51 3.49 0.57

TE110, TE102,TE012 4.44 4.41 0.68

TE111, TM111 4.71 4.68 0.64

TE112 5.44 5.41 0.55

TE103 5.66 5.58 1.41
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5.3 FETD Based FDTD Subgridding

The FDTD method has errors due to stair-casing involved in the modeling of non-

rectilinear geometry, as well as errors due to poor modeling of the field variation. A

possible way to overcome these errors is to use fine meshing, in which case the num-

ber of unknowns increases significantly. An immediate alternative would be to use fine

mesh for regions with intricate details, and model the rest of the domain with coarse

grids. The basic idea behind FDTD subgridding algorithms is that the computational

domain is split into coarse and fine regions as desired, with a suitable communication

between the unknowns at the boundary of the two regions. There have been numerous

attempts to develop subgridding schemes [81, 89–91]; however, all of these approaches

suffer from late time instability. Monk [92] presents a stable method, but it is only

valid for 2-D and only along a single interface (no corner region). All of these schemes

assume that there is a single time step used throughout the computational domain. De-

pending on the conditions on the time step in the coarse region, there are two possible

subgridding schemes viz., a) Same Time Step (STS) scheme in which the time step in

the coarse region is the same as that of the fine region (obeying the Courant condition

for stability); and b) Multiple Time Step (MTS) scheme in which the time step in the

coarse and fine grids are not necessarily the same, but both satisfy the Courant condition

for the respective grids. Obviously, MTS is more desirable, but it is more difficult to

develop a stable method based on this scheme. The method proposed here will concern

only the STS scheme.

In the proposed work we handle the coarse-fine grid unknowns by introducing an

interface region between the coarse and fine grids, where the solution is based on FETD

method. The coarse-fine interface is present in the FETD interface region with both

coarse and fine cells or elements. The treatment of hanging variable presented in the

previous section is employed to handle the interface between coarse and fine elements.
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Subsequently, by using the stable hybridization scheme to couple the finite element and

finite difference grids, a stable FDTD subgridding scheme is achieved.

5.3.1 Hybrid FETD-FDTD

The illustration of the use of FETD method with hanging variables to handle the

interface between the coarse and fine regions of the FDTD subgridding method for the

2-D case is shown in Fig. 5.7. Note that the FETD region is structured and hence inter-

face between FETD and FDTD methods does not require to adopt any special strategies

in terms of mesh generation, such as insertion of pyramidal elements. The stable hy-

brid FETD-FDTD method discussed in previous Chapter can be employed in both the

2-D and 3-D cases. Moreover, since the treatment of hanging variables in the FETD

method allows higher levels of refinement of the finite elements, the resulting subgrid-

ding method allows transitions from a coarse grid to fine grid so long as the coarse grid

size is a multiple of the fine grid spacing. However, suitable restriction operators, de-

pending on the level of nesting, need to be obtained. In the case of 2-D, it is trivial to

obtain the restriction operator unlike the 3-D case.

5.3.2 Equivalent FDTD-like Update Equations

Instead of introducing an FETD based region for the interface of coarse and fine

grids, it is possible to arrive at update equations for the electric and magnetic field

unknowns directly based on the FETD method for treatment of hanging variables. In this

way, the resulting update equations are similar to the regular FDTD update equations.

Such explicitly derived update equations offer an advantage in the implementation point

of view eliminating the need to implement a code for the FETD framework to handle the

interface region. To illustrate the procedure to arrive at such update equations, consider

a 2-D FDTD stencil shown in Fig. 5.8. The update for Hz(i,j) is the same as regular

116



FE
Ω

FD−Fine
Ω

FD−Coarse
Ω

Figure 5.7: FDTD subgridding mesh with hanging variables in FETD based interface
mesh.
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Figure 5.8: 2-D stencil for update of unknown on the interface of coarse and fine grid.
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FDTD. Since the hanging variables Ey(i−1/2,j+1/2) and Ey(i−1/2,j−1/2) are represented

by Ey(i−1/2,j), the magnetic field unknowns on the fine side of the interface need to be

modified as follows

H
n+1/2
z(i−3/4,j+1/4) = H

n−1/2
z(i−3/4,j+1/2)

− 2∆t

µ0∆h

[

En
y(i−1/2,j) − En

y(i−1,j+1/4)

+En
x(i−3/4,j) − En

x(i−3/4,j+1/2)

]

H
n+1/2
z(i−3/4,j−1/4) = H

n−1/2
z(i−3/4,j−1/4)

− 2∆t

µ0∆h

[

En
y(i−1/2,j) − En

y(i−1,j−1/4)

+En
x(i−3/4,j−1/2) − En

x(i−3/4,j)

]

(5.21)

where ∆h is the coarse mesh size and ∆h/2 is the fine mesh size. Based on the finite

element mass and stiffness matrices (shown in Sec. 4.4), and using explicit FETD for

the temporal discretization of (5.9), it leads to the following update equation for the

electric field unknowns on the interface across coarse and fine regions viz.,

En+1
y(i−1/2,j) = 2En

y(i−1/2,j) −
c2∆t2

∆h2

{

2En
y(i−1/2,j)

−
[

En
y(i+1/2,j) +

1

2
(En

y(i−1,j+1/4) + En
y(i−1,j−1/4))

]

+ En
x(i,j+1/2) − En

x(i,j−1/2)

−En
x(i−3/4,j+1/2) + En

x(i−3/4,j−1/2)

}

− En−1
y(i−1/2,j). (5.22)

The update equation for the rest of the unknowns remain the same as that of regular

FDTD corresponding to either the coarse or the fine region. The equivalent FDTD-like

update equations shown here provide an alternate method for the implementation of the

proposed subgridding method and is straight forward to extended the procedure for level

of refinement greater than 1:2. A similar procedure can be applied for the 3-D case with

the corresponding mass and stiffness matrices for hexahedral elements.
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5.4 Investigation of Spurious Errors

Solution obtained using FDTD inherently suffers from unphysical dispersion er-

rors arising due to the second order accurate approximation of the spatial and temporal

derivative operators. The phase velocity of the numerical wave solution is lesser than

the speed of light in vacuum and is dependent on the spatial and temporal resolutions.

Therefore, in subgridding schemes, the numerical dispersion characteristics are differ-

ent in the coarse and fine regions of the computational grid. This difference in numerical

dispersion behaviour is a major source of spurious errors. In this section we quantify the

errors introduced due to the difference in numerical phase velocity in the coarse and fine

grids analytically and compare with the numerical solution obtained using the proposed

technique. For the FDTD method in the 2-D case, the following numerical dispersion
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relationship holds good viz.,

(

∆h

c∆t

)2

sin2

(

ω∆t

2

)

=

sin2

(

∆h

2
k̃ cos α

)

+ sin2

(

∆h

2
k̃ sin α

)

(5.23)

where k̃ is the numerical wavenumber and α is the angle of wave propagation. k̃ can

be computed by the Newton’s method for a given problem with a particular spatial and

temporal resolution. It is immediately seen that the numerical wave number for the

coarse mesh, k̃c and fine mesh, k̃f are different. To analytically compute the reflections

due to difference in k̃c and k̃f we draw an analogy to the case of reflections from a

dielectric slab with different relative permittivities viz., εrc and εrf as shown in Fig. 5.9.

The relative permittivities are related to the numerical wavenumbers as εrc = k̃2
c/k

2
0

and εrf = k̃2
f/k

2
0 where k0 is the free space wavenumber. In Fig. 5.10 we compare

the relative permittivity in each region for a test example with a coarse mesh size of

∆h = 0.5 m and ∆t = 0.294 ns. Note that k̃c and k̃f are obtained by solving (5.23)

with appropriate parameters and choosing α = 0◦. The reflection coefficient, Γ1 due to

a dielectric slab for the transverse electric case, is given by

Γ1 =
ρ1(1− e−2jk̃f lf )

1− ρ2
1e

−2jk̃f lf
(5.24)

where

ρ1 =

√
εrc −√εrf√
εrc +

√
εrf

=
k̃c − k̃f

k̃c + k̃f

(5.25)

and lf is the length of the slab (or equivalently the fine region). To compare the analyt-

ical reflection coefficient with the numerical results, we consider the case of a parallel

plate waveguide with the fine region embedded inside. The size of the fine region is 5

m×5 m corresponding to 1λ× 1λ at 30 MHz. Two cases of fine region viz., 1) with 1:2

refinement and 2) with 1:4 refinement, are considered and shown in Figs. 5.11(a) and

5.11(b). Note that the parallel plate waveguide is filled with free space, both in the fine

and coarse regions. Both the coarse ends of the waveguide are terminated by perfectly

122



match layer (PML). The numerical reflection coefficient is computed as

Γ(f)(dB) = 20 log

∣

∣

∣

∣

F(Hz(t)−H inc
z (t))

F(H inc
z (t))

∣

∣

∣

∣

(5.26)

where Hz(t) is the time signal recorded with the fine mesh, at a physical observation

point which is the same as that for recording H inc
z (t) without the fine mesh. F(u) de-

notes the Fourier transform of u. The reflection coefficient computed using (5.26) gives

the errors introduced in the solution due to embedding of the fine region with in the

coarse grid. Both analytical and numerical results thus obtained are shown in Fig. 5.12.

The trend of the numerical errors follow the analytical prediction well, and the level

of reflection is higher than the analytical prediction by about 10 dB. We conclude that

the major source of errors introduced is primarily the difference in the dispersion be-

haviour in the coarse and fine regions. The additional errors are attributed to the method

of handling hanging variables at the interface across the coarse and fine regions. The

truncation error in the update of unknowns on the interface of coarse and fine region is

O(h) where as for the interior unknowns the truncation error is O(h2). Also observed is

that the error levels for the 1:4 refinement case is slightly more than the 1:2 refinement

case. In both the cases, the reflection errors are less than 30 dB in the desired band of

interest.

5.5 Numerical Results

The first example is a 2-D problem of the scattering by a PEC cylinder with circular

cross-section. The radius of the cylinder is 5 m. For plane wave excitation, a differ-

entiated Gaussian pulse with significant spectral content in the frequency range of 3-30

MHz is used. The cell size for the coarse FDTD grid is ∆xc = ∆yc = ∆hc = 0.5 m,

corresponding to λ/20 at 30 MHz. Both 1:2 and 1:4 refinement cases are considered

with the fine grid size being ∆hf = 0.25 m and ∆hf = 0.125 m respectively. The mesh

with 1:4 subgridding employed in this example is shown in the inset of Fig. 5.13. The
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Figure 5.13: Time history of Hz(n∆t) component obtained in the solution for scattering
by PEC cylinder. Inset shows the 1:4 subgridding mesh used.

Table 5.2: Computational statistics for scattering by PEC cylinder

Case FDTD 1:2 Subgrid 1:4 Subgrid

Solution Time (s) 47.13 50.22 61.21

Memory (KB) 621 836 1720

Error at 30MHz 6.0% 2.8% 1.5%

Maximum error 11.8% 6.5% 3.4%
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coarse FDTD region has a total-scattered field boundary, to extract the scattered field

solution. Fig. 5.13 shows the scattered Hz(t) component in the backscattered direc-

tion for sufficiently long number of time steps and no signs of numerical instability are

observed. For the radar-cross-section (RCS) computation, a time domain NFFF trans-

formation is applied to obtain the far zone solution from the near field solution. The

backscattered RCS of the PEC cylinder over the frequency band is obtained using a)

the subgridding method with 1:2 and 1:4 refinements, b) regular FDTD with cell size

∆h = 0.5 m and c) analytical solution, all of which are compared in Fig. 5.14. The

relative errors in the 2-D bistatic RCS for the different cases are shown in Fig. 5.15.

As expected, the solution using the subgridding method is closer to the analytical solu-

tion, in comparison with regular FDTD solution. In Table 5.2 the details of computation

time, memory requirement and error in solution for the different cases is tabulated. The

memory requirement reported here does not include the memory required by the RCS

computation routines. The memory requirement for the storage of far-zone vector po-

tential in the near-to-far transformation is the same for all the three cases and hence

not included. The 1:4 refinement case has the least relative error due to the more ac-

curate representation of the geometry and hence much less staircasing errors. If levels

of accuracy as obtained by the 1:4 subgrid case are desired while using the traditional

FDTD method, then a fine mesh has to be used all throughout the computational domain

leading to a highly inefficient method compared to the proposed subgridding method.

The next example is the case of 2-D scattering by the NACA64a410 Airfoil which

is the same as the one discussed in Sec. 4.5. The incident plane wave is in the band

of 0.2-1.5 GHz. The coarse grid size is 0.5 cm. The length of the airfoil is 1 m, cor-

responding to 5λ at 1.5 GHz. Here again both 1:2 and 1:4 refinement cases with fine

grid size of 0.25 cm and 0.125 cm, respectively, are considered. The geometry of the

airfoil and the subgridding mesh of the nose section with 1:4 transition is shown in

Fig. 5.16. The results for the backscattered RCS are compared to that obtained using

125



5 10 15 20 25 30
5

6

7

8

9

10

11

12

13

14

15

Frequency [MHz]

σ 2D
 [d

B
sm

]

 

 

FDTD − λ/20
1:2 Subgrid
1:4 Subgrid
Analytical

Figure 5.14: 2-D backscattered RCS compared with FDTD (with and without subgrid-
ding) and analytical results.

5 10 15 20 25 30
10

−2

10
−1

10
0

Frequency [MHz]

| σ
2Dan

al
  −

 σ
2Dnu

m
| 2/ |

σ 2Dan
al

| 2

 

 
FDTD
1:2 Subgrid
1:4 Subgrid

Figure 5.15: Relative error in the computed 2-D bistatic RCS using FDTD (with and
without subgridding).

126



method of moments (MoM) in Fig. 5.17. Also shown in Fig. 5.17 is the result obtained

using traditional FDTD with cell size of 0.5 cm, which is the same as the coarse grid

size used in the subgridding case. Both FDTD with subgridding and regular FDTD

agree with the MoM in computational results in the low frequency end of the band.

At the high frequency end, as expected, the subgridding case performs better than the

FDTD solution. The primary reason is the errors introduced due to the stair-case ap-

proximation of the airfoil. This is further verified by comparison of MoM results with

the result obtained using stable hybrid FETD-FDTD method, where unstructured trian-

gular elements are used to mesh the airfoil more accurately. In comparison with the

FETD-FDTD method, the current subgridding method does not require a matrix solu-

tion for updates in 2-D case and in the 3-D case, the implicit matrix is confined to the

unknowns on the coarse-fine interface. This is because while using rectangular (hexahe-

dral) elements, mass-lumping can be performed leading to an explicit update equation.

Whereas, in FETD-FDTD method, the update of finite element unknowns during each

time step requires a matrix solution. For a given geometry, the number of unknowns in

the unstructured case is often lower than those in the subgridding case. However, the

number of unknowns can be significantly controlled in the subgridding method by con-

fining the fine region to those regions where a fine grid is necessary. Another advantage

of the proposed method is that the mesh generation requirement is the same as that of the

traditional FDTD method and already available tools for FDTD mesh generation could

be re-used. FETD-FDTD method has very stringent mesh generation requirements. The

bistatic RCS of the airfoil at 1.5 GHz using the 1:2-subgrid case is compared to MoM

results in Fig. 5.18. A good agreement is observed in all directions.

127



0.2 0.25 0.3

0.16

0.18

0.2

0.22

0.24

0.26

0.2 0.4 0.6 0.8 1 1.2

0.2

0.3

x [m]

y 
[m

]

Figure 5.16: Subgridding mesh for scattering by NACA64a410 Airfoil
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5.6 Interfacing Hexahedral and Tetrahedral Elements

For hybridizing the unstructured FETD method and the FDTD method, two different

interface strategies were shown in Fig. 4.14. The case in Fig. 4.14(a) alleviates the need

for using pyramidal elements. The use of interpolation to update the diagonal unknowns

using the FDTD solution, proposed in [14] can be viewed as applying interpolation op-

eration on the trial functions instead of the testing function resulting in a non-Galerkin

procedure leading to numerical instability. In the case of treatment with hanging vari-

ables, the Galerkin-type procedure leads to stable FETD formulation. It is tempting to

attempt the extension of the concept of hanging variables to the case of interface be-

tween tetrahedral and hexahedral elements which could lead to stable hybridization of

the FETD and FDTD methods without requiring pyramidal elements. However, unlike

the case of hanging variables with two similar elements discussed in the previous sec-

tion, the current case involves two dissimilar elements across the interface. To have a
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Figure 5.19: Reference triangular and rectangular edge elements

valid intergrid boundary operator, one of the conditions is that the basis functions on

either side of the interface must be able to ensure tangential continuity across. This con-

dition is violated in the case of interfacing tetrahedral and hexahedral elements as the

elements are topologically dissimilar. The finite element space of 2-D edge elements

on the two triangles on a rectangular face does not contain the finite element space of

edge elements of the parent rectangular face. However, with the idea of treating the

intergrid boundary operator as a projection operator, an attempt is made to interface un-

structured and structured elements as in Fig. 4.14(a). The intergrid boundary operator

with reference to Fig. 5.19 is then












ct
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ct
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ct
03

ct
12

ct
02


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cr
03
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12









(5.27)

where ct
ij is the coefficient of the basis function associated with edge {i, j} of the trian-

gular element and cr
ij is the coefficient of the basis function associated with edge {i, j}

of the rectangular element. A 3-D implementation based on the projection operator in

(5.27) for interfacing rectangular and triangular elements was preformed and used to

compute the eigenvalues of a rectangular cavity. Using the projection operator in 5.27,

valid mass and stiffness matrices are obtained for a hybrid mesh with both tetrahedral
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and hexahedral elements as shown in Fig. 5.20(a). In Fig. 5.21 the computed resonant

wave numbers using an eigenvalues solver are shown for the case of a mesh with tetra-

hedral elements (dots) and the hybrid mesh (crosses). It is noted that the number of zero

eigenvalues for the case with tetrahedral elements is 63 which agrees with the number

of internal nodes in the tetrahedral mesh. However, in the case of the hybrid mesh,

the number of zero eigenvalues is 54. There are 9 non-zero eigenvalues introduced

in the hybrid case which are referred to as non-physical modes. The number of these

non-physical modes is in agreement with the number of internal nodes on the interface

between the tetrahedral and hexahedral meshes, shown in Fig. 5.20(b). The fact that

across the interface the triangular elements and rectangular elements are topologically

different and the finite element space of 2-D edge elements on the two triangles on a

rectangular face does not contain the finite element space of edge elements of the par-

ent rectangular face contributes to these non-physical modes. The occurrence of such

troublesome spurious modes guides us to adopt a strategy shown in Fig. 4.14(b), of in-

troducing pyramidal elements to avoid any non-conforming edges for the hybrid 3-D

FETD-FDTD method.

5.7 Concluding Remarks

Treatment of hanging variables, recently introduced for triangular and tetrahedral

nested meshes, has been extended to rectangular and hexahedral linear finite elements.

The Galerkin treatment of the hanging variable retains the symmetry and spectral prop-

erty of the resulting finite element mass and stiffness matrices. This leads to numerically

stable time-stepping schemes within the FETD framework. A numerically stable FDTD

subgridding method is achieved by introducing an interface region based on FETD to

link the coarse and fine grid regions. The new method retains the same requirement on

mesh generation as in the FDTD subgridding method. By using explicit time-stepping
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Figure 5.20: Hybrid mesh of rectangular cavity with tetrahedral and hexahedral ele-
ments.
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Figure 5.21: Computed resonant wave numbers indicating the appearance of non-
physical modes in the hybrid case.

for the unknowns in the interface region, the computational complexity is the same as

that of FDTD subgridding method for both 2-D and 3-D. It is also demonstrated that

to device a valid intergrid boundary operator across two different elements, the basis

functions on the either side of the interface must be able to ensure tangential continuity.

Violation of this condition leads to appearance of spurious modes. Thus extending the

concept of hanging variables to handle the interface between tetrahedral and hexahedral

elements is not viable.

133



CHAPTER 6

ANTENNA MODELING USING 3-D HYBRID FETD-FDTD
METHOD

6.1 Introduction

With requirements on antenna characteristics becoming more complex due to perva-

sive use of wireless communication devices, numerical modeling of antennas becomes

an integral and vital step in antenna design. Efficient numerical techniques for more

accurate modeling of complex antennas and their radiation phenomena are desirable,

more than before. With increasing number of wireless applications demanding higher

data transmission rates, products based on broadband and ultrawideband technologies

have become a commonplace. Such technologies need wideband antenna elements for

optimal transfer of radio-frequency energy to the wireless channel. Numerical tools

based on time domain methods are most efficient for the design and analysis of such

broadband and ultrawide band antennas. The hybrid FETD-FDTD method with the

ability to model complex geometries accurately using unstructured grids and efficiently

model relatively simple homogeneous regions using structured Cartesian grids is well

suited for numerical modeling of broadband and ultrawide band antennas.

In this Chapter, the application of stable 3-D hybrid FETD-FDTD method for analy-

sis of antennas in general is presented. A simple hybrid mesh generation strategy, which

can be readily applied in the modeling of antennas is presented. The use of hierarchi-

cal higher order basis functions defined on tetrahedral elements in the FETD region is

presented. Accurate modeling of antenna ports in the FETD method, using transverse
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electromagnetic (TEM) mode of excitation and subsequent computation of the modal re-

flection coefficient and input impedance of antenna is presented. Successful application

of the hybrid method in the numerical modeling and computation of reflection coeffi-

cient and radiation pattern of different antenna structures are presented. Even though

only the radiation problems are considered, the extension of the method for scattering

problems could be achieved by implementing the well established Total Field/Scattered

Field boundary condition in the FDTD region, as in the case of the 2-D examples dis-

cussed in Chapters 2 and 5. The discussion and the results in this Chapter have been

communicated for publication [93].

6.2 3-D Hybrid FETD-FDTD Method

The antenna structure is enclosed in the FETD region which is surrounded by the

structured FDTD region, similar to the 2-D case discussed in Sec. 2.4. In the 3-D case

however, the non-conformal edges are avoided in the transition between tetrahedral and

hexahedral elements by introducing pyramidal elements as shown in Sec. 4.6. The re-

sulting hybrid method is conditionally stable as was shown in [18]. The computational

grid is truncated in the FDTD region using anisotropic PML. The FETD method with

ABC to model unbounded problems is accurate enough only for few simple antenna

geometries [94] and PML is necessary for improved accuracy in the solution. In the hy-

brid method, as the FDTD region encloses the FETD region, the need to model PML in

the FETD region is alleviated. However, the success in applying the hybrid method for

real-life antenna structures relies on the ability to obtain hybrid mesh with tetrahedral,

pyramidal and hexahedral elements.
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Figure 6.1: Steps involved in hybrid mesh generation.
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6.2.1 Hybrid Mesh Generation

The first step in the hybrid mesh generation involves basic unstructured tetrahedral

mesh generation of the antenna structure. Outer boundary of the tetrahedral mesh must

have a surface triangulation consistent with the FDTD cell size, ∆h. Layer of hexahe-

dral elements with edge length ∆h is then added around the tetrahedral mesh. In the

interface between tetrahedral and hexahedral elements, the only non-conforming edges

(tetrahedral) must form the diagonals of the hexahedral faces on the interface. The

fact that this requirement is not guaranteed in general by most of the available unstruc-

tured mesh generators remains a major hurdle in the application of the hybrid algorithm.

Fig. 6.1(a) shows the hexahedral and tetrahedral regions of the mesh, separated to show

the rectangular and triangular faces on their interface. The number of nodes on the in-

terface from the tetrahedral mesh and the hexahedral mesh are the same. The number

of edges on the tetrahedral interface is greater than the number of edges on the hexahe-

dral interface by the number of rectangular faces on the interface. Once such a mesh is

generated, hexahedral elements with a face on the interface is split into two tetrahedra

and five pyramidal elements, as shown in Fig. 6.1(b), leading to the final hybrid mesh

shown in Fig. 6.1(c).

6.2.2 Pyramidal Edge Elements

Edge vector basis functions have been used extensively on tetrahedral and hexahe-

dral elements. For the 3-D Hybrid FETD-FDTD method, similar basis functions need to

be defined for pyramidal elements. Edge vector basis functions on pyramidal elements

were designed in [95]. Each basis function is associated with a particular edge of the

pyramidal element, similar to edge vector basis functions on tetrahedral elements. Thus,

each pyramidal element has eight degrees of freedom, corresponding to the number of

edges. With reference to Fig. 6.2, the edge basis functions of a pyramidal element are

137



n0 n1

n2

n4

e0

e1

e3

e6
e7

e5

n3

e4

e2

Figure 6.2: Pyramidal element with reference node and edge numbering.

of two types. The first type is the basis functions associated with the four edges on the

base of the pyramid i.e., edges {e0, e1, e2, e3} and are given as

~Wij = ξi∇(ξj + ξk)− ξj∇(ξi + ξl) (6.1)

where i, j, k, l are the four nodes forming the base of the pyramid and ξi is a scalar

function with unity on node i and zero at the other four nodes of the pyramidal element.

A plot of these basis functions is shown in Fig. 6.3. It is noted that the form of these

basis functions is the same as edge element basis for rectangular elements given in

(2.48), indicating that the base of the pyramidal element can be a face of an adjacent

hexahedral element. The second type of basis functions are associated with the four

oblique edges connecting the base nodes to the apex of the pyramidal element i.e., edges

{e4, e5, e6, e7}. These basis functions are given as

~Wij = ξi∇ξj − ξj∇ξi (6.2)

which is in similar form to the edge element basis functions defined on triangular el-

ement in (2.45). Thus, an oblique face of the pyramidal element can be a face of an

adjacent tetrahedral element. A plot of these basis functions is shown in Fig. 6.4.

In the transition from tetrahedral to hexahedral elements with edge length ∆h, only

a particular class of pyramidal elements of height ∆h/2 and a square base of side-length

∆h are generated. Once the basis functions for such pyramids are defined, their mass
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Figure 6.3: Pyramidal edge element basis functions - Type 1
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(a) ~W04 (b) ~W14

(c) ~W24

(d) ~W34

Figure 6.4: Pyramidal edge element basis functions - Type 2
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and stiffness matrices can be evaluated using a symbolic computation tool such as Math-

ematica, and is obtained as

Te =
∆h

4320

























192 96 12 −12 −9 9 9 −9
96 192 −12 12 −9 9 9 −9
12 −12 192 96 −9 −9 9 9
−12 12 96 192 −9 −9 9 9
−9 −9 −9 −9 308 160 92 160
9 9 −9 −9 160 308 160 92
9 9 9 9 92 160 308 160
−9 −9 9 9 160 92 160 308

























(6.3)

and

Se =
1

18∆h

























17 7 −1 1 −16 16 8 −8
7 17 1 −1 −8 8 16 −16
−1 1 17 7 −16 −8 8 16
1 −1 7 17 −8 −16 16 8
−16 −8 −16 −8 32 −8 −16 −8
16 8 −8 −16 −8 32 −8 −16
8 16 8 16 −16 −8 32 −8
−8 −16 16 8 −8 −16 −8 32

























(6.4)

for a pyramidal element with reference edge numbering as in Fig. 6.2.

In general, there are six possible orientations for the pyramidal elements in the hy-

brid mesh with each orientation having one of the six faces of an adjacent hexahedral

element as the base of the pyramidal element. The mass and stiffness matrices are in-

dependent of its orientation and depend only on the edge length of hexahedral element

which is the same as the FDTD cell size, ∆h. The eigenvalues of the generalized system

Sex− λTex = 0 for the pyramidal element are obtained as
[

0, 0, 0, 0,
40

∆h2
,

1280

19∆h2
,

1280

19∆h2
,

112

∆h2

]

.

The number of zero eigenvalues corresponding to the static gradient fields are four, con-

sistent with the number of free nodes. The fundamental property of theH(curl; Ω) basis

functions, to include the null space of curl operator, is satisfied by the above edge ele-

ment basis functions defined on pyramidal elements.
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6.2.3 Hierarchical Higher-Order Vector Basis Functions

Higher order vector basis functions provide an advantage of improved resolution of

the field solution along with the benefit of having coarser elements in the finite element

mesh. Hierarchical higher order vector basis functions [37] provide an added advan-

tage of locally resolving the fields by using basis functions of different orders within a

computational domain. The edge element basis functions are the lowest order tangen-

tial vector finite elements incomplete to order 1. They are also referred to as having a

mixed-order of 0.5 [96]. Edge elements span the spaceH0(curl; Ω) where superscript 0

refers to the highest degree of polynomial of the curl of the basis function. The curl of

the edge element on a tetrahedron is a constant vector function, the highest degree of the

polynomial being zero. The next set of higher-order basis functions with the correspond-

ing curl being piecewise-linear vector functions, excluding the gradient fields [74], are

called tangential vector finite elements. They span the space H1(curl; Ω). Note that the

explicit Helmholtz decomposition of the higher order vector basis functions is possible

and the higher order gradient basis functions are ignored, reducing the dimensionality

of the vector function space and eliminating the occurrence of field solutions with non-

zero divergence. With the gradient basis functions eliminated, these basis functions are

incomplete to order 2 [37] and also referred to as having a mixed-order of 1.5 [96].

For a tetrahedral element, these basis functions are given in Table. 6.1 where ξi is the

scalar linear Lagrange interpolation polynomial. It is noted that the facial basis func-

tions in Table. 6.1 are not unique and it is possible and valid to employ them in other

forms as proposed in [37, 96]. The choices of basis functions in Table. 6.1 were used

in [97]. Tangential Vector basis functions are the same as p = 2, the 1st-type Nedelec

curl conforming elements [32, 98]. With the higher order basis functions, each edge of

the tetrahedron has two basis functions associated with it, one of them being the lower

order edge element basis function. Similarly each face of the tetrahedron has two basis

functions associated with it. For a given tetrahedron, there are in total 20 basis functions.
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Table 6.1: Tangential vector basis functions, their associated topology and dimensions
on a tetrahedral element.

Order Topology Basis Function Dimension

0.5 Edge{ij} ξi∇ξj − ξj∇ξi 6

Edge{ij} 4∇(ξiξj) 6

Face{ijk} 4ξj(ξi∇ξk − ξi∇ξk) 4

1.5 Face{ijk} 4ξk(ξi∇ξj − ξj∇ξi) 4

Each basis function has tangential component only along its associated topology listed

in Table. 6.1 and has zero tangential component along other non-associated edges and

faces. The evaluation and assembly of mass and stiffness matrices for arbitrary tetra-

hedral elements can be performed analytically and efficiently by constructing universal

matrices following the procedure discussed in [73] or [37].

6.2.4 Hybridization with Hierarchical Higher Order Elements

In the hybrid FETD-FDTD method, it is possible to use hierarchical higher order ba-

sis functions throughout the FETD mesh, on all hexahedral, pyramidal and tetrahedral

elements. However, the FDTD region surrounding the unstructured FETD region has

the lower order edge elements, demanding a typical FDTD grid size of λmin/20. Due to

the conformal nature of the FDTD grid and FETD mesh, the hexahedral and pyramidal

elements adjacent to the FDTD region have the same size as the FDTD grid size. Often,

for lower order, edge element basis functions, the grids size should be around λmin/20

and it is inefficient and unnecessary to have higher order basis functions on such ele-

ments. Due to this fact, the use of higher order basis functions is restricted to tetrahedral

elements alone. The hierarchical nature of the basis functions, enables the use of higher
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order bases on the tetrahedral elements while lower order edge elements are used in the

pyramidal and hexahedral elements. It is noted that the tetrahedral elements adjacent to

the pyramidal elements share a common face and three common edges. No degree of

freedom is assigned to the faces shared by pyramidal and tetrahedral elements. Simi-

larly no degree of freedom corresponding to the higher order basis functions associated

with edge is assigned to the edges shared by pyramidal and tetrahedral elements. In the

corner regions of the FETD mesh, hexahedral elements sharing a common edge with

tetrahedral elements are present. For such edges again, higher order unknowns are not

assigned. This way, vector basis functions of different orders can be used within one

finite element mesh. In Fig. 6.5, the basis functions associated with a tetrahedral ele-

ment sharing a face with a pyramidal element and an edge with a hexahedral element

are shown. There are six facial basis functions associated with the three faces not shared

by the adjacent pyramidal element and six higher order edge basis functions associated

with the three edges not shared by the adjacent pyramidal and hexahedral elements.

There are three edge element basis functions associated with the three edges shared by

the adjacent pyramidal elements. In total, the degrees of freedom for this tetrahedron is

15 with the other five higher order degrees of freedom un-assigned due to the interface

with pyramidal and hexahedral elements.

6.3 TEM Port Modeling

In the hybrid mesh, the antenna structure requiring accurate modeling is located in

the finite element region. Hence, the FETD formulation must include the excitation of

antennas using ports. The boundary condition for ports and the subsequent implementa-

tion in the FETD method, presented in this section, can be used to model the excitation

of antenna structures fed by coaxial line or stripline ports. Such feeding structures are
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Figure 6.5: Illustration of basis functions on a tetrahedral element adjacent to a pyrami-
dal and hexahedral element

typically used for antennas operating with the TEM mode of excitation. In the time-

harmonic case, the total electric fields inside a transmission line exciting a TEM wave

in the +z direction is given by

~E = ~Einc + ~Eref

= Eo~eTEMe−jβz + ΓEo~eTEMejβz (6.5)

where ~eTEM is the modal field distribution, Eo is the incident modal amplitude, Γ is the

reflection coefficient of TEM mode and β is the propagation constant of the TEM mode

inside the transmission line. For dielectric filled coaxial lines and striplines,

β =
√

εrk0 =
√

εrω/c (6.6)

where εr is the dielectric constant of the medium. From (6.5),

n̂×∇× ~E = jβγt( ~E)− 2jβγt( ~Einc) (6.7)

where n̂ = −ẑ is the outward normal unit vector and γt(~u) = n̂×~u× n̂ is the tangential

trace of ~u. From (6.7), the time-dependent boundary condition for the electric field in a
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port (filled with non-magnetic material) excited by TEM mode is obtained as

n̂×∇× ~E(t) =

√
εr

c

∂

∂t
γt

(

~E(t)
)

− 2
√

εr

c

∂

∂t
γt

(

~Einc(t)
)

(6.8)

Due to the simple dispersion relationship between the propagation constant and the

wavenumber for the TEM mode, it is straightforward to arrive at the time-domain equiv-

alent of (6.7). For the case of higher order modes (TE and TM modes), it is possible to

arrive at the time domain equivalent modal boundary condition [99], leading to tempo-

ral convolution operations involving the field solution. Time integration schemes then

involve discretization of both derivative operators and the convolution integral opera-

tors. However, when modeling antennas designed with TEM mode of excitation, higher

order modes (which are evanescent) can be neglected at the port boundary. However,

the modeled transmission line should be sufficiently long for the evanescent higher order

modes to attenuate significantly [31].

The initial value problem in the FETD region is then, the time-dependent vector

Helmholtz’s equation

∇× µ−1
r ∇× ~E(t) +

εr

c2

∂2

∂t2
~E(t) = 0, in Ω (6.9)

with the boundary condition (6.8) on the port surface and the initial conditions ~E(0) = 0

and ∂
∂t

~E(t)|t=0 = 0. Following the same procedure as in Sec. 2.3.6, we test (6.9) with

suitable testing function resulting in the following weak form viz.,

seek ~E(t) such that

∫

Ω

[

∇× ~v(t) · µ−1
r ∇× ~E(t) +

εr

c2
~v(t) · d2

dt2
~E(t)

]

dΩ

+

∫

Γp

~v(t) · (n̂×∇× ~E(t))ds = 0, (6.10)

∀~v(t) ∈ H(curl; Ω).

Using (6.8) in (6.10) with ~Einc(t) = Eo(t)~eTEM and expanding the solution ~E(t) using

vector basis functions defined over tetrahedral, pyramidal and hexahedral elements as
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~E(t) =
∑N

i=1 ei(t) ~Wi leads to the following system of ordinary differential equation

viz.,

Se +
1

c
R

d

dt
e +

1

c2
T

d2

dt2
e =

1

c
f

d

dt
Eo(t) (6.11)

where

R(i, j) =

∫

Γp

(n̂× ~Wi) ·
√

εr(n̂× ~Wj) ds

f(i) = 2

∫

Γp

(n̂× ~Wi) ·
√

εr(n̂× ~eTEM) ds.

Eo(t) is the excitation waveform with significant spectral contents in the frequency band

of interest. In fact, Eo(t) is the time domain modal amplitude of the TEM mode being

excited at the port. The modal distribution ~eTEM is obtained by a 2-D finite element

eigenvalue solver. The eigenvector solution for the dominant mode gives the modal

distribution of TEM mode and this eigenvector corresponds to a physical DC mode be-

longing to group 2 discussed in Sec. 3.2.1. It is noted that at least two non-touching

conductors are needed for the TEM mode to exist. By applying a transformation of

variables discussed in the classical paper [100], the 2-D eigenvalue problem is posed

such that eigen-pairs are the propagation constant and the corresponding modal distri-

bution, at a particular specified frequency. Alternatively, 2-D eigenvalue solver based

on the A-V formulation with constrained Lanczos algorithm to suppress the spurious

DC modes (proposed in [101]) can be employed. The operating frequency in the 2-D

eigenvalue problem is chosen as the center frequency in the band of interest under the

assumption that the modal distribution of the TEM mode remains unchanged within the

band. This assumption is true for coaxial lines and stripline feed structures [102]. With

the need for computing the TEM modal distribution alone, the eigenvalue solver need

not model the longitudinal component of the electric field which, in the general case of

inhomogeneous ports, is expanded using nodal finite elements [100]. For ports with

homogeneous medium, only the transverse electric field needs to be expanded using
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Figure 6.6: Illustration of the use of triangulation of the port from the 3-D finite element
mesh for the 2-D mesh.
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vector basis functions since only the transverse modes exist in this case. The triangula-

tion of the port surface in the 3-D tetrahedral mesh is used as the finite element mesh

for the 2-D eigenvalue problem. As an illustrative example, the coaxial line port shown

in Fig. 6.6(a) is considered to be embedded in the unstructured 3-D finite element mesh.

To obtain the modal field distribution, the corresponding 2-D triangulation of the port as

shown in Fig. 6.6(b) is used. Similar to the 3-D case, the electric field can be expanded

using either 2-D edge elements or higher order elements, consistent with the order of

basis used in the 3-D case. In the case of H1(curl; Ω) elements, the number of basis

functions associated with a triangular element is 8 where 2 basis functions are associ-

ated with each of the three edges and 2 basis functions associated with the triangular

face. The modal field distribution is obtained as

~eTEM =

Np
∑

j=1

eTEM,j
~Wj (6.12)

where vector eTEM is the eigenvector solution of the TEM mode and Np is number

of unknowns for the 2-D eigenvalue problem. Np is equal to the number of edges on

the port triangulation if edge elements are used. If H1(curl; Ω) elements are used, Np

is twice the number of edges and triangular faces in the port triangulation. The TEM

modal field distribution for the case of a coaxial line, obtained numerically, is shown in

Fig. 6.7. Indeed the numerical solution has a radial electric field as it is the case for the

TEM mode in a coaxial line. Moreover, the variation of the intensity of the field along

the radial distance is in accordance with the analytical solution which dictates the field

solution to be inversely proportional to the radial distance.

The temporal discretization of (6.11) is performed using the Newmark-beta method as

discussed in [10]. It is observed that R is similar to the case for the 1st order ABC

discussed in Sec. 2.3.6. The boundary condition at the port given in (6.8) is the same

as the 1st order ABC and boundary condition is exact in the current case of TEM mode

with the wave propagation normal to the port boundary.
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Figure 6.7: TEM modal distribution of the electric field in a coaxial line obtained from
the 2-D eigenvalue solution

Using the orthogonality property of the modes, the reflection coefficient in (6.5) can

be obtained as

Γ(ω) =
1

F (Eo(t))
F
(

1

Am

∫

Γp

~E(t) · ~eTEM ds

)

− 1 (6.13)

where F (u(t)) is the Fourier transform of u(t) and Am is a constant given as

Am =

∫

Γp

~eTEM · ~eTEM ds.

From the reflection coefficient, the frequency dependent input impedance of the antenna

structure, at the port terminal is computed as

Zin(ω) = Zc
1 + Γ(ω)

1− Γ(ω)
(6.14)

where Zc is the characteristic impedance of the port which can be obtained from the

eigenvector solution. Note that Zc is different from the wave impedance Z0, which

for the TEM mode is simply
√

µ0

εrε0

. From the eigenvector solution the characteristic
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impedance is computed as

Zc =
|Vp|2

∫

Γp
~eTEM × ~hTEM · d~s

(6.15)

where the magnetic field distribution on the port, ~hTEM = 1
Z0

n̂×~eTEM , and the voltage

across the port terminals, Vp, is obtained as

Vp =

∫

lp

~eTEM · d~l, (6.16)

where lp is any line connecting the inner and outer conductors of the port. For a coaxial

line the characteristic impedance can be evaluated analytically as

Zc =
Z0

2π
ln

(

b

a

)

where a is the radius of the inner conductor and b is the radius of the outer conductor.

For the port shown in Fig. 6.6(b) with a = 0.95 mm and b = 3.28 mm and the medium

between the conductors having a dielectric constant, εr = 2.2, the analytical charac-

teristic impedance is computed to be 50.13 Ω. The numerical solution for Zc obtained

using (6.15) on the modal solution of the mesh in Fig. 6.6(b) is computed to be 49.89 Ω

having an acceptable degree of error with the analytical solution.

6.4 Numerical Examples

The 3-D hybrid FETD-FDTD code was implemented in C++ using object-oriented

programming features. The FETD update matrices are stored in compressed column

storage format for sparse matrices. For efficient implicit update of the FETD unknowns,

PCG solver is used with incomplete Cholesky factorization as the preconditioner. To re-

duce the number of non-zero entries in the Cholesky factor, matrix reordering is applied

[44]. In all the examples to be presented, anisotropic PML is used in the FDTD region.

The maximum edge length in the finite element region is 1.5∆h. All the simulations are

carried out in 2.2 GHz, 64 bit Dual CPU Opteron Machine with an available RAM of
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32 GB.

6.4.1 Coax-fed Square Patch Antenna

The first example is the modeling of a coaxial line fed square patch antenna. This an-

tenna is the unit radiating element in a JINA 2004 Test Case [103]. The 16.2 mm×16.2

mm square patch is embedded in a 19.6 mm×19.6 mm substrate with εr = 2.2 and

thickness 2.34 mm, as shown in Fig. 6.8(a). The square patch element is embedded

inside the substrate at a depth of 0.76 mm from the top. The element is inserted in a

perfectly conducting cavity and is fed by a coaxial line feed offset by 3.9 mm along the

y− axis from the center of the patch. The diameters of the inner and outer conductors

are 1.9 mm and 6.56 mm, respectively. The region between the two conductors is filled

with dielectric material of εr = 2.2. ∆h is set as 1 mm and the cross section of the

hybrid mesh is shown in Fig. 6.8(b). The finite element region has a 109,720 tetrahe-

dra, 4,672 hexahedra and 17,280 pyramidal elements with a total of 162,913 degrees of

freedom. This corresponds to the non-PEC edges in the finite element region, as only

edge elements are used in this example. The characteristic impedance of the coaxial port

structure was computed to be 48.17 Ω. Reflection coefficient obtained using the hybrid

code is shown in Fig. 6.9, where excellent agreement is observed with results from An-

soft HFSS R©, a commercial frequency domain finite element method based full-wave

electromagnetic solver. The reflection coefficient shows a minimum at 5.2 GHz. Us-

ing NFFF transformation technique in the FDTD region, the far-zone electric field is

computed as in (2.30). The antenna directivity pattern is then computed as

Dθ(ω, θ, φ) =
2π

η

|Eθ(ω, θ, φ)|2
Prad(ω)

(6.17a)

Dφ(ω, θ, φ) =
2π

η

|Eφ(ω, θ, φ)|2
Prad(ω)

(6.17b)

D(ω, θ, φ) = Dθ(ω, θ, φ) + Dφ(ω, θ, φ) (6.17c)
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(a) Geometry

(b) Hybrid Mesh

Figure 6.8: Modeling of coaxial line fed square patch antenna.
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Figure 6.9: Reflection coefficient of patch antenna indicating the resonant frequency

where η = 377 Ω is the intrinsic impedance of free space. Prad(ω) is the total radiated

power computed as

Prad(ω) =
1

2η

∫ 2π

0

∫ π

0

[

|Eθ(ω, θ, φ)|2 + |Eφ(ω, θ, φ)|2
]

sin θ dθ dφ

≈ ∆θ∆φ

2η

Nθ
∑

i=0

Nφ
∑

j=0

[

|Eθ(ω, i∆θ, j∆φ)|2 + |Eφ(ω, i∆θ, j∆φ)|2
]

sin i∆θ.

(6.18)

Note that the accuracy of the computation of Prad(ω) in the discrete case depends on

the angular resolution ∆θ and ∆φ of the far-field observation points. The pattern results

for all the examples are shown in this Chapter, where ∆θ = 1◦ with Nφ = 180 and

∆φ = 5◦ with Nφ = 72. The frequency domain NFFF transformation is used as it is

more efficient when the number of far-field observation points are high, as in this case.

The directivity pattern in the principal planes at 5.2 GHz for the square patch an-

tenna is shown in Figs. 6.10(a) and (b) where broad beam-widths in both the planes, the
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(a) H-plane pattern
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(b) E-plane pattern

Figure 6.10: Directivity pattern results for the modeling of coaxial line fed square patch
antenna.
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typical characteristic of patch antennas, are observed. The patterns are in a good agree-

ment with HFSS results also shown in Fig. 6.10. With the offset in the feed along the

y− axis, the E−plane of the patch is the yz− plane and the H−plane is the xz−plane.

Note that the E−plane pattern has a broader beam-width than the H−plane pattern.

While the H−plane pattern is symmetric about θ = 0◦, the E−plane pattern is asym-

metric due to the offset in the coaxial feed along the y−axis. The computed maximum

directivity, D0, at 5.2 GHz is 4.64 dB.

6.4.2 Stripline-fed Vivaldi Antenna

Vivaldi antennas typically exhibit wide bandwidth characteristics, and with proper

design, can potentially be used for UWB applications. The vivaldi antenna considered

in this example is a stripline-fed tri-plate structure as shown in Fig. 6.11(a). Vivaldi

patterns are etched out in the ground planes of the tri-plate structure. The substrate has

a dielectric constant of εr = 2.2 and is assumed to be lossless. The thickness of the

substrate is 1.5 mm and the feed is embedded in the middle of the substrate i.e., at a

depth of 0.75 mm. The width of the stripline is 1 mm. The curvature of the vivaldi taper

is defined as an exponential function of the form y = c1e
Rz + c2 where

c1 =
y2 − y1

eRz2 − eRz1

c2 =
y1e

Rz2 − y2e
Rz1

eRz2 − eRz1

and R = 0.2 are constants describing the profile of the tapering between the points P1

and P2 shown in Fig. 6.11(a).

The steps involved in the modeling of this antenna using the hybrid FETD-FDTD

code is illustrated in Fig. 6.11. The first step is to generate the 3-D solid model of the

antenna structure with clearly defined boundary conditions as shown in Fig. 6.11(b).

The second step shown in Fig. 6.11(c) is to specify the boundary of the finite element

region as a set of rectangular faces with edge length equal to the chosen FDTD cell size.
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The finite element boundary encloses the antenna structure. To reduce the number of

implicit unknowns and hence decrease the CPU time for the solution, it is necessary for

the finite element boundary to closely enclose the radiating structure. The third step,

shown in Fig. 6.11(d) is the tetrahedral mesh generation of the finite element region.

Either a Delaunay tessellation or an advancing front algorithm can be utilized. How-

ever, it is to be taken care that on the boundary of the finite element region specified

in step 2, no new nodes are inserted. This condition is not necessarily satisfied by a

general Delaunay tessellation based mesh generator where as mesh generators based on

advancing front algorithm can guarantee a mesh which respects the requirement on the

finite element boundary. The final step in the mesh generation for the hybrid method,

shown in Fig. 6.11(e), is to enclose the tetrahedral mesh with hexahedral, pyramidal and

tetrahedral elements as discussed in Sec. 6.2.1. In the implementation, steps 2, 3 and 4

can be automated.

The FDTD cell size is 1 mm and maximum edge length allowable in the finite ele-

ment mesh is set as 1.5 mm. The resulting finite element mesh has 73,962 tetrahedral

elements, 4,844 hexahedral elements and 17,850 pyramidal elements. The total number

of unknowns in the finite element region with mixed order basis functions is 450822.

The FDTD domain size is 22×43×52 cells enclosed by a 8 cell thick PML. While the

matrix factorization takes 20 mins, the wall time for hybrid time stepping for 4000 time

steps is 2hrs. The results of the reflection coefficient obtained in the band of 2 GHz-7

GHz, using the hybrid FETD-FDTD code and HFSS are shown in Fig. 6.12, where a

good agreement between the two results are observed. The vivaldi antenna modeled

in this example is an unoptimized test case and hence the impedance bandwidth is not

appreciable.

The directivity pattern of the antenna for each polarization viz., Dθ and Dφ in the

two principle planes at discrete frequencies of 2 GHz, 3 GHz, 5 GHz and 7 GHz are
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Figure 6.11: Step involved in the modeling of stripline fed Vivaldi antenna using the
FETD-FDTD code.
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Figure 6.12: Comparison of reflection coefficient of stripline fed Vivaldi antenna.

shown in Fig. 6.13, Fig. 6.14, Fig. 6.15 and Fig. 6.16, respectively. A frequency do-

main NFFF transformation is applied in the FDTD region to obtain the far-field solution

based on which the directivity is computed. At all frequencies, good agreements with

HFSS results are observed. Since the tapered slot has wider aperture in the yz-plane, the

beam-width in the yz-plane is narrower than the beam-width in the xz-plane. This fact

is in agreement with the numerical results at all frequencies. At center of the aperture

the electric field has a strong Ey component and hence the E−plane is the yz-plane.

The xz-plane is the H− plane. The cross-polar pattern in the H−plane is relatively

stronger than the cross-polar pattern in the E−plane at all frequencies. This result is

in agreement with the results for a similar vivaldi antenna configuration, obtained using

analytical technique in [104]. It is also observed from the results that the asymmetry

in the antenna geometry along the E−plane due to the stripline feed structure does not

have significant impact on the symmetry of the pattern in that plane.
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(b) yz-plane pattern

Figure 6.13: Results of directivity pattern at 2 GHz for the stripline fed Vivaldi antenna.
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(b) yz-plane pattern

Figure 6.14: Results of directivity pattern at 3 GHz for the stripline fed Vivaldi antenna.
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Figure 6.15: Results of directivity pattern at 5 GHz for the stripline fed Vivaldi antenna.
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Figure 6.16: Results of directivity pattern at 7GHz for the stripline fed Vivaldi antenna.
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6.4.3 Balanced Anti-podal Vivaldi Antenna

The next example is the modeling of a wideband anti-podal vivaldi antenna. The

simulated problem was set as the 2000 CAD benchmark problem by Microwave Engi-

neering Europe [105]. The requirement was to compute the reflection coefficient of the

stripline fed antenna structure shown in Fig. 6.17 in the frequency band 0.5-10 GHz.

From the geometry it is seen that both the microstrip line and ground plane gradually

flare out. The antenna is a triplate structure with the substrate being 40 mm×90b mm

with a dielectric constant of εr = 2.32. The strip line track width is 3 mm. The com-

bined thickness of the two sandwiched substrates is 3.15 mm and the antenna is fed by

a stripline port of dimension 12 mm by 3.15 mm. The antenna geometry with elliptic

output flares, details of which can be found in [105], is a typical example to highlight

the advantage of the hybrid method with unstructured mesh to model the geometry ac-

curately. ∆h is set as 2 mm. Also shown in Fig. 6.17 is the triangulation of PEC surface

of the antenna geometry in the final finite element mesh. Solution using both edge

element and higher order basis functions are obtained using the same hybrid mesh. The

number of unknowns in the FETD region is 119,898 in the case of the edge elements;

and is 657,546 in the case of higher order basis functions for tetrahedral elements. For

both the cases, the FDTD region has 38×18×62 cells surrounded by a 8 cell thick PML

region. For the higher order solution, complete Cholesky factorization with re-ordering

takes 48 mins and the time taken for time-stepping 5000 time steps is 4 hrs. The TEM

modal distribution on the stripline feed is shown in Fig. 6.18. The reflection coefficient

at the port obtained using both edge element and higher order basis functions is com-

pared with the results obtained using HFSS in Fig. 6.19. As expected, the higher order

solution has excellent agreement with HFSS than the lower order edge element solution.

The S11 reported in Fig. 6.19(a) is the case with matched input impedance at the antenna

feed terminal. It is observed that the 10 dB bandwidth is from 2.8-7.6 GHz. Though
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Figure 6.17: Geometry of balanced anti-podal Vivaldi antenna and triangulation of PEC
surface in the finite element mesh.

165



Figure 6.18: TEM modal solution on the stripline port feeding the balanced antipodal
Vivaldi antenna.

not shown, the results are comparable to the results from other commercial codes in-

volved in the benchmark exercise [105]. In Fig. 6.19(b), S11 after renormalization to a

50 Ω input impedance is shown, where again a good agreement with the results from

HFSS can be observed. The time domain modal electric field amplitude of the reflected

signal at the stripline port obtained with edge element and higher order basis functions

is compared in Fig. 6.20. The input signal is a differentiated Guassian pulse. Though

a similar trend is observed in the two waveforms the lower order solution in general

lags behind the more accurate higher order solution. It is to be noted that the HFSS

solution in the benchmark exercise was obtained using adaptive mesh refinement while

the FETD-FDTD solution with higher order basis functions proposed in this thesis is

obtained by a crude increase in the order of basis functions in the FETD region.
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Figure 6.19: Comparison of reflection coefficient of balanced anti-podal Vivaldi an-
tenna.
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Figure 6.20: Modal amplitude of received signal at the stripline port feeding the bal-
anced anti-podal Vivaldi antenna.

6.4.4 Printed Dipole Antenna

The next example is the modeling of a planar printed dipole antenna fed by a mi-

crostrip line. The antenna was originally designed as an unit cell of an antenna array

developed at Temasek Laboratories, National University of Singapore. The top and the

ground plane of the fabricated antenna prototype are shown in Figs. 6.21(a) and (b),

respectively. The two dipole arms are 5 mm wide and flared out for better impedance

bandwidth performance. The printed dipole arms are fed by a wideband balun structure

transitioning from a 50 Ω microstrip line. The balun is etched in the ground plane of

the substrate as shown in Fig. 6.21(b). The microstrip line is fed through a 50 Ω SMA

connector. The numerical model of the geometry is shown in Fig. 6.21(c) with the de-

tailed modeling of the coaxial line to microstrip line transition as shown in Fig. 6.21(d).

The substrate has a dielectric constant of εr = 2.2 and a thickness of 0.787 mm. The
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(a) Top plane (b) Ground Plane

(c) Model (d) Coax-to-Microstrip Port

Figure 6.21: Fabricated prototype and numerical model of printed dipole antenna.
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Figure 6.22: Comparison of reflection coefficient of planar printed dipole antenna.

input reflection coefficient was measured in the band 2-4 GHz. The S-parameter mea-

surement was performed using HP8510C network analyser. The results of the reflection

coefficient obtained using the hybrid code are compared with the measurement results

in Fig. 6.22. The numerical solution using the hybrid code was obtained under three

different FDTD grid sizes viz., ∆h = 4 mm, 2 mm and 1 mm. The results for all the

three cases are shown in Fig. 6.22 and compared with the measurement results to show

the convergence behaviour of the numerical solution. It is observed that the agreement

of the numerical results with the measurement results improves significantly as the grid

size gets finer. This behaviour in the solution with different grid resolution suggests

and substantiates the need for adaptive mesh refinement techniques for optimal per-

formance of the hybrid method. Adaptive mesh refinement techniques have not been

well explored in the FETD method unlike the frequency domain FEM case and is gain-

ing interest fairly recently. One of the possible future directions to extend the current

work would be to develop adaptive error estimation and reduction techniques within the
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FETD method.

6.4.5 Square Planar Monopole Antenna

The final example is the modeling of square planar monopole antenna proposed

in [106]. The antenna has ultra-wideband characteristics and is intended to be used in

the frequency band of 2-11 GHz specifically for IEEE 802.11a applications. The an-

tenna geometry is a simple square plate with notches on the lower corners, as shown

in Fig. 6.23(a). In [106], it is shown that by properly selecting the dimensions of the

notches good impedance bandwidth can be achieved. A particular dimension of notches

was reported leading to a four-times larger impedance bandwidth compared to a simple

square monopole antenna. The square plate is fed by a 50 Ω SMA connector through a

via hole on the ground plane. The square plate has a dimension of 30 mm×30 mm and

the size of the ground plane is 100 mm×100 mm. The input impedance of this antenna

in the band of 2-13 GHz is computed using the hybrid code. The FDTD grid size is set

as 2 mm. In Fig. 6.23(b), the cross section of the hybrid mesh along the xz−plane is

shown. The number of implicit unknowns is reduced significantly by having the finite el-

ement region closely conforming to the square plate and the ground plane. In Fig. 6.24,

the reflection coefficient at the port, computed using the hybrid method, is compared

with the measured and HFSS simulation results reported in [106]. All three results

exhibit similar trend in the return loss across the entire band. In Fig. 6.25, Fig. 6.26 and

Fig. 6.27, the directivity patterns of the antenna at 2.5, 5 and 7.5 GHz in both the xz−

and yz− planes are compared with the HFSS results reported in [106]. A good agree-

ment in the overall pattern is observed and minor difference in the results from HFSS

and the time domain hybrid method is attributed to the difference in modeling of the

ground plane. In the hybrid code, the ground plane is modeled as a PEC box enclosing

the coaxial conductor. At 2.5 GHz, being in the lower frequency of the band, the antenna
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(a) xz-View (b) Hybrid Mesh

Figure 6.23: Numerical modeling of square planar monopole antenna

has similar butter-fly patterns in both xz− and yz− planes even though the geometry

has an asymmetry along the two planes. As the frequency increases, the patterns in the

two principal planes begin to differ.

6.5 Conclusion

The hybrid FETD-FDTD method offers an upper hand in the detailed and accurate

modeling of complex structures with a marginal loss in the efficiency of regular FDTD

method. By incorporating the antenna feed with TEM excitation in the FETD formula-

tion to obtain the modal reflection coefficient, full-wave simulation of antenna structures

with ports and transmission line feeds can be modeled. Successful application of the hy-

brid method on many real world antenna geometries demonstrates the potential use of

the techniques for analysis and design of complex antenna structures and in particular,

can be a vital tool in the characterisation of wideband and ultrawide band antennas.

The application of the method is not restricted to antenna modeling alone and can be

extended to problems in electromagnetic scattering and EMI-EMC related problems.
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Figure 6.24: Comparison of reflection coefficient of square planar monopole antenna.
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Figure 6.25: Results of directivity pattern at 2.5 GHz for the square planar monopole
antenna
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Figure 6.26: Results of directivity pattern at 5 GHz for the square planar monopole
antenna

−30

−30

−20

−20

−10

−10

0 dB

0 dB

90o

60o

30o

0o

−30o

−60o

−90o

120o

150o

180o

−120o

−150o

 

 FETD−FDTD
HFSS−Su et.al.

(a) xz-plane

−30

−30

−20

−20

−10

−10

0 dB

0 dB

90o

60o

30o

0o

−30o

−60o

−90o

120o

150o

180o

−120o

−150o

(b) yz-plane

Figure 6.27: Results of directivity pattern at 7.5 GHz for the square planar monopole
antenna
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The finite element method, with its rigorous mathematical foundations, has been

explored extensively in the frequency domain regime. However, its time domain coun-

terpart, the FETD method has been gaining interests in the CEM community only fairly

recently. The two basic finite methods viz., the FDTD method and the FETD method

are reviewed in Chapter 2. Each of the two methods have certain advantages and disad-

vantages. Hybrid CEM methods are formulated such that they retain the advantages of

a particular method, while overcoming disadvantages by hybridising the method with

a different method which complements the disadvantage. The hybrid FETD-FDTD

method is one such hybrid method which retains the efficiency of FDTD method in mod-

eling simple homegeneous shapes and overcomes stair-casing errors using the FETD

method which, in general, is based on unstructured grids. The basic idea of hybridising

the two finite methods to have a robust method for time domain solution of Maxwell’s

equations is presented in Chapter 2. Elimination of errors due to stair-case approxima-

tions is evident in the numerical examples. The advantage in terms of efficiency of the

hybrid method over regular FDTD method is also highlighted. However, the conditional

numerical stability of FDTD method is lost. Two kinds of instabilities are observed viz.,

a) weak-instability where the solution grows linear with time and b) severe-instability

where the solution grows exponentially with time. While the problem of linear time

growth is inherent with FETD method, the severe-instability is an artifact which ap-

pears as a consequence of the hybridisation scheme.
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In Chapter 3, the problem of linear time growth is thoroughly investigated. While so-

lution of the vector Helmholtz’s equation is obtained using edge element basis functions

in the FETD method, the divergence-free condition of the electric flux is neither explic-

itly nor implicitly imposed. Since edge elements span a gradient vector function space,

solution with non-zero divergence can exist in the FETD solution. A novel method of

applying constraint equations for obtaining a divergence-free solution by suppressing or

eliminating the gradient components in the solution is proposed. The constriant equa-

tions can be efficiently imposed using tree-cotree decomposition of the finite element

mesh. The method is extended for eigenvalue problems in the modeling of electromag-

netic resonators and is successfully applied to eliminate the appearance of non-physical

DC modes.

With the weak-instability in the form of linear time growth observed in FETD

method controlled using constraint equations, the problem of severe-instability encoun-

tered in the FETD-FDTD method is investigated in detail in Chapter 4. A framework for

studying the stability of the hybrid FETD-FDTD method and an investigation of stabil-

ity under different hybridisation schemes is presented. The equivalence between FDTD

method and a special case of FETD method on hexahedral elements with trapezoidal in-

tegration and central differencing in time was shown. It is this fact that enables a stable

hybrid FETD-FDTD method to be formulated. By treating the volumetric elements in

the finite element mesh as either implicit or explicit instead of the unknowns, hybrid up-

date eqautions with symmetric update coefficient matrices are obtained. Subsequently,

condition on choice of time-step to have a stable time-marching scheme is derived.

Many concepts from the frequency domain FEM can be extended and explored in the

time domain regime. Some of the concepts include error estimation and adaptive mesh

refinement techniques. An example is the method of treatment of hanging variables

dicussed in Chapter 5. It is shown that with successful treatment of hanging variables

in hexahedral elements stable FDTD sub-gridding method can be achived. The method
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proposed is based on single time-step scheme, with the update of unknowns in both

the coarse and the fine regions having the same time step which statisfies the Courant

criteria for the coarse grid. A research topic that needs further investigation is to extend

the method for the multiple time-step case with the coarse and the fine regions having a

different time step, dictated by the Courant criteria for the particular region. Following

the lines of the proposed subgridding scheme and further research in the adaptive mesh

refinement techniques for the time dependent case can lead to adaptive subgridding

schemes.

In Chapter 6, the robustness of the 3-D hybrid FETD-FDTD method in the con-

text of antenna modeling with examples of simulation of radiation from geometrically

complex antennas is presented. With the accurate modeling of ports which excite the

antenna element with the TEM mode, computation of modal reflection coefficient at

the port terminal is presented. The use of higher order heirarchical basis functions in

the tetrahedral elements of the FETD region allows the use of coarse mesh with better

representation of the field solution. Agreement of the numerical results with the results

obtained from other commericial CEM CAD tools such as Ansoft HFSS and measure-

ment results demonstrate the potential application of the hybrid method in the design and

analysis of broadband and ultrawideband antennas. There are two areas which could be

improved. Firstly, increasing the order of accuarcy in the FDTD region using higher

order FDTD schemes and deriving an equivalent FETD scheme could lead to a hybrid

method which has low dispersion errors and is highly efficient with larger elements

and needing fewer unknowns for the representation of the field solution. Secondly, ex-

ploring techniques for the relaxation of requirements in the hybrid mesh generation.

In Chapter 5, an attempt to alleviate the need for pyramidal elements at the interface

of tetrahedral and hexahedral elements using techniques similar to hanging variables

is presented along with the pitfall of appearance of spurious modes which renders the

technique infeasible. Future work would be to develop techniques which can support
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non-matching interfaces. Investigation in the lines of the recently introduced domain

decomposition techniques for FEM solution of time harmonic Maxwell’s equations is

necessary. Also in Chapter 6, improvement in the accuracy of the solution with higher

order basis functions in the FETD region and mesh refinement were demonstrated. This

clearly highlights the need for extending/developing the concepts of error estimation and

adaptive refinement techniques to time domain methods and in particular to the FETD

method.
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