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SUMMARY

The Brain Controlled Wheelchair (BCW) is a simple robotic system designed for
people, such as locked-in people, who are not able to use physical interfaces like
joysticks or buttons. Our goal is to develop a system usable in hospitals and homes
with minimal infrastructure modifications, which can help these people regain some
mobility.

The main challenge is to provide continuous and precise 2D control of the wheelchair
from a Brain Computer Interface, which is typically characterized by a a very low
information transfer rate. Besides, as design constraints, we want our BCW to be
safe, ergonomic and relatively low cost. The strategy we propose relies on 1) con-
straining the motion of the wheelchair along predefined guiding paths, and 2) a slow
but accurate P300 EEG brain interface to select the destination in a menu.

This strategy reduces control to the selection of the appropriate destination, thus
requires little concentration effort from the user. Besides, the trajectory is predictable,
which contributes to reduce stress, and eliminates frustration that may be associated
with trajectories generated by an artificial agent. Two fast BCIs are proposed to allow
stopping the wheelchair while in motion. A hybrid BCI was developed to combine
the slow P300 BCI used for destination selection with a faster modality to stop the

wheelchair while in motion.

viil



Experiments with healthy users were conducted to evaluate performances of the
BCIs. We found that after a short calibration phase, the destination selection BCI
allowed the choice of a destination within 15 seconds on average, with an error rate
below 1%. The faster BCI used for stopping the wheelchair allowed a stop com-
mand to be issued within 5 seconds on average. Moreover, we investigated whether
performance in the STOP interface would be affected during motion, and found no
alteration relative to the static performance.

Finally, the overall strategy was evaluated and compared to other brain controlled
wheelchair projects. Despite the overhead required to select the destination on the
interface, our wheelchair is faster than others (36% faster than MAIA): thanks to
the motion guidance strategy, the wheelchair always follows the shortest path and a
greater speed is possible. Comparison was also performed using a cost function that
takes into account traveling time and concentration effort; our strategy yields by far
the smallest cost (the best other score is 72% larger).

This work resulted in a novel brain controlled wheelchair working prototype. It al-
lows to navigate in a familiar indoor environment within a reasonable time. Emphasis
was put on user’s safety and comfort: the motion guidance strategy ensures smooth,
safe and predictable navigation, while mental effort and fatigue are minimized by

reducing control to destination selection.
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CHAPTER 1

Introduction

1.1 Motivation

Amyotrophic Lateral Sclerosis (ALS), brainstem stroke, brain or spinal cord injury,
cerebral palsy, muscular dystrophies, multiple sclerosis, and numerous other diseases
impair the neural pathways that control muscles or impair the muscles themselves.
They affect nearly two million people in the United States alone [1,2]. Those most
severely affected may lose all voluntary muscle control and may be completely locked-
in to their bodies.

Although there are no statistics available on the number of patients with locked-in
syndrome, the locked-in population is growing due to advances in artificial respiration.
One estimation based on National Institute of Health statistics on brain-stem strokes
and survival information, puts the number at as many as 50,000 individuals in the
United States alone.

In order to help physically challenged people control a computer, a communication
device or a wheelchair, various input devices are available. This includes a simple stick
held between the teeth, buttons and joysticks of various sizes that can be activated

by various parts of the body, gaze tracking systems or head movement based systems



to enable control of a cursor on a screen. However, all those input devices are of no
use to locked-in people.

The only alternative for locked-in people is to establish communication and control
channels directly from the brain, bypassing the disfunctioning brain’s normal output
channels of peripheral nerves and muscles. In a Brain Computer Interface (BCI),
signals from the brain are acquired and processed to extract specific features that
reflect the user’s intent. These features are then translated into commands to operate
a device.

The Brain Controlled Wheelchair (see Figure 1.1) described in this thesis was

designed to provide some motion capability to locked-in people.

1.2 Objectives and Scope

A common feature between all BClIs is that, since the recorded brain signal is very
noisy and has a large variability, either the uncertainty on the command will be high,
or the time between consecutive commands will be long, in the order of seconds. Can
such a poor signal be used to safely and efficiently control a wheelchair that requires
a real-time specification of its position within the three dimensional space of planar
motion? This is the challenge we address in this thesis.

Numerous applications of BCIs are reported in the literature, mostly for commu-
nication or computer control. However, a brain controlled wheelchair implies more

considerations:
e Safety: especially since it transports a particularly vulnerable person.

e Ergonomy: the wheelchair should provide intuitive and efficient navigation with

a minimum of effort.



Figure 1.1: Photograph of the prototype Brain Controlled Wheelchair (BCW). The
BCW is built on top of a standard powered wheelchair. An EEG cap is used to record
the brain signal.



e Low cost: so that people who need it can afford it.

Our goal in this work is to propose a strategy to control a wheelchair from a BCI.
This requires a robotic wheelchair able to assist the user with the navigation task, and
a BCI together with a control scheme adapted to the task. All of these requirements
should be achieved while respecting the above constraints.

While the signal processing part of the BCI was based on previous developments
at the Institute for Infocom Research (I?R) in Singapore, it was adapted here to the
purpose of controlling a wheelchair safely and comfortably. Its specific properties were
evaluated experimentally and analyzed, and the overall control integrated different

modalities to yield an efficient solution for controlling the wheelchair.

1.3 Design Constraints

As mentioned above, to be successful, a robotic wheelchair has to fulfill the fol-
lowing constraints: safety, ergonomy and low cost.

Safety is a critical factor for any device operating near or with humans. A
wheelchair, although usually operating at low speed, has to comply to many safety
requirements before being allowed on the market, for it transports a particularly
vulnerable person. Robotic wheelchairs [3-10] generally rely on multiple sensors which
provide information about the surrounding area to the navigation module which then
decides what is the best course of action to safely reach destination. The question is
to which extent can a user trust a robot, which perception and inference capacities
remain low to this date? Although avoiding collision with walls, furniture and other
obstacles is a relatively easy task for modern robots, avoiding stairs, bumps and

unstable grounds, zones with low ceilings, proximity to dangerous areas (a fireplace



for instance), etc., is a complex problem. Some of these situations might be very
difficult to detect by general sensors, or many specialized sensors would be needed
to detect each of them. The question is even more relevant for a brain controlled
wheelchair since it is designed to transport a locked-in person who may not have the
ability to press an emergency stop button.

By ergonomy we mean that the wheelchair should allow the subject to reach
destination with as little effort as possible. The later point is particularly impor-
tant for a brain controlled wheelchair since using a BCI requires concentration and
may prove exhausting. The control burden must be as light as possible, yet allow
certain freedom to the user, such as stopping at any time during motion or change
course. Besides, as for any robot designed to transport people, the trajectory should
be smooth and correspond to the user’s understanding of a trajectory as much as pos-
sible. Since human interpretation of the environment often differs from the robot’s
interpretation, the decision taken by the system might seem awkward to a human
observer [11]. Moreover, autonomous vehicles have been observed to refuse to move
forward due to some obstacles, while a human driver would easily be able to move its
way through [8]. This undesirable behaviors may prove irritating and with time lead
to the user stopping using the system.

Finally, the system should be available at a low cost so that people who need
it can afford it. The BCI is already an expensive equipment; a powered wheelchair
with the required amount of straps and cushions to support the user’s body is also an
expensive device. Therefore, the additional equipment, as well as the modifications
required to mount the sensors, should not cost more than a fraction of the price of

the wheelchair.



1.4 Overview of Our Strategy

Providing a robot that would respect all constraints mentioned above is the goal
of many researchers in robotics. The biggest challenge is that the robot has to react
appropriately to a wide variety of situations that occur while exposed to unconstrained
environments. While improvements are made each year, solutions remain expensive,
complex and unsatisfying.

However, the problem can be simplified by limiting the usage of the wheelchair
to a few environments only: the user’s home, office, care center, etc. By doing so,
the environment can be learned in collaboration with a healthy human operator, thus
eliminating the problem of detecting complex obstacles. Following that simplification,
we decided to represent the environment by a network of paths connecting a finite
but unlimited number of locations of interest for the user. These paths are human
defined and stored in the system memory, and serve as guides for all subsequent
motions. The trajectory is thus safe and natural, while no complex and expensive
sensors are required.

To navigate with the wheelchair, the user simply selects the desired location while
the wheelchair takes care of the whole trajectory by following the appropriate guiding
path. The user can stop the wheelchair along the way, in case an unexpected obstacle
appears on the path, or simply if he/she desires so. The control is thus limited
to the initial selection of the destination and rarely issuing stop commands, hence
minimizing the control effort.

This strategy therefore fulfils all constraints mentioned above. Safety is insured
by the use of human designed paths, plus the supervision by the driver for unexpected

situations. And since we are using only a few simple sensors the low cost constaint
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is also respected. The ergonomy constraint is fulfilled by the use of human designed
paths which provide smooth and natural trajectories, plus the destination selection
control strategy that minimizes the control effort.

However, the usage of the wheelchair is limited to pre-defined trajectories and
locations, and although new locations can be added at any time, the wheelchair does
not offer the possibility to go everywhere the user would like to. Besides, it is assumed
that the environment does not change, and especially that guide-paths are kept ob-
stacle free, as the robot is not equipped with sensors that would allow it to detect
obstacles. We think that this constraint is easily fulfilled since the wheelchair’s motion
is constrained to familiar environments: other person evolving in this environment

will be aware of that constraint and voluntarily keep the guide-paths clear.

1.5 Organization of the Thesis

Chapter 2 reviews existing technology to record the brain activity and construct
a BCI. We will then present other brain-controlled wheelchair projects.

The BCW hardware, the localization system we use, and the software architecture
for real time control are described in Chapter 3.

Chapter 4 explains in detail the path following navigation system. After a brief
mathematical description of the path following controller, we will detail the Elastic
Path Controller, which was developed during this project to allow temporary escape
of the guiding path upon user’s instruction. We will present experiments that prove
that motion guidance effectively simplifies motion control. Then we will see how to

create and edit maps of guiding paths.



Chapter 5 describes the BCI we use in this project for destination selection and
presents experimental results with able subjects using the interface.

Chapter 6 presents two fast BCIs to allow stopping the wheelchair in a decent
time while in movement. A novel hybrid BCI, developed to combine the destination
selection BCI and the fast BCI for stopping, is introduced. Off-line and on-line
evaluation results are presented.

Chapter 7 evaluates the developed system and compares it to other brain con-

trolled wheelchair projects.

1.6 Contributions

The major contributions of this thesis are:

The control strategy itself, which provides a way for controlling a wheelchair
from a low information transfer input device such as a BCI, safely and efficiently

while requiring minimum effort from the user and a minimal amount of sensors.

e The development of a robotic wheelchair and its integration with a BCI, which
demonstrated the first brain controlled wheelchair able to move in a building

environment.

e The elastic path controller (EPC) which allows temporary escape from the

guiding path, and used for on-line path editing.
e The evaluation of the existing P300 interface for item selection.

e The modification of the existing P300 BCI for stopping, and its evaluation.

This work resulted in many peer-reviewed publications. The list can be found in

Appendix C.



CHAPTER 2

Literature Review

In this chapter we will see what are the different technologies available to record
(Section 2.1) the brain activity. Then, in Section 2.2 we will review some EEG-
based BCls. Finally - in Section 2.3 - we will review other brain-controller wheelchair

projects.

2.1 Recording the Brain Activity

The first step toward a BCI is recording the activity of the living brain. This can
be done invasively by surgically implanting electrodes in the brain, or non-invasively.

In this section we will review various brain imaging technologies.
2.1.1 Invasive Methods

Biologists can measure the potential at different parts of a single neuron in a
culture. Recording neuron activity in a living brain is possible using surgically im-
planted micro-electrodes arrays, although it is no longer a single neuron recording
but the activity of groups of neurons.

Monkeys with brain implants have been reported [12-14] to brain-control the
displacement of a cursor on a screen or to control the motion of a robotic arm.

Surgical implantation of electrodes is still consider too risky to be performed on

9



humans. However, some teams have had successful results with them: Kennedy [15]
and Donoghue [16] reported successful brain-control of a mouse pointer on a computer
screen with patients who had been implanted an electrode in the outer layer of the

neocortex.
2.1.2 Blood Flow Based Methods

The typical blood flow based methods include Functional Magnetic Resonance

Imaging (fMRI) and Near-Infrared Imaging.

Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) [17] is a relatively recent imag-
ing technique that aims to determine the neuro-biological correlate of behavior by
identifying the brain regions that become “active” during the performance of specific
tasks in vivo.

The technique is based upon the different magnetic susceptibilities of the iron
in oxygenated and deoxygenated hemoglobin. Oxygenated blood is diamagnetic and
possesses a small magnetic susceptibility, while deoxygenation of hemoglobin produces
deoxyhemoglobin, which is a significantly more paramagnetic species of iron. Blood
Oxygenation Level Dependent (BOLD) measurements measure local variation in the
relaxation time caused by variations in the local concentration of deoxygenated blood.

It has become the diagnostic method of choice for investigating how a normal,
diseased or injured brain is working. The spatial resolution can be sub-millimeter
with temporal resolutions on the order of seconds. The ability to measure solitary
neural events is not yet possible but improvements in sensitivity have been made

steadily over the past 10 years. Figure 2.1-b shows a typical fMRI machine.
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Functional Near-Infrared Imaging (fNIR)

Functional Near-Infrared Imaging (fNIR) is a relatively novel technology based
upon the notion that the optical properties of tissue (including absorption and scat-
tering) change when the tissue is active. Two types of signals can be recorded:
fast scattering signals, presumably due to neuronal activity [18] and slow absorption
signals, related to changes in the concentration of oxy- and deoxy-hemoglobin [19].
However, fNIR lacks the spatial resolution of fMRI and cannot accurately measure
deep brain activity.

The fast fNIR signal is measured as an “event-related optical signal” (EROS). The
spatial localization of fast and slow fNIR measurements both correspond to the BOLD
fMRI signal [20]. The latency in the slow (hemodynamic) signal roughly corresponds
to that for the BOLD fMRI response [21].

The major limitation of optical methods (both fast and slow signals) is their pen-
etration (max: approximately 3 cm from head to surface), which makes it impossible
to measure brain structures such as the hippocampus or the thalamus, especially if
they are surrounded by light-reflecting white matter. However, the vast majority of
the cortical surface is accessible to the measurements. The technology is relatively
simple and portable, and may serve a sort of portable, very rough equivalent of fMRI,
which may supplement or substitute for some EEG measures.

Figure 2.1-a shows the setup typically used for NIR imaging.
2.1.3 Electromagnetic Based Methods

The currents generated by an individual neuron are too tiny to be recorded non-

invasively, however excitatory neurons in the cortex all have their axon parallel one to

11



another and grouped in redundant populations called macro-columns [22] which act

as macroscopic sources of electromagnetic waves that can be recorded non-invasively.

Magnetoencephalography (MEG)

Magnetoencephalography (MEG) [23-25] is an imaging technique used to measure
the magnetic fields produced by electrical activity in the brain. Because of the low
strength of these signals and the high level of interference in the atmosphere, MEG
has traditionally been performed inside rooms designed to shield against all electrical

signals and magnetic field fluctuations. Figure 2.1-c shows a typical MEG equipment.

Electroencephalography (EEG)

Electroencephalography (EEG) is the recording of electrical activity along the
scalp produced by the firing of neurons within the brain [26,27]. The recording is
obtained by placing electrodes on the scalp with a conductive gel or paste. The
number of electrodes depends on the application, from a few to 128, and they can
be mounted on a cap for convenience of use (see Figure 2.1-d). The electric signal
recorded is of the order of few microvolt, hence must be amplified and filtered before
acquisition by a computer. The electronic hardware used to amplify, filter and digitize
the EEG signal is of the size and weight of a book; it is easily transportable and
relatively affordable. Spatial resolution is on the order of centimeters while the time

of response to a stimulus is on the order of 100s of milliseconds.
2.1.4 Summary

Table 2.1 shows a comparison of the six methods presented above. Only NIR

imaging and EEG can be used for a BCI: MEG and fMRI equipment is too expensive
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Table 2.1: Comparison of brain recording technologies

Spatial Temporal
Resolution  Resolution Other
Technology (millimeters) (seconds)  Size Constraints
invasive 0.1 0.001 small surgical risk
fMRI 1 5 large high magnetic field
fNIR 1 5 small -
EROS 1 0.05 small -
MEG 10 0.01 large  shielding required
EEG 10 0.01 small -

and cumbersome, and invasive methods are not safe enough yet. However, as NIR is

a relatively new method, it is not as popular as EEG in BCI studies.

2.2 EEG-based BClIs

A Brain Computer Interface (BCI) is any system which can derive meaningful
information directly from the user’s brain activity in real time [28]. The most impor-
tant applications of the technology are mainly meant for the paralyzed people who are
suffering from severe neuromuscular disorders. Most BCIs use information obtained
from the user’s encephalogram (EEG), though BCIs based on other brain imaging
methods are possible. This section briefly describes several EEG-based BCIs. The

P300 BCI is described in detail in next section.
2.2.1 Slow Cortical Potential (SCP)

The Slow Cortical Potential (SCP) signal is the modulation of the global EEG
potential (very low frequency). It is recorded by a single electrode at the top of the
head. Because SCPs indicate the overall preparatory excitation level of a cortical
network, they are universally present in the human brain, and therefore make them a

13



Figure 2.1: Equipment to record the brain activity: a)NIRS, b)FMRI, ¢)MEG,
d)EEG.
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good signal for BCIs. Healthy subjects as well as severely paralyzed patients can learn
to self-control their SCPs when they are provided with visual or auditory feedback
of their brain potentials and when potential changes in the desired direction are
positively reinforced.

Birbaumer’s team [29] in Tiibingen University developed a brain computer in-
terface device called the Thought Translation Device (TTD), in which the vertical
position of a feedback cursor reflects the amplitude of an SCP shift. After a patient
has achieved reliable control over his or her SCP shifts, the responses can be used
to select items presented on a computer screen. A spelling program included in the
TTD allows patients to select single letters by sequential selection of blocks of letters
presented in a dichotomic structure with five levels (Figure 2.2): the left to right
movement of the cursor is constant; the vertical movement is controlled by the user’s
brain activity. To improve speed of communication, this program has been supple-
mented by a dictionary offering word completion after only a few letters have been

selected.

2.2.2 P300

The P300 evoked potential is a well studied and stable brain signal [30,31] be-
longing to the Event Related Potential (ERP) group. It is a natural and involuntary
response of the brain to rare or infrequent stimul