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Abstract

New Definitions and Algorithms in Scheduling
Resource-Constrained Projects

by

Fei Xiao

In the first part of the thesis, we study the problem to interpret float and identify

critical activity for projects with resource limits. The use of float and critical path

are central in analyzing activity networks in project management. However, the vari-

ability in the schedules for resource-constrained projects make it difficult to calculate

float and identify critical activities accurately. In this thesis, a new definition for float

is proposed for projects with resource limits. With the new definition, it is possible

for us to calculate float and identify critical activity without referring to a specified

schedule. To measure the flexibility for more than one activity, group float is defined

as the float for a set of activities. The critical set is presented as the activity set with

0 maximum group float, and float set is given as the activity set with larger than 0

maximum group float respectively. As a symmetrical complement for float, negative

float and negative critical activity are also proposed.
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Several algorithms are developed to calculate the maximum float. Extensive ex-

periments are conducted to show that there are abundance of activities and activity

sets with positive float and group float even the deadline of the project is already op-

timal. We also show that the maximum float for large size projects can be calculated

approximately.

We also proposed the notion of a float graph and negative float graph to illustrate

float, critical activities, float sets and critical sets, negative float, negative critical

activities, negative float sets and negative critical sets. These can help project man-

agers understand the intrinsic of flexibility between the activities for the resource-

constrained projects so that to plan and manage the projects in a better way.

In the second part of the thesis, we develop a new optimization technique to solve

the resource-constrained project scheduling problem (RCPSP). We based on the fact

that the highly ordered structures of crystals are achieved by simultaneous movement

of molecules with decreasing temperature. Simulating the process of cooling a gas

into crystal, a new optimization method, Molecule Search (MS), is proposed here

to tackle the RCPSP. There are two main components of MS - molecule jumping

and molecule walking. Molecule jumping is used to simulate the concurrent motion

of high energy molecules. Molecule walking is a local refinement procedure, which

is used to simulate the motion of low energy molecules. Three different kinds of

molecule jumping rules are developed in this thesis. They are randomized cooling
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jumping, critical activity based jumping and hidden order based jumping. We also

developed the forward-backward search (FBS) algorithm as the molecule walking here.

Extensive experimental results have demonstrated the power of molecule jumping and

walking. The experimental results on PSPLIB also show that Molecule Search is one

of the best heuristics for RCPSP so far.

In the third part of the thesis, we further develop a population based Molecule

Search algorithm (Molecule Bank Algorithm) for RCPSP. A molecule bank is used to

save the current generation of elite solutions and historical best solutions. Crossover,

selection, molecule jumping and molecule walking are used as operators when working

on the solutions retrieved from the molecule bank, and newly generated elite solutions

are saved back to the molecule bank. In MBA, dynamic population, molecule aging

and molecule drifting are used to balance diversification and intensification so that

at the beginning of the search process, a greater proportion computational effort is

put into diversification and at the end of the search process, the effort is focused

on intensification. The performance of MBA is tested on PSBLIB (the standard

benchmark for RCPSP). Compared with the state-of-art heuristics, MBA emerges

to be one of the best heuristics so far, achieving the best results on the J60 and

J120 test sets. Moreover, 3 new best results for the J60 test set and 62 new best

results for the J120 test sets were found by MBA. In the fourth part of the thesis,

We study an over-constrained resource-constrained project scheduling problem where
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constraints cannot be relaxed. This problem originates from a local defense agency

where activities to be scheduled are strongly ranked in a priority scheme determined

by planners ahead of time and operational real-time demands require solutions to be

available almost immediately. A hybrid framework is used which is composed of two

levels. A high-level component explores different orderings of activities by priorities

using Tabu Search or Genetic Algorithm, while in a low-level component, constraint

programming and minimal critical sets are used to resolve conflicts. Real-data used to

test the algorithm show that a larger number of high priority activities are scheduled

when compared to a CP-based system used currently. Further tests were performed

using randomly-generated data and results compared with CPLEX.
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Chapter 1

Introduction

1.1 Project scheduling and Critical Path Method

In project scheduling, a set of activities has to be scheduled so as to minimize

a given objective. In a project, each activity may have some predecessors, where

the activity can only be scheduled after all its predecessors are completed. These

relationships between activities are called precedence constraints. The precedence

constraints between the activities can be clearly illustrated in a directed graph, which

is called a project network. Each activity also has a given processing time, which is

the duration of the activity. As an example, a project with 6 activities is shown in

Figure 1.1.

s

A B

D E

C

F

t

0 0

5 2 4

2 2 2

Figure 1.1 An example of project network with 6 activities

In Figure 1.1, s and t are two dummy activities marking the start and end of the
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project respectively. The precedence constraints are illustrated as directed edges in

Figure 1.1. Since there are directed edges from A to E and from D to E, activity E

should start only after activity A and activity D finish. The duration of activity A,

B, C, D, E, and F is given as 5, 2, 4, 2, 2 and 2.

The most common objective in project scheduling is to minimize the makespan of

the project, where the makespan can be defined as the maximum completion time of

all the activities in the project. The minimum makespan of a project can be obtained

using the Critical Path Method (CPM). The CPM was developed in a joint venture

between DuPont Corporation and Remington Rand Corporation for managing plant

maintenance projects. In CPM, a feasible sequence satisfying the precedence con-

straints to schedule all the activities is obtained through topological sort. After this,

the earliest start time (ES) of each activity is calculated one by one according to the

feasible sequence. Assuming A is the set of all the activities in a project. As ES(s)

is set to 0, the ES of the activity i ∈ A is calculated as,

ES(i) = max{ES(j) + d(j), j ∈ predecessor(i)} (1.1)

where, d(j) is the duration of activity j and predecessor(i) is the set of direct prede-

cessors of activity i.

The ES of the last dummy activity will be the minimum makespan of the project.

For the above example, a feasible sequence to schedule all the activities can be s, A,

B, C, D, E, F, t. The ES of all the activities is given in Table 1.1. In Table 1, we can
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Table 1.1 CPM for example 1.1

Activity s A B C D E F t
ES 0 0 5 7 0 5 7 11
EF 0 5 7 11 2 7 9 11
LS 0 0 5 7 5 7 9 11
LF 0 5 7 11 7 9 11 11

Float 0 0 0 0 5 2 2 0

find that the minimum makespan of the project is 11 as the ES of the dummy activity

t. The CPM is much more than finding the minimum makespan of the project. It can

also calculate the critical path of the project, where the critical path is defined as the

longest duration path in the project network. To find the critical path for a project,

the latest start time of all the activities has to be calculated first. To calculate the

latest start time of the activities we have to calculate the earliest finish time (EF )

and latest finish time first (LF ) of the activities also. The EF of activity i ∈ A is

calculated as,
EF (i) = ES(i) + d(i) (1.2)

where d(i) is the duration of activity i. As LF (t) is set to EF (t), the LF of the

activity i ∈ A is calculated as,

LF (i) = min{LF (j)− d(j), j ∈ successor(i)} (1.3)

where successor(i) is the set of direct successors of activity i. The latest start time

(LS) of the activity i ∈ A can be calculated as,

LS(i) = LF (i)− d(i) (1.4)
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The EF , LF and LS values for the above example are given in Table 1.1 also. The

difference between ES and LS of an activity is described as the slack time or float

of the activity. The float of all the activities in the above example are also given in

Table 1.1. Float has played central role in project scheduling, since it illustrates the

flexibility of the activity, where delaying the activity within its float will not affect the

completion time of the project. Float is also useful in identifying critical path. The

critical path is composed of critical activities, where the critical activity is defined

as the activity with 0 float. Therefore the critical activity can be identified as the

activity with the same ES and LS value. For example 1.1, activities A, B and C are

critical activities, since all of them have 0 float value. Hence, the critical path for

example 1.1 is s-A-B-C-t, which is the bold line in Figure 1.1.

1.2 Project scheduling with resource constraints

In the traditional project scheduling, we consider that there are unlimited re-

sources. However, in real-life projects, nearly all of the projects have limited resources,

such as manpower, tools, oil and funding. Basically, there are three different resource

types, renewable resource, non-renewable resource and doubly-constrained resource

[9]. For renewable resource, such as man power, a pre-specified number of units of

a resource is available for every period of the planning horizon. For non-renewable

resource, such as funding, the total amount of the resource is limited and can not be

regenerated. For doubly-constrained resource, such as oil, not only does it have limits
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for each unit time, but also the total amount of it is also limited. In this thesis, we

only consider renewable resource, however, the definitions we proposed for float and

critical activity also work for other resource types. However the definition need to

be further extended for the multiple model resource constrained project scheduling

problem.

With resource constraints, project scheduling becomes much harder. The clas-

sic resource-constrained project scheduling problem (RCPSP) with the objective to

minimizing the makespan of the project has been proved to be NP -hard in strong

sense [?], where there is no polynomial time or pseudo-polynomial time algorithm for

RCPSP, unless P = NP . The CPM method no longer works for the project with

resource constraints. As shown in Chapter 2, it also fails to identify float of activity,

critical activity and critical path. As float and critical activity is central in project

scheduling, numerous methods are developed in identifying float, critical activity for

projects with resource constraints. However, as there are various optimal schedules

for RCPSP, and different schedules may result in different float of activities and differ-

ent critical activities, identifying float, critical activity and critical path for projects

with resource constraints still remain as a great challenge in project management.

As a classic problem in project scheduling with resource constraints, RCPSP has

found its applications in a lot of real-life problems. Due to the importance of RCPSP,

a lot of algorithms have been proposed for it, and it still remains as one of the most
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important research areas in project management.

1.3 Outline of the thesis

To calculate float and to identify critical activity for projects with resource con-

straints, new definitions for float and critical activity are given in Chapter 2 [75]. To

identify the flexibility of a set of activities, group float and critical set are also defined.

As the complement for float, negative float is proposed and studied in Chapter 2. In

Chapter 2, we also proposed several algorithms to calculate float and group float.

In Chapter 3, simulating the cooling process from gas to crystal, a new optimiza-

tion technique, called Molecule Search (MS), is applied to solve RCPSP [78]. Molecule

jumping and molecule walking are proposed as two components of MS. Three different

jumping rules are designed and a new forward-backward search algorithm is proposed

as molecule walking. Extensive experiments are conducted to test the performance

of Molecule Search on PSPLIB (a standard benchmark of RCPSP).

In Chapter 4, a population based Molecule Search is proposed to solve RCPSP,

which is called Molecule Bank Algorithm (MBA) [76]. In MBA, we store all elite

solutions in a molecule bank, where 4 different kinds of operators, crossover, selection,

molecule jumping and molecule walking, are used to generate new solutions from the

old elite solutions in the molecule bank. Extensive experiments show that MBA is

among the best algorithms for RCPSP so far, achieving the best results on the J60

and J120 test sets of PSPLIB.
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In Chapter 5, a hybrid framework is proposed for a real-life over-constrained

project scheduling problem [79], which is originated from a local defense agency.

There are two levels of the hybrid framework. Genetic algorithm and Tabu Search

are applied as the high level search algorithm. In the low level, constraint program-

ming and minimal critical sets are used to resolve conflicts. Extensive experimental

results are presented on both real-life data and random generated data.

Finally in Chapter 6, conclusions are given and possible future research is also

discussed.
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Chapter 2

Float and Critical Activity for

Resource-constrained Projects

Float and critical path are keys to analyze activity networks in project man-

agement, when studied for the project networks with no resource limits. However,

considering the limited resources, float can no longer be interpreted as the difference

between the earliest start time (ES) and the latest start time (LS) of an activity and

critical path is no longer viable to describe critical activities serving as the focus of

the scheduling process.

The resource-constrained project scheduling problem is considered as one of the

hardest problem in optimization, where it is NP -hard in strong sense [10]. Because

projects are almost always resource-constrained, the RCPSP remains an important

one. Key to its applications lies in using a good representation for float. This help

the manager attain flexibility of activities to plan for contingency. Therefore, various

approaches have been proposed to calculate float [99, 16] and identify critical activities

[99, 121, 32, 120, 15, 113].

A measure for float was explored by Raz and Marshall [99] and Bowers [16],

capturing the flexibility of resource-constrained projects. Raz and Marshall followed

the classical definition of float and calculated it as the difference between the late

schedule time and corresponding early schedule time. However, the standard float
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is not unique. Bowers recognized that there are different schedules with identical

makespan for a resource-constrained project, and float varies according to schedules.

To resolve this, he redefined three new types of float. However, floats proposed by

Bowers are still calculated as the difference between the latest start time with the

earliest start time of all possible schedules. On the one hand, it is prohibitive to

find all the possible schedules with identical durations computationally. On the other

hand, the difference between the earliest start time and latest start time can no longer

capture the meaning of float for the resource-constrained project, for which a detailed

example will be given in section 2.1.

Recognizing that it was misleading to apply CPM to resource-constrained projects,

Wiest [32] pursued a new representation of critical activities as critical sequence in the

resource-constrained projects. The critical sequence is defined as the set of activities

which are determined not only by just the technological ordering, but also by resource

constraints. Different approaches, such as [99, 121, 120, 15, 113] have been proposed

to identify the critical sequence in resource-constrained projects. However, the critical

sequence is heavily dependent on the techniques used in the scheduling of resource-

constrained projects, where activities identified as critical might be quite different for

different schedules.

In the book Critical Chain [51] by Goldratt, critical chain was proposed as a

novel approach for project management, where critical chain is defined as a chain
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of activities satisfying not just precedence constraints but also resource constraints,

and delaying any activities of the critical chain will result in the delay of the whole

project. There is little difference between the concept of critical chain and critical

sequence, both of which are schedule based, except that buffer management is used

for the critical chain. Also, different feasible schedules may yield different critical

chains. In other words, the activity may be critical in one schedule, but not critical

in another. Detailed discussion on critical chain can be found in [98, 53].

Being aware of the lack of a suitable way to identify critical activities for the

resource-constrained projects, Rivera and Duran [103] proposed the concepts of the

critical sets and critical clouds, where examples were given to illustrate the inability

of other current approaches to identify critical activities. However, the critical set is

defined according to time. A simple example in section 2.1 will highlight that there

may be other set of activities which are critical but not decided by this definition.

Moreover, their algorithm is not practical to identify all the critical sets even for the

medium size projects with the exact algorithm proposed by the authors, due to the

fact that there may be exponential number of critical sets. In fact, to identify a single

critical activity is already NP -hard.

Many methods have been developed to tackle RCPSP (resource-constrained project

scheduling problem), such as Branch and Bound methods [39, 40, 21, 106, 20],

constraint-propagation-based cutting planes [36], heuristics X-pass methods [30, 33,
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65], Tabu Search [5, 90], Simulated Annealing [12, 14] and Genetic Algorithm [52, 62,

57, 114]. A detailed survey on the methods for resource-constrained project schedul-

ing problem can be found in [41, 68, 67], where a standard benchmark is used to

evaluate different methods [69]. Here, Branch and Bound Algorithm will be applied

to calculate float for small size projects. We will also use one of the most effective

but simple heuristics, Simulate Annealing, to calculate float and to identify critical

activities for large size resource-constrained projects.

In the next section, we review the shortcomings of current approaches in calculat-

ing float and identifying critical activities, after which new definitions for float and

critical activity are presented in section 2.2, where a natural connection are built

between them. In section 2.3, group float is defined, and a more general definition for

critical set is given according to group float. Three algorithms are presented in section

2.4 to calculate float. In section 2.5 the details on how to find critical sets and group

sets are given. After that, we presented the float graph to illustrate float and group

float for resource-constrained projects in section 2.6. we have also discussed how to

manage resource-constrained projects with float graph. In section 2.7, negative float

is proposed as a complement to float. Like float, we also provide definition for nega-

tive critical activity, negative group float, negative float set and negative critical set.

A notion of negative float graph is also developed to illustrate negative float. We also

give the definition of zero critical activity, which is critical and negative critical. We
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show that special attention should be paid to zero critical activity, since changing

the duration of it will directly affect the completion time of the project. Extensive

computational results on float calculation, critical sets and float sets are presented in

section 2.8. Finally, we draw our conclusions and show some possibilities for future

research in section 2.9.

2.1 Current approaches for float and critical activity

Although a lot of effort has been made to discover new ways of interpreting float

for project networks with resource constraints, we still lack a proper definition for the

float itself for resource-constrained projects. The difficulty in calculating float comes

from the indeterminable nature of scheduling the resource-constrained projects. The

resource-constrained project scheduling problem is NP -hard in strong sense, and

there may be many different schedules for the identical project makespan. Therefore,

float can no longer be presented in the old manner, considering a single schedule.

Different new approaches have been proposed by [99, 16]. However researchers still

use the difference between the earliest start time and the latest start time [99] or the

difference between the earliest earliest start time and the latest latest start time of

all schedules [16] to represent float of an activity. A simple example given below will

illustrate that the difference between the earliest start time and the latest start time

can no longer capture the meaning of the float.
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Figure 2.1 Precedence network for example 2.1

In example 2.1, given in Figure 2.1, there are only two activities, A and B, to be

scheduled, where activity s and t are dummy activities illustrating the start and the

end of the project. There are no precedence constraints between activity A and B,

and they share the same renewable resource 1, where there is only 1 unit of resource

1 available for the plan horizon and the two activities consume 1 unit of resource 1

each. So activity A and activity B cannot be scheduled together according to the

resource constraint. The two optimal schedules with project makespan 4 are shown

in Figure 2.2.

In the two schedules given in Figure 2.2, the earliest earliest start time of activity

A is 0, and the latest latest start time of activity A is 3. According to Bowers’

calculation, the float of activity A is 3. However this has lost the meaning of float,
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Figure 2.2 Feasible schedules for example 2.1 with project makespan 4.

which is defined as the flexibility of the activity, since activity A can only be scheduled

at 0 or 3 and cannot be scheduled at time 1 or 2 without delaying the entire project,

and float should be an interval within which the activity can be delayed any time. To

capture the meaning of flexibility properly, a new definition of float is given in section

2.2.

Like float, the concept for critical path can no longer capture the meaning as

the path of the critical activities for resource-constrained projects. In spite of the

difficulties in scheduling the resource-constrained projects, a great deal of valuable

research has been done to redefine the critical path considering the resource con-

straints, such as critical sequence [121, 32], critical chain [51] and recently published

critical sets [103]. However, critical sequence and critical chain are formed according

to a certain baseline schedule. The activity may be critical in one schedule but not

critical in another. Rivera and Duran [103] have recognized the problem to identify

critical activities with critical sequence and critical chain, and they developed a new

concept as critical set, where delaying all the activities inside a critical set will cause



15

the delay of the entire project. However critical set still faces the same problem as

critical sequence and critical chain, since it is defined according to time, and different

schedules may have different critical sets also. To clarify these shortcomings, the

following resource-constrained project is used as example 2.2.
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Figure 2.3 Precedence network for example 2.2.

In Figure 2.3, there are 5 activities and 1 renewable resource, where the availability

of the resource is 2 and each activity consumes 1 unit of the resource. Two optimal

schedules with the same duration 8 are presented in Figure 2.4, which can be verified

according the symmetry between B and D, C and E. For the first schedule in Figure

2.4 (a), the critical sequence and critical chain will be identified as D-E, and the

critical sets will be selected as {F,A}, {F,B} and {C,D}. While for the schedule

in Figure 2.4 (b), the critical sequence and critical chain change to B-C, and the
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critical sets change to {F,A}, {F,D} and {B,E}. In fact, as long as all the precedence

constraints and resource constraints are fixed, the critical activities should be fixed,

where delaying any of the critical activities will delay the whole project. Here, in

example 2.2, there is no critical activity at all, since each activity can be extended

for 2 time units alone without affecting the project completion time. The critical set

is a bit complicated, and we will present a more general definition for critical set in

section 2.3, where delaying all the activities in the critical set will delay the entire

project, and according to this definition the critical sets for example 2.2 are {A,F},

{B,D}, {B,E}, {B,F}, {C,D}, {C,E}, {D,F}, {A,B,C} and {A,D,E}. In section 2.2, a

new definition for float will be introduced and it will be used to define critical activity

for resource-constrained projects.
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Figure 2.4 Feasible schedules for example 2.2.

2.2 New definitions for float and critical activity

Traditionally, there are two types of float to measure the scheduling flexibility

associated with activities in the project networks. One type of float is total float,
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which is defined as the amount of time that the finish time of an activity can be

delayed without affecting the completion of the entire project. Total float can be

calculated as the difference between the earliest start time and the latest start time

of an activity. The other type of float is free float. Free float is the amount of the

time that the finish time of an activity can be delayed without affecting the finish

time of any other activities. Free float can be calculated as the difference between the

activity’s earliest finish time and the earliest start time of all its successors. However,

as discussed in the last section, we can no longer calculate float as the difference

between earliest start time and latest start time for projects with resource limits,

since the activity might not be scheduled within the float calculated.

A new definition for float, in fact a clarification of the old definition, will be

presented here. Before this, we would like to give the formal definition for the decision

form of the resource-constrained project scheduling problem(RCPSP) following the

notation by Garey and Johnson [49], and review the complexity result for it.

Problem 2.2.1 (RCPSP) Set A of activities, for each a ∈ A, a duration d(a) ∈

Z−, there is a partial order ≺ as the precedence constraints, number r ∈ Z+ of

resources, with resources bound Bi, 1 ≤ i ≤ r, resource constraints Ri(a), 0 ≤ Ri(a) ≤

Bi, for each activity a and resource i, and an overall completion time D ∈ Z+.

QUESTION: Is there a schedule σ for A that meets the overall completion time D and

obeys the precedence constraints and resource constraints, i.e., a one-to-one function
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σ : T → Z+
0 , with a ≺ a

′
implying σ(a) + d(a) ≤ σ(a

′
), such that for all u ≥ 0, if

S(u) is the set of all a ∈ A for which σ(a) ≤ u < σ(a) + d(a), then for each resource

i the sum of Ri(a) over all a ∈ S(u) is at most Bi?

As a generalization of the job-shop scheduling problem, the RCPSP has been proved

to be NP -hard in the strong sense by Blazewicz [10].

Lemma 2.2.2 RCPSP is NP -hard in strong sense.

As we know, float was defined as the amount of time that the finish time of

an activity can be delayed without affecting the completion of the entire project.

In project management, the delay of an activity usually means the duration of the

activity has been extended. The other way to interpret the delay of the finish time of

an activity is the delay of the start time of the activity, without affecting the duration

of activity. Without resource constraints, the two meanings of float can be calculated

in the same way as the difference between the earliest start time and the latest start

time of an activity. However, as discussed in section 2.1, float, the flexibility of the

activity, can no longer be interpreted as the difference between the earliest start time

and the latest start time and, as shown in example 2.1, the start time of the activity

may not be continuous interval, which loses the meaning of float. Furthermore, to

determine whether an activity can be scheduled at a certain time is NP -hard also,

since RCPSP can be easily reduced to the problem with setting the start time for the
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dummy activity at the end of the project. Therefore we follow the first explanation for

float, and the float here is defined as the amount of time the duration of the activity

can be extended without affecting the completion of the entire project, where it is

easy to prove that the float is a continuous interval.

Definition 2.2.3 (Float) Float of an activity in the resource-constrained project is

defined as the amount of time the duration of an activity can be extended without

affecting the completion time of the entire project.

According to the new definition for float, assuming the maximum float of a certain

activity is F, it is easy to see that the duration of the activity can be extended by

any f ∈ Z, f ∈ [0, F ], without delaying the entire project. In other words, when the

duration of activity a is extended by f in the new project, if there exists a schedule for

the new project satisfying the old completion time, f is one possible float for activity

a. In the new float definition, to finish the new project in the old completion time,

all the possible schedules are considered instead of one schedule. In [108], Sprecher

et al. also considered all the possible schedules in defining the global left shift. As

changing of schedules is not preferred by project managers, the float defined here is

mainly to help project managers to view the flexibility of each activity, so that project

managers could select a robust schedule to buffer critical activities and to minimize

the risk of extending the project when uncertain events happen.

With the new definition for float, we are able to measure float as an interval again.
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The decision form of the problem to calculate float of each activity for resource-

constrained project scheduling (Float-RCPSP) is defined in the following.

Problem 2.2.4 (Float-RCPSP) Set A of activities, for each a ∈ A, a duration

d(a) ∈ Z−, there is a partial order ≺ as the precedence constraints, number r ∈

Z+ of resources, with resources bound Bi, 1 ≤ i ≤ r, resource constraints Ri(a),

0 ≤ Ri(a) ≤ Bi, for each activity a and resource i, and an overall completion time

D ∈ Z+, there is a schedule σ for A that meets the overall completion time D and

obeys the precedence constraints and resource constraints, a float F for a certain

activity b, and assume d′(a) is the duration function, where d′(a) = d(a) for activity

a 6= b, and d′(b) = d(b) + F , assume A′ is the activity set with the new duration

function d′(a).

QUESTION: Is there a schedule σ
′
for A′ that meets the overall completion time D

and obeys the precedence constraints and resource constraints?

The Float-RCPSP problem is NP -hard in strong sense also.

Theorem 2.2.5 Float-RCPSP is NP -hard in strong sense.

PROOF. We show that the RCPSP can be Turing-reduced to Float-RCPSP. Sup-

pose S(As, ds, Ps, Rs, Ds, b, F ) is the subroutine for solving the Float-RCPSP, with the

activity set As, duration function ds, precedence constraints Ps, resource constraints

Rs, overall completion time Ds, selected activity b, the Float F. The following al-
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gorithm can be used to solve the RCPSP, with activity set A, duration function d,

precedence constraints P , resource constraints R, overall completion time D.

for each a ∈ A do

ds(a)← 0

end for

for each a ∈ A do

call S(A, ds, P, R, D, a, d(a))

if the answer from S is ”no” then

output ”no”, exit

end if

ds(a)← d(a)

end for

output ”yes”

This procedure uses less than or equal to n calls of the subroutine S, where n is

the total number of activities in the project. So RCPSP can be Turing-reduced to

Float-RCPSP, and the subroutine has the same up-bound on the input as the RCPSP.

Therefore, Float-RCPSP is NP -hard in strong sense also.

With the new definition for float, the critical activity can be defined as the activity

with maximum float is 0, which means for any schedule, extending the duration of

the critical activity will delay the entire project.
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Definition 2.2.6 (Critical Activity) In the resource-constrained project, an ac-

tivity is defined as critical activity, if its maximum float is 0 for the specified overall

completion time of the project.

2.3 Group float, critical set and float set

We have redefined the concepts of float and critical activity for the resource-

constrained projects, where the maximum float of an activity also illustrates how

critical the activity is. In practice, sometimes, project managers are concerned with

a group of activities, where they are interested in investigating how long the group

of activities can be delayed together without affecting the project completion. There

may be no critical activities inside the activity group, while simultaneously delaying

in every activity inside the group would probably delay the entire project.

The critical property of a group of activities is also recognized by Rivera and

Duran [103], where the novel concept of critical set and critical cloud are developed.

However, in [103], the critical set is defined according to time, where only activities

with common process time are possible to be considered as critical set. In section

2.1, with example 2.2, we have shown that defining critical set based on time is not

enough to discover all the critical sets.

Before we give a more general definition for critical set, we would like to present

the concept of group float first. The group float measures the amount of time that

the duration of all the activities inside a group can be extended simultaneous without
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delaying the entire project.

Definition 2.3.1 (Group Float) Group Float is defined as the amount of time that

the duration of a set of activities can be simultaneously extended without affecting the

completion of the entire project.

The normal way to delay a group of activities is to delay the same amount of time

for each activity. Alternatively, we may need to delay the activities proportional to the

original duration of the activities. To clarify how long each activity inside the group

can be delayed, delay vector C is introduced here. Assuming the group of activities

to be measured are U = {au1, au2, ..., aun}, with duration presented as a vector W =

(du1, du2, ..., dun), the delay vector C can be defined as, C = (cu1, cu2, ..., cun), with

cui ∈ Z+ and GCD(cu1, cu2, ..., cun) = 1. With the delay vector C, group float can be

presented as k ∈ Z−, where for the new duration vector W ′ = W + kC, there is a

schedule satisfying the overall completion time. With the definition of group float, a

more general form of critical set can be defined as

Definition 2.3.2 (Critical Set) In resource-constrained projects, critical set is a

set of activities, where the maximum group float of the set of activities is 0 for the

specified overall completion time of the project, and there is no subset of it with the

same property.

Critical set can be identified as the set of activities with no flexibility, which
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is different from the minimal forbidden set [6] and minimal critical set [25]. The

minimal forbidden set and minimal critical set are used to detect and resolve resource

conflicts in resource-constrained-Project Scheduling Problem with Time Windows

(RCPSP/max). We also define the float set as,

Definition 2.3.3 (Float Set) In resource-constrained projects, float set is a set of

activities, where the maximum group float of the set of activities is larger than 0 for

the specified overall completion time of the project.

We can easily show that the critical sets for example 2.2 are {A,F}, {B,D}, {B,E},

{B,F}, {C,D}, {C,E}, {D,F}, {A,B,C} and {A,D,E} according to the new definition,

instead of only {F,A}, {F,B} and {C,D} with the old definition based on time, for

Figure 2.4 (a).

It is obvious that calculating float is a sub problem of calculating group float.

Therefore calculating group float is NP -hard. Similar to float, group float can also

be presented as an interval. Like float, group float for a set of activities can be any

integer value from 0 to the maximum group float of it.

2.4 Algorithms for calculating maximum float

Float for any activity in the project is an integer value ranging from 0 to its max-

imum float and in Definition 2.2.6 critical activity is also defined as the activity with

maximum float 0. Therefore, in order to find the range of the float and identify crit-
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ical activities in a resource-constrained project, several algorithms are developed to

calculate maximum float. Since Float-RCPSP is NP -hard in strong sense (Theorem

2.2.5), there is no polynomial time or pseudo-polynomial time algorithm to find the

maximum float, unless P = NP . However, with the help of an enormous amount of

research done on the RCPSP, it is possible for us to accurately calculate the maxi-

mum float for relatively small size projects by branch and bound algorithm, where

the accurate maximum float calculated by the exact method is named as E-float.

Meanwhile a lot of heuristic algorithms have been proposed to tackle the large size

RCPSP. With the help of Simulated Annealing, we have proposed a novel way to

calculate the float statistically by Testing Hypothesis. We also develop another fast

algorithm to calculate the maximum float using SA directly. We define the approx-

imated maximum float calculated by heuristics as H-Float, and H-Float calculated

by Testing Hypothesis is a good approximation for the E-float with the support of

extensive computational results in section 2.8. In this section, we also study the way

to calculate the float based on a certain schedule, where the maximum float for a

certain schedule is called S-Float.

2.4.1 Calculating E-Float

According to theorem 6, there is no polynomial time or pseudo-polynomial time

algorithm to calculate float, unless P = NP . However, a great deal of research

has been done to develop various lower bounds [39, 20, 23] for RCPSP, and there
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are different branch and bound algorithms proposed to find the optimal schedules

with the minimum makespan for RCPSP, such as [39, 40, 21, 106, 20]. Embedding

with the branch and bound algorithm dh procedure proposed by Demeulemeester and

Herroelen [39, 40], the following binary search algorithm bab float is used to calculate

float, where a is the activity selected and the its float will be calculated, D is the

original completion time for the project and D′ is the makespan of the project with

duration of activity b extended, the dh rocedure is called with the activity set A, the

duration of activities d, the precedence constraints P , and the resource constraints

R, and it will return the minimum makespan of the project.

Algorithm 1 calculating E-float with branch and bound

bab float(A,P,R,D,a)
hf ← upbound float(A, P, R, D, a), lf ← 0
while lf < hf do

mf ← (hf + lf)/2 + 1
d′(a)← d(a) + mf
A′ ← A
update d′(a) as the duration for activity a in A′

D′ ← dh procedure(A′, d′, P, R)
if D′ ≤ D then

lf ← mf
else

hf ← mf − 1
end if

end while
return lf

In the above algorithm, procedure upbound float calculates the upper bound of

float for activity a. In this work, two upper bounds for float are proposed. The
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difference between the earliest start time and latest start time considering no resource

constraints serves as the first upper bound. The other upper bound is derived from

the the lower bound, LB3 [84] for RCPSP, where it calculates how much the duration

of an activity can be extended to make the lower bound LB3 equal to the original

completion time. The two upper bounds of float are presented in Lemma 2.4.1 and

Lemma 2.4.2. The details of algorithm upbound float are given in the following.

Lemma 2.4.1 In a resource-constrained project P , assuming current makspan for the

project is D, applying the CPM on project P without considering resource constraints,

for any activity a, let est(a) and lst(a) be earliest start time and latest start time of

activity a and E be the new makespan obtained by the CPM, the upper bound up1(a)

for the float of activity a, is given as:

up1(a) = lst(a)− est(a) + D− E (2.1)

Lemma 2.4.2 In a resource-constrained project P , assuming the set of all the activ-

ities is A, supposing current completion time for the project is D, for any activity a,

let T (a) be the set of activities which can be scheduled together with activity a, and

let activity set C be A − {a} − T (a), assuming the lower bound LB3 for activity set

C is Z, the upper bound up2(a) for the float of activity a is given as:

up2(a) = D− Z (2.2)

In upbound float algorithm, est(a) and lst(a) are the earliest and latest start time
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Algorithm 2 finding upper bound of float

upbound float(A,P,R,D,a)
up1(a)← lst(a)− est(a) + D− cpm(A, P )
C ← A− (T (a)

⋃{a})
sort C into activity list AL with no decreasing |T (c)| (no increasing order of d(c)
as a tie-breaker)
LB3← 0
i← 0
while C 6= ∅ do

if AL[i] ∈ C then
c← AL[i]
LB3← d(c)
C ← C − {c} − T (c)

end if
i← i + 1

end while
up2(a)← D − LB3
if up1(a) ≤ up2(a) then

return up1(a)
else

return up2(a)
end if
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of activity a, considering the project without resource limits, and cpm procedure

returns makespan for the project without resource limits by CPM.

It is obvious that group float can be calculated in the same way as float with the

branch and bound algorithm. The only difference is that the duration for a set of

activities are extended together instead.

Assuming the time complexity for the dh procedure is H, the complexity to cal-

culate float is O(H lgD). As shown in [40], the dh procedure is only capable of cal-

culating 479 out of 480 cases of the J30 test set within 1 hour running time, where

the J30 test set is one of the test sets proposed by Kolisch and Sprecher [69] as a

standard benchmark to evaluate algorithms for RCPSP. There are 30 activities and

4 renewable resources for the J30 test set. All the instances of J30 have been solved

to optimality when more computational time allowed. None of the exact methods

can solve all the test cases in the J60 test set, with 60 activities. In practice, for a

simple project, there may be hundreds of activities involved. It is impossible for us

to calculate float with the exact methods for such a large number of activities due

to the prohibitive nature of RCPSP. Therefore new methods are needed to calculate

float and detect critical activities for large size resource-constrained projects.

Although exact methods can not be used to calculate float for large size projects,

there are a lot of heuristic algorithms available for RCPSP, where they are designed

to find good solutions in reasonable time. A detailed survey on the heuristics for
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RCPSP can be found in [41, 68, 67]. Extensive computational experiments have

shown that the heuristic algorithms can find all the optimal solutions for the J30 test

set in a short time, and nearly all the best upper bounds for the J60 and J120 test

sets are found by heuristic algorithms also. However, there are no guarantees from

heuristic algorithms and most heuristic algorithms involve random process inside, such

as the Simulated Annealing and Genetic Algorithms, where different results may be

produced by different runs. Therefore statistical inference is used here to calculate

float based on the results given by heuristic algorithms, and we name the maximum

float calculated by heuristic algorithms as H-Float as a comparison to E-float.

2.4.2 Calculating H-Float by Testing Hypothesis

Simulated Annealing (SA), one of the most successful heuristics for combinatorial

optimization problems, is notable not only for fast convergence to high quality solu-

tions, but also for the simplicity of implementation. The intuitive idea to apply the

concepts of annealing to optimization problems was first introduced by Kirkpatrick,

Gelatt and Vecchi [60] and independently by Černy [27]. With the inspiration of the

physical annealing process, SA has been widely used for different kinds of NP -hard

problems.

SA was first applied to RCPSP by Boctor [12], where solutions for RCPSP are

presented as activity lists. The activity list is an order of all the activities satisfying

the precedence constraints, which was first suggested by Kelley [58]. Computational
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Results showed SA outperformed the Tabu Search and some of the best priority

rules based heuristics. An original cooling scheme of SA for RCPSP was explored by

Bouleimen and Lecocq [14], which not only improved the efficiency of SA but also

enable SA to become one of the best heuristics for RCPSP [67].

Here we follow the SA procedure proposed by Bouleimen and Lecocq [14]. A gen-

eral form of Simulated Annealing Algorithm for resource-constrained project schedul-

ing problem is given below. In the SA procedure, T0 is the start temperature of

Algorithm 3 Simulated Annealing for RCPSP

sa(A,P,R)
generate initial solution S
D ← f(S),Nb ← N0

T ← T0, k ← 0, u← u0

while k < LSGS do
for i← 1 to Nb do

generate randomly a neighbor solution S’ of S
if e(f(S)−f(S′))/kBT > rand(0, 1) then

S ← S ′

if f(S) < D then
D ← f(S)

end if
end if
if k + i ≥ LSGS then

return D
end if

end for
k ← k + Nb, Nb ← Nb · u, u← u + 1
if T > Te then

T ← α · T
end if

end while
return D
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the annealing process, Te is the ending temperature, Nb is the number of neighbors

explored at each temperature, the initial value for Nb is N0, and Nb is increased pro-

gressively as Nb ← Nb·u, where the initial value for u is set to u0, LSGS is the maximum

step allowed, where, since SA uses SGS (Serial Schedule Generation Scheme)[66] to

evaluate solutions, LSGS also represents the limit of SGS calls allowed. kB is the

Boltzmann constant, f : S → D is the function map of the solutions to its overall

makespan and rand(0,1) generate a random number uniformly from (0, 1).

According to Bouleimen and Lecocq [14], T0 is set to:

T0 = − f(S)

5ln(0.01)
(2.3)

so that the initial probability of selecting the solution 20% worse than the initial

solution S is 0.01. According to our preliminary experiments u0 is set to 4 here. The

setting for Te and LSGS will be discussed later in the computational study.

Modeled mathematically with the theory of finite Markov chains, the solutions

obtained by SA have been proved to converge to the Boltzmann distribution in finite

steps [1]. In the study of the physical annealing process, Boltzmann distribution, the

distribution of the energy of solid at a certain temperature, is used to characterize

thermal equilibrium. The discrete form of Boltzmann distribution is given below.

P (E = ǫi) =
gie

−ǫi/kBT

Z(T )
(2.4)

where E is a random variable denoting the energy of a particle in the solid at the

current temperature T. gi is the degeneracy, or number of states having energy ǫi.
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Z(T ) is the partition function, which is defined as.

Z(T ) =
∑

j

gje
−ǫj/kBT (2.5)

For the Float-RCPSP problem, we need to consider two possible ways to obtain

the original overall completion time D. In the first case, D is a fixed number selected

by the project manager. In the second case, D is also obtained by heuristics, since

the RCPSP is NP -hard, where we assume the heuristic used to obtain a near optimal

schedule with completion time D is SA. Here we will only discuss the second case

where D is obtained by SA, because the method we present in the following can also

be applied to the first case.

Since the solutions obtained by SA converge to the Boltzmann distribution, the

expected value of the SA solutions will be used to acquire H-Float. The theorem

given below reveals that the difference between the expected values of the SA results

for two instances of RCPSP depicts the difference between the optimal completion

times of the two instances, when the temperature T approaches 0.

Theorem 2.4.3 Suppose P (X = xi) = gie
−xi/kBT

∑

j gje−xj/kBT is the distribution for the solu-

tions obtained by SA on the origin RCPSP instance, where X is a random variable on

the completion time of the project, let P (Y = yi) = gie
−yi/kBT

∑

j gje−yj/kBT be the distribution

for the solutions obtained by SA on the RCPSP instance with activity b’s duration ex-

tended for F, float given in the problem Float-RCPSP, let xmin represent the optimal

solution for the origin RCPSP instance and ymin be the optimal solution for the new
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RCPSP instance, we have:

lim
T→0

(E(X)− E(Y )) = xmin − ymin (2.6)

PROOF.
lim
T→0

(E(X)−E(Y )) = lim
T→0

E(X)− lim
T→0

E(Y ) (2.7)

lim
T→0

E(X) = lim
T→0

∑

i

gixie
−xi/kBT

∑

j gje−xj/kBT
(2.8)

= lim
T→0

∑

i

gixie
−(xi−xmin)/kBT

∑

j gje−(xj−xmin)/kBT
(2.9)

=
∑

i

lim
T→0

gixie
−(xi−xmin)/kBT

∑

j gje−(xj−xmin)/kBT
(2.10)

=
gminxmin

gmin
(2.11)

= xmin (2.12)

In the same way, we have,
lim
T→0

E(Y ) = ymin (2.13)

Therefore,
lim
T→0

(E(X)− E(Y )) = xmin − ymin. (2.14)

If there are many energy states, we can use the continuous form of the Boltzmann

distribution to approximate the discrete Boltzmann distribution. Without T ap-

proaching 0, We have the same results as theorem 2.4.3.

Theorem 2.4.4 Assume X is a random variable on the completion time of the project

for the solutions obtained by SA on the original RCPSP instance, with density func-

tion f(x) = e−(x−xmin)/kBT

kBT
, let Y be a random variable on the completion time of
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the project for the solutions obtained by SA on the RCPSP instance with activity

b’s duration extended by F given in the problem Float-RCPSP, with density function

f(y) = e−(yi−ymin)/kBT

kBT
, where ymin represent the optimal solution for the origin RCPSP

instance and ymin be the optimal solution for the new RCPSP instance, we have,

E(X)− E(Y ) = xmin − ymin (2.15)

PROOF. The expected value E(X) can be obtained as,

E(X) =

∫ ∞

xmin

xe−(x−xmin)/kBT

kBT

= xmin + kBT

(2.16)

In the same way, we have,
E(Y ) = ymin + kBT (2.17)

Therefore, E(X)−E(Y ) = xmin − ymin.

The variance of the continuous form of Boltzmann distribution also can be derived

as,

V ar(X) = E(X2)− [E(X)]2 (2.18)

=

∫ ∞

xmin

x2e−(x−xmin)/kBT

kBT
− [

∫ ∞

xmin

xe−(x−xmin)/kBT

kBT
]2 (2.19)

= k2
BT 2 (2.20)

With Theorem 2.4.3 and Theorem 2.4.4, whether the duration of an activity can

be extended for F can be decided approximately according to the difference between

the means of SA solutions for the origin instance and for the instance with extended

activity. If the difference is near 0, the activity can probably be extended for F without
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affecting the overall completion time of the project. Otherwise, if the difference is

larger than 0, there is a large chance that extending the activity for F will cause

delay of the entire project. With the help of Central Limit Theory (CLT), we can use

Testing Hypothesis to decide whether the original RCPSP instance and the revised

instance with duration of an activity extended by F have the same mean, which

also indicates the same optimal completion times. Supposing X1, X2, ..., Xn are n

independent variables and each Xi has the same Boltzmann distribution with mean

µx and variance σ2 for n runs of SA results for the original RCPSP instance, where

the sample mean X = 1
n

∑n
i=1 Xi, X approaches normal distribution with a large

enough sample size n according to CLT.

X ∼ N [µx,
σ2

n
] (2.21)

In the same way, let Y1, Y2, ..., Yn be n independent variables and each Yi has the

same Boltzmann distribution with mean µy and variance σ2 for n runs of SA results

for the revised RCPSP instance, where the sample mean Y = 1
n

∑n
i=1 Yi, we have,

Y ∼ N [µy,
σ2

n
] (2.22)

Therefore we have the Y −X also approaches normal distribution with large enough

sample size n.

Y −X ∼ N [µy − µx,
2σ2

n
] (2.23)
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we consider testing the following hypothesis:

H0 : µx = µy

HA : µx < µy

(2.24)

The null hypothesis H0 asserts that there is no difference between the means of the

two distributions, and extending the duration of the activity by F will be considered

as not affecting the overall completion time. Let the above test be at level α, the

reject region for this test is
Y −X

σ
√

2/n
> z(α) (2.25)

Since the convergence of SA strongly depends on the LSGS in sa procedure, different

size projects may need different LSGS to converge. To balance the performance and

running time, SA may not converge well and the sample variance may be much larger

than the given variance as kB
2T 2 or Te

2. Therefore we will use the sample variance

in computing the reject region, where the sample variances are given as

sx =
1

n− 1

n
∑

i=1

(Xi −X)2 (2.26)

sy =
1

n− 1

n
∑

i=1

(Yi − Y )2 (2.27)

The reject region with the sample variance is

Y −X
√

(sx
2 + sy

2)/n
> z(α) (2.28)

With the help of the Testing Hypothesis, the following algorithm embedded with

SA procedure can be used to calculate H-Float, where b is the activity selected for

calculating float, and Te is the ending temperature of SA procedure.
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Algorithm 4 calculating H-Float with Testing Hypothesis

th float(A,P,R,a)
for i← 1 to n do

Xi ← SA(A, P, R)
end for
X ← 1

n

∑n
i=1 Xi

sx = 1
n−1

∑n
i=1(Xi −X)2

hf ← UpBound(A, P, R, X1, a) , lf ← 0
while lf < hf do

mf ← (hf + lf)/2 + 1
d′(b)← d(b) + mf
A′ ← A
update d′(a) as the duration for activity a in A′

for i← 1 to n do
Yi ← SA(A′, P, R)

end for
Y ← 1

n

∑n
i=1 Yi

sy = 1
n−1

∑n
i=1(Yi − Y )2

if Y −X√
(sx

2+sy
2)/n

< z(α) then

lf ← mf
else

hf ← mf − 1
end if

end while
return lf
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In the computational study, we will further discuss parameter selection in cal-

culating H-Float by Testing Hypothesis. Using SA, calculating group float can be

done in the same way as calculating float; the only difference is that for the revised

instance, the duration of a set of the activities will be extended together instead.

2.4.3 Calculating H-Float by Simulated Annealing

With Theorem 2.4.3 and Theorem 2.4.4, H-Float also can be calculated directly

with Simulated Annealing on the condition that the Simulated Annealing process

converges well. With the binary search algorithm, almost the same as the bab float

algorithm, the sa float algorithm is presented in the following. Here the original

Algorithm 5 calculating H-Float by Simulated Annealing directly

sa float(A,P,R,a)
D ← SA(A, P, R)
hf ← UpBound(A, P, R, D, a), lf ← 0
while lf < hf do

mf ← (hf + lf)/2 + 1
d′(a)← d(a) + mf
A′ ← A
update d′(a) as the duration for activity a in A′

D′ ← SA(A′, P, R)
if D′ ≤ D then

lf ← mf
else

hf ← mf − 1
end if

end while
return lf

completion time D is obtained by SA. The algorithm will not change, if D is given as
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a predetermined parameter.

2.4.4 Calculating schedule based S-Float

Although we have redefined the concept of float for RCPSP, where the exact

maximum float (E-float) can be calculated by the Branch and Bound Algorithm

and the heuristic maximum float (H-Float) can be calculated by Test Hypothesis or

Simulated Annealing, there is still a need to provide a direct method to calculate the

maximum float based on a specified schedule, which is defined as S-Float. S-Float

will not be calculated as the maximum amount of time the duration of an activity can

be extended without affecting the start time of other activities in a specified schedule

here, since it will be too strict to be useful in reality. Instead, we are interested in

how much an activity can be extended considering both the left-justified and right-

justified schedule for a given activity list without increasing the project completion

time. Wiest [32] introduces the left-justified schedule as a feasible schedule in which

no activity can be started at an earlier date by local left shifting of the activity

alone. Accordingly, right-justified schedule is defined as a feasible schedule in which

no activity can be ended at a later date by local right shifting. Valls et al. [116] used

the iterative left-justified right-justified procedure to find better solutions for RCPSP.

To calculate S-Float, we first find the left-justified schedule of the given activity list.

After that, the activities will be scheduled as right-justified one by one with non-

increasing finish time in the left-justified schedule. During this process, the S-Float
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of the activity is calculated as the maximum amount of time the activity could be

extended just before the activity is scheduled right-justified. The detailed algorithm

to calculate S-Float is presented in the following.
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Algorithm 6 calculating S-Float

cal sfloat(A,P,R, AL,D)
Find left-justified schedule for AL and save the start time of activities to st
Set the finish time of activities as fn according to st
Sort activities into ALr with no increasing of finish time fn (ties are broken ac-
cording to the label of activity)
for i← 1 to n do

a← ALr[i]
Set the start time of activity a as st(a)
Extend activity a as late as possible and record the maximum extension as
sfloat(a)
Set duration of a to the old value
Schedule activity a as late as possible and save the start time to str(a)

end for
Return sfloat

In the above algorithm, the way it finds left-justified and right-justified schedule

is similar to the famous SGS algorithm [66]. Same as the SGS algorithm, the time

complexity for algorithm cal sfloat is O(r|A|2), where |A| is the number of activities

and r is the number of resources.

The following useful fact plays a central role in speeding up the th float algorithm

to find H-Float in computational study.

Lemma 2.4.5 Let S be one of the optimal schedules for the RCPSP, S-Float for an

activity of the schedule S is the lower bound of E-float for the activity in the project

for the optimal makespan.
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2.5 Finding critical sets and float sets

Like the float, group float can be calculated by Branch and Bound algorithm, Test

Hypothesis and Simulated Annealing in the same way. The only difference is that all

the activities in a given set have to be delayed together to check whether it is possible

to find a new schedule with the old completion time. Therefore, small changes can

be applied to the bab float, th float and sa float as bab groupfloat, th groupfloat and

sa groupfloat to calculate the group float for a set of activities. The parameters for

the three new procedures have changed to (A,P,R,S,C), where S is the activity set

and C is the delay vector we discussed in section 2.3. The details for the three new

procedures are given in the appendix.

It is useful to find all the float sets and critical sets for a resource-constrained

project with a given completion time, Since the float sets and critical sets explore the

intrinsic nature of the project by clearly illustrating the flexibilities and relationships

between activities. Although the number of float sets and critical sets may be expo-

nential, 2|A| and
( |A|

⌊
|A|
2

⌋

)

in the worst case, it is still possible for us to calculate float sets

and critical sets for small size projects or for part of activities in large size projects.

In practice, float sets and critical sets not only can help project managers select a

suitable schedule to provide more buffer for a certain set of high priority activities but

also they can help them to reallocate resources for the float sets and the critical sets

to achieve a better schedule with shorter makespan. The find floatset algorithm is
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developed to find all the float sets and critical sets for a resource-constrained project.

The basic idea of the algorithm is to explore all the sets with only one activity first.

Those activity sets with float larger than 0 will be recorded as float set, while for those

activity sets with 0 float will be recorded as critical sets. After that, one activity will

be added to all the float sets. If the maximum group float of a new set is larger than

0, the new set will be recorded as the float set. Otherwise, all the subsets of the new

set with one activity less will be tested as float set or not. If there is subset which is

not float set, the new set is neither float set nor critical set. If all the subsets with

one activity less are float set, the new set will be critical set. Then the same process

goes on, one activity will be added to all the float sets with 2 activities to explore

the sets with 3 activities. The algorithm will keep on exploring the sets with k+1

activities as expansion of the float sets with k activities until there is no float sets

with k activities. Similar approach has been applied by Neumann et al.[88] to identify

the minimal forbidden set. The detailed find floatset algorithm is given below.

The find floatset algorithm will return FS,CS and groupfloat, where FS is the set

of all float sets, CS is the set of all critical sets, gf is the function recording the float

for all the float sets, C is the delay vector for the group float, here all the elements

of C are set to 1. The groupfloat procedure can be any of the three procedures

bab groupfloat, th groupfloat and sa groupfloat to calculate float for a set of activities.

Assuming the time complexity for the groupfloat procedure is F , the time complexity
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Algorithm 7 Finding all the float sets and critical sets

find floatset(A,P,R)
FS ← ∅, CS ← ∅
for each a ∈ A do

gf({a}) ← sa float(A, P, R, a)
if gf({a}) > 0 then

FS ← FS
⋃{{a}}

else
CS ← CS

⋃{{a}}
end if

end for
FS1 ← FS
while FS1 6= ∅ do

FS2 ← ∅
for each S ∈ FS1 do

for each a ∈ A do
S1 ← S

⋃{a}
if gf({a}) > 0 and a /∈ S and S1 /∈ FS2 then

gf(S1)← groupfloat(A, P, R, S1, C)
if gf(S1) > 0 then

FS2 ← FS2

⋃{S1}
else

if S2 ∈ FS, (for all S2 ⊂ S1 and |S2| = |S1| − 1) then
CS ← CS

⋃{S1}
end if

end if
end if

end for
end for
FS ← FS

⋃

FS2, FS1 ← FS2

end while
return FS, CS, gf
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for the find floatset algorithm will be O(|A|2|A|F). Although the problem to find

all float sets and critical sets can not be solved in polynomial time, the find floatset

algorithm is quite efficient for small size projects. It can find all the float sets and

critical sets for 216 test cases of the J30 test set with 30 activities and 4 resources

using the sa groupfloat procedure within 10000 seconds, where details can be found

in section 2.8.5.

2.6 Float graph

In the last two sections, we have presented methods to calculate maximum float

for an activity and for a set of activities. To give the project managers a direct view

of the flexibility of activities inside the resource-constrained project, a float graph is

proposed as an undirected graph illustrating float and group float as labels for vertices

and edges.

2.6.1 Definition of float graph

The formal definition of float graph is given below.

Definition 2.6.1 (Float Graph) An float graph G = (V, E, fv, fe) is a undirected

graph to demonstrate float and group float for a resource-constrained project, each v ∈

V represents an activity in the project, there is an edge (u, v) ∈ E, if and only if the

maximum group float for activity group {u,v} is larger than 0, fv : V → Z− is the label

function for vertices, each v ∈ V , fv(v) is defined as the maximum float of activity v
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in resource-constrained project, fe : E → [(N1, A1, F1), (N2, A2, F2), ..., (Nm, Am, Fm)]

is the label function for edges, each e ∈ E, fe(e) is defined as a sequence of 3-tuple

(Ai, Ni, Fi), each 3-tuple illustrate that e is included in a certain group of activities,

with Ni is the group id, Ai is the number of activities inside the group, Fi is the

maximum float of the group.

As an example, the float graph for example 2.2 presented in section 2.1 is given

in Figure 2.5, where every component of the float vector is set to 1.

A

B

D

C

F

E

(1,2,1)

(6,2,1)

(5,2,1)

(4,2,1)
(3,2,1)

(2,2,1)

22

22

2 2

(7,2,1)

(8,2,1)

Figure 2.5 Float graph for example 2.2.

In Figure 2.5, it is clear that all the activities can be delayed by 2 units time

alone without delaying the project, although the project completion time is minimum

already. We also can find that with group float vector (1, 1), the activity sets {A,B},

{A,C}, {A,D}, {A,E}, {B,C}, {C,F}, {D,E} and {E,F} have group float 1 each,
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which means both of the activities in each set can be delayed simultaneously by 1

time unit. However there are no edges connecting vertices A and F, B and D, B and

E, B and F, C and D, C and E, D and F. According to the definition of float graph,

the floats of activity sets {A,F}, {B,D}, {B,E}, {B,F}, {C,D}, {C,E} and {D,F} are

all 0. Since none of the activities is critical, these 7 sets are critical sets. Although

there are edges AB, BC and CA in float graph G, activities A,B and C can not be

delayed together, as there is no 3-tuple on edge AB, BC and AC with same group id.

Therefore the activity set {A,B,C} is a critical set. In the same way, {A,D,E} is also

a critical set.

In all we can generalize the features of float graph G as:

• float

The maximum float of the activity is illustrated as the label of the vertex in G.

• float set

If a group of activities have maximum group float larger than 0, they must form

a clique in G, where each edge in the clique has the same 3-tuple (Nk, Ak, Fk),

with Nk as the identity of the current group, Ak as the number of activities

inside the group, Fk as the float of the group.

• critical activity

Critical activity is illustrated as the vertex with label 0, which is also the isolated
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vertex in G.

• critical set

critical set is either an isolated vertex or two non-critical vertices with no edge

between them or a clique in G. When it is a clique, no common 3-tuple can be

found on the labels of all the edges in the clique. However, there is common

3-tuple for any sub graph of the clique.

Although there may be exponential number of float sets and critical sets (2|A| and

( |A|

⌊
|A|
2

⌋

)

), for a resource-constrained project with fixed completion time, it is still possi-

ble for us to find all the float sets and critical sets for small size projects or for a subset

of activities in large size projects. The find floatset Algorithm proposed in section

2.5 is designed to find all the critical sets and float sets for a resource-constrained

project, where detailed experimental results are given in section 2.8.5.

2.6.2 Managing resource-constrained projects with float graph

Float has played a central role in managing projects without resource limits. With

the new definitions of float, group float, critical activity and critical set, it is possible

for us to manage the project with resource limits more effectively. With the help of

float graph, four possible ways to support the management for resource-constrained

project are investigated here.

• focusing on critical activities
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There are many activities inside a project. As a project manager only has lim-

ited energy to monitor them, focusing on the right activities is essential for the

project to finish on time. With the new definition of float and critical activity, it

is clear that the critical activity is critical in all the schedules, for extending the

critical activity, there exists no schedule finishing before the original completion

time. No matter what kind of schedule the project manager selects or changes,

the critical activity can always serve as the focus for the project. To finish the

project on time, the project manager has to guarantee the critical activities be

finished on time. With the help of float graph, the critical activities can be eas-

ily identified as the vertices with label 0, which can certainly help the project

manager to monitor them.

• selecting proper schedule for high risk activities

In project management, there usually exist some high risk activities, where their

completion time may be affected by some random events such as weather. As

we have shown in the float graph of example 2.2, even when the makespan of

the schedule is optimal, many activities still have float. However, the maximum

float for different activities are achieved in different schedules. As an example,

activity D, E can not be extended in the schedule given in Figure 2.4 (a). While

either of activity D or E can be extended for 2 time units in the schedule given

in Figure 2.4 (b). If activity D and E have higher risk than activity B and C, the
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later schedule will be favored. As the float of all the activities and all the sets

of activities are illustrated in the float graph, the project manager can easily

select the schedule to give a high risk activity or a set of high risk activities

more float. In this way, the chance for the whole project to be finished in time

is increased.

• selecting proper completion time to buffer activities

As we have discussed, random events usually affect the completion of the

project. Therefore, a specified schedule needs to be selected to give high risk

activities more float. However, sometimes, selecting a good schedule may not

give high risk activities enough buffers. In those cases, a new completion time

should be selected to buffer the high risk activities. As an example, in Figure

2.5, the float graph of example 2.2, activity set {A,B,C} is a critical set. How-

ever, assuming the project manager wants to assign float {2,1,1} to them. A

new completion time can be selected using binary search. The upper bound for

the new completion time is 12 (8+2+1+1). Let the delay vector C for activity

set {A,B,C} be (2,1,1), and group float be 1. Instead of using binary search,

set the duration of activities A,B,C as 4,3,3, Branch and Bound or SA can be

applied directly to find the minimum makspan, where the new completion time

is calculated as 10. In some scenarios, the project manager may want to buffer

all the activities. Assuming the project manager wants to give each activity in
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example 2.2 50% of its duration as its buffer, the delay vector C for the activity

set {A,B,C,D,E,F} can be defined as (1,1,1,1,1,2) and the group float for it is

1. The upper bound for the new completion time is 15. The new completion

time can be calculated directly as 12, since all the activities extended 50% and

the minimum makespan will extend 50% also.

• planning more resources for critical activities

In the projects without resource limits, CPM can be used to find the critical

paths including all critical activities. The critical properties of activities are the

results of precedence constraints. In scheduling projects with resource limits,

the minimum makespan is usually larger than lower bound given by CPM.

Assuming the minimum makespan is larger than lower bound by CPM for a

resource-constrained project, if we remove all the resource constraints, it is

easy to see that all the activities will have the maximum float larger than

0, which means there is no critical activity. Therefore, in those cases, the

critical properties of the activities are mainly caused by the resource constraints.

Planning more resources for critical activities will probably reduce the number

of critical activities so that it may also reduce the minimum makespan of the

project. For example 2.1 in Figure 2.2, if the amount of the resource is increased

to 2 units, the makespan will be reduced to 3. For example 2.2 in Figure 2.4,

if the amount of the resource is increased to 3 units, the makespan will be
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reduced to 6. Further research can be done to investigate resource consumption

of critical activities so that more corresponding resources can be planned for

critical activities to reduce the number of critical activities or to reduce the

makespan of the project.

2.7 Negative float

2.7.1 Negative float and negative critical activity

Float demonstrates the flexibility to extend an activity or a set of activities. A

corresponding schedule can be selected to give an activity specified amount of float

so that extending the duration of the activity within the float will not affect the

completion time of the project. In project management, sometimes, we are more

interested in knowing how to reduce the completion time of the entire project through

reducing the duration of an activity or a set of activities. In the definition of float and

critical activity, we studied the effect on the completion time of the project through

extending the duration of an activity. As a compensation for float, negative float and

negative critical activity are defined here to show the effect on the makespan of the

project through reducing the duration of an activity.

Definition 2.7.1 (Negative Float) Negative Float of an activity in a resource-

constrained project is defined as −F , where F ∈ Z−, and F represents the amount of

time the duration of an activity can be reduced without affecting the completion time

the project
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Here, not affecting the completion time of the project means the completion time of

the project can not be reduced. Float is the flexibility of an activity to extend its

duration, while negative float is the flexibility of an activity to reduce its duration.

When reducing 1 unit duration of an activity results in reducing the completion time

of the project, we say that the activity is a negative activity. When the duration of

an activity is reduced to 0 and the completion time of the project still remains the

same, the negative float of the activity will be recorded as −∞. It is easy to see that

the negative critical activity has minimum negative float as 0. With negative float,

we can define negative critical activity as

Definition 2.7.2 (Negative Critical Activity) In the resource-constrained project,

an activity is defined as negative critical activity, if its minimum negative float is 0.

The definition for negative critical activity is also applicable to the project without

resource limits. When there are two critical paths, composed of different activities,

reducing the duration of any critical activity on the two critical paths alone will

not reduce the completion time of the project. Therefore, an activity being critical

does not mean it is negative critical. Negative critical activity is also critical activity

for the project without resource limits, since the negative critical activity is on the

critical path. However, negative critical activity may not be critical activity for the

project with resource limits. As an example, all the activities of example 2.2 in Figure

2.3 are negative critical, where reducing the duration of any of them will reduce the
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completion time of the project. However, all those activities have float 2 as shown in

Figure 2.5.

Considering a set of activities, we also give the definitions for negative group float,

negative critical set and negative float set as follows.

Definition 2.7.3 (Negative Group Float) Negative group float is defined as the

amount of time that the duration of a set of activities can be simultaneously reduced

without change the completion time of the project.

Similar to the delay vector, reduction vector B is proposed here. Assuming the

group of activities to be measured are U = {au1, au2, ..., aun}, with duration given

as a vector W = (du1, du2, ..., dun), the reduction vector B can be defined as, B =

(bu1, bu2, ..., bun), with bui ∈ Z+ and GCD(bu1, bu2, ..., bun) = 1. With the reduction

vector B, negative group float can be stated as k ∈ Z+. For the new duration vector

W ′ = W + kB, the completion time of the project can not be reduced.

Definition 2.7.4 (Negative Critical Set) In resource-constrained projects, nega-

tive critical set is a set of activities, where the minimum negative group float of the

set of activities is 0, and there is no subset of it having the same property.

Definition 2.7.5 (Negative Float Set) In resource-constrained projects, negative

float set is a set of activities, where the minimum negative group float of the set of

activities is smaller than 0.
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All the algorithms to calculate float are applicable for negative float. The find floatset

algorithm also can be used to find all the negative float sets and negative critical sets.

2.7.2 Negative float graph

To clearly illustrate negative float, negative float graph is proposed here. The

structure of negative float graph is similar to float graph, with a detailed definition

given as

Definition 2.7.6 (Negative Float Graph) A negative float graph G′ = (V ′, E ′, f ′
v,

f ′
e) is an undirected graph to illustrate negative float and negative group float for a

resource-constrained project, each v ∈ V ′ represents an activity in the project, there

is an edge (u, v) ∈ E ′, if and only if the maximum negative group float for activity set

{u,v} is smaller than 0, f ′
v : V ′ → Z+ is the label function for vertices, each v ∈ V ′,

f ′
v(v) is defined as the minimum negative float of activity v in resource-constrained

project, f ′
e : E ′ → [(N ′

1, A
′
1, F

′
1), (N

′
2, A

′
2, F

′
2), ..., (N

′
m, A′

m, Fm)′] is the label function

for edges, each e ∈ E ′, f ′
e(e) is defined as a sequence of 3-tuple (A′

i, N
′
i , F

′
i ), each 3-

tuple illustrate that e is included in a certain group of activities, with N ′
i is the group

id, A′
i is the number of activities inside the group, F ′

i is the minimum negative float

of the group.

As an example, the negative float graph of example 2.2 is shown in Figure 2.6. All

the activities except activity A are negative critical activity, which means reducing
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the duration of the activity results in reducing the completion time of the project.

The negative float is -1 for activity A in Figure 2.6. It is easy to see that when the

duration of activity A is reduced by 2 units, the completion time will change to 6

instead. As only activity A is not negative critical, the negative float set is only {A}.

Therefore there is no edge in Figure 2.6. The negative critical sets for example 2.2

are {B},{C},{D},{E},{F}.

A

B

D

C

F

E

00

00

0 0

Figure 2.6 Negative float graph for example 2.2.

To demonstrate negative group float, example 2.3 is given here, where the prece-

dence network for example 2.3 is shown in Figure 2.7.
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Figure 2.7 Precedence network for example 2.3.

In example 2.3, there is 1 renewable resource with the availability as 3 units.

Activities A,B,C,D consume 1 unit resource each, and activity E, F consume 2 and

3 units of resource respectively. A schedule with completion time 6 is illustrated in

Figure 2.8.
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2
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Units of
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Time

F

A

B

C

3

Figure 2.8 An optimal schedule for example 2.3.
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Obviously, all the activities in example 2.3 are critical activities. However, only

activity F is a negative critical activity. The negative float graph for example 2.3 is

given in Figure 2.9.
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-∞ -∞
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(11,3,-2)

(11,3,-2)

Figure 2.9 Negative float graph for example 2.3.

As shown in Figure 2.9, all the activities have −∞ negative float except activity

F, which means even reducing those activities duration to 0 alone can not reduce

the completion time. Considering the activity sets with two activities, the activity

sets {A,B}, {A,C}, {A,D}, {B,C}, {B,D}, {B,E} , {C,D} and {C,E} have negative

group float as −∞ also, while activity sets {A,E}, {D,E} are negative critical sets.

For the activity sets with 3 activities, activity sets {A,C,D}, {B,C,E} have negative

group float as −∞, and activity set {A,B,D} has negative group float −2. Activity

sets {A,B,C}, {B,C,D} are negative critical sets. There are no negative float sets or
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negative critical sets with more than 3 activities. In summary, the following rules

are given to identify negative float, negative critical activity, negative float sets and

negative critical sets in negative float graph.

• negative float

The minimum negative float of the activity is illustrated as the label of the

vertex in negative float graph G′.

• negative float set

If a group of activities has minimum negative group float smaller than 0, they

must form a clique in G, where each edge in the clique has the same 3-tuple

(N ′
k, A

′
k, F

′
k), with N ′

k as the identity of the current group, A′
k as the number of

activities inside the group, F ′
k as the float of the group.

• negative critical activity

Negative critical activity is illustrated as the vertex with label 0, which is also

the isolated vertex in G’.

• negative critical set

negative critical set is either an isolated vertex or two non-negative-critical ver-

tex with no edge between them or a clique in G. When it is a clique, no common

3-tuple can be found on the labels of all the edges in the clique. However, there
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is common 3-tuple for any sub graph of the clique.

2.7.3 Zero critical activity

The minimum negative float and the maximum float form an interval for an activ-

ity. As an example, the float interval for the activities A,B,C,D,E and F in example

2.2 are [-1,2], [0,2], [0,2], [0,2], [0,2] and [0,2] respectively. The float interval demon-

strates the flexibility of an activity in a project with resource limits. The float interval

can also be interpreted as a sensitivity analysis of the duration of the activity under

consideration the makespan of the project. Changing the duration of the activity

within its float interval will not affect the completion time of the project. As we have

discussed, the fact that an activity is critical does not mean it is negative critical,

and an activity being negative critical does not mean it is critical also. Here, we have

special interest in the activity which is critical and negative critical and we define it

as zero critical activity, since the float interval for it is [0,0].

Definition 2.7.7 (Zero Critical Activity) In resource-constrained projects, an ac-

tivity is defined as zero critical activity if it is critical activity and negative critical

activity, where its float interval is [0,0].

Zero critical activity has a special property, where extending the duration of the zero

critical activity will receive penalty of extending the project, reducing the duration

of the activity will receive benefit of reducing the makespan of the project. Therefore
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special attention should be paid to the zero critical activities in project management.

As an example, the activity F in example 2.3 is zero critical activity with float interval

[0,0]. Increasing or decreasing the duration of activity F will affect the makespan of

the project directly. Special effort should be made to make sure activity F finishes

on time. The benefit of shorter makespan can be gained immediately, if the duration

of activity F can be reduced.

In the next section, extensive experiments have been conducted to calculate float.

As the calculation for negative float is very similar to the calculation of float, detailed

experimental results will not be provided here.

2.8 Computational Study

The purpose of this research is to resolve the puzzle of float and critical activity

for project networks with resource limits. With the new definitions for float, we are

able to identify critical activities and critical sets for resource-constrained projects.

Meanwhile the critical relationships between activities can be shown explicitly in a

float graph, which will probably be a very useful tool for project planning. However,

due to the NP -hard property of the Float-RCPSP problem, it is only possible for

us to find the maximum float accurately (E-float) for small size projects. With the

help of Simulated Annealing, we have also provided two algorithms to calculate float

approximately (H-Float), which may be more useful in practice. The computational

study is mainly designed to test how well the three algorithms perform in calculating



63

float, and it is divided into 4 parts. We start by investigating the performance of

the branch and bound algorithm for E-float on J30 test set of the PSPLIB [70],

where there are 30 activities and 4 renewable resources for each test project. In

section 2.8.2, we compare E-float with H-Float with extensive experiments, where

parameter settings for the th float approach will be discussed also. Then, a heuristic

lower bound and probabilistic cut are used to improve the speed of th float algorithm.

After that the results from sa float algorithm are presented in section 2.8.4. Finally,

the find floatset algorithm is used to find all the float sets and critical sets for the J30

test set in section 2.8.5.

All the experiments are carried out on Intel P4 2.8GHZ PC with 1G Memory,

where the algorithms are implemented in C++, complied by GNU g++ with maxi-

mum optimization option. The PSPLIB [70], benchmark test sets for RCPSP, is used

here to evaluate all the algorithms.

2.8.1 Experimental results on E-float

In section 2.4.1, algorithm bab float embedding with the branch and bound pro-

cedure dh procedure has been developed to find the exact value of maximum float

(E-float). dh procedure developed by Demeulemeester and Herroelen is still one of

the best branch and bound algorithms for the RCPSP. We have implemented all the

cutting techniques used in the first version of dh procedure [39]. We also applied the

newly developed lower bound, LB3, introduced by Mingozzi et al. [84], adopted in
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the second version of dh procedure [40]. However, the dh procedure still can not solve

all the test cases in the J30 test set of PSPLIB in 1 hour CPU time, reported by

Demeulemeester and Herroelen [40], although its speed had been improved a lot by

the cutting techniques and lower bounds. In our test, since there are 30 activities

inside the project and calculating float for each activity may result in calling the

dh procedure for several times, we have set the time limit for one test case as 10000

seconds. With this time limit, the floats of all the activities in 416 out of 480 test

cases are calculated. We note that our bab float procedure can be further speed up

using the recently developed branch and bound method by Sprecher [106].

Table 2.1 E-float of the J30 test set

E-Float Crt-Act Makespan CPU
case(periods) act(periods) (#) (periods) (sec)

avg 6.35 6.35 9.85 58.39 324.68
max 23.17 81 26 129 9075
min 0.37 0 0 35 0.17
dev 3.76 8.16 4.2 13.58 1200.12

Table 2.1 reports detailed results of float and critical activity on the J30 test

set. The first two columns of table 1 show the case-based average E-Float value

and activity based E-Float value, where case-based average is the average results

of all the average float of each test case while activity based average is the average

results considering floats of all the activities in all the test cases. The number of

critical activities out of 30 activities, the makespan, and the CPU time are presented
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in column 3-5, where the average, maximum, minimum and deviation for all those

values are reported in detail. We can see that although the E-Float is reported as

the exact maximum float for the optimal solution for RCPSP, the average E-Float

for the activity is 6.35, more than 10 percent of the average makespan. We can also

find that on average only around one third of activities are critical which means most

activities have considerable flexibility in some schedules even when the solution is

already optimal. Therefore, the new definition of float could help the project manager

plan the project by selecting the schedule which gives some high risk activities more

flexibility, so that the project will have higher chance to finish in time. The new float

concept also helps us identify critical activity as the activity with 0 E-Float value.

The number of critical activities has the average value 9.85 and ranges from 0 to 26

among 30 activities in the J30 test sets. Since the critical activities defined here are

critical in any schedule, obviously, the critical activities should be among the main

focus in project management, where extending the duration of critical activities will

certainly result in the delay of the project.

As mentioned above, the algorithm bab float is capable of finding floats for 416

out of 480 test cases for the J30 test set in 10000 seconds. Although the average

CPU time is only 324.68 sec, the deviation for the CPU time is quite large, where

CPU time ranged from 0.17 sec to 9075 sec. The reason is that the lower bounds and

cutting techniques have different effect on different cases, which also explains why the
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bab float could not solve all the test cases in 10000 seconds.

2.8.2 Experimental results on H-Float by th float

In section 2.4.2, based on Theorem 2.4.3 and Theorem 2.4.4, algorithm th float is

proposed to find H-Float as an approximation for the E-float. The performance of

the th float algorithm depends on the selection of various parameters, such as ending

temperature, the SGS limit for Simulated Annealing and the sample size, sample level

α for the Testing Hypothesis. Extensive experiments have been done here to find a

suitable parameter setting to achieve high accuracy in approximating E-Float with

acceptable running time. Since the duration of activities and the makespan of the

project are all integer value here, it is reasonable to change the hypothesis to

H0 : µx + 0.5 = µy (2.29)

HA : µx + 0.5 < µy (2.30)

Table 2.2 compares the new Testing Hypothesis to the old one on the J30 test set.

In this experiment, Te is set to −1/ ln(0.0001) , the sample size is set to 50 and the

sample level α is set to 0.025. The maximum step for Simulated Annealing is set to

be 5000 and 50000. The accuracy and CPU time are reported respectively in Table

2.2. The accuracy in Table 2.2 shows the percent of activities whose H-Float are the

same as E-Float according to the 416 test cases reported in Table 2.1. It is clearly

shown in Table 2.2 that the new Hypothesis outperforms the old one. We also can
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find in Table 2.2, with the new Hypothesis, 90% of activities have the same H-Float

as E-Float value for 5000 SGS calls and 98% of activities have same H-Float as E-float

value for 50000 SGS calls, which highlights the effect of using H-Float obtained by

the th float algorithm as an approximation for E-Float.

Table 2.2 New Testing Hypothesis
5000 50000

TH accuracy(%) CPU(sec) accuracy(%) CPU(sec)
old TH 89.89 213.41 96.15 2311.59
new TH 90.06 281.05 98.43 2501.28

According to Theorem 2.4.4, even without the temperature approaching 0, we

can still get E(X)−E(Y ) = xmin − ymin. Therefore the Testing Hypothesis still can

be used to obtain H-Float. Table 2.3 reports the results for some different ending

Temperature Te. In Table 2.3, if the ending temperature is set to be T0, which means

the temperature does not decrease, H-Float still has 91% accuracy for 50000 SGS

calls. This has verified Theorem 2.4.4. However, the results of setting Te to T0 and

T0/4 are worse than the results of setting Te to a near 0 value −1/ ln(0.0001). There

are two reasons for this phenomenon. First, when the temperature does not change, it

becomes the Metropolis Algorithm where Catoni [24] has proved that the Simulated

Annealing converges faster than the Metropolis Algorithm. Secondly, Theorem 2.4.4

has given the variance for a random variable on the project makespan as Te
2. Since

the smaller the variance, the larger the power for the Testing Hypothesis [102], Setting
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Te to a near 0 value makes the Testing Hypothesis more accurate.

Table 2.3 Results for different ending temperature Te

5000 50000
Te accuracy(%) CPU(sec) accuracy(%) CPU(sec)

−1/ ln(0.0001) 90.06 281.05 98.43 2501.28
T0 85.41 295.03 91.13 2559.96

T0/4 88.77 282.48 95.91 3041.51

As the power for the Testing Hypothesis is also determined by the significance

level α, experiments are conducted to find a proper significance level α for the Testing

Hypothesis. Three α value are considered here. The results are presented in Table

2.4. In Table 2.4, it is clear that 0.025 is the best choice for significance level α .

Table 2.4 Results for different sample level α

5000 50000
α accuracy(%) CPU(sec) accuracy(%) CPU(sec)

0.01 89.63 299.13 96.70 2353.02
0.025 90.06 281.05 98.43 2501.28
0.05 88.65 267.09 95.79 2696.33

2.8.3 Speed up th float algorithm

The above experiments show that the H-Float found by the th float algorithm is

98% same as the E-Float found by bab float. Unlike the bab float, th float finishes

running in polynomial time and it can find H-Float for all the test cases of the J30

test set. However, the th float algorithm is still quite slow as it needs around 2500
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seconds to find H-Float for each test case when SGS limit is set to 50000 and the

sample size is set to 50. A heuristic lower bound and probabilistic cut are proposed

here to improve the speed of the th float algorithm. According to Lemma 2.4.5, S-

Float for any optimal schedule can be the lower bound for the E-float. Assuming the

Simulated Annealing converges well to the optimal solutions, in all the sample SA

solutions, the S-Float of the solutions with the minimum makespan will be used as

the heuristic lower bound for H-Float. Since the solutions obtained by SA have been

proved to converge to the Boltzmann distribution, applying the continuous form of

Boltzmann distribution, the probability that a sample solution for the revised project

with the duration of some activity extended is smaller or bigger than the mean sample

value is given as:

P (Yi < µy) =

∫ ymin+kBT

ymin

e−(y−ymin)/kBT

kBT
(2.31)

= 1− 1

e
(2.32)

P (Yi > µy) = 1− P (yi < µy) (2.33)

=
1

e
(2.34)

Therefore, if the SA converges well, the probability for all 7 sample solutions larger

than µy is around 0.001 and the probability for all 15 sample solutions smaller than

µy is around 0.001 also. In other words, the probability for the smallest solution

from 7 sample solutions smaller than µy is 0.999 and the probability for the largest
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solution from 15 sample solutions larger than µy is 0.999 also. This result is presented

formally as follows:

Ymin = min
1≤i≤7

Yi (2.35)

Ymax = max
1≤i≤15

Yi (2.36)

P (Ymin < µy) = 1− (
1

e
)7 (2.37)

≈ 0.999 (2.38)

P (Ymax > µy) = 1− (1− 1

e
)7 (2.39)

≈ 0.999 (2.40)

The above results can be used to form the probabilistic cut. Because the probability

for ymin less than µy is 0.999, if Ymin−X−0.5√
(sx

2+sy
2)/n

> z(α), we will have the chance for

µy−X−0.5√
(sx

2+sy
2)/n

> z(α) to be larger than 0.999. In this case, the null hypothesis H0

will be rejected, since the accuracy here is much higher than the Testing Hypothesis

itself already. In the same way, Ymax−X−0.5√
(sx

2+sy
2)/n

< z(α) leads to µy−X−0.5√
(sx

2+sy
2)/n

< z(α) ,

H0 will be accepted. The probabilistic cut is performed when there are 7 sample

solutions and 15 sample solutions respectively. When SA converges well, there is

no need to finish all the sample runs, which certainly saves a lot of computational

time. Embedding with the heuristic lower bound and probabilistic cut, the details of

speeding up algorithm th float2 are given in the appendix.

With the help of the new heuristic lower bound and probabilistic cut, the th float2
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is about 10 times faster than the old th float algorithm on the J30 test set. The result

for the new th float2 is reported in the first row of Table 2.5, where the accuracy

is improved also for 5000 SGS calls. In Table 2.5, various sample sizes are also

compared. For 5000 SGS calls, the accuracy improved significantly as the sample size

increased. Since SA does not converge well for 5000 steps, increasing the sample size

has increased the power of the Testing Hypothesis. This also explains that there are

only slight differences between the results of various sample sizes for 50000 SGS calls,

where SA converges well.

Table 2.5 Results for different sample size

5000 50000
sample size accuracy(%) CPU(sec) accuracy(%) CPU(sec)

50 92.60 25.9 98.45 160.70
100 93.97 34.85 98.82 178.62
200 94.78 46.28 98.85 226.15

According to all the preliminary experiments, to balance the performance and

computation time, the ending temperature is set to −1/ ln(0.0001), the sample level

α is set to 0.025 and the sample size is set to 50. The detailed results for th float2

algorithm on the J30 test set are given in Table 2.6, where the average of H-Float

value, number of critical activity (Crt-Act), accuracy, makespan mean and deviation

and CPU time for each test case are reported. The maximum, minimum value and

the deviation for these features can also be found. Like the E-float, there are more
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than 6 periods H-Float for each activity on average Meanwhile, the average number

of critical activities detected by th float2 is also around 9.

Table 2.6 Results of H-Float by th float2 for the J30 test set

No. of H-Float No. of Accuracy Makespan Makespan CPU
Step (periods) Crt-Act (%) avg dev (sec)
5000 avg 6.48 9.03 92.60 58.50 0.12 25.90

max 23.17 26 100.00 129 2.02 173.15
min 0.37 0 0.00 35 0.00 1.57
dev 3.65 3.82 19.84 13.70 0.30 26.33

50000 avg 6.38 9.71 98.45 58.41 0.03 160.70
max 23.17 27 100.00 129 0.91 1037.15
min 0.37 0 0.00 35 0.00 6.68
dev 3.73 4.13 9.04 13.61 0.12 105.84

500000 avg 6.35 9.86 99.82 58.39 0.01 1469.19
max 23.17 27 100.00 129 0.78 6144.47
min 0.37 0 76.67 35 0.00 6.68
dev 3.76 4.25 1.75 13.58 0.05 743.13

In Table 2.6, we also can find that the accuracy increases as the number of steps

increases. Although the accuracy for 5000 and 50000 SGS calls are more than 92%

and 98%, there are some cases in which the SA does not converge well resulting in

the minimum accuracy being 0. Therefore, the convergence of SA not only depends

on how many steps of SA there are but also depends on the test case. This is a

common problem for the heuristics - they can find high quality solutions, but there is

no worst case guarantee. Fortunately, how well SA converges can be inferred by the

makespan deviation for the sample solutions. A smaller makespan deviation indicates

a better SA convergence, where we can find when the steps of SA increase the average
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makespan deviation decreases. Although the bab float can not find all the E-Float for

the J30 test set, it is still possible for us to find the H-Float for larger size projects.

The H-Float found by the th float2 algorithm for the J60 test set with 60 activities

and 4 resources is shown in Table 2.7. Since there is no E-float to compare, the H-

Float value achieved by 500000 steps of SA is used here as a standard. The accuracy

now does not have the old meanings, since the error may be doubled using the H-Float

itself as the standard. However, the trend is still clear that more steps of SA leads to

less makespan deviation and more same H-Float value as the 500000 steps one.

In the SA procedure here, we used the Serial Schedule Generation Scheme (SGS)[66],

and the time complexity for the SA algorithm presented in section 2.4.2 is O(m|A|2r),

where m is the number of steps, |A| is the number of activities and r is the number

of resources. with the time complexity for SA, we can easily get the time complexity

for th float2 as O(nm|A|3r), where n is the number of solutions sampled. Therefore,

theoretically, the running time of the J60 test set should be around 8 times as much

as the running of the J30 test set for the same SA steps. While the actual running

time of the J60 test set is more than 10 times that of the J30 test set. This can be

explained by the convergence of SA also. It is obviously that SA converges better for

the J30 test set for same steps. Because the probabilistic cut depends on how well

SA converges, the probabilistic cut works better on the J30 test set than on the J60

test set. The th float2 algorithm is still applicable to large size projects, since it has
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polynomial time complexity and it can be easily implemented on parallel machines

to reduce the running time.

Table 2.7 Results of H-Float by th float2 for the J60 test set

No. of H-Float No. of Accuracy Makespan Makespan CPU
Step (periods) Crt-Act (%) avg dev (sec)
5000 avg 11.11 8.90 73.82 80.94 0.39 490.66

max 38.32 23.00 100.00 159.40 2.49 6656.23
min 1.42 0.00 0.00 44.00 0.00 26.89
dev 6.21 5.47 33.77 18.82 0.61 875.93

50000 avg 11.13 9.52 81.41 80.42 0.24 4267.62
max 38.32 27.00 100.00 157.20 2.49 65373.23
min 1.57 0.00 1.67 44.00 0.00 34.56
dev 6.34 5.34 27.91 18.23 0.44 8457.95

500000 avg 11.07 10.39 100.00 80.08 0.12 31108.39
max 38.32 35.00 100.00 156.06 1.23 455824.01
min 1.10 0.00 100.00 44.00 0.00 2394.92
dev 6.48 5.26 0.00 17.80 0.24 53215.40
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2.8.4 Experimental results on H-Float by sa float

In Tables 2.8 and 2.9, the experimental results on H-Float for the J30 test set by

sa float are reported. Since there is only one run for SA to obtain the makespan, the

deviation of makespan in Table 2.8 represents the deviation of the makespan to the

optimal makespan and the deviation of makespan for the J60 test set is neglected. We

can find in Table 2.8 and 2.9 that the accuracy of sa float is worse than the accuracy

of th float2 for same steps of SA, which certifies the power of the Testing Hypothesis.

However, the sa float is much faster than the th float2 due to the fact that only one

sample solution is used in sa float. Therefore, for large size projects, sa float will be

a better choice.

Table 2.8 Results of H-Float by sa float for the J30 test set
No. of H-Float No. of Accuracy Makespan Makespan CPU
Step (periods) Crt-Act (%) avg dev(%) (sec)
5000 avg 6.33 9.87 88.42 58.50 0.16 3.85

max 23.17 27.00 100.00 129.00 8.51 76.85
min 0.10 0.00 0.00 35.00 0.00 0.59
dev 3.82 4.53 23.71 13.67 0.70 3.82

50000 avg 6.32 9.96 97.30 58.40 0.02 39.96
max 23.17 28.00 100.00 129.00 2.33 76.98
min 0.23 0.00 0.00 35.00 0.00 6.68
dev 3.79 4.38 9.88 13.60 0.17 12.18

500000 avg 6.35 9.87 99.66 58.39 0.00 372.83
max 23.17 27.00 100.00 129.00 0.55 791.46
min 0.37 0.00 76.67 35.00 0.00 6.68
dev 3.76 4.26 2.17 13.58 0.03 113.42



76

Table 2.9 Results of H-Float by sa float for the J60 test set

No. of H-Float No. of Accuracy Makespan CPU
Step (periods) Crt-Act (%) avg(periods) (sec)
5000 avg 10.69 16.18 66.97 80.96 25.10

max 38.32 60.00 100.00 159.00 182.46
min 0.00 0.00 0.00 44.00 4.75
dev 6.77 11.29 39.12 18.80 17.27

50000 avg 10.83 15.30 74.42 80.38 253.16
max 38.32 58.00 100.00 155.00 1277.00
min 0.03 0.00 0.00 44.00 60.52
dev 6.76 10.72 36.79 18.15 123.35

500000 avg 10.80 14.80 82.50 80.06 2549.31
max 38.32 59.00 100.00 155.00 12507.27
min 0.02 0.00 0.00 44.00 627.04
dev 6.82 9.85 30.15 17.74 1215.81

In Table 2.10, the experimental results for the J30 test set by sa float with fixed

completion time are presented, where we use the makespan of the optimal solution as

the completion time, instead of using the makespan obtained by the SA. The purpose

of this experiment is to demonstrate that the better SA converges, the larger the

average H-Float values and the smaller the number of critical activities it will find,

which is demonstrated by the results in Table 2.10. In fact, there are many other

heuristics which may be applied to find the H-Float, and the performance of the

heuristics in calculating H-Float depends on how well they converge to the optimal

solutions.
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Table 2.10 H-Float by sa float with optimal completion time for the J30 test set

No. of H-Float No. of Accuracy Makespan CPU
Step (periods) Crt-Act (%) avg(periods) (sec)
5000 avg 6.08 11.28 91.63 58.39 4.00

max 23.17 30.00 100.00 129.00 76.85
min 0.00 0.00 13.33 35.00 0.59
dev 4.02 5.80 15.76 13.58 3.85

50000 avg 6.29 10.13 97.78 58.39 40.83
max 23.17 27.00 100.00 129.00 77.58
min 0.13 0.00 43.33 35.00 6.03
dev 3.82 4.58 6.75 13.58 12.00

500000 avg 6.35 9.88 99.60 58.39 415.65
max 23.17 27.00 100.00 129.00 787.14
min 0.37 0.00 76.67 35.00 6.68
dev 3.76 4.27 2.41 13.58 121.75

2.8.5 Experimental results on float sets and critical sets

With the find floatset algorithm, it is possible for us to find all the float sets and

critical sets for small size projects with limited resources. As the number of float

sets and critical sets may be exponential, find floatset algorithm is only capable of

finding all float sets and critical sets for 216 out of 480 test cases for the J30 test set

in 10000 seconds reported in Table 2.11, where the partial results of the unfinished

cases are included also. To save computation time, the SAGroupFloat algorithm has

been chosen to find group float, where the makespan of the optimal solution is used

as the original completion time.

All the results shown in Table 2.11 are case-based. We can find that there are
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Table 2.11 Results of float set and critical set for the J30 test set
float set critical set CPU

No. of Sets Size H-Float(periods) No. of Set Size (sec)
avg 102330.43 5.24 2.40 174.59 2.36 6163.90
max 1233355 8.91 13.67 3022.00 7.19 10000
min 0 1 0.00 6 1 0.00
dev 113382.84 1.96 1.65 409.73 1.62 4465.28

102330 float sets on average, while there are only 174 critical sets on average. We also

can find that the average group float is 2.40 and the average float set size is 5.24. All

those results have demonstrated there is still a lot of flexibility even in the projects

with optimal completion times. Moreover, all the flexibility and relationships between

activities can be clearly shown in the float graph proposed in section 2.6.

2.9 Conclusion

In this chapter, new definitions for float and critical activity have been given.

Several algorithms have also been developed to calculate float and identify the critical

activities. Extending the float definition to a set of activities as group float, the float

set is defined as the set of activities with larger than 0 group float, and the critical

set is defined as the activity set with 0 maximum group float. Negative float is

also proposed in this research to investigate the effect on the minimum makespan of

the project through reducing the duration of its activity. Similarly, negative critical

activity, negative group float, negative float set and negative critical set are defined

and studied. With the help of the float graph and negative float graph, the flexibility
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and relationships between activities are clearly illustrated.

Extensive experiments have been conducted to compare the results of the three

algorithms in calculating floats. The bab float algorithm can find the exact value

for float (E-float), but it needs exponential time to finish running. The H-Float

calculated by th float and sa float have accurately approximated the E-float, and both

of them can finish running in polynomial time. Although the H-Float from th float

approximates E-float slightly better than the sa float, the sa float is much faster than

the th float. Therefore sa float is recommended for large size projects. Embedding

with the sa float algorithm, the find floatset algorithm has been proposed to find all

the float sets and critical sets for small size projects or part of the large size projects,

where experiments have been performed on the J30 test set to demonstrate that there

is still a great deal of flexibility between activities even when the completion time is

optimal already.

The new concepts of float and critical activity will help the project manager to

further understand the intrinsic of real-life resource-constrained projects in order to

plan and manage the projects in a better way.

According to the experiments, the better the heuristic converges to the optimal

solution, the larger the float it may detect. Future research may be conducted to

investigate the performance of other heuristics on float calculation. More research

may also be done to further explore the properties of the float graph or to provide
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more ways to apply it to project management.
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Chapter 3

Molecular Search for Resource-Constrained

Project Scheduling Problem

All matter of our world is made up of molecules and atoms. The different physical

properties (color, smell, density, etc.) of the matter come from the different com-

bination of molecules and atoms, the motion of them and the interaction between

them. The motion of molecules and atoms and the interaction between them are

highly related to the internal energy of the molecules. There are mainly two types

of internal energy, kinetic energy and potential energy. Kinetic energy is reserved in

the motion of the molecules, where temperature is a measure of it [118]. Potential

energy is mainly reserved in the positions of the molecules.

 Eenergy

Reduced

Energy

 Increased

Eenergy

Reduced

 Energy

Increased
Gas Liquid Crystalline solid

Figure 3.1 Three phases of matter

Regarding a certain range of temperature and pressure, there are three basic

phases of matter - gas, liquid and solid. For the gas phase, when the temperature

is high, the kinetic energy of molecules and atoms is high enough to overcome the
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attractive force between them, so that they can move around freely to fill the en-

tire container as shown in Figure 3.1. Cooling the system, gas transforms into liquid,

where molecules and atoms can still slide pass one another while remain loosely bound.

Therefore, liquid has a definite volume but it takes the shape of the container. At

still lower temperature, the average kinetic energy approaching 0, liquid transforms

into solid. In the solid phase, the molecules and atoms stick together to minimize the

potential energy, hence solid has a definite shape and volume. There are two types of

solids, crystalline solids and amorphous solids. The crystalline solids are formed by

highly ordered structure of molecules and atoms. As an example, the beautiful struc-

tures of snow crystal captured by Kenneth G. Libbrecht using a specially designed

snowflake photomicroscope [74] can be found in Figure 3.2. The amorphous solids,

such as glass, are usually formed by rapidly cooling, so that there is not enough time

for them to crystallize. The solids referred in this research are crystals, which have

highly ordered structures.

Figure 3.2 Snow crystal by Kenneth G. Libbrecht
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The beautiful structures of crystals are formed by the concurrent motion of molecules

and atoms to achieve the most stable structure which has the lowest global potential

energy. Through cooling gas into liquid and cooling liquid into crystal, the molecules

change from a highly disordered state to an highly ordered state. As a measure of dis-

order of the system, entropy, symbolized by S, is defined by the differential quantity

of δS = δQ/T , where δQ is the amount of heat absorbed. When cooling the system,

δQ is negative so that δS is negative also. Therefore when cooling the system or the

internal energy of the system decreases, the entropy decreases also, which means the

order of the system increases.

The whole cooling process can be viewed as an optimization process to achieve

the lowest global potential energy, where nature solves it in an intuitive way through

reducing the average kinetic energy, and letting all of the molecules move together

according to the force between them until they reach the most stable position. This

enlightens us to simulate the cooling process in solving combinatorial optimization

problems.

Simulating the concurrent motion of molecules and atoms in the cooling process,

a new optimization method named Molecular Search is proposed to solve resource-

constrained project scheduling problem (RCPSP) in this chapter. The ideal model of

Molecule Search for a combinatorial optimization problem is given below.

In the Ideal Molecular Search, a solution of the combinatorial optimization prob-
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Algorithm 8 Ideal Molecular Search

1. Encode a solution of the combinatorial optimization problem as the order or
positions of molecules
2. Define the force (rule) to guide the motion of molecules and set the initial value
of environment temperature T
3. Simulate motion of the molecules according to the force (rule)
4. Decode order or positions of molecules as the solution, and recording the best
solution
5. Reduce the environment temperature T
6. if T > Te goto 3

lem has to be encoded as the order or positions of molecules. Since each different

optimization problem has a different objective function, the force (rule) to guide the

motion of the molecules has to be defined for the specified objective function. The

initial environment temperature has to be set first. After the initialization, the cool-

ing process is simulated iteratively. In each iteration of Ideal Molecule Search, new

order or positions of the molecules are calculated according to the force (rule), and

they are decoded as a new solution. The new solution will be recorded as the best

solution, even if it is better than the old best solution. The environment temperature

decreases in each iteration. The whole simulation process ends when the environment

temperature T reach Te, or in other words, the matter has changed to crystal. We

have not defined the speed or the distribution of the kinetic energy of the molecules,

because the force (rule) is defined to lead the molecules to the order or positions

decoded as optimal or near optimal solutions, and it may not be the physical force

at all. Therefore, the motion of the molecules is decided by the force (rule) directly,
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instead of their speed.

3.1 Molecular Search

The key question in the Ideal Molecular Search is how to define the force (rule)

to guide the molecules to the best positions representing optimal solutions. Unfor-

tunately it is difficult to find suitable forces (rules) for different combinatorial op-

timization problems. The difficulties come from varieties of the objective functions.

Moreover, crystal has the optimal substructure property, while the NP-hard combina-

torial problems do not have such property, otherwise they can be solved in polynomial

time. To achieve the global optimal solutions, the force (rule) has to guide part of

molecules to bad positions for some substructures .

As discussed above, there still lacks a set of perfect rules to guide the molecules.

To simplify the molecule search procedure, the motion of the molecules has been

divided into two types: jumping and walking, where the motion of molecules with

high kinetic energy is named as jumping and the motion of molecules with low kinetic

energy is named walking.

The jumping process is simulated as the concurrent motion of all the high kinetic

energy molecules according to the jumping rules. In thermodynamics, the kinetic

energy of the molecules satisfies Maxwell-Boltzmann distribution [118]. According to

the Maxwell-Boltzmann distribution given below, there are only a small potion of the

molecules with high kinetic energy and the number of molecules with high kinetic
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energy decreases when average kinetic energy decreases. Therefore the number of

jumping molecules usually decreases with the decreasing of temperature, except for

the phase transition periods. There are two major procedures in the cooling process,

one is decreasing temperature of the matter, the other is the phase transition of the

matter. In the decreasing temperature process, the average kinetic energy of the

molecules decreases. As a result, the number of jumping molecules decreases. In

the phase transition process, only the potential energy of the molecules decreases

and the kinetic energy of the molecules does not change. Therefore the number of

jumping molecules does not decrease also. Instead of simulating the entire process,

the jumping rule may be made to simulate one of the two process, where different

jumping rules for RCPSP can be found in section 3.4.

f(E) =
e−E/kBT

kBT
(3.1)

where kB is the Boltzmann constant and T is the temperature.

To reduce the chaos caused by concurrent motion of molecules, the walking process

is simulated as a sequence moves of lower energy molecules, where the global energy

is checked before each move to ensure that the move leads to an equal or better

solution. The walking process can be considered as the classic local search procedure.

The Molecular Search algorithm with molecule jumping and walking is shown below.

In the Molecular Search Algorithm, ML is a molecule list used to representing

a solution for the combinatorial optimization problem, where molecules are ordered
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Algorithm 9 Molecular Search

Generate initial ML, T ← T0

Define jumping rule and walking rule
while T > Te do

molecule jumping(ML, T )
molecule walking(ML, T )
if f(ML) < f(MLbest) then

MLbest ←ML
end if
T ← α · T

end while

in a linear sequence. T0 is the initial temperature. f is the function to evaluate the

molecule list, and here we assume the objective function is to minimize f(ML). The

best solution so far is saved in Sbest. The Molecule Search Algorithm first generates an

initial solution presented as molecule list ML. After that the cooling process is simu-

lated by molecule jumping and molecule walking until the environment temperature

reaches Te. The temperature decreases in each loop as T ← α ·T , where α(0 < α < 1)

is a predefined constant.

Although the model of the Molecular Search is given here for the first time, the

Molecular Search has already been successfully applied to Bandwidth Minimization

Problem [81, 80], Minimum Linear Arrangement Problem [77], where benchmark

results are achieved in a short running time.

3.2 Resource-constrained project scheduling problem

Resource-constrained project scheduling problem (RCPSP) considers scheduling

a set of activities A = 1, 2, ..., n, where the duration of activity j is given as d(j).
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There are two types of constraints in RCPSP. First, the precedence constraints force

an activity j start only after all its immediate predecessors (predecessor(j)) finished.

Second, there are K different renewable resources, where the capacity for resource k

is Rk. The activity j needs rj,k resource K for all the time units while it is being

processed. The objective for the RCPSP is to find a precedence and resource feasible

schedule so that the makespan of the project is minimized, where the makespan of

the project can be defined as the maximum completion time of all the activities. An

example of RCPSP is given as example 3.1. Assuming the finish time of activity is

f(j), the conceptual decision model of RCPSP is given as [28, 66]

In the above model, S(t) is the set of activities which is processed at time t.

The objective function (3.2) minimizes the makespan of the project, which is counted

as the maximum finish time of all the activities. (3.3), (3.4) enforce precedence

constraints and resource constraints respectively. Finally, (3.5) states that none of

the activities can start before time 0.

A lot of algorithms have been developed to tackle RCPSP, such as Branch and

Bound methods [39, 40, 21, 106, 20], constraint-propagation-based cutting planes

[36], heuristics X-pass methods [30, 33, 65], Tabu Search [5, 90], Simulated Annealing

[12, 14] and Genetic Algorithm [52, 62, 57, 114]. A detailed survey on the methods for

resource-constrained project scheduling problem can be found in [41, 68, 67], where

a standard benchmark is used to evaluate different methods [69].
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For RCPSP, the molecule list is the same as the traditional activity list, where

each activity is mapped to a molecule and the solution is obtained by scheduling each

activity (molecule) one by one as earlier as possible according to the corresponding

order of molecules in the molecule list with SGS (Serial Generation Scheme) [66].

Detailed jumping rules for the RCPSP will be discussed in section . A new forward-

backward search (FBS) procedure is proposed as molecule walking in section 3.5.

Simulated Annealing Algorithm simulates the annealing process, which looks like

the Molecular Search. However, the two procedures are quite different. Simulated

Annealing is based on energy distribution (Boltzmann Distribution) in the annealing

process, where the solution values are mapped to different energy states of atoms.

While Molecular Search simulates the motion of molecules under the microscopic

world and solutions are encoded as order or positions of molecules instead. The other

significant difference is that Simulated Annealing mainly considers local moves. On

the contrary, molecule jumping in molecule search simulates the concurrent motion

of molecules.

3.3 Molecule list and position vector

The traditional activity list (AL) is often used to represent a solution for RCPSP,

where the activities are ordered in a linear sequence without violating the precedence

constraints. Here, the molecule list (ML) is used to present the solution instead. The

only difference between molecule list and activity list is that activity is named as
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a molecule in the molecule list. Therefore, the molecule list also has to satisfy the

precedence constraints between molecules, which is same as the precedence constraints

between activities.

In the molecule walking, we consider insertion operation on the molecule list

without violating the precedence constraints. However, in the molecule jumping, as

the selected molecules are jumping concurrently, the position vector P of molecules

is introduced to present the solution alternatively. The position vector P is defined

as P = (p1, p2, . . . , pn), with pi ∈ R, (1 ≤ i ≤ n), where pi represents the position of

molecule i, and n is the number of activities in the project. The following formula is

used to encode the molecule list ML to the position vector P.

P [ML[i]]← i, (1 ≤ i ≤ n) (3.2)

To clarify the transformation between molecule list and position vector, an example

with 10 activities and 1 renewable resource is used here.
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Figure 3.3 Precedence network for example 3.1.

In Figure 3.3, example 3.1, activity s and t are dummy activities, denoting the

start and end of the project. There is only 1 renewable resource in example 3.1, and

the availability of the resource is 10 units. The duration and resource usages of all

the activities are given in Table 3.1.

Table 3.1 Duration and resource usage of activities in example 3.1

Activity 1 2 3 4 5 6 7 8 9 10
Duration 6 5 7 7 4 9 9 5 4 2

Resource usage 4 2 5 7 3 5 6 3 4 4

For example 3.1, an activity list AL1 can be [1,3,5,6,2,7,10,4,9,8], which satis-

fies all the precedence constraints. Like the activity list, the molecule list ML1 is

presented as [1,3,5,6,2,7,10,4,9,8]. Encoding from ML1, the position vector P1 is

[1,5,2,8,3,4,6,10,9,7]. To evaluate a solution with ML1, the molecules (activities) are
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scheduled one by one as early as possible following their order in the molecule list

with the Serial Generation Scheme (SGS) [66], where the makespan of the project

is obtained as the latest finish time of all the activities. For example, to evaluate

ML1, the molecules (activities) are scheduled one by one according to the order in

ML1. The corresponding schedule is illustrated in Figure 3.4, and the makespan is

calculated as 42. Since the objective function of RCPSP is to minimize the makespan,

the value of the makespan is used as the quality of the molecule list and the position

vector. The decoding scheme from the position vector to the molecule list is more

complicated than the encoding one, since the positions of molecules can be any real

number in the jumping process. A detailed decoding scheme for position vector will

be given in section 3.4.

1
2

3
4

5

6 7

8

910

0

10

10 20 30 40 42

Units of

Resource 1

Time

Figure 3.4 Scheduling example 3.1 according to ML1

3.4 Molecule jumping

Molecule jumping simulates the simultaneous motion of high kinetic energy molecules.

According to the Boltzmann distribution, only a small portion of the molecules have



93

high kinetic energy. Moreover, the speed of those molecules with high energy is

also high. Since the positions of the high energy molecules change very fast, the

motion of the high energy molecules is simulated concurrently as molecule jumping.

Three different jumping rules are proposed in this research to guide the motion of the

high energy molecules. They are randomized cooling jumping, critical activity based

jumping and hidden order based jumping. Randomized cooling jumping selects the

high energy molecules randomly, and the new positions of the high energy molecules

are also randomly chosen, where the number of higher energy molecules decreases

when environment temperature decreases. In the critical activity based jumping, we

consider the flexibility of an activity as the difference between its start time in the

schedules with the same makespan in FBS. The activities are considered as critical

heuristically here, if its flexibility is 0, which means in all the schedules of FBS with

the same makespan, it has the same start time. Those critical activities form the

high energy molecules and will be assigned with smaller position values compared

with other molecules. Unlike the other two jumping rules, the hidden order based

jumping generates an entire new position vector according to precedence information

updated by the history best solutions in Molecule Search.

3.4.1 Randomized cooling jumping

In the randomized cooling jumping, a small portion of the molecules will be ran-

domly selected and the new position values of those molecules are also randomly
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chosen from 1 to n, where n is the number of activities in the project. Since the aver-

age kinetic energy decreases when temperature of the matter decreases, the number

of molecules selected to jump also decreases according to temperature. The detail for

randomized cooling jumping is given as:

Algorithm 10 Randomized cooling jumping

molecule jumping(ML,T)
J ← ∅
for i← 1 to n · T do

repeat
k ← rand(1, n)

until k /∈ J
J ← J ∪ {k}

end for
P ← encode(ML)
for each k ∈ J do

P [k]← rand(1, n)
end for
ML← decode(P )

In the above randomized cooling jumping, the percent of the jumping molecules is

decided by environment temperature T as n ·T . The jumping molecules are randomly

selected, which form the set J. The position vector for jumping molecules will be

randomly generated, while the position vector for other molecules will remain the

same as before.

As we have previously mentioned the decoding scheme is not as simple as the

encoding scheme. To decode the position vector to the molecule list in molecule

jumping, the molecules have to be sorted in increasing order of their position values.
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However, as the molecules jump randomly, the new order of the molecules (activities)

may not satisfy the precedence constraints. Therefore, the following algorithm is

used to decode the position vector. We note similar procedure has been described by

Hartmann [52].

Algorithm 11 Decoding molecule position vector to molecule list

decode(P)
for i← 1 to n do

if predecessor(i) = ∅ then
save molecule i to MIN-HEAP with the key P[i]

end if
end for
t← 1
while MIN-HEAP is not empty do

extract molecule i with minimum P[i] from the MIN-HEAP
ML[t]← i
t← t + 1
for each u ∈ successor(i) do

predecessor(u)← predecessor(u)− {i}
if predecessor(u) = ∅ then

save molecule u to MIN-HEAP with the key P[u]
end if

end for
end while
return ML

In the decoding algorithm, a minimum heap MIN-HEAP is used to save all the

molecules which can be scheduled at the current state. The position value of the

molecule is used as the key for the MIN-HEAP, and ties are broken randomly. If

there is a directed edge from i to j in the precedence network of the project, i is

the predecessor of j and j is the successor of i. We have defined predecessor(i) as
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the set of all the predecessors of molecule (activity) i. In the same way, successor(i)

is defined as the set of all the successors of molecule (activity) i. As an example,

assuming the position vector is (4,2,1,3,2,8,5,7,10,7), it can be decoded as molecule list

[3,5,1,2,4,7,8,6,10,9]. The time complexity for the above decoding scheme is O(n lgn+

m), where n is the number of activities and m is the number of precedence constraints

or the number of the edges in the precedence network of the project.

3.4.2 Critical activity based jumping

According to the new definition of float for RCPSP, critical activity is defined as

the activity with 0 float value for the fixed deadline of the project. Since the critical

activities have less flexibility than other activities, scheduling the critical activity

first may result in an improved makepspan. For critical activity based jumping, the

critical activities are selected as the high energy molecules and negative position values

will be assigned to them so that they can be scheduled earlier than other activities.

However, it is intractable to find all the critical activities, since it is NP-hard to find

the maximum float of an activity. As S-Float can be taken as the approximated value

for E-Float, S-Float is used here to select the critical activities. Since the forward-

backward search are used as the walking process, to reduce the running time, S-Float

of activity is calculated approximately as the difference between the start time of the

activity in the left-justified schedule and right-justified schedule. The details of the

critical activity based jumping are given in the following.
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Algorithm 12 Critical activity based jumping

molecule jumping(ML,T)
J ← 1, 2, ..., n
for k ← 2 to Nwalk do

for i← 1 to n do
if start time[k][i] 6= start time[0][i] then

J ← J − {i}
end if

end for
end for
P ← encode(ML)
for each k ∈ J do

P [k]← −rand(1, n)
end for
ML← decode(P )

In the critical activity based jumping, Nwalk is the number of steps in molecule

walking, start time is the array recording the start time of the activities in all the

steps of molecule walking. If all the start time of the molecules has the same value, the

molecule will be selected as a jumping molecule. The position values of the jumping

molecules are set as an integer value from [-n,1] randomly, so that all the critical

activities can be scheduled ahead of other activities. According to the experimental

results, only a small portion of activities will be selected as critical activities here.

3.4.3 Hidden order based jumping

The strength of both precedence and resource constraints mainly determines how

difficult RCPSP is [70]. If there are no precedence constraints, RCPSP with one re-

newable resource is equal to 2D bin packing problem. If there are feasible precedence
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constraints between all pairs of activities, RCPSP can be simply solved by topology

sort. According to preliminary experiments, the solution quality of RCPSP highly

depends on the order of some pairs of molecules in the molecule list, where there are

no precedence relationships between those molecules. We call the order of activities

which leads to high quality solutions as hidden order. For the hidden order based

jumping, the concurrent motion of the molecules is guided by the hidden order be-

tween molecules. To discover the hidden order, for a molecule list ML, a random

variable Xi,j for any two activities i and j is defined as

Xi,j =

{

1 molecule i ahead of molecule j in ML,
0 molecule j ahead of molecule i in ML.

(3.3)

Assuming X1
i,j, X

2
i,j, ..., X

k
i,j are k random variables for the hidden order between ac-

tivity i and activity j in k molecule lists of the best solutions sampled in our program,

the sample mean for those variables is given as, Xi,j = 1
k

∑k
u=1 Xu

i,j. A hidden or-

der matrix is defined as, H := (hi,j)n×n, where hi,j = Xi,j. It is obvious that hi,j

is 0 or 1 when there is precedence constraint between two activities. Here, we only

consider the hidden order between those activities which can be scheduled together

according to precedence constraints. In the hidden order based jumping, hi,j is used

as the probability for molecule (activity) i being ahead of molecule (activity) j in the

molecule lists for best solutions. To simplify the calculation, we also consider that hi,j

is independent for different i and j. Therefore, the probability for molecule (activ-

ity) i ahead of a set of molecules (activities) J = {j1, j2, ..., jm} can be calculated as
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∏m
k=1 hi,jk

, which is taken as the weight w[i] of molecule i. In the hidden order based

jumping, the molecules will be selected randomly proportional to the weight of them

according to their topological order. The details for hidden order based jumping are

presented in Algorithm 13.

Algorithm 13 Hidden order based jumping

molecule jumping(ML,T,H)
P ← encode(ML)
J ← ∅, t← 0
for i← 1 to n do

if i = ∅ then
J ← J ∪ {i}

end if
end for
while J 6= ∅ do

for each k ∈ J do
w[k]←∏

j∈(J−{k}) hk,j

end for
select molecule i from J randomly proportional to weight w[i]
ML[t]← i
t← t + 1
J ← J − {i}
for each u ∈ successor(i) do

predecessor(u)← predecessor(u)− {i}
if predecessor(u) = ∅ then

J ← J ∪ {u}
end if

end for
end while

In the hidden order based jumping, all the positions of molecules may changed

concurrently. An entire new molecule list is generated according to the hidden order

matrix H.
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3.5 Molecule walking – forward-backward search

3.5.1 Reverse molecule list

Molecule walking is designed as the local search process to simulate the motion

of the low energy molecules in a series of steps. Various local search based methods

have been proposed for RCPSP, including Simulated Annealing [12, 14], Tabu Search

[5, 90] and variable neighborhood search [61]. Wiest [32] introduces the left-justified

schedule as a feasible schedule in which no job can be started at an earlier date by

local left shifting of the job alone. Accordingly, right-justified schedule is defined

as a feasible schedule in which no job can be ended at a later date by local right

shifting. A detailed discussion for local and global shifting can be found in [108]. A

left-justified schedule can be obtained through scheduling molecules (activities) in the

molecule list one by one as early as possible, which is just the SGS procedure. A right-

justified schedule can be obtained in a similar way, while the molecules (activities)

are scheduled by reverse order of the molecule list as late as possible. Here the reverse

order of the molecule list is named as reverse molecule list. To give a formal definition

of the reverse molecule list, we would initially like to present the reverse precedence

network. Assuming a precedence relationship between activity i and activity j is

presented as a partial order i ≺ j, implying activity j can only be scheduled after

the completion of activity i, there is a reverse precedence relationship j ≺ i in the

reverse precedence network if and only if there is a precedence relationship i ≺ j in
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the precedence network. The reverse precedence network for example 3.1 is illustrated

in Figure 3.5.
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Figure 3.5 Reverse precedence network for example 3.1.

The reverse precedence network represents the reverse precedence constraints be-

tween the activities (molecules). A reverse molecule list is defined as the linear se-

quence representing a permutation of molecules (activities), which satisfies the reverse

precedence constraints. As an example, [9,10,7,6,8,4,2,5,3,1] is a reverse molecule list

for example 3.1.

3.5.2 Benefit reversing

As we have mentioned, a left-justified schedule can be obtained through scheduling

the activities one by one following the order in the molecule list. A reverse molecule

list can be obtained through sorting the activities with decreasing order of their

finish time in the left-justified schedule, where ties are broken randomly. A right-
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justified schedule can be obtained through scheduling the activities one by one as

late as possible according to the reverse molecule list. It can be proved simply by

mathematical induction that the makespan of the right-justified schedule obtained

in this process is less or equal to the makespan of the left-justified schedule, since

each activity is able to start later or equal than its previous start time. Therefore,

this process is named as benefit reversing (BR) here. A similar BR can be applied

to the right-justified schedule to obtain a left-justified schedule through sorting the

activity in increasing order of their start time. The BR is first introduced by Tormos

and Lova [110], where notable experimental results are achieved through combining

a random sampling procedure with an iterative BR. The iterative BR is named as

forward-backward improvement (FBI) in the survey by Kolisch and Hartmann [67]

in 2005. Further research has been conducted by Valls et al. [116] to combine FBI

with existing heuristics, where significant improvements have been achieved.
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3.5.3 Details of forward-backward search

Algorithm 14 molecule walking (forward-backward search)

molecule walk(ML,T)
for i=1 to Nwalk

2
do

P ← encode(ML)
k ← rand(1, n)
u← maxj∈predecessor(k) P [j]
j ← rand(u + 1, P [k]− 1)
ML′ ← insert(ML, j, P [k])
if f(ML′) ≤ f(ML) then

ML← ML′

end if
end for
RML← BR(ML)
for i=1 to Nwalk

2
do

P ′ ← encode(RML)
k ← rand(1, n)
u← maxj∈predecessor′(k) P (j)
j ← rand(u + 1, P ′(k)− 1)
RML′ ← insert(RML, j, P [k])
if f(RML′) ≤ f(RML) then

RML← RML′

end if
end for
ML← BR(RML)

The forward-backward search (FBS) proposed here is different from FBI. Instead

of running BR iteratively, local search is applied to the molecule list and the corre-

sponding reverse molecule list in forward-backward search (FBS). There are 4 basic

steps for the FBS. Firstly, local search is applied to the molecule list, where it is named

as the forward search. After that, at the second step, the molecule list is transformed

to the reverse molecule list with BR. At the third step, local search is applied again
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to the reverse molecule list, where it is named as the backward search. Finally, at

the fourth step, the reverse molecule list is transformed back to the molecule list with

BR. The insertion operation is used in the neighborhood generation, which has also

been used in the simulated annealing approach by Boctor [12] and Bouleimen, Lecocq

[14]. To obtain the precedence constraints feasible solution, the molecule can only

be inserted after all its predecessors and before all its successors in the molecule list.

Since local search is applied to both the molecule list and the reverse molecule list,

we only consider forward insertion in the local search, where forward insertion in the

reverse molecule list has the same effect as the backward insertion on the molecule

list. The detailed forward-backward search is presented in Algorithm 14.

In the molecule walking (forward-backward search), there are Nwalk

2
local search

steps in the forward search, where a molecule (activity) k is randomly chosen first.

A new position j for molecule (activity) k is also randomly generated after the latest

predecessor of molecule k and before the position of molecule k. A new molecule

list ML′ is obtained through inserting the molecule (activity) k before the molecule

at position j in ML. If the makespan for ML′ is less than or equal to ML, ML

will be updated as ML′. After the forward search, the molecule list ML will be

transformed to the reverse molecule list RML with BR function. Similar to the

forward search, the backward search will be applied to RML. Since the precedence

constraints have changed to reverse precedence constraints, the set of predecessors of
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a molecule (activity) k changes to predecessor’(k) instead, where it is easy to see that

the set predecessor’(k) is equal to the set successor(k).

As an example of FBS (forward-backward search), the initial molecule list is given

as [1,3,5,6,2,7,10,4,9,8], the schedule of which is shown in Figure 3.4. In the forward

search, assuming molecule 2 is inserted at position 2 before molecule 3, the new

molecule list is [1,2,3,5,6,7,10,4,9,8]. After that, molecule 4 is inserted at position 5,

just before molecule 6, and the molecule list changes to [1,2,3,5,4,6,7,10,9,8],where

the corresponding schedule can be found in Figure 3.6 (a).
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(a) Forward search (b) Benefit reversing to RML

Figure 3.6 An example of forward search

After the forward search, the BR is used to transfer the molecule list [1,2,3,5,4,6,7,10,9,8]

to the reverse molecule list [9,10,7,6,8,4,2,5,3,1]. The right-justified schedule for the

reverse molecule list is illustrated in Figure 3.6 (b). In Figure 3.6 (b), we can observe

that the makespan of the project has been reduced to 38.

The backward search is applied to the reverse molecule list [9,10,7,6,8,4,2,5,3,1].

By inserting molecule 8 and 4 ahead of molecule 7, molecule 2 ahead of molecule
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Figure 3.7 An example of backward search

7 and molecule 1 ahead of molecule 7 in sequence, we get the reverse molecule list

[9,10,8,4,2,1,7,6,5,3]. The schedule for the new reverse molecule list [9,10,8,4,2,1,7,6,5,3]

can be found in Figure 3.7 (a), where the makespan for the project has been re-

duced to 35. Finally the reverse molecule list is transformed to the molecule list

[5,6,3,7,1,4,2,10,8,9] with BR, which can be found in Figure 3.7 (b). With the molecule

walking (FBS), the makespan for the project has been reduced from 42 to 35.

In FBS, if the start time of a molecule (activity) is equal to the finish time of one

of its predecessors, forward insertion of the molecule (activity) will not change the

schedule (start time of the activities). Therefore, without calling SGS to evaluate the

new molecule list, the molecule list will be updated directly by the new molecule list,

which significantly improves the speed of the forward-backward search. A checking

vector C is used to record whether the start time of the molecules’ (activities’) equal

to the latest finish time of their predecessor, where C[k]← 1, if molecule k’s start time
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equal to the latest finish time of its predecessor, otherwise C[k]← 0. As an example,

the checking vector C for the molecule list [1,3,5,6,2,7,10,4,9,8] is [0,1,0,0,0,1,0,1,1,1].

Since C[2] = 1, inserting molecule 2 at position 2 will not change the schedule.

However, as C[4] = 0, SGS needs to be called, when molecule 4 is inserted at position

5. Since all the vertices and edges need to be visited in the precedence network for the

project to update the checking vector C, the complexity for updating C is O(n+m),

where n is the number of activities and m is the number of precedence constraints.

3.6 Computational study on Molecule Search

Currently, the performance of different heuristics on a certain combinatorial opti-

mization problem is usually judged by how well they converge on standard benchmark

test cases within a given time limit. It is reasonable to compare heuristics in this way,

since the ability for a heuristic to search for high quality solutions within time limit

decides how useful the heuristic is in practice. However, the speed of the machine and

the compiler used to compile the programs will also affect the results of heuristics.

To more accurately measure different heuristics on RCPSP, Kolisch and Hartmann

[66, 67] have proposed to use the number of SGS (Serial Generation Scheme) [66]

calls as limit rather than the running time, since almost all the heuristics use SGS

to assign start time of the activities. The new scheme works fairly successfully in

comparing the performances of various heuristics on PSPLIB (standard benchmark

test problems [70]), where detailed results are presented in the survey [67] by Kolisch



108

and Hartmann.

Following the standard in the 2005 survey by Kolisch and Hartmann, we have

tested Molecule Search on the J30, J60 and J120 test sets of PSPLIB with 1000,

5000 and 50000 SGS calls limit. The computational study is presented as 4 parts.

Since the two main components of the Molecule Search are molecule walking and

molecule jumping, the first and second parts of experiments are used to justify the

performance of the molecule walking and molecule jumping. Detailed experimental

results comparing Molecule Search with all the other state-of-the-art heuristics are

reported as the third part. Finally, Molecule Search is applied to identify float for

projects with resource constraints. The Molecule Search is implemented in C++ and

compiled with GNU g++ with maximize optimization option. All the experiments

are carried out on Intel P4 3.0GHZ PC with 1G Memory.

3.6.1 Effectiveness of molecule walking

The molecule walking is the local refinement process to simulate the motion of low

energy molecules. In this research, the newly developed FBS is used as the molecule

walking process for RCPSP. Here, we compare FBS with other most well-known local

search algorithms for RCPSP, including forward-backward improvement (FBI), Tabu

Search (TS), Simulated Annealing (SA) and Hill Climbing (HC). We also compared

FBS with the well used refinement procedure FBI, although it is not a local search

procedure. The average deviations from the optimal solution of the J30 test set
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and the average deviations from the Critical Path Method lower bounds of all those

algorithms on the J60 and J120 test sets with 5000 and 50000 iterations of SGS are

reported in Table 3.2. Here Nwalk is set to be 100. The program will run the FBS

algorithm iteratively until it reaches the SGS limit. There are different versions of

sampling with FBI and TS. As the best of them, the sampling with FBI [112] and the

TS [90] are reported here, where the initial solutions for FBI are generated by regret

based sampling with latest finish time (LFT) priority rule.

Table 3.2 Effectiveness of molecule walking–FBS
J30 J60 J120

Algorithm 5000 50000 5000 50000 5000 50000
FBS 0.15 0.13 11.42 11.16 33.73 32.19
FBI 0.13 0.05 11.62 11.36 34.41 33.71
TS 0.16 0.05 12.18 11.58 37.88 35.85
SA 0.23 - 11.90 - 37.68 -
HC 0.37 0.24 12.34 11.88 37.41 36.48

In Table 3.2, we can find the FBS achieves the best results on the J60 and J120 test

sets among all the local search algorithms. We note that the FBI is most successful

for the J30 test set. We also can find in Table 3.2 that the results of FBS is much

better than the results of HC, which shows that searching from forward and backward

side iteratively is much more effective than searching from one side alone.
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3.6.2 Effectiveness of molecule jumping

There are different kinds of molecule jumping rules, including randomized cool-

ing jumping (RCJ), critical activity based jumping (CAJ) and hidden order based

jumping (HOJ), which are discussed in section 3.4. To evaluate the effectiveness of

molecule jumping, we compare three versions of Molecule Search MShoj , MSrcj and

MScaj with FBS alone and rand FBS, where, for rand FBS, a randomly generated

solution will be used as the initial solutions for each iteration of FBS instead of using

the jumping solutions. The results for 500000 SGS are also reported here to further

investigate the performance of the different jumping rules. According to preliminary

experiments, in the randomized cooling jumping, the environment start temperature

T0, and ending Te is set to be 0.1 and 0.05 respectively, and temperature decreasing

rate α is set to be 0.95. When the environment temperature T reaches Te and the

number of SGS calls has not been reached, T will be set as T0 and the loop in molecule

search will restart.

The detailed experimental results are given in Table 3.3. In Table 3.3, all the

Molecule Search algorithms usually perform better than the FBS and rand FBS,

especially for the J120 test set, which demonstrates that the molecule jumping is

effective in guiding the FBS. We can also find MShoj achieves better results than

MSrcj and MScaj , except MSrcj obtains best results for the J60 test set with 500000

SGS iterations.
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Table 3.3 Effectiveness of molecule jumping

J30 J60 J120
Algorithm 5000 50000 500000 5000 50000 500000 5000 50000 500000

MShoj 0.11 0.03 0.01 11.33 10.85 10.63 33.54 31.97 30.82
MScaj 0.13 0.06 0.01 11.36 10.90 10.66 33.69 32.04 30.88
MSrcj 0.12 0.05 0.00 11.38 10.86 10.56 33.75 32.06 30.97
FBS 0.15 0.13 0.08 11.42 11.16 10.97 33.73 32.19 31.49

Rand FBS 0.12 0.01 0.00 11.37 10.89 10.63 33.65 32.43 31.59

3.6.3 Experimental results of Molecular Search

RCPSP is one of the most basic problem in project management and it has found

its applications in wide range of real-life problems. Because of the NP-hard intractable

nature of RCPSP, numerous heuristics have been developed to tackle it. The detailed

survey for the heuristics on RCPSP can be found in [67]. In table 3.4, we compare

our Molecule Search with the best 20 heuristics reported in the 2005 survey [67] by

Kolisch and Hartmann.

In Table 3.4, we can find that MS ranked 5th among all the best heuristics for

RCPSP, where the ranking is decided by the results of the J120 test set for 50000

SGS iterations and ties are broken according to the results of the J120 test set for

5000 SGS iterations. All the best 4 algorithms are population based algorithms and

embedded with the FBI procedure. While, the operations of MS only are applied to

a single solution. Moreover, The MS uses newly developed FBS as molecule walking
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instead of FBI.

Table 3.4 Comparing MS with other heuristics for RCPSP with schedule limit

J30 J60 J120
Algorithm Reference 5,000 50,000 5000 50000 5000 50000

GA – hybrid, FBI [114] 0.06 0.02 11.10 10.73 32.54 31.24

GA – forw.-backw., FBI [2] 0.06 0.03 11.19 10.84 33.91 31.49
Scatter Search – FBI [35] 0.11 0.01 11.10 10.71 33.10 31.57
GA – FBI [116] 0.20 0.02 11.27 10.74 33.24 31.58
MS Ours 0.11 0.03 11.33 10.85 33.54 31.97
GA, TS – path relinking [61] 0.04 0.00 11.17 10.74 33.36 32.06
population-based – FBI [116] – – – – 34.02 32.81
GA – self-adapting [52] 0.22 0.08 11.70 11.21 35.39 33.21
sampling – LFT, FBI [112] 0.13 0.05 11.62 11.36 34.41 33.71
ant system [82] – – – – 35.43 –
GA – activity list [52] 0.25 0.08 11.89 11.23 36.74 34.03
sampling – LFT, FBI [111] 0.17 0.09 11.82 11.47 35.56 34.77
sampling – LFT, FBI [110] 0.16 0.07 11.87 11.54 35.81 35.01
GA – forw.-backward [57] 0.12 – 11.86 – 36.57 –
TS – activity list [90] 0.16 0.05 12.18 11.58 37.88 35.85
GA – late join [29] 0.33 0.16 12.63 11.94 38.41 36.44
sampling – random, FBI [116] 0.28 0.11 12.35 11.94 37.47 36.46
SA – activity list [14] 0.23 – 11.90 – 37.68 –
GA – priority rule [52] 1.12 0.88 12.74 12.26 38.49 36.51
sampling – adaptive [105] 0.44 – 12.58 – 38.70 –
sampling – LFT, parallel [64] 1.29 1.13 13.23 12.85 38.75 37.74

The MS can keep on improving solution quality, if more calls of SGS are allowed.

In Table 3.5, we compared the results of MS with 500000 iterations of SGS with all

the other heuristics without schedule limit, where the results of other heuristics are

from [67]We can find that the MS achieves second best results in a short running time

in Table 3.5.
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Table 3.5 Comparing MS with other heuristics for RCPSP without schedule limit

J30 J60 J120
Algorithm Reference Dev. CPU Dev. CPU Dev. CPU

Scatter Search – FBI [35] 0.01 7.16 10.53 19.61 30.48 69.57
MS Ours 0.01 3.44 10.56 4.65 30.82 21.49
population – based [115] 0.10 1.16 10.89 3.7 31.58 59.4
decompos. & local opt. [92] 0.00 10.26 10.81 38.8 32.41 207.9
VNS – activity list [45] 0.01 0.64 10.94 8.89 33.10 219.86
local search – critical [117] 0.06 1.61 11.45 2.8 34.53 17.0
LR – activity list [86] – – 15.60 6.9 36.00 72.9
TS – network flow [4] – – 12.05 3.2 36.16 67.0
network decomposition [107] 0.12 2.75 11.61 460.2 39.29 458.5
MP – network flow [4] 1.74 – 14.20 – 39.34 –

Table 3.6 Detailed experimental results of MS on PSBLIB
Deviation (%) No. of No. of CPU-time (sec)

Test set Schedules Sum avg. max. best improved avg. max.

J30 1000 28402 0.24 5.26 426(480) - 0.01 0.02
5000 28358 0.11 4.35 454(480) - 0.04 0.14
50000 28326 0.03 2.06 471(480) - 0.26 0.89
500000 28321 0.01 2.06 476(480) - 3.44 13.98

J60 1000 38865 12.04 115.58 361(480) 0 0.01 0.06
5000 38628 11.33 107.79 376(480) 1 0.06 0.28
50000 38470 10.85 106.49 400(480) 1 0.40 1.69
500000 38394 10.63 102.60 429(480) 1 5.30 26.42

J120 1000 77286 36.17 218.81 195(600) 0 0.07 0.12
5000 75788 33.54 204.95 214(600) 0 0.29 0.56
50000 74899 31.97 204.04 251(600) 0 2.35 5.56
500000 74249 30.82 197.98 324(600) 1 21.49 54.09
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In Table 3.6, detailed results for MS with 1000, 5000, 50000 and 500000 iterations

of SGS on the J30, J60 and J120 test sets of PSPLIB are reported, where the best

results of PSPLIB updated by August 22, 2005 are used as comparison here.

3.6.4 Calculating the float with Molecular Search

Table 3.7 H-Float by Molecular Search with optimal deadline for the J30 test set

No. of H-Float No. of Accuracy Makespan CPU
Step (period) Crt-Act (%) avg(period‘) (sec)
5000 avg 6.22 10.49 96.06 58.46 4.89

max 23.17 28.00 100.00 129.00 18.16
min 0.07 0.00 36.67 35.00 0.03
dev 3.89 5.13 10.05 13.71 4.22

50000 avg 6.32 10.03 98.65 58.40 48.26
max 23.17 28.00 100.00 129.00 201.65
min 0.10 0.00 43.33 35.00 0.03
dev 3.79 4.48 5.09 13.59 42.10

500000 avg 6.35 9.86 99.92 58.39 493.59
max 23.17 26.00 100.00 129.00 1929.69
min 0.37 0.00 90.00 35.00 0.03
dev 3.76 4.21 0.73 13.58 428.54

In the first part of the thesis, the new definition of float for RCPSP (resource

constrained project) is given, where we show that the float value can be calculated

approximately by Simulated Annealing. Since the MS is more effective than the SA

on RCPSP, we have applied MS in finding the float for all the test problems in the

J30 test set. The results for calculating the float with MS are reported in Table 3.7.

With 5000 iterations of SGS the H-Float calculated by MS already achieves 96.06%
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accuracy, which is much better than 91.63% accuracy of the H-Float calculated by

SA with 5000 SGS iterations. Those results also show that the MS converges much

faster than the SA for the RCPSP.

3.7 Conclusion

Simulating the cooling process from gas to crystal, Molecule Search, divided as

molecule jumping and molecule walking, is applied to solve RCPSP. Molecule jumping

is used to simulate the concurrent motion of high energy molecules. Three different

jumping rules are discussed in this research, including randomized cooling jumping,

critical activity based jumping and hidden order based jumping. Molecule walking is

used to simulate the motion of low energy molecules in a series of steps. A new local

search procedure FBS is proposed here as molecule walking. The effect of molecule

jumping and molecule walking has been supported by extensive experimental results.

Compared with all the other state-of-art heuristics, molecule search emerges to be one

of the best heuristics for RCPSP. As a new optimization method, Molecule Search

may be applied to other combinatorial optimization problems in the future.



116

Chapter 4

Molecular Bank Algorithm for

Resource-Constrained Project Scheduling Problem

In the last chapter, simulating the cooling process from gas to crystal, Molecule

Search (MS) has been developed as a new optimization technique for combinatorial

optimization problems, where MS has been successfully applied to the bandwidth

minimization problem [81, 80], the minimal linear arrangement problem [77] and the

resource constrained project scheduling problem [78]. A population based MS is

proposed here to tackle the resource-constrained project scheduling problem. This

approach is named as the Molecule Bank Algorithm (MBA). As a population based

approach, the crossover operator from the genetic algorithm is used in MBA. More-

over, dynamic population, molecule aging and molecule drifting are also proposed

here to balance diversification and intensification in the search process of MBA.

4.1 Molecule Bank Algorithm

The Molecule Bank Algorithm can be viewed as a combination of Genetic Algo-

rithm and Molecule Search. The detailed flowchart for MBA can be found in Figure

4.1. A Molecule bank is used to store all the elite solutions, as shown in Figure

4.1. There are two different sets of elite solutions. One is the set of historical best

solutions. The other is the set of elite solutions for current iteration of MBA. In
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the process of MBA, a number of molecule lists will be generated first and saved

to the molecule bank, where the dashed line in Figure 4.1 shows the data exchange

between the molecule bank and the operators of MBA. An iterative procedure, in-

cluding crossover, selection, jumping and walking, will start. This procedure will

only end until reaching the limit of the number of SGS calls or an user specified

time limit. In MBA, the operations and the data are presented as different parts in

Molecule Bank

Initialization

Crossover

Selection

Jumping

Walking
SGS calls less

than Limit

Output best

solution

Y

N

Figure 4.1 Flowchart of Molecule Bank Algorithm

Figure 4.1. The framework of the MBA is similar to knowledge-based information

processing in artificial intelligence. Almost all the heuristics can be viewed in a sim-
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ilar way, where new solutions are generated according to the past solutions or rules

and properties generalized from past solutions. In the process of searching for better

solutions for combinatorial optimization problems, different heuristics have different

ways of making use of previously found solutions. Therefore, how well a heuristic can

use previously found solutions will probably decide how effective the heuristic will be.

4.1.1 Initialization

The molecule list is still used here to represent solutions of RCPSP, where it is

the same as the traditional activity list. There is an one-to-one mapping from the

molecules to the activities, and the molecules need to satisfy all the constraints of the

activities also. In MBA, the population of the molecule lists for each generation is

not fixed. Here we use POPk to present population of the kth generation of molecule

lists. Initially, there will be POP0 molecule lists generated randomly. The forward-

backward improvement (FBI) [110] procedure will be applied on each molecule list,

where the FBI is run iteratively until no more improvements can be found. After

that, all the molecule lists are ranked according to their corresponding makespan.

POP1 best ranking molecule lists will be selected and saved to the molecule bank,

and they form the first generation of molecule lists.
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4.1.2 Crossover and selection

Introduced by Holland[56], genetic algorithms have been successfully applied for

many combinatorial optimization problems. Various genetic algorithms with different

encoding schemes or crossover operators have been proposed for RCPSP, where the

GA approach from Hartmann [52] appears to be one of the most promising heuristics

for RCPSP. Hartmann has first encoded the activity lists as chromosomes, where the

performance for different combinations of crossover operators and selection methods

were also compared. Since the molecule list is the same as the activity list, we

encode the molecule lists directly as chromosomes here. The experimental results

from Hartmann show that two points crossover outperforms the one point crossover

or uniform crossover. Therefore two points crossover is also adopted in MBA. There

are slight differences between the crossover operator used here compared to the one

used by Hartmann. Assuming we have two parent molecule lists U = [u1, u2, ..., un]

and V = [v1, v2, ..., vn], where n is the number of activities in the project, the two

points p and q will be randomly selected, where 1 < p < q ≤ n and q − p ranged

from 2n/5 to 3n/5. Assuming the child molecule list is W = [w1, w2, ..., wn], the first

(1 ≤ i < p) and the third (q ≤ i ≤ n) part of the child molecule list is inherited from

the father U directly as

wi = ui, for all 1 ≤ i < p and q ≤ i ≤ n. (4.1)

The second part (p ≤ i < q) of the child molecule list is generated from the
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molecules in the second part of the father molecule list according to their ordering in

the mother molecule list as

wi = vk, for all p ≤ i < q, (4.2)

where k is the lowest index such that vk /∈ {w1, ..., wi−1, wq, wq+1, ..., wn}

For example 3.1 in section 3.3, assuming two parents molecule lists are selected

as U = [1, 3, 5, 6, 2, 7, 10, 4, 9, 8] and V = [1, 5, 7, 3, 6, 4, 10, 2, 8, 9], where p is 4 and q

is 8. The the child molecule list W produced will be W = [1, 3, 5, 7, 6, 10, 2, 4, 9, 8].

The two points crossover for the example is also illustrated in Figure 4.2.

1

1

Father

Mother

Child

Part 1 Part 3

23 5 6 7 10 4 9 8

5 7 3 6 4 10 2 8 9

1 3 5 4 9 87 6 10 2

Part 2

Figure 4.2 An example for two points crossover

The parent molecule lists are selected with 2-tournament selection, where 4 molecule

lists ML1, ML2, ML3 and ML4 will be randomly selected from the current generation

each time. The molecule list with less corresponding makespan between ML1 and

ML2 will be selected as the father molecule list, and the molecule list with less corre-
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sponding makespan between ML3 and ML4 will be selected as the mother molecule

list.

Considering the kth generation (k-th iteration of MBA), the population of molecule

lists will be POPk. To diversify the new molecule lists produced, two parents will

only produce one child in MBA. Since 4 · POPk couples of parent molecule lists will

be selected for crossover, 4 ·POPk new molecule lists will be generated. Therefore, in

total, there will be 5 · POPk molecule lists. The ranking method is used here as the

selection method. Among the 5 · POPk molecule lists, POPk+1 molecule lists with

the smallest corresponding makespan will be selected as the (k + 1)th generation of

molecule lists.

4.1.3 Jumping and walking

In MBA, we treat molecule jumping and walking as separate operators, where

they work on different sets of data from the molecule bank and also have different

environment temperatures. As we have mentioned, there are two types of data in the

molecule bank. Molecule jumping works on the historical best solutions. Molecule

walking works on the current generation of elite solutions produced by the crossover

operator and selected by the selection operator.

In the molecule bank, Kbest number of history best molecule list will be stored.

In the molecule jumping operation of MBA, a molecule list will be randomly selected

and randomized cooling jumping will be performed on it. After the molecule jumping
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operation, the modified molecule list is inserted into the current generation of elite

solutions in the molecule bank. For each iteration of MBA, the molecule jumping

does not take place all the time. Instead, the probability for molecule jumping to take

place is defined as pjump. According to preliminary experiments, MBA will achieve

best results when Kbest is set to 4 and pjump is set to 0.1. The detailed molecule

jumping operator is presented in the following.

Algorithm 15 molecule jumping operator in MBA

molecule jumping(Molecule Bank,Tjump,Kbest,pjump)
q ← rand(0, 1)
if q < pjump then

retrieve history best solutions from Molecule Bank as Best ML
k ← rand(1, Kbest)
ML← Best ML[k]
J ← ∅
for i← 1 to n*Tjump do

repeat
k ← rand(1, n)

until k /∈ J
J ← J ∪ {k}

end for
P ← encode(ML)
for each k ∈ J do

P [k]← rand(1, n)
end for
ML← decode(P )
save(ML, Molecule Bank)

end if

In the molecule jumping procedure, Tjump is the environment temperature for

jumping which decides how many molecules will jump. Similar to the MS, the start

temperature for Tjump is set to 0.1 and the ending temperature is set to 0.05. For
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each iteration of MBA, Tjump will be updated by α ·Tjump, where α is set to 0.95 here.

When Tjump reaches 0.05, it will be reset to the start temperature. As we have stated

in MS, P is a position vector, where encode is the procedure to encode the molecule

list to a position vector and decode is the procedure to decode the position vector

to a molecule list. The newly generated molecule list ML will be saved to molecule

bank as one of the elite molecule lists for current generation.

Unlike molecule jumping, molecule walking is conducted on all the molecule lists

in the current generation (current iteration of MBA). As a new local search method

for RCPSP, forward-backward search (FBS) was proposed as molecule walking in MS

[78]. In MBA, an annealing-like FBS is used as the molecule walking instead, which

is more flexible than the old FBS procedure. The detailed molecule walking operator

for MBA is given below.

In the molecule walking operator, annealing-like judgement (p < e(f(ML)−f(ML′))/Twalk)

is used here to decide whether the molecule list should be updated or not according

to the walking temperature Twalk. Similar to the Simulated Annealing (SA) approach

for RCPSP by Bouleimen and Lecocq [14], the start temperature for Twalk is defined

as,

T 0
walk = − MKmin

5ln(0.01)
(4.3)

where MKmin is the minimum makespan obtained after the initialization proce-
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Algorithm 16 molecule walking operator in MBA

molecule walk(Molecule Bank,Twalk)
retrieve current generation of molecule lists from Molecule Bank as Elite ML
for each ML inside Elite ML do

for i=1 to Nwalk

2
do

P ← encode(ML)
k ← rand(1, n)
u← maxj∈predecessor(k) P (j)
j ← rand(u + 1, P (k)− 1)
ML′ ← insert(ML, j, P (k)) (forward insert molecule k)
p← rand(0, 1)
if p < e(f(ML)−f(ML′))/Twalk then

ML←ML′

end if
end for
RML← BR(ML)
for i=1 to Nwalk

2
do

P ′ ← encode(RML)
k ← rand(1, n)
u← maxj∈predecessor′(k) P (j)
j ← rand(u + 1, P ′(k)− 1)
RML′ ← insert(RML, j, P (k))
p← rand(0, 1)
if p < e(f(RML)−f(RML′))/Twalk then

RML← RML′

end if
end for
ML← BR(RML)

end for
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dure. When the new solution is 20% worse than the MKmin, the acceptance rate is

only 0.01 according to the start temperature. The ending temperature for Twalk is

given as,

T e
walk = − 1

ln(0.001)
(4.4)

There is only 0.001 chance to accept a solution with makespan 1 unit longer

than the makespan of the current solution. According to preliminary experiments,

the temperature decrease rate αwalk is set to 0.25. The temperature Twalk does not

decrease according to the iterations of MBA, instead it decreases according to the

number of SGS calls. Starting from T 0
walk, there will be ln(T e

walk/T
0
walk)/lnαwalk dif-

ferent temperature states until Twalk reaches T e
walk. Here, the SGS calls are divided

evenly according to all the temperature states. Defining the limit of SGS calls as

LSGS, the number of SGS calls for each temperature states is calculated as,

NSGS =
LSGS lnαwalk

ln(T e
walk/T

0
walk)

(4.5)

Where the SGS calls from the crossover operator and the jumping operator will both

be counted as well. For each NSGS calls of SGS, the walk temperature Twalk decreases

by,
Twalk = αwalk · Twalk (4.6)
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4.2 Intensification and Diversification

High quality solutions to a combinatorial optimization problem usually form clus-

ters in the search space, where inside a certain cluster the structures of the solutions

are similar. However, different clusters of high quality solutions may be scattered

around the search space. To explore the solution space effectively, a heuristic should

have both good intensification and effective diversification properties. Intensification

means the ability for the heuristic to explore good solutions within a cluster. Diver-

sification can be interpreted as the ability for the heuristic to locate different clusters

of good solutions. In MBA, the molecule walking operator gives the algorithm good

intensification properties. In the molecule walking operator with annealing-like local

moves, the FBS is more efficient in escaping from the local optimum. The crossover

operator from GA and the molecule jumping operator from MS are used to achieve

good diversification for MBA. In this section, we will further discuss three new tech-

niques developed to balance the intensification and diversification properties of MBA,

including dynamic population, molecule aging and molecule drifting.

4.2.1 Dynamic population

In MBA, as mentioned in section 4.1.1, POP0 number of molecule lists will be

generated first. After performing FBI, POP1 best ranking molecule lists will remain

as the first generation of elite molecule lists. The population of the elite molecule

lists ML1 decreases by a constant DPOP until it reaches the ending population POPe.
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In each iteration of MBA, if molecule jumping is performed, the new molecule list

generated will be inserted into the current generation of elite molecule lists. To

calculate the population of the molecule lists, we defined Sjump first as follows,

Sjump =

{

1 when molecule jumping is performed,
0 when molecule jumping is not performed,

(4.7)

The POPk for the k-th (k > 1) generation can be calculated as,

POPk = max{POPk−1 −DPOP + Sjumping, POPe} (4.8)

With dynamic population, at the beginning of MBA, most of the computation

effort is put into diversification, to search for good solution clusters. As the population

keeps on decreasing, more and more computation effort is put into intensification.

When the population reaches POPe, most of the computation effort is focused on

molecule walking as the intensification method. Preliminary experimental results

show that the dynamic population strategy leads to better solutions for RCPSP.

4.2.2 Molecule aging

In the selection operator of MBA presented in section 4.1.2, the best POPk+1

molecule lists for the (k + 1)th generation are selected from the POPk molecule lists

of the kth generation together with the 4 · POPk molecule lists generated with the

crossover operator. Therefore an elite molecule list may be kept for many generations.

To achieve better diversification of MBA, the technique of molecule aging is used here,

where each molecule list has an age property. The age value of a molecule list is the
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number of generations the molecule list which has been kept in the molecule bank. We

also defined the LAGE as the age limit. In MBA, the molecule list will not be selected

as the next generation if it has reached the age limit, where the age limit LAGE is set

to 20 here. Although the Molecule Aging technique is proposed independently here,

the similar age structure of genetic algorithm has already been studied by Kubota

and Fukuba [71], where they show that even a small population size can obtain high

performance with the age structure.

4.2.3 Molecule drifting

Using the ranking method as the selection operator, the molecule lists with the

minimum corresponding makespan are selected for each generation. If a molecule

list ML1 has reached local optimum during the molecule walking procedure and the

corresponding makespan of the molecule list is among the best of all the molecule

lists, the molecule list ML1 will be selected and it will remain in the molecule bank.

However, in the next generation, since the molecule list ML1 has already reached a

local optimum, the offspring of the molecule list ML1 usually have a longer makespan

than the makespan of it. Therefore, there is very little chance for the offspring of the

molecule list ML1 to be selected into the molecule bank. Moreover, since ML1 has

already reached a local optimum, there is only a small chance to improve ML1 in the

molecule walking process. To diversify the molecule lists selected and to improve the

chance of finding better solutions in the molecule walking process, the last local move



129

of the molecule walking procedure will always be accepted even if the makespan of

the new molecule list is longer than the makespan of the original molecule list. This

new technique is called molecule drifting.

The best solutions found are still recorded during the molecule walking process

with molecule drifting. With molecule drifting, the molecule lists have a greater

chance to drift from the local optimal states. As the drifted molecule lists may have

a longer makespan, there is a greater chance for their offspring to be selected for the

next generation. When drifting from the local optimum, the chance to find better

solutions in the molecule walking procedure for the next generation of molecule lists

is increased as well.

4.3 Computational study on Molecule Bank Algorithm

Similar to MS, the J30, J60 and J120 test sets from PSPLIB are also used here as

the standard benchmark to test the performance of MBA. The computational study

is divided into 3 parts. Detailed experimental results for MBA on the J30, J60 and

J120 test sets with the SGS calls limit as 1000, 5000, 50000 and 500000 are reported

in the first part, where 62 new best results for the J120 test sets and 3 new best

results for the J60 test sets are obtained. In the second part, we compare our MBA

with all the other state-of-art heuristics reported in the 2005 survey [67] by Kolisch

and Hartmann, including the MS proposed by us. The experimental results show that

the MBA is among the best heuristics for RCPSP so far. Finally, with the help of
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MBA, better results for finding the float on J30 test set are reported. The Molecule

Bank Algorithm is implemented in C++ and compiled with GNU g++ with maximal

compiler optimization. All the experiments are carried out on Intel P4 3.0GHZ PC

with 1G Memory.

4.3.1 Experimental results of Molecule Bank Algorithm on PSBLIB

As Dynamic Population is used in MBA, we will present the initial population

POP0, the start population POP1, the ending population POPe and the population

decreasing constant DPOP for 1000, 5000, 50000 and 500000 SGS calls limit first in

Table 4.1.

Table 4.1 Population setting for different SGS limits
SGS limit POP0 POP1 POPe DPOP

1000 50 4 4 1
5000 100 12 4 1
50000 100 55 7 1
500000 1000 1000 350 50

In Table 4.2, detailed computational results for MBA on PSBLIB are presented,

which include the results on the J30, J60 and J120 test sets with 1000, 5000, 50000 and

500000 SGS limits. The average and maximum deviation from the optimal solutions

of the J30 set and the average and maximum deviation from the best solutions of the

J60 and J120 are given in Table 4.2, where the best results of PSPLIB updated on

August 22, 2005 are used as comparison here. In Table 4.2, we also report the number
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of best solutions and the number improved solutions achieved by MBA. With 500000

SGS limits, MBA achieved all the optimal solutions for the J30 test set, 93% of the

best solutions for the J60 test set and 81% of the best solutions for the J120 test set.

In addition, MBA also obtained 3 new best results for the J60 test set and 62 new

best results for the J120 test sets. The average and maximum running time of MBA

is given in the last two columns. We can also find that MBA finished running in a

short time, where, even for J120 test set with 500000 SGS calls, the average running

time is only 30.65 seconds.

Table 4.2 Experimental results of Molecular Bank algorithm on PSBLIB
Deviation (%) No. of No. of CPU-time (sec)

Test set Schedules Sum avg. max. best improved avg. max.

J30 1000 28389 0.21 5.26 436(480) - 0.01 0.03
5000 28342 0.07 3.45 460(480) - 0.05 0.12
50000 28318 0.01 1.25 478(480) - 0.40 1.04
500000 28316 0.00 0.00 480(480) - 4.79 12.33

J60 1000 38766 11.73 115.58 363(480) 0 0.02 0.05
5000 38570 11.14 110.39 378(480) 0 0.08 0.29
50000 38395 10.63 102.60 421(480) 1 0.75 2.94
500000 38353 10.51 101.30 446(480) 3 7.40 28.28

J120 1000 76588 34.95 212.87 199(600) 0 0.07 0.12
5000 75338 32.75 204.04 228(600) 0 0.32 0.54
50000 74188 30.71 197.98 348(600) 11 3.10 5.78
500000 73729 29.91 194.95 484(600) 62 30.65 56.50

4.3.2 Comparing with other heuristics

In Table 4.3, we compare MBA with 20 best heuristics on RCPSP, where the

results of MS are also included. All the methods are ranked according to the results
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on the J120 test set with 50000 SGS calls, and ties are broken according to the results

on the J120 test set with 5000 SGS calls. As shown in Table 4.3, MBA achieved best

results on the J120 test set and the J60 test set. MBA also achieved second best results

on the J30 test set. The experimental results show that by balancing diversification

and intensification during the search process, MBA converged very well to high quality

solutions in a short time.
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Table 4.3 Comparing MBA with other heuristics for RCPSP with schedule limit

J30 J60 J120
Algorithm Reference 5,000 50,000 5000 50000 5000 50000

MBA Ours 0.07 0.01 11.14 10.63 32.75 30.71

GA – hybrid, FBI [114] 0.06 0.02 11.10 10.73 32.54 31.24
GA – forw.-backw., FBI [2] 0.06 0.03 11.19 10.84 33.91 31.49
Scatter Search – FBI [35] 0.11 0.01 11.10 10.71 33.10 31.57
GA – FBI [116] 0.20 0.02 11.27 10.74 33.24 31.58
MS Ours 0.11 0.03 11.33 10.85 33.54 31.97
GA, TS – path relinking [61] 0.04 0.00 11.17 10.74 33.36 32.06
population-based – FBI [116] – – – – 34.02 32.81
GA – self-adapting [52] 0.22 0.08 11.70 11.21 35.39 33.21
sampling – LFT, FBI [112] 0.13 0.05 11.62 11.36 34.41 33.71
ant system [82] – – – – 35.43 –
GA – activity list [52] 0.25 0.08 11.89 11.23 36.74 34.03
sampling – LFT, FBI [111] 0.17 0.09 11.82 11.47 35.56 34.77
sampling – LFT, FBI [110] 0.16 0.07 11.87 11.54 35.81 35.01
GA – forw.-backward [57] 0.12 – 11.86 – 36.57 –
TS – activity list [90] 0.16 0.05 12.18 11.58 37.88 35.85
GA – late join [29] 0.33 0.16 12.63 11.94 38.41 36.44
sampling – random, FBI [116] 0.28 0.11 12.35 11.94 37.47 36.46
SA – activity list [14] 0.23 – 11.90 – 37.68 –
GA – priority rule [52] 1.12 0.88 12.74 12.26 38.49 36.51
sampling – adaptive [105] 0.44 – 12.58 – 38.70 –
sampling – LFT, parallel [64] 1.29 1.13 13.23 12.85 38.75 37.74

We also compare MBA with other heuristics without schedule limit, and the results

are reported in Table 4.4. As shown in Table 4.4, all the best results were achieved

by MBA on all the test sets.
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Table 4.4 Comparing heuristics for RCPSP without schedule limit

J30 J60 J120
Algorithm Reference Dev. CPU Dev. CPU Dev. CPU

MBA Ours 0.00 4.79 10.51 7.40 29.91 30.65
Scatter Search – FBI [35] 0.01 7.16 10.53 19.61 30.48 69.57
MS Ours 0.01 3.44 10.56 4.65 30.82 21.49
population – based [115] 0.10 1.16 10.89 3.7 31.58 59.4
decompos. & local opt. [92] 0.00 10.26 10.81 38.8 32.41 207.9
VNS – activity list [45] 0.01 0.64 10.94 8.89 33.10 219.86
local search – critical [117] 0.06 1.61 11.45 2.8 34.53 17.0
LR – activity list [86] – – 15.60 6.9 36.00 72.9
TS – network flow [4] – – 12.05 3.2 36.16 67.0
network decomposition [107] 0.12 2.75 11.61 460.2 39.29 458.5
MP – network flow [4] 1.74 – 14.20 – 39.34 –

4.3.3 Calculating the float with Molecular Bank Algorithm

A new definition for the float for the resource-constrained project is given in

the first part of the thesis. However, calculating the float emerges to be NP -hard.

Therefore, Simulated Annealing has been applied to calculate a heuristic value of

the maximum float as H-Float. Compared with the E-Float, we show that using a

Simulated Annealing algorithm alone can achieve 91.63% accuracy with 5000 SGS

calls, 97.78% accuracy with 50000 SGS calls and 99.60% for 500000 SGS calls. As

MBA converges better than SA (Simulated Annealing), we have applied MBA to

calculate the float and the results are reported in Table 4.5. We can find in Table

4.5 that 97.52% accuracy is achieved for 5000 SGS calls by MBA already, which is
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almost the same as the results of SA with 50000 SGS calls. According to the accuracy

results, MBA seems to converge 10 times as fast as SA on RCPSP.

Table 4.5 H-Float by Molecule Bank Algorithm with optimal deadline for J30

No. of H-Float No. of Accuracy Makespan CPU
Step (period) Crt-Act (%) avg(period) (sec)
5000 avg 6.27 10.23 97.52 58.41 7.43

max 23.17 28.00 100.00 129.00 25.62
min 0.13 0.00 46.67 35.00 0.90
dev 3.84 4.70 7.68 13.61 5.36

50000 avg 6.34 9.92 99.42 58.39 81.55
max 23.17 27.00 100.00 129.00 285.69
min 0.33 0.00 66.67 35.00 7.65
dev 3.77 4.31 3.08 13.59 57.13

500000 avg 6.35 9.87 99.86 58.39 795.28
max 23.17 26.00 100.00 129.00 2356.38
min 0.37 0.00 80.00 35.00 71.72
dev 3.76 4.24 1.32 13.58 571.49

4.4 Conclusion

Molecule Bank Algorithm (MBA), a population based Molecule Search (MS), is

proposed here to solve the resource-constrained project scheduling problem (RCPSP).

A molecule bank is used to store elite solutions during the search process of MBA. 4

different operators, including the crossover operator, the selection operator, the jump-

ing operator and the walking operator, are used here to generate new solutions based

on the elite solutions from the molecule bank. The traditional two-point crossover

method is used as the crossover operator, and the ranking method is adopted here
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as the selection operator. Randomized cooling jumping from MS and annealing-like

FBS (Forward-backward search) are selected as the jumping and walking operator

for MBA. Three new techniques, dynamic population, molecule aging and molecule

drifting are proposed here to further balance diversification and intensification in the

search process of MBA. Detailed experimental results on the J30, J60 and J120 test

set from PSPLIB are presented, where 62 new best results are obtained for the J120

test set and 3 new best results are obtained for the J60 test set. According to the com-

putational results, MBA emerges to be one of the best heuristics to date for RCPSP.

While diversification and intensification play a central role in the searching process of

heuristics, more research can be carried out in the future to further investigate how

to balance diversification and intensification during the search process to achieve best

performance for heuristics.
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Chapter 5

A Hybrid Framework for Over-Constrained

Generalized Resource-Constrained Project

Scheduling Problem

In this chapter we study an over-constrained scheduling problem where constraints

cannot be relaxed. This problem originates from a local defense agency where activi-

ties to be scheduled are strongly ranked in a preference or priority scheme determined

by planners ahead of time and operational real-time demands require solutions to be

available almost immediately. The method of solution used by the agency was to

model the problem as a Constraint Satisfaction Problem (CSP) and to remove some

activities to obtain feasible solutions. Because of the operational nature of the prob-

lem, any quick improvement in activities scheduled was beneficial to the users where

the quality of resulting schedules was measured by the inclusion of high-ranked ac-

tivities.

Scheduling problems are natural CSPs where conflicts can be resolved by partial

satisfaction for over-constrained problems. Fox, in an early study [46], provided the

concepts of constraint ”relaxation” in the sense of the selection of alternatives, ”pref-

erences” among relaxations and ”importance” to cope with conflicting constraints in

job-shop scheduling. Scheduling finds many applications in services and manufactur-

ing and can be deterministic or stochastic in nature. For a comprehensive survey of
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scheduling systems see [18][97].

In many real-life applications, conflicting constraints can arise and problems can

be over-constrained with no solution. For the over-constrained case, it is necessary

to relax the problem to find a good compromise in which some constraints may be

violated. Over the past twenty years, many researchers have addressed constraint

conflict and over-constrained CSPs. In an early study, Borning et al. [13] intro-

duced constraint ”hierarchies” for requirements and preferences which could not all

be satisfied. Partial constraint satisfaction was used by Freuder and Wallace [47] for

over-constrained problems. They introduced the well-known maximal constraint sat-

isfaction problem (Max-CSP) which provides a framework to minimize the number of

violated constraints. Many techniques have since been used for the Max-CSP; these

include branch and bound [47], heuristics such as tabu search [48], specific filtering

algorithms [95] and a range-based algorithm [96]. See also, [94], [7] and [100]. Al-

though various frameworks derived from Max-CSP have been proposed, most can be

encoded through two generic paradigms called valued CSP [104] and semiring CSP

[8]. The Max-CSP, however, is not realistic enough for many real-life applications

where the objective is much more complex than minimizing the number of violated

constraints. In this work, the priority scheme practised by the users led us naturally

to address activity priority as a primary objective in scheduling. ”Priority” has fea-

tured in CSPs as soft constraints which are assigned weights (see, for example, [94],
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[42]). In an extension of the Max-CSP, in the so-called weighted Max-CSP problem,

it is preferable to violate a priority constraint with low weight than one with high

weight where the goal is to minimize the sum of weights of the violated constraints.

However, for the objective of prioritizing activities, using weighted constraint sets is

not effective.

In the over-constrained problem we study, constraints had to be failed in sets

rather than individually when constraint satisfaction techniques were used. This

involved extensive computation in tracing activity-related constraints and was an

underlying weakness of the technique. An alternative was to retain the benefits of

constraint programming (CP) techniques but to treat activities as a whole in a hybrid

approach. In our approach, we used a two-component hybrid algorithm. Heuristics

are used in one component and a CP-based iterative randomized method or a Similar

as Minimum Forbidden set [6], Minimal Critical Set (MCS)-based method developed

by [25] is used in the other component. The use of heuristics is appropriate since

the problem is NP-hard and because of the large problem sizes involved and short

operational time requirements of the user. Tests of the algorithm show that signif-

icantly larger numbers of high-priority activities are scheduled when compared with

the old system. Operational needs were also met and exceeded with the shorter times

required to obtain final schedules. To further validate the effectiveness of the hybrid

algorithms, performance was compared with solutions obtained using the CPLEX
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solver. The experimental results verify that for small problem sizes, the algorithm

obtains near-optimal solutions in short times and for larger problems, it obtains better

results in much shorter times than the branch and bound-based CPLEX solver.

The approach provided in this chapter offers a framework for problems where all

constraints are treated as hard constraints and where conflict resolution is achieved

only through the removal of variables rather than constraints. In this study, a prior-

ity scheme is used to achieve the latter. Although the over-constrained generalized

resource-constrained project scheduling problem is addressed here, the framework can

be applied to over-constrained resource-constrained project scheduling problems and

over-constrained job-shop scheduling problems.

5.1 Basic Notions and Problem Description

The well-known Critical Path Method (CPM) and Program Evaluation and Re-

view Technique (PERT) are concerned with minimizing the makespan of a project

where resources are sufficient and precedence relations ensure events are completed

before others are initiated. Such precedence relations have been generalized and,

following [44], we distinguish between four types of generalized precedence relations

(GPRs): start-start (SS); start-finish (SF); finish-start (FS) and finish-finish (FF).

GPRs can be used to model a variety of problem characteristics which can be found

in, for example, [31, 43, 85, 10, 87, 89, 17]. We note that precedence relations can

also be described by precedence constraints [59, 122], precedence diagramming rela-
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tions [85], minimal and maximal time lags [87, 89, 17] and generalized precedence

constraints [119].

5.1.1 The RCPSP and resource allocation types

The resource-constrained project Scheduling problem (RCPSP) is concerned with

scheduling project activities subject to precedence and resource constraints and can

be described as follows: A number of activities are defined in the project network,

assumed to be acyclic and represented by an activity-on-node network with nodes

as activities and arcs representing finish-start precedence relations with zero time

lag. Pre-emption is not allowed and there are a number of renewable resource types

with constant resource requirements. The objective is to find a minimal makespan

(the completion time of the last activity scheduled of the network) which provides a

schedule that meets the constraints imposed by the precedence relations and resource

availability. For a formulation of the RCPSP see, for example, [101].

Branch-and-bound methods have been used to solve this problem by [22, 28, 37,

93, 109] while priority rule-based heuristics have been implemented and tested experi-

mentally by [3, 11, 34, 93]. Recently, there has been more elaborate heuristics applied

to this problem including a truncated branch-and-bound heuristic by [3] and integer

programming-based heuristics by [91]. To solve the RCPSP, we must satisfy tempo-

ral relationships between activities as well as resource requirements for each activity,

where resource types can be renewable, non-renewable and doubly-constrained. In



142

this work we only consider renewable resources where a pre-specified number of units

of a resource is available for every period of the planning horizon.

In 1983, [10] showed that, as a generalization of the job-shop scheduling prob-

lem, the RCPSP is NP-hard in the strong sense. The RCPSP has many extensions

and variations which include the Time-Constrained Project Scheduling Problem, the

Resource-Leveling Problem, the Resource Investment Problem, the Net Present Value

Problem, the Weighted Tardiness Problem and the Generalized resource-constrained

Project Scheduling Problem (GRCPSP). Recent surveys on the RCPSP can been

found in [19, 54].

5.1.2 The GRCPSP

Research on the RCPSP has been extensive. However, in a number of cases, as-

sumptions made limit the model’s applicability to realistic problems. An example of

such a limitation is the consideration of only simple finish-to-start precedence rela-

tions which makes it impossible for the parallel processing of activities. Also, RCPSP

formulations assume constant availability of resources throughout the planning hori-

zon whereas in practice, the availability of resources fluctuates due to, for example,

the planned maintenance of equipment, vacations or varying participation of workers

and machines. Further to these, the release and deadline for a single activity cannot

be considered within a RCPSP although it constitutes an important factor in model-

ing certain types of problems. These limitations are overcome in the GRCPSP where
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the problem assumes variable resource availability and attempts to find the makespan

where precedence relations have minimal and maximal time lags and activity release

dates and deadlines. A formulation of the GRCPSP can be found in [54].

5.1.3 The Over-Constrained GRCPSP

In both the RCPSP and the GRCPSP, it is common practice to minimize the

makespan. However, we found that this objective was not suitable for applications

sometimes found in industry and, in particular, the problem from a local defense

agency. As described in the introduction, in our problem resources are atypically

very limited and the consumption of resources by activities typically exceed what is

available. Further, in the problem, additional activity requirements can come from

operational managers who vaguely understand the presence of temporal constraints.

The problem is over constrained both in resources and in temporal relations and

must be relaxed. In deciding which constraints to relax or remove, the possibility of

extending activities and increasing the availability of resources was ruled out by the

nature of the problem at hand and the requirements of the user. The only acceptable

solution then was to remove some activities and the respective constraints. As each

activity had a level of importance, retaining activities with higher importance became

the primary objective while attempting to minimize the loss of scheduled activities.

Priority-Based Activity Scheduling Sequence (PBASS): There are number of ways

to derive an activity scheduling sequence; these include using network-based rules,
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critical path-based rules, resource-based rules and composite rules (see, for example,

[3, 63]). In problems with over-constrained temporal relationships between activities,

some activities must be removed to obtain a feasible schedule. When an activity

is removed from a problem, temporal relationships can change significantly which

renders scheduling sequences topologically unsuitable. An simple example can be

a cycle between activity A, B and C. When removing one activity, the temporal

constraints are feasible. However, the order of the sequence depends on the activity

removed. To address this, we introduce a priority-based activity schedule where

activities with higher priority precede activities with lower priority resulting in a

sequence of priority non-increasing activities. We call such a sequence a Priority-

Based Activity Scheduling Sequence (PBASS). For example, an activity sequence 1

2 3 with priorities 3 1 2 respectively is represented by the PBASS 2 3 1. Here, we

have taken a lower numerical value priority value to be of higher priority. Clearly, a

PBASS need not be a feasible schedule.

Once a PBASS (or any schedule) is made feasible, we call it a Scheduled Activity

Sequence (SAS). The SAS is the activity sequence where all the activities in the

sequence can be scheduled. In other words, there exists a baseline schedule for the

activities inside the SAS satisfying the resource constraints and temporal constraints.

In order to differentiate between the quality of SASs, we consider the priority of each

activity in the SAS one by one. An SAS with more high priority activities scheduled
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will be the better SAS. For example, between two SASs: A: 1 2 2 3 4 and B: 1 2 3

3 4, A is a better solution since it scheduled two activities with priority 2. Priority

of activities scheduled are also given importance over the total number of activities

scheduled. For example, between C : 1 2 3 and D: 1 3 3 3 3, we would consider C a

better solution because it scheduled an activity with priority 2 although D scheduled

more activities.

Assuming that S is the the space of all possible activity sequences (feasible or

infeasible), and P is the number of all possible priorities p1, p2...pP , we define a pri-

ority value map π : S → ZP
+ by π(s) = (#p1s, #p2s, ..., #pP s) where s is an activity

sequence, Z+ is the set of non-negative integers and #pis is the number of priority pi

activities in s. As an example, suppose, we have 6 activities with 3 different priorities:

activities 1 and 3 have priority 1; activities 2 and 4 have priority 2 and activities 5

and 6 have priority 3. For the schedule (an SAS say) 1 3 2 4 5 6, we then have π(1 3

4 5 6) = (2, 2, 2). We now define an ordering in ZP
+ . For a, b ∈ ZP

+

(a, b) =







a ≻ b ∃i ≤ P , where ai > bi and aj = bj for ∀j, j < i,
a ≡ b ∀i ≤ P , ai = bi,
a ≺ b ∃i ≤ P , where ai < bi and aj = bj for ∀j, j < i,

(5.1)

As an example, suppose a = (1, 3, 2, 4, 0) and b = (1, 3, 1, 8, 0), a ≻ b, since a1 =

b1, a2 = b2, and a3 > b3. As each SAS can be mapped under the priority value map,

π, the objective for the OGRCPSP can be expressed using the given ordering on
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ZP
+ . We adopt Demeulemeester et al.’s [38] model for GRCPSP, to model the The

OGRCPSP model

Maximizes∈SASπ(s) (5.2)

subject to:

Si + SSij ≤ Sj for all (i , j ) ∈ H1 (5.3)

Si + SFij ≤ Fj for all (i , j ) ∈ H2 (5.4)

Fi + FSij ≤ Sj for all (i , j ) ∈ H3 (5.5)

Fi + FFij ≤ Fj for all (i , j ) ∈ H4 (5.6)

F0 = 0 (5.7)

Sn+1 = Period (5.8)

Si ≥ Gi for i = 1 , 2 , ..., n (5.9)

Fi ≤ Hi for i = 1 , 2 , ..., n (5.10)

Fi ≤ Period for i = 1 , 2 , ..., n (5.11)

∑

i∈St

rik ≤ akt for k = 1 , 2 , ...,K and t = 1 , 2 , ...,Fn (5.12)
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where:

SSij time lag of start-start relations between pairs of activities, i, j

SFij time lag of start-finish relations between pairs of activities, i, j

FSij time lag of finish-start relations between pairs of activities, i, j

FFij time lag of finish-finish relations between pairs of activities, i, j

H1 the set of pairs of activities indicating start-start relations with

a time lag of SSij

H2 the set of pairs of activities indication start-finish relations with

a time lag of SFij

H3 the set of pairs activities indicating finish-start relations with a

time lag of FSij

H4 the set of pairs of activities indicating finish-finish relations

with a time lag of FFij
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Si the start time of activity i

Fi the finish time of activity i

Gi the ready time of activity i

Hi the deadline of activity i

P eriod the given period to schedule all activities

K the number of types of resources available

rik the demand of renewable resource of type k for activities i ∈ St

akt the availability of renewable resource type k in period (t− 1, t]

St the set of activities in process in time interval (t− 1, t]

As described, the objective (1) is to maximize the priority value under π of all

SAS’s. (2) - (5) give temporal constraints between the activities. For simplification,

two dummy activities are defined in (6) - (7); the first (activity 0) will finish at time

0, and the second (activity n + 1) will start at the end time of the project. (8) - (10)

ensure that start times should occur after ready times. The end time for each activity

should be before its deadline and the end of the project. (11) specifies that resource

utilization in any interval (t− 1, t] cannot exceed resource capacity.

5.2 Solution approach for the OGRCPSP - A Hybrid Frame-

work

To solve the problem, we propose a two-level hybrid framework. In a high-level

component, heuristic search methods are used to find a good PBASS and in a lower-
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level component, temporal and resource conflicts are resolved and suitable SAS’ s are

generated from PBASS’ s. The framework is illustrated in Figure 5.1. As shown in

            Hybrid Framework
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Figure 5.1 Hybrid Framework

Figure 5.1, the high-level component searches for a PBASS which it passes to the

lower-level component for resource and temporal conflict resolution, if any, and a
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search for the best SAS. The result is returned to the high-level search component as

the current schedule. We attempt to insert activities from the PBASS one by one into

the SAS. When any current activity has a temporal or resource conflict with other

activities inserted into the SAS before it, this current activity is dropped. That is to

say, activities in the PBASS before the current activity always have priority to remain

in the SAS. In the high-level component, we used Tabu Search and Genetic Algorithm

methods and, in the low level component, a CP-based iterative randomized algorithm

together with a Minimal Critical Set (MCS)-based method is used to resolve temporal

and resource conflicts.

5.2.1 High-level Heuristic Search

A simple example 5.1 is used to illustrate the high-level Tabu Search and Genetic

Algorithm and the low-level CP and MCS method. The parameters for the example

are given in Table 5.1. In this example, we have six activities and one resource, and

Table 5.1 Example 5.1: activities parameters

Activity Priority Duration Release Time Deadline
1 1 5 2 9
2 2 3 3 8
3 1 6 2 10
4 3 3 1 7
5 2 5 2 10
6 3 4 6 10

all the activities will be scheduled in a period of 9 units (1-10). The lower the priority
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number, the more important it is. The temporal relationship between activities is

given below in Table 5.2, where a minimal time lag specifies that an activity can

only start (finish) when the preceding activity has already started (finished) for a

certain time period and a maximal time lag specifies that an activity should be

started (finished) at the latest by a number of time periods beyond the start (finish)

of another activity. All relationships are represented by the start-start model In

Table 5.2 Example 5.1: activities temporal relationships
Between Activities Minimal time lag Maxmal time lag
(1,2) 1 4
(1,3) -2 3
(2,4) 4 7
(3,5) 0 8

Table 5.2, the minimal time lag between activities 1 and 2 is 1, which means activity

2 should start 1 time unit after activity 1 has started. The maximal time lag between

activities 1 and 2 is 4, which means activity 2 should start at most 4 time units after

activity 1 starts. These relationships are illustrated in Figure 5.2.



152

1

2 4

53

6

[1
,4

]

[-2,3]

[0,8]

[4,7]

[-1,5]

[2
,6

]

Figure 5.2 Example 5.1: activities temporal relationship

Tabu Search

Tabu search (TS) [50] involves initial solutions, tabu moves, neighborhood struc-

tures, tabu tenure, tabu memory and stopping rules. Here, an initial PBASS is

generated randomly with a decreasing priority sequence while moves in the TS are

defined by the swapping of a pair of activities with the same priorities in the PBASS.

We take tabu tenure to be
√

n
p
, where n is the number of activities and p is the num-

ber of different priorities. A short-term memory is used to prevent the search from

being trapped in local optima, where current swaps are forbidden for the duration of

tabu tenure. The algorithm terminates after a fixed number of iterations, set to 100

iterations for problems tested:
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Algorithm 17 High Level-Tabu Search

Initialize(PBASS)
for i← 1 to max iterate times do

for j ← 1 to number of activities do
for k ← j + 1 to number of activities do

if activity[k] piority = activity[j] priority AND pair(k, j) ≤ i then
swap the labeling activity[k] and the labeling of activity[j] in PBASS as
the New PBASS
New SAS ← LowLevel(New PBASS) (Pass the New PBASS to low
level conflict resolution process which returns the New SAS)
if New SAS > Best New SAS then

Best New SAS ← New PBASS,Best New PBASS ←
New PBASS, pair(k, j) ← i + tabu tenure (Save the best neighbour-
hood)

end if
end if

end for
end for
if Best New SAS > Best SAS then

Best SAS ← Best New SAS (Save the best solution)
end if
PBASS ← Best New PBASS (update current PBASS with its best neigh-
bourhood)

end for

. For the example given, an initial PBASS is 3 1 5 2 6 4 obtained from a quick

sort. The SAS for this sequence is 3 6 with the start times for activities 3 and 6 at

2 and 6, respectively. Here, the three neighbors for the initial PBASS are: 1 3 5 2 6

4; 3 1 2 5 6 4 and 3 1 5 2 4 6, with SASs: 1 2 4, 3 6 and 3 6. The best neighbor is

therefore 1 3 5 2 6 4, so the TS search will swap activity 3 and 1 in the next move to

obtain 1 3 5 2 6 4.
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Genetic Algorithm

We employ a genetic algorithm (GA) [55], in our search. Here, PBASS’s are nat-

urally mapped to chromosomes. In implementation, the initial population for the

group is selected randomly by the rule for priority sequences which stipulates that

one which has a higher priority will always be ahead of one with a lower priority. For

crossover operations, we use two crossover methods:

A. Priority-based crossover : Suppose we have two parent sequences: 1 3 2 5 4 6

(father) and 3 1 5 2 6 4 (mother) and for these there are three different priorities.

Activities 1, 3 are priority 1; activities 2, 5 are priority 2 and activities 4, 6 are pri-

ority 3. We have 3 checkpoints that are after the positions 2 and 4 and 6. From

these three checkpoints we randomly choose two and perform a crossover. If we chose

position 2 and 6, then we obtain daughter and son sequences as shown in Figure 5.3.

The daughter inherit the string of genes outside the checkpoint from the father and

the string between the checkpoints from mother, while the son will inherit the string

between the checkpoint from the father and the string outside the checkpoints from

the mother.

B. Mid-point crossover : We set the middle point as the checkpoint for the crossover.

The daughter inherits the first string from the father and the second string from the

mother, while the son inherits the first string from the mother and the second string

from the father. The crossover process in shown in Figure 5.3. In our algorithm the
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two crossover methods are chosen randomly. There will be PopulationSize crossovers

in each generation, where PopulationSize is the population of each generation. The

parents for each time are randomly selected, so that there will be 2×PopulationSize

new chromosomes in the next generation.

For mutation operations, we used k-swap mutation, where k is determined by num-

1 3 2 5 4 6

3 1 5 2 6 4

1 3 5 2 6 4 1 3 2 5 6 4

3 1 5 2 6 4

1 3 2 5 4 6

3 1 5 2 4 63 1 2 5 4 6

Priority-based crossover Mid-point crossover

Figure 5.3 Crossover of the Genetic Algorithm

ber of activities × mutation rate, where the later mutation factor is predetermined.

In each swap, we randomly pick up two activities with the same priority and swap

their positions. For example, if for the chromosome 1 3 2 5 4 6, we choose to swap

activity 4 and activity 6 which have the same priority, the resulting sequence will be

1 3 2 5 6 4. Chromosome fitness: For each PBASS, an SAS is produced from the

low-level component of the algorithm. As each chromosome is mapped to a PBASS,

we can define chromosome fitness using the map π. The PBASS for the chromosome
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3 1 5 2 6 4 is 3 1 5 2 6 4 and after low-level scheduling we get the SAS 3 6 where

the π(3 6) = (1, 0, 1). However, for the chromosome 1 3 5 2 6 4, the corresponding

PBASS is 1 3 5 2 6 4 with an SAS 1 5 4 6 where π(1 5 4 6) = (1, 1, 2). Hence, the

latter chromosome is deemed to be more fit.

Selection method: We retain the group population of the chromosome for each gener-

ation and in every generation there will be 2×PopulationSize new chromosomes from

crossovers and mutations. We select the PopulationSize from the group to begin the

next generation. There are selection methods such as the ranking method (see, for

example, [83]), which sort chromosomes with respect to their fitness values and select

the best ones while others are deleted from the population. We used the ranking

method here.
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An outline of the GA is given below:

Algorithm 18 High Level-Genetic Algorithm

Randomly generate a set of PBASS’s and encode initial chromosomes
for i← 1 to PopulationSize do

SAS[i]← LowLevel(PBASS[i]) (SAS[i] is the fitness value for the PBASS[i])
end for
while MaximumGeneration ≥Generation do

for i = 1 to Population Size do
if rand(0, 1) ≤ crossoverrate then

Pick up two PBASS’ and perform crossover (two new PBASS’ will be gen-
erated)

end if
mutation : perform rand(0, 1) × number of activities swaps on the new
PBASS

end for
for i = 1 to Number of New PBASS do

New SAS[i]← LowLevel(New PBASS[i])
end for
Merge the new PBASS’ with old PBASS’
Select fittest PBASS from all the Merged PBASS’ as the next generation

end while

5.2.2 Low-level conflict resolution

The low-level component is used to find SASs from PBASSs by resolving tempo-

ral and resource conflicts and to return the start time for each activity scheduled.

The Floyd-Warshall algorithm [73] is used detect temporal conflicts and to resolve

resource conflicts, two methods are used. The first is a CP-based iterative method to

reduce domains by removing temporal conflicts. This is accomplished by an iterative

randomized algorithm which finds a suitable start time for each activity. The second

is based on the notion of a minimal critical set (MCS)[72] which resolves resource con-
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flicts by delaying some activities. We show how these methods work with an example

in a later section.

Detecting temporal conflicts

We schedule activities one by one as in the PBASS and when any activity is found

to have temporal conflicts with preceding activities that activity is discarded. This

is carried out in both the CP-based and MCS methods described below.

In order to do this, we need a method to detect temporal conflicts. There are two

kinds of temporal conflicts in our case. The first is when there are cycles between

activities. For example, activity 1 must take place 2 time units after activity 2,

activity 2 must take place 2 time units after activity 3 and activity 3 must take place

2 time units after activity 1, then activity 1 has to take place 6 time units after activity

1. Next, as the period to schedule all activities is fixed, the domain for activities can

become empty in view of temporal constraints. For example, take the domain of start

times of activity 1 to be {2,3}, where the duration for activity is 1 and the duration

of activity 2 is 2 with scheduling period of 4. We find that the latest finish time of

activity 1 is 2 and its latest start time is 1. Hence in scheduling activity 2, domain

for activity 1 will become empty.

To detect cycles, we first transform all the temporal relationships into SS (Start

after Start) precedence relations, using the following transformation rules given by
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[?, 101].

Si + SSij ≤ Sj → Si + lij ≤ Sj with lij = SSij (5.13)

Si + SFij ≤ Fj → Si + lij ≤ Sj with lij = SFij −Dj (5.14)

Fi + SFij ≤ Fj → Si + lij ≤ Sj with lij = Di + FFij −Dj (5.15)

Fi + FSij ≤ Sj → Si + lij ≤ Sj with lij = Di + FSij (5.16)

where, Di is the duration for activity i. By adding a dummy activity 0, with finish at

time 0, we can transform temporal relationships into a graph G by making the first

node a dummy and the nodes corresponding start times. The edges and the weight

for the edges of the graph are given by:

a0j = Gj j = 1, ..., k, whereGj is the ready time for activity j (5.17)

aij = 0 when i = j (5.18)

aij = lij i > 0, j > 0 and if Si + lij < Sj (5.19)

aij = −∞ otherwise (5.20)

Bartusch et al. [6] have shown that by applying the Floyd-Warshall algorithm [73]

to G, there must exist some aii > 0 if there are temporal cycles between activities. If

there are no cycles, we can easily find the EST (Earliest Start Times) for activities

1...k, where EST = (a01 a02...a0k). Similarly, we can transform temporal relationships
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into FF (Finish after Finish) relationships:

Fi + FFij ≤ Fj → Fi + lij ≤ Fj with lij = FFij (5.21)

Fi + FSij ≤ Sj → Fi + lij ≤ Fj with lij = FSij + Dj (5.22)

Si + SFij ≤ Fj → Fi + lij ≤ Fj with lij = SFij −Dj (5.23)

Si + SSij ≤ Sj → Fi + lij ≤ Fj with lij = Dj + SSij −Di (5.24)

By adding a dummy activity An+1, with the finish at time Period, we can transform

the above relationship into another graph G
′
by making the first node An+1 a dummy

and other nodes to correspond to deadlines. The edges and the weight for the graph

on the reverse direction as the one shown above is:

b0j = Period−Hj j = 1, ..., k, Hj is the deadline for activity j (5.25)

bij = 0 when i = j (5.26)

bji = lij i > 0, j > 0 and if Fi + lij ≤ Fj (5.27)

bij = −∞ otherwise (5.28)

Similar to the above, by applying the Floyd-Warshall algorithm to G
′
, we can find

the LFT (Latest Finish Times) for activities 1...k, where LFT = (b01 b02...b0k) and

the LST can be computed by: LSTi = LFTi−Di. If ∃i ≤ k, such that ESTi ≥ LSTi,

the start time domain for activity i is empty and this activity has to be discarded. To

illustrate the above, we transform the example 5.1 from section 5.2.1 with temporal
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relationships shown in Figure 5.2, into a start time graph G and a finish time graph

G
′
as shown in Figure 5.4.
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Figure 5.4 Transformation graphs

As in section 5.2.1, the priorities for the 6 activities are: 1 2 1 3 2 3. There are

no positive cycles here and the EST is (2,3,2,7,2,4) and the LFT is (4,3,10,7,9,10).

We can compute the LST as (-1,0,4,4,4,6). It is easy to find that activities 1, 2 and 4

have empty domains. In fact using the PBASS 3 1 5 2 6 4 to schedule all activities,

we find conflict only takes place when we schedule activity 4. By removing activity

4, we can find a schedule without temporal conflict.

Using a CP-based iterative randomized algorithm

Reducing the domain for each activity makes it easier to resolve resource conflicts

by applying the iterative randomized algorithm given below. Each time we add a

new activity, the domain of the start time of the activities will be reduced. Finally,

the activity that has been accepted can start any time in the domain of its start
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time. Because there are usually many activities and the domain size of the start

time may be large, we cannot perform a complete search on the start time domain

quickly. To determine the actual start time of each activity and to resolve the resource

conflicts, we use a simple but efficient iterative randomized algorithm. A start time

is picked randomly for the current activity and tested for resource conflict. If there

is none, the next activity is tested. If there is, we randomly pick a start time for the

current activity until we find a suitable start time or until we have tried a maximum

number of times (starttime rand time), after which the current activity is removed

from the scheduled sequence and the next activity attempted. Because start times

for preceding activities have a large influence on the start time of the current activity,

the entire process is restarted main rand time times. From this, the best SAS is

recorded. This algorithm is outlined below, where the starttime rand time and the

main rand time are set to be 10 and 100 respectively.

Note: A local search for this purpose is difficult since simple local moves may not

resolve any resource conflicts.

Using MCS

In the MCS method, resolving the temporal conflicts is similar to the CP-based

method. There are two differences, however. The first is when we add an activity

into an SAS, we resolve temporal conflicts first then resolve resource conflicts. The

second difference is that in the MCS method we attempt to start the activities as
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Algorithm 19 Iterative Randomized Algorithm

for k1← 1 to main rand time do
for i← 1 to number of activity do

Randomly select the start time of activity i in the domain [a0i,c0i]
k2← 1
while k2 ≤ starttime rand time AND exist(resource conflict) do

Randomly select the start time of activity i in the domain [a0i,c0i]
k2← k2 + 1

end while
if exist(resource conflict) then

Put activity i into the Current SAS
Reduce the domain for activity i + 1 to n with Si

end if
end for
if Current SAS < Current Best SAS then

Current SAS ← Current Best SAS
end if

end for

early as possible instead of recording the domain of start times. If there are resource

conflicts with the current start time of the activities, we try to delay some activities

to resolve these conflicts. Here it is difficult to make the right choices on delays.

To overcome this problem, Laborie et al. [72] suggested the use of an MCS which

specifies a set of activities that simultaneously require a resource rk with a combined

capacity requirement larger than ck, such that the combined capacity requirement of

any subset is less than or equal to ck. The important advantage in using MCSs is

when we set precedence relations between any pair of activities in the MCS, resource

conflicts will be resolved. However, there may be an exponential number of MCSs

in a set of activities. [25] proposed a linear sampling heuristic. In this approach,
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activities are considered sequentially and inserted into a queue Q until the sum of the

resource requirements exceeds the resource capacity. Q is collected in a list of MCSs

and the first element of Q is removed and further activities added to Q to get more

MCSs. To quantify temporal flexibility, a heuristic estimator, K, suggested by [72] is

used, which, given a precedence constraint set, {pc1, pc2, .., pck}, could be defined by:

1
K(MCS)

=
∑k

i=1
1

1+commit(pci)−commit(pcmin)
, where, commit(pci) has a value between 0

and 1 and estimates the loss in the temporal flexibility when posting pci and where

pcmin is the precedence with the minimum value of commit(pci). The higher the

value for K(MCS), the more critical the MCS set will be. The rationale here is that

if the solution becomes further constrained by resolving a more temporally flexible

MCS, the probability increases that less temporally-flexible MCSs will eventually

reach an irresolvable state. [25, 26] defined an acceptance band, β and consider the

set MCSs satisfying Kmax(1− β) ≤ K(MCS) ≤ Kmax, where Kmax is the maximum

K obtained from the given formula. The conflict to be resolved next then is chosen

randomly from this band. By this randomization, we resolve resource conflicts using

an iterative restarting the process. In the GPCPSP, the ready time and deadline for

each activity are additionally available, so that it will be more difficult to determine

whether a precedence pci can be posted or not. This can be achieved by recording

the ending time relationship between activities in the temporal analysis. As shown in

section 5.2.2, applying the Floyd-Warshall algorithm on G
′
, we obtain the end time
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relationship between the activities, with the Latest Finish Time, LFTi= (Period−b0i).

From this, latest start times can be calculated. The test of whether an activity i can

be posted after activity j is given as follows: . Here, u is the maximum delay time

Algorithm 20 Test delay(i,j)

u← −bji −Di

v ← LFTi −Di −ESTj −Dj

w ← min(u, v)
if w ≥ 0 then

activity i can be posted after activity j
else

activity i cannot be posted after activity j
end if

according to the temporal relationship with j, and v is the maximum delay time with

respect to the deadline for i.

5.3 Computational results

There are two levels of algorithms in our hybrid framework. In the high level, we

used TS and GA to search for PBASSs. In the low level we used the CP and MCS

methods to resolve conflicts. In all, we have the Tabu CP, Tabu MCS, GA CP and

GA MCS hybrids.

5.3.1 Tests on real data

Data is derived from the local defense agency. We first tested our algorithms on the

two sets of test data against the system in place which used a CP-based method. The

first test set consists of 76 activities, which is composed of 24 activities with priority
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1, 29 activities with priority 2, and 23 activities with priority 3. There are 44 different

resources consumed by these activities and the whole project was to be scheduled in

100 days. The second test set consists of 165 activities, which is composed of 42

activities with priority 1, 73 activities with priority 2, 32 activities with priority 3

and 18 activities with priority 4. There are 32 different resources consumed by these

activities and the whole project was to be scheduled in 100 days. The computational

results for these two sets can been found in Tables 5.3 and 5.4.

Table 5.3 Scheduled Activities for the 76-activity problem
Total Old System Tabu CP Tabu MCS GA CP GA MCS

Priority 1 24 16 22 23 23 23
Priority 2 29 26 18 16 23 18
Priority 3 23 20 11 6 16 7
Total 76 62 51 45 62 48

Table 5.4 Scheduled Activities for the 165-activity problem
Total Old System Tabu CP Tabu MCS GA CP GA MCS

Priority 1 42 36 38 42 40 42
Priority 2 73 43 27 52 41 53
Priority 3 32 13 11 19 12 10
Priority 4 18 4 5 4 5 1
Total 165 96 81 117 98 106

Comparing the four methods we developed with the CP-based system used by

the defense agency, we found that for the first test set the old system scheduled

16 activities with priority 1 while our best result scheduled 23 activities; for the
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second test set the old system scheduled 36 activities with priority 1 and our best

result scheduled all 42 activities with priority 1. Generally, our methods obtained

much better results. The running time was also much shorter than the old CP-based

system. Comparing the four methods, if the high-level component used GA, better

results are obtained than if the TS is used. In the low-level component, the MCS

method performed a little better than the CP-based method for most cases. The best

result obtained for the first test data set was obtained when GA CP was used, while

the best result was obtained by GA MCS for the second test data set.

5.3.2 Tests on generated data

While the performance of the hybrid framework was found to give good results on

actual data, the ability of the hybrids to achieve high quality solutions on different

types of test data needed to be investigated. To test more broadly, a large number of

test cases were generated where characteristics of the real data sets were simulated.

Parameters used for these test cases were:

Period: planning period

Nact: number of activities

Nres: number of different types of resources

%temporal constraints: percentage of the activities which have temporal constraints,

i.e., (number of precedence relations)/(total number of pairs of activities), where total
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number of pairs of activities = Nact×(Nact-1)/2

%resource constraints: percentage of resource constraints to activities-resources

relationships, i.e., (number of resource constraints)/(number of pairs of activities-

resources), where number of pairs of activities-resources = Nact×Nres

range timeslot: the time range in which an activity must take place, i.e., (activity

deadline - activity ready time)

%duration: activity duration over the range timeslot

range resource: resource capacity range

%resource variation: allowable resource variation over/under resource capacity

%activity resource: allowable resources consumed by activities over/under resource

capacity

Npriority: number of different priorities

distribution priority: the distribution of priorities among activities, e.g. ”3 3 4 ”

indicates that there are 3 activities with priority 3, 3 activities with priority 2 and 4

activities with priority 1

range temporal: allowed range of time lag (start-to-start) for the temporal relation-

ships between any two activities

To test the four methods extensively, we randomly generated 10 groups of test sets,

where the Nact varied from 10 to 800. Each group contained three different sets of
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test cases, where the density of the resource constraints and temporal constraints is

set to be loose, average and tight. Each test set is composed of 10 randomly generated

test cases. The following parameters are fixed for all the test sets, as shown in table

5.5.

Table 5.5 Fixed parameter setting for all the test sets
Paramter value
%resource variation 10
Range-timeslot [6,24]
%duration [30,80]
Npriority 5
distribution priority evenly divided
range temporal [-20,20]
%activity resource [5,50]

The following parameters were set for different groups of test sets with different

number of activities and resources: There were three different types of test sets in

Table 5.6 Parameter setting for different group of test sets

1 2 3 4 5 6 7 8 9 10
Period 10 50 100 300 300 300 500 600 800 1000
Nact 10 20 50 100 150 200 300 400 500 800
Nres 5 10 20 50 50 50 50 100 100 100
range resource [2,20] [2,20] [2,20] [2,50] [2,50] [2,100] [2,100] [2,200] [2,20 0] [2,200]

each test group, where the density of the resource constraints and temporal constraints

is set to be loose, average and tight. The parameters for the three types of test sets are

shown below: In all, we generated 10 group of different size test sets, which we named

test group 1,2,... Each group test sets is composed of 3 different kinds test sets with
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Table 5.7 Parameters setting for test sets with different constraint densities

loose average tight
%temporal constraint 10 40 80
%resource constraint 10 40 80

different constraint densities representing loose, average and tight densities. Each

test set is composed of 10 randomly generated test cases according to the parameters

of the test sets. To further test the heuristics, we modeled our problem as an Integer

Program (IP) (given in the Appendix) and used ILOG CPLEX solver solutions as a

benchmark. The comparison of the five methods: ILOG CPLEX SOLVER, GA MCS,

GA CP, Tabu MCS, Tabu CP, on the 30 sets of test cases is given in table 5.8,5.9

and 5.10.

Computational results

The result for the four hybrid methods under the hybrid framework compared

with the ILOG CPLEX Solver are shown below. The time limit for each test case is

set to be 600 seconds. In Table 5.8, the number of activities is relatively small. The

Table 5.8 Small size test sets(10,20,50)

CPLEX GA MCS GA CP TABU MCS TABU CP
Avg Score 28856.02 28691.26 28694.32 27154.31 27565.73
Deviation 0.00% 0.57% 0.56% 5.90% 4.47%
Avg Time 9.36 3.92 5.46 1.71 2.29

score is the value as defined in the objective function in the IP model. We find in
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table 5.8 that CPLEX is able to determine all the optimal solutions (detailed results

for Table 5.8 5.9 and 5.10 are in the Appendix). The four hybrids work well. GA CP

and GA MCS especially obtain good solutions with results only about 0.56% worse

than the optimal solution. From Table 5.9 we can find that the heuristic methods

are fast even on small size problems and are faster than CPLEX. We can find from

Table 5.9 Middle size test sets(100,150,200)

CPLEX GA MCS GA CP Tabu MCS Tabu CP
Avg Score 11145614.79 14041277.26 14044211.27 11964790.80 12026373.39
Deviation 20.92% 0.38% 0.36% 15.11% 14.68%
Avg Time 248.45 123.80 39.87 55.19 20.64

Table 5.9 that when the problem size increased CPLEX was not able to find the

optimal solution in the time limit set. The upper bounds returned by CPLEX were

reported here, when CPLEX could not find the optimal solution within the time

limit. Here, GA MCS and GA CP obtained much better results than CPLEX, while

tabu search did not perform well although it was faster than the GA-based methods.

In Table 5.10, we find that the best results are obtained by the GA CP methods,

which were second fastest. When the problem size increased, CPLEX was not able

to find feasible solutions in the time limit. In the four methods proposed, GA CP

obtained the best solution quality for all test sets. For small-sized problems, it is

0.56% from the best solutions, 0.36% for middle-sized problems and 0.03% for large
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Table 5.10 Large size test sets(300,400,500,800)

CPLEX GA MCS GA CP Tabu MCS Tabu CP
Avg Score 1605261536 3379500385 3689765539 2830239072 2812268451
Deviation 56.51% 8.44% 0.03% 23.32% 23.81%
Avg Time 598.44 470.91 190.25 395.57 111.35

problems. Further, the speed of the GA CP method is very good. The low-level

CP-based iterative randomized algorithm is efficient as we note that GA CP and

Tabu CP were faster than the GA MCS and Tabu MCS. Although the CP-based

iterative randomized algorithm is simple, it is effective and outperforms the MCS-

based method on large test sets. To compare CPLEX and our four hybrid methods

on different density of constraints, we graphed their performance on different density

constraints, where ”SA” denotes small size with loose constraints (defined in Table

5.8), ”SB” denotes small size with average constraints and ”LC” denotes large size

with tight constraints.

As shown in Figure 5.5, the performance for CPLEX deteriorated as the density

of constraints increased. For the heuristics, the different density of constraints did

not affect the results obtained. TS-based methods were about 25 percent worse than

the GAbased methods on average-sized and large-sized sets. The MCS and the CP-

based methods worked almost equally well, but the best results were obtained by the

GA CP.
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5.4 Conclusion

A hybrid framework is proposed to solve the over-constrained generalized resource-

constrained project scheduling problem. The problem originated in work with a

local defense agency. Our hybrid framework has a two-level structure. We applied

Tabu Search and Genetic Algorithm heuristic searches in a high-level component of

the algorithm and a CP-based iterative randomized method and a Minimal Critical

Set-based method were used to resolve temporal and resource conflicts in a low-

level component. The four combinations of these - Tabu CP, Tabu MCS, GA CP,

GA MCS - were tested on two sets of real test data and achieved significantly better

results than the old CP-based system. We also randomly generated 30 problems with

different parameters to test these techniques further. The characteristics of the real

data sets were captured in the test problems generated where density variance was

incorporated. We modeled the problem as an integer program and used CPLEX to

compare results obtained. Results indicate that the hybrid heuristics could find near

optimal solutions on small size problems and worked much better than CPLEX on

middle size and large size problems. In these heuristics, Genetic Algorithm-based

methods performed better than the Tabu Search-based methods. In the low-level

component, CP-based iterative algorithm worked as well as the MCS-based method.

In all, the GA CP method performed best obtaining the best solution quality on

small, middle and large problem sizes within short times.
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Figure 5.5 Results for different density of constraints
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Chapter 6

Conclusions

This thesis focused on scheduling projects with resource constraints, and is divided

into 4 parts. In the first part of the thesis, new definitions on float and critical activity

are given for projects with resource constraints. We define the float as the amount of

the time the activity can be extended without affecting the project makespan. The

float of an activity is identified as a continuous interval from 0 to the maximum float,

which captures the flexibility of activities. With the new definition of float, critical

activity is defined as the activity with 0 maximum float and no longer depends on a

specified schedule.

To explore the flexibility of a set of activities, group float is defined as the float

for a set of activities. With group float, the float set and critical set are defined as

the set of activities with positive maximum group float and 0 maximum group float

respectively.

To complement float, negative float is defined as the amount of time the duration of

the activity can be reduced without affecting the project deadline. Corresponding to

negative float, we define negative critical activity, negative float set, negative critical

set.

One of the most significant contributions of this thesis is the definition of a float
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graph and negative float graph. float graph and negative float graph illustrate float,

critical activity, float set, critical set and negative float, negative critical activity,

negative critical set, negative float set clearly in an undirected graph. With float

graph, the project manager can easily discern the penalty for the completion of the

entire project for delaying any activity or any set of activities, while negative float

graph show the benefits to reduce the deadline of the project through reducing the

duration of any activity or any set of activities. Although it is useful to apply float

graph and negative float graph to project management, it is difficult to find all float

sets and critical sets for project with more than 30 activities. Therefore, for the

large project, it is only possible to draw a float graph for a subset of activities inside

the project, which the project manager is most interested in. We can also draw the

float graph or negative float graph for large projects by setting limits for the number

of activities within a float set and a critical set. Further research can be done to

explore float graph and negative float graph to manage resource-constrained project

in a better way.

In this thesis, we also consider activity which is critical and negative critical.

This kind of activity is defined as zero activity. Delaying zero activity will result in

delaying the entire project, while reducing the duration of zero activity will reduce

the makespan of the project. Therefore, zero activity should be central in the project

management, where more attention need to be paid to it while planning and managing
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the project.

To determine the range of float, three different methods are presented to calculate

the maximum float. As the problem to calculate maximum float is NP-hard, there

is no polynomial time algorithm exists unless P = NP . We first adopt a well-

known branch and bound procedure dh procedure to find the exact value of maximum

float, which is called E-Float. As it is impossible to calculate the E-Float for large

projects, we proposed a way to calculate float approximately by applying Testing

Hypothesis to the results obtained by a Simulated Annealing (SA) algorithm, where

we call the maximum float approximation as H-Float. Detailed experimental results

show that the H-Float calculated by the Testing Hypothesis achieved high accuracy

compared with the E-Float. In a computational study, we also showed that the more

samples we use, the better the accuracy achieved by Testing Hypothesis. To further

increase the speed for calculating H-Float, we also developed an algorithm which

uses Simulated Annealing to calculate H-Float directly. Although the accuracy for

the H-Float calculated by SA is weaker, the speed the solution is got was greatly

improved. Using our newly developed Molecule Search (MS) and Molecule Bank

Algorithm (MBA) (see next paragraph), we achieved much higher accuracy for H-

Float. This demonstrates that the better a heuristic converges to optimal solutions

the higher the accuracy of H-Float. To further improve the accuracy of H-Float, we

may also apply Testing Hypothesis to the results obtained by MS and MBA in the
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future.

In the second part of the thesis, simulating the cooling process from gas to crys-

tal, a new optimization method, Molecule Search (MS), is proposed to solve resource-

constrained project scheduling problem. We presented the ideal MS model, where the

motion of molecules are only guided by the predefined rules or forces. In the analogy,

with cooling, when the environment temperature drops, the internal energy of the

molecules drops and the molecules will gradually move to the positions which can be

decoded as the optimal or near optimal solutions for combinatorial optimization prob-

lem. However, it is very hard to identify the force or rule for a specified combinatorial

optimization problem. One reason is that crystals have optimal substructures, while

an NP-hard combinatorial optimization problem does not possess this property. In

this case, molecules have to move to some positions, which leads to bad substructure,

to achieve global optimum.

Since it is difficult to apply the ideal MS model to combinatorial optimization

problems, we proposed a new model which simulates the motion of high kinetic en-

ergy molecules and low kinetic energy molecules separately. As high kinetic energy

molecules move very fast, we used molecule jumping to simulate their motion con-

currently. Since low kinetic energy molecules move relatively slow, we used molecule

walking to simulate their motion as a series of steps, where each step will lead to

a position for better or equal solutions. In solving RCPSP, we proposed 3 jumping
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rules and developed a new local search algorithm, forward-backward search (FBS),

as molecule walking. Computation study demonstrated the performance of MS as

one of the best heuristics for RCPSP so far. As a general optimization method, MS

can be applied to other combinatorial optimization problems in the future. Further

research can also be done to study the ideal MS Model, where the rules or forces may

be learned during the search process instead.

In the third part of the thesis, we have proposed a population based Molecule

Search algorithm, named as Molecule Bank Algorithm (MBA), to solve RCPSP. The

main contribution for MBA is the balanced diversification and intensification scheme,

where the population of groups of molecules is not fixed. We have a very large

population at the beginning of the search process which leads to better diversification.

When the search process proceeds, the population will be decreased gradually, until

the population reaches a very small number. Therefore, more and more computational

effort is put into intensification at this stage. We call the changing of population size

as a dynamic population. We have further developed two techniques - molecule aging

and molecule drifting - for balancing diversification and intensification. With the

balanced diversification and intensification scheme, MBA achieved best results on the

PSPLIB. Further research can be done to investigate how to balance intensification

and diversification in the search process of heuristics within a specified computational

cost limit.
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In the fourth part of the thesis, a hybrid framework is proposed for a real-life

over-constrained resource-constrained project scheduling problem with the objective

to maximize the number of high priority activities scheduled. More general tempo-

ral constraints and resource constraints are considered in this problem. The hybrid

framework is composed of two levels. In the high level, Genetic Algorithm and Tabu

Search are used to explore different feasible scheduling sequence, while in the low

level, constraint programming and minimal critical sets are used to resolve conflicts.

Experimental results on real-life data and a large amount of randomly generated

data highlight the effect of the hybrid framework. Further research can be done to

explore other kinds of over-constrained problems with the hybrid framework. Unlike

the well-known maximal constraint satisfaction problem (Max-CSP), which provides

framework to minimize the number of violated constraints, we consider removing the

low priority variables to resolve conflicts instead here. In this part, we also proposed

a simple iterative randomized algorithm using constraint propagation to reduce the

domain of the activities each time when we fixed a start time of an activity. Extensive

experimental results show that the simple CP-based iterative randomized algorithm

outperforms a complicated Minimal Critical Set (MCS) based algorithm. The hy-

brid framework can be applied to other over-constrained problems to resolve conflicts

through removing low priority variables instead of constraints in the future. Further

research can also be done to apply the CP-based iterative randomized algorithm to
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resolve conflicts for other similar problems.
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27. V. Černy. Thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm. Journal of Optimization Theory and applications,
45:41–51, 1985.

28. N. Christofides, R. Alvarez-Valdes, and J. M. Tamarit. Project scheduling
with resource constraints: A branch and bound approach. European Journal of
Operational Research, 29:262–273, 1987.

29. J. Coelho and L. Tavares. Comparative analysis of meta-heuricstics for the
resource constrained project scheduling problem. Technical report, Department
of Civil Engineering, Instituto Superior Tecnico, Portugal, 2003.

30. D. F. Cooper. Heuristics for scheduling resource-constrained projects: an ex-
perimental investigation. Management Science, 22:1186–1194, 1976.

31. K. Crandall. Project planning with precedence lead-lag factors. Project Man-
agement Quarterly, 4(3):18–27, 1973.

32. Wiest J. D. Some properties of schedules for large projects with limited re-
sources. Operations Research, 12(3):395–418, 1964.

33. E. W. Davis and J. H. Patterson. A comparison of heuristic and optimum solu-
tions in resource-constrained project scheduling. Management Science, 21:944–
955, 1975.

34. E. W. Davis and J. H. Patterson. A comparison of heuristic and optimum solu-
tions in resource-constrained project scheduling. Management Science, 21:803–
816, 1975.

35. D. Debels, B. De Reyck, R. Leus, and M. Vanhoucke. A hybrid scatter search
electromagnetism meta-heuristic for project scheduling. European Journal of
Operational Research, page to appear, 2004.



185

36. S. Demassey, C. Artigues, and P. Michelon. Constraint-propagation-based cut-
ting planes: an application to the resource-constrained project scheduling prob-
lem. INFORMS journal on computing, 17(1):52–65, 2005.

37. E. Demeulemeester. Minimizing resource availability costs in time-limited
project networks. Management Science, 41:1590–1598, 1995.

38. E. Demeulemeester and W. Herroelen. A branch-and-bound procedure for the
generalized resource co nstrained project scheduling problem. Technical report,
Research Report No. 9206, Department of Applied Economics, Katholieke Uni-
versiteit Leuven, Belgium, 1992.

39. E. Demeulemeester and W. Herroelen. A branch-and-bound procedure for the
multiple resource-constrained project scheduling problem. Management Sci-
ence, 38(12):1803–1818, 1992.

40. E. Demeulemeester and W. Herroelen. New benchmark results for the resource-
constrained project scheduling problem. Management Science, 43(11):1485–
1492, 1997.

41. E. Demeulemeester and W. Herroelen. Project Scheduling-A research handbook.
Kluwer Academic Publishers, Boston, 2002.

42. C. Domshlak, F. Rossi, B. Venable, and T. Walsh. Reasoning about soft con-
straints and conditional preferences. In Proceedings of the Eighteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-03), 2003.

43. S. E. Elmaghraby. Activity Networks: Project Planning and control by Network
Models. Wiley, New York, 1977.

44. S. E. Elmaghraby and J. Kamburowski. The analysis of activity networks under
generalized precedence relations. Management Science, 38:1245–1263, 1992.

45. K. Fleszar and K. Hinidi. Solving the resource-constrained project schedul-
ing problem by a variable neighbour search. European Journal of Operational
Research, 155:402–413, 2004.

46. M. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
Morgan Kanfmnn Publishers, CA, 1987.

47. E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelli-
gence, 58(545):21–70, 1992.



186

48. P. Galinier and J. K. Hao. Tabu search for maximal constraint satisfaction
problems. LNCS 1330:196–208, 1997.

49. M. R. Garey and D. S. Johnson. Computers and intractability. A Guide to
the theory of NP-completeness. W. H. Freeman and Company, New York, NY,
1979.

50. F. Glover. Heuristics for integer programming using surrogate constraints. De-
cision Sciences, 8:156–166, 1977.

51. EM. Goldratt. Critical chain. The North River Press, Great Barrington, MA,
1997.

52. S. Hartmann. A competitive genetic algorithm for the resource-constrained
project scheduling. Naval Research Logistics, 456:733–750, 1998.

53. W. Herroelen and R. Leus. On the merits and pitfalls of critical chain scheduling.
Journal of Operations Management, 19:559–577, 2001.

54. W. Herroelen, B. D. Reyck, and E. Demeulemeester. Resource-constrained
project scheduling: A survey of recent developments. Computers and Operations
Research, 25(4):279–302, 1998.

55. H. J. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, 1975.

56. H. J. Holland. Adaption in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, 1975.

57. C. Maroto J. Alcaraz. A robust genetic algorithm for resource allocation in
project scheduling. Annals of Operations Research, 102:83–109, 2001.

58. J. E. Jr. Kelley. The critical path method: resource planning and scheduling. In
J. F. Muth and G. L. Thompson, editors, Industrial Scheduling, pages 347–365,
1963.

59. J.A. G.M. Kerbosh and H. J. Schell. Network planning by the extended metra
potential method. Technical report, Report KS-1.1, University of Technology,
Eindhoven, Department of Industrial Engineering, 1975.

60. S. Kirkpatrick, JR. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. Science, 220:671–680, 1983.



187

61. Y. Kochetov and A. Stolyar. Evolutionary local search with variable neighbor-
hood for the resource constrained project scheduling problem. In Proceedings
of the 3rd International Workshop of Computer Science and Information Tech-
nologies. Russia, 2003.

62. U. Kohlmorgen, H. Schmeck, and K. Haase. Experiences with fine-grained
parallel genetic algorithms. Annals of Operations Research, 90:203–219, 1999.

63. R. Kolisch. Project Scheduling under Resource Constraints-Efficient Heuristics
for Several Problem Classes. Physica, Heidelberg, 1995.

64. R. Kolisch. Serial and parallel resource-constrained project scheduling methods
revisited: Theory and computation. European Journal of Operational Research,
90:320–333, 1996.

65. R. Kolisch and A. Drexl. Adaptive search for solving hard project scheduling
problems. Naval research logistics, 43:23–40, 1996.

66. R. Kolisch and S. Hartmann. Heuristic algorithms for solving the resource-
constrained project scheduling problem: Classification and computation analy-
sis. In Project Scheduling: Recent Models, Algorithms and Applications, pages
147–178, Boston, MA, 1999. Kluwer Academic Publishers.

67. R. Kolisch and S. Hartmann. Experimental investigation of heuristics for
resource-constrained project scheduling: an update. European Journal of Op-
erational Research, 174(1):23–37, 2006.

68. R. Kolisch and R. Padman. An integrated survey of deterministic project
scheduling. OMEGA International Journal of Management Science, 39(3):249–
272, 2001.

69. R. Kolisch and A. Sprecher. Psplib- a project scheduling problem library. Eu-
ropean Journal of Operational Research, 96:205–216, 1996.

70. R. Kolisch, A. Sprecher, and A. Drexl. Characterization and generation of a
general class of resource-constrained project scheduling problems. Management
Science, 41:1693–1703, 1995.

71. N. Kubota and T. Fukuba. Genetic algorithms with age structure. Soft Com-
puting, 1(4):1432–7643, 1997.

72. P. Laborie and M. Ghallab. Planning with sharable resource constraints. In
In Proceedings of the International Joint Conference on Artificial Intelligence,
1995.



188

73. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart and Winston, New York, 1976.

74. K. Libbrecht. http://snowcrystals.com, 1999.

75. A. Lim, B. Rodrigues, S. T. Tan, and F. Xiao. Float and critical activity for
resource-constrained projects, 2007. working paper.

76. A. Lim, B. Rodrigues, S. T. Tan, and F. Xiao. Molecular bank algorithm for
resource-constrained project scheduling problem, 2007. working paper.

77. A. Lim, B. Rodrigues, S. T. Tan, and F. Xiao. Molecule search for minimum
linear arrangement problem, 2007. working paper.

78. A. Lim, B. Rodrigues, S. T. Tan, and F. Xiao. Molecule search for resource-
constrained project scheduling problem, 2007. working paper.

79. A. Lim, B. Rodrigues, R. Thangarajoo, and F. Xiao. A hybrid framework for
over-constrained generalized resource project scheduling problems. Artificial
Intelligence Review, 22(3):211–243, 2004.

80. A. Lim, B. Rodrigues, and F. Xiao. A fast algorithm for bandwidth minimiza-
tion, 2006. accepted in International Journal of Artificial Intelligence Tools.

81. A. Lim, B. Rodrigues, and F. Xiao. Heuristics for matrix bandwidth reduction.
European Journal of Operational Research, 174:69–91, 2006.

82. D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation, 6:333–346, 2002.

83. Z. Michalewicz. Heuristic methods for evolutionary computation techniques.
Journal of Heuristics, 1:177–206, 1995.

84. A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm
for project scheduling with resource constraints based on a new mathematical
formulation. Management Science, 44(5):714–729, 1998.

85. J. J. Moder, C. R. Phillips, and E. W. Davis. Project management with CPM,
PERT and Precedence Diagramming, 3ed. Van Nostrand Reinhold, New York,
1983.
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Appendix A

Algorithms in calculating float and group float

Algorithm 21 calculating group float by branch and bound

bab groupfloat(A,P,R,D,S1,C)
hf ← D, lf ← 0
while lf < hf do

mf ← (hf + lf)/2 + 1
for each a ∈ S1 do

d′(a)← d(a) + mf · C(a)
end for
A′ ← A
update d′(a) as the duration for activity a in A′

D′ ← dh procedure(A′, d′, P, R)
if D′ ≤ D then

lf ← mf
else

hf ← mf − 1
end if

end while
return lf
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Algorithm 22 calculating group float by Testing Hypothesis

th groupfloat(A,P,R,S1,C)
for i← 1 to n do

Xi ← SA(A, P, R)
end for
X ← 1

n

∑n
i=1 Xi

sx = 1
n−1

∑n
i=1(Xi −X)2

hf ← upbound float(A, P, R, X1, a) , lf ← 0
while lf < hf do

mf ← (hf + lf)/2 + 1
for each a ∈ S1 do

d′(a)← d(a) + mf · C(a)
end for
A′ ← A
update d′(a) as the duration for activity a in A′

for i← 1 to n do
Yi ← SA(A′, P, R)

end for
Y ← 1

n

∑n
i=1 Yi

sy = 1
n−1

∑n
i=1(Yi − Y )2

if Y −X√
(sx

2+sy
2)/n

< z(α) then

lf ← mf
else

hf ← mf − 1
end if

end while
return lf
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Algorithm 23 calculating group float by SA directly

sa groupfloat(A,P,R,S1,C)
D ← SA(A, P, R)
hf ← upbound float(A, P, R, D, a), lf ← 0
while lf < hf do

mf ← (hf + lf)/2 + 1
for each a ∈ S1 do

d′(a)← d(a) + mf · delayvector(a)
end for
A′ ← A
update d′(a) as the duration for activity a in A′

D′ ← SA(A′, P, R)
if D′ ≤ D then

lf ← mf
else

hf ← mf − 1
end if

end while
return lf
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Algorithm 24 calculating H-Float with speed up Testing Hypothesis

th float2(A,P,R,a)
for i← 1 to n do

Xi ← SA(A, P, R)
end for
Xmin = min1≤i≤n Xi

lb1(a)← 0
for i← 1 to n do

sfloat ← cal sfloat(A, P, R, sti)
if sfloat(a) > lb1(a) then
lb1(a)← sfloat(a)

end if
end for
X ← 1

n

∑n
i=1 Xi

sx = 1
n−1

∑n
i=1(Xi −X)2

hf ← upbound float(A, P, R, X1, a) , lf ← lb1(a)
while lf < hf do

mf ← (hf + lf)/2 + 1
d′(a)← d(a) + mf
A′ ← A
update d′(a) as the duration for activity a in A′

for i← 1 to 7 do
Yi ← SA(A′, P, R)

end for
sy ← sx

Ymin = min1≤i≤7 Yi

if Ymin−X−0.5√
(sx

2+sy
2)/n

> z(α) then

hf ← mf − 1
else

for i← 8 to 15 do
Yi ← SA(A′, P, R)

end for
Ymax = min1≤i≤15 Yi

if Ymax−X−0.5√
(sx

2+sy
2)/n

< z(α) then

lf ← mf
else

for i← 16 to n do
Yi ← SA(A′, P, R)

end for
Y ← 1

n

∑n
i=1 Yi

sy = 1
n−1

∑n
i=1(Yi − Y )2

if Y −X−0.5√
(sx

2+sy
2)/n

< z(α) then

lf ← mf
else

hf ← mf − 1
end if

end if
end if

end while
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Appendix B

OGRCPSP IP model and experimental results

The OGRCPSP IP model

Input:

Period = planning period

A = set of activities

R = set of resources

Gi = release time of activity i

Hi = deadline of activity i

Tij = 1 if a temporal constraint exists between activity i and j, 0 otherwise

Di = duration of activity i

SSij = Minimum time lag between activities i and j

SMij = Maximum time lag between activities i and j (SMij = −SSji) rij =

capacity of resource i at time j

aij = amount of resource j consumed by activity i

M = a very large number

Variables:

xi =

{

1 activity i is scheduled,
0 otherwise,

(B.1)
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stij =

{

1 activity i starts at time j,
0 otherwise,

(B.2)

The objective is to maximize the mapped vector π(SAS). Factors ai are used in the

following way: Suppose the number of activities with priority 1, 2, ..., m is p1, p2,...,pm,

respectively. The factor ai should be larger than
∑

i<j≤m ajpj where:

am ← pm (B.3)

ai ←
∑

i<j≤m

ajpj + 1 for 1 ≤ i ≤ m− 1 (B.4)

The IP model can then be written as follows:

Maximize
∑

i∈A

aixi (B.5)

subject to:

Temporal Constraints

(1−xi)M+(1−xj)M+
∑

Gi≤u≤Hi

sti(u−Gi)u−
∑

Gj≤u≤Hj

stj(u−Gj)u ≥ SSij for all i, j ∈ A, Tij = 1

(B.6)

(1−xi)M+(1−xj)M+
∑

Gi≤u≤Hi

sti(u−Gi)u−
∑

Gj≤u≤Hj

stj(u−Gj)u ≤ SMij for all i, j ∈ A, Tij = 1

(B.7)

Resource Constraints

∑

i∈A

∑

s≤k≤j

stikariu ≤ rujs = min(j −Di, Gi), for all u ∈ R, 1 ≤ j ≤ Period (B.8)
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Variable Constraints
∑

Gi≤j≤Hi

stij ≤ xifor all i ∈ A (B.9)

stij , xi ∈ {0, 1} for all i ∈ A, Gi ≤ j ≤ Hi (B.10)
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Table B.1 Small size test sets
CPLEX GA MCS GA CP TABU MCS TABU CP

1A
score 226.2 226.2 226.2 226.2 226.2
Deviation 0.00% 0.00% 0.00% 0.00% 0.00%
1B
score 211.0 211.0 210.9 211.0 210.9
Deviation 0.00% 0.00% 0.05% 0.00% 0.05%
1C
score 191.9 191.7 191.7 191.7 191.7
Deviation 0.00% 0.10% 0.10% 0.10% 0.10%
2A
score 2780.5 2780.5 2780.5 2780.5 278 0.5
Deviation 0.00% 0.00% 0.00% 0.00% 0.00%
2B
score 2359.1 2357.2 2359.1 2357.2 2359.1
Deviation 0.00% 0.08% 0.00% 0.08% 0.00%
2C
score 1717.1 1688.4 1714.2 1688.4 1714.2
Deviation 0.00% 1.67% 0.17% 1.67% 0.17%
3A
score 123108.4 123108.4 123108.4 120046.1 121619.0
Deviation 0.00% 0.00% 0.00% 2.49% 1.21%
3B
score 78092.8 78092.8 78092.8 73710.3 75163.4
Deviation 0.00% 0.00% 0.00% 5.61% 3.75%
3C
score 51017.2 49565.1 49565.1 43177.4 43826.6
Deviation 0.00% 2.85% 2.85% 15.37% 14.09%
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Table B.2 Middle size test sets

CPLEX GA MCS GA CP TABU MCS TABU CP
4A
score 2377350.8 2377312.8 2377350.7 2247060.9 2243233.4
Deviation 0.00% 0.00% 0.00% 5.48% 5.64%
4B
score 1279301.6 1278375.5 1279301.6 1046810.5 1068152.8
Deviation 0.00% 0.07% 0.00% 18.17% 16.51%
4C
score 508572.1 727083.4 727083.2 666930.8 646468.4
Deviation 30.05% 0.00% 0.00% 8.27% 11.09%
5A
score 15526524.0 15444295.2 15441505.2 14305726.7 14124776.4
Deviation 0.00% 0.53% 0.55% 7.86% 9.03%
5B
score 4776538.5 7260842.0 7350311.1 6140514.8 5959081.1
Deviation 35.02% 1.22% 0.00% 16.46% 18.93%
5C
score 2971315.6 4081559.3 3992090.1 2511970.4 2604121.0
Deviation 27.20% 0.00% 2.19% 38.46% 36.20%
6A
score 56403681.6 56383854.0 56398134.2 49844100.0 50106519.8
Deviation 0.00% 0.04% 0.01% 11.63% 11.16%
6B
score 16467248.9 25515743.6 25240567.9 20416262.0 21263670.5
Deviation 35.46% 0.00% 1.08% 19.99% 16.66%
6C
score 0.0 13302429.5 13591557.4 10503741.1 10221337.1
Deviation 100.00% 2.13% 0.00% 22.72% 24.80%
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Table B.3 Large size test sets

CPLEX GA MCS GA CP TABU MCS TABU CP

7A
score 329360318.6 332127678.1 332287303.7 282355612.6 282311686.7
Deviation 0.88% 0.05% 0.00% 15.03% 15.04%
7B
score 0.0 138754620.3 140094192.4 108230531.3 102714155.4
Deviation 100.00% 0.96% 0.00% 22.74% 26.68%
7C
score 0.0 69251921.6 67891157.8 49914262.7 51344230.7
Deviation 100.00% 0.00% 1.96% 27.92% 25.86%
8A
score 885978858.0 1199318175.0 1208460215.0 963681254.2 967831069.9
Deviation 26.69% 0.76% 0.00% 20.26% 19.91%
8B
score 0.0 465439988.9 452790397.1 362448043.6 358195883.7
Deviation 100.00% 0.00% 2.72% 22.13% 23.04%
8C
score 0.0 219645229.6 219593397.6 159539268.7 150930564.3
Deviation 100.00% 0.00% 0.02% 27.37% 31.28%
9A
score 2162546908.0 3064557050.0 3210660802.0 2588061271.0 2618765201.0
Deviation 32.64% 4.55% 0.00% 19.39% 18.44%
9B
score 0.0 1125195803.0 1135185672.0 906977091.6 864944840.8
Deviation 100.00% 0.88% 0.00% 20.10% 23.81%
9C
score 0.0 520818185.7 531122225.9 416963835.0 427060794.8
Deviation 100.00% 1.94% 0.00% 21.49% 19.59%
10A
score 15885252349.0 21924827229.0 25015535712.0 19046110988.0 19312773292.0
Deviation 36.50% 12.36% 0.00% 23.86% 22.80%
10B
score 0.0 8132903022.0 8401244958.0 6456918605.0 5854721869.0
Deviation 100.00% 3.19% 0.00% 23.14% 30.31%
10C
score 0.0 3361165718.0 3562320438.0 2621668101.0 2755627829.0
Deviation 100.00% 5.65% 0.00% 26.41% 22.65%


