
A VERIFICATION SYSTEM FOR INTERVAL-BASED

SPECIFICATION LANGUAGES WITH ITS

APPLICATION TO SIMULINK

CHEN CHUNQING

(B.Sc. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2009

Acknowledgement

I would like to take this opportunity to express my deep and sincere gratitude to

those who helped me, in one way or other, on my Ph.D. study in the last five years.

First and foremost, I am deeply indebted to my supervisor, Dr. DONG Jin Song,

for his guidance, insight and encouragement throughout the course of my doctoral

program. His careful reading, and constructive criticisms and suggestions of early

drafts and other works make this thesis possible.

To my seniors, Dr. SUN Jun and Dr. LI Yuan Fang, and fellow student FENG Yuzhang

- for your suggestions and discussions on all aspects of research works and generous

sharing of your research experience.

To my former lab mates, Dr. LIANG Hui and Dr. YUAN Ling, and fellow students,

LIU Yang and ZHANG Xian - your friendships and funny chit chat helped me go

through the long and sometimes rough way of Ph.D. study.

I am grateful to Dr. Abhik ROYCHOUDHURY and Prof. P. S. THIAGARAJAN for

the critical comments on this thesis. I am also thankful to the external reviewer and

numerous anonymous referees who have reviewed this thesis and previous publications

that are parts of this thesis and their valuable comments have contributed to the

clarification of many ideas presented in this thesis.

This study was in part funded by the project “Rigorous Design Methods and Tools for

Intelligent Autonomous Multi-Agent Systems” supported by Ministry of Education

(MOE) of Singapore and the project “Reliable Software Design and Development for

Sensor Network Systems” supported by National University of Singapore Academic

Research Fund and the project “Formal Design Techniques for Reactive Embedded

Systems” supported by Singapore A*STAR Research Grants. The School of Comput-

ing also provided the finance for me to present papers in several conferences overseas.

Moreover, I have been encouraged by receiving the Dean’s Graduate Research Excel-

lence Award 2009. For all this, I am very thankful.

I wish to thank sincerely and deeply my parents Zhenhong and Yimei who have raised

me, supported me, and always have belief in me these years.

Contents

1 Introduction and Overview 1

1.1 Motivation and Goals . 1

1.2 Thesis Outline . 6

1.3 Publications from the Thesis . 7

2 Background 9

2.1 Timed Interval Calculus (TIC) . 9

2.2 Prototype Verification System (PVS) 13

2.3 Duration Calculus (DC) . 15

2.4 Simulink . 18

3 Encoding TIC in PVS 21

3.1 Constructing TIC Semantics in PVS 22

3.1.1 Time and Interval Domains 23

3.1.2 Timed Traces and Interval Operators 24

3.1.3 Expressions and Predicates . 24

i

CONTENTS ii

3.1.4 TIC Expressions . 26

3.2 Checking TIC Reasoning Rules . 28

3.3 Supplementary Rules and Proof Strategies 31

3.4 Summary . 33

4 Machine-Assisted Proof Support for TIC 35

4.1 Translating TIC Models to PVS Specifications 36

4.2 General Proof Procedure . 38

4.3 Case Study - A Temperature Control System 40

4.3.1 Specifications of System Properties and Requirements 41

4.3.2 Proofs of Requirements . 44

4.3.3 Experimental Results . 48

4.4 Summary . 50

5 Supporting DC in the Verification System 51

5.1 Modeling DC Semantics in TIC . 52

5.1.1 State Variables . 52

5.1.2 State Expressions . 54

5.1.3 Temporal Variables . 55

5.1.4 Formulas . 55

5.2 Validating DC Axioms and Reasoning Rules 57

5.3 Handling DC Proofs . 61

5.4 Summary . 64

CONTENTS iii

6 Modeling Simulink Library Blocks 65

6.1 TIC Schemas for Simulink Elementary Blocks 66

6.2 TIC Library Functions for Simulink Library Blocks 69

6.3 Discussions and Discoveries . 72

6.4 Summary . 76

7 Transforming Simulink Diagrams into TIC Schemas 79

7.1 Transforming Elementary Blocks . 80

7.2 Transforming Wires . 83

7.3 Transforming Diagrams . 84

7.4 Computing Unspecified Sample Times 85

7.5 Dealing with the Ports and Subsystems Category 88

7.5.1 Triggered Subsystems . 90

7.5.2 Enabled Subsystems . 92

7.6 Summary . 96

8 Validation beyond Simulink 97

8.1 Translating TIC Library Functions 99

8.2 Facilitating TIC Validation of Simulink Diagrams 102

8.3 Implementation and Experimental Study 103

8.3.1 Specifications of System Design and Requirements 104

8.3.2 Validating System Design against Requirements 110

8.4 Summary . 114

CONTENTS iv

9 Conclusion 117

9.1 Main Contributions of the Thesis . 117

9.2 Future Work Directions . 120

9.2.1 Higher Automation for Verifying TIC Models 121

9.2.2 Further Development for Supporting Simulink Diagrams . . . 123

9.2.3 Expanding the Verification System 124

A Encoding of TIC in PVS 141

A.1 Basic Definitions . 141

A.2 TIC Reasoning Rules . 146

A.3 Supplementary Rules . 149

A.4 Proof Strategies . 152

B Proof of the DC Rule DC15 155

C Supported Simulink Library Blocks 159

C.1 Library Blocks Modeled by TIC Library Functions 159

C.2 Library Blocks Handled in Transformation 160

C.3 Commonly Used Simulink Library Blocks in TIC 160

D Handling Conditional Subsystems 167

D.1 Triggered Subsystems with Discrete Control Inputs 167

D.2 Enabled Subsystems with Continuous Control Inputs 170

Summary

Real-time computing systems usually interact with physical environment, and their
computations often involve mathematical functions of time. With their increasing
usage in safety-critical situations, it is necessary and important to rigorously validate
these system designs associated with the properties of the environment.

Timed Interval Calculus (TIC) is an expressive specification language on modeling
and reasoning about real-time systems. It supports differential and integral calculus as
well. The formal verification capabilities of TIC are useful to rigorously prove if system
designs satisfy functional and non-functional (specifically, timing) requirements.

When real-time computing systems are complex, it is difficult to ensure the correctness
of each proof step and to keep track of all proof details in a pencil-and-paper manner.
It is thus necessary and important to develop a verification system to make proofs
easier. On the other hand, the analysis of these systems usually involves mathematical
reasoning such as integral calculus for modeling physical dynamics, and induction
mechanisms for dealing with arbitrary intervals and continuous time domain. This
thesis presents a systematic way to develop a system to carry out TIC verification
at an interval level with a high degree of automation, and further illustrates the
extensibility and benefits of our approach.

The verification system is built upon a powerful generic theorem prover, Prototype
Verification System (PVS). From our rigorous checking of TIC reasoning rules, subtle
flaws in original rules have been discovered. A collection of supplementary rules
and proof strategies have also been developed to make proofs more automated. In
addition, we have expanded the verification system to handle Duration Calculus (DC)
which is another popular interval-based specification language. We can reason about
DC axioms and perform DC proofs in a manner similar to manual DC arguments.

Based on the TIC-PVS verification system, a novel framework is proposed to explore
the usage of formal methods on improving industrial tools, for example, Simulink
which graphically models and simulates embedded systems. However, Simulink is
deficient in checking (timing) requirements of high-level assurance, and this is where
formals methods have strengths. Our framework can formally capture functional
and timing aspects of Simulink diagrams, enlarge the design space of Simulink, and
rigorously conduct validation of Simulink diagrams. Furthermore, semantic incom-
pleteness and a bug in Simulink library blocks have been discovered.

Key words: Real-time Computing Systems, Interval-Based Specification lan-
guages, Formal Verification, PVS, Simulink

List of Figures

2.1 A system calculation in Simulink graphical and textual formats . . . 19

4.1 The abstract syntax tree of the requirement SimpleReq 38

6.1 An incorrect simulation result of the Dead Zone library block 74

6.2 A wrong simulation result of the Interval Test library block. 75

6.3 A correct simulation result of the Interval Test library block. 75

7.1 A system calculation in Simulink graphical and textual contents . . . 80

7.2 A diagram with specified sample times for blocks Delay and IC. . . . 85

7.3 A triggered subsystem with a continuous control input 91

7.4 An enable subsystem open in a system tank. 94

8.1 The framework structure to model and validate Simulink diagrams . . 104

8.2 The brake control system in Simulink 105

D.1 A triggered subsystem controlled by a discrete input 168

D.2 An enabled subsystem controlled by a continuous input 171

i

List of Tables

4.1 Validation results of the temperature control system 49

6.1 The initial relay state of the Relay library block in different cases . . 73

8.1 Experimental results of the validation of the brake control system . . 114

iii

Chapter 1

Introduction and Overview

1.1 Motivation and Goals

Real-time computing systems are computer systems which need to meet real-time con-

straints: They react to events within a certain time interval, to produce output before

a prescribed delay has elapsed, etc. These systems usually interact with the physi-

cal environment and involve mathematical functions of time. With their increasing

usage in safety-critical situations such as fly-by-wire aircraft, and in vast production

areas such as automobiles, their high-level assurance is required and timing analysis

becomes necessary [108]. Moreover, it is important to model both discrete computer

system behavior and continuous physical processes in order to rigorously validate

these embedded real-time computing systems at an early development stage [34].

Formal methods [38, 68, 112] have been suggested as a systematic way of improving

the quality of system designs in general. In the past decade, they have received more

attention on developing embedded real-time systems [47, 67, 132]. The focus is to

exploit mathematically well-founded notations to model system designs and require-

1

1.1. MOTIVATION AND GOALS 2

ments, and to rigorously verify whether designs satisfy desired requirements with the

assistance of computers. Two well-established approaches to verification are model

checking [37] and theorem proving [113]. Model checking is the principle of building

a finite model of a system and checking that a desired property (usually formu-

lated in temporal logic [83]) holds in that model. Theorem proving is the technique

which consists of specifying both designs and requirements in some mathematical

logic and proving the existence of the implication relationship between designs and

requirements by logic inference.

Formal specification languages for real-time systems can be divided into two broad

groups [6]: those based on time points [3, 5, 39, 69, 83, 100] and those based on time

intervals [50, 82, 88, 93, 95, 137]. Point-based specification languages express system

behavior with respect to certain time points, which are determined by a specific

system state and by the occurrence of events marking state transitions. On the other

hand, interval-based specification languages have a higher level view of time; they

can avoid mentioning time points and express system behavior over a given period of

time points. The latter is regarded as more appropriate and concise than the former

because constraints on intervals rather than time points occur frequently in real-time

systems, especially in control engineering [44, 75] (for example, the use of an integral

equation to constrain a function within an interval).

Timed Interval Calculus (TIC) [50] is a highly expressive specification language for

modeling and reasoning rigorously about real-time systems in terms of intervals. It is

based on set theory and extends the well-known Z notation [123, 136]. TIC has been

applied to specify and verify various systems [48, 81, 82, 131, 134] against functional

and non-functional (for instance, timing) requirements, by the well-defined reason-

ing rules and the strong support of mathematical analysis. The modeling features,

especially the continuous-time domain and the support of integral and differential cal-

1.1. MOTIVATION AND GOALS 3

culus [49], make TIC an excellent formalism that can potentially support the widely

used industrial tool Simulink [85] because Simulink adopts continuous-time seman-

tics [70].

When real-time computing systems are complex, analyzing their formal models in

TIC becomes error-prone and difficult in a paper-and-pencil manner. It is thus nec-

essary and important to develop a verification system to provide machine-assisted

proof support for TIC with a high degree of automation. Nevertheless, the analysis

of these systems usually involves mathematical reasoning such as integral calculus

used to model physical dynamics, and induction mechanisms for dealing with arbi-

trary intervals and the continuous time domain. These characteristics are not well

supported by model checking which usually applies a discrete abstraction for infinite

state spaces [14, 36, 65]. This may lead in some cases to a discrepancy between the

real physical system and its model resulting in unreliable analysis and inconsistent

conclusions [96, 97]. In contrast, theorem proving [25, 62, 113] can directly handle

infinite state spaces and support expressive specifications.

Instead of building a specialized theorem prover for TIC from scratch, we choose one

of the powerful generic theorem provers, Prototype Verification System (PVS) [101],

because of its highly integrated environment for writing formal specifications and

developing rigorous verification. The PVS specification language is based on higher-

order logic associated with a rich type system [114]. Its interactive theorem prover

offers powerful automatic reasoning techniques at low levels such as arithmetic of real

numbers and decision procedures for sets. Users can directly control proof develop-

ment at a high level, for example, selecting proper user-defined proof strategies [102].

The NASA PVS library [19, 46] has included the formalization and validation of

elementary calculus covering integration and differentiation. The library has been

successfully applied to verify a practical aircraft traffic control system [20]. The

1.1. MOTIVATION AND GOALS 4

above strengths of PVS are useful to achieve our goal of developing mechanical proof

support for TIC.

To develop a verification system using PVS for TIC, we firstly encode the TIC de-

notational semantics in PVS. Secondly, we formalize and validate all TIC reasoning

rules based on the semantic encoding. From our rigorous validation process, we have

discovered subtle flaws in some original reasoning rules which are often used to check

important requirements, for example, safety requirements. Thirdly, we implement

a tool to automatically translate TIC models to PVS specifications. Last but not

least, to make the proving process more automated, we define a set of supplemen-

tary reasoning rules dedicated to certain domain-specific features, and a collection of

PVS proof strategies to capture repetitive patterns of proof commands. These proof

strategies also hide the detailed encoding of TIC from users. With our verification

system, we can systematically validate TIC models at the interval level by applying

the encoded TIC reasoning and supplementary rules. Proofs at low levels, such as

propositional logic and real numbers, can be automatically discharged by exploit-

ing the PVS reasoning power. Furthermore, we can cope with proofs which involve

continuous dynamics and arbitrary (infinite) intervals.

By supporting the highly expressive TIC, the verification system is generic to handle

other interval-based specification languages, such as Duration Calculus (DC) [137],

Temporal-Interval Logic with Compositional Operators (TILCO) [88], Real-Time

Graphical Interval Logic (RTGIL) [93], etc. In this thesis, we extend the verifica-

tion system to support DC which is based on interval temporal logic [94], since TIC

and DC offer similar operators and capabilities. Specifically, the time domain of both

notations is continuous (while in TILCO, time is discrete), and both are well-suited

for model and reason about accumulative behavior (which is not supported by RT-

GIL). Although TIC [82] and DC [139] were independently developed at around the

1.1. MOTIVATION AND GOALS 5

same time, there was unfortunately no comparative study in the literature. We in-

vestigate in this thesis the differences between TIC and DC, and elaborately model

DC semantics using TIC. The modeling enables us to rigorously conduct DC proofs

in a manner similar to manual DC arguments in our verification system. Besides, we

have identified an improper proof step in a common DC case study.

Developing a verification system for TIC and DC has its own merits. It is also im-

portant if the verification system can make a useful contribution to practical tools,

such as Simulink [85] which is used widely in many applications [12, 51, 92] for graph-

ically specifying and simulating dynamic systems. By means of simulation, Simulink

can illustrate system behavior under particular circumstances, such as specific pa-

rameter values and simulation periods. However, simulation is deficient in checking

system behavior for large parameter values over possibly infinite simulation periods.

In addition, open systems, whose exact input functions are usually unknown, are not

analyzable in Simulink because simulation is inapplicable. Moreover, Simulink lacks

timing analysis. We propose a framework, based upon the verification system for

TIC, to complement Simulink. Existing work [1, 10, 21, 22, 89, 128, 129] focuses

on specifying discrete behavior. Our approach differs from them in that we are the

first to model Simulink diagrams in terms of continuous time. This difference allows

our framework to cover a wider range of Simulink library blocks (for instance, the

Integrator library block). The framework can enlarge the design space of Simulink by

precisely specifying environmental properties of open systems and important (timing)

requirements, and rigorous validate Simulink diagrams with a high level of machine-

assisted proof support. In addition, we have discovered incomplete semantics and

also a bug in the original documentation of Simulink library blocks.

1.2. THESIS OUTLINE 6

1.2 Thesis Outline

The main contributions of our work consist of the development of a verification system

for interval-based specification languages and the application of formal methods for

assisting in the development of embedded real-time system designs. This section gives

an overview of the structure of the thesis.

Chapter 2 introduces background information on specification languages and tools

used in the presented work. We firstly review TIC and DC with their respective syntax

and semantics. Next we briefly describe PVS modeling features and its interactive

prover. Lastly we present Simulink.

Encoding the TIC semantics in PVS is demonstrated in Chapter 3. The basic con-

structs of TIC are modeled in the PVS typed, high-order logic specification language.

Based on the encoding, we formalize and validate all TIC reasoning rules in PVS.

A collection of supplementary rules and proof strategies are defined to simplify the

reasoning process and hide detailed encoding of TIC to users.

Chapter 4 illustrates the advantages of the verification system. A translator imple-

mented in Java translates TIC models to PVS specifications. A general proof proce-

dure is proposed to systematically reason about TIC models. With a case study of

a hybrid application, we show that verification can be rigorously carried out directly

at the interval level, and the proof obligations at low levels can be automatically

discharged using our developed system.

In Chapter 5, we extend the verification system to support DC. We firstly model DC

constructs using TIC, and then formalize and check the correctness of DC axioms

as well as reasoning rules. A common DC case study is used to indicate that the

resulting verification system is able to handle DC proofs in a closed manner of the

corresponding manual DC arguments.

1.3. PUBLICATIONS FROM THE THESIS 7

Chapters 6, 7 and 8 are devoted to applying TIC to complement Simulink. We build

up a framework to formally represent and rigorously validate Simulink diagrams. In

Chapter 6, we elaborately construct a set of TIC library functions to model Simulink

library blocks by capturing the time-dependent relationships. In Chapter 7, we de-

scribe a systematic way to transform various Simulink diagrams to TIC models. The

translation preserves the functional and timing aspects, and it takes into account

conditionally executed subsystem in Simulink. In Chapter 8, we demonstrate the ad-

vantages and benefits of the framework, such as enlarging design space and supporting

validation beyond Simulink.

Lastly, Chapter 9 concludes this thesis, summarizes the main contributions and dis-

cusses possible future work directions.

1.3 Publications from the Thesis

Most of the work presented in this thesis has been published/accepted in international

conference proceedings or journals.

The work on developing the verification system for TIC (Chapters 3 and 4) has

been published in The Thirtieth International Conference on Software Engineering

(ICSE’08, May 2008, Leipzig) [32]. The work on extending the verification system

(Chapters 3, 4 and 5) has been accepted by the ACM Transactions on Software Engi-

neering and Methodology [33]. The work on applying TIC to model Simulink diagrams

(Chapters 6 and 7) has been published in The Eighth International Conference on

Formal Engineering Methods (ICFEM’06, November, Macau) [28]. The work on de-

veloping machine-assisted proof support for validation beyond Simulink (Chapter 8)

has been published in The Ninth International Conference on Formal Engineering

Methods (ICFEM’07, November, Boca Raton) [31]. The comprehensive work on the

1.3. PUBLICATIONS FROM THE THESIS 8

framework for supporting Simulink based on the verification system (Chapters 6, 7

and 8) has been accepted for publication in Formal Aspects of Computing [29].

Besides, the preliminary work on proposing the formal framework for Simulink has

been presented in The Doctoral Symposium of The Fourteenth International Sympo-

sium on Formal Methods (FM’06, August, Hamilton) [26].

A full list of the publications on which the thesis is based is given below, and they

are also included in the bibliography.

[26] C. Chen. A continuous-time approach to modeling and validating Simulink

models. In the Doctoral Symposium of the 14th International Symposium on

Formal Methods, Hamilton, Canada, 2006.

[28] C. Chen and J. S. Dong. Applying Timed Interval Calculus to Simulink

diagrams. In ICFEM’06: Proceedings of the 8th International Conference on

Formal Engineering Methods, pages 74-93, Macau, China, 2006.

[29] C. Chen, J. S. Dong, and J. Sun. A formal framework for modeling and

validating Simulink diagrams. Formal Aspects of Computing. Accepted.

[31] C. Chen, J. S. Dong, and J. Sun. Machine-assisted proof support for vali-

dation beyond Simulink. In ICFEM’07: Proceedings of the 9th International

Conference on Formal Engineering Methods, pages 96-115, Boca Raton, USA,

2007.

[32] C. Chen, J. S. Dong, and J. Sun. A verification system for Timed Interval

Calculus. In ICSE’08: Proceedings of the 30th International Conference on

Software Engineering, pages 271-280, Leipzig, Germany, 2008.

[33] C. Chen, J. S. Dong, J. Sun, and A. Martin. A verification system for interval-

based specification languages. ACM Transactions on Software Engineering

and Methodology. Accepted.

Chapter 2

Background

This chapter presents background information on the notations, techniques and tools

which are employed in this thesis. It is divided into four parts. In Section 2.1,

we introduce TIC with its modeling features and verification capability. Section 2.2

is devoted to PVS, in particular its specification language and interactive prover.

The following section describes DC and the differences between DC and TIC are

highlighted. Finally, Simulink is briefly described in Section 2.4.

2.1 Timed Interval Calculus (TIC)

Timed Interval Calculus (TIC) is based on set theory and reuses the Z notation [123,

136]. It adopts total functions of continuous time to model system behavior [82], and

defines interval brackets for concisely expressing properties in terms of intervals [50].

Interval endpoints can be explicitly accessed, and hence TIC can model behavior over

special intervals by constraining interval endpoints.

The time domain T is the set of all non-negative real numbers. An interval is a

9

2.1. TIMED INTERVAL CALCULUS (TIC) 10

range of continuous time points. Intervals are classified into four basic types based

on the inclusion of interval endpoints. For example, the operator [. . .] defined

below denotes a both-closed interval in the Z axiomatic definition style, where the

expression PT denotes a set of time points. Three other operators, (. . .), (. . .],

and [. . .) for both-open intervals, left-open and right-closed intervals, and left-closed

and right-open intervals, are defined similarly.

[. . .] : T× T→ PT

∀ x , y : R • [x . . . y] = {z : T | x ≤ z ≤ y}

There are three types of elements which compose TIC models as shown below.

• Constants. A constant is independent of time points and intervals. For example,

a maximum temperature MaxTmp is a real number, namely, MaxTmp : R.

• Timed traces. These represent variables which are functions of time. Specif-

ically, a timed trace is a total function from the time domain to the type of

a variable, and the variable type can be either continuous or discrete. For in-

stance, temperature in a room can be modeled by a timed trace Tmp with real

numbers R, (V : T → R), while an alarm signal can be depicted by a timed

trace alarm whose range consists of two values, 0 and 1, (alarm : T→ {0, 1}).

• Interval operators. Distinct from a timed trace, an interval operator is a function

from intervals to the type of a variable. There are three predefined interval

operators in TIC, namely, α, ω, and δ. They have the same type, I→ T, where

the symbol I denotes all nonempty intervals, and return the starting point,

ending point and length of an interval respectively.

A key construction of TIC is interval brackets. A pair of interval brackets with a

predicate enclosed by the pair forms a TIC expression which denotes a set of intervals

2.1. TIMED INTERVAL CALCULUS (TIC) 11

where the predicate holds everywhere. A predicate is usually expressed in the first-

order logic and contains timed traces and interval operators. All references to the

time domain and intervals can be elided in the predicate. For example, the TIC

expression :Tmp(α) ≤ Tmp;, where : ; is pair of interval brackets1, represents a set

of both-closed intervals, and in each interval temperature Tmp is not less than its

value at the starting point of the interval. Without using : ;, we need to explicitly

associate the timed trace Tmp and the interval operator α with their corresponding

domains, as shown in the following expanded set construction of the TIC expression.

:Tmp(α) ≤ Tmp;
= {x , y : T | (∀ t : [x . . . y] • Tmp(α([x . . . y])) ≤ Tmp(t)) • [x . . . y]}

Conventional set operators such as ∪ and ∩ can be applied to compose new TIC

expressions. To depict sequential behavior over intervals, the concatenation operator

y is defined below to connect intervals end-to-end. Specifically, y takes two sets

of intervals X and Y as arguments, and returns a set of intervals each of which is

composed by an interval x from the left-hand set X and an interval y from the right-

hand set Y , provided (1) x occurs strictly before y and (2) x and y meet exactly,

with no overlap and no gap. Note that this operator is a partial function, indicated

by the symbol 7→, as the concatenation of any two sets of intervals may return the

empty set.

y : P I× P I 7→ P I

∀X ,Y : I • X y Y =
{z : I | ∃ x : X ; y : Y • z = x ∪ y ∧ (∀ t1 : x ; t2 : y • t1 < t2)}

TIC predicates specify system properties and requirements at the interval level by

imposing constraints on TIC expressions. For instance, the following TIC predicate

1Three other basic types of interval brackets are 6 7, 6 ;, and : 7 for both-open intervals, left-open

and right-closed intervals, and left-closed and right-open intervals.

2.1. TIMED INTERVAL CALCULUS (TIC) 12

as a subset relation over two sets of intervals specifies a periodic behavior that a

sensor stores the temperature Tmp in every k time units.

:∃ i : N • α = i ∗ k ∧ ω = (i + 1) ∗ k 7 ⊆ :store = Tmp in(α)7

In the above TIC predicate, the TIC expression at the left side of ⊆ decomposes the

time domain into a sequence of left-closed and right-open intervals where N denotes the

set of all natural numbers; and each interval lasts k time units. The TIC expression

at the right side depicts the periodic update of the stored temperature.

To manage TIC models in a structural manner, we adopt the Z schema structure to

group a list of variables in its declaration part and specify the constraints over these

variables in its predicate part. The following schema represents the above sensor,

where the declaration Tmp in : T1 R captures the continuity feature that Tmp in

is continuous in any non-empty interval by the symbol 1 defined in [49].

Sensor
Tmp in : T1 R; store : T→ R [Declaration]

:∃ i : N • α = i ∗ k ∧ ω = (i + 1) ∗ k 7 ⊆ :store = Tmp in(α)7 [Predicate]

TIC defines a collection of reasoning rules for capturing timing properties of sets of

intervals and their concatenations. These rules allow TIC verification to be carried

out at the interval level. For instance, given a predicate which is independent of

interval operators, the following rule can decompose a non-point interval in which the

predicate holds in two concatenated intervals, both of which satisfy the predicate.

Note that an implicitly necessary condition is that the time domain is continuous,

as intervals over the discrete-time domain, such as an interval whose endpoints are a

pair of consecutive discrete time points, cannot be decomposed.

if a predicate P is independent on α, ω, and δ, then we have
>P ∧ δ > 0? = >P?y >P?

2.2. PROTOTYPE VERIFICATION SYSTEM (PVS) 13

In the above specification, the interval brackets > ? denote a union of four basic types

of interval brackets, specifically, >P? == 6P 7∪ 6P ;∪ :P 7∪ :P ;. This operator is often

used when predicates are independent of interval endpoints.

Using TIC, we can formally specify system designs and important requirements such

as safety and bounded liveness, and rigorously prove whether system designs imply

requirements by deduction. A proof is usually divided into several sub-proofs, and

each sub-proof concentrates on a simple requirement of a subsystem. Each deductive

step in a proof is reached by rigorously applying a hypothesis (as an axiom), a TIC

reasoning rule, a mathematical law, or a proved requirement from a sub-proof.

2.2 Prototype Verification System (PVS)

Prototype Verification System (PVS) [101] is an integrated environment for formal

specification and formal verification. It builds on over 25 years experience at SRI in

developing and using tools to support formal methods. The specification language

of PVS is based on classic typed, higher-order logic. Built-in types include Boolean

(bool), real numbers (real), natural numbers (nat) and so on. Standard logic and

arithmetic operators are also defined.

Entities of PVS are introduced by means of declarations, which are the main con-

stituent of PVS specifications. Declarations are used to define variables, constants,

formulas, and so on. Variable declarations introduce new variables with their types.

In addition, variables are local when they are defined in binding expressions which

may involve keywords such as FORALL denoting the universal quantifier ∀ or LAMBDA

denoting the symbol λ used in lambda abstractions. Constant declarations introduce

new constants which can be functions, relations or the usual (0-ary) constants; for

example, the declaration f: [nat -> nat] defines a total function (indicated by

2.2. PROTOTYPE VERIFICATION SYSTEM (PVS) 14

the symbol ->) whose domain and range are natural numbers. Formula declarations

can introduce axioms by the keyword AXIOM and theorems by the keyword LEMMA.

Axioms can be referenced by the proof command lemma during proofs.

New types can be defined from the built-in types using type constructors. Two fre-

quently used constructors are predicate subtypes and record types. A predicate subtype

denotes a subset of individuals in a type satisfying a given predicate; for instance,

nonzero real numbers are written as {x: real | x /= 0}. Note that types in PVS

are modeled as sets. A record type combines the types of its record accessors. For

example, a record type r specified by [# x: bool, y: real #] is composed by

the Boolean type and the type of real-numbers. A component of a record type can

be accessed by its accessor name; the x-component of r is accessed by r‘x.

The name overloading technique is supported in PVS. This technique allows declara-

tion identifiers to have the same names, even when the declarations are of different

types. That is to say, functions can have the same name as long as they have different

argument types, and a function and an axiom can have the same time although their

types are different. PVS specifications are organized in theories. A theory usually con-

tains type definitions, variable or constant declarations, axioms and theorems. Simple

theories can be reused to construct complex ones by using the importing clause.

The PVS prover is based on sequent calculus and proofs are constructed interactively

by developing a proof tree. The objective is to construct a complete proof tree in

which all leaves are trivially true. Each node in a proof tree is a proof goal which is

a sequent that consists of a list of formulas named antecedents and a list of formulas

called consequents. The intuitive interpretation of a proof goal is that the conjunction

of the antecedents implies the disjunction of the consequents.

The prover provides a collection of primitive proof commands such as expanding def-

initions (expand) and eliminating quantifies (skosimp), to manipulate proof trees. A

2.3. DURATION CALCULUS (DC) 15

frequently used powerful proof command is grind, which does skolemization, instanti-

ation, simplification, rewriting and applying decision procedures. Users can introduce

more powerful proof strategies [9, 102] which combine basic proof commands so as to

enhance the automation of verification in PVS.

PVS contains many built-in theories about logics, sets, numbers, and so on. These

theories offer the mathematics needed to support specification and verification in

PVS. For instance, set theory provides common definitions, such as emptyset rep-

resenting ∅ and subset? for the subset relation. A recently developed NASA PVS

library [19] has formalized the definitions of limits, derivatives, continuity and inte-

gration, and also validated a number of theorems of these definitions. The library

has been successfully applied to analyze practical systems which involve continuous

dynamics [20, 97].

2.3 Duration Calculus (DC)

Duration Calculus (DC) [137] is a logic-based approach to formal design of real-time

systems. The basic calculus of DC [139] and its extensions, including Mean Value

Calculus [140] and Extended Duration Calculus [141], are founded on the interval

temporal logic [94] and integral calculus. We consider the basic DC in this article. It

axiomatizes state durations for the Boolean state model, namely, integrals of Boolean-

valued functions. Other extensions are introduced by adding to the basic DC extra

axioms, which formalize the extended models and also their interrelations with the

Boolean state model.

In the basic calculus of DC (abbreviated as DC henceforth), state variables are the

basic type to model system states. A state variable P is a function from time to

Boolean values {0, 1}, namely, P : T → {0, 1}. Furthermore, DC assumes that

2.3. DURATION CALCULUS (DC) 16

state variables satisfy the finite variability property, which stipulates that a state

variable can only change its value finitely many times in any bounded interval. This

assumption ensures that state variables are integrable on every interval.

State expressions are formed by applying propositional logic operators over state

variables, following the abstract syntax: S ::= 0 | 1 | P | ¬ S1 | S1 ∧ S2 where S ,

S1, and S2 are state expressions. Semantically, a state expression returns a value 0 or

1 at a time point. For example, two state variables Gas and Flame are introduced

in a gas burner system to characterize the flowing and burning of gas. Specifically,

Gas(t) = 1 means that gas is flowing and Flame(t) = 1 means that flame is burning.

Hence, Gas ∧ ¬ Flame is the state expression specifying the leaking of gas, and

it is interpreted with respect to a given time point t in the following way where

(¬ Flame)(t) = 1− Flame(t).

(Gas ∧ ¬ Flame)(t) =





1 if Gas(t) = 1 and (¬ Flame)(t) = 1

0 otherwise

Temporal variables in DC which are real-valued functions of intervals can have a

structure
∫

S to denote the duration of a state expression S over a closed time interval

[b, e] where b ≤ e. The duration is the accumulated presence time of S in the interval,

namely, (
∫

S)([b, e]) =
∫ e
b S (t)dt . Another predefined temporal variable in DC is `

which denotes the interval length, namely, `([b, e]) = e− b. We remark that intervals

considered in DC are both-closed.

DC terms are built upon temporal variables or constants using mathematical oper-

ators, a summation for instance. DC formulas are composed by constraining DC

terms or sub-formulas. Besides the conventional predicate logic operators such as

the disjunction ∨ and the universal quantifier ∀, DC also adopts the chop opera-

tor a to construct new formulas. Namely, the formula φ a ψ, where φ and ψ are

formulas, is satisfied by an interval if and only if the interval can be chopped into

2.3. DURATION CALCULUS (DC) 17

two adjacent both-closed subintervals such that the first subinterval satisfies φ and

the second satisfies ψ. Based on the chop operator, two commonly used operators

over subintervals, specifically, 3 (eventually) and 2 (always), are defined as follows:

3φ == (true aφ) a true and 2φ == ¬ 3(¬ φ). For example, an interval [b, e]

satisfies a DC formula 3φ provided there exist c and d such that b ≤ c ≤ d ≤ e and

the interval [c, d] satisfies φ.

A formula is valid in DC if and only if it holds in all intervals. For instance, a

design property in a gas burner is that any leak represented by a state variable Leak

should not last longer than 1 time unit, and this can be represented by the formula,

2(ddLeakee ⇒ ` ≤ 1), where ddLeakee is an abbreviation of the formula
∫

Leak = ` ∧
` > 0. Note that 2 indicates that the property holds in any interval.

Properties of state durations are declared as axioms in DC. These axioms are im-

portant for deriving DC reasoning rules in DC proofs. Taking the axiom DCA5

from [137] as an example, the axiom as shown below captures the relationship be-

tween the duration length (where x and y are nonnegative real numbers) of a state

expression S and the chop operator.

DCA5 (
∫

S = x) a (
∫

S = y) ⇒ ∫
S = x + y ,

As we will show in Chapter 5.2, the DC axioms are declared as lemmas and they can

be formally validated using our verification system.

Although DC and TIC possess similar capabilities, their basis is different. TIC is

based on the set theory and models system behavior by constraining the intervals on

which predicates hold everywhere, while DC is based on interval temporal logic and

models system behavior by accumulating state variables over both-closed intervals.

Furthermore, TIC supports explicit references to interval endpoints, which can specify

properties over special intervals with particular endpoints.

2.4. SIMULINK 18

2.4 Simulink

Simulink [85] is a graphical toolkit that enables users to model and simulate dynamic

systems whose outputs change over time. It has been widely used in industry cover-

ing electronics [92], automotive [51] and aerospace [12] application areas. A Simulink

diagram made up of blocks and wires represents a set of time-dependent mathemat-

ical relationships which model a dynamic system. A block can be an elementary

block, which is the basic structure unit of Simulink diagrams and denotes a primitive

mathematical relationship between its inputs and outputs, such as calculating the

sum of two inputs. An elementary block is created by assigning specific values to the

parameters of a Simulink library block [84]. This parameterization technique enables

a library block to create elementary blocks with different functionalities. A block

can also be a diagram composed of other sub-diagrams and elementary blocks so as

to support hierarchical modeling using Simulink. A wire is a directed edge which

indicates a dependent relationship between two connected blocks; the input of the

destination block depends on the output of the source block.

Every elementary block is considered to have a sample time as its execution rate.

A sample time of an elementary block can be explicitly specified via the Sample-

Time block parameter, determined by the block type (for instance, elementary blocks

generated by the Integrator library block have continuous sample time), or derived

from blocks which connect to the block inputs. Simulink adopts continuous-time

semantics [21, 70], and discrete systems are treated to be a special case of continu-

ous systems: their behavior is piecewise constantly continuous. Moreover, Simulink

supports conditionally executed subsystems whose executions depend on their control

input values instead of time. For example, an enabled subsystem is active when its

control input is positive.

2.4. SIMULINK 19

A Simulink diagram is represented textually in a model file [84], which describes

diagrams by keywords and parameter-value pairs. Parameter-value pairs denote the

contents of diagrams such as block sample times by associating particular values with

relevant parameters. Keywords followed by a pair of brackets models components at

the same hierarchical layer of diagrams. Taking Figure 2.1 as an example, the left

part graphically depicts a simple system which outputs speed as the integration of

the acceleration from input port Acc to output port Speed, and the right part shows

the corresponding textual representation.

Figure 2.1: A system calculation in Simulink graphical and textual formats

In the above context (from line 4 to line 6) of elementary block Integrator, its math-

ematical function integration is not explicitly specified but indicated by the value

of the BlockType block parameter. Moreover, the initial value 4 of Integrator is not

visually available in the diagram. In other words, model files contain all information

of systems denoted in Simulink, and they are the source of our approach which cap-

tures (mathematical) functional and timing (namely, sample times) aspects and the

structure of Simulink diagrams.

2.4. SIMULINK 20

Chapter 3

Encoding TIC in PVS

As stated in Chapter 2.1, TIC is expressive enough to model various real-time comput-

ing systems covering continuous, discrete and hybrid systems. The powerful expres-

siveness on the other hand makes machine-assisted proof support for TIC challenging,

as the verification of TIC models usually takes into account the continuous time do-

main and mathematics such as integration. To cope with these TIC characteristics,

we apply theorem proving, a popular mechanism in formal verification, which can

directly handle infinite state spaces and support mathematical reasoning.

A number of theorem provers exist including ACL2 [74] (a first-order logic prover),

PVS [101], HOL [53] and Isabelle [99] (the latter three are higher-order logic proof

tools). All provers have particular applications that they are especially suited for.

Comparisons among provers have been intensively studied. For example, [55] com-

pared PVS and Isabelle/HOL, and a comprehensive investigation [133] surveyed sev-

enteen popular theorem provers. It is not our primary objective in this thesis to

judge strengths of different provers. Our main objective is to exploit generic theorem

provers to achieve machine-assisted proof support for TIC.

21

3.1. CONSTRUCTING TIC SEMANTICS IN PVS 22

PVS attracts our attention because of its large mathematical standard library, in par-

ticular the NASA PVS library as mentioned in Chapter 2.2. Moreover, its specifica-

tion language which is based on typed higher order logic can encode other expressive

specification languages in principle. We describe here the semantics of the source

logic, which in this case TIC, by using the base logic of the tool which in this case is

PVS. This technique is known as the semantic encoding [16, 17, 130] technique. Fur-

thermore, we choose to apply a deep rather than shallow semantic encoding, where

a shallow encoding does not express the syntax of the source logic in the base logic.

The advantage of deep encodings, which express both syntax and semantics in the

theorem prover, is that theorems about the encoded language can be proved. That

is to say, by adopting a deep encoding, not only can we reason about concrete TIC

models, we can also check the correctness of TIC reasoning rules.

In the following of this chapter, we firstly model TIC denotational semantics in PVS.

Next we formalize and validate all TIC reasoning rules based on the semantic encod-

ing, and illustrate the subtle flaws discovered in original rules. Last but not least,

we define a collection of supplementary reasoning rules dedicated to domain-specific

properties, and a set of proof strategies to make proofs more automated. A compar-

ison with other related works is presented at the end.

3.1 Constructing TIC Semantics in PVS

The construction of TIC semantics in PVS forms a foundation from which we formalize

the TIC reasoning rules and carry out the verification of TIC models. An important

requirement is that the resulting PVS specifications should be close to the structure

of the TIC models, so any diagnostic information obtained at the level of PVS can

be easily reflected back to the level of TIC. The PVS theories of the TIC semantics

3.1. CONSTRUCTING TIC SEMANTICS IN PVS 23

are formed in a bottom-up manner, and each subsection below corresponds to a PVS

theory. Simple theories are hence used to compose complex ones. All PVS theories

for encoding TIC are available in Appendix A.1. To avoid the problem of sub-goal

explosion arisen in reasoning procedures, we model TIC constructs, especially the

interval brackets and concatenation operator, in a hierarchical manner. Moreover, the

flexible style of type declaration in PVS reduces the size of the PVS specifications.

3.1.1 Time and Interval Domains

The time domain is represented by the PVS built-in type nnreal as a set of non-

negative real numbers.

Time: TYPE = nnreal;

An interval is modeled as a tuple and its type is GenInterVal as shown below: the

first element (invt) indicates the interval type, (for example, CO indicating that the

interval is left-closed and right-open); the second element is also a tuple which consists

of the starting point (stp) and the ending points (etp).

Interval_Type: TYPE = {OO, OC, CO, CC};

GenInterval: TYPE = [invt: Interval_Type, {stp, etp: Time | stp <= etp}];

The following type II denotes all non-empty intervals, and the constraints of interval

endpoints with respect to interval types are captured. For example, the predicate

i‘1 = CC and i‘2‘1 <= i‘2‘2 specifies that the ending point can be equal to the

starting point if the interval is both-closed (indicated by CC), where the apostrophe ‘ is

the PVS projection operator to refer to components in a tuple. By using the predicate

subtype technique in PVS, specific interval types are easily constructed based on II.

For instance, COInteral which represents left-closed and right-open intervals restricts

the interval type to be CO.

3.1. CONSTRUCTING TIC SEMANTICS IN PVS 24

II: TYPE = {i: GenInterval | (i‘1 = CC and i‘2‘1 <= i‘2‘2)

or ((i‘1 = OO or i‘1 = OC or i‘1 = CO) and i‘2‘1 < i‘2‘2)};

COInterval: TYPE = {i: II | i‘1 = CO};

3.1.2 Timed Traces and Interval Operators

A timed trace (Trace) is a function from time to the real numbers. We further model

discrete timed traces (BTrace) whose ranges consist of two values, 0 and 1.

Trace: TYPE = [Time -> real];

BTrace: TYPE = [Time -> {x:real | x = 0 or x = 1}];

Interval operators are functions of intervals. They are independent from the inclu-

sion/exclusion of interval endpoints. That is to say, we only need to define their

functionalities with respect to II without respectively listing those of specific interval

types (for example, COInterval). The following PVS specifications correspond to

three predefined TIC interval operators, namely, α, ω, and δ.

ALPHA(i: II): Time = i‘2‘1;

OMEGA(i: II): Time = i‘2‘2;

DELTA(i: II): Time = OMEGA(i) - ALPHA(i);

3.1.3 Expressions and Predicates

As a modeling feature of TIC, references to the time domain and interval domain are

elided in expressions and predicates within a pair of interval brackets. However, it is

necessary for these references to be explicitly shown for the correct interpretation of

expressions and predicates. We declare expressions (TExp) and predicates (TPred) to

be functions in PVS where time and intervals compose the domain.

TExp: TYPE = [Time, II -> real];

TPred: TYPE = [Time, II -> bool];

3.1. CONSTRUCTING TIC SEMANTICS IN PVS 25

Primitive elements of TIC form expressions and in turn predicates. An element is a

constant, a timed trace, or an interval operator. By the overloading mechanism of

PVS, the following function LIFT performs different functionalities according to the

type of its first argument1. To be specific, LIFT returns the value at a time point t

for a timed trace, and returns the value with respect to an interval i for an interval

operator.

LIFT(c)(t, i): real = c; % c: real, t: Time, i: II

LIFT(tr)(t, i): real = tr(t); % tr: Trace

LIFT(tm)(t, i): real = tm(i); % tm: Term

When interpreting an expression of TIC, we pass its parameters denoting the time

domain and interval domain to its constituent expressions. This propagation repeats

until all constituent expressions are primitive elements. For instance, a subtraction of

TIC is interpreted below in PVS, where the pair (t, i) is passed to the component

expressions el and er. A similar approach is used to handle predicates (a disjunction

of TIC is provided as an example).

-(el, er)(t, i): real = el(t, i) - er(t, i); % el, er: TExp

or(pl, pr)(t, i): bool = pl(t, i) OR pr(t, i); % pl, pr: TPred

TIC also supports elementary calculus including integration and differentiation. We

adopt the NASA PVS library to model the calculus. For example, the expression
∫ ω(i)
α(i) tr is represented by the following PVS function TICIntegral which invokes

function Integral defined in the NASA PVS library.

TICIntegral(tr)(t, i): real = Integral(ALPHA(i), OMEGA(i), tr)

1Characters following the symbol ‘%’ are comments in PVS.

3.1. CONSTRUCTING TIC SEMANTICS IN PVS 26

3.1.4 TIC Expressions

A TIC expression denotes a set of intervals. The basic structure of TIC expressions is

a pair of interval brackets which encloses a predicate. Common set operators can be

applied to form complex TIC expressions. Here we demonstrate how to encode the

TIC expressions with interval brackets and the special set operator of TIC, namely

the concatenation operator. Other types of TIC expressions can be constructed by

the built-in functions in the PVS set theory.

A pair of interval brackets enclosing a predicate represents a set of intervals, and in

each interval the predicate holds everywhere, namely, at all time points of the interval.

In the following PVS specifications, function t in i detects whether a time point is

within an interval according to the interval type. Note that there are four basic types

of interval brackets. Based on t in i, we define the function Everywhere? to check if

a predicate holds in an interval. TIC expressions containing general interval brackets

> ? are thus modeled by function AllS. In addition, TIC expressions of basic types

of interval brackets are easily specified by applying the predicate subtype mechanism

(for example, function COS representing : 7).

t_in_i(t, i): bool = (i‘1 = OO and t > i‘2‘1 and t < i‘2‘2) or

(i‘1 = OC and t > i‘2‘1 and t <= i‘2‘2) or

(i‘1 = CO and t >= i‘2‘1 and t < i‘2‘2) or

(i‘1 = CC and t >= i‘2‘1 and t <= i‘2‘2);

Everywhere?(pl, i): bool = forall t: t_in_i(t, i) => pl(t, i);

AllS(pl): setof[II] = {i | Everywhere?(pl, i)};

COS(pl): setof[COInterval] = {i: COInterval | Everywhere?(pl, i)};

A concatenation in TIC requires that two connected intervals must meet exactly,

namely, no overlap and no gap. There are thus eight correct ways of concatenations

from four basic types of intervals. Instead of modeling each one individually, we

represent all eight cases together by the following function concat. This function

3.1. CONSTRUCTING TIC SEMANTICS IN PVS 27

takes two sets of intervals as parameters (namely, iisl and iisr) which may contain

any type of intervals, and each interval in the returned set is composed by two adjacent

intervals respectively from two parameters.

ConcatType(l, r, re: II): bool =

(re‘1 = OO AND ((l‘1 = OC AND r‘1 = OO) OR (l‘1 = OO AND r‘1 = CO)))

OR (re‘1 = CO AND ((l‘1 = CC AND r‘1 = OO) OR (l‘1 = CO AND r‘1 = CO)))

OR (re‘1 = OC AND ((l‘1 = OO AND r‘1 = CC) OR (l‘1 = OC AND r‘1 = OC)))

OR (re‘1 = CC AND ((l‘1 = CO AND r‘1 = CC) OR (l‘1 = CC AND r‘1 = OC)));

concat(iisl, iisr: PII): PII = {i | exists (i1, i2: II):

ConcatType(i1, i2, i) AND member(i1, iisl) AND member(i2, iisr) AND

OMEGA(i1) = ALPHA(i2) AND ALPHA(i1) = ALPHA(i) AND OMEGA(i2) = OMEGA(i)};

In the above PVS specifications, function ConcatType constrains the types of con-

catenated intervals. The constraints cover all eight cases. Being different from other

constraints in concat (for example, OMEGA(i1) = ALPHA(i2) indicates that a con-

catenated interval’s ending point is equal to the starting point of the other), the

application of ConcatType in concat encapsulates the predicates of interval types at

a lower level. That is to say, we create a hierarchical structure. We remark that this

structure is useful to avoid the problem of sub-goal explosion which is often encoun-

tered during reasoning procedures in PVS. That is, the PVS prover automatically

splits a proof goal into a number of sub-goals at a proof step, although the split is

unnecessary at that step since there are many repetitive proof commands used to

discharge those sub-goals. For instance, if we directly specify eight constraints of

interval types in concat, the prover would automatically split one proof goal into

eight sub-goals when expanding the concatenation definition in PVS, although these

sub-goals can be proved by applying many repetitive proof commands.

So far, we have faithfully formalized the TIC constructs in PVS, while the way of

handling TIC schemas and TIC predicates will be presented in Chapter 4.1. During

the encoding, the overloading mechanism has assisted us to define the function LIFT

3.2. CHECKING TIC REASONING RULES 28

with different functionalities, and the higher-order logic of the PVS specification lan-

guage has facilitated the interpretation of expressions and predicates of TIC in the

bottom-up manner. These PVS theories of the TIC semantics form a base from which

to validate the TIC reasoning rules and support mechanical verification of TIC models

as we will show in the following chapters.

3.2 Checking TIC Reasoning Rules

TIC reasoning rules capture the properties of sets of intervals. They are used to verify

TIC models at the interval level. Guaranteeing their correctness is thus necessary and

important. We firstly describe the challenge of the validation. Next, we demonstrate

flaws discovered from our rigorous checking process and provide remedies.

Checking TIC reasoning rules is not trivial. Though some of them can be automat-

ically proved by the PVS prover, others require complicated analysis which covers

different interval types (for example, there are sixteen cases analyzing a concatenation

operation over three sets of intervals) and various types of predicates (for example,

a predicate can depend on interval operators, time points, or both). Taking the rule

introduced in Chapter 2.1 as an example, its PVS specification is given below based

on the encoding presented in the previous section, where function No Term? returns

true when a predicate pl is independent from interval operators.

CONC_CONC: LEMMA No_Term?(pl) =>

AllS(pl AND LIFT(DELTA) > LIFT(0)) = concat(AllS(pl),AllS(pl));

To validate the above rule, we need to consider the concatenation of two sets of all

types of intervals. Therefore, there are eight cases. In the reasoning process, human

interactions are helpful to increase efficiency. A simplified proof goal below aims to

show that there exist two concatenated intervals, which form an interval x!1 and

3.2. CHECKING TIC REASONING RULES 29

satisfy the hypotheses depicted by three antecedents (prefixed by negative integers).

For instance, the antecedent at [-1] restricts the type of x!1 to be left-closed and

right-open. To prove the goal, we select the middle point of x!1 as the connecting

point, namely, (ALPHA(x!1) + OMEGA(x!1))/2, and then instantiate the requested

intervals by applying our defined proof strategy assignconcat.

[-1] TypeOf(x!1) = CO

[-2] AllS(pl1!1 AND LIFT(DELTA) > LIFT(0))(x!1)

[-3] No_Term?(pl1!1)

|-------

[1] concat(AllS(pl1!1), AllS(pl1!1))(x!1)

Rule? (assignconcat 1 "(CO, (ALPHA(x!1), (ALPHA(x!1) + OMEGA(x!1))/2))"

"(CO, ((ALPHA(x!1) + OMEGA(x!1))/2, OMEGA(x!1)))")

The PVS prover always checks the correctness of assignments, so we are required

to show that the above user-specified intervals satisfy the concatenation definition

indicated by the function concat. Doing so can thus prevent mistakes by users such

as assigning two concatenated intervals with the both-open interval type.

During our rigorous validation of all TIC reasoning rules, two subtle flaws in the

original reasoning rules have been discovered. Below we describe the problematic

rules with counterexamples, followed by their corresponding solutions which have

been validated in PVS.

• The True and False rule is frequently used to reason about safety requirements.

The original rule states that a predicate P is true in all intervals if and only if

its negation is true nowhere. That is, >P? = I ⇔ >¬ P? = ∅. However, the

implication, >¬ P? = ∅⇒ >P? = I, does not hold in certain circumstances.

For example, let x be a timed trace having the value 1 from time points 5 to 7

and the value 0 elsewhere. It is obvious to see that the predicate ¬ P == x =

3.2. CHECKING TIC REASONING RULES 30

1 ∧ δ = 3 fails everywhere, although its negation P == x 6= 1 ∨ δ 6= 3 is false

in some intervals such as the interval [5 . . . 8].

To solve the problem, a stronger hypothesis is needed. The predicate within

interval brackets should be independent of interval characteristics, specifically,

the starting point, ending point and length of an interval. The modified rule is

expressed in PVS below, where PVS keywords emptyset and fullset denote

the empty set and the set of all intervals respectively.

Emp_to_All: LEMMA No_Term?(pl) =>

AllS(not pl) = emptyset => AllS(pl) = fullset;

• The Concatenation Duration rule is useful to deal with proofs involving con-

catenation. Using the rule, a set of intervals can be decomposed into two con-

catenated sets of intervals with specified interval lengths. So, given a predicate

P where interval operators do not occur, if we have r , s : T and r > 0 ∨ s > 0,

then we can deduce >P ∧ δ = r + s? = >P ∧ δ = r?y >P ∧ δ = s?.

However, the above equality in terms of sets of intervals does not always hold.

For example, if r = 0, then any interval of >P ∧ δ = r? must be both-closed

according to the interval definition. However, it is possible that >P ∧ δ = r +s?

contains intervals which are left-open, and hence type conflict occurs. The

conflict can be removed by a stronger assumption, namely, r > 0 ∧ s > 0.

We remark that this is the first time that the first flaw has been discovered (while

the second flaw has also been observed by Dawson and Goré [40]). These discoveries

demonstrate the benefits of exploiting a theorem prover for rigorous verification.

Based on the lemma Emp to All, we further derive a new rule EmpCC to All to

reduce the proof complexity. When applying Emp to All, we have to show that the

proof goal can be discharged respectively with respect to four basic interval types,

3.3. SUPPLEMENTARY RULES AND PROOF STRATEGIES 31

although usually each sub-proof follows a similar reasoning process. In contrast, the

new rule expressed below allows us to focus on just one interval type, namely, both-

closed intervals (as indicated by CCS).

EmpCC_to_All: LEMMA No_Term?(pl) =>

CCS(not pl) = emptyset => AllS(pl) = fullset;

Currently, we have formalized and validated all TIC reasoning rules in PVS. Their

PVS specifications are available in Appendix A.2. These rules are applied as lemmas

in PVS when reasoning about TIC models. Two flaws of original reasoning rules have

been discovered and avoided.

3.3 Supplementary Rules and Proof Strategies

The TIC reasoning rules validated in Section 3.2 capture primitive properties of sets

of intervals. They are inadequate to support domain-specific characteristics. For

example, if a continuous timed trace tr crosses a threshold TH at an interval i in a

way tr(α(i)) < TH ∧ tr(ω(i)) > TH , then we can deduce that i can be decomposed

into three connected intervals, where the values of tr are larger than TH everywhere

in the last subinterval and are equal to TH in the middle subinterval. This property is

expressed by the following PVS lemma, where o is the function composition operator

in PVS and function continuous expresses the property that a timed trace tr is

continuous over the time domain.

mid_ivl_exi: LEMMA continuous(tr) => subset?(

AllS((LIFT(tr) o LIFT(ALPHA)) < LIFT(TH) and

(LIFT(tr) o LIFT(OMEGA)) > LIFT(TH)),

concat(AllS(TRUE), concat(AllS(LIFT(tr) = LIFT(TH)),

AllS(LIFT(tr) > LIFT(TH)))));

Note that the above domain-specific property is not captured by any existing TIC

3.3. SUPPLEMENTARY RULES AND PROOF STRATEGIES 32

reasoning rule. It is derived from the classic intermediate value theorem of contin-

uous functions. Its correctness has been validated in PVS, and we can hence apply

mid ivl exi when analyzing continuous dynamics.

To make the reasoning process in PVS more automated and shield the detailed TIC

encoding from users, we have developed several PVS proof strategies. Each strategy

combines repetitive proof commands which are frequently used in practice. These

strategies mainly cope with quantified PVS formulas, since the PVS prover possesses

powerful capabilities (such as automatic deduction and simplification) for reasoning

about primitive formulas which are represented in the propositional logic. According

to the quantifier type, these strategies are classified into two groups. One eliminates

the universal quantifier by skolemization, and the other removes the existential quan-

tifier by proper instantiation. In addition, they usually automatically expand PVS

functions which encode the TIC semantics, and detailed encoding of TIC can hence

be hidden from users. We present below the strategy AssignInvlnTime which offers

a flexible way to assign an interval and a time point to a user-specified formula.

1: (defstep AssignInvlnTime (fnum &OPTIONAL ivl pt)

2: (try (else (expand "OOS" fnum) (else (expand "OCS" fnum)

3: (else (expand "COS" fnum) (else (expand "CCS" fnum)

4: (else (expand "AllS" fnum) (skip))))))

5: (then (if ivl (inst fnum ivl) (inst? fnum))

6: (expand "Everywhere?" fnum)

7: (if pt (inst fnum pt) (inst? fnum)))

8: (skip)))

Using the above strategy, we can either instantiate explicit values of an interval (de-

noted by ivl at line 1) and a time point (by pt), or let the PVS prover automatically

fix the values by using the PVS proof command inst? (at lines 5 and 7). This strat-

egy handles all interval types by repeatedly applying the basic PVS proof strategy

3.4. SUMMARY 33

else2 from line 2 to line 4 to expand proper PVS functions which encode interval

brackets. Note that at line 6 AssignInvlnTime automatically expands the function

Everywhere? (defined in Section 3.1.4). In other words, the strategy hides the de-

tailed encoding of TIC, namely, Everywhere?, from users.

We have constructed twenty-five supplementary rules and eleven PVS strategies, and

their PVS specifications are available in Appendixes A.3 and A.4, respectively. They

can assist in simplifying the verification of TIC models in practice.

3.4 Summary

In this chapter, we have chosen the deep semantic encoding approach to model TIC

into PVS, including the TIC constructs and TIC reasoning rules. We have also de-

veloped a collection of supplementary reasoning rules and proof strategies to simplify

proofs. These serve as a solid foundation in our verification system; we can rigorously

carry out verification of TIC models with a high level of automation as we will show

in the next chapter.

Through the above procedure, we have also demonstrated the usability of PVS as a

generic theorem prover to cope with an expressive specification language, namely TIC.

To be specific, the base logic of the PVS specification language, typed higher order

logic, has facilitated the encoding of the TIC semantics, for instance, TIC expressions;

and the large mathematical library predefined in PVS has supported the advanced

mathematics in TIC such as continuous functions and integration. Moreover, the

PVS prover has assisted us to discover two subtle flaws in the original TIC reasoning

rules.

2The else proof strategy [105] executes the first step, and if that does nothing, then the second

step is executed.

3.4. SUMMARY 34

There were two other works on supporting TIC proofs by the theorem proving ap-

proach. Dawson and Goré [40] validated the correctness of TIC reasoning rules using

Isabelle/HOL [99]. However, TIC semantics was incompletely encoded in their work.

For example, operators used to construct TIC predicates and expressions were not

modeled. It is hence difficult to support TIC verification in general. Cerone [23]

defined several axioms to formalize TIC semantics. In his encoding of the TIC con-

catenation operator, two both-open intervals are allowed to be linked, although this

interpretation is different from the original definition [50]. Moreover, Cerone’s work

considered only five TIC reasoning rules. In contrast, we have taken into account the

complete TIC semantics and all TIC reasoning rules. One subtle flaw of a reasoning

rule, which had not been identified before, has been discovered from our rigorous val-

idation process. Furthermore, our system supports mathematical analysis including

differential and integral calculus, which is not handled by those previous works.

Chapter 4

Machine-Assisted Proof Support

for TIC

Validation of complex real-time computing systems modeled in TIC usually involves

mathematical reasoning and takes into account arbitrary infinite intervals of contin-

uous time. When systems are complex, it is difficult to guarantee the correctness

of each proof step and keep track of proof details in a paper-and-pencil manner.

Machine-assisted proof support thus becomes important and necessary.

Based on the previous chapter which encodes TIC semantics and reasoning rules in

PVS, we demonstrate in this chapter how our verification system can ease proofs of

TIC models with a high level of automation. We begin by describing the translation

from TIC schemas which represent system properties and TIC predicates which spec-

ify desired requirements to PVS specifications. Next, a tool supporting the graphical

editing and the automatic translation of TIC is presented. Following an illustration of

a general proof procedure, we use a typical hybrid application, a temperature control

system, to show the advantages of the verification system.

35

4.1. TRANSLATING TIC MODELS TO PVS SPECIFICATIONS 36

4.1 Translating TIC Models to PVS Specifications

Using TIC, system properties and requirements are modeled at the interval level:

TIC schemas capture system properties, and TIC predicates specify requirements.

We describe below the way to represent them in PVS respectively.

• TIC schemas are used to structure and compose models, collating pieces of

information, encapsulating them and naming them for reuse. Each schema

denotes a composite type made up of a set of bindings; each binding relates

a declared variable with its restrictive values. This modeling feature enables

schemas to be used as types, to support component-based design [77, 71, 42].

Each schema is represented by a PVS record type. Specifically, we construct a

set of records in PVS, where schema declarations are denoted by record accessors

associated with corresponding types and schema predicates are used to constrain

relationships over the record accessors. Moreover, implicit properties indicated

by certain kinds of functions in TIC, such as continuity and integrability, are

captured by additional constraints in PVS to further restrict the record type.

• A TIC predicate specifies a requirement of a system or some components, and

is constructed based on the TIC schemas of the relevant system or compo-

nents. Each TIC predicate is represented by a PVS theorem formula which is

constructed based on the PVS specifications that represent corresponding TIC

schemas.

The above relationships between TIC models and PVS specifications can be informally

illustrated below, where variable temp in the PVS type declaration is auxiliary for

referring to record accessors used in the generated Predicate specification. Note that

the translated PVS specifications closely follow the structure of TIC models.

4.1. TRANSLATING TIC MODELS TO PVS SPECIFICATIONS 37

schema name
declaration

predicate

requirement name ==
predicate

SchemaName: TYPE = {temp:
[# Declaration #] |
Predicate }

RequirementName : THEOREM
Predicate

To automatically translate TIC models to PVS specifications, we develop an auto-

mated process which consists of three steps: scanning, parsing and translating. A

scanner splits TIC models into a sequence of meaningful tokens such as TIC interval

brackets, mathematical operators and so on. A parser constructs a set of abstract

syntax trees (ASTs) for TIC models based on those tokens. Each AST represents a

TIC model, and the leaves of an AST denote the primitive elements of a TIC model,

namely, constants, timed traces or interval operators. A translator traverses an AST

in a top-down manner to produce corresponding PVS specifications.

For example, the following TIC predicate named SimpleReq depicts a requirement

that temperature in a room is always lower than the value 40. Variable Room is a

TIC schema which models the behavior of temperature which is denoted by variable

tmp. The symbol “.” is the Z selection operator [123] for selecting a schema variable;

for example, sys .tmp refers to the variable tmp declared in a schema named Room.

SimpleReq == ∀ sys : Room • I = >sys .tmp < 40?

The above TIC predicate is parsed to an AST shown in Figure 4.1 in a structural

manner. By traversing the AST, we obtain the following PVS specification, where the

PVS projection function ‘ maps the Z selector operator. We remark that function

LIFT (defined in Chapter 3.1.3) is required to model the timed trace sys .tmp and the

constant 40 where both are in the interval brackets > ?; LIFT(sys‘tmp) and LIFT(40)

are functions whose arguments are time points and intervals.

4.2. GENERAL PROOF PROCEDURE 38

Figure 4.1: The abstract syntax tree of the requirement SimpleReq

SimpleReq: THEOREM forall (sys: Room): fullset = AllS(LIFT(sys‘tmp) < LIFT(40));

We have developed a tool based on HighSpec [43] which provided functionalities such

as graphical editing, syntax and type checking, and automatic projection, for an

integrated formal modeling technique, OZTA, a combination of Object-Z [121] and

Timed Automata [4]. We have extended the HighSpec graphical editor (for instance,

encoding the TIC special symbols > and
∫
) to support the editing of TIC models.

We have also reused the infrastructure of HighSpec to construct an translator which

implements the translation algorithm as mentioned in this section. Using the tool,

the previous TIC predicate SimpleReq and the TIC models of the case study in the

next section are automatically translated to PVS specifications.

4.2 General Proof Procedure

In general, to validate a real-time computing system against an expected requirement

is equivalent to proving that the TIC schemas which represent system properties can

logically imply the TIC predicate which denotes the requirement. A proof of TIC

models is indeed a deduction which starts from hypotheses (namely, system proper-

ties) and proceeds in a forward manner towards a proof goal (namely, an expected

4.2. GENERAL PROOF PROCEDURE 39

requirement). At each deductive step, a TIC reasoning rule, a supplementary rule,

or a mathematical law is applied. Usually a proof can be decomposed into several

sub-proofs for simpler subsystems.

As highlighted in Chapter 1.1, we aim at developing a verification system to system-

atically conduct TIC proofs with a high degree of automation. Moreover, a reasoning

process in the verification system is intended to follow a manner similar to corre-

sponding manual TIC arguments. Based on our experiments, we present here a

general proof procedure, which is effective and efficient in practice.

The procedure starts with a proof sequent (introduced in Chapter 2.3) where its con-

sequent represents an expected requirement in terms of intervals. The main objective

is to eliminate quantified formulas in the sequent by assigning, manually or automat-

ically, appropriate values to intervals and time points. The PVS prover can directly

manipulate the resulting sequent and automatically discharge many tedious parts of

the proof, for instance, reasoning about linear arithmetic and sets.

1. Add constraints which model system properties as new antecedents to the se-

quent. At the beginning of a proof, the consequent contains only names of PVS

records, where those records model a system or components by the predicates

over their accessors. These constraints can be inserted to the sequent as new

antecedents by applying the PVS proof command typepred to relevant record

names during a proof process.

2. Use TIC reasoning rules and supplementary rules (formalized and validated

in Chapters 3.2 and 3.3). The sequent can be resulted in two directions. (1)

Backward proof : generating new consequents if some of the current consequents

match the conclusion of a rule. (2) Forward proof : generating new antecedents

if some of the current antecedents satisfy the hypotheses of a rule.

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 40

3. Instantiate intervals and time points. This step removes the quantifiers which

denote intervals and time points in the sequent. Values of intervals and time

points can be manually specified or automatically fixed by the PVS prover.

4. Apply mathematical laws. As TIC models often contain continuous dynam-

ics modeled by the integral and differential calculus, we can choose dedicated

mathematical laws from the NASA PVS library to support the analysis.

5. Invoke the PVS proof command grind as the last step to automatically dis-

charge the rest of the proof.

In the above procedure, the first two steps manipulate a proof goal at the interval

level, and the last step reduces human effort by utilizing the PVS reasoning power on

accomplishing proofs at low levels. Furthermore, at Steps 3 and 4, human heuristics

are sometimes needed to guide the prover to improve the efficiency. For example, we

can directly specify a proper interval value instead of letting the PVS prover try out

all possible values which can be many. In the next section, we will demonstrate how

this proposed proof procedure can facilitate the analysis of our case study.

4.3 Case Study - A Temperature Control System

A temperature control system [98, 128] is a hybrid application which controls the

temperature by turning a heater on or off. This system is requested to fulfill important

requirements such as safety requirements.

We firstly describe the system properties and requirements in TIC models as well

as in their translated PVS specifications. Next, we present the verification of two

requirements, where the first illustrates the advantages of the general proof procedure,

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 41

and the second demonstrates the ability to handle induction proofs in the verification

system. At the end, we summarize the experimental result.

4.3.1 Specifications of System Properties and Requirements

The control system consists of two subsystems. Subsystem plant represents the phys-

ical environment where temperature changes continuously, following different integral

equations with respect to the heater status. Subsystem controller models the control

logic, namely, turning on or off the heater according to the temperature from plant.

In the following TIC schema Plant which models the subsystem plant, temperature

is denoted by variable tmp out , and variable heater in indicates the heater status.

• When the heater is off (heater in = 0) in an interval [b, e], temperature de-

creases following the equation tmp out(e) = tmp out(b)− ∫ e
b (0.1 ∗ tmp out).

• When the heater is on (heater in = 1) in an interval [b, e], temperature in-

creases following the equation tmp out(e) = tmp out(b)+
∫ e
b (6−0.1∗tmp out).

The corresponding PVS record type is shown below, where PVS variables (for exam-

ple, Trace) and functions (for instance, LIFT) for encoding TIC constructs are defined

in Chapter 3.1. Note that the temperature is declared to be a continuous function

in TIC as indicated by 1, and this feature is also captured by the PVS function

continuous from the NASA PVS library.

Plant
tmp out : T1 R; heater in : T→ {0, 1}
>heater in = 0? ⊆ >tmp out(ω) = tmp out(α)− (1/10) ∗ ∫

tmp out?
>heater in = 1? ⊆ >tmp out(ω) = tmp out(α) + 6 ∗ δ − (1/10) ∗ ∫

tmp out?

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 42

Plant: TYPE = { temp: [# tmp_out: Trace, heater_in: BTrace #] |
subset?(AllS(LIFT(temp‘heater_in) = LIFT(0)),

AllS((LIFT(temp‘tmp_out) o LIFT(OMEGA)) =
(LIFT(temp‘tmp_out) o LIFT(ALPHA)) -

LIFT(1/10) * TICIntegral(temp‘tmp_out))) AND
subset?(AllS(LIFT(temp‘heater_in) = LIFT(1)),

AllS((LIFT(temp‘tmp_out) o LIFT(OMEGA)) =
(LIFT(temp‘tmp_out) o LIFT(ALPHA)) + LIFT(6) * LIFT(DELTA)
- LIFT(1/10) * TICIntegral(temp‘tmp_out))) AND

continuous(temp‘tmp_out)};

In subsystem controller, the heater is on (heater out = 1) when the temperature

tmp in is not higher than the minimum value 20; and the heater is off (heater out =

0) when the temperature is not lower than the maximum value 40.

Controller
tmp in : T1 R; heater out : T→ {0, 1}
>tmp in ≤ 20? ⊆ >heater out = 1? ∧ >tmp in ≥ 40? ⊆ >heater out = 0?

Controller: TYPE = { temp: [# tmp_in: Trace, heater_out: BTrace #] |
subset?(AllS(LIFT(temp‘tmp_in) <= LIFT(20)),

AllS(LIFT(temp‘heater_out) = LIFT(1))) AND
subset?(AllS(LIFT(temp‘tmp_in) >= LIFT(40)),

AllS(LIFT(temp‘heater_out) = LIFT(0))) AND
continuous(temp‘tmp_in)};

The connections between two subsystems plant and controller and the initial condition

of the control system are specified in the following TIC schema System; the heater is

off and the temperature equals 30 at the starting time point 0.

System
con : Controller ; pla : Plant

I = >con.tmp in = pla.tmp out? ∧ I = >pla.heater in = con.heater out?
>α = 0? ⊆ >pla.tmp out(α) = 30 ∧ con.heater out(α) = 0?

System: TYPE = { temp: [# con: Controller, pla: Plant #] |
fullset = AllS(LIFT(temp‘con‘tmp_in) = LIFT(temp‘pla‘tmp_out)) AND
fullset = AllS(LIFT(temp‘pla‘heater_in) = LIFT(temp‘con‘heater_out)) AND
subset?(AllS(LIFT(ALPHA) = LIFT(0)),

AllS((LIFT(temp‘pla‘tmp_out) o LIFT(ALPHA)) = LIFT(30) AND
(LIFT(temp‘con‘heater_out) o LIFT(ALPHA)) = LIFT(0)))};

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 43

Based on the above specifications of system properties, we can specify a safety re-

quirement that the temperature is always within a valid range from the value 20 to

the value 40 in all nonempty intervals.

Safety == ∀ s : System • I = >s .pla.tmp out ≤ 40 ∧ s .pla.tmp out ≥ 20?

Safety: THEOREM forall (s: System): fullset =

AllS(LIFT(s‘pla‘tmp_out) <= LIFT(40) and LIFT(s‘pla‘tmp_out) >= LIFT(20));

Using TIC, we can specify important timing requirements. As shown below, the

requirement Length says that given an interval starting from the time point 0 (namely,

α = 0), the accumulation of the lengths of the intervals in which the heater is on is

always less than three-fourths of the length of the interval. We remark that this

requirement is not supported in the original [98, 128] as they lack the capacity to

model continuous behavior.

Length == ∀ s : System • >α = 0? ⊆ >
∫

s .con.heater out ≤ 3
4
∗ δ?

Length: THEOREM forall (s: System): subset?(AllS(LIFT(ALPHA) = LIFT(0)),

AllS(TICIntegral(s‘con‘heater_out) <= LIFT(3/4) * LIFT(DELTA)));

The above way which represents TIC schemas as PVS record types supports the

modeling technique of Z, namely, using schemas as types to specify large scale systems.

For example, the record accessor con in the record System denotes the subsystem

controller. This approach is different from that of Gravell and Pratten [54] who

discussed issues on embedding Z into both PVS and HOL [53]. They interpreted Z

schemas as Boolean-valued functions of records, and it is thus difficult to cope with

the case where schemas are declared as types. On the other hand, Stringer-Calvert

et al. [124], who applied PVS to prove Z refinements for a compiler development,

excluded the support of schemas, as their work focused on modeling Z partial functions

in PVS.

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 44

4.3.2 Proofs of Requirements

In the following, we present the proofs of above two requirements. The proposed

general proof procedure (in Section 4.2) eases the analysis of the first requirement,

and the capability of supporting arithmetic reasoning and induction technique of our

verification system decreases the proof complexity of the second requirement.

Proving the Requirement Safety

This requirement is concerned with the validity for all intervals. Instead of checking

the temperature for all intervals, we use the proof by contradiction method. Namely,

we show that there exists no interval in which the temperature is outside the valid

range. By applying the reasoning rule EmpCC to All defined in Chapter 3.2, we

further reduce the proof complexity by checking the existence for just one type of

intervals, specifically, both-closed intervals.

The proof is divided into two sub-proofs which check whether the temperature is

greater (or lower) than the maximum (or minimum). Each sub-proof relies on a

lemma that depicts the continuous behavior of the temperature respectively. For

example, the lemma Decreasing specifies here that the temperature at the ending

point of a both-closed interval is not higher than that at the starting point of the

interval provided the temperature is not lower than the value 40 in the interval.

Decreasing == ∀ s : System •
:s .pla.tmp out ≥ 40; ⊆ :s .pla.tmp out(ω) ≤ s .pla.tmp out(α);

Decreasing can be systematically proved by the proposed general proof procedure (in

Section 4.2). Its reasoning process and proof commands used are listed below.

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 45

1: ((skosimp)

2: (expandsubset)

3: (typepred "s!1")(typepred "s!1‘con")

4: (assignsubset -1)

5: (("1" (typepred "s!1‘pla")

6: (assignsubset -1)

7: (("1" (lemma "Integral_ge_0")

8: (inst - "ALPHA(x!1)" "OMEGA(x!1)" "s!1‘pla‘tmp_out") (ground)

9: (("1" (grind)) ("2" (grind))

10: ("3" (use "cont_Integrable?")(grind))

11: ("4" (skosimp) (grind))))

12: ("2" (rewrite "Invariant_True_R")

13: (expintervaltotime 1) (grind))))

14: ("2" (rewrite "Invariant_True_R")(grind))))

• At lines 3 and 5, we add new antecedents, which model properties of the whole

system s!1 and its subsystems controller s!1‘con and plant s!1‘pla, to the

proof sequent by applying typepred to relevant names. For instance, (typepred

"s!1") inserts the connections between s!1‘con and s!1‘pla.

• The proof strategies defined in Chapter 3.3 simplify the reasoning process (at

lines 2, 4, 6, and 13). For instance, the application (assignsubset -1) at line

4 directs the PVS prover to automatically instantiate an interval to the first

antecedent of the sequent.

• As the temperature changes continuously, we exploit specialized lemmas from

the NASA PVS library to cope with advanced analysis (at lines 7 and 10). In

particular, the lemma Integral ge 0 (at line 7) represents a mathematical

law that the integral of an integrable function over a both-closed interval is

nonnegative if this function has nonnegative values throughout the interval.

• At each branch of the proof, we invoke the PVS proof command grind to

automatically discharge the sub-proof (at lines 9, 10, 11, 13 and 14).

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 46

In the above proof, all instantiations of intervals and time points are automatic.

Nevertheless the assignment at line 8 is manual for using the mathematical law of

integral calculus. This is acceptable, since human heuristics are helpful here to in-

crease the efficiency by selecting proper argument values. We remark that for this

manual assignment, the PVS prover checks the correctness of user-specified values

(so, OMEGA(x!1) must be greater than or equal to ALPHA(x!1)).

Proving the Requirement Length

This requirement considers all intervals starting with the time point 0, namely, >α =

0?. The number of these intervals is infinite. We apply the proof by induction method

to cope with the analysis for any arbitrary interval, based on a common assumption of

discrete-valued functions such as a discrete timed trace. Specifically, a discrete timed

trace is usually assumed to hold the finite variability property [137], which that the

discrete timed trace changes finitely many times in a bounded interval. In other

words, we assume that an interval can be classified into one of the following groups

with respect to a discrete timed trace: (1) the timed trace is constant throughout

the interval, or (2) the interval can be decomposed into a sequence of connected sub-

intervals where the timed trace has different values in adjacent sub-intervals. This

property is formalized in PVS as presented in Chapter 5.1.1.

The discrete timed trace in subsystem controller is the heater status heater out .

According to the finite variability, any interval of >α = 0? can be divided into a

sequence of connected subintervals, where the heater is off in the first subinterval (as

the initial heater status is specified in the schema System) and the heater is either

off or on in the last subinterval. Moreover, for intervals during which the heater is

off, the integration of the heater status is 0, namely,
∫

heater out = 0. We can thus

focus on checking the requirement over a special subset of >α = 0?: the heater is on in

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 47

the last subinterval. These special intervals can be formed by the following function

superCon, which takes three parameters: k is a natural number acting as a counter,

and base and unit are sets of intervals. The function returns a set of intervals by

repeatedly concatenating unit to base k times .

superCon : N× P I× P I→ P I

∀ k : N; base, unit : P I • superCon(k , base, unit) =
if k = 0 then base else superCon(k − 1, base, unit) y unit

Those special intervals above can hence be easily captured by an application of

superCon, namely, superCon(k , base, unit), where the values of base and unit are

given below. Both base and unit model the sequential behavior of the heater status,

specifically, from the off state (s .con.heater out = 0) to the on state (s .con.heater out =

1). In addition, base captures the first change of the heater status, namely, the heater

becoming on from its initial off state (as indicated by α = 0).

base = >α = 0 ∧ s .con.heater out = 0?y >s .con.heater out = 1?;
unit = >s .con.heater out = 0?y >s .con.heater out = 1?

For the sake of simplicity, we take the following lemma end with On as an example

to show how inductive proofs can be easily conducted in our system. The lemma

states that the heater is always on at the end of any above special interval.

end with On == ∀ s : System • ∀ k : N •
superCon(k , base, unit) ⊆ >true?y >s .con.heater out = 1?

The reasoning process of end with On and proof commands used are given below.

1: ((skosimp)

2: (induct "k")

3: (("1" (expandsubset) (expand "superCon") (expandconcat -1)

4: (assignconcat 1 "i1!1" "i2!1") (grind))

5: ("2" (skosimp) (expandsubset) (expand "superCon")

6: (expandconcat -2 1) (expandconcat -1)

7: (assignconcat 1 "TwoTOneIvl(i1!1, i1!2)" "i2!2") (grind))))

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 48

Because superCon is defined recursively, proof by induction is applicable. We invoke

the PVS proof command induct at line 2, namely, (induct "k"), to make the PVS

prover employ its induction scheme to variable k whose type is natural numbers. Two

sub-proof goals are thus automatically generated. One is the base case where k = 0

(at line 3), and the other corresponds to the inductive case (at line 5).

The proof of the inductive case involves concatenation over three sets of intervals, as

indicated by entering the proof strategy expandconcat (at line 6) twice which expands

the function concat. If the proof is carried out by hand, we have to examine sixteen

situations one by one with respect to interval types from three sets. In contrast, this

tedious work is automatically accomplished in our verification system after specifying

appropriate interval values at line 7 (where function TwoTOneIvl constructs a new

interval from two adjacent intervals).

4.3.3 Experimental Results

We summarize our experimental results in Table 4.1, which lists lemma names asso-

ciated with the steps of proof commands entered and the execution time (in Seconds)

of the PVS prover. The experiments are conducted on the SunOS 5.10 platform with

PVS version 3.2. In total, we have proved twelve lemmas, and some of these lem-

mas have been explained, namely, Decreasing, Safety, end with On and Length. We

briefly explain the rest lemmas below, while their PVS specifications and complete

proof scripts are available online [27].

• Increasing describes the situation where the temperature increases in the inter-

val, with temperature not greater than the minimum value 20.

• Safe1 claims that the temperature is always lower then or equal to the maximum

4.3. CASE STUDY - A TEMPERATURE CONTROL SYSTEM 49

Lemma Name Steps Time (Second) Lemma Name Steps Time (Second)
Decreasing 21 14.45 Off On Off 44 20.92
Increasing 24 16.66 end with On 14 21.88
Safe1 28 14.15 invariant 79 458.8
Safe2 27 14.68 super and BT 23 10.59
Safety 7 12.88 Length Cover 98 562.32
On Off On 46 22.47 Length 26 59.67

Table 4.1: Validation results of the temperature control system

value 40, and Safe2 claims that the temperature is always higher than or equal

to the minimum value 20.

• On Off On (Off On Off) checks the length bound of the interval (1) in which

the heater is off (on) and (2) which is between two consecutive intervals during

which the heater is on (off).

• The lemma invariant shows that the special intervals highlighted in the previous

subsection (using the function superCon) satisfy the requirement Length.

• The lemma super and BT indicates that any interval, which starts with the

time point 0 and can be decomposed into k parts of subintervals according to

the finite variability, can also be formed by executing superCon for k times.

• Length Cover shows that any interval starting with 0 can be constructed in one

of the three ways based on superCon.

During the proofs, mathematical reasoning, in particular the theories of integral cal-

culus, is frequently involved (for lemmas Decreasing, Increasing, On Off On and

Off On Off), since the temperature changes continuously in the control system.

Moreover, the induction method plays an important role in tackling the analysis

over infinite intervals (for lemmas end with On, invariant and super and BT). Last

but not least, our developed supplementary rules for domain-specific features can

4.4. SUMMARY 50

make proofs easier. For instance, the supplementary rule mid ivl exi defined in

Chapter 3.3 has been applied to verify lemmas Safe1 and Safe2.

4.4 Summary

Machine-assisted proof support for expressive specification languages usually facil-

itates complex and tedious proofs by offering certain degree of automation and at

the same time assuring the correctness of proof processes. The translation from TIC

models to PVS specifications is automatic in our verification system. A general proof

procedure has also been proposed to effectively conduct TIC proofs with a high degree

of automation, in particular, by exploiting the PVS automatic reasoning power for

linear arithmetic, sets and propositional logic. Moreover, the application to the tem-

perature control system has demonstrated the capabilities of our verification system,

especially in supporting advanced mathematical analysis such as integral calculus,

and in analyzing arbitrary infinite intervals.

Chapter 5

Supporting DC in the Verification

System

Up to now, we have developed a verification system based on PVS to facilitate TIC

proofs. With the support of TIC which is highly expressive, the verification system is

generic enough to be applied to support other interval-based specification languages.

As introduced in Chapter 2.3, DC [137] is another popular real-time specification

language based on the interval temporal logic [94] and integral calculus. We will

show in this chapter the applicability of the verification system by extending it to

handle basic DC [139] which is the core of other DC extensions [140, 141].

Firstly, DC constructs are elaborately modeled in TIC. Next, DC axioms and rea-

soning rules are formalized based on the encoding, and they can be in turn validated

using our verification system. Last but not least, we apply the resulting system to

a typical case study of DC, and present the improper proof step of the original DC

proof which is discovered in our experiment.

51

5.1. MODELING DC SEMANTICS IN TIC 52

5.1 Modeling DC Semantics in TIC

In this section, we demonstrate the way to model DC semantics including special DC

constructs using TIC, and in turn using PVS as well. We also discuss how to resolve

the differences between TIC and DC. The demonstration follows a bottom-up path,

from basic DC constructs to complex ones. Corresponding PVS specifications are

provided when they are needed.

5.1.1 State Variables

State variables are functions from time to Boolean values, namely, {0, 1} where 0

means false and 1 means true. Each state variable is integrable in all intervals. We

thus represent a state variable as an integral function whose range consists of values

0 and 1, that is, T ¤−→ {0, 1} in TIC, where the symbol
¤−→ captures the integrability

of a declared function [49]. We further define below a PVS type named DCState to

denote the type of state variables, where the function Integrable? maps
¤−→ and

the PVS type BTrace as defined in Chapter 3.1.2 indicates that a timed trace bt is

Boolean-valued.

DCState: TYPE = {bt: BTrace | forall (a, b: Time): Integrable?(a, b, bt)};

It is usually practical to assume that a state variable holds the finite variability prop-

erty. This property is crucial for analyzing arbitrary (infinite) intervals by means of

induction (as it has been exploited to check the requirement Length in Chapter 4.3.2).

To be specific, this property allows a non-empty interval to be decomposed into a fi-

nite sequence of subintervals, where a state variable is constant in each subinterval.

We provide the PVS specifications which model the property, followed by explana-

tions. Our modeling is similar to the work of Skakkebæk [119] who also formalized

5.1. MODELING DC SEMANTICS IN TIC 53

the finite variability property in a recursive manner.

k: var posnat; dcs1: var DCState; i: var II;

Cnst(dcs1)(i): bool = ALPHA(i) < OMEGA(i) and exists (x: real):

forall (t: Time): t < OMEGA(i) and t > ALPHA(i) => dcs1(t) = x;

fvl(k)(dcs1)(i): RECURSIVE bool = IF k = 1 THEN Cnst(dcs1)(i)

ELSE exists (m: Time): m < OMEGA(i) and m > ALPHA(i) and

Cnst(dcs1)((OO, (ALPHA(i), m))) and fvl(k - 1)(dcs1)((OO, (m, OMEGA(i))))

ENDIF MEASURE k;

fvr(k)(dcs1)(i): RECURSIVE bool = IF k = 1 THEN Cnst(dcs1)(i)

ELSE exists (m: Time): m < OMEGA(i) and m > ALPHA(i) and

fvr(k - 1)(dcs1)((OO, (ALPHA(i), m))) and Cnst(dcs1)((OO, (m, OMEGA(i))))

ENDIF MEASURE k;

fv(k)(dcs1)(i): bool = fvl(k)(dcs1)(i) and fvr(k)(dcs1)(i);

DCState_is_FV: AXIOM forall i: ALPHA(i) = OMEGA(i) or exists k: fv(k)(dcs1)(i);

• Cnst is a function to check whether a state variable dcs1 is equal to a constant x

at all time points in a non-empty interval. Note that the values of a state variable

at interval endpoints are ignored in DC. That is to say, we can investigate only

the values within both-open intervals in TIC.

• Function fvl recursively decomposes an interval into a sequence of both-open

subintervals where two successive subintervals share one endpoint. At a step of

the decomposition, an interval i as a parameter is divided to two both-open

intervals, where a state variable dcs1 is constant in the first interval (OO,

(ALPHA(i),m)) and fvl continuously divides the second interval (OO, (m,

OMEGA(i))). The decomposition stops when variable k is equal to the value

1. The variable is a positive natural number and acts as a counter by using

the PVS measure function [104], namely, MEASURE k, to measure and terminate

the decomposition. In other words, fvl unfolds an interval from the left-hand

end with respect to a state variable. Similarly, we can define function fvr to

recursively unfold an interval from the right-hand end.

5.1. MODELING DC SEMANTICS IN TIC 54

Both fvl and fvr play an important role to enable the application of the proof

by induction method. For instance, we can guide the PVS prover to invoke its

induction scheme to the variable k by entering the proof command (induct

"k"). We remark that the construction of the constituent subintervals in both

fvl and fvr excludes interval endpoints (as indicated by the both-open interval

type). This is acceptable because of the irrelevance of interval endpoints when

interpreting DC state variables.

• DCState is FV is a PVS axiom declaration. It describes that for a state vari-

able, any interval can be categorized to two cases: either the interval is a pointer,

or there exists a positive natural number k such that functions fvl and fvr hold

with respect to the state variable and the interval.

5.1.2 State Expressions

State expressions are formed by applying the propositional logical operators, such as

negation (¬), conjunction (∧) and disjunction (∨), to connect state variables. Se-

mantically, state expressions are interpreted to be functions from time to the Boolean

values. We describe here how to convert three primitive logical operations in state

expressions to arithmetic operations in terms of time.

Let S1 and S2 be state expressions, and t be a time point.

• (¬ S1)(t) = 1− S1(t);

• (S1 ∧ S2)(t) = S1(t) ∗ S2(t);

• (S1 ∨ S2)(t) = 1 − (1 − S1(t) ∗ (1 − S2(t)) = S1(t) + S2(t) − S1(t) ∗ S2(t),

since in propositional logic, we have (S1 ∨ S2)(t) ⇔ (¬ (¬ S1 ∧ ¬ S2))(t).

5.1. MODELING DC SEMANTICS IN TIC 55

5.1.3 Temporal Variables

Temporal variables in DC are functions from intervals to real numbers. They can

be directly represented as the interval operators of TIC. There are two predefined

temporal variables in DC. One is ` which represents the length of an interval, and

the other is
∫

for accumulating state variables throughout an interval. ` is equal to

the interval operator δ in terms of functionality.
∫

is also supported in TIC [49]. The

PVS specifications for δ and
∫

of TIC have been described in Chapters 3.1.2 and 3.1.3,

respectively.

5.1.4 Formulas

DC Formulas are evaluated with respect to intervals only. In other words, their

semantics is independent of interval endpoints. Hence, we model them to be a subset

of predicates of TIC. Note that predicates in TIC usually rely on both time points

and intervals. As shown in the following PVS specifications, a DC formula is a

special predicate p which satisfies function DCFormula?. DCFormula? returns true

provided p has the same value for any arbitrary two time points (t1 and t2) which

are respectively inside two intervals (i1 and i2) whose endpoints are identical. In

addition, there is no constraint on the interval types.

DCFormula?(p: TPred): bool = % i1, i2: II; t1, t2: Time

forall i1, i2: ALPHA(i1)= ALPHA(i2) and OMEGA(i1) = OMEGA(i2) =>

forall t1, t2: t_in_i(t1, i1) and t_in_i(t2, i2) => p(t1, i1) = p(t2, i2);

DCFormula: TYPE = {p: TPred | DCFormula?(p)};

A special operator in DC is the chop operator a which is used to specify that two

formulas hold respectively in two successive intervals, which overlap at one time point.

Note that only both-closed intervals are considered in DC. The chop operator may look

5.1. MODELING DC SEMANTICS IN TIC 56

like the concatenation operatory in TIC, since both can model sequential behavior at

the interval level. However, they are different: firstly, a links DC formulas which are

represented as predicates of TIC, whiley concatenates sets of intervals; furthermore,

there are no overlap and no gap between two connected intervals in TIC. We thus

cannot simply replace a by y. For example, a point interval i , namely, α(i) = ω(i),

may satisfy the DC formula φ a ψ where φ and ψ are DC formulas, although it is

impossible for a point interval to be the result of a concatenation operation in TIC

since a point interval cannot be divided into two non-overlapped non-empty intervals.

We define a function in TIC as shown below to represent a, where I → B denotes

the type of DC formulas and B (where B ::= true | false) denotes the Boolean type.

a : (I→ B)× (I→ B) → (I→ B)

∀φ, ψ : I→ B; i : I • (φ a ψ)(i) ⇔
∃ i1, i2 : I • α(i) = α(i1) ∧ ω(i) = ω(i2) ∧ ω(i1) = α(i2) ∧ φ(i1) ∧ ψ(i2)

The above definition takes two predicates of TIC (φ and ψ) as arguments, and returns

a predicate of TIC (φ a ψ) which holds in an interval i if and only if there are

two subintervals i1 and i2 such that φ and ψ are true in respective subintervals.

Furthermore, i1 and i2 share one endpoint, and their other endpoints are equal to

the endpoints of i . Note that we are concerned with only the interval endpoints

without constraining the type of i1 and i2. The corresponding PVS specification of

the TIC function is given below.

dcf1, dcf2: var DCFormula;

DCChop(dcf1, dcf2)(t, i): bool = exists (i1, i2: II):

ALPHA(i) = ALPHA(i1) and OMEGA(i) = OMEGA(i2) and OMEGA(i1) = ALPHA(i2) and

Everywhere?(dcf1, i1) and Everywhere?(dcf2, i2);

Based on the encoding of a, we can specify two frequently used DC operators, 3

(eventually) and 2 (always), in TIC and in PVS, by following the DC syntax con-

struction style introduced in Chapter 2.3, namely, 3φ == (true a φ) a true and

5.2. VALIDATING DC AXIOMS AND REASONING RULES 57

2φ == ¬ 3(¬ φ). The result of each operation is also a DC formula. Function

TTRUE in the following PVS specifications always return the true value in PVS, re-

gardless of intervals and time points, namely, TTRUE(t, i): bool = true.

<>(dcf1): DCFormula = DCChop(DCChop(TTRUE, dcf1), TTRUE);

[](dcf1): DCFormula = not(<>(not(dcf1)));

We have presented so far the way to formalize DC constructs using TIC and PVS.

The differences between DC and TIC have been discussed and solutions have been

proposed such as supporting the chop operator and the finite variability of state

variables. This encoding serves as a foundation for performing rigorous validation

of DC axioms and reasoning rules as well as proofs of DC models in the following

sections.

5.2 Validating DC Axioms and Reasoning Rules

DC reasoning rules are derived from axioms of state durations. It is important

to guarantee the correctness of these axioms and reasoning rules when developing

machine-assisted proof support for DC. Existing work [64, 110, 119] directly assumes

the validity of the axioms. Our approach is different from them in that we can for-

malize axioms based on the elaborate encoding in the previous section, and we can

rigorously validate them as well as the reasoning rules using our verification system.

DC axioms and reasoning rules are required to be valid for all both-closed intervals.

They are modeled as TIC predicates and their correctness can be checked with re-

spect to intervals. We remark that intervals in TIC are classified to four basic types

according to the inclusion/exclusion of interval endpoints. That is to say, we validate

DC axioms and reasoning rules for more than just both-closed intervals. Nevertheless,

involving more interval types has no effect on the validation result, as we preserve the

5.2. VALIDATING DC AXIOMS AND REASONING RULES 58

independency of DC formulas on interval endpoints and in turn interval types in the

corresponding TIC predicates.

Mathematical analysis, especially mathematical laws of integral calculus, is impor-

tant during the validation. Reusing axiom DCA5 from Chapter 2.3 as an example,

the axiom captures a relation between state durations and the chop operator. We

formalize the axiom in the following TIC predicate and PVS specifications, where the

symbol S represents a state expression and variables x and y represent non-negative

real numbers. Note that we model the axiom for all non-empty intervals (indicated

by > ? and AllS respectively).

DCA5 == I = >(
∫

S = x) a (
∫

S = y) ⇒ ∫
S = x + y?

S: var DCState; x, y: var nnreal;

DC_DCA5: LEMMA fullset =

AllS(DCChop(TICIntegral(S) = LIFT(x), TICIntegral(S) = LIFT(y))

=> TICIntegral(S) = LIFT(x + y));

The validation of DCA5 involves mathematical analysis. For instance, one proof

sequent in the reasoning process is shown below. The first two antecedents indexed

by -1 and -2 depict that the integral of a state expression S!1 on two intervals il!1

and ir!1 are respectively equal to non-negative real numbers x!1 and y!1. Intervals

il!1 and ir!1 are automatically generated from the interval x!2 based on the chop

definition, and the constraints over their endpoints are specified by the antecedents

indexed by -3, -4 and -5. The proof goal indexed by 1 is to prove the integral of S!1

on x!2 is equal to the sum of x!1 and y!1.

5.2. VALIDATING DC AXIOMS AND REASONING RULES 59

{-1} Integral(ALPHA(ir!1), OMEGA(ir!1), S!1) = y!1

{-2} Integral(ALPHA(il!1), OMEGA(il!1), S!1) = x!1

[-3] ALPHA(x!2) = ALPHA(il!1)

[-4] OMEGA(x!2) = OMEGA(ir!1)

[-5] OMEGA(il!1) = ALPHA(ir!1)

|-------

{1} Integral(ALPHA(x!2), OMEGA(x!2), S1!1) = x!1 + y!1

To accomplish the above proof goal, we need to invoke the lemma Integral split

by the proof command lemma. Integral split captures the additivity of integration

on intervals, and its contents are also displayed below.

Rule? (lemma "Integral_split")

this simplifies to:

{-1} FORALL(a, b, c: Time, f: [Time -> real]):

Integrable?(a, b,f) AND Integrable?(b, c, f)

=> Integrable?(a, c, f) AND

Integral(a, b, f) + Integral(b, c, f) = Integral(a, c, f)

...

Besides the mathematical analysis of continuous dynamics, induction is another com-

mon method to handle complex DC formulas. For example, reasoning rule DC15 from

the DC book [137] describes that if the duration of a state expression S is positive on

an interval, then the interval can be chopped into three subintervals: the duration of

S is zero in the first interval, and S is true almost everywhere in the second interval.

The reasoning rule is presented below, where ddSee is short for
∫

S = ` ∧ ` > 0 in DC.

DC15
∫

S > 0 ⇒ (
∫

S = 0) a ddSeea true

The validation of the above rule is sketched as follows, and the formal reasoning

process which costs more than 50 proof commands can be found in Appendix B.

Firstly, based on the axiom DCState is FV (defined in Section 5.1.1), we can deduce

that an interval in which the duration of S is positive (namely,
∫

S > 0) can be

5.2. VALIDATING DC AXIOMS AND REASONING RULES 60

divided into k subintervals and S is constant throughout each subinterval. Next, we

apply the induction scheme available in PVS to k , and this results in two cases.

• The base case is k = 1, which indicates that S is constant over the whole

interval. Because the range a state expression is Boolean-valued, S is equal to

either the value 0 or the value 1. Moreover, the hypothesis
∫

S > 0 restricts that

the constant value can only be 1. Therefore, the rule is valid as we can form

the first and third intervals as point intervals, where duration on point intervals

equals the value 0 and the predicate “ true ” also holds in point intervals.

• The inductive case assumes that the rule is valid when k = n where n is an

arbitrary positive natural number. And we need to prove that the rule is still

valid when k = n + 1. We apply the finite variability property formalized in

Section 5.1.1, particularly, the function fvr which unfolds an interval from the

right-hand end. To be specific, when we expand the application fvr(n + 1) for

an interval, the interval is decomposed into two successive both-open subintervals

where S is constant over the second subinterval. It is easy to prove that the

rule holds in the first subinterval by the inductive hypothesis. It is not hard to

see that the second subinterval has little influence on the validity of the rule, as

the predicate “ true ” also holds over the second subinterval.

Therefore, the reasoning rule is proved by induction.

Currently, we have formalized and checked all DC axioms and the reasoning rules

which are used in our example studies as illustrated in the following section.

5.3. HANDLING DC PROOFS 61

5.3 Handling DC Proofs

So far, we have encoded the DC constructs modeled in TIC and in PVS to the

verification system, formalized DC axioms and reasoning rules based on the encoding,

and validated them using the resulting verification system. We can thus handle DC

proofs in a manner which closely follows manual DC arguments. In this section, we

demonstrate the usability of our approach by a DC case study, a gas burner [137].

A gas burner is a software-embedded system in a safety-critical context. Let Leak be

a state variable modeling the critical behavior, namely, Leak : T→ {0, 1}, where the

value 1 means that gas is leaking and the value 0 means no leaking. There are two

design properties for the gas burner system. The first property (also mentioned in

Chapter 2.3) is that any leak should last for not longer than 1 time unit. The second

property is that the interval length between two consecutive leaks must be at least

30 time units. Both properties are modeled in DC below.

Des1 == 2(ddLeakee ⇒ ` ≤ 1)

Des2 == 2(ddLeakeea dd¬ Leakeea ddLeakee ⇒ ` ≥ 30)

A real-time requirement is that the proportion of the leaking time in an interval is

always less than or equal to one-twentieth of the interval, provided the interval lasts

at least 60 time units. This requirement is expressed below in DC based on Leak.

GbReq == ` ≥ 60 ⇒ 20 ∗ ∫
Leak ≤ `

We remark that requirement GbReq here is different from the requirement Length of

the temperature control system as presented in Chapter 4.3. Length is concerned

with the intervals which start from the time point 0 (α = 0) . However, the intervals

which are considered by GbReq are restricted by their lengths (` ≥ 60).

5.3. HANDLING DC PROOFS 62

The above properties and requirement are DC formulas. They are modeled by the

following PVS specifications where function pq represents the abbreviation dd ee and

other PVS symbols for DC constructs are defined in Section 5.1.

Leak: DCState;

Des1: DCFormula = [](pq(Leak) => LIFT(DELTA) < LIFT(1));

Des2: DCFormula = [](DCChop(DCChop(pq(Leak), pq(not(Leak))), pq(Leak))

=> LIFT(DELTA) >= LIFT(30));

GbReq: DCFormula = LIFT(DELTA) >= LIFT(60)

=> LIFT(20) * TICIntegral(Leak) <= LIFT(DELTA);

To prove the correctness of the design properties, we need to show that the formula

Des1 ∧ Des2 ⇒ GbReq is valid. That is, the formula is true in all intervals. Hence,

our proof goal is I = >Des1 ∧ Des2 ⇒ GbReq?, which is equivalently converted to

the following goal >Des1? ∩ >Des2? ⊆ >GbReq?. That is to say, an interval in which

both design properties hold is also the interval in which the requirement is true. This

proof goal is expressed below by a PVS theorem named ProofGoal.

ProofGoal: theorem subset?(intersection(AllS(Des1), AllS(Des2)), AllS(GbReq));

Using our verification system, the proof process for the above goal can comply strictly

with the original process [137] in terms of the order of applying DC reasoning rules and

lemmas. These rules and lemmas are also validated. In the following, we informally

describe important steps in the process associated with a simplified proof script.

("1"... (lemma "Math_PL1") ...

(("1" ... (lemma "Lemma3_5") ...

(("1" ... (lemma "Lemma3_6") ...

(("1" ... (lemma "DC_DC8") ...

1. Lemma Math PL1 specifies the property that an interval i whose length is more

than or equal to 60 time units can be partitioned into a sequence of n + 1

parts of intervals where n is a natural number. In addition, the length of each

5.3. HANDLING DC PROOFS 63

subinterval except the last one is equal to 30 time units, while the length of the

last subinterval is less than 30 time units.

2. From both design properties we can deduce that for an interval whose length is

less than or equal to 30 time units, the duration of leaking is less than or equal

to 1 time unit. This property is modeled by lemma Lemma3 5.

3. Based on Lemma3 5, we can deduce that gas can be leaking for at most n time

units throughout the first n subintervals of size 30, which are produced at Step

1. This result is captured by lemma Lemma3 6.

4. From Lemma3 5 and the second design property Des2, we conclude that the

leaking duration is less than 1 time unit in the last subinterval which follows

the first n subintervals. We can thus apply the DC reasoning rule DC8 as shown

below.

DC8 (
∫

S ≤ x) a (
∫

S ≤ y) ⇒ ∫
S ≤ x + y

This rule is modeled by DC DC8 in the simplified proof script, and it is used to

sum up the leaking duration of the whole interval i at Step 1.

After executing the above steps, the proof is automatically accomplished.

From the rigorous verification using our system, we have identified an improper de-

ductive step in the original presentation [137]. To be specific, a proof obligation before

applying DC8 is (
∫

Leak ≤ n) a (
∫

Leak ≤ 1) ⇒ (
∫

Leak ≤ n + 1), and the original

proof adopts the axiom DCA5 (mentioned in Chapter 2.3 and Section 5.2). How-

ever, it is obvious that DCA5 cannot resolve the obligation. Instead, the appropriate

reasoning rule is DC8, which easily discharges the proof obligation.

The gas burner is a typical DC case study to which our extended verification system

has been applied in this section. We have presented the corresponding PVS specifi-

5.4. SUMMARY 64

cations of the system design and real-time requirement. The DC reasoning rules and

lemmas used have been formalized and checked. Thus the reasoning process in the

verification system follows a manner similar to the manual DC arguments. We have

also shown the discovery of the incorrect proof step in its original presentation.

5.4 Summary

We have generalized the verification system developed in Chapters 3 and 4 to support

other interval-based specification languages, in particular, DC. This enhancement has

been accomplished by applying TIC to model DC. We have elaborately encoded DC

constructs in TIC, and further formalized and validated the DC axioms as well as

reasoning rules. The resulting system enables users to carry out DC proofs along

the lines of the hand proof without knowing the detailed encoding. Furthermore,

the rigorous verification capability of the system elevates the confidence level of DC

proofs, for example, the improper proof step identified in the original manual DC

arguments of the gas burner.

Some researchers have investigated machine-assistant proof for DC. Skakkebaek and

Shankar [120] developed a proof checker with PVS, and Heilmann [64] applied Is-

abelle [106] to support mechanized proof. Chakravorty and Pandya [24] digitized a

subclass of DC, Interval Duration Calculus, into another subclass for discrete systems.

However, in the above works, the duration operator as the key construct of DC is

not semantically encoded and properties of it are assumed as axioms. As shown in

this chapter, we have encoded the duration operator based on the latest NASA PVS

library, and we can hence directly validate those properties regarding DC durations

in our verification system.

Chapter 6

Modeling Simulink Library Blocks

As presented in Chapters 3 and 4, we have systematically developed a verification

system to support the formal verification of TIC models with a high degree of au-

tomation. This machine-assisted proof support can be used to expand the applica-

tion range of TIC in the development of complex systems. In the following three

chapters, we construct a framework based on the verification system to complement

Simulink [85] which has been widely used in industry for specifying and simulating

dynamic systems.

A Simulink diagram formed by connecting blocks with wires represents a set of math-

ematical relationships which model system behavior over time. Simulink adopts

continuous-time semantics [70] to support dynamic systems such as hybrid control

systems. Its simulation facility allows system behavior to be visually observed for

specific parameter values over specific simulation periods. However, simulations are

deficient in checking system behavior for large parameter values or over infinite sim-

ulation periods. In addition, open systems whose exact input functions are usually

unknown are unanalyzable in Simulink because simulations are inapplicable to these

65

6.1. TIC SCHEMAS FOR SIMULINK ELEMENTARY BLOCKS 66

systems. Moreover, Simulink lacks timing analysis which becomes necessary due to

the increasing usage of embedded systems in real-time safety-critical situations [108].

Recently, formal methods have received more attention to improve the development of

the embedded real-time systems by their rigorous semantics and formal verification

capability [67, 132]. We here apply TIC to complement Simulink: functional and

timing aspects of Simulink diagrams are formally captured in TIC; important (timing)

requirements are rigorously validated by well-defined TIC reasoning rules and the

strong support of mathematical analysis in TIC.

As introduced in Chapter 2.4, Simulink library blocks are templates to produce el-

ementary blocks of Simulink diagrams. They are classified into various categories:

continuous, discrete, mathematical functions and so on. Unfortunately, their seman-

tics is informally, and even partially, defined in the original documentation [84]. It is

necessary and important to formally model these blocks using TIC.

In this chapter, we firstly present the basic structure of TIC schemas denoting elemen-

tary blocks. The structure captures the time-dependent relationships of elementary

blocks. Next, we construct TIC library functions and highlight their features with

examples. Lastly, we discuss the construction of these TIC library functions and their

validation. These TIC functions can serve as an accurate and thorough documenta-

tion to accompany original descriptions [84] of Simulink library blocks.

6.1 TIC Schemas for Simulink Elementary Blocks

An elementary block denotes a time-dependent mathematical relationship between its

inputs and outputs. In Simulink, inputs and outputs always have values at any time

point. Namely, they are total functions of time. We consider here a common type

6.1. TIC SCHEMAS FOR SIMULINK ELEMENTARY BLOCKS 67

of elementary blocks which is multiple inputs and single output. Other types such as

multiple inputs and outputs can be handled similarly. Furthermore, each elementary

block has its sample time as its execution rate in simulation.

An elementary block is modeled by a TIC schema: essential attributes including the

block inputs, output, parameters and sample time are captured in the declaration

part, and the block behavior is specified in terms of intervals in the predicate part.

As sample times can be either continuous or discrete, we classify TIC schemas of

elementary blocks to two groups according to their sample times.

When the sample time of an elementary block is equal to the value 0, the block

executes continuously. Its output at a time point relies on inputs either at the same

time point (for example, a summation) or through an interval (for example, an integral

operation). We specify continuous behavior at a high level, namely, at the interval

level, rather than the time point level.

Definition 1 (Continuous basic block) A TIC schema for a continuous elemen-

tary block is a 6-tuple (Ins ,Out ,Ps , st ,F ,V), where Ins denotes a set of inputs and

each input is a timed trace of the type T→ R, Out is the output which is also a timed

trace, Ps denotes a set of block parameters of the type R, st is the sample time, F
denotes the mathematical relationship which depends on the inputs and block parame-

ters, namely, F : Ins × Ps → Out, and V is a mapping assigning real numbers to

block parameters. These attributes satisfy two constraints which capture continuous

behavior of the block: one is I = >F(Ins ,Ps) = Out? indicating that F holds for all

non-empty intervals; the other is st = 0 to limit the sample time value.

When the sample time of an elementary block is positive, the block executes dis-

cretely. To be specific, the block changes its output at sample time hits which are

integer multiples of the sample time, and keeps its output constant between any two

6.1. TIC SCHEMAS FOR SIMULINK ELEMENTARY BLOCKS 68

consecutive sample time hits. This discrete behavior is captured by modeling the

behavior for each sample time interval which is left-closed and right-open and whose

endpoints are a pair of consecutive sample time hits.

Definition 2 (Discrete basic block) A TIC schema for a discrete elementary block

is also a 6-tuple (Ins ,Out ,Ps , st ,F ,V), where the types of attributes are the same as

those in Definition 1. However, the constraints that these attributes satisfy are differ-

ent from Definition 1 as the behavior is discrete here. Specifically, st > 0 restricts the

value of the sample time, and the other constraint specifies the discrete behavior for

all sample time intervals which are denoted by :∃ k : N • α = k ∗ st ∧ ω = (k +1)∗ st7

where N represents the set of all natural numbers.

For many discrete elementary blocks in practice, the constraints specifying their be-

havior can be expressed in the following form: :∃ k : N • α = k∗st ∧ ω = (k+1)∗st7 ⊆
:F(Ins(α),Ps) = Out7. Namely, the output values during a sample time interval are

dependent on the input values at the starting point of the sample time interval. An

example is the Zero-Order Hold library block as mentioned in Section 6.2.

Above two definitions capture two basic types of TIC schemas in terms of their schema

structure. These definitions serve as a guideline to construct TIC library functions in

the next section, where the mathematical relationship F will be explicitly specified

with respect to a particular Simulink library block. Note that the range of the above

timed traces is real numbers to represent the data type double in Simulink. This

is acceptable since different data types in Simulink only affect simulation efficiency.

Nevertheless, our approach can be extended to support multi-dimensional values. For

example, vectors of values can be represented as sequences of values in TIC.

6.2. TIC LIBRARY FUNCTIONS FOR SIMULINK LIBRARY BLOCKS 69

6.2 TIC Library Functions for Simulink Library

Blocks

In Simulink, an elementary block is generated by assigning particular values to the

parameters of a library block. This parameterization technique is also adopted by

our TIC library functions which model Simulink library blocks. To be specific, these

library functions return TIC schemas which represent elementary blocks.

As we focus on the mathematical relationships denoted by elementary blocks, irrele-

vant block parameters are ignored, such as parameters used for block appearance. We

divide the remainder of block parameters to three groups, namely, operands, sample

times, and operators, according to their effect on the mathematical relationships. We

describe below how to model the general structure of TIC library functions, which

takes into account the first two groups of block parameters. In the end, the way to

handle the last group is presented.

• A continuous library block always produces continuous elementary blocks whose

sample times are 0, and we thus consider only the operand parameters.

Definition 3 (Continuous library block) A TIC library function for a con-

tinuous library block takes a set of arguments which denote the operand para-

meters of the library block and returns a TIC schema which conforms to Defi-

nition 1 with respect to its attributes and the constraints over the attributes.

For example, the Integrator library block is a continuous library block; and its

output value at the ending point of an interval is equal to the sum of its output

value at the starting point of the interval and the integration of its input over

the interval. In addition, the output value at the time point 0 is stored via the

6.2. TIC LIBRARY FUNCTIONS FOR SIMULINK LIBRARY BLOCKS 70

InitialCondition block parameter, which is represented by variable IniVal in the

following TIC library function.

Integrator : R→ P[In1 : T→ R; Out : T1 R; IniVal : R; st : T]

∀ init : R • Integrator(init) = [In1 : T→ R; Out : T1 R; IniVal : R; st : T |
st = 0 ∧ IniVal = init ∧ Out(0) = IniVal ∧
I = >Out(ω) = Out(α) +

∫ ω
α In1?]

In a schema returned by the function Integrator , namely, Integrator(init), the

predicate IniVal = init which associates the argument init with IniVal cor-

responds to the mapping V in Definition 1. Moreover, the predicate I =

>Out(ω) = Out(α) +
∫ ω
α In1? which explicitly specifies the mathematical rela-

tionship F in terms of intervals conforms to the first constraint in Definition 1.

Note that we indicate the continuity feature of the block output Out by 1.

• A discrete library block always creates discrete elementary blocks whose sample

times are positive, and we consider its sample time and operand parameters.

Definition 4 (Discrete library block) A TIC library function for a discrete

library block takes a set of arguments denoting the sample time and operand

parameters, and returns a TIC schema which conforms to Definition 2 with

respect to its attributes and the constraints over the attributes.

For instance, the Zero-Order Hold library block is a discrete library block.

Output values of this library block through a sample time interval are equal

to its input value which is sampled at the beginning point of the sample time

interval. The sample time is determined from the SampleTime block parameter,

and it is denoted by variable st in the following TIC library function.

ZOH : T→ P[In1,Out : T→ R; st : T]

∀ t : T • ZOH (t) = [In1,Out : T→ R; st : T | st > 0 ∧ st = t ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α)7]

6.2. TIC LIBRARY FUNCTIONS FOR SIMULINK LIBRARY BLOCKS 71

In a schema returned by the above function ZOH , predicates st > 0 and st = t

constrain the sample time value. As mentioned in Definition 2, we specify

discrete behavior for all sample time interval. Namely, the sample-and-hold

behavior of an elementary block created by the Zero-Order Hold library block

is depicted by the last predicate.

• Other library blocks can generate either continuous or discrete elementary blocks.

A TIC library function for such a library block captures both types of behav-

ior by returning different TIC schemas according to the sample time assigned

to the library block. Namely, the structure of a returned schema conforms to

Definition 1 when the sample time is 0, and conforms to Definition 2 otherwise.

Taking the Relational Operator library block as an example, this library block

outputs the value 1 when its first input is larger than or equal to its second

input, and the value 0 otherwise. If its sample time is specified to be contin-

uous, namely, st = 0, its output at any time point relies on its inputs at the

same time point. Otherwise, the comparison is executed discretely: the output

values during a sample time interval are dependent on the inputs at the start-

ing point of the sample time interval. The above relation between the types of

behavior and the sample time is represented by two conjunctive implications in

the following TIC library function Relation geq.

Relation geq : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T •
(t = 0 ⇒ Relation geq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 ≥ In2? = >Out = 1? ∧ >In1 < In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation geq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) ≥ In2(α) ⇒ Out = 1) ∧ (In1(α) < In2(α) ⇒ Out = 0)7])

So far we have described the general structure of TIC library functions which in-

volves the sample times and operand parameters of library blocks. Ideally, we shall

6.3. DISCUSSIONS AND DISCOVERIES 72

establish a one-to-one mapping from block types to TIC library functions, such as the

function Integrator for the Integrator library block. However, this kind of mapping

is inapplicable to operator parameters, because these parameters can cause a library

block to produce elementary blocks with different functionalities. We thus construct

multiple TIC library functions for one library block which has operator parameters;

and each library function captures a particular functionality.

Reusing the Relational Operator library block as an instance, its Relational Operator

block parameter is an operator parameter. The default value of Relational Operator

is “ >= ” indicating that generated elementary blocks check whether their first input

is not less than their second input. However, when the value is specified as “ == ”,

the comparison is to check if the first input equals the second input. We define below

a TIC library function named Relation eq to represent the equivalence comparison

for the Relational Operator library block.

Relation eq : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T •
(t = 0 ⇒ Relation eq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 = In2? = >Out = 1? ∧ >In1 6= In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation geq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) = In2(α) ⇒ Out = 1) ∧ (In1(α) 6= In2(α) ⇒ Out = 0)7])

6.3 Discussions and Discoveries

Up to now we have presented the structure of TIC library functions which capture

various behaviors of the Simulink library block at the interval level. In this section,

we discuss the way of constructing and validating these library functions with some

discoveries which have been confirmed by senior application engineers of MathWorks.

6.3. DISCUSSIONS AND DISCOVERIES 73

Case Relation Relay Case Relation Relay

1 OnV > OffV ∧ InV = OffV off 5 OnV > OffV ∧ InV > OnV on

2 OnV > OffV ∧ OnV > InV > OffV off 6 OnV = OffV ∧ InV = OffV on

3 OnV > OffV ∧ InV = OnV on 7 OnV = OffV ∧ InV < OffV off

4 OnV > OffV ∧ InV < OffV off 8 OnV = OffV ∧ InV > OffV on

Table 6.1: The initial relay state of the Relay library block in different cases

We aim to capture the time-dependent mathematical relationships denoted by library

blocks as their intrinsic semantics. Unfortunately, the original Simulink documenta-

tion [84] specifies library blocks in a narrative and sometimes partial manner. This

can lead to ambiguous interpretation of library blocks and further obstruct the proper

usage of Simulink.

For example, the Relay library block switches its output according to its relay status,

either on or off. Its original description states that: when the relay is on, the block

remains on until the input drops below the value of the Switch off point block parameter;

when the relay is off, it remains off until its input exceeds the value of the Switch on point

block parameter. In addition, the Switch on point value must be greater than or equal

to the Switch off point value. However, the description misses the specification of the

initial behavior, namely, the relay status at the time point 0. It is thus necessary to

clearly capture this initial behavior to avoid confusion of the initial relay state.

To formally model a library block based on its informal and particularly incomplete

description, we investigate the behavior by means of simulations under all possible

circumstances where the library block may be used in practice. Specifically, we assign

different values to the operand parameters of the library block and feed the inputs

with various types, continuous or discrete, to simulate all possible situations in which

the block may be applied. Reusing the Relay library block as an example, we consider

the relationship of two parameters and the relationship between the initial input value

6.3. DISCUSSIONS AND DISCOVERIES 74

Figure 6.1: An incorrect simulation result of the Dead Zone library block

and these two parameters. As shown in Table 6.1, there are eight cases to observe

the initial relay state, where OnV denotes the Switch on point value, OffV denotes

the Switch off point value, and InV denotes the input value at the time point 0.

We also exploit simulations to validate TIC library functions. Namely, we check if a

TIC library function of a library block conforms to the simulation results of the library

block. When an inconsistency occurs, we carefully analyze the original description of

the block again and consult with our partners at Simulink, to identify the problem

and refine the library function if needed. Not only can this way elevate our confidence

of the TIC library functions, it also helps us discover below a bug in a library block.

The output of the Dead Zone Library block depends on the relation between its input

and a region constrained by a lower limit and an upper limit: (1) the output is zero

if the input is within the region, (2) the output is the input minus the upper limit

if the input is greater than or equal to the upper limit, (3) the output is the input

minus the lower limit if the input is less than or equal to the lower limit.

Unfortunately, the above original definition is inconsistent with the case where the

input is continuous and the upper limit equals the lower limit. Figure 6.1 depicts a

particular simulation result of an elementary block of the Dead Zone library block:

6.3. DISCUSSIONS AND DISCOVERIES 75

Figure 6.2: A wrong simulation result of the Interval Test library block.

Figure 6.3: A correct simulation result of the Interval Test library block.

its output is identical to its input, where both limits are equal to the value 0.5 and

the input is a sine wave. However, the input and output should be different according

to the definition, as the input is greater than or less than 0.5 most of the time.

We remark that checking the TIC library functions by simulations must be extremely

careful, especially when simulation results are different. Because simulations in

Simulink can be influenced by simulation settings such as the step size of a simulation,

a library block may thus behave correctly in one setting but wrongly in another.

A particular instance is the Interval Test library block. The library block outputs the

value 1 if its input is within the values of parameters Lower limit and Upper limit,

6.4. SUMMARY 76

and the value 0 otherwise. Figures 6.2 and 6.3 show the respective simulation results

of an instantiated library block when Lower limit equals the value -0.5 and Upper

limit equals the value 0.5. The input of the instantiated library block is a continuous

wave, and the output is a square line. From Figure 6.2, it is easy to see that the

block behaves wrongly when the simulation step size is automatically determined

by Simulink as a default setting: the moments when input values are outside the

range [−0.5 . . . 0.5] are imprecisely captured. However, the block behaves correctly in

Figure 6.3 when we manually fix the simulation step size to 1e − 3.

Therefore, if incorrect behavior of a library block is caused by simulation settings, we

treat that the TIC library function of the library block is still valid. In addition, we

record the settings which lead to abnormal behavior. The above way also facilitates

the analysis of the case when simulation results are unexpected, and hence increases

confidence in system design denoted in Simulink.

6.4 Summary

In this section, we have presented the general structure of TIC library functions which

formally model the time-dependent mathematical relationships as the denotational

semantics of Simulink library blocks. We have further discussed the way to elaborately

construct and validate these library functions, with the illustration of discoveries of

incomplete semantics of the Relay library block and a bug of the Dead Zone library

block. These functions can serve as an accurate and thorough documentation to

accompany [84] for Simulink library blocks, and form the foundation used for the

automatic transformation from Simulink diagrams to TIC models.

Interpreting Simulink diagrams in other formal notations or programming languages

usually focuses on discrete behavior [1, 10, 21, 22, 89, 128, 129]. Our first attempt

6.4. SUMMARY 77

was to apply Timed Communicating Object-Z (TCOZ) [78, 79, 80, 109] to represent

Simulink diagrams. TCOZ blends Object-Z [45] and Timed CSP [116] for design-

ing real-time and concurrent systems with digital components. However, like those

previously mentioned formal notations and programming languages, TCOZ faces the

same drawback of lacking support of the continuous-time semantics which is adopted

by Simulink. On the other hand, TIC is based on the continuous-time domain and

supports elementary calculus, such as integral calculus, which is commonly used in

control engineering, an important application domain of Simulink. To the best of

our knowledge, we are the first to model Simulink diagrams in terms of continuous

time. The TIC expressive power enables us to handle a wide range of Simulink library

blocks.

Currently, we have modeled 44 Simulink library blocks of 9 categories including con-

tinuous, logic operations, discrete, math operation, and so on. These block names are

given in Appendix C.1, and the corresponding TIC library functions are available on-

line [30]. The main reason for modeling these library blocks is their frequent usage in

practice. For example, all 22 library blocks of the Commonly Used category defined

in [84] are supported, and their specific TIC library functions are given in Appen-

dix C.3. Moreover, these library blocks have been used in 17 Simulink demos which

cover the areas of aerospace and automobile systems. Note that library blocks of

the Ports and Subsystems category are improper to be captured, because their func-

tionalities are usually unpredictable until they are instantiated in specific Simulink

diagrams. We will present how to handle these library blocks in Chapter 7.

6.4. SUMMARY 78

Chapter 7

Transforming Simulink Diagrams

into TIC Schemas

The TIC library functions constructed in the previous chapter model Simulink library

blocks which are templates of generating elementary blocks as the basic units of

Simulink diagrams. Based on those functions, we develop a strategy here to transform

Simulink diagrams into TIC schemas. The transformation starts from elementary

blocks and follows a bottom-up order in which a Simulink diagram is constructed.

During the transformation, functional and timing aspects of an elementary block are

captured, and the hierarchical structure of a diagram and wires between components

in the diagram are retained. Moreover, the transformation is automatic as the strategy

has been implemented in Java.

In the following, we firstly present the way to transform elementary blocks, wires and

diagrams. Next, we describe a simple but effective algorithm for deriving unspeci-

fied sample times of elementary blocks in complex diagrams which may contain loop

structure. Lastly, we highlight how to cope with the library blocks of the Ports and

79

7.1. TRANSFORMING ELEMENTARY BLOCKS 80

Subsystems category (note that they are not captured in the previous chapter), espe-

cially conditional subsystems such as Triggered subsystems and Enabled subsystems.

7.1 Transforming Elementary Blocks

A Simulink elementary block is produced by a library block by using the parameteriza-

tion technique. We reuse the Simulink diagram shown in Figure 2.1 from Chapter 2.4

as a running example in this chapter. The diagram with its simplified textual contents

is displayed in Figure 7.1. Note that the elementary block Integrator is produced by

the Integrator library block with value 4 for the block parameter InitialCondition.

Figure 7.1: A system calculation in Simulink graphical and textual contents

An elementary block is represented by a TIC schema which is produced by applying

relevant parameter values to the TIC library function which models the corresponding

library block. During a transformation, two aspects are taken into account.

One is the criteria for selecting an appropriate TIC library function for an elementary

block. The primary criterion is the BlockType block parameter which indicates the

functionality of a block. Nevertheless, this parameter is inadequate to distinguish

special library blocks which contain operator parameters and can generate elementary

blocks with different functionalities. Thus, operator parameters are also considered to

7.1. TRANSFORMING ELEMENTARY BLOCKS 81

be additional criteria. Recalling the Relational Operator library block in Chapter 6.2,

it has an operator parameter Relational Operator which determines the functionality

of its produced elementary blocks. Hence, the criteria of choosing a TIC library

function consist of two block parameters, namely, BlockType and Relational Operator.

The other aspect is about sample times. A sample time of an elementary block is

determined in one of the following ways: by the SampleTime block parameter, by

the library block type (for example, elementary blocks of a continuous library block

always have continuous sample times), or by blocks which connect to the block inputs.

In addition, the last way relies on the assumption that all sample times of the blocks

are specified. We formalize below the third way based on the rules from [85]. We will

also present a simple but effective algorithm in Section 7.4 to deal with the case that

the above three ways are inapplicable.

Let Blk In denote the blocks which connect to the inputs of an elementary block,

and InST be a function of the type InST : Blk In → T which associates the blocks

with their sample times.

• We firstly check whether sample times of all blocks in Blk In are identical. If

so, we assign the identical value to be the sample time of the elementary block.

Otherwise, we return the value -1 as modeled by the following function AllEq

to indicate that the sample time is unspecified.

AllEq : PBlk In → (T ∪ {−1})
∀ ins : PBlk In • ∃ res : T • AllEq(ins) =

If ∀ in : ins • InST (in) = res Then res Else − 1

• Next, we check whether there is a sample time of a block in Blk In which is

the greatest common integer divisor (GCD) of the sample times of other blocks

in Blk In. If so, we assign the GCD to be the sample time of the elementary

7.1. TRANSFORMING ELEMENTARY BLOCKS 82

block. Otherwise, we return the value -1 as modeled by the following function

ExiFast to indicate that the sample time is unspecified.

ExiFast : PBlk In → (T ∪ {−1})
∀ ins : PBlk In • ∃ res : T • ExiFast(ins) =

If ∃ in1 : ins • ∀ in2 : ins | in1 6= in2 •
∃ k : N | k > 1 • InST (in2) = InST (in1) ∗ k ∧ InST (in1) = res

Then res Else − 1

• Lastly, when AllEq and ExiFast return the value -1, we derive the sample time

according to the solver1 used in that diagram which contains the elementary

block. As modeled by the following function STP , if a variable-step solver is

used, the sample time is continuous, namely, equaling the value 0. Otherwise,

the sample time is the result of function CalGCD which returns the GCD of

sample times of Blk In if such a GCD exists or the value 0 otherwise.

STP : PBlk In × Solver → T

∀ ins : PBlk In; s : Solver • STP(ins , s) =
If AllEq(ins) < 0 ThenAllEq(ins)

Else (If ExiFast(ins) < 0 Then ExiFast(ins)
Else (If s = Variable Step Then 0 Else CalGCD(ins)))

The above two aspects are important to capture the functional and timing properties

of an elementary block. We here use the elementary block Integrator in Figure 7.1 as

an example: (1) the selection criterion is the BlockType block parameter whose value is

Integrator and hence the TIC library function Integrator in Chapter 6.2 is chosen, (2)

the sample time is 0 since the type of the Integrator library block is continuous. This

elementary block is modeled by the following schema calculation Integrator which is

1There are two types of solvers for simulations in Simulink: variable-step solvers vary the

simulation step size, while fixed-step solvers keep the simulation step size constant. Solver ==

{Variable Step,Fixed Step}.

7.2. TRANSFORMING WIRES 83

the result by applying the value 4 as the initial value to the library function. The

expanded form of the schema is also given.

calculation Integrator =̂ Integrator(4)

calculation Integrator
In1 : T→ R; Out : T1 R; IniVal : R; st : T

st = 0 ∧ IniVal = 4 ∧ Out(0) = IniVal ∧ I = >Out(ω) = Out(α) +
∫ ω
α In1?

To preserve the hierarchical structure of a Simulink diagram, a transformed TIC

schema is named in a conventional manner which composes the name of the path

in the diagram. For example, the schema name calculation Integrator is formed by

appending the block name Integrator to the system name calculation with the symbol

“ ”. This naming manner is also adopted by other approaches [10, 22, 129].

7.2 Transforming Wires

In Simulink, wires represent input and output relations between connected blocks,

and the communication is infinitely fast. Namely, a destination block can receive the

value which is produced by a source block at the same time point. As Simulink adopts

the continuous-time domain, wires have values at all time points. In other words, a

source (or destination) block can write (or read) value to (or from) a wire according to

its own execution rate, namely, its sample time. This feature hence allows Simulink to

support multi-rate discrete systems as well as hybrid systems, and both can contain

blocks with different sample times.

Each wire is converted into an equation of two timed traces at the interval level.

The equivalent timed traces indicate the interfaces of connected blocks respectively.

7.3. TRANSFORMING DIAGRAMS 84

Specifically, let src denote the output of a source block (src : T→ R) and dst denote

the input of a destination block (dst : T→ R), the equivalence of these timed traces

holds for all non-empty intervals, namely, I = >src = dst?. We remark that this

way is also applicable to normal (sub)systems. However, a different way to handle

conditionally executed subsystems will be demonstrated in Section 7.5.

7.3 Transforming Diagrams

A Simulink diagram is made up by linking blocks with wires. It is thus necessary to

retain the components and connections of a diagram in transformed TIC models. Our

method is similar to the one of Arthan et al [10]: the transformation of a diagram is

performed after the components of the diagram are transformed into TIC schemas.

A diagram is modeled by a TIC schema in the following way.

• Each component is declared as a schema variable. If a component is a block, the

type of the variable is the TIC schema which models the block. Otherwise, the

component is an interface, such as an input port, and the variable is declared to

be a total function from time to real numbers (more details are in Section 7.5).

• Each wire is represented by a TIC predicate in the way as described in the

previous section, where the variables used in predicate are the schema variables

from the schema declaration.

A Simulink block can be either an elementary block or a diagram itself representing

a subsystem. The way to handle elementary blocks is illustrated in Section 7.1 and

Section 7.5 shows how to deal with subsystems.

7.4. COMPUTING UNSPECIFIED SAMPLE TIMES 85

Figure 7.2: A diagram with specified sample times for blocks Delay and IC.

7.4 Computing Unspecified Sample Times

In Section 7.1, we described three ways of determining sample times of elementary

blocks. However, it is often a case that these ways are inapplicable in practice, as

users usually assign particular values to sample times of some blocks and leave other

blocks with unspecified sample times.

Taking Figure 7.2 as a running example here, the diagram consists of six elementary

blocks, one input port (In1) and one output port (Out1), and only the sample times

of blocks Delay and IC are specified with values 1 and 2 respectively. We remark that

in the beginning the sample time of elementary block Switch is unknown by using the

method in Section 7.1 since its block type is not continuous and the sample times of

blocks Sum, Comparator and Gain which connect to its inputs are unspecified.

It is thus necessary to develop an algorithm to handle the unspecified sample times

which cannot be directly computed in the previous way. Our algorithm can automat-

ically compute derivable sample times which are a subset of unspecified sample times.

The unspecified sample time of an elementary block is derivable provided one of the

following conditions holds.

1. One of the blocks connecting to the elementary block has continuous sample

time;

7.4. COMPUTING UNSPECIFIED SAMPLE TIMES 86

2. All sample times of the blocks connecting to the elementary block are specified;

3. All sample times of the blocks connecting to the elementary block are either

specified or derivable.

When the elementary block fulfills condition 1, its sample time is equal to the value

0 [85]. When condition 2 is satisfied, the sample time can be computed by applying

the function STP defined in Section 7.1. When condition 3 holds, the sample time

can be derived after finishing the computation of the derivable sample times of the

blocks connecting to the elementary block.

According to the above conditions, we can deduce that the sample times of Sum,

Gain and Comparator in Figure 7.2 are derivable by condition 2 and the sample time

of Switch is also derivable by condition 3.

Based on the computability property of derivable sample times, we have developed a

simple and effective algorithm to handle unspecified sample times. As shown below,

the algorithm starts with a non-empty list BLKS of elementary blocks whose sample

times are unspecified, and repeatedly modifies the list until its termination condition

at line 15 holds. Specifically, it terminates when either all sample times are specified

or none of the unspecified sample times is derivable. The first case is examined by

method Empty which checks if BLKS is empty, and the second case is examined by

method CheckEq which checks if there exists a change of BLKS each time the for

loop from line 3 to line 14 executes.

7.4. COMPUTING UNSPECIFIED SAMPLE TIMES 87

Algorithm 1: Deal with all unspecified sample times

BLKS : a non-empty list of elementary blocks with unspecified sample times
1: repeat
2: iniBLKS ← BLKS
3: for all i = 1 to BLKS .length do
4: b ← BLKS [i]
5: if ExistsContinuous(b.GetInBLKSST ()) then
6: b.st ← 0
7: BLKS ← Delete(BLKS , b)
8: else if AllSTKnown(b.GetInBLKSST ()) then
9: b.st ← CallSTP(BLKS , b)

10: BLKS ← Delete(BLKS , b)
11: else skip
12: end if
13: i ← i + 1
14: end for
15: until Empty(BLKS) or CheckEq(BLKS , iniBLKS)

An element b in BLKS is analyzed with respect to three cases (line 5 to line 12).

• Lines 5 to 7 correspond to condition 1. Method ExistsContinuous checks

whether there exists a block whose sample time is continuous and the block con-

nects to b (namely, the block is in the blocks returned by method GetInBLKSST).

If ExistsContinuous returns true, the sample time of b is equal to the value 0,

and then b is deleted from BLKS by method Delete.

• Lines 8 to 10 correspond to condition 2. Method AllSTKnown checks if all

sample times of the blocks connecting to b are specified. If AllSTKnown returns

true, we apply method CallSTP which implements the function STP defined in

Section 7.1 to calculate the sample time of b, and then delete b from BLKS .

• Line 11 indicates that there is inadequate information to calculate the sample

time of b. We simply do nothing to finish the analysis of b.

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 88

We illustrate how the algorithm can systematically compute the unspecified sample

times in Figure 7.2. Initially, BLKS consists of four blocks, Sum, Gain, Switch and

Comparator. After the first time the for loop is executed, Gain, Sum and Comparator

are deleted from BLKS with specified sample times which are 1, 1 and 2 respectively.

After the second execution of the for loop, Switch is deleted with its sample time

which is 1. The algorithm hence terminates since BLKS becomes empty.

Note that the Simulink diagram contains two loops: One consists of Sum, Switch

and IC ; and the other comprises Switch, IC and Comparator. Loop structure is

often used in Simulink for modeling differential equations or feedback control systems.

Nevertheless, [129] is unable to compute block sample times in loops. In contrast,

our algorithm can calculate derivable sample times in complex Simulink diagrams

containing loop structure.

7.5 Dealing with the Ports and Subsystems Category

The transformation presented in Section 7.1 handles the elementary blocks whose

library blocks are modeled by the TIC library functions defined in Chapter 6.2. How-

ever, it is difficult and impracticable to define TIC library functions to model the

library blocks of the Ports and Subsystem category, because the behavior of their

instances as produced elementary blocks in particular diagrams is usually unpre-

dictable. We hence directly model their instances in TIC during the transformation.

We demonstrate below how to deal with these library blocks based on their usage,

specifically, either denoting interfaces or creating subsystems. Appendix C.2 lists the

library block names of this category supported so far.

• Library blocks Inport, Outport, Enable, and Trigger are designed to create

(sub)system interfaces. For example, instances of the Outport library block

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 89

represent outputs of (sub)systems. An instance of one of these four library

blocks is transformed to a total function of time in a TIC schema which models

the (sub)system which contains the instance. Furthermore, an instance of the

Inport or Outport library block in a plain or enabled subsystem (which will be

explained more in the following context) is declared to be continuous if the out-

put of the block which connects to the instance is continuous, as the instance

inherits the sample time from the block.

Reusing the system calculation in Figure 7.1 as an example, its input port Acc is

an instance of the Inport library block, and its output port Speed is an instance

of the Outport library block. These ports are represented by two functions

declared in the following schema calculation which models the system. These

functions are in turn used in the predicates of calculation. Moreover, Speed

is continuous as indicated by 1 because the elementary block Integrator out-

puts continuously. Note that the schema calculation Integrator which models

Integrator was presented in Section 7.1.

calculation
Acc : T→ R; Integrator : calculation Integrator ; Speed : T1 R

I = >Acc = Integrator .In1? ∧ I = >Integrator .Out = Speed?

• The Subsystem library block is applied to form plain subsystems which virtually

reduce the number of blocks displayed in Simulink diagrams and form the hier-

archical structure of Simulink diagrams. The plain subsystems are thus treated

in the same way of transforming diagrams as described in Section 7.3.

Library blocks Enabled Subsystem and Triggered Subsystem are used to build

enabled subsystems and triggered subsystems respectively which are condition-

ally executed subsystems. Here we illustrate our solution for dealing with these

subsystems with examples in the following two subsections.

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 90

7.5.1 Triggered Subsystems

A triggered subsystem executes each time a trigger event occurs. A trigger event

is determined by a control input which is an instance of the Trigger library block.

There are three types of trigger events, rising, falling, and either, according to the

direction the control input crosses the value 0. For instance, a rising trigger event

occurs, when the control input rises from a negative or zero value to a positive value.

When no events occur, triggered subsystems always hold their outputs at the last

value between trigger events [85]. In addition, Simulink constrains the sample times

of components in a triggered subsystem in the following way: all blocks and interface

ports such as an input have the same sample times of its control input. To model a

triggered subsystem, we focus on modeling the way which assigns values to system

inputs under different circumstances of the system control input, whether a trigger

event occurs or not. This is because the subsystem outputs and the behavior of its

components are dependent on the subsystem inputs.

Triggered subsystem can be classified into two groups in terms of their control inputs,

which can be either continuous or discrete. We present here how to handle triggered

subsystems whose control inputs are continuous. Appendix D.1 shows the way to

support the other group where control inputs are discrete.

When the control input of a triggered subsystem is continuous, a trigger event occurs

only at a point-interval where the starting point equals the ending point. The subsys-

tem behavior is modeled for three cases: the presence of trigger events, the absence

of trigger events in non-initial intervals whose starting points are positive, and the

absence of trigger events in initial intervals which start with the time point 0. We

remark that the last case is not specified in the Simulink documentation [84, 85].

For example, a triggered subsystem named trigsys as shown in Figure 7.3 outputs the

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 91

Figure 7.3: A triggered subsystem with a continuous control input

moments when its continuous control input Trigger rises from a negative or zero value

to a positive value. In the following schema sys trigsys which denotes the triggered

subsystem, the control input is declared to be a total function Trigger whose range

consists of two values, 1 and 0, where the value 1 indicates the presence of a trigger

event and the value 0 indicates the absence. Because we aim at modeling the sub-

system behavior with respect to trigger events, we hence simply define control inputs

as functions without specifying how to detect trigger events. In addition, sys trigsys

captures the timing feature that trigger events occur only at point-intervals by the

predicate :Trigger = 1; ⊆ :α = ω; where : ; indicates both-closed intervals.

sys trigsys
Trigger : T→ {0, 1}; In1,Out1 : T→ R

:Trigger = 1; ⊆ :α = ω; ∧ I = >In1 = Out1?

sys
clock : sys clock ; trigsys : sys trigsys ; . . .

. . .
:trigsys .Trigger = 1; ⊆ :clock .Out = trigsys .In1; [Predicate1]
>trigsys .Trigger = 0 ∧ α > 0?

⊆ >trigsys .In1(α) = trigsys .In1? [Predicate2]
>trigsys .Trigger = 0 ∧ α = 0? ⊆ >trigsys .In1 = 0? [Predicate3]

In the above schema sys which includes the subsystem trigsys by the declaration

trigsys : sys trigsys , the conditionally executed behavior of trigsys is depicted by

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 92

three predicates which constrain subsystem input trigsys .In1. Predicate1 states that

trigsys .In1 equals the output of elementary block clock when a trigger event happens.

Predicate2 restricts the values of trigsys .In1 in a non-initial interval (indicated by

α > 0), where no trigger event occurs, to be the trigsys .In1 value at the beginning

of the non-initial interval. Predicate3 captures the default value of trigsys .In1 when

no trigger event happens in an initial interval (by α = 0), namely, the value 0. Note

that this default value is missed in the Simulink documentation.

We informally explain below the reason to represent the last value between trigger

events by using α in Predicate2. When a trigger event occurs at a time point t, we have

clock .Out(t) = trigsys .In1(t) according to Predicate1. Based on Predicate2, we can

deduce that the set of intervals as denoted by >trigsys .Trigger = 0 ∧ α > 0? contains

a left-open interval i such that (1) its starting point is t, namely, α(i) = t , and (2)

the values of trigsys .In1 in i are equal to trigsys .In1(α(i)), namely, trigsys .In1(t).

Furthermore, we can imply that in any interval which starts at t and ends before a

time point t ′ at which the next trigger event happens, the values of trigsys .In1 are the

same as trigsys .In1(t). For instance, for a point-interval [x . . . x] where t < x < t ′,

we can find a left-open and right-closed interval (t . . . x] such that trigsys .In1(t) =

trigsys .In1(x) because of the TIC expression >trigsys .In1(α) = trigsys .In1?.

7.5.2 Enabled Subsystems

An enabled subsystem executes when the value of its control input which is an instance

of the Enabled library block is positive. Namely, an enabled subsystem starts its

execution from the moment when its control input value crosses zero from a negative

value and continues its execution in the interval in which the control input values

remains positive. When an enabled subsystem is disabled, it can output either its

last values or its initial output values. We demonstrate here how to model the enabled

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 93

subsystems which output their last values when they are disabled. Nevertheless, the

enabled subsystems which output their initial output values can be handled similarly

with auxiliary variables for storing the initial output values.

We concentrate on specifying the behavior which associates the subsystem inputs with

their control inputs. Unlike triggered subsystems which restrict all components of a

triggered subsystem to have the same sample time, enabled subsystems in Simulink

can include components with different sample times [85]. This loose restriction results

in the difficulty of representing the last values of enabled subsystems, especially when

the control inputs are discrete. We present below our solution to model the enabled

subsystems whose control inputs are discrete. Appendix D.2 shows how to support

the enabled subsystems whose control inputs are continuous.

When the control input of an enabled subsystem is discrete, we can represent the

behavior of its control input by specifying its value at every sample time hits. Nev-

ertheless, the logic that Simulink uses to update enabled subsystems with different

sample times of their components is complicated to be identified, as discussed by

Tripakis et al. [129]. Currently, we restrict ourselves to cope with a subset of enabled

subsystems: all sample times of components within an enabled subsystem are inher-

ited by the inputs of the subsystem, and all subsystem inputs have the same sample

times. These restrictions are weaker than those of Tripakis et al., as we allow the

sample time of the control input to be different from other sample times.

Taking enabled subsystem open as displayed in Figure 7.4 as an example, it multiplies

its continuous input volumeIn by the constant -0.1 when it is enabled; otherwise, it

outputs the last value. Its control input Enable is linked by elementary block inverse

whose sample time equals one time unit. In the following TIC schemas, tank open K

represents elementary block K and tank open represents open. In this example, the

input volumeIn of open is connected by a continuous block, so it is defined by a

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 94

Figure 7.4: An enable subsystem open in a system tank.

continuous function in tank open. Therefore, the sample time of K is equal to the

value 0, and the output flow of open is hence continuous based on the discussion at

the beginning of Section 7.5.

tank open K =̂ Gain(0,−0.1)

tank open
Enable : T→ R; volumeIn,flow : T1 R; K : tank open K

I = >volumeIn = K .In1? ∧ I = >K .Out = flow?

The components and wires in open are captured in tank open. The conditionally

executed behavior of open is specified in the following schema tank which denotes the

system tank . Specifically, we model the relation between the input open.volumeIn

and the control input open.Enable in every sample time interval. Note that a sample

time interval is left-closed and right-open (indicated by : 7 in Definition 2). Moreover,

discrete systems in Simulink execute only at sample time hits; particularly, elementary

block inverse outputs values to open.Enable every 1 time unit. As open is either

enabled or disabled at the endpoints of a sample time interval, so there are four cases

regarding the open status at the endpoints. The sample time intervals during which

open is disabled are further distinguished to two groups based on their starting points,

because when an enabled subsystem is disabled in the initial sample time interval,

its last value is 0 by default. We remark that this default value is obtained from our

experience, although it is unspecified in the Simulink documentation [85].

7.5. DEALING WITH THE PORTS AND SUBSYSTEMS CATEGORY 95

tank
volumeIn : T1 R; open : tank open; . . .

. . . [Predicate1]
:open.Enable ≤ 0 ∧ open.Enable(ω) > 0 ∧ α = 0 ∧ ω = 17 ⊆ :open.volumeIn = 07
:open.Enable ≤ 0 ∧ open.Enable(ω) ≤ 0 ∧ α = 0 ∧ ω = 17 [Predicate2]

⊆ :open.volumeIn = 0 ∧ open.volumeIn(ω) = 07
:open.Enable ≤ 0 ∧ open.Enable(ω) > 0 ∧ ∃ k : N1 • α = k ∧ ω = k + 17 [Predicate3]

⊆ :open.volumeIn(α) = open.volumeIn7
:open.Enable ≤ 0 ∧ open.Enable(ω) ≤ 0 ∧ ∃ k : N1 • α = k ∧ ω = k + 17 [Predicate4]

⊆ :open.volumeIn(α) = open.volumeIn ∧ open.volumeIn(α) = open.volumeIn(ω)7
:open.Enable > 0 ∧ open.Enable(ω) > 0 ∧ ∃ k : N • α = k ∧ ω = k + 17 [Predicate5]

⊆ :volumeIn = open.volumeIn7
:open.Enable > 0 ∧ open.Enable(ω) ≤ 0 ∧ ∃ k : N • α = k ∧ ω = k + 17 [Predicate6]

⊆ :volumeIn = open.volumeIn ∧ volumeIn(ω) = open.volumeIn(ω)7

The first four predicates depict the behavior when open is disabled in a sample time

interval (indicated by open.Enable ≤ 0). Predicate1 and Predicate2 are concerned

with the initial sample time interval which starts with the time point 0: the values

of open.volumeIn are equal to 0 in the interval. In addition, if open is still disabled

at the ending point, namely, open.Enable(ω) ≤ 0, then the value of open.volumeIn is

0 at the ending point (in Predicate2). Predicate3 and Predicate4 deal with the non-

initial sample time intervals (denoted by :∃ k : N1 • α = k ∧ ω = k + 17), where

the last value is the open.volumeIn value at the starting point (open.volumeIn(α)).

Furthermore, if open is still disabled at the ending point, we assign the open.volumeIn

value at the ending point to be the last value (in Predicate4). The way of representing

last values here is similar to the one handling triggered subsystems in Section 7.5.1.

Predicate5 and Predicate6 model the behavior when open is enabled in a sample

time interval (indicated by open.Enable > 0). To be specific, input open.volumeIn

of open is equal to input volumeIn of tank at the same time point in the sample

time interval. Moreover, if open becomes disabled at the ending point (denoted by

open.Enable(ω) ≤ 0), the volumeIn value at the ending point can be considered as

7.6. SUMMARY 96

the last value for open.volumeIn (namely, volumeIn(ω) = open.volumeIn(ω) in Pred-

icate6), based on mathematical theories of continuous functions (volumeIn). In the

case where volumeIn is discrete, we can assign the volumeIn value at the most recent

sample time hit before the ending point to be the last value.

7.6 Summary

Up to now, we have developed a translator which implements the strategy to au-

tomatically transform Simulink diagrams to TIC models. The transformation can

preserve the functional and timing aspects of Simulink elementary blocks and the

hierarchical structure of diagrams. We have also presented an algorithm to compute

unspecified sample times in (complex) Simulink diagrams. We have further discussed

how to handle the library blocks of the Ports and Subsystems category, in particular

enabled subsystems and triggered subsystems. The conditional execution behavior

is captured by precisely modeling the relationship between subsystem inputs and

control inputs under different circumstances, such as an enabled subsystem with a

discrete control input and continuous system inputs. We currently support 7 library

blocks of this category, and hence our approach covers totally 51 library blocks of 10

categories (other 44 library blocks are modeled in Chapter 6). Based on transformed

TIC models of Simulink diagrams, we can specify requirements over diagrams, and

rigorously check their validity with a high grade of automation, as we illustrate in the

following chapter.

Chapter 8

Validation beyond Simulink

The significant and novel point of our formal framework is to exploit TIC modeling

and reasoning features to support the validation beyond Simulink. Previous chapters

(6 and 7) have illustrated how to precisely and concisely capture the functional and

timing aspects of Simulink diagrams in TIC. Based on the TIC models of diagrams,

we can specify important timing requirements over the whole system or some com-

ponents. Moreover, additional properties of open systems, such as the bounds of an

environment variable, can be expressed as well. We can further rigorously validate

diagrams against these requirements, with a high degree of automation by applying

the verification system developed in chapters 3 and 4.

Recently, there have been a number of works on transforming Simulink into other for-

mal notations or programming languages. Adams and Clayton [1], Arthan et al. [10]

transformed Simulink diagrams to the Z notation [136] by capturing the functional be-

havior of one cycle. Cavalcanti et al. [22] extended that work by applying Circus [135]

to model the functionality and concurrency of diagrams. Their approaches focused

on the verification of Simulink diagrams, specifically, verifying whether Simulink dia-

97

Chapter 8. Validation beyond Simulink 98

grams are correctly implemented in the programming language Ada. This is different

from our approach: we focus on the validation of Simulink diagrams, namely, check-

ing if Simulink diagrams fulfill various requirements. Moreover, they consider only

single-rate discrete systems, and timing information is missing. In contrast, we can

handle multi-rate discrete and hybrid systems, and the timing information is retained

as well.

Meenakshi et al. [89] used the NuSMV model checker [35] to analyze single-rate

discrete Simulink diagrams. Tripakis et al. [21, 129] applied the synchronous pro-

gramming language Lustre [57] to support multi-rate discrete Simulink diagrams.

Tiwari et al. [128] converted differential equations denoted in Simulink to difference

equations for constructing discrete transition systems. However, the discretization of

infinite transition systems can decrease accuracy when checking properties of contin-

uous dynamics [97]. Our approach is different in that we can directly represent and

analyze continuous Simulink diagrams.

There are other approaches [56, 118] which took into account Simulink/Stateflow1

Models (SSMs). Sims et al. [118] verified SSMs with an invariant checker Salsa [15],

and the transformation from SSMs to the input language of the checker was performed

by hand. Gupta et al. [56] developed a hybrid verification system CheckMate [117]

which contained some customized Simulink blocks to increase the modeling capacity.

CheckMate was designed to check functional behavior, and it lacked support of timing

analysis. Jersak et al. [72] transformed Simulink diagrams into SPI [142] models for

timing analysis, while the transformation abstracted functional behavior. On the

other hand, we support the validation for both functional and timing behavior.

Latest work of the MathWorks is the Simulink Design Verifier [86] which can auto-

1Stateflow [87] combines flow diagrams and statecharts [61] to specify control logic and can be

integrated with Simulink.

8.1. TRANSLATING TIC LIBRARY FUNCTIONS 99

matically generate test input sequences for a Simulink diagram or prove properties

about this diagram. Currently the tool is restricted to the analysis of discrete-time

systems and primitive properties such as linear integer arithmetic. The objective of

this tool is to apply model checker to generate test cases. This is different from our

approach, as we aim to validate Simulink diagrams for all possible cases. In addition,

we also support the analysis of continuous-time systems.

This chapter starts by extending the translation described in Chapter 4.1 to deal with

axiomatic definitions [136] which are the type of TIC library functions. Next, we

define a set of supplementary rules dedicated to Simulink modeling characteristics to

make validation more automated. Thirdly, we illustrate the benefits of our framework

by an example study of a brake control system which involves continuous and discrete

behavior. The chapter ends by comparing our approach with other existing works.

8.1 Translating TIC Library Functions

In Chapter 6.2, we have defined TIC library functions for modeling Simulink library

blocks. These library functions return the TIC schemas which capture the time-

dependent relationships denoted by Simulink blocks. These library functions are

axiomatic definitions. The translation presented in Chapter 4.1 considers two types

of TIC models, namely, the TIC schemas which represent system properties and the

TIC predicates which denote requirements.

We describe here the way to automatically translate TIC axiomatic definitions to PVS

specifications. An axiomatic definition usually declares a global variable and specifies

constraints of the declared variable. Moreover, constraints are assumed to hold when-

ever the variable is used. A general form can be depicted as below, where Predicate

represents the constraints of a variable Decl Name whose type is Expression. The

8.1. TRANSLATING TIC LIBRARY FUNCTIONS 100

definition of a function square is given as a concrete example as well.

Decl Name : Expression

Predicate

square : N→ N

∀ n : N • square(n) = n ∗ n

PVS constant declarations [104] introduce new constants, specifying their types and

optionally providing a value. The term constant in the PVS higher-order logic refers to

not only the usual (0-ary) constants, but also functions and relations. In our approach,

an axiomatic definition is transformed to a PVS function which is a constant declara-

tion. To be specific, for an axiomatic definition, the name of its variable Decl Name

is used as the identifier of a PVS function; the type of the variable Expression is con-

verted into PVS specifications; and the constraint Predicate is translated to a PVS

axiom whose identifier is Decl Name as well. These mappings are sketched below.

We also present the corresponding PVS function for the function square.

1 Decl_Name : Expression;
2 Decl_Name : AXIOM Predicate;

1 square : [nat -> nat];
2 square : AXIOM FORALL (n: nat):
3 square(n) = n * n;

We remark that the name overloading technique is applied to construct PVS speci-

fications of axiomatic definitions. In the above PVS specifications of the axiomatic

function square, line 1 declares that a constant square is a total function whose do-

main and range are natural numbers, and lines 2 and 3 model the function property

as an axiom whose identifier is also square.

A TIC library function is an axiomatic definition, and is thus transformed to a PVS

function which returns a set of PVS records. Specifically, the parameters of the

PVS function correspond to the arguments of the TIC library, and the set of records

represents a schema which is returned by the TIC library function. Taking the TIC

library function Integrator in Chapter 6.2 as an example, it is transformed to the

following PVS function Integrator where the keywords such as Trace, Time, AllS,

ALPHA, OMEGA, and LIFT encode TIC semantics in PVS as defined in Chapter 3.1.

8.1. TRANSLATING TIC LIBRARY FUNCTIONS 101

Integrator : R→ P[In1 : T→ R; Out : T1 R; IniVal : R; st : T]

∀ init : R • Integrator(init) = [In1 : T→ R; Out : T1 R; IniVal : R; st : T |
st = 0 ∧ IniVal = init ∧ Out(0) = IniVal ∧ I = >Out(ω) = Out(α) +

∫ ω
α In1?]

1 Integrator: [real -> setof[[# In1: Trace, Out: Trace, IniVal: real, st: Time #]]];

2 Integrator: AXIOM FORALL (init: real): Integrator(init) =

3 { temp: [# In1: Trace, Out: Trace, IniVal: real, st: Time #] |

4 temp‘st = 0 AND temp‘IniVal = init AND temp‘Out(0) = temp‘IniVal AND

5 fullset = AllS((LIFT(temp‘Out) o LIFT(OMEGA)) = (LIFT(temp‘Out) o LIFT(ALPHA)) +

6 TICIntegral(LIFT(ALPHA), LIFT(OMEGA), temp‘In1)) AND

7 continuous(temp‘Out)};

• Line 1 declares the type of the function. Namely, Integrator is from real

numbers to a set of records (by setof[[# ... #]]). Each record in the set

comprises four accessors, and each accessor is associated with a corresponding

type. For example, the type of the accessor Out is a timed trace (Trace) as a

function from time to real numbers.

• The AXIOM specification from line 2 to line 7 models the properties of the func-

tion. An auxiliary variable temp is defined at line 3 for easily referencing ac-

cessors by using the PVS projection function (‘). This is similar to the way

mentioned in Chapter 4.1. For instance, temp‘st refers to the accessor st.

Line 4 captures the timing feature such as its continuous sample time, and

relationships between accessors and parameters. The predicate at lines 5 and

6 represents the integration operation in PVS. Note that continuous behav-

ior is supported based on the NASA PVS library [19], such as the function

TICIntegral for an integral operation and the function continuous indicating

the continuity feature of the output Out.

The above PVS function Integrator follows closely the TIC library function Integrator

in terms of the structure. Schema predicates in Integrator are converted to the con-

straints in Integrator for all record accessors. Moreover, Integrator facilitates the

proofs in PVS, in particular, when applying the property of an elementary block of

the Integrator library block. Namely, we only need to enter the proof command lemma

with the function name once to retrieve properties of four accessors during a proof.

8.2. FACILITATING TIC VALIDATION OF SIMULINK DIAGRAMS 102

8.2 Facilitating TIC Validation of Simulink Dia-

grams

We define a collection of supplementary rules dedicated to Simulink modeling features

to increase the efficiency of TIC validation. We categories these rules into two groups:

one group deals with connections in Simulink diagrams, and the other handles discrete

systems modeled in Simulink.

Wires in Simulink diagrams are represented by equations in TIC (as shown in Chap-

ter 7.2). Each equation contains two timed traces which denote connected block

ports. When reasoning about TIC models of Simulink diagrams, we often need to

substitute one timed trace for another provided they indicate a connection. In other

words, values of these two timed traces are equal in any interval. However, this kind

of substitution is tedious in PVS since we need to completely expand detailed en-

coding of TIC semantics to the low level of time points enable the PVS prover to

automatically discharge proof goals. To simplify the substitution process, we define a

set of rewriting rules to replace one timed trace by another at the interval level under

various circumstances. For example, the following rule BB eq sub passes a constant

value v between two equivalent timed traces tr1 and tr2, namely, from tr1 to tr2

and vice versa. This rule saves five proof steps such as expanding the function AllS

which encodes the interval brackets > ? in PVS.

BB_eq_sub: LEMMA FORALL (tr1, tr2: Trace, v: real):

fullset = AllS(LIFT(tr1) = LIFT(tr2))

=> AllS(LIFT(tr1) = LIFT(v)) = AllS(LIFT(tr2) = LIFT(v));

Discrete systems with periodic execution are a common application domain of Simulink.

The time domain of these discrete systems in Simulink is decomposed into a sequence

of sample time intervals as defined in Chapter 6.1, and systems are updated at sample

time hits. Based on these features, we define several domain-specific rules to ease the

analysis of this domain. For instance, to verify a safety requirement pl of a discrete

system, we can apply the following rule CO to All if pl is independent on interval

operators (namely, α, ω, and δ). Note that a safety requirement must be valid in

every non-empty interval. The rule simplifies the checking of pl by considering only

the sample time intervals, which are expressed in PVS at lines 2 and 3, rather than

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 103

all non-empty intervals. In addition, the function No Term? at line 1 indicates that

pl is not affected by any interval operator.

1 CO_to_All: LEMMA st > 0 AND No_Term?(pl) =>

2 subset?(COS(exNat(lambda(k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(st) AND

3 LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(st))),

4 COS(pl))

5 => fullset = AllS(pl);

We have constructed 25 supplementary rules (in Appendix A.3) which have been val-

idated in PVS. These rules facilitate the validation of Simulink diagrams by elevating

the grade of automation. In the following section, we will show the feasibility and

benefit of our approach from our experimental studies.

8.3 Implementation and Experimental Study

To enhance the usability of our approach, we apply Java technology to implement

the framework. The work flow is shown in Figure 8.1. Two translators automatically

transform system designs. Specifically, Sim2TIC transforms Simulink diagrams into

TIC models, and TIC2PVS translates the TIC models of requirements and Simulink

library blocks and diagrams to PVS specifications. Moreover, supplementary rules

(from the previous section) are imported to simplify reasoning processes.

Using this framework, we can rigorously validate various systems modeled in Simulink,

such as multi-rate discrete or hybrid systems. Open systems are also supported, as

we can formally specify environment properties in TIC based on the transformed

TIC models denoting Simulink diagrams. With the powerful verification capability,

the framework can handle the analysis of continuous dynamics and can reason about

important timing requirements such as bounded response requirements.

Here we apply our framework to an adapted brake control system which is designed to

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 104

Figure 8.1: The framework structure to model and validate Simulink diagrams

prevent a vehicle from over speeding by automatically turning on its brakes in time.

The control system is open and possesses both continuous and discrete behavior. We

firstly present the Simulink diagram of the system as well as its transformed TIC

schemas. Next, we sketch the validation of two important requirements of the control

system. One requirement is concerned with computational accuracy, and the other

requirement checks the response time within which brakes should respond.

8.3.1 Specifications of System Design and Requirements

As shown in Figure 8.2, the Simulink diagram modeling the brake control system

consists of three subsystems: plant, sensor and brake.

• Subsystem plant represents the continuous behavior of vehicle speed. Speed is

calculated by elementary block Integration which continuously accumulates the

acceleration rate from elementary block Switch. For different status of brakes,

which is indicated by input port command from subsystem brake, Switch outputs

a respective acceleration rate which is from either input port on or input port

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 105

Figure 8.2: The brake control system in Simulink

off. Specifically, when the value of command is 0, Switch outputs its third input;

when the value of command is 1, Switch outputs its first input.

• Subsystem sensor converts continuous speed into discrete speed. The conversion

is performed by elementary block detector which is an instance of the Zero-Order

Hold library block. The block samples vehicle speed from subsystem plant every

1 second via output port speedR and outputs the sampled speed to subsystem

brake via output port speedS.

• Subsystem brake controls brakes according to the speed from subsystem sensor.

Elementary block check outputs the value 1 to enable brakes if its input value

is not lower than 50 meter/second which is the specified via elementary block

max, and outputs the value 0 to disable brakes otherwise. Initially, brakes are

disabled, and this is depicted by elementary block IC which outputs the value

0 at the time point 0 and outputs the value of check after the time point 0.

We apply the strategy described in Chapter 7 to automatically transform the Simulink

diagram to TIC schemas. Firstly, there are six elementary blocks in Figure 8.2, and

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 106

they are created by different Simulink library blocks. Three of these library blocks

are presented in Chapter 6.2: the Integrator library block for block Integration, the

Zero-Order Hold library block for block detector, and the Relational Operator library

block for block check. We demonstrate below the other three library blocks.

1. The Constant library block produces the elementary block Max. This library

block always outputs the value stored in its Constant Value block parameter.

Constant : R→ P[Out : T→ R; IniVal : R]

∀ cv : R • Constant(cv) =
[Out : T→ R; IniVal : R | cv = IniVal ∧ I = >Out = IniVal?]

2. The Switch library block produces the elementary block Switch. This library

block switches its output between first and third input based on the value of

its second input. The selection condition is determined by the Threshold block

parameter which assigns the switch threshold and the Criteria for passing first

input block parameter which specifies how to check the second input; whether

the second input is greater than or equal to the threshold value, purely greater

than the threshold value, or nonzero. Thus, the Criteria for passing first input

parameter is treated as an operator parameter (as introduced in Chapter 6.2),

as its value can result in different functionalities of generated elementary blocks.

In this Simulink diagram, the Switch library block passes its first input when

its second input is purely greater than its threshold value.

Switch G : T× R→ P[In1, In2, In3,Out : T→ R; TH : R; st : T]

∀ t : T; th : R • (t = 0 ⇒ Switch G(t , th) = [In1, In2, In3,Out : T→ R; TH : R; st : T |
st = 0 ∧ th = TH ∧ >In2 > TH ? = >Out = In1? ∧ >In2 ≤ TH ? = >Out = In3?])

∧ (t > 0 ⇒ Switch G(t , th) = [In1, In2, In3,Out : T→ R; TH : R; st : T |
t = st ∧ st > 0 ∧ th = TH ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 ⊆
:(In2(α) > TH ⇒ Out = In1(α)) ∧ (In2(α) ≤ TH ⇒ Out = In3(α))7])

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 107

3. The IC library block produces the elementary block IC. This library block

outputs the value specified via the Initial value block parameter when the sim-

ulation starts. Thereafter, the block outputs its input value.

InitCond : T× R→ P[In1,Out : T→ R; IniVal : R; st : T]

∀ t : T; init : R • (t = 0 ⇒ InitCond(t , init) = [In1,Out : T→ R; IniVal : R; st : T |
st = 0 ∧ init = IniVal ∧ >0 = α? ⊆ >Out(α) = IniVal? ∧ >0 < α? ⊆ >Out = In1?])

∧ (t > 0 ⇒ InitCond(t , init) = [In1,Out : T→ R; IniVal : R; st : T |
t = st ∧ st > 0 ∧ init = IniVal ∧ :α = 0 ∧ ω = st7 = :Out = IniVal 7 ∧
:∃ k : N1 • α = k ∗ st ∧ ω = (k + 1) ∗ st7 ⊆ :Out = In1(α)7])

Next, the transformation captures the timing aspect of the diagram, namely, sample

times. In the diagram, the sample time of detector is specified with the value 1, and

the sample times of on and off are assigned to be continuous. Note that subsystem

plant is an open system modeling physical environment which usually evolves contin-

uously. By the method presented in Chapter 7.1, the sample time of Integration is 0

because of its block type, and Switch has a continuous sample time since one sample

time of its inputs is continuous such as the input port on. Using the algorithm stated

in Chapter 7.4, we can derive other unspecified sample times: the sample time of

check is computed to be 1 due to the elementary block detector, and the sample time

of IC is in turn calculated to be the value 1. Note that the elementary block max has

no effect on the computation of the sample time of check.

We illustrate the transformed TIC schemas below, which also preserve the function-

alities of the elementary blocks and the connections in the diagram.

• Schema vehicle sensor detector represents the elementary block detector, and

it is an application the ZOH library function. Schema vehicle sensor denotes

the subsystem sensor. We remark that the input port speedR is declared to

be continuous (indicated by 1) because the output of the subsystem plant is

continuous. The reason is explained at the beginning of Chapter 7.5.

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 108

vehicle sensor detector =̂ ZOH (1)

vehicle sensor
speedR : T1 R; speedS : T→ R; detector : vehicle sensor detector

I = >speedR = detector .In1? ∧ I = >detector .Out = speedS?

• The following three schemas model three components of the subsystem brake,

namely, blocks max, IC, and check.

vehicle brake max =̂ Constant(50)
vehicle brake check =̂ Relation geq(1)

vehicle brake IC =̂ InitCond(1, 0)

Schema vehicle brake represents the subsystem brake.

vehicle brake
speedin, status : T→ R; IC : vehicle brake IC
max : vehicle brake max ; check : vehicle brake check

I = >speedin = check .In1? ∧ I = >max .Out = check .In2?

I = >check .Out = IC .In1? ∧ I = >IC .Out = status?

• Initially the speed of a vehicle is 0, which is captured by the elementary block

Integration, as shown by Integrator(0). Furthermore, the output speed of the

subsystem plant is defined to be continuous due to Integration.

vehicle plant Switch =̂ Switch G(0, 0)
vehicle plant Integration =̂ Integrator(0)

vehicle plant
on, off , speed : T1 R; Switch : vehicle plant Switch
Integration : vehicle plant Integration; command : T→ R

I = >on = Switch.In1? ∧ I = >Switch.Out = Integration.In1?

I = >off = Switch.In3? ∧ I = >Integration.Out = speed?
I = >command = Switch.In2?

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 109

• The whole control system comprises the above three subsystems.

vehicle
brake : vehicle brake; plant : vehicle plant ; sensor : vehicle sensor

I = >sensor .speedS = brake.speedin? ∧ I = >plant .speed = sensor .speedR?

I = >brake.status = plant .command?

The brake control system is designed to satisfy several important requirements. For

example, sensor should measure speed with an acceptable accuracy, and brakes should

be enabled in time to avoid speeding. These requirements can be easily and precisely

represented as TIC predicates based on the transformed TIC schemas, over the whole

system or some components. We here specify two requirements which are used to

show how validation can be rigorously conducted in the next section.

Requirement Approximation checks the computational accuracy between vehicle speed

speed of plant and the sensed speed speedS of sensor. Specifically, the sensor should

measure the speed within an accuracy of 10 meters/second in any non-empty interval.

Approximation == ∀ v : vehicle • I = >|v .sensor .speedS − v .plant .speed | ≤ 10?

Requirement Response concerns the bounded response of brakes. Brakes should re-

spond in time when the vehicle speed is too high. Namely, brakes must be enabled

within 1 second (δ < 1) and remain enabled till the end of a both-closed interval,

during which the vehicle speed is not lower than 50 meter/second (speed ≥ 50) and

the interval lasts more than 1 second. Note that the concatenation operator y as

introduced in Chapter 2.1 connects two sets of intervals end-to-end.

Response == ∀ v : vehicle •
:v .plant .speed ≥ 50 ∧ δ > 1; ⊆ :δ < 17y :v .brake.status = 1;

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 110

8.3.2 Validating System Design against Requirements

Validating systems denoted by Simulink diagrams against requirements is non-trivial,

because these systems usually contain continuous dynamics and requirements often

concern behavior over arbitrary (infinite) intervals. After transforming diagrams to

TIC schemas, we can apply well-defined TIC reasoning rules and mathematical laws

(of arithmetic and calculus) to rigorously prove if the TIC schemas logically imply

the TIC predicates which represent the requirements.

To reduce the complexity of manual proofs in TIC, we exploit the verification sys-

tem, as developed in Chapters 3 and 4 and extended in Section 8.1, to accomplish

machine-assisted proofs. The main objective of validation is to assign proper val-

ues to the quantified predicates of intervals and time points, where an assignment is

often automatic. Resulting (propositional) predicates usually can be automatically

discharged by the verification system.

We sketch below the reasoning of the brake control system against the requirements

described early to show the capability of our framework in effectively carrying out

formal validation. Before the reasoning, we need to add environmental properties.

Adding Environmental Properties

In practice, it is difficult to identify the exact function which models the acceleration

behavior of a vehicle, as the behavior would be affected by a number of (environ-

mental) factors such as wind and the road condition. Open systems are unanalyzable

in Simulink since simulation is inapplicable. On the other hand, loose information

about environmental properties, for instance, the range of acceleration value in the

brake control system, is usually available. This loose information can be represented

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 111

as TIC predicates which are formed based on the TIC schemas of Simulink diagrams,

and it becomes possible to formally analyze open systems with the loose information.

Regarding the brake control system, the bounds of acceleration in different brake

status are known as below. When brakes are disabled, the acceleration as indicated

by the input port off is between 0 and 10 meter/second2. When brakes are enabled,

the acceleration as indicated by the input port on is between -10 and 0 meter/second2.

The above properties can be denoted by the following TIC predicate, which is further

translated into a PVS axiom.

InputAssump == ∀ v : vehicle •
I = >0 ≤ v .plant .off ≤ 10? ∧ I = >−10 ≤ v .plant .on ≤ 0?

InputAssump: AXIOM FORALL (v: vehicle):
fullset = AllS(LIFT(v‘plant‘off) >= LIFT(0) and LIFT(v‘plant‘off) <= LIFT(10))

and fullset = AllS(LIFT(v‘plant‘on) >= LIFT(-10) and LIFT(v‘plant‘on) <= LIFT(0))

Checking the Requirement Approximation

This requirement considers the difference between speed in the subsystem plant and

speedS in the subsystem sensor at all non-empty intervals. Due to the block detector,

speedS is updated at sample time hits and remains constant between sample time

hits. Hence, the checking requires the analysis of continuous dynamics, namely, speed

which is the integration of acceleration.

We apply the supplementary rule CO to All defined in Section 8.2 to shrink the

intervals that are needed to be examined, from all intervals to all sample time intervals.

In addition, by the functionality of detector and the connections in the system vehicle,

the proof goal can be converted to compare the speed value at the starting point of a

sample time interval with the speed values at other time points of that interval.

∀ i : :∃ k : N • α = k ∧ ω = k + 17 • ∀ t : i •
|v .plant .speed(t)− v .plant .speed(α(i))| ≤ 10

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 112

Using the skolemization technique of the PVS prover, we further reduce the complexity

by checking the difference of the speed values at the starting point and an arbitrary

fixed time point. We also exploit the lemma Integral bound from the NASA PVS

library [19], which relates integration bounds of an integrated function and bounds

of the integrated function, to deduce that the difference is between -10 and 10. We

remark that the environmental properties of the acceleration as added previously are

necessary for analyzing the continuous behavior of the vehicle speed.

Checking the Requirement Response

This requirement concerns a timing relation between the brake status and the vehicle

speed. The subsystem sensor which is between plant and brake executes discretely

every 1 second. However, an endpoint of an interval i , where i ∈ :v .plant .speed ≥
50 ∧ δ > 1;, may not be a sample time hit. We apply the proof by exhaustion method

to systematically resolve the above non-trivial difficulty.

Firstly, we develop a theorem to associate any arbitrary time point with a sample

time (ST). The theorem as shown below categories all non-empty intervals into four

groups according to their endpoints, whether they are sample time hits or not.

endpoint ST == ∀ i : I • ∃m, p : N; n, q : {0} ∪ R+ | n < ST ∧ q < ST •
α(i) = m ∗ ST + n ∧ ω(i) = p ∗ ST + q

Next, we check Response for i which is one of four groups. Here we analyze the

basic case where the endpoints of i are sample time hits, namely, n = 0 ∧ q = 0.

In other words, i consists of multiple sample time intervals. The analysis here also

facilitates the analysis of three other cases, as other types of intervals can be formed

by appending an interval which lasts less than 1 second to the front or the back of

multiple sample time intervals.

8.3. IMPLEMENTATION AND EXPERIMENTAL STUDY 113

We further reduce the complexity of checking an implication relationship between

two predicates in the basic case. To be specific, given two predicates which are

independent of interval operators, rather than checking if they satisfy an implication

relationship over the whole interval i , we only need to reason about the validity

of the relationship over an arbitrary sample time interval which is inside i , by the

skolemization technique. The theorem is provided below and has been validated.

Multi_Sample_Intervals: LEMMA No_Term?(tp1) AND No_Term?(tp2) AND x < y =>

((FORALL (k: {n: nat | x <= n AND n < y}):

subset?(COS(tp1 AND LIFT(ALPHA) = LIFT(k) * LIFT(ST) AND

LIFT(OMEGA) = LIFT(k) * LIFT(ST)), COS(tp2)))

=> subset?(COS(tp1 AND LIFT(ALPHA) = LIFT(x) * LIFT(ST) AND

LIFT(OMEGA) = LIFT(y) * LIFT(ST)), COS(tp2)));

We remark that the above theorem is generic and can be applied for other systems

which possess periodic behavior. For example, it can check the exportable interval

properties defined in Interval Temporal Logic [95].

By applying the theorem Multi Sample Intervals, it is not difficult to prove that

the requirement Response is valid for the basic case.

Experimental Results

We summarize our experimental results in Table 8.1, which lists the lemma names as-

sociated with the steps of proof commands entered from users and the execution time

(in Seconds) of the PVS prover. In total, we have proved 16 lemmas, and some of them

have been explained, such as Approximation and Response. The lemma Response L1

corresponds to the analysis of the basic case mentioned previously. Moreover, the

lemma Safety guarantees that a vehicle will not be speeding. Detailed specifications

and complete proof scripts of these lemmas are available [30].

In this section, we applied our framework to formally model and rigorously validate

8.4. SUMMARY 114

Lemma Name Steps Time Lemma Name Steps Time

ACC Range 11 77.73 Response L2 68 26.26

Plant Speed 43 73.98 Response L3 49 26.40

Approximation 26 13.78 Response L4 53 28.70

V Initial 8 10.46 Response 18 15.74

Brake Prop 27 45.75 ACC On 16 66.66

V at sample 22 23.26 overlimit1 42 112.20

V within sample 27 21.56 overlimit2 55 185.88

Response L1 46 24.83 Safety 48 103.45

Table 8.1: Experimental results of the validation of the brake control system

the Simulink diagram of the brake control system. The automatic transformation

from Simulink to TIC preserves the functional and timing aspects of the brake control

system which involves continuous and discrete behavior as well as discrete logic. The

powerful verification system for TIC enables us to analyze continuous dynamics such

as the integral equation of computing the vehicle speed, and to use common proof

methods such as proof by exhaustion. Moreover, we conducted validation beyond

Simulink. Particularly, we checked the control system as an open system by specifying

the range of acceleration in TIC, and we also verified a timing requirement.

8.4 Summary

This chapter completes our framework which is designed to exploit TIC to complement

Simulink and in turn to increase confidence in the system design modeled in Simulink.

We presented the algorithm to translate axiomatic definitions to PVS functions. We

have enhanced the verification system developed in Chapters 3 and 4 to implement

the algorithm so as to support the automatic translation. We also defined a collection

of supplementary rules dedicated to Simulink modeling features.

8.4. SUMMARY 115

By the expressive power of TIC, this framework can capture not only complex Simulink

diagrams, but also specify precisely various environmental properties of open sys-

tems and important requirements over the whole system or particular components.

The machine-assisted proof support facilitates formal verification with a high level

of automation (for instance, arithmetic reasoning is automatic). Moreover, we can

rigorously validate system design against timing requirements beyond Simulink.

8.4. SUMMARY 116

Chapter 9

Conclusion

This chapter serves two purposes. Firstly, a conclusion of the whole thesis is given,

summarizing the main contributions and secondly, a discussion on future work direc-

tions is also presented.

9.1 Main Contributions of the Thesis

Real-time computing systems are increasingly embedded in safety-critical situations,

and high level confidence of their design thus becomes necessary and important.

Interval-based specification languages, such as TIC and DC, have been widely used

to model and reason about real-time systems by their expressive power and formal

verification capability.

When real-time computing systems are complex, manual proving of these systems

against various requirements becomes an obstacle since it is difficult to guarantee the

correctness of each proof step and to keep track of all proof details. Moreover, proofs

usually involve the analysis of both continuous and discrete behavior.

117

9.1. MAIN CONTRIBUTIONS OF THE THESIS 118

This thesis presents the research work on providing machine-assisted proof support

for interval-based specification languages and further expanding the usage of these

languages in embedded real-time computing system development. The five main

contributions of this thesis can be summarized as follows.

• In Chapter 3, we encoded the TIC semantics in PVS, formalized and checked

all TIC reasoning rules based on the encoding, and defined a collection of sup-

plementary rules and proof strategies to simplify reasoning processes of TIC

models in PVS and hide the detailed encoding.

The specification language of PVS is based on typed higher-order logic, which fa-

cilitates the encoding of expressive TIC constructs. The PVS interactive prover

enables us to check the correctness of the TIC reasoning rules. We discovered

subtle flaws of original reasoning rules from our rigorous validation procedure.

• Based on the above work, we developed a verification system for TIC in Chap-

ter 4. The verification system can automatically translate TIC models to PVS

specifications. We also proposed a general proof procedure to systematically

conduct verification in a manner similar to manual TIC arguments, but with a

high level of automation by exploiting the automatic reasoning power of PVS,

in particular for sets, linear arithmetic, and propositional logic.

Using the verification system, we can formally validate various systems (for

example, hybrid systems) against important requirements (such as safety and

bounded liveness). The application to the temperature control system illus-

trated the advantages of our verification system: advanced mathematical analy-

sis, including integral calculus, is supported, and common proof methods can

be applied to handle complex proofs (for instance, proof by induction to deal

with arbitrary infinite intervals).

9.1. MAIN CONTRIBUTIONS OF THE THESIS 119

• We investigated the applicability of the verification system to handle other

interval-based specification languages. In particular, we extended the system to

support DC proofs in Chapter 5. We modeled DC constructs in TIC, formalized

and validated all DC axioms and DC reasoning rules. The extended verification

system allows users to rigorously carry out DC proofs in the way close to those

by hand without knowing the detailed encoding.

• An important goal of formal specification languages is to improve the usage

of industrial tools, which often have informal semantics and lack verification

power. We explored the application of TIC to complement Simulink which is

applied widely in industry for modeling and simulating dynamic systems.

Using Simulink, systems are denoted by wired block diagrams which represent

a set of time-dependent mathematical functions. Elementary blocks are created

from Simulink library blocks by the parameterization technique. Unfortunately,

these library blocks are described informally and sometimes partially in their

original documentation. It is hence necessary to precisely model the function-

alities of Simulink library blocks.

We constructed a library of TIC functions in Chapter 6 to capture the essential

characteristic of Simulink library blocks, that is, the time-dependent mathe-

matical relationship between input(s) and output(s) denoted by a library block.

To the best of our knowledge, our work is the first attempt to model Simulink

library blocks in terms of continuous time. Our TIC library functions cover a

wide range of library blocks, to be specific, 51 library blocks from 10 categories

including continuous, discrete, signal routing and so on. Moreover, from our

rigorous procedure of constructing and validating these library functions, we

discovered incomplete semantics and a bug of those Simulink library blocks.

• Based on the above work of modeling Simulink library blocks, we designed a

9.2. FUTURE WORK DIRECTIONS 120

formal framework in Chapters 7 and 8 to model and validate Simulink diagrams.

This framework also makes use of the verification system for TIC developed early

to ease proof complexity.

Chapter 7 presented a strategy to automatically transform Simulink diagrams

to TIC models. The transformation preserves the functional and timing aspects,

and it can derive unspecified sample times of complex Simulink diagrams. Con-

ditionally executed subsystems, specifically, Enabled subsystems and Triggered

subsystems, are also supported.

We further defined supplementary reasoning rules dedicated to Simulink mod-

eling features in Chapter 8. With the framework, we can specify important

(timing) requirements of a Simulink diagram or some of its components, and

specify environment properties in TIC when the system denoted by the diagram

is open. By the formal verification power of TIC, we can rigorously conduct val-

idation beyond Simulink, such as analyzing open systems and reasoning about

bounded timing response requirements.

In summary, the research work in this thesis attempts to develop a verification system

based on the generic theorem prover PVS to support the highly expressive interval-

based specification language TIC with a high grade of automation. It also generalizes

the verification system to cope with another interval-based specification language DC,

and facilitates the usage of TIC in complementing Simulink.

9.2 Future Work Directions

Based on this thesis, there are a number of directions for future work that may be

beneficial to the verification system of interval-based specification languages and its

9.2. FUTURE WORK DIRECTIONS 121

applications. In this section, some of these possible research directions are briefly

discussed.

9.2.1 Higher Automation for Verifying TIC Models

We developed a verification system in Chapters 3 and 4.1 to show the feasibility and

advantages of exploiting the powerful theorem prover PVS to provide machine-assisted

proof support for TIC, in particular, the support of the analysis of both continuous

and discrete behavior over arbitrary (infinite) intervals of continuous time. Proofs of

TIC models are not fully automatic in general, as this is the price to be paid for the

TIC highly expressive power. However, we can elevate the automation degree of TIC

proofs in the following aspects.

Define more intelligent proof strategies We defined 11 proof strategies in Chap-

ter 3.3 to make TIC proofs more automated. These strategies were designed according

to the encoding of TIC semantics in PVS. Their main purpose was to save users from

explicitly mastering the detailed encoding. Nevertheless, these strategies offer limited

help for handling TIC verification.

We are inspired by the work [7, 8, 91] which developed a tool TAME (Timed Au-

tomata Modeling Environment) based upon PVS, allowing users to specify and prove

properties of three classes of automata without great effort. TAME utilized the ca-

pability of proof strategies in PVS and provided a collection of high level strategies

dedicated to assisting mechanized proofs of particular properties, specifically, proofs

of invariants and of weak refinement by means of induction.

Currently, we are in the process of developing more intelligent strategies to implement

heuristics found from our experiments. One of the challenges for automating proofs

is to instantiate appropriate interval values and time point values so as to eliminate

9.2. FUTURE WORK DIRECTIONS 122

the quantifiers which denote intervals and time points respectively in a proof sequent.

For example, when assigning a time point within an interval during a proof is needed,

the proof usually can be successfully discharged in one of the following ways of the as-

signment: one of the endpoints or the middle point of the interval. Another challenge

is to choose proper TIC reasoning rules, supplementary rules, and mathematical laws.

In the future, we aim to develop strategies to enable the verification system to handle

TIC proofs with a higher degree of automation, such as backtracking, choosing the

next proof command, treating generated sub-goals in distinct ways and so on.

Model checking TIC Model checking is an important and practical technique for

developing correct systems by automatically discovering bugs, although the technique

is limited with respect to infinite state systems, for example, continuous time used

in TIC. Several approaches [52, 60, 90] discussed the possibility of model checking

another interval-based specification language, that is, DC. Their algorithms were de-

signed for a particular subset of DC based on the decidability of DC [138], though the

subset they work on restricts the expressive power of DC, for instance, [60] concerning

discrete time rather than continuous time, and [52] handling systems with periodical

behavior.

We are interested in exploring the feasibility of model checking TIC by identifying

a suitable subset of TIC which is decidable and is still expressive enough to model

systems in general. We are studying the literature [138] to investigate the effect of TIC

basic constructs, especially the integrator operator and the concatenation operator,

on the decidability of TIC. Once the subset is identified, we plan to implement our

model checking algorithm by applying popular model checkers of real-time systems,

such as Kronos [18] and Uppaal [13]. We will also study the work [2] which showed

the regularity of a restricted subclass of hybrid automata [66], especially its support

of expressive guards in the differential equation format.

9.2. FUTURE WORK DIRECTIONS 123

Recently, SRI has developed several tools to support infinite state systems at a certain

level. The latest PVS [103] includes a model checker and integrates the predicate

abstraction technique which can semi-automatically map an infinite system to a finite

system. The SAL toolkit [41] contains an infinite bounded model checker which

allows state variables to be real or unbounded integers. Infinite state systems can be

represented in SAL as formulations of continuous or real-time behavior. One of our

goals is to observe the applicability of these tools to directly handle TIC proofs.

9.2.2 Further Development for Supporting Simulink Diagrams

We constructed a formal framework to model and validate Simulink diagrams in

Chapters 6, 7 and 8. With TIC expressiveness, we defined a set of TIC semantic

functions to represent 51 Simulink library blocks (out of 130 total library blocks [84])

of 10 categories. From our rigorous procedure of constructing and validating these

library functions, we discovered incomplete semantics and one bug of those library

blocks in their original descriptions [84]. This shows that, with a complete coverage of

all Simulink library blocks, our work has a potential to enhance the overall reliability

of Simulink. Having complete coverage is our future research work, which is not trivial

as we have to understand the timed-dependent semantics of every library block and

some of those are domain-specific. Moreover, it requires continuous effort to deal with

the constantly update of Simulink library blocks.

Stateflow [87] is another important product of the MathWorks. It allows hierarchical

state-machine diagrams to be combined with flowchart diagrams in a flexible way.

It becomes desirable to include the formal verification for Stateflow diagrams, as

Simulink and Stateflow are complementary and they are increasingly used as an inte-

grated tool-chain in many applications. However, Stateflow raises many more seman-

tic problems than Simulink because of its informal definition. Its documentation [87]

9.2. FUTURE WORK DIRECTIONS 124

(which is 896 pages long) describes the semantics by showing some specific simulation

results. Existent work [59] and [58] attempted to propose operational semantics and

denotational semantics, respectively, with respect to a subset of Stateflow. There

were several tools, such as SF2SMV [11], SF2SAL [59], and SF2Lustre [115], which

aimed to support formal analysis of Stateflow. These tools focused on checking state

reachability of a particular subset of Stateflow.

We plan to apply a recently developed model checker, PAT [76, 125, 126, 127], to

analyze Stateflow diagrams. The analysis will include the checking of reachability,

deadlock and refinement, and the verification of LTL formulae. Furthermore, PAT’s

strength is in verifying liveness properties under fairness assumptions, such as weak

fairness and strong local/global fairness. We remark that fairness assumptions are

often necessary in system verification, whereas existing languages and tools, for in-

stance, Stateflow, have limited capabilities to support fairness modeling as well as

verification.

Other development plans that are worthy of pursuit are to (1) integrate the analysis

results of Simulink and of Stateflow1, and (2) develop our proposed verification tools

as plug-ins to Simulink.

9.2.3 Expanding the Verification System

So far the verification system developed in this thesis can facilitate the validation of

complex systems, where both system designs and requirements are specified in TIC

and the validation exploits the TIC reasoning rules defined in [50]. In [82], refinement

1Recently, there were some efforts on composing different analysis techniques. For example, [107]

proposed an interfacing technique to combine purely functional analysis schemes with state-based

modeling and analysis methods.

9.2. FUTURE WORK DIRECTIONS 125

laws of TIC were defined to structure specifications and develop designs and programs:

to allow a system to be decomposed into components that may be implemented in

hardware or software, or a combination of both; and to allow refinement to various

combinations of components including piping, parallelism, etc. We can encode these

laws to the verification system and in turn to support refinement checking during

system development, for example, rigorously deriving specifications for a system from

the requirements of the system [63, 73].

Chapter 5 demonstrated the extension of the verification system by supporting the

basic DC, which adopts real numbers to model time and uses Boolean-valued functions

of time to model states of real-time systems. We aim to expand the verification system

to handle other variants of the basic DC: Mean Value Calculus [140] replaces integrals

of Boolean-valued functions by their mean values so as to describe properties over

point intervals, and Extended Duration Calculus [141] investigates how DC can be

combined with real analysis. Furthermore, dealing with DC refinement [111] is also

one of our aims.

Looking at the applicability of the verification system to other formal specification

languages which integrate interval-based specification languages is also a future re-

search direction. A possible candidate is Real-time Object-Z [122], an integration of

the object-oriented, state-based specification language Object-Z [121] with TIC.

9.2. FUTURE WORK DIRECTIONS 126

Bibliography

[1] M. M. Adams and P. B. Clayton. ClawZ: Cost-effective formal verification for

control systems. In ICFEM’05: Proceedings of the 7th International Conference

on Formal Engineering Methods, pages 465–479. Springer, 2005.

[2] M. Agrawal, F. Stephan, P. S. Thiagarajan, and S. Yang. Behavioural ap-

proximations for restricted linear differential Hybrid Automata. In HSCC’06:

Proceedings of the 9th International Workshop on Hybrid Systems: Computa-

tion and Control, pages 4–18. Springer, 2006.

[3] R. Alur and D. L. Dill. Automata for modeling real-time systems. In ICALP’90:

Proceedings of the 17th International Colloquium on Automata, Languages and

Programming, pages 322–335. Springer, 1990.

[4] R. Alur and D. L. Dill. The theory of timed automata. In Proceedings of the

Real-Time: Theory in Practice, REX Workshop, pages 45–73, London, UK,

1992. Springer-Verlag.

[5] R. Alur and T. A. Henzinger. A really temporal logic. In FOCS’89: Proceedings

of the 30th Annual Symposium on Foundations of Computer Science, pages 164–

169. IEEE Computer Society, 1989.

[6] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In

Proceedings of the Real-Time: Theory in Practice, REX Workshop, pages 74–

106. Springer-Verlag, 1991.

[7] M. Archer. TAME: Using PVS strategies for special-purpose theorem proving.

Annals of Mathematics and Artificial Intelligence, 29(1-4):139–181, 2000.

127

BIBLIOGRAPHY 128

[8] M. Archer, C. L. Heitmeyer, and E. Riccobene. Proving invariants of I/O

automata with TAME. Automated Software Engineering, 9(3):201–232, 2002.

[9] M. Archer, B. D. Vito, and C. Muñoz. Developing user strategies in PVS:

A tutorial. In STRATA’03: Proceedings of Design and Application of Strate-

gies/Tactics in Higher Order Logics, pages 16–42, 2003.

[10] R. Arthan, P. Caseley, C. O’Halloran, and A. Smith. Clawz: Control laws in

Z. In ICFEM’00: Proceedings of the 3rd International Conference on Formal

Engineering Methods, pages 169–176. IEEE Computer Society, 2000.

[11] C. Banphawatthanarak, B. H. Krogh, and K. Butts. Symbolic verification of

executable control specifications. In Proceedings of the 10th International Sym-

posium on Computer Aided Control System Design, pages 581–586. IEEE, 1999.

[12] P. A. Barnard. Graphical techniques for aircraft dynamic model development. In

AIAA Modeling and Simulation Technologies Conference and Exhibit. American

Institute of Aeronautics and Astronautics, August 2004.

[13] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL - a

tool suite for automatic verification of real-time systems. In Proceedings of the

DIMACS/SYCON Workshop on Hybrid Systems III: Verification and Control,

pages 232–243. Springer, 1995.

[14] R. Bharadwaj and C. L. Heitmeyer. Model checking complete requirements

specifications using abstraction. Automated Software Engineering, 6(1):37–68,

1999.

[15] R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs

for automatic invariant checking. In TACAS’00: Proceedings of the 6th Inter-

national Conference on Tools and Algorithms for Construction and Analysis of

Systems, pages 378–394. Springer-Verlag, 2000.

[16] J. P. Bowen and M. J. C. Gordon. Z and HOL. In Z User Workshop, pages

141–167. Springer, 1994.

[17] J. P. Bowen and M. J. C. Gordon. A shallow embedding of Z in HOL. Infor-

mation and Software Technology, 37(5-6), 1995.

BIBLIOGRAPHY 129

[18] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:

A model-checking tool for real-time systems. In CAV’98: Proceedings of the

10th International Conference on Computer Aided Verification, pages 546–550.

Springer, 1998.

[19] R. W. Butler. Formalization of the integral calculus in the PVS theorem prover.

Technical report, NASA Langley Research Center, Virginia, October 2004.

[20] V. Carreño and C. Muñoz. Safety verification of the small aircraft transporta-

tion system concept of operations. In Proceedings of the 5th Aviation Technol-

ogy Integration and Operations Conference. American Institution of Aeronautics

and Astronautics, 2005.

[21] P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating

discrete-time Simulink to Lustre. In EMSOFT’03: Proceedings of the 3rd In-

ternational Conference on Embedded Software, pages 84–99. Springer, 2003.

[22] A. Cavalcanti, P. Clayton, and C. O’Halloran. Control law diagrams in Circus.

In FM’05: Proceedings of the 13th International Symposium of Formal Methods

Europe, pages 253–268. Springer, 2005.

[23] A. Cerone. Axiomatisation of an interval calculus for theorem proving. Elec-

tronic Notes in Theoretical Computer Science, 42, 2001.

[24] G. Chakravorty and P. K. Pandya. Digitizing interval duration logic. In CAV’03:

Proceedings of the 15th International Conference on Computer Aided Verifica-

tion, pages 167–179. Springer, 2003.

[25] C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.

Academic Press, Inc., 1997.

[26] C. Chen. A continous-time approach to modeling and validating Simulink mod-

els. In the Doctoral Symposium of the 14th International Symposium on Formal

Methods, 2006.

[27] C. Chen. A Verification System for interval-based specification languages, 2008.

http://www.comp.nus.edu.sg/∼chenchun/verifysys.

BIBLIOGRAPHY 130

[28] C. Chen and J. S. Dong. Applying Timed Interval Calculus to Simulink di-

agrams. In ICFEM’06: Proceedings of the 8th International Conference on

Formal Engineering Methods, pages 74–93. Springer, 2006.

[29] C. Chen, J. S. Dong, and J. Sun. A formal framework for modeling and vali-

dating Simulink diagrams. Formal Aspects of Computing. Accepted.

[30] C. Chen, J. S. Dong, and J. Sun. A Formal Framework for Modeling and Ver-

ifying Simulink Diagrams, 2007. http://www.comp.nus.edu.sg/∼chenchun/

SimInTIC.

[31] C. Chen, J. S. Dong, and J. Sun. Machine-assisted proof support for validation

beyond Simulink. In ICFEM’07: Proceedings of the 9th International Confer-

ence on Formal Engineering Methods, pages 96–115. Springer, 2007.

[32] C. Chen, J. S. Dong, and J. Sun. A verification system for timed interval

calculus. In ICSE’08: Proceedings of the 30th International Conference on

Software Engineering, pages 271–280. ACM, 2008.

[33] C. Chen, J. S. Dong, J. Sun, and A. Martin. A verification system for interval-

based specification languages. ACM Transactions on Software Engineering and

Methodology. Accepted.

[34] B. H. C. Cheng and J. M. Atlee. Research directions in requirements engineer-

ing. In FOSE’07: 2007 Future of Software Engineering, pages 285–303. IEEE

Computer Society, 2007.

[35] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,

R. Sebastiani, and A. Tacchella. NuSMV 2: An open source tool for symbolic

model checking. In CAV’02: Proceedings of the 14th International Conference

on Computer Aided Verification, pages 359–364. Springer-Verlag, 2002.

[36] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.

ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,

1994.

[37] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press, 2000.

BIBLIOGRAPHY 131

[38] E. M. Clarke and J. M. Wing. Formal methods: state of the art and future di-

rections. ACM Computing Surveys, 28(4):626–643, 1996. Other working group

members: R. Alur, R. Cleaveland, D. Dill, A. Emerson, S. Garland, S. Ger-

man, J. Guttag, A. Hall, T. Henzinger, G. Holzmann, C. Jones, R. Kurshan,

N. Leveson, K. McMillan, J. Moore, D. Peled, A. Pnueli, J. Rushby, N. Shankar,

J. Sifakis, P. Sistla, B. Steffen, P. Wolper, J. Woodcock and P. Zave.

[39] J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical Computer

Science, 138(2):243–271, 1995.

[40] J. E. Dawson and R. Goré. Machine-checking the Timed Interval Calculus.

In AI’02: Proceedings of the 15th Australian Joint Conference on Artificial

Intelligence, pages 95–106. Springer-Verlag, 2002.

[41] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby, N. Shankar, M. Sorea, and

A. Tiwari. SAL 2. In CAV’04: Proceedings of the 16th International Conference

on Computer Aided Verification, pages 496–500. Springer, 2004.

[42] A. Dimov and S. Ilieva. System level modeling of component based software

systems. In CompSysTech’04: Proceedings of the 5th international conference

on Computer systems and technologies, pages 1–6. ACM, 2004.

[43] J. S. Dong, P. Hao, X. Zhang, and S. Qin. HighSpec: a tool for building and

checking OZTA models. In ICSE’07: Proceedings of the 28th International

Conference on Software Engineering, pages 775–778. ACM, 2006.

[44] R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice Hall, 9th

edition, 2000.

[45] R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z.

Macmillan, 2000.

[46] B. Dutertre. Elements of mathematical analysis in PVS. In TPHOLs’96: Pro-

ceedings of the 9th Internaional Conference on Theorem Proving in Higher Or-

der Logics, pages 141–156. Springer, 1996.

[47] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design of

embedded systems: Formal models, validation, and synthesis. Proceedings of

the IEEE, 85(3):366–390, 1997.

BIBLIOGRAPHY 132

[48] C. J. Fidge. Modelling discrete behaviour in a continuous-time formalism. In

IFM’99: Proceedings of the 1st International Conference on Integrated Formal

Methods, pages 170–188. Springer, 1999.

[49] C. J. Fidge, I. J. Hayes, and B. P. Mahony. Defining differentiation and inte-

gration in Z. In ICFEM’98: Proceedings of the 2nd International Conference

on Formal Engineering Methods, pages 64–73. IEEE Computer Society, 1998.

[50] C. J. Fidge, I. J. Hayes, A. P. Martin, and A. Wabenhorst. A set-theoretic

model for real-time specification and reasoning. In MPC’98: Proceedings of the

4th International Conference on Mathematics of Program Construction, pages

188–206. Springer, 1998.

[51] Ford. Structure analysis using Matlab/Simulink/Stateflow - modeling style

guidelines. Technical report, Ford Motor Company, 1999.

[52] M. Fränzle. Model-checking dense-time Duration Calculus. Formal Aspects of

Computing, 16(2):121–139, 2004.

[53] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem-

proving environment for higher-order logic. Cambridge University Press, New

York, NY, USA, 1993.

[54] A. M. Gravell and C. H. Pratten. Embedding a formal notation: Experiences of

automating the embedding of Z in the higher order logics of PVS and HOL. In

TPHOLs’98: Proceedings of 11th International Conference on Theorem Proving

in Higher Order Logics, supplementary proceedings, pages 73–84. Springer, 1998.

[55] D. Griffioen and M. Huisman. A comparison of PVS and Isabelle/HOL. In

TPHOLs’98: Proceedings of the 11th International Conference on Theorem

Proving in Higher Order Logics, pages 123–142. Springer, 1998.

[56] S. Gupta, B. H. Krogh, and R. A. Rutenbar. Towards formal verification of

analog designs. In ICCAD’04: Proceedings of the 2004 IEEE/ACM Interna-

tional Conference on Computer-aided Design, pages 210–217. IEEE Computer

Science, 2004.

BIBLIOGRAPHY 133

[57] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-

flow programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320,

Septebber 1991.

[58] G. Hamon. A denotational semantics for Stateflow. In EMSOFT’05: Proceed-

ings of the 5th ACM International Conference on Embedded Software, pages

164–172. ACM, 2005.

[59] G. Hamon and J. M. Rushby. An operational semantics for Stateflow. Inter-

national Journal on Software Tools for Technology Transfer, 9(5-6):447–456,

2007.

[60] M. R. Hansen. Model-checking discrete Duration Calculus. Formal Aspects of

Computing, 6(6A):826–845, 1994.

[61] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, June 1987.

[62] J. Harrison. Theorem proving for verification (invited tutorial). In CAV’08:

Proceedings of the 20th International Conference on Computer Aided Verifica-

tion, pages 11–18. Springer, 2008.

[63] I. J. Hayes, M. A. Jackson, and C. B. Jones. Determining the specification of a

control system from that of its environment. In FM’03: Proceedings of the 12th

International Symposium of Formal Methods Europe, pages 154–169. Springer,

2003.

[64] S. T. Heilmann. Proof Support for Duration Calculus. PhD thesis, Department

of Information Technology, Technical University of Denmark, January 1999.

[65] C. L. Heitmeyer, J. Kirby, B. G. Labaw, M. Archer, and R. Bharadwaj. Us-

ing abstraction and model checking to detect safety violations in requirements

specifications. IEEE Transactions on Software Engineering, 24(11):927–948,

1998.

[66] T. A. Henzinger. The theory of hybrid automata. In LICS’96: Proceedings of the

11th Annual IEEE Symposium on Logic in Computer Science, pages 278–292.

IEEE Computer Society, 1996.

BIBLIOGRAPHY 134

[67] T. A. Henzinger and J. Sifakis. The embedded systems design challenge. In

FM’06: Proceedings of the 14th International Symposium on Formal Methods,

pages 1–15. Springer, 2006.

[68] M. Hinchey, M. Jackson, P. Cousot, B. Cook, J. P. Bowen, and T. Mar-

garia. Software engineering and formal methods. Communications of the ACM,

51(9):54–59, 2008.

[69] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time

systems. IEEE Transactions on Software Engineering, 12(9):890–904, 1986.

[70] A. Jantsch and I. Sander. Models of computation and languages for embed-

ded system design. IEE Proceedings on Computers and Digital Techniques,

152(2):114–129, March 2005.

[71] J.-J. Jeng and B. H. C. Cheng. Specification matching for software reuse:

a foundation. In SSR’95: Proceedings of the 1995 Symposium on Software

reusability, pages 97–105. ACM, 1995.

[72] M. Jersak, Y. Cai, D. Ziegenbein, and R. Ernst. A transformational approach to

constraint relaxation of a time-driven simulation model. In ISSS’00: Proceedings

of the 13th International Symposium on System Synthesis, pages 137–142. IEEE

Computer Society, 2000.

[73] C. B. Jones, I. J. Hayes, and M. A. Jackson. Deriving specifications for systems

that are connected to the physical world. In Formal Methods and Hybrid Real-

Time Systems, pages 364–390. Springer, 2007.

[74] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, June 2000.

[75] P. A. Laplante. Real-Time Systems Design and Analysis: An Engineer’s Hand-

book. IEEE Press, 2nd edition, 1997.

[76] Y. Liu, J. Sun, and J. S. Dong. An analyzer for extended compositional process

algebras. In ICSE Companion’08: Companion of the 30th International Con-

ference on Software Engineering, pages 919–920. ACM, 2008.

BIBLIOGRAPHY 135

[77] R. L. London and K. R. Milsted. Specifying reusable components using Z: re-

alistic sets and dictionaries. In IWSSD’89: Proceedings of the 5th International

Workshop on Software Specification and Design, pages 120–127. ACM, 1989.

[78] B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An introduc-

tion to TCOZ. In ICSE’98: Proceedings of the 20th International Conference

on Software Engineering, pages 95–104. IEEE Computer Society, 1998.

[79] B. P. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Trans-

actions on Software Engineering, 26(2):150–177, 2000.

[80] B. P. Mahony and J. S. Dong. Deep semantic links of TCSP and Object-Z:

TCOZ approach. Formal Aspects of Computing, 13(2):142–160, 2002.

[81] B. P. Mahony and I. J. Hayes. A case study in timed refinement: A central

heater. In Proceedings of the BCS/FACS 4th Refinement Workshop, pages 138–

149. Springer, 1991.

[82] B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump.

IEEE Transactions on Software Engineering, 18(9):817–826, 1992.

[83] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer-Verlag, 1992.

[84] The MathWorks. Simulinkr 7 - Reference, March 2008.

[85] The MathWorks. Simulinkr 7 - Using Simulink, March 2008.

[86] The MathWorks. Simulink Design Verifier, 2008.

[87] The MathWorks. Stateflowr and Stateflowr coderTM 7 - User’s Guide, March

2009.

[88] R. Mattolini and P. Nesi. An interval logic for real-time system specification.

IEEE Transactions on Software Engineering, 27(3):208–227, 2001.

[89] B. Meenakshi, A. Bhatnagar, and S. Roy. Tool for translating Simulink models

into input language of a model checker. In ICFEM’06: Proceedings of the

8th International Conference on Formal Engineering Methods, pages 606–620.

Springer, 2006.

BIBLIOGRAPHY 136

[90] R. Meyer, J. Faber, J. Hoenicke, and A. Rybalchenko. Model checking Duration

Calculus: a practical approach. Formal Aspects of Computing, 20(4-5):481–505,

2008.

[91] S. Mitra and M. Archer. PVS strategies for proving abstraction properties of

automata. Electronic Notes in Theoretical Computer Science, 125(2):45–65,

2005.

[92] G. Moretti. Design complexity requires system-level design. Electronics Design,

Strategy, and News, pages 28–32, March 2005.

[93] L. E. Moser, P. M. Melliar-Smith, Y. S. Ramakrishna, G. Kutty, and L. K.

Dillon. The real-time graphical interval logic toolset. In CAV’96: Proceedings

of the 8th International Conference on Computer Aided Verification, pages 446–

449, 1996.

[94] B. C. Moszkowski. Executing temporal logic programs. Cambridge University

Press, New York, NY, USA, 1986.

[95] B. C. Moszkowski. A complete axiomatization of Interval Temporal Logic with

infinite time. In LICS’00: Proceedings of the 15th Annual IEEE Symposium on

Logic in Computer Science, pages 241–252. IEEE Computer Society, 2000.

[96] C. Muñoz, V. Carreño, and G. Dowek. Formal analysis of the operational

concept for the Small Aircraft Transportation System. In Rigorous Development

of Complex Fault-Tolerant Systems, pages 306–325. Springer, 2006.

[97] C. Muñoz, V. Carreño, G. Dowek, and R. W. Butler. Formal verification of

conflict detection algorithms. International Journal on Software Tools for Tech-

nology Transfer, 4(3):371–380, 2003.

[98] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid

systems. In Proceedings of the Real-Time: Theory in Practice, REX Workshop,

pages 549–572. Springer-Verlag, 1992.

[99] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

BIBLIOGRAPHY 137

[100] J. S. Ostroff. Temporal logic for real time systems. John Wiley & Sons, Inc.,

New York, NY, USA, 1989.

[101] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System.

In CADE-11: Proceedings of the 11th International Conference on Automated

Deduction, pages 748–752. Springer, 1992.

[102] S. Owre and N. Shankar. Writing PVS proof strategies. In STRATA’03: Pro-

ceedings of Design and Application of Strategies/Tactics in Higher Order Logics,

pages 1–15, 2003.

[103] S. Owre and N. Shankar. A brief overview of PVS. In TPHOLs’08: Proceed-

ings of the 21st International Conference on Theorem Proving in Higher Order

Logics, pages 22–27. Springer, 2008.

[104] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Lan-

guage Reference. SRI International, November 2001.

[105] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover

Guide. SRI International, November 2001.

[106] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.

Springer, 1994.

[107] L. T. X. Phan, S. Chakraborty, P. S. Thiagarajan, and L. Thiele. Compos-

ing functional and state-based performance models for analyzing heterogeneous

real-time systems. In RTSS’07: Proceedings of the 28th IEEE Real-Time Sys-

tems Symposium. IEEE Computer Society.

[108] A. Pnueli. Embedded systems: Challenges in specification and verification. In

EMSOFT’02: Proceedings of the 2nd International Conference on Embedded

Software, pages 1–14. Springer, 2002.

[109] S. Qin, J. S. Dong, and W.-N. Chin. A semantic foundation for tcoz in unify-

ing theories of programming. In FM’03: Proceedings of the 12th International

Symposium of Formal Methods Europe, pages 321–340. Springer, 2003.

[110] T. M. Rasmussen. Interval logic - Proof Theory and Theorem Proving. PhD

thesis, Technical University of Denmark, 2002.

BIBLIOGRAPHY 138

[111] A. P. Ravn. Design of Embedded Real-Time Computing Systems. PhD thesis,

Technical University of Denmark, 1995.

[112] J. M. Rushby. Formal methods and their role in the certification of critical

systems. Technical report, SRI International, mar 1995. Also available as

part of the FAA Digital Systems Validation Handbook (the guide for aircraft

certification).

[113] J. M. Rushby. Theorem proving for verification. In MOVEP’00: Proceedings

of the 4th Summer School on Modeling and Verification of Parallel Processes,

pages 39–57. Springer, 2000.

[114] J. M. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate

subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–720,

1998.

[115] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and

translating a “safe” subset of Simulink/Stateflow into Lustre. In EMSOFT’04:

Proceedings of the 4th International Conference on Embedded Software, pages

259–268. ACM, 2004.

[116] S. Schneider. Concurrent and Real Time Systems: The CSP Approach. John

Wiley & Sons, Inc., New York, NY, USA, 1999.

[117] B. I. Silva and B. H. Krogh. Formal verification of hybrid systems using Check-

mate: a case study. In Proceedings of the American Control Conference, pages

1679–1683, 2000.

[118] S. Sims, R. Cleaveland, K. Butts, and S. Ranville. Automated validation of

software models. In ASE’01: Proceedings of the 16th IEEE International Con-

ference on Automated Software Engineering, pages 91–96. IEEE Computer So-

ciety, 2001.

[119] J. U. Skakkebaek. A Verification Assistant for a Real-Time Logic. PhD thesis,

Department of Computer Science, Technical University of Denmark, 1994.

[120] J. U. Skakkebæk and N. Shankar. Towards a Duration Calculus proof assistant

in PVS. In FTRTFT’94: Proceedings of the 3rd International Symposium Or-

BIBLIOGRAPHY 139

ganized on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages

660–679. Springer, 1994.

[121] G. Smith. The Object-Z specification language. Kluwer Academic Publishers,

2000.

[122] G. Smith and I. J. Hayes. An introduction to real-time Object-Z. Formal

Aspects of Computing, 13(2):128–141, 2002.

[123] J. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,

1992.

[124] D. W. J. Stringer-Calvert, S. Stepney, and I. Wand. Using PVS to prove a

Z refinement: A case study. In FME’97: Proceedings of the 4th International

Symposium of Formal Methods Europe, pages 573–588. Springer, 1997.

[125] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification

under fairness. In CAV’09: Proceedings of the 21th International Conference

on Computer Aided Verification, pages 709–714. Springer, 2009.

[126] J. Sun, Y. Liu, J. S. Dong, and H. H. Wang. Specifying and verifying event-based

fairness enhanced systems. In ICFEM’08: Proceedings of the 10th International

Conference on Formal Engineering Methods, pages 5–24. Springer, 2008.

[127] J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong. Fair model checking of

parameterized systems. In FM’09: the 16th International Symposium of Formal

Methods, 2009. Accepted.

[128] A. Tiwari, N. Shankar, and J. M. Rushby. Invisible formal methods for embed-

ded control systems. Proceedings of the IEEE, 91(1):29–39, 2003.

[129] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-time

Simulink to Lustre. ACM Transactions on Embedded Computing Systems,

4(4):779–818, 2005.

[130] N. Völker. Two semantic embeddings of Z schemas in Isabelle/HOL. Technical

report, Department of Computer Science, University of Essex, 2001.

BIBLIOGRAPHY 140

[131] A. Wabenhorst. Induction in the Timed Interval Calculus. Theoretical Com-

puter Science, 300(1-3):181–207, 2003.

[132] F. Wang. Formal verification of timed systems: A survey and perspective.

Proceedings of the IEEE, 92(8):1283–1305, August 2004.

[133] F. Wiedijk, editor. The Seventeen Provers of the World, Foreword by Dana S.

Scott. Springer, 2006.

[134] L. Wildman. Requirements reformulation using formal specification: A case

study. In CRPIT’02: Proceedings of the Conference on Application and Theory

of Petri Nets, pages 75–83. Australian Computer Society, Inc., 2002.

[135] J. Woodcock. Using Circus for safety-critical applications. Electronic Notes in

Theoretical Computer Science, 95:3–22, 2004.

[136] J. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[137] C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real-

Time Systems. Springer-Verlag, 2004.

[138] C. Zhou, M. R. Hansen, and P. Sestoft. Decidability and undecidability results

for Duration Calculus. In STACS’93: Proceedings of the 10th Annual Sympo-

sium on Theoretical Aspects of Computer Science, pages 58–68. Springer, 1993.

[139] C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information

Processing Letters, 40(5):269–276, 1991.

[140] C. Zhou and X. Li. A Mean Value Calculus of durations. In A classical mind:

essays in honour of C. A. R. Hoare, pages 431–451. Prentice-Hall International

(UK) Ltd., 1994.

[141] C. Zhou, A. P. Ravn, and M. R. Hansen. An extended duration calculus for

hybrid real-time systems. In Hybrid Systems, pages 36–59. Springer, 1993.

[142] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI - a system

model for heterogeneously specified embedded systems. IEEE Transactions on

Very Large Scale Integration Systems, 10(4):379–389, 2002.

Appendix A

Encoding of TIC in PVS

A.1 Basic Definitions

The encoding of TIC semantics is defined in a series of PVS theories.

The domains of time and interval are modeled in the TIC time interval theory.

TIC_time_interval : THEORY

BEGIN

Time: TYPE = nnreal;

InterVal_Type: TYPE = {OO, CO, OC, CC}; % O stands for open (exclude), and C stands for close (include)

% define the general type of valid intervals

GenInterVal: TYPE = [invt: InterVal_Type, {stp: Time, etp: Time | stp <= etp}];

gi: var GenInterVal;

% II denotes the type of all possible intervals

II: TYPE = {gi | (proj_1(gi) = OO AND proj_1(proj_2(gi)) < proj_2(proj_2(gi)))

or (proj_1(gi) = CO AND proj_1(proj_2(gi)) < proj_2(proj_2(gi)))

or (proj_1(gi) = OC AND proj_1(proj_2(gi)) < proj_2(proj_2(gi)))

or (proj_1(gi) = CC AND proj_1(proj_2(gi)) <= proj_2(proj_2(gi)))};

i: var II;

COInterVal: TYPE = {i | proj_1(i) = CO };

OOInterVal: TYPE = {i | proj_1(i) = OO };

OCInterVal: TYPE = {i | proj_1(i) = OC };

141

A.1. BASIC DEFINITIONS 142

CCInterVal: TYPE = {i | proj_1(i) = CC };

% a function returns the type of a given interval

Typeof(i): InterVal_Type = Proj_1(i);

END TIC_time_interval

Three predefined interval operators, α, ω, and δ, are defined in the TIC interval operators

theory. Note that the importing clause here is used to access entities defined in the

TIC time interval theory.

TIC_interval_operators : THEORY

BEGIN

IMPORTING TIC_time_interval;

i: var II;

t: var Time;

Term: TYPE = [II -> Time]; % interval operators are defined as the type Term.

ALPHA(i): Time = Proj_1(Proj_2(i)); % return the starting point

OMEGA(i): Time = Proj_2(Proj_2(i)); % return the ending point

DELTA(i): Time = OMEGA(i) - ALPHA(i); % return the length of the interval

End TIC_interval_operators

This theory models timed trace and expressions. By the name overloading technique

of PVS, the function LIFT unifies different functionalities of primitive TIC elements to

the same type of functions whose arguments are time and intervals. In the definition

of integration, we adopt the function Integral from the NASA PVS library.

TIC_expression : THEORY

BEGIN

IMPORTING TIC_time_interval, TIC_interval_operators,

analysis@derivatives[Time], % the analysis package is from the NASA PVS library

analysis@integral[Time], analysis@continuous_functions[Time],;

i: var II;

t: var Time;

tm: var Term;

Trace: TYPE = [Time -> real];

A.1. BASIC DEFINITIONS 143

% the range of a binary trace contains of only values 0 and 1.

BTrace: TYPE = [Time -> {x: real | x = 0 OR x = 1}];

tr: var Trace;

TExp: TYPE = [Time, II -> real];

% a non zero TIC expression is a special TIC expression that returns non zero

% values, and it is used to handle the division mathematical operation.

NZero_TExp: TYPE = { exp: TExp | forall (t, i): exp(t, i) /= 0};

% a non negative TIC expression is a special TIC expression that returns non negative

% values. It is used to support function composition since time value is not negative.

NNeg_TExp: TYPE = { exp: TExp | forall(t, i): exp(t, i) >= 0};

expl, expr: var TExp;

nzeroexp: var NZero_TExp;

nnegexp: var NNeg_TExp;

% The function LIFT handles three types of TIC basic elements.

LIFT(tr)(t, i): real = tr(t); % a timed trace

LIFT(x: real)(t, i): real = x; % a constant

LIFT(tm)(t, i): real = tm(i); % an interval operator

% basic mathematical operations.

+(expl, expr)(t, i): real = expl(t, i) + expr(t, i);

-(expl, expr)(t, i): real = expl(t, i) - expr(t, i);

-(expl)(t, i): real = - expl(t, i);

*(expl, expr)(t, i): real = expl(t, i) * expr(t, i);

/(expl, nzeroexp)(t, i): real = expl(t, i) / nzeroexp(t, i);

o (expl, nnegexp)(t, i): real = expl(nnegexp(t, i), i);

% The following lemma requires users to prove the continuity of a timed trace

% which is integrated.

Integral_tr: var Trace;

Integral_tr: LEMMA continuous(Integral_tr);

b, e: var NNeg_TExp;

TICIntegral(b, e, Integral_tr)(t, i): real = Integral(b(t, i), e(t, i), Integral_tr);

END TIC_expression

In the following TIC predicate theory, predicates are defined as PVS functions from

time points and intervals to Boolean.

TIC_predicate : THEORY

BEGIN

importing TIC_expression

A.1. BASIC DEFINITIONS 144

TPred: TYPE = [Time, II -> bool];

i: var II;

t: var Time;

TTRUE(t, i): bool = true;

FFALSE(t, i): bool = false;

expl, expr: var TExp;

% Basic (in)equations over expressions.

<(expl, expr)(t, i): bool = expl(t, i) < expr(t, i);

<=(expl, expr)(t, i): bool = expl(t, i) <= expr(t, i);

>(expl, expr)(t, i): bool = expl(t, i) > expr(t, i);

>=(expl, expr)(t, i): bool = expl(t, i) >= expr(t, i);

=(expl, expr)(t, i): bool = expl(t, i) = expr(t, i);

/=(expl, expr)(t, i): bool = expl(t, i) /= expr(t, i);

tpl, tpr: var TPred

% Typical logic operators

not(tpl)(t, i): bool = NOT tpl(t, i);

or(tpl, tpr)(t, i): bool = tpl(t, i) OR tpr(t, i);

and(tpl, tpr)(t, i): bool = tpl(t, i) AND tpr(t, i);

=>(tpl, tpr)(t, i): bool = NOT tpl(t, i) OR tpr(t, i);

<=> (tpl, tpr)(t, i): bool = (tpl => tpr)(t, i) AND (tpr => tpl)(t, i);

% Quantified operators (i.e., existential and universal operators) are used to model

% sample time intervals. A quantified predicate is a function from natural number to

% timed predicates

QuaPred: TYPE = [nat -> TPred];

qp: var QuaPred;

exNat(qp)(t, i): bool = EXISTS (k: nat): (qp(k)(t, i));

allNat(qp)(t, i): bool = FORALL (k: nat): (qp(k)(t, i));

QuaPred1: TYPE = [posnat -> TPred];

qp1: var QuaPred1;

exNat1(qp1)(t, i): bool = EXISTS (k: posnat): (qp1(k)(t, i));

allNat1(qp1)(t, i): bool = FORALL (k: posnat): (qp1(k)(t, i));

END TIC_predicate

The key constructor in TIC is the interval brackets. A pari of interval brackets

associated with a predicate denotes a set of intervals and in each of which the predicate

holds at every time point. Four basic types of interval brackets and one general

interval type are encoded in the TIC IExpression theory. The theory also specifies

conventional set operators over TIC expressions and the TIC concatenation operator.

A.1. BASIC DEFINITIONS 145

TIC_IExpression : THEORY

BEGIN

importing TIC_predicate

i: var II;

oo: var OOInterVal;

co: var COInterVal;

oc: var OCInterVal;

cc: var CCInterVal;

t: var Time;

tp: var TPred;

% checks if a time point t is within an interval i based on the interval type

t_in_i(t, i): bool = (Typeof(i) = OO AND t > ALPHA(i) AND t < OMEGA(i))

or (Typeof(i) = OC AND t > ALPHA(i) AND t <= OMEGA(i))

or (Typeof(i) = CO AND t >= ALPHA(i) AND t < OMEGA(i))

or (Typeof(i) = CC AND t >= ALPHA(i) AND t <= OMEGA(i));

% check if the a predicate holds at all time points within an interval

Everywhere?(tp, i): bool = forall t: t_in_i(t, i) => tp(t, i);

PII: TYPE = setof[II];

POC: TYPE = setof[OCInterVal];

POO: TYPE = setof[OOInterVal];

PCO: TYPE = setof[COInterVal];

PCC: TYPE = setof[CCInterVal];

ocsl, ocsr: var POC;

oosl, oosr: var POO;

cosl, cosr: var PCO;

ccsl, ccsr: var PCC;

iisl, iisr: var PII;

OOS(tp): POO = {oo | Everywhere?(tp, oo)}; % (- tp -)

OCS(tp): POC = {oc | Everywhere?(tp, oc)}; % (- tp -]

COS(tp): PCO = {co | Everywhere?(tp, co)}; % [- tp -)

CCS(tp): PCC = {cc | Everywhere?(tp, cc)}; % [- tp -]

AllS(tp): PII = {i | Everywhere?(tp, i)}; % [(- tp -)]

% return true when a predicate holds for all intervals.

AllTrue(tp): bool = FORALL i: Everywhere?(tp, i);

% constrain two connected intervals in terms of interval types

ConcatType((l, r, re: II)): bool =

(Typeof(re) = OO AND ((Typeof(l) = OC AND Typeof(r) = OO) OR (Typeof(l) = OO AND Typeof(r) = CO)))

OR (Typeof(re) = CO AND ((Typeof(l) = CC AND Typeof(r) = OO) OR (Typeof(l) = CO AND Typeof(r) = CO)))

OR (Typeof(re) = OC AND ((Typeof(l) = OO AND Typeof(r) = CC) OR (Typeof(l) = OC AND Typeof(r) = OC)))

OR (Typeof(re) = CC AND ((Typeof(l) = CO AND Typeof(r) = CC) OR (Typeof(l) = CC AND Typeof(r) = OC)));

% the concatenation operator "^" in [(- tp1 -)] ^ [(- tp2 -)]

A.2. TIC REASONING RULES 146

concat(iisl, iisr): PII = {i | exists (i1, i2: II): member(i1, iisl) AND member(i2, iisr) AND

OMEGA(i1) = ALPHA(i2) AND ALPHA(i1) = ALPHA(i) AND OMEGA(i2) = OMEGA(i) AND ConcatType(i1, i2, i)};

% check whether two intervals are adjacent.

adjacent_intervals?(i, j: II): bool = OMEGA(i) = ALPHA(j) AND

(Typeof(i) = OO AND Typeof(j) = CO OR Typeof(i) = OO AND Typeof(j) = CC

or Typeof(i) = OC AND Typeof(j) = OO OR Typeof(i) = OC AND Typeof(j) = OC

or Typeof(i) = CO AND Typeof(j) = CO OR Typeof(i) = CO AND Typeof(j) = CC

or Typeof(i) = CC AND Typeof(j) = OO OR Typeof(i) = CC AND Typeof(j) = OC);

% compose two connected intervals to form an interval

TwoTOneInterval((l: II), (r: {tmp: II | adjacent_intervals?(l, tmp)})): II =

IF Typeof(l) = OO AND Typeof(r) = CO OR Typeof(l) = OC AND Typeof(r) = OO

THEN (OO, (ALPHA(l), OMEGA(r)))

ELSIF Typeof(l) = OO AND Typeof(r) = CC OR Typeof(l) = OC AND Typeof(r) = OC

THEN (OC, (ALPHA(l), OMEGA(r)))

ELSIF Typeof(l) = CO AND Typeof(r) = CO OR Typeof(l) = CC AND Typeof(r) = OO

THEN (CO, (ALPHA(l), OMEGA(r))) ELSE (CC, (ALPHA(l), OMEGA(r)))

ENDIF;

% conventional set operations between two sets of intervals.

TIC_U(oosl, oosr): POO = union(oosl, oosr);

TIC_U(ocsl, ocsr): POC = union(ocsl, ocsr);

TIC_U(cosl, cosr): PCO = union(cosl, cosr);

TIC_U(ccsl, ccsr): PCC = union(ccsl, ccsr);

TIC_U(iisl, iisr): PII = union(iisl, iisr);

TIC_I(oosl, oosr): POO = intersection(oosl, oosr);

TIC_I(ocsl, ocsr): POC = intersection(ocsl, ocsr);

TIC_I(cosl, cosr): PCO = intersection(cosl, cosr);

TIC_I(ccsl, ccsr): PCC = intersection(ccsl, ccsr);

TIC_I(iisl, iisr): PII = intersection(iisl, iisr);

End TIC_IExpression

A.2 TIC Reasoning Rules

We have formalized and validated all TIC reasoning rules [50]. The following TIC rules

theory contains the PVS specifications of those reasoning rules.

TIC_rules: THEORY

BEGIN

IMPORTING TIC_IExpression, analysis@continuous_functions_props[Time];

tr1, tr2: VAR Trace;

i: VAR II;

A.2. TIC REASONING RULES 147

t: VAR Time;

tp1, tp2, tp3, tp4: VAR TPred;

% return true if a predicate is independent of interval operators.

No_Term?(tp1): bool = FORALL (i1, i2: II): FORALL t :

t_in_i(t, i1) AND t_in_i(t, i2) => tp1(t, i1) = tp1(t, i2);

% return true if a predicate is independent of time points within an interval

Only_Interval?(tp1): bool = FORALL i: FORALL (t1, t2: Time):

t_in_i(t1, i) AND t_in_i(t2, i) => tp1(t1, i) = tp1(t2, i);

%%%% Monotonic rules %%%%

MONO_RULE: LEMMA AllTrue(tp1 => tp2) IMPLIES subset?(AllS(tp1), AllS(tp2));

MONO_RULE_CO: LEMMA AllTrue(tp1 => tp2) IMPLIES subset?(COS(tp1), COS(tp2));

MONO_RULE_OC: LEMMA AllTrue(tp1 => tp2) IMPLIES subset?(OCS(tp1), OCS(tp2));

MONO_RULE_OO: LEMMA AllTrue(tp1 => tp2) IMPLIES subset?(OOS(tp1), OOS(tp2));

MONO_RULE_CC: LEMMA AllTrue(tp1 => tp2) IMPLIES subset?(CCS(tp1), CCS(tp2));

%%%% AND rules %%%%

AND_RULE_OO: LEMMA TIC_I(OOS(tp1), OOS(tp2)) = OOS(tp1 and tp2);

AND_RULE_CO: LEMMA TIC_I(COS(tp1), COS(tp2)) = COS(tp1 and tp2);

AND_RULE_OC: LEMMA TIC_I(OCS(tp1), OCS(tp2)) = OCS(tp1 and tp2);

AND_RULE_CC: LEMMA TIC_I(CCS(tp1), CCS(tp2)) = CCS(tp1 and tp2);

AND_RULE: LEMMA TIC_I(AllS(tp1), AllS(tp2)) = AllS(tp1 and tp2);

%%%% Or rules %%%%

OR_RULE: LEMMA subset?(TIC_U(AllS(tp1), AllS(tp2)), AllS(tp1 or tp2));

OR_RULE_OO: LEMMA subset?(TIC_U(OOS(tp1), OOS(tp2)), OOS(tp1 or tp2));

OR_RULE_CO: LEMMA subset?(TIC_U(COS(tp1), COS(tp2)), COS(tp1 or tp2));

OR_RULE_OC: LEMMA subset?(TIC_U(OCS(tp1), OCS(tp2)), OCS(tp1 or tp2));

OR_RULE_CC: LEMMA subset?(TIC_U(CCS(tp1), CCS(tp2)), CCS(tp1 or tp2));

%%%% properties of fullset and empty set %%%%

True_n_Uni : LEMMA AllS(TTRUE) = fullset;

False_n_Emp : LEMMA AllS(FFALSE) = emptyset;

% [(- tp1 -)] = fullset => [(- not tp1 -)] = emptyset

All_to_Emp: LEMMA AllS(tp1) = fullset => AllS(not tp1) = emptyset;

% [(- tp1 -)] = fullset => ALPHA, OMEGA, DELTA don’t occur free in tp1

All_to_Emp_noterm: LEMMA AllS(tp1) = fullset => No_Term?(tp1);

% if ALPHA(i) = OMEGA(i), then forall t: i, we have t = ALPHA(i)

Emp_to_All_CC: LEMMA FORALL i: ALPHA(i) = OMEGA(i) => (FORALL t: t_in_i(t, i) => t = ALPHA(i));

% if ALPHA, OMEGA, DELTA don’t occur freely in tp1,

% then [(- not tp1 -)] = emptyset => [(- tp1 -)] = fullset

Emp_to_All: LEMMA No_Term?(tp1) => (AllS(not tp1) = emptyset => AllS(tp1) = fullset);

Emp_toAll_only_interval: LEMMA Only_Interval?(tp1) => (AllS(not tp1) = emptyset => AllS(tp1) = fullset);

A.2. TIC REASONING RULES 148

% if tp is term-free, then [- tp -] = emptyset => [(- not tp -)] = fullset

EmpCC_to_All: LEMMA No_Term?(tp1) => (CCS(tp1) = emptyset => AllS(not tp1) = fullset);

%%%% Not rule %%%%

% DIFF_RULE shows that [(- not tp -)] subset (II \ [(- tp -)])

DIFF_RULE : LEMMA subset?(AllS(not tp1), difference(fullset, AllS(tp1)));

co1, co2, co3, co4: var COInterVal;

cos1, cos2, cos3, cos4: var PCO;

ocs1, ocs2: var POC;

ccs1, ccs2: var PCC;

i1, i2, i3, i4: var PII;

%%%% Concatenation monotonicity %%%%

CONC_MONO_CO_CO: LEMMA subset?(cos1, cos3) AND subset?(cos2, cos4)

=> subset?(concat(cos1, cos2), concat(cos3, cos4));

CONC_MONO_CC_OC: LEMMA subset?(ccs1, ccs2) AND subset?(ocs1, ocs2)

=> subset?(concat(ccs1, ocs1), concat(ccs2, ocs2));

CONC_MONO_RULE: LEMMA subset?(i1, i3) AND subset?(i2, i4) => subset?(concat(i1, i2), concat(i3, i4));

%%%% Concatenation associativity %%%%

CONC_ASSO_CO_CO : LEMMA concat(concat(cos1, cos2), cos3) = concat(cos1, concat(cos2, cos3));

CONC_ASSO_RULE: LEMMA concat(concat(i1, i2), i3) = concat(i1, concat(i2, i3));

%%%% Concatenation union %%%%

% (S uni T) ; U = (S ; U) uni (T ; U)

CONC_UNION_CO_CO_L: LEMMA concat(TIC_U(cos1, cos2), cos3) = TIC_U(concat(cos1, cos3), concat(cos2, cos3));

CONC_UNION_L: LEMMA concat(TIC_U(i1, i2), i3) = TIC_U(concat(i1, i3), concat(i2, i3));

% S; (T uni U) = (S ; T) uni (S ; U)

CONC_UNION_CO_CO_R: LEMMA concat(cos1, TIC_U(cos2, cos3)) = TIC_U(concat(cos1, cos2), concat(cos1, cos3));

CONC_UNION_R: LEMMA concat(i1, TIC_U(i2, i3)) = TIC_U(concat(i1, i2), concat(i1, i3));

%%%% Concatenation intersection %%%%

% (S int T) ; U subseteq (S ; U) int (T ; U)

CONC_INTER_CO_CO_L: LEMMA subset?(concat(TIC_I(cos1, cos2), cos3),

TIC_I(concat(cos1, cos3), concat(cos2, cos3)));

CONC_INTER_L: LEMMA subset?(concat(TIC_I(i1, i2), i3), TIC_I(concat(i1, i3), concat(i2, i3)));

% S ; (T int U) subseteq (S ; T) int (S ; U)

CONC_INTER_CO_CO_R: LEMMA subset?(concat(cos1, TIC_I(cos2, cos3)),

TIC_I(concat(cos1, cos2), concat(cos1, cos3)));

CONC_INTER_R: LEMMA subset?(concat(i1, TIC_I(i2, i3)), TIC_I(concat(i1, i2), concat(i1, i3)));

%%%% Concatenation with fixed-length intersection %%%%

CONC_FIX_r: var posreal;

% ((S int [- delta = r -)) ; T) int ((U int [- delta = r -)) ; V)

% = (S int U int [- delta = r -)) ; (T int V)

CONC_FIX_CO_CO_L: LEMMA

TIC_I(concat(TIC_I(cos1, COS(LIFT(DELTA) = LIFT(CONC_FIX_r))), cos2),

A.3. SUPPLEMENTARY RULES 149

concat(TIC_I(cos3, COS(LIFT(DELTA) = LIFT(CONC_FIX_r))), cos4))

= concat(TIC_I(TIC_I(cos1, cos3), COS(LIFT(DELTA) = LIFT(CONC_FIX_r))), TIC_I(cos2, cos4));

CONC_FIX_L: LEMMA

TIC_I(concat(TIC_I(i1, AllS(LIFT(DELTA) = LIFT(CONC_FIX_r))), i2),

concat(TIC_I(i3, AllS(LIFT(DELTA) = LIFT(CONC_FIX_r))), i4))

= concat(TIC_I(TIC_I(i1, i3), AllS(LIFT(DELTA) = LIFT(CONC_FIX_r))), TIC_I(i2, i4));

% (S ; (U int [- delta = r -))) int (T ; (V int [- delta = r -)))

% = (S int T) ; (U int V int [- delta = r -))

CONC_FIX_CO_CO_R: LEMMA

TIC_I(concat(cos1, TIC_I(cos2, COS(LIFT(DELTA) = LIFT(CONC_FIX_r)))),

concat(cos3, TIC_I(cos4, COS(LIFT(DELTA) = LIFT(CONC_FIX_r)))))

= concat(TIC_I(cos1, cos3), TIC_I(TIC_I(cos2, cos4), COS(LIFT(DELTA) = LIFT(CONC_FIX_r))));

CONC_FIX_R: LEMMA

TIC_I(concat(i1, TIC_I(i2, AllS(LIFT(DELTA) = LIFT(CONC_FIX_r)))),

concat(i3, TIC_I(i4, AllS(LIFT(DELTA) = LIFT(CONC_FIX_r)))))

= concat(TIC_I(i1, i3), TIC_I(TIC_I(i2, i4), AllS(LIFT(DELTA) = LIFT(CONC_FIX_r))));

%%%% Concatenation Concatenate property %%%%

CONC_CONC_CO: LEMMA No_Term?(tp1) => COS(tp1) = concat(COS(tp1), COS(tp1));

CONC_CONC: LEMMA No_Term?(tp1) => AllS(tp1 AND LIFT(DELTA) > LIFT(0)) = concat(AllS(tp1), AllS(tp1));

%%%% Concatenate durations %%%%

CONC_DURA_CO_r, CONC_DURA_CO_s: var Time;

CONC_DURA_CO: LEMMA CONC_DURA_CO_r > 0 AND CONC_DURA_CO_s > 0 AND No_Term?(tp1) =>

COS(tp1 AND LIFT(DELTA) = LIFT(CONC_DURA_CO_r) + LIFT(CONC_DURA_CO_s)) =

concat(COS(tp1 AND LIFT(DELTA) = LIFT(CONC_DURA_CO_r)), COS(tp1 AND LIFT(DELTA) = LIFT(CONC_DURA_CO_s)));

CONC_DURA: LEMMA CONC_DURA_CO_r > 0 AND CONC_DURA_CO_s > 0 AND No_Term?(tp1) =>

AllS(tp1 AND LIFT(DELTA) = LIFT(CONC_DURA_CO_r) + LIFT(CONC_DURA_CO_s)) =

concat(AllS(tp1 AND LIFT(DELTA) = LIFT(CONC_DURA_CO_r)), AllS(tp1 AND LIFT(DELTA) = LIFT(CONC_DURA_CO_s)));

END TIC_rules

A.3 Supplementary Rules

The TIC supple rules theory below includes all TIC supplementary reasoning rules

which capture domain specific properties.

TIC_supple_rules: THEORY

BEGIN

IMPORTING TIC_rules, analysis@continuous_functions_props[Time];

tr1, tr2: VAR Trace;

i: VAR II;

A.3. SUPPLEMENTARY RULES 150

t: VAR Time;

tp1, tp2, tp3, tp4: VAR TPred;

ST: var posreal;

% The rule DISCRETE_n_ALL shows that a property holds always in all intervals provided

% it is true in every sample time interval. Namely,

% If ALPHA, OMEGA, and DELTA do not occur free in predicate tp1,

% then [- exists k: nat @ ALPHA = k * ST /\ OEMGA = (k+1) * ST -) subseteq [- tp1 -)

% => II = [(- tp1 -)]

DISCRETE_n_ALL_IMP: LEMMA No_Term?(tp1) =>

(subset?(COS(exNat(LAMBDA (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(ST) AND

LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(ST))),

COS(tp1))

=> AllTrue(tp1));

% When interval operators do not affect a predicate tp1, we have

% (- exi k: N @ alpha = k * st and omega = (k + 1) * st -] subset (- tp1 -]

% => [(- alpha > 0 -)] subset [(- tp1 -)]

DISCRETE_n_ALL_IMP_OC: LEMMA No_Term?(tp1) =>

(subset?(OCS(exNat(LAMBDA (k: nat): LIFT(ALPHA) = LIFT(k) * LIFT(ST) AND

LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(ST))),

OCS(tp1))

=> subset?(AllS(LIFT(ALPHA) > LIFT(0)), AllS(tp1)));

% Lemma CONC_LEN_LE shows that

%[(- tp1 /\ delta <= r -)] ; [(- tp2 /\ delta <= s -)] subseteq [(- delta <= r + s -)]

CONC_LEN_LE_s, CONC_LEN_LE_r: var Time;

CONC_LEN_LE: LEMMA subset?(

concat(AllS(LIFT(DELTA) <= LIFT(CONC_LEN_LE_r)), AllS(LIFT(DELTA) <= LIFT(CONC_LEN_LE_s))),

AllS(LIFT(DELTA) <= LIFT(CONC_LEN_LE_r) + LIFT(CONC_LEN_LE_s)));

Keep_L_RULE: LEMMA subset?(AllS(tp1 and tp2), AllS(tp1));

Keep_R_RULE: LEMMA subset?(AllS(tp1 and tp2), AllS(tp2));

Intro_L_RULE: LEMMA subset?(AllS(tp1 and tp2), AllS(tp3))

=> subset?(AllS(tp1 and tp2), AllS(tp1 and tp3));

Intro_R_RULE: LEMMA subset?(AllS(tp1 and tp2), AllS(tp3))

=> subset?(AllS(tp1 and tp2), AllS(tp2 and tp3));

True_Invariant_L: LEMMA AllTrue(tp1) <=> AllS(tp1) = fullset;

True_Invariant_R: LEMMA AllTrue(tp1) <=> fullset = AllS(tp1);

Invariant_True_R: LEMMA fullset = AllS(tp1) <=> AllTrue(tp1);

Invariant_True_L: LEMMA AllS(tp1) = fullset <=> AllTrue(tp1);

% ([(- tp1 -)] subset [(- tp2 -)]) /\ ([(- tp1 -)] subset [(- tp3 -)])

% => [(- tp1 -)] subset [(- tp2 /\ tp3 -)]

BB_in_common: LEMMA subset?(AllS(tp1), AllS(tp2)) and subset?(AllS(tp1), AllS(tp3))

=> subset?(AllS(tp1), AllS(tp2 and tp3));

% ([(- tp1 -)] subset [(- tp2 -)]) /\ ([(- tp2 -)] subset [(- tp3 -)])

% => [(- tp1 -)] subset [(- tp3 -)]

A.3. SUPPLEMENTARY RULES 151

BB_in_tran: LEMMA subset?(AllS(tp1), AllS(tp2)) and subset?(AllS(tp2), AllS(tp3))

=> subset?(AllS(tp1), AllS(tp3));

Insert_BB_R: LEMMA AllTrue(tp1) IMPLIES AllS(tp2) = AllS(tp2 and tp1);

Insert_BB_L: LEMMA AllTrue(tp1) IMPLIES AllS(tp2) = AllS(tp1 and tp2);

BB_to_CO_subset: LEMMA subset?(AllS(tp1), AllS(tp2)) => subset?(COS(tp1), COS(tp2));

BB_to_CC_subset: LEMMA subset?(AllS(tp1), AllS(tp2)) => subset?(CCS(tp1), CCS(tp2));

BB_to_OC_subset: LEMMA subset?(AllS(tp1), AllS(tp2)) => subset?(OCS(tp1), OCS(tp2));

BB_to_CO_eq: LEMMA AllS(tp1) = AllS(tp2) => COS(tp1) = COS(tp2);

BB_to_CC_eq: LEMMA AllS(tp1) = AllS(tp2) => CCS(tp1) = CCS(tp2);

BB_eq_sub_e1, BB_eq_sub_e2, BB_eq_sub_e3: var TExp;

BB_eq_sub: LEMMA AllTrue(BB_eq_sub_e1 = BB_eq_sub_e2) =>

AllS(BB_eq_sub_e1 = BB_eq_sub_e3) = AllS(BB_eq_sub_e2 = BB_eq_sub_e3);

BB_ge_sub: LEMMA AllTrue(BB_eq_sub_e1 = BB_eq_sub_e2) =>

AllS(BB_eq_sub_e1 >= BB_eq_sub_e3) = AllS(BB_eq_sub_e2 >= BB_eq_sub_e3);

BB_le_sub: LEMMA AllTrue(BB_eq_sub_e1 = BB_eq_sub_e2) =>

AllS(BB_eq_sub_e1 <= BB_eq_sub_e3) = AllS(BB_eq_sub_e2 <= BB_eq_sub_e3);

% mathematical axiom used in the following proof:

TH: var real;

mid_point_existence: AXIOM continuous(tr1) => FORALL (t1, t2: Time):

t1 < t2 AND tr1(t1) < TH AND tr1(t2) > TH

=> EXISTS (t3: Time): t3 < t2 AND t3 > t1 AND tr1(t3) = TH AND

FORALL (t4: Time): t4 > t3 AND t4 < t2 => tr1(t4) > TH;

mid_ivl_exi: LEMMA continuous(tr1) =>

subset?(AllS((LIFT(tr1) o LIFT(ALPHA)) < LIFT(TH) and (LIFT(tr1) o LIFT(OMEGA)) > LIFT(TH)),

concat(AllS(TTRUE), concat(AllS(LIFT(tr1) = LIFT(TH)), AllS(LIFT(tr1) > LIFT(TH)))));

% forall i: II @ exists m, p: nat; n, q : nonnegative reals | n < ST /\ q < ST @

% ALPHA(i) = m * ST + n /\ OMEGA(i) = p * ST + q;

Endpoints_general_form: LEMMA FORALL (i: II): EXISTS (m, p: nat), (n, q: {x: nnreal | x < ST}):

ALPHA(i) = m * ST + n AND OMEGA(i) = p * ST + q;

x, y: var nat;

Mult_SAMPLE_INTERVALS: LEMMA No_Term?(tp1) AND No_Term?(tp2) AND x <= y

=> ((FORALL (k: {n: nat | x <= n AND n <= y}):

subset?(COS(LIFT(ALPHA) = LIFT(k) * LIFT(ST) AND

LIFT(OMEGA) = (LIFT(k) + LIFT(1)) * LIFT(ST) AND tp1),

COS(tp2)))

=> subset?(COS(LIFT(ALPHA) = LIFT(x) * LIFT(ST) AND

LIFT(OMEGA) = (LIFT(y) + LIFT(1)) * LIFT(ST) AND tp1),

COS(tp2)));

END TIC_supple_rules

A.4. PROOF STRATEGIES 152

A.4 Proof Strategies

To make TIC proofs more automated in PVS, we have defined a collection of proof

strategies to combine frequently used proof commends and also keep the encoding

details of TIC away from users.

(defstep ExpandSubset ()

(then (expand "subset?" +)

(skosimp)

(ground))

"(ExpandSubset): expand and simplify the subset relation in the consequents"

"Expand and simplify the subset relation in the consequents")

(defstep ExpIntervaltoTime (fnum)

(try (try (expand "OOS" fnum) (skosimp)

(try (expand "OCS" fnum) (skosimp)

(try (expand "COS" fnum) (skosimp)

(try (expand "CCS" fnum) (skosimp)

(try (expand "AllS" fnum)(skosimp)

(skip))))))

(then (expand "Everywhere?" fnum)(skosimp))

(skip))

"(ExpandIntervaltoTime <fnum>): Trying to expand the interval brackets in consequent

<fnum> to predicate which involve time point and interval explicitly"

"Trying to expand the interval brackets in consequent ~a")

(defstep ExpandTIC (fnum)

(then (expand "LIFT" fnum) (expand "OR" fnum) (expand "=" fnum)

(expand ">" fnum) (expand ">=" fnum) (expand "<" fnum)

(expand "<=" fnum) (expand "-" fnum) (expand "o" fnum)

(expand "+" fnum) (expand "*" fnum) (expand "exNat" fnum)

(bddsimp fnum))

"(ExpandTIC <fnum>): Assigning time point and interval to all logical and mathematical

operators within the formula <fnum>"

"Assigning time point and interval to formula ~a")

(defstep ExpandAllTrue (fnum)

(then (expand "AllTrue" fnum) (skosimp)

(expand "Everywhere?") (skosimp)

(ExpandTIC fnum))

"(ExpandAllTrue <fnum>): expand function AllTrue at formula <fnum> into explicit representation"

"Expanding function AllTrue at formula ~a")

(defstep ExpandConcat (fnum &OPTIONAL pos)

(then (if pos (expand "concat" fnum pos)

(expand "concat" fnum))

(skosimp)

(ground))

A.4. PROOF STRATEGIES 153

"(ExpandConcat <fnum>): PVS automatically instantiated two concatenated invervals at antecedent <fnum>"

"PVS automatically instantiated two concatenated intervals ~a")

(defstep AssignInvlnTime (fnum &OPTIONAL interval point)

(try (else (expand "OOS" fnum)

(else (expand "OCS" fnum)

(else (expand "COS" fnum)

(else (expand "CCS" fnum)

(else (expand "AllS" fnum)

(skip))))))

(then (if interval (inst fnum interval) (inst? fnum))

(expand "Everywhere?" fnum)

(if point (inst fnum point) (inst? fnum)))

(skip))

"Assign time point and interval to TIC function at formula <fnum>: if user does not provide value of

the interval and time point respectively, the values are assigned automatically by the PVS prover."

"Assign time point and interval to TIC function at formula ~a")

(defstep AssignAllTrue (fnum &OPTIONAL interval timepoint)

(then (expand "AllTrue" fnum)

(if interval (inst fnum interval)

(inst? fnum))

(if timepoint (then (expand "Everywhere?" fnum)

(inst fnum timepoint))

(skip)))

"(AssignAllTrue <fnum>): Assign user-defined intervals to function AllTrue

at antecedent <fnum> and waiting for the user-defined time point"

"Assign user-defined intervals to function AllTrue at antecedent ~a")

(defstep AssignSubset (fnum &OPTIONAL val)

(then (expand "subset?" fnum)

(if val (inst fnum val)

(inst? fnum))

(ground))

"(AssignSubset <fnum>): assign user-specified value to antecedent <fnum>"

"Assign user-specified value to antecedent ~a")

(defstep AssignConcat (fnum lvl rvl &OPTIONAL pos)

(then (if pos (expand "concat" fnum pos)

(expand "concat" fnum))

(inst fnum lvl rvl)

(ground))

"(AssignConcat <fnum>): assign user-defined intervals to the corresponding connected

intervals at consequent <fnum>"

"User assigns interval values to the connected intervals at consequent ~a")

A.4. PROOF STRATEGIES 154

Appendix B

Proof of the DC Rule DC 15

This chapter corresponds to Chapter 5.2 for showing all proof steps when reasoning

about the DC rule DC15 using our extended verification system which support DC

proofs. The rule as given below states that if the duration of a state S is positive in

an interval, the the interval can be decomposed into three subintervals: the duration

of S is zero in the first subinterval, and S is true almost everywhere in the second

subinterval.

DC15
∫

S > 0 ⇒ (
∫

S = 0) a ddSeea true

As explained in Chapter 5, we model DC semantics in TIC, and the chop operator

is defined using TIC (refer to Chapter 5.1.4). The following PVS specification is

generated from the corresponding TIC model.

DC_DC15: LEMMA fullset = AllS(TICIntegral(dcstate1) > LIFT(0)

=> DCChop(DCChop(TICIntegral(dcstate1) = LIFT(0), pq(dcstate1)), TTRUE));

The following proof scripts are used to prove the above lemmas and theorems. These

scripts are obtained by the Emacs command M-x show-proofs-pvs-file. Note that

the numbers indicating the subgoal indexes in the scripts are not entered by users,

but are used by PVS to keep track of the proof.

155

Appendix B. Proof of the DC Rule DC 15 156

DC_DC15: proved

("" (skosimp) (expand "fullset") (apply-extensionality) (expintervaltotime 1)

(expand "=>") (ground) (lemma "DC_DC15_pre") (lemma "DCState_is_FV")

(inst?) (expand "fullset") (decompose-equality) (inst?) (expintervaltotime -1)

(inst?) (ground) (expand "exNat") (skosimp) (inst?)(ground))))

The lemma DC DC15 pre used in the above proof is given below.

DC_DC15_pre: LEMMA forall (k: nat): fvl(k)(dcstate1)(i) =>

(TICIntegral(dcstate1) > LIFT(0))(t, i)

=> DCChop(DCChop(TICIntegral(dcstate1) = LIFT(0), pq(dcstate1)), TTRUE)(t, i);

The proof of the above lemma invokes an induction to the variable k according to

the recursive function fvl defined in Chapter 5.1.1. Note that the relation between

the DC DC15 pre lemma and the DC DC15 is captured by the axiom DCState is FV

(also defined in Chapter 5.1.1) which represents the finite variability property for

discrete-valued timed traces.

DC_DC15_pre: proved

("" (induct "k")

(("1" (skosimp)(expand "fvl" -1)(lemma "Integral_a_to_a")(inst - "ALPHA(i!1)" "dcstate1!1")(grind))

("2" (skosimp)(skosimp)(expand "fvl" -2)(ground)

(("1" (expand "DCChop" 1 1)(inst 1 "i!1" "(CC, (OMEGA(i!1), OMEGA(i!1)))")(ground)

(("1" (expand "OMEGA" 1) (propax))

("2" (expand "OMEGA" 1) (expand "ALPHA" 1) (propax))

("3" (expand "Everywhere?") (skosimp) (expand "DCChop" 1)

(inst 1 "(CC, (ALPHA(i!1), ALPHA(i!1)))" "i!1") (ground)

(("1" (expand "ALPHA") (propax)) ("2" (expand "OMEGA") (propax))

("3" (expand "Everywhere?") (skosimp) (lemma "Integral_a_to_a")

(inst - "ALPHA(i!1)" "dcstate1!1") (grind))

("4" (expand "Everywhere?") (skosimp) (inst?) (ground))))

("4" (grind))))

("2" (expand "DCChop" -1)(skosimp)(expand "DCChop" 1 1)(inst 1 "il!1" "ir!1")(ground)

(("1" (expand "Everywhere?") (skosimp) (expand "DCChop" 1)

(inst 1 "(CC, (ALPHA(il!1), ALPHA(il!1)))" "il!1") (ground)

(("1" (expand "ALPHA") (propax)) ("2" (expand "OMEGA") (propax))

("3" (expand "Everywhere?") (skosimp) (lemma "Integral_a_to_a")

(inst - "ALPHA(il!1)" "dcstate1!1") (grind))))

("2" (grind))))

("3" (expand "DCChop" -1) (skosimp) (expand "Everywhere?")

(inst -5 "(ALPHA(ir!1) + OMEGA(ir!1))/2") (ground)

(("1" (inst -6 "dcstate1!1" "ir!1" "(ALPHA(ir!1) + OMEGA(ir!1))/2") (ground)

Appendix B. Proof of the DC Rule DC 15 157

(("1" (expand "DCChop" -1 1) (skosimp) (expand "Everywhere?")

(inst - "(ALPHA(il!2) + OMEGA(il!2))/2") (ground)

(("1" (expand "DCChop" -1) (skosimp) (expand "DCChop" 1 1)

(inst 1 "ChoppedInls(il!1, il!2)" "ir!2") (ground)

(("1" (grind)) ("2" (grind))

("3" (expand "Everywhere?") (skosimp) (expand "DCChop")

(inst 1 "ChoppedInls(il!1, il!3)" "ir!3") (ground)

(("1" (grind)) ("2" (grind)) ("3" (grind))

("4" (expand "Everywhere?") (skosimp) (lemma "DC_DCA5")

(inst - "dcstate1!1" "0" "0") (expand "subset?")

(inst - "ChoppedInls(il!1, il!3)") (ground)

(("1" (expintervaltotime -1)(inst - "t!3")(ground))

("2" (expintervaltotime 1) (expand "DCChop")

(inst 1 "il!1" "il!3") (ground)

(("1" (grind)) ("2" (grind))

("3" (expand "Everywhere?")(skosimp)

(lemma "DC_DC12")(inst?)(expand "fullset")

(decompose-equality)(inst - "il!1")

(expintervaltotime -1)(inst - "t!5")(ground)

(expand "=>")(inst -18 "t!5")(ground))))))))

("4" (grind)))

("2" (typepred "il!2") (grind))))

("2" (lemma "Integral_split")

(inst - "ALPHA(il!1)" "ALPHA(ir!1)" "OMEGA(ir!1)" "dcstate1!1") (ground)

(("1" (expand "TICIntegral" (-8 1)) (expandtic (-8 1)) (lemma "DC_DC12")

(inst?) (expand "fullset") (decompose-equality) (inst - "il!1")

(ground) (expand "AllS") (expand "Everywhere?")

(inst - "(ALPHA(il!1) + OMEGA(il!1))/2") (ground)

(("1" (inst - "(ALPHA(il!1) + OMEGA(il!1))/2") (ground)

(("1" (expand "=>" -2) (expand "TICIntegral")

(expandtic -2) (grind))

("2" (typepred "il!1") (grind))))

("2" (typepred "il!1") (grind))))

("2" (typepred "dcstate1!1")(inst - "ALPHA(il!1)" "ALPHA(ir!1)"))

("3" (typepred "dcstate1!1")(inst - "ALPHA(ir!1)" "OMEGA(ir!1)"))))))

("2" (typepred "ir!1") (grind)))))))

("3" (skosimp) (grind))

("4" (skosimp) (grind))

("5" (skosimp) (grind))))

Appendix B. Proof of the DC Rule DC 15 158

Appendix C

Supported Simulink Library Blocks

This chapter includes (1) the names of Simulink library blocks which are supported

in our proposed formal framework (as presented in Chapters 6 and 7, and (2) specific

TIC library functions which model the Simulink library blocks of the Commonly Used

category [84].

Currently, we handled 51 library blocks of 10 categories in terms of their functionali-

ties. Among them, 44 library blocks of 9 categories are represented by a set of TIC

library functions (in Section C.1). The rest 7 library blocks of the category Ports

and Subsystems are handled during transformation (in Section C.2). The last section

illustrates how TIC can precisely capture all library blocks of the Commonly Used

category. For the sake of page limit, we ignore descriptions of all 51 library blocks

and the rest of TIC library functions. Readers can refer to our online report [30] for

more details such as the semantics of these library blocks with their corresponding

TIC library functions.

C.1 Library Blocks Modeled by TIC Library Func-

tions

• Continuous Library: Integrator, Derivative.

159

C.2. LIBRARY BLOCKS HANDLED IN TRANSFORMATION 160

• Discrete Library: Memory, Discrete-Time Integrator, Unit Delay, Zero-order

Delay.

• Logic and Bits Operations Library: Combinational Logic, Comparator to Con-

stant, Compare to Zero, Interval Test, Logical Operator, Relational Operator.

• Math Operations Library: Abs, Add, Bias, Divide, Dot Product, Fcn, Gain,

Math Function, MinMax, Product, Sign, Subtract, Sum, Unary Minus.

• Discontinuous Library: Dead Zone, Hit Crossing, Relay, Saturation.

• Signal Routing Library: Bus Creator, Bus Selector, Demux, Mux, Switch.

• Source Library: Constant, Clock, Digital Clock, Ground.

• Signal Attributes Library: Data Type Conversion, IC.

• Sinks: Display, Scope, Terminator.

C.2 Library Blocks Handled in Transformation

• Ports and Subsystems: Enable, Enabled Subsystem, Inport, Outport, Subsys-

tem, Trigger, Triggered Subsystem.

C.3 Commonly Used Simulink Library Blocks in

TIC

This section shows how to model library blocks of the Simulink Commonly Used

category in TIC. Most of TIC specifications are functions and the way of constructing

and validating these TIC library functions is explained in Chapter 6. Some Simulink

library blocks, particularly blocksBus Creator, Bus Selector, Demux, Ground, Mux,

Scope and Terminator, are represented by TIC schemas since they do not involve any

operand parameters and sample times. In addition, some library blocks are handled

C.3. COMMONLY USED SIMULINK LIBRARY BLOCKS IN TIC 161

during the transformation phase as discussed in Chapter 7.5. Namely, library blocks

Inport, Outport and Subsystem are not listed here.

Bus Creator library block

BusCreator 2

signal1, signal2 : T→ R; Out : seq(T→ R)

#Out = 2 ∧ I = >Out(1) = signal1 ∧ Out(2) = signal2?

BusCreator 3

signal1, signal2, signal3 : T→ R; Out : seq(T→ R)

#Out = 3 ∧ I = >Out(1) = signal1 ∧ Out(2) = signal2 ∧ Out(3) = signal3>

Bus Selector library block

BusSelector 2

In1 : seq(T→ R); signal1, signal2 : T→ R

#In1 = 2 ∧ I = >In1(1) = signal1 ∧ In1(2) = signal2?

BusSelector 3

In1 : seq(T→ R); signal1, signal2, signal3 : T→ R

#In1 = 3 ∧ I = >In1(1) = signal1 ∧ In1(2) = signal2 ∧ In1(3) = signal3?

Constant library block

Constant : R→ P[Out : T→ R; IniVal : R]

∀ cv : R • Constant(cv) = [Out : T→ R; IniVal : R | cv = IniVal ∧ I = >Out = IniVal?]

Demux library block

Demux 2

In1 : seq(T→ R); Out1,Out2 : T→ R

#In1 = 2 ∧ I = >Out1 = In1(1) ∧ Out2 = In1(2)?

C.3. COMMONLY USED SIMULINK LIBRARY BLOCKS IN TIC 162

Demux 3

In1 : seq(T→ R); Out1,Out2,Out3 : T→ R

#In1 = 3 ∧ I = >Out1 = In1(1) ∧ Out2 = In1(2) ∧ Out3 = In1(3)?

Discrete-Time Integrator library block

DiscreteIntegrator F : R× T→ P[In1,Out : T→ R; IniVal : R; st : T]

∀ init : R; t : T • DiscreteIntegrator(t , init) = [In1,Out : T→ R; IniVal : R; st : T |
st > 0 ∧ t = st ∧ IniVal = init ∧ Out(0) = IniVal ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 ⊆ :Out = Out(α) ∧ Out(ω) = Out(α) + st ∗ In1(α)7]

DiscreteIntegrator B : R× T→ P[In1,Out : T→ R; IniVal : R; st : T]

∀ init : R; t : T • DiscreteIntegrator(t , init) = [In1,Out : T→ R; IniVal : R; st : T |
st > 0 ∧ t = st ∧ IniVal = init ∧ Out(0) = IniVal ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 ⊆ :Out = Out(α) ∧ Out(ω) = Out(α) + st ∗ In1(ω)7]

Gain library block

Gain : (T× R) → P[In1,Out : T→ R; GValue : R; st : T]

∀ t : T; gv : R • (t = 0 ⇒ Gain(t , gv) = [In1,Out : T→ R; GValue : R; st : T |
st = 0 ∧ gv = GValue ∧ I = >Out = In1 ∗GValue?])

∧ (t > 0 ⇒ Gain(t , gv) = [In1,Out : T→ R; GValue : R; st : T |
t = st ∧ st > 0 ∧ gv = GValue ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α) ∗GValue7])

Ground library block

Ground =̂ [Out : T→ R | I = >Out = 0?]

Integrator library block

Integrator : R→ P[In1 : T→ R; Out : T 1 R; IniVal : R; st : T]

∀ init : R • Integrator(init) = [In1 : T→ R; Out : T 1 R; IniVal : R; st : T |
st = 0 ∧ IniVal = init ∧ Out(0) = IniVal ∧ I = >Out(ω) = Out(α) +

∫ ω

α
In1?]

Logical Operator library block

Logic NOT : T→ P[In1 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Logic NOT (t) = [In1 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 = 0? = >Out = 1? ∧ >In1 6= 0? = >Out = 0?])

∧ (t > 0 ⇒ Logic NOT (t) = [In1 : T→ R; Out : T→ {0, 1}; st : T | t = st ∧ st > 0 ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :(In1(α) = 0 ⇒ Out = 1) ∧ (In1(α) 6= 0 ⇒ Out = 0)7])

C.3. COMMONLY USED SIMULINK LIBRARY BLOCKS IN TIC 163

Logic AND 2 : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Logic AND 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 6= 0 ∧ In2 6= 0? = >Out = 1? ∧ >In1 = 0 ∨ In2 = 0? = >Out = 0?])

∧ (t > 0 ⇒ Logic AND 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) 6= 0 ∧ In2(α) 6= 0 ⇒ Out = 1) ∧ (In1(α) = 0 ∨ In2(α) = 0 ⇒ Out = 0)7])

Logic OR 2 : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Logic OR 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 6= 0 ∨ In2 6= 0? = >Out = 1? ∧ >In1 = 0 ∧ In2 = 0? = >Out = 0?])

∧ (t > 0 ⇒ Logic OR 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) 6= 0 ∨ In2(α) 6= 0 ⇒ Out = 1) ∧ (In1(α) = 0 ∧ In2(α) = 0 ⇒ Out = 0)7])

Logic NAND 2 : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Logic NAND 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 = 0 ∨ In2 = 0? = >Out = 1? ∧ >In1 6= 0 ∧ In2 6= 0? = >Out = 0?])

∧ (t > 0 ⇒ Logic NAND 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) = 0 ∨ In2(α) = 0 ⇒ Out = 1) ∧ (In1(α) 6= 0 ∧ In2(α) 6= 0 ⇒ Out = 0)7])

Logic NOR 2 : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Logic NOR 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 = 0 ∧ In2 = 0? = >Out = 1? ∧ >In1 6= 0 ∨ In2 6= 0? = >Out = 0?])

∧ (t > 0 ⇒ Logic AND 2(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) = 0 ∧ In2(α) = 0 ⇒ Out = 1) ∧ (In1(α) 6= 0 ∨ In2(α) 6= 0 ⇒ Out = 0)7])

Mux library block

Mux 2 =̂ [In1, In2 : T→ R; Out : seq(T→ R) | #Out = 2 ∧ I = >Out = 〈In1, In2〉?]
Mux 3 =̂ [In1, In2, In3 : T→ R; Out : seq(T→ R) | #Out = 3 ∧ I = >Out = 〈In1, In2, In3〉?]

Product library block

Product MM : T→ P[In1, In2,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Product MM (t) = [In1, In2,Out : T→ R; st : T | st = 0 ∧ I = >Out = In1 ∗ In2?])

∧ (t > 0 ⇒ Product MM (t) = [In1, In2,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α) ∗ In2(α)7])

C.3. COMMONLY USED SIMULINK LIBRARY BLOCKS IN TIC 164

Product MD : T→ P[In1, In2,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Product MD(t) = [In1, In2,Out : T→ R; st : T | st = 0 ∧ I = >Out = In1/In2?])

∧ (t > 0 ⇒ Product MD(t) = [In1, In2,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α)/In2(α)7])

Product DD : T→ P[In1, In2,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Product DD(t) = [In1, In2,Out : T→ R; st : T | st = 0 ∧ I = >Out = 1/(In1 ∗ In2)?])

∧ (t > 0 ⇒ Product DD(t) = [In1, In2,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = 1/(In1(α) ∗ In2(α))7])

Product MMM : T→ P[In1, In2, In3,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Product MMM (t) = [In1, In2, In3,Out : T→ R; st : T |
st = 0 ∧ I = >Out = In1 ∗ In2 ∗ In3?])

∧ (t > 0 ⇒ Product MMM (t) = [In1, In2, In3,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α) ∗ In2(α) ∗ In3(α)7])

Relational Operator library block

Relation eq : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Relation eq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 = In2? = >Out = 1? ∧ >In1 6= In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation eq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) = In2(α) ⇒ Out = 1) ∧ (In1(α) 6= In2(α) ⇒ Out = 0)7])

Relation neq : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Relation neq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 6= In2? = >Out = 1? ∧ >In1 = In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation neq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) = In2(α) ⇒ Out = 1) ∧ (In1(α) 6= In2(α) ⇒ Out = 0)7])

Relation l : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Relation l(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 < In2? = >Out = 1? ∧ >In1 ≥ In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation l(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) < In2(α) ⇒ Out = 1) ∧ (In1(α) ≥ In2(α) ⇒ Out = 0)7])

C.3. COMMONLY USED SIMULINK LIBRARY BLOCKS IN TIC 165

Relation leq : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Relation leq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 ≤ In2? = >Out = 1? ∧ >In1 > In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation leq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) ≤ In2(α) ⇒ Out = 1) ∧ (In1(α) > In2(α) ⇒ Out = 0)7])

Relation geq : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Relation geq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 ≥ In2? = >Out = 1? ∧ >In1 < In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation geq(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) ≥ In2(α) ⇒ Out = 1) ∧ (In1(α) < In2(α) ⇒ Out = 0)7])

Relation g : T→ P[In1, In2 : T→ R; Out : T→ {0, 1}; st : T]

∀ t : T • (t = 0 ⇒ Relation g(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
st = 0 ∧ >In1 > In2? = >Out = 1? ∧ >In1 ≤ In2? = >Out = 0?])

∧ (t > 0 ⇒ Relation g(t) = [In1, In2 : T→ R; Out : T→ {0, 1}; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 =

:(In1(α) > In2(α) ⇒ Out = 1) ∧ (In1(α) ≤ In2(α) ⇒ Out = 0)7])

Saturation library block

Saturation : (T× R× R) → P[In1,Out : T→ R; Llimit ,Ulimit : R; st : T]

∀ t : T; ll , hl : R • (t = 0 ⇒ Saturation(t , ll , hl) = [In1,Out : T→ R; Llimit ,Ulimit : R; st : T |
st = 0 ∧ Llimit ≤ Ulimit ∧ ll = Llimit ∧ hl = Ulimit ∧ >In1 ≤ Llimit? = >Out = Llimit? ∧
>Llimit < In1 ∧ In1 < Ulimit? = >Out = In1? ∧ >In1 ≥ Ulimit? = >Out = Ulimit?])

∧ (t > 0 ⇒ Saturation(t , ll , hl) = [In1,Out : T→ R; Llimit ,Ulimit : R; st : T |
t = st ∧ st > 0 ∧ Llimit ≤ Ulimit ∧ ll = Llimit ∧ hl = Ulimit ∧

:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :(Llimit < In1(α) < Ulimit ⇒ Out = In1(α)) ∧
(In1(α) ≤ Llimit ⇒ Out = Llimit) ∧ (In1(α) ≥ Ulimit ⇒ Out = Ulimit)7])

Scope library block

Scope Scalar =̂ [In1 : T→ R]

Scope V 2 =̂ [In1 : seq(T→ R) | #In1 = 2]

Sum library block

C.3. COMMONLY USED SIMULINK LIBRARY BLOCKS IN TIC 166

Sum PP : T→ P[In1, In2,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Sum PP(t) = [In1, In2,Out : T→ R; st : T | st = 0 ∧ I = >Out = In1 + In2?])

∧ (t > 0 ⇒ Sum PP(t) = [In1, In2,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α) + In2(α)7])

Sum PM : T→ P[In1, In2,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Sum PM (t) = [In1, In2,Out : T→ R; st : T | st = 0 ∧ I = >Out = In1 − In2?])

∧ (t > 0 ⇒ Sum PM (t) = [In1, In2,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α)− In2(α)7])

Sum MM : T→ P[In1, In2,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Sum MM (t) = [In1, In2,Out : T→ R; st : T | st = 0 ∧ I = >Out = 0− In1 − In2?])

∧ (t > 0 ⇒ Sum MM (t) = [In1, In2,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = 0− In1(α)− In2(α)7])

Sum PPP : T→ P[In1, In2, In3,Out : T→ R; st : T]

∀ t : T • (t = 0 ⇒ Sum PPP(t) = [In1, In2, In3,Out : T→ R; st : T | st = 0 ∧ I = >Out = In1 + In2 + In3?])

∧ (t > 0 ⇒ Sum PPP(t) = [In1, In2, In3,Out : T→ R; st : T |
t = st ∧ st > 0 ∧ :∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :Out = In1(α) + In2(α) + In3(α)7])

Switch library block

Switch G : (T× R) → P[In1, In2, In3,Out : T→ R; TH : R; st : T]

∀ t : T; th : R • (t = 0 ⇒ Switch G(t , th) = [In1, In2, In3,Out : T→ R; TH : R; st : T |
st = 0 ∧ th = TH ∧ >In2 > TH ? = >Out = In1? ∧ >In2 ≤ TH ? = >Out = In3?])

∧ (t > 0 ⇒ Switch G(t , th) = [In1, In2, In3,Out : T→ R; TH : R; st : T | t = st ∧ st > 0 ∧ th = TH ∧
:∃ k : N • α = k ∗ st ∧ ω = (k + 1) ∗ st7 = :(In2(α) > TH ⇒ Out = In1(α)) ∧ (In2(α) ≤ TH ⇒ Out = In3(α))7])

Terminator library block

Terminator Scalar =̂ [In1 : T→ R]

Terminator V 2 =̂ [In1 : seq(T→ R) | #In1 = 2]

Unit Delay library block

UnitDelay : T× R→ P[In1,Out : T→ R; IniVal : R; st : T]

∀ t : T; init : R • UnitDelay(t , init) = [In1,Out : T→ R; IniVal : R; st : T |
st = t ∧ st > 0 ∧ IniVal = init ∧ :α = 0 ∧ ω = st7 ⊆ :Out = IniVal7 ∧
:∃ k : N1 • α = k ∗ st ∧ ω = (k + 1) ∗ st7 ⊆ :Out = In1(α− st)7]

Appendix D

Handling Conditional Subsystems

This appendix complements chapters 7.5.1 and 7.5.2 to respectively deal with trig-

gered subsystems with discrete control inputs and enabled subsystems with continuous

control inputs.

D.1 Triggered Subsystems with Discrete Control

Inputs

When the control input of a triggered subsystem is discrete, trigger events occurs

only at sample time hits. In addition, there is no trigger event at time point 0 as the

input is constant in the initial sample time interval. Note that discrete behavior in

Simulink is piecewise-constantly continuous. We specify the behavior by constraining

the values of subsystem inputs in terms of sample time intervals, which are left-closed

and right-open and formed by a pair of consecutive sample time hits. We remark that

triggered subsystems output the last value between any two events.

167

D.1. TRIGGERED SUBSYSTEMS WITH DISCRETE CONTROL INPUTS 168

Figure D.1: A triggered subsystem controlled by a discrete input

As subsystem outputs are determined by subsystem inputs, it is thus necessary and

important to mode the way of assigning subsystem inputs. Specifically the value

of a subsystem input can come from the block which is outside the subsystem and

connects to the input or be the last value which is obtained at the time point when

the last event happens. Moreover, different trigger event types can lead to different

kinds of situations. Particularly, according to the occurrences of trigger events at

both endpoints of any sample time interval, if the type is either, there are six kinds

of situations relevant to the assignment of input values; else the type is either rising

or falling, and there are five kinds of situations since it is impossible that two events

occur at a pair of sample time hits.

We take a simple system shown in Figure D.1 as an example. The control input of the

triggered subsystem trigsys is connected by a source which outputs discretely, every

1 time unit. The type of trigger events is either. Namely, a trigger event occurs when

the control input rises from a negative or zero value to a positive value or the control

input falls from a positive or a zero value to a negative value.

The schema sys trigsys shown below denotes the subsystem trigsys : the first predicate

constrains that there is no trigger event at the time point 0; the second predicate

captures that the time points where trigger events can occur are multiples of the

sample time which is 1 in this example.

D.1. TRIGGERED SUBSYSTEMS WITH DISCRETE CONTROL INPUTS 169

sys trigsys
Trigger : T→ {0, 1}; In1,Out1 : T→ R

:Trigger = 0; ⊆ :α = 0 ∧ ω = 0;
:Trigger = 1; ⊆ :∃ k : N1 • α = k ∧ α = ω; ∧ I = >In1 = Out1?

The following part of the schema sys represents the conditional execution of trigsys

by six predicates. These predicates model the way to assign the subsystem input

trigsys .In1 based on whether an event occurs at any ending points of every sample

time interval, namely, checking trigsys .Trigger(α) and trigsys .Trigger(ω). Predicate1

and Predicate2 are concerned with the initial sample time interval: the default value

of trigsys .In1 is 0 during the interval; and if no event happens at the ending point, the

value 0 is assigned to trigsys .In1 at the ending point (expressed by Predicate1). The

last four predicates deal with non-initial sample time intervals (by :∃ k : N1 • α =

k ∧ ω = k + 17). Predicate4 states that when events occur at both ending points, the

value of the input port at the starting point (In1(α)) is the last value to trigsys .In1

in the interval; moreover, if no event occurs at the ending point, one more constraint

is added to assign the last value to trigsys .In1 at the ending point (by Predicate3).

When no event occurs at the starting point but one event at the ending point, the

last value during the interval is the input value at the starting point (by Predicate6);

furthermore, if no event occurs at the ending point, we need to also assign the last

value to trigsys .In1 at the ending point (by Predicate5).

D.2. ENABLED SUBSYSTEMS WITH CONTINUOUS CONTROL INPUTS 170

sys
In1 : T→ R; trigsys : sys trigsys; . . .

. . . [Predicate1]
:trigsys.Trigger(ω) = 0 ∧ α = 0 ∧ ω = 17 ⊆ :trigsys.In1 = 0 ∧ trigsys.In1(ω) = 07
:trigsys.Trigger(ω) = 1 ∧ α = 0 ∧ ω = 17 ⊆ :trigsys.In1 = 07 [Predicate2]
:trigsys.Trigger(α) = 1 ∧ trigsys.Trigger(ω) = 0 ∧ ∃ k : N1 • α = k ∧ ω = k + 17

⊆ :In1(α) = trigsys.In1 ∧ In1(α) = trigsys.In1(ω)7 [Predicate3]
:trigsys.Trigger(α) = 1 ∧ trigsys.Trigger(ω) = 1 ∧ ∃ k : N1 • α = k ∧ ω = k + 17

⊆ :In1(α) = trigsys.In17 [Predicate4]
:trigsys.Trigger(α) = 0 ∧ trigsys.Trigger(ω) = 0 ∧ ∃ k : N1 • α = k ∧ ω = k + 17

⊆ :trigsys.In1(α) = trigsys.In1 ∧ trigsys.In1(α) = trigsys.In1(ω)7 [Predicate5]
:trigsys.Trigger(α) = 0 ∧ trigsys.Trigger(ω) = 1 ∧ ∃ k : N1 • α = k ∧ ω = k + 17

⊆ :trigsys.In1(α) = trigsys.In17 [Predicate6]

D.2 Enabled Subsystems with Continuous Control

Inputs

When the control input of an enabled subsystem is continuous, the subsystem ex-

ecutes whenever the value of the input is positive. Here we handle the case that

enabled subsystems outputs the most recent values when it is disabled. To model

the conditional execution, we use a similar method which has been applied for trig-

gered subsystems to specify how to assign subsystem inputs appropriate values in two

circumstances, namely, enabled and disabled. We further restrict that the intervals

during which the control input values are positive are left and right-closed.

For example, Figure D.2 shows an enabled subsystem enablesys which is controlled by

a continuous wave. This continuity feature is captured in the schema sys enablesys

which denotes the subsystem enablesys, specifically, by the symbol 1 in the declara-

tion of the control input Enable.

sys enablesys =̂ [Enable : T1 R; In1,Out1 : T→ R | I = >In1 = Out1?]

Part of the following schema sys specifies the conditional behavior in three TIC pred-

icates. Predicate1 indicates that whenever the subsystem is enabled, the value of the

D.2. ENABLED SUBSYSTEMS WITH CONTINUOUS CONTROL INPUTS 171

Figure D.2: An enabled subsystem controlled by a continuous input

subsystem input enablesys .In1 is assigned by the input port In1 which connects the

subsystem input. Predicate2 and Predicate3 are concerned with the situation where

the subsystem is enabled (enablesys .Enable > 0). Specifically, if the interval during

which the subsystem is disabled starts with time point 0, the value of enablesys .In1

is 0 by default (expressed by Predicate2); else the interval starts with positive time

point, and we assign the value of enablesys .In1 at the starting point as the last value

within the interval (by Predicate3). Note that the reason for choosing the last value

is similar to the one for handling triggered subsystems (as discussed in Section 7.5.1).

sys
In1 : T1 R; enablesys : sys enablesys ; . . .

. . .
:enablesys .Enable > 0; ⊆ :In1 = enablesys .In1; [Predicate1]
>enablesys .Enable ≤ 0 ∧ α = 0? ⊆ >enablesys .In1 = 0? [Predicate2]
>enablesys .Enable ≤ 0 ∧ α > 0? ⊆

>enablesys .In1(α) = enablesys .In1? [Predicate3]

