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SUMMARY 

 

From a Bayesian viewpoint, the hidden state variables of a dynamic system can be 

estimated by reconstructing the posterior probability density function of those variables, 

using information from the measurements available. Kalman filters are typically being 

employed if the systems involved are linear. However if non-linear systems or non-linear 

noise are involved, Sequential Monte Carlo (SMC) techniques will have to be used.  

 

SMC performs online estimations via Monte Carlo techniques. Conventionally, SMC 

techniques utilize sequential importance sampling and resampling. Through recursive 

sampling and updating, the desired probability density function is represented as a set of 

random particles with associated weights. It is common that after a few iterations, only 

one particle with significant weight is left. This leads to a wastage of computational 

resources as significant efforts are used to update particles that have negligible 

contribution to the desired function. This phenomenon, also know as degeneracy, is 

inevitable as the variance of the importance weights of the particles increases with time. 

Degeneracy can be curbed by performing resampling, which duplicates particles with 

large weights and removes particles with negligible weights. However resampling is 

computationally intensive and causes problems such as impoverishment of diverse 

trajectories and difficulty in implementing the SMC algorithm in parallel. In this work, an 

algorithm that circumvents resampling and hence avoiding the associated problems is 

proposed. 

 

 v



In the proposed algorithm, SMC technique is used at the first stage of an iterative receiver 

to address the issue of symbol detection in a differentially encoded MIMO-OFDM system 

over multipath frequency selective channels. Both rate ½ convolutional coded and LDPC 

coded MIMO-OFDM systems are considered. After MAP decoding, the symbol 

probabilities are computed from the bit probabilities and are sent back to the SMC 

detector to serve as the a priori symbol probabilities. Periodic termination of the 

differential phase trellis is employed and the promising simulation results justify the 

elimination of the resampling step.   

 

The effect of different antenna arrangements, different termination periods and various 

power delay profile channels are also investigated. It is seen that with the same total 

number of transmit and receive antennas, the system with the most number of receive 

antennas performs the best. It is also observed that with a smaller termination period, the 

performance is the best but this is at the expense of a higher overhead. The proposed 

algorithm performs better under a uniform than an exponential power delay profile 

channel. It is also compared to a system with SMC detection and with resampling 

performed. It is seen that the proposed system is able to achieve similar performance.  

 

Using the periodically terminated symbols as pilot symbols, channel estimation is 

performed. Through the simulations, it is seen that the performance of the various systems 

are close to their respective lower channel bounds that are obtained by assuming that the 

receiver has perfect knowledge of the channel state information (CSI).  

 

 vi



The proposed algorithm enables the computationally intensive resampling step to be 

avoided and the promising results of the proposed algorithm show that it is a viable 

alternative to be considered for MIMO-OFDM systems with differential QPSK. Another 

contribution of this work is that the termination states used can serve as pilot symbols for 

channel estimation. 

 

This work has been submitted to the International Conference on Communications, 2008. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Orthogonal Frequency Division Multiplexing (OFDM) is gaining popularity in 

many areas as it is able to support high data rates and is robust towards multipath 

fading effects. The idea of using parallel data streams and FDM started off in the 

mid 60s [1-2]. To ensure efficient usage of the spectrum, the subcarriers (SCs) are 

overlapped and the orthogonality of the SCs aids in combating multipath delays 

and amplitude distortion. This idea was further extended to incorporate Discrete 

Fourier Transform (DFT) into the modulation and demodulation processes [3] 

where it helps to eliminate the need for a bank of oscillators and coherent 

demodulators. The beauty of using DFT lies in the completely digital 

implementation that results. The concept was further improved by the use of FFT 

[4], which allows high speed processing. With the recent advances in VLSI 

technology, chips that perform high speed and large size FFT are readily available 

at a low cost. This helps to elevate the status of OFDM to become a very 

promising technology for high speed data transmission over wireless mobile 

channels. In fact OFDM is being widely used and has been adopted in high speed 

wireless applications such as IEEE 802.11a LAN and IEEE 802.16a LAN/MAN 

[5-7]. 

 

 1



OFDM can be employed in a multiple transmit and multiple receive antenna 

scheme to increase capacity or to enhance the diversity gain [8]. It has been shown 

that in a multiple-input and multiple-output (MIMO) system, the system capacity 

can be improved by a factor of the minimum of the number of transmit and the 

number of receive antennas [9-10]. Space Division Multiplexing (SDM) is a 

technique that achieves high capacity by transmitting different data symbols 

simultaneously on the different transmit antennas [11], in so doing, it creates 

spatial diversity and helps to combat multipath fading [12]. 

 

In transmitting a signal from a location to another, the environment that exists 

between these two locations determines the quality of the received signal. There 

are generally two types of channel models to characterize the mobile radio 

channel. First is the large-scale channel model, which takes into account the path 

loss and shadowing effects while the other is the small-scale channel model, which 

considers the signal variations in a small local area [13]. In this work, only small 

scale effects, also known as multipath fading, is considered. Fading is caused by 

multiple copies of the same signal that arrives at the receiver with different 

amplitudes, phases and time delays. The three most important effects of fading are, 

rapid variations in the strength of the signal over a short duration of time, time 

dispersion due to the propagation delays of the different paths and if the various 

multipaths have different Doppler spreads, this will also lead to different 

frequency modulations of the signal [14].  
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From a Bayesian viewpoint, estimation for the hidden states of dynamic systems 

can be performed through the reconstruction of the posterior density function of 

those states by taking into account all the available measurements [15]. Sequential 

Monte Carlo (SMC) methods [16-21] have been used to perform blind 

equalization [18], detection and decoding in fading environments [22-28] and 

multiuser detection in CDMA systems [29]. SMC performs online estimations via 

techniques such as sequential importance sampling (SIS) and resampling. The 

desired probability density function is represented by a set of random particles and 

associated weights. Regions of high probabilities will be represented by particles 

with larger weights while regions of low probabilities will be represented by 

particles with smaller weights. After a few iterations of sampling and updating, it 

is common to find that only one particle of a significant weight is left. This 

phenomenon is known as degeneracy and it is inevitable whenever SIS is 

involved. However it can be curbed by performing resampling, which removes 

particles with negligible weights and replicates particles with large weights. On 

the other hand, resampling is computationally intensive and introduces problems 

such as impoverishment of diverse trajectories and difficulty in implementing the 

SMC algorithm in parallel [30].  

 

With the advent of Turbo codes [31-32], iterative (turbo) receivers have been 

receiving lots of attention because of their ability to handle soft inputs and outputs 

[33-34] and hence leading to better performances over systems using hard 

decisions. Iterative receivers have been employed for various roles such serial 
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concatenation decoding, multiuser detection and joint source and channel 

decoding [35-36].  

 

Transmitting a radio signal over a multipath fading channel will result in the signal 

being received with an unknown phase and amplitude. Channel estimation is 

essential to ensure that the signal is detected and demodulated correctly. Channel 

estimation can be performed with the aid of pilot symbols, also known as pilot-

symbol aided channel estimation (PACE). Pilot-symbol assisted modulation 

(PSAM) for a single carrier under flat fading environment was first analyzed in 

[37] while PACE for OFDM was first demonstrated in [38] and subsequently [39-

49]. The pilot symbols can be scattered across the 2-dimensional (2-D) time-

frequency lattice, i.e. across different OFDM symbols and different tones. 

Estimation is first performed at the locations of the pilot tones and these estimates 

are interpolated across the different tones to obtain the channel estimates at the 

data SCs. Subsequently, these estimated parameters are further interpolated across 

the different OFDM symbols. The estimation can be performed using the 

Minimum Mean Square Error (MMSE) method or Least Squares (LS) method. 

MMSE estimation performs better than Least Squares (LS) method as the latter 

suffers from high mean square errors [50].  

 

Channel estimation is especially challenging in the case of MIMO-OFDM system, 

where different signals are transmitted from each transmit antenna, causing the 

received signal to be a superposition of the different transmitted signals. However, 
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it shall seen in Chapter 5 that channel estimation for MIMO-OFDM systems can 

be extended from the available techniques for single-input single-output OFDM 

channel estimations.   

 

1.2 Contribution of Thesis 

In this piece of work, resampling which is normally present in the SMC methods 

is circumvented so as to avoid the problems associated with it. To do this, the 

proposal is to periodically terminate the stream of the differentially encoded 

symbols at desired states by inserting certain symbols into the stream. It is well 

known that the variance of the importance weights of the particles can only 

increase with time [30]. With periodic termination, the variance of the weights is 

prevented from increasing by huge amounts as imputations are only carried over a 

short period, as such degeneracy is curbed and therefore resampling is no longer 

necessary.  

 

Though periodic termination results in overheads, these overheads can be put to 

good use by serving as pilot symbols to aid in the channel estimation process. The 

amount of overheads can be lowered with a larger termination period. However 

the performance of the system degrades with increase in termination period. The 

effect of the termination period on the performance of the system is investigated 

and the simulation results are shown in this thesis.  

 

 5



The proposed algorithm is also compared with a system that employs resampling. 

Through simulations, it is found that resampling only adds a slight improvement to 

the performance as compared to the proposed algorithm. Therefore, considering 

the added complexity and the problems associated with resampling, one might 

prefer to skip resampling at the expense of a very slight tradeoff in performance. 

 

PACE is employed for the MIMO-OFDM system by multiplexing known pilot 

symbols into the data stream to be transmitted. Therefore the receiver is able to 

estimate the channel at any instance given the observations provided by the pilot 

symbols. As the pilot symbols are inserted during periodic termination, only 1-

dimensional (1-D) channel estimation needs to be employed.  

 

Interpolation is carried out in the frequency domain by exploiting the correlation 

of the channel transfer function (CTF) between the different SCs. To address the 

issue of different transmit antennas transmitting different symbols at the same 

time, pilot symbols are inserted into the same SCs across all the antennas. This is 

similar to the joint pilot grid (JPG) stated in [50]. The performances of the 

proposed algorithm with PACE under different scenarios have been simulated and 

found to be comparable with the respective lower bounds with perfect channel 

state information (CSI). 

 

In this work, an algorithm that avoids the computationally intensive resampling 

step and its associated problems has been proposed and successfully demonstrated. 
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The performance tradeoff is slight and the overheads can be utilized as pilot 

symbols to aid in the channel estimation process. 

 

1.3 Organization of Thesis 

The remainder of this thesis is structured as follows: Chapter 2 introduces the 

MIMO-OFDM system including FFT implementation. The wireless channel 

model is also covered and the system equations are given. The forward error 

correction codes used in the system, namely convolutional codes and LDPC codes 

are also briefly mentioned. Finally, iterative receivers and channel estimation 

based on pilot symbols are also documented.  

 

Chapter 3 provides the theoretical background of the SMC methods and the steps 

involved. The proposed algorithm, the system model and the simulation results are 

presented in Chapter 4. In Chapter 4, it is assumed that the receiver has perfect 

CSI and hence no channel estimation is performed. In Chapter 5, changes are 

introduced into the system model to incorporate the task of channel estimation. 

Likewise, the simulation results for different cases are presented. 

 

Lastly, the results of this piece of work are summarized, followed by the list of 

references consulted. 
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CHAPTER 2 

MIMO-OFDM COMMUNICATION SYSTEMS 

 

2.1 Characterization of the Wireless Channel Model 

In wireless communications channel, transmitting a signal will generally result in 

the signal being received with attenuation and distorted phase. Moreover there 

may be no direct line of sight (LOS) component and the signal may be reflected by 

a number of scatterers, resulting in the receiver receiving multiple attenuated and 

delayed copies of the same signal. On top of these, in a mobile system either or 

both the transmitter and receiver may be in motion. This is depicted in Fig. 1.    

Fig. 1: An illustration of a typical wireless mobile channel 
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All these channel conditions impose limitations on the performance of the system. 

In order to understand the effects that the channel has on the transmitted signal, it 

is necessary to model the channel correctly.  

 

2.1.1 Channel Models 

There are generally two types of channel models, namely, large scale and small 

scale channel models. The large scale channel model models the signal attenuation 

with distance by considering the effects of path loss and shadowing. Path loss 

dictates the attenuation in signal strength as a function of the distance between the 

transmitter and the receiver while shadowing models the effects due to blockage of 

the line of sight component (LOS) at a fixed distance. On the other hand, the small 

scale channel model considers the effects due to the multipath components in 

small areas where the large scale effects can be ignored. Small scale effects are 

caused by the interference from multiple copies of the same signal arriving at the 

receiver with different magnitudes and phases and at different times. Therefore 

small scale effects are also appropriately known as multipath fading.  

 

Several factors affect the degree of small scale fading, for instance, multipath 

propagation, speed of the mobile, speed of the surrounding objects and the 

bandwidth of the transmitted signal [14].  

 

The equivalent low pass multipath channel model can be represented as the time 

variant impulse response 
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where  is the attenuation factor and ( )l tγ ( )tlτ  is the propagation delay of the  

path at time t  [51]. When 

thl

( )th ;τ  is modeled as a zero-mean complex-valued 

Gaussian random process, the resultant channel is a Rayleigh fading channel. 

 

The multipath intensity profile or the power delay profile (PDP) of the channel 

models the average received power of the signal from the different paths. It is 

determined by taking the average of ( ) 2; th τ  over a small area. The delay over 

which the received power is non-zero is known as the delay spread,  of the 

channel as shown in Fig. 2.  

mT

Power 

0 Delay  
mT  

Fig. 2: Example of a multipath intensity profile 

 

The reciprocal of the delay spread of the channel is the coherence bandwidth,  

of the channel, which is given by, 

CB
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m
C T

B 1
≈ .    (2.2) 

While coherence bandwidth and delay spread describe the time dispersive nature 

of the channel, coherence time  and Doppler spread CT DB  describe the time 

varying nature of the channel due to movement of the transmitter or receiver or the 

surrounding objects. Doppler spread gives an indication of the expansion of the 

spectrum due to the relative motion between the transmitter and the receiver. It is 

taken to be the range of frequencies where the Doppler spectrum is non-zero. An 

example of a Doppler spectrum is shown in Fig. 3.  

0

Power Density 

Frequency 

DB  

Fig. 3: Example of a Doppler spectrum 

 

Coherence time is the reciprocal of the Doppler spread, given by, 

1
C

D

T
B

≈ .    (2.3) 
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2.1.2 Types of Small Scale Fading 

Small scale fading can be classified as flat or frequency selective and slow or fast 

fading.  Multipath delay spread gives rise to time dispersion and frequency 

selective fading while Doppler spread gives rise to frequency dispersion and time 

selective fading. The effects from both are independent. 

 

Multipath delay spread causes either flat fading or frequency selective fading. In 

flat fading, the signal has a bandwidth that is smaller than the coherence 

bandwidth of the channel. This also means that the symbol period is larger than 

the delay spread of the channel. Therefore the channel appears to be of constant 

gain and linear phase to all the spectral components of the signal. The received 

signal only suffers from amplitude variations as a result of the changes in the 

channel gain over time due to the multipath effects but the spectral characteristics 

of the signal are preserved. In this case, the signal undergoes flat fading. On the 

other hand, if the bandwidth of the signal is larger than the coherence bandwidth, 

the different spectral components of the signal will be affected differently. In the 

time domain, this means that the symbol period is smaller than the delay spread. In 

this case, the received signal is distorted and dispersed as it comprises multiple 

copies of the transmitted signal, attenuated and delayed. This results in time 

dispersion and leads to intersymbol interference (ISI). In such scenarios, the signal 

undergoes frequency selective fading. 
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When there is relative motion between the transmitter and the receiver, frequency 

dispersion results as the Doppler spectrum widens. Doppler spreading gives rise to 

either fast or slow fading. In fast fading, the Doppler spread is large implying that 

the channel changes faster than the signal, i.e. the coherence time of the channel is 

smaller than the symbol period. This leads to frequency dispersion and causes 

distortion to the signal. On the other hand, in slow fading, the channel remains 

constant over a longer period of time and the coherence time of the channel is 

longer than the symbol period, as such the channel can be considered as constant 

over a few symbol durations. Translating to the frequency domain, this means that 

the Doppler spread is small. 

 

2.1.3 Rayleigh Fading 

Therefore there are 4 possible types of fading a signal can experience, namely, 

flat-slow, flat-fast, frequency selective-slow and frequency selective-fast fading. In 

flat fading channels, the variations of the magnitude of the received signal can be 

modeled by Rayleigh distribution. Rayleigh fading is an appropriate model where 

there are many objects in the environment that scatter the signal, constituting 

different paths, and there is no direct LOS component. As the number of paths 

increases, by the Central Limit Theorem, the inphase (real) and quadraturephase 

(imaginary) components of the envelope of the channel impulse response (CIR) 

will be Gaussian. Therefore, Rayleigh fading is modeled by representing the real 

and imaginary parts of the CIR by independent and identically distributed (iid) 

zero-mean Gaussian process so that the envelop of the response is the sum of these 
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two processes. The Rayleigh distribution has a probability density function (pdf) 

given by [51] 

( )
2

2 2exp , 0.
2

0, 0.

r r r
p r

r
σ σ
⎧ ⎛ ⎞

− ≥⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪ <⎩

  (2.4) 

 where 2σ  is the average power of the received signal before envelope detection. 

 

The Doppler spectrum is given by  

( ) ( )2 max
max max

max

1 1 , .
1 /

.
0,

f ffS f f f
f f

π
⎧

≤⎪
= −⎨ >⎪
⎩

 (2.5) 

where 
c

vf
f C=max . The Jakes model [52] is a deterministic way to model the time-

correlated Rayleigh fading waveforms. It assumes M  rays of equal strength, 

arriving at the moving receiver, each at angle mθ . Each ray experiences a Doppler 

shift of mm θωω cosmax=  where maxmax 2 fπω = . An illustration of the Doppler 

power spectrum is shown in Fig. 4. 
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( )S f  

Frequency maxf−  0
maxf  

Fig. 4: An illustration of Doppler spectrum for a mobile radio channel 

 

2.2 Background to MIMO-OFDM 

OFDM started in the mid ’60s when Chang published a method of transmitting 

signals simultaneously through a bandlimited channel without intersymbol (ISI) 

and interchannel interference (ICI) [1] and subsequently the performance was 

analysed by Saltzberg in [2]. A great milestone was achieved in 1971 when 

Weinstein and Ebert employed DFT to perform baseband modulation and 

demodulation [3]. On top of this, to eliminate ISI and ICI, Weinstein and Ebert 

pre-pended a guard interval between the symbols and used raised cosine filtering 

in the time domain. However, orthogonality was not achieved until Peled and Ruiz 

[54] employed a cyclic prefix (CP), a cyclic extension of the symbol, as the guard 

interval. This is equivalent to the channel performing cyclic convolution and 

ensures orthogonality when the CP is longer than the delay spread of the channel. 
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Receiver design for OFDM is rather simple as the available channel bandwidth is 

divided into  number of SCs. As the bandwidth of each SC is smaller than the 

coherence bandwidth of the channel, this leads to the conversion of the original 

frequency selective fading channel into  number of flat fading channels thus 

allowing equalization to be performed easily. Moreover due to its immunity to 

multipath fading and impulse noise and its high spectral efficiency, OFDM has 

been widely used in digital audio broadcasting, digital video broadcasting and 

wireless LANs.   

CN

CN

 

Multiple transmit and receive antennas can be used to enhance capacity or to 

increase diversity gain [8]. If spatial multiplexing is used, the transmission rate is 

increased as different signals are sent simultaneously from each of the transmit 

antennas [11]. In fact, it has been shown that in the MIMO system where there are 

 transmit antennas and  receive antennas, the capacity of the system under 

Rayleigh fading can be improved by a factor of 

TN RN

( )min ,T RN N  given that all the 

paths between the  transmit antennas and  receive antennas are statistically 

independent [9-10].  

TN RN

 

With multiple receive antennas, several copies of the same signal will be obtained. 

This helps to mitigate the effects of fading as each copy of the signal has 

propagated through a different path. Therefore this provides diversity gain and 

hence better performance.  
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2.2.1 OFDM System Model 

The essence of OFDM is to divide the available spectrum of  Hz into a number 

of SCs as shown in Fig. 5.  

TW

f  

… … 

64 subcarriersCN =  

/T Cf W NΔ =  

Fig. 5: An illustration of the individual SCs for an OFDM system with 64 tones 

 

By ensuring that all SCs are narrowband, they will experience almost flat fading, 

which allows equalization to be performed easily. 

 

An OFDM symbol can be expressed as 

( ) ( )
1 1

2

0 0
, 0

C C
k

N N
j f t

k k k
k k

t e t tπϑ θ θ ψ
− −

= =

= = ≤∑ ∑ .symT≤   (2.6) 

where { }kθ  represents the sequence of complex data symbols to be transmitted, 

 is the number of FFT points,  is the frequency of the  SC and CN kf thk ( ){ }tkψ  is 

a set of orthogonal functions. In the absence of noise, demodulation of OFDM 

signal can be carried out as follows 

 17



( ) ( ) ( )
1

2 *

00 0

1 1 .
sym sym C

k

T T N
j f t

i i k
isym sym

k

t e dt t t dt
T T

πϑ θψ

θ

−
−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
=

∑∫ ∫ ψ
 (2.7) 

 

2.2.1.1 Implementation using FFT and IFFT 

It can be observed that with a sampling duration of sym
S

C

T
T

N
=  and kTf symk = , 

modulation and demodulation can be performed using a  point IFFT and FFT 

operations respectively. In the case where  is not a power of 2, IDFT and DFT 

will be used instead. Fig. 6 shows a block diagram of the OFDM transceiver. 

CN

CN

 

As shown in Fig. 6, the IFFT and FFT operations simplify the transceiver structure 

considerably as they replace the banks of oscillators that would otherwise be 

needed. At the input of the IFFT is a set of  complex data symbols taken from 

an appropriate signal constellation, such as phase shift keying (PSK) or quadrature 

amplitude modulation (QAM). 

CN

 

Performing IFFT on the symbols yields 

21

0

C
C

nkN j
N

n k
k

e
π

ϑ θ
−

=

= ∑     (2.8) 

where the sequence { }nϑ  constitutes the time domain sequence. At the receiver, 

FFT is performed to obtain the sequence { }kα . In the absence of noise, 

{ } { }k kθ α= . 
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OFDM Modulator 

Fig. 6: Baseband model of an OFDM system 

 

2.2.1.2 Cyclic Prefix 

The time domain OFDM signal is cyclically extended to mitigate the effects of 

time dispersion. The last  samples of the OFDM symbol, of duration  is 

copied and inserted to the front of the OFDM symbol as shown in Fig. 7. 
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Time 

IFFT output 

Last GN  samples copied to front 

CP 

GT  

FFTT  

symT  

 

Fig. 7: Cyclic extension of an OFDM symbol 

 

Thus each OFDM symbol consists of CN NG+  samples, which corresponds to a 

duration of GFFTsym TTT += . The length of the CP should be longer than the delay 

spread of the channel in order to avoid ISI. Due to the insertion of the CP, the 

linear convolution of the transmitted signal with the discrete time channel becomes 

a cyclic convolution. From the properties of cyclic convolution, it can be easily 

seen that the effect of the multipath channel becomes a point-wise multiplication 

of the transmitted data by the transfer function of the channel. Therefore, with CP, 

both the effects of ISI and ICI are removed [52]. Though overheads are incurred 

with the insertion of CP, the CP can also be used in timing and frequency 

synchronization. 

 

At the receiver, the CP is removed and each block of  received samples is 

converted back to the frequency domain via the FFT operation.  

CN
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2.2.1.3 Transmission Model 

In the absence of ISI and ICI and assuming the channel is slowly fading such that 

the channel remains constant over one OFDM symbol, it is possible to model the 

OFDM system as a set of  parallel, independent Gaussian channels [39-41] 

shown in Fig. 8. 

CN

1,CN lH −  1,CN lW −  

1,CN lθ −  1,CN lα −  

0,lH  0,lW  

0,lθ  0,lα  

.

.

.

. 

. 

. 

 

Fig.8 : OFDM system model in the absence of ISI and ICI 
 

where  denotes the  OFDM symbol. Considering over one OFDM symbol, the 

system can be re-written as 

l thl

, 0,..., 1.k k k k CH W k Nα θ= + = −   (2.9) 

Alternatively, in matrix notation, 

= H  + Wα θ      (2.10) 

where 
T

0 1 1CNα α α −⎡= ⎣ Lα ⎤⎦  is the received vector of length  and CN kα  

represents the received symbol at the  SC after FFT has been performed. thk

( )diag=H H ) is a diagonal matrix where ( C CN N× H  denotes the channel 
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transfer function (CTF) given by ( )
T

0 1 1 FFT
CNH H H h−⎡ ⎤ =⎣ ⎦H = L . Each  

denotes the complex channel attenuation at the  SC and 

kH

thk [ ]T0 1 1Lh h h h −= L . θ  

is the vector of transmitted symbols of length  while CN
T

0 1 1CNW W W −⎡ ⎤⎣ ⎦W = L  is 

a vector of i.i.d. complex zero-mean Gaussian noise with variance 2
wσ . It is further 

assumed that there is no correlations between  and H W . It should be noted that 

the s are correlated with one another. For instance, if the transfer function of a 

particular channel is bad at a certain time, it is very likely that the s adjacent to 

it will be bad too.  

kH

kH

 

2.2.2 MIMO-OFDM System Model 

The single-input single-output OFDM case can be easily extended to the MIMO 

case by performing the IFFT/FFT and insertion/removal of CP operations at each 

transmit and receive antennas respectively. Fig. 9 shows the setup of a MIMO-

OFDM system. The data bitstream is encoded by the channel encoder and fed into 

a MIMO encoder where it is mapped to a constellation and demultiplexed into  

symbol streams each of length . These  symbol streams are sent to an 

OFDM modulator each. Insertion of the CP and modulation by IFFT are 

performed within the OFDM modulator as shown in Fig. 6. At the receiver, the 

received symbol streams from different antennas are synchronized and the CPs are 

removed. Demodulation is performed by FFT within the OFDM demodulator. The 

TN

CN TN
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symbol streams are combined within the MIMO decoder and demapped into the 

coded bitstream before it is decoded by the channel decoder. 

Fig. 9: MIMO-OFDM system 

 

The MIMO-OFDM system equations can  (2.10). The be easily formed from

following equations are for the  MIMO-OFDM symbol but the denotation has thl
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been dropped for clarity. Let , ,
0 1

i j i jh h h( ) ( ) ( ) ( ) T, ,
1

i j i j
Lh −

⎡ ⎤= ⎣ ⎦L  denote the discrete-time 

channel response between the  transmit antenna and the  thi thj  receive antenna and 

( ) ( ) ( ) ( ) ( )( )T, , , ,
0 1 1 FFT

C

i j i j i j i j i j
NH H H h−

⎡ ⎤= =⎣ ⎦H L .,  Th

 system is given by 

    (2.11) 

where 
0, 1 1,R T RN N N− − −

⎢ ⎥
⎢ ⎥H =

H H

% M O M

L

 and each 

e system equation for MIMO-

OFDM

( ) ( )

)

0,0 1,0

1

TN −⎡ ⎤

⎢ ⎥
⎣ ⎦

H HL

= H + W%% %%α θ

( ) (

( ) ( )( ), ,i j i jdiag=H H . %α  

repr nts the received vector across all the receive antennas, of length R CN N . It 

 defined as 

ese

is ( ) ( ) ( ) T0 1 1RN −⎡ ⎤= ⎣ ⎦% Lα α α α  where each ( )jα  is the received s ls at 

the th

ymbo

j  receive antenna after FFT, given by ( ) ( ) ( )
1 1C

j j j j
Nα α α( ) T

0 −
⎡ ⎤= ⎣ ⎦Lα . Similarly, 

%θ  is the transm ed symbols across all the transm h T CN N  and 

is defined as 

itt it antennas, of lengt

( ) ( ) ( ) T0 1 1TN −⎡ ⎤= ⎣ ⎦
% Lθ θ θ θ where each ( )iθ  den

bols at the  transmit antenna given by 

otes the transmitted 

sym thi ( ) ( ) ( ) ( ) T

0 1 1C

i i i i
Nθ θ θ −

⎡ ⎤= ⎣ ⎦Lθ . In a similar 

anner, the noise vector of length  is given as R CN Nm

( ) ( ) ( ) T0 1 1RN −⎡ ⎤=W W W W% . ⎣ ⎦L

 

2.3 Forward Error Correction in MIMO-OFDM 

OFDM avoids the issue of ISI by transmitting  data symbols on  orthogonal 

SCs, however this leads to the following problem. In transmission through the 

C CN N
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multipath channel, some SCs will be received with very low amplitudes when the 

channel is undergoing deep fades. This leads to the corresponding symbols being 

lost. Thus even though most of the data may be detected correctly, the bit error 

rate (BER) is largely dominated by the few SCs that have very low amplitudes. To 

circumvent this problem, forward error correction (FEC) coding is necessary. By 

employing FEC across all the SCs, the errors due to the weak SCs can be rectified 

up to a certain extent depending on the power of the FEC code used. FEC is 

accomplished by adding redundancy to the transmitted symbols using a pre-

determined algorithm such that the receiver is able to detect and correct errors. In 

 doing, retransmission is avoided but at the expense of extra bandwidth incurred. 

tional codes and LDPC codes are discussed. 

2.3.1 

ere low latency is 

so

In this section, convolu

 

Convolutional Codes 

Convolutional codes were introduced by Elias in 1955 [34] and a major milestone 

was achieved when Viterbi proposed a maximum likelihood decoding algorithm 

(MLD) [56] that was easy to implement for soft-decision decoding of 

convolutional codes with short constraint lengths. A few years later, maximum a 

posteriori probability (MAP) decoding algorithm was introduced by Bahl, Cocke, 

Jelinek and Raviv, the algorithm was appropriately known as the BCJR algorithm 

[57]. Unlike the ML algorithm where the a priori probabilities must be equal, 

MAP decoding caters for situations where the information bits have different a 

priori probabilities. Since then convolutional codes have been one of the most 

widely used channel codes in communication systems wh
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required. A brief description of the encoding and decoding process of 

 the following subsections. 

2.3.1.1

 

Fig. 10: Example of a binary convolutional encoder 

io t i

only depend on the 

input bit but also on the past bits wher

encoder. The code rate  of a convolutional code is defined as 

convolutional codes is provided in

 

 Encoding Convolutional Codes 

A convolutional code is generated by passing the data through a linear finite state 

shift register [58] as shown in Fig. 10.  

101101 

000011 

011001 

 

The information bits are input into the shift registers and the output encoded bits 

are obtained by modulo-2 addit n of the inpu nformation bits and the contents of 

the shift registers. Therefore the output of the encoder does not 

m  e m  denotes the memory order of the 

r

kr
n

=      ( 12) 2.
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where k  is the number of parallel input bits and n  is the num f parallel output ber o

bits at one clock period. The constraint length  is defined as . The K 1K m= +

1
2

r = , memory order, convolutional encoder illustrated in Fig. 10 has a code rate, 

2m =  and constraint length of 3K = .  

 

Another way to describe the convolutional encoder in Fig. 10 is to define its 

generator polynomial. A generator polynomial describes the loc ps in 

put bit, a ‘1’ denotes a connection and a ‘0’ denotes no connection. 

ation of the ta

forming an out

For example, an alternative way to describe Fig. 10, would be [ ]0 111 7g = = O  and 

[ ]1 1 01 5g = = O . In general, convolutional codes suffer from burst errors and 

e used to scatter the errors. 

2.3.1.2

on 

e received values, information is lost and performance is degraded. In general, 

the performance of hard decision MLD is 3dB poorer than soft decision MLD.  

 

therefore, an interleaver needs to b

 

 Decoding Convolutional Codes 

In decoding convolutional codes, one can choose to do hard or soft decision 

decoding. The former performs a 1-bit quantization on the received signal while 

the latter uses multi-bits quantization in order to get a better resolution. This is 

shown in Fig. 11. In the hard decision case, by performing a 1-bit quantization 

th
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Fig. 11: Soft and hard decision decoding 
 

Viterbi algorithm [56] achieves optimality by minimizing the error probability of 

the codeword while BCJR algorithm [57] minimizes the error probability of the 

information bit. When the information bits have equal a priori probabilities, 

Viterbi algorithm results in near-optimum BER performance. However when the a 

priori probabilities are different, BCJR algorithm performs better. On top of this, if 

iterative decoding is used, BCJR algorithm has to be employed instead of Viterbi 

algorithm, as the a priori probabilities change with every iteration. 

 

2.3.2 LDPC Codes 

Besides Turbo codes, LDPC codes is another class of Shannon-limit approaching 

codes and was first introduced by Gallager in 1962 [59]. However because of the 

decoding complexity involved and a lack of systematic ways to construct good 

LDPC codes, they were ignored for about 30 years. It was only until the late 1990s 
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when researchers began to improve on Gallager’s initial construction by making 

use of irregular graphs and fields beyond GF(2) [60] that LDPC codes garnered 

more attention. Recently Davey and MacKay [61] constructed irregular rate ¼ 

LDPC codes over GF(8) that performs better than Turbo Codes at very low SNRs. 

In general, LDPC codes perform better than Turbo codes at substantial code 

length, for instance where the code length is more than 1000, as the minimum 

distance of an LDPC code increases proportionately with the length of the code 

[62]. The encoding and decoding processes of LDPC codes are briefly introduced 

in the following subsections. 

 

2.3.2.1 Encoding LDPC Codes 

An LDPC code is defined as the null space of a sparse parity check matrix  [34, 

58]. Let (  be the size of . For regular LDPC codes,  contains  

number of 1’s per column and 

H

),n k n− H H Cw

R C
nw w

n k
⎛= ⎜ −⎝ ⎠

⎞
⎟

n k

 number of 1’s per row where 

 and . On the other hand, if the number of 1’s per column is 

not uniform, irregular LDPC codes are formed.  

Cw << Rw n<< −

 

As LDPC code is a linear block code, encoding can be performed in a same way as 

encoding other block codes. An ( ),n k  block code C  is a mapping between the k -

bits message, m  and the -bits codeword, . In a matrix form, n c

c mG=     (2.13) 
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where  is the generator matrix of size G k n× . The rows of G  form a basis of the 

code subspace while the dual space, C⊥  contains all the vectors that are 

orthogonal to  [58]. Therefore for all cC C∈  and all d , . The rows 

of  form the basis for C

C⊥∈ 0c d⋅ =

H ⊥ , thus for all c C∈ , T 0cH = . 

 

Therefore, encoding can be simply done in a straightforward manner by reducing 

 to a systematic form, H [ ]|sys n kH I −= P  where n kI −  is an identity matrix of size 

( ) ( )n k n k− × −  via Gaussian elimination. sysH  will have  rows if  is full 

rank. After 

n k− H

sysH  is obtained, T |sys kG P I⎡ ⎤= ⎣ ⎦  can be formed and encoding can be 

easily performed. 

 

2.3.2.2 Decoding LDPC Codes 

An LDPC code can be decoded in a number of ways, namely, majority-logic 

decoding, bit-flipping (BF) decoding, weighed BF decoding, a posteriori 

probability (APP) decoding and iterative decoding based on belief propagation, 

also known as sum product algorithm (SPA). APP and SPA offer the best 

performance at the cost of a high complexity. However APP is computationally 

intractable. 

 

Similar to the MAP, SPA is a symbol by symbol soft-in soft-out (SISO) decoding 

algorithm. It works by iteratively passing messages from the variable nodes, also 

known as code nodes, to the check nodes and vice versa. The Tanner graph 
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representation of the LDPC code showing the check nodes and the variable nodes 

is illustrated in Fig. 12.  

 

0v  1v  2v  3v  4v  5v  6v  
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7v  
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H
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⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
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8v  9v  

4c  

Check nodes

Variable nodes

 

Fig. 12: Tanner graph of a (10, 5) LDPC code with  2Cw =
 

The messages are actually APPs or log likelihood ratios (LLRs) computed based 

on the received values of the variable nodes and satisfying the constraints imposed 

by the check sums. In addition, the message that the variable node sends to a check 

node should not include the message that that check node has sent to that variable 

node in the previous iteration. The same applies for messages passed from the 

check nodes to the variable nodes [34]. At the end of each iteration, the APPs or 
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LLRs computed will serve as the inputs for the next iteration. The iterations 

continue until a stopping criterion is met. The 6 segments shown in bold in Fig. 12 

define the girth (shortest cycle) of the Tanner graph. As the decoder computes the 

APPs or LLRs in an iterative manner, a small girth of 4 will cause the computed 

values to be highly correlated as the same information has been reused many 

times. This will result in a poor performance compared to a code with a large girth.  

 

2.3.3 Concatenated Codes 

Concatenated codes were first introduced by Forney in the 1960s. Concatenation 

of codes presents a simple yet powerful way to approach Shannon capacity with 

polynomial decoding complexity. Berrou et al [31] first showed via simulations 

that with iterative decoding, the performance of the parallel concatenation of 2 

convolutional codes, also known as turbo codes, can approach the Shannon 

capacity very closely. This rekindled the interest in concatenated codes and 

researchers have also shown that serially concatenated convolutional codes yield 

performance that is comparable to turbo codes [63]. Fig. 13 shows the general 

structure of a serial concatenated code. The interleaver, π  is optional. 

Outer 
Encoder 

π
(Optional) 

Inner 
Encoder 

Data Bits 

To 
modulator 

 

Fig. 13: Block diagram of a serial concatenated code 
 

The inner code corrects most of the errors while the outer code helps to eliminate 

the remaining errors. An interleaver can be used to offer protection against burst 
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errors. In fact, a greater part of the interest in serial concatenated configuration 

stems from the fact that the outer and inner encoders can take on slightly different 

interpretations, for instance, the inner code can be treated to be the spreading code 

in CDMA systems [36] or it can also be treated as a modulator [24-25] or even a 

combination of a modulator and a differential encoder [22-23]. 

 

rative Receiver 2.4 Ite

 coded communication systems, the receiver often employs the Turbo principle 

ormation. In order to do this, soft information is passed from 

 

Fig. 14: Structure of iterative receiver 
 

In an iterative receiver, both the inner code and outer code decoders employ MAP 

lgorithm and exchange the soft decision outputs with one another. Only the 

In

to reduce loss of inf

the outer to inner decoder and vice versa until a certain stopping criterion is met. It 

has been shown that by iterating a number of times, the performance will approach 

that obtained from the optimum decoding of the composite code. The structure of 

an iterative receiver is shown in Fig. 14. 
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extrinsic portion of the information is passed on in an attempt to avoid reusing the 

same information over and over again. In cases where the alternative definition of 

the inner code is used [22-25], the inner code decoder shown in Fig. 14 will be a 

soft detector and its inputs will be the quantized A/D received signal. The soft 

detector uses the a priori symbol probabilities to compute the a posteriori symbol 

probabilities, which are passed to the SISO MAP channel decoder for it to 

compute the LLRs of the data bits and that of the code bits. The LLRs of the code 

bits are then passed to the detector as inputs. The detector and decoder exchange 

information with each other to improve the receiver performance. 

 

annel Estimation in OFDM 2.5 Ch

ccurate CSI at the receiver is essential in order to exploit the full potential of the 

ation in OFDM systems has been widely studied 

or training 

quences are transmitted to help in the receiver’s channel estimation algorithm. 

A

OFDM system. Channel estim

[23, 38-50]. In general, they can be divided into 2 main categories, blind and 

training (pilot) based. In a blind channel estimation method, the receiver has to 

determine the CSI without the help of known symbols. Even though higher 

bandwidth efficiency can be achieved due to the absence of training overheads, the 

estimation accuracy is compromised and higher complexities are involved. 

Therefore, they are less widely used than training based estimations.  

 

In training based estimation techniques, known pilot symbols 

se
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The channel estimation method presented in the following sections will be 

extended to MIMO-OFDM systems in Chapter 5. 

 

PACE 2.5.1 

 an OFDM system, the original wideband channel that experiences frequency 

 fading is converted into a number of flat fading narrowband channels, 

In

selective

hence the task of channel estimation reduces to a trivial task of estimating the 

channel transfer function at each SC. As OFDM systems are generally used in 

frequency selective fading and time varying environments, therefore the channel 

transfer function changes across both the SCs and the OFDM symbols. Hence 

pilots are periodically inserted into both the frequency and the time domains as 

shown in Fig. 15.  

Frequency 

 

Fig. 15: Scattered pilot symbols over the 2-D frequency-time grid 

Time 
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Data Symbols
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There are many ways to arrange the pilot symbols in the 2-D frequency-time grid 

but the arrangement has to satisfy the sampling theorem [42-43] such that channel 

estimation and interpolation over the entire 2-D grid are possible. The sampling 

theorem states that 

max
1
2sym Ptf T N ≤     (2.14) 

and 

1 .
2m PfT f NΔ ≤      (2.15) 

 

For PACE method, the channel coefficients at the pilot locations are firstly 

estimated using LS methods. These estimates are then interpolated across the 

entire frequency-time grid via 2-dimensional (2-D) Wiener filtering [42]. 

However, 2-D Wiener filtering is very complex. To decrease complexity, two 

cascaded 1-D estimators in time and frequency can be used instead (2×1-D) [43].  

 

If the sampling theorem is satisfied in both directions, the order in which filtering 

is performed is arbitrary. This is a result of linearity. It was found [42] that 

filtering in two dimensions performs better than 1-D filtering in terms of mean 

square error (MSE) performance. However, it was also found that for the same 

amount of computational effort, 2×1-D filtering offers a similar performance to 2-

D filtering. Therefore in this work, only 1-D filtering is considered. 
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2.5.2 1-D Channel Estimators 

With reference to (2.10), LS estimators minimize 
2ˆ- Hα θ  for all possible Ĥ . LS 

estimators are the simplest to implement but they suffer from a high MSE. On the 

other hand, MMSE estimators minimize 
2ˆE ⎛⎜

⎝ ⎠
H - H ⎞

⎟  for all Ĥ , offer good 

performance at the expense of a slightly higher level of complexity.  

 

As the channel vector H  is Gaussian and uncorrelated with the noise vector W , 

the MMSE estimate of H  is given as [64] 

LS LS LS

1
ˆ ˆ ˆ LS

ˆ R RMMSE
−=

HH H H
H Ĥ    (2.16) 

where LSĤ  is the LS estimate of the channel at the pilot locations, given by 

LS
ˆ P

P

=H α
θ

    (2.17) 

where Pα  and Pθ  are the received and transmitted symbol vector at the pilot 

locations respectively. 
LS

ˆR
HH

 is the cross covariance matrix between H  and LSĤ  

and 
LS LS

ˆ ˆR
H H

 is the auto correlation of LSĤ . 

 

2.5.3 MIMO-OFDM Channel Estimation 

Channel estimation for MIMO-OFDM is significantly more challenging than in 

the single-input single-output OFDM system as the former has a larger number of 

channel responses to be characterized. PACE for MIMO-OFDM has been 
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performed via 1-D estimation in the frequency domain [44-46] mostly for only 2 

transmit antennas. In this work, besides 2 transmit antennas, the system of 4 

transmit antennas is also taken into account. 

 

Auer introduced two types of arrangements for the pilot symbols, which he named 

as disjoint pilot grid (DPG) and joint pilot grid (JPG) [49-50]. In the DPG, a non-

overlapping, equally-spaced unique set of SCs are used to transmit the pilot 

symbols for each transmit antenna such that when a transmit antenna is 

transmitting a pilot symbol, the rest of the transmit antennas are silent [65-66]. On 

the other hand, for the JPG case, all antennas will be transmitting equally-spaced 

pilot symbols at the same time but the pilot symbols must be orthogonal. These 

two different types of grids are shown in Fig. 16, PN  denotes the number of pilot 

symbols transmitted from each antenna within a MIMO-OFDM symbol. 

 

In this work, for the case of TN NR×  antenna arrangement, the total number of 

pilots used per MIMO-OFDM symbol is . More details will be given in 

Chapter 5.  

T PN N
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Antenna 1 

Antenna 2 

P P P P D D D D D D D D D D D 

Antenna 1 

Antenna 2 

P P P P D D D D D D D D D D D 

P:     Pilot Symbol 
D:     Data Symbol 

(a) DPG

(b) JPG

 

Fig. 16: Arrangements of pilot symbols for 2TN =  with  4PN =
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CHAPTER 3  

SEQUENTIAL MONTE CARLO METHODS 

 

3.1 Background 

From a Bayesian viewpoint, estimation of the hidden states of dynamic systems 

can be performed by reconstructing the posterior density function of those states 

by taking into account all the information that is available [15]. 

 

In the case of a linear system with Gaussian noise, Kalman filter [67] can be easily 

applied. This is because at each iteration, the posterior density function to be 

tracked is Gaussian. Therefore the Kalman filter is able to predict and update its 

mean and covariance. The extended Kalman filter [68] can be used if the system is 

nonlinear by approximating the target posterior density function to be Gaussian. 

However if the system is not Gaussian, the estimation will be erroneous. In the 

case of nonlinear and non-Gaussian systems, there are no closed forms for the 

target posterior density functions and hence, no analytical methodologies are able 

to deal with them. In such cases, SMC or Particle filtering (PF) methods [15-21] 

emerge as a class of powerful solutions. 

 

The idea behind SMC methods is to impute multiple samples of the hidden state 

based on all the available observations and associate a weight to each of these 

imputations according to how well they can predict the next observation. At 
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regions where the density is higher, the weights of the particles will be larger and 

at regions of low density, the weights will be smaller, as shown in Fig. 17. 

 

Fig. 17: Discrete representation of density using 20 weighted particles 
 

SIS is generally involved as it is usually difficult to draw particles from the target 

distribution. In so doing, SMC methods allow one to estimate iteratively the APPs 

of the hidden states via discrete modeling of the evolution of the state variables.  

 

The basic idea of SIS first emerged in the 1950s [69] but due to a lack of 

reasonable computational power at that time, it was ignored for a long period. In 

the recent years, with the advent of fast computing powers, SMC methods are 

garnering popularity. Moreover, with the resampling step that Gordon [21] 

introduced in 1993, it has helped to avoid the degeneracy issue that SMC methods 

generally face and lifted the use of SMC methods to another level. Since then 

SMC methods have been applied to various fields and have demonstrated to hold 

great promise in solving different types of non-linear estimation problems. For 

instance, in the area of communications, SMC methods have been successfully 

applied to perform blind equalization [18], detection and decoding in fading 

environments [22-28] and multiuser detection in CDMA systems [29]. 
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In general, SMC methods involve state space representation, Bayesian filtering 

and resampling. The following sections will elaborate these steps in greater details.  

 

3.2 State Space Representation 

In general, the evolution of states in a dynamic system can be described by the 

state space and observation equations as follows 

( )
( )

1,

,
k k

k k

v

w

θ ξ θ

α ζ θ
−=

=
k

k

    (3.1) 

where  is the step index, k kθ  is the  element of the state vector, thk kα  is the  

element of the observations vector while  and  are the corresponding 

elements of the process noise and observation noise vectors respectively and both 

are independent of each other. 

thk

kv kw

( )ξ �  is the state transition function and ( )ζ �  is the 

observation function, both of these functions can be nonlinear. It is assumed that 

the analytical forms of ( )ξ �  and ( )ζ � , the distributions of  and  and the pdf 

of the initial state, 

kv kw

( )0p θ  are known. The aim is to estimate kθ  recursively from 

the observations, kα  made. To do this, Bayesian filtering is employed. 
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3.3 Bayesian Filtering 

The objective of Bayesian filtering is to construct the posterior density function, 

( 0: 1:|k kp )θ α 1 from all the observations available up to step . As k ( )0: 1:|k kp θ α  

contains all the information that the observations have about the hidden state, the 

mean, variance and other functions of the hidden state can be easily computed. 

 

The posterior density function, ( )0: 1:|k kp θ α  can be obtained in two steps, namely 

prediction and update. Prediction involves obtaining the predictive density 

 from ( )1: 1|k kp θ α − ( )1 1: 1|k kp θ α− −  assuming the latter is available and that the 

process is Markov [30], 

( ) ( ) ( )1: 1 1 1 1: 1 1| | |k k k k k k kp p p .dθ α θ θ θ α θ− − − −= −∫   (3.2) 

 

Update involves computing the filtering density from the predictive density by 

using Bayes’ Theorem 

( ) ( ) ( )
( )

1: 1
1:

1: 1

| |
|

|
k k k k

k k
k k

p p
p

p
α θ θ α

θ α
α α

−

−

=    (3.3) 

where ( ) ( ) ( )1: 1 1: 1| | |k k k k k k kp p p dα α α θ θ α− −= θ∫ . 

 

                                                 
1 There are no observations at . 0k =
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3.4 Importance Sampling 

Conventionally, if Θ  is a random variable, taking on values 1:kθ  and χ  is another 

random variable taking on values 1:kα , the expected value of a function of Θ  with 

the aid of some observations 1:kα , ( )| χΓ Θ  is given by [52] 

( )( ) ( ) ( )0: 0: 1: 0:E | |k k kp d .kχ θ θ α θΓ Θ = Γ∫    (3.4) 

 

However, not all integrals are tractable and close forms are not usually possible. 

Moreover, the computation of (3.4) is usually prohibitive due to the large 

dimensional integral. Therefore one can resort to using Monte Carlo method. 

Monte Carlo method approximates the posterior density function ( )0: 1:|k kp θ α  

with a set of weighted particles,  

( ) ( )( ) ( )0: 1: 0: 0: 1:,0:
1

1| |k k k k kp k
p

p pθ α δ θ θ θ α
Ω

=

≈ −
Ω∑ %�   (3.5) 

where  is the particle index When 1, ,p = K Ω Ω  is sufficiently big, 

( ) (0: 1: 0: 1:|k k k kp p )|θ α θ α≈% . Using Monte Carlo, the expression for (3.4) can be 

computed as 

( )( ) ( )( ,0:
1

1E | p k
p

χ θ
Ω

=

Γ Θ = Γ
Ω∑ ).    (3.6) 

 

However to do this, it must be possible to draw particles from ( )0: 1:|k kp θ α . 

Nevertheless, it is generally impossible to do so. Therefore importance sampling 

(IS) is used instead [15]. In IS, one draws particles from another density, also 
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known as importance density, ( )0: 1:|k kϕ θ α . The importance density should be 

easy to sample from, resemble the original target density and have a support that 

encompasses the original support. The degree of resemblance between the new 

and target densities is represented in the form of weights given as 

     ( )
( )( )
( )( )

1:,0:

,
1:,0:

|

|

kp k

p k
kp k

p
w

θ α

ϕ θ α
∝    (3.7) 

and (3.4) can be expressed as 

( )( ) ( ) ( )(,0: ,0:
1

E | p k p k
p

wχ
Ω

=

Γ Θ = Γ∑ % )θ    (3.8) 

where  

( )
( )

( )

,
,

,
1

p k
p k

p k
p

w
w

w
Ω

=

k= ∀

∑
%     (3.9) 

 

As the observations are made sequentially and a prediction of the next step index 

is performed whenever a new observation is available, it is not necessary to store 

all the past history of the observations. Therefore, a sequential form of IS (SIS) is 

preferred. In order to perform SIS, the importance density should satisfy the 

following requirement [15,17] 

( ) ( ) ( )0: 1: 0: 1 1: 0: 1 1: 1| | , |k k k k k k kϕ θ α ϕ θ θ α ϕ θ α− −= .−

),
k

k k m m m
m

ϕ θ α ϕ θ ϕ θ θ α−
=

= ∏

 (3.10) 

It can be seen that (3.10) has a recursive structure, for instance at a step index of 

, k

( ) ( ) (0: 1: 0 0: 1 1:
1

| | .   (3.11) 
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This essentially means that the set of particles from step 0 to k  can be obtained by 

concatenating the set of particles from step 0 to 1k −  with the current set of 

particles at step k . In so doing, one is able to make use of the set of particles at the 

previous step  and the current observations to impute the estimate of the 

current state. The current set of particles, 

1k −

( ){ }, 1p k p
θ

Ω

=
 is drawn from the importance 

density, ( 0: 1 1:| ,k k k )ϕ θ θ α−  and the importance weights are given as 

( )
( )( )
( )( )

( )( )
( ) ( ) ( )( )

( )( )
( ) ( ) ( )( ) ( )( )

( )( )
( ) ( )( )

( )
( )( )

( )( )

1:,0:

,
1:,0:

1:,0:

0 1:, ,0: 1
1

1: 1 1:,0: 1 ,0:

1
1: 1 1:,0: 1 , ,0: 10 1:, ,0: 1

1

1:,0:

, 1
1: 1,0: 1

|

|

|

| ,

| |1
| || ,

|

|

kp k

p k
kp k

kp k

k

mp m p m
m

k kp k p k

k
k kp k p k p kmp m p m

m

kp k

p k
kp k

p
w

p

p p

p

p
w

p

θ α

ϕ θ α

θ α

ϕ θ ϕ θ θ α

θ α θ α

θ α ϕ θ θ αϕ θ ϕ θ θ α

θ α

θ α ϕ θ

−
=

−−

−

−− −
−

=

−

−−

=

=

=

=

∏

∏

( ) ( )( )

,

1:, ,0: 1

.
| , kp k p kθ α−

 (3.12) 

 

For the state space model given in (3.1), if 

( ) ( )( ) ( ) ( )( )1: 1:, ,0: 1 , ,0: 1| , | ,kp k p k p k p kp kϕ θ θ α θ θ α− = − , the update of importance weights 

proceeds as 
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( ) ( )
( )( )

( )( ) ( ) ( )( )

( )
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( )
( )( )
( )( )

( )
( )( )

1:,0:

, , 1
1: 1 1:,0: 1 , ,0: 1

1: 1:,0: 1 , ,0: 1

, 1
1: 1 1:,0: 1 , ,0: 1

1:,0: 1

, 1
1: 1,0: 1

1: 1 1:,0: 1

, 1

|

| |

| | ,

| |

|

|

, ,

kp k

p k p k
k kp k p k p k

k kp k p k p k

p k
k kp k p k p k

kp k

p k
kp k

k kp k

p k

p
w w

p p

p p
w

p p

p
w

p

p p
w

θ α

θ α θ θ α

θ α θ θ α

θ α θ θ α

θ α

θ α

θ α α α

−

−− −

− −

−

−− −

−

−

−−

−−

−

=

=

=

=
( )

( )( ) ( )

,

,

( ) ( )( )

1

1: 1 1:,0: 1

1: 1, 1 ,0: 1

,

| , .

k

k kp k

k kp k p k

p p

w p

θ α α

α θ α

−

−−

−− −∝

  (3.13) 

The last line of the derivation is due to the fact that the term ( )
( )

1: 1

1:

k

k

p
p
α
α

−  bears no 

relation with the drawn particles, hence only a proportional value of the 

importance weights is necessary instead of their exact values. In this case, the 

Monte Carlo variance is minimized. More on this will be further discussed in the 

next section. On the whole, the SIS algorithm can be summarized as 

 

Table 1: SIS algorithm for the  step thk
1. Draw Ω  particles from the importance density,  

      ( ){ } ( )( )1:, ,0:1
~ | ,k kp k p kp 1θ ϕ θ θ α

Ω

−=
 . 

2. Assign a weight to each particle, 

     ( ){ } ( )
( )( )

( )( ) ( ) ( )( )
1:,0:

, , 11
1: 1 1:,0: 1 , ,0: 1

|
.

| |

kp k

p k p kp
k kp k p k p k

p
w w

p

θ α

θ α ϕ θ θ α

Ω

−=
−− −

=
,

 

 

3.5 Resampling 

A problem faced when using the SIS algorithm is that the distribution of particles 

becomes more slewed as the number of iterations increases. Usually after a 
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number of iterations, there will only be one particle with a large weight left while 

the rest have negligible weights. This results in worthless Monte Carlo estimates 

as the variance involved is large. In other words, a lot of computational efforts will 

be wasted as there are a lot of particles with negligible weights that do not 

contribute to the estimation of the posterior density, ( )0: 1:|k kp θ α . In addition, the 

estimate obtained would be poor. This phenomenon is known degeneracy and it 

cannot be avoided as it has been shown [15] that the variance of the importance 

weights can only increase with time hence leading to degeneracy. Kong et al [17] 

and Liu and Chen [18] suggested using the following measure, the effective 

sample size , to indicate the severity of the degeneracy problem effΩ

( ){ }, 1

.
1

eff

p k p
Var w

Ω

=

Ω
Ω =

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

    (3.14) 

However the variance of the importance weights cannot be easily computed, 

hence, (3.14) can be approximated by 

( )( )2

,
1

1
eff

p k
p

w
Ω

=

Ω =

∑
%      (3.15) 

instead. The effective sample size ranges from 1 to Ω . When the effective sample 

size is close to , i.e. the weights are almost uniform, it implies that the sampling 

is done from a distribution that closely resembles 

Ω

( )0: 1:|k kp θ α  and there is little 

problems with degeneracy. However if the effective sample size is below a certain 

threshold, degeneracy effect may be severe and efforts must be invested to curb it. 

 

 48



There are two ways to reduce the onset of degeneracy, namely using an optimal 

importance density and applying resampling. The optimal importance density is 

the true posterior density, ( )0: 1:|k kp θ α . It has been proven in [15] that with the 

optimal importance density, the variance of the importance weights is zero and the 

effective sample size achieves its maximum value. However, sampling from the 

optimal importance density is not usually possible. Therefore, resampling presents 

itself as another alternative.  

 

With resampling, trajectories with negligible weights are discarded while particles 

with large weights are replicated. This helps to rejuvenate the process. Basically, 

resampling involves sampling from the discrete approximation of 

 such that ( ) ( ) ( )(1: ,
1

|l l lp l p l
p

p wθ α δ θ θ
Ω

=

= −∑% ), ( ) ( )
( )( ),

1: ,
1

| p l
l l l p l

p

p θ α δ θ θ
Ω

=

Ω
≈ −

Ω∑%  at 

the  step where  is the number of replicates of thl ( ),p lΩ ( ),p lθ . After resampling, all 

particles will have the same weight of 1
Ω

 [19-20] and the new particles will be 

concentrated in regions of higher posterior probability, which leads to better 

estimates. A pictorial view of resampling is shown in Fig. 18. 

Fig. 18: A pictorial view of resampling 
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Resampling can be done deterministically at every  step or dynamically when 

the effective sample size falls below a certain threshold, for example below 

thl

2
Ω . It 

should be noted that resampling should not be performed if the effective sample 

size is close to Ω  as resampling will decrease the number of distinct trajectories in 

such cases and lead to a poorer estimate of the true posterior density. 

 

There are many different ways to perform resampling of which systematic 

resampling [30] is one of them. Systematic resampling is easy to implement and 

has an order of complexity of ( )O Ω  and it keeps the Monte Carlo variation to a 

minimum. It involves generating Ω  ordered numbers 

( )1
p

p m
m

− +
=

Ω

%
    (3.16) 

where  and use them to determine to replicate or to eliminate the 

particles as shown in Table 2. 

[ )~ U 0,1m%

 

Table 2: Resampling algorithm for the  step thk
1. For , 2 :l = Ω

                             where ( )1 , ,l l p kd d w−= + 1 0d =  
End For. 

2. Start with , 1l =
3. For ,  1:p = Ω

             ( )1
.p

p m
m

− +
=

Ω

%
 

             While , increment , end while. pm d> l

)

l
             Update particles, ( ) (, ,p k l kθ θ= . 

             Update weights, ( ),
1

p kw =
Ω

. 

      End For. 
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Even though resampling helps to retard the effects of degeneracy, it comes with a 

price. To perform resampling, full data dependency is necessary as all particles 

have to be combined, hence making parallel processing impossible [15]. Moreover 

as particles with large weights are chosen repeatedly, there is a loss of diversity. 

On top of this, though resampling is a vital step, it is also computationally 

expensive [70]. There have been attempts to decrease the complexity of 

resampling [71-72] and to explore efficient means of performing resampling [70]. 

Though the new resampling algorithms reduce the number of operations and 

memory access, the complexity involved is still a burden. 

 

3.6 Sequential Monte Carlo Methods 

On the whole, SMC methods are a class of simulation methods that involve SIS 

and resampling. The SMC algorithm is summarized in Table 3 and a pictorial view 

of SMC in action is shown in Fig. 19. 

 

Table 3: SMC algorithm for the  step thk
1. Draw Ω  particles from the importance density,  

     ( ){ } ( )( )1:, ,0:1
~ | ,k kp k p kp 1θ ϕ θ θ α

Ω

−=
 . 

2. Assign a weight to each particle,  

     ( ){ } ( )
( )( ) ( ) ( )( )
( ) ( )( )

, , ,

, , 11
1:, ,0: 1

| |
.

| ,

k p k p k p k

p k p kp
kp k p k

p p
w w

α θ θ θ

ϕ θ θ α

Ω −

−=
−

=
1  

3. Normalize the importance weights. 
4. Perform resampling. 
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1k +  

k  

( ) ( ){ }, , 1
,p k p k p
wθ

Ω

=
 

From k - 1 

SIS 

Resampling 

( ),
1

1,p k
p

θ
Ω

=

⎧ ⎫
⎨ ⎬Ω⎩ ⎭

( ) ( ){ }, 1 , 1 1
,p k p k p
wθ

Ω

+ + =
 

SIS 

Resampling 

( ), 1
1

1,p k
p

θ
Ω

+
=

⎧ ⎫
⎨ ⎬Ω⎩ ⎭

 

 

Fig. 19: A pictorial view of SMC in action 
 

In this work, the fact that the SMC detector is able to use the a priori data symbol 

probabilities to produce the a posteriori data symbol probabilities such that it is 

well-suited to serve as the SISO demodulator in an iterative receiver is exploited.  

The iterative receiver iterates between the Bayesian demodulation stage and the 

SISO MAP channel decoding stage such that extrinsic information regarding the 

data symbols can be passed between these two stages to continually improve the 

performance of the receiver. More details on the system models will be given in 

the next two chapters. 
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CHAPTER 4  

ITERATIVE RECEIVER DESIGN FOR MIMO-OFDM 

SYSTEMS VIA SEQUENTIAL MONTE CARLO (SMC) 

TECHNIQUES  

 

4.1 Background 

In this work, SMC methods are used in the design of the first stage of the iterative 

receiver, which is the SISO detector. Differential encoding is employed. The 

novelty in this algorithm is that the computationally intensive and sequential-

processing resampling step is avoided with little performance degradation, simply 

by periodically terminating the stream of differentially encoded symbols. Both 

convolutional coded and LDPC coded MIMO-OFDM systems over Rayleigh 

fading channels are considered. In this part of the work, the receiver is assumed to 

have perfect CSI and the carrier frequency and phase offset are assumed to have 

been compensated. 

 

The organization of this chapter is as follows, a discussion of periodic termination 

of the trellis is first presented followed by the system model for the coded MIMO-

OFDM system. The system model of the non-resampling SMC detector is 

presented together with a brief computation of the complexity involved. This is 

followed by the simulation results and the conclusions. 
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4.2 Periodic Termination 

In this section, the principle that enables resampling to be avoided is presented. 

Consider the baseband model of differentially encoded QPSK symbols transmitted 

over AWGN channel as shown in Fig. 20. 

{ }

Fig. 20: Baseband model of differentially encoded QPSK symbols transmitted 

over AWGN channel 

 

The data bits { }md  are mapped into QPSK symbols { }lS . Termination states are 

inserted and differential encoding is performed before the symbols { }kθ  are 

{ }md QPSK 
Modulator 

{ }lS Differential 
Encoder 

kθ

Termination 
State 

Insertion 

(a) Transmitter 

ˆ{ }md  QPSK 
Modulator 

ˆ{ }lS { }Differential 
Decoder 

kα  

Termination 
State 

Insertion 

(b) Receiver 
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transmitted over the AWGN channel. The differential encoding and decoding 

processes are given in Table 4. 

 

Table 4a: Differential Encoding 
Previous Output Current Input Current Output 

00 00 00 
01 00 01 
10 00 10 
11 00 11 
00 01 01 
01 01 10 
10 01 11 
11 01 00 
00 10 10 
01 10 11 
10 10 00 
11 10 01 
00 11 11 
01 11 00 
10 11 01 
11 11 10 

 

Table 4b: Differential Decoding 
Previous Output Current Input Current Output 

00 00 00 
01 01 00 
10 10 00 
11 11 00 
00 01 01 
01 10 01 
10 11 01 
11 00 01 
00 10 10 
01 11 10 
10 00 10 
11 01 10 
00 11 11 
01 00 11 
10 01 11 
11 10 11 
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With differential encoding, the stream of differentially encoded { }lS  will take on 

different phases. Fig. 21 shows the phase trellis of differentially encoded symbols 

{ }kθ  before periodic termination. 0θ  is initialized to zero phase, which also 

corresponds to bits {00}. States { }0, 1, 2, 3  refer to { }00, 01,10,11  respectively. 

 on each segment refers to the symbol that caused the transition in phase. lS

State 
 
 

0 
 
 

1 
 
 

2 
 
 

3 

Depth  0 1 2 3 4 5 6 7

0S  1S  

2S  3S  

4S  5S  

6S  

 

Fig. 21: Phase trellis of differentially encoded symbols before periodic termination 
 

With periodic termination, extra symbols { }jT  are inserted into the sequence of 

{ }lS  periodically as shown in Fig. 22. The extra symbols can be chosen such that 

the differentially encoded termination states, shown as black circles in Fig. 22, will 

cycle through the different states as shown in the figure or they can be chosen such 

that the termination states are all the same, for example, state 00. Both options are 

viable as these extra symbols will be discarded after demodulation. The beauty of 
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these two options is that with only the knowledge of the initial differentially 

encoded symbol, 0θ  and the scheme that is used, the receiver is able to know the 

rest of the differentially encoded termination states. This knowledge is necessary 

for demodulation. 

1T  6S  

1st sub-trellis 2nd sub-trellis 
… … 

0S  1S  

2S  0T  
4S  

5S  

3S  

Depth  0 1 2 3 4 5 6 7 8 9  

State 
 
 

0 
 
 

1 
 
 

2 
 
 

3 

 

Fig. 22: Phase trellis of differentially encoded symbols, { }kθ  with periodic 
termination of period 4K =  

 

There are generally two groups of possible values for K , namely when  is a 

factor of  and when it is not a factor. It is seen that when  is a factor of , 

there will be a set of unique SCs that are solely dedicated to the transmission of 

the termination states or pilot symbols. On the other hand, if  is not a factor of 

, the pilot symbols will be scattered throughout the entire grid. An illustration 

of this can be found in Fig. 25. The exact pattern of the distribution will be 

K

CN K CN

K

CN
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dependent on the values of  and . Apparently, the smaller the value of , 

the larger the amount of overheads incurred.  

K CN K

 

4.2.1 Effects of Periodic Termination 

Consider the system shown in Fig. 20 without termination states inserted. The 

state space equations can be written similar to (3.1) 

( )
( )

1,

,
k k

k k

S

W

θ ξ θ

α ζ θ
−=

=
k

k

    (4.1) 

where  is the step index, k kθ  is the differentially encoded symbol,  is the data 

symbol that causes the transition from 

kS

1kθ −  to kθ , kα  is the received symbol while 

 is the AWGN noise with variance kW 2
wσ . ( )ξ �  is the differential encoding 

function and  is the observation function. The data bits can be easily 

recovered once the data symbol stream 

( )ζ �

{ }ˆ
kS  is recovered. To recover { }ˆ

kS , the 

receiver has to trace the trellis shown in Fig. 21. To do this, the receiver can, with 

the knowledge of 0θ , impute Ω  weighted particles, ( ) ( ){ }, , 1
ˆ ,p k p k p

wθ
Ω

=
 at each step 

 for each white circle in Fig. 21. Apparently, these k Ω  trajectories can consist of 

any possible path through the trellis out of a total of 4K  possible paths for the case 

of a block of  QPSK symbols. As the variance of the importance weights of the 

particles can only increase over time [30], this causes degeneracy and leads to 

poor estimation. Therefore resampling is necessary if  is large. However 

resampling is computationally intensive. Moreover, ideally the  trajectories 

should be as diverse and independent as possible to ensure the correct trajectory is 

K

K

Ω
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among one of the imputed trajectories but resampling duplicates multiple copies of 

a heavily weighted particle and causes a loss of independence. 

 

Therefore it is proposed that known termination states are inserted into the phase 

trellis as shown in Fig. 22, such that the original long block of symbols can be 

segmented into shorter blocks, sub-trellises, hence keeping degeneracy in check. 

Moreover with a smaller , there is a higher chance that the correct path is 

present in the Ω  imputed trajectories. Large burst lengths are also avoided as each 

sub-trellis is only of a short length of . As each sub-trellis starts with a known 

termination state, all sub-trellises are independent given knowledge of the 

termination states. Therefore parallel processing is possible, ensuring a shorter 

processing time. As observed from Fig. 22, the last symbol of each sub-trellis that 

leads to the termination state is a dummy symbol 

K

K

{ }jT  which is not used after 

demodulation therefore no imputation is necessary. Therefore, the total number of 

imputations for the system with periodic termination is the same as that without 

periodic termination.   

 

In the MIMO-OFDM system with perfect CSI at the receiver, periodic termination 

helps to reduce the multi-dimensional pdf into a mere product of  1-D pdf 

which can be easily computed.  

RN
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Periodic termination causes overheads and a loss of bandwidth efficiency. 

However these overheads can be employed as pilot symbols to aid in the channel 

estimation process as will be shown in the next chapter. 

 

4.3 Coded MIMO-OFDM System Model 

A MIMO-OFDM system with  transmit and  receive antennas and  SCs 

as shown in Fig. 23 is considered. 
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symbols are differentially encoded and termination states are inserted. The 

differentially encoded symbols  { }kθ  are de-multiplexed  symbols at a time to 

each transmit antenna to be processed into an OFDM signal. 

CN

 

The transmitter can be viewed to have a serial concatenated structure as the 

channel encoder serves as the outer encoder while the combination of the QPSK 

modulator and the differential encoder forms the inner encoder. As such, an 

iterative structure can be used at the receiver. It consists of two SISO stages, 

namely, the SMC detector and the MAP channel decoder. The proposed receiver 

structure is shown in Fig. 24. 

 

Fig. 24: Structure of proposed receiver 
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After the OFDM demodulators at each receive antenna, the received symbols are 

multiplexed into { }kα  and passed into the SMC detector. The SMC detector 

utilizes the a priori symbol probabilities obtained from the previous iteration to 

compute the a posteriori symbol probabilities. The difference between the a priori 

and the a posteriori information of the bits, also known as the extrinsic 

information, is passed to the channel decoder. The channel decoder computes both 

the log likelihood ratios (LLRs) of the code bits and the information bits. As both 

the SMC detector and the channel decoder are SISO in nature, they exchange 

extrinsic information iteratively to improve the performance of the system. More 

details of the iterative receiver would be presented in the next section. 

 

4.4 Iterative Receiver Design for Coded MIMO-OFDM Systems with Non-

Resampling SMC Detection  

In this section, the derivation of the iterative receiver with non-resampling SMC 

detector is presented. 

 

4.4.1 Transmission Model 

Assuming that the CP operation ensures the orthogonality of the SCs and 

eliminates ISI between adjacent OFDM symbols, the system can be modeled as a 

set of parallel Gaussian channels [39-41], as described in sections 2.2.1.3. In a 

similar manner, the MIMO-OFDM system can be expressed as 
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= H + W%%%α θ %

RN −

     (4.2) 

where  and each 

( ) ( )

( ) ( )

0,0 1,0

0, 1 1, 1

T

R T

N

N N

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H H
H =

H H

L
% M O M

L

( ) ( )( ), ,i j i jdiag=H H . ( )i, jH  

denotes the FFT of the discrete-time channel response between the  transmit and 

the 

thi

thj  receive antenna. %α  represents the received vector across all receive 

antennas, ( ) ( ) ( ) T0 1 1RN −⎡ ⎤
⎦= ⎣% Lα α α α % and θ  represents the transmitted symbols 

across all transmit antennas, ( ) ( ) ( ) T0 1 1TN −⎡ ⎤= ⎣ ⎦
% Lθ θ θ θ . In a similar manner, the 

noise vector is given as ( ) ( ) ( ) T0 1 1RN −⎡ ⎤= ⎣ ⎦W W W W% L  where each element of ( )jW  

is zero-mean circularly symmetric complex Gaussian noise with variance 2
wσ . 

More details can be found in section 2.2.2. 

 

4.4.2 Channel Model 

For the MIMO system, the mobile wireless channel between each pair of transmit 

and receive antennas, is taken to be independent and uncorrelated but follow the 

same statistics as described in the following. A multipath fading frequency-

selective channel model consisting of  impulses is assumed. Considering the 

channel is sample-spaced, such that all the energies are mapped to the taps, the 

discrete time channel model between the  transmit and the 

L

thi thj  receive antenna 

can be expressed as ( ) ( ) ( ) ( ) T, , , ,
0 1 1

i j i j i j i j
Lh h h h −

⎡ ⎤= ⎣ ⎦L . Due to the motion of the vehicle, 
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the s are i.i.d. zero mean, circularly symmetric, complex Gaussian random 

variables with variance 

{ } 1

0

L
l l

h −

=

2
lκ .  

The generation of the random variables { } 1

0

L
l l

h −

=
 depends on the PDP and the 

channel dispersion. Two PDPs are considered, uniform (UNI) and exponential 

(EXP). In UNI PDP, all impulses have the same average power  while in EXP 

PDP, the average power of each path takes on values  where C  is a 

normalizing constant. For a more accurate comparison of the MIMO-OFDM 

systems under different PDPs, the delay spreads of these PDPs are maintained to 

be about the same. This delay spread is defined as 

2
lκ

lCe−

2

2 21 1
2

1 1
2 20 0

0 0

L L
l l

d lL L
l l

j j
j j

T Tκ κ

κ κ

− −

− −
= =

= =

⎛ ⎞
⎜ ⎟
⎜= −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
∑ ∑

lT ⎟    (4.3) 

where  denotes the total average power of the channel’s impulse response 

and the quantity is usually taken to be unity. 

1
2

0

L

j
j

κ
−

=
∑

 

To simulate the effect of Doppler spreading caused by relative motion, an 

improved Jakes Model [73] based on the sum-of-sinusoids method is incorporated. 

It is assumed that the channel fades slowly such that the channel coefficients are 

constant over the duration of one MIMO-OFDM symbol. 
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4.4.3 System Model  

At the receiver, after the removal of the CP and the FFT operations, the received 

symbols are passed into the SMC detector. With knowledge of the CSI and the 

termination states, the SMC detector proceeds as follows: 

When , the system can be modeled as TN N= R

−, 0,..., 1k k k k CH W k Nα θ= + =
(( ((    (4.4) 

where kα
(  represents the received symbols across all the  receive antennas at 

the  SC, i.e. 

RN

thk ( ) ( ) ( ) T0 1 1, ,..., RN
k k k kα α α α −⎡ ⎤= ⎣ ⎦
( , similarly ( ) ( ) ( ) T0 1 1, ,..., TN

k k k kθ θ θ θ −⎡ ⎤= ⎣ ⎦
(

 

and  where ( ) ( ) ( ) T0 1 1, ,..., RN
k k k kW W W W −⎡ ⎤= ⎣ ⎦
( ( ) ( )2~ 0,j

k wW N σ . Lastly  is a complex 

matrix representing the FFT of the channel coefficients at the  SC. 

kH
(

thk

 

For clarity, denote { }
0

k

k i i
θ

=
=

(
%θ  and { }

0

k

k j j
α

=
= (

%α  where the symbols are taken over 

all transmit or receive antennas and { }
0

k

k j j
H

=
=

(
%Η . The aim of the SMC detector is 

to perform the dynamic estimation of the a posteriori symbol probability, given the 

received symbols up to step  and the knowledge of the CSI k

( )( )| , , , 0,..., 1, 0,..., 1i
k l k k l T CP S b b i N k N= ∈Β = − =H%%α −  (4.5) 

where { }0 1 2 3, , ,b b b bΒ =  contains all the possible symbols from the QPSK 

alphabet.  
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In order to perform SMC, a set of weighted particles, ( ) ( ){ }, , 1
ˆ ,p k p k p

wθ
Ω

=
 properly 

weighted w.r.t. the distribution ( )| ,k k kp H% %%θ α has to be generated for each 

transmitted data symbol under consideration. Fig. 25 shows the symbol grid of the 

MIMO-OFDM transmission symbol. The number in each box refers to the sub-

trellis index. The SMC detector traces the trajectories in increasing SC index, k . 

As shown, processing by the SMC detector can be performed independently as the 

sub-trellises are independent. 
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Fig. 25(a): Symbol grid for 4K =  and (b) 6K =  with 4TN =  and  16CN =

 

In general, each kθ
(

 comprises the target data transmitted from the  antenna, thi i
kθ , 

the known pilots,  and the rest of the data ( ,pilot kθ
(

) )( ,rdata kθ
(

 as shown  

( ) (,
i

k k pilot k rdata kθ θ θ θ= ∪ ∪ ),

( ( (
    (4.6) 
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where  

( ) ( ) ( ) ( )10 1

T

, ,, ,
, ,...,

Pk
pilot k pilot kpilot k pilot k

θ θ θ θ
−

⎡ ⎤= ⎢ ⎥⎣ ⎦

(
   (4.7) 

( ) ( ) ( ) ( )10 2

T

, ,, ,
, ,...,

N PT k
rdata k rdata krdata k rdata k

θ θ θ θ
− −

⎡ ⎤= ⎢ ⎥⎣ ⎦

(
   (4.8) 

where  denotes the number of pilots at the  SC and  depending on 

the value of  used. As the pilots are known, each 

kP thk kP N≤ T

K kθ
(

 can take on T kN P−Β  

possible permutations. For instance, with reference to Fig. 25(b), permutation of 

the symbols for the 3rd SC is defined as 

( ) ( )

T
0 2
2 2,2 ,2, , ,perm pilotθ θ θ θ θ 3

2
⎡ ⎤= ⎣ ⎦    (4.9) 

where 0
2θ , 2

2θ  and 3
2θ  can each take  on Β  possible values and ( ,2pilot )θ  is known. 

Therefore, while imputing for 0
2θ  and disregarding this target symbol and only 

considering the rest of the data symbols, there will be a total of 2Β  permutations 

to consider. For the rest of the discussions, the values taken on by  and 

 are denoted as 

( ,pilot kθ
(

)

)( ,rdata kθ
(

( ) ( ) ( ) ( )10 1

T

, ,, ,
, ,...,

Pk
pilot k pilot kpilot k pilot k

b b b b
−

⎡ ⎤= ⎢ ⎥⎣ ⎦

(
   (4.10) 

( ) ( ) ( ) ( )10 2

T

, ,, ,
, ,...,

N PT k
rdata k rdata krdata k rdata k

b b b b
− −

⎡ ⎤= ⎢ ⎥⎣ ⎦

(
   (4.11) 

respectively. 
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To minimize the Monte Carlo variance, the optimal importance density is used as 

the predictive state distribution  

( ) ( )( ),1: 1 ,| , , ,i i
k k kp k pilot kp θ θ θ− H

(
%%α    (4.12) 

where i
kθ  is the transmitted symbol from the  transmit antenna at the  SC, 

 is the imputed 

thi thk

( ,1: 1
i
p kθ − )

thp  particle for the transmitted symbol from the  transmit 

antenna up to the  SC and 

thi

1thk − ( ,pilot kθ )

(
 is the pilot knowledge at the   SC. thk

 

It is observed that (4.12) can be re-written as 

( ) ( )( )
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k k k k l k lp k pilot k pilot k p k

i
p k l
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=

∝ = = =

= = = =

=

H

H H

H

((
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( (( (( % %% %

((( %%

α α

α

b=

(4.13) 

The 3rd equality arises because { }ikθ  is a first-order Markov chain and i
kθ  is 

independent of . The term 1k−%α ( )( ), 1|i i
k l p kP bθ θ −=  refers to the a priori probability 

of the data symbol 1CiN kS + − . As some of the symbols are known pilots, only the 

data symbols need to be imputed. The last equality is for clarity purposes. 

 

To compute the probability term, ( ) ( ) ( )( )1,1: 1 , ,| , , , ,i i
k k k kp k pilot k pilot k lp b bα θ θ θ−− = =H

((( %%α  

given in (4.13), it is necessary to first consider the joint distribution 
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( ) ( ) ( ) ( ) ( )( )1, , ,1: 1 , ,, | , , , ,i i
k k krdata k rdata k p k pilot k pilots k k lp bα θ θ θ θ−−= =H

( (( (( %%α b b=  and summing 

the resultant over all possible permutations of the rest of the data symbols except 

the target data, as follows 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )
1

,

1,1: 1 , ,

1, , ,1: 1 , ,

| , , , ,

, | , , , ,
N PT k

rdata k

i i
k k k k lp k pilot k pilots k

i i
k k krdata k rdata k p k pilot k pilots k

b

p b b

.k lp b b

α θ θ θ

α θ θ θ θ
− −

−−

−−
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= =

= = =∑

H

H b=

((( %%

( (( (( %%

α

α
 

(4.14) 

 

Denoting the combination of the terms ( ) ( ) ( ) (, , ,, ,i
k lpilot k pilot k rdata k rdata kb b bθ θ θ= = = ),

( (( (
 as 

) , the term ( , ,perm k lθ
(

( ) ( )( )1,1: 1 , ,| , , ,i
k k kp k perm k lp α θ θ−− H

(( %%α  is a multivariate Gaussian 

distribution with mean vector and covariance matrix as shown 

( ) ( ) ( ){ }
( )

1, , ,1: 1 , ,

, ,

T10 1

| , , ,

, ,..., R

i i
k k kp k l p k perm k l

k perm k l

N
k k k

H

α θ θ

θ

μ μ μ

−−

−

= Ε

=

⎡ ⎤= ⎣ ⎦

H
(( %%

((
μ α

  (4.15) 

( )
T10 1

, , , ,..., RNi
k k kp k l diag υ υ υ −⎡ ⎤= ⎣ ⎦Ξ    (4.16) 

where j
kυ  is the variance of j

kα  and each 2j
k wυ σ= . Therefore, it is quite apparent 

that ( ) ( )( )1,1: 1 , ,| , , ,i
k k kp k perm k lp α θ θ−− H

(( %%α  is the product of  -D Gaussian 

likelihood functions, each with mean and covariance 

RN 1

j
kμ  and j

kυ  respectively. 

 

With these, (4.14) can be easily computed as follows 
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(4.17) 

 

The product in the last equality is due to the independence of sub-trellises, and as 

shown in the last equality, the term ( ) ( ) (( ), , , ,|
r r rrdata k rdata k rdata p kP bθ θ −= 1  represents 

the a priori probabilities of the rest of the data symbols, besides the target data 

symbol, that are obtained from the SISO decoder in the previous iteration. 

 

From (3.13), the update of the importance weights can be done recursively by 

( ) ( ) ( ) ( ) ( )( )1, , 1 ,1: 1 ,| , , ,i i i
k k kp k p k p k pilot k pilot kw w p bα θ θ−− −∝ =H ,

((( %%α   (4.18) 

where 

( ) ( ) ( )( ( )1,1: 1 , , , ,| , , ,
l

i i
k k kp k pilot k pilot k p k l

b

p bα θ θ β−−
∈Β

= =) .∑H
((( %%α   (4.19) 

Therefore, 

( ) ( ) ( ), , 1 , .
l

i i i
p k p k p k l

b
w w β−

∈Β

∝ ,∑     (4.20) 

 

 A summary of the algorithm used by the SMC detector is presented in Table 5. 
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Table 5: Algorithm of SMC Detector in MIMO-OFDM Systems 
1. Initialize all importance weights ( ),0 1i

pw = . 

2. For each target data symbol at the  SC and the  transmit antenna and 
for , 

thk thi
1,2,...,p = Ω

              For each lb ∈Β , compute . ( ), ,
i
p k lβ

              Impute  with probability . ( ,
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i
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∀

∝ ∑
 

With this, the a posteriori symbol probability of the data symbol 
CiN kS +  can be 

computed as 
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where  and ( ),
1

i i
k p k

p

W w
Ω

=

=∑ ( )•I  is an indicator function where it is unity if the 

argument is true and zero if otherwise. 

 

From the a posteriori symbol probability, the a posteriori LLRs of the interleaved 

code bits,  are computed ( )icπ
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In (4.22), it is assumed that  is mapped to data symbol , and applying 

Bayes’ Rule, (4.22) can be decomposed into two components, 

( )icπ jS
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2 1
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⎡ ⎤ϒ = +⎣ ⎦ = =

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

%

%

α

α   (4.23) 

where  is the interleaved version of the a priori LLR of the code bit  

that is obtained from the SISO channel decoder during the previous iteration while 

 represents the extrinsic information about the code bit , delivered 

by the SMC detector based on the received signals 

( )
( )

2
icπλ ⎡

⎣
⎤
⎦

⎤
⎦

( )icπ

( )
( )

1
icπλ ⎡

⎣ ( )icπ

%α , the signal model and the a 

priori probabilities of all other code bits. The extrinsic information is deinterleaved 

and fed into the SISO channel decoder as a priori LLR of the code bits. With this, 

the SISO channel decoder, using the MAP channel decoding algorithm [34,57], 

will compute the a posteriori LLR of the code bit 

( ) [ ] ( )
( )
( ) [ ] ( ) [ ]

2

1 2

1| code constraints
0 | code constraints

i
i

i

i i

P c
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P c

c cλ λ
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ϒ =
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= +

  (4.24) 

subject to the code constraints. Removing the a priori LLR from the a posteriori 

LLR, the extrinsic information of the code bit ( )
( )

2
icπλ ⎡ ⎤

⎣ ⎦  delivered by the channel 

decoder, is interleaved and the a priori symbol probability is computed from it.  
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Assuming that the QPSK symbol  corresponds to the bit pair (lb )0 1
,l lδ δ and that 

the transmitted symbol  corresponds to the code bit pair , the a priori 

symbol probability is then calculated as 

iS ( 0 1
,i ic c )

( ) ( ) ( )0 0 1 1i l i l i lP S b P c P cδ δ= = = =     (4.25) 

where the code bit probability is given as 
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Similarly,  can be derived to be ( 0iP c = )

( ) ( ) [ ]( )
( ) [ ]

2

2

10
1 exp

1 tanh
2

.
2

i
i

i

P c
c

c

λ

λ

= =
+

⎛
− ⎜ ⎟⎜ ⎟

⎝ ⎠=

⎞     (4.26b) 

 

 74



The computed symbol probabilities are fed back to the SMC detector as prior 

information for the next iteration. During the first iteration, all symbols are equi-

probable and  is zero. The SISO SMC detector exchanges the extrinsic 

information with the SISO channel decoder iteratively to improve the performance 

of the receiver. However though the extrinsic information is uncorrelated during 

the first iteration, it gets progressively correlated as the number of iterations 

increase. Therefore, the gain obtained diminishes with increasing number of 

iterations. 

( )
( )

2
icπλ ⎡

⎣
⎤
⎦

)

 

4.4.4 Computational Complexity 

In this section, a brief comparison of the computational complexity of the 

proposed non-resampling SMC detector with that of a resampling SMC detector 

for the same system, based on the same bandwidth, same number of subcarriers 

and pilot symbols and the same pilot locations is presented. In essence, resampling 

is being introduced into the proposed algorithm. Specifically, the number of 

multiplications and imputations necessary for each triplet , for the 

proposed algorithm, where 

( , ,i p k

0,1,..., 1Ck N= − , 0,1,..., 1Ti N= −  and  are 

calculated. The result of this investigation is summarized in Table 6 and it follows 

that the total number of multiplications and imputations needed for the proposed 
algorithm for each MIMO-OFDM symbol are 

1,...,p = Ω

( )3 T kN P
C R TN N N P−Ω Β + − k

)

 and 

 respectively. For the system employing resampling, the number of 

times resampling is performed for each MIMO-OFDM symbol is 

(C T kN N PΩ −

1C TN N
K

−⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The number of multiplications necessary for each resampling step is . Therefore, Ω
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the additional multiplications incurred by resampling for each MIMO-OFDM 

symbol is given by 1C TN N
K

−⎢ ⎥Ω ⎢ ⎥⎣ ⎦
 while there is no change to the number of 

imputations.  

 

Table 6: Computational Complexity of Non-Resampling SMC Detector for a 

given triplet ( )  , ,i p k
 Proposed 

Algorithm 
Number of multiplications to compute each   ( ), ,

i
p k lθ 3 T kN P

RN −Β  
Number of multiplications to update importance weights 1 
Number of imputations 1 

 
 

4.5 Simulation Results 

In this section, the simulation results of the performance of the non-resampling 

SMC iterative receiver under various scenarios are presented. In this section, it is 

assumed that the carrier frequency and phase offset have already been 

compensated. 

 

A  SC MIMO-OFDM system, each with a SC bandwidth of 12.5  

transmitting over a frequency-selective multipath-fading environment is 

considered. QPSK modulation is employed and the termination period,  is set to 

12. Various transmitter and receiver antenna arrangements are considered. 

Channels with UNI and EXP PDPs with a Doppler frequency of 200 Hz are used 

to represent different mobile environments. Each of these channels has length 

64CN = kHz

K
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5=L  while the delay spreads for the UNI and EXP profiles are 1.27dT sμ=  and 

1.07dT sμ=  respectively.  

 

It is assumed that the coefficients of the channel’s tap delay line are wide sense 

stationary narrowband complex Gaussian random processes with Rayleigh 

distribution with the same variance of 1

RN L
, and are of band-limited Doppler 

power spectral density following Jakes’ model [53]. The Jakes’ model used is 

generated using the sum-of-sinusoids method proposed in [73]. The channels are 

taken to be block-fading where the channels remain static over the duration of one 

MIMO-OFDM symbol.  

 

The total received energy of each transmitted symbol is normalized to unity [22] 

and it is assumed that the receiver has perfect knowledge of the CSI. In the 

simulations, the number of Monte Carlo particles used is 50 and 
0

bE
N

 is defined to 

be the ratio of the instantaneous bit power per transmit antenna to the average 

noise power [24].  
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Investigation of effects of various antenna arrangements 

Firstly, the effect of various antenna arrangements on the performance of the 

MIMO-OFDM system, where the total number of antennas is fixed to 8, i.e. 

 over a UNI channel is considered. Three systems are simulated, 

namely, ,  and 

8T RN N+ =

2 6× 3 5× 4 4×  MIMO-OFDM. A rate ½, constraint length 5 

convolutional code with generator polynomials [  is employed, and the 

BCJR [57] MAP decoding algorithm is used by the SISO channel decoder. The 

number of iterations between the SMC detector and the channel decoder is set to 4 

and the BCJR algorithm makes hard decisions on the a posteriori LLRs of the data 

bits 

23 35]O

{ }md  at the end of the  turbo iteration. The interleaver used is randomly 

generated and fixed throughout the simulation. The BER performances of these 

systems are shown in Fig. 26. 

4th

 

It can be seen that the 2 6×  MIMO-OFDM system offers the best BER 

performance, giving an improvement of 1.3dB when compared to the 4 4×  

MIMO-OFDM system. This result implies that for a fixed number of total 

antennas under the same channel conditions, the MIMO system with the biggest 

number of receive antennas will have the best BER performance. This is explained 

by the decrease in ICI and the increase in receiver diversity when  is decreased 

and  is increased.  

TN

RN
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Fig. 26: Comparisons of various antenna arrangements for  
Convolutional coded MIMO-OFDM system for data transmitted over a UNI 

channel with 

8T RN N+ =

1.27dT sμ=  and 12=K  
 

Investigation of effects of different termination periods 

The effect of different termination periods on the BER performance is also 

investigated. A  MIMO-OFDM system with signals transmitting over a UNI 

channel is considered. As seen in Fig. 27, as the termination period , decreases 

from 12 to 3, there is a 1.3dB improvement in performance. This suggests that 

with a frequent termination, better performance can be achieved at the expense of 

increased overheads. This is to be expected as in the absence of resampling, the 

Monte Carlo variance of the importance weights increases with each step of the 

SIS. Therefore the estimation becomes more inferior as time passes. With a more 

4 4×

K
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frequent termination, the increase in Monte Carlo variance is kept in check hence 

resulting in better performance. For comparison purposes, the performance of 

MMSE detection is also simulated. As degeneracy is not inherent in MMSE 

detection, its performance therefore does not depend on  and so only one case of 

 is considered. As observed, the performance of MMSE detection with 

K

K 12K =  

is poor, compared to the proposed SMC algorithm. This is because MMSE 

detection only offers a diversity order of 1 for the case of a 4x4 MIMO–OFDM 

system [75]. 

 

Fig. 27: Effect of different termination periods on performance of a 4 4×  
Convolutional coded MIMO-OFDM system for data transmitted over a UNI 

channel with 1.27dT sμ=  
 

 

 80



Investigation of effects of different PDPs 

The performances of the 4 4×  MIMO-OFDM system under different 

environments are also simulated. Two types of PDPs are considered, UNI with 

1.27dT sμ=  and EXP with 1.07dT sμ= . The value of  is maintained at 12. The 

result of this comparison is shown in Fig. 28. It can be seen that the best 

performance is achieved in a UNI channel with a gain of 0.3dB over the EXP 

channel. 

K

 

Fig. 28: Performance of a 4 4×  Convolutional coded MIMO-OFDM system for 
data transmitted over a UNI channel with 1.27dT sμ=  and EXP channel with 

1.07dT sμ= , and 12=K  
 

The performance of the proposed detector is also compared with the performance 

of a SMC detector with resampling employed. For the latter, deterministic 
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resampling is used and it is performed once in between every two pilot symbols. 

Therefore, this serves as a lower bound for the performance of the proposed 

detector. It can be seen that in both channel environments, the proposed detector 

performs close to the respective lower bounds. For instance, in the UNI channel, 

the performance is only 0.13 dB away from its lower bound while in the EXP 

delay profile the performance is only 0.2dB away.   

 

Investigation of effects of various antenna arrangements for LDPC coded system 

Besides convolutional coded system, LDPC coded MIMO-OFDM system over the 

UNI channel is also investigated. Three different antenna arrangements are 

considered, namely, 2 2× , 3 3×  and 4 4× . The value of  is kept at 12. A rate ½ 

LDPC code of length 1404 is used. The row weights of the parity check matrix is 

maintained as uniform as possible while the column weight is fixed at 3. It is also 

ensured that the parity check matrix does not have cycles of 4. The SPA [34] that 

is used within the SISO decoder iterates a maximum of 100 cycles while the 

number of iterations between the SMC detector and the SISO decoder is kept at 5. 

No interleaver is used in this case. The simulation results are shown in Fig. 29. 

K
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Fig. 29: Comparisons of various antenna arrangements for LDPC coded MIMO-
OFDM system for data transmitted over a UNI channel with 1.27dT sμ= , 12=K , 

and 5 turbo iterations 
 

From Fig. 29, it can be seen that the BER performance of the proposed detector is 

very similar to the performance of its corresponding lower bound for all the three 

cases. For instance, for the 2 2×  MIMO-OFDM system, the performance 

degradation of the proposed detector is 0.2dB, for the 3 3×  system the degradation 

is 0.1dB while for the 4 4×  system the degradation is only 0.07dB. It can also be 

observed that with the same antenna arrangement, the LDPC coded MIMO-

OFDM system performs better than the convolutional coded system. 
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4.6 Conclusions 

This section investigates the design and performance of a non-resampling SMC 

detector as the first-stage of an iterative receiver for coded MIMO-OFDM systems 

under different environments. The proposed receiver iterates between the SMC 

detector and the MAP channel decoding stage. The extrinsic a posteriori LLRs of 

the code bits and the a posteriori symbol probabilities are exchanged between 

these two stages iteratively to improve the performance of the receiver.  

 

The proposed detector employs periodic termination on the differentially encoded 

symbols in an attempt to keep degeneracy in check. Therefore, with this proposed 

receiver, the problems associated with resampling such as the high computational 

complexity involved, the infeasibility of parallel processing and the issue of 

sample impoverishment have all been eliminated.  

 

It has been shown from the simulations that receiver diversity plays a large part in 

the performance of the receiver. A system with a larger number of receive 

antennas will have a better performance. It is also observed that in all cases, the 

proposed receiver consistently performs closely to its lower bound, which is taken 

to be the performance of the SMC detector with resampling employed under the 

same conditions.  

 

It is also seen that with a more frequent periodic termination, better performance 

can be achieved at the expense of higher overheads. Even though overheads are 
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incurred, they can be used as pilot symbols for channel estimation purposes as will 

be discussed in the next chapter.  
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CHAPTER 5 

ITERATIVE RECEIVER DESIGN FOR MIMO-OFDM SYSTEMS 

VIA SMC TECHNIQUES WITH PILOT AIDED CHANNEL 

ESTIMATION (PACE) 

 

5.1 Background 

There are generally two main types of channel estimation methods for OFDM 

systems, namely, blind and training (pilot) based. In the blind channel estimation 

method, the receiver has to estimate the CSI without the aid of known symbols. 

Even though they can achieve higher bandwidth efficiency due to the absence of 

training overheads, the estimation accuracy is compromised and usually the 

complexity involved is also higher. For these reasons, they are less widely used 

than training based estimations. In training based estimation methods, known pilot 

symbols or training sequences are transmitted to help the receiver to estimate the 

CSI. 

 

This chapter starts with the extension of PACE for single-input single-output 

OFDM system to the case of MIMO-OFDM systems, followed by the simulation 

results of the coded MIMO-OFDM systems utilizing PACE [74] and the 

conclusions.  
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5.2 System Model of Coded MIMO-OFDM System with Channel Estimation  

For the channel estimation purposes, it is assumed that the carrier frequency and 

phase offset have already been compensated. The structure of the transmitter 

remains the same as Fig. 23. It is replicated here for ease of reference. 
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Fig. 30: Structure of proposed transmitter 
 

While there is a slight addition to the structure of the receiver as shown in Fig. 31. 
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Fig. 31: Structure of proposed receiver 
 

PACE is performed after the FFT operation, before data detection by the SMC 

detector. Since each SC is flat fading, estimation of the CSI ought to be rather 

trivial if not for the interference from other transmit antennas which are 

transmitting symbols at the same time coupled with the larger number of channel 

responses to be estimated. 

 

The proposed PACE method adopts the joint pilot grid (JPG) method that Auer 

employed in [49-50]. In this case, all the transmit antennas will be transmitting 

pilot symbols simultaneously on a certain set of SCs and the termination period, 

 is a factor of . In this work orthogonal sequences are used. The total K CN
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number of pilots per MIMO-OFDM symbol is  where T PN N PN  denotes the 

number of pilot symbols per MIMO-OFDM symbol per transmit antenna. It is 

assumed that the channel is static for the duration of  MIMO-OFDM symbols. TN

 

To employ PACE, it is necessary to fulfill the sampling theorem (2.14) and (2.15). 

In the proposed system, (2.14) is automatically satisfied as each MIMO-OFDM 

symbol has its own set of pilot symbols due to periodic termination. The number 

of pilots per transmit antenna per MIMO-OFDM symbol along the frequency axis 

should also follow the constraint imposed by (2.15) as shown in the following 

section. 

 

Recall the MIMO-OFDM model is given by 

= H + W%%%α θ %

RN −

     (5.1) 

where  and each 

( ) ( )

( ) ( )

0,0 1,0

0, 1 1, 1

T

R T

N

N N

−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H H
H =

H H

L
% M O M

L

( ) ( )(, ,i j i jdiag=H H ) . Each 

( ) ( ) ( ) ( ) ( )( )T, , , ,
0 1 1, , , FFT

C

i j i j i j i j i j
NH H H h−

⎡ ⎤ =⎣ ⎦H = L , .  

 

If there is no aliasing, ( ),i jH  can be perfectly reconstructed by applying a low pass 

filter. For this to happen, the OFDM system has to fulfill the sampling theorem 

(2.15) [42-43], stated as  

( ), 1
2

i j
m PfT f NΔ ≤     (5.2) 
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where fΔ  denotes the bandwidth of each SC, PfN  denotes the spacing between 

the pilots in the frequency domain. In the case of MIMO, it is assumed that the 

maximum delay spreads of the channel between the  transmit antenna and the thi

thj  receive antenna are the same for all, i.e. ( ),i j
mT mT= . As the no-aliasing duration 

of 1

PffNΔ
 remains constant while the number of transmit antennas is now  

[50], the sampling theorem has to be restated as 

TN

1
2

1
2

2

2

m
Pf T

FFT

m C
T

FFT S P

m C
P T

S FFT

m
P T

S

TN N
T

T NN
N T N

T NN N
T N
TN N
T

≤

≤

≥

≥

    (5.3) 

where the simplification in the last equation is due to C FFN N T=  in the system. 

 

The PACE for the MIMO-OFDM system is based on the LS method, which will 

be derived in the following section with the aid of Fig. 32. Fig. 32 considers a 

simple setup of 2 transmit antennas and 2 receive antennas and 8 SCs. The 

termination period,  used is 4 and K 2PN = . Before proceeding on, some 

notations are necessary. Let ( )
( )

,
i
p tθ  denote the thp  pilot symbol transmitted from the 

 antenna during the  MIMO-OFDM symbol while thi tht ( )
( )

,
j
p tα  denotes the thp  pilot 

symbol received at the thj  antenna during the  MIMO-OFDM symbol. tht
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Let ( ) ( ) ( ) ( ) T, , , ,
0 1 1, ...,

P

i j i j i j i j
NH H H −

⎡= ⎣H ⎤
⎦

) ) ) ) 2 denote a subset of the -point FFT of the 

CIR from the  transmit antenna to the 

FFTN

thi thj  receive antenna. Note that ( ),i jH
)

 only 

contains a subset of the original CTF, ( ) ( ) ( ) ( ) T, , , ,
0 1 1, , ,

C

i j i j i j i j
NH H H −

⎡ ⎤
⎣ ⎦H = L . It is 

apparent that ( ) ( ) ( )
( )
( ) T, , , ,

0 1, ...,
P

i j i j i j i j
K N KH H H −

⎡ ⎤= ⎣ ⎦H
)

, where each element is spaced  

symbols away from the other. In Fig. 32, 

K

( )
( ),

,
i j
p tH

)
 denotes the FFT of the CIR 

between the  transmit and the thi thj  receive antenna of the thp  SC during the  

MIMO-OFDM symbol. 

tht

 

The channel is assumed to be noiseless and static for the duration of two MIMO-

OFDM symbols. The pilot sequence ( )
( )

( )
( ) T0 0

0,0 0,1,θ θ⎡ ⎤
⎣ ⎦  is orthogonal to  

while  is orthogonal to 

( )
( )

( )
( ) T1 1

0,0 0,1,θ θ⎡ ⎤
⎣ ⎦

( )
( )

( )
( ) T0 0

1,0 1,1,θ θ⎡
⎣

⎤
⎦ ( )

( )
( )
( ) T1 1

1,0 1,1,θ θ⎡ ⎤
⎣ ⎦ . 

                                                 
2 As a convention, variables pertaining to pilot symbols will be marked with a in the following sections. .)
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0t =  

 

Fig. 32: Pilot arrangement for 2 2×  MIMO-OFDM system 
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Simplify (5.4a) as 

( )( ) ( )( )
( )( ) ( )( )

0,0 1,0
0 0

0 0,1 1,1
0 0

0 0

diag diag

diag diag

⎡ ⎤
⎢ ⎥=
⎢
⎢⎣ ⎦

=

H H

H H

H

0⎥
⎥

) )
))

) )

))

α θ

θ

    (5.4b) 

and the system at symt T=  can similarly be expressed as 

1 1

0 1

=

=

H

H
1

)))

))
α θ

θ
      (5.5) 

where ( )
( )

( )
( )

( )
( )

( )
( ) T0 0 1 1

1 0,1 1,1 0,1 1,1, , ,θ θ θ θ⎡ ⎤= ⎣ ⎦
)
θ  and ( )

( )
( )
( )

( )
( )

( )
( ) T0 0 1 1

1 0,1 1,1 0,1 1,1, , ,α α α α⎡ ⎤= ⎣ ⎦
)α  as the 

channel remains unchanged for the 2nd MIMO-OFDM symbol. 

 

Recall that the pilot sequence ( )
( )

( )
( ) T0 0

0,0 0,1,θ θ⎡ ⎤
⎣ ⎦  is orthogonal to  while 

 is orthogonal to 

( )
( )

( )
( ) T1 1

0,0 0,1,θ θ⎡ ⎤
⎣ ⎦

( )
( )

( )
( ) T0 0

1,0 1,1,θ θ⎡
⎣

⎤
⎦ ( )

( )
( )
( ) T1 1

1,0 1,1,θ θ⎡ ⎤
⎣ ⎦ , 1H

)
 can be obtained via 

T
0

1 0 1 T
1

1 .
T
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N

⎡ ⎤
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⎣ ⎦
H

)) ))
)
α

θ θ
α

   (5.6) 

 

In general, for  transmit antennas and while transmitting the  MIMO-OFDM 

symbol, 

TN tht

( )( ) ( )( )

( )( ) ( )( )

0,0 1,0

0, 1 1, 1

T

R T

N
t t

t

N N
t t
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− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

H H

H

H H RN −

) )
L

)
M O M
) )

L

 can be easily obtained by 

( )1 ,t tt
T

conj
N

=H
)) )θ α      (5.7) 
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where 1Tt t N t− +⎡ ⎤= ⎣ ⎦
) ) )

Lθ θ θ  and 

T
1

T

Tt N

t

t

− +⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

)

)
M
)

α

α
α

. 

 

As all ( ),i jH
)

 have been estimated, it is now necessary to interpolate the estimated 

channel values across all the data SCs. With the help of periodic termination, the 

highly complex, computationally intensive 2-D Wiener filtering is avoided as each 

MIMO-OFDM symbol has its own set of pilot symbols, hence no interpolation 

across time is required. Therefore, only a simple 1-D interpolation across 

frequency is necessary. This is illustrated in Fig. 33 where the termination period 

used is 4. 

Time 

Frequency 

Pilot Symbols 

Data Symbols

PfN K=  

1PtN =  

Interpolation 
in frequency

 

Fig. 33: Scattered pilot symbols over the 2-D frequency-time grid with 4K =  
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By considering each ( ),i jH
)

 independently, it is possible to interpolate each PN -

long ( ),i jH
)

 vector to the original -long CN ( ),i jH  vector by using the interpolation 

method described in section 2.5.2. As each ( ),i jH
)

 is considered independently, the 

subscripts  are dropped for clarity. The MMSE estimate of ( ,i j ) H  is given as 

[64], 

1ˆ R RMMSE
−= HH HHH ) ) ) H
)

    (5.8) 

where RHH
)  is the cross covariance matrix between H  and H

)
 and RHH

) )  is the auto 

correlation of H
)

. With the knowledge of H
)

, (5.8) minimizes the MSE between 

the actual CTF, H  and the estimates, ˆ
MMSEH . The MIMO channel matrix can be 

re-written as 

( ) ( )

( ) ( )

0,0 1,0

0, 1 1, 1

ˆ ˆ
ˆ

ˆ ˆ

T

R T

N
MMSE MMSE

MMSE

N N
MMSE MMSE

−

− − RN −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H H
H =

H H

L

M O M

L

 where ( ) ( )( ), ,ˆˆ i j i j
MMSE MMSEdiag=H H . 

 

The SMC receiver algorithm proceeds as presented in section 4.4.3 with these 

estimates instead of the perfect channel knowledge assumed earlier in chapter 4. 

This is summarized in Table 7. 

 

Table 7: Algorithm of SMC Detector with Channel Estimation in MIMO-OFDM 
Systems 

1. Perform channel estimation for each ( ),i jH . 
              Perform LS estimation to obtain ( ),i jH

)
. 

              Interpolate ( ),i jH
)

 to obtain ( ),ˆ i j
MMSEH . 

2. Initialize all importance weights ( ),0 1i
pw = . 

3. For each target data symbol at the  SC and the  transmit antenna and 
for , 

thk thi
1,2,...,p = Ω
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              For each lb ∈Β , compute ( ) ( ) ( )( ), , ,1: 1 ,
ˆ ˆ| , , ,

k

i i i
k l k MMSEp k l p k pilot kP bβ θ θ θ−= = H

(
%α . 

              Impute  with probability . ( ,
i
p kθ )

, ,

( ), ,
ˆ i

p k lβ

              Compute the importance weights, .  ( ) ( ) ( ), , 1
ˆi i i

p k p k p k l
l

w w β−
∀

∝ ∑
 

5.3 Simulation Results 

In this section, the simulation results of the performance of the non-resampling 

SMC iterative receiver with channel estimation incorporated under various 

scenarios are presented. It is assumed that the carrier frequency and phase offset 

have already been compensated. 

 

Similar to previous simulations, a 64CN =  SC MIMO-OFDM system, each with a 

SC bandwidth of 12.5  transmitting over a frequency-selective multipath-

fading environment is considered. QPSK modulation is employed and in order to 

satisfy (5.3), the termination period,  is set to 4 for 

kHz

K 4 4×  system while it can be 

4 or 8 for the 2  system. Various transmitter and receiver antenna arrangements 

are considered. Channels with UNI and EXP PDPs with a Doppler frequency of 40 

Hz are used to model different mobile environments. Each of these channels has 

length  while the delay spreads for the UNI and EXP profiles are 

2×

3L =

1.02dT sμ=  and 0.814dT sμ=  respectively.  

 

It is assumed that the coefficients of the channel’s tap delay line are wide sense 

stationary narrowband complex Gaussian random processes with Rayleigh 

distribution with the same variance of 1

RN L
, and are of band-limited Doppler 
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power spectral density following Jakes’ model [53], generated using the sum-of-

sinusoids method proposed in [73]. The channels are taken to be block-fading 

where the channels remain static over the duration of  MIMO-OFDM symbols.  TN

As before, the total received energy of each transmitted symbol is normalized to 

unity [22], the number of Monte Carlo particles used is 50 and 
0

bE
N

 is defined to 

be the ratio of the instantaneous bit power per transmit antenna to the average 

noise power [24].  

 

Investigation of effects of different termination periods 

The effect of different termination periods on the BER performance is 

investigated. A  MIMO-OFDM system with signals transmitting over a UNI 

channel is considered. As before, a rate ½, constraint length 5 convolutional code 

with generator polynomials [  is employed, and the BCJR [57] MAP 

decoding algorithm is adopted by the SISO channel decoder. The number of 

iterations between the SMC detector and the channel decoder is kept at 4 and the 

BCJR algorithm makes hard decisions on the a posteriori LLRs of the data bits 

2 2×

23 35]O

{ }md  at the end of the  iteration. Again, the interleaver used is randomly 

generated and fixed throughout the simulation.  

4th

 

As seen in Fig. 34, as the termination period , decreases from 8 to 4, the 

degradation incurred by the incorporation of channel estimation is successively 

smaller, from 0.79dB to 0.65dB when comparing with the corresponding system 

K
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with perfect knowledge of CSI. This is to be expected as with a longer termination 

period, the errors incurred in the channel estimation are larger as the effects of 

degeneracy have kicked in. This led to the imputations not being as accurate as the 

case with knowledge of CSI and has slightly affected the assumption that the 

multivariant Gaussian distribution can be approximated by the product of  1-D 

Gaussian likelihood functions. In fact, comparing among the systems with channel 

estimation, when  is increased from 4 to 8 the degradation is 0.50dB while for 

the systems with perfect knowledge of CSI, i.e. where no channel estimation is 

performed, the degradation is only 0.34dB. 

RN

K

  

Fig. 34: Effect of different termination periods on performance of a 2 2×  
Convolutional coded MIMO-OFDM system with PACE for data transmitted over 

a UNI channel with 1.02dT sμ=  
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Investigation of effects of various antenna arrangements 

The effect of various antenna arrangements on the performance of the MIMO-

OFDM system over a UNI channel is also simulated. Both  and 4  MIMO-

OFDM systems are considered. The BER performance of this system is shown in 

Fig. 35. In the case of 

2 2× 4×

2 2×  system, the degradation introduced by channel 

estimation is 0.65dB while that for the 4 4×  system is 0.60dB. Moreover the 

performance of the 4 4×  system is better than the 2 2×  system both with and 

without channel estimation. As  gets larger, receiver diversity gain 

compensates for the performance degradation caused by channel estimation error 

and makes the system less vulnerable to the time-varying channel. 

RN

 

Fig. 35: Comparisons of 2 2×  and 4 4×  Convolutional coded MIMO-OFDM 
systems with PACE for data transmitted over a UNI channel with 1.02dT sμ= , 

4K =  
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Investigation of effects of different PDPs 

The effects of the different environments on the performance of the  MIMO-

OFDM system are also simulated. Two types of PDPs are considered, UNI and 

EXP. The value of  is maintained at 4. The result of this comparison is shown in 

Fig. 36. Firstly, it can be seen that in the UNI channel, the degradation incurred by 

the channel estimation method is 0.60dB while it is 0.70dB in the EXP channel. 

Secondly, it can be seen that the performance of the system with resampling is 

only very slightly better than the proposed system. This is because the value of  

used is already very small therefore the benefits of performing the additional 

resampling step in between every two pilot symbols are very minimal. 

4 4×

K

K

 

Fig. 36: Performance of a 4 4×  Convolutional coded MIMO-OFDM system with 
PACE for data transmitted over a UNI channel with 1.02dT sμ=  and EXP channel 

with 0.814dT sμ= , and 4K =  
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Investigation of effects of various antenna arrangements for LDPC coded system 

Lastly, LDPC coded MIMO-OFDM system over the UNI channel is investigated. 

Two different antenna arrangements are considered, namely, 2  and 2× 4 4× . The 

value of  is maintained at 4. A rate ½ LDPC code of length 1404 is employed. 

The row weights of the parity check matrix is kept as uniform as possible while 

the column weight is fixed at 3. It is ensured that the parity check matrix does not 

have cycles of 4. The SPA [34] that is used within the SISO decoder iterates a 

maximum of 100 cycles while the number of iterations between the SMC detector 

and the SISO decoder is set at 5. No interleaver is used. The simulation results are 

shown in Fig. 37. It is observed that similar to the convolutional coded case, 

significant improvement in BER is achieved with the increased number of receive 

antennas. In addition, the degradation caused by channel estimation is 0.60dB for 

the  system while it is 0.42dB for the 

K

2 2× 4 4×  system. Moreover, it is also seen 

that the proposed algorithm performs very closely to the system with resampling. 
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Fig. 37: Comparisons of various antenna arrangements for LDPC coded MIMO-
OFDM system with PACE for data transmitted over a UNI channel with 

1.02dT sμ= , 4K = , and 5 turbo iterations 
 

5.4 Conclusions 

Channel estimation is a vital task in MIMO-OFDM systems. In this section, the 

performances of the non-resampling SMC iterative receiver with channel 

estimation under different scenarios are investigated. Instead of employing blind 

estimation, better estimation is obtained by making use of the termination states as 

pilot symbols in the PACE method employed here. 

 

It is seen that the performance of the channel estimation algorithm is related to the 

value of the termination period used where better estimation is possible when the 

termination period is smaller. Moreover, when TN NR= , a larger  would give RN
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a much better performance as the gains brought about by the increased in receiver 

diversity compensate for the degradation caused by the increased in ICI due to the 

increase in the number of transmit antennas. The effect of the channel estimation 

error incurred is also very slightly milder for the case of 4  system than the 

 system. It is also observed that the channel estimation algorithm performs 

better in the UNI channel than EXP channel and there are negligible differences 

whether resampling is employed. The same trend is seen when the performance of 

the LDPC coded MIMO-OFDM system with channel estimation is simulated. 

4×

2 2×

 

Therefore, the overheads caused by periodic termination can be put to good use for 

good channel estimation performance while at the same time, the proposed 

algorithm has avoided the computationally intensive resampling step and making 

parallel processing possible. 
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CHAPTER 6 

CONCLUSIONS 

 
Resampling is an inevitable step when performing SIS while employing SMC 

methods. Unfortunately, resampling is computationally intensive and a lot of work 

has been done to address this issue [70-72]. On top of this, resampling causes 

problems such as making parallel processing impossible and the act of selecting 

the same large weight particle many times leads to a loss of diversity of the 

resulting trajectories [30]. In order to circumvent all these issues, an algorithm that 

skips the resampling step is introduced and its performance simulated. The essence 

of the algorithm is to periodically insert known termination states into the 

differential phase trellis such that the termination period is kept short and hence 

the effects of degeneracy can be kept in check, even though no resampling is 

performed and at the same time, the diversity of the trajectories is ensured.  

 

As SMC detector is able to take in the soft a priori symbol probabilities from the 

output of the SISO MAP channel decoder and it is able to generate the a posteriori 

symbol probabilities, it is very suited to be the first stage of an iterative receiver. 

An iterative receiver is preferred because it is able to approach the optimum 

performance with increasing number of iterations. 

 

In chapter 4, the proposed non-resampling SMC iterative receiver is assumed to 

have perfect knowledge of the CSI and while computing the predictive state 
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distribution, the multivariant Gaussian distribution involved can be reduced to the 

product of  1-D Gaussian likelihood functions thus reducing the complexity. 

Importantly, it has been shown through simulations that the proposed receiver 

performs very closely to the system with resampling employed, and with a lesser 

complexity. The results also show that for a system with  antennas, a 

larger number of receive antennas will lead to the benefits of receiver diversity 

overweighting the degradation caused by the increased in transmit antennas. The 

effects of different termination periods, PDPs and channel codes have also been 

investigated and the performance of the system has been shown to be promising in 

all cases. 

RN

TN N= R

 

Even though periodic termination results in additional overheads, these overheads 

can be put to good use by employing them as pilot symbols in PACE. It is well 

known that PACE gives better performance than blind estimation. In chapter 5, the 

system with PACE is simulated for different scenarios. The JPG introduced by 

Auer [49-50] is used and it is shown that the degradation caused by the channel 

estimation algorithm is only a mere 0.60dB in a UNI channel for a 4  system. 

Similarly, a larger number of receive antennas leads to significant BER 

improvement. Simulations performed to investigate the effects of different 

termination periods, PDPs and channel codes have all shown to be promising. This 

suggests that the proposed non-resampling SMC iterative receiver with channel 

estimation is a possible way to skip resampling and enabling parallel processing at 

4×
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a negligible performance tradeoff. Further reduction in complexity can be 

addressed in future work. 
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