
WORKSPACE-BASED SAMPLING

FOR PROBABILISTIC PATH PLANNING

HANNA KURNIAWATI

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48624502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Acknowledgement

First of all, I thank my supervisor David Hsu for his guidance and support during

my studies. His dedication to research has inspired me to work harder on becoming

a better researcher. I am grateful for the time and attention he has generously

given.

I thank my thesis comittee Alan Cheng, Leow Wee Kheng, and the external

examiner for reading this thesis. Alan has introduced me to David when I was

looking for a research supervisor. I am also grateful for his inputs on the WIS

strategy. Wee Kheng has provided a space for me in his lab. His advises I often

overheard in the lab has broaden my view on research.

In the beginning of my graduate studies, I had a chance to work with Gilardo

Sánchez-Ante. I thank him for being an unofficial co-supervisor, a senior, and a

colleague, when I need them most. Furthermore, it is always fun to listen to his

stories on life and research. I am grateful for the chance to work with Jean-Claude

Latombe. His insights and comments have significantly improved this thesis and

have encouraged me to dig deeper. I spent a semester in INRIA Rhône-Alpes
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Abstract

In this thesis, we show that workspace provides useful information for generating

suitable sampling distribution for probabilistic path planning.

Probabilistic path planning has emerged as the most promising approach to

path planning of robots with many degrees of freedom. However, it performs poorly

when the configuration space contains narrow passages. Furthermore, although

understanding the role of probability in probabilistic path planning may lead to

the construction of better planners, little work have done so.

We start by presenting an empirical study to explore the role of probability in

probabilistic path planning. This study shows that probability is critical to the

success of probabilistic path planning, because it relates to the uncertainty that

arises from our lack of information about the shape of the robot’s configuration

space. Sampling distribution represents the planner’s belief on the use of sampling

from a particular region of the configuration space in improving its understand-

ing about the shape of the robot’s configuration space. Furthermore, this study

indicates that a suitable sampling distribution depends on the visibility property

of the robot’s configuration space. It suggests that utilizing workspace informa-

tion and adapting sampling distribution over time are two potential strategies for

improving the current probabilistic planners.

We then present two new workspace-based probabilistic path planners: Workspace

Importance Sampling (WIS) and Workspace-based Connectivity Oracle (WCO).

Both are based on the multi-query Probabilistic Roadmap (PRM) approach. The

novelty of the new planners lies in the sampling strategy.

WIS is a simple workspace-based sampling strategy. It is used mainly as a

testbed for exploring the use of workspace information in generating a suitable

ix



Abstract

sampling distribution. WIS uses workspace information to estimate the size of the

visibility set of subsets of the robot’s configuration space and constructs sampling

distribution based on this estimation. Our experimental results show that this

simple sampling strategy is comparable to recent probabilistic path planner that

has been shown to perform well. Our analysis shows that the failure probability

of WIS converges to zero exponentially in the number of milestones, provided a

solution exists. Furthermore, under certain conditions that often happen when

the robot moves inside narrow passages in the workspace, WIS has a lower upper

bound on its failure probability, compared to the basic-PRM. In addition, we show

that in a restricted setting that does not depend on the dimensionality of the

configuration space, the volume of the visibility sets in the configuration space

is bounded by a constant multiplication of the volume of the visibility sets in

the workspace. All these strengthen the intuition that workspace provides useful

information for generating suitable sampling distributions, and have encouraged

us to explore this direction further.

Unlike WIS that generates a static sampling distribution, WCO generates a

dynamic sampling distribution. It combines workspace information with sampling

history and the current state of the roadmap to dynamically adapt its sampling

distribution. WCO estimates workspace regions that are more likely to improve the

connectivity of the current roadmap, and assigns higher sampling density to subsets

of the robot’s configuration space that correspond to these workspace regions. Our

analysis shows that the failure probability of WCO converges to zero exponentially

in the number of milestones, provided a solution exists. Furthermore, when WCO’s

estimation is “good”, the upper bound on the failure probability of WCO is lower

than that of the basic-PRM. Our experimental results show that WCO performs up

to 28 times faster than the basic-PRM. Furthermore, as the dimensionality of the

robot’s configuration space increases, WCO’s performance decreases slower than

other recent probabilistic path planner that has been shown to perform well. We

have also successfully implemented WCO in a simulated bridge inspection scenario

involving a 35-dofs robot.
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Chapter 1

Introduction

To operate in the physical world, robots need to be able to sense, reason, and

act. The ability to generate valid motion is crucial for the success of the whole

operation. Without this ability, a robot will not be able to perform its task and

hence the results of sensing and reasoning will become void. This thesis focuses

on efficient algorithms to generate valid motion for various types of robots.

Motion planning addresses the problem of generating valid motion for robots

working in a constrained environment. The environment is usually called as the

workspace. In the simplest form, a motion planner finds collision-free motion for

a robot moving in a perfectly known workspace populated by obstacles. This

problem has been proven to be P-space hard [Reif, 1979]. Furthermore, the fastest

complete planner to date, i.e., a planner that finds a path whenever one exists

and indicates otherwise if none exists, is exponential in the number of degrees

of freedom (dofs) of the robot [Canny, 1988]. Unfortunately, many useful robots

require high dofs. Commonly used industrial robots have 4-7 dofs and a hyper-

redundant robot can have up to hundreds of dofs. In addition to the number

of dofs, a robot often has other constraints such as the need to maintain stability

while performing its task, the need to avoid collision with itself for hyper-redundant

robot, etc. All of these constraints add to the difficulty of motion planning problem.

Despite the hardness of the problem, over the past decade motion planning

has emerged as an area of study on its own, solving high-dimensional problems in

areas as diverse as robotics [Halperin et al., 1999,Choset et al., 2005], computer

1



2 Chapter 1

graphics [Koga et al., 1994], computer aided-design [Chang and Li, 1995], and com-

putational biology [LaValle et al., 2000,Amato et al., 2002,Apaydin et al., 2002].

These advances have been made possible with the introduction of probabilistic

method [Kavraki et al., 1996b] to motion planning.

Intuitively, a probabilistic planner searches for a path using sampling (a more

elaborate explanation is in Section 1.2). As any sampling-based method, the diffi-

culty of finding a solution relies heavily on the relative size of the solution space. If

the solution space is small compared to the sampling domain, then searching for a

solution is more difficult. Furthermore, as the number of the robot’s dofs increases

and as more robot’s constraints need to be addressed, the size of the solution space

compared to the sampling domain tends to decrease. Therefore, to handle more

complicated motion planning problems involving higher dofs robot, better sam-

pling strategy for guiding the search becomes more crucial. In response to this,

many probabilistic planners with different sampling strategies have been proposed.

However, the problem of finding suitable sampling strategies is still largely open.

Moreover, although many probabilistic planners have been proposed, little is

known on the role of probability in its success. While this understanding may lead

to the construction of better planners, little work have done so.

In this thesis, we propose a possible explanation on the role of probability in

probabilistic planning, based on systematic experimental results. With this new

understanding, we propose a novel probabilistic planner that uses both workspace

information and sampling history to dynamically adapt its sampling distribution.

In this chapter, we will present a short introduction to motion planning and an

overview of our main contributions along with an outline of this thesis. We start

by presenting an overview of motion planning problems including its variants and

various approaches to motion planning in Section 1.1. We then continue with an

overview of probabilistic planning approach and the problems with this approach

in Section 1.2. Next, we present the problem addressed in this thesis and an

overview of our main contrbutions in Section 1.3. Finally, the outline of this thesis

is presented in Section 1.4.
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1.1 Overview of Motion Planning Problems

Motion planning is a broad problem with many instances. The fundamental prob-

lem of all of its instances is to find valid motions for a robotic system to move from

one robot’s state to another. This problem can be represented in the space of all

possible states of the robot as the problem of finding a valid path between two

points. A valid path means that all parts of the path lies in the robot’s free-space,

i.e., the set of all robot’s states that does not violate any constraints posed by the

motion planning problem at hand. In the rest of this thesis, we use the term robot

in a more general sense, to refer to any object that moves in either a 2D or 3D

Euclidean space.

1.1.1 Types of Motion Planning Problems

The various instances of motion planning problem can be classified into three types,

i.e.,

• Path planning problem.

Path planning is the simplest motion planning problem. It concerns with

finding a collision-free motion, between the given initial and goal configu-

rations, for a robot moving in a static workspace populated by obstacles.

A robot’s configuration is the robot’s parameters that define the position of

each point on the robot. This problem concerns only with the geometric path

of the robot. It assumes that the robot has perfect knowledge about its own

geometry and about the workspace’s geometry. No errors nor uncertainty

about the robot’s location or movement are assumed. So, in path planning,

the robot’s free-space is the set of all configurations that do not cause the

robot to collide with any of the obstacles in the environment. Simply put, a

path planning problem is a purely geometric problem where all information

about the robot and its workspace are a priori known.

Although this problem seems too simplistic, many real world problems sat-

isfy this requirement. A common example in robotics is planning a rough

motion of robots working in an assembly line. In this problem, the geometric
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path is needed as input to the robot’s controller that will handle the kine-

matic and dynamic constraints of the robot. In general, the workspace can

be considered static because the path planner only needs to consider part

of the workspace that is reachable by the robot at the time-frame when the

robot needs to move. Moreover since the assembly line in a factory has been

designed with high precision such that error is negligible, the perfectly known

workspace assumption of path planning is satisfied. Another example is in

assembly maintainability study that ensures certain parts of a machine can

be easily removed for maintenance purposes [Chang and Li, 1995]. The robot

is the machine part. Since the motion for removing the machine part will

be carried out by mechanics, we only need to know the geometric path for

removing it. In this problem, the workspace is the entire machine. So the

workspace is obviously static. In addition, since this study is generally done

in a CAD software, it is safe to assume that the error in the workspace model

is negligible such that the known workspace assumption of path planning is

satisfied.

Moreover in general, planners that work well for solving path planning prob-

lems can be extended to handle more complicated motion planning prob-

lems. For example, the path planners in [Hsu et al., 1999] and [Kuffner and

LaValle, 2000] have been extended successfully to solve more complicated

motion planning problems in [Hsu et al., 2002] and [LaValle and Kuffner,

2001], with only little adjustment. In these extensions, both planners con-

sider dynamic workspace and the robot’s kinematic and dynamic constraints.

The above observations indicate that path planning problem provides a good

testbed for developing new motion planners.

In this thesis, we focus mainly on path planning.

• Motion planning with incomplete information.

In some problems, the workspace may be dynamic. The location of the

obstacles may change over time, making time an important parameter in

assessing the validity of the robot’s motion [Fraichard, 1999]. In other prob-

lems, the workspace may only be partially known or even unknown prior to
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planning. For instance, a robot explorer may need to generate a map of an

old abandoned mine using inputs from its sensors [Thrun et al., 2004]. In

this scenario, the motion planner needs to plan the robot’s motion such that

its sensors can gather the information needed to generate a good map of the

mine. Only parts of the workspace that have been captured by the robot’s

sensors are known to the planner. Futhermore, the workspace information

may be inaccurate. Inaccuracies may come due to noise in the sensors or

inaccuracies in the robot’s movement or the robot’s location when sensing

took place.

Of course scenarios where the workspace is both dynamic and unknown or

only partially known are not rare in real world applications. For instance,

a robot acting as a tour-guide in a museum [Thrun et al., 2000] has to deal

with dynamic and incomplete workspace information due to the museum’s

visitors. Since it is infeasible to know the movement of the visitors a priori,

the robot only has partial information about the museum, i.e., the geometry

of the building and the exhibits. Furthermore, to avoid colliding with the

visitors, the robot gather information about its surrounding using its sen-

sors, which in general is noisy. Hence, its information about the dynamic

and partially known workspace is also inaccurate.

• Motion planning with differential constraints.

Some motion planning problems require the planner to generate not just

geometric paths, but also the velocity and/or control input for the robot.

In this problem, the planner considers not just the robot’s geometry, but

also the more complicated kinematic and dynamic constraints [Choset et al.,

2005]. For instance, certain types of robots, such as a car-like robot, have

non-holonomic constraints [Laumond, 1998]. They can only move forward or

backward, but not left or right directly.

1.1.2 General Approaches to Motion Planning

Many motion planning methods have been proposed. In the beginning, many works

have developed complete motion planners (a summary can be seen in [Latombe,
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1991]). These planners return a path whenever one exists and indicates otherwise

if none exists. They construct an exact representation of the robot’s free-space,

which is infeasible for high-dimensional problems. Hence, these planners are only

applicable to motion planning involving low-dofs robot, i.e., 2-3 dofs.

Since these complete planners are only applicable for low-dofs robot while many

real world applications require robots with more than 3 dofs, several incomplete

planners have been proposed. Many of them are based on the potential field ap-

proach (a summary can be seen in [Latombe, 1991]). This approach divides the

workspace into grids and uses potential function to guide searching for solution.

The goal state is represented as an attractive potential where the potential value

is set to be minimum. Obstacles are represented as repulsive potentials and the

values are set to be infinite. The planner then searches for a solution using gra-

dient descent method, moving towards the minimum of the sum of attractive and

repulsive potentials. These planners can get stuck in a local minima.

To avoid problems with local minima, random sampling is introduced [Bar-

raquand and Latombe, 1990]. Initially, random sampling is only used to es-

cape from local minima. Taking a step further, Probabilistic roadmap planning

(PRM) [Kavraki et al., 1996b] uses random sampling throughout the entire plan-

ning process. It uses uniform random sampling to generate a roadmap that repre-

sents the connectivity of the robot’s free-space. Sampling enables PRM to avoid

the prohibitive cost of generating the exact representation of the robot’s free-space.

This improved efficiency comes at a cost of completeness. PRM is not complete,

but it is probabilistically complete. Probabilistic completeness means that given

enough time, the probability that the planner finds a solution whenever one exists

converges to one. Although PRM is not a complete planner, experimental results

have shown that it is able to solve many motion planning problems involving high-

dofs robots working in complicated workspaces [Kavraki et al., 1996b]. The early

success of PRM has spurred the development of a new class of motion planners

called probabilistic motion planner.

The focus of this thesis is mainly on probabilistic path planning.
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1.2 Probabilistic Path Planning

Probabilistic path planning approach aims to generate practical path planning

algorithms. Practical means that the planner is able to solve real-world path plan-

ning problems within reasonable time. While algorithm means that the planner

has some performance guarantee, which in this case is in the form of probabilistic

completeness. A planner is probabilistically complete if given enough enough time,

the probability that the planner finds a path whenever one exists converges to one.

The main idea of probabilistic path planning is to avoid constructing an explicit

representation of the robot’s free-space. Instead, it uses sampling to construct a

graph, called a roadmap, as an extreme simplification of the robot’s free-space.

Although works in probabilistic

Figure 1.1: An illustration of narrow passage.
The robot’s free-space is colored light yellow.

path planning (a summary can be

seen in [Choset et al., 2005]) have

shown the potential of this approach

in solving many real-world path plan-

ning problems, the performance of

probabilistic path planners remain

poor when the robot’s free-space con-

tains narrow passages. A narrow

passage is a small region in the robot’s

free-space whose removal changes the

connectivity of the free-space (an il-

lustration is shown in Figure 1.1). In probabilistic path planning, the problem of

capturing the correct connectivity of the robot’s free-space when the space contains

narrow passages is called the narrow passage problem.

To solve a narrow passage problem, adequate sampling of narrow passages

regions is crucial. Since narrow passages have small volume, adequate sampling of

narrow passages is difficult, unless the planner is able to identify the location of

the narrow passages and then bias sampling towards the narrow passages regions.

However, identifying the location of narrow passages is itself a difficult problem
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because the planner does not have an explicit representation of the robot’s free-

space and constructing such an explicit representation requires prohibitive amount

of time [Latombe, 1991].

Unfortunately, narrow passages are not rare in real world path planning prob-

lems, for example, mobile robots need to pass through narrow corridors or doors

while manipulator robots need to insert a peg to a hole. Moreover, due to the curse

of dimensionality, as the robot’s dofs increases, the size of the narrow passages tend

to become smaller and hence the narrow passage problem becomes more severe.

Furthermore, although previous works on probabilistic path planning has gen-

erated two types of planners, i.e., multi-query planners and single-query planners,

both types of planners face similar difficulties with narrow passages in the robot’s

free-space [Kavraki et al., 1996b,Cheng et al., 2006]. The two types of planners

differ in their objective. The objective of multi-query planner is to quickly an-

swer many queries on the same robot-workspace scenario. It pre-processes the

workspace and the robot to generate a graph that represents the robot’s free-space

reliably. Once the graph is generated, many queries can be answered quickly us-

ing efficient graph search method. Single-query planners focus on answering one

query as fast as possible, by biasing sampling based on the given initial and goal

configurations. This type of planners are useful when only a few queries need to be

answered in each robot-workspace scenario. Despite the above differences, the two

types of planners use sampling to capture the correct connectivity of the robot’s

free-space for multi-query planners or to capture the correct connectivity of sub-

set of the robot’s free-space that is needed to solve a given query for single-query

planners. Hence, both types of planners face similar difficulties when the robot’s

free-space contains narrow passages.

1.3 Problem Scope and Main Contributions

This thesis focuses on the narrow passage problem in multi-query probabilistic

path planning. In particular, the goal of this thesis is to find better sampling

strategies to improve the performance of current multi-query probabilistic path
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planners in solving narrow passage problems.

Although many sampling strategies [Amato et al., 1998,Boor et al., 1999,Cheng

et al., 2006,Foskey et al., 2001,Holleman and Kavraki, 2000,Sun et al., 2005] have

been proposed to improve probabilistic path planning in solving narrow passage

problem, the narrow passage problem remains open. Furthermore, despite the

many sampling strategies that have been proposed, little is known of the role

of probability in probabilistic path planning. While understanding the role of

probability in probabilistic path planning may give hints on how to generate a

more suitable sampling strategy, prior works on probabilistic path planning tend

to take probability for granted.

In this thesis, we start by performing an empirical study to understand the

role of probability in probabilistic path planning. We articulated the distinction

between two main components of random sampling, i.e., sampling distribution

and sampling source, which has been blurred in previous works on probabilistic

path planning. By articulating this distinction, we are able to explore ways on

improving current probabilistic path planners in a more structured manner. This

distinction and our empirical study clarify the importance of sampling distribu-

tion to the overall performance of probabilistic path planning. Our study indicates

that suitable sampling distribution depends on the visibility property of the robot’s

free-space. Furthermore, it suggests that utilizing workspace information and gen-

erating dynamic sampling distribution are two potential avenues for improving

current probabilistic path planning in solving narrow passage problem.

Utilizing the results of our empirical study, we propose two new probabilistic

path planning, called Workspace Importance Sampling (WIS) and Workspace-

based Connectivity Oracle (WCO). Both planners exploit workspace information

to generate a more suitable sampling distribution.

WIS is a simple workspace-based sampling strategy. It is used mainly as a

tool to explore the use of workspace information in generating suitable sampling

distribution for probabilistic path planning. Intuitively, a narrow passage in the

robot’s free-space means that the robot is surrounded by obstacles that lie close to

each other in the workspace, such that a little displacement of the robot causes it
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to collide with one or more obstacles in the workspace. So to bias sampling towards

narrow passages regions, WIS uses distance between obstacles in the workspace to

construct a static sampling distribution. Our experimental results show that this

simple sampling strategy is comparable to recent probabilistic path planner that

has been shown to perform well. Our analysis shows that WIS is probabilistically

complete. Furthermore, under certain conditions that often happen when the robot

moves inside a narrow region in the workspace, WIS has a lower upper bound on

its failure probability, compared to the basic-PRM.

To understand the use of workspace information further, we explore the relation

between the visibility property of the robot’s free-space and the workspace. In

this thesis, we show that under certain conditions that do not depend on the

dimensionality of the robot’s free-space, the visibility sets of configurations in the

robot’s free-space are “bounded” by the visibility sets of the corresponding points in

the workspace. This relation indicates that workspace information can be used to

estimate the visibility property of the robot’s free-space. Since our initial empirical

study has indicated that suitable sampling distributions depend on the visibility

property of the robot’s free-space, workspace information can potentially be used

for generating suitable sampling distributions for probabilistic path planning.

WCO uses workspace information along with sampling history and the current

state of the roadmap to generate a dynamic sampling distribution. Workspace

information provides a rough global view of the connectivity of the robot’s free-

space. While sampling history provides local information about the geometry of

the robot’s free-space. Combining this two complementary information enable

WCO to generate a more suitable sampling distribution for the problem at hand.

Furthermore, dynamic sampling distribution allows the planner not to waste re-

sources for over-sampling well represented regions of the robot’s free-space. WCO

consists of multiple component samplers. Each sampler estimates workspace re-

gions that are more likely to improve the connectivity of the current roadmap and

assigns higher sampling density to subsets of the robot’s configuration space that

correspond to these workspace regions. Sampling history is then used to favor sam-

plers that have been performing well in the past. Our analysis shows that WCO
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is probabilistically complete. Furthermore, when its estimation satisfies a certain

criteria, the upper bound on the failure probability of WCO is lower than that of

the basic-PRM. Our experimental results show that WCO performs significantly

faster than recent probabilistic path planner that has been shown to perform well.

Furthermore, as the dimensionality of the robot’s configuration space increases,

WCO’s performance decreases slower than other recent probabilistic path planner.

We have also successfully implemented WCO in a simulated bridge inspection

scenario involving a 35-dofs robot.

In short, this thesis shows that workspace provides useful information for gen-

erating suitable sampling distributions, which is critical for improving the per-

formance of probabilistic path planning in narrow passage problem. The main

contributions of this thesis are as follows,

1. Articulation of the distinction between two main components of random

sampling, i.e., sampling distribution and sampling source, in probabilistic

path planning.

2. Effective method for exploiting workspace information which leads to new

probabilistic path planners that significantly improve the performance of

recent probabilistic path planner in solving narrow passage problems.

1.4 Outline

This thesis shows that workspace provides useful information for generating suit-

able sampling distributions, which then speed-up current probabilistic path plan-

ners in solving narrow passage problems.

We start by presenting our exploration on ways to improve current probabilistic

path planning in solving the narrow passage problem in Chapter 2. In this chapter,

we articulate the distinction between two main components of random sampling,

i.e., sampling distribution and sampling source, in probabilistic path planning.

This articulation enables us to explore strategies for improving probabilistic path

planning in solving the narrow passage problem in a more systematic way. We then

present our hypothesis on the role of sampling distribution in probabilistic path
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planning and present an empirical study that shows the importance of sampling

distribution in probabilistic path planning. Furthermore, this study indicates that

suitable sampling distribution depends on the visibility property of the robot’s free-

space. We end this chapter by suggesting that utilizing workspace information and

generating dynamic sampling distribution are two possible avenues for improving

current probabilistic path planners in solving narrow passage problems.

We continue by exploring the use of workspace information to generate suit-

able sampling distributions for probabilistic path planing in Chapter 3. For this,

we explore the relation between the visibility property of the robot’s free-space

and that of the workspace. And then present a simple workspace-based sampling

strategy, called Workspace Importance Sampling (WIS).

Next in Chapter 4, we present the core of this thesis, a new probabilistic path

planner called Workspace-based Connectivity Oracle (WCO) that uses workspace

information to generate dynamic sampling distribution. WCO consists of multiple

samplers where each sampler uses workspace information to generate a dynamic

sampling distribution. The multiple samplers are combined using adaptive hybrid

sampling approach. So to understand WCO better, we further explore adaptive

hybrid sampling approach in Chapter 5.

Finally, we present the conclusion and possible future work of this thesis in

Chapter 6.



Chapter 2

The Role of Probability in

Probabilistic Path Planning

In this chapter, we present an empirical study on the importance of sampling dis-

tribution in probabilistic path planning. We articulate the distinction between

sampling distribution and sampling source, which has been blurred in probabilis-

tic path planning literature. By doing so, we are able to clarify the importance of

sampling distribution in probabilistic path planning. This study indicates that a

suitable sampling distribution is critical for the success of probabilistic path plan-

ning because it represents the uncertainty that arises from our lack of information

on the shape of the robot’s configuration space. Furthermore, this study suggests

that utilizing workspace information and generating dynamic sampling distribu-

tions are two possible avenues for improving current probabilistic path planners in

solving narrow passage problem.

We start with a short description of configuration space, i.e., a framework to

represent path planning problem, in Section 2.1. This framework is crucial for the

development of probabilistic path planners. We then continue with an overview

of probabilistic path planning in Section 2.2. In Section 2.3, we present our hy-

pothesis on the role of probability in probabilistic path planning. We then present

systematic experimental results that show the importance of sampling distribu-

tion in probabilistic path planning in Section 2.4. Next, we present a guideline on

what the desired sampling distribution is in Section 2.5 and a literature review on

13
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various sampling strategies for probabilistic path planning in Section 2.6. Finally,

we end this chapter by presenting possible directions to improve probabilistic path

planning in solving narrow passage problem.

2.1 Configuration Space

X

Y

4

3
α = π/6

(a) Rigid body robot.

X

Y

α1 = π/6

α2 = π/2

(b) Articulated robot.

Figure 2.1: Illustration of a robot’s configuration. The black dot is the origin of
the frame attached to the the rigid body(ies) that constructs the robot.

A configuration of a robot is a set of parameter values that specifies the position

of every point of the robot in the workspace. For example, for a polygonal rigid

body robot in Figure 2.1(a), (x = 4, y = 3, α = π/6) is a configuration of the

robot. While for an articulated robot in Figure 2.1(b), (α1 = π/6, α2 = π/2) is a

configuration of the robot.

Configuration space C of a robot is then the set of all possible configurations of

the robot. The dimension of C, denoted as dim(C), is the same as the number of

degrees of freedom (dofs) of the robot, and is defined as the minimum number of

parameters that uniquely specifies each configuration of the robot. A robot’s con-

figuration may have many parameterization. For example, a polygonal rigid body

robot can be parameterized by the (x, y)-coordinate of its center of mass and the

orientation, or by the (x, y)-coordinates of two different points on the robot. How-

ever, these are just different representations of the same abstract C. The dimension

of C is computed based on the number of parameters in the parameterization that

uses the least number of parameters. So, in the above example, regardless of the
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parameterization used, the robot has 3-dofs and dim(C) = 3.

The configuration space C consists of two subsets, i.e., the free-space F and

its complement the forbidden region C\F . The free-space is the set of configu-

rations that place the robot such that it does not collide with any obstacles in

the workspace. In other words, the configurations in F place each point of the

robot in the workspace free-space WF , i.e., regions of the workspace that are not

occupied by any of the obstacles. So in C, the path planning problem, i.e., find-

ing a collision-free path for a robotic system working in a workspace occupied by

obstacles, is reduced to finding a path for a point in F .

(a) (b)

Figure 2.2: Illustration of a robot’s configuration space. (a) The robot in its
workspace. The robot is the green triangle with the vertex in bottom left as
the origin of the robot’s frame. It can only translate. The obstacles are the red
rectangles. (b) The corresponding configuration space C. The robot’s free-space
F is colored light yellow while the forbidden region C\F is colored light green.

Although for a simple robot, constructing the exact representation of F can

be done efficiently by Minkowski difference computation (see Figure 2.2 for an

example), for a more general robot, constructing an exact representation of F

may be impractical. For instance, if we slightly increase the complexity of the

polygonal robot in Figure 2.2(a) such that it can translate and rotate, we need

to discretize the angle and then construct the Minkowski difference for each angle

value. As expected, construction of an exact representation of F becomes even

more complicated and takes prohibitive amount of time as dim(C) increases.
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F

R

C\F

Figure 2.3: The roadmap R. The milestones are shown as small red disks. Two
milestones are connected by an edge whenever the straight-line segment connecting
the two milestones are collision-free. The robot’s free-space F is colored light yellow
while the forbidden region C\F is colored light green.

2.2 Overview of Probabilistic Path Planning

The main idea of probabilistic path planning [Kavraki et al., 1996b] is to avoid

constructing an exact representation of F , by constructing a graph, called roadmap

R, which is a 1-dimensional representation of the connectivity of F . The nodes in

R are configurations q ∈ F and are often called milestones. The edges are paths

in F that connect two milestones together.

To generate milestones and edges of R without constructing an exact rep-

resentation of F , a probabilistic planner uses two inexpensive primitives, i.e.,

FreeConf(q) and FreePath(q, q′), for probing the geometry of F . The first prim-

itive FreeConf(q) returns true if and only if q ∈ F . It checks whether the robot

placed at q collides with any of the obstacles in the workspace. The second prim-

itive FreePath(q, q′) returns true if and only if the edge between q and q′ is

collision-free, i.e., the straight line segment qq′ ∈ F . It checks whether the robot

can move according to the configurations in qq′ without colliding with any of the

obstacles in the workspace. A survey of exact algorithms that can perform the two

primitives fast, even for workspace with large and complicated geometry, can be

found in [Lin and Manocha, 2004].

To construct R, the planner samples the robot’s free-space F according to a

particular distribution. To generate samples in F , the planner samples configura-

tions from C and then use FreeConf to check whether the sampled configurations
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are collision-free or not. Every time a collision-free configuration is sampled, the

planner inserts the configuration to the current roadmap R. To insert a configura-

tion to R, it first adds the new configuration as a milestone in R. Then, it tries to

connect the new milestone to other existing milestones in R to generate the edges

of R. An overall algorithm is shown in Algorithm 2.1.

The program receives a set of queries Q as input. Each element in Q is a

query represented as a 2-tuple < qi, qg > of initial qi and goal qg configurations.

Furthermore, we set the maximum number of milestones in a roadmap to avoid the

planner from running forever, because probabilistic planners cannot tell whether

a given query is actually solvable or not. The program stops whenever all queries

have been solved or the number of milestones in the roadmap has reached the

maximum. The procedure AllSolved tests whether all the given queries have

been solved. It returns a list of paths Ψ where each element of Ψ is a solution to

a query configuration.

The procedure Sample samples a configuration from C. The basic-PRM [Kavraki

et al., 1996b] uses uniform random sampling over C and as we will soon see in Sec-

tion 2.6, there can be many ways to sample C. The main objective of the various

sampling strategies that have been proposed is to improve the performance of

probabilistic path planning in solving narrow passage problem.

Despite the success of probabilistic path planning in solving many real-world

path planning problems (e.g., [Chang and Li, 1995, Kavraki et al., 1996b, Koga

et al., 1994]), narrow passage problem remains open. As discussed in Section 1.2,

narrow passage problem is the problem of capturing the correct connectivity of the

robot’s free-space F when F contains narrow passages, i.e., small regions whose

removal changes the connectivity of F . Previous works have formally articulated

narrow passage in terms of the visibility property of F (a short overview is pre-

sented in Section 2.5). A configuration q′ ∈ F is visible from another configuration

q ∈ F whenever the straight line segment qq′ between q and q′ lies entirely in F .

And a subset F1 of F is visible from another subset F2 of F whenever each config-

uration in F1 is visible from each configuration in F2. Intuitively, narrow passage

problem happens when a large subset of a path-connected component F ′ of F is
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Algorithm 2.1 Probabilistic path planning(Q, N , D, maxNeigh)

1: repeat
2: Sample(q)
3: if FreeConf(q) returns true then
4: Add q as a new milestone in R.
5: Neighm ← sorted list of milestones inR within D distance from m, sorted

ascendingly based on the distance to m.
6: nNeigh = 0
7: i = 1
8: while nNeigh < maxNeigh and Neighm[i] is not end-of-list do
9: if Neighm[i] and m belong to different connected components of R

then
10: if FreePath(Neighm[i], m) returns true then
11: Add an edge between Neighm[i] and m in R.
12: Increment nNeigh by 1.
13: Increment i by 1.
14: until AllSolved(Q, R, Ψ) is true or R contains N milestones.
15: Return Ψ.

visible only from a small region of F ′.

Solving narrow passage problem within reasonable time is crucial, as this prob-

lem often occurs in real-world path planning problems and the problem tends to

become more severe as the number of dofs of the robot increases. In the rest of this

chapter, we explore the role and importance of sampling distribution in order to

find potential avenues for generating a more suitable sampling strategy to improve

the performance of probabilistic path planning in solving narrow passage problem.

2.3 The Role of Probability in Probabilistic Path

Planning

Although many sampling strategies have been proposed and previous studies have

shown that different sampling strategies may drastically change the performance of

probabilistic path planning, it is not clear why. It is not even clear why probability

is needed in probabilistic path planning, considering that there are no inherent

uncertainty in a path planning problem. Furthermore, although understanding

the role of sampling distribution may give hints on how to improve probabilistic

path planning further, little work has done so. In this section, we present a possible
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explanation on the role of sampling distribution in probabilistic path planning.

Despite the absence of inherent uncertainty in path planning problems, prob-

abilistic planners never know the exact shape of F . It implicitly maintains many

hypotheses about the shape of F that are consistent with the current roadmap.

Suppose H is the set of all consistent hypotheses. Constructing a roadmap is

then the same as pruning out wrong hypotheses from H until the ones left behind

can solve the given queries. Each sampled configuration reveals some informa-

tion about F and hence prunes some wrong hypotheses from H. Different sample

prunes different subset ofH. And the amount of queries that can be solved because

of the pruning may differ, too. Obviously, it is preferable to sample configurations

such that the planner quickly reaches the set of hypotheses that can solve the

given queries. Probabilistic path planning uses probability to reflect its belief on

how useful the pruning generated by the configurations are. Hence, probability in

probabilistic path planning is used to represent the uncertainty that comes from

the planner’s lack of information about the exact shape of F .

Let’s now make the notion of hypothesis more concrete. A hypothesis H on

the shape of F is a binary relation over F where (q, q′) ∈ H means that according

to the hypothesis, configurations q and q′ lie in the same connected component

of F . A roadmap R represents a binary relation over F , too. Let’s denote the

binary relation represented by R as R. Then, (q, q′) ∈ R means that there exists

milestones m and m′ in R such that q and q′ lie in the visibility set of m and m′

respectively (i.e., the straight line segments qm and q′m′ lie entirely in F), and

both m and m′ belong to the same connected component of R. We can then define

a consistent hypothesis as follows,

Definition 2.1 A hypothesis H is consistent with roadmap R that represents bi-

nary relation R whenever R ⊆ H.

Let’s denote the set of all consistent hypotheses as H. In terms of hypothesis,

a query between two configurations q and q′ is solved whenever all hypotheses

in H agrees, i.e., all hypotheses in H contains (q, q′). At any moment during

planning, there are many consistent hypotheses. For instance, at the beginning

when no milestone has been inserted to R, any hypothesis is consistent with R.
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As roadmap construction progresses, more information about F are known, less

hypotheses are consistent with the roadmap, and more queries can be solved. The

set of queries solved(H) that can be solved by H can then be defined as follows,

Definition 2.2 Suppose H is the set of all hypotheses consistent with roadmap R

and R is the binary relation represented by R. Then, the set of queries solved(H)

that can be solved using H is solved(H) =
⋂

∀H∈H H = R.

Generating a good roadmap fast means that one would like to quickly converge

to H with the largest set of solvable queries. Ideally, one would like to quickly find

the smallest set of milestones that generates a roadmap where its corresponding

set of consistent hypotheses H has the largest set of solvable queries. However,

since the exact F is unknown, probabilistic path planning uses sampling distribu-

tion to represent its belief on which configurations are more likely to cause fast

convergence.

2.4 How Important Sampling Distribution is?

Now that we have a possible explanation on the role of sampling distribution in

probabilistic path planning, the question remains as to how important is sampling

distribution in probabilistic path planning? To answer this question, we first clarify

the distinction between two main components of random sampling, i.e., sampling

distribution Pr and sampling source Sr. Sampling distribution is the probability

used for sampling points from the configuration space C. For instance, the sam-

pling distribution of the basic-PRM is uniform, which means the planner samples

points from every parts of C equally likely. Sampling source Sr specifies how to

generate uniformly distributed random number, which will then be used to gener-

ate random samples according to a particular distribution Pr. For instance, the

sampling source in the basic-PRM is pseudo-random number generator. Although

the distinction between sampling distribution and sampling source seems obvious,

previous works on probabilistic path planning have blurred this distinction.

By articulating the distinction between sampling distribution and sampling

source, it becomes clear that recent work [LaValle et al., 2004], that has started to
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become a trend in probabilistic path planning, argues that by modifying sampling

source, we can significantly improve the overall performance of the planner. They

argue for the use of quasi-random number generator, instead of pseudo-random

number generator, as the sampling source. We will present a more elaborate ex-

planation and a short survey on quasi-random number generator and sampling

strategies that use quasi-random number generator in the next section. But be-

fore that, to assess the importance of sampling distribution, below we present an

empirical study that compares the effect of improving sampling distribution and

improving sampling source to the overall performance of the planner.

The implementation details and experimental setup of our empirical study are

presented in Section 2.4.1. The results and discussion are presented in Section 2.4.2.

To ease later discussions, let’s denote a sampling strategy as a pair of sampling

distribution and sampling source (Pr, Sr).

2.4.1 Implementation Details and Experimental Setup

Figure 2.4: The sampling strategies used for comparing the effect of sampling
distribution and sampling source to the overall performance of the planner.

To assess the significance of sampling distribution and sampling source in prob-

abilistic path planning, we compare the performance of six different sampling

strategies in solving narrow passage problem. The six sampling strategies are

combinations of two different sampling distributions and three different sampling

sources (Figure 2.4 illustrates the combination). For sampling distribution, we use

uniform distribution [Kavraki et al., 1996b] and Gaussian strategy [Boor et al.,

1999]. Uniform distribution, denoted as U , is used as a comparator. While Gaus-



22 Chapter 2

sian strategy, denoted as G, is used because of its simplicity. In short, Gaussian

strategy assigns higher sampling density to configurations near the boundary of

the free-space. It samples a configuration in two stages. First, it samples a collision

configuration q. Then it samples another configuration q′, where the distance be-

tween q and q′ is sampled based on a Gaussian distribution centered at q. A more

elaborate explanation of Gaussian strategy is presented in Section 2.6.1. For sam-

pling source, we use pseudo-random number, Halton sequence [Niederreiter, 1992],

and incremental discrepancy-optimal sequence [Lindemann and LaValle, 2003] to

represent the various sampling sources Sr. Pseudo-random number, denoted as

ran, is used as a comparator. While Halton sequence, denoted as hal, and in-

cremental discrepancy-optimal, denoted as opt, are used because they have been

shown to perform well and better than other quasi-random sequence in solving

path planning problems [LaValle et al., 2004]. A more elaborate explanation on

these sampling sources are presented in Section 2.6.2. To assess the effect of sam-

pling distribution and sampling source to the overall performance of the planner,

we will compare the performance of the six combinations of (U , ran), (G, ran),

(U , hal), (G, hal), (U , opt), and (G, opt) on several path planning problems that

require the robot to pass through one or more narrow passages.

The planner and all its sampling strategies are implemented using C++, based

on the algorithm presented in Algorithm 2.1. Our implementation assumes that

the workspace and C are normalized. The pseudo-random number generator is

based on the code provided in http://www-cs-faculty.stanford.edu/~knuth/

programs/rng-double.c, while the quasi-random number uses the code provided

in http://msl.cs.uiuc.edu/~slindema/sampling/. Implementation details of

the primitives, i.e., FreeConf, FreePath, and AllSolved are presented in Ap-

pendix A.

The implementation of Gaussian strategy with quasi-random source, i.e., (G,

hal) and (G, opt), needs more elaboration to ensure that we do not introduce ad-

ditional bias due to the use of two random numbers for every sample of Gaussian

strategy. Note that there has not been any prior works on non-uniform measure,

including Gaussian strategy, with quasi-random source before. To reduce the pos-
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sibilities of additional bias, for the experiments in this chapter, we slightly modify

the Gaussian strategy presented in [Boor et al., 1999] such that the second con-

figuration is sampled independently for each dimension. In other chapters, we

implemented Gaussian strategy as presented in [Boor et al., 1999]. The algo-

rithm for Gaussian strategy used in this chapter is shown in Algorithm 2.2. We

implement two independent copies of the deterministic source, one for sampling q

(step 2 of Algorithm 2.2) and the other for sampling q′ (step 4 of Algorithm 2.2).

Each of them advances independently. As an illustration, suppose we want to get

2 milestones and suppose Sr1 = {sr1
1, sr

2
1, sr

3
1 . . .} and Sr2 = {sr1

2, sr
2
2, sr

3
2 . . .} are

2 independent sequences of the deterministic source. To get a milestone, we need

to sample an in-collision configuration for q and a collision-free configuration for

q′. We use Sr1 for sampling q and Sr2 for sampling q′. For the first milestone,

we sample q using Sr1 starting from sr1
1 and q′ using Sr2 starting from sr1

2, until

we get q and q′ such that q is in-collision and q′ is collision-free. Note that in

general, the index in Sr1 advances faster than that in Sr2 because we will not

sample q′ unless the sampled q is in-collision (see Algorithm 2.2). Suppose we get

the first milestone when q is sr8
1 and q′ is f(s4

2) where f is a transformation that

transforms uniform distribution to Gaussian distribution. To sample the second

milestone, we follow the same procedure and continue using Sr1 and Sr2 to sample

q and q′ respectively. So, the only difference is that we use Sr1 starting from sr9
1

instead of sr1
1 and we use Sr2 starting from sr5

2 instead of sr1
2. In transforming de-

terministic random numbers from uniform distribution to Gaussian distribution,

we need to preserve discrepancy [Niederreiter, 1992]. Therefore, we use Moro’s

inversion [Moro, 1995] instead of the commonly-used Box-Mueller conversion.

Algorithm 2.2 Gaussian Strategy(σ).

1: loop
2: q = a random configuration from a uniform distribution.
3: if FreeConf(q) returns false then
4: q′ = a random configuration where each dimension-i of q′ is sampled from

a Gaussian distribution with mean q[i] and standard deviation σ.
5: if FreeConf(q′) returns true then
6: Save q′ as a milestone in the roadmap.

We use the Euclidean distance metric in all our experiments. One may argue
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that different distance metric may generate different results as one of the proposed

criteria, i.e., dispersion, for good sampling source (surveyed in Section 2.6.2) is

based on distance metric. However in terms of sampling, the idea of modifying

the distance metric is the same as the idea of modifying the sampling distribution.

Both try to bias sampling towards regions where valid configurations are more

difficult to sample. This idea is quite different from the idea of modifying the

sampling source, which is to spread the samples as “evenly” as possible in the

space.

For strategies with pseudo-random source, the results in each scenario are aver-

aged over 30 independent runs. For strategies with quasi-random source, we only

need to run once for each scenario because the results are deterministic. Each run

were terminated once all the given queries have been solved. The experiments were

conducted on a PC with Intel Pentium 4 processor 3GHz and 1GB RAM.

2.4.2 Experimental Results

One main objective in improving probabilistic planning is to improve its perfor-

mance in solving narrow passage problem and to increase the number of dimensions

a motion planner can handle well.

As the visibility property of F worsen

To assess the significance of sampling distribution and sampling source in solving

narrow passage problems, we test how changing the measure and the source affect

the planner’s performance as the narrow passage problem becomes more severe.

For this, we construct an environment with varying size of narrow opening. When

the opening becomes narrower, the visibility set of the points inside the passage

becomes smaller. And hence the visibility property of F worsen.

We compare the six sampling strategies on the scenarios shown in the left-most

side of Figure 2.5. In scene-1, the robot is a point robot. It has to pass through the

narrow corridor in-between the two obstacles in order to solve the given query. To

vary the visibility property of F , we use varying corridor width, i.e., 0.03, 0.025,

0.02, 0.015, and 0.01. The results are beside scene-1 in Figure 2.5. The table
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Figure 2.5: Scenarios and results of sampling distribution vs sampling source in
solving narrow passage problem.

shows the speed-up of the different sampling strategies over (U, ran) in building a

roadmap that can answer the given query when the corridor width is 0.03. And

the chart shows the time required as the corridor width decreases. For strategies

with pseudo-random number generator as the sampling source, the results are the

average results of the 30 runs.

The three indistinguishable curves bundled together at the bottom of the plot

correspond to Gaussian strategies with various sampling sources. The results show

that as the narrow passage problem becomes more severe, improving the sampling

distribution generates a much higher improvement on the overall performance of

the planner, compared to improving the sampling source. This is reasonable be-

cause as the narrow passage problem becomes more severe, in general more mile-

stones are needed to solve the problem. When the number of milestones is large,
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the milestones generated by different sampling sources but same sampling dis-

tribution lie in roughly the same parts of F , while the milestones generated by

different sampling distributions are spread differently. Hence, when the number of

milestones is large, the difference in milestones placement generated by different

sampling distributions is much more significant than that generated by different

sampling source. As a result, as the narrow passage problem becomes more se-

vere, the difference in the overall performance of sampling strategies with different

sampling distribution is significantly more than that of sampling strategies with

different sampling sources.

Similar results have been obtained in a more realistic example, e.g., scene-2

where a six-dofs robot manipulator needs to access the bottom of a car through a

narrow slot between the lift supports. These results indicate that sampling distri-

bution plays the critical role in determining the overall efficiency of the planner.

As the dimension of C increases

Another objective of improving probabilistic planning is to increase the number

of dimensions dim(C) of C that can be handled by the planner well. For this, we

ran two sets of tests. First, illustrated as scene-3 in Figure 2.6, we vary dim(C)

directly. We generate C with two wide-open space separated by a passage. Each

wide-open space occupies 1/3 of the total volume of C. While the passage occupied

(1/3)dim(C) of the total volume of C. So, as dim(C) increases, the relative volume

of the passage that connects the space in the left and right sides of the obstacles

decreases. We vary the dimension from two to eight. The second test, illustrated

as scene-4 in Figure 2.6, varies dim(C) by varying the number of links of a planar

snake-like robot. In this scene, a planar snake-like robot has to move from a wide

open space in the left to a wide-open space in the right, passing through a passage

in-between the two obstacles. We increase the number of links of the robot from

one to six, generating C with dimensions from three to eight.

The results are shown beside the corresponding scenes in Figure 2.6. These

results show that as dim(C) increases, the computation cost of all three Gaussian

strategies increase slower than that of any of the strategies with uniform measure.



Section 2.4 27

1/3 1/3 1/3

1/3

qi

qg

0

20

40

60

80

100

120

2 3 4 5 6 7 8
dim(C )

tim
e 

(s
ec

on
ds

)

 (U, ran) 

 (U, hal) 

 (U, opt) 

 (G, ran) 

 (G, hal) 

 (G, opt) 

scene-3 results of scene-3

qi qg

scene-4 results of scene-4

Figure 2.6: Scenarios and results of sampling distribution vs. sampling source as
dim(C) increases.

This again indicates that sampling distribution is the more dominant factor in

determining the overall efficiency of the planner.

The similar trends between the results in Figure 2.6 and the results for scene-1

in Figure 2.5 are not surprising, as both generate similar effect on the visibility

property of F . As in decreasing corridor width, increasing dim(C) worsen the

visibility property of F . The scenario in scene-3 shows that although the length

of the passage in each dimension remains the same, i.e., 1/3, increasing dim(C)

reduces the relative volume of the passage. Which means, the relative size of

the visibility set of the points inside the passage is reduced too. And hence,

the visibility property of F worsen. Therefore, more milestones are needed to

solve higher dimensional problems. And just as the case with our experiments

with scene-1 and scene-2, the difference in the overall performance of sampling

strategies with different sampling distribution is significantly more than that of
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sampling strategies with different sampling sources.

Since sampling distribution turns out to have a more significant role on the

overall performance of probabilistic path planning, for the rest of this thesis, we

will focus on sampling distribution. Furthermore since quasi-random number does

not show any significant advantage, the difficulty of generating various sampling

distributions using quasi-random source discourages us from using quasi-random

number generator as the sampling source Sr. So, for the rest of this thesis, we will

use off-the-shelf pseudo-random number generator as a black-box for the sampling

source.

2.5 The Desired Sampling Distribution

Despite the many works in narrow passage problem, the ideal sampling distribution

for overcoming the problem remains obscure. However, the results of formal analy-

ses [Kavraki et al., 1995,Kavraki et al., 1996a,Švestka, 1996,Hsu et al., 1997,Ladd

and Kavraki, 2004, Chaudhuri and Koltun, 2007] on the performance of proba-

bilistic path planning give us insights on what the desired sampling distribution

is. Intuitively, the desired sampling distribution assigns high sampling density to

regions of the free-space F with small visibility set and vice-versa. A configuration

q′ ∈ F is in the visibility set of another configuration q ∈ F whenever the straight

line segment qq′ between q and q′ lies entirely in F . Before discussing the desired

sampling distribution further, we first present a brief survey on the formal analyses

on the performance of probabilistic path planning.

Intuitively, the performance of probabilistic path planners depends critically

on the quality of the roadmap R it generates. A good roadmap has two important

properties, i.e., adequate coverage and correct connectivity. Adequate coverage

means that for any configuration q ∈ F , there is a collision-free straight-line path

between q and a milestone in R with high probability. Correct connectivity means

that for any two milestones of R that lie in the same connected component of F ,

they must also be connected by a path in R. If R does not satisfy any of the

two properties above, the planner will generate false negative for many queries.
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Several works [Kavraki et al., 1995,Kavraki et al., 1996a, Švestka, 1996,Hsu et al.,

1997,Ladd and Kavraki, 2004,Chaudhuri and Koltun, 2007] have tried to formally

articulate the above intuition. In general, all of these articulations are based on

some notion of the visibility property of the robot’s free-space F .

In [Kavraki et al., 1995] and [Švestka, 1996], the number of milestones needed

by the basic-PRM to generate a roadmap that adequately covers F is defined in

terms of the volume of the smallest visibility set of a point in F . This property

is referred to as the ε-goodness property. The ε-goodness notion is extended to

expansiveness in [Hsu et al., 1997] to define the performance of the basic-PRM in

both covering and capturing the connectivity of F . It analyzes the performance

in terms of the volume of the visibility set and the volume of the lookout region.

Intuitively, a lookout region of a subset G ⊆ F ′ of a connected component F ′

of F is the region of F ′\G that is visible from the points in G. The connected

component F ′ where the smallest visibility set and lookout regions are relatively

large, compared to the volume of F ′, can be well represented by a roadmap with

smaller number of milestones. We will call such regions as regions with favourable

visibility property.

Instead of analysing the shape of F , another analysis [Kavraki et al., 1996a]

focuses on analyzing the property of the path between two configurations. It

defines the probability that the basic-PRM finds a path between the given query

in terms of the length of the path and the distance between the path and its nearest

obstacle. This work has been extended to be applicable for analyzing probabilistic

planner with any sampling distribution and not just uniform distribution in [Ladd

and Kavraki, 2004]. Although it does not explicitly use the visibility property of

F , the distance between a point to its nearest obstacle is related to the volume of

the visibility set of F . If the distance from a point to its nearest obstacle is large,

then the visibility set of this point must be large too.

Recently, smoothed analysis has been used to analyze the performance of the

basic-PRM [Chaudhuri and Koltun, 2007]. Smoothed analysis computes the worst

case over inputs of the expected running time of an algorithm under random per-

turbation of the inputs. Suppose C is an n-dimensional Euclidean space where
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the forbidden regions are polyhedra bounded by k (n − 1)-simplices whose ver-

tices are perturbed by Gaussian distribution with variance σ2. Then, the num-

ber of samples needed to construct an accurate roadmap is polynomial in k and

1
σ
. Since the smoothly perturbed free-space can be conjectured as an expansive

space [Chaudhuri and Koltun, 2007], the results of this analysis is related to the

visibility property of F too.

The above results indicate that narrow passages are regions of the robot’s free-

space F with poor visibility property. Intuitively, F has poor visibility property

when there is a path-connected component F ′ in F where a large subset of F ′ is

visibile from only a small region of F ′. These analyses show that more milestones

are needed to generate a good roadmap when F has poor visibility property and

vice-versa. To find a desired sampling distribution, one can utilize the above

results by thinking of partitioning F into subsets and computing the number of

milestones needed to generate a good roadmap in each subset. The normalized

number of milestones computed for each subset indicates the desired sampling

distribution for the particular subset of F . To simplify, we can use a sufficient

condition that if a subset F ′′ has smaller visibility set, then more milestones are

needed to generate a good roadmap in F ′′. So intuitively, the desired sampling

distribution assigns higher sampling density to subsets of F with smaller visibility

set.

The above intuition of the desired sampling distribution is strengthen by several

empirical studies [Geraerts and Overmars, 2002, Geraerts and Overmars, 2005,

Morales et al., 2006] that have empirically compared the performance difference

between various sampling strategies and by our own empirical study presented in

Section 2.4. The results of those empirical studies suggest that in narrow passage

problem, sampling strategies that vary their sampling distributions based on an

estimated size of the visibility set of the robot’s free-space tend to outperform

those that do not.

In the next section, we present a short survey on the various sampling strategies

that have been proposed to alleviate the narrow passage problem.
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2.6 Sampling Strategies in Probabilistic Path Plan-

ning

In this section, we present a short survey on the various sampling strategies that

have been proposed for probabilistic path planning. We clarify the distinction

between sampling distribution and sampling source, which has been blurred in the

probabilistic path planning literature. By doing so, we are able to classify previous

sampling strategies into either modifying sampling distribution or sampling source.

A summary of the various sampling strategies for probabilistic path planning

is shown in Figure 2.7.

Gaussian
RBB
visibility-based PRM

workspace medial-axis
approximated medial-axis
Voronoi-based planner
Watershed labelling

expansion-step of basic-PRM
feature-sensitive planning
RESAMPL
AHS
utility-guided sampling

Halton sequence
incremental discrepancy

optimal

retraction

filtering workspace-based

sampling strategies

sampling sources

pseudo-random

adaptive quasi-random

sampling distributions

dilated free-space
small-step retraction
MLDP
OBPRM
MAPRM

Figure 2.7: Various sampling strategies for probabilistic path planning.

2.6.1 Sampling Strategies with Non-Uniform Measure

In this section, we review the various probabilistic path planners that improve the

basic-PRM by modifying Pr. We classify them based on the information they use
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and how they use these information.

Filtering strategies

Filtering strategies use a certain local geometric pattern of F to quickly reject

many unpromising samples. The idea is based on an observation that in general,

FreePath, i.e., checking whether an edge between two milestones is collision-free,

is the most costly operation in constructing a roadmap [Kavraki et al., 1996b]. By

rejecting unpromising samples from becoming milestones in the roadmap, filtering

strategies reduce the number of milestones, and hence reduce the number of calls

to FreePath. These strategies include Gaussian strategy [Boor et al., 1999], ran-

domized bridge builder (RBB) [Sun et al., 2005], and visibility-based PRM [Siméon

et al., 2000].

(a) Gaussian strategy (b) RBB

Figure 2.8: Milestone placement of Gaussian strategy vs. RBB. 1000 sampled
collision-free configurations (shown as the green dots) using Gaussian and RBB.
The free-space is colored white.

Gaussian strategy [Boor et al., 1999] is based on two observations, i.e., configu-

rations with poor visibility often lie close to the boundary of F and FreeConf uses

less computation time than FreePath. Utilizing these observations, Gaussian tries

to locate the boundary of F using FreeConf, and samples more densely there. It

samples a pair of configurations from C. The first configuration q is sampled using

uniform distribution over C. The second configuration is sampled such that its

distance to q forms a normal distribution with zero mean and constant standard
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deviation. Next, Gaussian applies FreeConf to check each of the two configura-

tions. If exactly one of the two configurations is collision-free, the collision-free

configuration is kept as a milestone in the roadmap. Otherwise, both configura-

tions are discarded. In summary, Gaussian strategy uses a few calls to the cheaper

primitive FreeConf to place milestones at a more strategic location, such that the

number of milestones and hence the number of calls to FreePath are reduced.

RBB [Sun et al., 2005] uses the same idea of trad-

Figure 2.9: An illustration
of C where Gaussian and
RBB perform poorly. The
free-space is colored light
yellow.

ing calls to FreePath with a few calls to FreeConf,

but it uses a different geometric pattern. It is based

on an observation that many regions that are close

to the boundary of F have good visibility property,

and those that really have poor visibility property

lie in-between two or more forbidden regions. To

use this geometric pattern, RBB starts by sampling

a pair of configurations q and q′ just as Gaussian

strategy. RBB will also check both q and q′ for col-

lision. But unlike Gaussian, RBB looks for a pair of in-collision configurations.

If both q and q′ are in-collision, the mid-point will be kept as a milestone in the

roadmap whenever it is collision-free. An illustration of the difference between

Gaussian and RBB is shown in Figure 2.8.

Although the two strategies above are simple to implement, they have difficul-

ties in sampling collision-free configurations when the forbidden regions are thin,

because sampling a configuration from the forbidden region is already difficult. An

example is shown in Figure 2.9.

The Visibility-based PRM [Siméon et al., 2000] uses a slightly different idea. It

does not trade calls to FreePath with calls to FreeConf. Instead, it uses FreePath

to estimate the visibility set of a configuration and only keeps samples that improve

the coverage or connectivity of the current roadmap as milestones. By doing so, it

reduces the number of milestones in regions that are already well represented by

the current roadmap, and hence reduces the number of calls to FreePath in the

future. The main problem with this method is that the cost for filtering is quite
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expensive such that filtering may not show significant benefit.

Retraction strategies

Retraction strategies “pull” sampled configurations toward a more desirable re-

gions of F . The motivation is similar to that of snowball sampling [StatPac,

1997] in survey sampling, where reference from previous samples are used to help

sample the more difficult region. Most methods in this strategy, e.g., Obstacle-

Based PRM (OBPRM) [Amato et al., 1998], dilated free-space [Hsu et al., 1998],

small-step retraction [Saha and Latombe, 2005], and Multi-Level Dilation Planner

(MLDP) [Cheng et al., 2006] retract in-collision samples toward F . Only Me-

dial Axis PRM (MAPRM) [Wilmarth et al., 1999] retracts all samples toward the

approximated medial axis of F .

OBPRM [Amato et al., 1998] retracts all in-collision configurations. It starts

by sampling C using uniform distribution. Then, for each in-collision configuration

q, OBPRM picks a direction θ emanating from q uniformly at random. It then

finds a collision-free configuration along θ, that lies near the boundary of F .

Instead of retracting all in-collision configurations, Dilated free-space [Hsu

et al., 1998], small-step retraction [Saha and Latombe, 2005], and MLDP [Cheng

et al., 2006] retract in-collision configurations that lie within a pre-defined distance

from the boundary of F . Dilated free-space decides whether an in-collision con-

figuration q should be retracted, by computing the penetration depth between the

robot (placed at q) and obstacles in the workspace. Only in-collision configura-

tions with penetration depth within a fixed constant are retracted. The retraction

is performed by sampling a region of fixed size and geometry around q, uniformly

at random. On the other hand, small-step retraction and MLDP pre-compute

one or more shrunken versions of the robot. Only in-collision configurations that

lie in the free-space of the shrunken robot are retracted. The retraction is then

performed as in the dilated free-space strategy.

The idea behind the above three retraction strategies is based on the fact that

uniform sampling performs much better when F has good visibility property. By

dilating F , these strategies enlarge the visibility set of the regions of F . Hence,
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the dilated free-space has a more favorable visibility property. These strategies

use uniform sampling to find a path in the dilated free-space, and then deform the

path such that it is collision-free in the original free-space.

MAPRM [Wilmarth et al., 1999] retracts all sampled configurations toward

the approximated medial axis of the free-space F . It starts by sampling C using

uniform distribution. Then, for each configuration q, MAPRM finds a point q′

that lies on the boundary of F and is nearest to q. It then retracts q to the first

collision-free configuration on the line segment qq′ that has more than one nearest

point on the boundary of F .

The rationale behind MAPRM is that points near the medial axis have large

clearance, and hence in general have better visibility property. Furthermore, me-

dial axis of F captures the connectivity of F . Hence, one may expect that a

roadmap where the milestones lie near to the medial axis of F captures the correct

connectivity of F with a relatively small number of milestones, and hence with

less cost.

The main drawback of retraction strategies is that they often require com-

plicated and costly computation either to decide whether to retract in-collision

configurations or to perform the retraction.

Workspace-based strategies

As the name implies, workspace-based strategies use information from workspace

to bias sampling in C. The idea is based on two observations. First, in general,

forbidden regions are caused by obstacles in the workspace. Based on this, one can

expect that the geometry and connectivity of the workspace free-space WF , i.e.,

workspace regions that are not occupied by obstacles, may give some hints on the

geometry and connectivity of F . The second observation is that exact workspace

representation is explicitly available and has low dimension, i.e., three at most.

Explicit representation and low dimensionality enable one to extract the necessary

geometric and/or topological information of WF , efficiently. Thus, the main idea

of workspace-based strategies is to use efficient computation to extract geometric

and/or topological properties from WF , and then use this information to infer
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the visibility property of F . These strategies include Workspace Medial Axis for

PRM [Holleman and Kavraki, 2000], Approximated Medial Axis method [Yang and

Brock, 2004], Voronoi-based planner [Foskey et al., 2001], and Watershed labeling

algorithm [van den Berg and Overmars, 2005].

Both Workspace Medial Axis for PRM [Holleman and Kavraki, 2000] and Ap-

proximated Medial Axis method [Yang and Brock, 2004] retract samples in C to

be near to the medial axis of WF . They start by sampling configurations from C

using uniform distribution and then retract these configurations such that several

points on the robot lie near the medial axis of WF .

Voronoi-based planner [Foskey et al., 2001] is designed for a rigid-body robot

that can both translate and rotate. It finds a path in the workspace for a point

a on the robot, and then uses this workspace path to find a collision-free path for

the whole robot. It starts by constructing a Voronoi graph of WF and finding a

workspace path for a in this graph. After a path in the workspace is found, for

each Voronoi vertex w in the workspace path, the planner uses finite difference

estimate to find a rotation such that the configuration places point a of the robot

at w and is collision-free. When a corresponding collision-free configuration cannot

be found or when the configurations in F cannot be connected with a collision-free

straight line segment, the planner performs a refinement step by sampling around

the invalid part of the path. If this step still results in failure, the planner samples

from C using EST [Hsu et al., 1999] and then uniform distribution as the last

resort.

Watershed-labelling algorithm [van den Berg and Overmars, 2005] uses workspace

information to indicate small regions with large lookout in WF , and then sample

more densely there. It assumes that small regions with large lookout in F are gen-

erated by small passages that connects two or more wide-open space in WF . This

strategy decomposesWF into cells and assigns higher weight whenever a small cell

is adjacent to two or more large cells. It then samples regions of C according to

the weights assigned to its corresponding regions in the workspace.

All of the proposed workspace-based strategies a priori determine a sampling

distribution based on information from the workspace alone. This is often in-
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adequate because although the workspace may give hints on the geometry and

connectivity of F , the hints may be misleading. Afterall, F is generated from the

interaction between the robot and the workspace, and not the workspace alone.

When the information from the workspace is misleading, the generated sampling

distribution is unlikely to be suitable for the problem at hand.

Adaptive strategies

Adaptive strategies adapt its sampling distribution according to the information

gathered during roadmap construction. These strategies exploit the observation

that in probabilistic planning, the goal of sampling is to gather witnesses [Motwani

and Raghavan, 2000], i.e., to find a set of configurations that represents F well,

and not to approximate some value(s). Which means, keep on sampling parts of

F that have been well represented by the current roadmap is not useful. Adaptive

strategies include the expansion step of the basic-PRM planner [Kavraki et al.,

1996b], feature-sensitive planning [Morales et al., 2004], region-sensitive adaptive

motion planner (RESAMPL) [Rodriguez et al., 2006], adaptive hybrid sampling

(AHS) [Hsu et al., 2005], and utility-guided sampling [Burns and Brock, 2005].

The expansion step in the basic-PRM [Kavraki et al., 1996b] resamples C

around existing milestones that is predicted to lie in region with poor visibility.

When the basic-PRM samples configurations uniformly over C to construct the

roadmap, for each milestone, it keeps a failure ratio of connection. The failure

ratio for a milestone m is computed as the number of calls to FreePath(m, q) or

FreePath(q, m) that returns false over the total number of such calls, where q is

other milestones in the roadmap. A weight proportional to the failure ratio is then

assigned to each milestone. This means, milestones in regions of poor visibility

will get higher weight. During expansion step, basic-PRM selects milestones to be

expanded, randomly according to its weight. Suppose m is one of the milestones

selected. The basic-PRM will then sample C around m using random walk starting

from m. By doing so, the basic-PRM increases sampling distribution over regions

of F that have poor visibility property, in order to improve connectivity of the

roadmap.
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Feature-sensitive planning [Morales et al., 2004] and RESAMPL [Rodriguez

et al., 2006] propose a more sophisticated expansion strategy. As the basic-PRM,

these two strategies start by sampling uniformly over C. However, they keep much

more statistics than only failure ratio of connection, e.g., free-node ratio, number

of components, edge length, etc. These statistics are used to divide C into regions

and classify these regions. The planner will then assign a suitable sampler to each

region. And sampling is continued by selecting a region to be sampled and applying

the assigned sampler to sample a free configuration from the region.

AHS [Hsu et al., 2005] also uses multiple sampler to sample C. However, it

combines these samplers using a reinforcement learning strategy. To sample a

configuration, AHS starts by selecting which sampler to use, randomly according

to the weight assigned to each sampler. The weight of a sampler is based on

the rewards it gathers. A positive reward is given to a sampler every time it

samples a configuration that improves the coverage and/or connectivity of the

current roadmap. As roadmap construction progresses, some regions of F become

well-represented. Samplers that perform well in sampling these regions will stop

getting positive reward and hence their weight decreases. So, the sampler favored

by AHS changes as the roadmap progresses.

A slightly different approach is used in utility-guided sampling [Burns and

Brock, 2005]. It incrementally constructs an approximate model of C using a

collection of Gaussian distributions. The model is constructed based on the sam-

pled configuration and is used to guide future sampling. Utility-guided sampling

samples configurations with the highest potential for improving the current ap-

proximated model.

All of the proposed adaptive strategies are based on sampling history alone.

Since a sampled configuration q can only inform us about the local geometry of C

surrounding q, to learn the usefulness of sampling a particular region of C, we need

many samples from or around that region. This is difficult to achieve in narrow

passages. Hence, to identify and favor sampling from a narrow passage region, the

above strategies may require a long learning time.

A summary of the various sampling strategies is presented as a diagram in
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Figure 2.7.

2.6.2 Sampling Source

To sample a configuration in C according to a probability measure Pr, a proba-

bilistic planner uses the sampling source Sr to generate a point in a unit hypercube

of suitable dimensions, and then maps the point to a configuration in C according

to Pr. Since most probabilistic planners use random sampling, they use random

number generator as Sr. A random number generator generates a sequence of

numbers that are uniformly distributed in the real line and satisfy several statisti-

cal properties of randomness [Knuth, 1998]. The random numbers generated are

often called pseudo-random numbers as they only “look” random, based on statis-

tical testing, but they are generated by a deterministic sequence of operations in a

computer. Many probabilistic planners use off-the-shelf random number generator

as Sr and treat it as a black-box.

However, by clarifying the distinction between sampling distribution and sam-

pling source, it becomes clear that recent work [LaValle et al., 2004], that has

started to become a trend in probabilistic path planning, has argued that care-

fully tailoring Sr for path planning purposes will significantly improve probabilistic

planning. The main argument is that by carefully tailoring Sr, one can generate

a resolution complete planner (i.e., if a problem can be solved at a particular res-

olution, at that resolution, the planner will solve the problem) and in general this

planner is faster than planners with pseudo-random number generator. The work

in [LaValle et al., 2004] proposes to replace pseudo-random number generator with

quasi-random number generator that minimizes discrepancy and dispersion of the

generated numbers.

Discrepancy and dispersion measure how evenly spread a set of points P dis-

tributed in a Euclidean space E are [Niederreiter, 1992]. Discrepancy is based on

volume and is defined as

D(P ,V) = sup
V ∈V

∣∣∣∣ |P ∩ V ||P |
− µ(V )

∣∣∣∣
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where V is a collection of subsets in E, | · | denotes the number of points, and µ(·)

denotes volume. Intuitively, discrepancy measures how well a set of points in a

space is, in approximating uniform distribution over the space. Dispersion, on the

other hand, is based on distance metric and is defined as

ρ(P, δ) = sup
e∈E

min
p∈P

δ(e, p)

where δ is any metric in E. Intuitively, dispersion measures the radius of the

largest empty ball, i.e., ball without any points from P inside, in the space. Low

discrepancy implies low dispersion.

Two of the quasi-random number that have been shown to perform well for

probabilistic path planning [Lindemann and LaValle, 2003, LaValle et al., 2004]

are Halton sequence [Niederreiter, 1992] and incremental discrepancy-optimal [Lin-

demann and LaValle, 2003]. Halton sequence has low discrepancy and hence low

dispersion, too. In 1-dimension, a Halton sequence is generated by counting in

base-2 and then reversing the least significant bit. For example, to generate the

first four numbers of Halton sequence in [0, 1], one starts by counting in base-2

to generate a sequence of 0.00, 0.01, 0.10, and 0.11. Next, the least significant

bits are reversed to yield 0.00, 0.10, 0.01, and 0.11. So, the generated first four

numbers of Halton sequence in [0, 1] is 0, 0.5, 0.25, and 0.75. For n-dimensions,

Halton sequence performs the same procedure to each dimension, but different di-

mension uses different prime-number as the base. Incremental discrepancy-optimal

divides the space into grids according to a suitable resolution and places points

at the lower-left corner of each grid. However, the order on which points appear

first is based on a special ordering [Lindemann and LaValle, 2003] to maintain low

discrepancy throughout the whole sampling process.

2.7 Where to go next?

In the previous sections, we have discussed the importance of sampling distri-

bution in probabilistic path planning. We have clarified the distinction between

sampling distribution and sampling source, which has been blurred in probabilistic
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path planning literature. And we have presented empirical study that shows the

importance of a suitable sampling distribution in alleviating the narrow passage

problem. We have also discussed that the desired sampling distribution depends

on the visibility property of the robot’s free-space. One question remains as to

how do we construct a suitable sampling distribution, considering the shape of F

and hence its visibility property are unknown.

Since the shape of F is unknown, the most common approach to approximate

the desired sampling distribution is to a priori guess the location of subsets of

F with unfavorable visibility property and then sample more densely there. In

fact, almost all of the non-uniform sampling strategies presented in Section 2.6.1

improve the basic-PRM by doing so. Nevertheless, this is still an open problem.

Although the exact free-space is un-

Figure 2.10: The alpha-puzzle con-
sists of two identical rigid tubes. One
act as the robot while the other as
the obstacle. The geometry of the
two tubes are intentionally designed
to create a non-obvious narrow pas-
sage between the configuration when
the tubes are intertwined and when
they are separated.

known, forbidden region in the configura-

tion space can be considered as a convo-

lution between the robot and obstacles in

the workspace. So, it is reasonable to as-

sume that workspace provides a rough in-

formation on the shape of the free-space

and hence provides a rough indication of

the location of narrow passages too. Fur-

thermore, explicit representation and the

low dimensionality of the workspace allow

us to efficiently extract its geometric prop-

erty. Therefore, it is reasonable to expect

that we can use efficient geometric computation to extract geometric property of

the workspace and then use this information to roughly identify the location of

narrow passages in F .

It is also interesting to note that recent result of smoothed analysis of proba-

bilistic path planning [Chaudhuri and Koltun, 2007] suggests that narrow passages

in the high-dimensional free-space are often caused by narrow passages that can

be seen in the workspace. Intuitively, a narrow passage in the high-dimensional
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free-space occurs when the boundaries of the forbidden region almost coincide.

Hence, small random perturbation on the boundary of the forbidden region, which

can occur due to small random perturbation of the workspace geometry, is enough

to enlarge or even eliminate the narrow passage. This indicates that generating a

non-obvious narrow passage such as the one in Figure 2.10 is not easy. Instead,

in many real world examples, narrow passages in F occurs because of the inten-

tional narrow passages generated in the workspace, e.g., when a robot needs to

pass through a small opening or when two mechanical parts must be assembled

together by inserting one into another. This recent result strengthen our intu-

ition that workspace provides useful information for generating suitable sampling

distributions that alleviate narrow passage problem in probabilistic path planning.

Despite the above potentials and although several sampling strategies have uti-

lized workspace information to generate sampling distribution (see Section 2.6.1),

the use of this information has not been explored much. For instance, although

distance between obstacles is the most obvious indication of the existence of nar-

row passages in the workspace, no sampling strategy have exploited this infor-

mation. The above considerations encourage us to explore further on the use of

workspace information in generating suitable sampling distribution for probabilis-

tic path planning.

Another strategy of improving probabilistic planning is to dynamically adapt

the sampling distribution. As discussed in Section 2.3, the main objective of prob-

abilistic planning is to converge quickly to the set of consistent hypotheses that has

the largest set of solvable queries. And the sampling distribution represents the

planner’s belief on the advantage of sampling a particular subset of F in enlarging

the set of solvable queries. Simple observation indicates that the advantage of

sampling a subset of F may change over time, depending on the current roadmap.

Figure 2.11 shows an illustration. This observation encourages us to push forward

the idea of generating dynamic sampling distribution instead of static sampling

distribution.

As a summary, the results in this chapter suggest that workspace information

and dynamically adapting the sampling distribution over time are two promising
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(a) (b)

Figure 2.11: Illustration on expansion of the set of solvable queries. The free-
space F is colored light yellow, C\F is colored light green. The milestones are
the red dots and the visibility set of the roadmap are colored light grey. (a) In
this state of the roadmap, sampling from the region marked as I will not enlarge
the set of solvable queries by much. However, sampling from II or III may still
enlarge the set of solvable queries, significantly. (b) As more milestones are added
to the roadmap, sampling from II will no longer enlarge the set of solvable queries
significantly. And it would be more beneficial to sample from III than from I or
II.

avenues for improving current probabilistic path planning in handing narrow pas-

sage problem. In the next chapter, we explore the use of workspace information

in generating suitable sampling distribution for probabilistic path planning. We

explore the relation between the visibility sets of point in the free-space and in the

workspace. And we present a simple strategy for utilizing workspace information

called WIS. Then in Chapter 4, we present a new probabilistic path planner called

WCO that uses workspace information to generate dynamic sampling distribution.
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Exploring Workspace Information

The main purpose of this chapter is to explore the use of workspace information

in generating suitable sampling distribution over the high-dimensional configura-

tion space. Since the suitability of a sampling distribution depends on the visibility

property of the robot’s free-space F (Chapter 2), we start by exploring the relation

between the visibility property of the workspace free-space WF and the free-space

F . We show that under certain conditions that do not depend on the dimensional-

ity of F , the visibility sets of points in WF are highly related to those of points in

F . We then use the relation between the visibility sets of points in WF and F to

construct a simple workspace-based probabilistic path planner, called Workspace

Importance Sampling (WIS). WIS uses local geometric property ofWF to estimate

the size of the visibility sets of points in WF and uses this estimation to generate

a static sampling distribution over C. Our experimental results show that WIS

is competitive with the recent probabilistic path planner [Hsu et al., 2005] that

has been shown to perform well in solving narrow passage problem. Our analysis

shows that the failure probability of WIS converges to zero exponentially in the

number of milestones, whenever a solution exists. Furthermore, in general when

the path requires the robot to move inside the narrow passages of WF , the upper

bound of the failure probability of WIS is lower compared to that of the basic-

PRM [Kavraki et al., 1996b]. In short, the results in this chapter encourage us to

exploit workspace information further.

In Section 3.1 and Section 3.2, we present the notations needed to relate the

45
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configurations in F with the points in WF . Next, we present the relation between

the visibility sets of points in F and in WF in Section 3.3. Then, we present our

simple workspace-based probabilistic planner WIS in Section 3.4. Implementation

details and experiments along with analysis of WIS are then presented in Sec-

tion 3.5 and Section 3.6, respectively. Finally in Section 3.7, we end this chapter

by a discussion on how to exploit workspace information further to generate better

probabilistic path planner.

3.1 Notations for Connecting F and WF

Before we can show the relations between F and WF , we need some notation to

articulate the mapping between points in C and points in W . For a point a in a

robotA, let Pa(q) be the position of point a inW whenA is placed at configuration

q ∈ C. We call the mapping Pa: C → W a projection, as the dimension of C is

more than or equal to the dimension of W . Similarly, we define the lift mapping

La:W → 2C. For any x ∈ W , La(x) is the subset of C such that each configuration

in La(x) places a at x. For convenience, we extend the definitions of Pa and La

to subsets of C and W , respectively, by taking set union. An illustration is shown

in Figure 3.1.

Notice that a partition in WF induces a partition in F . Suppose WF is par-

titioned into cells and the set of all these cells is denoted as TF . Then, for a

fixed point a on the robot, TF induces a partition of the collision-free subset of C

into equivalent classes: F =
⋃
t∈TF (La(t) ∩ F) and for all t, t′ ∈ TF and t 6= t′,

La(t)∩La(t′) = ∅ unless when t and t′ share a boundary, in which case La(t) and

La(t
′) share a boundary too (Figure 3.1 shows an illustration). Two configurations

are in the same equivalent class if they project to the same cell in TF .

3.2 Distance in C and in W

To relate the distance between configurations in C and the distance between points

in W , we introduce the distance function as follows. Euclidean distance is used as

the distance function δ(x,x’) between two points x and x’ in W . Furthermore,
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1
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F
Pa(q) WF

1 2
q

(a)

1
2

F La(x)
WF

1 2x

(b)

Figure 3.1: Illustration of projection and lift mapping. The robot is the green
rectangle, and point a is the black dot in the centroid of the robot. Any config-
uration in the region marked as 1 in F places a in the rectangle marked as 1 in
WF . We say that the region marked as 1 in F corresponds to the rectangle marked
as 1 in WF and all configurations in the region marked as 1 in F belong to the
same equivalent class. The same goes with the region marked as 2 in F and the
rectangle marked as 2 in WF . So, a partition of WF induces a partition of F . In
general, a connected region ofWF may correspond to several disconnected regions
of F . (a) Illustration of Pa(q). (b) Illustration of La(x). Note that although x is
in WF , La(x) may intersect the forbidden regions of C.

we define the distance δO(x) between a point x in WF and the obstacles in W

as the shortest distance between x and its nearest point on the obstacles, i.e.,

δO(x) = mino∈O δ(x,o), where O denotes the set of all obstacles in W .

In C, we define the distance ∆(q, q′) between two configurations q and q′ as

the maximum distance traversed in W by a point on the robot when following the

straight line segment between q and q′ [Hsu et al., 1999]. Note that this definition

of distance in C is only used for relaxing several theorems. In general, we use

Euclidean distance for both W and C, unless otherwise stated. Furthermore, we

define the distance between a configuration q ∈ F and the forbidden region as
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∆O(q) = mina∈A δO(Pa(q)).

3.3 Visibility Properties of F and WF

In this section, we show the relation between the visibility sets of points in F and

those in WF . In particular, we show that,

1. For any robot and for any point a on the robot such that the projection Pa

is a linear transformation, the visibility set V(q) of a configuration q ∈ F is

a subset of the lifted visibility set of the projection Pa(q) of q in WF , i.e.,

V(q) ⊆ La(V(Pa(q))). This result implies that to find a collision-free con-

figuration that can be connected with a straight line segment to q, reducing

our search space to the set of configurations that places point a of the robot

at V(Pa(q)) will not cause us to loose any possible solution.

2. For any robot and for any point a on the robot such that the projection Pa

is defined as Pa(q) = Va · q + b, where Va is a (d× n)-matrix (d = dim(W),

n = dim(C)), rank(Va) = d, and b is a vector of d elements, the volume

µ(V(q)) of the visibility set of a configuration q ∈ F is bounded by a constant

multiplication of the volume of the visibility set of Pa(q). Considering that

the number of milestones for solving a path planning problem within a certain

probability of success can be computed in terms of the volume of the visibility

set of configurations in F , our new result indicates that we can also bound

the number of milestones in terms of the volume of the visibility set of points

in WF .

Considering that a suitable sampling distribution varies its sampling density based

on the size of the visibility sets of configurations in F (Chapter 2), the above

relations strengthen our intuition that workspace information is potentially useful

for estimating a suitable sampling distribution over C.

We start by showing the relation between the visibility set in F and in WF in

Section 3.3.1. We then show the relation between the volume of the visibility set

in F and in WF in Section 3.3.2. Next in Section 3.3.3, we elaborate on when the

conditions for the above two relations are satisfied.
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3.3.1 Visibility Sets of Points in F and in WF

Now, we formally state the relation between the visibility sets of points in F and

in WF as follows,

Theorem 3.1 Let’s denote V(·) as the visibility set. Then, for any collision-free

configuration q and for any point a in a robot A such that the mapping Pa is linear,

V(q) ⊆ La(V(Pa(q))).

Proof By definition of the visibility set (see Section 2.5), a configuration q′ ∈ V(q)

means that q′ = q + r · (q′ − q) for r ∈ [0, 1]. Since a collision-free configuration q

means that when the robot is at q, each point in the robot lies in the workspace

free-space, then Pa(q) and Pa(q
′) must lie in the workspace free-space. And when

Pa is linear, Pa(q
′) = Pa(q) + r · (Pa(q′)−Pa(q)). Thus, Pa(q

′) is in the visibility

set of Pa(q). Taking the lift mapping gives the result we want. 2.

Intuitively, the above theorem means that given any robot, by choosing ap-

propriate point on the robot such that the projection Pa is a linear mapping, the

visibility sets of points in F and in WF are highly related. The visibility sets

V(q) of a configuration q ∈ F must lie inside the lift-mapping of the visibility set

V(Pa(q)) of its projection Pa(q) in WF . This means that to find a collision-free

configuration that can be connected with a straight line segment to q, we can safely

restrict our search space based on the visibility set of Pa(q) in WF .

3.3.2 Volume of Visibility Sets of Points in F and in WF

To show the relation between the volume of the visibility sets of points in WF

and that of the visibility sets of points in F , we first relate the volume of a subset

X ⊆ W and the volume of its corresponding lift-mapping in C. Without loss of

generality, we representW and C as normalized Euclidean space [0, 1]dim(W) and

[0, 1]dim(C). The relation can then be stated more formally as,

Lemma 3.1 Let’s denote n as the dimension of C, d as the dimension of W,

and µ(·) as volume. Suppose a is a point on the robot such that Pa is a linear

transformation, defined as Pa(q) = Va · q + b, where V is a (d × n)-matrix with
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rank(Va) = d and b is a vector of d elements. Then, for any subset X ⊆ W,

µ(La(X)) ≤ Kaµ(X) where Ka is a positive constant value that depends on a.

Proof The lift-mapping La(x) of a point x ∈ X is the solution of

Va · q = x− b (3.1)

Since rank(Va) = d, the solution of (3.1) can be written in terms of x and (n− d)

independent parameters p1, . . . , pn−d as,

q = u1 · x1 + . . .+ ud · xd + ud+1 · p1 + . . .+ un · pn−d + qF

= Ua p + qF ; Ua = [ u1 . . . un ] , p =


x

p1

...

pn−d

 (3.2)

where ui is an n × 1 vector, xi is the ith element of x, and qF is a particular

solution for Va · qF = −b. Since for each independent variable there is at least

an element j of q such that pi = qj, we can assign pi ∈ [0, 1] for 1 ≤ i ≤ n − d.

Let’s denote PX as the set {p | x ∈ X ∧ pi ∈ [0, 1] , 1 ≤ i ≤ n − d}. And let

L′a(X) = {Uap + qF | p ∈ PX}. Since there may be bound on the possible values

of the robot’s configuration, La(X) is not always the same as L′a(X). The lift

mapping La(X) of X is then La(X) = L′a(X) ∩ C.

Let’s call the union of PX for all possible X ⊆ W as the augmented parameter

space. We want to relate the volume of a subset of the augmented parameter space

and the volume of its corresponding set in C. It is obvious that La(X) ⊆ L′a(X)

and hence µ(La(X)) ≤ µ(L′a(X)). Then, to relate µ(L′a(X)) with µ(PX), we can

use the change of variable formula in integration:
∫
L′
a(X)

∂q =
∫
PX
|J(p)|∂p, where

J is the Jacobian matrix and | · | denotes determinant. Since Ua is a linear trans-

formation,
∫
L′
a(X)

∂q = |Ua|
∫
PX
∂p. This means µ(L′a(X)) = abs(|Ua|)µ(PX),

where abs(·) denotes the absolute value. Hence, µ(La(X)) ≤ Kaµ(PX), where

Ka = abs(|Ua|).

Now, we find the volume µ(PX) in terms of the volume ofX ⊆ W. We can com-
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pute µ(PX) by discretizing PX into infinitesimally small cubes. And then take the

integration: µ(PX) =
∫
x∈X(

∫ 1

0
(. . . (

∫ 1

0
∂pn−d) . . .)∂p1)∂x. Since for each indepen-

dent parameters pi, we integrate over all possible values, (
∫ 1

0
(. . . (

∫ 1

0
∂pn−d) . . .)∂p1) =

1 and µ(PX) =
∫
x∈X ∂x. Hence, µ(PX) = µ(X). Combining this result and the

result in the previous paragraph, we prove that µ(La(X)) ≤ Kaµ(X) where Ka

is a positive constant value that depends only on a. 2.

One may be tempted to prove the above lemma by using the uniform continuity

property of a continuous function from a compact set. However, notice that La is

not even a function.

Using Theorem 3.1 and the above lemma, we can state the relation between

the volume of the visibility sets of points in F and in WF more formally as,

Theorem 3.2 Suppose n is the dimensionality of C and d is the dimensionality of

W. Let’s denote A as the set of points a on the robot such that the projection Pa

is defined as Pa(q) = Va · q + b, where Va is a (d× n)-matrix with rank(Va) = d

and b is a vector of d elements. Then, for any collision-free configuration q,

µ(V(q)) ≤ mina∈AKaµ(V(Pa(q))), where Ka ≥ 0 is a constant value that depends

on a, V(·) is the visibility set, and µ(·) is volume.

Proof From Theorem 3.1, for any a ∈ A, V(q) ⊆ La(V(Pa(q))). This means

that µ(V(q)) ≤ mina∈A µ(La(V(Pa(q)))). From Lemma 3.1, for any point a ∈

A, µ(La(V(Pa(q)))) ≤ Kaµ(V(Pa(q))). Combining the two results, we have the

relation µ(V(q)) ≤ mina∈AKaµ(V(Pa(q))). 2.

The above theorem gives us a bound on the size of the visibility sets of points

in F without explicit construction of F . This may be useful if one wants to a priori

bound the number of milestones for solving a given problem, even though we do

not compute it in this thesis. We will discuss more about this in Section 6.2.

3.3.3 When The Relations Hold

Now, we will elaborate on when the conditions in Theorem 3.1 and Theorem 3.2

hold. Suppose dim(W) = d and dim(C) = n, Va is a (d × n)-matrix with
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rank(Va) = d and b is a vector of d elements, the condition that the projec-

tion function Pa at point a of a given robot can be defined as Pa(q) = Va · q + b

holds for,

• A free-flying rigid body robot where the point a is the center of rotation of

the robot.

• An articulated robot where the position of point a are affected only by trans-

lational motion and its direction matrix has rank d. Below, we elaborate what

a direction matrix is.

To see when the conditions hold for articulated robot, we will first elaborate

the case of an articulated robot where all its joints are prismatic. From this result,

the extension to other types of robots is straightforward. Let’s first represent the

kinematics of an articulated robot where all its joints are prismatic.

l0

l1

l2

l3

F0

F1

F2
F3

FW

0v1

1v2

2v3

o0

0o1

1o2

2o3

Figure 3.2: Illustration of the robot’s kinematic. The robot has 3 prismatic joints
and it is mounted on a static base. Each link is attached to a prismatic joint. It
moves either following or opposite (depending on qi) the direction vector i−1vi, in
terms of frame Fi−1.

Suppose robot A is an articulated robot with static base where all of its joints

are prismatic. And supposeA consists of n joints and n+1 links, where link l0 is the

base and each link li (i ∈ [1, n]) is attached to a prismatic joint ji. A (coordinate)
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frame Fi is attached to each link li with F0 coincides with the coordinate system of

W . Suppose a is a point in lm and its position in Fm is denoted by am. Then, the

position a(q) of a in W when A is in configuration q, can be computed recursively

as follows:

a(q) = 0R1a1 + 0T1(q) ; ai−1 = i−1Riai +
i−1Ti(q) , i ∈ [2,m] (3.3)

where ai is the position of a with respect to Fi. Matrix i−1Ri is the rotation

matrix that transforms the orientation of Fi to that of Fi−1. The rotation matrices

are independent of the robot’s configuration because all joints of the robot are

prismatic. The vector i−1Ti(q) is the translation vector that translates the origin

of Fi−1 to coincide with that of Fi, when the robot is at configuration q. The

translation vector can be computed as i−1Ti(q) = qi · i−1vi +
i−1oi, where qi is the

ith-element of q, i−1vi is a normalized vector in Fi−1 that represents the direction

along which li will translate with respect to li−1, and i−1oi is the default position

(when qi = 0) of the origin of Fi in Fi−1. An illustration is shown in Figure 3.2.

Since in an articulated robot where all its joints are prismatic, the rotation of

each coordinate frame is fixed, we want to separate the rotation from the transla-

tion part. Expanding (3.3) gives us:

a(q) =

(
m∏
i=1

j−1Rj

)
am +

m∑
i=1

qi

(
i−1∏
j=1

j−1Rj

)
i−1vi +

m∑
i=1

(
i−1∏
j=1

j−1Rj

)
i−1oi (3.4)

and by setting:

• a = (
∏m

i=1
j−1Rj) · am .

• The direction vector vi =
(∏i−1

j=1
j−1Rj

)
· i−1vi .

• oi =
(∏i−1

j=1
j−1Rj

)
· i−1oi .

we can rewrite (3.4) as

a(q) = a +
m∑
i=1

(qivi + oi) (3.5)
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The direction matrix is then Va = [v1 . . . vm 0 . . .0], a (d × n)-matrix where the

first m columns correspond to vi (i ∈ [1,m]) and the last n−m columns are zero

vectors.

Notice that the above description can be easily extended to describe the kine-

matics of an articulated robot with mobile base too. To represent the mobile

base, we insert k (k = #dofs of the mobile base) virtual joints and links before

the base. For example, suppose A is a planar robot with three prismatic joints

and is mounted on a 2D translational mobile base. Then, we add two virtual joints

and links before the base. We number the links starting from the virtual link. So,

the virtual links are denoted as l0 and l1, the base as l2, and the rest of the links

follows the numbering. Frame F0 is attached to l0 and coincides with the coordi-

nate system ofW . We assign direction vectors 0v1 = [1 0] and 1v2 = [0 1]. And at

the default position (when q = 0), we set F0, F1, and F2 to coincide. Furthermore,

a free-flying rigid body robot is then a special case of an articulated robot with

mobile base, i.e., when the robot consists of only the base.

From the above representation, it is straightforward to see that the conditions

for Theorem 3.1 and Theorem 3.2, i.e., a point a of the robot has linear Pa with d

as the rank of the direction matrix Va, can be satsified by any type of robot with

some translational degrees of freedom, as long as the position of a is affected by

translational motion where rank(Va) = d.

To summarize, in this section we have shown that under certain conditions that

do not depend on the number of dofs of the robot, the visibility sets of points in

F and in WF are highly related. By choosing appropriate point a on the robot,

the visibility sets V(q) of a configuration q ∈ F must lie inside the lift-mapping of

the visibility set V(Pa(q)) of its projection Pa(q) in WF . This means that to find

a collision-free configuration that can be connected with a straight line segment

to q, we can safely restrict our search space based on the visibility set of Pa(q)

in WF . Furthermore, the volume of V(q) is bounded by a multiple constant of

the volume of V(Pa(q)). In Section 2.5, we have presented previous works that

bound the number of milestones needed for solving a path planning problem within

a certain probability of success in terms of the volume of the visibility set of F .
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Based on those results, the relation between the volume of the visibility property

in F and WF implies that we can bound the number of milestones in terms of

the volume of the visibility sets in the workspace free-space. Of course, as the

number of the robot’s dofs increases, the difference between the volume µ(V(q))

and µ(V(Pa(q))) may become larger. Nevertheless, the relation that V(q) is a

subset of La(V(Pa(q))) and the relation that the volume of V(q) is bounded by a

multiple constant of the volume of V(Pa(q)) holds even though the dimensionality

of C is much higher than that of W .

The above results and our results in Chapter 2 suggest that the size of the

visibility set of the points in WF can be used to estimate a suitable sampling dis-

tribution over C. It indicates that regardless of the dimensionality of F , for certain

types of robot, by choosing an appropriate point a on the robot, points x ∈ WF

with small visibility set corresponds to either in-collision configurations or collision-

free configurations with small visibility set. It is true that we cannot guarantee

that points inWF with smaller visibility sets must correspond to collision-free con-

figurations with smaller visibility sets. But, despite the fact that F is unknown,

the theorem implies that the size of the visibility set of a point x in WF gives

an indication of how large the visibility sets of the configurations in La(x) could

be. Since a good sampling distribution samples more densely in regions of F with

poor visibility (see Chapter 2), the results in this section strengthen our intuition

that workspace information can be used to estimate a suitable sampling distribu-

tion over C and hence improve the performance of probabilistic path planning in

solving narrow passage problem.

3.4 Workspace Importance Sampling

Now, the question is how do we use workspace information to bias sampling in

the high dimensional configuration space C. Here, we present a simple strategy for

utilizing workspace information, called Workspace Importance Sampling (WIS).

We present the idea and overall strategy of WIS in Section 3.4.1. We then present

the details of WIS in Section 3.4.2 and Section 3.4.3.
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3.4.1 Overview

WIS utilizes the relation between the visibility sets of points in F and in WF .

Intuitively, WIS uses the width of passages in WF to estimate the size of the

visibility sets of points in WF and uses this estimation to generate a sampling

distribution over C.

To see why the width of passages in WF estimates the size of the visibility set,

we first need to relax the requirement in Theorem 3.2, such that the relation holds

for any types of robots. Since in general, rotating the robot implies that each point

of the robot traverses a curve in WF , we cannot guarantee that if q′ ∈ V(q), then

Pa(q
′) ∈ V(Pa(q)). This means that Theorem 3.2 does not hold for robots without

translational degrees of freedom, such as industrial robots where all its joints are

rotational and is mounted on a static base.

Nevertheless, if we restrict the visibility set V(q) of a configuration q to only

those configurations within a small distance from q, we can still use the geometric

property of WF to roughly estimate the visibility property of F . To estimate the

visibility property of F , we will use the distance function as defined in Section 3.2.

Using this definition of distance, the set of points B(q,∆O(q)) within ∆O(q) dis-

tance from q must lie in the visibility set of q. This implies that if ∆O(q) is large,

then V(q) must be large as well.

Further observation on the geometry ofW provides us with an upper bound on

the distance ∆O(q) between a configuration and the forbidden region. This bound

can be used as a rough estimation on how likely the configurations corresponding

to a subset of WF have large visibility set. To identify this geometric property, we

first introduce some definitions regarding the geometric property of WF . We can

view WF as a union of medial balls, where a medial ball is a ball that tangentially

touches at least two points on the boundary of WF .

Definition 3.1 A medial region Br ⊆ WF with radius r is a union of medial balls

with radius larger than or equal to r in WF . Notice that the radius of a medial

region can be considered as the width of the narrowest passage covered by the medial

region.
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An illustration of a medial region is shown in Figure 3.1. Now, if Br is the smallest

medial region such that all points of the robot at configuration q are enclosed in Br,

then ∆O(q) ≤ 2r. A medial region with large r indicates higher possibilities that

there are configurations q′ ∈ La(Br) far away from the forbidden region, and hence

have large visibility set. This observation and our results in Chapter 2 suggest that

we can use the radius of the medial balls of subsets of WF to roughly estimate a

suitable sampling distribution over C, regardless of the type of the robot.

Now, we describe our simple planner, workspace importance sampling (WIS).

Although the radius of medial balls in WF can be used as a rough estimation of

the visibility property of F , and hence as a rough estimation of a suitable sampling

distribution over C, WF contains infinitely many medial balls that intersects one

another. So, to simplify estimating the medial balls and to simplify computing the

sampling distribution, WIS partitions WF into triangles. And uses the height of

each triangle to estimate the radius of the smallest medial region that covers the

triangle. For simplicity in writing, we use triangles in a general sense, referring

to triangles in 2D workspace and tetrahedra in 3D workspace. Next, to generate

a sampling distribution where smaller density are given to regions with larger

visibility set, WIS assigns a sampling distribution inversely proportional to the

weight which is computed based on the height of the triangle.

WIS is based on the standard multi-query PRM approach as described in Sec-

tion 2.2. The overall strategy of WIS is presented in Algorithm 3.1. The details of

the algorithm are presented below. WIS stops once all the given queries Q have

been solved or the roadmap reaches a maximum number of milestones N . If all

the given queries are solved, WIS returns a list of paths Ψ where each element is

a path between a query of Q. The details of the primitive FreeConf for checking

whether a configuration is collision free or not and the primitive AllSolved() for

checking whether all queries have been solved or not, are presented in Appendix A.

3.4.2 Extracting Workspace Information

WIS extracts workspace information once, before roadmap construction starts. It

uses this information to generate sampling distribution over C that will be used in



58 Chapter 3

Algorithm 3.1 WIS(Q, N)

1: Let a be the robot’s feature point.
2: Let WF be the workspace free-space, i.e., subset of W that is not occupied by

obstacles.
3: Compute a triangulation TF of P in WF .
4: for all triangle t ∈ TF do
5: Calculate the weight h(t) and probability pT (t) of t.
6: repeat
7: Sample a configuration q based on the probability distribution pT defined

over TF .
8: if FreeConf(q) is true then
9: Insert q to the roadmap R.

10: until AllSolved(Q, R, Ψ) is true or R contains N milestones.
11: Return Ψ.

roadmap construction. Although this process is run only once, we would like to do

it efficiently such that the total time, i.e., the time for extracting workspace infor-

mation and constructing the roadmap, is at least comparable to other probabilistic

path planners.

Space partitioning

Figure 3.4: A Delaunay triangulation of WF in a 2-D workspace. Obstacles are
colored red.

Suppose the workspace free-space WF is the subset of the workspace W that

is not occupied by obstacles. The first step of WIS is to triangulate WF by treat-

ing WF as a polygon for 2D workspace and as a polyhedron for 3D workspace.

However, it is known that not all polyhedra can be tetrahedralized [Toussaint

et al., 1993]. To avoid this difficulty, we sample points at a fixed resolution on
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the boundary of WF , using an algorithm similar to scan conversion in computer

graphics [Foley et al., 1995], and compute a Delaunay triangulation T over the set

of sampled points. See Figure 3.4 for an example in a 2D workspace. If the sam-

pling resolution is sufficiently high, then under reasonable geometric assumptions,

T is conformal in the sense that every face on the boundary of WF is a union of

faces in T [Amenta et al., 2001], and hence every triangle in T is in either WF or

its complement. We will use TF to denote the subset of all triangles in WF .

Weight

(a) (b) (c)

Figure 3.5: Defining the weight h(t) of a triangle t in a 2-D workspace. There are
three cases: (a) one edge, (b) two edges, and (c) no edge on the boundary of WF .

After the triangles TF have been generated, we assign a weight h(t) to every tri-

angle t in TF . Ideally, we would like to assign weight based on the relative size of the

radius of the smallest medial region that encloses t. As discussed in Section 3.4.1,

larger radius of medial region indicates higher possibilities that the corresponding

region in F is wide-open and to generate a desired sampling distribution, we would

like to assign lower sampling distribution to such regions. However, computing the

radius of the medial region exactly, especially in 3D workspace, is complicated. On

the other hand, intuitively what we want is just the width of the passage bounded

by two or more “walls”. Therefore, to simplify computation, we use the heights

where the base coincide with the boundary of an obstacle to define the weight

of the triangle. In particular, the weight h(t) of a triangle t is computed as the

average of the heights where the base coincide with the boundary of an obstacle.
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Let’s now see the computation of h(t) in 3D workspace. A tetrahedron t has four

heights hi for i = 1, 2, 3, 4, each corresponding to a face of t. Only those heights

that give an estimate of the local “width” of F are relevant. We thus define the

weight h(t) as follows:

• If t has one or more faces lying on the boundary of WF , then

h(t) =

∑4
i=1 βihi∑4
i=1 βi

,

where βi is 1 if fi lies on the boundary of WF and 0 otherwise.

• If t has none of its faces lying on the boundary ofWF , then h(t) =
∑4

i=1 hi/4.

See Figure 3.5 for illustrations of the corresponding definition in 2D workspace. A

small h(t) indicates that t is likely to lie in a region of WF which is surrounded by

obstacles that lie close to each other. This suggests that t corresponds to regions of

F that are surrounded by forbidden regions that lie close to each other, and hence

lie in the narrow passages of F . So, more effort is needed to sample the region that

corresponds to triangles with small weight. According to this definition of weight,

a skinny triangle t, like the one shown in Figure 3.5(a), has a large value of h(t).

This indicates that t is not inside a narrow passage.

Figure 3.6: An illustration of false positive case that occurs when the minimum
of the relevant height is used. When minimum height is used, the weight of the
large triangle at the mouth of the narrow passage is more than the weight of the
triangle inside the narrow passage. This implies that WIS assigns higher sampling
distribution to region of C that corresponds to the large triangle, compared to
region of C that corresponds to the triangle inside the narrow passage. However,
when the average height is used, the weight of the large triangle is increased because
the other relevant heights are taken into consideration. As a result, this type of
false positive cases can be alleviated.

One may want to compute the weight using the minimum of the “relevant”

heights instead of the average because using the minimum is less prone to false
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negative cases. False negative cases occur when the weight h(t) is large but t

corresponds to narrow passages in F . Since the average height is more than or

equal to the minimum height, using minimum height tends to be less prone to

false negative cases compared to using average height. However, this reduced false

negative cases come at a cost of increased false positive cases. Figure 3.6 shows an

illustration. In real world application, the case illustrated in Figure 3.6 is not rare.

It occurs for instance when a robot needs to pass through a narrow door leading to

a large room. False positive cases cause the planner to oversample wide-open space

and hence degrade the overall performance of the planner. So, in trying to strike

a balance such that the overall planner works well in many real-world problems,

we prefer to use the average of all the relevant heights as the weight.

Probability

To approximate our desired sampling distribution (discussed in Section 2.5), WIS

assigns probability to each triangle t in TF inversely proportional to their h(t)

value, as follows:

pT (t) =
1/h(t)∑K
i=1 1/h(ti)

(3.6)

where T is the random variable that represents the triangle picked from TF and

K is the number of triangles in TF . As discussed earlier, lower h(t) is likely to

indicate that t corresponds to narrow passages regions in C. In Section 2.5 we

have discussed that the desired sampling distribution assigns higher distribution

to narrow passage regions and lower distribution to wide-open regions. Therefore,

to approximate the desired sampling distribution, WIS assigns higher probability

to triangles with lower h(t) and lower probability to triangles with higher h(t) and

then uses this probability distribution to bias sampling in C.

3.4.3 Sampling

Now that we have defined a probability distribution over the triangles in TF , the

question is how do we use this distribution to bias sampling in the high dimensional
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configuration space. For this, WIS samples a configuration in two stages. First, it

samples a triangle t according to probability distribution defined in (3.6).Once a

triangle t is sampled, WIS samples a point x uniformly at random from t. Next,

WIS samples a configuration uniformly at random from La(x), where a is the

robot’s feature point. A robot’s feature point is a point on the robot, chosen a

priori before sampling starts. WIS represents the robot with a single feature point.

The details on how exactly WIS samples a configuration depends on the specifics

of the robot’s kinematics and are described below separately for rigid and articu-

lated robots.

Rigid body robot

As a heuristic, WIS uses the centroid of the robot as the feature point for a rigid

body robot, and denote this point as a.

The configuration q of a rigid body robot consists of a positional component qτ ,

which specifies the position of the robot’s reference point in the workspace, and an

orientational component qθ, which specifies the orientation of the robot. To sample

a configuration, WIS first samples qθ uniformly at random. In 3D workspace, qθ

is sampled uniformly at random from a unit quaternion space [Shoemake, 1985].

WIS will then sample a point x ∈ WF as describe above. Finally, it computes qτ

such that at q = (qτ , qθ) places the robot’s feature point a at qτ .

Articulated robot

The configuration q = (q1, . . . , qn) of an articulated robot specifies its joints pa-

rameters. For an articulated robot with static base, WIS uses the wrist point,

i.e., the centroid of the wrist, as the robot’s feature point. Suppose q1, . . . , qm

(m ≤ n) determines the position of the wrist point. WIS starts sampling F by

sampling a point x from WF according to the density function in (3.7). It will

then find q1, . . . , qm by solving the robot’s inverse kinematics (IK) equations. If IK

has no solution, WIS samples another point until it finds a point where IK returns

one or more solutions. If IK returns more than one solution, WIS selects one of

them at random. Various improvements can be made to speed-up this process.
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For instance, we may restrict the sampling domain according to the reachability

of the wrist point. WIS will then sample the other joint parameters qm+1, . . . , qn

uniformly at random.

When the articulated robot is mounted on a mobile base, WIS uses the origin

of the base frame as the feature point. WIS samples the position and orientation

of the base exactly as it samples the position and orientation of the rigid body

robot. Then, for the rest of the degrees of freedom, WIS samples each degree of

freedom uniformly at random.

3.5 Implementation and Experiments of WIS

We implemented WIS using C++ and using the Qhull library [Barber et al.,

1996] for triangulation. To triangulate WF of a workspace, we a priori determine

the resolution for sampling the boundary of WF . We set the resolution to be high

enough so that under reasonable geometric assumptions, the resulting triangulation

is conformal. Implementation details of the primitives, i.e., FreeConf, FreePath,

and AllSolved are presented in Appendix A.

For comparison, we implemented the basic-PRM [Kavraki et al., 1996b], Gen-

eralized Voronoi Graph (GVG) [Foskey et al., 2001], and the original Adaptive

Hybrid Sampling (AHS) [Hsu et al., 2005] which combines uniform distribution,

several Gaussian strategy [Boor et al., 1999] with different parameters, and several

randomized bridge builder (RBB) [Sun et al., 2005] with different parameters. The

basic-PRM is used as a benchmark of the difficulty of the problem. GVG is used

because it is one of the workspace-based probabilistic path planner that has been

proposed. GVG uses the Generalized Voronoi Graph of the workspace free-space

to find a path in the workspace and then modify this path to find a valid path in F .

A more elaborate explanation of GVG can be seen in Section 2.6.1. We only im-

plemented GVG for 2D workspace because constructing the Generalized Voronoid

Graph for 3D workspace is significantly more complicated than constructing it for

2D workspace and the results of GVG in 2D workspace is already discouraging.

The original-AHS is used because it is one of the recent probabilistic path planners
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Test 1 Test 2

Test 3 Test 4

Figure 3.7: Test scenarios. Test 1: A 3-dofs rigid-body robot moves from the lower
left corner to the lower right corner by passing through five narrow openings. Test
2: A 3-dofs rigid-body robot turns 180 degrees in a narrow dead-end. Test 3: A
6-dofs rigid-body robot must pass through 6 out of 7 narrow openings in order to
answer the given query. Test 4: A 6-dofs robot manipulator with its end-effector
holding a large plate maneuvers through a narrow slot.

that has been shown to perform well. Furthermore, its component samplers, i.e.,

Gaussian and RBB, have been shown to perform well and its combination have

been shown to perform even better than each of its component sampler alone.

We tested WIS on several scenarios involving 2D and 3D workspace as well

as rigid and articulated robot. The scenarios are shown in Figure 3.7. To set

the parameters of each planner, we select several representative values for the

parameter(s). Each planner with different parameter values were run 10 times

independently on each test scenario. The parameter values that generate the best

performance are then used as the parameter for testing the planner on the partic-

ular scenario. For testing, each planner were run 30 times independently on each
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Table 3.1: Performance comparison of several probabilistic path planners. All
times are measured in seconds.

Planner
Test 1

Tpre Ttot ± std Nmil Nsam

Basic-PRM 75.9 ± 45.1 13,540 52,687
Original AHS 23.0 ± 8.5 3,477 164,776
GVG 0.027 49.5 ± 22.6 11,548 61,653
WIS 0.034 6.7 ± 2.0 1,660 7,024

Planner
Test 2

Tpre Ttot ± std Nmil Nsam

Basic-PRM 4.1 ± 1.3 601 53,616
Original AHS 3.3 ± 1.3 163 76,742
GVG 0.007 6.2 ± 1.2 693 74,289
WIS 0.007 0.7 ± 0.3 154 11,521

Planner
Test 3

Tpre Ttot ± std Nmil Nsam

Basic-PRM 94.6 ± 48.6 9,011 36,594
Original AHS 56.7 ± 20.2 1,669 198,313
WIS 0.607 80.3 ± 30.0 5,723 160,686

Planner
Test 4

Tpre Ttot ± std Nmil Nsam

Basic-PRM 69.8 ± 26.0 9,246 35,878
Original AHS 56.0 ± 27.9 2,672 168,013
WIS 0.071 200.7 ± 90.4 14,423 961,613

Tpre: time for triangulatingWF .
Ttot ± std: total running time ± standard deviation.
Nmil: number of milestones required for answering the query.
Nsam: number of configurations sampled.

testing scenario. All experiments were conducted on a PC with a 3 GHz Intel

Pentium 4 and 1 GB memory.

The average results of the 30 runs are shown in Table 3.1. The results show that

in the first two scenarios, WIS performs 3 to 5 times faster than the original-AHS

and 6 to 11 times faster than the basic-PRM. WIS uses fewer milestones compared

to the basic-PRM and the original-AHS. Which indicate that WIS is able to place

milestones at more important regions of F .

It is interesting to note that the previous workspace-based probabilistic path

planner GVG does not perform well in both Test 1 and Test 2. In Test 1, GVG
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performs poorly, even though the workspace path it predicts is quite close to the

path traversed by the robot when moving from the initial to the goal configurations.

The reason is that at the narrow openings, the robot needs to wiggle a lot and

needs to move a little outside the narrow openings and their “mouths”. So, the path

generated in F , by GVG’s local sampling, is disconnected at the narrow openings.

Therefore, to connect the disconnected path, GVG needs to run EST [Hsu et al.,

1999] over the whole configuration space. However, since the main objective of

EST is to explore the sampling domain as fast as possible, instead of sampling

densely near and inside the narrow openings, EST spreads its samples throughout

the whole configuration space. This causes GVG to over-sample wide-open regions

of F , and hence slows down the overall performance of the planner significantly.

In Test 2, the initial and goal configuration qi and qg, when projected to

W , are very close. However, to go from qi to qg, the robot must go out of the

narrow tunnel, reorient, and then go back to the tunnel again. This scenario may

potentially mislead planners that use workspace path to find a valid path in F .

And as we can see in Table 3.1, GVG is mislead by the workspace information.

The reason is that by first predicting a path between the initial and goal position of

the robot using the Generalized Voronoi Graph of the workspace free-space, GVG

predicts that the path is the short path inside the narrow tunnel. As a result, GVG

spends a significant amount of time trying to construct a valid path in F based on

the predicted workspace path without success. And in the end, GVG has to revert

back to EST with the whole C as the sampling domain in order to find a valid

path in F . Notice however that this scenario does not mislead all workspace-based

sampling strategies. As we can see in Table 3.1, WIS is not fooled by this scenario

even though WIS uses workspace information because WIS does not use workspace

path to predict a path between the initial and goal configurations.

However, in Test 3, WIS performs 1.5 times slower than the original-AHS and

only slightly faster than the basic-PRM. In this environment, the triangulation

generates many “short” triangles where its lift mapping lies in the forbidden re-

gion of C. Hence, WIS wastes a lot of time for oversampling some parts of the

forbidden region of C without gaining much. As a result, although the number
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Test 5 Results

Figure 3.8: Additional test for testing the performance of the planners as dim(C)
increases.

of milestones needed by WIS is only half of that needed by the basic-PRM, the

overall performance of WIS is only slightly better than that of the basic-PRM.

Nevertheless, compared to the original-AHS, WIS needs more than 3 times more

milestones in order to solve the problem. This is not surprising, as the original-

AHS uses machine learning technique to generate adaptive sampling distribution.

It is able to identify regions of F that have been oversampled, and hence reduce

the sampling density on these regions. Therefore, the original-AHS does not waste

too much time for oversampling a well represented region.

In Test 4, WIS performs around 3 times slower than both the basic-PRM

and the original-AHS. With only the robot’s wrist point representing the whole

robot, there are only very few triangles where its lift mapping intersects the narrow

passage region. Furthermore, in this case, the boundaries of the workspace are near

to the bars. So, there are many short triangles that do not lie in the narrow slot.

Since most of these short triangles correspond to wide-open space in F and since

WIS favors sampling from these triangles as much as sampling from the short

triangles in the narrow slot, WIS oversamples wide-open space of F and generates

many unnecessary milestones there.

One may suspect that WIS performs poorly in Test 3 and Test 4 because

the usefulness of workspace information diminishes as dim(C) becomes much more
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than dim(W). To test this, we ran additional tests, i.e., Test 5 (Figure 3.8).

In this test, the robot is a planar articulated arm with a free-flying base. The

dimensionality of C is increased by adding up to 8 links to the robot, resulting

in a maximum of 10 dofs. The robot must move through the narrow passage

in the middle. The results are shown in Figure 3.8. And it clearly indicates that

workspace information still has its merit. As dim(C) increases, the decrement of the

performance of WIS is slower than that of the basic-PRM or the original-AHS. This

result strengthens our argument in Section 3.3 that workspace information provides

useful information for generating suitable sampling distributions for probabilistic

path planning, regardless of the difference between the dimensionality of C and the

dimensionality of W .

3.6 Analysis of WIS

In this section, we will analyze the probabilistic completeness and the running time

of WIS. We start by deriving the sampling density of WIS in Section 3.6.1. We then

present the probabilistic completeness and running time of WIS in Section 3.6.2

and Section 3.6.3, respectively.

3.6.1 Sampling Density

To derive the sampling density of WIS, let’s look at the two-stage sampling pro-

cedure of WIS along with the sampling density in each stage. In the first stage,

WIS samples a point x in WF by first sampling a triangle t from TF based on the

distribution pT (t) as defined in (3.6). It will then sample a point x uniformly at

random from t. So, the density function fX(x) used by WIS to sample x ∈ WF

can be computed as

fX(x) =
∑
t∈TF

fX|T (x | t)pT (t) ; fX|T (x | t) =


1

µ(t)
x ∈ t , t ∈ TF

0 otherwise

=
pT (τ(x))

µ(τ(x))
(3.7)
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where X and T are the random variables that represent a point sampled fromWF

and a triangle sampled from TF , µ(·) denotes volume, and τ(x) is the triangle that

contains x.

In the second stage, after a point x ∈ WF is sampled, a configuration is sam-

pled uniformly at random from La(x). So, if X and Q are the random variables

that represent the point in WF and the configuration sampled by WIS, then the

probability density function fQ|X(q | x) of sampling q given x is defined as

fQ|X(q | x) =


1

λ(La(x))
q ∈ La(x)

0 otherwise
(3.8)

where λ(·) denotes the the volume in the (n−dim(W))-dimensional subspace of C.

Assuming that C is a normalized Euclidean space [0, 1]dim(C), the largest possible

λ(La(x)) is one.

The probability density function fQ(q) generated by WIS can then be computed

as

fQ(q) =

∫
x∈WF

fQ|X(q | x)fX(x)∂x

=
1

λ(La(Pa(q)))

pT (τ(Pa(q)))

µ(τ(Pa(q)))
(3.9)

3.6.2 Probabilistic Completeness

Once we have the sampling density, it is straightforward to analyze WIS using

any analysis of the basic-PRM, e.g., the analysis in [Kavraki et al., 1995,Kavraki

et al., 1996a,Hsu et al., 1997], to analyze WIS. The only modification required is

to replace the uniform distribution with the distribution generated by WIS. Below,

we show an example of adapting one of the analysis of the basic-PRM, i.e., the one

in [Kavraki et al., 1996a], to analyze WIS. The result shows that the probability

that WIS solves any given queries converges to one, exponentially in terms of the

number of milestones, provided such a solution exists. More formally,

Theorem 3.3 Let ψ be a collision-free path that solves the given query. Suppose

l is the length of ψ, d is the shortest distance between a configuration in ψ to
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the forbidden region, and B d
2

is any ball of radius d
2

in F . Let’s denote Qψ as

the union of all balls of radius d
2

centered at each configuration in ψ and T ′(ψ) =

{t | t ∈ TF , t
⋂
Pa(Qψ) 6= ∅}. Then, the probability that ψ cannot be found using

a roadmap of N milestones that has been generated by WIS is Pr(failure) ≤(⌈
2l
d

⌉
− 1
)
(1− (KT ′(ψ) · µ(B d

2
)))N , where KT ′(ψ) = mint∈T ′(ψ)

pT (t)

µ(t)
and KT ′(ψ) ≥ ε

for ε > 0.

Proof Suppose B = d2l
d
e. We can discretize ψ into a sequence of configurations

q0, . . . , qB such that for k ∈ [0, B], the length of ψ between qk and qk+1 is at

most d
2
, q0 = qi, and qB = qg. Then, ψ can be covered with balls B(qk, d

2
) of

radius d
2

and center at qk. An illustration is shown in Figure 3.9. Notice that

B(qk+1, d
2
) ⊆ B(qk, d). Hence, if the roadmap constructed by WIS places at least

d
2

d
2

dq0

qB

qk

qk+1

ψ

Figure 3.9: Illustration of the path ψ and the discretization of the path. The
forbidden region is colored light green.

one milestone in each ball, then the generated roadmap finds the path. So, the

probability that WIS fails to find a path after the generated roadmap contains N

milestones can be written as,

Pr(failure) ≤ Pr[∃k B(qk, d
2
) is empty]
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≤
B−1∑
k=1

Pr[B(qk, d
2
) is empty]

=
B−1∑
k=1

(1− Pr[q ∈ B(qk, d
2
)])N

=
B−1∑
k=1

(
1−

∫
q∈B(qk, d

2
)
fQ(q)∂q

)N

Substituting (3.9) to the equation, the right hand side of the equation becomes:

=
B−1∑
k=1

(
1−

∫
q∈B(qk, d

2
)

1

λ(La(Pa(q)))

pT (τ(Pa(q)))

µ(τ(Pa(q)))

)N

Since q must lie in La(x) and x in t, we can rewrite the above equation as

=
B−1∑
k=1

1−
∑
t∈TF

∫
x∈t

∫
q∈
�
B(qk, d

2
)TLa(x)

� 1

λ(La(x))

pT (t)

µ(t)
∂q∂x

N

=
B−1∑
k=1

1−
∑
t∈TF

∫
x∈t

λ(B(qk, d
2
)
⋂
La(x))

λ(La(x))

pT (t)

µ(t)
∂x

N

By taking the largest possible value for λ(La(x)), we have:

Pr(failure) ≤
B−1∑
k=1

1−
∑
t∈TF

∫
x∈t

λ(B(qk, d
2
)
⋂
La(x))

pT (t)

µ(t)
∂x

N

=
B−1∑
i=k

1−
∑
t∈TF

µ(B(qk, d
2
)
⋂
La(t))

pT (t)

µ(t)

N

≤
B−1∑
i=k

(
1− min

t∈T ′(ψ)

pT (t)

µ(t)
µ(B(qk, d

2
))

)N

Since the terms within the summation are the same for all balls B(qk, d
2
), k ∈

[1, B − 1], we have:

Pr(failure) ≤
(⌈

2l

d

⌉
− 1

)(
1−KT ′(ψ) · µ(B d

2
)
)N

Which is the upper bound of the failure probability we want.
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Now, we will prove that KT ′(ψ) ≥ ε for ε > 0 and for any path ψ. Suppose

the smallest possible height, among all possible triangles in TF and among all

possible heights of a triangle in TF , is ε1. Since the volume of triangles in TF are

all non-zero, ε1 > 0. Expanding pT (t) using (3.6), we have:

KT ′(ψ) ≥ min
t∈TF

pT (t)

µ(t)

= min
t∈TF

1

h(t)

µ(t)
∑K

i=1
1

h(ti)

where K is the number of triangles in TF . Since the smallest height of a triangle

in TF is ε1, minKi=1 h(ti) ≥ ε1 and we can bound the above equation as follows:

min
t∈TF

pT (t)

µ(t)
≥

1

h(t)

µ(t)K 1
ε1

(3.10)

Now, we will separate the 2D workspace case and the 3D workspace case. First,

we will find a bound for the 2D workspace case. Assuming that the workspace is

a Euclidean space [0, 1]2, h(t) ≤
√

2 and the largest area possible for a triangle

inside the workspace is 1
2
. So, (3.10) becomes:

min
t∈TF

pT (t)

µ(t)
≥
√

2ε1
K

Since for any edge e of a triangle t, we can construct a right triangle where e is the

hypotenuse and one of t’s height is a side of the right triangle, the length of any

edge e of t must be more than ε1. Therefore, the lower bound on the volume of

t is µ(t) ≥ ε21
2
. Assuming that the workspace is a Euclidean space [0, 1]2, K ≤ 2

ε21
.

And hence for 2D workspace, we have the following bound:

KT ′(ψ) ≥ min
t∈TF

pT (t)

µ(t)
≥ ε31√

2

So, by assigning ε =
ε31√
2
, we have shown that in 2D workspace, KT ′(ψ) ≥ ε for

ε > 0.

The same strategy can also be used for 3D workspace. Assuming that the
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workspace is a Euclidean space [0, 1]3, h(t) ≤
√

3 and the largest area possible

for a triangle inside the workspace is 1
3
. Furthermore, since for any edge e of a

tetrahedron t, we can construct a right triangle where e is the hypotenuse and one

of t’s height is a side of the right triangle, the length of any edge e of t must be

more than ε1. With similar reasoning, any height of the triangles that compose

t must be more than ε1 too. Therefore, the lower bound on the volume of t is

µ(t) ≥ ε31
6
. Substituting these values to (3.10) will then give us:

KT ′(ψ) ≥ min
t∈TF

pT (t)

µ(t)
≥ ε41

2
√

3

By assigning ε =
ε41

2
√

3
, we have shown that in 3D workspace, KT ′(ψ) ≥ ε for ε > 0.

So, we have proved that WIS is probabilistically complete. 2.

Compared to the basic-PRM where the upper bound of its failure probability

is d2l
d
e(1 − µ(B d

2
))N , WIS has a lower upper bound of failure probability when

KT ′(ψ) > 1. When this happens, in general, the triangles in T ′(ψ) have small

weights. Assuming the weight approximates the width of the passages in the

workspace well, T ′(ψ) often happens when following the path ψ means that the

robot moves inside narrow passages in the workspace. Hence, WIS tends to have

lower failure probability than the basic-PRM when the robot moves inside narrow

passages of the workspace.

3.6.3 Running Time

The total running time of WIS consists of two main parts. First, is the time

for generating triangles TF along with its weight and probability values. This

computation is performed only once before WIS starts building the roadmap. It

consists of four steps. First is sampling on the boundary of WF using the scan-

conversion like algorithm [Foley et al., 1995]. This step takes O(|P |) time where

|P | is the number of sampled points. Second is triangulating the sampled points

to generate T . This step takes O(|P |2) in the worst case, but in practice, we

can expect O(|P | lg |P |) [Amenta et al., 2001]. The third step is separating the

triangles inside WF from those outside to generate TF . This computation takes
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O(|T |) where |T | is the number of triangles in T . Finally, WIS assigns weight and

probability values to each triangle in TF . This computation takes linear time in

the number of triangles in TF . The number of triangles is O(|P |) for 2D workspace

and O(|P |2) for 3D workspace. So in the worst case, the total time Tpre for pre-

processing the workspace information is O(|P |2).

The second part of WIS running time is for building the roadmap. This part

iteratively performs two main steps. First is sampling a collision-free configuration.

Let’s denote the time used by WIS to generate a milestone as Tm. The second

step is adding and connecting the new milestone to the milestones in the current

roadmap. We denote this cost as Tl. The total time for WIS to build a roadmap of

Nmil milestones is then O(Nmil · (Tm + Tl)). So, the total running time complexity

of WIS is O(Tpre +Nmil(Tm + Tl)).

Let’s now compare the running time of WIS with that of the basic-PRM. The

following method of comparing the running time of different sampling strategies

have been used in [Sun et al., 2005]. Compared to the basic-PRM, WIS per-

forms additional computation to extract workspace information. As we have seen

in Section 3.5, in general this cost is very small compared to the total cost. Fur-

thermore, to sample a configuration using information from WF , WIS requires

an additional constant time c. For rigid body robot, the additional time c is

due to the additional computation for computing a configuration given a sam-

pled workspace point (see Section 3.4.3). While for articulated robot, the ad-

ditional time c is dominated by the inverse kinematics (IK) computation. Sup-

pose to generate a milestone, we need Ns samples. To simplify the comparison,

let’s assume that the number of samples needed to generate a milestone is the

same everywhere. Then, the total time Twis used by WIS to generate a roadmap

of Nmil milestones is Twis = Tpre + Nmil(Ns(Ts + c) + Tl), where Ts is the time

used by the basic-PRM to generate a sample. While the total time Tuni used

by the basic-PRM is Tuni = Nmil(Ns · Ts + Tl). However, WIS places its mile-

stones at more important regions of F and hence uses less number of milestones

to solve the given queries. Since in general Tl is much larger than Ts, the total

time for WIS to generate a roadmap that can solve the given queries is faster
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than the total time used by the basic-PRM. As an example, suppose to solve

the given queries, the basic-PRM uses 3000 milestones while WIS uses 1000 mile-

stones. And suppose Tpre = 300Ts, Ns = 2, c = Ts, and Tl = 10Ts. Then

Twis/Tuni = (300 · Ts + 1000 · (2 · 2 · Ts + 10 · Ts))/(3000 · (2 · Ts + 10 · Ts)). Which

results in Twis ≈ 0.4Tuni. So, compared to the basic-PRM, WIS pays a slightly

higher cost to place milestones at more useful regions of F , such that the total

milestones needed to solve the given queries are less and hence the total time for

solving the queries are less, too.

3.7 Discussion

In this chapter, we have explored the use of workspace information to generate

a suitable sampling distribution for probabilistic path planning. We have shown

that under certain conditions that do not depend on the dimensionality of F , the

visibility sets of configurations in F can be bounded by the lift mapping of the

visibility sets of the corresponding points in WF . Furthermore, we have presented

a simple workspace-based probabilistic path planner called workspace importance

sampling (WIS). WIS efficiently extracts local geometric property of WF to esti-

mate the size of the visibility sets of configurations in F . The estimation is then

used to assign sampling distribution over C. In several experiments, WIS out-

performs recent probabilistic path planner that has been shown to perform well.

Furthermore, as the dimensionality of C increases, WIS’s performance decreases

slower than the recent probabilistic planner. Our analysis shows that the failure

probability of WIS converges to zero exponentially in the number of milestones,

whenever a solution exists. Furthermore, when the robot moves in a narrow region

of WF , WIS has a lower upper bound on the failure probability compared to the

basic-PRM. These results suggest that workspace information is potentially useful

for constructing a suitable sampling distribution for probabilistic path planning.

One may want to improve WIS by finding a more suitable triangulation method,

as different triangulation affects the quality of the estimated width of a workspace

passages, which in turn affects the constructed sampling distribution and the
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overall performance of the planner. Nevertheless, regardless of the triangulation

method, utilizing geometric property of the workspace alone to guide sampling in

the configuration space is still prone to misleading workspace information. There-

fore, instead of trying to find a more suitable triangulation, we prefer to find a

better strategy to alleviate the problem of misleading workspace information.

The use of workspace information for probabilistic path planning may be mis-

leading such that the sampling distribution constructed is unsuitable. This is

expected as F is a convolution of both the workspace and the robot. By using

only workspace information and representing the robot as a single feature point,

WIS has entirely ignored the robot’s geometry.

One obvious remedy is to incorporate more robot information to our sampling

strategy. The main difficulty is how to incorporate more robot information and

then combine it with the workspace information efficiently. We need to be careful

in trying to incorporate more robot information because otherwise, we may be

back trying to generate an exact representation of F , which requires infeasible

cost. A possible strategy is to represent the robot as a set of feature points instead

of just a single feature point. For this, several issues need to be addressed. For

instance, how many and which points of the robot should one use. And more

importantly, how to efficiently combine information from multiple points of the

robot with information from the workspace.

As incorporating more complicated information from the robot may be ineffi-

cient, another strategy is to directly combine workspace information with partial

information about F . Although we do not have an explicit representation of F and

constructing it is infeasible, sampling history provides partial information about F .

We can infer local geometric property of F from sampling history. And workspace

information will then provide a rough global information about the connectivity of

F . By combining a rough global connectivity information with a more refined local

geometric information, we can infer a more detailed information about F better.

The issue is of course how to infer information about F from the sampling history

and how to efficiently combine this information with the workspace information.

In Chapter 2, we have argued that a sampling strategy that dynamically adapt
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its sampling distribution is more suitable for probabilistic path planning. In prob-

abilistic path planning, sampling distribution represents the planner’s belief on

which part of C is more useful to improve its current understanding about the

shape of C. And of course the use of sampling different parts of C changes as

the roadmap construction progresses. So, it seems more suitable if the sampling

distribution is dynamic. The main difficulty in generating dynamic sampling dis-

tribution is of course how should one adapt the sampling distribution. Previous

probabilistic path planners that generate dynamic sampling distribution use sam-

pling history to dynamically adapt its sampling distribution. However, to identify

narrow passages and sample more densely there, the planner needs to first sample

configurations from inside or around the narrow passages. This is difficult to do

and may require significant amount of time before the planner can bias sampling

toward narrow passages. Since workspace information provides a rough global

information about F , it may be useful to use workspace information to adapt

sampling distribution. However, workspace information has only been used for

non-adaptive sampling. The main reason is that to use workspace information for

adaptive sampling, the strategy needs to repeatedly map information from and to

the robot’s free-space F and the workspace free-space WF . Since F and WF are

two distinct spaces, this mapping is often considered as expensive. However, the

strong relation between F andWF and the small workspace extraction time shown

in this chapter indicate that mapping information from and to F and WF can be

done efficiently. And therefore it would be possible to use workspace information

for adaptive sampling.

In the next chapter, we present a workspace-based probabilistic path planner

that addresses the above issues.
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Workspace Information for

Adaptive Sampling

This chapter presents our new probabilistic path planner, called Workspace-based

Connectivity Oracle (WCO). Unlike WIS that generates static sampling distribu-

tion, WCO generates dynamic sampling distribution. WCO combines workspace

information with sampling history and the current state of the roadmap to dynam-

ically adapt its sampling distribution over time. Furthermore, unlike WIS that

represents the robot using a feature point, WCO uses multiple feature points, such

that more robot’s information can be incorporated to the planner. Each feature

point composes a component sampler that uses workspace information to estimate

regions of the robot’s free-space F that is more likely to improve the quality of

the current roadmap, and then sample more densely in these regions. So, WCO is

composed of many component samplers. These samplers are combined using the

adaptive hybrid sampling approach which is based on the samplers’s sampling his-

tories. Our analysis shows that the failure probability of WCO converges to zero

exponentially in the number of milestones, whenever a solution exists. And when

WCO’s estimation is good, the upper bound on the failure probability of WCO

is lower than that of the basic-PRM. Our experimental results show that WCO

performs up to 28 times faster than the basic-PRM. And as the dimensionality of

C increases, WCO’s performance decreases slower than other recent probabilistic

path planners. In the attached demo, we show that WCO is able to solve a bridge

79
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inspection problem involving a 35 dofs robot.

We start by presenting the main idea of WCO in Section 4.1. Unlike WIS that

uses geometric property of the workspace free-space WF to guide sampling, the

main idea of WCO is to use paths inWF to guide sampling. We explore the relation

between paths in F and in WF in Section 4.2. An overall strategy of the WCO

planner is then presented in Section 4.3. The details of the planner are presented

in Section 4.4 and Section 4.5. Next, implementation details and experimental

results are presented in Section 4.6. While an analysis of WCO is presented in

Section 4.7. Finally, we end with a discussion of possible improvements of the

planner in Section 4.8.

4.1 The Idea

In Chapter 2, we have argued that adaptive sampling is a promising way of

speeding-up probabilistic path planning. It incrementally infers partial knowl-

edge of key geometric properties of F during roadmap construction and uses this

knowledge to dynamically adapt the sampling distribution. Considering that a pri-

ori construction of F is infeasible and a suitable sampling distribution is dependent

on the geometry of F , adaptive sampling provides a way to generate a more suitable

sampling distribution without a priori construction of F . Furthermore, adaptive

sampling reduces oversampling regions of F that have been well-represented by

the current roadmap.

However, to infer geometric properties of F , existing probabilistic planners with

adaptive sampling [Kavraki et al., 1996b, Morales et al., 2004, Burns and Brock,

2005, Hsu et al., 2005, Rodriguez et al., 2006] use only sampling history. This is

inadequate because to learn the usefulness of sampling a particular region of F , the

planner needs many samples in or around the region. This is difficult to achieve

in narrow passages, which are often crucial for capturing the connectivity of F .

To address this issue, WCO uses both workspace information and sampling

history. WCO is based on the standard multi-query PRM approach as described

in Section 2.2. Since there is no confusion, in the rest of this thesis, we use WCO
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to refer to both the sampling strategy and the planner.

WCO is an ensemble sampler composed of many component samplers. Each

sampler is based on a feature point of the robot. They are based on a key observa-

tion: a collision-free path between a start configuration qi and a goal configuration

qg in a robot’s free-space F implies a collision-free path in the workspace free-

space WF for every points in the robot between the corresponding start and goal

positions of the point. So, if we find a collision-free path in WF for every point

in the robot and all these paths correspond to the same path ψ in F , then ψ is

indeed a collision-free path in F for the robot to move from qi to qg. Finding a

path for every point is, of course, impractical. Nevertheless, we can use a set of

points, called feature points, on the robot to predict regions of C that are more

likely to be useful for connecting disconnected components of a roadmap. So, each

WCO component sampler is based on a feature point of the robot. They are then

combined, based on their sampling histories, using the adaptive hybrid sampling

(AHS) approach [Hsu et al., 2005], which is a restricted form of reinforcement

learning.

4.2 Paths in F and in WF

Unlike WIS that uses geometric property of WF to guide sampling, WCO uses

paths in WF to guide its sampling. In this section, we try to understand the

relation between paths in F and in WF .

Observation on the relation between paths in F and inWF gives us the following

proposition, which is the key observation utilized by WCO.

Proposition 4.1 If two configurations q, q′ ∈ C are connected by a path in F ,

then for any point a in a robot, Pa(q) and Pa(q
′), the projections of q and q′ in

WF , are connected by a path in WF .

To understand the relation between paths in F and in WF further, we explore

the relation between the possible length of paths in F and the possible length of

paths in WF . To state the relation between the possible length of paths in F and

paths in WF , we need additional notation. We define a linking sequence L(q, q′)
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between two configurations q, q′ ∈ F as a sequence of configurations q1, . . . , qn ∈ F

such that each configuration in the sequence lies in the visibility set of its previous

configuration, i.e.,
∧n
i=2 q

i ∈ V(qi−1) where q1 = q, qn = q′, and V(·) is the visibility

set. We define the length |L(q, q′)| of a linking sequence L(q, q′) as the number of

configurations in L(q, q′). To articulate the relation between F and WF , we also

use the same denifition to define linking sequence in WF .

Now, for any robot and any point a on the robot such that the projection Pa

is linear, we can state the relation between paths in F and in WF as

Theorem 4.1 Let’s denote A as the set of points a on the robot such that the

projection Pa is linear. For any a ∈ A, if X ⊆ WF is a path-connected subset that

encloses Pa(q) and Pa(q
′), then any linking sequence L(q, q′) in La(X) is at least

as long as the shortest linking sequence between Pa(q) and Pa(q
′) in X.

Proof We prove by contradiction. Let’s denote the length of the shortest linking

sequence between Pa(q) and Pa(q
′) in X as n. Suppose there is a linking sequence

L(q, q′) = q1, q2, . . . , qk in La(X) where k < n, q1 = q, and qk = q′. Since V(q) ⊆

La(V(Pa(q))) (Theorem 3.1) and since a linking sequence means qi ∈ V(qi−1),

∀i∈[2,k] Pa(q
i) ∈ V(Pa(q

i−1)). Since L(q, q′) lies entirely in La(X), ∀i∈[1,k] Pa(q
i) ∈

X. This means, there is a linking sequence of length k < n between Pa(q) and

Pa(q
′) in X. But this contradicts our assumption that the shortest linking sequence

between Pa(q) and Pa(q
′) in X is n. 2.

The main difficulties in relaxing the above theorem such that it holds for any

point a on the robot and any types of robot is that V(q) ⊆ La(V(Pa(q))) does

not always hold for arbitrary points in the robot and for arbitrary types of robot.

However, we can relax the above theorem by restricting our definition of link-

ing sequence by the distance between a configuration to the forbidden region. The

distance function is as defined in Section 3.2. Let’s denote our restricted linking se-

quence between two configurations q, q′ ∈ F as Lr(q, q′), and define it as a sequence

of configurations q1, . . . , qn ∈ F such that
∧n
i=2 (qi ∈ B(qi−1,∆O(qi−1)) ∩ V(qi−1))

where q1 = q, qn = q′, and B(q,∆O(q)) is the set of configurations within ∆O(q)

distance from q. Notice that for any collision-free configuration q, the intersec-

tion B(q,∆O(q)) ∩ V(q) is B(q,∆O(q)). From the definition of distance between
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two configurations in Section 3.2, any configuration within ∆O(q) from q must

be collision-free, which means any configuration in B(q,∆O(q)) can see any other

configuration in B(q,∆O(q)). Hence, the requirement of our restricted linking se-

quence can be simplified to a sequence of configurations q1, . . . , qn ∈ F such that∧n
i=2 q

i ∈ B(qi−1,∆O(qi−1)). As in the definition of linking sequence, we also use

the same definition to define restricted linking sequence inWF . We can then relax

Theorem 4.1 to:

Theorem 4.2 Let A be a robot and a be any point in A. If X ⊆ WF is a

path-connected subset that encloses Pa(q) and Pa(q
′), then any restricted linking

sequence Lr(q, q′) in La(X) is at least as long as the shortest restricted linking

sequence between Pa(q) and Pa(q
′) in X.

Proof First, we show that for any configuration q ∈ F , B(q,∆O(q)) ⊆ La(B(Pa(q), δO(Pa(q)))).

By contradiction, suppose there is a configuration q′ ∈ B(q,∆O(q)) where Pa(q
′) 6∈

B(Pa(q), δO(Pa(q))). From the definition of distance between two configurations

in Section 3.2, for q′ to be in B(q,∆O(q)), the distance between Pa(q
′) and Pa(q) is

at most mina∈A δO(Pa(q)). However, to satisfy Pa(q
′) 6∈ B(Pa(q), δO(Pa(q))), the

distance between Pa(q
′) and Pa(q) must be more than δO(Pa(q)). This is a contra-

diction, and hence for any configuration q ∈ F , B(q,∆O(q)) ⊆ La(B(Pa(q), δO(Pa(q)))).

It is then straightforward to adopt the proof in Theorem 4.1 to prove this

theorem. By contradiction, suppose n is the shortest restricted linking sequence

between Pa(q) and Pa(q
′) in X and suppose there is a restricted linking sequence

between two configurations q, q′ ∈ F , Lr(q, q′) = q1, . . . , qk in La(X) where k < n,

q1 = q, and qk = q′. Since B(q,∆O(q)) ⊆ La(B(Pa(q), δO(Pa(q)))) and by our defi-

nition of a restricted linking sequence, ∀i∈[1,k] Pa(q
i) ∈ B(Pa(q

i−1),∆O(Pa(q
i−1))).

Since the restricted linking sequence is enclosed in La(X), there is a restricted

linking sequence in X between Pa(q) and Pa(q
′) with length k < n. This con-

tradicts our assumption that n is the shortest restricted linking sequence between

Pa(q) and Pa(q
′) in X. 2.

In the rest of the discussion, we will use linking sequence to refer to both L and

Lr. The above theorems imply that to find a path that connects two disconnected
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components of a roadmap, reducing our search space to subsets ofWF that contains

short linking sequences is preferable than to subset that contains only long linking

sequences. In a roadmap, a path between two collision-free configurations q and

q′ are made up of a sequence of straight-line segments, where their end-points are

either the query configurations or the milestones in the roadmap. The sequence

of milestones that connects q and q′, inclusive of q and q′, can be considered

as a linking sequence between q and q′. To quickly connect two disconnected

components of a roadmap, we want to find a sequence of milestones that construct

short linking sequence between configurations from different roadmap components.

Theorem 4.2 implies that for any types of robots and for any points in the robot,

it is less likely that we find short linking sequence between q and q′ if the search is

restricted to La(X) where X ⊆ WF contains only long linking sequences between

Pa(q) and Pa(q
′). Of course there are cases where the shortest linking sequence in

La(X
′), where X ′ ⊆ WF contains significantly shorter linking sequences than X,

is significantly longer than the shortest linking sequence in La(X). Or even worse,

La(X
′) may not contain any linking sequence between q and q′. But, as we will

see in the experimental results (Section 4.6) and analysis (Section 4.7), choosing

short linking sequence is effective.

Note that one may combine the size of the linking sequence inX ⊆ WF with the

size of the visibility sets of points in X, to get a better estimation of the difficulty

of finding a path by restricting sampling to La(X). However, for simplicity, WCO

uses only the small linking sequence preference.

4.3 Overview of WCO

Now, we give an overall strategy of our new planner, Workspace-based Connec-

tivity Oracle (WCO). During roadmap construction, WCO maintains a partially

constructed roadmap R. Distinct connected components of R may in fact lie in

the same connected component of F , due to inadequate sampling of certain critical

regions. To sample such regions, WCO examines the workspace paths of a set of

feature points in the robot and constructs a sampler for each feature point a. To
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connect two components R1 and R2 of R, we use Pa to project the milestones of

R intoWF and search for “channels” inWF that connect the projected milestones

of R1 and R2. In trying to keep the number of milestones low, we prefer to use

short channels instead of longer ones (Theorem 4.2). Furthermore, as we will see in

Section 4.7.2, short channels tend to improve the performance of WCO. The chan-

nels suggest the regions of C that is more likely to connect R1 and R2. So, we use

La to lift the channels into C and adapt the distribution to sample more densely

in the regions covered by the lifted channels. To be sensitive to the changes in R,

WCO adapts its sampling distribution incrementally whenever a new milestone is

added to R.

Although workspace-based PRM planners often consider only a single feature

point [Foskey et al., 2001,van den Berg and Overmars, 2005], this is inadequate. By

Proposition 4.1, a collision-free path in C implies a collision-free path inW for every

point in the robot. So, we use a set of pre-selected feature points and construct an

independent sampler si for each feature point ai, i = 1, 2, . . . , L− 1. We make two

simplifying assumptions. First, a finite number of feature points are sufficient to

indicate the important regions of C for sampling. Second, we can treat the feature

points independently. These two assumptions reduce the computational cost and

are shown to be effective in identifying important regions of C (see Section 4.6).

Despite the independence assumption, the kinematic constraints of a robot are

not entirely ignored. Implicitly, WCO assigns higher sampling density to regions

obeying such constraints. We will discuss more about this in Section 4.5.2. To

provide roadmap coverage, we add a uniform component sampler s0 to the WCO

component samplers s1, s2, . . . , sL−1 and form the set S = {s0, s1, s2, . . . , sL−1}.

The component samplers in S are combined through the AHS [Hsu et al., 2005]

approach to form an ensemble sampler. With this approach, each component

sampler has an associated weight proportional to the probability of it being used,

and the weights are adjusted to reflect the success of the sampler according to the

sampling history.

The overall strategy of WCO can be seen in Algorithm 4.1. It is based on the

standard multi-query PRM approach as described in Section 2.2. It accepts a set
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Algorithm 4.1 WCO(Q, N)

1: Extract workspace information.
2: Let pSj

(si) be the probability of picking a component sampler si at iteration-j.
Initialize pS0(si) = 1/L for i = 0, 1, . . . , L− 1.

3: Set the current number of milestones j = 0.
4: repeat
5: Pick a component sampler si from S = {s0, . . . , sL−1} with probability pSj

.
6: Run si to sample a new configuration q.
7: if FreeConf(q) is true then
8: Insert q to the roadmap R.
9: Update the distributions of si, i = 1, 2, . . . , L− 1.

10: Compute the probabilities pSj+1
(si), i = 0, . . . , L− 1.

11: Increment j by 1.
12: until AllSolved(Q, R, Ψ) is true or R contains N milestones.
13: Return Ψ.

of queries Q and maximum number of milestones N as inputs. And returns a set of

paths Ψ between each query in Q. The details of the primitive FreeConf for check-

ing whether a configuration is collision free or not and the primitive AllSolved()

for checking whether all queries have been solved or not are presented in Ap-

pendix A. The details for a component sampler (Algorithm 4.1 line 1 and 6–9) are

presented in Section 4.4 while the details of combining the samplers (Algorithm 4.1

line 2 and 10) are presented in Section 4.5.

4.4 Details of a Single Component Sampler

We now describe the construction of a component sampler of WCO for a fixed

feature point a, specifically, how to extract workspace connectivity (Algorithm 4.1

line 1) in Section 4.4.1, how to adapt the sampling distribution (Algorithm 4.1

line 9) in Section 4.4.2, and how to take a sample for rigid and articulated robots

(Algorithm 4.1 line 6) in Section 4.4.3.

4.4.1 Extracting Workspace Connectivity

Just as WIS (Chapter 3), WCO starts by computing a cell decomposition of WF .

However unlike WIS, any cell decomposition method, e.g., triangulation, quadtrees,

regular grids, etc., can be used for WCO, because the purpose of cell decomposition
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in WCO is to extract the connectivity information of WF and to discretize the

sampling space. After WF is decomposed, the adjacency graph of the cells is

computed.

Building on our work on WIS, WCO uses triangulation. We will use the term

triangulation in a general sense, i.e., referring to triangulation for 2D workspace

and tetrahedralization for 3D workspace. WCO samples the boundary of obsta-

cles in WF and constructs a Delaunay triangulation [de Berg et al., 2000] over

the sampled points. Under reasonable geometric assumptions, the constructed

triangulation is conforming [Amenta et al., 2001], meaning that every triangle in

the resulting triangulation lies either entirely in WF or its complement. Although

helpful, this property is not required for our purposes. WCO will then consider the

triangles that lie entirely or partially in WF as the triangles in WF . Let’s denote

these triangles as TF . The adjacency graph G is then defined as the graph whose

vertices represent the triangles in TF and two vertices v1 and v2 are connected

by an edge in G whenever the two triangles represented by v1 and v2 shares a

boundary.

4.4.2 Adapting Sampling Distribution

A skeleton of a WCO component sampler is shown in Algorithm 4.2. Let us now

look at how it represents and updates the sampling distribution based on workspace

channels T ′. During the roadmap construction, WCO maintains a partially con-

structed roadmap R. To sample a new milestone, each component sampler main-

tains a separate sampling distribution pTj
defined over TF , where Tj is the random

variable that represents the sampled triangle at iteration j. The distribution pTj

assigns equal probabilities to all triangles in the workspace channels T ′ and zero

probabilities to all other triangles in TF .

Since workspace channels estimate regions of WF that is more likely to be

passed by the robot in order to connect disconnected components of the roadmap,

to find workspace channels, we first need to project the connected component

information of the roadmap to the workspace. For this, we start by projecting

milestones of R to WF (Algorithm 4.2, line 4). Suppose that a milestone m
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Algorithm 4.2 A WCO component sampler.

1: Given a feature point a, sample a configuration q, based on the sampling
distribution defined over the decomposition TF .

2: if FreeConf(q) is true then
3: Insert q to the roadmap R.
4: Project q to W and let t ∈ TF be the triangle that contains Pa(q).
5: Update the label sets and the end-points sets of all affected triangles in TF .
6: Insert terminal t as a vertex of the channel graph G′, if it is not yet in G′.
7: Perform a breadth-first search in the adjacency graph G from t until reaching

the first terminal t′ other than t.
8: if t and t′ hold different label sets then
9: Add the path between t and t′ to G′.

10: Delete (parts of) the paths that are unlikely to connect different components
of the current roadmap.

11: Update the workspace channels T ′.
12: Update the sampling distribution.

belongs to a roadmap component Ri of R. We associate Ri with the triangle

t ∈ TF that contains Pa(m). Thus, each triangle t contains a set of labels that

indicates the roadmap components which t is associated with. We call a triangle

t a terminal whenever its label set is non-empty, meaning that t contains at least

one projected milestone. See Figure 4.1a for an example.

Next, we find channels that connect terminals with different label sets by con-

sidering the adjacency graph G. We compute a subgraph of G, called a channel

graph G′, that spans all the terminals and connect them together. As argued in

Section 4.2, we prefer to find short channels. In Section 4.7, we will discuss more

on why small workspace channels are more desirable. The intuition behind the

channel graph is very much like that of a roadmap in the configuration space: it

uses simple paths, in this case, the shortest paths to connect every pair of two

terminals that are close to each other and have different label sets. The workspace

channels T ′ are then the triangles corresponding to these non-isolated vertices of

G′. See Figure 4.1 for an example.

The channel graph is computed incrementally (Algorithm 4.2, lines 6–9), as

new milestones are added. The incremental construction allows WCO to respond

to changes in R and simplifies computation. To see that G′ indeed “connects”

all the terminals together, note that the channel graph G′ clearly contains all the

terminals. Furthermore, it is weakly connected in the sense that between every pair
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Figure 4.1: Illustration of WCO sampling strategy. Obstacles are colored red.
The robot is a free-flying rigid body robot and is green colored. (a) Milestones
are projected to the triangulated workspace. The labels indicate the roadmap
components to which the milestones belong. The feature point of the rigid robot
is marked by a black dot. (b) The adjacency graph G. Terminals are marked
by crosses. (c) The channel graph G′ . Paths that connect terminals with the
same label set (e.g., the path between the two terminals labelled {R5}) are not in
G′, as they connect terminals corresponding to milestones in the same connected
components of R and hence unlikely to help in improving the connectivity of R.
(d) The workspace channels T ′ is the white-colored triangles.

of terminals t and t′, there is a sequence of terminals ti, i = 1, 2, . . . , n with t1 = t

and tn = t′ such that every adjacent pair ti and ti+1 either have exactly the same

label set or have a path between them in G′. In the example shown in Figure 4.1c,

the two terminals {R3} and {R4} are weakly connected.

In trying to keep the size of the workspace channels small, we delete (parts

of) the paths that now connect terminals with the same label sets (Algorithm 4.2,

lines 10). To quickly identify which vertices of G′ to be deleted, each vertex
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keeps an end-points set. An end-points set E(v) of a vertex v is a set of 3-tuples

< ls1, ls2, ts > that records which pairs of labels sets are connected through the

workspace path(s) that passes through the vertex v. The components ls1 and ls2

are the label set of the terminals connected by a path passing through v, while

ts is a time-stamp that indicates the most recent time among the time when the

3-tuple is inserted and the time ls1 or ls2 is updated. For example, suppose at

iteration-j, a path passing trough vertex v and connecting t to t′ is inserted to G′.

Then, a 3-tuple of <label set of t, label set of t′, j > is inserted to E(v).

The question remains as to when a vertex v should be deleted from G′. Recall

that the label set of a terminal indicates the roadmap components associated with

the terminal. So, when ls1 and ls2 of a 3-tuple in E(v) of a vertex v are the same,

v does not seem useful in improving the connectivity of the current roadmap and

hence deleteing v from G′ seems reasonable. However, E(v) may contain more

than one 3-tuples and the other 3-tuples of E(v) may have different value of ls1

and ls2. This indicates that the vertex v may still be useful in connecting different

components of the roadmap and deleting v may not be desirable. Ideally, we will

only delete a vertex v from the channel graph if each element of E(v) has the

same ls1 and ls2 (i.e., for each element of E(v), ls1 = ls2). However, this means

our workspace channels will often be quite large because often times a vertex is

identified as potentially useful for connecting many pairs of different terminals. To

keep the size of the workspace channels small, we use the time-stamp as a heuristic

to decide whether a vertex should be deleted or not. With this heuristic, a vertex

v is deleted whenever each of the k most recent elements of E(v) have the same

ls1 and ls2, where k is a constant.

The above heuristic generates a spectrum, where the smallest workspace chan-

nels is generated when we set k = 1. And the largest workspace channels is

generated when k is unbounded, such that a vertex is deleted if each element of its

end-points set has the same ls1 and ls2. Although the weakly connected property

is satisfied only when k is unbounded, in practice the workspace channels gener-

ated when k is unbounded becomes too large such that the performance of WCO

suffers. Discussion on the effect of the size of workspace channels to the overall
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performance of WCO is presented in Section 4.7.2. On the other hand, considering

that we update the workspace channels everytime a new milestone is inserted, we

can expect that problems that may occur because the workspace channels are not

weakly connected can be reduced by the fast update. Therefore, we would pre-

fer to use the smallest channel possible rather than keeping the weakly connected

property at the cost of enlarging the size of the channels. And it turns out that in

our experiments, the results when k = 1 are quite well. So, we will delete a vertex

E(v) whenever the element of E(v) with the most recent time-stamp has the same

ls1 and ls2.

4.4.3 Sampling a Configuration

As WIS, WCO samples a configuration from C (Algorithm 4.2, line 1) in two

stages. First, at iteration j, WCO samples a point x ∈ WF by picking a triangle

t ∈ TF according to the distribution pTj
and then picking a point x ∈ t uniformly

at random. Next, it samples a configuration from La(x). Note that to ease finding

channels, the uniform component sampler uses the same two-stage sampling pro-

cedure. However, it samples a point x fromWF uniformly at random. The details

of sampling a configuration from La(x) depends on the robot’s kinematics and are

the same as in WIS. For convenience, below we summarize the strategies for rigid

and articulated robots.

The configuration q of a rigid robot consists of a positional component qτ ,

which specifies the position of the robot’s reference point in the workspace, and

an orientational component qθ, which specifies the orientation of the robot. To

sample a configuration, WCO first picks qθ uniformly at random. It then picks a

point x ∈ WF , as described above, and compute qτ so that at q = (qτ , qθ), the

robot’s feature point a lies at x and the robot has orientation qθ.

For an articulated robot, the configuration q specifies its joints parameters

q1, q2, . . .. Suppose that the feature point a lies in the `th link of the robot. To

sample a configuration, WCO again picks a point x ∈ WF and then find the joint

parameters q1, q2, . . . , q` that place a at x by solving the robot’s inverse kinematics

(IK) equations. If IK has no solution, WCO picks another x. If IK has more
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than one solution, WCO picks one at random. WCO then samples the other

joint parameters q`+1, q`+2, . . . uniformly at random. Various improvements can

be made to speed-up this process. For instance, the sampling domain may be

restricted according to the reachability of each feature point.

4.5 Constructing the Ensemble Sampler

Now, we describe how WCO combines the component samplers. We start by pre-

senting the way WCO combines its component samplers in Section 4.5.1. And

then continue by presenting how multiple feature points helps WCO planner in

Section 4.5.2. Finally, we give a heuristic for choosing the feature points in Sec-

tion 4.5.3.

4.5.1 Combining Samplers through AHS

Recall from Section 4.3 that WCO uses a set of component samplers, S = {s0, s1, . . . , sL−1},

where s0 is a uniform component sampler and each si, i = 1, 2, . . . , L− 1 is based

on a feature point of the robot. Note however that for efficiency of updating the

sampling distribution of each WCO component sampler, i.e., to help project the

sampled milestone toWF , the uniform component sampler performs uniform sam-

pling over WF and not over F . It follows the two-stage sampling presented in

Section 4.4.3, but the distribution defined over WF is uniform distribution.

We combine the component samplers through AHS. Each sampler si has an

associated weight wi, which reflects the usefulness of si according to its sampling

history. The sampler si is chosen to run with probability pSj
(si) that depends

on the weight wi at time j. To adapt the ensemble distribution (Algorithm 4.1,

line 10), WCO adjusts the weights so that the component samplers with better

performance have higher weights.

In iteration j of Algorithm 4.1, WCO chooses si with probability

pSj
(si) = (1− γ) wi(j)∑L−1

k=0 wk(j)
+
γ

L
, (4.1)
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where Sj is the random variable that represents the sampler picked at time j, wi(j)

is the weight of si in iteration j and γ ∈ (0, 1] is a small fixed constant. WCO

uses the chosen si to sample a new milestone m and assigns to si a reward r that

depends on the effect of m on the roadmap R:

• The milestone m reduces the number of connected components of R. In

this case, m merges two or more connected components and improves its

connectivity. We set r = 1.

• The milestone m increases the number of connected components of R. In

this case, m creates a new connected component and potentially improves

the coverage of R. We also set r = 1.

• Otherwise, r = 0.

We then update the weight of si:

wi(j + 1) = wi(j) exp
(
(r/pSj

(si))γ/L
)
. (4.2)

where wi(0) = 1 for i ∈ [0, L−1]. Note that the exponent depends on the received

reward r weighted by the probability pSj
(si) of choosing si at time j. It makes

the weight of a component sampler increases more when pSj
(si) is low and less

when pSj
(si) is high. As a result, the planner is responsive to the changes in the

performance of a sampler, but mere luck will not cause a sampler to be favored

much. If a sampler is not chosen, then its weight remains the same as before, i.e.,

wi(j + 1) = wi(j).

Note that here we slightly modify the AHS presented in [Hsu et al., 2005]. We

can choose a different component sampler after a configuration is sampled, regard-

less of whether the configuration is collision-free or not. By doing so, the planner

avoids getting stuck at one of the component sampler that may require a huge

amount of samples before a collision-free configuration is sampled. Furthermore,

since the cost used by different component samplers in WCO are almost the same,

we do not incorporate cost in our weighting. More details on AHS are available

in [Hsu et al., 2005] and further exploration on the behavior of this method is

presented in the next chapter.
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Although there are many possible schemes for updating the weights, AHS has

an important advantage. It can be shown that under suitable assumptions, the

ensemble sampler generated by AHS is competitive against the best component

sampler [Hsu et al., 2005]. More precisely, the following competitive ratio holds:

Rmax −R ≤ (e− 1)γRmax +
L lnL

γ
, (4.3)

where R is the expected total reward received by the ensemble sampler and Rmax

is the total reward received by the best component sampler if it is always chosen to

run. This result can be interpreted as saying that the ensemble sampler performs

almost as well as the best component sampler, without knowing in advance which

component sampler is the best. With some small variations on the scheme for

updating the weights, one can also show that the modified ensemble sampler is

competitive against any linearly weighted combination of component samplers, an

even stronger result theoretically [Auer et al., 2002]. This guaranteed performance

is one reason why we choose AHS for combining component samplers.

4.5.2 Why Multiple Feature Points ?

Although in Chapter 3, we have discussed that representing the robot with a single

feature point seems insufficient, it is not clear how exactly using multiple feature

points helps the WCO sampling strategy. There are two main advantages of using

multiple feature points.

First, the use of multiple feature points relaxes the restriction of choosing the

“best” feature point, which is difficult to do. For WCO with single feature point to

perform well, the feature point must generate a suitable sampling distribution over

the entire C. In general, such a sampler is difficult to construct. Using multiple

feature points simplifies the task. It is sufficient for a component sampler to work

well in only part of C, provided that several component samplers can be combined

effectively to generate a suitable distribution over the entire C.

Now, when all feature points generate the same workspace channels, e.g., the

example in Figure 4.2, one may doubt the use of multiple feature points. When
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Figure 4.2: Illustration of multiple copies of the same workspace channels. The
obstacles are the red-colored rectangles. The robot is colored green. The initial
configuration is shown by the robot at the left part of the scene, while the goal
configuration is shown by the robot at the right part of the scene. Assuming that
the current roadmap consists of only the initial and goal configurations, each point
in the robot will generate exactly the same workspace channels.

different feature points traverse different paths and generate different workspace

channels, it is straightforward to see that in general, different feature points gen-

erate different sampling distributions over C. Some distributions may be more

suitable for sampling different regions of F . Which distribution is more suitable

for sampling which regions of F can then be inferred from the sampling history.

Nevertheless, in many planning scenarios, it is quite likely that different feature

points traverse similar path and generate the same workspace channels. One may

then wonder, how does having multiple copies of the same workspace channels help

in generating a more suitable sampling distribution? However, a WCO component

sampler samples a configuration from the lift mapping of the workspace chan-

nels. Since given different feature points, the lift mappings of the same workspace

channels are different, different feature points may generate different sampling dis-

tribution over C. So in general, different feature points generate different sampling

distribution over C, even though the workspace channels they generate may be the

same.

The second advantage of using multiple feature points is that it implicitly

takes kinematic constraints into consideration. WCO simplifies computation by

assuming that each feature point of the robot is independent. However, the way

WCO combines the component samplers implicitly takes kinematic constraints of



96 Chapter 4

the feature points into account. Without loss of generality, suppose we use two

WCO component samplers s1 and s2. Points in the workspace channels of s1 and

points in the workspace channels of s2 correspond to the same set of configurations

Q when the kinematic constraints between s1 and s2 in the robot are satisfied.

The probability of sampling a configuration in Q is then a combination of the

probability that s1 samples Q and the probability that s2 samples Q. This means

in general, the probability of sampling Q is higher than the probability of sampling

other configurations that only correspond to the workspace channels of s1 or s2

alone. So, points inside the workspace channels where the kinematics constraints of

the feature points are satisfied correspond to configurations with higher sampling

density. This means, despite the independent assumption, WCO with multiple

feature points implicitly takes kinematic constraints into consideration.

4.5.3 Choosing the Feature Points

So far, we have assumed that the feature points have been determined, but at some

point we do need to choose the feature points. The idea is to choose a small set of

representative points that capture the geometry of the robot sufficiently. We would

like the set of feature points to be small because we construct a component sampler

for each feature point. A large number of component samplers increase both the

difficulty of identifying the good ones through AHS and the computational cost

for updating the sampling distribution.

To choose such set of feature points, we use a heuristic that chooses points that

are spaced far apart. The reason is that feature points close together generate

similar sampling distributions. Below we give specific choices for rigid and artic-

ulated robots. As we will soon see in Section 4.6, these heuristics worked well in

our experiments.

For a rigid robot, the feature set is the union of two point sets, CH and MP.

CH consists of the vertices on the convex hull of the robot. MP contains a single

point in the middle of the robot, e.g., the centroid. For an articulated robot, we

take CH and MP with respect to each rigid link of the robot and take their union.
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4.6 Implementation and Experiments

We implemented WCO using C++ and using the Qhull [Barber et al., 1996] li-

brary for workspace triangulation. Implementation details of the primitives, i.e.,

FreeConf, FreePath, and AllSolved are presented in Appendix A.

For comparison purposes, we implemented the basic-PRM [Kavraki et al.,

1996b] and the original Adaptive Hybrid Sampling (AHS) [Hsu et al., 2005] which

combines uniform distribution, several Gaussian strategy [Boor et al., 1999] with

different parameters, and several randomized bridge builder (RBB) [Sun et al.,

2005] with different parameters. The basic-PRM is used as a benchmark of the

difficulty of the problem. While the original-AHS is used because it is one of the

most recent probabilistic planners that have been shown to perform well and its

implementation is relatively simple. Furthermore, we also compared WCO with

our simple workspace-based planner, WIS (Chapter 3).

4.6.1 Comparison with Other Planners

We tested WCO on several scenarios involving 2D and 3D workspace as well as rigid

and articulated robot. These scenarios are the same as those used to test WIS. For

ease of reading we show the scenarios again in Figure 4.3. To set the parameters

of each planner, we select several representative values for the parameter(s). Each

planner with different parameter values were ran 10 times independently on each

test scenario. The parameter values that generate the best performance are then

used as the parameter for testing the planner on the particular scenario. For

testing, each planner were ran 30 times independently on each testing scenario.

All experiments were conducted on a PC with a 3 GHz Intel Pentium 4 and 1 GB

memory. The average results of the 30 runs are shown in Table 4.1.

In all tests, WCO used the convex hull vertices CH and the middle point MP

of the robot as the feature point. For Test 1–3, CH refers to the convex hull

vertices and MP refers to the centroid of the rigid body robot. However, Test 4

uses a common articulated robot with a fixed base and all rotational joints such

that the workspace displacement of the robot’s links near the base is very limited.
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Test 1 Test 2

Test 3 Test 4

Figure 4.3: Test scenarios. Test 1: A 3-dofs rigid-body robot moves from the lower
left corner to the lower right corner by passing through five narrow openings. Test
2: A 3-dofs rigid-body robot turns 180 degrees in a narrow dead-end. Test 3: A
6-dofs rigid-body robot must pass through 6 out of 7 narrow openings in order to
answer the given query. Test 4: A 6-dofs robot manipulator with its end-effector
holding a large plate maneuvers through a narrow slot.

To improve computational efficiency, we consider only the feature points in the

furthest link, which contains the end-effector and the large plate. So, MP refers to

the wrist point of the robot, while CH refers to the convex hull of the plate. In all

tests, WIS used a single feature point, denoted as MP. For rigid body robot (Test

1–3), MP refers to the centroid and for an articulated robot (Test 4), MP refers

to the wrist point.

Overall, WCO performed significantly faster than the original AHS and WIS

(see Table 4.1). Although WCO incurs the additional costs of processing the

workspace geometry and updating the sampling distribution, it uses fewer mile-

stones and places them in strategic locations. It improves the overall performance
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Table 4.1: Performance comparison of several probabilistic path planners. All
times are measured in seconds.

Planner
Test 1

Tpre Tupd Ttot ± std Nmil Nsam

Basic-PRM 75.9 ± 45.1 13,540 52,687
Original AHS 23.0 ± 8.5 3,477 164,776
WIS 0.034 6.7 ± 2.0 1,660 7,024
WCO 0.045 0.072 2.8 ± 1.2 650 2,448

Planner
Test 2

Tpre Tupd Ttot ± std Nmil Nsam

Basic-PRM 4.1 ± 1.3 601 53,616
Original AHS 3.3 ± 1.3 163 76,742
WIS 0.007 0.7 ± 0.3 154 11,521
WCO 0.008 0.012 0.8 ± 0.6 170 5,531

Planner
Test 3

Tpre Tupd Ttot ± std Nmil Nsam

Basic-PRM 94.6 ± 48.6 9,011 36,594
Original AHS 56.7 ± 20.2 1,669 198,313
WIS 0.607 80.3 ± 30.0 5,723 160,686
WCO 0.942 2.408 25.9 ± 9.4 2,080 22,811

Planner
Test 4

Tpre Tupd Ttot ± std Nmil Nsam

Basic-PRM 69.8 ± 26.0 9,246 35,878
Original AHS 56.0 ± 27.9 2,672 168,013
WIS 0.071 200.7 ± 90.4 14,423 961,613
WCO 0.244 0.993 31.1 ± 13.1 3,211 62,405

Tpre: time for triangulatingWF .
Tupd: time for updating component sampling distributions (Algorithm 4.1, lines 4–12).
Ttot ± std: total running time ± standard deviation.
Nmil: number of milestones required for answering the query.
Nsam: number of configurations sampled.

by reducing the total number of collision checks needed for sampling new milestones

and connecting milestones in the roadmap. See Figure 4.4 for an illustration of

the differences between WCO and the other planners.

For comparison between WCO and the original AHS, it is especially interesting

to consider Test 2. The start configuration qi and the goal configuration qg, when

projected toW , are very close. However, to go from qi to qg, the robot must go out

of the narrow tunnel, reorient, and then go back to the tunnel again. Regardless of
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which feature point a is chosen, it may potentially mislead the planner, because all

short paths in W between Pa(qi) and Pa(qg) give little information on the correct

configuration-space path that connects qi and qg. Nevertheless, WCO performed

well here, because it combines information from both W and C. It dynamically

updates the workspace channels, which provide information for connecting distinct

roadmap components. By doing so, as soon as F is covered adequately byR, WCO

can potentially identify the correct regions of C to sample.

Compared with WIS, WCO performed significantly better except for Test 2.

This is expected, because WIS uses a single feature point (MP) and a static sam-

pling distribution, which does not respond to changes in R and wastes lots of effort

in sampling regions of C that are already well covered. Recall from Chapter 3 that

the poor performance of WIS in Test 3 is due to the many short triangles that

actually correspond to forbidden regions. By combining workspace information

with information from the configuration space, WCO is able to alleviate this false

positive problem. Again recall from Chapter 3 that the poor performance of WIS

in Test 4 is caused by the insufficient representation of the robot and the many

false positive cases due to the many short triangles that correspond to wide-open

space in the robot’s free-space. By using multiple feature points, instead of a

single feature point, WCO is able to alleviate the problem with insufficient robot

representation. We will discuss more about this as we assess the benefits of using

multiple feature points in Section 4.6.2. Furthermore, by combining workspace in-

formation with information from the configuration space, WCO is able to alleviate

the false positive problem. In Test 2, to solve the query, the entire F must be ade-

quately covered, whether a static or a dynamic sampling distribution is used. WIS

has an advantage, because it is simpler and does not incur the cost of updating

the sampling distribution. Even so, the performance of WCO is comparable.

4.6.2 The Choice of Feature Points

To assess the benefits of multiple feature points, we ran WCO on Test 1–4 with

different feature sets. The experimental results show that although the perfor-

mance of CH and MP varies across the test environments, the combined feature
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Uniform Original AHS WIS WCO

Figure 4.4: The scenario is the same as Test 1. 700 milestones generated by differ-
ent planners. Note that the width of the two chambers in the middle of the scene
is smaller than the other four chambers. The pictures show that WCO increases
the number of milestones in important regions that improve the connectivity of
the roadmap, without generating too many unnecessary milestones in unimportant
regions.

Table 4.2: The effect of feature points on the running times of WCO. All times
are measured in seconds. |CH| denotes the number of feature points in CH.

Test Env. |CH| MP CH CH ∪MP
Test 1 6 2.2 4.7 2.7
Test 2 5 1.3 0.7 0.8
Test 3 13 40.8 28.9 25.9
Test 4 8 154.3 62.0 31.1

set CH∪MP has consistently good performance (see Table 4.2). This shows the

usefulness of using multiple feature points.

However, notice that in Test 1, WCO with CH as the feature points per-

formed worse than WCO with MP as the feature point. Although the number

of feature points used in WCO with CH is more than that used in WCO with

MP, its performance is worse. WCO with CH requires around 1,000 milestones

with #milestones/#samples ≈ 0.28, while that with MP requires only around

650 milestones with #milestones/#samples ≈ 0.23. These numbers indicate that

the centroid is a good representation of the robot. In this scenario, the workspace

channels generated by different feature points are similar. But when the feature

point a is a vertex of the convex hull, the subset La(T ′) ∩ F is relatively large

and consists of wide-open regions that lie near the narrow passages of F and nar-

row regions that lie inside the narrow passages of F . In this scenario, the narrow
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passages refer to configurations that will place most part of the robot in one of

the five narrow openings. Surely, the configurations inside the narrow passages is

more useful in solving the given query. However, since WCO does not bias sam-

pling towards narrow regions in La(T ′), many of the sampled milestones fall in

the wide open regions which are less useful for answering the given query. On the

other hand, when the feature point a is MP of the robot, La(T ′) ∩ F is smaller,

but most if not all of configurations in this subset lie inside the narrow passages

of F . So, although it is more difficult to sample a milestone, most of the sampled

milestones are more useful. Therefore, WCO with CH requires more milestones

and has higher #milestone/#samples ratio. This means, WCO with MP as the

feature point is able to place milestones at better locations than WCO with CH as

the feature points. These results indicate that better choice of feature points may

improve WCO’s performance significantly.

Nevertheless, the experimental results in Test 1–3 shows that when we combine

both CH and MP as the feature points, WCO’s performance is close to the best

performance of either WCO with CH or WCO with MP as the feature points.

This corroborates the theoretical result that the ensemble sampler is almost as

good as the best component sampler and demonstrates the effectiveness of the

AHS approach.

Test 4 shows that the performance of WCO with CH∪MP as the feature

points is significantly better than either WCO with CH or WCO with MP as the

feature points. Test 4 requires a more coordinated robot motion to solve the

given query. When more feature points are used, WCO considers more kinematic

constraints of the robot, which means more robot’s information is incorporated in

generating the sampling distribution. By doing so, WCO is able to generate a more

suitable sampling distribution. This strengthen our argument in Section 4.5.2 that

multiple feature points implicitly takes the kinematic constraints of the robot into

consideration.
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Test 5 Results

Figure 4.5: Additional test for testing the performance of the planners as dim(C)
increases. The robot is a planar articulated arm with a free-flying base. The
dimensionality of C is increased by adding up to 8 links to the robot, resulting in
a maximum of 10 dofs. The robot must move through the narrow passage in the
middle.

4.6.3 Other Experiments

One concern of using workspace information to guide sampling in C is that as the

dimensionality of C increases, workspace information becomes less useful. For this,

we constructed a test environment with increasing dimensionality of C (Test 5).

The results indicate that workspace information still has its merit (Figure 4.5).

This corroborates our results in Section 3.3 that the usefulness of workspace infor-

mation does not directly depend on the dimensionality of C. Instead, it depends

more on how close the visibility property of WF resembles that of F .

One drawback of WCO is that it may find false workspace passages as channels,

i.e., workspace passages that the robot can not pass through. It seems plausible

that as the number of false passages grows, the performance of WCO will keep on

worsening. So, we performed a test with an increasing number of false workspace

passages (Test 6). The results indicate that this trend happens, but only to a

limited extent (Figure 4.6). Although the number of triangles and hence potential

terminals in G′ increases as the number of false workspace passages increases,

after a certain limit, the number of workspace channels will not increase according
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Test 6 Results

Figure 4.6: The performance of WCO, as the number of false passages increases. A
3-dofs rigid-body robot moves from the left to the right wide-open space. It only
fits through the passage in the middle. The number of false passages increases
from 2 to 10.

to the number of workspace triangles. Once the left and right wide-open space

have been adequately covered, by construction (Algorithm 4.2, line 7–8), new

sampled configurations that place the robot in the wide-open space will no longer

generate new workspace channels. New workspace channels may be generated only

when a configuration that lies in the narrow passage is sampled. Hence, when the

solution is found after the wide-open space is covered adequately, increasing false

workspace passages will not cause additional workspace channels. As a result,

after a certain limit, increasing the number of false workspace passage will no

longer worsen WCO’s performance.

We have also experimented with a more complicated problem. In the attached

video demo, we show a bridge inspection scenario involving a 35-dofs robot. The

robot consists of 11 links where each link is attached to a spherical joint. The

base of the robot can translate in 2 dimensions. A camera is attached to the end-

link of the robot. The goal is to take a picture of four locations of the bridge.

The robot’s configurations for taking the first two and the last two pictures are

similar, the difference is only in the position of the robot’s base. To achieve the

goal, we ran the planner to solve 3 queries. First, the robot needs to move from

a default configuration, where all its parts are located below the bridge, to a

stretched configuration such that it can take the first picture. To solve this query,

the planner needs to sample narrow passages due to the small opening on the bridge

and narrow passages due to the singularity of the robot. Second, after taking the
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first picture, the robot needs to move to take the second picture. The narrow

passage in this query is mainly due to the singularity of the robot. The last query

requires the robot to move from one default position to another. WCO uses the

centroid of the camera, the centroid of each spherical joint, and the centroid of the

base as its feature points. WIS uses only the centroid of the camera as its feature

points. We ran WCO for 5 times and in all the runs, WCO solves the problem in

less than an hour. But, basic-PRM, original AHS, and WIS fail to solve the bridge

inspection problem after a 24 hours run. These methods fail to find a solution for

the first two queries.

The good performance of WCO is mainly due to the use of workspace chan-

nels and multiple feature points, which enable WCO to focus its search in the

more useful subset of C. By restricting the search only to the lift-mapping of the

workspace channels, WCO samplers significantly reduce the search to a subset of

C that is more likely to connect the initial and goal configurations of the given

queries. Nevertheless, given the high dimensionality of C, the reduced search space

is still large. Using multiple feature points and adaptive weighting, WCO assigns

higher sampling distribution to subsets of the lift-mapping of C that satisfy the

robot’s kinematics constraints (see Section 4.5.2). Hence, enabling WCO to fur-

ther focus its search in subsets of C that is more likely to be valid and useful for

solving the given queries.

4.7 Analysis

Now, we will theoretically analyze the performance of WCO. We start by deriving

the sampling density of WCO in Section 4.7.1. We then present the probabilistic

completeness and running time of WCO in Section 4.7.2 and Section 4.7.3 respec-

tively.

4.7.1 Sampling Density

To derive the sampling density generated by WCO, we will start by deriving the

sampling density generated by each component sampler at a particular time. In
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this context, time is discrete. One unit time refers to the steps for sampling a

configuration. We then compute the sampling density of WCO at a particular

time.

To derive the sampling density of the component sampler si, i ∈ [0, L − 1] at

a particular time j, we need to look at the two-stage sampling procedure (Sec-

tion 4.4.3) and the probability density function used in each of the sampling stage.

In the first stage, si samples a point x ∈ WF by sampling a triangle t ∈ TF
according to the current probability mass function which is defined as

pTj |Sj
(t | si) =


µ(t) i = 0

1

|T ′
j,si

|
i ∈ [1, L− 1] , t ∈ T ′

j,si

0 otherwise

(4.4)

where T j and Sj are the random variables that represent the triangle and sampler

picked at time j, µ(.) denotes volume, T ′
j,si

denotes the workspace channels used by

si to sample a configuration at time j, and |T ′
j,si
| denotes the number of triangles

in T ′
j,si

. The sampler si is the uniform component sampler when i = 0, and

the WCO component sampler when i ∈ [1, L − 1]. Furthermore, we assume that∑
t∈TF µ(t) = 1. After a triangle t is sampled, si samples a point x ∈ t uniformly at

random. So, the conditional density function for sampling a point from a triangle

t is:

fXj |Tj ,Sj
(x | t, si) =


1

µ(t)
x ∈ t , t ∈ TF

0 otherwise
(4.5)

where Xj is the random variable that represents a point sampled fromWF at time

j. The density function used by si to sample a point x in WF at time j can then

be computed as

fXj |Sj
(x | si) =

∑
t∈TF

fXj |Tj
(x | t, si)pTj |Sj

(t | si)
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=


1 i = 0

1

|T ′
j,si

|·µ(τ(x))
i ∈ [1, L− 1] , τ(x) ∈ T ′

j,si

0 otherwise

(4.6)

where τ(x) is the triangle that contains x.

In the second stage, after x has been sampled, si samples a configuration uni-

formly at random from La(x). So, at time j, the density function used by si to

sample C given a point x ∈ WF , is defined as

fQj |Xj ,Sj
(q | x, si) =


1

λ(La(x))
q ∈ La(x) , x ∈ t ,

if i = 0 , t ∈ TF ; if i ∈ [1, L− 1] , t ∈ T ′
j,si

0 otherwise

(4.7)

where λ(·) represents the volume in the (n− dim(W))-dimensional subspace of C.

Assuming that C is a normalized Euclidean space [0, 1]dim(C), the largest possible

value of λ(La(x)) is one.

The sampling density generated by a WCO component sampler si at time j

can then be computed as

fQj |Sj
(q | si) =

∫
x∈WF

fQj |Xj ,Sj
(q | x, si)fXj |Sj

(x | si)∂x (4.8)

=



1

λ(La(Pa(q)))
i = 0

1

λ(La(Pa(q)))
· 1

|T ′
j,si

|·µ(τ(Pa(q)))
i ∈ [1, L− 1] ,

τ(Pa(q)) ∈ T ′
j,si

0 otherwise

(4.9)

And the sampling density generated by WCO at time j can then be computed

as

fQj
(q) =

L−1∑
i=0

fQj |Sj
(q | si)pSj

(si) (4.10)

where fQj |Sj
(q | si) is defined in (4.9) and pSj

(si) is defined in (4.1).
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4.7.2 Probabilistic Completeness

Intuitively, it is obvious that WCO is probabilistically complete because one of

WCO’s component samplers, i.e., the uniform component sampler s0, is proba-

bilistically complete and pSj
(s0) is always positive for any time j. This means,

given a long enough time, WCO will eventually find a path between the given

queries if one exists.

However, having derived the sampling density of WCO, we can use any analysis

of the basic-PRM, e.g., [Kavraki et al., 1995,Kavraki et al., 1996a,Hsu et al., 1997]

to better analyze WCO’s performance. Below, we show an example of adapting

the analysis in [Kavraki et al., 1996a] to analyze WCO. The result shows that even

when no channels predict the path correctly, the probability that WCO does not

find a path between the given queries converges to zero exponentially in term of the

number of milestones, provided such a path exists. Furthermore, if the channels

predict the path between the given query well and each triangle inside the channels

has volume less than the average volume of the triangles in TF , then the upper

bound of the failure probability of WCO is lower than that of the basic-PRM.

Suppose WCO consists of L component samplers: S = {s0, . . . , sL−1}, where s0

is the uniform component sampler and the rest are the WCO component samplers.

And suppose pSj
(si) is the probability of using si to sample a configuration at time

j. Then, the performance of WCO can be stated more formally as

Theorem 4.3 Let ψ be a collision-free path that solves the given query. Suppose

l is the length of ψ, d is the shortest distance between a configuration in ψ to the

forbidden region, and B d
2

is any ball of radius d
2

in F . Let’s denote Qψ as the

set of all balls of radius d
2

centered at each configuration in ψ. For a particular

time j, let’s denote Kj = minB∈Qψ
Kj(B), where Kj(B) is the smallest (among all

WCO component samplers) lower bound of the probability that a WCO component

sampler samples a configuration from ball B. Then, the probability that ψ can not

be found using a roadmap of N milestones, constructed by a WCO planner, is

Pr(failure) ≤
(⌈

2l
d

⌉
− 1
)∏N

j=1

(
1−

(
µ(B d

2
)pSj

(s0) +Kj ·
∑L−1

i=1 pSj
(si)
))

.

Proof Suppose B = d2l
d
e. We can discretize ψ into a sequence of configurations

q0, . . . , qB such that for k ∈ [0, B], the length of ψ between qk and qk+1 is at
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most d
2
, q0 = qi, and qB = qg. Then, ψ can be covered with balls B(qk, d

2
) of

radius d
2

and center at qk. An illustration is shown in Figure 3.9. Notice that

B(qk+1, d
2
) ⊆ B(qk, d). Hence, if the roadmap constructed by WCO places at least

one milestone in each ball, then the generated roadmap finds the path. So, the

probability that WCO fails to find a path after the generated roadmap contains

N milestones can be written as,

Pr(failure) ≤ Pr[∃k B(qk, d
2
) is empty]

≤
B−1∑
k=1

Pr[B(qk, d
2
) is empty] (4.11)

Given the workspace channels and the probability distribution for choosing a com-

ponent sampler at each time j, the probability of sampling a configuration at a

particular time is independent of the probability of sampling a configuration at the

preceding time, and we can expand (4.11) to:

Pr(failure) ≤
B−1∑
k=1

N∏
j=1

(1− Pr[Qj ∈ B(qk, d
2
)])

=
B−1∑
k=1

N∏
j=1

(
1−

∫
q∈B(qk, d

2
)
fQj

(q)∂q

)

=
B−1∑
k=1

N∏
j=1

(
1−

∫
q∈B(qk, d

2
)

L−1∑
i=0

fQj |Sj
(q | si)pSj

(si)∂q

)

Reordering the terms gives us:

=
B−1∑
k=1

N∏
j=1

(
1−

L−1∑
i=0

pSj
(si)

∫
q∈B(qk, d

2
)
fQj |Sj

(q | si)∂q

)
(4.12)

Let’s first compute the probability that a component sampler si, i ∈ [0, L− 1]

samples a configuration in B(qk, d
2
) at time j. We compute this value separately for

WCO component samplers, i.e., si, i ∈ [1, L − 1], and for the uniform component

sampler, i.e., s0, based on the density function in (4.9). For a WCO component
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sampler, i.e., si, i ∈ [1, L− 1], we have

∫
q∈B(qk, d

2
)
fQj |Sj

(q | si)∂q =

∫
q∈B(qk, d

2
)

1

λ(La(Pa(q)))
· 1

|T ′
j,si
| · µ(τ(Pa(q)))

Since q must lie in La(x) and x must lie in t where t is in T ′
j,si

, the right hand side

of the above equation can be written as

=
∑
t∈T ′

j,si

∫
x∈t

∫
q∈
�
B(qk, d

2
)TLa(x)

� 1

λ(La(x)) · |T ′
j,si
| · µ(t)

∂q∂x

=
∑
t∈T ′

j,si

∫
x∈t

λ(B(qk, d
2
)
⋂
La(x))

λ(La(x)) · |T ′
j,si
| · µ(t)

∂q∂x

Taking the maximum possible value for λ(La(x)), we get:

≥
∑
t∈T ′

j,si

∫
x∈t

λ(B(qk, d
2
)
⋂
La(x))

|T ′
j,si
| · µ(t)

∂x

=
∑
t∈T ′

j,si

µ(B(qk, d
2
)
⋂
La(t))

|T ′
j,si
| · µ(t)

≥

(
1

|T ′
j,si
|

min
t∈T ′

j,si

1

µ(t)

)
µ(B(qk, d

2
)
⋂
La(T ′

j,si
))

= Kij · µ(B(qk, d
2
)
⋂
La(T ′

j,si
)) (4.13)

where Kij = 1

|T ′
j,si

|
mint∈T ′

j,si

1

µ(t)
.

Now for the uniform component sampler s0, the probability that s0 samples a

configuration in B(qk, d
2
) at time j can be written as

∫
q∈B(qk, d

2
)
fQj |Sj

(q | si)∂q =

∫
q∈B(qk, d

2
)

1

λ(La(Pa(q)))

Since q must lie in La(x) where x ∈ WF , the right hand side of the above equation

can be written as

=

∫
x∈WF

∫
q∈
�
B(qk, d

2
)TLa(x)

� 1

λ(La(x))
∂q∂x



Section 4.7 111

And taking the maximum possible value for λ(La(x)) gives us:

≥
∫
x∈WF

λ(
(
B(qk, d

2
)
⋂
La(x)

)
)∂q

= µ(B(qk, d
2
)) (4.14)

So, the probability that a component sampler si, i ∈ [0, L− 1] at time j samples a

configuration in B(qk, d
2
) is:

∫
q∈B(qk, d

2
)
fQj |Sj

(q | si)∂q ≥

 µ(B(qk, d
2
)) i = 0

Kij · µ(B(qk, d
2
)
⋂
La(T ′

j,si
)) i ∈ [1, L− 1]

(4.15)

Substituting (4.15) into (4.12) gives us

Pr(failure) ≤
B−1∑
k=1

N∏
j=1

(
1−

(
pSj

(s0) · µ(B(qk, d
2
)) +

L−1∑
i=1

pSj
(si) · Kij · µ(B(qk, d

2
)
⋂
La(T ′

j,si
))

))

Setting Kj(B(qk, d
2
)) as the smallest lower bound of the probability that a WCO

component sampler samples a configuration from B(qk, d
2
) at time j, i.e., Kj(B(qk, d

2
)) =

minL−1
i=1 Kij · µ(B(qk, d

2
)
⋂
La(T ′

j,si
)), gives us:

Pr(failure) ≤
B−1∑
k=1

N∏
j=1

(
1−

(
pSj

(s0) · µ(B(qk, d
2
)) +Kj(B(qk, d

2
)) ·

L−1∑
i=1

pSj
(si)

))

And since minB−1
k=1 Kj(B(qk, d

2
)) ≥ Kj, we have

Pr(failure) ≤
(⌈

2l

d

⌉
− 1

) N∏
j=1

(
1−

(
µ(B d

2
)pSj

(s0) +Kj ·
L−1∑
i=1

pSj
(si)

))
.

which is the result we want. 2.

Notice that even when all workspace channels of WCO are misleading and

hence Kj = 0 for all time j, the failure probability of WCO still converges to zero

exponentially in the number of milestones, provided a solution exists. The reason

is that although Kj ≥ 0, the value
(
µ(B d

2
)pSj (s0) +Kj ·

∑L−1
i=1 pSj (si)

)
is strictly

greater than zero, because (4.1) guarantees that pSj
(s0) >

γ
K

where γ ∈ (0, 1].
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Of course when all workspace channels of WCO are misleading, compared to the

basic-PRM where the upper bound of its failure probability is d2l
d
e(1 − µ(B d

2
))N ,

the upper bound of the failure probability of WCO is higher. This is reasonable as

when all workspace channels are misleading, WCO spends more time for sampling

parts of the configuration space that does not help in solving the given query.

However, when Kj is larger than µ(B d
2
) for all time j, the upper bound of the

failure probability of WCO is guaranteed to be lower than that of the basic-PRM,

i.e.,
(⌈

2l
d

⌉
− 1
) (

1− µ(B d
2
)
)N

. Two components that determine how large Kj is,

are Kij and µ(B(qk, d
2
)
⋂
La(T ′

j,si
)) of the WCO component samplers si, i ∈ [1, L]

and configurations qk in ψ.

When the channels predict the path perfectly at all time, i.e., the workspace

channels of any WCO component samplers at any time j enclose Pa(
⋃
q∈Qψ

B(q, d
2
)),

then µ(B(qk, d
2
)
⋂
La(T ′

j,si
)) = µ(B d

2
) for any time j, any sampler si, and any con-

figuration qk in ψ. This means, for Kj to be larger than µ(B d
2
), we only need Kij to

be larger than 1 for any sampler si, i ∈ [1, L− 1]. Assuming that
∑
t∈TF µ(t) = 1,

the average volume µT ′ of the triangles in TF is 1

|TF | . This means that when the vol-

ume of each triangle in T ′
j,si

is less than the average volume µT ′ , Kij >
|TF |
|T ′
j,si

|
. And

since any workspace channels is a subset of the triangles TF in WF , |TF | ≥ |T ′
j,si
|.

Thus, when the volume of each triangle in T ′
j,si

is less than the average volume,

Kij > 1. Therefore when the channels generated by each WCO component samplers

predict the path between the given query perfectly at all time and contain only

triangles with volume smaller than the average triangle volume in TF , the upper

bound of the failure probability of WCO is guaranteed to be lower than that of

the basic-PRM. Notice that triangles with volume smaller than the average indi-

cates that the triangles are surrounded by nearby obstacles which suggests that

the triangles correspond to narrow passages in F . Hence, our analysis suggests

that when ψ lie in the narrow passages of F and WCO predicts the path perfectly

at all time, the upper bound of the failure probability of WCO tends to be lower

than that of the basic-PRM.

Furthermore, when the channels are not perfect, but ∀q∈ψ 0 < µ(B(q, d
2
)
⋂
La(T ′

j,si
)) <

µ(B d
2
), we can still haveKj that is larger than µ(B d

2
) ifKij is larger than

µ(B d
2
)

µ(B(q, d
2
)
⋂
La(T ′

j,si
))
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for any WCO component sampler si at any time j. Assuming that the channels

contain only triangles with volume smaller than the average triangle volume, larger

value of Kij can be achieved if the workspace channels contain less triangles. Less

number of triangles in the workspace channels means higher ratio of |TF |
|T ′
j,si

|
, and

hence Kij is more likely to be larger too. This result strengthen our preference of

constructing short channels, as it is more likely to reduce the upper bound of the

failure probability of WCO.

It is interesting to note that to get larger value of Kij, in order to get larger

value of Kj, it is preferable to choose channels with small triangles. This seems

odd as small triangles indicate that the triangles lie in narrow workspace passages.

However, recall that in this analysis, we have determined the path ψ, and hence

the set Qψ has been determined too. This means, regardless of the workspace

channels, our goal is to sample the same set of Qψ. So, suppose T ′ and T ′′ are

two possible workspace channels where ∀B∈Qψµ(B ∩ La(T ′)) = µ(B ∩ La(T ′′)).

Then, it is more difficult to sample a configuration from Qψ when the workspace

channels are larger. Therefore, it is reasonable to prefer channels that consists of

small triangles and channels with a small number of triangles.

To see how the above result and comparisons hold in reality, we ran an experi-

ment to test the convergence rate of WCO and compared it with the convergence

rate of the basic-PRM. We use the robot and environement in Test 3. However, in

this test we used 7 queries. Each query requires the robot to pass through one of

the seven narrow passages in the environment. Different queries require the robot

to pass through different narrow passages. For this purpose, we ran WCO and

the basic-PRM planner with the same parameters as the one used in Section 4.6.

Each planner was run to generate a roadmap with N number of milestones, where

N = 250; 500; . . . ; 20, 000. For each planner and each N , the planner was run for

30 times. Then, for each planner and each N , we compute the average failure rate,

i.e., the average number of queries that can not be answered by the roadmap with

N milestones, over the 30 runs. The results are presented in Figure 4.7. This

experiment shows that the failure rate of WCO converges to 0 around 3–4 times

faster than the basic-PRM.
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Figure 4.7: Failure rate as #milestones increases. The robot and environment are
the same as the one used in Test 3. But in this experiment, we use 7 queries.
Each query requires the robot to pass through one of the seven narrow passages
in the environment. The failure rate is the percentage of the queries that can not
be solved by the roadmap.

4.7.3 Running Time

As in WIS, the total running time of WCO consists of two main parts, i.e., the

time for extracting workspace information and the time for building the roadmap.

WCO extracts workspace information only once, before roadmap construction.

This information will then be copied to each component sampler. To extract

workspace information, WCO runs five main steps. First, sampling |P | points on

the boundary of WF , which takes O(|P |) time. Second, triangulating the sampled

points to generate T . The cost of triangulation is O(|P |2) in the worst case, but

in practice, we can expect O(|P | lg |P |) [Amenta et al., 2001]. The third step

is separating the triangles inside WF from those outside and hence generate TF .

Suppose |T | is the number of triangles in T . This computation takes O(|T |).

In the fourth step, WCO computes and assigns the volume of each triangle in

TF . The volume will be used by the uniform component sampler of WCO. This

computation takes linear time in the number of triangles in TF . Lastly, WCO

copies this workspace information to each of its component sampler. If WCO uses

L component samplers, then this step takes O(L). In general L is much lower
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than |T |. The number of triangles |T | is O(|P |) for 2D workspace and O(|P |2) for

3D workspace. So, the total worst case time Tpre for pre-processing the workspace

information is O(|P |2).

The second part of WCO running time is roadmap construction. This part

iteratively performs three main steps. The first step is sampling a collision-free

configuration. Let’s denote the time used by WCO to generate a milestone as

Tm. Compared to the basic-PRM, WCO takes slightly more time to sample a

configuration because it needs to first select a component sampler, and then sam-

ple C using workspace information. For rigid body robot, the additional time is

dominated by computing a configuration given a sampled workspace point (see

Section 4.4.3). While for articulated robot, the additional time is dominated by

the inverse kinematics (IK) computation. The second step is adding and connect-

ing the new milestone to the milestones in the current roadmap. We denote this

cost as Tl. The time taken for WCO to perform this step is the same as that taken

by the basic-PRM. The last step is updating the sampling distribution. This step

consists of two stages. First is adapting the sampling distribution of each WCO

component sampler. For this, WCO component samplers start by updating the

channel graph and workspace channels. This computation is quite efficient. Since

we sample C based on workspace information, we can project the new milestone

(Algorithm 4.2, line 4) in constant time. A loose upper bound for updating the

label sets, G′, and T ′ (Algorithm 4.2, lines 5–12) is O(|TF |). In practice, the up-

per bound is rarely reached. This stage is performed by each WCO component

sampler. The second stage is updating the sampling distribution assigned to each

sampler. This stage takes O(L) where L is the number of component samplers

of WCO and is in general much lower than |TF |. The entire update step takes

little time, compared to other parts of the planner, as we have seen in Section 4.6.

Suppose Tu denotes the entire update time. The total time for WCO to build

a roadmap of Nmil milestones is then O(Nmil · (Tm + Tl + Tu)). And the total

running time complexity of WCO to generate a roadmap with Nmil milestones is

O(Tpre +Nmil(Tm + Tl + Tu)).

Let’s now compare the running time of WCO with that of the basic-PRM.
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The following method of comparing the running time of different sampling strate-

gies have been used in [Sun et al., 2005]. Compared to the basic-PRM, WCO

performs additional computation to extract workspace information and adapt its

sampling distribution. As we have seen in Section 4.6, in general this cost is very

small compared to the total cost. Furthermore, to sample a configuration using

information from WF , WCO requires an additional small constant time c. Sup-

pose to generate a milestone, we need Ns samples. To simplify comparison, let’s

assume that the number of samples needed to generate a milestone is the same

everywhere. The total time Twco used by WCO to generate a roadmap of Nmil

milestones is then Twco = Tpre + Nmil(Ns(Ts + c) + Tl + Tu), where Ts is the time

used by the basic-PRM to generate a sample. While the total time Tuni used by

the basic-PRM is Tuni = Nmil(Ns · Ts + Tl). However, WCO places its milestones

at more important regions of F and hence uses less number of milestones to solve

the given queries. Since in general Tl is much larger than Ts, then the total time

for WCO to generate a roadmap that can solve the given queries is faster than the

total time required by the basic-PRM. As an example, suppose to solve the given

queries, the basic-PRM uses 5000 milestones while WCO uses 1000 milestones.

And suppose Tpre = 400Ts, Ns = 2, c = Ts, Tl = 10Ts, and Tu = 5Ts. Then

Twco/Tuni = (400 + 1000 · (2 · 2 ·Ts + 10 ·Ts + 5Ts))/(5000 · (2 ·Ts + 10 ·Ts)). Which

results in Twco ≈ 0.33Tuni. So, compared to the basic-PRM, WCO pays a slightly

higher cost to place milestones at more useful regions of F , such that the total

milestones needed for solving the given queries are less and hence the total time

for solving the queries are less too.

4.8 Discussion

In this chapter, we have presented a new probabilistic path planner, called WCO,

that uses workspace information along with sampling history and the current state

of the roadmap to dynamically adapt the sampling distribution. WCO is composed

of many component samplers, each based on a feature point of a robot. Each com-

ponent sampler uses workspace information to estimate regions of F that is more
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likely to improve the quality of the current roadmap. Using the adaptive hybrid

sampling approach, WCO combines the component samplers. It uses sampling his-

tory to favor component samplers that have been performing well in the past. Our

analysis shows that the failure probability of WCO converges to zero exponentially

in the number of milestones, whenever a solution exists. And when WCO’s esti-

mation is good, the upper bound on the failure probability of WCO is lower than

that of the basic-PRM. Our experimental results show that WCO performs up to

28 times faster than the basic-PRM and 8 times faster than recent probabilistic

path planner that has been shown to perform well. And as the dimensionality of

C increases, WCO’s performance decreases slower than other recent probabilistic

path planner. We have also successfully implemented WCO in a simulated bridge

inspection scenario involving a 35-dofs robot.

Unlike other workspace-based probabilistic planners, WCO adapts its distri-

bution dynamically according to the changes in the current roadmap. By ef-

ficiently combining information from both the workspace and the configuration

space, WCO is less prone to misleading workspace information, even though it

does not eliminate this problem entirely. Furthermore, by dynamically adapting

its sampling distribution, WCO does not waste resources for oversampling subsets

of F that have been well-represented by the current roadmap. In addition, unlike

most workspace-based probabilistic planners, WCO uses multiple feature points.

It generates a sampling distribution from each feature point of the robot and then

combines them with adaptive hybrid sampling approach. By doing so, WCO im-

plicitly incorporates more information about the robot’s kinematics constraints in

generating its sampling distribution. This further improve the ability of WCO in

handling misleading workspace information.

Unlike other adaptive probabilistic planners, WCO uses workspace information

along with the current state of the roadmap and the sampling history, instead of

sampling history alone, to adapt its sampling distribution. By doing so, WCO

uses less number of samples to learn which regions of F is more likely to improve

the quality of the current roadmap. Hence, it is able to be more responsive to the

changes in the roadmap.
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Nevertheless, WCO still has difficulties when workspace information does not

give any useful information. One example is when the projection of the narrow

passages region of F lie in a single workspace triangle. One possible remedy for

this is to use a more sophisticated strategy for sampling a configuration, given

a point in the workspace. For instance, instead of sampling a configuration uni-

formly at random from the lift mapping of the given workspace point, we may

use Randomized Bridge Builder [Hsu et al., 2005] which is specifically designed to

sample narrow passages.

Another issue in WCO is choosing the right set of feature points. Currently

we only have a heuristic for choosing this set of points. A better way of choosing

the feature points may lead to better performance of WCO. Furthermore, it would

be interesting to use a more sophisticated robot’s feature. For instance, instead

of representing a robot as a set of points, we may try to use a set of edges or

faces of the robot. The main issue is how to efficiently incorporate these more

sophisticated robot features to the planner.
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Understanding Adaptive Hybrid

Sampling

Although adaptive hybrid sampling (AHS) has been introduced in [Hsu et al.,

2005] and we have used it to combine the component samplers of WCO, its be-

haviour has not been fully explored. In this chapter, we further explore the be-

haviour of AHS. AHS is an adaptive sampling strategy that combines multiple

sampling strategies, based on their sampling history. It assigns a weight to each

strategy and dynamically updates the weights according to the performance of

each strategy. Furthermore, AHS is cost-sensitive in the sense that the weight

assigned to a sampler is normalized by the cost used by the sampler to sample a

configuration. In the current WCO, we do not need to incorporate cost because

in general all of its component samplers use roughly the same cost. However if we

want to slightly modify WCO, for instance by replacing the uniform component

sampler with a more sophisticated sampler for covering the free-space, we do need

to take the cost into consideration. To understand AHS better, we first put AHS

in a reinforcement learning framework. We then empirically show the importance

of a suitable cost function and propose a more suitable cost function. Our exper-

imental results show that as the narrow passages problem becomes more severe,

AHS with the new cost function becomes significantly faster than AHS with the

original cost function.

We start by presenting an overview of the AHS approach in Section 5.1. We

119
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then present related works in reinforcement learning that becomes the basis of

AHS in Section 5.2. Next, in Section 5.3, we put PRM planning with AHS in a

reinforcement learning framework. Then, we present our new cost function along

with the experimental setup and results in Section 5.4. Finally, we discuss possible

future work on AHS in Section 5.5.

5.1 Overview of Adaptive Hybrid Sampling

Adaptive Hybrid Sampling (AHS) is an adaptive sampling strategy that combines

multiple component samplers using a simple reinforcement learning method. The

idea is to use reinforcement learning, based on sampling history, to infer which

component sampler is more suitable for sampling the robot’s free-space. AHS

will then use the better component sampler more often. It assigns a weight to

each component sampler, where higher weight is given to component samplers

that have been performing well in the past. To measure the performance of a

component sampler, AHS uses a reward and cost function. A reward is given to

a component sampler whenever it samples a milestone that improves the coverage

and/or connectivity of the current roadmap. While the cost is the time used

for sampling the milestone. Obviously, a component sampler with larger total

reward per unit cost is considered as a better component sampler. To sample a

configuration, AHS chooses which component sampler to run based on the assigned

weights. The overall algorithm is shown in Algorithm 5.1. It is based on the

standard multi-query PRM approach as described in Section 2.2. The details of

the primitive FreeConf for checking whether a configuration is collision free or not

and the primitive AllSolved() for checking whether all queries have been solved

or not are presented in Appendix A.

Notice that we slightly modify AHS in [Hsu et al., 2005] such that it can

choose a different component sampler after a configuration is sampled, regardless

of whether the configuration is collision-free or not. By doing so, the planner avoids

getting stuck at one of the component sampler that may require a huge amount

of samples before a collision-free configuration is sampled. Since in our modified
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Algorithm 5.1 AHS(Q, N)

1: Let pSj
(si) be the probability of picking a component sampler si at iteration-j.

Initialize pS0(si) = 1/L, for i = 1, 2, . . . , L.
2: Set j = 0.
3: repeat
4: Pick a component sampler si from S = {s1, . . . , sL} with probability pSj

.
5: Sample a configuration q using si.
6: if FreeConf(q) returns true then
7: Insert q to the roadmap R.
8: Increment j.
9: Compute the probability for the next iteration pSj

(si) for i = 1, 2, . . . , L.
10: until AllSolved(Q, R, Ψ) is true or R contains N milestones.
11: Return Ψ.

version, an action refers to sampling a configuration, instead of sampling a collision-

free configuration, our modified version normalizes the probability by the cost for

getting a configuration, instead of getting a collision-free configuration used in the

original AHS. Due to this normalization, assuming that the number of samples

for generating a milestone at different time are similar, the expected number of

samples generated by each component sampler using our modified version is the

same as that of the original AHS.

The probability pSj
(si) of choosing component sampler si at time j is updated

using the following function:

pSj
(si) =

p∗Sj
(si)/ci∑L

k=1 p
∗
Sj

(sk)/ck
(5.1)

where ci is the estimated cost of running component sampler si to sample a con-

figuration. To estimate the cost ci, we use the number of collision checks needed

to sample and insert the most recent milestone generated by si, averaged over

the number of samples to generate the most recent milestone. We will discuss

more about cost estimation in Section 5.4.1. The probability p∗Sj
(si) is the cost-

insensitive probability which is computed as:

p∗Sj
(si) = (1− γ) wi(j)∑L

k=1wk(j)
+
γ

L
, i = 1, . . . , L, (5.2)

where wi(j) is the weight of si in time j and γ ∈ [0, 1] is a fixed constant. The
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cost-insensitive probability consists of two parts. The first part is the weighted

sum of the component samplers. The weight is based on the estimated cumulative

reward of the action. It gives higher value to component samplers that have been

performing well. How the weight and reward are computed is discussed below.

The second part is the same for all component samplers. Its purpose is to ensure

that all component samplers have a chance to show its performance.

The weight of a sampler si at time j + 1 is computed as follows:

wi(j + 1) = wi(j) exp
(
(r/pSj

(si))γ/L
)
. (5.3)

where wi(0) = 1 for each component sampler si and r is the reward given to si

at time j. The reward is a heuristic to measure the usefulness of si in improving

the coverage and connectivity of the current roadmap R. A reward of one is given

whenever the number of connected components of R changes. Increment of the

number of components of R means that the new milestone can not be connected

to any other components already in R and hence indicates that si improves the

coverage of R. Decrement of the number of components of R means that two or

more components of R becomes connected due to the new milestone, and hence

indicates that si improves the connectivity of R. In other cases, a zero reward is

given. Furthermore, the reward is divided by the probability pSj
(si) of choosing

si at time j. It makes the weight of a component sampler increases more when

pSj
(si) is low and less when pSj

(si) is high. As a result, the planner is responsive

to the changes in the performance of a sampler, but mere luck will not cause a

sampler to be favored much.

Under suitable assumptions, it has been shown that AHS is competitive against

the best component sampler [Hsu et al., 2005]. More precisely, the following com-

petitive ratio holds:

Rmax −R ≤ (e− 1)γRmax +
L lnL

γ
, (5.4)

where R is the expected total reward received by AHS and Rmax is the total reward

received by the best component sampler if it is always chosen to run. This means
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that AHS performs almost as well as the best component sampler, without knowing

in advance which component sampler is the best.

5.2 Related Works

AHS is based on the simplest reinforcement learning problem, called the multi-

armed bandit problem. Below, we will briefly review reinforcement learning and

multi-armed bandit problem.

Reinforcement learning concerns with learning how to act by interacting with

the environment. In general, a reinforcement learning agent may perform a set of

actions in the environment and each of these actions may yield different reward.

The agent will then try to discover the action or sequence of actions that will

yield the maximum reward by trying the actions and learning from the reward it

receives. A more elaborate explanation can be seen in [Sutton and Barto, 1998].

Now, back to our path planning problem. If we relax the problem of finding

a suitable sampling distribution to finding a suitable sampling distribution among

a set of potentially suitable sampling distributions, we can consider the planner

as the agent and the potentially suitable sampling distributions as the actions.

By assigning a reward function appropriately, the problem of finding a suitable

sampling distribution among a set of potentially suitable sampling distributions

can then be modeled as a reinforcement learning problem.

As in many reinforcement learning problem, the main difficulty in finding opti-

mal action(s) is in balancing exploration and exploitation. The problem of balanc-

ing exploration and exploitation is often called as the multi-armed bandit prob-

lem [Sutton and Barto, 1998]. To get a lot of rewards, a learner needs to favor

actions that generate more rewards. However to know which actions generate more

rewards, the learner needs to try all actions. Hence, it needs to exploit what it

already knows, but it also needs to explore in order to make better selection in the

future [Sutton and Barto, 1998].

Many methods have been proposed for balancing exploration and exploitation.

For example, ε-greedy [Sutton and Barto, 1998] always exploits the best action
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greedily except for an ε fraction of time where it performs exploration by choosing

an action uniformly at random. One drawback of ε-greedy is that aside from the

best action, all other actions are considered equal. To alleviate this drawback,

SoftMax [Sutton and Barto, 1998] uses Gibbs distribution to rank all actions from

best to worst. Both of the above methods assume that the actions performed will

not change the future reward. However, in our problem, the reward is determined

by the position of the milestones in the current roadmap. Hence, an action may

change the future reward. One of the few methods that does not assume that the

actions performed will not change the future reward is EXP3 [Auer et al., 1995].

It uses γ fraction of the time for exploration and uses an exponential function to

rank all actions from best to worse. All of these methods assume that all actions

use the same cost.

In path planning, generally different component sampler uses different cost.

AHS adapts EXP3 to incorporate cost. It normalizes the cost-insensitive proba-

bility, which is EXP3, with the cost spent by the component sampler.

5.3 Reinforcement Learning Framework for AHS

Although AHS uses a reinforcement learning method to find a good component

sampler from a collection of component samplers, the reinforcement learning rep-

resentation of the problem has not been articulated. In this section, we represent

the problem of finding a suitable sampling distribution as a reinforcement learning

problem.

A reinforcement learning problem consists of three main components, i.e., state

space, action space, and reward signal [Kaelbling et al., 1996]. To represent the

problem of finding a suitable sampling distribution, we define a state as a 2-tuple

(R, η) where R is a roadmap and η ∈ [0, NQ] is the number of queries that can

be solved using the current roadmap, while NQ is the number of the given queries.

The initial state is (Ri, ηi) = (R0, 0), where R0 is a roadmap with zero milestone,

before any milestone has been inserted. Assuming that all the given queries are

solvable, the goal state is any state where η = NQ. There can be many goal states,
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but once the learner enters one of the goal states, it will only move to another goal

state. The state space is then the set of all possible 2-tuples. The system changes

from one state (Rj, ηj) to another (Rk, ηk), whenever Rk is the roadmap generated

by inserting a sampled milestone q to Rj.

An action constitutes of sampling a configuration q ∈ C using a particular

component sampler and inserting q to the roadmap in the current state whenever

q is collision-free. Different component sampler defines different action and uses

different cost. Hence the action space may consists of all possible component

samplers. However, for efficiency, AHS restricts its action space to a small number

of component samplers.

In reinforcement learning, the reward signal is designed such that by maximiz-

ing the reward, the learner reaches the objective. In our case, the objective is to

quickly reach one of the goal states. Since in general, a goal state is reached when

the roadmap has adequately covers and captures the correct connectivity of F ,

the reward signal is designed to favor sampling distributions that generate mile-

stones that significantly improve the coverage and/or connectivity of the current

roadmap. To do this, AHS uses the simplest reward signal, i.e., a binary signal

where one means good and zero means bad. It gives a reward of one whenever a

sampling distribution, i.e., a component sampler, samples a milestone that changes

the number of connected component of the roadmap. And it gives zero reward,

otherwise.

Using the above representation, the problem of finding a suitable sampling

distribution can be considered as finding a sequence of actions that transforms

the system from the initial state to one of the goal states, such that the total

reward gathered over the total cost used is maximized. Since the learner does

not know which action generates which reward, the learner needs to explore the

action space to find which action is more promising, and then exploit the action

that generates the most reward. Assuming the reward does not change drastically

between a short sequence of states, the learner can predict which actions generate

more rewards by trying them. Furthermore, to maximize the total reward over total

cost, the learner needs to normalize its prediction with the cost for performing
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the action. Since the cost of an action may be a priori unknown, the learner

estimates the cost by trying them. In short, the problem of finding a suitable

sampling distribution is transformed to the problem of balancing exploration and

exploitation in reinforcement learning.

5.4 Experimental Setup and Results

In this section, we present the results of our empirical study on the behaviour

of AHS. The results in [Hsu et al., 2005] show that AHS performs close to the

performance of the best component sampler. In this section, we present further

exploration on the behaviour of AHS. First, we propose a way to choose the cost

function and explore the effect of different cost functions to AHS’s performance.

Our results show that cost function is critical to the overall performance of AHS.

As the narrow passage problem becomes more severe, AHS with our new cost

performs significantly faster than AHS with the original cost. Then, we explore

the effect of the parameter γ to AHS’s performance. Our results indicate that AHS

is not sensitive to this parameter, which strengthen the user friendliness of AHS

and strengthen the importance of a good cost function.

We implemented AHS using C/C++. Implementation details of the primitives,

i.e., FreeConf, FreePath, and AllSolved are presented in Appendix A. All exper-

iments were conducted on a PC with a 3 GHz Intel Pentium 4 and 1 GB memory.

All the experiments in this chapter uses 11 component samplers, i.e., 1 uniform

sampler, 5 RBB with parameters: 0.1, 0.3, 0.5, 0.7, 0.9, and 5 Gaussian sampler

with parameters: 0.1, 0.3, 0.5, 0.7, 0.9.

5.4.1 Cost Function

As discussed in Section 5.3, the problem of finding a suitable sampling distribution

can be rephrased as maximizing the total reward gathered over the total cost used.

AHS tries to achieve this by first computing a cost-insensitive probability. This

probability represents a prediction on the reward that can be gained by performing

a particular action. Then, AHS normalizes the cost-insensitive probability with
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the estimated cost for performing the action.

The cost function should estimate the time taken by a component sampler to

sample a configuration and insert the new configuration to the roadmap whenever

it is collision-free (Algorithm 5.1 line 5–7). Since not every sampled configuration is

collision-free, we compute the cost of an action as the average cost over the number

of samples for generating a collision-free configuration. More precisely, ci = cmi

Nsi

,

where cmi is the cost for sampling a collision-free configuration and inserting it to

the current roadmap, while Nsi is the number of samples for generating a collision-

free configuration. We assign Nsi as the number of samples needed by si to sample

the previous milestone.

In [Hsu et al., 2005], the cost cmi is computed as the number of collision

checks for sampling and inserting the previous milestone to the roadmap. When

the number of collision checks dominates the total cost, this estimation performs

well. However, with a better connection strategy, one can keep the number of

collision checks low, for instance by trying to link the new milestone only to other

milestones that lie in different connected components of the roadmap. As a result,

when the number of milestones in the roadmap is large, the time for performing

collision checks no longer dominates the time for sampling and inserting a new

milestone to the roadmap. Instead, the time for computing kNN (part of the

operation in Algorithm 5.1 line 7) becomes comparable and may even dominate

the time for sampling and inserting a new milestone to the roadmap. The reason

is that kNN computation may take O(Nm) time for answering a query, where Nm

is the number of milestones in the current roadmap. Current nearest neighbor

algorithm that uses near-linear storage would take min(2O(n), nNm) query time,

where n is the number of dimensions of F . And in practice, this sophisticated

nearest neighbor search exhibits linear query time for n between 10 and 20 [Indyk,

2004]. Hence, as the path planning problem becomes more complicated and more

milestones are needed to solve the problem, the number of milestones in the current

roadmap may significantly affect the time used by an action.

Therefore, we propose to assign cmi based on the number of milestones in the

current roadmap and the number of collision checks for sampling and inserting the
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previous milestone to the roadmap. To find the cost function cm, we use multiple

linear regression model [Montgomery et al., 2001], cm = c1 · cc+ c2 ·Nm where cc

is the number of collision checks used to sample and insert the previous milestone

to the current roadmap, Nm is the number of milestones in the current roadmap,

and c1 and c2 are constants. To find the constants, we need data points and an

estimator. To get the data points, we ran experiments with the environment and

robot in Figure 5.1. We ran the basic-PRM and Gaussian strategy for 30 times each

until the roadmap contains 10, 000 milestones, and capture the time for sampling

a milestone and inserting the milestone to the current roadmap. So, we have data

points for Nm between 1 and 10, 000 for each planner. For each value of Nm, the

number of collision checks cc and the time cm are the average of the 30 runs of the

planner. For each planner and scenario, the constants are then estimated using

least-squares estimation, i.e., c1

c2

 ≈ ([ CC NM
]T
·
[
CC NM

])−1

·
[
CC NM

]T
· CM (5.5)

where [·]T is the transpose matrix, CC, NM , and CM are column vectors of 10, 000

elements, where each element of the vectors represents the number of collision

checks cc, the number of milestones Nm, and the time cm for a data point. From

computing (5.5) for the different planners we use, we set cm = 250 · cc+Nm.

Notice that with this new cost function,

Figure 5.1: Scenario for finding a
cost function. The robot is a 6-
dofs rigid-body robot.

when the number of milestones in the roadmap

dominates the number of collision checks needed

by each component sampler si, i = 1, . . . , L to

sample and insert a milestone to the current

roadmap, the cost cmi is the same for all com-

ponent samplers. Recall from Section 5.1 that

under suitable assumption, the expected num-

ber of samples and hence the expected num-

ber of milestones generated by each component

sampler of our modified AHS is the same as those generated by the original AHS,
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which allows the planner to switch to another sampler only when a collision-free

configuration has been sampled. Now since when cmi of all component samplers

are the same, the original AHS favors component samplers that generate more

reward per milestone, so does with our modified AHS when cmi is the same for all

component samplers. This is reasonable as in this case, the most time consuming

part of sampling and inserting a milestone is now the kNN computation, which

depends on the number of milestones in the roadmap.

To test the effect of modifying the cost function, we performed experiments on

two sets of scenarios, shown in the left part of Figure 5.2. Each set consists of three

scenarios, where the size of the narrow passages are varied. We ran AHS with the

original cost function and with our proposed cost function for 30 times each, in

each scenario. The average results are shown in the right part of Figure 5.2.

As expected, the results show that as the number of milestones increases, AHS

with the new cost function performs significantly better than AHS with the original

cost function. When the number of milestones is small, the performance of the

two strategies are comparable, because the new cost is dominated by the number

of collision checks and hence the old and new cost are similar. As the number

of milestones increases, the time spent for kNN computation is comparable and

may even dominate the time spent for collision check computation. Hence, the

new cost function estimates the actual cost better than the original cost function.

As a result, AHS with the new cost function can better identify the sampler that

generates more total reward per unit cost, and converges to a good roadmap faster.

5.4.2 Parameter γ

Although AHS uses only 1 parameter, it would be useful to know how sensitive

AHS is to this parameter. If AHS is not sensitive to this parameter, then the user

can arbitrarily set γ without degrading the performance of AHS significantly.

We tested AHS on the scenarios shown in Figure 5.3. Each scenario was run

with AHS using various γ. Each scenario and each AHS with a particular γ value

was run 30 times. The average of the runs are shown in Table 5.1.

The results show that AHS’s performance is not sensitive to γ. In [Hsu et al.,
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AHS with the original cost function
Hole size Ttot (sec) Nmil NCC

0.23× 0.23× 0.07 49 6, 193 195, 273
0.21× 0.21× 0.07 192 16, 698 536, 822
0.19× 0.19× 0.07 1, 274 50, 355 1, 628, 927

AHS with the proposed cost function
Hole size Ttot (sec) Nmil NCC

0.23× 0.23× 0.07 36 4, 560 171, 241
0.21× 0.21× 0.07 178 11, 761 516, 808
0.19× 0.19× 0.07 480 25, 705 1, 262, 972

Test 1 Results

AHS with the original cost function
Slot width Ttot (sec) Nmil NCC

0.23 30 2, 754 114, 276
0.20 66 6, 809 287, 067
0.17 2, 458 75, 021 3, 320, 156

AHS with the proposed cost function
Slot width Ttot (sec) Nmil NCC

0.23 32 2, 936 121, 543
0.20 66 6, 606 281, 822
0.17 1, 284 52, 974 2, 418, 580

Test 2 Results

Figure 5.2: Scenarios and results of testing the cost function. Ttot is the total
running time. Nmil is the number of milestones required for answering the query.
NCC is the number of collision checks required for answering the query. Test 1: A
6-dofs rigid-body robot must pass through the narrow opening in order to answer
the given query. This test consists of 3 scenarios, in which the size of the narrow
opening is varied. The figure shows the scenario with the smallest opening. Test
2: A 6-dofs robot manipulator with its end-effector holding a large plate needs to
maneuver through a narrow slot. This test consists of 3 scenarios, in which the
width of the narrow slot is varied. The figure shows the scenario with the smallest
slot. The second scenario with slot width = 0.20 is the same as the one used as
Test 4 in Chapter 3 and Chapter 4.

2005], it has been argued that AHS takes the burden of “tweaking” the component

samplers’s parameters from the user. Our results further strengthen the argument

of the user friendliness of AHS. Practically, AHS frees the user from the burden of

any parameter “tweaking”.
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Test 3 Test 4 Test 5

Figure 5.3: Test scenarios for testing the effect of γ. Test 1: A point robot moves
from the lower left corner to the lower right corner by passing through the narrow
opening. Test 2: A 6-dofs rigid-body robot must pass through 6 out of 7 narrow
openings in order to answer the given query. This test is the same as Test 3 used
in Chapter 3 and Chapter 4. Test 4: A 6-dofs robot manipulator needs to move
the small thin plate to the narrow opening of the machine.

Table 5.1: The effect of γ on the overall performance of AHS.

Scenario
Ttot (sec)

AHS
Uniform weight

γ = 0.1 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.9
Test 3 43.85 44.86 49.18 44.07 57.81 93.33
Test 4 60.48 50.93 53.26 50.08 63.68 97.44
Test 5 0.48 0.47 0.45 0.47 0.41 0.65

Furthermore, the insensitivity of AHS to γ strengthen our argument on the

importance of cost to AHS strategy. Observation on (5.1) and (5.2) indicates that

when the overall performance of AHS does not vary much due to γ, the weight wi

for each sampler i = 1, . . . , L is close to 1
L
. Assuming that the reward is a good

feedback for constructing a good roadmap and that all component samplers can

sample important regions of F , in general the total reward gathered by different

component samplers when run alone to construct a good roadmap should roughly

be the same. Now, the weight w is based on the estimated cumulative reward [Auer

et al., 2002]. Hence, assuming that the estimated cumulative reward estimates the

total reward well, after enough learning time, the estimated cumulative reward of

all component samplers are almost the same and hence w of all component samplers

are almost the same too. Since w of each component sampler is almost the same,
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the probability pSj
(si) highly depends on the cost ci. Hence a good estimation of

the cost is critical to the overall performance of AHS. Note however that this does

not imply that the sophisticated weight function in (5.3) is utterly useless for AHS

strategy. When some of the component samplers can not sample some important

regions of F , then the total reward that can be gathered by these samplers can

be much lower than other samplers. In this case, the weight computation in (5.3)

enables AHS to disfavor these component samplers.

5.5 Discussion

In this chapter, we have further explored the behaviour of adaptive hybrid sam-

pling (AHS) approach which is used to combine the component samplers of WCO

(Chapter 4). We put AHS in a reinforcement learning framework. We strengthen

the user friendliness of AHS by showing that it is insensitive to the variation of its

only parameter γ. Then, we empirically show the importance of cost function and

propose a new cost function. Our experimental results show that as the narrow

passages problem becomes more severe, AHS with the new cost function becomes

significantly faster than AHS with the original cost function.

Currently, AHS tries to find the best component sampler. However, many

sampling strategies work best when they are combined with another strategy. For

instance, combining RBB and uniform strategy is better than RBB or uniform

alone. Most free-space consists of both narrow passages and wide-open spaces.

So for the planner to perform well, the roadmap constructed must represent both

regions of the free-space well. Therefore, it is useful to explore ways to combine

the samplers such that the combination is close to the best combination of the

component samplers.

AHS is not restricted to motion planning problems. When many heuristics

with different strength have been proposed for solving a problem, combining these

heuristics with AHS strategy may be useful. In general, different heuristics perform

well in different instances of the problem. Using AHS to combine the different

heuristics ensures that the overall performance will be close to the performance
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of the best heuristic for any instance of the problem. In short, AHS takes the

problem of choosing a suitable heuristic off the user. However, of course for AHS

to perform well, we need a good reward and cost estimation function.





Chapter 6

Conclusion

Despite the hardness of high dimensional path planning problems, probabilistic

path planning have solved many high dimensional problems, expanding the use

of path planning beyond robotics, to areas as diverse as computer graphics [Koga

et al., 1994], computer aided-design [Chang and Li, 1995], and computational

biology [LaValle et al., 2000,Amato et al., 2002,Apaydin et al., 2003]. However,

despite the experimental success of probabilistic path planning, its performance

degrades significantly when the configuration space contains narrow passages. And

unfortunately, as the dimensionality of the problem increases, the narrow passages

tend to become narrower, and hence worsen the performance of probabilistic path

planning.

This thesis shows that workspace provides useful information for generating a

suitable sampling distribution, which then improves the performance of probabilis-

tic path planning in solving narrow passages problem significantly. We start by ar-

ticulating the distinction between two main components of random sampling, i.e.,

sampling distribution and sampling source, in probabilistic path planning. This

articulation enables us to empirically show the importance of a suitable sampling

distribution to the overall performance of the planner. Furthermore, our empirical

study indicates that suitable sampling distributions depend on the visibility prop-

erty of the robot’s free-space. The low dimensionality and explicit representation

of the workspace along with the close relation between obstacles in the workspace

and forbidden regions in the configuration space have encourage us to explore the

135
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use of workspace information in generating suitable sampling distributions. Our

exploration reveals that the visibility sets of points in the robot’s free-space are

strongly related to the visibility sets of points in the workspace free-space. More-

over, even a simple strategy for utilizing workspace information turns out to show

comparable performance to recent probabilistic path planner. These results en-

courage us to exploit workspace information further in our new probabilistic path

planner WCO. Our analysis shows that WCO is probabilistically complete and

under certain conditions, the failure probability of WCO is lower than that of the

basic-PRM. And our experiments show that WCO performs up to 28 times faster

than the basic-PRM and up to 8 times faster than recent probabilistic path plan-

ner that has been shown to perform well. Furthermore, as the dimensionality of

the configuration space increases, the performance of our new planner decreases

slower than other recent probabilistic path planner. We have also successfully

implemented WCO in a simulated bridge inspection scenario involving a 35-dofs

robot.

6.1 Summary of Contribution

This thesis shows that workspace provides useful information for generating a

suitable sampling distribution for probabilistic path planning in solving narrow

passages problem.

We performed an empirical study to understand the role and importance of

sampling distribution in probabilistic path planning, and to find possible avenues

for alleviating narrow passages problem. We start by articulating the distinction

between sampling distribution and sampling source, which has been blurred in the

probabilistic path planning literature. This articulation enable us to identify and

empirically show that sampling distribution is critical to the success of probabilistic

path planning, because it relates to the uncertainty that arises from our lack of in-

formation about the shape of the robot’s configuration space. Our empirical study

indicates that a suitable sampling distribution depends on the visibility property

of the robot’s free-space. The low dimensionality and explicit representation of the
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workspace along with the close relation between obstacles in the workspace and

forbidden regions in the configuration space suggest that workspace information

is potentially useful for estimating the visibility property of the robot’s free-space.

Furthermore, although the shape of the robot’s free-space is unknown, partial infor-

mation about the free-space can be gathered as the roadmap is being constructed

and the sampling distribution can be adjusted accordingly. Therefore, another po-

tential strategy for generating a suitable sampling distribution is by adjusting the

sampling distribution dynamically over time. In short, our study suggests that uti-

lizing workspace information and dynamically adapting sampling distribution over

time are two potential strategies for improving current probabilistic path planners.

Further exploration on the relation between the configuration space and the

workspace shows that although the two spaces are different, their visibility property

are related. Under certain conditions that do not depend on the dimensionality of

the configuration space, the visibility set of a configuration in the free-space is a

subset of the lift mapping of the visibility set of the configuration’s projection in

workspace free-space. This implies that to find configurations that can be directly

connected to a configuration q of the free-space, it is safe to restrict our search

space to those configurations that place the robot’s feature point at the visibility

set of the projection of q in the workspace free-space WF . Moreover, the volume

of the visibility sets in the free-space is bounded by a constant multiplication of

the volume of the visibility sets in the workspace free-space. Since the number

of milestones for solving a path planning problem within a certain probability

of success can be bounded in terms of the volume of the visibility set of points

in the free-space, our result indicates that the number of milestones can also be

bounded in terms of the volume of the visibility set of points in the workspace free-

space. These results imply that the workspace contains useful information about

the visibility property of the robot’s free-space. And based on our empirical study,

these results indicate that workspace provides useful information for generating

suitable sampling distributions for probabilistic path planning.

The question remains as to how workspace information can be used to efficiently

generate a suitable sampling distribution over the configuration space. As our first



138 Chapter 6

attempt to address this issue, we present a simple workspace-based path planner,

called WIS. WIS uses the width of passages in the workspace to estimate the size of

the visibility set of subsets of the robot’s free-space and constructs a static sampling

distribution based on this estimation. Our experimental results show that this

simple sampling strategy is comparable to recent probabilistic path planner that

has been shown to perform well. Our analysis shows that the failure probability

of WIS converges to zero exponentially in the number of milestones, provided a

solution exists. Furthermore under certain conditions which often happen when

the robot moves inside the narrow passages of the workspace, the upper bound of

the failure probability of WIS is lower than that of the basic-PRM.

Encouraged by the above results, we propose a workspace-based path planner,

called WCO, that uses workspace information to generate dynamic sampling dis-

tribution. It combines workspace information with sampling history and the cur-

rent state of the roadmap to dynamically adapt its sampling distribution. Unlike

previous probabilistic path planners that generate dynamic sampling distribution,

WCO uses both workspace information and sampling history instead of sampling

history alone. By doing so, WCO blends workspace information that provides a

rough global information about the configuration space with sampling history that

provides a more detailed local information of the regions around the sampled con-

figurations. Furthermore, WCO consists of multiple component samplers, where

each sampler is based on a point of the robot. This implies that WCO takes more

robot information into consideration. The two main traits above enable WCO

to perform significantly faster than other recent probabilistic path planner. Our

analysis shows that the failure probability of WCO converges to zero exponentially

in the number of milestones, provided a solution exists. Furthermore, when its es-

timation satisfies a certain criteria, the upper bound on the failure probability of

WCO is lower than that of the basic-PRM. Our experimental results show that

WCO performs up to 28 times faster than the basic-PRM. Furthermore, as the

dimensionality of the robot’s configuration space increases, WCO’s performance

decreases slower than other recent probabilistic path planner. We have also suc-

cessfully implemented WCO in a simulated bridge inspection scenario involving a
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35-dofs robot.

Next, we further explore the behaviour of the adaptive hybrid sampling (AHS)

approach [Hsu et al., 2005], a strategy used by WCO to combine its component

samplers. We empirically show the importance of cost function and propose a new

cost function. Our experimental results show that as the narrow passages problem

becomes more severe, AHS with the new cost function becomes significantly faster

than AHS with the original cost function.

6.2 Future Work

Although this thesis focuses mainly on multi-query probabilistic path planning,

workspace information is likely to be useful in single-query probabilistic path plan-

ning, too. The goal of single-query path planning is to solve a given query as fast

as possible. Therefore, it is desirable that the planner does not waste time for ex-

ploring regions of the configuration space that will not contribute to the final path.

However, works on single-query probabilistic planners [Hsu et al., 1999,Kuffner and

LaValle, 2000,Sánchez and Latombe, 2001] have not thoroughly explored ways of

reducing the exploration of configuration space regions that are unlikely to con-

tribute to the final path. WCO indicates that workspace information can be used

to identify regions that are more likely to contribute to the final path and hence

help in generating a more suitable sampling distribution. Nevertheless, more re-

search is needed to find an effective method for combining multiple samplers for

single-query planning.

An open problem that has not received much attention in probabilistic path

planning is how to a priori determine the number of milestones needed by a plan-

ner to reach a certain percentage of success. Currently, the burden of choosing

an appropriate number of milestones rests with the user. Too little milestones

causes many unsolved queries, while too many milestones requires significantly

more time for building the roadmap. It is true that several works on the analysis

of the basic-PRM [Kavraki et al., 1995, Kavraki et al., 1996a, Švestka, 1996, Hsu

et al., 1999, Ladd and Kavraki, 2004] have provided a bound on the necessary
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number of milestones. However, these bounds are either based on the property of

a solution path [Kavraki et al., 1995,Ladd and Kavraki, 2004], which is unknown

before the solution is found. Or they are based on the geometric property of the

high dimensional free-space [Kavraki et al., 1996a, Švestka, 1996,Hsu et al., 1999].

For instance, the analysis in [Kavraki et al., 1995], provides a bound based on

the volume of the smallest visibility set in the free-space. Since the free-space is

unknown, computing this property exactly is infeasible. Moreover, computing a

reliable estimation using Monte Carlo is likely to take as much time as building

a good roadmap [Hsu et al., 1999]. Hence, despite these theoretical bounds, the

number of milestones that should be sampled to reach a certain success rate re-

mains incomputable. In this thesis, we have shown that under certain conditions,

the size of the visibility sets in the free-space is upper bounded by a constant

multiplication of the visibility sets in the workspace free-space. Furthermore, from

the proof in Chapter 3, this constant can be computed from the robot’s kinemat-

ics information. This result suggests that we may use the volume of the largest

visibility set of a point in the workspace free-space and then use the theoretical

bound in [Kavraki et al., 1995] to a priori compute a loose lower bound on the

number of milestones needed for the planner to reach a certain success rate. In this

direction, the main issue is how to efficiently compute the size of the visibility sets

in the workspace free-space. Furthermore, finding a tighter bound could be useful.

A different direction may be to explore efficient method to directly estimate the

number of required milestones using workspace information.

In this thesis, we focus mainly on finding geometric paths and ignore all differ-

ential constraints, such as non holonomic and dynamic constraints of the robot’s

motion. Taking differential constraints into consideration means that the planner

needs to find not just a sequence of configurations, but also a sequence of ve-

locity and/or robot’s control. Hence, planning is performed in the robot’s state

space, where a state is a tuple of configuration and tangent vector [Latombe, 1991].

Planning in the state space is in general harder than in the configuration space, as

the dimensionality of the state space is significantly higher than the configuration

space. Our experimental results show that workspace-based sampling is effective
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in slowing down the planner’s performance degradation due to the increase of di-

mensionality. Hence, it may be useful to explore the use of workspace information

when the robot’s differential constraints are considered. In the WCO framework,

one possibility is to adapt the workspace channel prediction of WCO such that the

robot’s velocity/control constraints are taken into account. One main issue would

be how to map the tangent vector in the state space to and from the workspace.

The simplest way is of course to just assume the tangent vector as free variables.

However, this may not help much when the velocity/control contraints are very

restricted. Thus, further research is needed to explore the use of workspace infor-

mation in solving motion planning problems involving differential constraints.

With the advance of robotics technology, high dimensional robots, such as hu-

manoid robots, start to enter our living room. When robots share a living space

with humans, we can no longer assume that the environment is static and per-

fectly known. To be applicable, motion planners need to be responsive enough

to the dynamic and uncertainty of the environment. These types of robots sense

the changes in the workspace geometry using its sensors, and defines its motion in

the high dimensional configuration space. Hence, the efficient mapping between

the workspace and the configuration space, presented in this thesis, may be useful

to handle the dynamic of the environment. Once the robot detects changes in

the workspace geometry, the planner can quickly modify parts of the robot’s path

that have been invalidated. However, since the changes in the workspace geom-

etry is uncertain due to sensor’s noise, further research is needed to explore how

uncertainty in the workspace information can be incorporated to help planning.
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Appendix A

Primitives

A.1 Implementation of FreeConf

We use LEDA library to implement FreeConf for robots working in 2D workspace

and we use Quinlan’s distance computation method [Quinlan, 1994] as FreeConf

for robots working in 3D workspace. The idea of Quinlan’s method is to build a

hierarchical representation of the objects a-priori, such that it can later compute

the (exact or approximate) distance between two objects fast. It starts by con-

structing hierarchical bounding-spheres of the boundaries of the obstacles and the

robot. The hierarchy is represented as binary trees. For the obstacles, a tree is

constructed to represent all obstacles in the workspace. While for the robot, a tree

is constructed to represent each rigid body that constructs the robot. So, a robot

with n rigid bodies is represented by n binary trees. Each of these trees keeps a

transformation matrix that specifies the position and orientation of the rigid body

in the workspace, when the robot is at a particular configuration. The construc-

tion of these binary trees is performed before planning starts. During planning, to

check whether a configuration q is in-collision, FreeConf(q) first places the robot

at q by adjusting the transformation matrices attached to each binary tree that

represents the robot. Next, Quinlan’s method traverses the binary trees as needed

to compute the distance between the robot, which may be represented by multiple

binary trees, and the obstacles. Whenever two objects collide, Quinlan’s method

returns zero and FreeConf returns false. Notice that this method considers only
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the boundaries of the objects. Hence, if an object lies completely inside another

object, this method will not detect any collision between the two objects and so

does our FreeConf. This shortcoming can be overcome by decomposing objects

with large volume such that no objects can lie entirely inside another.

A.2 Implementation of FreePath

The primitive FreePath(q, q′) checks whether a straight line segment qq′ between q

and q′ is collision-free. For rigid-body robot, we use bisection method [Hsu, 2000].

The idea is to recursively divide qq′ into two shorter line segments until it is certain

that the segment is in-collision or collision-free. We divide the segment until either

a segment is found to be in-collision or all segments lie inside collision-free spheres.

It starts by using the Quinlan’s distance computation to compute the radius rq

and rq′ of the largest collision-free spheres centered at q and q′. Next, it divides

qq′ into qq′′ and q′′q′ where q′′ =
q+q′

2
and call FreeConf(q′′) to check whether q′′

is collision-free. If q′′ is in-collision, we stop and FreePath(q, q′) returns false. If

|qq′′| < rq and |q′′q′| < rq′ , where | · | is the length of the line segment, FreePath(q,

q′) returns true. Otherwise FreePath recursively divides the two segments and

performs the above procedure.

For an articulated robot, the line segment qq′ is divided recursively until a

segment is found to be in-collision or the length of all the segments are less than

a small constant ε, in which FreePath(q, q′) returns true.

A.3 Procedure AllSolved

Procedure AllSolved (Algorithm A.1) finds a path between each pair of the given

queries. The queries are represented as a list of 2-tuple < qi, qg > of initial qi and

goal qg configurations. The procedure returns true whenever a path is found for

each pair of query. Furthermore, it returns a set of paths in Ψ. Each element Ψ[i]

holds the solution of Q[i]. If a query Q[i] can not be solved, then Ψ[i] is NULL. To

find the shortest path in R (Algorithm A.1 line 5), we use Dijkstra algorithm.
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Algorithm A.1 AllSolved(Q, R, Ψ)

1: NQ = sizeOf(Q).
2: nSolved = 0.
3: Initialize each element of Ψ[i] to NULL.
4: for i = 1, . . . , NQ do
5: Find the shortest path in R between Q[i].init and Q[i].goal. If a path is

found, increment nSolved by 1 and save the path in Ψ[i].
6: if nSolved == NQ then Return true.
7: else Return false.


