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vi

Summary

This thesis is directed towards the study of the likelihood ratio (LR) based

detection method in detecting invisible watermarks in images.

LR detection method based on Bayes' decision theory has been considered

for image watermarking in transform domain. The Neyman-Pearson criterion is

used to derive a decision threshold to minimize the probability of missed detection

subject to a given probability of false alarm. In order to achieve the optimum

behavior of the LR detector, a probability distribution function (PDF) that

models the distribution of the transform coe±cients is required. This detection

method ¯rst appeared in the literature for image watermarking in discrete Fourier

transform (DFT) domain. Thresholding via Neyman-Pearson criterion is done by

modeling magnitude of a set of DFT coe±cients using a Weibull PDF. The same

detection method has also been examined for image watermarking in the discrete

wavelet transform (DWT) domain, where a set of DWT coe±cients is modeled

using a Gaussian PDF.

The Weibull and Gaussian distributions are special cases of the generalized

gamma and generalized Gaussian distributions, respectively. These two general

distributions also encompass many other well known and commonly used
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distributions. This leads us to propose using the generalized gamma PDF and

generalized Gaussian PDF to model transform coe±cients of DFT and DWT,

respectively, for LR detection. We consider a zero mean generalized Gaussian

PDF as the mean of the DWT coe±cients in a given subband is approximately

zero. In addition, we also explore using a Laplacian PDF for LR detection in

DWT domain. Decision rule and closed-form decision threshold are derived

for all proposed models. New estimators are introduced for parameters of

the generalized Gaussian and generalized gamma distributions. Our numerical

experiments reveal that the proposed models can produce better LR detection.

Maximum a posteriori (MAP) detection is another statistical watermark

detection method. It is simpler than LR detection in the sense that a decision

threshold is not required. MAP detection has been considered for watermarking

in discrete cosine transform (DCT) domain using a Laplacian PDF. We propose

an MAP detector using a generalized Gaussian PDF in DWT domain, and show

that it can result in improved detection.

An embedding scheme that is based on the additive embedding scheme

is also included in our work. The proposed embedding scheme requires more

computation but it can give better watermark robustness.
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Chapter 1

Introduction

This chapter gives an overview of our work. Section 1.1 describes brie°y our areas

of focus in digital watermarking. The objective of our research together with the

contributions made are summarized in Section 1.2. A brief organization of the

thesis is given in Section 1.3.

1.1 Digital Watermarking

A digital watermark is a mark placed on multimedia content for a variety

of applications including copyright protection, copy protection, authentication,

¯ngerprinting, broadcast monitoring, etc [11, 19, 40]. In recent years, digital

watermarking has become a hot area of research due to the rapid development of

multimedia networks and thus the need to prevent unauthorized duplication and

distribution of multimedia content [4, 9, 10, 13, 18, 27]. In the literature, many

digital watermarking algorithms have been developed and improved. Some are

already being used in the multimedia industry.
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In a digital watermarking system, the detection stage is a crucial stage.

Good detection schemes enable the recovery of a watermark with low probability

of false detection. Two types of false detection are possible during the detection

process. A false alarm occurs if a watermark is reported to be present when it

is not there. On the other hand, a missed detection occurs when an existence

of a watermark is rejected even though one is present. The complexity of the

detector, the type of watermark embedding method used, and the characteristics

of the watermark channel are among other things that in°uence the accuracy of

the detection process.

Traditionally, watermark detection algorithms are based on computing

correlation between the watermarked media and the watermark itself. Correlation

detection is usually preferred because of its simplicity. Another advantage is that

the detection can be `blind', i.e., the original media is not required in the detection

process. However, correlation detection is known to be optimal only when the

embedding process follows an additive scheme, and the media is drawn from

Gaussian distributions [11].

More recent works on watermark detection are based on decision theory

[2, 3, 5, 8, 14, 25]. For this type of detection, an accurate model for the probability

distribution function (PDF) of the original media is required. Our main focus is in

the work of Barni et al [3] where a likelihood ratio (LR) detection method based on

Bayes' decision theory is proposed. In [3], an imperceptible watermark is inserted

using a non-additive scheme to the discrete Fourier transform (DFT) of the
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original image. This involves modeling the magnitude of a set of DFT coe±cients

using a Weibull PDF. A decision threshold is derived using the Neyman-Pearson

criterion to minimize the missed detection probability subject to a given false

alarm probability. The same detection method is also explored by Kwon et al

[25] by considering the discrete wavelet transform (DWT) domain for watermark

embedding. In [25], DWT coe±cients are modeled using a Gaussian PDF.

Experimental results given in [3, 25] show that, in the context of robustness,

the LR detector has a better performance than the correlation detector.

Moreover, blind detection is also possible in LR detection by estimating the

parameters of the PDF from the watermarked image [7].

1.2 Our Work

Our objective is to explore and to generalize the LR detection framework of

Barni et al [3]. The research work reported here emphasizes on developing a

wider range of PDF models for LR detection in transform domain watermarking.

Although our numerical experiments are done for DWT and DFT domains, these

models are also applicable in other transform domains, for example, the discrete

cosine transform (DCT) domain. Also included in our work is an embedding

scheme which is based on the additive scheme and a maximum a posteriori (MAP)

detector which is quite similar to the LR detector but simpler.
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1.2.1 Publications

Our work so far has resulted in few publications as listed below. The same list

is also included in the bibliography at the end of the thesis. To avoid confusion,

the same numbering is used.

Journal Paper

[32] T.M. Ng and H.K. Garg, \Maximum likelihood detection in DWT image

watermarking using Laplacian modeling," IEEE Signal Processing Letters,

Vol. 12, No. 4, pp. 285-288, Apr 2005.

[33] T.M. Ng and H.K. Garg, \Wavelet domain watermarking using

maximum-likelihood detection," Journal of Imaging Science and

Technology, Vol. 49, No. 3, pp. 303-308, May/June 2005.

[34] T.M. Ng and H.K. Garg, \A maximum a posteriori identi¯cation criterion

for wavelet domain watermarking," International Journal of Wireless and

Mobile Computing: Special Issue on Mobile Systems and Applications, 2005.

Conference Paper

[35] T.M. Ng and H.K. Garg, \Wavelet domain watermarking using

maximum-likelihood detection," Proc. SPIE Conf. on Security,

Steganography, and Watermarking of Multimedia Contents VI, Vol.

5306, San Jose, Jan 19-22, 2004.
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[36] T.M. Ng and H.K. Garg, \A maximum a posteriori identi¯cation criterion

for wavelet domain watermarking," Proc. 24th IEEE Intl. Conf. on

Distributed Computing Systems Workshop, Tokyo, March 23-24, 2004.

[37] T.M. Ng and H.K. Garg, \An embedding scheme for bipolar watermark,"

Proc. Intl. Conf. Sciences of Electronic, Technologies of Information and

Telecommunications, Tunisia, March 15-20, 2004.

[38] T.M. Ng and H.K. Garg, \Maximum likelihood detection in image

watermarking using generalized gamma model," Proc. 39th Asilomar

Conference on Signals, Systems and Computers, Monterey, pp. 1680-1684

Oct 28-Nov 2, 2005.

Note that [33] and [34] are extended versions of [35] and [36], respectively.

1.2.2 Contributions

Based on our publications, we brie°y summarize the original work reported in

this thesis. Further details are given in the following chapters.

i. Energy Embedding Scheme

The additive scheme is one of the simplest schemes to embed a watermark

to an image. This is done by scaling and then adding elements of the

watermark directly to the image pixels or transform coe±cients of the

image. For transform domain watermarking, elements of the watermark can

be embedded to transform coe±cients with highest magnitude. This is one
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way to improve the robustness of the watermark. In [37], we introduce a new

embedding scheme which is based on modifying the transform coe±cients

with highest `energy'. Although the proposed scheme is mathematically

more complex, it is shown that it can result in better watermark robustness.

ii. General LR Detection Framework

The LR detection method of Barni et al [3] is based on using a Weibull

PDF to model the magnitude of the DFT coe±cients of an image. It

involves an approximation which is derived using Taylor's Theorem [23].

Their derivation is formulated in terms of the Weibull PDF. In [33, 35], we

generalize this derivation as well as the whole LR detection framework to

hold for any PDF model.

iii. LR Detection Based on Laplacian Model

Which PDF model to use depends on the transform domain under

consideration. One guideline is to choose a PDF with shape that resembles

closely the shape of the histogram of the transform coe±cients. The

Gaussian PDF is used by Kwon et al [25] to model DWT coe±cients for LR

detection. In [32], we consider the Laplacian PDF instead. A closed-form

decision threshold is derived. It is shown that the Laplacian model can

yield a better watermark detection as compared to the Gaussian model.

iv. LR Detection Based on Generalized Gaussian Model

In [25], watermark is inserted to the high resolution DWT subbands of the
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image. The mean of the DWT coe±cients in high resolution subbands is

close to zero. This leads us to consider a zero mean generalized Gaussian

PDF to model the transform coe±cients [33, 35]. The Gaussian PDF and

Laplacian PDF are special cases of the generalized Gaussian PDF. Our

numerical experiments show that the zero mean generalized Gaussian model

can produce better LR detection results. A closed-form decision threshold

under the zero mean generalized Gaussian model is also derived.

v. LR Detection Based on Generalized Gamma Model

The generalized gamma distribution is another distribution that includes

many common distributions as special cases. For example, the gamma,

Weibull, and exponential distributions can be obtained from the generalized

gamma distribution based on appropriate setting of parameters. Our work

in [33, 35] has led us to consider generalizing the Weibull model of Barni

et al [3] to a generalized gamma model. Besides deriving a closed-form

decision threshold, we also introduce new estimators for the parameters of

the distribution. The generalized gamma model is also shown to result in

improved watermark detection.

vi. MAP detector Based on Generalized Gaussian Model

In another work of Barni et al [2], an MAP detector is proposed for

DCT domain image watermarking using a Laplacian model. We introduce

a similar MAP detector in [36] for DWT domain watermarking using a

generalized Gaussian model. The watermark to be embedded in an image
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is chosen from a prede¯ned set of watermarks. In identifying the embedded

watermark, the a posteriori probability corresponding to each watermark in

the set is computed. The maximum of these a posteriori probabilities is the

one belonging to the embedded watermark. Thus, in applications whereby

the number of watermarks in the set is not too large, this can be a feasible

method to identify the embedded watermark. Moreover, it eliminates the

need for a decision threshold and therefore should result in a more accurate

detection.

1.3 Outline of Thesis

This thesis is organized as follows. In Chapter 2, we give the background material

required to peruse this thesis. A chapter each is then devoted to describe the work

done for each of the contributions mentioned in the previous section. This begins

with describing the fundamental watermark embedding schemes and watermark

detection methods in Chapter 3. The energy embedding scheme is covered in this

chapter. The general LR detection framework is derived in Chapter 4. In Chapter

5, we include the LR detection proposed by Kwon et al [25] which is based on

a Gaussian model. This gives the insight into the derivations for the subsequent

chapters. Chapter 6, 7 and 8 are devoted to describe LR detection based on

Laplacian, generalized Gaussian and gamma models, respectively. Chapter 9

gives the MAP detector based on the generalized Gaussian model. Lastly, we

summarize and conclude our work in Chapter 10. This includes mentioning a few
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interesting areas in which further research can be conducted.

The general notations used in this thesis are as follows. Non-boldface letters

are used to represent scalar quantities, sets and functions. Boldface letters are

used for vectors and matrices. All vectors and matrices are real-valued and

expressed in column form. The superscript T represents the transpose of vectors

and matrices.

All ¯gures and tables are placed at the end of the chapters.
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Chapter 2

Background

This chapter brie°y reviews the background material required for the

understanding and development of the chapters that follow. Notations and

terminologies introduced here will be used throughout the thesis.

2.1 Probability Theory

2.1.1 Random Variables and Their Characterization

A random variable (RV) X is a function that maps every outcome of a random

experiment to a real value. A continuous RV can take uncountably many

possible values while a discrete RV has only a ¯nite or countable number of

values. We assume that X is a continuous RV throughout. Associated with

X is the probability distribution function (PDF) of X, denoted by fX(x). The

probability that X will take values from a set R of real numbers may be obtained

by integrating fX(x) over R. For example, if R is the interval [a; b] then the
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probability of the event fa · X · bg is given as

P (fa · X · bg) =

Z b

a

fX(x)dx: (2.1)

The cumulative distribution function (CDF) is de¯ned as

FX(x) =

Z x

¡1

fX(u)du: (2.2)

In other words, FX(x) is the probability that X takes values in (¡1; x].

The PDF and CDF of X give complete characterization of the behaviour of

X. We are also interested in parameters associated with the PDF and CDF that

provide us with partial but meaningful information about X. Two of the most

widely used parameters are the mean and variance of X, de¯ned as

¹ = E[X] =

Z +1

¡1

xfX(x)dx (2.3)

and

¾2 = V [X] =

Z +1

¡1

(x¡ ¹)2fX(x)dx; (2.4)

respectively. The mean and variance are special cases of parameters called

moments and central moments, respectively. The kth moment is de¯ned as

¹ = E[Xk] =

Z +1

¡1

xkfX(x)dx; (2.5)

where k = 1 yields the mean of X. The kth central moment is de¯ned as

E[(X ¡ ¹)k] =
Z +1

¡1

(x¡ ¹)kfX(x)dx; (2.6)

where k = 2 yields the variance of X.
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2.1.2 Multidimensional Random Variables

In many situations, we encounter multiple RVs. For example, the values of pixels

in an image can be considered as a collection of RVs. Multiple random variables

are basically multi-dimensional functions. Let us just consider the case of two

RVs, X1 and X2. Generalization to the multidimensional case is straightforward.

We can view X1 and X2 as a single two dimensional RV X = (X1; X2).

A complete characterization of (X1; X2) is given by the joint PDF of (X1; X2)

denoted as fX1;X2(x1; x2) or more compactly as fX(x), where x = (x1; x2) is the

realization of X. The probability of the event fa · X1 · b; c · X2 · dg is given

as

P (a · X1 · b; c · X2 · d) =
Z b

a

Z d

c

fX1;X2(x1; x2)dx1dx2: (2.7)

The joint CDF, denoted as FX1;X2(x1; x2), is the probability

P (¡1 < X1 < x1;¡1 < X2 < x2) =

Z x1

¡1

Z x2

¡1

fX1;X2(x1; x2)dx1dx2: (2.8)

Of special interest is when X1 and X2 are statistically independent (SI). Then,

fX1;X2(x2; x2) = fX1(x1)fX2(x2) (2.9)

and

FX1;X2
(x2; x2) = FX1

(x1)FX2
(x2): (2.10)

The conditional PDF of X1 given that X2 = x2 is de¯ned as

fX1jX2(x1jx2) =
fX1;X2(x1; x2)

fX2(x2)
(2.11)
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for all values of x2 such that fX2
(x2) > 0. With conditional PDF, we can obtain

conditional probabilities of events associated with X1 when the value of X2 is

given. For example,

P (a · X1 · bjX2 = x2) =

Z b

a

fX1jX2
(x1jx2)dx1: (2.12)

2.1.3 Sum of Random Variables

It is common to encounter a RV X de¯ned as the linear sum of M RVs X1,

X2; : : : ; XM . In other words,

X = a1X1 + a2X2 + : : :+ aMXM ; (2.13)

where a1; a2; : : : ; aM are arbitrary scalars. The expectation operator is a linear

operator, i.e.,

E[X] = a1E[X1] + a2E[X2] + : : : + aME[XM ]: (2.14)

If X1, X2; : : : ;XM are SI, then

V [X] = a21V [X1] + a
2
2V [X2] + : : :+ a

2
MV [XM ]: (2.15)

The random variables Xi and Xj, i6= j, are said to be uncorrelated if

E[XiXj] = E[Xi]E[Xj ]: (2.16)

Note that (2.15) also holds if X1, X2; : : : ; XM are uncorrelated.



2.1 Probability Theory 14

2.1.4 Parameter Estimation

Often in practice, we are interested in characterizing a RV X associated with

a large group of objects called population. This involves drawing statistical

inferences about certain parameters of X. Instead of examining the entire

population, which is usually impossible, we may work with a random sample

X1; X2; : : : ; XN from the population. The size N of the sample is much smaller

than the size of the population. Based on the sample, we create functions of

X1; X2; : : : ; XN to estimate parameters of X. For example, the mean ¹ and

variance ¾2 of the population can be estimated as

¹̂ =
1

N

NX

i=1

Xi (2.17)

and

¾̂2 =
1

N ¡ 1

NX

i=1

(Xi ¡ ¹̂)2; (2.18)

respectively. These are also what we call unbiased estimators, meaning E[¹̂] = ¹

and E[¾̂2] = ¾2.

Parameter estimation plays an important role in science and engineering.

Finding an estimator that can measure the actual parameter in the best possible

way is a crucial area for research.
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2.1.5 Gaussian Distribution and Central Limit Theorem

We say that a RV X is a Gaussian RV, or simply X is Gaussian distributed, with

mean ¹ and variance ¾2, if the PDF of X is given as

fX(x) =
1

¾
p
2¼

exp

·
¡(x¡ ¹)2

2¾2

¸
: (2.19)

The Gaussian PDF is a bell-shaped curve symmetrical about ¹. If ¹ = 0 and

¾2 = 1 then X is known as the standard Gaussian RV. Related to the PDF of X

is the complementary error function de¯ned as

erfc(x) =
2p
¼

Z +1

x

exp(¡u2)du: (2.20)

For x > ¹, the complementary error function is proportional to the area under the

tail of the Gaussian PDF [43]. It may be helpful to express the complementary

error function as

erfc(x) = 2[1¡ FU(
p
2x)]; (2.21)

where U is the standard Gaussian RV. This is easily obtained from (2.20) by a

change of variable in the integral.

The Gaussian PDF is usually regarded as the most important PDF in

probability theory. One of the reasons is because of the central limit theorem

(CLT) as stated in the following.

Theorem 2.1 (Central Limit Theorem) Let X1; X2; : : : ;Xn be n SI RVs. Each

Xi; i = 1; 2; : : : ; n, has an arbitrary PDF fXi
(xi), mean ¹i and ¯nite variance ¾i.
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Set

Sn = X1 +X2 + : : :+Xn:

Then Sn approaches a Gaussian RV with mean
Pn

i=1 ¹i and variance
Pn

i=1 ¾
2
i as

n! +1.

In other words, if n is su±ciently large then we can approximate Sn as a Gaussian

RV. How large is large can be quite subjective. It is mentioned in [12] that as a

rule of thumb the value of n should be at least 30 for the application of CLT.

2.1.6 Transformation of Random Variables

Given a RV X with PDF fX(x), we can de¯ne a functional mapping y = g(x).

This gives rise to a RV Y = g(X). If g is a monotonic function, then the PDF of

Y is given as

fY (y) = fX(x)

¯̄
¯̄dx
dy

¯̄
¯̄ ; (2.22)

where j ¢ j is the modulus (or absolute value) function. Note that as the left-hand

side of (2.22) is a function of y, all quantities in the right-hand side must be

expressed in terms of y. For example, consider Y = aX + b, where a and b are

constants. This mapping is linear and monotonic. The PDF of Y expressed in

terms of PDF of X is

fY (y) =
1

jajfX
µ
y ¡ b
a

¶
: (2.23)

Suppose now given that X is RV with uniform PDF in the interval (0; 1),

and the PDF of Y is also known. The unknown that we need to determine
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is a monotonically increasing mapping g that transforms X to Y . Since g

monotonically increasing, we can omit the modulus sign in (2.22) and write it as

fY (y)dy = fX(x)dx: (2.24)

The uniform PDF in the interval (0; 1) is given as

fX(x) =

8
>><

>>:

1 x 2 (0; 1)

0 elsewhere

: (2.25)

Integrating both sides of (2.24) yields

Z y0

¡1

fY (y)dy =

Z x0

¡1

fX(x)dx; (2.26)

where x0 2 (0; 1) and y0 = g(x0). Clearly, the right-hand side is equal to x0 and

the left-hand side is the CDF of Y evaluated at y0. That is

FY (y
0) = x0 (2.27)

or equivalently

y0 = F¡1Y (x0): (2.28)

Thus, the required mapping g is the inverse of the CDF of Y . We note that (2.28)

is useful in simulating a set of RVs from a known distribution. For example, we

can generate a set of Gaussian RVs from uniform RVs.

2.2 Gamma Function

The gamma function is de¯ned as

¡(u) =

Z +1

0

tu¡1 exp(¡t)dt; u > 0: (2.29)
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In particular, we have

¡(1) =

Z +1

0

exp(¡t)dt = 1 (2.30)

and

¡(1=2) =

Z +1

0

t¡1=2 exp(¡t)dt

= 2

Z +1

0

exp(¡z2)dz; t = z2

= 2

p
¼

2

=
p
¼: (2.31)

The gamma function satisfy the recursive formula

¡(u+ 1) = u¡(u); u > 0: (2.32)

The Euler formula [22] is given as

¡(u) =
1

u

1Y

j=1

µ
1 +

1

j

¶uµ
1 +
u

j

¶¡1
: (2.33)

Another in¯nite products expression is the Weierstrass formula,

¡(u) =

"

u exp(³u)
+1Y

k=1

³
1 +
u

k

´
exp(¡u=k)

#¡1
; (2.34)

where ³ = limm!+1 f(1 + 1=2 + 1=3 + : : :+ 1=m)¡ lnmg is a positive constant

called the Euler-Mascheroni constant.

2.3 Standard Image Processing Operations

Watermarked images transmitted over any communication channel may undergo

some image processing operations. It is a challenge for any watermarking
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algorithm to ensure that the embedded watermark survive these operations, and

can be detected at the receiving end. We describe brie°y some of these operations,

and consider them in our numerical experiments later.

JPEG compression

An image is JPEG compressed to reduce the amount of data needed to represent

it. Consequently, this reduces the space required to store the image or reduces

the speed of transmission of the image. However, the greater the compression the

more information from the image is lost and thus a®ecting the image quality.

A quality factor is used to indicate the desired image quality after JPEG

compression. It ranges from 0 to 100, where 0 indicates best compression and

100 indicates best image quality.

Low Pass Filtering

A low-pass ¯lter passes on lower frequency components of an image, while

attenuating or rejecting the higher frequency components. It is commonly used

to reduce noise from an image. The image is blurred and smoothed from the

e®ects of low-pass ¯ltering.

Mathematically, low-pass ¯ltering is implemented by performing a

two-dimensional convolution between the image matrix and a ¯lter kernel. For
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example, a 3£ 3 ¯lter kernel is given as
2

666666
4

1=9 1=9 1=9

1=9 1=9 1=9

1=9 1=9 1=9

3

777777
5

:

Convolution calculates a new intensity value for a pixel in the image based on

the pixel's neighbours. Each neighbouring pixel contributes a percentage of its

own to the calculation of the new pixel.

Median Filtering

A median ¯lter uses a sorting of pixel intensity values to determine the pixel's

¯ltered value. The input pixel is replaced by the median of the pixels contained

around the pixel. For example, consider the following pixel values in a 3 £ 3

window: 2

666666
4

3 6 3

3 12 4

5 3 3

3

777777
5

:

The pixel values are then sorted in increasing order as f3; 3; 3; 3; 3; 4; 5; 6; 12g.

The median value is 3. Median ¯ltering is e®ective in removing pixel values that

are greatly di®erent from the rest of the neighbourhood.

Gaussian Noise

Noise originates from the image formation process, transmission medium,

recording process, etc., is usually modelled as an additive zero mean white
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Gaussian noise process. In generating Gaussian noise using MATLAB [29], we

need to specify the mean and variance of the noise.

Speckle Noise

Speckle noise is a granular noise that inherently exists in radar and ultrasound

images. It is multiplicative in nature. In MATLAB [29], speckle noise is added

to an image I using the equation I0 = I + ´I, where ´ is uniformly distributed

random noise with zero mean and variance À, and I0 is the corrupted image.

Salt and Pepper Noise

Salt and pepper noise is caused by errors in the image transmission. In some

cases, the corrupted pixels are set alternatively to zero or to the maximum value.

It appears as black and white impulses on the image, giving the image a `salt

and pepper' like appearance. The noise is usually quanti¯ed by the percentage

of pixels which are corrupted.

Cropping

In our numerical experiments, watermarked images are cropped to retain a

rectangular portion at the centre. The missing portion is replaced by pixels

with value zero so that the size of each cropped image remains the same.
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Chapter 3

Watermark Insertion and

Detection

A watermark can be embedded to the spatial or transform (frequency) domain

of an image. In spatial domain, the pixels of the image are modi¯ed to blend

in the watermark. Although spatial domain watermarking is considered easier

to implement, it may not have the robustness to survive some of the common

image processing operations mentioned in Chapter 2. Transform domain usually

o®ers more protection against these operations by exploiting the characteristics

of the human visual system (HVS) [20]. In transform domain watermarking, the

transform coe±cients of the image are modi¯ed instead to capture the watermark.

Our focus throughout is on transform domain watermarking, namely the discrete

wavelet transform (DWT) and discrete Fourier transform (DFT) domains.



3.1 Embedding Scheme 23

3.1 Embedding Scheme

Let x = [x1; x2; : : : ; xN ]T be the vector representing N transform

coe±cients selected to embed a watermark w = [w1; w2; : : : ; wN ]T . The

corresponding transform coe±cients of the watermarked image are represented

as y = [y1; y2; : : : ; yN ]T . Watermark is usually inserted into the image transform

coe±cients using either the additive scheme

yi = xi + ®iwi (3.1)

or non-additive scheme (also called the multiplicative scheme) as

yi = xi(1 + ®iwi); (3.2)

for i = 1; 2; : : : ; N , where ®i is a positive scalar representing the embedding

strength. The larger the embedding strength, the more robust is the watermark.

However, this also means more distortion is being introduced into the image, thus

the visual quality of the image may be a®ected. Therefore, it is important to tune

the embedding strength to balance between robustness and imperceptibility of the

watermark. The amount added to xi is usually set to depend on its magnitude

jxij. For example, the additive scheme can be formulated as

yi = xi + ®jxijwi; i = 1; 2; : : : ; N; (3.3)

where ® is a ¯xed constant.

A distortion measure is used to quantify visual degradation of the image

due to the embedded watermark. One of the most widely used distortion
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measures is the Peak Signal to Noise Ratio (PSNR) [24], [31]. For an M£N

original (undistorted) image, let the pixel from the mth row and nth column

be represented as pm;n. The corresponding pixel in the watermarked image is

represented as ~pm;n. The PSNR is then given as

PSNR =
maxm;n p

2
m;n

1
MN

PM
j=1

PN
k=1(pm;n ¡ ~pm;n)2

: (3.4)

It is usually measured in decibels (dB), i.e., PSNR(dB)=10log10(PSNR).

3.2 Detection Method

The likelihood ratio (LR) and maximum a posteriori (MAP) detection methods

are formulated based on the multiplicative embedding scheme. These are

discussed in the following chapters. Here, we look at detection methods for

additive embedding scheme.

By denoting jxj = [jx1j; jx2j; : : : ; jxN j]T , we can write (3.3) as

y = x+ ®jxj −w; (3.5)

where − denotes element by element multiplication of vectors. The watermarked

image is usually subjected to common image processing operations or intended

attacks to remove the watermark. Therefore, the watermarked image coe±cients

vector y may be distorted to ~y = [~y1; ~y2; : : : ; ~yN ]T . If the distortion can be

modeled as an additive noise n = [n1; n2; : : : ; nN ]T , then

~y = x+ ®jxj −w + n: (3.6)
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Watermark can be detected with or without the use of the original image.

When the original image is used, a possibly distorted watermark ~w is ¯rst

extracted from ~y by reversing the embedding scheme (3.3). The similarity

between ~w and the embedded watermark is measured by

sim(w; ~w) =

PN
i=1 wi ~wiqPN
i=1wi ~wi

: (3.7)

The watermark is declared to be present if sim(w; ~w) has a value greater than a

prede¯ned threshold.

As mentioned in Chapter 1, watermark detection without the use of the

original image is termed blind detection. This may be more desirable and

may have wider applications. Blind detection can be done by computing the

correlation between ~y and w, de¯ned as

cor(~y;w) =
1

N
~yTw =

1

N

NX

i=1

~yiwi: (3.8)

Substituting ~y from (3.6) in (3.8), we obtain

cor(~y;w) =
1

N

¡
xTw + ®(jxj −w)Tw + nTw

¢

=
1

N

Ã
NX

i=1

xiwi + ®
NX

i=1

jxijw2i +
NX

i=1

niwi

!

: (3.9)

The summations
PN

i=1 xiwi and
PN

i=1 niwi are usually much smaller as compared

to
PN

i=1 jxijw2i . This is due to the uncorrelatedness between w and both x and

n. Therefore, we can approximate cor(~y;w) as

cor(~y;w) ¼ ®
N

NX

i=1

jxijw2i : (3.10)
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If this correlation value is greater than a prede¯ned threshold, then the watermark

is said to be present. Otherwise, it is said to be absent. The threshold has to be

properly chosen to ensure a high level of accuracy in the detection process [1, 42].

3.3 Energy Embedding Scheme

In the embedding scheme (3.3), each magnitude jxij is scaled by the same constant

®. We can further introduce variable scaling here. Replacing ® by a variable ´i

yields

yi = xi + ´ijxijwi; i = 1; 2; : : : ; N: (3.11)

Similar to (3.1), we can choose ´i according to the magnitude of xi. Without loss

of generality, we assume that jx1j · jx2j · : : : · jxN j, and consider setting ´i as

´i = ¯
jxij
xN
; i = 1; 2; : : : ; N; (3.12)

where ¯ is another constant. Therefore, each scaling is again apportioned

according to the magnitude of the coe±cient. Thus, we can write (3.11) as

yi = xi +
¯

jxN j
jxij2wi; i = 1; 2; : : : ; N: (3.13)

In (3.3), the constant ® is set according to the magnitude of the transform

coe±cients. If we refer to jxij2 as the energy of xi, then in (3.13) the scalar ¯

is set according to the energy of the transform coe±cients. For convenience of

discussion, we refer to (3.3) as the magnitude scheme and (3.13) as the energy
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scheme. With the energy scheme, we assume that y is distorted to ~y under the

same noise model as in (3.6). Then

y = x+
¯

N jxN j
x− x−w + n; (3.14)

and by the same argument that leads to (3.10), we obtain.

cor(~y;w) ¼ ¯

N jxN j
NX

i=1

jxij2w2i : (3.15)

In [37], we compare the magnitude and energy schemes for the embedding

of bipolar watermarks. For a bipolar watermark, each of its coe±cients is either

1 or ¡1, i.e., wi = 1 or ¡1 for i = 1; 2; : : : ; N . Since w2i = 1, we see that (3.10)

and (3.15) reduce to

cor(~y;w) ¼ ®
N

NX

i=1

jxij (3.16)

and

cor(~y;w) ¼ ¯

N jxN j
NX

i=1

jxij2; (3.17)

respectively. It follows that to ensure a high correlation value for e®ective

detection, we can choose x1; x2; : : : ; xN so that either the sum of their magnitudes

is maximized under the magnitude scheme, or sum of their energies is maximized

under the energy scheme. Theoretically, in the absence of noise, embedding using

the energy scheme yields the same correlation detection capability as embedding

using the energy scheme if

¯

N jxN j
NX

i=1

jxij2 =
®

N

NX

i=1

jxij; (3.18)
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or equivalently

¯ =
®jxN j

PN
i=1 jxijPN

i=1 jxij2
: (3.19)

Substituting this ¯ in (3.13), we obtain

yi = xi +
®jxN j

PN
i=1 jxijPN

i=1 jxij2
jxij2wi; i = 1; 2; : : : ; N: (3.20)

Our experiments in the next section compare the magnitude scheme with the

energy scheme in (3.20).

3.4 Experimental Results

We consider watermark embedding in the discrete wavelet transform (DWT)

domain. One of the many advantages of using DWT is that it is known to

be better in handling aspects of the HVS as compared to the others transform

domains [20], [26], [51]. This is desirable for making a watermark more robust to

distortions.

The 512 £ 512 grayscale images considered in our experiments are shown

in Figure 3.1. A Daubechies ¯lter [50] is used for DWT. Each of these original

images is ¯rst transformed by DWT to obtain a multi-resolution decomposition.

This separates the image into lower resolution subband (LL1) and high resolution

horizontal (HL1), vertical (LH1) and diagonal (HH1) subbands. The process

can be repeated to obtain a multiple level pyramid decomposition. A three-level

decomposition is shown in Figure 3.2. The DWT coe±cients x1; x2; : : : ; xN where
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we embed the watermark are selected from the high resolution subbands where

the human eye is less sensitive to noise [20]. For simplicity, we insert watermark

by modifying only the coe±cients of the HH2 subband.

The values of ®, as tabulated in Table 3.1, are selected so that the PSNR

of each watermarked image is about 40 dB when the energy scheme is used. A

PSNR of 40 dB and above is usually accepted as good image quality. When the

magnitude scheme is used with the same values of ®, the PSNR of the images are

slightly higher. This is plotted in Figure 3.3. Therefore, as expected, the energy

scheme degrades the images more than the amplitude scheme.

The robustness of the embedded watermark when using the energy scheme is

examined as follows. A set of 1,000 bipolar watermarks is generated. We embed

a watermark from this set to each of the images. Standard image processing

operations are simulated and applied to the watermarked images to distort them.

The correlation detector is then used to identify the embedded watermark for each

of the distorted images. For example, Figure 3.4(a) shows the watermarked image

`Lena' using the energy scheme with ® = 0:190. The image is still of good quality

with no visible distortion. Figure 3.4(b) shows the same image distorted by salt

and pepper of density 0.4, i.e., approximately 40% of the pixels are a®ected.

Even though the image is now visibly degraded, the correlation detector can

still identify the embedded watermark as seen in the plot of correlation values in

Figure 3.5. The highest peak at position 388 belongs to the embedded watermark.

In comparing the energy scheme with the magnitude scheme, the above
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experiment is performed over 100 trials of di®erent sets of 1,000 bipolar

watermarks. The number of successful detections from all the trials are recorded

for each of the images. Figure 3.6 shows the result for watermarked images

distorted by salt and pepper noise of density 0.4. In Figure 3.7, the watermarked

images are distorted by speckle noise with mean 0 and variance 0.6. In both

cases correlation detector performs more e®ectively when the energy scheme is

used. Our other experiments also reveal that the energy scheme yields better

robustness when watermarked images are JPEG compressed. However, both

schemes are comparable when watermarked images are exposed to Gaussian noise

and low-pass ¯ltering.
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Harbour

Barbara

Fishing Boat Peppers

Lena

Goldhill

Zelda LAX

Figure 3.1: Test Images.
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1HL

2HL

1HH1LH

2LH 2HH

3LL 3HL

3HH3LH

Figure 3.2: A DWT three-level pyramid decomposition of an image.
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Table 3.1: Watermark embedding strength for images.

Image ®

Harbour 0.300

Lena 0.190

Fishing boat 0.325

Peppers 0.355

Barbara 0.255

Goldhill 0.405

Zelda 0.480

LAX 0.205
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Figure 3.3: PSNR of watermarked images using magnitude and energy

schemes.
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(a)

(b)

Figure 3.4: (a) Image `Lena' watermarked using energy scheme, (b)

distorted version of (a) by salt and pepper noise.
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Figure 3.5: Correlation between ~y and 1000 watermarks when energy

scheme is used.
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Figure 3.6: Robustness of watermark against salt and pepper noise.
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Figure 3.7: Robustness of watermark against speckle noise.
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Chapter 4

LR Detection of Watermark

In this chapter we formulate the LR detection framework of Barni et al [3] in a

general setting. Results presented here are valid for any probability distribution.

Experimental procedure for Chapter 6, 7 and 8 is also given here.

4.1 LR Detection Framework

As in Chapter 3, we let x = [x1; x2; : : : ; xN ]T be the vector representing

N transform coe±cients of an image selected to embed a watermark

w = [w1; w2; : : : ; wN ]T , where w is chosen from a set M . The

corresponding transform coe±cients of the watermarked image is represented as

y = [y1; y2; : : : ; yN ]T . We view xi, wi and yi as realizations of the random

variables Xi, Wi and Yi, respectively, for i = 1; 2; : : : ; N . The PDFs of Xi, Wi

and Yi are denoted as fXi
(xi), fWi

(wi) and fYi(yi), respectively. Embedding is

done using the non-additive scheme,

yi = xi(1 + ®iwi); (4.1)
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for i = 1; 2; : : : ; N , where ®i is the embedding strength.

The components of the watermarks from the set M are assumed to be

independent and uniformly distributed in [¡1; 1] so that

fW(w) =

NY

i=1

fWi
(wi) =

NY

i=1

1

2
=

1

2N
: (4.2)

The set M is thus the N -dimensional space of [¡1; 1], written as [¡1; 1]N .

Speci¯cally, if w¤ = [w¤1; w
¤
2; : : : ; w

¤
N ]T is the embedded watermark, we can

write M = M0 [ M1, where M0 = fwjw 6= w¤g and M1 = fw¤g. Note

that w = 0 = [0; 0; : : : ; 0]T that corresponds to a non-marked image is already

included in M0.

In LR detection, two hypotheses are established as follows:

H0 : y is not marked with w¤;

H1 : y is marked with w¤:

The hypothesis H1 is accepted or equivalently the watermark w¤ is detected if

l(y) =
fY(yjM1)

fY(yjM0)
> ¸; (4.3)

where fY(yjMj); j = 0; 1; are the conditional PDFs and ¸ is the LR decision

threshold. The ratio l(y) is called the likelihood ratio. The conditional PDF

fY(yjM0) can be obtained by integrating fY(yjw)fW(w) over [¡1; 1]N , i.e.,

fY(yjM0) =

Z

[¡1; 1]N
fY(yjw)fW(w)dw: (4.4)

Note that the Nth order integral in (4.4) should be taken over the set M0.

However, M0 and [¡1 1]N di®er by a single point w¤ which is of zero measure

[45]. Thus, integrating over [¡1; 1]N is the same as integrating over M0.
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The transform coe±cients X1;X2; : : : ;XN are assumed to be independent

[3, 47]. Under this assumption, the elements of y are conditionally independent

and together with (4.2), we can express (4.4) as

fY(yjM0) =
1

2N

NY

i=1

Z 1

¡1

fYi(yijwi)dwi: (4.5)

The embedding strength ®i is set to be much smaller than 1 to make the

watermark imperceptible. For small ®i, the integrals in (4.5) can be approximated

using Taylor's Theorem.

Theorem 4.1 (Taylor's Theorem) Let g be a real-valued function on [a; a+ ±],

± > 0, such that the (n+1)th derivative of g, g(n+1)(t), exists for every t 2 [a; a+±]

and g(n+1) is continuous on [a; a+±]. Then, if t 2 [a; a+±], there exists a number

» with a · » · t such that

g(t) = g(a) +
g(1)(a)

1!
(t¡ a) + g

(2)(a)

2!
(t¡ a)2

+ ¢ ¢ ¢+ g
(n)(a)

n!
(t¡ a)n +

g(n+1)(»)

(n+ 1)!
(t¡ a)n+1: (4.6)

The same result holds if [a; a+ ±] is replaced by [a¡ ±; a].

The following lemma gives the approximation for (4.5).

Lemma 4.1

fY(yjM0) ¼ fY(yj0): (4.7)
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Proof: We need to show that fY(yjM0) ¼ fY(yj0) when the embedding

strength ®i, i = 1; 2; : : : ; N , is much smaller than 1. To begin with, each integral

in (4.5) is expressed as

Z 1

¡1

fYi(yijwi)dwi =

Z 1

¡1

1

1 + ®iwi
fXi

µ
yi

1 + ®iwi

¶
dwi

=

Z yi=(1¡®i)

yi=(1+®i)

yi
®it2
fXi

(t)dt: (4.8)

The ¯rst equality is due to (2.22), and the second equality is obtained by

substituting t = yi=(1 + ®iwi). If ®i is much smaller than 1, then the integration

is done over a very small interval. Using (4.6) with g(t) = yifXi
(t)=®it

2, we

obtained

yi
®it2
fXi

(t) ¼ 1

®iyi
fXi

(yi) + C1(t¡ yi); (4.9)

where

C1 =
d

dt

µ
yi
®it2
fXi

(t)

¶¯̄
¯̄
t=yi

: (4.10)

Substituting (4.9) in (4.8) yields

Z 1

¡1

fYi(yijwi)dwi ¼
Z yi=(1¡®i)

yi=(1+®i)

1

®iyi
fXi

(yi)dt+ C1

Z yi=(1¡®i)

yi=(1+®i)

(t¡ yi)dt: (4.11)

Because ®i is much smaller than 1, the second integral on the right-hand side is

approximately zero. The ¯rst integral on the right-hand side evaluates to

Z yi=(1¡®i)

yi=(1+®i)

1

®iyi
fXi

(yi)dt =
2fXi

(yi)

1¡ ®2i
¼ 2fXi

(yi): (4.12)

The approximation in (4.12) is again due to the small value of ®i as compared to

1. Thus,

Z 1

¡1

fYi(yijwi)dwi ¼ 2fXi
(yi) (4.13)
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and using this in (4.5), we obtain

fY(yjM0) ¼
1

2N

NY

i=1

2fXi
(yi) =

NY

i=1

fYi(yij0) = fY(yj0): (4.14)

Q.E.D

Approximation (4.7) is valid for any PDF. It is ¯rst derived by Barni et

al [3] for Weibull PDF. It is also used by Kwon et al [25] for Gaussian PDF.

With (4.7) and because of the conditional independence of Y1; Y2; : : : ; YN , the

likelihood ratio l(y) can be expressed in terms of the PDFs of X1; X2; : : : ; XN as

l(y) =

QN
i=1 fYi(yijw¤i )QN
i=1 fYi(yij0)

=

QN
i=1

1
1+®iw¤i

fXi

³
yi

1+®iw¤i

´

QN
i=1 fXi

(yi)
: (4.15)

By taking the natural logarithm of the likelihood ratio, the LR decision rule given

by (4.3) becomes

z(y) =

NX

i=1

·
ln fXi

µ
yi

1 + ®iw¤i

¶
¡ ln fXi

(yi)

¸
> ¸0; (4.16)

where ¸0 = ln¸+
PN

i=1 ln(1 + ®iw
¤
i ) is the modi¯ed LR decision threshold.

4.2 Detection Under the Neyman-Pearson

Criterion

When a watermarked image is distorted, the missed detection probability PMD

can be much larger than the false alarm probability PFA [3]. To overcome

this problem, the Neyman-Pearson criterion can be used to obtain the decision

threshold ¸0 in such a way that the missed detection probability is minimized
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subject to a speci¯ed false alarm probability, say P ¤FA. In view of (4.7), once P ¤FA

has been ¯xed, ¸0 can be derived from

P ¤FA = P (z(y) > ¸0jM0) = P (z(x) > ¸
0) =

Z 1

¸0
fz(X)(z(x))dz(x); (4.17)

where

z(x) = z(y)jy=x =

NX

i=1

·
ln fXi

µ
xi

1 + ®iw¤i

¶
¡ ln fXi

(xi)

¸
: (4.18)

By the central limit theorem (see Theorem 2.1), the PDF of z(X) can be assumed

to be Gaussian with mean

¹z(X) = E[z(X)] =

NX

i=1

E

µ
ln fXi

µ
xi

1 + ®iw¤i

¶
¡ ln fXi

(xi)

¶
(4.19)

and variance

¾2z(X) = V [z(X)] =
NX

i=1

V

µ
ln fXi

µ
xi

1 + ®iw
¤
i

¶
¡ ln fXi

(xi)

¶
: (4.20)

In this regard, (4.17) can be written as

P ¤FA =

Z 1

¸0

1
q

2¼¾2z(X)

exp

Ã

¡(z(x)¡ ¹z(X))2
2¾2z(X)

!

dz(x)

=
1

2
erfc

0

@¸
0 ¡ ¹z(X)q
2¾2z(X)

1

A ; (4.21)

where erfc(¢) is the complementary error function (see (2.20)). Hence, the decision

threshold ¸0 is obtained as

¸0 = erfc¡1(2P ¤FA)
q

2¾2z(X) + ¹z(X): (4.22)

In view of (2.21), the quantity erfc¡1(2P ¤FA) may be computed as

erfc¡1(2P ¤FA) =
1p
2
F¡1U (1¡ P ¤FA): (4.23)

Some values of P ¤FA with corresponding erfc¡1(2P ¤FA) are given in Table 4.1.
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4.3 Experimental Procedure

In Chapters 6, 7 and 8, we use a standard procedure to test the performance

of the LR detector under di®erent PDF models. The steps are summarized as

follows:

1. Set a value for P ¤FA

2. Select an image and obtain the transform coe±cients vector, x =

[x1; x2; : : : ; xN ]T .

3. Generate a set M 0 containing K watermarks. The components of each

watermark are uniformly distributed in [¡1; 1].

4. Select a watermark w¤ = [w¤1; w
¤
2; : : : ; w

¤
N ]T from M 0.

5. Choose ®i, i = 1; 2; : : : ; N , such that when w¤ is embedded to x the PSNR

of the watermarked image is about 45 dB.

6. Embed all the K watermarks from M 0 to the images to produce K

watermarked images. Note that this also includes the embedding of w¤.

7. Distort all the K watermarked images using a standard image processing

operation, e.g., JPEG compression.

8. Estimate all the necessary parameters for fXi
(xi); i = 1; 2; : : : ; N .

9. Compute the decision threshold ¸0 using (4.22).
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10. Compute z(~y) using (4.16), where ~y is the distorted version of y, for all the

K distorted watermarked images in Step 7, and then compare them with

¸0.

11. If z(~y) > ¸0 for w¤ but not for any other watermarks in M 0, then the

detection is said to be successful. Otherwise it is a failure.

For each image and for each standard image processing operation, Step 3 to Step

11 are repeated for 10,000 trials. The percentage of successful detections are

recorded. For our experiments in Chapters 6, 7 and 8, we set P ¤FA = 10¡6 and

K = 100.

Note that in Step 8 the parameters are estimated from the transfrom

coe±cients of the original image. The parameters can also be estimated from

the transform coe±cients of the watermarked image (possibly distorted). As

the watermark is embedded in an imperceptible manner, estimation using the

transform coe±cients of the watermarked image should be close to that of the

original image [7]. If estimation is done using the watermarked image, then the

detection is 'blind'.
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Table 4.1: P ¤FA versus erfc¡1(2P ¤FA).

P ¤FA erfc¡1(2P ¤FA)

10¡2 1.645

10¡3 2.185

10¡4 2.630

10¡5 3.016

10¡6 3.361

10¡9 4.241
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Chapter 5

LR Detector Based on Gaussian

Model

Besides being important in its role in CLT, Gaussian distribution is also popular

because of its many special properties. In a variety of applications, data churned

out from random experiments often yield histograms that resemble the bell shape.

In this chapter, we look at LR detection in watermarking when the transform

coe±cients are modeled as Gaussian random variables. A detailed derivation of

the LR decision rule and threshold is given.

5.1 LR Decision Rule

Let Xi be the transform coe±cient of an image modeled as a Gaussian RV with

mean ¹i and variance ¾i. As given by (2.19), the PDF of Xi is expressed as

fXi
(xi) =

1

¾i
p
2¼

exp

µ
¡(xi ¡ ¹i)2

2¾2i

¶
: (5.1)

Figure 5.1 shows the plot of the standard Gaussian PDF.
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Substituting (5.1) in (4.16), the LR decision rule becomes

z(y) =
NX

i=1

½
ln

·
1

¾i
p
2¼

exp

µ
¡(yi(1 + ®iw

¤
i )
¡1 ¡ ¹i)2

2¾2i

¶¸

¡ ln

·
1

¾i
p
2¼

exp

µ
¡(yi ¡ ¹i)2

2¾2i

¶¸¾

=

NX

i=1

1

2¾2i

"

(yi ¡ ¹i)2 ¡
µ

yi
1 + ®iw¤i

¡ ¹i
¶2#

> ¸g; (5.2)

where ¸g denotes the LR decision threshold under the Gaussian model. Derivation

for ¸g requires more work as given in the next section.

5.2 LR Decision Threshold

Following (4.22), we express ¸g as

¸g = erfc¡1(2P ¤FA)
q

2¾2z(X) + ¹z(X); (5.3)

where

z(X) =

NX

i=1

1

2¾2i

"

(Xi ¡ ¹i)2 ¡
µ

Xi

1 + ®iw¤i
¡ ¹i

¶2#

: (5.4)

Thus, to derive the mean and variance of z(X), we need to obtain the mean and

variance of

g(Xi) =
1

2¾2i

(

(Xi ¡ ¹i)2 ¡
µ

Xi

1 + ®iw¤i
¡ ¹i

¶2)

: (5.5)

5.2.1 Derivation for Mean of z(X)

Taking expectation on both sides of (5.5), we get

E[g(Xi)] =
1

2¾2i

½
E[(Xi ¡ ¹i)2]¡

1

(1 + ®iw
¤
i )
2
E[(Xi ¡ ¹i ¡ ¹i®iw¤i )2]

¾
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=
1

2¾2i

½
E[(Xi ¡ ¹i)2]¡

1

(1 + ®iw¤i )
2
E[(Xi ¡ ¹i)2]

¡ (¹i®iw
¤
i )
2

(1 + ®iw
¤
i )
2
+

2¹i®iw
¤
i

(1 + ®iw
¤
i )
2
E[(Xi ¡ ¹i)]

¾
: (5.6)

The central moments of Xi are given as [39]

E[(Xi ¡ ¹i)n] =

8
>><

>>:

1 ¢ 3 ¢ 5 ¢ ¢ ¢ (n¡ 1)¾ni n = 2k

0 n = 2k + 1

: (5.7)

Thus, E[(Xi ¡ ¹i)2] = ¾2i and E[(Xi ¡ ¹i)] = 0. Substituting these in (5.6), we

obtain

E[g(Xi)] =
1

2

·
1¡ 1

(1 + ®iw
¤
i )
2

¸
¡ 1

2(1 + ®iw
¤
i )
2

µ
¹i®iw

¤
i

¾i

¶2
: (5.8)

Thus, the mean of z(X) is given as

E[z(X)] =

NX

i=1

E[g(Xi)]

=
NX

i=1

1

2

(·
1¡ 1

(1 + ®iw¤i )
2

¸
¡ 1

(1 + ®iw¤i )
2

µ
¹i®iw

¤
i

¾i

¶2)

:

(5.9)

5.2.2 Derivation for Variance of z(X)

In order to derive the variance of z(X), we need to ¯rst derive the expectation of

g2(Xi) =
1

4¾4i

½
(Xi ¡ ¹i)4 ¡

2

(1 + ®iw¤i )
2
[(Xi ¡ ¹i)4 + (Xi ¡ ¹i)2(¹i®iw¤i )2

¡2(Xi ¡ ¹i)3¹i®iw¤i ] +
1

(1 + ®iwi)4
[(Xi ¡ ¹i)4 ¡ 4(Xi ¡ ¹i)3¹i®iwi

+6(Xi ¡ ¹i)2(¹i®iwi)2 ¡ 4(Xi ¡ ¹i)(¹i®iwi)3 + (¹i®iwi)
4]
o
:

(5.10)
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By use of (5.7) again, we obtain

E[g2(Xi)] =
1

4¾4i

½
3¾4i ¡

2

(1 + ®iw¤i )
2
[3¾4i + ¾

2
i (¹i®iw

¤
i )
2]

+
1

(1 + ®iwi)4
[3¾4i + 6¾2i (¹i®iwi)

2 + (¹i®iwi)
4]

¾

=
1

4

(

3¡ 2

(1 + ®iw
¤
i )
2

"

3 +

µ
¹i®iw

¤
i

¾i

¶2#

+
1

(1 + ®iwi)4

"

3 + 6

µ
¹i®iwi
¾i

¶2
+

µ
¹i®iwi
¾i

¶4# ¾
:

(5.11)

Combining (5.8) and (5.11), we obtain

V [g(Xi)] = E[g2(Xi)]¡E2[g(Xi)]

=
1

4

(

3¡ 2

(1 + ®iw¤i )
2

"

3 +

µ
¹i®iw

¤
i

¾i

¶2#

+
1

(1 + ®iwi)4

"

3 + 6

µ
¹i®iwi
¾i

¶2
+

µ
¹i®iwi
¾i

¶4# ¾

¡ 1

4

½
1 +

1

(1 + ®iw¤i )
4
¡ 2

(1 + ®iw¤i )
2
+

1

(1 + ®iw¤i )
4

µ
¹i®iwi
¾i

¶4

¡ 2

(1 + ®iw
¤
i )
2

µ
¹i®iw

¤
i

¾i

¶2
+

2

(1 + ®iw
¤
i )
4

µ
¹i®iw

¤
i

¾i

¶2 ¾
:

=
1

2

·
1¡ 1

(1 + ®iw¤i )
2

¸2
+

1

(1 + ®iw¤i )
4

µ
¹i®iw

¤
i

¾i

¶2
: (5.12)

Thus, we obtain the variance of z(X) as

V [z(X)] =

NX

i=1

V [g(Xi)]

=
NX

i=1

(
1

2

·
1¡ 1

(1 + ®iw¤i )
2

¸2
+

1

(1 + ®iw¤i )
4

µ
¹i®iw

¤
i

¾i

¶2)

:

(5.13)
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5.2.3 Closed-Form Expression for ¸g

Substituting (5.9) and (5.13) in (5.3) yields

¸g = erfc¡1(2P ¤FA)

"

2

NX

i=1

(
1

2

·
1¡ 1

(1 + ®iw¤i )
2

¸2

+
1

(1 + ®iw¤i )
4

µ
¹i®iw

¤
i

¾i

¶2)#1=2

+

NX

i=1

1

2

(·
1¡ 1

(1 + ®iw¤i )
2

¸
¡ 1

(1 + ®iw¤i )
2

µ
¹i®iw

¤
i

¾i

¶2)

:

(5.14)

From the expression, for a ¯xed P ¤FA, we see that ¸g depends on ¹i; ¾
2
i , ®i and

w¤i for i = 1; 2; : : : ; N .

5.3 Zero Mean Model

If the mean of the Xi; i = 1; 2; : : : ; N , is approximately zero, then (5.2) and (5.14)

reduces to

z(y) =

NX

i=1

1

2¾2i

"

y2i ¡
µ

yi
1 + ®iw¤i

¶2#

> ¸g; (5.15)

and

¸g = erfc¡1(2P ¤FA)

"

2

NX

i=1

1

2

·
1¡ 1

(1 + ®iw¤i )
2

¸2#1=2

+

NX

i=1

1

2

·
1¡ 1

(1 + ®iw¤i )
2

¸
; (5.16)

respectively. This leads to simpli¯cation in the computation of the decision rule

and threshold. However, now the decision threshold becomes independent of the
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original images used for watermark embedding. The presence of ¹i and ¾2i in

(5.14) may provide more °exibility in the tuning of ¸g to suit the di®erent images

for better watermark detection.



5.3 Zero Mean Model 54

-6 -4 -2 0 2 4 6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ix

( )
iX if x

Figure 5.1: Gaussian PDF with ¹i = 0 and ¾
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Chapter 6

LR Detector Based on Laplacian

Model

Similar to Gaussian distribution, Laplacian distribution has a shape which is

symmetrical about its mean. However, the peak of Laplacian distribution is

sharp while the peak of Gaussian distribution is smooth. In this chapter, we

model DWT coe±cients using a Laplacian distribution. We show our work in

deriving the LR decision rule and threshold under the Laplacian model. Results

of numerical experiments that compare the Laplacian model and Gaussian model

are given here.

6.1 LR Decision Rule

The Laplacian PDF is commonly used to model coe±cients of DCT [6]. Here, we

consider modeling the DWT coe±cient Xi by a Laplacian RV. The PDF of Xi is
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then expressed as

fXi
(xi) =

bi
2
exp(¡bijxi ¡ ¹ij); ¡1 < xi <1; (6.1)

with bi =
p

2=¾2i , where ¾2i is the variance of Xi, and ¹i is the mean of Xi. Figure

6.1 shows then plot of Laplacian PDF with ¹i = 0 and ¾2i = 1.

Substituting (6.1) in (4.16), we obtain the LR decision rule as

z(y) =

NX

i=1

½
ln

·
bi
2
exp

µ
¡bi
¯̄
¯̄ yi
1 + ®iw¤i

¡ ¹i
¯̄
¯̄
¶¸
¡ ln

·
bi
2
exp(¡bijyi ¡ ¹ij)

¸¾

=
NX

i=1

bi

½
jyi ¡ ¹ij ¡

1

j1 + ®iw
¤
i j
¢ jyi ¡ ¹i ¡ ¹i®iw¤i j

¾
> ¸l; (6.2)

where ¸l denotes the decision threshold under Laplacian model.

6.2 LR Decision Threshold

Compared to the Gaussian model in Chapter 5, it is much more complicated to

derive a closed-form expression for LR decision threshold under the Laplacian

model. As before, we need to ¯rst obtain the mean and variance of

z(X) =
NX

i=1

bi

½
jXi ¡ ¹ij ¡

1

j1 + ®iw
¤
i j
¢ jXi ¡ ¹i ¡ ¹i®iw¤i j

¾
: (6.3)

6.2.1 Derivation for Mean of z(X)

From (6.3), we see that to obtain the mean of z(X), we need to derive the mean

of

l(Xi) = bi

½
jXi ¡ ¹ij ¡

1

j1 + ®iw
¤
i j
¢ jXi ¡ ¹i ¡ ¹i®iw¤i j

¾
: (6.4)
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Firstly,

E[jXi ¡ ¹ij] =

Z +1

¡1

jxi ¡ ¹ij ¢
bi
2
exp(¡bijxi ¡ ¹ij)dxi

=
bi
2

½Z +1

¹i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

¡
Z ¹i

¡1

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi
¾
: (6.5)

Using integration by parts, we obtain

Z +1

¹i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi =
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
+1

¹i

+

Z +1

¹i

exp(¡bi(xi ¡ ¹i))
bi

dxi =
1

b2i
(6.6)

and

Z ¹i

¡1

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi =
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¡1

¡
Z ¹i

¡1

exp(bi(xi ¡ ¹i))
bi

dxi = ¡
1

b2i
: (6.7)

Thus,

E[jXi ¡ ¹ij] =
bi
2

½
1

b2i
¡
µ
¡ 1

b2i

¶¾
=

1

bi
: (6.8)

Next, we derive E[jXi ¡ ¹i ¡ ¹i®iw¤i j] by considering two cases.

Case I: ¹i®iw
¤
i > 0

E[jXi ¡ ¹i ¡ ¹i®iw¤i j] =

Z +1

¡1

jXi ¡ ¹i ¡ ¹i®iw¤i j ¢
bi
2
exp(¡bijxi ¡ ¹ij)dxi

=
bi
2

½
¡
Z ¹i

¡1

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i+¹i®iw

¤
i

¹i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

+

Z +1

¹i+¹i®iw¤i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi
)

=
bi
2
f¡A¡ B + Cg; (6.9)
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where A, B, and C are the three integrals evaluated as

A =

Z ¹i

¡1

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

=

Z ¹i

¡1

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi ¡
Z ¹i

¡1

¹i®iw
¤
i exp(bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¡1

¡
µ
¹i®iw

¤
i +

1

bi

¶Z ¹i

¡1

exp(bi(xi ¡ ¹i))dxi

= ¡¹i®iw
¤
i

bi
¡ 1

b2i
; (6.10)

B =

Z ¹i+¹i®iw
¤
i

¹i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

=

Z ¹i+¹i®iw
¤
i

¹i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡
Z ¹i+¹i®iw

¤
i

¹i

¹i®iw
¤
i exp(¡bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
¹i+¹i®iw

¤
i

¹i

¡
µ
¹i®iw

¤
i ¡

1

bi

¶Z ¹i+¹i®iw
¤
i

¹i

exp(¡bi(xi ¡ ¹i))dxi

= ¡¹i®iw
¤
i exp(¡bi¹i®iw¤i )

bi
¡
µ
¹i®iw

¤
i ¡

1

bi

¶·
¡exp(¡bi¹i®iw¤i )

bi
+

1

bi

¸

= ¡exp(¡bi¹i®iw¤i )
b2i

¡ ¹i®iw
¤
i

bi
+

1

b2i
; (6.11)

and

C =

Z +1

¹i+¹i®iw¤i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

=

Z ¡1

¹i+¹i®iw¤i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

¡
Z ¡1

¹i+¹i®iw¤i

¹i®iw
¤
i exp(¡bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
¡1

¹i+¹i®iw¤i

+

µ
1

bi
¡ ¹i®iw¤i

¶Z ¡1

¹i+¹i®iw¤i

exp(¡bi(xi ¡ ¹i))dxi
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=
¹i®iw

¤
i exp(¡bi¹i®iw¤i )

bi
+

exp(¡bi¹i®iw¤i )
b2i

¡ ¹i®iw
¤
i exp(¡bi¹i®iw¤i )

bi

=
exp(¡bi¹i®iw¤i )

b2i
: (6.12)

Substituting (6.10)-(6.12) in (6.9), we obtain

E[jXi ¡ ¹i ¡ ¹i®iw¤i j] =
bi
2

½
¹i®iw

¤
i

bi
+

1

b2i
+

exp(¡bi¹i®iw¤i )
b2i

+
¹i®iw

¤
i

bi
¡ 1

b2i
+

exp(¡bi¹i®iw¤i )
b2i

¾

=
exp(¡bi¹i®iw¤i )

bi
+ ¹i®iw

¤
i : (6.13)

Case II: ¹i®iw
¤
i < 0

E[jXi ¡ ¹i ¡ ¹i®iw¤i j] =

Z +1

¡1

jXi ¡ ¹i ¡ ¹i®iw¤i j ¢
bi
2
exp(¡bijxi ¡ ¹ij)dxi

=
bi
2

½
¡
Z ¹i+¹i®iw

¤
i

¡1

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

+

Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

+

Z +1

¹i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi
¾

=
bi
2
f¡D + E + Fg; (6.14)

where D, E, and F are the three integrals evaluated as

D =

Z ¹i+¹i®iw¤i

¡1

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

=

Z ¹i+¹i®iw¤i

¡1

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i+¹i®iw¤i

¡1

¹i®iw
¤
i exp(bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i+¹i®iw¤i

¡1

¡
µ
¹i®iw

¤
i +

1

bi

¶Z ¹i+¹i®iw
¤
i

¡1

exp(bi(xi ¡ ¹i))dxi
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=
¹i®iw

¤
i exp(bi¹i®iw

¤
i )

bi
¡
µ
¹i®iw

¤
i +

1

bi

¶
exp(bi¹i®iw

¤
i )

bi

= ¡exp(bi¹i®iw
¤
i )

b2i
; (6.15)

E =

Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

=

Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

¡
Z ¹i

¹i+¹i®iw¤i

¹i®iw
¤
i exp(bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¹i+¹i®iw¤i

¡
µ
¹i®iw

¤
i +

1

bi

¶Z ¹i

¹i+¹i®iw¤i

exp(bi(xi ¡ ¹i))dxi

= ¡¹i®i w
¤
i exp(bi¹i®iw

¤
i )

bi
¡
µ
¹i®iw

¤
i +

1

bi

¶·
1

bi
¡ exp(bi¹i®iw

¤
i )

bi

¸

= ¡¹i®i w
¤
i exp(bi¹i®iw

¤
i )

bi
¡ ¹i®i w

¤
i

bi
+
¹i®i w

¤
i exp(bi¹i®iw

¤
i )

bi

¡ 1

b2i
+

exp(bi¹i®iw
¤
i )

b2i

= ¡¹i®i w
¤
i

bi
¡ 1

b2i
+

exp(bi¹i®iw
¤
i )

b2i
; (6.16)

and

F =

Z +1

¹i

(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

=

Z ¡1

¹i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi ¡
Z ¡1

¹i

¹i®iw
¤
i exp(¡bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
¡1

¹i

+

µ
1

bi
¡ ¹i®iw¤i

¶Z ¡1

¹i

exp(¡bi(xi ¡ ¹i))dxi

=

µ
1

bi
¡ ¹i®iw¤i

¶
1

bi
: (6.17)
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Substituting (6.15)-(6.17) in (6.14), we obtain

E[jXi ¡ ¹i ¡ ¹i®iw¤i j] =
bi
2

½
exp(bi¹i®iw

¤
i )

b2i
¡ ¹i®i w

¤
i

bi

¡ 1

b2i
+

exp(bi¹i®iw
¤
i )

b2i
+

1

b2i
¡ ¹i®iw

¤
i

bi

¾

=
exp(bi¹i®iw

¤
i )

bi
¡ ¹i®iw¤i : (6.18)

Combining the results for (6.13) and (6.18), we obtain

E[jXi ¡ ¹i ¡ ¹i®iw¤i j] =
exp(¡bij¹i®iw¤i j)

bi
+ j¹i®iw¤i j: (6.19)

With (6.8) and (6.19), the mean of l(Xi) is given as

E[l(Xi)] = bi

½
1

bi
¡ 1

j1 + ®iw¤i j

·
exp(¡bij¹i®iw¤i j)

bi
+ j¹i®iw¤i j

¸¾
:

= 1¡ 1

j1 + ®iw
¤
i j
¢ [exp(¡bij¹i®iw¤i j) + bij¹i®iw¤i j] : (6.20)

and hence

E[z(X)] =
NX

i=1

E[l(Xi)]

=
NX

i=1

½
1¡ 1

j1 + ®iw¤i j
¢ [exp(¡bij¹i®iw¤i j) + bij¹i®iw¤i j]

¾
:(6.21)

6.2.2 Derivation for Variance of z(X)

In order to obtain variance of z(X), we need to derive the mean of

l2(Xi) = b2i

½
jXi ¡ ¹ij2 +

1

j1 + ®iw
¤
i j2
¢ jXi ¡ ¹i ¡ ¹i®iw¤i j2

¡2jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j
j1 + ®iw¤i j

¾
: (6.22)
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Note that E[jXi ¡ ¹ij2] = E[(Xi ¡ ¹i)2] = ¾2i = 2=b2i . Since E[Xi ¡ ¹i] = 0,

E[jXi ¡ ¹i ¡ ¹i®iw¤i j2 = E[(Xi ¡ ¹i ¡ ¹i®iw¤i )2]

= E[(Xi ¡ ¹i)2] + (¹i®iw
¤
i )
2 ¡ 2¹i®iw

¤
iE[(Xi ¡ ¹i)]

=
2

b2i
+ (¹i®iw

¤
i )
2: (6.23)

It is now left to derive E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j]. As before, we need to

consider two separate cases.

Case I: ¹®iw
¤
i > 0

E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j]

=

Z +1

¡1

jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j ¢
bi
2
exp(¡bijxi ¡ ¹ij)dxi

=
bi
2

½ Z ¹i

¡1

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i+¹i®iw

¤
i

¹i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

+

Z +1

¹i+¹i®iw¤i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi
)

=
bi
2
fA0 ¡B0 + C 0g; (6.24)

where A0, B0 and C 0 are evaluated as

A0 =

Z ¹i

¡1

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

=

Z ¹i

¡1

(xi ¡ ¹i)2 exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i

¡1

¹i®iw
¤
i (xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i)2 exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¡1

¡
µ

2

bi
+ ¹i®iw

¤
i

¶Z ¹i

¡1

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi
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= ¡
µ

2

bi
+ ¹i®iw

¤
i

¶½
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¡1

¡
Z ¹i

¡1

exp(bi(xi ¡ ¹i))
bi

dxi

¾

= ¡
µ

2

bi
+ ¹i®iw

¤
i

¶½
exp(bi(xi ¡ ¹i))

¡b2i

¯̄
¯̄
¹i

¡1

¾

=
2

b3i
+
¹i®iw

¤
i

b2i
; (6.25)

B0 =

Z ¹i+¹i®iw¤i

¹i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

=

Z ¹i+¹i®iw¤i

¹i

(xi ¡ ¹i)2 exp(¡bi(xi ¡ ¹i))dxi

¡
Z ¹i+¹i®iw¤i

¹i

¹i®iw
¤
i (xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i)2 exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
¹i+¹i®iw¤i

¹i

+

µ
2

bi
¡ ¹i®iw¤i

¶Z ¹i+¹i®iw
¤
i

¹i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

= ¡(¹i®iw
¤
i )
2 exp(¡bi¹i®iw¤i )
bi

+

µ
2

bi
¡ ¹i®iw¤i

¶(
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
¹i+¹i®iw¤i

¹i

¡
Z ¹i+¹i®iw

¤
i

¹i

exp(¡bi(xi ¡ ¹i))
¡bi

dxi

¾

= ¡(¹i®iw
¤
i )
2 exp(¡bi¹i®iw¤i )
bi

+

µ
2

bi
¡ ¹i®iw¤i

¶½
¡¹i®iw

¤
i exp(¡bi¹i®iw¤i )

bi
¡ exp(¡bi¹i®iw¤i )

b2i
+

1

b2i

¾

= ¡¹i®iw
¤
i exp(¡bi¹i®iw¤i )

b2i
+

2

b3i
¡ 2 exp(¡bi¹i®iw¤i )

b3i
¡ ¹i®iw

¤
i

b2i
; (6.26)

and

C 0 =

Z +1

¹i+¹i®iw¤i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

=

Z +1

¹i+¹i®iw¤i

(xi ¡ ¹i)2 exp(¡bi(xi ¡ ¹i))dxi
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¡
Z +1

¹i+¹i®iw¤i

¹i®iw
¤
i (xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i)2 exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
+1

¹i+¹i®iw¤i

+

µ
2

bi
¡ ¹i®iw¤i

¶Z +1

¹i+¹i®iw¤i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

=
(¹i®iw

¤
i )
2 exp(¡bi¹i®iw¤i )
bi

+

µ
2

bi
¡ ¹i®iw¤i

¶(
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
+1

¹i+¹i®iw¤i

¡
Z +1

¹i+¹i®iw¤i

exp(¡bi(xi ¡ ¹i))
¡bi

dxi

)

=
(¹i®iw

¤
i )
2 exp(¡bi¹i®iw¤i )
bi

+

µ
2

bi
¡ ¹i®iw¤i

¶½
¹i®iw

¤
i exp(¡bi¹i®iw¤i )

bi
+

exp(¡bi¹i®iw¤i )
b2i

¾

=
¹i®iw

¤
i exp(¡bi¹i®iw¤i )

b2i
+

2 exp(¡bi¹i®iw¤i )
b3i

: (6.27)

Substituting (6.25)-(6.27) in (6.24) yields

E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j] =
bi
2

½
2

b3i
+
¹i®iw

¤
i

b2i
+
¹i®iw

¤
i exp(¡bi¹i®iw¤i )

b2i

¡ 2

b3i
+

2 exp(¡bi¹i®iw¤i )
b3i

+
¹i®iw

¤
i

b2i

+
¹i®iw

¤
i exp(¡bi¹i®iw¤i )

b2i

+
2 exp(¡bi¹i®iw¤i )

b3i

¾

=
¹i®iw

¤
i

bi
+
¹i®iw

¤
i exp(¡bi¹i®iw¤i )

bi

+
2 exp(¡bi¹i®iw¤i )

b2i
: (6.28)

Case II: ¹®iw
¤
i < 0

E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j]



6.2 LR Decision Threshold 65

=

Z +1

¡1

jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j ¢
bi
2
exp(¡bijxi ¡ ¹ij)dxi

=
bi
2

½ Z ¹i+¹i®iw
¤
i

¡1

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

+

Z +1

¹i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi
¾

=
bi
2
fD0 ¡ E0 + F 0g; (6.29)

where D0, E0 and F 0 are evaluated as

D0 =

Z ¹i+¹i®iw¤i

¡1

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi

=

Z ¹i+¹i®iw¤i

¡1

(xi ¡ ¹i)2 exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i+¹i®iw¤i

¡1

¹i®iw
¤
i (xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i)2 exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i+¹i®iw¤i

¡1

¡
µ

2

bi
+ ¹i®iw

¤
i

¶Z ¹i+¹i®iw
¤
i

¡1

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi

=
(¹i®iw

¤
i )
2 exp(bi¹i®iw

¤
i )

bi

¡
µ

2

bi
+ ¹i®iw

¤
i

¶(
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i+¹i®iw¤i

1

¡
Z ¹i+¹i®iw

¤
i

1

exp(bi(xi ¡ ¹i))
bi

dxi

¾

=
(¹i®iw

¤
i )
2 exp(bi¹i®iw

¤
i )

bi

¡
µ

2

bi
+ ¹i®iw

¤
i

¶½
¹i®iw

¤
i exp(bi¹i®iw

¤
i )

bi
¡ exp(bi¹i®iw

¤
i )

b2i

¾

= ¡¹i®iw
¤
i exp(bi¹i®iw

¤
i )

b2i
+

2 exp(bi¹i®iw
¤
i )

b3i
; (6.30)

E 0 =

Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(bi(xi ¡ ¹i))dxi
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=

Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i)2 exp(bi(xi ¡ ¹i))dxi

¡
Z ¹i

¹i+¹i®iw¤i

¹i®iw
¤
i (xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i)2 exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¹i+¹i®iw¤i

¡
µ

2

bi
+ ¹i®iw

¤
i

¶Z ¹i

¹i+¹i®iw¤i

(xi ¡ ¹i) exp(bi(xi ¡ ¹i))dxi

= ¡(¹i®iw
¤
i )
2 exp(bi¹i®iw

¤
i )

bi

¡
µ

2

bi
+ ¹i®iw

¤
i

¶(
(xi ¡ ¹i) exp(bi(xi ¡ ¹i))

bi

¯̄
¯̄
¹i

¹i+¹i®iw¤i

¡
Z ¹i

¹i+¹i®iw¤i

exp(bi(xi ¡ ¹i))
bi

dxi

)

= ¡(¹i®iw
¤
i )
2 exp(bi¹i®iw

¤
i )

bi

¡
µ

2

bi
+ ¹i®iw

¤
i

¶½
¡¹i®iw

¤
i exp(bi¹i®iw

¤
i )

bi
¡ 1

b2i
+

exp(bi¹i®iw
¤
i )

b2i

¾

=
¹i®iw

¤
i exp(bi¹i®iw

¤
i )

b2i
+

2

b3i
¡ 2 exp(bi¹i®iw

¤
i )

b3i
+
¹i®iw

¤
i

b2i
; (6.31)

and

F 0 =

Z +1

¹i

(xi ¡ ¹i)(xi ¡ ¹i ¡ ¹i®iw¤i ) exp(¡bi(xi ¡ ¹i))dxi

=

Z +1

¹i

(xi ¡ ¹i)2 exp(¡bi(xi ¡ ¹i))dxi

¡
Z +1

¹i

¹i®iw
¤
i (xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

=
(xi ¡ ¹i)2 exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
+1

¹i

+

µ
2

bi
¡ ¹i®iw¤i

¶Z +1

¹i

(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))dxi

=

µ
2

bi
¡ ¹i®iw¤i

¶(
(xi ¡ ¹i) exp(¡bi(xi ¡ ¹i))

¡bi

¯̄
¯̄
+1

¹i

¡
Z +1

¹i

exp(¡bi(xi ¡ ¹i))
¡bi

dxi

¾
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=

µ
2

bi
¡ ¹i®iw¤i

¶½
1

b2i

¾

=
2

b3i
¡ ¹i®iw

¤
i

b2i
: (6.32)

Substituting (6.30)-(6.32) in (6.29) yields

E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j] =
bi
2

½
¡¹i®iw

¤
i exp(bi¹i®iw

¤
i )

b2i

+
2 exp(bi¹i®iw

¤
i )

b3i
¡ ¹i®iw

¤
i exp(bi¹i®iw

¤
i )

b2i

¡ 2

b3i
+

2 exp(bi¹i®iw
¤
i )

b3i
¡ ¹i®iw

¤
i

b2i

+
2

b3i
¡ ¹i®iw

¤
i

b2i

¾

= ¡¹i®iw
¤
i

bi
¡ ¹i®iw

¤
i exp(bi¹i®iw

¤
i )

bi

+
2 exp(bi¹i®iw

¤
i )

b2i
: (6.33)

Combining the results of (6.28) and (6.33), we obtain

E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j] =
j¹i®iw¤i j
bi

+
j¹i®iw¤i j exp(¡bij¹i®iw¤i j)

bi

+
2 exp(¡bij¹i®iw¤i j)

b2i
: (6.34)

Thus,

E[l2(Xi)] = b2i

½
E[jXi ¡ ¹ij]2 +

1

j1 + ®iw¤i j2
E[jXi ¡ ¹i ¡ ¹i®iw¤i j2]

¡2E[jXi ¡ ¹ijjXi ¡ ¹i ¡ ¹i®iw¤i j]
j1 + ®iw¤i j

¾

= b2i

½
2

b2i
+

1

j1 + ®iw¤i j2
½

2

b2i
+ (¹i®iw

¤
i )
2

¾

¡ 2

j1 + ®iw¤i j

½ j¹i®iw¤i j
bi

+
j¹i®iw¤i j exp(¡bij¹i®iw¤i j)

bi

+
2 exp(¡bij¹i®iw¤i j)

b2i

¾¾

= 2 +
2

j1 + ®iw¤i j2
+

(bi¹i®iw
¤
i )
2

j1 + ®iw¤i j2
¡ 2bij¹i®iw¤i j
j1 + ®iw¤i j
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¡ 2bij¹i®iw¤i j exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

¡ 4 exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

:

(6.35)

Squaring both sides of (6.20) yields

E2[l(Xi)] = 1 +
(bi¹i®iw

¤
i )
2

j1 + ®iw
¤
i j2

+
exp(¡2bij¹i®iw¤i j)

j1 + ®iw
¤
i j2

+
2bij¹i®iw¤i j exp(¡bij¹i®iw¤i j)

j1 + ®iw¤i j2
¡ 2bij¹i®iw¤i j
j1 + ®iw¤i j

¡ 2 exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

: (6.36)

Hence,

V [z(X)] =
NX

i=1

V [l(Xi)]

=

NX

i=1

©
E[l2(Xi))]¡E2[l(Xi)]

ª

=
NX

i=1

½½
2 +

2

j1 + ®iw¤i j2
+

(bi¹i®iw
¤
i )
2

j1 + ®iw¤i j2
¡ 2bij¹i®iw¤i j
j1 + ®iw¤i j

¡2bij¹i®iw¤i j exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

¡ 4 exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

¾

¡
½
1 +

(bi¹i®iw
¤
i )
2

j1 + ®iw
¤
i j2

+
exp(¡2bij¹i®iw¤i j)

j1 + ®iw
¤
i j2

+
2bij¹i®iw¤i j exp(¡bij¹i®iw¤i j)

j1 + ®iw¤i j2
¡ 2bij¹i®iw¤i j
j1 + ®iw¤i j

¡2 exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

¾¾

=
NX

i=1

½
1 +

1

j1 + ®iw
¤
i j2
f2¡ exp(¡2bij¹i®iw¤i j)g

¡ 2 exp(¡bij¹i®iw¤i j)
j1 + ®iw¤i j

¡2bij¹i®iw¤i j exp(¡bij¹i®iw¤i j)
½

1

j1 + ®iw¤i j2
+

1

j1 + ®iw¤i j

¾¾
:

(6.37)



6.3 Zero Mean Model 69

6.2.3 Closed-Form Expression for ¸l

With (6.21) and (6.37), we obtain the expression for ¸l as

¸l = erfc¡1(2P ¤FA)
q

2¾2z(X) + ¹z(X)

= erfc¡1(2P ¤FA)

"

2

NX

i=1

½
1 +

1

j1 + ®iw¤i j2
f2¡ exp(¡2bij¹i®iw¤i j)g

¡ 2 exp(¡bij¹i®iw¤i j)
j1 + ®iw

¤
i j

¡2bij¹i®iw¤i j exp(¡bij¹i®iw¤i j)
½

1

j1 + ®iw
¤
i j2

+
1

j1 + ®iw
¤
i j

¾¾¸1=2

+
NX

i=1

½
1¡ 1

j1 + ®iw¤i j
¢ [exp(¡bij¹i®iw¤i j) + bij¹i®iw¤i j]

¾
: (6.38)

Note that bi =
p

2=¾2i . Thus, for a ¯xed P ¤FA, the decision threshold ¸l depends

on ¹i; ¾
2
i , ®i and w

¤
i for i = 1; 2; : : : ; N .

6.3 Zero Mean Model

The decision rule and threshold of the zero mean model are given as

z(y) =

NX

i=1

bijyij
½
1¡ 1

j1 + ®iw¤i j

¾
> ¸l (6.39)

and

¸l = erfc¡1(2P ¤FA)

"

2
NX

i=1

½
1¡ 1

j1 + ®iw
¤
i j

¾2#1=2
+

NX

i=1

½
1¡ 1

j1 + ®iw
¤
i j

¾
;

(6.40)

respectively. As in the Gaussian model, the decision threshold becomes

independent of the original images.
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6.4 Experimental Results

The Laplacian model is compared with the Gaussian model using 512 £ 512

grayscales images as shown in Chapter 3 (see Figure 3.1). The zero mean

Laplacian and Gaussian models are also included in the comparison. Also, as in

Chapter 3, each image is transformed by DWT using a Daubechies ¯lter to obtain

a three-level pyramid decomposition (see Figure 3.2). For simplicity, watermark

embedding is done in all coe±cients belonging to the high-resolution subbands

LH3, HL3 and HH3. Each subband has 4; 096 identically distributed coe±cients,

and therefore N = 12; 288.

Blind detection is used, i.e., the original image is not required in the detection

process. This is done by estimating ¹i and ¾2i from the possibly distorted

watermarked image. Let B be one of the subbands LH3, HL3 and HH3. All

coe±cients in B are assumed to be identically distributed, i.e., they have identical

PDF. If xi 2 B, then ¹i and ¾2i are estimated from the unbiased estimators

¹̂i =
1

NB

X

y2B

y (6.41)

and

¾̂i =
1

NB ¡ 1

X

y2B

(y ¡ ¹̂i)2; (6.42)

respectively, where NB = 4; 096 and y is the corresponding DWT coe±cient in B

of the watermarked image.

A constant embedding strength ® is used for all the coe±cients in LH3, HL3

and HH3. Each value of ®, as tabulated in Table 6.1, is chosen so that the PSNR
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of the corresponding watermarked image is about 45 dB.

The robustness of the watermark is tested under di®erent standard image

processing operations using the procedure given in Section 4.3. Table 6.2 shows

the results for watermarked images compressed by JPEG with a 50% quality

factor. In Table 6.3, watermarked images are blurred using a 4£ 4 spatial ¯lter.

In Tables 6.4, 6.5 and 6.6, watermarked images are corrupted by Gaussian noise

of zero mean and variance equals to 0.5, speckle noise of variance 0.1, and salt

and pepper noise covering 30% of the pixels, respectively. Lastly, Table 6.7 shows

results due to cropping. Each watermarked image is cropped to retain only 400£

400 pixels at the center, where the missing portion is replaced by zero pixels so

that the size of each image remains at 512£ 512. Overall, the results reveal that

Laplacian model generally yields a better watermark detection than the Gaussian

model.
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Figure 6.1: Laplacian PDF with ¹i = 0 and ¾
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i = 1.
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Table 6.1: Watermark embedding strength for images.

Image ®

Harbour 0.205

Lena 0.185

Fishing boat 0.175

Peppers 0.165

Barbara 0.185

Goldhill 0.205

Zelda 0.215

LAX 0.190
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Table 6.2: Percentage of successful detections under JPEG compression.

Image Laplacian Laplacian Gaussian Gaussian

(zero mean) (zero mean)

Harbour 99.88 99.87 99.62 99.60

Lena 99.78 99.74 98.30 98.43

Fishing boat 99.82 99.80 99.23 99.22

Peppers 99.86 99.86 99.01 99.09

Barbara 99.93 99.95 99.13 99.10

Goldhill 99.90 99.93 98.33 98.30

Zelda 99.78 99.75 98.43 98.45

LAX 99.81 99.80 99.14 99.12
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Table 6.3: Percentage of successful detections under low pass ¯ltering.

Image Laplacian Laplacian Gaussian Gaussian

(zero mean) (zero mean)

Harbour 99.87 99.88 99.39 99.40

Lena 99.45 99.49 99.03 99.03

Fishing boat 99.70 99.74 99.66 99.60

Peppers 99.56 99.52 99.67 99.64

Barbara 99.49 99.43 99.21 98.20

Goldhill 99.81 99.80 99.48 99.48

Zelda 99.38 99.38 99.07 99.03

LAX 99.65 99.64 99.55 99.55
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Table 6.4: Percentage of successful detections under Gaussian noise.

Image Laplacian Laplacian Gaussian Gaussian

(zero mean) (zero mean)

Harbour 99.77 99.75 99.42 99.35

Lena 99.56 99.58 99.10 99.14

Fishing boat 99.39 99.39 99.11 99.10

Peppers 99.76 99.77 99.12 99.14

Barbara 99.42 99.40 99.01 99.01

Goldhill 99.39 99.42 99.20 99.20

Zelda 99.19 99.17 99.32 99.33

LAX 99.27 99.30 99.01 99.00
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Table 6.5: Percentage of successful detections under speckle noise.

Image Laplacian Laplacian Gaussian Gaussian

(zero mean) (zero mean)

Harbour 99.71 99.68 99.35 99.33

Lena 99.49 99.50 99.06 99.08

Fishing boat 99.52 99.49 99.17 99.19

Peppers 99.69 99.69 99.22 99.22

Barbara 99.87 99.84 99.21 99.25

Goldhill 99.81 99.85 99.69 99.66

Zelda 99.72 99.77 99.36 99.36

LAX 99.68 99.65 99.75 99.71
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Table 6.6: Percentage of successful detections under salt and pepper noise.

Image Laplacian Laplacian Gaussian Gaussian

(zero mean) (zero mean)

Harbour 99.79 99.75 99.28 99.19

Lena 99.87 99.82 99.73 99.68

Fishing boat 99.67 99.63 99.60 99.67

Peppers 99.61 99.56 99.40 99.35

Barbara 99.80 99.85 99.66 99.59

Goldhill 99.68 99.68 99.31 99.31

Zelda 99.85 99.80 99.59 99.50

LAX 99.77 99.76 99.08 99.16
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Table 6.7: Percentage of successful detections under cropping.

Image Laplacian Laplacian Gaussian Gaussian

(zero mean) (zero mean)

Harbour 99.78 99.75 99.23 99.23

Lena 99.82 99.81 99.50 99.54

Fishing boat 99.87 99.86 99.23 99.19

Peppers 99.35 99.35 99.31 99.25

Barbara 99.56 99.53 99.60 99.60

Goldhill 99.81 99.79 99.34 99.30

Zelda 99.56 99.55 99.31 99.31

LAX 99.34 99.34 99.22 99.20
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Chapter 7

LR Detector Based on

Generalized Gaussian Model

The generalized Gaussian distribution is a general distribution that encompasses

many important distributions. The Gaussian and Laplacian distributions are

two of its special cases. In this chapter, we show our work in deriving the LR

decision rule and threshold under a zero mean generalized Gaussian distribution.

We compare this general model with the Gaussian and Laplacian models.

7.1 LR Decision Rule

Let the transform coe±cientsXi be modeled by a zero mean generalized Gaussian

RV. The PDF of Xi is then given as

fXi
(xi) = ai exp(¡b°ii jxij°i); ¡1 < xi < +1; (7.1)
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where ¾i and °i > 0 are the variance and shape parameter of the distribution,

respectively. The positive constant ai and bi are given as

ai =
bi°i

2¡(1=°i)
(7.2)

and

bi =
1

¾i

s
¡(3=°i)

¡(1=°i)
; (7.3)

respectively, where ¡ is the gamma function as given by (2.29). Note that °i = 1

yields the Laplacian PDF and °i = 2 yields the Gaussian PDF. Figure 7.1 shows

the shape of the generalized Gaussian PDF with ¹i = 0 and ¾2i = 1.

Substituting (7.1) in (4.16), we obtain the LR decision rule as

z(y) =

NX

i=1

½
ln

·
ai exp

µ
¡b°ii

¯̄
¯̄ yi
1 + ®iw¤i

¯̄
¯̄
°i¶¸

¡ ln [ai exp (¡b°ii jyij°i)]
¾

=

NX

i=1

jyij°ib°ii
·
1¡ 1

j1 + ®iw¤i j°i
¸
> ¸gg; (7.4)

where ¸gg is the LR decision threshold under generalized Gaussian model.

Further, with the substitution of (7.3), we can write (7.4) as

z(y) =
NX

i=1

jyij°i
"
1

¾i

s
¡(3=°i)

¡(1=°i)

#°i ·
1¡ 1

j1 + ®iw
¤
i j°i
¸
> ¸gg: (7.5)

7.2 LR Decision Threshold

In view of (4.22), in order to derive ¸gg, we need to ¯rst obtain the mean and

variance of

z(X) =

NX

i=1

jXij°i
"
1

¾i

s
¡(3=°i)

¡(1=°i)

#°i ·
1¡ 1

j1 + ®iw¤i j°i
¸
: (7.6)
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7.2.1 Derivation for Mean of z(X)

Since the term
h
1
¾i

q
¡(3=°i)
¡(1=°i)

i°i h
1¡ 1

j1+®iw¤i j
°i

i
in (7.6) is constant with respect to

Xi, we only need to obtain the mean and variance of jXij°i . More generally, we

give an expression for E[jXijn], where n is a real constant, in the following lemma.

Lemma 7.1 If Xi is a zero mean generalized Gaussian random variable and n

is a real constant, then

E[jXijn] = ¾ni
¡((n+ 1)=°i)

¡1¡n=2(1=°i)¡n=2(3=°i)
: (7.7)

Proof: By straightforward integration,

E[jXijn] =

Z +1

¡1

jxijnai exp(¡b°ii jxij°i)dxi

= 2ai

Z +1

0

xni exp(¡(bixi)
°i)dxi

=
2ai

°ib
n+1
i

Z +1

0

t
n+1
°i
¡1

exp(¡t)dt; t = (bixi)
°i

=
2ai

°ib
n+1
i

¡

µ
n+ 1

°i

¶
: (7.8)

Substituting ai and bi as given in (7.2) and (7.3), respectively, we obtain (7.7).

Q.E.D

In particular, when n is a positive even integer, the even moments of Xi

is given by (7.7). When n = °i, it follows from the property of gamma function

that

¡((n+ 1)=°i) = ¡(1 + 1=°i) =
1

°i
¡(1=°i): (7.9)
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Substituting (7.9) in (7.7) yields

E[jXij°i ] =
¾°ii
°i

·
¡(1=°i)

¡(3=°i)

¸°i=2
: (7.10)

With this, we obtain the mean of z(X) as

¹z(X) =

NX

i=1

E[jXij°i ]
"
1

¾i

s
¡(3=°i)

¡(1=°i)

#°i ·
1¡ 1

j1 + ®iw¤i j°i
¸

=

NX

i=1

1

°i

·
1¡ 1

j1 + ®iw¤i j°i
¸
: (7.11)

7.2.2 Derivation for Variance of z(X)

When n = 2°i, using the property of gamma function again, we obtain

¡((n+ 1)=°i) = ¡(2 + 1=°i)

=

µ
1 +

1

°i

¶
¡(1 + 1=°i)

=

µ
1 +

1

°i

¶
1

°i
¡(1=°i): (7.12)

Substituting (7.12) in (7.7) yields

E[jXij2°i ] =
µ
1 +

1

°i

¶
¾2°ii

°i

·
¡(1=°i)

¡(3=°i)

¸°i
: (7.13)

With (7.10) and (7.13), the variance of jXij°i is given as

V [jXij°i] = E[jXij2°i ]¡ (E[jXij°i])2

=

µ
1 +

1

°i

¶
¾2°ii

°i

·
¡(1=°i)

¡(3=°i)

¸°i
¡ ¾

2°i
i

°2i

·
¡(1=°i)

¡(3=°i)

¸°i

=
¾2°ii

°i

·
¡(1=°i)

¡(3=°i)

¸°i
: (7.14)
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Finally, we obtain the variance of z(X) as

¾2z(X) =

NX

i=1

V [jXij°i]
"
1

¾i

s
¡(3=°i)

¡(1=°i)

#2°i ·
1¡ 1

j1 + ®iw¤i j°i
¸2

=
NX

i=1

1

°i

·
1¡ 1

j1 + ®iw¤i j°i
¸2
: (7.15)

7.2.3 Closed-Form Expression for ¸gg

With (7.11) and (7.15), the decision threshold ¸gg is given as

¸gg = erfc¡1(2P ¤FA)
q

2¾2z(X) + ¹z(X)

= erfc¡1(2P ¤FA)

"

2
NX

i=1

1

°i

·
1¡ 1

j1 + ®iw
¤
i j°i
¸2#1=2

+

NX

i=1

1

°i

·
1¡ 1

j1 + ®iw¤i j°i
¸
: (7.16)

For a ¯xed P ¤FA, ¸gg depends on °i; ®i and w
¤
i . Note that, for i = 1; 2; : : : ; N , if

°i = 1 then (7.16) reduces to the decision threshold of the zero mean Laplacian

model in (6.40), and if °i = 2 then it reduces to the decision threshold of the zero

mean Gaussian model in (5.16).

7.3 Parameter Estimation

For blind detection, in view of (7.5) and (7.16), the variance ¾2i and shape

parameter °i are estimated from transform coe±cients of the watermarked

image. As in Chapter 6, all our experiments for generalized Gaussian model

are conducted in DWT domain.
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Let B be the DWT subband containing xi and having NB identically

distributed coe±cients. As in (6.42), the unbiased estimator of ¾2i is given as

¾̂2i =
1

NB ¡ 1

X

y2B

y2; (7.17)

where y is the corresponding DWT coe±cient of the watermarked image (possibly

distorted) in B.

By taking n = 1 in (7.7), and then squaring both sides, we note that the

mean and shape parameter of Xi can be related as [28]

E2[jXij]
¾2i

=
¡2(2=°i)

¡(1=°i)¡(3=°i)
= s(°i): (7.18)

An estimator for °i can then be obtained as

°̂i = s
¡1

Ã
1

¾̂2i

"
1

NB

X

y2B

jyj
#!

: (7.19)

where 1
NB

P
y2B jyj is used to estimate E[jXj]. One way to solve (7.19) is to

approximate the inverse of s using any of the well-known function interpolation

method [21]. The knowledge of the range of s is important to achieve the desire

accuracy in the interpolation process. Lemma 7.2 gives the exact range of s.

Lemma 7.2 The function s as de¯ned in (7.18) is a strictly increasing function

with

lim
°i!+1

s(°i) = 3=4 (7.20)

and

lim
°i!0+

s(°i) = 0: (7.21)
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Proof: By use of the Euler formula given by (2.33), we can express s(°i) as

s(°i) =

·
°i
2

Q1
j=1

³
1 + 1

j

´ 2
°i

³
1 + 2

°ij

´¡1¸2

·
°i
Q1

j=1

³
1 + 1

j

´ 1
°i

³
1 + 1

°ij

´¡1¸ ·
°i
3

Q1
j=1

³
1 + 1

j

´ 3
°i

³
1 + 3

°ij

´¡1¸

=
3

4

1Y

j=1

³
1 + 2

°ij

´¡2

³
1 + 1

°ij

´¡1 ³
1 + 3

°ij

´¡1 : (7.22)

If °i tends to +1, then the in¯nite product tends to 1. Thus, s(°i) tends to 3=4.

On the other hand, with straightforward rearrangement and expansion, we can

express (7.22) as

s(°i) =
3

4

1Y

j=1

(°ij)
2 + 4°ij + 3

(°ij)2 + 4°ij + 4
: (7.23)

Now if °i tends to 0 from the right, then each term in the in¯nite product tends

to 3=4. Thus, the in¯nite product tends to 0. Finally, we note that, for °i ¸ 0,

d

d°i

·
(°ij)

2 + 4°ij + 3

(°ij)2 + 4°ij + 4

¸
=

2°ij
2 + 4j

((°ij)2 + 4°ij + 4)2

=
2j

(°ij + 2)3
> 0: (7.24)

This implies that s is strictly increasing, i.e., it increases from 0 to 3=4 when °i

increases from 0 to +1.

Q.E.D

Figure 7.2 shows the plot of s(°i) versus °i. In [46], the reciprocal function

r(°i) = 1=s(°i) is referred to as the generalized Gaussian ratio function, and °i

is estimated as

°̂i = r
¡1

0

B
@

¾̂2ih
1
NB

P
y2B jyj

i2

1

C
A (7.25)
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instead. However, since the range of r(°i) is in¯nite, it is more practical to

estimate °i using (7.19).

Similar types of estimator can be obtained by considering higher absolute

moments of Xi. A rearrangement of (7.7) yields

¾ni
E[jXijn]

=
¡1¡n=2(1=°i)¡

n=2(3=°i)

¡((n+ 1)=°i)
: (7.26)

This leads us to de¯ne

Án(°i) =
¡1¡n=2(1=°i)¡

n=2(3=°i)

¡((n+ 1)=°i)
: (7.27)

It follows that Á2(°i) = 1 and Á2i (°i) = 1=s(°i). The range of Án is given by

Lemma 7.3.

Lemma 7.3 The function Án as de¯ned in (7.27) is a strictly decreasing function

for n = 1 and strictly increasing function for n > 2 with

lim
°i!+1

Án(°i) =
n+ 1

3n=2
(7.28)

and

lim
°i!0+

Án(°i) =

8
>>>>>><

>>>>>>:

+1 n = 1

1 n = 2

0 n > 2

: (7.29)

Proof: By use of the Weierstrass formula (2.34), we can express Án(°i) as

Án(°i) =

h
1
°i
e
³

°i

Q+1
k=1

³
1 + 1

°ik

´
e
¡ 1
°ik

in=2¡1 h
3
°i
e
3³
°i

Q+1
k=1

³
1 + 3

°ik

´
e
¡ 3
°ik

i¡n=2

h
n+1
°i
e
(n+1)³
°i

Q+1
k=1

³
1 + n+1

°ik

´
e
¡n+1

°ik

i¡1

=
n+ 1

3n=2

+1Y

k=1

³
1 + 1

°ik

´n=2¡1 ³
1 + 3

°ik

´¡n=2

³
1 + n+1

°ik

´¡1 : (7.30)
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When °i ! +1, the in¯nite products tend to one resulting in

Án(°i)! (n+ 1)=3n=2. On the other hand, with some rearrangements, we

can express (7.30) as

Án(°i) =
n+ 1

3n=2

+1Y

k=1

µ
°ik + 1

°ik + 3

¶n=2
(°ik + n+ 1)

(°ik + 1)
: (7.31)

With this, when °i ! 0+, each term in the in¯nite products tend to (n+ 1)=3n=2.

Thus, (7.29) follows readily. Moreover,

d

d°i

µ
°ik + 1

°ik + 3

¶n=2
°ik + n+ 1

°ik + 1

=
(°ik + 3)n=2(°ik + 1)[(°ik + 1)n=2k + (°ik + n+ 1) ¢ kn

2
(°ik + 1)n=2¡1]

(°ik + 3)n(°ik + 1)2

¡(°ik + 1)n=2(°ik + n+ 1)[(°ik + 3)n=2k + (°ik + 1)kn
2
(°ik + 3)n=2¡1]

(°ik + 3)n(°ik + 1)2

=
k(°ik + 3)n=2¡1(°ik + 1)n=2

(°ik + 3)n(°ik + 1)2

£
n
[(°ik + 3)(°ik + 1) +

n

2
(°ik + n+ 1)(°ik + 3)]

¡[(°ik + 3)(°ik + n+ 1) +
n

2
(°ik + n+ 1)(°ik + 1)]

o

=
k(°ik + 3)n=2¡1(°ik + 1)n=2

(°ik + 3)n(°ik + 1)2

£
n
¡n(°ik + 3) +

n

2
(°ik + n+ 1)[(°ik + 3)¡ (°ik + 1)]

o

=
k(°ik + 3)n=2¡1(°ik + 1)n=2

(°ik + 3)n(°ik + 1)2
fn(n¡ 2)g

=
kn(°ik + 1)n=2¡2(n¡ 2)

(°ik + 3)1+n=2
: (7.32)

This means, for °i ¸ 0, each term in the in¯nite products is strictly decreasing

when n = 1 and strictly increasing when n > 2. Thus, the same goes for Án(°i).

Q.E.D
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Figure 7.3 shows the plot of Án(°i) versus °i. For n > 2, since the range

of Án(°i) is ¯nite, we can also consider

°̂i = Á
¡1
n

0

@¾̂ni

"
1

NB

X

y2B

jyjn
#¡11

A (7.33)

as an estimator for °i, where 1
NB

P
y2B jyjn is used to estimate E[jXijn].

7.4 Non-Zero Mean Model

In this section, we give extension to the non-zero mean generalized Gaussian

model. This is more of a theoretical interest as our numerical experiments reveal

that there is no improvement over the zero mean model, which is somewhat

expected as the coe±cients from the DWT subbands have approximately zero

mean.

The generalized Gaussian PDF with non-zero mean ¹i is expressed as

fXi
(xi) = ai exp(¡b°ii jxi ¡ ¹ij°i); (7.34)

where the positive constants ai and bi are as de¯ned in (7.2) and (7.3),

respectively. Similar to the way (7.8) is derived, it can be shown that

E[jXi ¡ ¹ijn] =
2ai

°ib
n+1
i

¡

µ
n+ 1

°i

¶
; (7.35)

and with substitution of ai and bi yields

E[jXi ¡ ¹ijn] = ¾ni
¡((n+ 1)=°i)

¡1¡n=2(1=°i)¡n=2(3=°i)
: (7.36)
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The LR decision rule under the non-zero mean model is

z(y) =

NX

i=1

b°i
·
jyi ¡ ¹ij°i ¡

¯̄
¯̄ yi
1 + ®iw¤i

¡ ¹i
¯̄
¯̄
°i¸
> ¸gg: (7.37)

In order to obtain the LR decision threshold ¸gg, we need to ¯nd the mean and

variance of b°i
h
jyi ¡ ¹ij°i ¡

¯̄
¯ yi
1+®iw¤i

¡ ¹i
¯̄
¯
°ii

. Equivalently, we need to ¯nd the

mean and variance for both jXi ¡ ¹ij°i and
¯̄
¯ Xi

1+®iw¤i
¡ ¹i

¯̄
¯
°i
. First, setting n = °i

in (7.35) and by use of (2.32), we obtain

E[jXi ¡ ¹ij°i ] =
2ai

°2i b
°i+1
i

¡

µ
1

°i

¶
(7.38)

and

V [jXi ¡ ¹ij°i ] = E[jXi ¡ ¹ij2°i]¡ E2[jXi ¡ ¹ij°i]

=
2ai

°2i b
2°i+1
i

µ
1 +

1

°i

¶
¡

µ
1

°i

¶
¡ 4a2i
°4i b

2°i+2
i

¡2
µ

1

°i

¶
:

(7.39)

Next, we derive the mean and variance of
¯̄
¯ Xi

1+®iw¤i
¡ ¹i

¯̄
¯
°i
: Note that

E[(Xi ¡ ¹i)2k] = E[jXi ¡ ¹ij2k] (7.40)

for k = 0; 1; 2; : : :. Thus, (7.35) can be used to obtain the even central moments

of Xi. On the other hand, the odd central moments of Xi are zero, i.e.,

E[(Xi ¡ ¹i)2k+1] = 0 (7.41)

for k = 0; 1; 2; : : :.

When °i is an even integer, by use of (7.35), (7.40) and (7.41), we obtain

E

·¯̄
¯̄ Xi

1 + ®iw
¤
i

¡ ¹i
¯̄
¯̄
°i¸
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=
1

(1 + ®iw
¤
i )
°i
E[(Xi ¡ ¹i ¡ ¹i®iw¤i )°i ]

=
1

(1 + ®iw¤i )
°i
E

"
°iX

k=0

°i!

k!(°i ¡ k)!
(Xi ¡ ¹i)k(¡¹i®iw¤i )°i¡k

#

=
1

(1 + ®iw¤i )
°i

°iX

k=0

°i!

k!(°i ¡ k)!
E[(Xi ¡ ¹i)k](¡¹i®iw¤i )°i¡k

=
2ai(°i ¡ 1)!

(1 + ®iw¤i )
°i

X

k=0;2;4;:::;°i

(¡¹i®iw¤i )°i¡k
k!(°i ¡ k)!bk+1i

¡

µ
k + 1

°i

¶
:

(7.42)

With (7.42), we also obtain

V

·¯̄
¯̄ Xi

1 + ®iw
¤
i

¡ ¹i
¯̄
¯̄
°i¸

= E

"¯̄
¯̄ Xi

1 + ®iw¤i
¡ ¹i

¯̄
¯̄
2°i
#

¡E2
·¯̄
¯̄ Xi

1 + ®iw¤i
¡ ¹i

¯̄
¯̄
°i¸

=
2ai(2°i ¡ 1)!

(1 + ®iw¤i )
2°i

X

k=0;2;4;:::;2°i

(¡¹i®iw¤i )2°i¡k
k!(2°i ¡ k)!bk+1i

¡

µ
k + 1

2°i

¶

¡
"
2ai(°i ¡ 1)!

(1 + ®iw¤i )
°i

X

k=0;2;4;:::;°i

(¡¹i®iw¤i )°i¡k
k!(°i ¡ k)!bk+1i

¡

µ
k + 1

°i

¶#2
:

(7.43)

Note that in evaluating (7.38), (7.39), (7.42) and (7.43) we need to estimate ¹i, ¾
2
i

and °i from the transform coe±cients of the watermarked image. The estimators

for ¹i and ¾
2
i are

¹̂i =
1

NB

X

y2B

y (7.44)

and

¾̂2i =
1

NB ¡ 1

X

y2B

(y ¡ ¹̂i)2; (7.45)
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respectively. Similar to (7.18), with non-zero mean, we set

E2[jXi ¡ ¹ij]
¾2i

=
¡2(2=°i)

¡(1=°i)¡(3=°i)
= s(°i); (7.46)

and use

°̂i = s
¡1

Ã
1

¾̂2i

"
1

NB

X

y2B

jy ¡ ¹̂ij
#!

(7.47)

as an estimator for °i.

For °i = 1, we have the Laplacian model as derived in Chapter 6. Other than

this, there is no close-form solution for the mean and variance of
¯̄
¯ Xi

1+®iw¤i
¡ ¹i

¯̄
¯
°i

when °i is not an even integer. However, we can estimate the mean and variance

of
¯̄
¯ Xi

1+®iw¤i
¡ ¹i

¯̄
¯
°i

in two ways. One way is to ¯rst approximate °i to the nearest

even integer and then use (7.42) and (7.43). Another way is to estimate from the

transform coe±cients of the image.

7.5 Experimental Results

The zero mean generalized Gaussian model is compared with the Laplacian and

Gaussian models using the same experiment setting as in Section 6.4. That

is, watermark embedding is done in DWT domain to the coe±cients of the

high-resolution subbands LH3, HL3 and HH3. Blind detection is used with the

variance and shape parameter estimated using (7.17) and (7.19), respectively.

The embedding strengths for the di®erent images are similar to that in Table 6.1.

Tables 7.1-7.6 show results for watermark robustness under the same standard
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image processing operations used in Chapter 6. Results from Chapter 6 for the

non zero mean Laplacian and Gaussian models are included for comparison.

Overall, the generalized Gaussian model yields a better detection result. The

estimators of the shape parameter considered here may also ¯nd applications in

other areas of science and engineering where the generalized Gaussian distribution

is used.
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Table 7.1: Percentage of successful detections under JPEG compression.

Image Generalized Laplacian Gaussian

Gaussian

Harbour 99.80 99.88 99.62

Lena 99.83 99.78 98.30

Fishing boat 99.89 99.82 99.23

Peppers 99.88 99.86 99.01

Barbara 99.97 99.93 99.13

Goldhill 99.93 99.90 98.33

Zelda 99.81 99.78 98.43

LAX 99.89 99.81 99.14
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Table 7.2: Percentage of successful detections under low pass ¯ltering.

Image Generalized Laplacian Gaussian

Gaussian

Harbour 99.92 99.87 99.39

Lena 99.67 99.45 99.03

Fishing boat 99.89 99.70 99.66

Peppers 99.50 99.56 99.67

Barbara 99.81 99.49 99.21

Goldhill 99.86 99.81 99.48

Zelda 99.46 99.38 99.07

LAX 99.78 99.65 99.55
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Table 7.3: Percentage of successful detections under Gaussian noise.

Image Generalized Laplacian Gaussian

Gaussian

Harbour 99.80 99.77 99.42

Lena 99.67 99.56 99.10

Fishing boat 99.50 99.39 99.11

Peppers 99.83 99.76 99.12

Barbara 99.77 99.42 99.01

Goldhill 99.49 99.39 99.20

Zelda 99.38 99.19 99.32

LAX 99.31 99.27 99.01
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Table 7.4: Percentage of successful detections under speckle noise.

Image Generalized Laplacian Gaussian

Gaussian

Harbour 99.85 99.71 99.35

Lena 99.62 99.49 99.06

Fishing boat 99.63 99.52 99.17

Peppers 99.80 99.69 99.22

Barbara 99.90 99.87 99.21

Goldhill 99.77 99.81 99.69

Zelda 99.88 99.72 99.36

LAX 99.74 99.68 99.75
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Table 7.5: Percentage of successful detections under salt and pepper noise.

Image Generalized Laplacian Gaussian

Gaussian

Harbour 99.85 99.79 99.28

Lena 99.90 99.87 99.73

Fishing boat 99.73 99.67 99.60

Peppers 99.81 99.61 99.40

Barbara 99.87 99.80 99.66

Goldhill 99.82 99.68 99.31

Zelda 99.90 99.85 99.59

LAX 99.66 99.77 99.08
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Table 7.6: Percentage of successful detections under cropping.

Image Generalized Laplacian Gaussian

Gaussian

Harbour 99.90 99.78 99.23

Lena 99.93 99.82 99.50

Fishing boat 99.86 99.87 99.23

Peppers 99.66 99.35 99.31

Barbara 99.79 99.56 99.60

Goldhill 99.83 99.81 99.34

Zelda 99.70 99.56 99.31

LAX 99.59 99.34 99.22
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Chapter 8

LR Detector Based on

Generalized Gamma Model

The generalized gamma distribution is another general distribution. The Weibull,

gamma, exponential distributions are some of its special cases. Generalized

gamma distribution is used to characterize positive random variables. In this

chapter, we discuss our work in extending the Weibull model of Barni et al [3] to

generalized gamma model for LR detection of watermarks. This includes giving

the LR decision rule and deriving a closed-form LR decision threshold. Numerical

simulations are used to draw comparison with the Weibull model.

8.1 LR Detection Rule

If the transform coe±cient Xi is modeled by a generalized gamma PDF [48], then

its PDF is expressed as

fXi
(xi) =

pi
apiºii

xpiºi¡1i

¡(ºi)
exp

·
¡
µ
xi
ai

¶pi¸
; xi > 0; (8.1)
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with positive shape pi, scale ai, and power ºi parameters. The exponential

(pi = ºi = 1), Weibull (ºi = 1) and gamma (pi = 1) are included as special

cases. Figure 8.1 shows the shape of the generalized gamma PDF.

Substituting (8.1) in (4.16), we obtain the LR decision rule as

z(y) =

NX

i=1

(

ln

"
pi

apiºii ¡(ºi)

µ
yi

1 + ®iw¤i

¶piºi¡1
exp

·
¡
µ

yi
(1 + ®iw¤i )ai

¶pi¸
#

¡ ln

·
pi

apiºii ¡(ºi)
ypiºi¡1i exp

·
¡
µ
yi
ai

¶pi¸¸¾

=

NX

i=1

ypii
(1 + ®iw

¤
i )
pi ¡ 1

apii (1 + ®iw¤i )
pi
> ¸ga; (8.2)

where ¸ga is the LR decision threshold under generalized gamma model.

8.2 LR Decision Threshold

In view of (4.22), the mean and variance of

z(X) =
NX

i=1

Xpi
i

(1 + ®iw
¤
i )
pi ¡ 1

apii (1 + ®iw
¤
i )
pi

(8.3)

are required to obtain ¸ga. Equivalently, we need to ¯nd E[Xpi
i ] and V [Xpi

i ]. For

a real constant c,

E[Xc
i ] =

Z +1

0

xci
pi
apiºii

xpiºi¡1i

¡(ºi)
exp

·
¡
µ
xi
ai

¶pi¸
dxi

=
aci

¡(ºi)

Z +1

0

tºi+c=pi¡1 exp(¡t)dt; t =
³xi
a

´pi

= aci
¡(ºi + cp

¡1
i )

¡(ºi)
: (8.4)

With (8.4), it is straightforward to obtain

¹z(X) =

NX

i=1

E[Xpi
i ]

(1 + ®iw
¤
i )
pi ¡ 1

apii (1 + ®iw¤i )
pi
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=

NX

i=1

½
apii

¡(ºi + 1)

¡(ºi)

¾
(1 + ®iw

¤
i )
pi ¡ 1

apii (1 + ®iw¤i )
pi

=

NX

i=1

¡(ºi + 1)[(1 + ®iw
¤
i )
pi ¡ 1]

¡(ºi)(1 + ®iw¤i )
pi

(8.5)

and

¾2z(X) =

NX

i=1

V [Xpi
i ]

[(1 + ®iw
¤
i )
pi ¡ 1]2

a2pii (1 + ®iw¤i )
2pi

=
NX

i=1

©
E[X2pi

i ]¡ E2[Xpi
i ]
ª [(1 + ®iw

¤
i )
pi ¡ 1]2

a2pii (1 + ®iw¤i )
2pi

=
NX

i=1

½
a2pii

¡(ºi + 2)

¡(ºi)
¡ a2pii

¡2(ºi + 1)

¡2(ºi)

¾
[(1 + ®iw

¤
i )
pi ¡ 1]2

a2pii (1 + ®iw
¤
i )
2pi

=

NX

i=1

[¡(ºi + 2)¡(ºi)¡ ¡2(ºi + 1)][(1 + ®iw
¤
i )
pi ¡ 1]2

¡2(ºi)(1 + ®iw¤i )
2pi

: (8.6)

Thus, the closed-form of ¸ga is given as

¸ga = erfc¡1(2P ¤FA)

"

2

NX

i=1

[¡(ºi + 2)¡(ºi)¡ ¡2(ºi + 1)][(1 + ®iw
¤
i )
pi ¡ 1]2

¡2(ºi)(1 + ®iw¤i )
2pi

#1=2

+

NX

i=1

¡(ºi + 1)[(1 + ®iw
¤
i )
pi ¡ 1]

¡(ºi)(1 + ®iw¤i )
pi

: (8.7)

For a ¯xed P ¤FA, ¸ga depends on ºi, ®i and w
¤
i .

8.3 Weibull Model

When ºi = 1, then Xi is a Weibull RV with PDF

fXi
(xi) =

pi
apii
xpi¡1i exp

·
¡
µ
xi
ai

¶pi¸
; xi > 0: (8.8)
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The decision rule in (8.2) remains the same as it is independent of ºi. However,

the decision threshold ¸ga becomes

¸ga = erfc¡1(2P ¤FA)

"

2

NX

i=1

[(1 + ®iw
¤
i )
pi ¡ 1]2

(1 + ®iw¤i )
2pi

#1=2

+

NX

i=1

[(1 + ®iw
¤
i )
pi ¡ 1]

(1 + ®iw¤i )
pi
; (8.9)

which is also independent of ºi. It is simpler to compute (8.7) than (8.9).

However, the present of ºi in (8.7) provides greater °exibility in adjusting ¸ga

according to di®erent images for better watermark detection result.

8.4 Parameter Estimation

As in [3], watermark is embedded in the magnitude of a set of DFT coe±cients

of an image. Embedding is done to di®erent regions identi¯ed in the magnitude

of DFT spectrum. Let B be the region containing xi and having NB coe±cients.

All coe±cients in B are assumed to be identically distributed.

For blind detection, all parameters are estimated from the magnitude of the

DFT coe±cients of the watermarked image. The unbiased estimators of ¹i and

¾2i are

¹̂i =
1

NB

X

y2B

y (8.10)

and

¾̂2i =
1

NB ¡ 1

X

y2B

(y ¡ ¹̂i)2; (8.11)
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respectively, where y is the corresponding magnitude of the DFT coe±cient of

the watermarked image in B. Estimating all three parameters, ai, pi and ºi, is

rather di±cult [15, 49]. Here, we consider ¯xing either ºi or pi and then estimate

the other two parameters.

Using (8.4), we obtain the mean and variance of Xi as

¹i = E[Xi] = ai
¡(ºi + p

¡1
i )

¡(ºi)
(8.12)

and

¾2i = V [Xi]

= E[X2
i ]¡E2[Xi]

= a2i
¡(ºi + 2p¡1i )

¡(ºi)
¡ a2i

¡2(ºi + p
¡1
i )

¡2(ºi)
; (8.13)

respectively. By manipulating (8.12) and (8.13), the expresssion

¡2(ºi + p
¡1
i )

¡(ºi + 2p¡1i )¡(ºi)
=

¹2i
¾2i + ¹

2
i

(8.14)

follows readily.

If ºi is ¯xed, say ºi = º0, then the left-hand side of (8.14) is solely a function

of pi. We de¯ne

'(pi) =
¡2(º0 + p

¡1
i )

¡(º0 + 2p¡1i )¡(º0)
(8.15)

and propose estimating pi and ai as

p̂i = '
¡1

µ
¹̂2i

¾̂2i + ¹̂
2
i

¶
(8.16)
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and

âi = ¹̂i
¡(º0)

¡(º0 + p̂
¡1
i )
; (8.17)

respectively.

Similarly, if pi is ¯xed, say pi = p0, then the left-hand side of (8.14) is solely

a function of ºi. We then de¯ne

Ã(ºi) =
¡2(ºi + p

¡1
0 )

¡(ºi + 2p¡10 )¡(ºi)
; (8.18)

and propose estimating ºi and ai as

º̂i = Ã
¡1

µ
¹̂2i

¾̂2i + ¹̂2i

¶
(8.19)

and

âi = ¹̂i
¡(º̂i)

¡(º̂i + p
¡1
0 )
; (8.20)

respectively. As in the estimation of the generalized Gaussian shape parameter in

Chapter 6, we solve (8.16) and (8.19) by approximating the inverse functions '¡1

and Ã¡1 using function interpolation methods [21]. Both Á and Ã are constructed

in such a way that their range are ¯nite as shown in Lemma 8.1 and Lemma 8.2.

Lemma 8.1 The function ' as de¯ned in (8.15) is a strictly increasing function

with

lim
pi!+1

'(pi) = 1 (8.21)

and

lim
pi!0+

'(pi) = 0: (8.22)
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Proof: Clearly, (8.21) follows from de¯nition of ' in (8.15). Using the

Weierstrass formula (2.34), we can express '(pi) as

'(pi) =

·
(piº0+1)

pi
e
³(piº0+1)

pi

Q+1
k=1

³
1 + piº0+1

pik

´
e
¡
(piº0+1)

pik

¸¡2

·
(piº0+2)

pi
e
³(piº0+2)

pi

Q+1
k=1

³
1 + piº0+2

pik

´
e
¡
(piº0+2)

pik

¸¡1

£ 1
h
º0e³º0

Q+1
k=1

¡
1 + º0

k

¢
e¡

º0
k

i¡1

=
piº0(piº0 + 2)

(piº0 + 1)2

+1Y

k=1

pi(pik + piº0 + 2)(k + º0)

(pik + piº0 + 1)2

=

+1Y

k=0

pi(pik + piº0 + 2)(k + º0)

(pik + piº0 + 1)2
: (8.23)

Letting pi ! 0+ yields (8.22). Moreover,

d

dpi

pi(pik + piº0 + 2)

(pik + piº0 + 1)2
=

(pik + piº0 + 1)2[2(pik + piº0 + 1)]

(pik + piº0 + 1)4

¡ pi(pik + piº0 + 2)[2(k + º0)(pik + piº0 + 1)]

(pik + piº0 + 1)4

=
2(pik + piº0 + 1)

(pik + piº0 + 1)4
> 0; (8.24)

for pi > 0. This means each term in the in¯nite products in (8.23) is strictly

increasing. Thus, ' is also strictly increasing, and consequently has ¯nite range.

Q.E.D

Lemma 8.2 The function Ã as de¯ned in (8.18) is a strictly increasing function

with

lim
ºi!+1

Ã(ºi) = 1 (8.25)
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and

lim
ºi!0+

Ã(ºi) = 0: (8.26)

Proof: Since limºi!0+ ¡(ºi) = +1, (8.26) follows for the de¯nition of Ã. Next,

note that ' and Ã are similar in form but di®er in the ¯xed variable. Thus, in

view of (8.23), we can express Ã(ºi) as

Ã(ºi) =

+1Y

k=0

p0(p0k + p0ºi + 2)(k + ºi)

(p0k + p0ºi + 1)2
: (8.27)

With some rearrangements, we obtain

Ã(ºi) =

+1Y

k=0

p0(p0kº
¡1
i + p0 + 2º¡1i )(kº¡1i + 1)

(p0kº
¡1
i + p0 + º

¡1
i )2

; (8.28)

and then letting ºi ! +1 yields (8.25). We conclude that Ã is strictly increasing

since in (8.27),

d

dºi

p0(p0k + p0ºi + 2)(k + ºi)

(p0k + p0ºi + 1)2
=

2p0
(p0k + p0ºi + 1)3

> 0; (8.29)

for ºi > 0. This again implies that the range of Ã is ¯nite.

Q.E.D

Figure 8.2 and 8.3 show the plot of ' and Ã, respectively.

8.5 Experimental Results

Using the same set of 512£ 512 test images given in Figure 3.1, we explore three

special cases of the generalized gamma model, (i) ºi = 1 (ii) ºi = 1:1, and (iii)
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pi = 1. In (i), we have the Weibull model [3]. In [3], ai and pi are estimated using

a maximum likelihood scheme which requires the use of iterative method like the

Newton-Raphson method. In this regard, our estimators are considered simpler.

In (iii), we have the gamma model. All these models are selected because the

plot of their PDFs closely resembles the shape of the histograms derived from the

subsets of x1; x2; : : : ; xN .

In [3], the DFT magnitude spectrum is divided into 16 regions. Here, for

simplicity of testing, we consider only two regions, as shown in Figure 8.4 as two

squares at the upper half of the DFT matrix. Each region has 2,500 identically

distributed coe±cients. The watermark is embedded into these coe±cients and

then duplicated to the corresponding coe±cients in the two regions at the lower

half of the DFT matrix. This is done to preserve the symmetry property of the

DFT magnitude spectrum. A constant embedding strength ® = 0:3 is used for

all the coe±cients.

The robustness of the watermark is tested under the same standard image

processing operations as in Chapters 6 and 7, using the procedure given in Section

4.3. The results are shown in Tables 8.1-8.6. Generally, our experiments show

that the generalized gamma model gives rise to better watermark detection. Our

choice of ºi = 1:1 is based on trial on error. Further research is required to

decide the optimum choice of ºi or pi so that the remaining two parameters can

be estimated.

The estimators proposed here are also found to be better than the moment
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estimators in [16, 17], where comparisons are made in terms of mean square error.

Experiments are done by simulating generalized gamma RVs using (2.28), and

then estimating the parameters.



8.5 Experimental Results 113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

( )
iX if x

ix

= 1, = 0 .5, = 1i i ia ν p

= 1, = 0 .5, = 2i i ia ν p

= 1 , = 1 , = 1i i ia ν p

= 1, = 0 .5, = 1i i ia ν p
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Table 8.1: Percentage of successful detections under JPEG compression.

Image Weibull Generalized Gamma Gamma

(ºi = 1:1)

Harbour 99.63 99.78 99.59

Lena 92.44 97.36 91.47

Fishing boat 93.79 98.33 89.79

Peppers 93.69 98.37 90.72

Barbara 95.34 96.99 94.59

Goldhill 99.84 99.86 99.78

Zelda 99.21 99.08 99.14

LAX 97.34 98.69 97.19
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Table 8.2: Percentage of successful detections under low pass ¯ltering.

Image Weibull Generalized Gamma Gamma

(ºi = 1:1)

Harbour 99.62 99.78 99.57

Lena 99.01 99.32 98.89

Fishing boat 99.01 99.10 99.08

Peppers 99.83 99.91 99.74

Barbara 99.32 99.63 99.19

Goldhill 99.36 99.41 99.28

Zelda 98.76 99.11 98.99

LAX 99.20 99.39 99.13
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Table 8.3: Percentage of successful detections under Gaussian noise.

Image Weibull Generalized Gamma Gamma

(ºi = 1:1)

Harbour 99.88 99.90 99.72

Lena 99.71 99.83 99.62

Fishing boat 97.63 98.37 98.01

Peppers 99.61 99.78 99.43

Barbara 99.94 99.56 99.27

Goldhill 99.78 99.89 99.38

Zelda 99.47 99.46 99.13

LAX 99.67 99.73 99.49
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Table 8.4: Percentage of successful detections under speckle noise.

Image Weibull Generalized Gamma Gamma

(ºi = 1:1)

Harbour 99.93 99.99 99.77

Lena 99.95 99.98 99.85

Fishing boat 99.78 99.95 99.96

Peppers 99.85 99.90 99.89

Barbara 99.97 99.95 99.88

Goldhill 99.86 99.97 99.36

Zelda 99.67 99.79 99.69

LAX 99.79 99.81 99.69
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Table 8.5: Percentage of successful detections under salt and pepper noise.

Image Weibull Generalized Gamma Gamma

(ºi = 1:1)

Harbour 99.12 99.18 99.10

Lena 99.73 99.93 99.68

Fishing boat 99.67 99.59 99.61

Peppers 99.69 99.72 99.65

Barbara 99.77 99.89 99.85

Goldhill 99.88 99.92 99.79

Zelda 99.94 99.96 99.82

LAX 99.69 99.68 99.63
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Table 8.6: Percentage of successful detections under cropping.

Image Weibull Generalized Gamma Gamma

(ºi = 1:1)

Harbour 99.97 99.98 99.69

Lena 100.00 100.00 100.00

Fishing boat 99.93 99.12 99.89

Peppers 100.00 100.00 100.00

Barbara 99.81 99.07 99.19

Goldhill 99.67 99.79 99.62

Zelda 99.83 99.86 99.79

LAX 99.88 99.91 99.80
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Chapter 9

MAP Detection of Watermark

MAP detection is considered simpler than LR detection as it does not require

a decision threshold. In this chapter, we consider an MAP detector formulated

under the generalized Gaussian distribution in the DWT domain.

9.1 MAP Detector

We use a slightly di®erent set of notations from the previous chapters to describe

the MAP detector.

Let W = fw1;w2; : : : ;wKg be a set of K available watermarks. Each

watermark is represented as a vector of N elements, wk = [wk;1; wk;2; : : : ; wk;N ]T ,

for k = 1; 2; : : : ; K. A watermark from W , say wj , is selected and embedded

to x = [x1; x2; : : : ; xN ]T , the DWT coe±cients vector of the original image. The

corresponding DWT coe±cients vector of the watermarked image is denoted as

y = [y1; y2; : : : ; yN ]T . The multiplicative embedding scheme is used with MAP



9.1 MAP Detector 124

detector [2],

yi = xi + ®xiwj;i; i = 1; 2; : : : ; N; (9.1)

where ® is a ¯xed embedding strength. The value of ® is set to be much smaller

than 1.

The decision rule of the MAP detector is based on comparing the a posteriori

probabilities

P (wkjy); k = 1; 2; : : : ; K: (9.2)

The watermark that corresponds to the maximum of this set of a posteriori

probabilities is said to be the embedded watermark. It can be shown that this

rule maximizes the probability of a correct decision and, hence the probability of

error is minimized [43].

Using Bayes' rule, the a posteriori probabilities can be written as

P (wkjy) =
P (yjwk)P (wk)

P (y)
; k = 1; 2; : : : ;K; (9.3)

where P (yjwk) is the conditional probability of y given wk, and P (wk) is the a

priori probability of the kth watermark being embedded. Since the denominator

P (y) can be expanded as

P (y) =

KX

k=1

P (yjwk)P (wk); (9.4)

it thus follows from (9.3) that the computation of the a posteriori probabilities

require the knowledge of P (yjwk) and P (wk) for k = 1; 2; : : : ;K.
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It is usually assumed that P (wk) = 1=K for k = 1; 2; : : : ; K; i.e., the K

watermarks are equally probable. Moreover, the denominator P (y) does not

depend on wk. As a result, the decision rule reduces to ¯nding the watermark

that corresponds to

max
k=1;2;:::;K

P (yjwk): (9.5)

Further, we also assume that the coe±cients of DWT subbands are independent

[2, 47]. Under this assumption, the elements of y are conditionally independent,

and we can express (9.5) as

max
k=1;2;:::;K

NY

i=1

P (yijwk;i): (9.6)

We view xi and yi as the realizations of the random variables Xi and Yi. If fXi
(xi)

is the PDF of Xi for i = 1; 2; : : : ; N , then (9.6) can be written as

max
k=1;2;:::;K

NY

i=1

1

1 + ®wk;i
fXi

µ
yi

1 + ®wk;i

¶
: (9.7)

The natural logarithm of (9.7) is usually used,

max
k=1;2;:::;K

NX

i=1

½
ln

µ
fXi

µ
yi

1 + ®wk;i

¶
¡ ln(1 + ®wk;i)

¶¾
: (9.8)

Here, we note that the choice of the watermark elements must be such that

1 + ®wk;i > 0; (9.9)

so that yi=(1+®wk;i) and the natural logarithm are well de¯ned. We refer to the

maximum value in (9.8) as the MAP peak.
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In applications where K is not too large, it is feasible to identify the

embedded watermark from (9.8). Moreover, it eliminates the need for a decision

threshold, and therefore should result in a more accurate detection.

9.2 Generalized Gaussian Model

We propose modeling Xi as a generalized Gaussian RV. Then, as given in (7.34),

the PDF of Xi is

fXi
(xi) = ai exp(¡b°ii jxi ¡ ¹ij°i); (9.10)

where ¹i, ¾i and °i are the mean, variance and shape parameter of the

distribution, respectively. The positive constants ai and bi are given as

ai =
bi°i

2¡(1=°i)
(9.11)

and

bi =
1

¾i

s
¡(3=°i)

¡(1=°i)
; (9.12)

respectively. Substituting (9.10) in (9.8), we obtain

max
k=1;2;:::;K

(
NX

i=1

ln ai ¡ b°ii
¯̄
¯̄ yi
1 + ®wk;i

¡ ¹i
¯̄
¯̄
°i

¡ ln(1 + ®wk;i)

)

: (9.13)

For blind detection, in computing (9.13), we need to estimate ¹i; ¾
2
i and °i from

the watermarked image. We can use estimators similar to those discussed in

Section 7.4. That is,

¹̂i =
1

NB

X

y2B

y; (9.14)
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¾̂2i =
1

NB ¡ 1

X

y2B

(y ¡ ¹̂i)2; (9.15)

and

°̂i = s
¡1

Ã
1

¾̂2i

"
1

NB

X

y2B

jy ¡ ¹̂ij
#!

; (9.16)

where B is the DWT subband containing Xi with NB coe±cients.

9.3 Correlation Detector

If correlation detection is used, then the watermark wj is embedded as [2]

yi = xi + ®jxijwj;i; i = 1; 2; : : : ; N: (9.17)

The correlation between y and the watermarks in W is de¯ned as

cor(y;w) =
1

N

NX

i=1

yiwk;i; k = 1; 2; : : : ;K: (9.18)

In the absent of distortion, the embedded watermark is the one that corresponds

to

max
k=1;2;:::;K

cor(y;wk): (9.19)

9.4 Experiment Results

For the experiments here, the same 512£ 512 grayscale images in Figure 3.1 are

used. Similarly a Daubechies ¯lter is used to obtain the DWT of these images.

To ensure that (9.9) is satis¯ed, the set W contains watermarks with uniformly
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distributed components in [¡1; 1]. We set K = 1000, i.e., W contains 1,000

watermarks. One of the watermarks from W is selected and embedded in the

DWT coe±cients of the images. This is done using both (9.1) and (9.17) to

produce two set of watermarked images. Embedding is done in all the coe±cients

in LH3, HL3 and HH3 subbands. The embedding strengths for the images are

as given in Table 6.1.

Standard image processing operations are simulated and applied to the

watermarked images to distort them. The proposed detector, MAP detector

under Laplacian modeling [2], and correlation detector are then used to identify

the embedded watermark for each of the distorted images. For example, in

Figure 9.1, we see the plot of the MAP detector response for watermarked image

`Barbara' that is low pass ¯ltered using a 4£ 4 spatial ¯lter. The MAP peak at

position 388 belongs to the embedded watermark.

In comparing the performance of the detectors, each of the experiment is

performed over 10,000 trials. For all the detectors, the percentage of successful

detections from all these trials are recorded for all images. Table 9.1 shows results

for watermarked images compressed by JPEG with a 5% quality factor. In Table

9.2, the watermarked images are low pass ¯ltered using a 4£ 4 spatial ¯lter. In

Table 9.3, the watermarked images are ¯rst corrupted by salt and pepper noise

that covers 30% of the pixels, and then smoothened by a 3 £ 3 median ¯lter.

Lastly, in Table 9.4, each watermarked image is cropped to retain only 400£ 400

pixels at the center. The missing portion is replaced by zero pixels so that the
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size of each image remains at 512£ 512.

Our experiment results reveal that generally the proposed detector is more

e®ective when (i) the watermarked images are low pass ¯ltered, and (ii) when

they are corrupted by salt and pepper noise and then median ¯ltered. The

detectors have about the same performance when the watermarked images are

JPEG compressed or cropped. In [34], watermark robustness under cropping can

be improved by extending the embedding to LH2, HL2 and HH2 subbands.
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Figure 9.1: Response of MAP detector to 1,000 watermarks for

watermarked image `Barbara' after low pass ¯ltering.
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Table 9.1: Percentage of successful detections under JPEG compression.

Image MAP MAP Correlation

(Gen. Gaussian) (Laplacian)

Harbour 100.00 100.00 99.86

Lena 99.10 98.25 100.00

Fishing boat 99.83 99.87 99.96

Peppers 100.00 99.01 100.00

Barbara 99.64 99.65 99.50

Goldhill 100.00 100.00 100.00

Zelda 100.00 100.00 100.00

LAX 99.95 99.90 99.76
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Table 9.2: Percentage of successful detections under low pass ¯ltering.

Image MAP MAP Correlation

(Gen. Gaussian) (Laplacian)

Harbour 100.00 99.98 99.81

Lena 91.56 90.99 77.08

Fishing boat 99.93 99.91 99.78

Peppers 100.00 100.00 96.89

Barbara 95.61 94.73 92.29

Goldhill 100.00 99.87 99.25

Zelda 100.00 100.00 100.00

LAX 100.00 99.94 99.37
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Table 9.3: Percentage of successful detections under salt and pepper noise,

and followed by median ¯ltering.

Image MAP MAP Correlation

(Gen. Gaussian) (Laplacian)

Harbour 99.89 99.81 97.67

Lena 99.80 99.84 99.73

Fishing boat 100.00 99.98 98.91

Peppers 100.00 100.00 99.96

Barbara 99.36 99.26 99.18

Goldhill 100.00 100.00 100.00

Zelda 100.00 99.98 100.00

LAX 99.98 99.96 99.27



9.4 Experiment Results 134

Table 9.4: Percentage of successful detections under cropping.

Image MAP MAP Correlation

(Gen. Gaussian) (Laplacian)

Harbour 99.82 99.77 99.69

Lena 95.93 95.89 80.78

Fishing boat 96.46 99.95 99.92

Peppers 99.13 99.09 99.36

Barbara 88.09 89.64 100.00

Goldhill 100.00 100.00 100.00

Zelda 100.00 100.00 100.00

LAX 100.00 99.89 90.75
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Chapter 10

Epilogue

10.1 Conclusion

Due to the rapid development of multimedia network systems, digital media can

be accessed, processed, and stored with ease. The incredible growth of wireless

technologies has also made it possible to meet the demand for the availability

of multimedia content anyplace and anytime. However, this also leads to the

problem of unauthorized duplication and distribution of digital media. Thus,

there is an increasing need for mechanisms to protect the security and intellectual

property rights of multimedia data over the wired and wireless channels. Digital

watermarking has become a popular and e®ective solution to meet this demand.

In this thesis, we have focused on studying LR detection in image

watermarking, where thresholding is done via Neyman-Pearson criterion.

Speci¯cally, we have extended the LR detection framework of Barni et al [3] to

cover a wider range of probability distribution models. Our original contributions
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to this work are summarized as follows:

i. We have shown in Lemma 4.1 that the approximation fY(yjM0) ¼ fY(yj0)

holds for any PDF model. With this, we have given in Chapter 4 a general

setting to the LR detection framework of Barni et al [3].

ii. For a given PDF model, it is straightforward to obtain the LR decision rule.

However, the LR decision threshold usually requires more work to derive.

In Chapter 5, we have given the derivation for the closed-form expression

of the LR decision threshold under the Gaussian model. The Gaussian

model's LR decision threshold reported in [25] is found to be incorrect.

iii. As compared to the Gaussian model, the LR decision threshold under

Laplacian model is much more complicated to derive. This is due to

the presence of the absolute value sign in the Laplacian PDF expression.

In Chapter 6, we have given a complete derivation for the closed-form

expression of the LR decision threshold under the Laplacian model. Our

experimental results show that the Laplacian model can yield a better

watermark detection result than the Gaussian model in DWT domain.

iv. The mean of the DWT coe±cients in the high resolution subbands is

approximately zero. This leads us to consider using a zero mean generalized

Gaussian PDF for LR detection in DWT domain. In Chapter 7, we have

given a complete derivation for the closed-form expression of the LR decision

threshold under the generalized Gaussian model. We have shown in Lemma
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7.2 that the function s de¯ned in (7.18) is of ¯nite range. This facilitates

the estimation of the shape parameter via function interpolation. Other

estimators based on higher absolute moments of the generalized Gaussian

RV are also given. Our experimental results show that the generalized

Gaussian model can perform better than the Gaussian and Laplacian

models.

v. In Chapter 8, we have given the derivation for the closed-form expression

of the LR decision threshold under the generalized gamma model. This

can be seen as an extension to the Weibull model of Barni et al [3]. For

the work here, new estimators for the parameters of the generalized gamma

PDF have been proposed. These estimators are also useful in areas like

reliability analysis [15, 41] where the generalized gamma PDF is widely

used. Our experimental results show that the LR detector under the

generalized Gaussian gamma model can perform better than that for the

Weibull model.

Other related contributions include:

i. In Chapter 9, we have formulated the MAP detector under the generalized

Gaussian model for watermark detection in DWT. The MAP detector is

considered simpler than the LR detector as a decision threshold is not

required. We have shown that the generalized Gaussian model yields better

detection than the Laplacian model of [2].



10.2 Suggestions for Further Research 138

ii. We have introduced the energy embedding scheme in Chapter 3 based on

modifying the additive scheme. The energy embedding scheme requires

more di±cult to compute but it is shown that it can make the watermark

more robust.

10.2 Suggestions for Further Research

A few interesting areas in which progress can be made are as follows:

1. To perform a detailed performance evaluation for the various LR detection

models. This includes examining and comparing the models under a wider

range of image processing operations and distortions.

2. To perform a theoretical error analysis of the LR detection method. Since

LR detection of Barni et al [3] is based on some approximations, it would

be interesting and challenging to study the errors produced by the di®erent

PDF models.

3. To explore the application of information theory in statistical watermarking.

Majority of the publications in watermarking have focused on novel

ways to embed information in media and then to detect it. However,

most of these publications lack the mathematical theory describing the

fundamental limits of any information-hiding system. Information theoretic

watermarking is aimed to provide a theoretical basis for a generic version

of the information-hiding problem [30].



10.2 Suggestions for Further Research 139

4. To ¯nd methods to improve robustness of statistical watermarking schemes

under geometric attacks [44]. Many watermarks for images and video

content are sensitive to geometric distortions. For example, simple rotation,

scaling, translation, etc., of an image can prevent detection of a watermark.

5. To explore areas of reversible watermarking using statistical schemes. In a

number of domains, such as military, legal and medical imaging, although

some embedding distortion is admissible, permanent loss of signal ¯delity

is undesirable. This highlights the need for reversible (lossless) data

embedding and recovery techniques.
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