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SUMMARY viii

Summary

Independent substitution model study is a classical topic in molecular evolution. How-

ever, empirical evidence suggests that the context dependent model is a more accurate

description of the DNA evolution process. Thus, there is a great demand for statistical

approaches for context dependent substitution models, which can help better understand

the evolution relationship of species.

In this thesis, we propose a general context dependent framework. Based on the

framework, we investigate two-flanking sites context dependent model and derive two

sub-models by clustering the substitution matrices. Moreover, we develop a modified

parsimony method and maximum pseudo-likelihood method to estimate the parameters

in our models. We conduct experiment on the simulation data for our proposed models

and methods. The methods were also applied to the real data.

Our work is different from previous work in the following aspects:

(1)The problem: Previous works on context dependent models investigated the es-

timation of substitution rates from two known descendent sequences that evolved from
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the same unknown ancestor sequence. Little research was done to estimate context de-

pendent substitution rates from a given ancestor sequence and its descendent sequence.

In our work, the rate estimation was based on the evolution from a known ancestor to a

known descendent. We made use of the phylogenetic tree of the species to first estimate

the the ancestor.

(2)Model definition: We propose a general context dependent model framework,

which used a mathematical of representation to describe the general cases of context

dependent and independent models. Based on the general model, different context de-

pendent models can be derived as the special cases of the general model.

(3)Model simplification: In context dependent substitution models, to describe the

substitution process, substitution matrices are defined for different context. This in-

evitably introduces many parameters. The usual approach for reducing the number of

parameters is to reduce the number of independent parameters in each substitution ma-

trix. We have proposed to reduce the number of matrices based on the knowledge of

DNA evolution. Simulation showed that our models work well. To reduce the num-

ber of matrices, the contexts need to be grouped together. In the thesis, we propose to

use statistical method to cluster the context cases. This not only confirms our grouping

methods but also provides a general way of handling this problem.

(4) Estimation methods: Parsimony approach is normally used in the estimation of

independent substitution models. We have proposed an improved parsimony method

and applied it to context dependent models. It overcomes the inaccuracy of usual meth-
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ods in dealing with adjacent changes in DNA evolution. Experiment shows an im-

provement over the usual approach. We have proposed to use direct optimization of the

pseudo-likelihood approach. However, optimization starting from a set of fixed initial

values takes too long to converge. By providing the rates estimated from Parsimony

method as the initial optimization values, the optimization process converges quickly.

(5) Simulation process and evaluation methods: Previous research normally worked

with limited real data. In our work, we have developed a process to simulate context

dependent DNA sequence evolutions. This provides us a flexibility of doing various

experiment on simulated data. In the evaluation of different models, we have used the

adjusted pseudo-likelihood ratio test.
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Chapter 1

Introduction

The molecular evolution process is normally studied by looking at nucleotide substitu-

tions in DNA sequence. Substitution is a process whereby a nucleotide changes from

one state to another in a collection of populations. It is the result of mutation, selection

and fixation (p53, Graur and Li. 2000). Substitution models are used to describe the

process of nucleotide changes. Methods with different assumptions have been proposed

to model the substitution process.

Most of the existing models for nucleotide substitution process assume that neigh-

boring sites evolve independently. The independent assumption is just an approxima-

tion of the actual evolution process because it has been observed that neighboring nu-

cleotides do have an effect on the substitution of nucleotides (Krawczak et al. 1998).

Therefore, when dealing with substitution rates, we need to consider context depen-

dent substitution models, which allow the substitution of nucleotides to depend on their
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neighboring nucleotides. In the following sections, the background knowledge about

DNA evolution will be introduced and the literature related to context dependent mod-

els will be reviewed in detail.

1.1 DNA sequence

The hereditary information in an organism is carried by DNA (deoxyribonucleic acid)

molecules. DNA usually consists of two complementary strands twisted around each

other to form a double helix. Each strand is a linear polynucleotide consisting of four

kinds of nucleotides: adenine(A), guanine(G), cytosine(C) and thymine(T ). The four

nucleotides are grouped into two purines (A and G) and two pyrimidines (C and T ).

The two complementary strands are joined through the pairing of complementary nu-

cleotides. A always pairs with T , and G always pairs with C.

In molecular evolution, a sequence alignment is a way of arranging the sequences

of DNA, RNA, or protein to identify regions of similarity that may be a consequence

of functional, structural, or evolutionary relationships between the sequences. Aligned

sequences of nucleotide or amino acid residues are typically represented as rows within

a matrix. Gaps can be inserted into compared sequences so that identical or similar

characters are aligned in successive columns.

In the typical case, a DNA sequence is represented by a string of letters, e.g.

AAAGTCTGAC,
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in which each of the letter represents a nucleotide. When a substitution happens, one

of the letters will change to other types. Sometimes insertion or deletion of nucleotides

may happen during evolution. When an evolved sequence is aligned with its original

sequence, the alignment may be punctuated by gaps. In this thesis, we disregard the

gaps and consider only the point mutations where a single nucleotide is replaced by

another nucleotide. We also do not consider the simultaneous substitution of more than

one nucleotide at one time. Whealan and Goldman (2004) described a model which

allows doublet and triplet mutations.

The information carried by DNA is held in the sequence of pieces of DNA called

genes. A gene is a sequence of DNA that contains genetic information and can influence

the phenotype of an organism. Within a gene, the sequence of bases along a DNA strand

is transcribed into a messenger RNA sequence, which is then translated into amino

acid. The relationship between the nucleotide sequences of genes and the amino-acid

sequences of proteins is determined by the rules of translation, known collectively as

the genetic code. The genetic code consists of three-letter “words” called codons (e.g.

ACT,CAG,TTT ). It is a set of rules whereby information encoded in genetic material

(DNA or RNA sequences) is mapped into amino acid by the cellular machinery.

Since a codon consists of three nucleotides and there are four different types of

nucleotides, there are 43 = 64 possible codons. In the genetic code, 61 of these codons

code for specific amino acids and are called nonstop codons; while the remaining three

are stop codons. The stop codons are for the standard genetic code UAG (in RNA) /
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T AG (in DNA) , UAA/T AA , and UGA/TGA. Translation stops when a stop codon is

encountered. There are only 20 amino acids, so some of the 61 nonstop codons encode

the same amino acid. Codons that map into the same amino acid are synonymous;

otherwise they are nonsynonymous.

When we look at the DNA sequences of two species (an ancestor species and a

descendant species), normally the length of the two sequences are different due to in-

sertion and deletion of nucleotides in evolution. To determine the extent of similarity

between them, the DNA sequences from two species have to be aligned first. The align-

ment identifies conserved regions, and divergent regions so that the phylogeny between

a group of species can be inferred.

1.2 Markov processes

In analysis of DNA sequences, much of the mathematics of the nucleotide substitution

process relies on the assumption of a stationary homogeneous Markov process (Kelly

1979). Briefly, we describe what this process is about.

Let X(t) be a stochastic process taking values in a finite state space S for t ∈ [0,∞).

If (X(t1), X(t2), . . . , X(tn)) has the same distribution as (X(t1 + s), X(t2 + s), . . . , X(tn +

s)) for all t1, t2, . . . , tn, s ∈ [0,∞), then the stochastic process X(t) is stationary. The

stochastic process X(t) is a Markov process if for any n ≥ 1, and 0 ≤ t1 ≤ t2 ≤ . . . ≤
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tn ≤ tn+1,

Pr(X(tn+1) = jn+1|X(t1) = j1, X(t2) = j2, . . . , X(tn) = jn) = Pr(X(tn+1) = jn+1|X(tn) = jn)

(1.1)

for any j1, . . . , jn+1 ∈ S . In simple words, equation (1.1) says that, given the present

state, the future and past states are independent.

A Markov process is time homogeneous if Pr(X(t+ s) = j|X(t) = i) does not depend

on t. For a time homogeneous continuous time Markov process, P(t) = {pi j(t)} and

pi j(t) = Pr(X(s + t) = j|X(t) = i) (1.2)

for any s and t.

A stationary distribution π is a vector whose entries sum to 1, and satisfies the

equation

π = πP(t) (1.3)

for any t.

Let X(t) be a homogeneous continuous time Markov process with a finite state space

of four nucleotides. A Markov process is usually specified by a rate matrix Q, whose

elements represent instantaneous substitution rates among the four nucleotides. The

rate matrix Q is defined as follows:

(1) The transition rate from state i to state j (i , j) is defined as

qi j = lim
s→0

Pr(X(t + s) = j|X(t) = i)
s

. (1.4)
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(2) The diagonal entry qii is defined as

qii = −
∑

j,i

qi j (1.5)

Let P(t) =
{
pi j(t)

}
be the transition probability matrix, that is,

pi j(t) = Pr(X(t) = j|X(0) = i),

then P(t) is given by

P′(t) = P(t)Q. (1.6)

That is

P(t) = exp(tQ). (1.7)

1.3 Independent substitution models

Statistical models that deal with DNA sequence evolution can be constructed from indi-

vidual nucleotides or codons. A standard assumption is that nucleotides along the DNA

sequence evolve independently of one another. For codon models, it is normally as-

sumed that the nucleotides within a codon are context dependent; the codons, however,

are assumed to evolve independently of one another.

1.3.1 Nucleotide substitution models

In homologous DNA sequences, nucleotide substitution is commonly assumed to follow

a stationary homogeneous Markov process. The rate matrix Q has at most 42 − 4 = 12
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parameters. The most general form of substitution model is the unrestricted model, in

which there are no no constraints between parameters, i.e. all 12 parameters are free

parameters, as shown in Q Matrix 1. The “-” symbols along the main diagonals indicate

elements to be defined as qi,i = −∑
j: j,i, qi, j.

Q matrix 1: Unrestricted substitution rate matrix

A C G T

A − a b c

C d − e f

G g h − i

T j k l −

Constraints can be imposed to reduce the number of free parameters while still retaining

sufficient accuracy.

Tavare (1986) first proposed the reversible substitution models. A stationary Markov

process X(t) is reversible if and only if there exists a collection of positive numbers π j

summing to unity that satisfy the balanced equations

πiqi j = π jq ji (1.8)

where 1 ≤ i, j ≤ 4. If this condition holds, then π is the stationary distribution of

the process, and the reversible model can be obtained. It reduces the number of free

parameters to 9, as shown in Q matrix 2. They assumed that qi j = ai jπ j, then from the

equation (1.8), we can obtain

πiai jπ j = π ja jiπi, (1.9)
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that is, ai j = a ji. For example, a12 = a21 = a, a13 = a31 = b and so on.

Q matrix 2: The general reversible substitution rate matrix

A C G T

A − aπC bπG cπT

C aπA − dπG eπT

G bπA dπC − fπT

T cπA eπC fπG −

One widely-used model is the HKY model (Hasegawa, Kishino and Yano 1985), as

shown in Q matrix 3. The HKY model has a parameter κ for the ratio of the rates of

transition (a change within A,G or within C,T ) to transversion ( a change from one of

the groups A,G and C,T to the other), and allows for a general stationary distribution

π = (πA, πG, πC, πT ) of the Markov process. There are altogether five parameters.

Q matrix 3: The HKY85 substitution rate matrix

A C G T

A − πC κπG πT

C πA − πG κπT

G κπA πC − πT

T πA κπC πG −

If π = (1
4 ,

1
4 ,

1
4 ,

1
4 ), the model reduces to the JC69 model (Jukes and Cantor 1969), which

is the earliest and simplest model. In this model, all nucleotides undergo transitions at

the same rate.
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1.3.2 Codon substitution models

Substitution models for independent codon sequence are much more complicated. On

one hand we should keep some of the modeling ideas from the nucleotide models; on

the other hand, we need to take into consideration translation of a codon to its corre-

sponding amino acid. Because of differences in their effects on the physiology of an

organism, synonymous and nonsynonymous substitutions can have quite different dy-

namics. For example, synonymous substitutions usually occur at a much faster rate

than nonsynonymous substitutions. Hence, in coding sequences it is often desirable to

separate these two.

We assume that mutations occur at the three codon positions independently, and

only single-nucleotide substitutions are permitted to occur instantaneously, as mutations

involving more than one position will be ignored. The evolutionary processes in the

codons are assumed to be independent identical Markov processes with rates described

by a matrix with 61 × 61 entries.

DNA substitution mutations are of two types. Transitions are interchanges of A ↔

G, C ↔ T . Transversions are interchanges of A↔ T , G ↔ T , A↔ C and C ↔ G.

Goldman and Yang (1994) proposed a complex model that incorporates a transi-

tion/transversion parameter and differentiates different nonsynonymous changes. They

considered different synonymous (dS ) and nonsynonymous (dN) substitution rates. Yang

(1998) developed the codon-based likelihood models that allow for variable dN/dS ra-
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tios among lineages. Following the notation of Yang (1998), the rate matrix is termed

Q, and individual entries in this matrix, termed qi j, correspond to the relative rate of

change from codon i to codon j. The qi j(i , j) are defined as

qi j =



0 more than one nucleotide difference

π j synonymous transversion

π jκ synonymous transition

π jω nonsynonymous transversion

π jκω nonsynonymous transition.

where κ is the transition/transversion rate ratio, ω is the nonsynonymous/synonymous

rate ratio, and π j is the equilibrium frequency of codon j, calculated from the nucleotide

frequencies at the three codon positions. Under this model, ω = dN/dS .

1.4 Context dependent substitution models

The independent model is a crude approximation in many cases because change of nu-

cleotides is actually affected by its neighboring sites in real data, i.e. the CpG effect

where an excess of C → T substitutions is observed at positions with a CpG dinu-

cleotide (Gojobori et al. 1982). Ideally we have to consider the context of the sites in

substitution model. Therefore, recently neighboring dependence has been considered

in substitution models. Context dependent substitution models describe this kind of

substitution process. Recently, a lot of mathematical and computational frameworks

have been introduced to construct the context dependent substitution models. Arndt et
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al.(2003a) and Arndt and Hwa (2005) considered the case where the ancestral sequence

is known. Lunter and Hein (2004) and Hwang and Green (2004) considered an un-

known ancestral sequence. Christensen (2006) proposed the sequence distribution at

the root for the unknown ancestor.

Various methods have been proposed for the special case of two sequences and a

reversible substitution process that allows for general context-dependent substitution,

with substitution rates for each base depending on the identity of flanking bases. These

models reflect more accurately an assumed process of context-dependent substitution.

With these models, the likelihood computation can no longer be expressed as a prod-

uct over the sites of an alignment, and exact parameter estimation becomes intractable.

Markov chain Monte Carlo (MCMC) (Lunter and Hein 2004; Hwang and Green 2004)

and Expectation-Maximization (EM) (Christensen 2006) algorithms are needed for pa-

rameter estimation.

1.4.1 Context dependent model at the nucleotide level

1. Mixture model

Arndt et al.(2003a) considered a context dependent model at the nucleotide level suit-

able for the description of the noncoding parts of the genome. They derived an approx-

imation to the stationary distribution as follows.

Let λ(yi|xi−1, xi, xi+1) be the rate for a change of xi to yi, when the two neighboring



Chapter 1: Introduction 12

nucleotides are xi−1 and xi+1. It is modeled linearly as:

λ(yi|xi−1, xi, xi+1) = λ0(yi|xi) + λl(yi|xi−1, xi) + λr(yi|xi, xi+1) (1.10)

where λ0 is a rate not depending on the context, λl is a rate depending on the left

neighbor, and λr is a rate depending on the right neighbor.

Arndt et al.(2003b) used the model from Arndt et al. (2003a) with four parameters

in λ0, one nonzero term in λl (CG → CA), and one nonzero term in λr (CG → TG).

Assuming the ancestor is known, they used the pseudo-likelihood instead of calculating

the true likelihood under the model. The likelihood is approximated by a product of

marginal likelihood of the form P(xi(T )|xi−1(0), xi(0), xi+1(0)) for state T , where T ∈

(A,C,G,T ).

Arndt and Hwa (2005) defined a substitution model which included all neighbor-

independent single nucleotide changed and additional neighbor-dependent processes.

Based on this substitution model, they estimated the relative substitution frequencies

and judged their importance in order to be included into the modeling. To estimate

the substitution frequencies, the authors compared a pair of ancestral sequence x =

(x1x2 . . . xn) and its daughter sequence y = (y1y2 . . . yn), where the daughter sequence

represents the state of the ancestral sequence after the latter has undergone substitution

processes for some time.

The log likelihood for sequence y evolving from ancestral sequence x under a given
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substitution model parameterized by the substitution frequencies {r} is given by

log L{r} = log P{r}(y|x) (1.11)

≈ log
L−1∏

i=2

P{r}(yi|xi−1, xi, xi+1)

=
∑

x1 x2 x3

n(x1x2x3 → y2) log P{r}(y2|x1x2x3)

where P{r}(y|x) is the probability of the evolution of the sequence x into y. The numbers

n(x1x2x3 → y2) denote the counts of observations of a base substitution from x2 (flanked

by x1 to the left and x3 to the right) to y2.

2. Overlapping dinucleotide substitution model

Lunter and Hein (2004) introduced the over-lapping dinucleotide substitution model

which allows only single nucleotide substitutions. They considered the neighbor pair

sites together. Since there are four different types of nucleotides, there are 42 = 16

possible pairs. Thus, the parameters of the model are given by a 16 × 16 rate matrix M.

These rates apply to each of the L − 1 pairs of neighboring nucleotides in a sequence

of length L simultaneously. The matrix Rk has dimension 4L × 4L, and corresponds to

M acting on nucleotides k and k + 1 only, with no mutation process acting on any other

nucleotides. The full model has rate matrix R =
∑L−1

k=1 , corresponding to the dinucleotide

substitution process acting on all L − 1 di-nucleotides simultaneously.

For the substitution model, they used only a subset of the 240 free parameters in

the matrix M. The symmetry of the substitution process under reverse-complement
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means that all mononucleotide substitutions can be described by the 4 × 4 × 3 = 48

right-neighbour rates only. They used a single dinucleotide substitution rate with 49

parameter in all in their analysis.

They also derived an algorithm to calculate the likelihood of observing sequences

evolving under this model. They used Bayesian MCMC sampling to infer the model

parameters. In their approach, they used a recursive algorithm for approximation of

likelihood function.

3. Two flanking nucleotides substitution model

Let x = (x1, x2, . . . , xn) be a DNA sequence, where xi is either a single nucleotide or a

single codon, and let x(t) be the process at time t. Here, we review papers where the

rate of change of xi depends on its two flanking neighbors: xi−1 and xi+1. Such models

are known as being context dependent on the two flanking nucleotides.

Hwang and Green (2004) described a context dependent model which allows the

substitution rate at each site to depend on the two flanking nucleotides. For example,

consider two sequence:

Seq1: AACT AGTGA

Seq2: ACGAGCAT A

The two rates of T → A are the same in independent case. But in context dependent

case, the two rates between the T → A are different. The 4th position T → A depend

on CA, the 7th position T → A depend on GG.
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In the independent case, we use one 4 × 4 substitution matrix to describe the sub-

stitution process. In the context dependent model, we use 16 of 4 × 4 substitution rate

matrice to describe their evolution process.

Hwang and Green (2004) assumed that the model is nonstationary and they used a

second order Markov chain model for the distribution of the common ancestor sequence

of the observed sequences. Their context dependent model allows the substitution rate

at each site to depend on the two flanking nucleotides. That is, each site is dependent on

their left and right neighboring sites. A Bayesian MCMC approach was used to obtain

samples from the posterior distribution of the parameters. The authors used a discrete

time approximation of the substitution process for inference in their MCMC approach.

Christensen (2006) extended Christensen et al.’s (2005) work to the nonreversible

and nonstationary nucleotide substitution models. The author also constructed a pseudo-

likelihood method for inference in nonreversible nucleotide substitution models with

neighbor dependent substitution rates. Maximization of the pseudo-likelihood was done

using the EM algorithm.

Hobolth(2008) described statistical inference of neighbor-dependent models using

a Markov chain Monte Carlo expectation maximization (MCMC-EM) algorithm.
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4. Phylogenetic model

Siepel and Haussler (2004) introduced methods for incorporating context-dependent

substitution into phylogenetic models. They considered N-tuples of nucleotides, where

N is either 1, 2 or 3. There are three properties of their model. First, its characterization

of context-dependent substitution within N-tuples of adjacent sites is explicit. Second,

it is able to accommodate overlapping N-tuples. Third, the parameterization of the

substitution process is rich.

For nonoverlapping N-tuples, the parameters were estimated using an EM algo-

rithm, with a quasi-Newton algorithm for the maximization step. Overlapping N-tuples

were efficiently handled by assuming Markov dependence of the observed bases at each

site on those at the N−1 preceding sites, and the required conditional probabilities were

computed using an extension of Felsenstein’s algorithm (Felsenstein 1981b).

1.4.2 Codon context substitution models

If the rate of a change for a site depends on the neighboring sites, the models are called

context dependent models. It is well-known that the substitution of nucleotides does not

occur independently of neighboring nucleotides, e.g. the CpG effect where an excess

of substitutions is observed at positions with a CpG dinucleotide.

Jensen and Pedersen(2000) described the context dependent model at the codon se-

quence, where the rate of substitution at a site depends on the states at neighboring sites.
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They determined the stationary distribution of the Markov process is a Gibbs measure

and developed an MCMC method for estimating the transition probability between se-

quences under the model. Pedersen and Jensen(2001) suggested that in some parts of

the genome one sees less Cs followed by a G than expected from the nucleotide fre-

quencies. They discussed the relation between reversibility and the Markov property

of the stationary measure. They also proposed a Markov chain Monte Carlo (MCMC)

method to evaluate likelihood ratios in the case of two sequences. It is a fairly slow

procedure making it less feasible for multiple comparison of sequences. Huttley(2004)

incorporated dinucleotide effects into codon substitution models. He considered CpG

effects in both transition and transversion substitution rates. For qi j(i , j), he proposed

the following transition codon matrix.

qi j =



0, more than one change

π j, synonymous transversion

π jG, synonymous transversion involving CpG

π jK, synonymous transition

π jKG, synonymous transition involving CpG

π jR, nonsynonymous transversion

π jRG, nonsynonymous transversion involving CpG

π jKR, nonsynonymous transition

π jKRG, nonsynonymous transition involving CpG.

where the G is the CpG substitution rate and other notations consistent with Yang’s(1998)

model.
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Christensen et al. (2005) proposed the context codon model. In their model, they

not only considered the CpG effect, but also considered how each nucleotide within a

codon depends on the two flanking nucleotides.

If a codon sequence x with n codons is written as x = (x1, . . . , xn). To address the

three nucleotides of codon xk, we write xk = (x1
k , x

2
k , x

3
k). When nucleotide x j

k is replaced

by another nucleotide, we write the resulting codon as x̃k.

The rate γ j for a substitution of nucleotide x j
k by z depends on the two codons xk and

x̃k as well as the two flanking nucleotides of x j
k. Then the substitution rate for codon x j

is defined as:

γ j = Q(x, x̃)R j(x j
k, z; x j−1

k , x j+1
k ) (1.12)

(1.13)

where Q specifies a site independent codon model without CpG effect, and R j relates to

the CpG effect. They derived a pseudo-likelihood for the codon substitution models and

constructed a corresponding EM-algorithm. They considered a codon model mainly for

the analysis of two species. The context dependency is through a CG depression across

codon boundaries.

Under the pseudo likelihood approval, the contribution from the ith codon is calcu-

lated as though the evolutionary history of the two flanking nucleotides is known. The

true evolutionary history for a flanking nucleotide is approximated by either a history

with no changes (if the nucleotides in the two sequences are identical) or a history with
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one change in the middle of the time interval (if the nucleotides in the two sequences are

different). Christensen et al.(2005)made a comparison with the full analysis and demon-

strated that estimates obtained from the pseudo likelihood are approved very close to

the maximum likelihood estimates.

1.5 Aim and organization of the thesis

When context is taken into consideration, the number of independent parameters in sub-

stitution models increases dramatically. This makes the estimation of the substitution

rate computationally expensive. To understand the effect of context in the substitution

models in DNA evolution, more research on this topic is needed. We focus our work on

the following aspects:

(1) When dealing with a large number of substitution matrices, most existing work

attempt to reduce the number of independent parameters in the same manner for all the

matrices. Normally, constraints are added to the rate matrices, such as reversibility and

strand symmetry. These are crude approximations, since the true matrices need not obey

such constraints. In our work, we adopt an alternative approach. Instead of reducing

the number of parameters in each matrix, we reduce the total number of parameters by

reducing the number of context dependent matrices.

(2) Parsimony is frequently used in estimation of independent substitution models.

We shall adopt the same approach in the estimation of context dependent models, with
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a view on improving its performance.

(3) In the estimation of substitution rate matrices, previous work involving the max-

imum likelihood approach used the EM algorithm and Bayesian MCMC. These meth-

ods can be very slow. We intend to use direct optimization of the pseudo-likelihood

approach with a view on improving the speed.

(4) Previous research utilized limited real data. In our work, we shall develop a

process to simulate context dependent DNA sequence evolutions. This provides the

flexibility for doing various experiment using simulated data.

We evaluate the performance of context dependent model via a comparative ap-

proach. The present work emphasizes the role of simulation in investigateing the con-

text dependent substitution problem.

In Chapter 2, we introduce the independent substitution process and describe the

general context dependent model. We investigate a special case, the two-flanking sites

context dependent model. We also propose methods to obtain two specific submodels

by reducing the number of matrices.

In Chapter 3, we introduce estimation and evaluation methods. First, we describe

two estimation methods: parsimony and maximum pseudo-likelihoods, using the New-

ton method to maximize the pseudo-likelihood. Then we cover the simulation process.

Finally, we describe evaluation methods.

In Chapter 4, we focus on our experiments for simulation data set. We conduct sim-
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ulation to test the performance of the pseudo-likelihood method against the parsimony

method. We then test the parsimony method for context dependent model, and assess

model adequacy by goodness-of-fit tests.

In Chapter 5, we apply the pseudo-likelihood method to some real data. We use

a clustering method to reduce the number of matrices. We then conduct goodness-of-

fit tests for our context dependent models and compare the performance of different

models.

We conclude the present work in Chapter 6 and provide some possible directions of

further research.
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Chapter 2

The general context dependent

substitution model

In this chapter, we first use the continuous Markov process to describe the substitution

process in a DNA sequence. We then propose our context dependent substitution model.

2.1 Substitution process

Let us consider a DNA sequence of length n, and assume that only one nucleotide

changes at a time in the evolution of that sequence. At each site in the sequence, nu-

cleotide substitution is assumed to follow a continuous time Markov process.

Mathematically, we denote the evolution process of a sequence as {X(t) : t ≥ 0},
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where t is the evolution time. Thus, X(t) = X1(t)X2(t)...Xn(t) is a random sequence and

Xi(t) is the base at position i at time t.

2.1.1 Independent substitution process

Before discussing the general case of substitution process, let us first look at the inde-

pendent substitution process. Assuming the each site evolves is independently during

DNA substitution process, here we consider sequence length of n = 1 and X(t) is a base.

The continuous Markov process works as follows. The nucleotide at a site stays

in one particular state for some time; then at a substitution happens and the nucleotide

changes to another. The evolution process is based on a 4 × 4 substitution rate matrix

Q. The waiting time τ for a state change at a site follows an exponential distribution:

τ ∼ exp(−Q(X(t), X(t))). (2.1)

For example, if X(t) = T , then rates for a substitution from T to C, A, and G are

Q(T,C),Q(T, A) and Q(T,G) respectively. The waiting times for a substitution of T to

the three types (C,A,G) are τT,C, τT,A, τT,G respectively. The latter are assumed to be

exponentially distributed as follows:

τT,C ∼ exp(−Q(T,C));

τT,A ∼ exp(−Q(T, A));

τT,G ∼ exp(−Q(T,G)).
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τT,C, τT,A, τT,G are independent and the time τT follows an exponential distribution,

τT ∼ exp(−Q(T,T )) (2.2)

where Q(T,T ) = −(Q(T,C) + Q(T, A) + Q(T,G)). Then τT , the waiting time for a

substitution of T to any other type, is the minimum of τT,C, τT,A and τT,G.

2.1.2 General context dependent substitution process

We now describe a general context dependent substitution process on a DNA sequence

of length n. In the general substitution process, the state space of the process is S =

{A,C,G,T }n. We assume that the generic state is s = (s1, s2, . . . , sn), and that only

one site change at a time is permitted during the evolution process. The parameter

Q(x, y; s−i) is defined as the rate when the state changes from x to y at site i in context

s−i, where x , y, s−i = s with si unspecified, that is, s−i = (s1, . . . , si−1, ∗, si+1, . . . , sn),

i = 1, . . . , n.

If we fix 1 ≤ i ≤ n, s−i = (s1, . . . , si−1, ∗, si+1, . . . , sn), let x = si and y , x, then

s = (s1, s2, . . . , si−1, x, si+1, . . . , sn) and s′ = (s1, s2, . . . , si−1, y, si+1, . . . , sn). Our general

context dependent substitution model is defined as follows:

Q(s, s′) = Q(x, y; s−i)

.

From the above definition, we know that the substitution matrix depend on x, y and

its context at i site.
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For each site si, the waiting time for a change from state x to state y is τx,y.The

distribution of τx,y is exponential,

τx,y ∼ exp(Q(x, y; s−i)) (2.3)

The possible changes in a sequence can be represented with a graph, in which there

are 4n nodes. As the state at each of the n sites can change to any other three states, each

node has 3n neighbors in the graph. The substitution process is like a random walk on

the graph.

2.2 Special cases

We have described the general context dependent model. The context dependent models

proposed by other works can be considered special cases of the general model.

2.2.1 Two flanking site model

There are different ways to define context dependence. Christensen (2006) assumed

that substitution matrix should satisfy the two conditions: (1) The substitution matrix

depends on immediate neighboring sites only. (2) The substitution matrix is position-

invariant, i.e. the substitution matrix does not depend on the position of a site in the

sequence. Their model is given by,

Q(x, y; s−i) = Q(x, y; si−1, si+1) (2.4)
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Their model is a special case of model (2.3) when the context consists of just the

immediate neighbouring bases, instead of the whole sequence. The model (2.4) has

4 × 4 × 4 × 3 = 192 parameters. In their model, for a sequence with length n, s0 and

sn+1 are not defined. In order to allow for s1 and sn to change, we define s0 and sn+1 and

assign a fixed value A for the two undefined sites, i.e. s0 = A and sn+1 = A.

Christensen (2006) model is also called the two-flanking site dependent model be-

cause it only depends on the left and right sites. In our work, we will use this model as

an example. Our simulation and experiments will be based on this model.

2.2.2 Dinucleotide model

The overlapping dinucleotide model proposed in Lunter and Hein (2004), which allows

only single nucleotide substitutions, is a special case of model (2.4) where

Q(x, y; s−i) = Qle f t(x, y, si−1) + Qright(x, y, si+1) (2.5)

where Qle f t(x, y; si−1) is the rate of y substituting x when the left neighbor is si−1, and

Qright(x, y; si+1) is the rate of y substituting x when the right neighbor is si+1.

There are 84 free parameters in this model. In the sequence s = ( s1, s2, . . . , sn),

when considering the change of si, we use si−1 and si+1 to choose a substitution matrix.

Since both si−1 and si+1 have four choices (A,C,G,T ), there are 16 combinations of

si−1 and si+1 to represent the context of si. For a triplet (a, b, c), if we consider the
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substitution of b, we look for the substitution matrix Qa,c. Totally, we define 16 context

dependent Q matrices.

The model of 16 context dependent substitution rate matrices is considered as the

full model and is referred to as the 16Q model hereafter.

2.2.3 Independent model

Model (2.3) also applies to site-independent models. In site-independent substitution

models, no context is considered. Therefore, the substitution rate is simplified as

Q(x, y; s−i) = Q(x, y). As x has four choices (A,C,G,T) and y (y , x) has three choices,

12 substitution rates are enough for describing the substitution process. In general, let

X(0) = s = s1 . . . sn; there are 3n independent waiting times.

2.3 Clustering of rate matrices

In the discussion of two-flanking site context dependent substitution, for a given site,

we consider the two neighboring sites (left and right sites) as the major context. For

example, in the sequence s = ( s1, s2, . . . , sn), when we look at the change of si, we

will also look at si−1 and si+1. For different context (si−1 and si+1), the substitution rate

of si are likely to be different. Therefore, we define different substitution matrices for

different contexts.
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To consider the immediate context, we have to define 16 context dependent Q ma-

trices. To build context dependent substitution models, we need to estimate 16 4 × 4

substitution rate matrices. Since in each substitution matrices, there are 12 independent

rates, we need to estimate 12 × 16 = 192 parameters, a very complicated and compu-

tationally difficult task. Therefore, we must reduce the number of parameters to reduce

the amount of computation effort.

Previous work on context dependent models tried to reduce the number of parame-

ters in each substitution matrix. In this work, we will take an alternative approach. We

will reduce the number of matrices instead of the number of parameters in each matrix.

Among the 16 substitution matrices, some matrices may have similar values. To

simplify the estimation process and reduce the number of parameters to be estimated,

we propose merging some context dependence cases. There are two ways to do so.

One way is to use existing knowledge on how DNA substitution happens, e.g. the CpG

effects in DNA substitution. Another way is to use statistical approaches to cluster the

rate matrices based on the similarities between pair of matrices.

2.3.1 Grouping to four Q matrices

Since the CpG effect is confirmed by previous research (Karlin and Burge, 1995), first

we merge the 16 rate matrices into 4 rate matrices: define them by QC , QG ,QCG and

Qothers. The rate matrix QCG is the rate matrix for the sites, whose left neighboring site
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is C and right neighboring site is G; the matrix QC is the rate matrix for the sites, whose

left neighboring site is C and right neighboring site is not G; the matrix QG is the rate

matrix for the sites, whose right neighboring site is G and left neighboring site is not C;

the matrix Qothers is the rate matrix for the rest cases. Altogether there are 12 × 4 = 48

parameters to estimate in the four Q matrices.

The four-matrix model is referred to as the 4Q submodel hereafter.

2.3.2 Grouping to two Q matrices

In order to further simplify the model, we may group our 16 matrices into two matri-

ces. We merge QC , QG and QCG together and call the resulting matrix QCorG. The

matrix QCorG is the rate matrix for the sites, whose left neighboring site is C or right

neighboring site is G. The matrix Qothers is the rate matrix for the other cases.

The two-matrix model is referred to as the 2Q submodel hereafter.

2.3.3 Statistical clustering of Q matrices

There are a number of clustering methods (Johnson and Wichern 2002), such as joining

(tree clustering), two-way joining (block clustering), and k-Means clustering. Here

we choose the tree clustering method to group the matrices. The purpose of the tree

clustering algorithm is to join together objects into successively larger clusters, using
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some measure of distance. The result of this type of clustering is a hierarchical tree. To

use the hierarchical tree clustering method, we need a method to measure the distance

between two rate matrices. In the 4 × 4 matrices, there are 12 independent rate values.

Therefore, each matrix can be represented as a 12-dimensional vector. The distance

between two matrices can be measured using the Euclidean distance between their 12

dimensional vectors. The distance between the two vectors X = (x1, x2, . . . , xn) and

Y = (y1, y2, . . . , yn) is given by

D(X,Y) =

√√
12∑

i=1

(xi − yi)2, (2.6)

We will apply this method to real data at section 5.2.

2.4 Summary

In this chapter, we first described our general context dependent model. Then we de-

scribed some special cases of the general model. We have discussed how to reduce

the model parameters. This is accomplished by merging 16Q matrices into 4Q or 2Q

matrices. We proposed to use clustering method reduce the number of matrices.
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Chapter 3

Estimation and evaluation methods

If we know the initial DNA sequence and its evolved final sequence, we can estimate the

substitution rate matrices from the two sequences. This chapter covers the estimation

methods for the context dependent substitution rate matrices. First, we propose the

modified Parsimony method and modified Pseudo-likelihood method to estimate the

substitution rates. The we propose a context dependent simulation algorithm. Finally,

we describe the evaluation criteria for estimation methods and substitution models.

3.1 Estimation methods

In this section, we describe the two estimation methods for substitution matrices.
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3.1.1 The parsimony method

Camin and Sokal (1965) first introduced the simplest parsimony method. Farris (1970)

derived the algorithms for counting changes in parsimony method. In the process of

DNA sequence evolution, some sites may change many times and reach to the final

state. Parsimony method however ignores the intermediate substitutions and consid-

ers the multi-step change as one single change from the initial state to the final state.

Therefore, its basic assumption is the minimal substitutions during the evolution from

one sequence to another. In our context dependent substitution models, when the num-

ber of Q matrices has been determined, the next step is to estimate the matrices from

data. The parsimony method has been used to estimate substitution rate in site inde-

pendent models. In our work, we will use it to estimate context dependent substitution

models.

Suppose V = (v1v2 . . . vn) is the ancestral sequence of X = (x1x2 . . . xn), the count of

context dependent substitution is given by

Cl,r(a, b) =

n−1∑

i=2

Mvi−1,vi+1(vi, xi). (3.1)

where l, r are the left and right neighboring site, respectively; a and b are the state

before and after substitution, respectively. Note that l, r, a, b ∈ {1, 2, 3, 4}, with the

numbers corresponding to A,C,G and T respectively.

Mvi−1,vi+1(vi, xi) =



1, if vi = a, xi = b; vi−1 = l, vi+1 = r;

0, others
(3.2)
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The parsimony method calculates the substitution rate matrices by counting the number

of substitutions that have taken place for the context. However, when considering the

substitution of a site, its context may also change. This makes substitution counting

tricky. There may be different schemes for counting. In our work, we propose the

following modified scheme,

Cl,r(a, b) =

n−1∑

i=2

(Mvi−1,vi+1(vi, xi) + Mxi−1,xi+1(vi, xi)), (3.3)

where

Mvi−1,vi+1(vi, xi) =



1/2, if vi = a, xi = b; vi−1 = l, vi+1 = r;

0, others.
(3.4)

Mxi−1,xi+1(vi, xi) =



1/2, if vi = a, xi = b; xi−1 = l, xi+1 = r;

0, others.
(3.5)

The transition probability is given by

Pl,r(a, b) =
Cl,r(a, b)
4∑

x=1
Clr(v, x)

. (3.6)

When we group the rate matrices into four matrices: QC, QG, QCG and Qothers, the

transition matrices are calculated as follows.

PC(a, b) =

4∑
r=1

C2,r(a, b)

4∑
r=1

4∑
x=1

C2,r(v, x)
; (3.7)

PG(a, b) =

4∑
l=1

Cl,3(a, b)

4∑
l=1

4∑
x=1

Cl,3(v, x)
; (3.8)

PCG(a, b) =

∑
l=2∪r=3

Cl,r(a, b)

∑
l=2∪r=3

4∑
x=1

Cl,r(v, x)
; (3.9)
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PO(a, b) =

∑
l,2∩r,3

Cl,r(a, b)

∑
l,2∩r,3

4∑
x=1

Cl,r(v, x)
. (3.10)

Subsequently, we can derive the rate matrices based on the transition matrices. For a

matrix P, log(P) is a matrix Q if exp(Q) = P.

Suppose that P is diagonalizable: P = VD(λi)V−1, where V is a 4 × 4 matrix and

D(λi) is diagonal matrix with the positive eigenvalues λ1 . . . λn down the diagonal. Now,

generally Q = log(P) = V log D(λi)V−1. Thus we can write

Q = V log D(λi)V−1 = V

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

log λ1 0 . . . 0 0

0 log λ2 . . . 0 0

...
...

...
...

0 0 . . . 0 log λn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V−1

Diagonalizing P is not always possible. However in our work, we have not had

much problem due to the nature of transition matrix. In DNA sequence substitution

process, substitution happens on a small fraction of sites. Therefore, the diagonal ele-

ments of transition matrix, which mean the probabilities of unchanged sites, are always

larger than other elements in the same row. Subsequently, it is unlikely that the eigen-

values are less than zero. In our real data, we did not find any case that an eigenvalue is

non-positive.

The substitution rate matrices are as follows.

QC = log PC;

QG = log PG;
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QCG = log PCG;

Qothers = log Pothers.

3.1.2 The pseudo-likelihood method

Although the parsimony method is a simple method for estimating the substitution ma-

trices, it remains a simple approximation that overlooks the intermediate substitution

process. In DNA evolution, some sites may have changed many times before ending at

a final sequence. The likelihood approach provides a means for addressing this issue.

We will use pseudo-likelihood in our work. A pseudo-likelihood function was in-

troduced by Besag(1975) in the context of a random field. It was defined as a product of

conditional likelihoods, each term representing the conditional likelihood for the obser-

vation at a particular site given the observations at neighboring sites. Christensen(2006)

also derived a similar pseudo-likelihood. We use Christensen’s definition in our work.

Let us consider the evolution of the sequence X = (x1, . . . , xn) from the ancestral

sequence V = (v1, . . . , vn). Since divergence times and substitution rates cannot be

distinguished, the substitution rates are standardized such that evolution happens from

time t = 0 to time t = 1.

If the nucleotides at the flanking positions are l and r, the rate matrix for a single

nucleotide position is given by the 4 × 4 rate matrix

Qlr(a, b) = Q(a, b; l, r). (3.11)
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There are 16×12 = 192 parameters for
{
Qlr(a, b); a , b, l, r ∈ (A,C,G,T )

}
in the model.

Its diagonal is

Qlr(a, a) = −
∑

b,a,

Qlr(a, b). (3.12)

The above definition means that, when a changes to b, the Q matrix depends on l

and r. If l and r are fixed during the process, it is easy to determine Q. What if l and r

changed during the process? Considering the kth nucleotide. If vk−1 , xk−1, there is a

change to the left nucleotide, and we assume it happens at time t = 1/2. Similarly so for

the nucleotide to the right. The substitution matrix for nucleotide k can be approximated

as Qvk−1,vk+1 for (0 ≤ t ≤ 1/2) and Qxk−1,xk+1 for (1/2 ≤ t ≤ 1). That is,

Q∗(a, b, t) =



Qvk−1,vk+1(a, b), if 0 ≤ t ≤ 1/2;

Qxk−1,xk+1(a, b), if 1/2 ≤ t ≤ 1.
(3.13)

The likelihood of the observation at position k is defined as

Lvk−1,vk+1;xk−1,xk+1(xk | vk) = [exp(Qvk−1vk+1/2) exp(Qxk−1 xk+1/2)]vk ,xk . (3.14)

The pseudo-likelihood of the observations in the sequence is defined as

L =

n∏

k=1

(Lvk−1,vk+1;xk−1,xk+1(xk | vk)) (3.15)

Given the initial sequence and the final sequence, the Q matrices can be obtained by

maximizing the pseudo-likelihood function.
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3.1.3 Optimization method

To estimate the Q matrices, we need an optimization method to obtain the values of

Q matrices that maximize the pseudo likelihood function. In our work, we use the

Broyden-Fletcher-Goldfarb-Shanno method (Broyden, 1970) for optimization. The

BFGS method is commonly used to solve unconstrained nonlinear optimization prob-

lems. It is derived from Newton’s method, which is a class of hill-climbing techniques

that seek the stationary point of a function. Newton’s method assumes that the objec-

tive function can be locally approximated as a quadratic Taylor expansion in the region

around the optimum. It uses the first and second derivatives to find the stationary point.

In quasi-Newton methods, the Hessian matrix of second derivatives of the function

to be minimized does not need to be computed at any stage. Instead, it is updated by

analyzing successive gradient vectors. Quasi-Newton methods are a generalization of

the secant method, which seeks the roots of the first derivative for multidimensional

optimization problems. In multi dimensions the secant equation is under determined,

and quasi-Newton methods differ in how they constrain the solution. The BFGS method

is one of the most popular members in this class.

Our optimization problem involves many parameters (24 parameters for 2Q model,

48 for 4Q model and 192 for 16Q model). Therefore, good choices of initial values are

extremely important for the optimization to arrive at a convergence point. In this work,

we first use parsimony method to estimate the rate values. Although the values are not

very accurate, they are good enough for using as initial values for optimization.
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3.2 Simulation study

We will first describe how an initial DNA sequence is modeled to evolve into a new se-

quence given the substitution rate matrices. Then we will describe a simulation process

in the experiments in the work.

3.2.1 Simulation process

Given an initial DNA sequence and a set of substitution rate matrices for different con-

text cases, we can simulate the context dependent substitution process. A simulated

substitution process can convert an initial sequence (ancestral sequence) into a new se-

quence (descendent sequence). From the ancestral and descendent sequence pair, we

can estimate the substitution rate under different models. Therefore, we can evaluate

the performance of different models or different estimation methods by comparing the

estimated rate matrices with the actual substitution rate matrices that are used for sim-

ulation.

The work flow of the simulation process is as follows. Suppose the DNA sequence

is s−i = (s1, , si−1, ∗, si+1, , sn) at time t = 0. The substitution rates are Q(x, y; l, r),

x, y, l, r ∈ {1, 2, 3, 4}, representing {A,C,G,T } respectively. The simulation will start

from time t = 0 and end at time t = 1. To find out the sequence status at time t = 1, we

work in the following steps.
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(1) Generate initial waiting times: Let t = 0. Generate random waiting times T =

{w1,w2, ...,wn} for each site, where ti follows the exponential distribution:

ti ∼ exp(Q(si, si; si−1, si+1)), 1 ≤ i ≤ n (3.16)

(2) Find the site that changes the earliest: If u represents a site that will change, then

the earliest change occurs at time τ = wu, where

u = arg min
1≤i≤n

wi; (3.17)

(3) Generate a new state: Generate a new random state y for site u, according to the

probability

P(y) = −Q(su, y; su−1, su+1)/Q(su, su; su−1, su+1); (3.18)

Then update su with y.

(4) Update waiting time: First, let wi (i = 1, ..., n) be updated with wi − τ, and let t

be updated with t + τ. Then generate a new waiting time for the site i, i = u − 1, u and

u + 1, which follows the exponential distribution.

(5) Check termination condition: If the total waiting time t is larger than 1, then

output the sequence S and stop. Otherwise, the process repeats from (2).

Simulation data can be used to evaluate estimation methods and substitution models.

For a more realistic study, we used the rate matrices derived from the actual data with a

parsimony approach.
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3.2.2 Simulation based on real data

The simulation uses information of a real database (Huttley, G.A., personal communi-

cation), which contains 242 sequence alignments. The length of an alignment ranges

from a few thousand to one hundred thousand base pairs. Each alignment consists of

three sequences, from the three species: human, chimp, and macaque.

The phylogenetic tree of the three species is shown in Figure 3.1. The common

ancestor of human (s1) and chimp (s2) is s4, and the common ancestor of macaque (s3)

and s4 is s5. Presently, we focus on the evolution from s4 to s1 and s2. In this thesis,

the branch connecting s4 to s1 is referred to as H branch; and the branch connecting s4

to s2 is referred to as the C branch.

Figure 3.1: Phylogenetic tree for human-chimp-macaque

Our experiment procedure with simulated data is as follows.
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Table 3.1: Ancestor inference method

Case Inferring ancestor Condition

1 s4=s1,s5=s1 if s1=s2 and s1=s3

2 s4=s1,s5=s1 if s1=s2 and s1 , s3

3 s4=s1, s5=s1 if s1 , s2 and s1=s3

4 s4=s2, s5=s2 if s1 , s2 and s2=s3

5 s4=5, s5=5 if s1 , s2 and s1 , s3 and s2 , s3

6 s4=0, s5=0 if s1=0 or s2=0 or s3=0

(1) Estimate substitution rate matrices from real data using the parsimony method.

For the three sequences in the alignment, we first estimate the common ancestor of

human and chimp. We use the conditions in the Table 3.1 to infer the ancestors. This

table shows how to infer s4 and s5 from s1, s2 and s3. For example, in case 1, if s1=s2

and s1=s3, then we can get s4=s1 and s5=s1. Please note that in the table, 0 means gap,

5 means undetermined state. 0 and 5 will be discarded in our calculation.

(2) From the ancestral sequence and the descendent sequence human, we calculate

a set of rates (Q1).

(3) Given a random ancestor sequence of the same length as the real data (V), we

simulate the context dependent substitution process with the rate matrices, resulting in

a descendent sequence (X) after certain rounds of substitutions.

(4) Estimate the context dependent rates (Q2) from sequences V and X with the
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proposed context dependent models (parsimony or pseudo-likelihood methods).

(5) Calculate the root mean square errors (RMSE) between Q1 and Q2. The lower

the RMSE, the better the performance of the methods.

3.3 Evaluation methods

3.3.1 Comparing two estimation methods

In statistics,the root mean square error (RMSE) is a frequently-used measure of differ-

ence between estimator and the parameter values. It is a simple measure of similarity.

Suppose X = (x1, x2, . . . , xn) is the estimator vector and Y = (y1, y2, . . . , yn) is the

parameter vector, and both of their lengths are n, then RMSE is calculated as follows:

RMS E(X,Y) =

√√
n∑

i=1

(xi − yi)2/n (3.19)

In our work, we use RMSE to judge the desirability of different models or meth-

ods. If a model or method has smaller RMSE then it is a better approach. We calculate

RMSE between actual substitution rate matrices and the predicted substitution rate ma-

trices. As only the off-diagonal elements are independent parameters, we only consider

these elements in our calculation.

Suppose our model has N substitution matrices, each of which is 4×4, and A = {am
i, j}

and B = {bm
i, j} are predicted substitution rate matrices, where m ∈ {1, . . . ,N} means the
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mth matrix in the model, and i, j ∈ {1, 2, 3, 4}. Then the RMSE between A and B is

given by

RMS E(A, B) =

√√√ N∑

m=1

4∑

i=1

∑

j,i

(am
i, j − bm

i, j)2/12N (3.20)

3.3.2 Comparing two models

The likelihood ratio test (LRT) is a statistical test of the goodness-of-fit between two

models. Basically, a relatively more complex model is compared to a nested simpler

model to see if it fits a particular data set significantly better. As far as possible, a

simpler model is to be preferred over a more complex model. Since the more com-

plex model has more parameters, it always returns a higher likelihood score. The LRT

requires the log-likelihood score to exceed a certain value before declaring the simple

model as inadequate.

The LR statistic is given by

LR = −2(log L2 − log L1), (3.21)

where log L1 and log L2 are the likelihood values for the simple model and complex

model, respectively. The distribution of (3.20) statistic approximately follows a chi-

square distribution.

To determine if the difference in likelihood scores among the two models is statisti-

cally significant, we next must consider the degree of freedom. In the LRT, degrees of
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freedom is equal to the number of additional parameters in the more complex model.

Using this information we can then determine the critical value of the test statistic from

standard statistical tables.

The LRT is used to test a simple null hypothesis against a simple alternative hypoth-

esis. Thus, we can use the likelihood ratio test to compare substitution models. In our

work, we extend the likelihood ratio test to the pseudo-likelihood ratio test.

3.4 Summary

In this chapter, we have described two estimation methods: parsimony and maximum

pseudo-likelihood. We modified the parsimony method to suit context dependent prob-

lem by dealing with the changes of context sites. For the pseudo-likelihood method, we

uses the BFGS optimization method to estimate the parameters. We have also described

the simulation algorithm of context dependent substitution process. We proposed the

RMSE method for comparing two methods and the LRT for comparing two models,

one nested with the other.
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Chapter 4

Numerical study on simulation data

In this chapter, we will perform numerical study through simulation study. We first

test the modified parsimony method. Then we compare the two estimation methods:

the parsimony method and the pseudo-likelihood method. Finally we compare the two

sub-models (2Q model and 4Q model) of the two-flanking sites dependent model.

4.1 Numerical simulation for parsimony method

The parsimony method is originally introduced for use in independent substitution mod-

els. In the previous chapter, we have proposed a new counting method in the parsimony

estimation process to handle the change of context in the evolution process.

We undertook simulation experiments to show the effectiveness of our proposed
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method. We used the 2Q model both for simulation and estimation. The flow of the

simulation is as follows:

(1) For each alignment in the real data, we used the simple parsimony method for

calculating the substitution rate matrices of 2Q model. The estimated substitution ma-

trices were used to generate simulated data.

(2) We multiplied the reference substitution rates by 100 so that more substitutions

in the simulated sequence could be observed, allowing us to assess how the change of

context affected the estimation accuracy.

(3) We generated a random sequence of length 100000, in which the types of nu-

cleotide followed uniform distribution. Using this random sequence as ancestral se-

quence, we then generated simulative descendant sequence according to the augmented

rates in (2).

(4) Using the 2Q model and the parsimony method, we obtained the estimated rate

matrices. Two parsimony methods that differ in the way of counting the number of

substitutions were both used. The first one is the normal way of counting; the second

one is our proposed counting method, in which context changes during evolution.

(5) Finally, we calculated the RMSE values between the off diagonal elements of

the simulation rate matrices and those of the estimated rate matrices.

The results of our experiment are shown in Figures 4.1 and 4.2. The normal way of

count is labeled as “1 count” , and the proposed method is labeled as “0.5 count”. In the
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figures, each point represents the RMSE values obtained with the two methods for one

alignment. We observed that the most of the RMSE values for “0.5 count” are lower

than RMSE values for “1 count” for the same alignment. Therefore, the proposed ”0.5

count” method is significantly better than the normal ”1 count” method.
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Figure 4.1: Counting method for parsimony approach, H branch

4.2 Comparison of parsimony and maximum pseudo-

likelihood methods

We conducted experiments on simulation data generated with real data as reference

using both the 2Q and 4Q models. We examined which estimation method was better

between the parsimony and the pseudo-likelihood methods for different models.
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Figure 4.2: Counting method for parsimony approach, C branch

4.2.1 Simulation based on 2Q model

We first performed experiments on the 2Q model, using substitution rate matrices es-

timated from real data, and then compared the parsimony and the pseudo-likelihood

methods by evaluating their RMSE values.

Some sample RMSE values of the two methods under 2Q model are given in Table

4.1. From the table, it can be seen that the two estimation methods yield identical values

for both branches under 2Q model. The scatter plots for the two branches are as shown

in Figure 4.3 and Figure 4.4. In the figures, the coordinates of each point represent the

RMSE results obtained with the two methods.

From these two figures, we see that the RMSE values of two methods are identi-

cal, implying little, if any, difference between the parsimony and the pseudo-likelihood
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Table 4.1: RMSE of parsimony and pseudo-likelihood for 2Q

H branch C branch

Sample Parsimony Pseudo-likelihood Parsimony Pseudo-likelihood

i 0.000397 0.000397 0.000295 0.000295

ii 0.000638 0.000638 0.000358 0.000358

iii 0.000486 0.000486 0.000385 0.000385

iv 0.000412 0.000412 0.000703 0.000703

v 0.000090 0.000090 0.000408 0.000408
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Figure 4.3: RMSE of 2Q simulation for H branch

methods in the the present simulation.

We noticed that the estimated substitution rates Q were very small (the range of

0.001 to 0.01). To find out how the two methods perform in a longer term or with higher
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Figure 4.4: RMSE of 2Q simulation for C branch

substitution rates, we increased our substitution rates to 100 times and then repeated the

same experiments. That means, if Q is the rate matrix estimated from the real data, we

used Q×100 instead of Q to in the simulation, and all the comparisons were done using

Q × 100.

Several sample results of this simulation are shown in Table 4.2. From Table 4.2,

we can see that the RMSE values of pseudo-likelihood are all less than that of the

parsimony for both the H branch and the C branch. This means the pseudo-likelihood

method is much better than the parsimony method when we use Q×100 to do simulation

under 2Q model.

The scatter plots for comparing parsimony and pseudo-likelihood under the two

branches using RMSE are shown in Figure 4.5 and Figure 4.6. In the figures, the coor-
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Table 4.2: RMSE of parsimony and pseudo-likelihood for 2Q, Q × 100

H branch C branch

Sample Parsimony Pseudo-likelihood Parsimony Pseudo-likelihood

i 0.104301 0.065873 0.099809 0.049148

ii 0.019737 0.006874 0.032963 0.018975

iii 0.035016 0.021076 0.016474 0.002678

iv 0.061378 0.036994 0.033951 0.013645

v 0.040059 0.018199 0.070878 0.042003

dinates of each point represent the RMSE results obtained with the two methods.
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Figure 4.5: RMSE of 2Q simulation for H branch (Q × 100)

From Figures 4.5 and 4.6, we see that the RMSE of pseudo-likelihood are smaller

than that of the parsimony method, implying that the pseudo-likelihood method is much
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Figure 4.6: RMSE of 2Q simulation for C branch (Q × 100)

better than the parsimony method.

It is known that in independent substitution models, if the substitution rate is small

over evolutionary time, the parsimony method is justified (Durbin et. al. 1998, 173-

179). However, if the substitution rates are moderate or large, the parsimony method

may fail. That implies that when we increase the substitution rate, the parsimony

method should be worse than likelihood method. Our simulation results permit us to

draw similar conclusion in context dependent substitution models.

4.2.2 Simulation based on 4Q model

We also did simulation under 4Q model. Some sample RMSE values for comparing

parsimony and pseudo-likelihood under 4Q model are given in Table 4.3 for the two
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Table 4.3: RMSE of parsimony and pseudo-likelihood for 4Q

H branch C branch

Sample Parsimony Pseudo-likelihood Parsimony Pseudo-likelihood

i 0.013568 0.008948 0.000669 0.000040

ii 0.007930 0.003736 0.002566 0.000753

iii 0.023235 0.008940 0.008741 0.001003

iv 0.011128 0.006217 0.001235 0.000349

v 0.017736 0.006237 0.025901 0.000543

branches. We see that the RMSE value of pseudo-likelihood is smaller than that of the

parsimony, implying superiority under 4Q model for the two branches.

Scatter plots (Figure 4.7, 4.8) for the two branches show the difference between the

parsimony and the pseudo-likelihood under 4Q model. In the figures, the coordinates

of each point represent the RMSE results obtained with the two methods.

We conclude from our comparative study that even for small substitution rate Q

(range from 0.001 to 0.01), the pseudo-likelihood method works better than parsimony

under 4Q model.

4.3 Biases of estimation

Up to this point, we have examined the RMSEs for the two methods. Here, we look at

the bias of individual substitution rates for each method, which tells us something about
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Figure 4.7: RMSE of 4Q simulation for H branch
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Figure 4.8: RMSE of 4Q simulation for C branch

the accuracy of prediction.
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Table 4.4: Index of individual rate in rate vector

A G C T

A − 1 2 3

G 4 − 5 6

C 7 8 − 9

T 10 11 12 −

4.3.1 Biases of estimation based on 2Q model

As we have two matrices in the sub-model and each matrix has 12 independent rate

values excluding the diagonal rates, there are 24 independent rates for two matrices.

The 12 rate values of each matrix form a vector, where the rate values in each matrix

are organized in the order as indexed in Table 4.4. When the two vectors are joined

together, the rate values of the first matrix are indexed from 1 to 12, and those of the

second matrix are indexed from 13 to 24.

1. Biases of Parsimony method for 2Q

Figure 4.9 shows the biases of the parsimony method for the 2Q model for H branch.

From the figure, we can see that the medians of all the rates are almost zero. Therefore,

the biases of each rate are small.

2. Biases of pseudo-likelihood method for 2Q

Figure 4.10 shows the biases of the pseudo-likelihood method for the 2Q model for
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Figure 4.9: Biases of parsimony method for 2Q, H branch
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Figure 4.10: Biases of pseudo-likelihood method for 2Q, H branch

H branch. From the figure, we can see that the medians of all the rates are also almost

zero. We also examined C branch, and obtained similar results. As the all the biases are
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small, we can conclude that our two estimation methods under 2Q model are accurate.

Although all the biases are small in our two estimation methods, we notice that some

rates have a little bigger variance. It seems the transitions of A ↔ G (e.g. rate index

1, 4, 13, 16) and C ↔ T (e.g. rate index 9, 12, 21, 24). We examined the rate values

for each method and found that these rates actually have larger rate values than others

(Refer to Figures 4.11 and 4.12). This shows that in the estimation using our methods,

larger rates will have a larger variance.
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Figure 4.11: Rate values of parsimony method for 2Q, H branch

4.3.2 Biases of estimation based on 4Q model

As we have four matrices in the model and each matrix has 12 independent rate values

excluding the diagonal rates, there are 48 independent rates for four matrices. The
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Figure 4.12: Rate values of parsimony method for 2Q, H branch

12 rate values of each matrix form a vector, where the rate values in each matrix are

organized in the order as indexed in Table 4.4. Then the four sequences are joined

together. In the joint vector, the elements from 1 to 12 represents the first matrix, the

elements from 13 to 24 are for the second matrix and so on.

1. Biases of Parsimony method for 4Q

Figure 4.13 shows the biases of Parsimony method for the 4Q model. From the

figure, we can see that the medians of all the rates are almost zero. Therefore, all the

biases of each rate are small.

2. Biases of pseudo-likelihood method for 4Q

Figure 4.14 shows the biases of pseudo-likelihood method for the 4Q model. From
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Figure 4.13: Biases of parsimony method for 4Q, H branch
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Figure 4.14: Biases of pseudo-likelihood method for 4Q, H branch

the figure, we can see that the medians of all the rates are also almost zero. We also

examined the C branch, and obtained similar results. As the biases are small, we can
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conclude that our two estimation methods under 4Q model are accurate.

Similarly, we have examined the rates that have larger variances (e.g. rate index 1,

4, 9, 12, 13, 16, 21, 24, 25, 28) and found that those larger rates normally have a larger

variance (refer to Figures 4.15 and 4.16)
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Figure 4.15: Rate values of parsimony method for 4Q, H branch

4.4 Comparison of models

In this section, we use simulation data to test different submodels. We base our simula-

tion on one alignment from real data, with 200 iterations each time. The length of the

simulation sequence is chosen as 100000.

In our work, we consider the three hypothesis tests as in Table 4.5. We use H0,
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Figure 4.16: Rate values of pseudo-likelihood method for 4Q, H branch

Table 4.5: Hypothesis testing

Test Null hypothesis Alternative hypothesis Degree of freedom

A 2Q model 4Q model 24

B 2Q model 16Q model 168

C 4Q model 16Q model 144

H1 and H2 to represent 2Q, 4Q and 16Q model respectively. In our test hypothesis,

comparison of the two models is directly using the pseudo-likelihood function. We use

pseudo-likelihood ratio score instead of likelihood ratio score.

In this section, we only discussed one branch (e.g. H branch) since the results of

two branches are very similar.
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4.4.1 Approximate distribution

Normally likelihood ratio test is used to compare full models and reduced models. As

we use pseudo-likelihood ratio test, we need to first check whether pseudo-likelihood

ratio test also follows chi-square distribution asymptotically. For simplicity, in our con-

text, LRT means pseudo-likelihood ratio test.

We can use QQ plot to check whether the distribution of LRT under H0 follows a

chi-square distribution. A QQ plot is a plot of the quantiles of two distributions against

each other. It is a graphical method for comparing two probability distributions. In the

following QQ plots, the x-axis is quantiles of chi-square distribution, and y-axis is the

quantiles of the LRT scores. If the LRT scores follow chi-square distribution, a plot will

show a straight line.
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Figure 4.17: Test A: Under 2Q, QQ plot for 2Q vs 4Q, H branch

Figures 4.17, 4.18, 4.19 show the QQ plots for the three hypothesis tests for H
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Figure 4.18: Test B: Under 2Q, QQ plot for 2Q vs 16Q, H branch
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Figure 4.19: Test C: Under 4Q, QQ plot for 4Q vs 16Q, H branch

branch from one simulation and LRT test. From the figures, we can see that each of

the figure is almost a straight line for the H branch. But none of the straight lines

passes through the origin. This observation suggests that the null hypothesis does not

strictly follows a chi-square distribution. However, the LRT score is related to chi-
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square distribution.

Some previous research proved that an adjusted pseudo-likelihood ratio test fol-

lows a chi-square distribution. For example, Geys, Molenberghs and Ryan (1999) pro-

posed the adjusted pseudo-likelihood ratio test statistic LR∗ is approximately χ2(df)

distributed, where LR∗ = LR/C and C is a constant.

In our work, because we are more interested in the the 95% quantile of the real

data, we would examine the 95% quantiles of three hypothesis tests and try to find the

new conservative cut-off points in the tests from our simulation results. We randomly

selected 20 alignments and repeated the simulation 200 times for each alignment. Each

round of simulation is based on one alignment under different models (2Q, 4Q and

16Q). The 95% quantile of LRT scores were calculated. Test results of 8 alignments

among the 20 are as shown in Table 4.6. The 8 alignments include those with maximum

95% quantile values.

From the table, we can see that the 95% quantiles of three hypothesis tests are a bit

different from expected values (quantiles of chi-square distributions). To be conserva-

tive, we use the maximum values of the quantiles of both branches as our critical values

in real data testing. From the table, we can see that the maximum values of Tests A, B

and C are 40.5, 221.4 and 191.6 respectively.
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Table 4.6: 95% quantiles of three hypothesis tests

TestA Test B Test C

Sample H branch C branch H branch C branch H branch C branch

1 35.8 37.8 204.5 210.8 185.1 172.1

2 34.8 38.4 199.2 218.6 173.5 177.1

3 39.1 36.4 205.4 218.3 182.6 184.5

4 38.2 39.9 212.5 219.8 176.5 183.1

5 37.1 37.8 210.1 206.1 178.1 183.1

6 37.1 40.5 213.9 216.2 181.9 178.3

7 36.9 38.3 221.4 217.6 191.6 186.9

8 37.8 39.1 217.6 213.4 186.3 190.5

χ2 quantiles 36.4 36.4 199.2 199.2 173 173

maximum 39.1 40.5 221.4 219.8 191.6 191.6

4.5 Summary

From the simulation studies, we conclude that the pseudo-likelihood method is more

general and robust than parsimony method. We see that when substitution rates are

large, the pseudo-likelihood approach has obvious advantages over the parsimony meth-

ods. We have also analyzed the biases of estimation and identified pseudo LRT cutoff

values for the 95% percentile.
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Chapter 5

Analysis of real data

5.1 Description of the data set

We obtained a real data set consisting of 242 sequence alignments from Dr. Gavin A.

Huttley (The Australian National University). The length of the alignment is from a few

thousands to one hundred thousands sites. Each alignment consists of three sequences

representing three primate species: human, chimp, and macaque. In our research, we

focus on human and chimp sequences.

In order to better understand the real data, let us first look at some descriptive statis-

tics. Figure 5.1 shows the histogram of the lengths of the sequence alignments. We note

that the length of the most sequences falls within the range of 80000 to 300000.

We then examined the distribution of nucleotides in the sequences (Figure 5.2). Re-
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Figure 5.1: Histogram of sequence lengths

sults show that in most of the sequences, the percentages of the four types of nucleotides

are between 15% to 35%. The median values of T and A types are relatively larger than

those of C and G types.

We also determined the number of the substitutions that occurred in each pair of

sequences. Figure 5.3 shows the histogram of the percentage of substitutions among all

sites in the sequences. We note that the percentage of substitution lies between 0.2% to

1%.

Finally, we investigated the number of the substitutions that occurred in context de-

pendent sites in each pair of sequences. Figure 5.4 shows the boxplots of the percentage

of changes in context dependent sites. We see that when the left site is C or the right

site is G, the percentage of changes is generally higher. This observation motivates us
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Figure 5.3: Histogram of percentage of substitution in a sequence

to consider a context dependent instead of a site independent model.
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Figure 5.4: Percentage of changes in context dependent sites

5.2 Clustering of rate matrices

In the general two-flanking site context dependent model, 16 substitution rate matrices

are defined for 16 context dependent cases. For each substitution matrix, there are 12
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independent elements (the off diagonal elements). Therefore, each matrix is represented

by a 12-dimensional vector, and 16 substitution rate matrices can be represented by a

12 × 16 matrix.

As the real data set consists of 242 samples, there are 242 12×16 matrices; Binding

the matrices together, yields a large matrix of 12 × 242 rows and 16 columns. We

used this data matrix for tree clustering. During clustering, the tree clustering approach

joins two most similar clusters and form a new cluster in each step. This process is

repeated until all the clusters become one single cluster. The final tree structure shows

the relationship between the clusters.

Figure 5.5 shows the tree clustering plot of the matrices. Each initial cluster in this

figure is labeled with a name, which means the context of the matrix, e.g. T A means

that the matrix is defined for sites whose left context is T and right context is A, and

so on. From our clustering result, we can see that there are four clear clusters in the

matrices. The first cluster is T T , A A, A T , G T , G C, T A, G A, T C, and A C. The

second cluster is C T , C C, and C A. The third cluster is A G, T G, and G G. The

fourth cluster is C G. The four clusters are exactly the same as our defined 4Q model

earlier. This confirms the correctness of our definition of 4Q model. The 4Q matrices

are QC , QG ,QCG and Qothers.
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Figure 5.5: Tree clustering plot for rate matrices

5.3 Goodness of fit for the models

We performed goodness of fit to compare our models. In our study, we used the pseudo-

likelihood to replace likelihood.

We made three comparisons to examine the difference between the general model

and the sub-models.
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5.3.1 Pseudo-likelihood values for different models

We first calculate the different pseudo-likelihood values for different models. Since we

maximize the pseudo-likelihood to obtain the maximum estimates of the parameters,

we expect that more parameters lead to larger pseudo-likelihood values.

Some sample results of Pseudo-likelihood values for different models for both branches

are given in the Table 5.1. We see that 16Q model has the highest pseudo-likelihood

values for both branches. The 4Q model come next; and 2Q model has the lowest

pseudo-likelihood values.

Table 5.1: Pseudo-likelihood values for different models

H branch C branch

Sample 16Q 4Q 2Q 16Q 4Q 2Q

1 -4064.398 -4198.563 -4347.697 -4003.212 -4106.676 -4292.987

2 -5952.966 -6375.546 -6447.132 -6476.525 -6834.293 -6929.349

3 -2164.779 -2279.275 -2325.443 -2231.921 -2348.025 -2406.109

4 -2901.398 -2980.173 -3068.342 -3143.730 -3319.023 -3387.515

5 -2802.812 -2940.759 -3026.644 -3038.313 -3168.272 -3262.058

5.3.2 2Q model vs 4Q model

First, we performed the comparison of the 2Q model with the 4Q model. Our null

hypothesis is 2Q model, and our alternative hypothesis is the 4Q model.
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We used the pseudo-likelihood method to estimate the two models and to calculate

the likelihood ratio scores of the two models. We then plotted histograms to show the

likelihood ratio scores for the two branches (Figures 5.6 and 5.7).
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Figure 5.6: LRT test of 2Q vs 4Q for H branch

In chapter 4, from the simulation result, we know that the critical value of Test A

for 5% significance level should be 40.5. From our calculation, we know that there

are 99.6% LRT scores of H branch and 100% LRT scores of C branch are greater than

40.49. This indicates that the goodness-of-fit of 4Q is significantly better than 2Q for

almost all alignments in our real data.
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Real data LRT test, 2Q vs 4Q, C branch
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Figure 5.7: LRT test of 2Q vs 4Q for C branch

5.3.3 2Q model vs 16Q model

Next, we compared the 2Q model with the 16Q general model. Our null hypothesis is

the simple model, 2Q model, and our alternative hypothesis is the 16Q general model.

We used the pseudo-likelihood method to estimate the two models and to calculate

the likelihood scores of the two models. We then plot histograms to show the likelihood

ratio scores for the two branches (Figures 5.8 and 5.9).

Similarly, from the simulation result, we know that the critical value of Test B for

5% significance level should be 221.4. From our calculation, we see that there are

66.53% LRT scores of H branch and 66.12% LRT scores of C branch are greater than

221.4. This indicates that the goodness-of-fit of 16Q is significantly better than 2Q for

66% alignments in our real data.
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Real data LRT test, 2Q vs 16Q, H branch
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Figure 5.8: LRT test of 2Q vs 16Q for H branch

Real data LRT test, 2Q vs 16Q, C branch
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Figure 5.9: LRT test of 2Q vs 16Q for C branch

5.3.4 4Q model vs 16Q model

Finally, we performed the comparison of the 4Q model with the 16Q general model.

Our null hypothesis is the 4Q model, and our alternative hypothesis is the 16Q general
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model.

We used the pseudo-likelihood method to estimate the two models and to calculate

the likelihood ratio scores of the two models. We then plotted histograms to show the

likelihood ratio scores for the two branches (Figures 5.10 and 5.11).

Real data LRT test, 4Q vs 16Q, H branch
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Figure 5.10: LRT test of 4Q vs 16Q for H branch

Similarly, from the simulation result, we know that maximum bound of the critical

value of Test C for 5% significance level is 191.6. From our calculation, we know that

there are 61.6% LRT scores of H branch and 66.1% LRT scores of C branch are less

than 191.6. This indicates that the goodness-of-fit of 16Q is not significantly difference

with 4Q for more than 60% alignments in our real data.



Chapter 5: Analysis of real data 77

Real data LRT test, 4Q vs 16Q, C branch
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Figure 5.11: LRT test of 4Q vs 16Q for C branch

5.4 Summary

In this chapter, we applied the pseudo-likelihood method to a real data and conducted

the goodness of fit test for our different models. Results show that the 2Q model is

significantly different from 4Q model and the 16Q general model. But the 4Q model

does not differ significantly from the 16Q general model. This indicates 4Q model is a

good model to replace the 16Q general model for our application.
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Chapter 6

Conclusion and further research

In this chapter, we summarize the work we have done and discuss some further research

directions.

6.1 Conclusion

In the research of DNA sequence evolution, substitution rate matrices are used to de-

scribe the evolution process. When looking at the substitution of nucleotide, previous

work normally ignore context dependence of the nucleotide. To better model the sub-

stitution process, context dependent substitution models need to be used. In this thesis,

we have investigated the context dependent substitution rate models. Our work covered

the following parts.
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(1) Model definition

We proposed a general context dependent model framework, which used mathemat-

ical representation to describe the general cases of context dependent and independent

models. Based on the general model, different context dependent models can be derived

as special cases of the general model.

In the investigated special case, the two flanking sites context model, we used the

neighboring sites of a nucleotide as the context. In the full model, 16 context dependent

rate matrices are defined. Using clustering approach, we reduced the full model (16

matrices) into four matrices and two matrices as two simplified submodels.

(2) Model simplification

In context dependent substitution models, multiple substitution matrices were used

for different context. This inevitably introduces many parameters. Previous works tried

to reduce the number of parameters by reducing the number of independent parameters

in each substitution matrix. However, we proposed to reduce the number of matrices

based on knowledge of DNA evolution.

To reduce the number of matrices, the context cases need to be clustered into groups.

In the thesis, we proposed to use statistical analysis method to cluster the context cases.

This not only confirms the proposed submodels but also provided a general way for

solving similar problems.

(3) Estimation methods
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Previous works on context dependent models investigated the estimation of sub-

stitution rates from two known descendent sequences that are evolved from the same

unknown ancestor sequence. Little research was done to estimate context dependent

substitution rates from a given ancestor sequence and its descendent sequence. In our

work, the rate estimation was based on the evolution from a known ancestor to a known

descendent. We made use of the phylogenetic tree of the species to first estimate the the

ancestor.

Parsimony approach is frequently used in the estimation of independent substitution

models. In our work, we introduced it into the context dependent case. Also, we used a

counting method to solve the problem of the changes of adjacent sites in DNA sequence.

It overcomes the inaccuracy of standard methods when dealing with adjacent changes

in DNA evolution.

We used optimization method for maximum pseudo-likelihood approach to estimate

the substitution rates. The optimization process is very slow when the initial values

are not properly given. Therefore, we proposed to use the rates estimated from the

parsimony method as the initial values. This reduces the convergence time and increases

the optimization speed.

(4) Simulation process

Previous research normally worked on limited real data. In our work, we developed

a process to simulate context dependent DNA sequence evolutions. This provides us a

flexibility of doing various experiment on simulated data.
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The process simulated the context dependent substitution from given rate matrices

and an initial sequence. We used simulation to evaluate different estimation methods.

(5) Evaluation methods

In the evaluation of different models, we proposed to use pseudo-likelihood ratio

test to test the goodness of fit. We calculated the rate matrices for the real data using

different models. We then compared the results by different models.

Major findings from our work are as follows.

(1) We used 2Q model and 4Q model as our simplified submodels. When using clus-

tering method to group the similar matrices, the clustering tree shows a clear grouping

of the matrices. This confirms that the 2Q and 4Q models are proper submodels.

(2) One of the problem for the context dependent model is that the context may

change before the site in consideration changes. We modified the parsimony method

to make it work in this situation. Our experiment show that the improved method that

considers the change of context improves the estimation accuracy of substitution rates.

(3) The parsimony method works as well as the pseudo-likelihood approach when

the substitution rates of evolution process are small (at the level of 0.001). When

the rates are high, the parsimony method does not work well as the pseudo-likelihood

method.

(4) When substitution rates are small, both parsimony and pseudo-likelihood meth-

ods work equally well under 2Q model. But under 4Q model, the pseudo-likelihood



Chapter 6: Conclusion and further research 82

method is superior to the parsimony method. The reason for the difference is that par-

simony method overlooks the intermediate substitution process, and when substitution

happens more frequently, it will get worse. This shows that the maximum pseudo like-

lihood methods is more robust.

(5) We applied the pseudo-likelihood method with different model definitions (16Q,

4Q and 2Q models) to the real data. From goodness-of-fit tests, 16Q is the most accurate

model. The 2Q model has the smallest number of parameters. However, it has a fairly

big difference in terms of likelihood ratio values compared to 4Q model and the 16Q

general model. But the 4Q model does not differ much from the 16Q general model.

This implies that the 4Q model is the best model for the real data as a comprise between

the number of parameters and accuracy.

6.2 Further research topics

In our context dependent substitution model, we used a clustering approach to reduce

the number of parameters of the model. That is, in our 16 matrices model, we used the

clustering method to group the similar matrices and reduce the number of parameters.

In independent substitution model, the number of independent parameters in substitu-

tion rate matrix, such as Jukes-Cantor, Kimura, HKY model and reversible model are

reduced. By combining the matrices and simple models we may have more freedom to

reduce the number of parameters while keeping the accuracy of the model.



Chapter 6: Conclusion and further research 83

In this thesis, we only considered the context dependent substitution model for nu-

cleotide sequence. The methods may be extended to models for codon sequences.
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