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Summary 

 

Molecular recognition can be described as the specific interaction between two or more 

molecules by non-covalent means. Such interactions can be seen in the human body where 

they play an important role in vital biological functions. The ability to selectively 

recognise and bind to specific molecules is also useful for various commercial and 

industrial applications. As a result, numerous artificial systems which possess molecular 

recognition have been developed.     

 

Molecular imprinting is a well-established technique to create synthetic binding sites on a 

polymer matrix. Not only can the resulting imprinted polymer specifically recognise pre-

determined target molecules, they also possess favourable physical and chemical 

properties, such as good mechanical strength, and the ability to withstand wide 

temperature and pH ranges. Traditionally, molecular imprinting has been widely used to 

create synthetic receptors for smaller molecules but limited success has been achieved for 

larger molecules such as proteins.  

 

In this work, we have synthesised protein-imprinted nanoparticles using miniemulsion 

polymerisation, with methyl methacrylate and ethylene glycol dimethacrylate as the 

functional and cross-linking monomers, respectively. Initially, ribonuclease A was chosen 

as the template protein and the nanoparticles showed high molecular selectivity for the 

protein. However, when bovine serum albumin or lysozyme was used as the template, 

molecular recognition was not successfully achieved. The latter part of the work was 
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focused on understanding the mechanism involved during the imprinting in order to 

explain why molecular imprinting was achieved with varying success depending on the 

template protein.      
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Chapter 1 

Introduction 

 

The ability to recognise molecules of a specific nature and shape, or molecular recognition, 

is a vital part of many chemical and biological processes. Various examples of molecular 

recognition can be seen in the human body, for example: enzyme catalysis, immuno-

response and ligand-receptor interaction. This phenomenon has led to the development of 

numerous artificial receptors which aim to mimic the affinity and specificities of 

biomolecules which are found in nature.  

 

Molecular imprinting is one such solution involving the creation of binding sites on a 

polymeric matrix which are complementary to the targeted molecule. In the past decade, 

great advances have been made in this field and it has established itself as one of the most 

effective methods to create synthetic receptors. Other than their high binding selectivity, 

molecularly imprinted polymers (MIPs) offer many advantages over their biological 

counterparts. MIPs can withstand high temperature and pressure, they are stable under a 

wide range of pH, they are reusable and are relatively simple to prepare. While much 

success has been achieved for the imprinting of small molecules, the imprinting of 

proteins and other macromolecules remained a challenge. The complex and flexible 

structure of the protein poses problems such as incompatible polymerisation conditions, 

unfavourable rebinding kinetics, and non-homogeneity of the binding sites. 
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In 2007, Tan C.J. and Tong Y.W. published a work in Langmuir which provided an 

effective method for the synthesis of protein surface-imprinted nanoparticles.  

Ribonuclease A (RNase A) was used as the template protein and the imprinting was 

carried out via miniemulsion polymerisation with methyl methacrylate (MMA) and 

ethylene glycol dimethacrylate (EGDMA) as the functional monomer and the cross-linker, 

respectively. The protein surface-imprinted nanoparticles were uniform, spherical, highly 

monodispersed, and had an average diameter of approximately 40 nm. Molecular 

recognition was successfully achieved, and the resulting protein-imprinted nanoparticles 

showed a greater preference towards the target RNase A, relative to the non-imprinted 

polymer. 

 

Tong’s group had developed an efficient method that involved a simple one-step 

miniemulsion polymerisation and the resulting surface-imprinted nanoparticles possessed 

excellent selectivity, as well as favourable rebinding kinetics. The method is also suitable 

for industrial-scale production due to its good heat transfer. Another advantage of the 

method is the versatility of the nanoparticles to be used in a wide range of applications due 

to their size and uniformness. As a result, it is of great interest to continue investigating 

this method in order to obtain a deeper understanding of the imprinting process which 

occurs during the miniemulsion polymerisation.   

 

Hypothesis: 

Tan’s method of one-step miniemulsion polymerisation imprinting could be used to 

synthesise nanoparticles with the ability to recognise other proteins such as bovine serum 

albumin and lysozyme. It also hypothesised that the imprinting mechanism involves 
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interactions between the protein molecules and the monomer-encapsulated surfactant 

micelles. 

   

Objectives: 

In this research project, we aim to optimise the miniemulsion conditions of Tan’s method 

in order to improve the selectivity of the nanoparticles and determine the factors which 

play an important role in determining the imprinting efficiency. Alternative proteins will 

also be used as the template. The latter part of this research will be focused on 

understanding the imprinting mechanism involved during the miniemulsion 

polymerisation and a study on the interaction between the proteins and the surfactant in 

the miniemulsion system will also be carried out. 
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Chapter 2 

Literature Review 

 

This literature review introduces the phenomenon of molecular recognition which is 

evident in the basic functions of our body and how molecular imprinting has been 

developed by science to imitate such process. The general principle of molecular 

imprinting and its three approaches: covalent, non-covalent, and sacrificial-spacer, are 

studied here. Greater emphasis is placed on non-covalent imprinting because it is the most 

common approach and is the approach adopted in this research project. The imprinting of 

proteins is then discussed, with its inherent challenges and difficulties, and various 

solutions that have been adopted by other research groups to circumvent them.   

 

2.1 Molecular recognition 

 

All important functions in the human body involve the specific recognition between 

biological molecules. For example: antibodies specifically bind to antigens to trigger the 

immune response, and transcription factors bind to a specific part of the DNA in the 

transfer of information to RNA. Understanding the interactions between these molecules 

and how they are able to specifically recognise each other is thus vital in order to gain a 

deeper understanding of the human body. Another example of specific recognition in the 

human body is the interactions between enzymes and substrates. Enzymes are proteins 

that catalyse various biochemical reactions and each enzyme is very specific in terms of 

the reaction it catalyses and the substrates involved in the reaction. They differ from 
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conventional catalysts because of their specificity which are highly dependent on the 

surrounding environment (e.g. temperature, pH). This enables them to distinguish between 

substrates which are in their correct shapes and those which are in a slightly altered form. 

The specificity is due to the presence of complementary geometric shapes in the enzymes 

which allow substrates to fit exactly into them. The first attempt to explain this 

phenomenon was Emil Fischer’s ‘lock and key’ model in 1894. In this model, the enzyme 

acts as the lock and substrate as the key. Only the correct key, possessing a specific shape 

and size and having correctly positioned teeth, can fit in the keyhole and open the lock. 

Specific recognition is also present in many chemical processes outside the body, both in 

laboratories and chemical plants. For example: various bioassays in the development of 

new drugs, and host receptors on membranes used for the separation of specific 

compounds. Other areas which require specific recognition may include: catalysis, 

analytical chemistry, chemo- and biosensors. The ability to recognise molecules of a 

specific nature and shape, or molecular recognition, is thus a vital part of many biological 

and chemical processes. Whitcombe and Vulfson (2001) defined this phenomenon as ‘the 

preferential binding of a chemical entity to a “receptor” with high selectivity over its close 

structural analogues’. There are many technologies that have been developed to create 

‘biomimics’ that imitate the molecular recognition of biological molecules. Each 

technique has its own advantages and disadvantages, and molecular imprinting is one 

promising example with the potential to be used in a wide range of fields.  
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2.2 Molecular imprinting 

 

The phenomenon of molecular recognition has challenged scientists to imitate this 

remarkable property which is so evident in our body. Synthetic receptors have been 

developed and these biomimics imitate the biological systems with their specific affinity 

and binding towards the target ligands. Molecular imprinting is an effective technique to 

create one such biomimic. Nicholls and Rosengren (2001) has precisely and concisely 

described molecular imprinting as ‘a technique which involves the formation of binding 

sites in a synthetic polymer matrix that are of complementary functional and structural 

character to its “substrate” molecule’. The resulting product, or molecularly imprinted 

polymers (MIPs), are formed by the copolymerisation of the functional and cross-linking 

monomers in the presence of a template. In the pre-polymerisation mixture, the monomer 

and template are allowed to interact and a complex is formed between them. Depending 

on their nature, the interaction between the two can be covalent or non-covalent (Ye and 

Mosbach, 2008). Copolymerisation is then carried out with the cross-linker, which ‘holds’ 

the functional monomers in place, preserving the spatial orientations of the functional 

groups. Finally, the template is removed leaving behind binding sites which are 

complementary to the target molecule in terms of size, shape, and chemical functionality. 

These binding sites, with strong specific recognition for the template molecules, are then 

available for subsequent rebinding (Figure 2.1). 
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Figure 2.1 Schematic of the molecular imprinting technique. 
 

Molecular imprinting has been used to produce synthetic receptors to target molecules of 

various nature and sizes. Great advancement and progress has been made for the 

imprinting of relatively small, low molecular weight and well-functionalised molecules 

such as sugars (Mayes et al., 1994; Parmpi and Kofinas, 2004; Sineriz et al., 2007), metal 

ions (Rao et al., 2006; Shirvani-Arani et al., 2008), amino acids (Reddy et al., 1999; Zhu 

and Zhu, 2008), and drugs (Alvarez-Lorenzo and Concheiro, 2004; Hiratani et al., 2007). 

However, less success has been achieved for larger entities, such as peptides and proteins 

(Kempe and Mosbach, 1995; Wulff, 2002; Turner et al., 2004 and 2006), cells (Dickert et 

al., 2001), viruses (Hayden et al., 2006), and bacteria (Hayden and Dickert, 2001). This is 

not surprising because for larger entities, the interaction between the template molecule 

and the functional monomers will be more complex which could lead to the formation of 

heterogeneous binding sites. Another difficulty encountered is the mass transfer limitation 

of the template molecules to the binding sites in the polymer matrix which would result in 

unfavourable rebinding kinetics (Pang et al., 2005).  In this literature review, we will focus 
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on the imprinting of proteins, its limitations and challenges, and the progress and 

advancement in the field.        

 

2.2.1 Advantages of MIPs 

 

MIPs have many advantages compared to other synthetic biomolecule-based molecular 

recognition techniques: they have higher physical and chemical stability, and they are able 

to withstand a wider range of temperature, pH, and acid-base conditions without 

displaying a loss in molecular recognition (Nicholls and Andersson, 1995). MIPs are 

relatively simpler to prepare and therefore, are more cost-effective, and they can be 

prepared into forms suitable for the desired application, such as beads (Mayes and 

Mosbach, 1996; Lu et al., 2003; Say et al., 2003), membranes (Sergeyeva et al., 2003; El-

Toufaili et al., 2004), and films (Piletsky et al., 1999; Miyahara and Kurihara, 2000). 

MIPs, being solid, also have a much higher physical strength and robustness than their 

biological counterparts, and can easily be separated from the rebinding mixture. 

Furthermore, their storage life is many years without the loss of affinity for the targeted 

molecule (Hillberg et al., 2005; Ramstrom et al., 1997). As a result, MIPs have great 

potential in various areas such as bioseparations, chemosensors, immunoassays, drug 

screening, and catalysis (Mahony et al., 2005).  

 

2.2.2 Types of molecular imprinting 

 

One of the most important considerations in the design of MIPs is the interaction which 

will occur between the functional monomer and the template. The choice of the monomer 
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will depend on the nature of the template as well as the environment in which the 

rebinding of the target molecule will be taking place (for example: aqueous or organic). 

Molecular imprinting is therefore classified into two main approaches according to the 

chemical bonds involved in the rebinding of the target molecule; covalent and non-

covalent. Covalent imprinting was the main approach during the 1970s when MIPs were 

first being studied by Wulff’s group (Sellergren, 2001). However, since its development in 

the 1980s by Mosbach’s group, the non-covalent approach has become more common and 

it is the most widely used approach today (Sellergren and Allender, 2005). A third and 

less common type of imprinting is the sacrificial-spacer approach which combines the 

benefits of the previous two approaches (Whitcombe and Vulfson, 2001).  

   

2.2.2.1 Covalent 

 

In the covalent approach, a reversible covalent bond is formed between the functional 

monomer and the template (Figure 2.2B). Examples of these bonds are: ester, acetal/ketal, 

Schiff-base, and metal coordination (Takeuchi and Haginaka, 1999). The resulting 

template derivative is copolymerised with the cross-linker and the subsequent removal of 

the template requires cleavage of the covalent bonds using hydrolysis, for example 

(Whitcombe and Vulfson, 2001).  

 

One of the advantages of this approach is that the stoichiometric ratio between the 

template and the monomer is determined, resulting in the homogeneity of the binding sites 

(Sellergren and Allender, 2005). The rebinding is also very selective and stable, since the 

binding cavities are an ‘exact fit’ (Whitcombe and Vulfson, 2001). However, the 
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rebinding kinetics of the MIPs is often not favourable due to the slow reformation of the 

covalent bonds and is therefore unsuitable for applications such as chromatographic 

separations. Another problem is that there are a limited number of covalent linkages 

available that can readily cleave and rebind (Takeuchi and Haginaka, 1999).       

   

2.2.2.2 Non-covalent 

 

In the non-covalent approach, the functional monomers complex with the template 

molecule through non-covalent interactions, such as electrostatic and hydrophobic 

interactions or hydrogen bonding (Figure 2.2A). The preparation of the complex is 

relatively easier since it only involves mixing the monomer with the template and the 

isolation of the resulting complex is not required. The rebinding kinetics of MIPs prepared 

by the non-covalent approach is also much more favourable and only mild conditions are 

required for the removal of the template molecule (Takeuchi and Haginaka, 1999). 

However, due to the weaker nature of the functional monomer-template interaction, the 

stability of the complex is lower, resulting in a lower concentration of the complex. The 

functional monomer is usually added in excess in order to obtain the maximum complex 

concentration but this may cause many different species of the complex to form in the 

polymerisation mixture. Consequently, the binding sites of the MIPs are no longer 

homogeneous in terms of affinity (Takeuchi and Haginaka, 1999). 

 

One solution to this problem is the introduction of ‘second generation’ functional 

monomers which are able to bind much more strongly to specific functional groups on the 

template. Examples of the targeted groups are: carboxylates and phosphonates, carboxylic 
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acids, peptide backbones, amines and barbiturates (Whitcombe and Vulfson, 2001). 

Another popular solution is the template immobilisation method. In this method, the 

synthesis of the MIPs involves two distinct steps; template immobilisation, and 

polymerisation. First, the template molecules are immobilised covalently to a support and 

the polymerisation is subsequently carried-out, as usual, in the presence of the functional 

monomers and cross-linker. The benefits of this 2-step imprinting and its examples will be 

discussed further on in this review. 
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Figure 2.2 Schematic of: A) Non-covalent imprinting B) Covalent imprinting. 
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2.2.2.3 Sacrificial-spacer  

 

This approach was introduced by Whitcombe et al. in 1995, which combined the 

advantages of covalent and non-covalent imprinting (Kandimalla and Ju, 2004; 

Whitcombe et al., 1995; Zhang and Ye, 2006). It relies on covalent bonding between the 

functional monomer and the template prior to polymerisation, and uses non-covalent 

interactions for the subsequent rebinding. This is possible due to the presence of a ‘spacer’ 

group on the monomer-template complex which is lost during the removal of the template, 

leaving behind a binding site available for non-covalent interactions. One of the 

advantages of this approach is that it is able to use weak hydrogen bonds during the 

rebinding of the imprinted molecule. This property is illustrated in the following example 

(Figure 2.3). Diurea is used as a template for the imprinting of 2,3,7,8-

tetrachlorodibenzodioxin (TCDD) and two urea bridges act as sacrificial-spacers between 

the chlorine atom of the dioxin and the polymer-bound amine groups. During the template 

removal after copolymerisation, the 2,8-diamino-3,7-dichlorodibenzodioxin is removed by 

hydride reduction, leaving behind two amine groups bound to the polymer. These are then 

able to form hydrogen bonds with the chlorine atoms of the targeted TCDD during 

subsequent rebinding (Sellergren, 2001; Whitcombe and Vulfson, 2001).  

 

Perez et al. (2000) also used the sacrificial-spacer approach for their synthesis of 

cholesterol-imprinted submicron beads. Carbonate ester was used as the sacrificial-spacer 

and the core-shell beads were prepared by two-step polymerisation. The first 

polymerisation step involved the emulsion polymerisation of methyl methacrylate or 

styrene monomers to produce an inner core-shell. The template cholesterol was then 
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covalently linked with the functional monomer to form chloresteryl (4-vinyl) phenyl 

carbonate (CVPC) which acted as the sacrificial-spacer. The second polymerisation step 

was then carried out with CVPC and ethylene glycol dimethacrylate (EGDMA) as the 

cross-linker. The template was removed using hydrolysis, which allowed the subsequent 

rebinding of cholesterol to the MIP via non-covalent interactions.    

 

 

Figure 2.3 Imprinting 2,3,7,8-tetrachlorodibenzodioxin (TCDD) via the sacrificial-spacer 
approach  (Whitcombe and Vulfson, 2001).  
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2.2.3 MIP beads 

 

As mentioned earlier, one of the attractive properties of MIPs is that they can be prepared 

into various shapes and forms (beads, membranes, or films) suitable for the chosen 

application. In earlier preparations of MIPs, bulk polymerisation was used to produce 

monolithic imprinted polymers that were subsequently crushed, ground and sieved to the 

desired size. This conventional approach was not very efficient since it was time-

consuming and produced irregular particles with a large size-distribution which are not 

favourable for applications like chromatography and solid-phase extraction (Mahony and 

Nolan, 2005; Kempe and Kempe, 2006). Bulk polymerisation is also unsuitable for 

scaling-up industrially due to the poor thermal dispersion during polymerisation. As a 

result, alternative methods of polymerisation have been proposed that would allow more 

control over the morphology of the imprinted particles, and which would also allow better 

heat dissipation during polymerisation. 

 

There are many techniques to create MIPs with a uniform shape and size, and many 

researches focus on the synthesis and optimisation of MIPs in the spherical form such as 

beads and spheres. The desirable properties of these MIPs are: their uniform size with low 

polydispersity, their large specific surface area, and their potential to be applied at an 

industrial-scale. MIP beads and spheres, particularly in the micro- and nano-scales, are 

very suitable for the application of surface imprinting because of their large specific 

surface area available for the creation of binding sites. Another advantage is that the 

polymerisation involved in their synthesis, such as suspension (Mayes and Mosbach, 1996; 

Ansell and Mosbach, 1997; Flores et al., 2000), emulsion (Yoshida et al., 1999), or 
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miniemulsion (Vaihinger, 2002; Tan and Tong, 2007a), offers very good heat dissipation 

which enables them to be used on an industrial-scale. Further on in this literature review, 

we will discuss the application of MIP beads for protein surface imprinting. 

 

2.3 Imprinting of proteins 

 

Molecular imprinting is an effective technique to create artificial receptors which are able 

to specifically recognise target molecules. A large amount of literature could be found on 

the imprinting of small molecules, such as amino acids, drugs, and ions. The imprinting of 

macromolecules like proteins, however, is less common due to many inherent difficulties 

due to the larger and complex structure of the template molecules.   

 

Proteins are large and complex biomacromolecules (generally with molecular weights of 

103 to 104 Da) made up from amino acids which are linked together in a linear form by 

peptide bonds between the carboxyl and the amino group of adjacent residues. In the 

human body, proteins have a wide range of roles in all processes within the cell and many 

of them are enzymes which catalyse various biochemical reactions and are a key part of 

the metabolic system. Other proteins have mechanical and structural functions such as 

those which make up the cytoskeleton. Other vital roles in which proteins play an 

important part include: cell signalling, immune responses, cell adhesion, and the cell cycle. 

 

Proteins fold into a specific conformation as a result of intramolecular non-covalent 

interactions, such as hydrogen and ionic bonding or van der Waals and hydrophobic forces. 
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To be able to perform their biological functions, proteins must conserve their folded three-

dimensional structures, or their ‘native’ states. Taking an earlier example, enzymes are 

highly selective and only catalyse specific biochemical reactions in our body. This 

specificity is due to the shape of the enzyme molecules, held together by the 

intramolecular bonds which can be disrupted by changes in the surrounding conditions, 

such as the pH and temperature. This changes their shapes and as a result, the catalytic 

function of an enzyme is highly dependent on its environment.  

 

The motivation behind protein imprinting is to imitate the ability of biomolecules, such as 

enzymes, to recognise molecules of a specific shape like a ‘lock and key’. The current 

technology for the recognition of proteins for extraction, purification, and biosensing, 

greatly rely on binding assays of the target protein with antibodies. However, the 

disadvantages of this method include the high cost of these antibodies and their low 

stability which allows them to be used only under aqueous conditions. Another drawback 

which contributes to the high cost is that antibodies assays are only suitable for single use. 

MIPs, in contrast, are inexpensive, robust, and reusable, making them a suitable 

alternative to be used for selective protein binding (Turner et al., 2006; Ye and Mosbach, 

2008).       

 

2.3.1 Challenges in protein imprinting 

 

There are many challenges associated with the imprinting of proteins compared to the 

imprinting of simpler and smaller molecules (Sellergren, 2000). The complex and flexible 

structure of proteins can lead to the non-homogeneity of the binding sites which would 
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result in low specificities of the MIPs (Bergmann and Peppas, 2008; Gai et al., 2008). In 

the pre-polymerisation mixture, a wide range of interactions between the monomers and 

various sections of the template protein are possible. This is due to the presence of 

numerous functional groups on the amino acids, which offers a large number of potential 

recognition sites over a relatively large surface area. Another difficulty is the 

incompatibility of the polymerisation conditions with the template protein, where the 

challenge is to conserve the native structure of the template so as to imprint the ‘correct’ 

conformation of the target protein. However, the difficulty lies in the fact that the structure 

of the protein can be easily modified and the protein can even be denatured due to the pH, 

temperature, ionic, or organic conditions of the polymerisation mixture, before or during 

polymerisation (Turner et al., 2006). In the synthesis of protein-imprinted polymers, one 

must study the structure of the protein throughout the entire process, especially making 

sure that the protein experiences no significant change in conformation during the 

polymerisation (Tan and Tong, 2007a). 

 

Another problem linked to the incompatibility of the proteins with the 

polymerisation/imprinting environment is the fact that proteins are water-soluble 

compounds. Most imprinting systems rely on organic solvents in order to maximise the 

interaction, such as hydrogen bonding, between the functional monomer and the template 

molecule (Bossi et al., 2006; Janiak and Kofinas, 2007). The low solubility of proteins in 

non-polar solvents would limit the interaction between the functional monomer and the 

template as well as compromise their structure. Specific recognitions of biomolecules in 

the body, however, occur in an aqueous environment. The presence of water would greatly 

disrupt the formation of hydrogen bonds between the binding sites on the MIPs and the 
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protein. As a result, there is a need for MIPs which are able to be used for the recognition 

of proteins in an aqueous media.   

 

Protein imprinting shares one drawback common to the imprinting of all macromolecules; 

MIPs suffer from unfavourable rebinding kinetics due to the slow diffusion of protein 

molecules to the binding sites. This problem is most severe in the conventional bulk 

imprinting method where the binding sites are located deep inside the polymer matrix. The 

low mass transfer of the large protein molecules through the matrix would render the 

rebinding kinetics unfavourable (Turner et al., 2006).  

 

There are many successful methods adopted by various research groups to tackle the 

difficulties in protein imprinting. Surface imprinting and template immobilisation are two 

popular solutions and quite often these two techniques are employed together to optimise 

MIPs’ specific recognition of proteins. They were first used for the targeting of smaller 

molecules but their usefulness was extended to the imprinting of macromolecules.  

 

2.3.2 Surface imprinting 

 

One of the major challenges faced in molecular imprinting, especially for the imprinting 

of macromolecules like proteins, is the ability for the target molecules to reach the binding 

sites of the MIP. In the conventional method of bulk imprinting, binding sites are 

produced within the 3D polymer matrix and as a result, the rebinding kinetics is often 

unfavourable due to steric hindrances, and limited diffusion and mass transfer. Another 

problem raised is the difficulty of template removal from the binding sites after 
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polymerisation. Inadequate washing of the newly formed MIP to remove the template 

would leave the binding sites ‘occupied’ and thus, rendering them unavailable to the target 

molecules for subsequent rebinding.   

 

Surface imprinting is a popular technique to circumvent these problems and significantly 

improve the effectiveness of MIPs. In surface imprinting, binding sites are created on the 

surface of the MIP rather than in the interior of the polymer matrix, making them exposed 

and very accessible to the target molecules (Nicholls and Rosengren, 2001; Tan and Tong, 

2007b). There are many approaches which have been investigated for the application of 

protein surface imprinting. Protein-imprinted film is one method with considerable 

success (Bossi et al. 2001; Piletsky et al., 2001; Ramanaviciene and Ramanavicius, 2004; 

Chou et al., 2005) but such MIPs are limited in their application and cannot be used in 

areas such as chromatography. MIP beads have been discussed earlier in this chapter 

(Section 2.2.3) and their numerous advantages, such as their large specific surface area, 

make them a suitable candidate for protein surface imprinting.  

 

A classic example of MIP beads which were used for protein surface imprinting is the 

work by Kempe et al. (1995). Methacrylate groups were initially functionalised to the 

surface of silica beads and polymerisation was subsequently carried out in the presence of 

a metal chelating monomer, N-(4-vinyl)-benzyl iminodiacetic acid, copper ions, and 

RNase A as the template. The resulting MIP beads relied on metal coordination for the 

rebinding of RNase A and were used at the stationary phase in high-performance liquid 

chromatography (HPLC). 
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Hirayama et al. (2001) carried out the imprinting of lysozyme on surface-modified silica 

beads (0.025-0.040 mm) using a combination of acrylamide or N,N-

dimethylaminopropylacrylamide with acrylic acid as the functional monomers. The 

resulting polymer pellet was then grounded and passed through a 0.15 mm sieve. In the 

rebinding tests, the two MIPs showed selectivity towards lysozyme over haemoglobin. 

Although the grinding of the pellet was required for the synthesis of the MIPs, Hirayama’s 

work is not strictly a bulk imprinting approach due to the presence of the modified silica 

beads and the polymer layer which was formed on their surface.  

 

Not only silica was utilised as the core particle for the synthesis of protein-imprinted 

beads but other supports, such as polystyrene, were also used. In the work by Yan et al. 

(2007), lysozyme and haemoglobin were successfully imprinted onto polystyrene 

microspheres. The styrene particles were first prepared by suspension polymerisation, 

after which the functional monomer, 3-aminophenylboronic acid, was grafted onto them 

in the presence of the template protein.      

 

2.3.3 Template immobilisation 

 

In the earlier discussion of the non-covalent approach to molecular imprinting, we have 

mentioned that despite of the favourable rebinding kinetics offered by this approach, one 

of its major drawbacks is the non-homogeneity of the binding sites. This is due to the 

relatively weaker interactions (non-covalent) between the functional monomers and the 

template molecules which cause less stable complexes to be formed in the pre-

polymerisation mixture. This problem is exacerbated by the fact that proteins are complex 
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molecules which allow a wide range of interactions to take place with the functional 

monomers. 

 

A popular solution to improve the homogeneity of the binding sites for the non-covalent 

imprinting of proteins is the immobilisation of the template molecule to a support before 

carrying out the polymerisation. There are many advantages of the template 

immobilisation approach. Templates which are insoluble in the polymerisation mixture 

and would not interact with the functional monomers could be imprinted since the 

immobilised protein molecules could be brought into contact with the functional 

monomers during polymerisation. Another advantage is that this approach prevents the 

aggregation of protein molecules which in turn would increase the homogeneity of the 

binding sites and increase the selectivity for their target molecule (Yilmaz et al., 2000; 

Bonini et al., 2007).  

 

Shi et al. (1999) combined this approach with surface imprinting by immobilising various 

protein templates (albumin, immunoglobin G, lysozyme, ribonuclease and streptavidin) 

onto a mica surface. Disaccharide molecules were then used to coat the protein molecules, 

followed by the plasma deposition of hexafluoropropylene forming a 10–30 nm 

fluoropolymer thin film. After the removal of the mica and template protein, binding sites 

were left on the disaccharide layer which had the complementary shape of the template 

protein.  

 

Silica beads were also used by Shiomi et al., 2005 as a support to covalently immobilise 

haemoglobin before surface imprinting was carried out with two kinds of organic silane 
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(3-aminopropyltrimethoxysilane and trimethoxypropylsilane) as functional monomers. 

Batch rebinding tests were carried out and the MIP beads prepared with template 

immobilisation exhibited higher binding specificity than their conventional non-

immobilised template counterparts. The results seemed to indicate that template 

immobilisation has helped to produce binding sites which were more homogenous and 

possessed higher selectivity for the template protein.           
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Chapter 3 

Optimising the preparation of protein surface-imprinted 

nanoparticles 

 

3.1 Introduction 

 

Molecular imprinting is an established technique to create biomics with specific 

recognition for the target molecule. Traditionally, it has been successfully applied to small 

molecules such as ions, amino acids, and small drugs. However, its application for 

macromolecules, like proteins, has been limited due to several inherent problems. 

Challenges in protein imprinting include: low rebinding kinetics, heterogeneity of binding 

sites due to the size and complexity of the protein molecule, incompatibility of the 

proteins with the solvents, and the entrapment of protein molecules in the polymer matrix.   

 

As mentioned earlier in the introduction, Tan and Tong (2007a) had developed an 

effective technique to prepare RNase A surface-imprinted nanoparticles using 

miniemulsion polymerisation. In this part of the research, we aimed to optimise Tan’s 

method and determine the factors and conditions which play an important part in 

determining the protein recognition efficiency. Bovine serum albumin (BSA) was used as 

the template protein rather than RNase A since it is cheaper and many batches of MIPs 

had to be synthesised.  
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3.2 Preparation of protein surface-imprinted nanoparticles via 

miniemulsion polymerisation 

 

The following section is a detailed discussion of various aspects in the synthesis of RNase 

A surface-imprinted nanoparticles via miniemulsion polymerisation based on Tan’s work. 

 

3.2.1 Template: Ribonuclease A 

 

RNase is a relatively small enzyme which catalyses the degradation of RNA into smaller 

components. RNase A is the main form of RNase found in the pancreas of Bos Taurus and 

consists of 124 amino acid residues (~13.7 kDa). Its sequence of amino acid residues was 

discovered in 1963 by Smyth et al., making it the first enzyme and the third protein whose 

sequence was correctly determined. Its chemistry, structure and functions have been 

extensively studied since its discovery and it has been widely used as the model system in 

various studies of proteins, enzymology, and molecular evolution (Carter and Ho, 1994). 
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Figure 3.1 Ribbon diagram of RNase A showing the Tyr residues and the disulphide bonds 
(Stelea et al., 2001). 
 

The stability of the template is an important factor which must be considered for 

successful imprinting. This is especially true for biomolecules such as proteins, since 

denaturation will cause a change in the structure of the template. The protein must be 

sufficiently stable to not unfold under the polymerisation conditions (Cormack and Elorza, 

2004). In the work of Stelea et al. (2001), RNase A was shown to have significant 

denaturation between 50 oC and 70 oC in the presence of phosphate at neutral pH. Chen 

and Lord (1976) reported that a significant number of the alpha helices and the beta sheets 

remain in a solution of 0.1 M NaCl at 70 oC and pH 5. 

 

3.2.2 Functional monomer: Methyl methacrylate 

 

The choice of the functional monomer is of utmost importance and will directly affect the 

specificity of the MIPs. The monomer must be able to form a stable complex with the 

template so as to maximise the concentration of the complex in the polymerisation mixture. 

The rebinding environment for the intended application must also be kept in mind while 
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choosing the monomer. Biological systems are generally characterised by the dominating 

presence of water in the surrounding media and water molecules will significantly impair 

the ability of the target molecule to interact with the MIPs since they will compete to form 

hydrogen bonds with the binding sites (Ramstrom and Ansell, 1998). 

 

Methyl methacrylate (MMA) is commonly used for miniemulsion polymerisation but not 

for protein imprinting. Methacrylic acid (MAA), however, is more popular as the 

functional monomer for non-covalent protein imprinting because the hydrogen atom of its 

carboxyl group can participate in hydrogen bonding with the template protein molecule. 

Very good separations have been achieved in non-aqueous environments where there were 

no water molecules to disrupt the interactions between the MAA and the amino acids of 

the target protein. However, it would be more beneficial if molecular recognition could be 

achieved in the presence of water since many applications for protein separation occur in 

the aqueous environment of biological systems. MMA was chosen because it is more 

hydrophobic than MAA and does not form hydrogen bonds in aqueous solutions. As a 

result, hydrophobic binding cavities are formed on the surface of the imprinted 

nanoparticles where hydrophobic interactions take place between the target protein and the 

shape-complementary binding sites in an aqueous environment.   

 

 

Figure 3.2 Structure of methyl methacrylate (MMA). 
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3.2.3 Cross-linker: Ethylene glycol dimethacrylate 

 

Ethylene glycol dimethacrylate (EGDMA) is a common cross-linker and is often used for 

copolymerisation with MMA. The cross-linker plays three main roles: it controls the 

morphology of the MIPs, it holds the functional monomers in the positions 

complementary to the template and finally, it gives the imprinted polymer matrix 

mechanical strength. The cross-linker must be compatible with the imprinting system and 

must also be able to copolymerise with the functional monomer (Ramstrom and Ansell, 

1998). 

 

 

Figure 3.3 Structure of ethylene glycol dimethacrylate (EGDMA). 
 

3.2.4 Miniemulsion polymerisation 

 

Early preparations of MIPs relied on bulk polymerisation which produced monolithic 

imprinted polymers that were subsequently broken down and crushed. This was not a very 

effective method since it was time-consuming and produced irregular particles with a 

large size-distribution which were not favourable for applications like chromatography 

(Mahony et al., 2005). As a result, alternative methods of polymerisations have been 

proposed that allowed more control over the morphology of the imprinted particles. 
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Miniemulsion polymerisation is a method which produces regularly-sized spherical 

particles, typically in the range of 50-500 nm. This technique is similar to the conventional 

emulsion polymerisation but involves sub-micron oil-in-water dispersions, as well as the 

addition of a co-surfactant or co-stabiliser. In a typical set-up, the polymerisation mixture 

consists of water, monomer, co-stabiliser, and the surfactant and initiator systems (Asua, 

2002). The important step in this method is the high-shear emulsification to produce sub-

micron monomer droplets which are encapsulated by the surfactant micelles. This can be 

accomplished by devices such as a sonicator or homogeniser. 

 

In Tan’s method, sodium dodecyl sulphate (SDS) and poly (vinyl alcohol) (PVA) were 

used as the surfactant system in the miniemulsion. Despite the denaturing effects of the 

SDS, RNase A managed to retain its native conformation due to the presence of the PVA. 

Nagaranjan (2001) reported that non-ionic polymeric surfactants tend to interact with ionic 

surfactants micelles to form polymer-bound micelles. Sections of the polymer partially 

penetrate the polar surface of the micelles wrapping around them, and one polymer 

molecule could be associated with several surfactant micelles. As a result, this 

significantly decreases the critical micellar concentration (CMC) of the surfactant.  

 

To start the polymerisation, Tan relied on redox initiation in order to minimise the 

denaturation of the protein. Sodium bisulphite and ammonium persulphate were used as 

co-initiators.     
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3.2.5 Factorial design 

 

Factorial design is a common method used to design experiments which have several 

independent variables by examining simultaneously the effects of these variables (factors) 

and their interactions. It is an efficient method of investigation and is, therefore, widely 

used when then number of experiments that can be carried out is limited. For example: 

this can be due to the high cost associated with each run of the experiment or the amount 

of the time available is limited. In most factorial designs, each of the factors are studied at 

2 levels, high (+) and low (-), and the experimental runs are carried out by varying these 

factors at all possible combinations. A total of 2n experimental runs are performed, where 

n is the number of factors. In a half-fraction factorial design, only 2n-1 experimental runs 

are performed with the assumption that higher-order interactions are neglected, thus 

allowing the number of runs required to be halved (Kuehl, 1994; Mitchell, 2001). 

 

In the preparation of the protein surface-imprinted nanoparticles via miniemulsion 

polymerisation, it is hypothesised that the imprinting efficiency of the resulting MIP is 

chiefly dependent on the following variables: 

 

i) The ratio between the functional monomer and the cross-linker. 

ii) The amount of template protein required. 

iii) The polymerisation temperature. 

 

Half-fraction factorial design was carried out with three independent variables (n = 3): 

functional monomer to cross-linker molar ratio (Factor A), amount of template protein 
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(Factor B), and polymerisation temperature (Factor C). As a result, MIPs and NIPs were 

synthesised under four different polymerisation conditions based on the half-fraction 

factorial design (Table 3.1a, b). 

 

Treatment  A B C 

T2 - - + 

T3 + - - 

T5 - + - 

T8 + + + 
Table 3.1a Half-fraction factorial design table with three factors (A, B, and C) and four 
treatments (T2, T3, T5, and T8). +/- represents the high and low levels, respectively. 
A:  MMA:EGDMA molar  ratio 
B:  amount of BSA 
C:  polymerisation temperature 
 

The table below shows the corresponding values of the high and low levels of each factor. 

 

Factor (+) (-) 

A) MMA:EGDMA 1 to 2.5 1 to 3.5 

B) BSA (µmol) 1 0.5 

C) Temperature ( oC) 45 40 
Table 3.1b Values of the high and low levels (+/-) for the three factors. 
 

3.3 Experimental section 

 

3.3.1 Materials 

 

Bovine serum albumin (BSA), methyl methacrylate (MMA, 99%), ethylene glycol 

dimethacrylate (EGDMA, 98%), sodium dodecyl sulphate (SDS, minimum 98.5% GC), 
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sodium bicarbonate (99.7-100.3%), sodium bisulphite (minimum 99%), ammonium 

persulphate (98%), and trifluoroacetic acid (TFA, 99%) were purchase from Sigma-

Aldrich (USA). Poly (vinyl alcohol) (PVA, 80 mol% hydrolyzed, MW 6000) and ethanol 

(absolute grade for analysis) were purchased from Polysciences, Inc. and Merck 

(Germany), respectively. Acetonitrile (HPLC grade) and acetic acid (Glacial) were 

purchased from FisherChemicals (USA). The chemicals were used as is without further 

purification.  

 

3.3.2 Preparation of BSA-imprinted nanoparticles 

 

The experimental protocol for the synthesis of the MIPs was modified from the work of 

Tan and Tong (2007a). The experiment was scaled down by a factor of two (i.e. the 

amount of the reactants was halved), allowing a simpler experimental setup and therefore, 

many batches of MIPs were prepared in a shorter time. The amount of chemicals and 

conditions used for the four batches of MIPs is stated in the following tables. 

 

Treatment  Temperature ( oC) EGDMA (µl) MMA (µl) BSA (mg) 
T2 45 2100 339.88 34.38 
T3 40 2100 475.84 34.38 
T5 40 2100 339.88 68.75 
T8 45 2100 475.84 68.75 

Table 3.2a Variations of the three factors across the four treatments. 
 

PVA (g)  SDS (mg) 
Sodium 
Bicarbonate (mg) DI Water (ml) 

0.1875 28.85 23.45 10 
Table 3.2b Composition of the first aqueous phase. 
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PVA (g)  SDS (mg) DI Water (ml) 
0.0400 40.00 80 

Table 3.2c Composition of the second aqueous phase. 
 

Sodium 
bisulphite (g) 

Ammonium 
persulphate (g) 

0.115 0.126 
Table 3.2d Amount of initiators. 
 

The first aqueous phase was prepared by dissolving PVA, SDS and sodium bicarbonate in 

10 ml of deionised (DI) water. The second aqueous phase was prepared by dissolving only 

PVA and SDS in 80 ml of DI water. The functional monomer and cross-linker, MMA and 

EGDMA, were added to the first aqueous phase and the mixture was sonicated (Sonics 

Vibracell VCX 130) at 70% amplitude for 60 seconds to obtain a miniemulsion. The 

template protein, BSA, dissolved in 800 µl of DI water, was added to the miniemulsion 

and stirred magnetically for 30 minutes to allow sufficient template-monomer interactions. 

The miniemulsion was then added drop-wise to the second aqueous phase while stirring. 

The reaction mixture was pre-purged for 15 minutes with nitrogen gas and each of the 

initiators, sodium bisulphite and ammonium persulphate, were dissolved in 1500 µl of DI 

water before being injected to the reaction mixture. Polymerisation was carried-out for 24 

hours at the specified temperature, with mechanical stirring at 300 rpm (RW20, Ika 

Labortechnik, Germany). 
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Figure 3.4 Polymerisation reactor setup.  
 

 

The resulting MIP solution was then washed 5 times with DI water, and 5 times with 

SDS:Acetic acid solution (10 w/v%:10 v/v%) to remove the template protein. Finally, it 

was washed 4 times with ethanol and 6 times further with DI water to remove the 

remaining surfactant and any unreacted monomers. For each washing, the polymer 

solution was centrifuged at 9000 rpm for 60 minutes (Universal 32R, Hettich Zentrifugen, 

Germany). The final MIP was stored in DI water. 

 

3.3.3 Preparation of non-imprinted nanoparticles 

 

The preparation was identical except for the addition of the protein and the NIPs were 

washed in the similar manner with DI water, SDS:Acetic acid solution (10 w/v%:10 v/v%), 

and ethanol. 
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3.3.4 Batch rebinding tests 

 

To study the specificity of the MIPs, batch rebinding test with 1.8 mg/ml BSA solution 

was carried out. The same test was repeated with NIPs as a control.   

  

A stock BSA protein solution of 4 mg/ml was prepared. 1 ml was drawn from it and added 

to 1 ml of DI water to obtain the first standard solution of 2.0 mg/ml. DI water was then 

added to the stock solution to decrease its concentration to 3.6 mg/ml. Another 1 ml was 

drawn and added to 1 ml of DI water, like before, to obtain the second standard solution of 

1.8 mg/ml. For the batch rebinding, 2 ml of the 3.6 mg/ml stock solution was drawn and 

added to 2 ml of the well-mixed polymer solution. This was repeated two more times to 

obtain three tubes of rebinding mixture. The third and fourth standard solutions of 1.6 and 

1.4 mg/ml respectively were prepared in the similar manner. This method of preparation 

was designed to minimise the systematic and random errors in the preparation of the 

standard protein solutions for the plotting of the calibration curve. 

 

Concentration of 
stock solution 
(mg/ml) 

Volume of 
stock solution 
(ml) 

Volume remaining 
after 1 ml protein 
solution is drawn 
(ml) 

DI Water added to 
stock solution 
(ml) 

4.0 15.00 14.00 1.556 
3.6 15.56 8.56* 1.069 
3.2 9.63 8.63 1.232 
2.8 9.86 8.86  

Table 3.3 Preparation of the stock solution for the batch rebinding test of one set of MIP. 
*A total of 7 ml of stock solution of 3.6 mg/ml was drawn (1 ml for the standard solution 
and 3x2 ml for the batch rebinding). 
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The rebinding mixtures were then mixed using a Rotamix (RKVS, ATR Inc., Japan) and 

after 24 hours, it was centrifuged at 9000 rpm for 60 minutes. The supernatant was 

withdrawn with a syringe and then filtered through a 0.2 µm filter unit into an HPLC valve. 

The four standard solutions were also filtered similarly and their protein concentrations 

were determined via HPLC analysis. 

 

A reversed-phase column (Agilent Zorbax 300SB-C18, 4.6 x 150 mm, 5 µm, USA) was 

used on an Agilent 1100 series (USA) HPLC system. Two solvents were used for the 

mobile phase; A: 0.1% trifluoroacetic acid (TFA) and 100% water, and B: 0.09% TFA, 

80% acetonitrile, and 20% water. The UV detector was set at 220 nm absorbance and the 

injection volume was 50 µl. The mobile phase flow rate was 1 ml/min and solvent B was 

changed from 25% to 70% in 40 minutes in order to create a linear gradient elution. 

 

The loading (amount of BSA adsorbed per amount of polymer) of the MIPs and NIPs is 

calculated using the formula below: 

 

Q        =        [CI - CF ] x 4 ml 

          m 

 

Q : Amount of adsorbed BSA (mg) / amount of polymer (g)   

CI : Initial BSA concentration (mg/ml) 

CF : Final BSA concentration (mg/ml) 

m : Mass of polymer in 2 ml of polymer solution (g) 
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The amount of MIP present in 2 ml of polymer solution was determined by adding 2 ml of 

the well-mixed polymer solution to a 2 ml Eppendorf tube. The tube was then freeze-dried 

for 24 hours and weighed. The difference between this mass and the mass of the empty 

Eppendorf tube gave the amount of MIP present. This was repeated five times and the 

average mass was taken.  

 

3.3.5 Determination of the swelling ratio 

 

2 ml of well-mixed polymer solution was added to a 2 ml Eppendorf tube and was 

centrifuged at 9000 rpm for 60 minutes. The supernatant was pipetted out and the tube 

was weighed to obtain the swollen weight of the particles (Wwet). The tube was then 

freeze-dried for 24 hours and weighed to obtain the dry weight of the particles (Wdry). The 

swelling ratio (SR) was calculated from the following equation: 

 

SR      =       Wwet - Wdry 

     Wdry 

     

3.3.6 Determination of the particle size using field-emission scanning microscope  

 

The particles were observed under FESEM (JSM-6700F, JEOL, USA) with platinum 

coating and a total of a hundred particles from two different areas were measured to 

determine their average diameter.    
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3.4 Results and discussion 

 

3.4.1 Size and morphology of the MIPs and NIPs 

 

The FESEM images (Figure 3.5A, B) show that nanoparticles were successfully 

synthesised in the miniemulsion polymerisation. The particles were spherical, highly 

uniform and monodispersed with diameters ranging from 40 nm to 50 nm under the 

different treatments (Figure 3.6). These particles were therefore suitable for the imprinting 

of large macromolecules like proteins since they had a large surface area available for the 

creation of binding sites which are easily accessible to the target molecules. The particles 

were also suitable for applications in chromatography due to their monodispersity and 

uniformness.    

 

The diameters of the nanoparticles obtained in this work were slightly larger than those 

reported in the work of Tan and Tong (MIP: 37.6 nm + 5.3, NIP: 41.0 nm + 6.4). This 

may be due to the difference in the method used to form the miniemulsion. In this work, a 

sonicator was used rather than a homogeniser, which was used in Tan’s work. Another 

possible cause is the difference in the volumic ratio between the first and second aqueous 

phases; 1:8 compared to 1:20 from Tan’s work. This might have affected both the stability 

of the miniemulsion and subsequently, the size of the particles.   
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(A) 

 
 
(B) 

 
Figure 3.5 FESEM images of: (A) MIPs and (B) NIPs under treatment T2. 
 

There were no significant differences between the size and morphology of the MIPs and 

the NIPs (Figure 3.5A, B). This would mean that any difference in the BSA loading 

during the batch rebinding tests of the MIPs and NIPs cannot be contributed to the 
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difference in particle size and morphology. There was also no significant trend in the 

particle diameters under the different treatments.   
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Figure 3.6 Diameter of the nanoparticles from the four treatments. 
 

The swelling ratios (SR) of the MIPs and NIPs varied between 20 and 45 (Figure 3.7). No 

significant trend was observed but the NIPs on all the treatments seemed to have a higher 

SR on average than the MIPs (treatment T5 in particular). This was unexpected because 

the MIPs and NIPs were synthesised in the same way except for the addition of the protein. 

This discrepancy was most likely due to the following experimental errors: 

 

i) The microbalance was very old and did not give consistent readings. 

Significant variations were observed in spite of repeated weighing. 

ii)  The pipetting of the supernatant to leave behind the wet polymer after 

centrifuging was probably the biggest cause of error. It was very difficult to 

pipette the supernatant and not draw up any particles. If particles were drawn 

up with the supernatant, the mass of the swollen and dry polymer (Wwet and 
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Wdry respectively) would have been smaller than the true value. This problem 

can be avoided by not pipetting all of the supernatant but the WWet would be 

higher than the true value. Decanting was not effective despite centrifuging at 

10000 RPM for 60 minutes. 

iii)  The inaccuracy in obtaining the WWet was further amplified due to the fact that 

the total mass of the Eppendorf tube and the particles was small. The 

percentage error was quite large because of the relatively small samples being 

measured. In Tan’s work, 5 ml of polymer solution was added to 15 ml 

centrifugal tubes. As a result, the resulting percentage error due to the above 

problem was smaller.  

 

Polymer swelling plays an important role in the performance of the MIPs and therefore, it 

is beneficial to study the SR of the MIPs (Piletsky et al., 2004). The SR shows the extent 

of cross-linking within the particle; the smaller the SR, the greater level of cross-linking 

achieved during polymerisation. Thus it indicates how firmly the functional monomers are 

held in the 3D matrix (Lu et al., 2006). This is important since the selectivity of the MIPs 

depends on how well the orientations of the functional monomers in the binding sites are 

preserved after the template is removed. However, small adjustments may be 

advantageous since it may help accommodate the large flexible protein molecule when it 

binds to the imprinted sites (Sellergren, 2001). The SR values obtained in this work were 

much higher than those obtained in Tan’s work (~4-7). It is possible that the cross-linking 

during the polymerisation was not extensive but the high SR values observed might have 

been caused by the errors mentioned earlier.     
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Figure 3.7 Swelling ratios of the nanoparticles from the four treatments. 
 

3.4.2 Batch rebinding tests 

 

Batch rebinding tests of the MIPs and NIPs were carried out with 1.8 mg/ml BSA protein 

solution. Figure 3.8 shows the protein loading of the nanoparticles prepared under the 4 

treatments. 
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Figure 3.8 Batch rebinding tests of BSA for MIP and NIP of the 4 treatments. Student’s t-
test, *: p < 0.05. 
 

The loading for the NIPs was significantly higher than that of the MIPs for treatments T2, 

T3, and T5. This was unexpected since the MIPs were supposed to show preferential 

binding towards BSA which was the template molecule, and the NIPs were expected to 

display only a limited loading due to non-specific adsorptions. Therefore, specific 

adsorption was not achieved and imprinting was unsuccessful in the above treatments. The 

NIPs loadings were in the range of 100 to 180 mg BSA/ g polymer which were much 

higher than the value of 55 mg/g reported in Tan’s work for an initial BSA concentration 

of 1.6 mg/ml. Higher loading will be observed for higher initial BSA concentration of the 

rebinding protein solution but this was insufficient to explain the much greater loading 

observed when the initial BSA concentration was 1.8 mg/ml. The difference could not also 

be explained by looking at the particle size since the NIPs in Tan’s work were similar in 

size (41.0 nm) to the ones in this work (42.6 nm).     
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Only treatment T8 showed preferential binding towards BSA with MIPs loading of 124.55 

mg/g and NIPs loading of 102.28 mg/g. The relative loading (MIPs loading / NIPs loading) 

for treatment T8 is equal to 1.22. Treatment T8 corresponds to the condition where all the 

3 factors are in their ‘high’ state: 

 

a) MMA:EGDMA ratio = 1:2.5   

b) Amount of BSA added to the pre-polymerisation miniemulsion = 1 µmol 

   c) Polymerisation temperature = 45 oC  

 

In the work of Fish et al. (2005), it was proposed that increasing the number of the 

functional monomers and template will maximise the interactions between the two species 

and yield more selective binding sites on the MIP. However, the use of excessive 

functional monomers will encourage the formation of non-specific sites. An optimal 

functional monomer-template ratio is achieved when a balance is reached in the monomer-

template equilibrium during the polymerisation. In this experiment, the increased number 

of MMA present may have improved the extent of template-functional monomer complex 

formation. As a result, the number of binding sites formed on the surface of the 

nanoparticles was increased and therefore, leading to a higher specific BSA adsorption. 

Increasing the amount of BSA during the imprinting step would also have a similar effect 

of increasing the template-functional monomer complex formation.  

 

The increase in temperature may have improved the extent of polymerisation and cross-

linking. However, raising the temperature to an excessive level would cause the protein to 

lose its native structure. BSA is a very stable protein which could withstand high 
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temperatures before denaturing and it was reported by Poole et al. (1987) that BSA 

experiences negligible conformational changes at temperatures below 58.1 oC.   

 

The loading for the MIPs prepared with treatment T8 was much smaller than the value 

reported in Tan’s work. The ribonuclease A (RNase A)- imprinted nanoparticles prepared 

by Tan achieved a maximum loading of 744.9 RNase A mg/ polymer g (~54.3 RNase A 

µmol/ polymer g) whereas our BSA-imprinted nanoparticles had a loading of 125 BSA 

mg/ polymer g (1.52 BSA µmol/ polymer g). Care must be taken while comparing the two 

values since the MIPs were synthesised differently and the template protein was different. 

RNase A is a smaller protein with only 124 amino acid residues whereas BSA has 583 

residues and so we would expect the nanoparticles to adsorb and accommodate large 

molecules less readily than smaller ones. However, this alone will not be sufficient to 

explain the dramatic decrease in the protein loading.   

 

As mentioned earlier, the swelling ratio is a direct indication of the cross-linking and how 

well the orientations of the functional monomers are preserved in the imprinted sites. The 

large SRs of the nanoparticles in treatments T2, T3, and T5 might have explained why 

preferential binding was not achieved, and only treatment T8 showed a significant 

selectivity for the target protein. On average, treatment T8 produced nanoparticles (MIPs 

and NIPs) with the smallest SR of 27.8 whereas the SRs for T2, T3, and T5 are 29.9, 34.7, 

and 32.2, respectively. Furthermore, the SRs of the nanoparticles synthesised with this 

modified protocol are nearly 10 times larger than the values reported in Tan’s work, 

indicating that the modified protocol produced MIPs which were not cross-linked 

extensively. Molecular imprinting relies on shape-complementary binding sites in order to 
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selectively bind to the target molecule and thus, MIPs possessing binding-sites which are 

not well-defined and well-preserved would display limited or no specific recognition. 

 

3.5 Conclusion 

 

3.5.1 Summary 

 

In this work, using a modified protocol based on Tan’s work, BSA surface-imprinted 

nanoparticles were synthesised by the redox-initiated miniemulsion polymerisation of 

MMA and EGDMA. The resulting particles were monodispersed uniform spheres with 

diameters ranging from 40 nm to 50 nm. Four different sets of MIPs and NIPs were 

prepared under conditions which were varied according to a three-factor half-fraction 

factorial design. The three factors were: the MMA:EGDMA molar ratio, the amount of 

BSA used for imprinting, and the polymerisation temperature. The MIPs in the first three 

treatments did not display any recognition property in the aqueous rebinding tests but 

molecular recognition was exhibited in the last treatment (treatment T8) when all the 

factors were in the ‘high’ state. Factorial data was not able to be generated and analysed 

because only one treatment showed measurable specific recognition for the BSA. As a 

result, the factorial design optimisation analysis could not be completed. 

 

One plausible explanation for the MIPs’ failure to exhibit any preferable uptake of the 

BSA is that their swellings ratios were nearly 10 times higher than the values in Tan’s 

work. On the other hand, MIPs from treatment T8 had the lowest SR and were able to 



                                                                                                                                 Chapter 3 

 47 

specifically recognise the protein. The high polymerisation temperature had increased the 

extent of reaction and the amount of cross-linking, which preserved the shape-

complementary binding sites on the surface of the nanoparticles. Furthermore, the high 

MMA:EGDMA ratio and the large amount of protein had aided the formation of protein-

monomer complexes, promoting the creation of specific binding sites. As a result, all of 

the 3 factors played an important role in this protein surface imprinting technique.          

 

3.5.2 Recommendations  

 

i) Several batches could be synthesised in order to confirm the batch-to-batch 

reproducibility of results.  

ii)  The batch rebinding tests should be carried out for a range of BSA 

concentrations in order to study the dependence of the imprinting efficiency on 

the protein concentration. 

iii)  The surface areas of the MIPs and NIPs prepared by the four treatments should 

be determined in order to study their effects on the imprinting efficiency. 

iv) This work was carried out with the assumption that Tan’s protocol could be 

successfully applied to an alternate template protein, BSA, rather than RNase 

A, which was the original protein used. An additional control must be 

performed which involves the synthesis of BSA-imprinted nanoparticles using 

the original protocol to verify whether molecular imprinting can be achieved 

with Tan’s method when BSA is used as the template protein. 



                                                                                                                                 Chapter 4   

 48 

Chapter 4 

Investigating protein-surfactant interactions in the preparation 

of protein surface-imprinted nanoparticles 

 

4.1 Introduction 

 

In the previous chapter, we looked at bovine serum albumin (BSA) surface-imprinted 

nanoparticles prepared via miniemulsion based on Tan’s protocol (Tan and Tong, 2007a). 

In order to determine the principle factors which affect the imprinting efficiency, an 

optimisation analysis was carried out. Below are the three variables which were chosen: 

 

i) The ratio between the functional monomer (MMA) and the cross-linker (EGDMA). 

ii) The amount of template protein (BSA) required. 

iii) The polymerisation temperature. 

 

The optimisation analysis was not complete because out of the four sets of treatment 

conditions, only one condition resulted in BSA-imprinted particles which displayed 

significant molecular recognition.  

 

Following the recommendations of the previous study, a follow-up investigation was 

carried out to determine whether molecular recognition could be achieved with an 

alternative template protein using the unmodified protocol from Tan’s work for the 
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synthesis of ribonuclease A-imprinted nanoparticles. The chosen template protein was 

bovine serum albumin (BSA) which was the protein used in the previous chapter. 

Lysozyme (Lys) was also used as an alternative protein because it is similar in size to the 

original template protein, ribonuclease A (RNase A). The morphological features (size, 

surface area, and swelling ratio) of the nanoparticles were characterised and various batch 

rebinding tests were carried out to compare the relative imprinting efficiencies of the 

imprinted particles using the three template proteins. Furthermore, circular dichroism (CD) 

spectropolarimetry was employed to study the relative interactions of the three template 

proteins and the surfactant in the miniemulsion polymerisation system in order to gain a 

deeper understanding of the mechanisms involved during the imprinting process. 

 

4.2 Experimental section 

 

4.2.1 Materials 

 

The same materials were used as the previous chapter. The Lys from chicken egg white 

and RNase A from bovine pancreas were purchased from Sigma (USA). 

 

4.2.2 Preparation of RNase A-, BSA- and Lys-imprinted and non-imprinted 

nanoparticles  

 

The protocol to synthesise RNase A-, BSA- and Lys-imprinted nanoparticles (RMIP, 

BMIP, and LMIP) was directly taken from Tan’s work (Tan and Tong, 2007a). The 
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procedure was similar to the one used in the previous chapter but different amount of 

chemicals were used and the polymerisation was carried out at 40 degrees Celsius. To 

synthesise the imprinted nanoparticles, 1.87 µmol of the template protein was added. 

Table 4.1 summarises the amount of chemicals used. 

 

Temperature 
(oC) 

EGDMA 
(ml) 

MMA 
(ml) 

RNase A 
(mg) 

BSA 
(mg) 

Lys 
(mg) 

40 4.2 0.8 25.6 123.2 27.4 
Table 4.1a Composition of the oil phase. 
 

PVA (g) SDS (mg) 
Sodium 
Bicarbonate (mg) DI Water (ml) 

0.375 57.7 46.9 20 
Table 4.1b Composition of the first aqueous phase. 
 

PVA (g) SDS (mg) DI Water (ml) 

0.2 200 400 
Table 4.1c Composition of the second aqueous phase. 
 

Sodium 
bisulphite (g) 

Ammonium 
persulphate (g) 

0.23 0.252 
Table 4.1d Amount of initiators. 
                                                                                                                                                                                                                                                                                                                                                     

The washing steps were identical to the previous chapter. As before, the non-imprinted 

particles (NIPs) were synthesised in the same way as the MIPs except for the addition of 

the template protein. 
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 4.2.3 Elemental analysis 

 

To demonstrate the complete removal of the template protein from the imprinted polymer 

after the extensive washing, elemental analysis (CHNS/O Analyzer Series II 2400, Perkin 

Elmer, USA) was carried out on Ribonuclease A-imprinted nanoparticles.   

 

4.2.4 Determination of morphological features 

 

The sizes of the particles were determined, as before, by direct observation under the 

FESEM. Specific surface area was measured using the nitrogen sorption method (NOVA 

3000 series, Quantachrome Instruments, USA) and 7-point Brunauer-Emmett-Teller (BET) 

calculation. The swelling ratio (SR) of the MIPs and NIPs were calculated from the 

equation below where Wwet and Wdry are the wet and dry polymer mass, respectively.  

 

SR      =       Wwet - Wdry 

     Wdry 

   

4.2.5 Batch rebinding tests 

 

The batch rebinding tests were carried out on the MIPs and NIPs in a similar method to 

the previous chapter but on a larger scale. 5 ml of the imprinted polymer solution was 

added to 15 ml centrifuge tubes followed by 5 ml of stock protein solution of different 

concentrations to make up rebinding mixtures of 10 ml at various protein concentrations 

(0.8, 1.0, 1.2, 1.4, 1.6 mg/ml). Six tubes were prepared for each final protein concentration. 
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The same procedure was repeated for the NIPs. As in the previous chapter, the tubes were 

then mixed for 24 hours and centrifuged. The final protein concentration was analysed 

using a HPLC, as before, in order to determine the protein loading of the polymer using 

the equation below: 

   

 Q        =        [CI - CF ] x 10 ml 

          m 

 

Q : Amount of adsorbed protein(mg) / amount of polymer (g)   

CI : Initial protein concentration (mg/ml) 

CF : Final protein concentration (mg/ml) 

m : Mass of polymer in 5 ml of polymer solution (g) 

 

To determine m, an empty 15 ml centrifuge tube was weighed and 5 ml of well-mixed 

polymer solution was added to the tube. The solution was then freeze-dried and the tube 

was weighed again to obtain the weight difference.    

 

4.2.6 Competitive batch rebinding tests 

 

The selectivity of the MIPs and the NIPs were further investigated in competitive 

rebinding tests where the rebinding solution contained more than one type of protein. In 

the binary batch rebinding test, 5 ml Ribonuclease A polymer latex (RMIP) were added 

into 15 ml centrifuge tubes and a rebinding protein solution containing both RNase A and 

BSA were added in order to achieve an initial protein concentration in the tube of 1.2 
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mg/ml for each protein. The rebinding was then carried out as before and the final protein 

concentration was then measured. This was repeated for the NIPs. The following 

parameters were then calculated in order to characterise the selectivity of the RMIPs: 

 

KD = 
s

p

C

C
  

KD : Static distribution coefficient (ml/g) 

Cp : Amount of ligand adsorbed (µmol/g) 

Cs : Free ligand concentration (µmol/ml) 

 

2

1

D

D

K

K
=α   

α : Separation factor 

KD1 : Static distribution coefficient of template molecule (ml/g) 

KD2 : Static distribution coefficient of control molecule (ml/g) 

 

2

1

α
αβ =  

β : Relative separation factor 

α1 : Separation factor of MIP 

α2 : Separation factor of NIP 

 

The ternary rebinding test was carried out in a similar manner for the four batches of 

polymer synthesised; NIP, RMIP, BMIP, and LMIP. The rebinding protein solution 
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containing RNase A, BSA, and Lys was added to the 5 ml polymer latex in a 15 ml tube in 

order to achieve an initial protein concentration in the tube of 1.8 mg/ml for each of the 

protein. All of the rebinding tests were done in triplicates. 

 

4.2.7 Kinetics study 

 

The adsorption kinetics of the RMIP and NIP were studied as follow. 5 ml RMIP solution 

was added into a 15 ml centrifuge tube followed by 5 ml of RNase A solution, giving an 

initial protein solution of 1.8 mg/ml in the tube. The tube was then attached to a rotamix 

and adsorption was carried out under room temperature and 1 ml sample was drawn at 

various intervals and sent to the HPLC to determine its protein content.  

 

4.2.8 Desorption study 

 

In a 15 ml centrifuge tube, 5 ml RMIP solution was added to 5 ml of RNase A solution, 

giving an initial protein solution of 1.8 mg/ml. Adsorption was allowed to take place 

under room temperature for 24 hours after which the amount of RNase A adsorbed was 

analysed like before. The protein-loaded RMIP was then isolated after 1 hour of 

centrifugation at 9000 rpm and redispersed in 2 different types of solvent, pure water and 

acetonitrile/water (1:1). Desorption was carried out for 24 hours on a Rotamix and the 

concentration of the desorbed protein was determined with a HPLC.         
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4.2.9 CD study  

 

The interactions between the surfactant in the miniemulsion polymerisation mixture and 

the 3 proteins were investigated using CD spectropolarimetry. Protein was added to a 

surfactant solution of SDS (10 mM) and to another consisting of SDS (10 mM)/PVA 

(1.5% w/v). The samples were analysed in a 5-mm round cuvette using the CD 

spectropolarimeter (JASCO J-810, UK) with continuous mode, at a scan speed of 50 

nm/min and wavelength ranging from 180 nm to 300 nm.   

 

4.3 Results and discussion 

 

4.3.1 Size and morphology of the MIPs and NIPs 

 

The miniemulsion polymerisation reaction was successful in synthesising nanoparticles 

which were uniform, spherical, and highly monodispersed. From the FESEM images 

(Figure 4.1), there was not any noticeable difference in morphology between the 4 sets of 

polymer and the diameter was approximately 40 nm, comparable to those in the previous 

chapter.  

 

The swelling ratio (SR) reflects directly the extent of cross-linking in the polymer matrix 

and how well the functional monomers conserve their orientations in the binding sites (Lu 

et al., 2006). The SR of the particles ranged from 3-5 which were similar to those shown 

in the work of Lu et al. (2006) and were much smaller than the ones in the previous 
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chapter (~30). This showed that the imprinted and non-imprinted polymers were cross-

linked effectively.  

 

There was not any significant difference in the specific surface areas of NIP, RMIP, and 

LMIP (~26 m2/kg) calculated from the nitrogen sorption BET analysis. On the other hand, 

the value for the BMIP was much lower at 14 m2/kg which was unexpected because the 

polymers were all synthesised in the same way. The exact reason for this difference is not 

known but it is hypothesised that it was due to the difference in interaction between the 

protein and the monomer during the polymerisation which will be explained further in 

detail in Section 4.3.7. The surface areas obtained in this work were much smaller than 

those synthesised by Vaihinger et al. (2002) (~58.0 m2/kg), despite the fact that our 

particles were approximately 5 times smaller. This may have been due to the fact that the 

nanoparticles in Vaihinger’s work were much more porous and the presence of the pores 

would have greatly increased the specific surface area. Our particles, however, did not 

appear to have pores from the FESEM images. Furthermore, they were lyophilised before 

the nitrogen sorption measurement was carried out and this would have caused extensive 

agglomeration, resulting in a much lower apparent specific surface area. Large surface 

area on the imprinted polymer is beneficial because more binding sites could then be 

situated on the surface of the polymer matrix, and thus improving the adsorption and 

desorption kinetics. However, having a surface area which is too large may be detrimental 

due to the larger non-imprinted area available for non-specific loading.      
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(A) 

 
 
(B) 
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(C) 

 
 
(D) 

 
Figure 4.1 FESEM images of: (A) NIP, (B) BMIP, (C) RMIP, and (D) LMIP. 
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4.3.2 Elemental analysis 

 

As mentioned in earlier, one of the main challenges in protein imprinting is the complete 

removal of the bulky template protein molecule from the polymer matrix after 

polymerisation, in order to vacate the binding sites so that they will be available for the 

subsequent rebinding with the target molecules. To demonstrate that the imprinted protein 

molecules were totally removed from the MIP’s surface after the extensive washing steps, 

elemental analysis was carried out on the RMIP before and after washing, and using NIP 

as a control. The results from the elemental analysis (Table 4.2) showed that the protein 

was completely removed after the washing. 

 

Polymer N composition (w%) 

NIP (before removal) 0* 

NIP (after removal) 0* 

RMIP (before removal) 0.659 

RMIP (after removal) 0* 

Table 4.2 Results of the Elemental Analysis. *Below the detection limit of the elemental 
analyser. 
 

4.3.3 Batch rebinding tests 

 

Batch rebinding tests involving single protein solutions were carried out on the imprinted 

(MIP) and the non-imprinted particles (NIP) to demonstrate whether molecular 

recognition has been achieved. In Figure 4.2A, batch rebinding tests at various initial 

RNase A concentrations were carried out (0.8-1.6 mg/ml) and by comparing the amount of 
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RNase A adsorbed by the RMIP and the NIP, it can be clearly seen that the RNase A-

imprinted particles display a preferential uptake of RNase A. On the other hand, the other 

imprinted particles, BMIP and LMIP, did not exhibit any preference for the RNase A 

relative to the NIP. This demonstrated that molecular recognition for RNase A was 

imparted only to the RMIP during the miniemulsion polymerisation. Additionally, higher 

protein loadings for the RMIP were generally observed at higher initial protein 

concentrations. Figure 4.2B shows the results for the rebinding of the 4 types of particles 

with BSA solutions at various initial concentrations. Looking at the amount of adsorbed 

protein by the BMIP and NIP, it came as a surprise that the BSA-imprinted particles did 

not display any preferential binding to the BSA and in fact, the NIP displayed a much 

higher BSA uptake. Furthermore, the BSA loading by the BMIP were much less (<2 

µmol/g) than the RNase A loading by the RMIP (10-60 µmol/g) in the previous batch 

rebinding test. This result is consistent with those from the previous chapter. This may be 

due to the fact that BSA is a much larger molecule than RNase A. Like previously, higher 

protein loadings were observed for BMIP at a higher initial protein concentration. Lys 

batch rebinding test was then carried out with LMIP and NIP at 3 initial Lys 

concentrations (Figure 4.2C). Even though the LMIP displayed higher averaged Lys 

loadings than the NIP, the difference was not statistically significant.  
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Figure 4.2 Results of batch rebinding tests in: (A) RNase A, (B) BSA, and (C) Lys protein 
solutions. Statistical significance (*) was determined using one-way ANOVA with Tukey 
HSD post hoc analysis with p < 0.01. 
 

4.3.4 Competitive batch rebinding tests 

 

The particles were subjected to rebinding tests in the presence of more than one type of 

protein in order to investigate if the imprinted particles could exhibit specific recognition 

for the template protein in a competitive environment. Binary batch rebinding test was 

conducted on the RMIP and NIP using a rebinding solution containing RNase A and BSA 

(both at an initial concentration of 1.2 mg/ml) and the results are displayed in Figure 4.3. 

The RNase A and BSA loadings on the NIP were 1.205 and 0.394 µmol protein/g NIP, 

respectively. The NIP and RMIP particles displayed similar BSA loading (0.412 µmol 

RNase A/g polymer) but there was a significant increase of about 80% in the RNase A 

loading between the two. This was expected since the RMIP had already exhibited 

(C) 
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excellent molecular recognition for RNase A in the previous single protein batch 

rebinding test. The comparable BSA loadings between the 2 sets of particles could be 

attributed to non-specific binding of the BSA molecules on the surface of the particles. 

The static distribution coefficient, KD, the separation factor, α, and the relative separation 

factor, β, for the RMIP and NIP were calculated and displayed in Table 4.3. The RMIP 

has a separation factor nearly twice as large as the NIP and this is another demonstration 

that molecular imprinting has been successfully achieved. 

 

 
Figure 4.3 Results of the binary protein competitive batch rebinding test. Student’s t-test, 
*: p < 0.12. 
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RNase A BSA  

Cp 
(µmol/g) 

Cs 
(µmol/ml) 

Cp 

(µmol/g) 
Cs 

(µmol/ml) 

KD1 
(ml/g) 

KD2 
(ml/g) 

α β 

RMIP 2.268 0.08569 0.4124 0.01783 26.5 23.1 1.147 1.82 

NIP 1.205 0.08642 0.3935 0.01780 13.9 22.1 0.630 - 

Table 4.3 Calculated separation factors of the NIP and RMIP nanoparticles based on the 
competitive binary rebinding test. 

 

Another batch rebinding test was carried out on all the particles in a more competitive 

environment where 3 proteins were present in the rebinding solution at an initial 

concentration of 1.8 mg/ml for each protein (Figure 4.4). The presence of 2 additional 

proteins competing for adsorption on the surface of the particle has caused the protein 

loadings to be limited to less than 1.6 µmol/g. The RMIP, like before, has a higher RNase 

A loading than the NIP but the specific recognition for RNase A was less pronounced, as 

expected in a much more competitive environment than the single and binary protein 

batch rebinding tests. The BMIP did not exhibit any preferential binding towards BSA 

relative to the NIP, which is consistent with the results from the earlier batch rebinding 

test.  The LMIP displayed a higher average Lys loading than the NIP but the difference 

was not statistically significant. Taking into account the results from the above rebinding 

tests (single, binary, and ternary) conducted on the nanoparticles, it could be concluded 

that molecular imprinting was successfully achieve for the RMIP, whereas the LMIP and 

BMIP displayed only limited and no recognition for the template protein, respectively.        

It is interesting to note that the RNase A loading for the LMIP was higher than that for the 

RMIP in the ternary batch rebinding test. The exact reason for this result is not known but 
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the explanation could perhaps be found in the discussion of the imprinting mechanism in 

the latter part of this chapter. 

 

 

Figure 4.4 Results of the ternary protein competitive batch rebinding test. Student’s t-test, 
*: p < 0.06. 
 

4.3.5 Rebinding kinetics 

 

One of the challenges in protein imprinting is the slow rebinding kinetics due to the large 

and bulky size of the protein molecules and their difficulty in reaching the imprinted 

binding sites. The miniemulsion polymerisation approach in this work has reduced this 

problem by producing imprinted nanoparticles with large specific surface areas and 

binding cavities which were located at the surface of the particles. A rebinding kinetics 

study was thus carried out on the RMIP and NIP in order to verify this. The rebinding 

profiles of the RMIP and NIP were generally very similar (Figure 4.5). In the first 150 

minute, the RMIP exhibited a high rate of adsorption and up to 80% of the maximum 
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adsorption was achieved. The adsorption then slowed down significantly and equilibrium 

was reached approximately 100 minutes later. At the beginning of the kinetics rebinding 

test, all the binding sites on the imprinted nanoparticles were readily available and the 

protein was adsorbed at a high rate. As more binding sites were occupied, the adsorption 

rate decreased significantly until equilibrium is reached. The rebinding profile and the 

time to reach equilibrium are similar to the ones reported by Pang et al. (2006) and Fu et al. 

(2007). The imprinted nanoparticles which were synthesised in this work displayed 

favourable rebinding kinetics and, thus, are suitable for suitable for applications in the 

areas of analytical chemistry, biosensors, and separations.        

 

 
Figure 4.5 RNase A adsorption profiles of the NIP and RMIP nanoparticles. 
 

4.3.6 Desorption study 

 

Imprinted polymers have many advantages when compared to the traditional synthetic 

biomolecule-based molecular recognition techniques. They are able to withstand various 
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conditions and are able to be reused many times with no or little loss of affinity for the 

target molecule, making them economically preferable. In this section, a preliminary study 

was carried out on the RMIP in order to investigate its desorption ability after it has been 

subjected to rebinding with RNase A. The results would also provide a better insight into 

the type of bonding involved between the RMIP and the protein. Two solvents with 

different non-polarity were used and the results are displayed in Table 4.4. Initially, water 

was used as a solvent but only 38% of the RNase A was desorbed. However, this value 

increased to 62.3% when a solution of water and acetonitrile (in equal amounts) was used. 

Water was not effective in desorbing the protein and thus, in can be inferred that hydrogen 

bonding did not play an important part in the interaction between the protein and RMIP. 

When acetonitrile was added, the hydrophobicity of the solvent was increased and more 

protein was desorbed. This shows that the interactions involved in the uptake of the 

protein were hydrophobic and non-polar solvents will be more effective in removing the 

adsorbed protein. However, depending on the application, the correct solvent must be 

chosen with care in order to prevent the protein from being denatured as well as to 

preserve the imprinted particles for reuse.      

 

Solvent Amount of RNase A desorbed (%) 

Water 38.0 

Water:ACN (1:1) 62.3 

Table 4.4 Results of the desorption study using different solvents. 
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4.3.7 Protein-surfactant interactions and their effects on the imprinting efficiency 

 

In this work, spherical, highly monodispersed nanoparticles have been synthesised via 

miniemulsion polymerisation and molecular imprinting was carried out for 3 different 

template proteins. When RNase A was used as the template, the RMIP displayed excellent 

specific recognition for the template. However, when Lys and BSA were used as 

alternative templates, the LMIP exhibited only limited molecular recognition, whereas the 

BMIP showed no recognition for the template. In this section of the report, we will 

investigate the reason why molecular imprinting was not achieved with relative success 

when Lys and BSA were used as the template protein. It is hypothesised that the 

interaction between the protein molecules and the surfactant micellar system plays an 

important role in the success of protein imprinting. It was proposed by Moore et al. (2003) 

in his work on surfactant-protein interactions that in an aqueous solution, dissolved 

proteins tend to bind onto the surfactant micelles. From this, we can propose a mechanism 

which takes place during the imprinting of proteins via miniemulsion polymerisation. 

When the template protein is added to the pre-polymerisation mixture, the protein 

molecules bind onto the surfactant micelle containing the monomers and are partitioned 

across the boundary of the oil and water phases. This is possible because protein is a 

flexible molecule containing both hydrophobic and hydrophilic moieties. Polymerisation 

is then in carried out with the protein molecules trapped on the surface of the monomer-

encapsulated micelles. Following the completion of the polymerisation, the removal of the 

template protein leaves a hydrophobic cavity complementary to the shape of the template 

protein. During the subsequent rebinding, the template protein preferentially binds via 

hydrophobic interactions to the shape-complementary site on the surface of the 



                                                                                                                                 Chapter 4   

 69 

nanoparticle (Figure 4.6). Hydrophobic interactions, coupled with a binding site which 

complements the shape of the protein molecule, provide a suitable bonding for molecular 

imprinting in an aqueous environment.  

 

 
  a    b           c 
Figure 4.6 (a) Adsorption of template protein molecule to the micelle; (b) molecular 
imprinting on the surface of the nanoparticles; (c) removal of the template RNase A 
molecules frees the imprinted cavities. 
      

However, surfactants are known for their denaturing effects on proteins and cause them to 

lose their native conformations. It is vital for a successful imprinting that the protein 

molecules preserve their native conformation in order to prevent the wrong ‘shape’ from 

being imprinted. This is important since proteins are molecules which are large and 

flexible. As a result, we have carried out an investigation using CD spectropolarimetry to 

study the effects of the surfactant solution used in the miniemulsion on the conformations 

of the 3 different types of protein. Figure 4.7 shows the spectra of the BSA in deionised 

water and two surfactant solutions: SDS and SDS/PVA. The native BSA spectrum 

(without any surfactant) shows two negative signals at 209 and 222 nm, characteristic of 

the absorption by the α-helices of the BSA.  However, when either SDS or SDS/PVA was 

added, there was no significant difference in the CD spectra. The conformation of the 

BSA was thus preserved despite the addition of surfactant and it can be deduced that the 
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interactions between the surfactant and the BSA were limited. In a paper published by 

Ding et al. (2007), it was proposed that the interactions between SDS and BSA occurred in 

various steps with increasing surfactant concentration. At low SDS concentrations, 

individual SDS molecules bind to the protein via ionic and hydrophobic interactions but 

do not cause denaturation. When the concentration is increased, more SDS molecules bind 

to the protein and begin to cause conformational changes on the protein. Micelle-like 

clusters are also formed between the SDS monomers and the protein. When the 

concentration increases to the critical micelle concentration (CMC), most of the protein is 

fully denatured. The interaction between SDS and BSA is thus, a stepwise process 

(Takeda et al., 1987). In our protocol, the BSA was added directly to the SDS/PVA 

surfactant system (at a concentration above the CMC) and this prevented the surfactant 

from interacting with the BSA in a step-wise manner as described above. The initial 

complexation between the SDS monomers and the protein which aids the unfolding of the 

protein did not take place and it may have been difficult for the BSA to interact directly 

with the surfactant micelles. As a result, the surfactant-protein interaction was limited 

causing the BSA to remain in its native conformation.   

 

The electrical charge on the protein could also provide a plausible explanation for the lack 

of surfactant-protein interaction. The isoelectric point (pI) for BSA is 4.7 and this gives 

the protein a net negative charge when added to the pre-polymerisation solution which has 

a pH of about 7.2. As a result, the electrostatic repulsion between the anionic SDS 

surfactant and the negatively charged BSA would limit the interaction between the two 

species. From our hypothesis, it is proposed that for molecular imprinting to be achieved, 

a certain amount of interaction between the monomer-encapsulated surfactant micelle and 
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the template protein must occur. The lack of interaction between the BSA and the 

surfactant would prevent the BSA from being partitioned across the oil-water phase 

boundary and thus explain why molecular imprinting was not achieved for the BMIP 

nanoparticles, as reflected in the rebinding tests. This theory is also consistent with the 

results from rebinding tests of the RMIP and LMIP nanoparticles. The pIs of RNase A and 

Lys are 9.45 and 11.0, respectively, and this would give both of the proteins a net positive 

charge in the pre-polymerisation solution during the imprinting process. The resulting 

electrostatic attraction would then promote interaction between the surfactant micelle and 

the protein and thus, molecular imprinting is more likely to be achieved.      

 

In contrast, the Lys showed extensive interactions with the surfactant and its conformation 

was modified to a large extent, as shown by the Lys spectra (Figure 4.8). In the near-UV 

region (Figure 8A), the tertiary structure of the Lys caused a positive ‘head-and-shoulders’ 

peaks at 290 nm (head), 283 nm, and 293.5 nm (shoulders) in the spectra of the native 

protein (Goux and Hooker, 1980). However, the peaks disappeared after the addition of 

surfactant, reflecting the unfolding of the protein. Denaturation was also observed in the 

far-UV region (Figure 4.8B), signalled by the deepening of the negative peak at around 

235 nm. Lys interacted significantly with the surfactant causing its shape to be altered 

from its native form and therefore, the LMIP nanoparticles only achieved limited 

molecular selectivity. Furthermore, the loss of the Lys native conformation would have 

caused the “incorrect template” to be imprinted and this might have be the reason why the 

RNase A loading for the LMIP nanoparticles was higher than that for the RMIP 

nanoparticles in the ternary batch rebinding test. This explanation is made more likely by 

the fact that Lys is very similar in size and molecular weight to RNase A.   
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The CD spectra of the RNase A are shown in Figure 4.9. Despite the addition of the SDS 

and PVA surfactants, the RNase A spectra retains its original shape but the characteristic 

peak at 218 nm experiences a moderate ‘red-shift’. In contrast to the BSA and Lys, which 

showed limited and extensive surfactant-protein interactions, the RNase achieved an 

optimal level of interaction with the surfactant allowing the RNase A to partition across 

the micelle interface and at the same time, preventing a large degree of protein unfolding. 

As a result, the RMIP nanoparticles exhibited a high selectivity for RNase A in the 

rebinding tests which were carried out previously.    

 

 
Figure 4.7 Solvent-corrected CD spectra of BSA in different types of surfactant systems, 
illustrating the lack of protein-surfactant interaction. 
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Figure 4.8 Solvent-corrected (A) near-UV and (B) far-UV CD spectra of Lys, illustrating 
the change in the protein structure in the presence of surfactants. 

 

(A) 

(B) 
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Figure 4.9 Solvent-corrected far-UV CD spectra of RNase A in surfactant solutions, 
illustrating an optimum level of protein-surfactant interaction for protein imprinting 
through miniemulsion polymerisation. 
 

4.4 Conclusions 

 

In this work, redox-initiated miniemulsion polymerisation was used to synthesise protein 

surface-imprinted nanoparticles following Tan’s protocol. Three different proteins were 

chosen as the template: RNase A, Lys, and BSA. In the single- and multi-protein 

rebinding tests, the RMIP nanoparticles exhibited high molecular recognition for the 

RNase A with favourable rebinding kinetics. However, molecular selectivity was only 

modest for the LMIP nanoparticles and totally absent for the BMIP nanoparticles. In order 

to understand the results, further investigations were carried out using CD 

spectropolarimeter to observe the conformational changes experienced by the proteins in 

the SDS/PVA surfactant system which reflect the surfactant-protein interactions in the 

pre-polymerisation mixture. It was proposed that the interaction between the monomer-

encapsulated surfactant micelles and the template protein plays an important role in the 
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imprinting process in the miniemulsion polymerisation system. An optimal protein-

surfactant interaction must be achieved which is strong enough to allow the protein to be 

partitioned across the oil-water phase boundary but at the same time, not too extensive to 

prevent any drastic unfolding of the protein. 
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Chapter 5 

Conclusions 

 

In this research project, further investigations on Tan and Tong’s protein imprinting work, 

which was published in 2007, have been carried out in order to obtain a deeper 

understanding of the imprinting process involved in their work. Tan had successfully 

synthesised uniform spherical nanoparticles with the ability to recognise and bind target 

protein molecules using molecular imprinting. A simple one-step miniemulsion 

polymerisation had been employed, with methyl methacrylate (MMA) and ethylene glycol 

dimethacrylate (EGDMA) as the functional monomer and the cross-linker, respectively. 

The use of the MMA had allowed molecular recognition to be achieved in an aqueous 

environment principally via hydrophobic interactions between the binding cavities on the 

imprinted particle surface and the protein molecules. In this final chapter, the findings and 

conclusions of the different investigations which were carried out in this research project 

are described. Furthermore, future investigations which could be carried out are also 

mentioned.     

 

5.1 Determining the principal factors which affect the imprinting 

efficiency 

 

The objective of this investigation was to optimise Tan’s method and determine the 

principal factors and conditions which affect the ability of the imprinted nanoparticles to 

specifically recognise the target protein. Four batches of MIPs under different conditions 
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were synthesised using a modified protocol based on Tan’s work using BSA as the 

template. Three different factors were chosen: the MMA:EGDMA ratio, the amount of 

BSA added, and the polymerisation temperature. The MIPs and NIPs synthesised were 

uniform and spherical with diameters ranging from 40 nm to 50 nm. Batch rebinding tests 

were carried out to test their imprinting efficiency but only one set of MIPs (condition T8) 

exhibited any molecular recognition for the target BSA and the optimisation analysis was 

not completed. At condition T8, the higher polymerisation temperature had increased the 

extent of polymerisation, decreasing the swelling ratio (SR) and improving the imprinting 

efficiency. The higher concentrations of the functional monomer and the template protein 

(MMA and BSA, respectively) had also improved the specific recognition of the MIP by 

increasing the extent of formation of binding sites on the MIP’s surface.  

  

5.2 Investigating protein-surfactant interactions and their role in 

successful imprinting    

 

In Chapter 4, Tan’s method was used without any modification to synthesise RNase A-, 

BSA, and Lys-imprinted nanoparticles. The resulting particles were of similar size as 

previously but had a much smaller SR. The RNase A-imprinted nanoparticles displayed 

excellent specific recognition, whereas the Lys- and BSA-imprinted nanoparticles 

displayed limited and no molecular selectivity, respectively.  It was hypothesised that in 

the miniemulsion, the partitioning of the protein across the oil-water phase boundary of 

the monomer-encapsulated surfactant micelle was responsible for the creation of 

imprinted sites on the nanoparticles surface. As a result, CD spectropolarimetry analysis 
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was carried out to study the interactions between the proteins and the surfactant micelles. 

It was observed that the BSA experienced no conformational changes in the surfactant 

solution, reflecting the lack of interactions between the protein molecules and the 

surfactant micelles. In contrast, the Lys interacted significantly with the surfactant 

micelles and experienced a drastic change in conformation. It was concluded that the lack 

of surfactant-protein interaction was responsible for the failure of the BMIP nanoparticles 

to exhibit any molecular selectivity. However, a large degree of interaction would result in 

the lost of the protein’s native conformation and cause the ‘incorrect template’ to be 

imprinted, as shown by the LMIP particles.  An optimal interaction must be reached for 

molecular imprinting to be successful, as in the case of RMIP particles, so that the protein 

is partitioned across the oil-water interface without losing its native conformation.  

 

5.3 Suggestions for future work  

 

5.3.1 Further investigation on the protein-surfactant interaction 

 

To confirm the results of the CD spectropolarimetry analysis, dynamic light scattering 

(DLS) measurements could also be used to study the size of the micelles in the presence of 

the proteins. An increase in the micelle’s size would be expected when there is a large 

degree of interaction between the protein and surfactant micelles.  

 

In Section 4.3.7, one of the possible explanations for the lack of interaction was the net 

electrical charge of the protein. This hypothesis could be tested by replacing the SDS, 
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which is an anionic surfactant, by a cationic surfactant (e.g. cetyl trimethylammonium 

bromide) and DLS could be used to observe the changes in the sizes of the micelles. BSA, 

being negatively charged at neutral pH, would interact more with CTAB than SDS, and 

conversely, lower interactions would be observed for Lys and RNase A.       

  

5.3.2 Modification of the BSA to improve its interaction with the surfactant micelle 

 

It was demonstrated in this research project that Tan’s method for protein imprinting was 

only effective in synthesising imprinted nanoparticles when RNase A was chosen as the 

template protein. The failure of the BMIP particles to exhibit any molecular selectivity 

was attributed to the lack of interactions between the BSA molecules and the surfactant 

micelles. This interaction could be improved by increasing the hydrophobicity of the 

protein which in turn, would aid the partitioning of the protein across the oil-water phase 

boundary. Moderate chemical modifications of the BSA could be carried out to increase 

its hydrophobicity without altering its native conformation. BSA possesses a single 

sulphhydryl group (Cys-34) located near the surface of the protein which could be targeted 

for alkylation (Carter and Ho, 1994; Peters Jr., 1995). Haloacids and their amides readily 

alkylate the free cysteine residue in preference to the other functional groups in the protein 

and their reactions could be restricted largely or exclusively to the SH group under 

appropriate conditions, such as short reaction time and low excess reagent (Torchinskii, 

1974). 
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