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Summary 
 

In this thesis, different aspects of TMDSC are studied and the main results are 

given below. 

(1) Effects of the contact thermal resistance on the observed specific heat 

• The relationship among the measured heat capacity, the actual heat capacity and 

temperature modulation frequency of heat flux type TMDSC is similar to that of a 

low-pass filter. 

• Careful sample preparation is important because too large or too small a sample mass 

(relative to the mass of the calibration reference) will lead to increased errors in the 

measured specific heat. 

• When TMDSC device works in the conventional differential scanning calorimetry 

(DSC) mode, the measured specific heat of the sample is not affected by the contact 

resistance.  

(2) Effects of the internal thermal resistance of the sample with a low heat diffusivity 

• A model that takes into account the thermal diffusivity of the sample is used and an 

analytical solution is derived. 

• To improve the accuracy of measured specific heat, we may use a longer temperature 

modulation period, or reduce the sample thickness and mass.  

(3) Effects of the non-reversing heat flow on the separability of the reversing heat flow and 

non-reversing heat flow 

The separability of non-reversing heat flow (NHF) and reversing heat flow (RHF) 

by TMDSC depends on the NHF and temperature modulation conditions. Two 



  vi 

different types of NHF are considered: time dependent NHF and temperature 

dependent NHF. 

• Time dependent NHF: The measurement of specific heat (cp), is applicable for the 

steady state where there is no NHF. While inside the NHF temperature range, if the 

modulation frequency is high enough, it still allows deconvolution of cp, HF, RHF, 

and NHF by Fourier transform. 

• Temperature dependent NHF: The NHF will be modulated by the temperature 

modulation and the NHF will contribute to the modulated part of the total heat flow 

(HF). This in turn can affect the linearity of the entire TMDSC system.  

(4) Study of the general situation and comparison with experimental results 

• A general case that takes into account a kinetic reaction that is both time and 

temperature dependent is studied. 

• Several kinetic models are used to demonstrate the importance of the selection of the 

experimental parameters as well as their effects on the system linearity.  

• TMDSC experiments with several melt spun Al-based amorphous alloys are carried 

out to demonstrate the unique capabilities of TMDSC. These include the ability to 

measure the differences between the specific heats of a sample in a fully amorphous, 

partially crystallized, or fully crystallized state. 

• The imaginary part of the complex heat capacity can be defined as C" ≅ -fT'/ω, where 

fT' is the temperature derivative of the kinetic heat flow and ω is the angular 

frequency of temperature modulation. It should be pointed out that this definition 

only holds true when the TMDSC system linearity satisfies (fT'/ Csω)<<1. 
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Chapter 1 Literature Review 
 
 
1.1 Review on dynamic thermal calorimetry 

The use of dynamic or temperature modulated calorimetry can be traced back 

to the early twentieth century [1]. Corbino [1] was the first to develop the temperature 

modulation method and to describe how to use the electrical resistance of conductive 

materials to determine the temperature oscillations. By feeding an alternate electrical 

current (AC) into a sample, the oscillation in resistance can be deduced by recording 

the third harmonic of the voltage signal over the sample. This in turn allows the 

determination of the specific heat. This work laid the foundation for the 3-ω method 

(ω is the angular frequency of the alternate current applied) that has a wide range of 

applications today [2]. Part of the reason for the increasing use of dynamic 

calorimetry is the rise of interest in the dynamic heat capacity of materials, which 

cannot be observed by the conventional differential scanning calorimetry (DSC) [3]. 

The major developments in dynamic calorimetry since the beginning of the 20th 

century are listed in Table 1.1 [4―18]. 

Table 1.1 Historical events in dynamic calorimetry 

Year Event Researcher(s) Ref. 

1910 Theory and application of third harmonic principle Corbino [1] 
1922 Thermionic current oscillation Smith, Bigler [4] 
1960 Development of 3-ω method Rothenthal [2] 
1962 AC method with bridge circuit Kraftmakher [5] 
1963 Photo detector application Loewenthal [6] 
1965 Electron bombardment heating Fillipov& Yuchak [7] 
1966 Resistive heating & low temperature experiment Sullivan, Seidel [8] 
1967 Modulated light heating Handler et al. [9] 
1974 High pressure calorimetry Bonilla,Garland [10] 
1979 Improvement of light modulation method Hatta et al.  [11,12] 
1981 High frequency relaxation study (>105Hz) Kraftmakher [13] 
1986 Specific heat spectrometer Birge, Dixon [14-16] 
1989 Small sample measurement (<100ug) Graebner et al. [17,18] 
1993 TMDSC Reading et al. [3] 
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In the early 1960s, significant progresses in dynamic calorimetry were made 

by Rodenthal [2] and Filoppov [19] in the high-temperature range (>1000oC), where 

the temperature of metallic or refractory samples was detected by measuring the 

change in resistance or thermal radiation. In 1962, Kraftmakher developed the AC 

calorimetry that could measure the heat capacity of metals up to 1200oC [5]. In 1981, 

Kraftmakher applied very high frequency (105 Hz) to AC calorimetry [20]. In 1966, 

Sullivan and Seidel [8] introduced a new AC calorimetry that used an external light or 

resistive heating to heat the sample on a supporting platform. This method allowed the 

determination of the heat capacity of almost any solid or liquid material if certain 

conditions concerning thermal relaxation times are satisfied [8]. Numerous 

experiments were carried out in the years that followed. Among them were those that 

can measure heat capacities near phase transitions with high energy and high 

temperature resolutions (<10-5K) [11, 21―32], measurements carried out at high 

temperatures [10, 22, 25, 33―37] or in magnetic fields [17, 21, 30, 37, 38]. There 

were also experiments conducted with extremely small sample mass (25 µg) [17, 28, 

29, 39, 40―42], thermal diffusivity measurement of thin films by periodic heating 

[11, 43―45], experiments in noisy environment [30] and with slow scanning rates 

(<0.1 K/h) [29, 32, 46]. The method based on the pioneer work on the modulation 

frequency dependent heat capacity by Birge, Nagel [14, 15], and Dixon [16] using the 

3-ω approach has been further developed [47―51]. The advances in temperature 

modulated calorimetry in the 1970s and 1980s finally saw the integration of the 

modulation technique with the widely used conventional DSC instrument, which is 

now known as “temperature modulated differential scanning calorimetry” (TMDSC) 

[3].  Some references on dynamic calorimetry are listed in Table 1.2 according to their 

topics [1―161]. 
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Table 1.2 Some references on dynamic calorimetry classified into different research 
topics 
Subjects Ref. 
Basic theory  

     (1)AC calorimetry [13,20,22, 24,29,32,52-65] 

     (2)Dynamic specific heat [8,10,13,14,16,26,33,35,43,44,45, 54,66-85] 

Calorimetric heating methods  

     (1)Electrical [5,12,15,34,38,40,86-97] 

     (2)Light [9,10,21,36,39,63,76,98-104] 

     (3)Electron [19,61,105] 

     (4)Induction [106,107] 

Detection of temperature oscillations   

     (1)Resistance thermometer [22,23,25,28,30,32,41,108-114] 

     (2)Thermocouple [35,42,64,70,93,98,102,115] 

     (3)Photoelectric detector [6,56,116] 

Different temperature test range  

     (1)Low [40,47,57,60,89,106,117-133] 

     (2)Normal [4,9,26,27,29,45,51,85,94,95, 107,134-143] 

External conditions for samples  

     (1)High magnetic field [17,21,30,37,102,109,144-146] 

     (2)High pressure [10,25,29,33-37,137] 

Measured physical parameters  

     (1)Thermal conductivity [43,110,111,147-149] 

     (2)Thermal diffusion [63,64,76,77,100-102,109,147,150-152] 

     (3)Heat capacity and phase  [78,153-155] 

     (4)Heat capacity and frequency [130,156] 

     (5)Heat capacity and time [89,118-120] 

Special implementations  

    (1)multi-frequency TMDSC [157-159] 

    (2)High precision calorimetry [18,23-32,39,143,160] 

    (3)Specific heat spectrometry [39,71,87,99,153] 

    (4)Very small samples [41-43,50,96,102, 161] 

    (5)High frequency methods [61,106] 

    (6)3-ω method [1,48-51,54,83,91] 

 
Today many different kinds of dynamic calorimetric devices are commercially 

available, although they may have used different terminologies, different temperature 
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modulation programs, or slightly different mathematical algorithms. These devices 

include MDSC (modulated DSC), or TMDSC (temperature modulated DSC), DDSC 

(dynamic DSC) and SSADSC (steady-state alternating DSC) [162]. The same 

modulation techniques can be used in other thermal analysis technologies (for 

example, DTA and TGA) as well [163]. 

 

1.2 The 3-ω method: A milestone in dynamic thermal calorimetry  

Special attention is given to the 3-ω method here because of its importance in 

the history of dynamic calorimetry. Many of the later dynamic calorimetric 

approaches were based on similar principles or are its derivatives. Furthermore, 

modern improvements to the 3-ω method have greatly extended its capabilities and 

thus it is applied more frequently in many research fields due to its wide dynamic 

frequency range. The basic principles of the 3-ω method are discussed below. 

 

 

 

 

 

 

 

 

Fig. 1.1 Schematic diagram of the 3-ω method (For solid materials, the heater or 
thermo-couple is coated on the sample surface; while for liquid samples, it is 
deposited onto a substrate that is immersed in the liquid). 
 
 

 

V(t) 

i(t) R(t)
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As shown in Fig. 1.1, a thin film heater with resistance R(t) is coated onto a 

substrate and submerged in a liquid medium that needs to be tested [54]. This heater is 

also used as a thermo-couple. When an alternate current i(t) of amplitude I and 

angular frequency ω passes through the heater, where 

)sin()( tIti ω⋅= ,       (1.1) 

and t is time, then the heat flow (HF), generated by the alternate current is 

( ) [ ])cos( t2-1RI
2
1RtiHF 22 ω== ,      (1.2) 

which consists of a DC (direct current) and an AC part. The DC part can produce a 

constant thermal gradient in the liquid medium, while the AC part with a frequency of 

2ω generates a temperature oscillation with an identical frequency. Solving the 

relevant heat transfer equations associated with the heater-liquid system, one obtains 

the change in the temperature of the heater [54] 

λω
ω

p

o
1

c2
45t2KtT )cos(

)(
−

=∆ ,      (1.3) 

where K1 is a system constant that can be obtained by a calibration process, cp and λ 

are the specific heat and thermal conductivity of the liquid surrounding the heater, 

respectively. 

Since the resistance of the heater is a linear function of the temperature if the 

temperature change is small, the temperature change given in Eq. (1.3) in turn can 

generate an oscillation in the electrical resistance R(t) that satisfies [54] 

[ ])()( tT1RtR R0 ∆⋅+⋅= α ,       (1.4) 

where R0 is a known resistance value at a certain temperature and αR is the 

temperature coefficient of resistivity of the heater. Therefore, the voltage drop across 

the heater is [54] 
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KtIRtitRtV ωω
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         (1.5) 

On the right hand side of Eq. (1.5), sin(ωt) and sin(-ωt+45) are the basic 

oscillation terms, which has the same angular frequency as i(t). Besides, there is a 

third harmonic term V3ω(t), which is related to the sample properties αR, cp, and λ and 

given by 

)sin()sin()( 0
3

0

p

1R
03 45t3A45t3

c22
KIRtV −=−

⋅
= ωω

λω
α

ωω , (1.6) 

where A3ω is the amplitude of the third harmonic. 

For most materials that can be used as the heater as well as thermo-couple, the 

temperature coefficient of their resistivity αR generally is small (αR<<1), hence 

λωα p1R c22/K⋅ <<1 [54]. Accordingly, the oscillation term that is related to the 

thermal properties of the sample is easily dominated by the much larger term 

IRosin(ωt). However, if the third harmonic component V3ω(t) in Eq. (1.5) can be 

obtained from V(t), then one has [54] 

2

3

1R0
p A2

KIR
2
1c ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

ω

α
ω

λ .      (1.7) 

When the 3-ω method was first introduced, the measured result was only a 

product of cp  and λ, as can be seen in Eq. (1.7). However, it had been observed that λ 

changed very little as a function of temperature, thus the change in the product of cp 

and λ was mostly determined by the change in cp. Later, by utilizing the phase angle 

information and a slightly different procedure, cp and λ could be effectively separated 

[164].  



 Chapter 1  

  7 

In 1986, Birge and Nagel [153, 164] introduced this method as a new specific-

heat spectroscopy and used it to study glass transitions. The heater or thermo-couple 

was a metallic thin film deposited on a special substrate with a low cp λ product. The 

third harmonic signal was obtained with a delicate Wheatstone bridge circuit [54]. 

This apparatus is schematically shown in Fig. 1.2. Here R1 is a resistor with high-

accuracy but low temperature coefficient of resistivity. The sample and the heater or 

thermal couple fixture is connected at the lower left side of the bridge (see Fig. 1.2). 

The values of R2 and Rv are a couple of orders of magnitude larger than those on the 

left arm of the bridge. The three-probe method is used to remove the lead effects in 

balancing the bridge. An electrical sine wave is injected into the circuit, and the third 

harmonic is monitored at the output side of Fig. 1.2 by a signal scanner. A lock-in 

amplifier is used to provide the required stability and synchronization.  

 

 

 

 

 

 

 

 

Fig. 1.2 Schematic diagram of the 3-ω dynamic calorimetry with a bridge circuit. 
Adapted from [54]. 

 

Fig. 1.3 shows a typical dynamic specific heat curve which was obtained from 

a super-cooled liquid polymer in the glass transition process [54]. Due to the 

relatively large relaxation time of the glass transition, which is comparable to the 
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modulation period, it can be seen that the specific heat of the sample is not constant at 

each temperature point. Instead, the specific heat depends on the modulation 

frequency and is larger at a lower frequency (1/256 Hz) than that at a higher one (1/8 

Hz) during the glass transition, while it is frequency independent outside the glass 

transition. The difference in specific heat before and after the glass transition is quite 

significant. 

 

Fig. 1.3 Dynamic heat capacity of a super-cooled liquid at different modulation 
frequencies. Adapted from [54]. 

 

 
1.3 Comparison between the conventional DSC and TMDSC 

1.3.1 Principles and advantages of TMDSC 

The AC calorimetry invented by Kraftmakher [5] in 1962 was based on the 

temperature modulation through a direct heat path to the sample that is confined in a 

semi-adiabatic heat shield. The thermal relaxation time of the calorimetric cell is in 
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the order of a few minutes or longer. The basic modulation idea was similar to its 

modern TMDSC derivatives but did not incorporate a linear temperature ramp [7]. 

In 1993, Reading [3] proposed using a sinusoidal oscillation temperature that 

is super-imposed on a linear temperature scan in the conventional DSC device. This 

idea became the basis of what is known today as the temperature modulated DSC. 

Fig. 1.4 shows the structural diagram of a heat flux type TMDSC proposed by 

Reading [3]. TMDSC shares many similarities with a conventional DSC in structure, 

thus a TMDSC device can switch from TMDSC mode to DSC mode or vice versa 

conveniently. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.4 A heat flux type TMDSC device. Adapted from [3]. 

 

The main difference between TMDSC and the conventional DSC is in the 

control of the sample temperature and data treatment method. In addition to the 

underlying heating rate, TMDSC has incorporated a temperature modulation 

technique so that the sample temperature follows a periodic wave pattern (such as a 

sinusoidal wave, see Fig. 1.5). Fourier transform is used in the calculation of specific 
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heat, heat flows and so on. The temperature modulation may also be in other forms 

such as a square wave, saw-tooth wave, triangular wave and pulse wave [3]. A fast 

heating rate (e.g., 200 K/min) can be easily reached with a high-power heater, but the 

cooling speed is limited by the thermal inertia of the silver block (see Fig. 1.4) itself, 

especially when the heater reaches the ambient temperature. To overcome this 

problem, a rapid cooling system can be used to dissipate heat from the TMDSC cell 

directly if necessary, either through compressed air or liquid nitrogen. Thus a wider 

dynamic programmable temperature range can be realized. Because of these design 

features, TMDSC has the following advantages over conventional DSC. 

 
 
 

 
 
 
Fig. 1.5 Sinusoidal modulation wave superimposed on a linear heating rate, q. Ts(t) is 
the sample temperature, Tq(t) is the underlying temperature, Tω(t) is the modulated 
temperature, T0 is the initial temperature, and ATs is the modulation amplitude. 
 
 
 
 
 
 
 

Ts(t)=T0+qt+ATssin(ωt) 

Tq(t)=T0+qt 

Tω(t)=Assin(ωt) 

Time 
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1.3.1.1 Better temperature resolution and ability to measure specific heat in a 

single run   

Specific heats of various solid or liquid materials were normally determined 

by the conventional DSC method before TMDSC became available. In the 

conventional DSC, the relationship among the heat flow, HF, and the specific heat of 

the sample, cp, satisfies the following equation: 

)( srps
s

ps TTKqcm
dt

dT
cmHF −==⎟

⎠
⎞

⎜
⎝
⎛⋅= ,   (1.8) 

where ms is the sample mass, K is the system thermal constant, Ts is the sample 

temperature, Tr is the reference temperature, and q is the linear heating rate. To 

compensate for the device bias, two different runs are normally carried out, either 

with two samples of different masses, m1 and m2, or a single sample with two 

different heating rates. For the two-sample method, we have 

)( 21

21
p mmq

HFHFc
−

−
=  ,       (1.9) 

while for the single-sample method conducted with two different heating rates, we 

have 

)( 21

21
p qqm

HFHFc
−

−
= .        (1.10) 

To obtain a better signal sensitivity, especially for small samples, it is 

necessary to increase the scanning rate so that the heat flow, HF, can be easily 

detected and quantified. However, this will sacrifice the temperature resolution. 

However, if a modulated temperature is added to the underlying heating rate, 

the above problem can be largely solved. With proper modulation conditions, both 

high-temperature resolution and signal sensitivity can be obtained [3, 166]. This is 

explained below. 
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If the heater is so modulated that a sinusoidal wave is superimposed on a 

relatively small linear underlying heating rate q, then the sample temperature Ts is 

Ts=T0+qt+ATssin(ωt) (see Fig. 1.5), where ATs is the amplitude of sample 

temperature. We obtain the heat flow   

[ ])cos( tAqcm
dt

dT
CFH Tsps

s
s ωω+⋅=⎟

⎠
⎞

⎜
⎝
⎛= ,    (1.11) 

where Cs or cpms is the heat capacity of the sample.  

In this case, both the heat flow and the sample temperature are composed of 

two parts: one related to the underlying linear scanning; the other to the temperature 

modulation. The modulated part of the sample temperature is 

( ) ( )tA  tT Tscyclics ωsin= ,      (1.12) 

and the modulated part of the heat flow is 

)cos()cos( tAtAcm FH HFTspscyclic ωωω == .   (1.13) 

Comparing Eq. (1.12) with Eq. (1.13), we notice that if the amplitude of the 

sample temperature, ATs, and the amplitude of modulated heat flow, AHF, are obtained 

simultaneously, we can find the specific heat of the sample 

ωTss

HF
p Am

Ac = .       (1.14) 

The underlying heating rate q does not appear in the above equation, which 

means that the calculated specific heat is not affected by the underlying heating rate. 

Thus, even with a small or zero underlying heating rate, the specific heat can still be 

determined. Hence, a better temperature resolution can be achieved compared to 

conventional DSC. Furthermore, from Eq. (1.13), it can be seen that by increasing the 

modulation frequency, ω, a larger heat flow amplitude, AHF, can be obtained, which 
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means a better signal sensitivity (or better signal to noise ratio) without changing the 

underlying heating rate.  

According to the above analysis, the specific heat of the sample can be 

determined over a temperature range with a single run even under a low heating rate. 

This is also an important advantage of TMDSC over conventional DSC in cases 

where the thermal history of the sample has a significant influence on its properties. 

Given that the TMDSC instrument is properly calibrated, we can obtain the 

specific heat cp(T) over the temperature range where an experiment is carried out 

( ) ( )
( )ωTAm
TATc

Tss

HF
p = .       (1.15) 

 Lacey et al. [165] described a more general case for a three-dimensional 

differential calorimetry. Their model is shown in Fig. 1.6. Applying the boundary 

conditions of heat transfer, they obtained the following equations for the heat 

capacities of the sample and reference (see Fig. 1.6)  

∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛

rS

r
r dS

n
TK

td
dTC ,      (1.16) 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛

Ss

s
s dS

n
TK

td
dT

C ,      (1.17) 

respectively, where ∂T/∂n is the temperature gradient in the calorimetry, Cs and Cr 

are the heat capacities of the sample and reference respectively, K is a system thermal 

constant, Sr and Ss are the boundary conditions for the reference and sample, 

respectively.  
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Fig. 1.6 A three-dimensional claorimetry model. Ss, Sr, and SF are the outside 
surfaces of the sample, reference, and furnace respectively. The temperature in the 
enclosed region satisfies ρcp(∂ T/∂ t)=K(∇ 2T). Adapted from [165]. 
 

When the furnace temperature is modulated to follow Aeiωt (the complex form 

of temperature is used here), the cyclic part of the temperature difference between the 

sample and reference can be derived [165] 

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡

++
=

r21

ti

scyclicsr Cik
eCAT-T

ωαα
ω

ω

Re ,   (1.18) 

where α1 and α2 are two constants determined by the structure of the calorimetry 

device that can either be calculated via numerical methods or more easily obtained 

from a calibration run. Thus, the heat capacity of the sample can be determined by 

[165] 

 ( ) ( )
ω

ωαα
A

Cik
T-TC r21

cyclicsrs
++

⋅= .    (1.19) 

The phase angle ϕ  between the sample and reference temperature is 

[ ]r21 Cik ωααϕ ++= )(arg .      (1.20) 

 
1.3.1.2 Ability to separate the reversing and non-reversing heat flows 

In many cases, when heated from room temperature to several hundred 

degrees or even higher, samples may experience some thermal reactions that can 

ρcp(∂ T/∂ t)=K(∇ 2T)

Ss Sr

Ts Tr

SF
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change their physical and the chemical properties. These reactions include glass 

transition, crystallization, re-crystallization, chemical reaction, curing, or evaporation 

and so on. These reactions may occur at the same time or in the same temperature 

range as that of a reversible heat flow caused by the reversible change in the heat 

capacity of the sample. Thus, the heat flow signals from these reactions and from the 

reversible changes of the sample overlap and can hardly be distinguished from each 

other in a conventional DSC device. 

Considering the possible heat released by these reactions, we have the thermal 

equation in the conventional DSC, [74, 75, 3, 166] 

( )Tt,fqCHF s += .       (1.21) 

In Eq. (1.21), HF is the total heat flow obtained by the calorimeter, f(t,T) is the 

kinetic or non-reversing heat flow (NHF) that is related to the kinetic heat generated 

in the reactions. Csq is the reversing heat flow (RHF) that is related to the heat 

capacity. q is the underlying heating or cooling rate. 

In TMDSC, the reversing heat flow is a thermodynamic event as it is due to 

vibrational and translational motions of molecules or lattices. These motions are very 

fast and can instantaneously follow any modulation of the sample temperature. With a 

modulated sample temperature, if the kinetic or non-reversing heat flow cannot follow 

the modulation and does not contribute to the modulated part of the heat flow, the HF 

in Eq. (1.21) thus is 

( )[ ] )cos( tAC Tt,fqC HF Tsss ωω++= .    (1.22) 

By extracting the modulated parts of the total heat flow and sample 

temperature, and inserting them into Eq. (1.15), we can find the heat capacity of the 

sample, Cs(T). Multiplying the heat capacity by the underlying heating rate, we can 

obtain the reversing heat flow 
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qCq
tA
tARHF s

Ts

HF ==
ω)(
)( .      (1.23) 

Hence 

ω)(
)(

tA
tAC

Ts

HF
s = .       (1.24) 

If the modulated part in Eq. (1.22) is averaged over a sliding Fourier transform 

window, then the total heat flow in TMDSC can be obtained [3]. It is therefore 

possible to separate the non-reversing heat flow, NHF or f(t,T), from the reversing 

heat flow, RHF, in a single run, i.e., 

RHF-HFNHF = .       (1.25) 

The separation of reversing and non-reversing heat flow is also the most 

important advantage of TMDSC over conventional DSC. It should be noted that the 

“non-reversing” processes might be reversible with large temperature changes. It is 

just that at the magnitude of the temperature modulations, they are not reversing. 

Block diagrams of the NHF and RHF separation or deconvolution process are given 

in Figs. 1.7 and 1.8, respectively [166]. In Fig. 1.7, the heat capacity is the ratio 

between the modulated heat flow and the modulated temperature. The total heat flow 

is an average of the modulated heat flow over a sliding transform window [3]. The 

reversing heat flow is the product of the heat capacity and the heating rate, and the 

non-reversing heat flow is the difference between the total heat flow and the reversing 

heat flow [166]. The difference between Figs. 1.7 and 1.8 is that Fig. 1.8 shows a 

complete deconvolution algorithm that takes into account the phase angle. This is the 

additional phase angle between the modulated heat flow and the time derivative of the 

sample temperature introduced by the non-reversing heat flow. If this additional phase 

angle is negligible, then these two algorithms produce the same results [166].  
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Fig. 1.7 An algorithm used in the deconvolution of NHF and RHF of a typical heat 
flux TMDSC, no phase correction applied. Adapted from [166]. 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.8 An algorithm used in the deconvolution of NHF and RHF of a typical heat 
flux TMDSC with phase correction. Adapted from [166]. 
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An example of the separation of NHF and RHF is given in Fig. 1.9 [3]. The 

sample studied is polyethylene terephthalate (PET). The total heat flow is separated 

into a reversing and non-reversing heat flow. The glass transition, which is hidden in 

the total heat flow, can be clearly seen in the reversing heat flow at about 350 K. 

 

 
 
Fig. 1.9 An example of deconvolution of reversing heat flow and non-reversing heat 
flow. The polymer sample has a glass transition at about 350K and a crystallization 
peak at 410K. In the reversing heat flow curve, the glass transition can be clearly seen. 
Adapted from [3]. 
 

1.3.2 Current status and limitations of TMDSC 

Although the biggest advantage of TMDSC is the separation of reversing heat 

flow from non-reversing heat flow, there are some issues that can affect the 

interpretation of results obtained from TMDSC measurement. These are listed below. 

a. TMDSC requires system linearity, which is essential for the Fourier 

transform that is used in the calculation of NHF and RHF [3, 162]. 
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b. TMDSC has limited accuracy in the measurement of specific heat. Error in 

measured specific heat can be 1 to 10%, depending on the exact experimental 

conditions. This is because accurate calibration of TMDSC device for the 

measurement of specific heat is still an issue [167―169]. 

c. Experimental results are sensitive to thermal properties of materials. Any 

type of relaxation phenomenon, whether intrinsic to the sample or it is characteristic 

of the calorimetric instrument itself, influences the measured specific heat. Stringent 

boundary conditions are therefore needed [162, 170, 171]. 

d. There are still applicability issues related to certain kinetic reactions. For 

example, it is very difficult or even impossible to determine the latent heat of a first-

order phase transition [172, 173] due to lack of linearity in the thermal responses. 

 The above factors in TMDSC set more stringent requirements than 

conventional DSC with regard to the interpretation of data obtained. The current 

status and limitations of TMDSC are discussed in more detail below. 

 
1.3.2.1 Accurate calibration for heat capacity measurement 

For a TMDSC model described by a single system thermal constant K, 

elements such as a biased heat transfer path, imperfect thermal contact, and poor 

thermal conductivity of the sample are ignored. In this case, it can be derived that a 

strict calibration of TMDSC is possible [75] with a standard reference, for example, a 

sapphire reference sample. However, a slightly more complicated model shows a 

different picture. Ozawa et al. [167] used an R-C network model to study TMDSC 

and found that the measured specific heat was a complicated function of many 

variables, including the heat capacity of the sample to be determined. They proved 

that strict calibration was impossible for TMDSC, and that TMDSC was not more 

accurate than the conventional DSC. 
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 To alleviate the problem in the measurement accuracy, Hatta and Katayama 

[168] proposed a different calibration method that used the phase angle between the 

modulated heat flow and the time derivative of the sample temperature. The TMDSC 

model they used is illustrated in Fig. 1.10. In this model, no reference is used so that 

the contact thermal conductance, K', only exists on the sample side as shown in Fig. 

1.10. Ts0 is the temperature of the thermal couple on the sample side, and Tr0 is the 

temperature on the reference side. It can be shown [168] that  

( )( )2
0

22
s

2
sTs

T

Cp 11

1
CA

KA
K
1

τωτωω ++
== ∆ ,    (1.26) 

where KCp is the calibration factor, A∆T is the amplitude of the temperature difference 

between Ts0 and Tr0, Cs is the heat capacity of the sample, and ATs is the amplitude of 

the sample temperature. The phase angle between the modulated heat flow and the 

time derivative of sample temperature satisfies 

( ) ( )( )2
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2
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ττω
ϕ

++

+
=sin ,     (1.27) 

where τs=Cs/K', τ0=C0/K, C0 is the heat capacity of the support plate. 

 

 

 

 

 

 

 

 

Fig. 1.10 A model that takes into account the contact resistance. Adapted from [168]. 
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In Eqs. (1.26) and (1.27), both sin(ϕ) and KA∆T/ATsω can be directly measured 

in an actual calorimetric device. The only unknown variables are Cs and τs. The rest 

of the variables are completely determined by the model for a given temperature 

modulation frequency, ω. Using a number of standard samples with known heat 

capacities, for instance, Cs1,Cs2…Csn , in the calibrations and plot sin(ϕ) against KCp, 

one can obtain a calibration curve as shown in Fig. 1.11. Each temperature 

modulation frequency requires such a calibration curve. 

 

 

 

 

 

 
Fig. 1.11 Calibration curve that uses phase angle information 

 

Now, for a sample with unknown Cs and K', if a TMDSC run at a given 

modulation frequency is carried out, because there are two governing equations, Eqs. 

(1.26) and (1.27), the data point (KCp,sin(ϕ)) must fall onto the calibration curve. If 

sin(ϕ) which contains the phase angle information is known, one can obtain the 

corresponding calibration factor KCp, hence the heat capacity of the sample can be 

determined by Cs= KCpKA∆T/(ATsω). The accuracy of this method depends on the 

accuracy of the calibration curves. Therefore, a number of standard reference samples 

(5 to 8, for example) are required for the calibration and data interpolation purposes at 

each temperature and temperature modulation frequency of interest. Capitalizing on 

the same idea that uses the phase angle information in the calibration, Ozawa and 
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Kanari [169] modified their previous model (see Fig. 1.12 for a diagram of the revised 

model) and derived the following heat capacity calibration equations:  

( )( )2
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1
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τωω
,    (1.28) 
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ϕ)sin( ,     (1.29) 

'K/Css =τ ,        (1.30) 

where S1 and S2 are two TMDSC device-related constants independent of the sample 

properties, ATps is the amplitude of Tps, and K'  is the contact thermal conductance as 

indicated in Fig. 1.12.  

 

 

 

 

 

 

 

 

 

Fig. 1.12 Diagram of the modified TMDSC model by Ozawa. The upper half shows 
the main circuit, the lower half shows the heat exchange path between Tr  and Ts. 
Adapted from [169]. 
 

Comparing Eqs. (1.28) & (1.29) with Eqs. (1.26) & (1.27), it can be found that 
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calibration procedure used by Hatta [168] can also be used in the model of Ozawa and 

Kanari. 

1.3.2.2 Influence of low sample thermal conductivity 

For most metallic materials, the thermal conductivity is not a major concern in 

TMDSC experiments, and the sample can be treated as a single point if the 

temperature gradient in the sample is negligible. However, this may not always be the 

case for poor heat conductors such as polymer, wood, and many other organic or 

inorganic materials. Their thermal conductivities typically are two to three orders of 

magnitude lower than those of metallic materials. In these cases, a small sample mass 

as low as 20 mg can produce considerable temperature variation and phase lag in the 

sample, and thus significantly affect the measured specific heat [162]. 

Hatta [170] studied the conditions for high-accuracy heat capacity 

measurement when the thermal conductivity of the sample was taken into account. He 

analyzed the case of a cylindrical sample (Fig. 1.13) with a modulated heat input from 

the bottom surface to find the maximum limit on sample mass in TMDSC.  

 

 

 

 

 

 

 

 
 
Fig. 1.13 A cylindrical sample of length L with temperature modulation from the 
bottom, adapted from [170]. 
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The bottom surface temperature of the sample satisfies the following equation 

[170] 
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45
1410T
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22 exp ,  (1.31) 

where λ is the thermal conductivity of the sample, ρ is the density, L is the sample 

length, and f=ω/2π, with ω being the temperature modulation frequency. 

According to the analysis of Hatta [170], in order to reach an accuracy better 

than 1% for cp, it is required that 14(λL)2/45<0.01 or λL<0.42. For a sapphire 

sample with a bottom area of 0.2 cm2, the sample mass should not exceed 800 mg. 

However, according to Boller’s experimental results [75], the observed cp of sapphire 

begins to drop drastically at 100 mg. Hatta attributed this to the limited thermal 

contact between the sample and the sealing pan or support plate. 

Schenker and Stager [162] studied the effect of thermal conductivity in a 

variety of temperature modulated calorimetric devices, such as dynamic DSC (DDSC), 

steady-state alternating DSC (SSADSC), and modulated DSC (MDSC). The main 

differences among these three dynamic calorimetric devices are in the modulation 

methods and the deconvolution algorithms used: DDSC and SSADSC use saw tooth 

temperature modulation while MDSC uses a sinusoidal one. Both DDSC and MDSC 

use Fourier transform but DDSC uses only the real part of the complex amplitude. In 

DDSC, a calibration run is carried out to obtain the phase angle of the device, then 

this phase angle is taken into account in the calculation by rotating the amplitude 

vectors [162] so that the imaginary part of the modulated heat flow vanishes. 

SSADSC does not use Fourier transform to find cp; instead, it simply compares the 

different temperature excursions [162]. The algorithms used in the three methods are 

given below, 
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( ) ( )( )|A|/mc /m|A|MDSCc ncalibrationcalibratiopsamplesamplep = , (1.32) 

( ) [ ] ( )[ ]ncalibrationcalibratiopsamplesamplep A/mc )/mADDSCc ReRe( ⋅= , 

          (1.33) 
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         (1.34) 

where msample and m are the masses of the sample and calibration reference, 

respectively, and Acalibration and Asample are the temperature amplitude of the sample 

and calibration reference respectively. The simulation model is shown in Fig. 1.14. 

 

 

 

 

 

 

Fig. 1.14 Diagram of a network model for a heat flux TMDSC, adapted from [162]. 
 

Despite these differences in algorithm, it was found that even with relatively 

long modulation periods (120 s, for example), the observed cp is still much lower than 

the value reported in literature for polymeric materials [162]. Observed specific heats 

of the three methods (MDSC, DDSC and SSADSC) showed similar trends although 

they had varied accuracies. In these cases, measures that can help improve the contact 

between the sample and the instrument, such as using He as the purge gas, cannot 

help obtain a more uniform temperature distribution in the sample. Using crimped 

pans allows slightly larger samples or shorter modulation periods to be used due to 

better heat transfer conditions. Other factors such as background noise, non-linear 
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response of instrument and disturbance in the controller, which may be encountered in 

the actual experiment, can make the situation even more complicated [162]. 

Merzlyakov and Schick [171] analyzed the combined effect of thermal contact 

and thermal conductivity in a power compensation type TMDSC using the model 

shown in Fig. 1.15.  

 

 

 

 

 

 

 

 

Fig. 1.15 Diagram of a more complicated model for power compensation TMDSC, 
adapted from [171]. 

 

If a thermal couple is placed at different places to measure the sample 

temperature, different values of measured heat capacity can be obtained. However, 

there is a general trend: the measured heat capacity drops as the distance between the 

thermal couple and the sample increases [171], which obeys 

|C||C||C|Cs δβα >>> ,      (1.35) 

where Cs is the heat capacity of the sample, Cα is the heat capacity measured at the 

bottom of the sample, Cβ is the heat capacity obtained at the sample pan and Cδ  is the 

heat capacity measured at the sample support. Moduli are used here since heat 

capacities Cα, Cβ  and Cδ  are in complex form, which are given below 
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ω
ααλ

α i
dS  -C cc )tanh( ⋅⋅⋅⋅

= ,      (1.36) 

where λ is the thermal conductivity, d is the sample thickness. S is the cross-section 

area of the sample. The complex variable αc is defined as (ω/|αT|)1/2exp[(i/2)arg(-

iω/αT)], where αT is the thermal diffusivity,  
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= ,  (1.38) 

where Kop is the thermal conductance between the pan and sample support, Cpan is the 

heat capacity of the pan, Kps is the thermal conductance between the pan and sample, 

as shown in Fig. 1.15. 

In reality, the sample temperature is obtained at the support plate. Thus only 

Cδ can be obtained directly by the TMDSC experiments. The heat capacity of the 

sample, Cp, has to be derived from Cδ. For this purpose, Merzlyakov and Schick [171] 

proposed a method that involves multi-runs and multi-samples plus a thin layer of 

grease to improve thermal contact wherever possible. At least two separate runs are 

required to estimate each of the four parameters: Kop, Kps, heat flow asymmetry of the 

cell, and the thermal conductivity of the sample, λ. For example, after Cα is 

determined for two samples with different thicknesses, Eq. (1.36) is used to calculate 

the thermal conductivity of the sample after finding out the complex number αc in 

)tanh(
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2c

1c

2

1

d
d

C
C

⋅
⋅

=
α
α

α

α .       (1.39) 

As a result, at least eight runs are required before the heat capacity of the 

sample Cs can be finally calculated. When influences from other factors are taken into 
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account, such as variations from sample to sample in geometry, surface condition and 

possible sample softening, contraction or expansion during reactions or melting, the 

accurate calibration of TMDSC is extremely difficult, if not impossible [171]. 

 

1.3.2.3 The applicability of TMDSC 

Taking kinetic events or reactions into account, Scherrenberg et al. [172, 173] 

analyzed the applicability of TMDSC to more realistic situations and identified 

several important aspects that affect its ability in separating heat flows. 

1. The variation of material composition on the time scale of temperature 

modulation. 

2. Linearity of the actual process. For a linear process, input ax1+bx2 to function 

y(x) yields an output of ay1+by2, which means y(ax1+bx2)= ay1+by2, where y1 = 

y(x1) and y2 = y(x2). a and b are two constants. 

3. The time scale of a process and its susceptibility to the temperature modulation. 

4. TMDSC device performance. Such as linearity and steady state of TMDSC. 

According to the analysis of Scherrenberg et al. [172, 173], the general 

situation of thermal responses in TMDSC was classified into three distinct categories 

based on the susceptibility of the kinetic or non-reversing events to the temperature 

modulation. 

Category I. Region with baseline heat flow  

Taking the glass transition as an example where no entropy relaxation is 

involved, when the sample temperature satisfies T<<Tg, where Tg is the glass 

transition temperature (see Fig. 1.16(a)), the atomic motion has a relaxation time in 

the order of 10-13 s. This is called a non-cooperative motion. As a result this motion 

can immediately follow the temperature modulation. In comparison, the relaxation 
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time of the glass transition or cooperative-motion is far greater than the available 

temperature modulation period, which is typically between 10 and 100 s. Hence, the 

glass transition does not contribute to the modulated heat flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.16 Thermal responses in TMDSC for Category I, which is a baseline heat flow 
region with no extra heat. The “Non-coop” refers to the heat flow due to atomic 
motion that can immediately follow the temperature modulation. “coop” refers to the 
heat flow from the kinetic event. Adapted from [172]. 
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(c) T>>Tg 
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If T>>Tg, as shown in Fig. 1.16(c), relaxation times of both the atomic and 

glass transition are much shorter than the temperature modulation period. Thus, all 

molecular changes can occur instantaneously with regard to the time scale of the 

modulation period. In the above two cases, the heat flow is completely determined by 

the heat capacity of the sample. 

However, during the glass transition, as shown in Fig. 1.16(b), the time scale 

of the heat flow corresponding to the cooperative motion overlaps with that of the 

temperature modulation. Then a time dependent component is involved in the heat 

flow. When the underlying heating rate q is much smaller than the maximum 

instantaneous heating rate caused by the modulation, the total heat flow can be 

separated into an underlying heat flow and a modulated heat flow. 

Category II. Region with excess heat flow 

This region has excess kinetic heat flow, such as enthalpy recovery, 

crystallization, and some chemical reactions, but the material composition is 

maintained during a modulation cycle, ∂Wi/∂T=0, which is the variation of the mass 

fraction with temperature of any reaction agent concerned. In this case, there is no 

contribution to the modulated heat flow from the excess heat as a result of 

temperature modulation, for example, a curing process.  

Figs. 1.17(a) and 1.17(b) show the heat flows for this category when there is 

excess heat flow. In Fig. 1.17(a), the underlying heating rate is zero. The time scale of 

the cooperative motion or the kinetics of the curing shifts towards a longer time scale 

with the extent of the mass fraction conversion, Wi, as a result of the reduced 

molecular mobility. With further decrease in molecular mobility, the time scale of the 

cooperative motion may reach the same magnitude of the modulation period. 
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Fig. 1.17 Thermal responses in TMDSC for Category II, with extra heat “Excess”. 
Adapted from [172]. (a) underlying heating rate q=0, (b) underlying heating rate q ≠ 
0. 

 

In Fig. 1.17(b), because the underlying temperature increases with a positive 

heating rate, the situation becomes more complicated than that in Fig. 1.17(a): 

increasing the temperature increases the molecular mobility and the conversion rate of 

the mass fraction, but an increased conversion rate can result in a lower molecular 

mobility. Thus, the combined effect of these two factors on the time scale is 
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determined by both the temperature and the actual physical process involved. Yet, the 

total heat flow is composed of an underlying and a modulated heat flows. 

In both Figs. 1.17(a) and (b), the kinetic heat flow is not susceptible to the 

temperature modulation. Hence, the modulated part of the heat flow is uniquely 

determined by the heat capacity of the sample at baseline level, which is a very 

important feature that allows the separation between the reversing heat flow and the 

excess or non-reversing heat flow. The separation is possible only under the condition 

of TMDSC linearity and stability of the material properties, which requires that 

∂Wi/∂T and ∂Wi/∂t are negligible during a modulation period. Consequently, the 

selection of the underlying heating rate and the modulation amplitude is critical. In 

this case, the heat capacity can be derived from the ratio between the amplitudes of 

the modulated heat flow and the modulated temperature of the sample. 

Category III. Region with excess heat flow and material invariance roughly 

maintained 

Fig. 1.18 shows a quasi-isothermal TMDSC run with a susceptibility of the 

excess kinetic process to the temperature modulation and dWi/dT≠0. The molecular 

mobility decreases as a function of time. This is a typical situation for an isothermal 

crystallization process with reversible melting and crystallization phenomena. In 

contrast to those shown for Figs. 1.16(a) to (c), the modulated heat flow is no longer 

uniquely determined by the heat capacity. There is also a contribution from the extra 

kinetic process due to the modulation. The relevance of linear response theory under 

quasi-isothermal conditions is disputable, because apart from the question of linearity 

of the melting and crystallization process, the requirement of material invariance 

during each modulation cycle cannot be satisfied. As a result, this can lead to 

complete failure of the TMDSC method. Only when the susceptibility of the extra 
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kinetic process to temperature modulation is negligibly small can the linear response 

theory be successfully applied. 

 

 

 

 

 

 

 

 

Fig. 1.18 Thermal responses in TMDSC for Category III, with excess heat “Excess”. 
q=0. The modulated heat flow is no longer uniquely determined by the heat capacity. 
Adapted from [172]. 
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that may reside in a particular degree of freedom is quantized: It may only be 

increased and decreased in finite amounts.  

If the temperature of the substance is so low that the equipartition energy of 

(1/2)kT  (here k is Boltsmann’s constant, in J·K-1·molecule-1, and T is the absolute 

temperature, in K) is much smaller than the excitation energy, then there will be little 

or no energy in this degree of freedom. This particular degree of freedom is then said 

to be “frozen out".  

For each degree of freedom there is a critical temperature at which the degree 

of freedom “unfreezes” and begins to accept energy in a classical way. In the case of 

translational degrees of freedom, this temperature is the temperature at which the 

thermal wavelength of the molecules is roughly equal to the size of the container. For 

a container of macroscopic size (e.g. 10 cm) this temperature is extremely small and 

has no significance, since the gas will certainly liquify or freeze before this low 

temperature is reached. For any real gas we may consider translational degrees of 

freedom to always be classical and contain an average energy of (3/2)kT  per 

molecule. 

The rotational degrees of freedom are the next to “unfreeze". In a diatomic 

gas, for example, the critical temperature for this transition is usually a few tens of 

kelvins. Finally, the vibrational degrees of freedom are generally the last to unfreeze. 

As an example, for diatomic gases, the critical temperature for the vibrational motion 

is usually a few thousands of kelvins. It should be noted that sometimes it is assumed 

that atoms have no rotational or internal degrees of freedom. Strictly speaking, this is 

incorrect. For example, atomic electrons can exist in excited states and even the 

atomic nucleus can have excited states as well. Each of these internal degrees of 

freedom is assumed to be frozen out due to their relatively high excitation energy. 
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Nevertheless, for sufficiently high temperatures, these degrees of freedom cannot be 

ignored.  

Einstein model 

Einstein solid is a model of a solid based on three assumptions: 

a. Each atom in the lattice is a 3D quantum harmonic oscillator  

b. Atoms do not interact with each another  

c. Atoms vibrate with the same frequency  

While the first assumption is quite accurate, the second is not, this is because 

if atoms did not interact with one another, sound waves would not propagate through 

solids. Based on the above assumptions, the heat capacity in Einstein’s model is 

derived as 
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where N is the number of atoms in a solid. 

Einstein temperature TE is defined as 

k
h

k
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== ,        (1.41) 

where h is Planck’s constant, and υ is the single frequency of quantum harmonic 

oscillators in Einstein model. Then one has, 
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which is too small if compared with experimental results. 
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(2) High temperature limit 

 When T>>TE , 

 NkCv 3= .        (1.44) 

Although Einstein model of the solid predicts the heat capacity accurately at 

high temperatures, it noticeably deviates from experimental values at low 

temperatures. The following sections discuss the Debye model for an accurate low-

temperature heat capacity calculation.  

Debye model 

This model is applicable to a crystalline solid phase. It treats the vibrations of 

the atomic lattice (heat) as phonons in a box, in contrast to Einstein model, which 

treats the solid as many individual, non-interacting quantum harmonic oscillators that 

has the same frequency. The Debye model correctly predicts the low temperature 

dependence of the heat capacity, which is proportional to T 3. Just like the Einstein 

model, it also recovers the Dulong-Petit law at high temperatures. In Debye’s model, 

the dimensionless heat capacity is derived as 
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where N is the number of atoms in a solid, and TD is the Debye temperature. 

The above formula gives the Debye model at all temperatures. The more 

elementary formulae given further down give the asymptotic behavior in the limit of 

low and high temperatures. 

(1) Low temperature limit 

The temperature of a Debye solid is said to be low if  

DTT <<  ,        (1.46) 
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where Debye temperature TD is a shorthand for some constants and material-

dependent variables, leading to 
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This definite integral can be evaluated exactly: 
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In the low temperature limit, the limitations of the Debye model mentioned 

above do not apply, and it gives a correct relationship between heat capacity, 

temperature, the elastic coefficients, and the volume per atom (the latter quantities 

being contained in the Debye temperature). 

(2) High temperature limit 

The temperature of a Debye solid is said to be high if T >> TD. If | x | < < 1,  

xex ≈−1 ,         (1.49) 

and 

1≈xe .        (1.50) 

This leads to 

∫⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T/T

D

v

D

dx
x
x

T
T

Nk
C

0

2

43

9 ,       (1.51) 

and 

3=
Nk
Cv .        (1.52) 

This is the Dulong-Petit law, and is fairly accurate although it does not take 

into account anharmonicity, which causes the heat capacity to rise further. The 

Dulong-Petit law, which was discovered empirically, states that the dimensionless 
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specific heat capacity assumes the value 3R. Indeed, for solid metallic chemical 

elements at room temperature, heat capacities range from about 2.8 to 3.4 (beryllium 

being a notable exception at 2.0) [175]. The total heat capacity of the solid, if it is a 

conductor or semiconductor, may also contain a non-negligible contribution from the 

electrons. 

Debye model vs. Einstein model 

Debye and Einstein models correspond to experiment fairly close, but Debye 

is correct at low temperatures whereas Einstein is not (actually too low). Both Debye 

temperature TD and Einstein temperature TE are usually found by fitting the models to 

the experimental data, and TD can be calculated from the speed of sound and crystal 

dimensions. Even though the Debye model is not completely correct, it gives a good 

approximation for the low temperature heat capacity of insulating, crystalline solids 

where other contributions (such as highly mobile conduction electrons) are negligible. 

For metals, the electron contribution to the heat capacity goes as T, which at low 

temperatures, dominates the Debye T3 result for lattice vibrations. In this case, the 

Debye model can only be said to approximate the lattice contribution to the specific 

heat. 

Einstein or Debye’s theories are important in understanding the fundamentals 

of heat capacity. In TMDSC, regardless of whether the heat energy is stored in 

translational, rotational or vibrational motions, these motions at atomic or molecular 

level are so fast that they are considered instantaneously and fully reversible with any 

external temperature change. In other words, heat energy absorbed due to the heat 

capacity with a temperature increase can be immediately and completely released 

with the same amount of temperature decrease, or vice versa. While a kinetic event 

normally requires much longer to complete and the response time to temperature 
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changes may even be comparable to the external temperature modulation period itself. 

Even a reversing chemical reaction can’t match the speed of response of the lattice 

vibrations to external heat or energy. Due to the difference in the response time to 

external temperature changes between the heat flow that is related to heat capacity 

and the heat flow that is related to a kinetic event, the purpose of the temperature 

modulation technique is to find out the contributions from each source, either thermal-

dynamically or kinetically originated, provided that the thermal response of TMDSC 

is linear or close to linear. 

1.3.2.4.2 Complex heat capacity and phase angle: definition and 

calculation 

The physical implication of complex heat capacity has confused scientists for 

a long time [176, 177]. The complex form of heat capacity was first reported in 1985 

by Birge and Nagel [153] using 3-ω dynamic calorimetry in the study of the glass 

transition, where heat capacity was represented by C*=C'-iC" where C' and C" are the 

real and imaginary part respectively. Many authors followed on with the same 

concept of complex heat capacity in the field of TMDSC, and several different 

explanations were proposed [54, 72, 73, 178―183]. Aubuchon and Gill [178], and 

Gill et al. [179] attributed the existence of the imaginary part of the heat capacity to 

either certain kinetic events within the sample or to dissipation processes that are 

related to entropy production. Schawe [72, 73] associated C" with dissipation and 

time dependent thermal events. Later, Schawe modified this by connecting C" to 

changes in molecular mobility as well as entropy production in the sample [180, 181]. 

Jeong [54] drew an analogy between C' and dielectric susceptibility, and concluded 

that C" had an entropic origin and was representative of the entropy increase of the 

heat reservoir during one modulation cycle. Alig [182] proposed to compare sound 
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absorption due to thermal relaxation in ultrasonic experiment with the complex heat 

capacity as measured in TMDSC. The conclusion was that C" arises from the transfer 

of energy between the external and internal degrees of freedom. Hohne [183] offered 

yet another explanation which stated that C" should be related to the dissipated energy 

of the time dependent process.  

The issue of complex heat capacity is still quite controversial 

[176,177,184,186]. There is an essential difference between the imaginary part, C", 

of heat capacity and the imaginary part of some other physical properties, e.g., 

impedance, dielectric constant, and susceptibility, which are typically related to 

dissipative processes. Baur and Wunderlich [184] doubted the physical meaning of 

C". They thought that the concept of complex heat capacity was of limited 

significance because solids and liquids had no dissipative or imaginary contributions. 

In the glass transitions, the thermal response is non-linear. Hence, they believed a 

detailed kinetic model in real notation was more advantageous in describing the heat 

capacity. The crystallization is often so far from equilibrium that it is not modulated. 

During melting and chemical reactions, the extra heat flow is typically so large that 

the steady state is easily lost. Thus, the observed complex heat capacity is of 

questionable value, even if the temperature modulation is accomplished [184]. 

Seferis in publication with Martin [176] and Buehler [177] denied the 

existence of the imaginary part altogether. They argued that the imaginary part of the 

heat capacity did not exist at all but was purely a mathematical artifact caused by the 

heat diffusion difficulty and the algorithms used in TMDSC. According to them, heat 

capacity is a bulk property of materials, and it should be isotropic. Moreover, heat 

capacity is a thermodynamic and not a kinetic property. If the heating of an object is 

not instantaneous, it is not due to the value of the heat capacity but due to the fact that 
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heat must diffuse into the object. Heat diffusion is a process governed by other 

thermo-physical property of the material, e.g., the thermal diffusivity. Thermal 

diffusivity can be anisotropic in some substances such as fibers. Hence, thermal 

diffusivity can then be expressed as a tensor, and it may be responsible for the 

existence of the phase lag observed in TMDSC experiments [176, 177]. 

To support their conclusions, Martin and Seferis [176], Buehler and Seferis 

[177] analyzed the case of a cylindrical sample, where both the radial and axial 

temperature distributions in the sample were taken into account. They obtained a 

rather complicated relationship between the thermal properties of the sample and the 

phase lag, which is the angle between the heat flow and the time derivative of 

temperature. This angle and therefore the temperature gradient are quite large for low-

heat conductive materials but were typically ignored in a TMDSC model where no 

thermal gradient is considered. A temperature difference as much as a third of the 

amplitude of the modulated temperature can exist along the radial and axial 

dimensions for the samples studied [176, 177].  

However, although the difficulty in heat transfer in the sample could account 

for part of the observed phase lag, Martin and Seferis [176], and Buehler and Seferis 

[177] only studied a case where no kinetic events are involved. Kinetic events do 

contribute an extra phase lag and thus can affect the observed specific heat [3]. To 

evaluate the effect of the kinetic events, it is required that this extra phase lag be 

properly extracted from the total phase angle. To achieve this goal, Reading and Luyt 

[3, 185] proposed a baseline correction method, which is schematically shown in Fig. 

1.19.  
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Fig. 1.19 Baseline method by Reading and Luyt. (a) Complex heat capacity |CP*|, (b) 
Uncorrected phase angle, (c) Corrected phase angle. Adapted from [165]. 

 

According to this method, two data points are selected ― one at the beginning 

and one at the end of the hypothetical transition. A baseline is then drawn between 

these two data points. This procedure is based on the assumption that no transition 

occurs at the two selected points. Reasonably accurate phase angles from the out-of-

phase or kinetic events were obtained for several polystyrene samples under the 

protection of nitrogen and helium. They also noticed that for relatively large enthalpy 

loss, the system linearity was compromised to a certain extent; yet the result remains a 

useful comparative measure for many applications. 

However, Weyer et al. [186] were of the opinion that with the non-optimal 

measuring conditions, such a correction yielded an unrealistically broad and non-

symmetric peak for the phase angle and therefore for the imaginary part of the 

complex heat capacity. They proposed an alternative method that took into account 

the change in heat flow due to the change in the heat capacity. Fig. 1.20 shows a 
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typical glass transition in polymer samples, the transition is accompanied by a step 

change (see the dotted line in Fig. 1.20) in the complex heat capacity, C*.  

 

 

 

 

 

 

 

 

 

 

Fig. 1.20 Phase angle correction using fitting baseline that takes into account the 
change in complex heat capacity |Cp*|. Adapted from [186]. 

 

When the phase angle is small, it can be proven that the phase angle change is 

proportional to the change in heat capacity; that is, ∆ϕ=ω∆Cp/K, where ∆Cp is the 

change of the heat capacity. Therefore, it is possible to draw a curve proportional to 

the complex heat capacity so that it fits into the phase angle curve before and after the 

transition region. This fitted curve takes the form ϕ=a+b|C*|, where a and b are 

fitting parameters. Then one may treat any difference between this fitting curve and 

the phase angle curve as the additional phase angle due to the kinetic event. The solid 

line in the lower half of Fig. 1.20 shows the difference. 

Even with this method, Weyer et al. [186] found that complications could 

occur. For example, when there is a change in the thermal conductivity of the sample, 

or a change in the effective system thermal constant due to materials softening, or 
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variations in other thermal properties, the obtained results could be quite difficult to 

quantify. As shown in Fig. 1.21, the decrease in the phase angle after the transition is 

an artifact caused by the increase in thermal conductivity and has nothing to do with 

change in heat capacity. No practical approach is available yet to handle this problem. 

As a result, care must be taken when interpreting the phase angle behavior observed 

by TMDSC. 

 

 

 

 

 

 

 

 

 

 
Fig. 1.21 Deformed phase angle data due to complications in the transition such as a 
change in sample thermal conductivity. Adapted from [186]. 
 

1.3.2.5 Calibration and system linearity of TMDSC 

Since it is not possible to measure the sample temperature and heat flow 

directly because the thermal couple is not placed inside the sample, calibration is 

required. The calibration procedures for heat flow and sample temperature for 

conventional DSC are well developed. In DSC, temperature calibration takes into 

account the thermal lag between the thermo-couple and the sample due to heat 

transfer. To correct this thermal lag, the observed temperature has to be extrapolated 

Temperature (arbitrary unit)

Uncorrected  
phase angle 

|Cp*| 

Corrected phase 
angle 

Ph
as

e 
an

gl
es

 &
 c

om
pl

ex
 h

ea
t 

ca
pa

ci
ty

 (a
rb

itr
ar

y 
un

it)
 



 Chapter 1  

  45 

to zero heating rate. Thus, only the dependence of the measured temperature on the 

heating rate needs to be considered. 

Compared with conventional DSC, several additional experimental parameters 

should be taken into consideration in TMDSC, such as the underlying heating rate, 

temperature modulation amplitude and frequency, phase angle, and possible errors 

from the numerical algorithms used in TMDSC data treatment. The heat capacity and 

heat flows obtained from Fourier transform are valid only if the thermal response of 

the TMDSC device is linear [176, 177, 187]. 

The non-linear behavior in the temperature region of a certain transition 

depends on both the magnitude of heat flow and the properties of the transition itself. 

Even in the conventional DSC, the thermal response is not always linear. For example, 

the heat flow from the melting of a 0.48 mg indium sample is not equal to four times 

that of a 0.12 mg sample [187] (see Fig. 1.22). This is because during the melting, the 

sample temperature remains constant, despite the designed temperature program. 

Thus, the measured heat flow is completely determined by the heat transfer path, 

which is dependent on the physical implementation of the DSC system.  

 

Fig. 1.22 Indium melting process in DSC. Adapted from [187]. 
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For TMDSC, the heat transfer path produces an additional phase angle. Hence, 

transitions such as the melting of indium are not suitable for the temperature 

calibration in TMDSC. To evaluate the system linearity of a TMDSC system, Hensel 

and Schick [187] used a liquid crystal, 8OCB (octyloxy cyanobyphenyl), which was 

found to have an 0.5 K half-peak transition width. Moreover, it shows no super-

cooling and has a weak smectic-nematic (SN) transition (see the DSC curve in Fig. 

1.23). The TMDSC experimental results of transition temperatures are shown in Figs. 

1.24 to 1.26 [187]. 

 

Fig. 1.23 DSC curve of a liquid crystal (8OCB), heating rate=10 K/min. Adapted 
from [187]. 

 

Fig. 1.24 shows the relationship between the modulation amplitude and the 

measured temperature and height of the transition peak, where the temperature 

modulation amplitude is changed from 0.07 to 3.4 K. The peak temperature remains 

quite stable when the amplitude is lower than 2 K, but there is a considerable 

broadening of the peak due to the decreasing height as the modulation amplitude 

340 350
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increases. The peak becomes significantly wider when the amplitude of the 

temperature modulation is close to the height of the transition during a heating or 

cooling cycle. In other words, the temperature resolution of TMDSC is basically 

determined by the selected modulation amplitude. 

 

Fig. 1.24 TMDSC curve of 8OCB. Solid square: peak temperature. Circle: peak 
height. Temperature modulation period=50 s. Underlying heating rate=0.4 K/min. 
Adapted from [187]. 

 

Fig. 1.25 shows the effect of the modulation period on the temperature and 

height of the transition peak. The peak temperature changes very little for modulation 

periods shorter than 20 s. However, when the period exceeds 60 s, the peak becomes 

broader and lower. For an even longer temperature modulation period, which is 

preferred for a more accurate measurement of specific heat, the requirement to 

accommodate a number of modulation cycles (at least four, for example) during the 

transition for effective deconvolution of the heat flows is not satisfied. This can result 

in a loss of information in the measurement. 
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Fig. 1.25 TMDSC curve of 8OCB. Solid square: peak temperature. Circle: peak 
height. Temperature modulation period=12 to 300 s. Underlying heating rate=0.4 
K/min. Adapted from [187]. 

 

The influence of the underlying heating rate on peak temperature of the 

transition is shown in Fig. 1.26 for both DSC and TMDSC. The TMDSC device has 

been calibrated using the usual method with indium and lead at a heating rate of 10 

K/min. It can be seen that the onset temperature of indium in DSC is almost 

unaffected by the heating rate due to the automatic thermal lag compensation by the 

instrument. For the smectic-nematic (SN) transition of the liquid crystal in DSC mode, 

the curve shows a small gradient when compared with that of indium. This can be 

explained by the fact that indium is in the solid state while 8OCB is in the smectic 

state before their corresponding transitions, thus their thermal contact conditions 

between the sample and pan are different. The TMDSC device itself cannot 

automatically correct this difference in thermal conductivity. However, the onset 

temperature curve shows a much larger gradient, which agrees well with the typical 
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thermal lag characteristics of the TMDSC system as determined without any 

compensation. This demonstrates the rather narrow linear response range of TMDSC 

and stringent requirements on the selection of TMDSC experimental parameters, 

indicating the importance of maintaining the steady state if meaningful conclusions 

are to be obtained [185]. 

 

Fig. 1.26 The top line: DSC onset temperature of indium melting. The middle line: 
DSC onset temperature of the SN transition. The bottom line: TMDSC onset 
temperature of the SN transition. Temperature modulation period=50 s. Adapted from 
[187]. 
 
 
1.3.2.6 System linearity inspection 

The overall TMDSC system linearity can be visually inspected with the help 

of the Lissajous figure [3, 166], which uses the relationship between the instantaneous 

heating rate of the sample and heat flow. For an ideal linear system described by Eqs. 

(1.12) and (1.13), a diagram similar to that shown in Fig. 1.27 can be obtained. 

Depending on the experimental parameters, the curve in the diagram can be either an 

ellipse or a circle. However, if there are higher harmonics which indicate a non-linear 

response, the ellipse or circle will be deformed accordingly (examples are given in 
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Chapter 5). Hence, this method is only used for qualitative rather than quantitative 

comparison of the linearity. 

 

 

 

 

 

 

 

 

 

 
Fig. 1.27 Lissajous figure of a linear response system 

 

1.3.3 Progress in light modulation technique 

TMDSC devices that use electric power to heat the sample have a relatively 

long system thermal latency that restricts the achievable temperature modulation 

frequency. Using modulated light as the heating source in TMDSC design has become 

an alternative to overcome this latency issue. Below are some advances in this area.  

Fig. 1.28(a) shows the diagram of a light modulated dynamic calorimetry 

device designed by Nishikawa and Saruyama [188], while a similar design by Ozawa 

and Kanari [189] is illustrated in Fig. 1.28(b). In Fig. 1.28(a), a beam of light passes 

through the intensity modulator. Only the sample is radiated with the modulated light, 

while the intensity of light on the reference side is constant to provide temperature 

balance. In Fig. 1.28(b), different from that as shown in Fig. 1.28(a), both light 

sources on the sample and reference sides are modulated. Furthermore, the light 
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source may come from either the top to heat the sample directly or from the bottom to 

heat the support plate depending on the actual implementations. Their analysis shows 

that configuration with the light from the bottom is better than that from the top in 

terms of accuracy and stability [189]. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.28 TMDSC with light as the heating source. Adapted from [188, 189]. (a) 
System schematic diagram. (b) The cell structure diagram. Light may come from the 
bottom and heat the support plate. 

 

Fig. 1.29 shows the laser-flash device by Pouchon et al. [190]. A ruby laser 

impulse with energy of 6 J is applied to the front surface of the sample, which 

produces an increase of about 10 K in local temperature. The photon energy was 

converted into a heat pulse that penetrates the sample. The temperature change of the 

sample is detected by an InSb infrared sensor on the rear side. The thermal diffusivity 

is then deduced from the thermal transient of the rear surface, called the thermo-gram. 

To obtain consistent experimental results, a gold or carbon coating is required on both 

sides of the sample in order to effectively transform the laser energy into a heat pulse. 

Experiments on thermal conductivity have been conducted for some semi-transparent 
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zirconium-based materials with TMDSC for comparison. While it was found that 

measurements carried out with TMDSC devices were affected by the position of the 

sample on the support plate, the laser flash method was believed to have good 

reproducibility [190]. This could be the reason that the method of measuring thermal 

conductivity with TMDSC proposed by Aubuchon, Blain and Marcus [191, 192] was 

not accepted by American Society of Testing & Materials (ASTM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1.29 The laser flash method to measure sample thermal conductivity. A laser 
flash induces an energy pulse into the front surface of the sample. The heat wave is 
transferred to the back surface and picked up by an IR (infrared) detector. Adapted 
from [190]. 
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Generally speaking, compared with the heat flux or power compensation type 

TMDSC, temperature modulation with a light source has the following advantages 

[188―190]: 

1. A laser or light flash has good reproducibility. 

2. Much greater flexibility in the design of the apparatus since the control method of 

the furnace temperature is different. It is kept at a constant temperature or heated at a 

constant rate by light only. Thus, temperature modulation by electrical power is not 

required. 

3. The temperature modulation is not decided by the heat transfer path as a 

conventional TMDSC cell is, but implemented directly through the light source. The 

maximum frequency of temperature modulation is only limited by the thermal 

conductivity of the sample itself. This can be improved by using small samples at 10-6 

gram level. Hence, the dynamic test range can be enhanced by several orders of 

magnitude higher than other TMDSC devices. 

 

1.4 Summary 

Dynamic calorimetry has come a long way since its inception in the early 

twentieth century. As TMDSC is a late derivative of dynamic calorimetry, many 

different configurations and theories have been proposed. TMDSC has already been 

shown to be a useful extension of conventional DSC and can provide additional 

information that may otherwise be hidden or ignored. Nevertheless, a more detailed 

understanding of its applicability and limitations is needed so that the data obtained 

from TMDSC can be correctly interpreted. 

As has been conveyed in the previous sections, the determination of the heat 

capacity in a single run by TMDSC is a potential advantage due to its intrinsic higher 
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temperature sensitivity [3, 166]. This is important when thermal history plays an 

important role in determining the thermal properties of the sample. A remaining issue 

is that a strict calibration of TMDSC is difficult because there is no simple 

relationship between the actual heat capacity of the sample and the measured one, 

although at a longer modulation period, the error of measurement can be reduced [167, 

168]. 

When there is an extra heat contribution from a kinetic event, the ability to 

separate the reversing heat flow from the non-reversing heat flow is a valuable 

property of TMDSC. In this case, one has to be sure that the kinetic event is not 

sensitive to temperature modulation [172, 173]. 

When the kinetic event or non-reversing heat flow is sensitive to the 

temperature modulation, the heat capacity cannot be determined uniquely from the 

measured complex heat capacity (C*). Nevertheless, C* may still provide valuable 

information with respect to the kinetic event. The requirement of linearity in thermal 

response indicates that the modulation conditions applied are critical to the reliable 

measurement of a complex heat capacity.  

Due to its unique features, temperature modulation can be applied in other 

conventional thermal analytical methods. These include differential thermal analysis 

(DTA), thermal dilatometry [193, 194] pressure differential thermal analysis (PDTA), 

differential photo-calorimetry (DPA), differential thermo-gravimetry (DTG), or a 

combination of them, as had been pointed out by Reading [3]. This may open new 

ground and extend our vision into unknown areas with regard to reaction kinetics of 

materials in the near future. 
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1.5 Objectives of the research 

Measuring the heat capacity is one of the basic functions of TMDSC, which 

also is the key to successful separation of the reversing heat flow (related to heat 

capacity) and non-reversing heat flow (related to kinetic events).  

To really understand how TMDSC works and its limitations, we will need to 

study those factors that can affect the accuracy of the heat capacity measurement, 

such as the thermal conductivity of the sample material, the thermal inertia of the 

measuring device itself, and finally, if a kinetic event is introduced into the sample at 

a certain temperature, what will happen and how much difference it will generate in 

the measurement of the heat capacity. Apart from Chapter 1, the rest of the thesis 

essentially comprises four chapters in which different aspects of TMDSC are 

discussed. 

In Chapter 2, measurements that take into account of imperfect thermal 

transfer path are discussed, this include the contact thermal resistance between the 

sample and the supporting plate, the thermal conducting properties of the TMSDC 

device, etc. Besides, we will look at how the external temperature modulation 

conditions can affect the observed heat capacity. Comparisons are made for the 

specific heat measurement and the calibration between TMDSC and the conventional 

DSC. 

In Chapter 3, we will analyze the effect of thermal conductivity of the sample 

on the observed heat capacity; other factors such as sample thickness and temperature 

modulation frequency are also discussed. Both analytical and numerical approaches 

will be explored. 
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In Chapter 4, the separability of reversing heat flow and non-reversing flow is 

discussed by using several different arbitrary types of non-reversing heat flows (i.e. 

time or temperature dependent heat flows). 

And finally, in Chapter 5, a more general situation based on small 

perturbations is studied on the relationship between the kinetic event and the complex 

heat capacity (or rather the observed heat capacity). A concise analytical solution and 

numerical simulations of several kinetic models will be provided to show the effect of 

the TMDSC experimental parameters on the observed heat capacity. 
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Chapter 2 Sample Mass, Modulation Parameters vs. 
Observed Specific Heat, and Numerical Simulation of 

TMDSC with an R-C Network 
 

 

2.1 Introduction 

Shortly after its introduction in the late twentieth century, TMDSC device 

became commercially available. Today, TMDSC is widely used in many fields of 

materials research, which covered polymer, food, pharmaceutical, and metallic 

materials [1―3]. Although both the conventional DSC and TMDSC can be applied to 

the measurement of specific heat, their experimental procedure and data processing 

algorithms are quite different. 

Normally, the thermal inertia of the heat transfer path, the heat exchanges 

between the heating block and the sample by purge gas convection, and thermal 

radiation of the sample are ignored in a TMDSC device. If there is no kinetic event 

and the temperature gradient in the sample is negligible, it can be shown that the heat 

capacity of the sample Cs is [3] 

2

1 ⎟
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s
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,      (2.1) 

where A∆T  is the amplitude of the temperature difference between the sample and 

reference, ATs is the amplitude of the sample temperature, Cr is the heat capacity of 

the reference, and ω is the angular frequency of temperature modulation. The apparent 

heat capacity of the sample, Cs_m', on the other hand, is given by [3] 
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In Eq. (2.2), KA∆T is the amplitude of modulated heat flow. The difference 

between Eq. (2.1) and Eq. (2.2) is that in Eq. (2.1), there is a TMDSC device-related 

factor, 21 )/( KCrω+ , which is defined as KCp. KCp can be obtained by a calibration 

process using a standard reference with a well known and stable heat capacity, such as 

sapphire. This calibration factor can then be used to correct the apparent heat capacity 

of the sample, Cs_m'. That is, Cs should be equal to KCpCs_m'. Dividing this value by 

the sample mass, ms, the specific heat is obtained as cp= KCpCs_m'/ms . 

According to Eqs. (2.1) and (2.2), the measured specific heat should be 

independent of the sample mass. As long as K, Cr, ω, A∆T, and ATs are known, the 

heat capacity and hence the specific heat of the sample can be accurately calculated. 

However, early experiments suggested that the measured specific heat is not only 

dependent on the sample mass but also on the modulation frequency [2―6]. This is 

still the case even if the measured value has been corrected with the calibration factor 

KCp, which is obtained from a standard reference under exactly the same modulation 

conditions. These deviations can partly be attributed to the existence of thermal 

gradient in the sample [2, 4―6]. Merzlyakov and Schick [7] investigated power 

compensation TMDSC and found that the measured heat capacity varied when the 

temperature sensor was placed at different positions, and that the calibration factor 

was a very complicated function of the thermal properties of the sample.  

In this chapter, a thermal resistance-capacitance (R-C) network model is used 

to study the effect of heat transfer of the TMDSC device and experimental parameters 

on the cp measurement. In section 2.2, I will study the thermal resistance of contact 

between the sample and support through the observation of the melting of indium 

samples. An R-C network model of TMDSC with contact resistance in consideration 

is discussed. The thermal conducting equations are derived and experimental 
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conditions are given. The effects of sample mass, temperature modulation period and 

modulation amplitude on the measurement of sample specific heat are illustrated in 

section 2.3. The differences in the measurement of specific heat between conventional 

DSC and TMDSC are compared in section 2.4. 

 
2.2 Modeling and experiments of TMDSC 

To explain the effects of sample mass and modulation period on the 

measurement of specific heat, factors such as the heat transfer of the measuring cell 

need to be taken into account in the modeling of TMDSC. A TA Instruments 

DSC&TMDSC2920 device was used in the following experiments. This device can 

work in either DSC or TMDSC mode, depending on the different temperature control 

programs, and has a temperature modulation period ranging from 10 to 100 s. Pure 

argon was used as the cell purge gas. The melting process of an indium sample in the 

conventional DSC was used to evaluate the properties of the heat transfer path, and it 

was assumed that the thermal gradient in the sample is negligible. 

 
2.2.1 Indium melting experiment in the conventional DSC 

Fig. 2.1 shows the heat flow and the sample temperature as a function of time 

for a pure indium sample with a mass of 15.50 mg at a heating rate of 10 K/min in the 

DSC mode. Since the melting starts at a single temperature, melting temperature 

should remain constant when it begins, which should generate a plateau in the 

temperature curve.  

However, if we take any two points on the straight portion on the temperature 

curve during the melting: A (161oC) and B (163oC), for example, we may notice that 

between A and B, the measured temperature is still rising although the real sample 

temperature remains constant (see Fig. 2.1).  
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The reason is, in a heat flux type DSC&TMDSC cell (see Fig. 2.2), the 

thermal couples are located beneath the sample and reference supporting plate which 

is made of a (constantan) disk. The indicated temperature by the thermal couple is 

therefore not the real temperature of the sample but the temperature at the point where 

the thermal couple is located. As the heating block temperature is still rising, between 

A and B the measured temperature keeps increasing as well. After point B, the rate of 

temperature increase quickly resumes the programmed value, 10 K/min. 

A

B
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Fig. 2.3 plots the measured rate of temperature increase between A and B as a 

function of the programmed heating rate. It shows that the rate of temperature 

increase between A and B is significant under various programmed heating rates 

ranging from 1 to 40 K/min. There is a good linear relationship between them: The 

measured rate of temperature increase between A and B is about 70% of the 

programmed heating rate. Considering the fact that the real sample temperature is 

constant, this temperature rise is not trivial. As a result, it is reasonable to conclude 

that considerable contact resistance exists between the thermal couple and the sample 

itself.  
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2.2.2 A resistance-capacitance network model that takes into account the contact 

resistance 

As has been discussed earlier, heat transfer problems in TMDSC can be 

analyzed with an equivalent resistance-capacitance (R-C) network (see Fig. 1.12). 

Similarly, Fig. 2.4 shows an R-C network model with the contact resistance between 

the sample and the thermal couple in consideration. The thermal resistance and heat 

Fig. 2.3 Rate of temperature increase on the sample side between points A and B
(see Fig.2.1) as a function of DSC heating rate, exhibiting a good linear relationship
between them 
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capacity of the heat transfer path of the TMDSC cell are taken into account as well. 

 

 

Fig. 2.4 A TMDSC (also a DSC) model represented with thermal resister and 
capacitor (R-C) network 

 

We can obtain the following thermal conducting equations according to 

Newton’s law of cooling for the nodes in the model: 
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where R1 to R4 are the thermal resistances of the heat conducting path which is the 

constantan disk; Rr and Rs are the thermal resistances between the thermal couples 
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and the reference or sample, respectively; C1 to C4 are the heat capacities of the heat 

conducting path of the TMDSC cell; Cs0 is the total heat capacity of the sample and 

the sealing pan; Tb is the temperature of the heating block; Tr is the temperature of the 

thermal couple on the reference side; Tr1 is the real temperature of the reference; Ts is 

the temperature of the thermal couple on the sample side, and Ts1 is real temperature 

of the sample. 

Finite difference method (FDM) is applied to solve Eqs. (2.3) to (2.8) with a 

time step of 0.0001 s. The values of physical properties used are given in Table 2.1. A 

TMDSC cell that has no biased heat flow was assumed. Because it is difficult to 

obtain the actual heat transfer parameters of the cell, for simplicity, it is assumed that 

R1=R2=R3=R4, Rr=Rs, and C1=C2=C3=C4. 

Table 2.1 Parameters of TMDSC simulation 

Parameters Description Value 

R1, R2, R3 

and R4 

Thermal resistance of heat conducting path(in K/W) 40 

Rs , Rr Thermal resistance between thermal couple and pan 

(in K/W) 

70 

C1, C2, C3 

and C4 

Heat capacities of the heat conducting path (in J/K) 0.01 

T0 Initial temperature (in K) 400 

A Modulation amplitude (in K) 1 

∆t Time step for Finite difference calculations (in s) 0.0001 

Period Temperature modulation period (in s) 30 to 100 

Cr Heat capacity of aluminum reference (in J/K) 0.0228 

 

2.2.3 TMDSC experimental conditions for the measurement of specific heat  

A sapphire disk with a diameter of 5 mm and a mass of 18.25 mg was used as 

the TMDSC calibration reference sample. The reference sample was sealed in an 
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aluminum pan. Five copper samples (purity>99.99%) with masses between 4.45 mg 

and 65.61 mg were used in the measurement of specific heat. Each of the copper 

samples was also sealed in an aluminum pan and flattened to ensure good thermal 

contact with the supporting plate. Copper was selected as the test material because of 

its high thermal conductivity so as to reduce the effect of temperature gradient, its 

thermal stability in the temperature range studied and the well-defined specific heat. 

The measurements were conducted at a constant temperature of 400 K with a 

modulation amplitude of 1 K and modulation periods of 30 to 100 s. Each aluminum 

sample pan was carefully selected so that its weight matched that of the aluminum 

reference pan within a difference of 0.1 mg. For comparison, measurements of 

specific heat of pure aluminum samples with masses between 5.68 mg and 51.10 mg 

were also carried out under the same conditions as those of the copper samples. 

 
2.3 Results and discussion 

In this section, we discuss the effects of experiment conditions such as sample 

mass, modulation amplitude and period on the measured specific heat and approaches 

to improving the accuracy of the measurement. Fig. 2.5 shows results from the 

simulation of the “real” sample temperature and reference temperature Ts1, Tr1, as 

well as the “measured” sample temperature and reference temperature Ts, Tr from 

simulation respectively. It is noted that there exist differences both in the temperature 

amplitude and phase angle between the “measured” and “real” temperatures. Since 

only the “measured” temperatures rather than the real temperatures are used to derive 

the specific heat, errors can develop in the measurement as a result. 
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2.3.1 The effect of the sample mass 

The results of specific heat obtained for the copper samples under various 

modulation periods both by the simulations and by the experiments are shown in Figs. 

2.6 and 2.7, respectively. For each modulation period, a calibration factor was 

obtained with a sapphire sample of 18.25 mg. In the computer simulations, the 

“calibration factor” was determined by a “virtual” run of the sapphire sample in the 

TMDSC model; while in the experiments, it was obtained from the experimental data 

Fig. 2.5 The "real" sample and reference temperatures Ts1, Tr1 vs. the "measured"
sample and reference temperatures, Ts, Tr . Simulation conditions: Ms=20 mg,
temperature modulation period=20 s 
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directly. The ratio between the specific heat given in the literature and the measured 

specific heat is the calibration factor.  

 

Fig. 2.6 indicates that a small sample mass does not necessarily produce 

accurate measurement results. If the mass is too small, as in the cases with the 

samples of 5 mg and 20 mg, the specific heat (cp) by simulation is larger than that 

from the literature: 0.3975 J/g·K at 400 K for copper [8]. The specific heat of the 

sample of 40 mg shows the most stable results over the entire range of modulation 

Fig. 2.6 Effect of sample mass and temperature modulation period on the measured
specific heat of copper (calibration factor Kcp has been taken into account) by
computer simulation 
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period in this study: its cp exhibits only a slightly decreasing trend as the modulation 

period increases from 30 to 100 s. If the sample mass is too large, the cp obtained is 

always smaller than 0.3975 J/g·K, as demonstrated by the cp of the samples of 80 mg 

and 160 mg, respectively. 

 

 

Fig. 2.7 Effect of sample mass and temperature modulation period  on the measured
specific heat of pure copper (calibration factor Kcp has been taken into account) 



 Chapter 2 

  77 

Compared with the simulation results shown in Fig. 2.6, the experimental 

results are slightly complicated. Fig. 2.7 shows the relationship between the cp of 

copper and modulation period obtained by the experiments. The cp of samples with 

masses of 4.45 mg and 8.08 mg decreases significantly as the modulation period 

increases. The cp of the sample of 16.80 mg drops slightly, while the cp of the other 

samples increases when the period increases from 30 to 100 s. The cp of the sample of 

8.08 mg drops below that of the 65.61 mg when the modulation period reaches 100 s. 

This drop in cp could be a result of TMDSC cell bias and purge gas convection, which 

are not taken into consideration in the simulations. Yet, the relationship between the 

cp and modulation period is still quite similar to that of the simulations: The specific 

heat measured by TMDSC is indeed mass-sensitive. The sample mass should not be 

too small as it results in higher cp. On the other hand, the sample mass should not be 

too large either, which produces cp smaller than that of the literature, even after 

calibration factors are taken into account.  

As shown in Fig. 2.6, between the small samples that yield higher cp and the 

large samples, which produce smaller cp, there seems to be an optimal sample mass, 

which has a measured cp that is equal to the literature value. Simulation results (Fig. 

2.6) indicate that only when the heat capacity of the sample Cs equals that of the 

calibration sapphire reference, the measured specific heat will be exactly the same as 

the actual value regardless of the modulation period. Because the internal thermal 

gradient of the sample or reference is ignored by the model (see Fig. 2.4), hence the 

sample and reference can be treated as a single point. The temperature signal from the 

thermal couple is affected by the heat capacity (Cs) which is a product of the mass and 

specific heat (cp) of the sample rather than the specific heat alone. As long as the heat 

capacity of the sample is the same as that of the sapphire reference, the measured 
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temperatures for both the sapphire and the sample will be the same under the same 

experimental conditions. If their heat capacities are different, then the calibration 

factor, Kcp, obtained from the sapphire reference cannot completely correct the errors 

in the measurement of specific heat of another sample. To be more specific, if the heat 

capacity of the sample is lower than that of the sapphire reference, the measured 

specific heat, cp, will be larger than the actual specific heat. However, if the heat 

capacity of the sample is higher than that of the sapphire reference, the measured 

specific heat cp will be lower. This deviation depends largely on the thermal 

properties of the TMDSC device, such as the thermal resistance and heat capacities of 

all the heat conducting paths. The heat capacities of the five copper samples with 

masses of 5, 20, 40, 80, and 160 mg are 0.002, 0.00795, 0.0159, 0.0318, and 0.0636 

J/K, respectively. The heat capacity of the sapphire calibration reference with a mass 

of 18.25 mg, denoted as Cs_calibration , is 0.0172 J/K as the specific heat of sapphire is 

0.9423 J/g·K at 400 K [9]. 0.0172 J/K is closest to the heat capacity of the copper 

sample of 40 mg which is 0.0159 J/K. Therefore, the most stable and accurate cp is 

obtained from the sample with a mass of 40 mg. 

Experimental results show similar trend with that of the simulations. As shown 

in Fig. 2.7, it can be seen that the optimal copper sample mass should be somewhere 

between 16.80 mg and 48.34 mg in order to obtain the most stable specific heat, 

which is least dependent on the modulation period. Fig. 2.8 shows the effect of the 

modulation period on the measured cp of pure aluminum obtained from experiments. 

It is found that the most favorable sample mass falls between 14.16 mg and 19.31 mg. 

The optimal mass obtained from simulation is Cs_calibration/cp_Al =18.1 mg, where cp_Al 

is the specific heat of aluminum, this agrees well with that of experiment. 
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2.3.2 TMDSC system output characteristics 

From a systematical point of view, we can treat the TMDSC system as a black 

box (a commonly used term in system analysis) without considering the details of its 

internal structure. Treating the temperature modulation frequency as an input, and the 

ratio between the measured heat capacity and actual heat capacity (Cs_m'/Cs =1/Kcp) 

as the output, one can plot the relationship between the input and output in Fig. 2.9.  

Fig. 2.8 Effect of sample mass and temperature modulation period on the measured
specific heat of pure Al (calibration factor Kcp has been taken into account) 
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As can be seen clearly, samples with different heat capacities follow different 

characteristic curves. The larger the heat capacity of the sample, the lower the 

characteristic curve we obtain. These curves remind us of a typical low pass filter in a 

“thermal version”. Suppose the sapphire reference used for calibration has a heat 

capacity of Cs_calibration = 0.008 J/K, its characteristic curve will follow curve 2. At 

any given modulation frequency, f0 =0.022 Hz, for example, the Cs_m'/Cs value is 

Fig. 2.9 Simulated TMDSC output characteristics as a function of the temperature
modulation frequency and the heat capacity of the sample 
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determined by point B. This calibration factor is denoted as KCp_B. Then there are 

three possible situations for the sample to be measured: 

(1) If Cs< Cs_calibration, for example, Cs = 0.002 J/K, the characteristic curve 

follows curve 1 and the calibration factor is KCp_A. Apparently, KCp_B>KCp_A. 

If KCp_B is used to correct the measured specific heat, the result will be larger 

than the actual value. 

(2) If Cs = Cs_calibration, for example, Cs = 0.008 J/K, the characteristic curve 

follows curve 2 and the calibration factor is KCp_B , which is the same as that 

of the calibration reference. Then the measured result will be the same as the 

actual value. 

(3) If Cs > Cs_calibration, say, Cs = 0.016 J/K, the characteristic curve follows curve 

3 and the calibration factor is KCp_C. In this case, KCp_B<KCp_C. If KCp_B is 

used to correct the measured specific heat, the result will be lower than the 

actual value. 

From the above analysis, we can draw a conclusion that the error in the 

measured heat capacity of the sample can be eliminated if Cs = Cs_calibration. However, 

the heat capacity, Cs, of the to-be-tested sample is not known beforehand, so this 

condition (Cs = Cs_calibration) cannot be met. Before a TMDSC experiment is carried 

out, if the specific heat of that sample is known to be in a certain range, then it is at 

least possible to select a mass so that its heat capacity is close to that of the calibration 

reference. Although still not perfect, this may reduce the error in the measured heat 

capacity than if the sample mass is just randomly selected. For instance, as a general 

guide line, at room temperature, many metals have a specific heat close to 3R, where 

R is the gas constant, thus the optimal sample mass should be around Cs_calibration/3R. 

As a result, for a sapphire calibration reference with a mass of 20 mg, we may use a 
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sample of ~20 mg for aluminum-based materials or ~45 mg for copper-based ones. 

Alternatively, samples with different masses can be tested on the TMDSC to obtain 

the “specific heat-modulation period” curves, and a more accurate result can be 

interpolated or extrapolated from these curves, since all the curves converge as shown 

in Fig. 2.6. 

The contact resistance between the sample and the support or the reference 

plays an important role in TMDSC since it makes the measured cp sensitive to the 

sample mass. Ozawa and Kanari [10] also used an R-C network model to analyze heat 

capacity measurement in TMDSC without taking the contact resistance into account. 

However, their simulation results [10] indicated that the “measured” cp was much 

more accurate than those that could be achieved in a real measurement. This 

simulation cannot effectively explain the mass dependence of the measured cp in 

TMDSC. 

As has been discussed in Chapter 1, Hatta and Katayama [11] proposed a 

method to eliminate the error from contact resistance by using the phase angle 

information. This approach requires no reference on the reference side but uses the 

support plate itself as the reference. Because the calibration coefficient is a function of 

the modulation period as well as the specific heat of the sample in the model, this 

method requires extensive calibration with multiple standard samples for each 

modulation period of interest. Although theoretically sound, the calibration process 

could be overwhelming if the long-term stability of the instrument is poor. Osaza and 

Kanari [12] adopted a similar approach and modified one of their earlier R-C network 

models [10] on the sample side. The result was similar to that of Hatta and Katayama 

[11], and thus may be subjected to the same limitations in the calibration of the 

TMDSC device. 
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2.3.3 The effect of modulation period 

It can be seen from both the results by simulation as shown in Fig. 2.6 and by 

experiments as shown in Figs. 2.7 and 2.8, shorter modulation periods (e.g. 10―20s) 

or higher modulation frequencies lead to increased errors. Increasing the modulation 

period can improve the accuracy of the measured specific heat. Furthermore, 

simulation results indicate that when the temperature modulation period approaches 

infinity, the measured specific heat converges to the exact specific heat of the sample 

regardless of the sample mass. However, in a real experiment, the potential issue is if 

the modulation period becomes too large (e.g. 500s), slow TMDSC system drift or 

low frequency noise of the system will interfere with temperature signals due to the 

overlapping of the frequencies of noise and temperature signals. 

 
2.3.4 The effect of modulation amplitude 

Fig. 2.10 shows the measured cp of sapphire with a sample mass of 18.25 mg 

under different modulation amplitude. The modulation period was maintained at 100 s 

and the isothermal temperature was 400 K. The amplitude of the sample temperature 

was able to follow the programmed values such as 0.2, 0.5, 1, 2 and up to 4 K, as 

indicated by the first five steps of the amplitude of the sample temperature in Fig. 

2.10. When the programmed modulation amplitude was further increased to 6, 7 and 

8K, the amplitude of the sample temperature could not reach the programmed values 

instantly. However, the measured cp is rather stable: it only varies between 1.0 and 

1.1 J/g·K for the different modulation amplitudes. This suggests that the modulation 

amplitude has little effect on the measured cp if compared with the effect of the 

modulation period and sample mass. 
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2.3.5 Calibration factor of sapphire and mass dependence 

Fig. 2.11 shows the calibration factor (Kcp) as a function of temperature 

modulation period for two sapphire references. A standard sapphire reference with a 

mass of 61.2 mg is used to compare the calibration factors with the previous sapphire 

reference of 18.25 mg. As can be seen in Fig. 2.11, the sapphire reference of 61.2 mg 

exhibits a lager calibration factor than that of the reference of 18.25 mg over the entire 

modulation period of 10 to 100 s. For both sapphire references, Kcp increases with a 

Fig. 2.10 Effect of temperature modulation amplitude on the measured specific heat
of a sapphire disk. Sapphire disk mass = 18.25 mg, temperature modulation period =
10 s 
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decreasing modulation period. When the modulation period is larger than 60 s, the 

Kcp curve becomes relatively flat. It seems that the difference in Kcp between these 

two sapphire references will be negligible at a much larger modulation period (>100s). 

Thus we not only have to select the sample and calibration reference with appropriate 

masses, but also need to select the modulation period carefully when TMDSC is used 

to measure heat capacities, as modulation period also affects the measurement results. 
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2.3.6 Possible effect of the temperature profile in metallic samples 

Simulation was also carried out to evaluate the temperature profile in the 

sample and its possible effect on the TMDSC result. A copper disk with a mass of  

200 mg which is much larger than those used in the experiments is assumed to be 

heated from the bottom surface only. The disk has a diameter of 6 mm and a thickness 

of 0.8 mm. The relative temperature profile calculated with finite element method is 

shown in Fig. 2.12.  

 

Fig. 2.12 The temperature profile under different linear heating rates in a 200 mg
cylindrical copper sample with a diameter of 6 mm. The bottom temperature is used
as a reference point and set to zero. 
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The results show that even under a linear heating rate of 100 K/min, the 

temperature difference between the bottom and top in the sample is only 0.003 K. 

This is three orders of magnitude lower than the typical modulation amplitude, 0.2 to 

1 K, for example. In the TMDSC experiments as discussed in section 2.3.1, the 

masses of the copper samples are much smaller than 200 mg and the maximum 

instantaneous heating rate is only 12.6 K/min at a modulation period of 30 s and 

modulation amplitude of 1 K. Based on these results, it is believed that for copper and 

most other metals, the temperature gradient in the sample should be of no major 

concern in TMDSC.  

However, for low heat-conductive materials like polymers, their thermal 

conductivities are often two to three orders of magnitude lower than that of copper. In 

such cases, the thermal resistance of the sample itself may significantly affect the R-C 

network and the measured specific heat, which will be discussed in Chapter 3. 

 
2.4 Comparison of specific heat measurements in the conventional 

DSC and TMDSC 

In this section, the differences in the measurement of specific heat between the 

conventional DSC and TMDSC are compared. For the R-C network model shown in 

Fig. 2.4, it can be proven that under a linear heating rate of q, when the steady state is 

achieved in DSC mode, the sample and the reference temperatures, Ts and Tr, are 

given by (see Appendix 2 for the detailed derivation) 

( ) q
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respectively. Then we have  
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Thus, 
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Equation (2.12) demonstrates a linear relationship between the heat capacity 

of the sample and the temperature difference Tr –Ts. As a result, the measured heat 

capacity is proportional to the heat flow since the heat flow is proportional to Tr –Ts. 

To study the linear range of conventional DSC, experiments were conducted 

with two standard sapphire references and five copper samples. Table 2.2 lists the 

masses of the copper samples. These masses are larger than those used in TMDSC as 

we already know DSC has good linearity at smaller masses.  

Table 2.2 Copper samples used in DSC 

Sample# Mass (mg) 
Sample 1 16.8 
Sample 2 65.61 
Sample 3 125.55 
Sample 4 200.04 
Sample 5 423.55 

 

Because the baseline heat flow of the DSC cell, which is the heat flow 

obtained without a sample and reference depends on the heating rate (see Fig. 2.13), 

all experiments were carried out under the same heating rate to eliminate this cell bias. 

The heat flows of the samples were compared to obtain the specific heat: 

( ) ( )
( )ji

ji
p m-mq

tHF-tHF
c

⋅
= ,      (2.13) 

where mi and mj are the masses of two different samples and the calibration factor is 

( )
p

p
Cp c

literaturec
 K =  .      (2.14) 
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The results of specific heat for the copper samples are given in Table 2.3. The 

corresponding calibration factors are listed in Table 2.4. As shown in Table 2.4, it is 

noticed that for the wide ranges of sample mass, heating rate, and temperature, the 

maximum value of the calibration factor, Kcp, is 0.96 and the minimum is 0.92. The 

difference between 0.96 and 0.92 is only about 5%, which is much smaller than that in 

TMDSC as shown in Fig. 2.11, of which can reach as high as 80% (4.0 vs. 2.2). This 

Fig. 2.13 The baseline heat flow curves in DSC2920 under different linear heating
rates 
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is a significant difference considering the fact that the TMDSC data were obtained 

only for a single temperature point of 400 K with a much smaller sample mass range. 

Table 2.3 Measured cp (in J/g·K) of copper vs. heating rate 

Temperature Heating rate 
(K/min) 150oC 200oC 250oC 300oC

Measured from 

20 0.43 0.44 0.44 0.44 Sample2,sample1 

20 0.43 0.43 0.44 0.44 Sample3,sample1 

20 0.42 0.43 0.44 0.44 Sample4,sample1 

20 0.42 0.43 0.43 0.44 Sample5,sample1 

40 0.43 0.43 0.44 0.45 Sample2,sample1 

40 0.43 0.44 0.44 0.44 Sample3,sample1 

40 0.42 0.43 0.43 0.44 Sample4,sample1 

40 0.42 0.42 0.43 0.44 Sample5,sample1 

 

Table 2.4 cp calibration factors of copper vs. heating rate 

Temperature Heating rate 
(K/min) 150oC 200oC 250oC 300oC Measured from 

20 0.92 0.93 0.94 0.94 sample2,sample1 

20 0.94 0.93 0.93 0.94 sample3,sample1 

20 0.95 0.94 0.94 0.94 sample4,sample1 

20 0.96 0.95 0.94 0.95 sample5,sample1 

40 0.92 0.93 0.94 0.93 sample2,sample1 

40 0.92 0.92 0.94 0.93 sample3,sample1 

40 0.94 0.95 0.96 0.95 sample4,sample1 

40 0.96 0.95 0.95 0.94 sample5,sample1 

 
The values of specific heat obtained from the two sapphire references with a 

mass of 18.25 mg and 62.10 mg respectively are listed in Table 2.5. The heating rate 

was varied from 5 to 40 K/min and the measuring temperature range was between 100 

and 200oC. The corresponding calibration factors are given in Table 2.6. As shown in 

the table, the maximum value of Kcp is 0.94 and the minimum is 0.91. The difference 

between 0.94 and 0.91 is less than 4%, which is close to that of the copper samples, 
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5% as given before. This shows that DSC has good system linearity over wide ranges 

of measuring temperature, heating rate and sample mass. 

Table 2.5 Measured cp (in J/g·K) of sapphire vs. heating rate 

Temperature Heating rate 
(K/min) 100oC 150oC 175oC 200oC 

5 0.96 1.05 1.08 1.12 

10 0.97 1.05 1.08 1.11 

20 0.97 1.06 1.09 1.11 

40 0.96 1.05 1.08 1.11 

 

Table 2.6 cp calibration factors of sapphire vs. heating rate 

Temperature Heating rate 
(K/min) 100oC 150oC 175oC 200oC 

5 0.94 0.92 0.92 0.91 

10 0.94 0.92 0.92 0.92 

20 0.93 0.92 0.92 0.92 

40 0.94 0.93 0.92 0.92 

 
2.5 Conclusions 

An R-C network model was used to analyze the effect of experimental 

parameters and thermal properties of the TMDSC calorimetry device on the specific 

heat measurement. TMDSC experiments were conducted with sapphire, copper and 

aluminum. Sapphire was used to obtain calibration factors to correct the specific heat 

of other samples. Both the simulation and experiments show that the measured 

specific heat using TMDSC depends on many factors such as the sample mass, the 

period of temperature modulation, the difference of heat capacity between the 

calibration reference and the sample to be tested. However, the amplitude of 

temperature modulation has little influence on the results. The typical behavior of a 

heat flux TMDSC instrument can be described by a low pass filter in terms of the 

relationship between the actual specific heat and the measured ones. Results of 
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simulation and experiments indicate that when the heat capacity of the sample, which 

is the product of the specific heat and sample mass, exceeds that of the calibration 

reference, the measured specific heat tends to be smaller than the actual value. 

Otherwise, the measured specific heat will be larger. When the thermal gradient in the 

sample can be ignored, as in the cases of metallic materials, more accurate results of 

measured specific heat can be obtained if the heat capacity of the sample is close to 

that of the calibration reference. 
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Chapter 3 Study of Temperature Profile and Specific Heat  

in TMDSC with a Low Sample Heat Diffusivity 
 

 

3.1 Introduction 

As discussed earlier, TMDSC uses the linear raising temperature that is used 

in the conventional DSC, superimposed with a periodic modulation of the temperature 

in the dynamic calorimetry. Since low frequency random noise that may be related to 

reactions in samples has been observed in conventional DSC, the temperature 

modulation technique has been used to obtain a more consistent experimental result in 

the measurement of heat flows and heat capacities [1]. (The frequency of this noise 

was too low to be of electrical origin). Among other capabilities, TMDSC can be used 

to measure thermal properties of materials such as specific heat under quasi-

isothermal (which has a zero underlying heating rate) conditions and non-zero 

underlying heating rate conditions [2―3].  

In a heat flux TMDSC, if the thermal resistance of the contact between the 

sample and the supporting plate is ignored, we have the following heat transfer 

equation, 

)( sb
s

0ss TTK
dt

dT
CHF −==  ,     (3.1)

  

where HFs is the heat flow to the sample side, Tb is the temperature of the heating 

block, Ts is the sample temperature, Cs0 (=Cs+Cr) is the total heat capacity of the 

sample and the reference (normally sealing pan), Cs is the heat capacity of the sample, 

Cr is the heat capacity of the reference. 

The heat flow to the reference, HFr , is 
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)( rb
r

rr TTK
dt

dTCHF −==  ,     (3.2) 

where Tr is the reference temperature. The heat capacity of the sample can be 

obtained by Eq. (2.1) in TMDSC.  

Boller et al. [2] had noticed that the measured specific heat of sapphire 

dropped considerably when the sample mass was over 100 mg if compared to that at 

20 mg. This was attributed to insufficient heat diffusion in the sample. Efforts have 

also been made to analyze the temperature profile within the sample in both the 

conventional DSC and TMDSC techniques. It was found that low thermal 

conductivity of the sample could produce a larger phase lag [4―6], and this could 

lead to controversies in the explanation of certain experimental results. For example, 

much debate existed in the physical meaning of the complex heat capacity and in the 

in-phase and out-of-phase parts of the heat flow [7―9]. In general, metallic materials 

are good heat conductors such that the internal temperature is almost uniform 

throughout the sample, which has been discussed in Chapter 2. In this case, heat 

diffusivity has little effect on the measurement of specific heat. However, for 

materials that have very low heat diffusivities, the excessive thermal resistance 

introduced by the sample itself may affect the measured specific heat significantly. 

In this Chapter, polyethylene terephthalate (PET), which has a thermal 

conductivity about one-thousandth that of aluminum, is used to demonstrate the effect 

of the thermal resistance of the sample on the measured specific heat. A TMDSC 

model is used to show the importance of understanding the effect of the internal 

thermal resistance of the sample, which is described in section 3.2. An analytical 

solution of the measured specific heat is derived and the effects of the thermal 

conductivity, sample thickness and modulation conditions on the measurement of 

specific heat are discussed. A numerical solution is also given and results of 
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numerical and analytical methods are compared. The experimental procedures are 

discussed in section 3.3. PET with indium temperature tracers is selected as the test 

material. In section 3.4, I will discuss the effect of the thermal gradient within the 

sample and of the temperature modulation parameters on the measurement of specific 

heat. 

 
3.2 A TMDSC model with thermal diffusivity 

In this section, I discuss a case in which the thermal resistance of the sample is 

significant. Fig. 3.1 shows the cell structure of a heat flux type TMDSC. Different 

from the R-C network model shown in Fig 2.4, it takes into account the internal 

thermal resistance of the sample, but the contact resistance between the sample and 

supporting plate and the heat capacities of the thermal conducting path are neglected. 

As shown in Fig. 3.1, Cr is the heat capacity of the supporting plate, which is used as 

the reference in this model. Tr is the temperature of the reference, and Ts is the 

temperature of the sample obtained at its bottom surface. 

 

 
Fig. 3.1 A model of a DSC or TMDSC cell with the temperature gradient in
consideration. Tr is the reference temperature, Ts is the sample temperature at the 
bottom surface, Cr the is heat capacity of the support plate, K is the system thermal
constant, Cs the is heat capacity of the sample. 
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The actual temperature of the sample cannot be directly measured in DSC or 

TMDSC since the thermal couple is not in direct thermal contact with the sample. 

Instead, the temperature measured by the thermal couple is used to evaluate the 

specific heat of the sample. In the following analysis we assume that the sample is 

heated only from the bottom surface. There is no heat exchange between the top or 

side surfaces of the sample and the environment either by convection or by radiation, 

and there is no heat exchange between the sample and the reference either. 

 
3.2.1 An analytical solution to the heat conduction equation 

With the above assumptions, the heat conduction in the sample is treated as an 

ideal one-dimensional heat transfer problem. The heat flow in the sample is described 

by the general heat transfer equation, 

2
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txT
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∂

=
∂
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 ,      (3.3) 

where x is the distance measured from the bottom of the sample and the thermal 

diffusivity of the sample αT is given by 

 
p

T cρ
λα = ,        (3.4) 

where λ is the thermal conductivity, ρ is the density and cp is the specific heat of the 

sample. Imposing a sinusoidal modulation on Ts:  

ti
00ss eATTt0TT ω⋅+=+= ),( ,     (3.5) 

where T0 is the initial temperature, A is the amplitude, and ω is the angular frequency, 

the cyclic part of the sample temperature in Eq. (3.3) takes the form 

ti
cyclics exFtxT ω⋅= )(|),( ,      (3.6) 

where F(x) is a complex function and it can be shown that [10]  
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Because there is no heat flow through the top surface of the sample, by 

utilizing the boundary conditions, F(0)=A and ∂T(x,t)/∂x|x=d=0, where d is the 

sample thickness, we obtain 

dd

d

1 ee
eA ββ
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= ,        (3.8) 
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Thus, the cyclic part of the sample temperature is 
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A comparison of Ts(x,t) given in Eq. (3.11) with the imposed temperature 

modulation at the sample bottom (x=0) as given in Eq. (3.5) indicates that the internal 

temperature of the sample is also a periodic function of the angular frequency ω, but 

has an amplitude which is a much more complicated function of x. 

In Eq. (3.1), HFs is the total heat absorbed by the supporting plate and the 

sample. Hence, it can be obtained that 
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where S is the cross sectional area of the sample. Combining Eqs. (3.8) to (3.12) 
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Substituting Eq. (3.13) into Eq. (3.2) yields the cyclic part of the reference 

temperature Tr: 
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Substituting Eqs. (3.14) and (3.5) into Eq. (2.1), we obtain the measured heat 

capacity of the sample 
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Equation (3.15) describes the effects of the various parameters on the 

measured heat capacity under various modulation situations within the framework of 

the model as shown in Fig. 3.1.  

Table 3.1 Relationship among the theoretical errors in measured heat capacity (Cs), 
sample thickness and temperature modulation period. Material: PET 
 

Sample thickness Modulation 
period 0.2mm 0.6mm 1.0mm 1.4mm 1.8mm 2.2mm 2.6mm 

10s 0.0% -0.3% -2.6% -8.9% -19.7% -32.4% -44.0% 
30s 0.0% 0.0% -0.3% -1.1% -3.0% -6.3% -11.3% 
50s 0.0% 0.0% -0.1% -0.4% -1.1% -2.4% -4.6% 
70s 0.0% 0.0% -0.1% -0.2% -0.6% -1.3% -2.4% 
90s 0.0% 0.0% 0.0% -0.1% -0.3% -0.8% -1.5% 

 
 

The results showing the relationship among the sample thickness, temperature 

modulation period and the error in the measured cp for PET are given in Table 3.1. To 

better illustrate the relationship among the error in the measured cp, sample thickness 

and modulation period, the contents of Table 3.1 are presented in Fig. 3.2. 
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Fig. 3.2 Relationship among the errors in the measured heat capacity, sample 
thickness and temperature modulation periods (in s). Material: PET 

 

The five different curves represent the errors in the measured cp under a 

modulation period of 10, 30, 50, 70 and 90 s, respectively, as a function of the sample 

thickness. The sample thickness varies from 0.2 to 2.6 mm and the modulation period 

varies from 10 to 90 s. Apparently the effect of the internal resistance is negligible 

when the modulation period is larger than 30 s and the sample thickness is smaller 

than 1.0 mm. For example, the error in the measured specific heat is less than 0.5% 

when the thickness is less than 0.6 mm. The error is less than 5% if the modulation 

period is larger than 50 s. It is also noticed that the measured cp is always smaller than 

the real cp. For other poor heat conductors, the appropriate range of parameters 

depends on their corresponding thermal diffusivity according to Eq. (3.15). Now we 

look at the effects of some of the parameters on the measured specific heat. 
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(1) Effect of the thermal conductivity λ of the sample 

For samples with high thermal conductivity, our analytical solution shows that 

the effect of the internal thermal resistance is negligible. For example, the thermal 

conductivity of copper is 4W/cm.K at room temperature [11], even for a sample 

thickness of 2 mm, the error due to  internal thermal resistance in the measured 

specific heat cp (cp=Cs /ms, where ms is the sample mass) is less than 0.01%. In the 

case of the ideal TMDSC model in which the sample has a uniform temperature, as 

mentioned in the beginning of this chapter, discussions in Chapter 2 are applicable. 

On the other hand, if the thermal conductivity is low, a small error is introduced in the 

measured cp. For example for PET, λ=0.0029W/cm.K [11], the error in the measured 

cp is 2.6% when the sample thickness is 1 mm and 25% when the thickness is 2 mm at 

a modulation frequency of 0.1 Hz. 

(2) Effect of sample thickness d 

Again take PET as an example and consider a small thickness (d) of 0.2 mm, 

the error due to the internal thermal resistance in the measured cp is less than 0.005%. 

However, for a sample thickness of 1.8 mm, the error can be as large as 20% at a 

modulation frequency of 0.1 Hz. Obviously, for poor heat conductors, the measured 

specific heat is more accurate if the sample thickness is small. 

(3) Effect of modulation frequency  

Consider again a PET sample with a thickness of 1.0 mm. When the 

modulation frequency is 0.1 Hz, the error in measured cp is 2.6%. However, at a 

modulation frequency of 0.02 Hz, the error is about 0.1%, which is a significant 

improvement over that at 0.1 Hz. This means that theoretically, we shall be able to 

obtain more accurate specific heat with a lower modulation frequency (such as 0.01 

Hz) or a longer modulation period (e.g. 100 s). 
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Similar calculation was also carried out for copper, for the same ranges of 

sample thickness and modulation period. It was found that the error in the measured 

specific heat due to the internal thermal resistance is less than 0.01%.  Thus the effect 

of the internal thermal resistance of the sample itself can be ignored for copper and 

most metallic materials. 

In summary, at least within the framework of the TMDSC model shown in 

Fig. 3.1, a combination of thin sample with large thermal diffusivity and long 

modulation period (or low modulation frequency) is beneficial to improving the 

measurement accuracy of TMDSC. 

As Eqs. (3.5), (3.14) and (3.15) are in complex form, it can be derived that the 

phase angle, ϕ, between heat flow and Ts is 
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It can be proven that the second term on the right hand side of Eq. (3.16) is 

equal to π/4 and ϕ=π/2-arctan(ωCr/K)=arctan(K/ωCr) when the sample is treated as a 

single point with no internal thermal resistance. In this case, our TMDSC model is 

essentially the same as that dicussed by Wunderlich et al. [2―3]. 

From Eq. (3.15), it can be seen that the specific heat, thickness and cross 

sectional area of the sample all can affect the measured specific heat. There is no 

simple relationship between the real specific heat and the measured value, but a 

proper selection of the experimental parameters can still help to reduce the effect of 

internal thermal resistance to a negligible level (<0.5% in error). 
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3.2.2 A numerical approach  

For the purpose of comparison with the above analysis, we now resort to a 

numerical approach to study the thermal processes in TMDSC. The cylindrical sample 

is divided into n (n=10) equally sized small disks along its vertical axis. Based on the 

model shown in Fig. 3.1, the following heat transfer equations can be obtained. 

For the sample supporting plate, we have 

dt
dTC

R
TTKTT s
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−−
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)( .      (3.18) 

For the first disk at the bottom of the sample (i=1), it can be shown that 
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For the i-th disk (i=2 to n-1), 

dt
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For the disk on top of the sample (i=n),  

dt
dTC

R
TT n

unit
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In Eqs. (3.18) to (3.21), Runit and Cunit are the thermal resistance and the heat 

capacity of one disk respectively, and Ti  is the temperature of the “i”th disk. The heat 

flow to the reference HFr  obeys 

dt
dTCKTTHF r

rrbr =−= )(  .     (3.22) 

Numerical solutions of conventional DSC are carried out to obtain the 

temperature profile in the sample under different linear heating rates, while 

simulations of TMDSC are used to find the effect of the internal thermal resistance of 

the sample on the measured specific heat. The simulation parameters are listed in 
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Table 3.2. The Finite difference method and discrete Fourier transform are used to 

calculate the specific heat given in Eq. (2.1). 

Table 3.2 Parameters used in numerical simulation 

Simulation parameters and description Value 

Reference heat capacity  Cr  ( in J/K ) 0.02

PET density  (in g/cm3) 1.37 [11]

PET sample diameter (in mm) 5

PET sample mass (in g) 0.02

PET specific heat (in J/g·K) 1.25 [11]

PET thermal conductivity (in W/cm·K) 0.0029 [11]

System thermal constant K (in W/K) 0.01

 
 
3.3 Experimental procedures for temperature profile study 

To study the actual temperature profile in PET, a method of placing metal 

indium in the sample as a temperature tracer is adopted, as shown in Fig. 3.3. 

 

 

 

 

 

Fig. 3.3 A PET sample used in the conventional DSC experiments. A tiny amount of
indium is embedded in the middle and at the bottom positions respectively. The
sample is then sealed in an aluminum pan. 
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The thickness of the PET sheet is 0.4 mm. Small quantities of indium with a 

mass between 0.06 and 0.69 mg were placed between the two pieces of PET sheet and 

at the bottom of the lower sheet, respectively. Then the samples are sealed in a 

standard aluminum pan. Upon linear temperature scan, when the temperature reaches 

the melting point of indium, the embedded indium melts and the heat signal is picked 

up by the thermal couple. Since there are two indium temperature tracers at different 

locations in the PET sample, due to the internal temperature gradient in PET, two heat 

flow peaks associated with the melting of indium can be detected during the linear 

temperature scan. From the difference between the temperatures corresponding to the 

two peaks, we can roughly deduce the temperature profile in the sample. Since the 

signal from the melting of indium in the middle of the sample takes longer to arrive at 

the thermal couple than the signal from the bottom, the temperature difference 

between the two melting peaks has to be corrected by the time difference in heat 

diffusion. Given a heat diffusivity of 0.093X10-6 m2/s [12] for PET and a sample 

thickness of 0.4 mm, the time difference is estimated to be (0.4X10-3)2/0.093X10-6 = 

1.7 second. This delay results in a temperature difference of 1.7q, where q is the 

heating rate. This temperature difference needs to be deducted from the temperature 

difference between the two melting peaks. The heating rate used in our DSC 

experiments varies from 2 to 40 K/min.  

In the TMDSC experiments, two indium-free PET samples with a mass of 

6.71 mg and 19.6 mg respectively are used. The sample of 6.71 mg has a single layer 

of the PET sheet while the 19.6 mg sample has two layers of the PET sheet. The 

temperature modulation amplitude varies from 0.5 to 2 K, and the modulation period 

varies from 10 to 100 s. The quasi-isothermal temperature is 160oC (433 K). A 

standard sapphire sample with a mass of 18.25 mg is used as the calibration reference, 
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and calibration of KCp is conducted at the same modulation periods as those used for 

the two indium-free PET samples. 

All DSC and TMDSC experiments are carried out on a TA 2920 DSC&MDSC 

thermal analysis instrument that is equipped with a rapid cooling system. The purge 

gas is pure nitrogen with a flow rate of 70 cc/min. 

 
3.4 Results and discussions 

The heat flows of the PET samples using indium as temperature tracers in 

conventional DSC are shown in Fig. 3.4. On each heat flow curve, there are two peaks 

corresponding to the melting of the embedded indium in the middle and at the bottom, 

respectively.  

 

Fig. 3.4 The heat flow curves of a PET sample with indium temperature tracers under 
different heating rate 
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Fig. 3.5 shows the difference in the peak temperatures due to the melting of 

the two indium temperature tracers obtained from experiments and those from the 

numerical solutions. Curves 1 to 4 of the four PET samples exhibit a near linear 

relationship between the peak temperature difference and the heating rate. Although 

the embedded indium mass in the four samples varies from 0.06 to 0.69 mg, there 

seems to be no obvious correlation between the indium mass and the peak 

temperature difference.  

 

 

 

 

5

Fig. 3.5 Temperature difference between the two indium tracers as a function of heating
rate. Curves 1 to 4 show the measured temperature difference. The straight line (5) is
obtained from simulation. Curve 1: PET mass: 14.24 mg, middle/bottom indium mass:
0.43/0.38mg. Curve 2: PET mass: 13.02 mg, middle/bottom indium mass:0.27/0.23mg. 
Curve 3: PET mass: 12.94 mg, middle/bottom indium mass: 0.17/0.12mg. Curve 4:
PET mass: 18.17 mg, middle/bottom indium mass: 0.69/0.07mg. Curve 5: Simulated
results. PET mass: 20 mg, 0.74 mm thick. 
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It is noticed that in the simulation, the mass of the PET sample is 20 mg and it 

is assumed to have a perfect contact with the supporting plate. Based on the density 

and diameter given in Table 3.1, the sample has a thickness of 0.74 mm; while in the 

experiments, the distance between the middle and the bottom of the sample is only 0.4 

mm, as indicated in Fig. 3.3. Yet the mid-to-bottom temperature difference is larger 

than the simulated top-to-bottom temperature difference. This may be caused by the 

imperfect heat transfer conditions, such as purge gas convection, radiation and partial 

thermal contact between the PET sample and the aluminum sealing pan. 

Fig. 3.6 shows the simulated temperature profile in the PET sample at 

different heating rates when the temperature reaches a quasi-steady state in DSC. The 

temperature at the bottom of the sample is taken as the reference and is set to zero. It 

is noticed that the temperature profile curves are not a straight line. When the heating 

rate is 100 K/min, a temperature difference of 2.4 K is developed between the top and 

bottom surfaces.  

For TMDSC, the relationship between the amplitude profile of temperature in 

the sample and modulation period obtained from simulation is shown in Fig. 3.7. Here 

the PET sample of 20 mg has a thermal resistance of 130 K/W, which is even larger 

than that of the DSC/TMDSC cell itself (Rs=100 K/W). This additional thermal 

resistance changes the effective thermal constant and results in a biased or asymmetric 

DSC/TMDSC cell. Since the reference sample for calibration does not have such a 

large internal thermal resistance, it is expected that deviations in the specific heat can 

be produced if the calibration factor obtained from the calibration reference is used to 

correct the measured specific heat of the PET sample. Obviously, if the PET sample 

becomes thinner, the internal amplitude profile of temperature will be more uniform, 

hence the measured specific heat is more accurate. Heat diffusion in the sample is 
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rather limited at short modulation periods (5 to 20 s, for example). Due to the 

significant internal thermal resistance, the amplitude of the modulated temperature 

drops below the programmed amplitude of 2 K as one moves from the bottom to the 

top surfaces of the sample. When the modulation period increases, the modulation 

amplitude at each point in the sample becomes closer to the programmed value and 

the amplitude curve becomes flatter. 

 

 
 
Fig. 3.6 Relative temperature profile in the sample as a function of the heating rate in 
conventional DSC by simulation. The temperature at the sample bottom is the 
reference point and is set to zero. 
 

 



 Chapter 3 

  109 

 

Fig. 3.7 Simulated temperature oscillation amplitude as a function of temperature 
modulation period in TMDSC. The programmed modulation amplitude (at the sample 
bottom) is 2 K. The PET sample mass is 20 mg. 

 

Fig. 3.8 shows the relationship between the amplitude of the heat flow and the 

modulation period obtained from simulations, while Fig. 3.9 shows this relationship 

obtained from experiments. In Fig. 3.8, the amplitude of the heat flow increases as the 

modulation period increases before a maximum point is reached at about 10 s, then 

the amplitude drops with further increase in modulation period. Compared with the 

experimental results shown in Fig. 3.9, this trend is similar, except that in Fig. 3.9, the 

heat flow amplitude reaches a maximum at a different modulation period. As can be 
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seen in Fig. 3.9, when the temperature modulation amplitude is 0.5K, the maximum 

appears at a modulation period of 30 s, but when the temperature modulation 

amplitude is 2 K, the maximum shifts to 45 s. The shift in the peak position could be 

attributed to the much more complicated heat transfer properties of the TMDSC cell 

compared to the simple model used for the simulations.  

 

 

 

Fig. 3.8 Simulated heat flow amplitude as a function of temperature modulation 
period and amplitude in TMDSC. The PET sample mass is 20 mg. 
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Fig. 3.9 Experimentally obtained heat flow amplitude in TMDSC. The PET sample 
mass is 19.6 mg. 

 

Fig. 3.10 shows the experimentally determined relationship between the 

temperature modulation amplitude and the modulation period. It demonstrates the 

limitations on the cooling and heating capabilities of the TMDSC device. A maximum 

modulation amplitude of 0.5 K can be reached when the modulation period reaches 20 

s and above, while a modulation amplitude of 2 K requires a modulation period of 60 

s or more. However, this effect is not considered in the model used in the simulations. 
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Fig. 3.10 Experimentally obtained amplitude of the sample temperature Ts as a 
function of the temperature modulation period and amplitude 

 

With a sinusoidal temperature modulation, the maximum heating rate for 

TMDSC in quasi-isothermal state is Aω, where A is the modulation amplitude and ω 

is the angular frequency. This produces a maximum heating rate ranging from 7.5 to 

75 K/min for an amplitude of 2 K, and a maximum heating rate ranging from 1.9 

K/min to 19 K/min for an amplitude of 0.5 K when the modulation period is between 

10 s and 100 s. By referring to the measured curves in Fig. 3.5, it is believed that the 

modulation can produce a temperature difference in the order of 0.1 to 1K in the 
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sample. Although these values do not seem to be very large, the ratio to the modulated 

temperature amplitude is not negligible, which can cause significant error in the 

measured specific heat. Interestingly, simulation results indicate that there is a linear 

relationship between the modulated temperature amplitude and the heat flow 

amplitude. This means that for a given sample and modulation period, the accuracy of 

the measured specific heat is a constant regardless of the modulation amplitude. This 

can be explained by the characteristics of the linear equations used in the model (see 

Eqs. (3.18) to (3.22)). The simulated effect of the sample mass or thickness on the 

observed specific heat is shown in Fig. 3.11.  

The measured cp of the PET sample of 20 mg can deviate more than 20% from 

the value given in literatures, especially at lower modulation periods (<20s), while the 

situation is much better for the sample of 5 mg. As a matter of fact, the results of both 

the analytical method and numerical simulations, agree well with those obtained from 

other dynamic temperature differential scanning calorimeters such as power-

compensated DSC, DDSC, and SSADSC, although the detailed algorithms and 

implementations are different from one another [13―15]. 

The relationship among the modulation amplitude, modulation period and cp 

obtained from TMDSC experiments is shown in Fig. 3.12. When the programmed 

modulation amplitude increases from 0.5 to 2 K, the cp does not change significantly. 

The relationship between the sample mass and the observed cp agrees well with the 

simulation result. For the sample of 6.71 mg, the cp curve is much more flat than that 

of 19.6 mg. However, when the modulation period is shorter than 15 s, the cp 

increases if the modulation period decreases. This phenomenon can be explained by 

the contact resistance that is important in the low modulation period or high-

frequency region, which was already discussed in Chapter 2. Apparently, in our 
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TMDSC experiments, a sample mass of 19.6 mg appears to be too large for the 

specific heat measurement of PET. This is because according to the results shown in 

Fig. 3.12, a modulation period longer than 100 s which is the upper limit of the 

TMSDC device is needed for the cp curve to become relatively flat. 

 

 

 
 
Fig. 3.11 The "measured" specific heat as a function of the temperature modulation 
period (obtained from simulation). The three PET samples have the same foot print, 
thus the smaller the mass the thinner the sample. 
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Fig. 3.12 Experimentally obtained specific heat as a function of the temperature 
modulation period.  The thickness of the 6.71 mg sample is 0.4 mm (single layer of 
PET sheet), while the thickness of the 19.6 mg sample is 0.8 mm (double layer of 
PET sheet). 
 

3.5 Conclusions 

Although the effect of heat diffusivity of the sample on the measured specific 

heat normally can be ignored for metallic materials in differential scanning 

calorimetry, this may not always be the case for poor heat conductors. In this chapter, 

an analytical solution for cp measurement in TMDSC with a sample of low thermal 

conductivity is derived. Numerical simulation and experiments of cp measurement for 

both DSC and TMDSC using PET samples are carried out. The effects of the 
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temperature modulation period, thickness and thermal conductivity of the sample on 

the measured cp are discussed. 

Proper selection of modulation parameters can help to minimize the effect of 

the internal thermal resistance on the experimental results. To measure the specific 

heat of poor heat conductors such as polymer, fiber and wood by TMDSC, it is 

suggested that the sample thickness be as small as possible, e.g., a 0.2 mm thick 

sample is better than a 0.5 mm thick one. Also, a longer modulation period is 

preferred, e.g., 70 s is better than 20 s. In the case of PET the preferred sample 

thickness should be less than 1.0 mm with a modulation period longer than 30 s. This 

can reduce the error caused by the internal thermal resistance to less than 0.5%, which 

is valid for materials that have larger heat diffusivities than PET. For other low-heat-

conducting materials, the appropriate combination of the parameters depends on their 

thermal diffusivities. The fact that the temperature modulation amplitude has a very 

small effect on the measured specific heat is a good indication of the overall system 

linearity of the TMDSC device, especially at large modulation periods (>50 s) that are 

well within its cooling and heating capabilities. 
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Chapter 4 Numerical Modeling and Analysis of TMDSC: On 
the Separability of Reversing Heat Flow and Non-reversing 

heat flow 
 

 
4.1 Introduction 

Besides being able to measure the specific heat in a single run, another 

important capability of TMDSC is the separation of the reversing heat flow (RHF) 

from the non-reversing (or kinetic) heat flow (NHF), such as the NHF from a glass 

transition, a curing process and chemical reactions. This is important in identifying 

the kinetic processes and better characterizing materials [1―3] as the RHF and NHF 

signals often mix together in a conventional DSC experiment. One related issue in the 

separation of RHF and NHF is the reproducibility of experimental results, which has 

been studied by Schawe and co-workers [4, 5]. 

In TMDSC, depending on the actual implementation, the temperature of the 

heating block may satisfy the following equation 

)sin()( tAqtTtT bT0b ω++= ,      (4.1) 

where T0 is the initial temperature of the experiment, ATb is the  oscillation amplitude 

of the heating block temperature, ω (=2π/p) is the angular frequency of temperature 

modulation, and p is modulation period, q is the underlying heating rate. 

Correspondingly, the sample and reference temperatures are  
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respectively, 



 Chapter 4 

  119 

where AT and ATs are the oscillation amplitudes of the reference and the sample 

temperatures, respectively, K is the thermal constant, ϕ1 and ϕ2 are the phase angles of 

the sample and reference temperature, respectively. 

Detailed mathematical descriptions of TMDSC are available elsewhere [6―9]. 

If T0 is constant and the underlying heating rate q=0 or is small, for example, a few 

degrees per minute, it has been shown [6] that 

2
r
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ω
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where Cs0 is the total heat capacity of the sample and the sealing pan 

Cs0=cp_sms + cp_rmr ,      (4.5) 

where cp_s and cp_r  are the specific heats of the sample and sealing pan, respectively, 

ms is the sample mass, mr  is the mass of the sealing pan. 

In TMDSC, the relationship among the heating rate, the total heat flow (HF), 

and the kinetic heat flow satisfies the general heat flow equation Eq.(1.21). As has 

been pointed out by Wunderlich et. al. [6―9], it is possible to measure the specific 

heat by deconvoluting the temperature signals even in the presence of a non-reversing 

heat flow. This is based on the assumption that the thermal response in TMDSC is 

linear or not far from the linear state. Hence the reversing heat flow can be separated 

from the total heat flow. 

In this chapter, two different types (time dependent and temperature dependent) 

of non-reversing heat flows are employed in the simulations of the heat flows and 

temperature of the sample in TMDSC. Discrete Fourier transform and finite 

difference method are used to calculate the specific heat of the sample, total heat flow, 

reversing and non-reversing heat flows. In section 4.2, I will depict a model where a 

kinetic or non-reversing heat flow in the sample is taken into consideration. In section 
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4.3, we describe the procedure of numerical simulation and the two different types of 

non-reversing heat flows. The effects of the non-reversing heat flow on the specific 

heat of the sample are demonstrated in section 4.4. 

 
4.2 Model of TMDSC for numerical calculations 

Fig. 4.1 shows the schematic diagram of the TMDSC model used in this 

chapter. For simplicity, the heat exchange between the sample and the reference is 

neglected, plus the TMDSC cell is assumed symmetric.  

 

Fig. 4.1 Schematic diagram of a simplified TMDSC model. Rd is the thermal 
resistance between the heating block and reference or sample. dH1/dt, and dH2/dt are 
the heat  flows to the reference and sample respectively 

 

The thermal resistance between the heating block and the sample or reference 

is Rd and 

dR
1K = ,        (4.6) 

where K is the thermal constant of the TMDSC device. 

The difference between this model and that given in Chapter 3 is that any 

temperature gradient in the sample is ignored and a non-reversing heat flow is 

considered in the present model. From the above assumptions, we may consider two 

different heating conditions of the sample in TMDSC: 

(a) There is no non-reversing heat flow involved. According to Newton’s law 

of cooling, we have 
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dt
dTC

R
TT
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dH r

r
d

rb1 =
−
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 ,      (4.7) 

where, dH1/dt is the heat flow to the reference side, Tb and Tr are the temperatures of 

the heating block and reference, respectively, and Cr is the heat capacity of the 

reference. The sealing pan is used as the reference, and Cr=cp_rmr . Similarly, the 

following equation can also be obtained: 

dt
dT

C
R

TT
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dH s
0s

d

sb2 =
−

=
)(

 ,      (4.8) 

where dH2/dt is the heat flow to the sample side, Ts  is the sample temperature. 

Subtracting Eq. (4.7) from Eq. (4.8) yields 
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− ,               (4.9) 

where (dH2-dH1)/dt is equal to the heat flow in or out of the sample. 

(b) If there is a non-reversing heat flow, NHF(T,t), during the heating or 

cooling process, Eq. (4.8) becomes 

dt
dT

CtTNHF
R

TT
tTNHF

dt
dH s

0s
d

sb2 =+
−

=+ ),(
)(

),( .   (4.10) 

With Eqs. (4.7) to (4.10), the following differential equations as the basis for 

subsequent simulation can be obtained.  

If there is no NHF, then 

dt
CR
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dt
CR

TT
C
dHdT

0sd

sb

0s

2
s

)( −
== .      (4.12) 

If there is a NHF, 

dt
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C
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4.3 Simulation procedure and data treatment 

 The purpose of the simulations is to compare the “measured” and the given 

values of specific heat, HF, RHF, and NHF, and to study the separability of RHF 

from NHF. The simulations consist of the following steps: 

(a) Set up temperature for the heating block according to a given modulated heating 

procedure.  

(b) At a certain time in the simulation, a NHF which varies according to the 

assumed NHF model is introduced. 

(c) Calculate the temperatures of the sample, reference, and heating block, Tb(t), 

Tr(t), Ts(t), and the heat flows to the sample and reference, dH1(t)/dt and 

dH2(t)/dt . 

(d) Apply the discrete Fourier transform with a sliding transform window to find 

the first-order harmonics of (Tr-Ts ) and Ts so as to calculate the specific heat of 

the sample cp_s, and HF. 

(e) With cp_s and HF, one can obtain RHF and NHF 

qmcRHF ssp _= ,                              (4.15) 

NHF=HF-RHF .       (4.16) 

To simulate the modulated heating, the temperature of the heating block takes 

the form given in Eq. (4.1). It is assumed that the specific heat of the sample, cp_s, 

remains constant over the entire temperature range. 

In the following simulations, two different NHFs are considered: a 

temperature dependent NHF and a time dependent NHF. There is an important 
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difference between the two NHFs. For the time dependent NHF, once the non-

reversing heat flow process begins, it only varies with time but not with temperature. 

Hence it cannot be modulated by the sinusoidal part of the heating block temperature. 

The temperature dependent NHF, on the other hand, can be modulated by the 

sinusoidal part. 

As a hypothetical case study, I assume that the energy distribution function of 

the non-reversing reaction follows 

∫ =
1

2

)(
X

X

EdxxH .       (4.17)       

In Eq. (4.17), variable x is either time or temperature depending on the NHF 

type. The non-reversing reaction only occurs between x1 and x2, which means H(x)=0 

for the region outside x1 to x2. E is the integrated NHF energy and is assumed to be a 

constant. To facilitate the simulation, we choose arbitrarily a periodic function for H(x) 
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It is easy to show that H(x) satisfies 
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π

π
,     (4.19) 

where x0  is the starting time or temperature of NHF, x0+π/Y is the ending time or 

temperature of NHF, and Y is an adjustable factor of the time or temperature range of 

the non-reversing reaction. Here we assume H(x)=0 when x is outside [x0, x0+π/Y]. 

Because the energy is fixed at E, by adjusting Y, the non-reversing reaction 

range can be increased to reduce the NHF peak value. Similarly the range can be 

decreased in order to enhance the NHF peak value, as shown in Fig. 4.2. The 
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simulation parameters are listed in Table 4.1. These values are from Ref. [10] or 

typical of those used in actual TMDSC experiments. 

 

Fig. 4.2 H(x) vs. intensity adjusting factor Y. H(x) increases with Y, but the peak 
width decreases accordingly so that the integrated area keeps constant. x is either time 
or temperature. 
 

The dimension for these two kinds of H(x) is different. For the time dependent 

process, H(t) is in J/s and Eq. (4.14) can be used directly. For the temperature 

dependent process, H(T) is in J/K and a slight modification to Eq. (4.14) is necessary 

∆H2|(n-1)+H [Ts(t)] ∆Ts|(n-1)=Cs0∆Ts|n ,     (4.20) 
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where ∆Ts|(n-1) and ∆Ts|n are the temperature increment at time (n-1)∆t and n∆t, 

respectively, ∆H2|(n-1) is the heat input from the heating block at time (n-1)∆t, and ∆t 

is the time step used in the finite difference simulation. The sample temperature at 

time n∆t is 

Ts|n=Ts|(n-1)+ {∆H2|(n-1)+H [Ts(t)] ∆Ts|(n-1)}/Cs0  .   (4.21) 

Table 4.1 Parameters used in numerical simulation 

Parameter  Description Value 

  cp_r Specific heat of aluminum reference pan  (in J/g·K) 0.951 [10] 

  cp_s Specific heat of sample (in J/g·K) 0.134  

  mr Mass of reference and sample pan (in mg) 24  

  ms Sample mass (in mg) 20  

  Rd System thermal resistance (in K/W) 100  

  ∆t Time step used in Finite difference method (in s) 0.0001 

  E NHF energy (in J/g) 6 

  A Amplitude of modulated temperature (in K) 0.20  

  p TMDSC modulation period (in s) 30 

 
 
4.4 Simulation results and discussions 

4.4.1 Temperature dependent NHF 

Figs. 4.3 and 4.4 show the cp_s , HF, RHF and NHF of a TMDSC simulation 

for the temperature dependent NHF as discussed above. The modulation period is 30 s, 

the modulation amplitude is 0.2 K, and the underlying heating rate is 3 K/min. The 

temperature range of the NHF is preset between 200 and 250 oC in Fig. 4.3, while it is 

preset between 200 and 210 oC in Fig. 4.4. 

As shown in Fig. 4.3, there are more than 10 modulation cycles in the NHF 

temperature range, while there are only 5 in Fig. 4.4.  Due to the wider temperature 

range (50 against 10 oC), the NHF peak value of ~0.2 mW in Fig. 4.3 is lower than the 
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peak value of ~2 mW in Fig. 4.4. Since the integrated NHF energy is 6 J/g in both 

cases, it takes a longer time (17 against 3.3 min) to complete the non-reversing 

reaction. Hence Fig. 4.3 represents a slow kinetic process. Compared with that of Fig. 

4.3, Fig. 4.4 represents a faster non-reversing reaction. 

 

Fig. 4.3 cp_s, HF, RHF, and NHF as a function of temperature for a temperature 
dependent NHF, with more than 10 modulation cycles in the NHF. 
 

 

Fig. 4.4 cp_s, HF, RHF, and NHF as a function of temperature for a temperature 
dependent NHF, with only 5 modulation cycles in the NHF. 
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As shown in both Figs. 4.3 and 4.4, the cp_s can be accurately obtained at a 

steady state where NHF is absent. Once the NHF is introduced, the exact cp_s can no 

longer be obtained. The shape of cp_s shown in Fig. 4.3 is different from that in Fig. 

4.4: in Fig. 4.3, two “valleys” appear in the cp_s with a “hump” in-between, while in 

Fig. 4.4, a strong peak appears in the cp_s with a maximum of 1.3 J/g·K. This is much 

larger than the cp_s under steady state conditions, which is only 0.134 J/g·K. 

From the above simulations, it seems that when a temperature dependent NHF 

is mixed with the RHF, they cannot be effectively separated from each other by 

TMDSC. One may draw a conclusion that the TMDSC system is not working in a 

linear state due to the temperature dependence of the NHF. As a result, significant 

deviations appear in the measured specific heat. 

 
4.4.2 Time dependent NHF 

Figs. 4.5 and 4.6 show the cp_s , HF, RHF and NHF of the time dependent 

non-reversing reaction. The modulation period is 30 s, the modulation amplitude is 

0.2 K, and the underlying heating rate is still 3 K/min. The time range of the NHF is 

preset between 200 and 800 s for those shown in Fig. 4.5, while it is between 200 and 

400 s for those shown in Fig. 4.6. The cp_s at a steady state both before and after the 

non-reversing reaction remains the same as the value given in Table 4.1 (0.134 J/g·K). 

This demonstrates that the specific heat of a sample can be effectively measured with 

a single run in TMDSC if there no NHF during the heating or cooling. 

As shown in Fig. 4.5, there are over 15 modulation cycles in the NHF time 

range, the “measured” cp_s has a deviation of less than 0.1 J/g·K from the value at 

steady state. While in Fig. 4.6, there are only 6 modulation cycles, the deviation in the 

“measured” cp_s is increased to ~0.3 J/g·K. It is obvious that with further data 
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smoothing, such as averaging cp_s over a sliding window, the “measured” cp_s can be 

fairly close to the value at steady state, even if there is a NHF as illustrated in Fig. 4.5. 

 

Fig. 4.5 cp_s, HF, RHF, and NHF as a function of temperature for a time dependent 
NHF, with more than 10 modulation cycles in the NHF. 
 

 

 

Fig. 4.6 cp_s, HF, RHF, and NHF as a function of temperature for a time dependent 
NHF, with only 6 modulation cycles in the NHF. 
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Lacey et al. [11] obtained analytical solutions of specific heat where the NHF 

is a chemical reaction that is both time and temperature dependent. With a number of 

mathematical approximations in the analysis, they showed that the “measured” 

specific heat of the sample had deviations during an endothermic reaction where it 

was assumed that the specific heat stays constant. It was noticed that the deviations in 

the specific heat were decreased by increasing the modulation frequency. This agrees 

well with the results of the simulations as indicated in Fig. 4.5 and 4.6. For reactions 

that take a long time (relative to the modulation period) to complete, it is feasible to 

obtain a better measurement of specific heat by increasing the modulation frequency. 

For other reactions that complete in a much shorter time or in a narrow temperature 

range, there are some limitations. The thermal inertia of the TMDSC device and 

temperature resolution already set a lower limit to the modulation period. For example, 

the suggested minimum modulation period for TA Instruments DSC&TMDSC2920 is 

10 s. The temperature gradient in the sample also increases with increasing frequency. 

These factors could contribute to the errors in the measurement of cp_s. Furthermore, 

according to the results shown in Figs. 4.3 and 4.4, even if there are no limitations to 

the modulation frequency, whether the measured specific heat can accurately reflect 

the actual specific heat still depends on the characteristics of the reaction itself. That 

is, the time and temperature dependence of the NHF. 

From the above simulations, it can be seen that even for time dependent 

kinetic processes, there is still a frequency limit within which reasonably accurate 

separation can be achieved. For a completely time dependent non-reversing heat flow, 

we have ∂f(t,T)/∂T=0 and f(t,T)=f(t). In a single Fourier transform window (t0, t0+p), 

which has the same duration as the modulation period, p, if the non-reversing heat 

flow, f(t), can be linearized, then we can approximate f(t) with the following, 
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Equation (4.22) also contains a first harmonic contribution from the non-

reversing heat flow, which is determined by the change of f(t) in a modulation cycle. 

The first harmonic in Eq. (4.22) is mixed with the reversible heat flow from the heat 

capacity of the sample. To improve the accuracy of the experiment, we may need to 

reduce this first harmonic contribution. Apparently, reducing the width of the 

transform window or the modulation period reduces f(t0+p)-f(t0). However, this has 

no influence on the measured specific heat. Thus the reversing heat flow can be more 

effectively separated from the non-reversing heat flow. 

 
4.4.3 Effect of the underlying heating rate 

With an underlying heating rate q, comes the underlying heat flow from the 

heat capacity of the sample, qCs, which is a first order thermal response. A lower 

underlying heating rate seems beneficial to improving the separability of HF and 

NHF according to Eq. (4.22). Fig. 4.7 shows the results of deconvoluted specific heat 

with an underlying heating rate of 1, 5, and 10 K/min, respectively. The total time for 

non-reversing reaction is set to 600 s. For a modulation period of 30 s, this duration 

can accommodate 20 modulation cycles regardless of the underlying heating rate. 

Oscillations in the cp_s in the NHF region are quite similar among the three conditions. 

With increased underlying heating rate, ripples begin to appear outside the NHF 

region. Hence, a slower underlying heating rate produces more stable results of cp_s, 

and the step-wise quasi-isothermal TMDSC technique may be the most favorable 

since the underlying heating rate is zero on each individual temperature step.  
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Fig. 4.7 cp_s for the time dependent kinetic event with different underlying heating 
rates. Vertical axes are the cp_s of different heating rates. 

 

Fourier transform is applicable to linear response systems [12, 13]. For 

satisfactory results to be obtained the entire system, including the measurement device 

and the sample to be tested, must meet the linear superimposition principle.  

In a real experiment, NHF may come from chemical reactions, kinetic 

reactions such as crystallization from an amorphous state, re-crystallization, or their 

combinations. The resultant NHF could be much more complicated than those 

described in this chapter. Furthermore, the specific heat of the sample may change in 

the non-reversing reaction, depending on the characteristics of the NHF. Thus, the 

TMDSC system may not behave in a linear fashion. In this case, although qualitative 

separation of reversing and non-reversing heat flow is possible, quantitative 

separation still remains a challenge. 
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4.5 Conclusions 

From the above studies, the “measured” or “observed” specific heat of a 

sample is dependent on the NHF and the parameters of temperature modulation. The 

measurement of specific heat is applicable for steady state where there is no NHF. If 

NHF is time dependent and the modulation frequency is high enough, it still allows 

determination of the specific heat, HF, RHF, and NHF by Fourier transform. The 

effect of temperature dependent NHF on the heating or cooling process is non-linear 

and can influence the thermal response of TMDSC to such an extent that the 

measured specific heat of the sample can no longer accurately reflect its true value. 
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Chapter 5 System Linearity and the Effect of  
Kinetic Events on the Observed Specific Heat 

 
 
 

5.1 Introduction 

There has been much interest in applications of TMDSC in materials research, 

such as the measurement of heat capacity and thermal conductivity, studies on 

crystallization and melting, as indicated by the large number of papers published in 

the last ten years [1―11]. Analysis of TMDSC data is based on a linear response 

assumption, a pre-requisite of Fourier transform. This places a stringent requirement 

on the TMDSC device. The first-order harmonics of heat flow and sample 

temperature signals are employed using Fourier transform to calculate the specific 

heat of the sample and phase angles of the heat flows [1, 4, 8, 10]. If the experimental 

parameters are not chosen properly or the thermal response is non-linear or deviates 

from the thermal equilibrium due to the reaction kinetics, the measured or observed 

specific heat can be different from the actual value. 

In this chapter, the importance of linearity in TMDSC is demonstrated through 

analytical as well as numerical analyses. In section 5.2, I will present a general 

solution to the thermal conduction equation of TMDSC through linearization when a 

kinetic event is considered. In section 5.3, several common kinetic models and the 

effects of the kinetic events on the reversing heat flow (RHF) as well as non-reversing 

heat flow (NHF) are analyzed. TMDSC experiments on several aluminum-based 

amorphous alloys are also performed to substantiate the results of the theoretical 

analyses. The TMDSC results and the effects of the kinetic events on the observed 

specific heat are discussed in section 5.4. 
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5.2 Analysis of complex heat capacity and the effect of kinetic events 

In this section, we discuss a general situation of TMDSC in which a time and 

temperature dependent kinetic event is included. We also discuss the physical 

implications of the complex heat capacity and the importance of the system linearity 

in the interpretation of the measured heat capacity. We choose a typical heat flux type 

TMDSC device in our discussion. A similar analysis can be carried out for a power 

compensation type TMDSC.  

If the thermal constant between the heating block and the reference or sample 

is K, the existence of a temperature gradient in the sample and the heat exchange 

between the sample and purge gas are ignored, the following general differential 

equation of heat transfer in TMDSC can be obtained [12, 13]: 

⎟
⎠
⎞
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⎝
⎛=∆+⎟
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⎞
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⎛ ∆

dt
dTCTK

dt
TdC s

sr ,     (5.1) 

where ∆T is the difference between the sample temperature (Ts) and the reference 

temperature  (Tr). Cs and Cr are the heat capacities of the sample and reference, 

respectively, and t is time. In the presence of a kinetic event, f(t,T), on the sample side, 

Equation (5.1) becomes 

),( s
s

sr Ttf
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⎛ ∆ .    (5.2) 

The kinetic event can be a chemical reaction or a crystallization process and in 

general it can depend on both time and temperature. In TMDSC, the temperature of 

the heating block is often modulated so that the sample temperature consists of a 

linear part and a sinusoidal variation, which is also valid in the presence of the kinetic 

event, 

)sin( tAqtTT Ts0s ω++= .      (5.3) 
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Substituting Eq. (5.3) into Eq. (5.2), we have 

[ ] [ ])sin(,)cos( tAqtTtftAqCTK
dt

TdC Ts0Tssr ωωω ++++=∆+⎟
⎠
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⎜
⎝
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Equation (5.4) suggests that although the kinetic event, f(t, T), is a function of 

both time and temperature, the two variables t and T are now linked together by the 

modulation condition as defined in Eq. (5.3). Thus, f(t,T) is only a function of a single 

variable, t. If the temperature modulation amplitude ATs is small, (e.g., 0.2 K), then     

f [t,T0+qt+ATssin(ωt)] may be approximated by 

[ ] )sin(),('),()sin(, tAqtTtfqtTtftAqtTtf Ts0T0Ts0 ωω +++≈++ ,  (5.5) 

where fT ' is the first-order derivative of temperature. 

It is difficult, if not impossible, to derive an analytical solution to Eq. (5.4) and 

obtain the heat capacity of the sample in the general case. However if the perturbation 

by the kinetic event is small, we may obtain an approximate solution. If we assume 

that the kinetic reaction takes a long time to complete so that both f(t,T0+qt) and fT' 

(t,T0+qt) change little during one or even more modulation cycles, both functions can 

then be roughly treated as “constants” in Eq. (5.5). Furthermore, we may assume the 

underlying heating rate is only a few degrees per minute or even slower, which is 

typical of TMDSC experiments, and the heat capacity of the sample remains constant. 

As a result, equation (5.4) becomes a simple linear differential equation based on 

these assumptions. Substituting Eq. (5.5) into Eq. (5.4), one can easily derive the 

cyclic part of the general solution to Eq. (5.4) 
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where ϕ is the phase angle and ϕ=arctan(-ωCr/K). This phase angle would be 

the same with or without the kinetic event. 
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Since fT' is nearly a constant in each modulation cycle, equation (5.6) can be 

further simplified 
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where δ is the additional phase angle caused by the kinetic event, and 

2

s

T

C
f1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ω

δ
'

cos ,     (5.8) 

2

s

T

s

T

C
f1

C
f

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ω

ω
δ

'

'

sin .     (5.9) 

The right-hand side of Eq. (5.6) consists of two terms which represent two 

different sources of temperature changes. The first term )cos( ϕωω +tCs is related to 

the heat capacity of the sample, corresponding to the so-called non-cooperative 

atomic motion that has a relaxation (or response) time in the order of 10-13 s [14]. This 

atomic motion is much faster compared with the temperature modulation period. Thus 

the atomic motion follows instantaneously the external temperature modulation. The 

heat flow related to this motion is commonly known as the RHF. The second term 

[ )sin(),( ' ϕω ++ tqtTtf 0T  ] is contributed by the temperature sensitivity of the kinetic 

event, such as a glass transition in a polymer, corresponding to the motions of large 
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organic molecules. The corresponding relaxation or response time can be comparable 

to the temperature modulation period. 

In the presence of a kinetic event, f(t,T), the measured heat capacity is 

determined from Eqs. (2.1) and (5.7), which is affected by both the heat capacity of 

the sample and the kinetic event 
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Symbol C* on the left hand side of Eq. (5.10) is complex and defined as a 

complex heat capacity. With this complex heat capacity and Eqs. (5.8), (5.9), and 

(2.1), we can obtain the reversing (also called “in-phase” or real) heat capacity and 

non-reversing (called “out-of-phase” or imaginary) heat capacity separately: 

δcos*' CCC s == ,       (5.11) 

δ
ω

sin*' CfT = .       (5.12) 

Since the complex heat capacity is defined as C*=C'-iC", the imaginary part, 

C", is 

ω
'

" TfC −= .        (5.13) 

It should be noted, however, that the concept of complex heat capacity is still 

controversial [15―17] as has been discussed in Chapter 1 because it can be a result of 

insufficient heat diffusion in some materials with low thermal conductivity such as 

polymers, wood, glass and fiber. A significant thermal gradient can be developed in 

such materials, causing an additional phase lag which influences the measured heat 

capacity, HF, RHF and NHF by TMDSC.  

By definition, heat capacity is the heat energy needed to raise the temperature 

of a substance by 1 K or 1 oC. Besides, heat capacity is related to the internal 
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vibrational and translational motions of the sample, which are thermodynamic in 

nature. These motions are normally very fast and can immediately follow any external 

temperature changes. The energy stored in these motions is fully reversible, which 

means that the energy absorbed when the temperature is increased by 1 K can be 

completely released by reducing the temperature by 1 K. That is why the heat flow 

related to the heat capacity is called reversing heat flow and “in phase” with the 

temperature modulation. Given that the temperature modulation period is in the 10-

second magnitude as often seen in a TMDSC device, a kinetically hindered event, 

even if it is reversible over a certain temperature range, takes a significantly longer 

time that may be comparable to the modulation periods to respond to the external 

temperature changes. Due to the fact that the measured heat capacity in Eq. (5.10) is 

not solely dependent on the heat capacity itself, complex heat capacity may be an 

appropriate term to describe it. If the phase angle δ  is close to zero, then the heat 

capacity cab be approximated by the complex heat capacity according to Eq. (5.11). 

To obtain the real and imaginary part of the complex heat capacity, and hence 

the RHF and NHF, we have to find the phase angle introduced by the kinetic event. 

This requires an approach to filter out the phase lag caused by the thermal transfer 

from the phase angle information. Reading and Luyt [18] proposed a baseline method 

that was realized by subtracting an interpolated straight line between the start and end 

point of the kinetic transition (see Fig. 1.19, as discussed in Chapter 1). Weyer et al. 

[19] proposed another method that used the cp to deduce a fitting baseline to find the 

phase angle due to the kinetic event (Fig. 1.20). Nevertheless, linearity is assumed in 

the phase angle calculation. Without this basic pre-requisite, Equation (5.6) can result 

in an unpredictable error to the solution of Eq. (5.4). The heat capacity of the sample, 

Cs, appears on the right-hand side of Eq. (5.10), which can introduce an error to C* 
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because Cs is an item that has to be measured. Although increasing the temperature 

modulation frequency can reduce the error in the measured heat capacity, the 

available modulation frequency is typically restricted to only 0.01 to 0.1 Hz due to the 

thermal inertia of the TMDSC system. This modulation frequency range is much 

narrower than those available in other dynamic methods such as dynamic mechanical 

analysis (DMA). However, as long as the relationship between the kinetic event and 

modulation parameter selection satisfies 
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max

'
ω

,       (5.14) 

the heat capacity of the sample can still be measured and the RHF can be separated 

from the total heat flow (HF) with relatively small uncertainties. This is where 

TMDSC is advantageous compared to the conventional DSC. If the condition required 

by Eq. (5.14) is not satisfied, significant deviation from the actual value in the 

measured heat capacity may occur.   

The physical interpretation of the imaginary part of the complex heat capacity, 

C", is still controversial and several different explanations have been proposed, as has 

been discussed in the literatures [20―23]. However, according to Eq. (5.13), it is 

obvious that C" is introduced by the kinetic event and depends on the modulation 

frequency. More precisely, C" reflects the sensitivity of f(t,T) to the temperature 

change and should not be directly correlated with the value of f(t,T). In other words, 

even if C"=0, it does not necessarily mean f(t,T)=0. In view of this, we may say that 

the imaginary part or C" is not really a type of heat capacity in a strict sense. 

From the above analysis, it can be seen that the key to a successful 

measurement of the heat capacity is the system linearity, which includes the linearity 

of the TMDSC device and the linearity of the thermal response to the kinetic event. 
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That is, a system function, F(x) should satisfy F(a+b)=F(a)+F(b) and F(kx)=kF(x); 

the system can then be described by linear differential equations. Any kinetic event 

added to the right hand side of Eq. (5.4) that meets this condition has its 

corresponding linear component in the total heat flow, and Fourier transform can be 

used here in the data analysis. Furthermore, for a complete deconvolution by Fourier 

transform that takes into account the additional phase angle caused by the kinetic 

event, the key issues are still “small perturbation” and system linearity. Obviously, if 

Eq. (5.14) cannot be met due to improper experimental parameter selection, or the 

kinetic event itself, Eqs. (5.7) to (5.12) are no longer true and Fourier transform will 

produce mathematical artifacts which may lead to inconsistent conclusions. Below, 

several models of chemical reactions are used in the simulations to support this point 

of view. 

 
5.3 Case studies on several kinetic models 

In this section, we further illustrate the importance of system linearity in the 

measurement of specific heat, the separation of RHF and NHF in TMDSC with 

several commonly used kinetic models and discuss the conditions for successful 

applications of TMDSC. First, we discuss the case of TMDSC where there is a first-

order decomposition process in the sample, which obeys the classical Arrhenius 

equation: 

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅=

RT
E

B
dt
d aexpαα ,      (5.15) 

where α is the concentration of the reaction agent, B is a constant, Ea is the activation 

energy, R is the gas constant, and T is the temperature. Therefore, we can obtain α by 

integrating Eq. (5.15) over time interval [0, t], 
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where α0 is the initial concentration of the decomposing agent. The associated kinetic 

heat flow, f(t,T), generated by the decomposition is 
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In Eq. (5.17), ∆H is the reaction heat per unit mass and ms is the sample mass. 

With a linear underlying heating rate, T=T0+qt, it can be derived that 
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It is assumed for simplicity that the specific heat of the sample remains 

constant during the entire decomposition process. Then the following heat transfer 

equations can be obtained  

),()()( Ttf
dt
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CCTTK s
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dTCTTK r

rrb )( ,      (5.20) 

where Tb, Tr  and Ts are the temperatures of the heating block, reference and sample, 

respectively, K is system thermal constant. Equations (5.19) and (5.20) are the well-

known differential equations for TMDSC and the detailed derivation can be found in 

references [12] and [13]. These two equations will be used in the finite difference 

numerical simulation. Simulation parameters are given in Table 5.1 [24, 25]. 
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Table 5.1 Parameters used in numerical simulation 
Simulation parameters and description Value

Amplitude of heating block temperature ( in K ) 0.2 * 

Underlying heating rate q ( in K/min ) 3 * 

Temperature modulation period ( in s ) 10* to 1000

Heat capacity of sample Cs ( in J/K ) 0.004 *

Heat capacity of reference Cr ( in J/K ) 0.0228 * 

TMDSC system thermal constant K  ( in W/K ) 0.01 * 

Decomposition reaction constant  B  ( in s-1 ) 2X108 **

Activation energy Ea ( in J/mol ) 8.314X104 ** 

Reaction heat per unit mass ∆H ( in J/g ) 75 **

Sample mass ms  ( in g ) 0.02 * 

Initial temperature T0  ( in oC ) 30 *

Initial concentration of the reaction agent α0 0.95 **

Gas constant R ( in J/mol·K ) 8.314 

Notes: 
*   Values typical of TMDSC device or experiments  
** Values similar but not identical to those used in Ref. [24, 25] 

Discrete Fourier transform is used in the calculation of the HF, RHF and NHF. 

Detailed description of discrete Fourier transform can be found in Appendix 1. A 

sliding Fourier transform window with a width which is the same as the 

corresponding modulation period (10 s, 100 s, and 1000 s respectively) is employed. 

The HF, RHF, and NHF are sliding averages of the results obtained by Fourier 

transform over the transform window. Figs. 5.1, 5.3 and 5.5 show the HF, RHF, and 

NHF of the first-order decomposition described by Eq. (5.15) using TMDSC 

simulations. Lissajous figures (Figs. 5.2, 5.4 and 5.6) showing the relationship 

between the heating rate, dTs /dt, and the heat flow are used to demonstrate the 

system linearity. The separability of RHF and NHF can be clearly seen under 

different modulation parameters in these cases. 
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Fig. 5.1 Simulated HF, RHF and NHF as a function of time. Conditions of simulation:  
Temperature modulation period = 10 s, modulation amplitude = 0.2 K, underlying 
heating rate=3 K/min. 
 

Fig. 5.1 shows the simulated HF, RHF and NHF for a case where the 

temperature modulation period is 10 s, or the frequency is 0.1 Hz. The results indicate 

that the decomposition takes approximately 2000 s to complete when the underlying 

heating rate is 3 K/min. Hence, this decomposition can be thought of as a rather slow 

reaction. There are more than 100 modulation cycles during the decomposition. 

According to Eqs. (5.7) and (5.10), due to the fast modulation frequency of 0.1 Hz, 

we know that the contribution of the kinetic part to the measured heat capacity is 

relatively small. In this case, the RHF and NHF are separated satisfactorily.  
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Fig. 5.2 Simulated Lissajous figure showing the relationship between heating rate and 
heat flow. Temperature modulation period = 10 s, modulation amplitude = 0.2 K, 
underlying heating rate = 3 K/min. 
 

With Eq. (5.18), it is found via numerical calculation that the maximum value 

of fT' during the decomposition is 0.086 mJ/K when the linear heating rate is 3 K/min. 

Hence, (fT'/ωCs)2
max=0.0012, and the condition given by Eq. (5.14) is satisfied. 

According to the results shown in Fig. 5.1, the error in the measured specific heat (cp) 

is almost negligible. Fig. 5.2 shows the corresponding Lissajous figure. The curve 

shows an elliptical pattern with a small amount of overlap between adjacent 

modulation cycles, which is an indication of good system linearity in the entire 

reaction process. 
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Fig. 5.3 Simulated HF, RHF and NHF as a function of time. Conditions of simulation: 
Temperature modulation period = 100 s, modulation amplitude = 0.2 K, underlying 
heating rate = 3 K/min. 
 

Fig. 5.3 shows the simulation results of the case where the temperature 

modulation period is 100 s. All other simulation parameters are kept the same as those 

for 10 s. The maximum value of (fT '/ωCs)2=0.12, which is 100 times larger than that 

for 10 s. Although there are still more than 15 modulation cycles during the 

decomposition, the system linearity begins to deteriorate and much larger ripples or 

spikes are observed in the RHF and NHF.  
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Fig. 5.4 Simulated Lissajous figure showing the relationship between heating rate and 
heat flow. Temperature modulation period = 100 s, modulation amplitude = 0.2 K, 
underlying heating rate = 3 K/min. 
 

The corresponding Lissajous figure as shown in Fig. 5.4 deviates from the 

elliptical pattern, and becomes similar to an overlapped sinusoidal curve. We can infer 

from this that much of the linearity is lost and the system is entering into an unstable 

state. In Fig. 5.3, although the total heat flow HF still looks similar to that in Fig. 5.1, 

the RHF and NHF are different from those in Fig. 5.1. More than 10 maxima are seen 

in the RHF but they are only artifacts, as we know the RHF should not change 

because the specific heat is already assumed to be a constant. This may lead to 
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incorrect conclusions in terms of the sample properties, for example, the specific heat 

seems to have changed during the kinetic reaction. 

 

Fig. 5.5 Simulated HF, RHF and NHF as a function of time. Conditions of simulation: 
Temperature modulation period = 1000 s, modulation amplitude = 0.2 K, underlying 
heating rate = 3 K/min. 
 

A similar simulation was carried out for the modulation period of 1000s and 

the results are shown in Fig. 5.5. This modulation period is less than but of the same 

order of magnitude as the total reaction time. Again, all other parameters are kept the 

same as those used for Fig. 5.3. In this case (fT '/ωCs)2
max =11.8, which is 100 times 

larger than that for 100 s and 10,000 times larger than that for 10 s. We can no longer 

assume constant f(t,T) and fT' in a modulation cycle, which is a pre-requisite for Eq. 
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(5.4) to be linearized. The kinetic perturbation is too strong to be approximated as a 

linear one. The corresponding Lissajous figure in Fig. 5.6 shows that the system 

completely loses linearity and is far from a stable state. The RHF and NHF are 

severely deformed. The total heat flow has been drastically changed as well. 

Apparently, they can no longer provide meaningful information with regard to the 

sample properties under these circumstances.  

 

Fig. 5.6 Simulated Lissajous figure showing the relationship between heating rate and 
heat flow. Temperature modulation period = 1000 s, modulation amplitude = 0.2 K, 
underlying heating rate = 3 K/min. 

Similar results for RHF and NHF can be found in the analysis by Lacey et al. 

[26] although their approach is much more complicated. They believe that in many 
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cases it is possible to separate the reversing heat flow and the non-reversing heat flow 

provided that the experimental conditions are selected properly. This is consistent 

with our analysis. 

Now we will study several other derivatives of the classical Arrhenius model. 

This is done by simply replacing the concentration of the reaction agent, α, in Eq. 

(5.15) with different functions, f(α). The definitions of f(α) for five different kinetic 

reactions studied are listed in Table 5.2, which include Sestak-Berggren (SB), 

Johnson-Mehl-Avarami (JMA), two-dimensional diffusion (D2), Jander (D3), and 

Ginstling-Brounshtein (D4) models [27]. The SB reaction is a more general form of 

the traditional kinetic one that is related to the Avarami equation. The JMA reaction is 

often used to describe phase transformation behavior in many systems involving 

growth and nucleation. D3 is a diffusion-controlled solid-state reaction model using 

the planar diffusion assumption to correlate the reacted fraction with time, while D4 is 

a three-dimensional diffusion model proposed by Ginstling and Brounshtein. 

Variables m and n in function f(α) represent the order of the reactions. For simplicity, 

m=n=2 in our simulations. 

Table 5.2 Definitions of f(α) for several kinetic models [27] 
Model                                       Symbol f(α)

Sestak-Berggren eqn.                 SB(m,n) αm(1-α)n

Johnson-Mehl-Avarami eqn.     JMA(n) n(1-α)[-ln(1-α)]1-1/n

Two dimensional diffusion        D2 1/[-ln(1-α)]

Jander eqn.                                 D3 3(1-α)2/3/2[1-(1-α)2/3]

Ginstling-Brounshtein eqn.        D4                              3/2[(1-α)-1/3-1]

Note: m=n=2 
 

The simulation results of both conventional DSC and TMDSC based on these 

five kinetic models are discussed in the following sections. Fig. 5.7 shows the 

simulated heat flow in conventional DSC of the five models under a heating rate of    
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3 K/min. Obviously, even under such a low heating rate, D2, D3, and D4 type 

reactions have a rather short but sharp heat flow peak, while the heat flow peaks of 

JMA and SB type reactions are much smaller with much longer durations. 

 

Fig. 5.7 Simulated DSC heat flow curves for kinetics reactions of a two-dimensional 
diffusion (D2), Jander (D3), Ginstling-Brounhtein (D4), Johnson-Mehl-Avarami 
(JMA), and Sestak-Berggren (SB) models respectively. Heating rate = 3 K/min 
 

Figs. 5.8, 5.10 and 5.12 show the simulated HF, RHF, and NHF of D2, D3, 

and D4 type reactions respectively with a modulation period of 10 s. It can be seen 

that even under this short modulation period, multiple sharp peaks still appear in the 

RHF and NHF. Hence, TMDSC analysis is not suitable for these reactions, at least 

not within the framework of our studies. This can also be seen from the Lissajous 
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figures shown in Figs. 5.9, 5.11, and 5.13 respectively. It is found that the linearity is 

quite poor for these three types of reactions in that the curves are not elliptical or 

circular indicating that the system is not in a thermal equilibrium state. 

 

 

Fig. 5.8 Simulated HF, RHF and NHF as a function of time for D2 model. Conditions 
of simulation: Temperature modulation period = 10 s, modulation amplitude = 0.2 K, 
underlying heating rate = 3 K/min. 
 
 
 
 
 
 
 
 
 



 Chapter 5 

  153 

 
 
 
 
 
 

 
 
Fig. 5.9 Simulated Lissajous figure for D2 model showing the relationship between 
heating rate and heat flow. Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Fig. 5.10 Simulated HF, RHF and NHF as a function of time for D3 model. 
Conditions of simulation: Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
 
 

 
 
Fig. 5.11 Simulated Lissajous figure for D3 model showing the relationship between 
heating rate and heat flow. Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Fig. 5.12 Simulated HF, RHF and NHF as a function of time for D4 model. 
Conditions of simulation: Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 

 
 

 
Fig. 5.13 Simulated Lissajous figure for D4 model showing the relationship between 
heating rate and heat flow. Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Simulated HF, RHF, and NHF of the JMA type reaction with a modulation 

period of 10 s and 100 s are shown in Figs. 5.14 and 5.16, respectively, while those of 

the SB type reaction can be found in Figs. 5.19 and 5.21. It can be seen that for these 

two types of reactions, the simulated RHF and NHF are much more accurate at the 

period of 10 s than at 100 s, and they show a similar trend as that of the analytical 

solution and the first-order reaction, as discussed in sections 5.2 and 5.3. Their 

Lissajous figures as shown in Figs. 5.15, 5.17, 5.20 and 5.22 have demonstrated that 

better linearity and hence better separation of RHF and NHF can be achieved for 

shorter modulation periods. Figs. 5.18 and 5.23 show the effect of the underlying 

heating rate on the measured cp for JMA and SB type reactions respectively. The 

effect is quite significant since the intensity of reaction drops significantly with 

decreasing heating rate. Consequently, the corresponding value of fT'(t,T) drops too, 

thus allowing a more accurate deconvolution of heat capacity according to Eqs. (5.10) 

and (5.14). In both figures, the measured cp shows the smallest ripples at the slowest 

heating rate of 1 K/min. 
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Fig. 5.14 Simulated HF, RHF and NHF as a function of time for JMA model.  
Conditions of simulation: Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
 

 
 
Fig. 5.15 Simulated Lissajous figure for JMA model showing the relationship 
between heating rate and heat flow. Temperature modulation period = 10 s, 
modulation amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Fig. 5.16 Simulated HF, RHF and NHF as a function of time for JMA model. 
Conditions of simulation: Temperature modulation period = 100 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Fig. 5.17 Simulated Lissajous figure for JMA model showing the relationship 
between heating rate and heat flow. Temperature modulation period = 100 s, 
modulation amplitude = 0.2 K, underlying heating rate = 3 K/min. 
 
 

 
Fig. 5.18 cp ( J/g·K ) as a function of temperature under various underlying heating 
rate (K/min) for JMA model 
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Fig. 5.19 Simulated HF, RHF and NHF as a function of time for SB model. 
Conditions of simulation: Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 

 
 

 
Fig. 5.20 Simulated Lissajous figure for SB model showing the relationship between 
heating rate and heat flow. Temperature modulation period = 10 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Fig. 5.21 Simulated HF, RHF and NHF as a function of time for SB model. 
Conditions of simulation: Temperature modulation period = 100 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
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Fig. 5.22 Simulated Lissajous figure for SB model showing the relationship between 
heating rate and heat flow. Temperature modulation period = 100 s, modulation 
amplitude = 0.2 K, underlying heating rate = 3 K/min. 
 
 

 

 
Fig. 5.23 cp ( J/g·K ) as a function of temperature under various underlying heating 
rate (K/min) for SB model 
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5.4 Experimental analysis on several melt-spun amorphous alloys 

In this section, we discuss how experimental parameters can affect the 

TMDSC results of several melt-spun amorphous alloys and the advantages of 

TMDSC over conventional DSC. Fully amorphous Al84Nd9Ni7 ribbons were prepared 

by the melt-spinning technique. The chilling copper wheel has a diameter of 20 cm 

with a line speed of 30 m/s. TMDSC experiments were carried out on a TA 

Instruments MDSC2920 device that was equipped with a liquid nitrogen cooling 

system. The sample mass is 13.00 mg, the modulation amplitude is 0.8 K, the period 

is 30 s, and the underlying heating rate is 1 K/min. XRD analysis is used to determine 

the phase structures of the ribbons.  

 

2 theta 

Fig. 5.24 XRD results of melt spun Al84Nd9Ni7 ribbon. 1: as spun ribbon 2: ribbon 
heated to 320oC, then quenched down to room temperature 3: ribbon heated to 370oC, 
then quenched down to room temperature. 

2

3

1
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Fig. 5.24 shows the XRD results of the ribbon after being heated to different 

temperatures and then quenched to the ambient temperature. XRD spectrum 1 of the 

as-spun ribbon represents a fully amorphous structure. XRD spectrum 2 is for the 

ribbon after it was heated to 320oC then cooled down to room temperature, indicating 

a partially crystallized amorphous structure. XRD spectrum 3 is for the ribbon after it 

was heated to 370oC then cooled down to room temperature, confirming that it is now 

fully crystallized. 

 

Fig. 5.25 Experimentally obtained specific heat of the sample (cp), HF, RHF and 
NHF Sample: melt spun Al84Nd9Ni7 ribbon. Temperature modulation period =30 s, 
modulation amplitude =0.8 K, underlying heating rate =1 K/min, sample mass =13.00 
mg. 
 

Fig. 5.25 shows the experimentally determined specific heat, HF, NHF, and 

RHF by TMDSC of the melt-spun Al84Nd9Ni7 ribbon. On the HF curve, there are two 

exothermic peaks corresponding to the crystallization process of inter-metallic and α-

Al, respectively. The first exothermic peak occurs between 260 and 290oC, while the 

second exothermic peak appears between 330 and 360oC. The specific heat curve can 

be roughly divided into three distinct segments. The dotted lines are used to help 
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explain the difference in specific heat among the three segments. The first segment, 

AB, represents an amorphous state and has the highest cp if we compare the positions 

of the three dotted lines. The second segment, CD, represents a partial amorphous 

status and shows an intermediate cp among the three segments. Segment EF, where 

the sample is fully crystallized, has the lowest cp. Although the difference in specific 

heat between crystalline and amorphous states is rather small, TMDSC is able to 

distinguish them in a single run, demonstrating a high sensitivity which cannot be 

matched by the conventional DSC. This is especially useful for those cases where 

thermal history can significantly change the thermal properties if the experiment has 

to be conducted in two separate runs.  

Comparison of the two exothermic peaks in HF (Fig. 5.25) indicates that the 

first peak is relatively sharp and narrow, and the corresponding cp shows different 

patterns during these two exothermic peaks. Between B and C, cp exhibits 

considerable positive deviation from the dotted line (representing the linear 

relationship between cp and temperature), reaching a maximum during the 

crystallization and then dropping sharply as the temperature increases, while in 

segment DE, the cp changes smoothly to segment EF without any apparent peak in 

specific heat. 

Lissajous figures corresponding to the two exothermic peaks are shown in 

Figs. 5.26 and 5.27, respectively. The curve shown in Fig. 5.26 shifts considerably in 

the vertical direction during the crystallization. Apparently, the linearity shown in Fig. 

5.26 is poor compared to that in Fig. 5.27 in which the Lissajous figure consists of 

ellipses that are slightly offset, similar to that obtained by the computer simulation as 

shown in Fig. 5.2. Furthermore, from the shape of the two peaks in the total heat flow, 

it is believed that the temperature sensitivity, fT', of the first exothermic peak is much 
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larger than that of the second one. Thus the kinetic heat flow, f(t,T), cannot be 

constant in each of the modulation cycles for the first crystallization. The difference in 

linearity together with Eq. (5.14) explain the difference between the cp curves of the 

two exothermic peaks. 

 

Fig. 5.26 Lissajous figure for the first crystallization peak in Fig. 5.25. Temperature 
range: 260 to 290°C. Temperature modulation period = 30 s, modulation amplitude = 
0.8 K, underlying heating rate = 1 K/min, sample mass = 13.00 mg. 
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Fig. 5.27 Lissajous figure for the second crystallization peak in Fig. 5.25. 
Temperature range: 330 to 360°C. Temperature modulation period = 30 s, modulation 
amplitude = 0.8 K, underlying heating rate = 1 K/min, sample mass = 13.00 mg. 
 

The specific heat, HF, RHF, and NHF obtained from a second as-spun sample 

with a mass of 13.20 mg are given in Fig. 5.28. Compared with the earlier case shown 

in   Fig. 5.25, an underlying heating rate of 0.5 K/min is used here in order to reduce 

the intensity of the crystallization peak and accommodate more modulation cycles. 

The end effect is similar to an increase in the modulation frequency but without 

affecting the calibration factor as severely as frequency does. The modulation period 

and the amplitude were kept unchanged. The cp shows a much smaller deviation from 

the dotted line (which represents the linear relationship between cp and temperature) 

at the temperature of the first crystallization peak and changes smoothly at the second 
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transition. The Lissajous figures in the same temperature ranges as the first sample 

(260 to 290oC and 330 to 360oC), are plotted in Figs. 5.29 and 5.30, respectively. 

Both of them show improved linearity over that obtained from the first sample. 

 

 

 

Fig. 5.28 Experimentally obtained cp, HF, RHF and NHF. Sample: melt spun 
Al84Nd9Ni7 ribbon. Temperature modulation period = 30 s, modulation amplitude = 
0.8 K, underlying heating rate = 0.5 K/min, sample mass = 13.20 mg. 
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Fig. 5.29 Lissajous figure for the first crystallization in Fig. 5.28. Temperature range: 
260 to 290°C. Temperature modulation period = 30 s, modulation amplitude = 0.8 K, 
underlying heating rate = 0.5 K/min, sample mass = 13.20 mg. 

 
 

 
Fig. 5.30 Lissajous figure for the second crystallization in Fig. 5.28. Temperature 
range:  330 to 360°C. Temperature modulation period = 30 s, modulation amplitude = 
0.8 K, underlying heating rate = 0.5 K/min, sample mass = 13.20 mg. 
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TMDSC experiments were also carried out on melt-spun Al92Sm8, Al88Ni10La2, 

and Al88Ni10Y2 ribbons. All these alloys are Al-based and have a similar feature in 

their heat flows––––a primary Al precipitation hump followed by a major 

crystallization peak, as shown in Figs. 5.31 to 5.33. The temperature modulation 

conditions are identical for these three figures. The temperature modulation period is 

30 s, the modulation amplitude is 0.8 K, and the underlying heating rate is1 K/min. 

Fig. 5.31 shows the TMDSC result of an Al92Sm8 ribbon. It is noticed that a 

concave dip appeared at about 150oC in the RHF curve. This is similar to that 

obtained by Wu et al. [28] for the same alloy. It is believed that this is probably a 

hidden glass transition point which could not be observed previously by conventional 

DSC. Because the heat flow signal from the glass transition is fairly weak compared 

with the much stronger signal from the Al precipitation, it could be easily covered by 

the latter. It can be seen that the RHF given in Fig. 5.32 has a similar pattern as that in 

5.33, as indicated by the arrows. This is interesting since the glass transition may be 

used in annealing that allows the development of certain microstructures in order to 

obtain the optimized mechanical properties. 
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Fig. 5.31 TMDSC results of Al92Sm8. Sample mass = 12.1 mg, temperature 
modulation period = 30 s, modulation amplitude = 0.8 K, underlying heating rate = 1 
K/min. 
 

 
Fig. 5.32 TMDSC results of Al88Ni10La2. Sample mass = 11.4 mg, temperature 
modulation period = 30 s, modulation amplitude = 0.8 K, underlying heating rate = 1 
K/min 

Possible glass 
transition point 

Possible glass 
transition point 
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Fig. 5.33 TMDSC results of Al88Ni10Y2. Sample mass = 13.8 mg, temperature 
modulation period = 30 s, modulation amplitude = 0.8 K, underlying heating rate = 1 
K/min. 
 

5.5 Considerations in the selection of experiment parameters 

It has been shown that kinetic events can affect the heat flows as well as the 

measured specific heat in TMDSC. Based on the above analytical, numerical and 

experimental results, it can be seen that in order to really exploit the power of 

TMDSC, the key factor is to carry out the experiments under a linear or close to a 

linear condition. Some measures can be taken to make this more likely to occur: 

(a) Wherever possible, a low underlying heating rate, such as 0.5K/min should 

be used. Hence, a time and temperature dependent kinetic reaction takes a longer time 

to complete, this can effectively reduce fT'.  

(b) A small modulation amplitude, e.g. 0.2 to 0.5K, is preferred in order to 

lower the thermal perturbations. As a result the linearity can be improved.  

Possible glass 
transition point 
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(c) A high modulation frequency (0.05 to 0.1 Hz, corresponding to a 

temperature modulation period of 10 to 20s), together with (a) can accommodate 

more modulation cycles during the kinetic event. However, increasing the temperature 

modulation frequency is subjected to some physical limitations. Firstly, due to the 

thermal latency of the instrument itself, commercially available TMDSC device has a 

relatively narrow range of modulation frequency, e.g., 0.1 to 0.01 Hz. This is much 

smaller than some other dynamic evaluation methods. The limitations to modulation 

frequency could be overcome by the later development in light modulated TMDSC 

[29, 30]. Furthermore, high modulation frequency can introduce an extra temperature 

gradient and phase lag for poor thermal conducting materials, which can increase the 

difficulty in quantitative analysis of the experimental results, unless a much smaller 

sample mass, e.g. in the magnitude of micro-grams, is used. It has been found that the 

specific heat obtained from TMDSC at a high frequency spectrum deviates 

considerably even after calibration factors have been taken into account [31]. Finally, 

a sharp, intense kinetic event can have a major effect on the observed specific heat 

and produce spurious artifacts, while a broad and gentle kinetic reaction is more 

favorable to the quantitative separation of reversing and non-reversing heat flows with 

TMDSC [32]. All these can make the situation complicated. Thus selection of 

experimental parameters is important in order to make more accurate measurement of 

specific heat, HF, RHF, and NHF using TMDSC. 

 
5.6 Conclusions 

In this chapter, the general case of TMDSC with a kinetic event that was both 

time and temperature dependent in the sample was studied. A concise analytical 

solution to the heat transfer equation in TMDSC is obtained and the conditions for 

linear thermal response are discussed. It has been demonstrated that TMDSC has 
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several advantages over conventional DSC, such as the separation of reversing and 

non-reversing heat flow, detailed information on the change in specific heat before, 

during and after glass transition from amorphous state. In order to obtain meaningful 

results, care must be taken in the selection of experimental parameters so that 

TMDSC works in or close to the range of linear response.  

Through simulation and experiments, several factors such as a low underlying 

heat rate, e.g. 0.5K/min and small temperature modulation amplitude, e.g. 0.2 to 0.5K 

have been identified that can improve the overall system linearity as well as the 

accuracy of the measured specific heat. 
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Chapter 6 Overall Conclusions and possible future work 

 
 

In this thesis, different aspects of TMDSC are studied and the main results are 

given below. 

(1) Effects of the contact thermal resistance on the observed specific heat 

• Simulations of a TMDSC device with contact resistance between the sample and 

the support plate were carried out. The relationship among the measured heat 

capacity, the actual heat capacity and temperature modulation frequency of heat 

flux type TMDSC is similar to that of a low-pass filter. 

• In TMDSC, because of the contact thermal resistance, the measured specific heat 

is affected by the sample mass. Careful sample preparation is important because 

too large or too small a sample mass (relative to the mass of the calibration 

reference) will lead to increased errors in the measured specific heat. An optimal 

sample mass is reached when the heat capacity of the sample which is a product of 

the mass and specific heat equals that of the reference used for calibration. In this 

case, theoretically, the measured specific heat of the sample will be the same as 

the actual value. Experimental results obtained with copper and aluminum are in 

good agreement with this conclusion. 

• When TMDSC device works in the conventional DSC mode, the measured 

specific heat of the sample is not affected by the contact resistance. This is 

demonstrated by the DSC results of pure copper, even when the sample mass is as 

large as 400 mg. 
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(2) Effects of the internal thermal resistance of the sample with a low heat 

diffusivity 

• A model that takes into account the thermal diffusivity of the sample was used and 

an analytical solution is derived. The effect of heat diffusivity and the geometry of 

the sample, as well as the modulation conditions on the observed specific heat and 

phase angle of the heat flow can be explained using the analytical solution. 

• To improve the accuracy of measured specific heat, we may use a longer 

temperature modulation period, or reduce the sample thickness and mass. In the 

mean time, to satisfy the condition of optimal sample mass, the mass of the 

calibration reference must also be reduced. 

(3) Effects of the non-reversing heat flow on the separability of the reversing heat 

flow and non-reversing heat flow 

If there is a kinetic event in the sample, the separability of NHF and RHF by 

TMDSC depends on the NHF and temperature modulation conditions. Two 

different types of NHF are considered: time dependent NHF and temperature 

dependent NHF. 

• Time dependent NHF: The measurement of specific heat (cp), is applicable for the 

steady state where there is no NHF. While inside the NHF temperature range, if 

the modulation frequency is high enough, it still allows deconvolution of cp, HF, 

RHF, and NHF by Fourier transform. 

• Temperature dependent NHF: The NHF will be modulated by the temperature 

modulation and the NHF will contribute to the modulated part of the total heat 

flow (HF). This in turn can affect the linearity of the entire TMDSC system. 

When the NHF is strongly temperature dependent, it can influence the thermal 
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response to such an extent that the measured specific heat can no longer 

accurately reflect the actual specific heat. 

(4) Study of the general situation and comparison with experimental results 

• A general case that takes into account a kinetic reaction that is both time and 

temperature dependent was studied. An analytical solution based on small kinetic 

perturbation was derived. 

• Several models of kinetic reactions are used to demonstrate the importance of the 

selection of the experimental parameters as well as the effects of the reactions on 

the system linearity. These include a first order chemical decomposition, a two-

dimensional diffusion (D2), Jander (D3), Ginstling-Brounhtein (D4), Johnson-

Mehl-Avarami (JMA), and Sestak-Berggren (SB) models. 

• TMDSC experiments with several melt-spun Al-based amorphous alloys were 

carried out to demonstrate the unique capabilities of TMDSC. These include the 

ability to measure the differences between the specific heats of a sample in a fully 

amorphous, partially crystallized, or fully crystallized state; the separation of glass 

transition from other exothermal processes, for example, Al precipitation. Several 

factors have been identified that can improve the linearity of the TMDSC system 

(including the calorimetry device, the sample, reference and the reactions in the 

sample if any), e.g. low underlying heating rate, small modulation amplitude, or a 

high modulation frequency. 

• The imaginary part of the complex heat capacity can be defined as C" ≅ -fT'/ω, 

where fT' is the temperature derivative of the kinetic heat flow and ω is the 

angular frequency of temperature modulation. Obviously, C" is the contribution 

from the kinetic event, but it is not a constant and varies with the temperature 

modulation conditions. It should be pointed out that this definition only holds true 
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when the linearity of the TMDSC system satisfies (fT'/ Csω)<<1. This is different 

from many of the explanations given earlier by other researchers in terms of the 

physical meaning of the imaginary part of the complex heat capacity, as have been 

discussed in the first chapter of the thesis. 

Possible future research work 

a. Study of more kinetic models and their effects on the separability of HF and 

NHF. This may help us understand how TMDSC can be (or cannot be) used to 

better characterize kinetic reactions. 

b. Application of temperature modulation techniques to other thermal analysis 

areas such as differential photo-calorimetry (DPA), differential thermo-gravimetry 

(DTG). 
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Appendix 1. Fourier Transform & Phase Angle Calculation 

A1.1 Fourier transform 

A periodic function f(t) may be expressed as a series of  triangular functions, 
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for n >=1, and τ is the period of f(t). 

In a real experiment, a computer-controlled instrument normally does not 

record the analog signals in a continuous fashion, but sample them periodically, and 

the data is stored in digital storage equipment such as random access memory, 

magnetic disk or tape. Discrete Fourier transform is used to analyze the data 

afterwards. 

Discrete Fourier Transform [1, 2]: 
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Inverse discrete Fourier transform: 
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where N is the sample quantity in a single period (preferably, an even number), f(xn) 

is the corresponding sample value. 
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Because in TMDSC, the first order harmonic is used to derive the heat 

capacity and other required signals, it can be obtained that, the first order presentation 

of f(xn) is, 
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According to Eq. (A1.5), we have, 
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 Thus the amplitude of the first order harmonic is, 
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A1.2 Phase angle calculation 

 While in Eq. (A1.7), the amplitude is decided by both the real and imaginary 

part, only the real part carries physical meaning and can thus be obtained as, 
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where the phase angle ε satisfies, 
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Hence if there are two periodical functions f(t) and g(t) with corresponding 

phase angle εf  and εg, the difference between them is  (εf -εg). 
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Appendix 2. Steady State Solution of the R-C Network 
Model (see chapter 2) under Linear Heating Conditions in 
conventional DSC 
 

For the R-C network model given in chapter 2, if the heating block is heated in 

a linear pattern,  Tb=T0+qt, (T0 is the initial temperature, q the heating rate, t is time), 

then, after the system reaches a steady state, transient terms become negligible,  every 

point i in the RC-net work model will bear a similar temperature profile which can be 

presented by Ti=Ti0+qt , dTi/dt=q, where is Ti0 is a constant for that specific point. 

Thus the original heat conducting differential equations will be turned into linear 

ones, because C1=C2=C3=C4=C and R1=R2=R3=R4=R, we have, 

( ) ( ) qCR/TTR/TT r11b ⋅+−=− ,     (A2.1) 

( ) ( ) ( ) qCR/TTR/TTR/TT r1rrcsrr1 ⋅+−+−=− ,  (A2.2) 

( ) qCR/TT rr1rr ⋅=− ,      (A2.3)  

( ) ( ) qCR/TTR/TT s22b ⋅+−=− ,     (A2.4) 

( ) ( ) ( ) qCR/TTR/TTR/TT s1sscrss2 ⋅+−+−=− ,  (A2.5) 

( ) qCR/TT 0ss1ss ⋅=− .      (A2.6) 

Inserting Eq. (A2.3) into Eq. (A2.2) and Eq. (A2.6) into Eq. (A2.5), we obtain, 

( ) ( ) ( )CCqR/TTR/TT rcsrr1 ++−=− ,    (A2.7) 

( ) ( ) ( )CCqR/TTR/TT 0scrss2 ++−=− .    (A2.8) 

Adding Eq. (A2.7) to Eq. (A2.8), we can obtain, 

( ) ( )[ ] ( )021 2/ srsr CCCqRTTTT ++=−+− .   (A2.9) 

Re-arranging Eqs. (A2.1), (A2.4), (A2.8) and (A2.9), we have 

ATRqCTT2 br1 =−⋅⋅=+− ,     (A2.10)

 ATRqCTT2 bs2 =−⋅⋅=+− ,     (A2.11) 
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( ) BRCCC2qTTTT 0srs2r1 =++=−+− ,    (A2.12) 

( ) ( ) DRRCCqTRRTRTR c0ssc2cr =+=+−⋅+⋅ .   (A2.13) 

On the right hand side of Eqs. (A2.10) to (A2.13), A, B and D are introduced 

to simplify the derivation process. Hence Eqs. (A2.10) to (A2.13) can be represented 

with the following matrix,      
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Through further transform we can obtain, 
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Solving for Eq. (A2.15), we have 
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Because Tr and Ts are the measured temperatures of the thermal couples, the 

difference between Tr and Ts is 
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According to the definition in conventional DSC, 

( ) qcmTTK s_ps0sr ⋅⋅=−⋅ ,      (A2.19) 
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where mscp_s=Cs0 - Cr , ms is sample mass, the system thermal constant K is found to 

be 

C
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=  .       (A2.20) 

Also we can obtain the temperatures for other points of interest as below, 

rrr1r RqCTT ⋅⋅−= ,       (A2.21) 

srs1s RqCTT ⋅⋅−= ,       (A2.22) 

2/)RqCTT(T br1 ⋅⋅−+= ,      (A2.23) 

2/)RqCTT(T br1 ⋅⋅−+= ,      (A2.24) 

From Eq. (A2.18) and Eq. (A2.20), it is noticed that, for the ideal symmetric 

DSC model, the relationship between the heat flow (which equals K(Tr-Ts)) and the 

measured heat capacity (Cs0-Cr) is linear. (Cs0-Cr) is not affected by the thermal 

resistance between the thermal couple and the sample or reference (Rr or Rs), nor is 

the constant K affected by Rr or Rs. Obviously this can be an advantage of 

conventional DSC over TMDSC. 
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Appendix 3. Finite Difference Method for One-dimensional 
Steady State Heat Transfer Problems 

While analytical methods can give a precise solution to some simple heat 

transfer problems, they are not always suitable for practical situations. With the rapid 

development in computer technology, computing power is becoming much cheaper 

than it used to be, and numerical methods can be used to solve almost any heat 

conducting problems. Among them, the most widely used is Finite difference method. 

The governing differential equation for one-dimensional heat transfer problem 

is given as below, 

t
T1

x
T
2

2

∂
∂

=
∂
∂

α
 ,       (A3.1) 

where T is temperature, t is time, X is distance. The above equation can be presented 

in an approximated form. If the space increment is ∆x, the time increment is ∆t, then 

( )2
p

1n
p

n
p

1n
2

2

x
TT2T

x
T

∆

+−
≈

∂
∂ −+ ,     (A3.2) 

and 

t
TT

t
T p

n
1p

n

∆
−

≈
∂
∂ +

.       (A3.3) 

Inserting Eqs. (A3.2) and (A3.3) into Eq. (A3.1) yields 

( ) t
TT1

x
TT2T p

n
1p

n
2

p
1n

p
n

p
1n

∆
−

⋅=
∆

+− +
−+

α
.    (A3.4) 

In Eqs. (A3.2) to (A3.4), Tn 
p is the temperature at point x=n∆x at time t=p∆t, 

then Eq. (A3.1) becomes 

( ) ( )
( )p

1n
p

1n2
p

n2
p

1n TT
x

tT
x

t21T −++ −
∆

∆⋅
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆

∆⋅
−=

αα .   (A3.5) 
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To obtain a stable and convergent solution, it is required that [1] 

( )
1

x
t2

2 ≤
∆

∆⋅α .        (A3.6) 

More accurate solution can be obtained with a smaller ∆x and ∆t. In our 

computer programs, double precision data type is used to reduce the round off errors. 
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