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Summary 

The ERK/MAPK pathway is a ubiquitous serine/threonine kinase cascade that 

directs growth, differentiation and plasticity in various tissues.  Transmembrane receptor 

proteins acts as a bridge between extracellular signals and the ERK/MAPK pathway, so  

regulation of these receptors is of crucial importance towards maintaining a healthy cell.  

Many regulatory mechanisms exist, all of which make use of protein interaction domains 

to bind to their substrates. This thesis draws examples from two regulatory proteins, c-

Cbl and calmodulin. 

c-Cbl is an E2 ubiquitin ligase and a major regulator of tyrosine kinases at the 

membrane.  Through x-ray crystallography of five Cbl-TKB: phosphopeptide complexes, 

our work demonstrate the mechanism by which the Cbl-TKB domain binds to its 

substrates through a conserved, specificity determining intrapeptidyl hydrogen bond. The 

ability of Cbl to bind to its substrates in a reverse orientation given the TKB atypical 

binding motif found in the Met family of proteins was also uncovered.  This finding 

implicates that there may be a group of yet undiscovered Cbl substrates. 

Calmodulin is a calcium binding protein that modify its substrates’ activity by 

conferring calcium sensitivity when it binds with its substrates.  One of the domains 

responsible for this interaction is the IQ motif.  All voltage gated sodium channels 

possess this motif but bind differentially to calmodulin.  Through biophysical and 

computational analyses, we characterised the way calmodulin binds to two high affinity 

sodium channel isoforms Nav1.4 and Nav1.6.  Together with mutation of two residues 

predicted to be involved in Nav1.4 association but not Nav1.6, we explained differences 

in binding. 
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1.1 General Introduction 

 In order to survive and adapt, every organism must be able to accurately respond to 

spatial and temporal cues.  In unicellular organisms, the response to these cues can be rapidly 

transduced within the cell to achieve the desired change.  However in multicellular organisms 

where billions of cells are organised into specific tissues and organs, transport of cues required to 

effect a change within tissues becomes more complex.  Cells respond to these cues through 

numerous molecules such as proteins, peptides, lipids and inorganic molecules linked via 

intricate intracellular networks that efficiently transport these external signals across the plasma 

membrane into the cytosol and nucleus of the desired cell, where the effects occur.  This process 

of transporting an external signal within the cell to induce a desired outcome is termed signal 

transduction or cell signalling. Certain conserved signalling pathways are reiteratively employed 

in biological systems to propagate, regulate, integrate and evoke tissue-specific responses.  At 

the heart of these, protein-protein interactions form the basis through which signals are 

selectively modulated to determine a cell’s fate.   

 

1.2 Signal sensing 

Cell to cell communication is essential to ensure that responses to external signals are 

appropriately coordinated.  Cells signal to each other in several ways, depending on the distance 

between the signalling cell and the target cell.  Not all molecules can be trafficked across the 

lipid bilayer: cells therefore relay messages via a cascade of intracellular events that is tightly 

regulated at key steps where pathways converge.  All signal transduction pathways that are 

initiated by a non-permeable extracellular stimulus are received by a cell surface receptor, often 
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a transmembrane protein which causes a conformational change in the receptor upon sensing the 

stimulus.  If the cells are touching, signalling may be through pores in the membrane, such as 

gap junctions or plasmodesmata, or due to a membrane bound ligand being identified by a 

receptor in the membrane of a neighbouring cell (Fig. 1.1b and c).  If the cells are further apart, 

they may communicate via the release of molecules (Fig. 1.1a) in the form of cytokines, 

chemical agonists, growth factors and ions which are detected by the target cell via endocrine, 

paracrine, autocrine or synaptic signalling. 

 
Fig. 1.1.  Different ways cells signal to each other (Adapted from Hancock, 2005). (a) Communication to a distantly 
located cell through the release of signalling molecules into the extracellular space which travel to the target cell. (b) 
Crosstalk between neighbouring cells via gap junctions through which molecules can pass.  (c) Signalling through a 
membrane bound ligand that is detected by a receptor on the neighbouring cell. 

  

Synaptic: A fast and efficient method of signalling over the length of an axon via changes in the 

electrical potential across the membrane of a cell.   

Endocrine: Cells release signalling molecules, such as hormones, that travel vast distances 

through the bloodstream to evoke a response in a different tissue.   
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Paracrine: Cells release signalling molecules that diffuse and are detected by adjacent cells. The 

signal is often quickly terminated by endocytosis, degradation or immobilisation.  

Autocrine: Similar to paracrine signalling, where the signalling molecules act upon the cell that 

released them.  This type of signalling is often found in differentiating cells as reinforcement 

towards a committed cell fate. 

 

1.3 Types of receptors 

 Extracellular molecular signals are usually found at low concentrations (~10-8mol/L).  

Detection of a signal is usually accomplished by specific receptors on the cell surface that have 

high binding affinity in the concentration range of the ligand.  Binding of the ligand will then 

stimulate the required intracellular response via a signal transduction pathway.  Despite the vast 

array of extracellular molecules that need to be detected by a single cell, receptors fall into four 

main classes: ion channel linked, G-protein linked, those containing intrinsic enzymatic activity 

(e.g., receptor tyrosine kinases - RTKs) and receptors without enzymatic activity but associate 

with cytosolic enzymes (e.g. non-receptor tyrosine kinase - NRTKs) (Fig. 1.2).  Accordingly, 

they each initiate a series of distinct intracellular enzymatic activities in sequential order, to be 

known as signal transduction pathways that eventually result in changes to gene expression 

levels.  In this thesis, receptors with tyrosine kinase activity and ion channel receptors will be 

described. 
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Fig. 1.2.  Different receptor classes in an organism (Adapted from Hancock, 2005).  (a) Ion channel receptors that 
open to allow the free passage of ions across the membrane upon stimulation. (b) Receptors linked to G-proteins.  
Dissociation of the G-protein from the receptor upon stimulation initiates a cascade of signalling events.  (c) 
Receptors with enzymatic activities are activated through binding of their cognate ligands.  (d) Intracellular 
receptors are not membrane bound but may be linked to receptors without any enzymatic activity.  They affect 
signals similar those from receptors with innate enzymatic activity and are mainly involved in immune responses. 
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1.3.1 Example 1: Receptors with tyrosine kinase activity 

Of the 32000 coding genes in the human genome, approximately 20% of these encode for 

proteins involved in signal transduction - more than 520 are protein kinases and 130 are 

phosphatases.  Signal transduction pathways make extensive use of phosphorylated proteins 

(phosphoproteins) in which serine, threonine and tyrosine (pTyr) are the residues most 

commonly phosphorylated.  Protein tyrosine kinases (PTKs) transfer the γ phosphate of ATP to 

the hydroxyl group of a tyrosine in a protein substrate.  The 90 known PTK genes are distributed 

into two pools, 58 encoding receptor tyrosine kinases (RTKs) and 30 encoding non-receptor 

tyrosine kinases (NRTKs).  

 

Receptor tyrosine kinases 

RTKs are transmembrane glycoproteins activated by the binding of their cognate ligands 

that transduce extracellular signals to the cytoplasm to stimulate changes within the cell.  This is 

accomplished by phosphorylating tyrosine residues on themselves (autophosphorylation) and on 

downstream adaptor proteins upon ligand binding.  The RTK family includes the receptors for 

insulin and for many growth factors, such as epidermal growth factor (EGFR), fibroblast growth 

factor (FGFR), platelet-derived growth factor (PDGFR), vascular endothelial growth factor 

(VEGFR), nerve growth factor (NGFR) and hepatocyte growth factor (Met).   
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Fig. 1.3.  Domain architecture of different RTK families (Hubbard and Till, 2000).  RTK family members of the 
same structural organization are indicated under each module.  The portion above the black horizontal lines 
represents extracellular domains involved in ligand binding, and tyrosine kinase domains are exclusively found in 
the intracellular region.  The Met (Met, Ron, Sea) and insulin receptor (InsR, IGF1R, IRR) family members 
comprise of multiple subunits within a single receptor, hence the discontinuous extracellular domains. 

 

With the exception of Met, the insulin receptor and their respective family members, 

RTKs exist as a single polypeptide chain that dimerize upon stimulation.  The extracellular 

portion of RTKs contain a varied array of globular domains that are used for ligand binding.  The 

domain organization in the cytoplasmic portion of RTKs consists of a juxtamembrane region 

after the transmembrane helix followed by the tyrosine kinase catalytic domain and a carboxy-

terminal region (Fig. 1.3).  All RTKs possess between one to three critical tyrosine residues in 

the kinase activation loop (Hanks et al., 1991).  With the exception of EGFR, phosphorylation of 

these residues seems to be essential for the activation of its catalytic activity.  The 
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juxtamembrane and C-terminal regions are varied in length, and may also contain tyrosine 

residues that are autophosphorylated upon ligand binding. 

 

Non-receptor tyrosine kinases 

In addition to the RTKs, there exists a large family of non-receptor tyrosine kinases 

(NRTKs), including Src, Spleen tyrosine kinase (Syk) / ξ-chain associated protein kinase 70kDa 

(ZAP-70) and Abelson murine leukemia tyrosine kinase (Abl) among others.  These proteins 

exist in the cytosol as soluble components, or may be receptor associated.  The Src subfamily of 

proteins is the largest of all NRTKs, with nine members and implications in many human 

carcinomas. NRTKs are integral components of signal cascades from receptors with no intrinsic 

tyrosine kinase activity by binding to and triggering responses that are similar to RTKs 

(Gomperts et al., 2003).   The receptors they associate with typically mediate immune and 

inflammatory responses in leucocytes and lymphocytes.  In addition, certain NRTKs like c-Src 

modify specific signals by acting on proteins that are part of the pathway, or proteins that 

regulate the pathway (Luttrell et al., 1996).  

As with RTKs, NRTKs are activated when the activation loop tyrosines are 

phosphorylated.  Phosphorylation can occur in-trans or by a different NRTK.  In addition to a 

tyrosine kinase domain, NRTKs possess domains that mediate protein-protein, protein-lipid, and 

protein-DNA interactions (Fig. 1.4). The most common protein-protein interaction domains in 

NRTKs are the Src homology 2 (SH2) and 3 (SH3) domains.   
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Fig. 1.4.  Domain architecture of different NRTK families (Hubbard and Till, 2000).  Each NRTK family has the 
same structural organization and is indicated to the left of each module.  Besides the conserved tyrosine kinase 
domain, other domains mainly for protein-protein interactions are also found in each protein. 

 

1.3.2 Example 2: Ion channel receptors 

 The human brain consists of approximately 20 billion neurons, with an average of 7500 

synaspes per neuron (Pakkenberg et al., 2003; Pakkenberg et al., 1997).  At every synaptic 

interface, chemical signals are transmitted from the axon of the effector cell to the dendrites of 

the receiving cell.  These extracellular chemical signals released and sensed by neurons are 

collectively known as neurotransmitters, and serve to convert and relay electrical signals in the 

form of chemical messengers across the space between two communicating neurons.   

There are two types of neurotransmitter receptors – those that are able to form ion 

channel pores (ionotropic), and those that are G-protein coupled receptors (metabotropic). When 

captured by receptors on the receiving dendrite, neurotransmitter ligands initiate depolarisation 

of the cell either through the opening of an innate channel in ionotropic receptors, or through 

signal transduction mechanisms via G-proteins linking to ion channels. 
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Within each neuron, transmembrane ion pumps and receptor channels maintain a resting 

potential of -70mV by transporting sodium ions out of the cell and potassium ions into the cell 

against a concentration gradient.  Neurotransmitter activation initiates the opening of sodium and 

calcium receptors through conformational changes.  If this event causes a depolarization beyond 

a threshold of -60mV, positive feedback causes further depolarization to +40mV through the 

opening of more voltage-gated sodium channels (VGSC), followed by the efflux of potassium 

ions when its channel opens later.  After this electrical impulse called the action potential has 

passed, the ion channels rapidly close and sodium and potassium pumps return the cell 

membrane to its resting potential (Fig. 1.5).  During this time, ion channels undergo an 

inactivation period during a refractory stage when they cannot be stimulated or require a larger 

stimulus to be activated.  This process is known as the action potential, and is essential in all 

nervous signal transduction. 

 

Fig. 1.5.  The action potential during nervous transmission (Adapted from mindcreators.com; Cofer, 2002).  The 
axes represent change in membrane potential against time in millisecond.  The cell is normally kept at -70mV in 
resting state with high concentration of K+ and low Na+ inside the cell against a concentration gradient.  An initial 
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10mV depolarization is the threshold required to initiate an action potential in which the sodium channels first open 
to allow an influx of Na+ ions (1).  Potassium channels later open (2) allowing the efflux of K+ to hyperpolarize the 
cell.  At the end of the action potential, K+ channels close (3) and ion pumps revert the Na+/K+ concentrations back 
to its resting state in preparation for another wave of excitation.  

 

 Ion channel receptors are classified according to ligand specificities.  All are assembled 

from subunits of homologous polypeptides that arise from alternative splicing and arranged in a 

ring structure with a water filled channel running perpendicular to the plasma membrane.  The 

cytoplasmic extension of the channel may contain stretches of amino acids for interacting with 

other proteins. 

 

1.4 Mitogen-activated protein kinase pathways 

 Among the pathways used to transduce a signal is the highly conserved mitogen-activated 

protein kinase (MAPK) pathway.  This pathway was initially found to be activated by mitogens, 

and a critical regulator of cell division and differentiation.  Subsequent studies have shown it to 

be also inducible by physical and chemical stressors such as UV irradiation, heat and osmotic 

shock.  The MAPK pathway is the prototypic signalling cascade found in all eukaryotic 

organisms and in its most basic form, consists of the sequential phosphorylation and activation of 

at least three protein kinases, MAPKKK, MAPKK and MAPK.   

Mitogen-activated protein (MAP) kinase kinase kinases (MAPKKK), also known as 

MAP3K or MEKK, integrate multiple inputs which, in turn, phosphorylate MAP kinase kinases 

(denoted MAPKK, MAP2K, MKK or MEK).  MAPKK enzymes are dual-specificity enzymes 

with limited substrate specificity, belonging to the MAP/ERK (MEK or MKK) family of kinases.  

Although activated by multiple MAPKKKs, MAPKKs only phosphorylates serine/threonine 



12 
 

(Ser/Thr) and Tyr residues on one or a few MAP kinase (MAPK) proteins (Kosako et al., 1992).  

Phosphorylated MAPKs are known to control almost all cellular processes ranging from gene 

expression to cell death (Chang and Karin, 2001) by migrating to the nucleus to recognise 

transcription factors with the motif (S/T)P, PX(S/T) or (S/T)G (Lewis et al., 1998).  In mammals, 

this pathway can be sub-divided into at least four distinct groups – ERK/MAPK, JNK/SAPK, 

p38 and ERK5 pathways – according to the specific MAPK activated (Fig. 1.6). 

 

 
Fig. 1.6.  The different classes MAPK signalling pathways in humans (ERK/MAPK, p38 and JNK/SAPK and 
ERK5).   MAPKKK (MAP kinase kinase kinases) are represented as yellow boxes, MAPKK (MAP kinase kinases) 
as red boxes and MAPK (MAP kinases) as green boxes. 
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1.4.1 Classical ERK/MAPK pathway 

The MAPK/ERK pathway (Fig. 1.5) is induced by ligands received by specific RTKs; 

and, upon binding to their respective growth factors, oligomerize and autophosphorylate tyrosine 

residues in trans.  These phosphorylated tyrosines signal the recruitment of adaptor proteins such 

as Grb2. Guanine nucleotide exchange factor Son of Sevenless (SOS) translocates to the 

membrane, associates with Grb2 and relays the signal by catalysing the activation of Ras by 

exchanging GDP to GTP.  Ras-GTP activates Raf-1, a ubiquitous MAPKKK, by binding to and 

relieving its inhibition by the N-terminal regulatory domain (Yip-Schnider et al., 2000).  Raf-1 

regulation is complex, involving several kinases and phosphatases (Avruch et al., 2001; Jelinek 

et al., 1996; Warne et al., 1993; Moodie et al., 1993, Pearson et al., 2001; von Kriegsheim et al., 

2006; Jaumot and Hancock, 2001).  Once activated, Raf-1 dually phosphorylates either serine or 

threonine in the activation loop of MAPKKs MEK1 and MEK2.    

The extracellular signal-regulated kinases (ERK) are the most common and best 

characterised serine/threonine protein kinaes that are activated downstream of the ERK/MAPK 

cascades.  Occuring in two closely related isoforms ERK1/p44 and ERK2/p42, they are possibly 

unique substrates to MEK1/2.  Although ubiquitously expressed, their relative expression levels 

vary between tissues and they are predominantly associated with positive cellular responses such 

as proliferation, differentiation, migration and tissue growth.  One of the most explored functions 

of MAPK signalling modules is the regulation of gene expression in response to extracellular 

stimuli.  While the primary site of MAPK action, such as ERKs, is inside the nucleus to 

phosphorylate transcription factors prebound to DNA, much remains in the cytoplasm to regulate 

gene expression through post transcriptional means such as mRNA stabilisation (Chen et al., 
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2000; Winzen et al., 1999; Lasa et al., 2000) and translational control (Kotlyarov et al., 1999; 

Pyronnet et al., 1999).  

 

1.4.2  An adaptation of the ERK/MAPK pathway: Synaptic plasticity  

There are two forms of memory: short-term working memory, and long-term memory.  

Memory serves a basic purpose to increase an organism’s survivability by recognizing food, 

danger, prospective mates and environmental cues.  Organisms have thus developed a 

complicated yet reliable system of constant addition, expansion, alteration and eradication of 

memories to better serve their interests. 

Memories are formed in the hippocampus and amygdala of the brain where the binding of 

glutamate to N-methyl-D-aspartate receptor (NMDAR) causes both the influx of calcium 

through opening of the ion channels and activation of calcium-dependent kinases that lasts 

between 60 to 90 minutes (Sweatt, 2001).  At the same time, calcium channel, α-amino-3-

hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR) increases in number at the 

synapse, is phosphorylated and generates a greater influx of calcium.  This phenomenon 

reinforces the synaptic connections between the effector and effected neurons and is known as 

long term potentiation (LTP), more specifically the early phase of LTP.  LTP is the long lasting 

communication improvement between two neurons that results from stimulating them 

simultaneously, while synaptic plasticity is the ability of two neurons to establish this 

connection.  The LTP theory is a signalling model for memory formation, and the early phase of 

LTP indicates the start of memory formation.  
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1.4.3 ERK/MAPK pathway in late LTP 

Maintaining LTP in activated neurons is essential for the formation of long-term 

memory.  Following NMDAR activation, a cascade of kinase activities ensue that ultimately 

changes gene expression levels in the late phase of LTP.  If this is not sustained, short-term 

memory formed during early LTP will be erased.  During late LTP, the classical ERK/MAPK 

pathway of Ras/Raf, MEK and ERK integrates signals from neurotransmitter receptors, Src and 

Ca2+ (English and Sweatt, 1997; Gottschalk et al., 1999; Boxall and Lancaster, 1998; Thomas 

and Brugge, 1997) (Fig. 1.7).  ERK2 is essential in memory consolidation by phosphorylating 

calcium and cAMP response element binding transcription factor, enabling transcription of its 

genes (Cestari et al., 2006).  Activated ERK also phosphorylates the voltage-gated potassium 

channel (Schrader et al., 2006); tyrosine phosphorylation of NMDAR or associated proteins also 

lead to increased channel activity and influx of calcium ions, which in turn strengthen AMPA 

mediated synaptic transmission (Purcell and Carew, 2003). 

Increased post synaptic receptor activity as a result of heightened cell sensitivity towards 

signals during learning of is important for enhancing communication between neurons (Bliss and 

Lomo, 1973; Anderson et al., 1980).  This is attributed in part to the increased sensitivity of the 

voltage-gated sodium channel (VGSC) to membrane depolarization through a progressive 

decrease in action potential threshold.  Together with an increased input resistance due to a 

hyperpolarized shift in slow inactivation curve of VGSC, the excitability of postsynaptic neurons 

is enhanced (Xu et al., 2005).  This change in activation kinetics of the VGSC was found to be 

Ca2+/CaM dependent, and a result of protein synthesis (Xu et al., 2005). 

 



16 
 

 
Fig. 1.7.  The role of CaM in a simplified ERK/MAPK pathway during neuronal LTP for the formation of memories 
(Xia and Storm, 2005).  CaM acts as a Ca2+ sensor to modulate the function of various proteins in different 
concentrations of Ca2+, caused by neurotransmitter ligands that initiate the opening of NMDA and AMPA receptors 
to allow an influx of Ca2+. 

  

 

1.5 Regulating signal transduction pathways at the receptor level 

To create varying cellular responses, cells manipulate the same signalling pathways by 

altering the amplitude, duration and location of its activation.  Consequently, several 

mechanisms exist to ensure that the appropriate signal thresholds are achieved and maintained 

for the correct length of time or aptly attenuated for strict regulation of receptor activity. This 

need for tight regulation of catalytic activity is underscored by the numerous diseased states that 

result from deregulated pathways.  Controlled signalling within the cell is predominantly 

achieved by inbuilt on/off switches and negative feedback mechanisms.  Diverse classes of 

molecules have evolved for this function, ranging from enzymes to inorganic factors.  Those 
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mechanisms that do not degrade a pool of proteins are deemed as transient - their targets can be 

re-activated once inhibition is lifted.  On the other hand, the most common mechanism to 

permanently attenuate a signal is through protein internalization and degradation.  

 

1.5.1 The role of regulatory ligands and proteins in modulating receptor activity 

Just as the essential components of signal transduction pathways have evolved methods 

to enhance and efficiently propagate a signal, many other proteins exist to control amplitude, 

duration and location of pathway factors.  Known as regulatory proteins, these proteins are key 

determinants of specific cellular outcomes, and although critical to the fate of an organism, they 

are not essential for the initiation and propagation of signal.   

Regulatory mechanisms often engage competitive inhibitory oligomerization with ligands 

or other proteins to carry out their function.  For example, the Tie2 receptor whose signal is 

initiated by angiopoietins binding has a natural inhibitory ligand that prevents further activation 

of the receptor (Maisonpierre et al., 1997).  Certain tissues purposefully express receptor variants 

deficient in tyrosine kinase activity for dominant negative inhibition through the generation of 

inactive heterodimers.  In other cases, PTKs require association with other proteins or 

homodimerization to become functional.  For example, engagement of Syk with the tyrosine-

phosphorylated ζ-chain of the T-cell receptor relieves inhibiton on the kinase domain and 

stimulates its catalytic activity (Shiue et al., 1995).   

An activated receptor usually induces positive and negative pathways simultaneously that 

are functionally connected by numerous feedback mechanisms.  For example, the EGF receptor 

in Drosophila mediates the expression of Spitz and Argos, positive and negative auto-regulators 
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of the EGF induced MAPK pathway respectively (Wasserman and Matthew, 1998) to define 

body axes and patterning in developing oocytes.  Src, when in its activated state, phosphorylates 

a conserved tyrosine in the N-terminal of Sprouty proteins.  This phosphorylated tyrosine residue 

can bind and sequester Grb2, impairing the recruitment of SOS to RTKs (Gross et al., 2001).  

The precise mechanism of Sprouty proteins in the MAPK signalling however, has yet to be fully 

elucidated  

 

Example: Sprouty proteins regulating receptors with tyrosine kinase activities  

Sprouty was first discovered in Drosophila as a 63kDa protein that inhibited fibroblast 

growth factor (FGF) receptor signalling (Hacohen et al., 1999) in tracheal branching.  

Subsequent studies revealed that there were four human Sprouty homologues, all considerably 

smaller than Drosophila’s possessing two conserved sequences – a highy homologous Cys rich 

C-terminus, and a short stretch in the N-terminus centred around a phosphorylated Tyr (pTyr).  

Sprouty has no intrinsic enzymatic activity of its own, but its expression pattern during 

embryonic development synchronises with known sites of RTK signalling and localises to the 

membrane through the Cys rich C-terminus (Kim and Bar-Sagi, 2004).  Prturbation of the RTK 

signalling that result from the expression of Sprouty proteins produces a broad spectrum of 

effects that range from alterations to developmental fate and changes in cellular homeostasis 

(Kim and Bar-Sagi, 2004). 

 Upon receptor stimulation, the essential tyrosine within the SH2-like binding motif of 

Sprouty becomes tyrosine phosphorylated.  This phosphorylation event has been linked to the 

ability of Sprouty to downregulate ERK phosphorylation.  Combined evidence points to two 

areas of action within the ERK/MAPK pathway: upstream of Ras and upstream of Raf-1 
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(Hanafusa et al., 2002; Lao et al., 2006).  Under normal circumstances, EGF signalling triggers a 

negative regulatory response to downregulate the receptor from the cell-surface via c-Cbl 

mediated ubquitination.  Sprouty through its binding to the conserved tyrosine in the N-terminus, 

competes with EGFR for binding to Cbl, and prevents it from interacting with, and thus 

downregulating the EGFR (Fong et al., 2003).   

 

1.5.2 The role of function-modifying proteins in regulating receptor activity 

Besides down-regulation, there are also certain proteins whose nature is to modify the 

function of their binding partners.  The ubiquitous 14-3-3 protein isoforms are probably one of 

the best characterized as effecting both positive and negative regulation.  In the ERK/MAPK 

pathway, Ras activity is upregulated by its binding with the catalytic domain of 14-3-3 proteins, 

but suppressed through association with the regulatory domain (Yaffe, 2002).  Other proteins 

possessing such modulatory roles include the Regulator of G-protein signaling (RGS) protein, 

primarily to enhance the GTPase activity of an activated G-protein, and calcium binding proteins 

S100 and calmodulin (CaM) that the ability to be regulated by intracellular Ca2+. 

 

Example: Calmodulin regulation of ion channel receptor activity 

Various stimuli, such as changes in membrane polarization or small receptor ligands may 

trigger the opening of calcium channels, resulting in the influx of Ca2+ ions into the cytosol.  

Many forms of synaptic plasticity are initiated by an increase in intracellular calcium ions (Ca2+) 

which functions as a second messenger for activity dependent, synapse specific changes.  The 
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approximately 100-fold increase in free Ca2+ concentration during synaptic transmission from 

NMDAR and AMPAR allows Ca2+-binding proteins to trigger response mechanisms that are 

able to integrate and transmit this signal coherently to downstream processes.  

The key Ca2+ regulator protein in the brain is calmodulin (CaM), a 16.8kDa highly 

conserved ubiquitous protein whose sequence is identical among vertebrates.  Many proteins, 

including ion channel receptors, alter their activity in response to changes in free Ca2+ levels, but 

are not able to bind Ca2+ ions by themselves.  CaM, when bound to several ion channels crucial 

for synaptic plasticity, confers Ca2+ sensitivity to its binding partners through a conformational 

change (Fig 1.8).  CaM’s regulatory role in mediating the Ca2+ signal is highly localized and so 

entrenched in regulating ion channel receptors’ functions that it has been suggested to to be 

classified as a channel subunit (Saimi and Kung, 2002).  The importance of CaM is reflected in 

the extraordinarily high concentrations ranging from 10μM to 100μM in neurons and lethality if 

its gene is deleted (Xia and Storm, 2005).   

 
Fig. 1.8. Ribbon presentations of CaM and CaM in complex with target peptides. CaM is colored blue and Ca2+ ions 
are yellow.  The N- and C- lobes are at the ends of the molecule connected a central α-helical linker in Ca2+/CaM.  
The linker collapses in apo-CaM.  Structural data were taken from the Protein Data Bank, accession codes: apo-CaM 
(1CFD) and Ca 2+/CaM (1CLL) (Vetter and Leclerc 2003). 
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Several hundred Ca2+-binding proteins have been identified to contain the EF-hand Ca2+ 

binding motif.  This motif comprises about 30 amino acids and consists of a helix-loop-helix 

where the two helices are arranged similar to the extended thumb and index finger of a hand: it is 

commonly called the EF-hand domain.  In almost all Ca2+-binding proteins such as CaM, two 

EF-hand domains are in close proximity forming an EF-hand pair.    

CaM is a dumbbell shaped molecule with two EF-hand pairs: the N- and C- lobes that are 

arranged one at each terminus connected by a long linker (Fig. 1.8). Each lobe binds two Ca2+ 

ions, and is connected to each other by an α-helical linker that bends with changes in intracellular 

Ca2+ concentration (Vetter and Leclerc, 2003).  The lobes share 48% sequence identity and 75% 

similarity, a difference that is reflected in 10-fold higher Ca2+-binding affinity of the C-lobe.  

The average dissociation constant of Ca2+ from CaM is 15μM in the absence of other proteins.  

The affinity for Ca2+ increases when CaM is complexed with a target protein and, with the 

exception of neurogranin and neuromodulin, Ca2+ recruitment enhances CaM’s affinity for its 

targets (Olwin and Storm, 1985).  These changes in affinity occur because Ca2+ binding exposes 

a hydrophobic patch, the main site of interaction between CaM and its targets (Xia and Storm, 

2005).   

 Recent observation have shown that CaM is an important regulator of many different 

ionic currents by binding to and modulating the functions of channel receptors, such as the rod 

cGMP gated cation channel, NMDAR, calcium activated potassium channel and the voltage-

gated calcium channel (VGCC) (Schumacher et al., 2001; Petegem et al., 2005) (Fig 1.9).  CaM 

acts as an intracellular calcium sensor for these channels when bound to them, thus translating 

Ca2+ signals into cellular responses according to the state of the cell. 
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Fig. 1.9.  Summary of CaM binding proteins (O’Day, 2003).  CaM target proteins are varied in function and 
localisation, ranging from structural proteins to transcription factors. 

 

1.5.3 The role of post-translational modifications in regulating receptor activity 

Post-translational modifications (PTMs) are covalent processing events that change the 

properties of a protein by proteolytic cleavage or by the addition of a modifying group to one or 

more amino acids (Fig. 1.10).  PTMs of a protein can determine its activity, state, localization, 

turnover, and interactions with other proteins (Mann and Jensen, 2003).  Proteolytic cleavage can 

relieve auto-inhibition, or release a protein for folding and function after secretion.  

Modifications like hydroxylation, acetylation, methylation, ubiquitination and phosphorylation 

are frequently utilised for controlling protein interactions by completing substrate recognition 

sites of a target protein (Table 1.1).  Kinase cascades are turned on and off by the reversible 

addition and removal of phosphate groups (Cohen, 2000), while ubiquitination marks targeted 

proteins for destruction at defined time points (Tyres and Jorgensen, 2000). 
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Fig. 1.10.  Comparison of the in vivo (with PTMs) and in vitro (without PTMs) states a protein experiences, 
highlighting several regulatory modes conferred by post-translational modifications (Saghatelian and Cravatt, 2005). 

 

 

Table 1.1.  List of common and important PTMs (Mann and Jensen, 2003). 
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Example 1: Phosphorylation 

One of the most common modifications to proteins is the phosphorylation of serine, 

threonine and tyrosine residues.  About 30% of all cellular proteins are phosphorylated at any 

time; abnormal phosphorylation is now recognized as a cause or consequence of many disease 

states (Cohen, 2002).  Phosphorylation and dephosphorylation is catalysed by protein kinases 

and protein phosphatases respectively, in order to modify the function of a protein by modulating 

its biological activity.  Phosphorylation events function to stabilise a protein or mark it for 

destruction, facilitate or inhibit movement between subcellular compartments, as well as initiate 

or disrupt its binding to substrates and binding partners.  

Iakoucheva et al., 2004 found that the majority of protein phosphorylation sites are 

contained in intrinsically disordered protein segments, such that a phosphorylation site should be 

embedded into a generally hydrophilic and conformationally flexible sequence environment.  

The simplicity, flexibility and reversibility of phosphorylation, coupled with readily available 

sources of ATP as a phosphoryl donor may explain why phosphorylation has been evolutionarily 

selected as the most common regulatory mechanism by eukaryotic cells. 

 

Example 2: Ubiquitination 

Definitive inhibition is most commonly mediated by activation-deactivation protein 

degradation.  The degradation of cellular signalling proteins following their ubiquitination plays 

a critical role in controlling multiple physiological processes.  To terminate a signal, activated 

proteins are removed from the membrane by endocytic mechanisms and either recycled or 

degraded, generating a refractory period before the next signal can be transmitted.  In cells, this 
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process is largely regulated by ubiquitination, where ubiquitin moieties are covalently attached to 

defined lysine residues within the target protein.  Ubiquitination is mediated through the 

sequential enzymatic cascade involving ubiquitin activating (E1), conjugating (E2), and ligating 

(E3) proteins.  Additional ubiquitin molecules can be added to the originally ubiquitinated 

lysines to generate ubiquitin chains.  The type and length of chain generated dictates the 

mechanism by which the protein is then downregulated.  Monoubiquitination directs a protein to 

internalization and endosomal sorting, while presence of multi-ubiquitin chains on proteins 

targets them for degradation by the 28S proteasome (Weissman, 2001). 

 

1.6 The importance of protein – protein interaction domains and motifs 

 Over the last decade, we have gained considerable insights into the mechanisms by which 

signals are accurately conveyed from receptors at the plasma membrane to targets in the 

cytoplasm and nucleus.  At the heart of the abovementioned interactions, specificity and 

regulatory processes is a recurring theme of molecular recognition.   

Proteins recognize and bind to each other through stretches of amino acid sequences built 

into certain architectural folds known as domains.  Each domain typically comprises 50 - 200 

amino acids and folds into a discrete entity (Fig. 1.11), with its N- and C- termini juxtaposed in 

space and away from the interaction region (Schlessinger and Lemmon, 2003).  This enables it to 

be inserted in tandem with other domains on the same protein without interference to its own 

binding (Pawson and Nash, 2003).  A domain usually recognizes a core determinant, with 

flanking or noncontiguous residues providing additional contacts and an element of selectivity.  

They can be broadly classified into four groups – those that bind (1) short peptide motifs, (2) 
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associate with other domains, (3) recognise non amino acids or (4) bind post-translationally 

modified amino acids. 

       

         

  
  

     

       
 

 

   
 

  
 

  

   
   

   

  
 

 
     

   
   

  

 
    

    

   

Fig. 1.11.  A list of protein interaction domains (Adapted from Pawson Lab; pawsonlab.mshri.on.ca).  Each domain 
is schematically represented by a different icon and not reflective of the true domain architecture. 

 

Interaction domains may target proteins to a specific subcellular location, provide a 

means for recognising post-translational modifications or chemical second messengers, nucleate 

the formation of multiprotein signalling complexes, and control the conformation, activity, and 

substrate specificity of enzymes (Pawson and Nash, 2000).  Sometimes, individual domains 

engage several distinct ligands either simultaneously or at successive stages of signalling. 
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Since the entire cellular function organized in signal transduction networks is built on a 

restricted group of protein domains, each class of domains must have multiple biological 

functions and act in a combinatorial fashion, since there is insufficient variety to have each 

assuming a single biological role (Pawson and Nash, 2000).  The incorporation of different 

domains into a single polypeptide is nature’s way of overcoming the limitation of a few thousand 

gene products having to control the entire signalling network.  Multiple domains may interact 

with different sites on the same target, as commonly occuring in polypeptides that possess 

tandem SH2 domains, thereby increasing both the affinity and specificity of protein-protein 

interaction (Ottinger et al., 1998) or engage in complex intramolecular interactions that regulate 

the enzymatic activities of their host protein.   

Regulatory proteins also make use of such domains to their advantage.  They are often 

constructed from domains that mediate molecular interaction or have enzymatic activity to 

competitively inhibit association of a protein to its substrate (Pawson and Nash, 2003). The cell 

therefore uses a limited set of interaction domains, which are joined together in diverse 

combinations, to direct the actions of regulatory systems. 

 

1.7 Case study 1: Cbl regulation of receptors with tyrosine kinase activity  

 The c-Cbl proto-oncogene was first discovered through studies of hemopioetic tumours 

of mice infected with the Cas-Br-M retrovirus.  The isolated recombinant retrovirus induced pre- 

and pro-B lymphomas and caused the transformation of rodent fibroblasts.  The causative 

retrovirus was called Cas-NS-1 and its oncogene, v-Cbl, for Casitsas B-lineage lymphoma 

(Langdon et al., 1989).   Subsequent cloning of the mouse c-Cbl gene revealed that v-Cbl 
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encoded the first 355 amino acids of a longer 120kDa ubiquitously expressed full length protein, 

and overexpression of wild-type c-Cbl did not promote tumourgenesis (Blake et al., 1991).   

Two other mammalian homologues, b-Cbl and Cbl-c have since been identified.  All 

three family members share a highly conserved N-terminus that corresponds to residues in v-Cbl.  

Originally assigned as an adaptor protein, Cbl proteins were revealed to possess E3 ubiquitin 

ligase activity through an adjacent RING domain that recruits E2 ubiquitin conjugating enzymes.  

An extreme C-terminal ubiquitin-associated domain overlaps a leucine zipper motif.  Between 

the RING and the latter is a proline rich region for associations with SH3 domains (Fig. 1.14A). 

 About 150 proteins have been shown to be regulated by Cbl proteins (Fig. 1.12).  More 

recently, it was found to play a prominent role in mediating ligand dependent downregulation of 

PTKs (Thien and Langdon, 2001) by targeting them to the lysozome (Shtiegman and Yarden, 

2003).  
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Fig. 1.12.  The Cbl interactome(Schmidt and Dikic, 2005).  An Osprey diagram of proteins currently known to 
interact with Cbl.  Proteins were grouped according to the domains in Cbl to which they bind, which are represented 
by node colours and the colours in the centre.  Methods that were used for the detection of protein-protein 
interactions are represented by different line colours.    

 

1.7.1 RTK ubiquitination by Cbl in the context of EGFR and Met 

In the context of signalling by the EGFR, one of the first proteins to be recruited to the 

phosphorylated dimerised activated EGFR is Grb2, which can then recruit Cbl proteins from the 

cytoplasm to the plasma membrane through interactions with the proline rich region on Cbl and 

the SH3 domain on Grb2.  Autophosphorylation of EGFR also creates additional docking sites 

for the TKB domain of Cbl (Fig. 1.13).  Y1068 constitutes a direct binding site for the c-Cbl 
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tyrosine kinase binding (TKB) domain and is required for c-Cbl mediated ubiquitination and 

degradation of EGFR (Levkowitz et al., 1999).  Mutation of residues that comprise the c-Cbl 

TKB domain binding site elicits stronger mitogenic signals than the wild type receptor 

(Waterman et al., 2002).  Up to 40% glioblastomas express oncogenic mutants that disrupt Cbl’s 

interaction with EGFR.  The deregulation of Src which occurs in human brain, breast, colon and 

lung cancers also leads to the stabilization of the EGFR by promoting Cbl ubiquitination and 

degradation (Bao et al., 2003).  Throughout its internalization route, the prevailing role of Cbl 

seems to be retaining receptors inside the sorting endosome by promoting and maintaining their 

ubiquitination (Schmidt and Dikic, 2005). 

Met represents another class of RTK regulated by Cbl.  The c-Cbl TKB domain also 

binds to a juxtamembrane tyrosine (1003) residue.  This interacton is essential for ubiquitination 

and degradation of the receptor (Preschard et al., 2001).  The Y1003F mutant has a prolonged 

half life and is oncogenic in cell culture and tumourgenesis assays, identifying c-Cbl and 

ubiquitination as important negative regulators of this protein. 

 

 

Fig. 1.13.  The endocytotic and degradation pathway of 
EGFR via ubiquitination by c-Cbl (Ryan et al., 2006).  
Phosphotyrosines in activated EGFR serve as sites for Cbl 
to dock and orientate to a position favourable for 
ubiquitination.  Cbl recruits the E2 ubiquitin ligase to its 
RING domain which adds ubiquitin moieties to target 
lysine residues in EGFR.  The whole complex becomes 
internalized by clarithrin mediated endocytosis and 
subsequently degraded in the lysozome.  
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1.7.2 NRTK regulation by Cbl 

 The relationship between Cbl and NRTKs is complex.  Cbl regulates NRTK activity 

through ubiquitination and degradation.  At the same time, it is also being regulated by NRTKs 

through phosphorylation.  c-Cbl has 22 Tyr residues available for phosphorylation at the C-

terminus and is a prominent substrate of PTKs.  700Y, 731Y and 774Y are principal 

phosphorylation sites (Feshchenko et al. 1998) by Syk and Src family kinases.  Phosphorylated 

Cbl becomes targets for auto-ubiquitination to remove its activity, resulting in prolonged RTK 

signaling.  However, Cbl overexpression also suppresses the activity of Syk, its homolog ZAP-

70 and c-Src kinase activity in a TKB dependent manner by binding to phosphorylated tyrosines 

of the activated kinases (Sanjay et al., 2001).  The complexity of c-Cbl’s regulation of Src 

signaling show that Cbl can have both positive roles, by functioning as an adaptor to contribute 

to signal transduction, as well as negative roles, by downregulating Src kinase activity or 

enhancing its degradation. 

 

1.7.3 The importance of Cbl-TKB domain in PTK regulation 

 While there are two families of domains that bind pTyr containing sequences – the 

phosphotyrosine binding (PTB) domain and the SH2 domain – only about a quarter of the 79 

known human PTB domains have acquired a capacity for pTyr dependent recognition 

(Schlessinger and Lemmon, 2003).  SH2 domains, however, are wholly dedicated to recognising 

pTyr and thus represent the largest class of known pTyr recognition domains for primary 

targeting and specificity elements in tyrosine kinase signalling (Pawson et al., 2001).  Each SH2 

domain has the ability to preferentially bind a specific phosphorylated motif (Songyang et al., 
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1993).  Since its discovery, a total of 120 different SH2 domains contained in 110 proteins from 

11 functional categories have been discovered, including Cbl family of proteins.  

c-Cbl interacts with a diverse array of proteins via phosphorylatable tyrosine residues at 

its C-terminus (Feshchenko et al. 1998), via its proline-rich region, and through the highly 

conserved N-terminal phosphotyrosine-like binding domain (Schmidt and Dikic, 2005). 

Although this phosphotyrosine binding domain (PTB) appeared to have several hallmarks of a 

PTB consensus motif, the crystal structure demonstrated that it structurally resembled an SH2 

domain but required a flanking four-helix bundle (4H) and an EF-hand subdomain to accomplish 

binding (Meng et al., 1999). Together, these three sub-domains make up the tyrosine kinase-

binding (TKB) domain, which is unique to Cbl proteins and often referred to as a specialized or 

'embedded' SH2 domain (Liu et al., 2006).  Several oncogenic RTKs have lost the ability to 

recruit Cbl in a TKB mediated manner. Moreover, the stability of Cbl itself is regulated by 

ubiquitination.  Tyrosine phosphorylation of c-Cbl by c-Src promotes auto-ubiquitination of Cbl 

and its degradation in a proteasome dependent manner (Yokouchi et al., 2001). 

Binding to the TKB domain is required for the subsequent conjugation of ubiquitin 

through the RING domain during the ubiquitination process. The consensus binding sequence 

targeted by the TKB domain was originally identified by Lupher et al. (1997) as D(N/D)XpY, 

but was later experimentally refined as (N/D)XpY(S/T)XXP. This motif is common to several 

PTKs, such as epidermal growth factor receptor (EGFR), colony-stimulating factor 1 receptor, 

ZAP-70 ζ-associated protein of 70 kDa, Src and Syk, as well as members of the Sprouty (Spry) 

family of Ras/mitogen-activated protein kinase inhibitors.  Each of these targets binds to the 

TKB domain following phosphorylation of a central tyrosine residue in the consensus motif and, 

http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B29#B29�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B21#B21�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B17#B17�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B19#B19�
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in most cases, their protein expression levels are subsequently downregulated by ubiquitination 

(Schmidt and Dikic, 2005). 

In recent years, two additional consensus motifs have been identified as targeted by the c-

Cbl-TKB domain (Fig. 1.14B). The first, RA(V/I)XNQpY(S/T), is a derivation of the original 

sequence, with conserved residues extending back to the arginine at the pY-6 position. This 

sequence is conserved amongst a family of adaptor proteins based on the APS (Adapter with a 

Plekstrin homology and Src homology-2 domains) protein (Hu and Hubbard, 2005) and, unlike 

the PTKs, they are not substrates for ubiquitination, but use c-Cbl as a docker protein in the 

insulin receptor complex (Chiang et al., 2001). The second consensus sequence was identified in 

a study investigating the binding of c-Cbl to the c-Met receptor (Met) but, unlike the APS 

sequence, it bears no resemblance to the previously characterized PTK-binding motif (Peschard 

et al., 2001). Alanine-scanning mutations identified that a DpYR motif was essential for the 

ubiquitination and downregulation of Met by c-Cbl (Peschard et al., 2004). This motif is 

conserved among the Met family members, Ron and Sea (Penengo et al., 2003), as well as in 

plexins—receptors for semaphorins that promote cell repulsion (Tamagnone et al., 1999). 
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Fig. 1.14.  Schematic representation of c-Cbl 
domain architecture and targets of its TKB 
domain (Ng et al., 2008).  (A) Structural 
organization of human c-Cbl. The N-terminal 
region contains the TKB comprising 4H, EF-hand 
(EF) and SH-2-like subdomains. The TKB 
domain is separated from the RING domain by a 
short linker (L) region. Cbl has a proline-rich 
stretch following the RING domain and a 
ubiquitin-associated (UBA) domain at its C 
terminus. (B) Sequence alignment of previously 
characterized c-Cbl-TKB binding sites for the 
PTK, APS and Met subgroups of proteins. 
Coloured residues refer to the conserved residues 
in the sequence: pY is coloured red, (pY-2)D/N is 
green, (pY+1)S/T is dark blue, (pY+4)P is 
fuschia. (pY-6)R in the APS family is orange, 
(pY-5)A is brown and the (pY-4)Φ represents a 
hydrophobic residue, coloured violet. pY flanking 
residues of the Met family (pY-1)D are coloured 
light blue and (pY+1)R magenta. 

 

 

 

 

 

1.8 Case study 2: CaM regulation of the VGSC receptors 

 Besides with the voltage-gated potassium channel whose repolarization properties are 

modified by ERK2 phosphorylation, the voltage-dependent sodium channel (VGSC) is the other 

basic component of action potentials in many excitable cells.  There are nine isoforms of the 

VGSC, Nav1.1 - Nav1.9, all of which generate the upstroke or depolarization of the action 

potential in various tissues (Fig. 1.5).  The α-subunit of VGSC is the main component of the 
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channel responsible for voltage-sensitive gating and selective ion permeation (Catterall, 1995), 

and the function of this α-subunit can be modulated through its interaction with associated 

proteins in regulating the generation of action potentials.   

Through sequence analyses, the C-termini of all VGSC subtypes were found to possess a 

conserved region for CaM interaction.  As Ca2+ has a fundamental role in the coupling of cardiac 

myocyte excitation and contraction, the first evidence of CaM modulating the VGSC came from 

the human cardiac sodium channel subtype Nav1.5, which binds to CaM in a calcium dependent 

manner.  This binding significantly enhances slow inactivation.  Mutations that disrupt CaM 

binding eliminated Ca2+/CaM slow inactivation (Tan et al., 2002).  Subsequent studies by 

Herzog et al. (2002) revealed that skeletal muscle Nav1.4 and neuronal subtype Nav1.6 are high 

affinity binders of CaM in the presence and absence of Ca2+.  The functional expression of 

Nav1.4 is critically dependent on the ability of the channel to bind CaM at the C-terminus, while 

the VGSC in Paramecium is dependent on CaM for activation (Saimi and Ling, 1995).  Mutation 

of the core amino acids in the CaM binding region of Nav1.6 decreased current amplitude 

significantly, albeit to a smaller extent than Nav1.4.  Changes in the intracellular concentration 

of Ca2+ altered inactivation kinetics of Nav1.6 currents via a CaM-dependent mechanism.  

Ca2+/CaM slowed Nav1.6 channel inactivation by 50%, while calcium free CaM enhances the 

rate of inactivation.  The Ca2+/CaM dependent slowing of Nav1.6 inactivation kinetics could 

prolong action potential duration to enhance neurotransmitter release at nerve endings, and play a 

role in synaptic plasticity (Herzog et al., 2003). 
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1.8.1 The importance of the IQ motif in VGSC regulation 

 CaM binding proteins possess a basic often amphipathic stretch of residues that assumes 

an α-helix upon binding with CaM.  These motifs contain critical hydrophobic residues at 

positions 1, 8 and 14 and frequently an additional hydrophobic contact at position 5.  Basic 

amino acids are distributed throughout the motif and often flank the critical hydrophobic 

residues.  The consensus sequence of CaM binding motif is IQxxxRGxxxR and referred to as the 

IQ motif, after the first two conserved residues.   

Alignment of all known IQ motifs show that the residue at position 1 that may be Ile, Leu 

or Val.  Position 2 is always Gln, 7 may be ambiguous for several residues and the 11th position 

can be either Arg or Lys (Table 1.2).  The sequence (FILV)Qxxx(RK)Gxxx(RK)xx(FILVWY) 

thus represents a more generalised core IQ motif.  Two or three partially conserved Ala residues 

may be located at the N-terminal of the primary motif.  The entire region of the IQ domain 

comprising of core and flanking residues is 20-25 residues with no proline to form an 

uninterrupted seven-turn α-helix.  Partial amphipathicity with a net positive charge usually 

between 2+ to 5+ is commonly observed, although not neccessary.   

Most IQ motifs show preferential binding when Ca2+ is present, however, in other cases, 

proteins bind both in the presence and absence of Ca2+.  It has been suggested that IQ motifs 

containing a conserved Gly at the seventh position and a second basic residue do not require 

calcium to bind calmodulin, while binding of incomplete IQ motifs lacking the second basic 

residue is calcium dependent (Houdusse and Cohen,1995; Munshi et al., 1996).  The substitution 

of the 7th glycine with residues possessing bulky side chains, which occurs in approximately 50% 
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of IQ domains, may provide some specificity for calmodulin interactions, as might the identity of 

the 6 intervening amino acids in the IQ consensus sequence. 

Table 1.2. 
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In the crystal structures of CaM bound IQ motif complexes, the IQ domain was observed 

to run through the structure of CaM between N- and C-termini lobes.  Exact positioning of the 

motif, however, differs between proteins. 

The IQ motif at the C-termini of K+ and Ca2+ ion channels, together with the voltage-

gated sodium channels (VGSC) enables CaM to functionally modify their function (Fig. 1.15).  

Disruption of VGSC regulation by CaM through mutation of the IQ motif has been linked to 

abnormalities linked to life-threatening idiopathic ventricular arrhythmias in cardiac muscle 

(Veldkamp et al., 2000; Wang et al., 2000; Tan et al., 2002).  Similarly, a proposed link between 

increased Ca2+ concentration, CaM kinase II activity and myotonia suggests that skeletal muscle 

VGSCs may be implicated (Deschenes et al., 2002).  A study of an individual with autism 

indicated that a mutation identified in the C-terminus of human Nav1.2 might reduce the binding 

affinity of Nav1.2 for Ca2+/CaM (Weiss et al., 2003).  Although the physiological relevance of 

altered inactivation kinetics in other VGSCs caused by disrupting CaM binding has yet to be 

ascertained, it remains conclusive that Ca2+ plays an important role through CaM-IQ motif 

interaction and regulates VGSCs in an isoform-specific way.  

 
Fig. 1.15.  Sequence alignment of the CaM interacting motif (IQ motif) within the C-termini of VGSC isoforms 
Herzog et al., 2003).  Identical and highly conserved residues are shaded in black and grey respectively from a 
schematic GST-fusion protein with the 250 amino acid long C-terminus of a sodium channel, indicating the position 
of the highly conserved IQ motif. 
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1.9 Chapter summary 

 The ERK/MAPK pathway is a ubiquitous serine/threonine kinase cascade directing 

growth, differentiation and plasticity in various tissues.  It is initiated by multiple receptor inputs 

that converge at levels downstream of Raf through to ERK1/2.  Regulating receptor activity 

instead of the MAP kinase module has certain advantages.  Firstly, Raf, MEKs and ERKs are 

entities common to all ERK/MAPK pathways: regulating upstream events, such as at the 

receptor level, enables signalling from a certain receptors to be specifically controlled without 

affecting signals from other receptors.  Secondly, it allows an unambiguous attenuation of an 

unwanted signal at its source.   

Like all signalling proteins, receptors leading to the ERK/MAPK pathway require 

interaction with other factors be functional.  Evolution has thus selected for the incorporation of 

molecular recognition domains within these proteins.  Regulatory proteins also exploit these 

domains in order to latch on to substrates for their purposes.  With the examples of regulatory 

proteins c-Cbl, Sprouty and CaM, this thesis explores the effects of regulatory strategies such as 

post-translational modifications, competitive inhibition and functional modifiers.  Through the 

use of three unique classes of receptors (RTKs – receptors with enzymatic activity, NRTKs – 

intracellular receptors and VGSCs – ion channel receptors), this thesis seeks to address the 

importance of protein interaction domains in the regulation and modulation of ERK/MAPK 

signalling across all receptor types. 

In the next chapter (Chapter II), the implication of protein phosphorylation in MAPK 

signal regulation by c-Cbl TKB domain is emphasized.  Together with biophysical and molecular 

quantization on the contribution of certain residues to its binding capacity, the basis of substrate 
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alignment on the TKB domain is thoroughly described.  The third chapter describes a calcium-

dependent regulation of the voltage-gated sodium channel by calmodulin and its implication in 

the neuronal MAPK processes of learning and memory, an interaction mediated by the IQ motif.   

Both the Cbl SH2 domain and the calmodulin interacting IQ motif represent domains involved in 

signal regulation that are seemingly able to bind their partners in multiple ways – Cbl has an 

abnormally wide range of binding motifs, and IQ motifs complex with CaM in many orientations 

as observed from previously known structures. 

Through structural characterisation of protein-peptide complexes, the aim of this thesis is 

to explore whether common interaction mechanisms that govern the regulatory networks of Cbl 

and CaM with their respective, seemingly disparate, binding motifs exist, such that they can 

retain their intrinsic flexibility of binding, and yet still evoke specific responses.  
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Chapter II 

 

 

 

c-Cbl and Protein Tyrosine Kinase Signalling 
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2.1 Introduction 

Although the approximatey 120 documented SH2 domains use diverse strategies to 

aggregate signalling complexes, there is no precedent for a given SH2 or PTB domain to 

associate with such apparently unrelated consensus binding motifs as seen with the TKB domain.  

Cbl proteins appear to have two major physiological functions—either in acting as scaffolds or in 

targeting proteins for ubiquitination (Thien and Langdon, 2005). These functions are reflected in 

the purpose of the TKB domain in (a) recognizing proteins and, in the case of ubiquitin 

substrates, (b) ensuring its appropriate orientation for ubiquitin conjugation. Cbl proteins have 

critical roles in the downregulation of both RTKs in growth and differentiation and the antigen 

receptors in the control of immune responses, and thus elucidating the TKB recognition sequence 

has been central to understanding the biochemistry of tyrosine kinase downregulation by Cbl 

proteins. The TKB domain is, in essence, an 'embedded' SH2 domain—a domain generally 

recognized to bind a 'tight' consensus motif (Liu et al., 2006). The abnormal range of the 

experimentally observed motifs that bind to the TKB domain invites the question as to whether 

this domain has an uncharacteristic flexibility of binding or whether there is a hitherto 

undiscovered common binding mechanism that encompasses the previously observed sequences. 

Furthermore, with such diverse sequence recognition strategies, binding affinity to c-Cbl is likely 

to be varied and may lead to the selective sequestration of c-Cbl by higher-affinity targets over 

lower-affinity ones. This model has been suggested as a mechanism whereby Spry2, the most 

well-characterized of the Spry proteins, recruits c-Cbl from EGFR and results in the 

ubiquitination of Spry2 and preservation of EGFR on the cell surface (Wong et al., 2002; Hall et 

al., 2003; Rubin et al., 2003). 

 

http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B32#B32�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B17#B17�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B34#B34�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B11#B11�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B11#B11�
http://www.nature.com.libproxy1.nus.edu.sg/emboj/journal/v27/n5/full/emboj200818a.html#B28#B28�
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2.2 Materials and methods 

2.2.1 Plasmid constructs, cloning, expression and purification 

The human c-Cbl-TKB domain (residues 25–351; Cbl-TKB) was cloned into pGEX4T-1 

expression vector (GE Healthcare, Buckinghamshire, UK), overexpressed as a glutathione-S-

transferase fusion protein and purified according to Meng et al., (1999) with modifications. The 

purified protein (1 mg/ml) was kept in a storage buffer (20 mM Na-HEPES pH 7.0, 0.2 M NaCl) 

and used for crystallization and ITC experiments. Wild-type full-length constructs of FLAG-

tagged Spry2, Spry4, FGFR1, HA-tagged c-Cbl and EGFR have been described previously 

(Wong et al., 2001). pBABE-bleo human insulin receptor B (IR-B) plasmid 11211 was from 

Addgene (deposited by Dr C Ronald Kahn; Entingh et al., 2003). Rat myc-tagged APS was 

kindly provided by Dr W Langdon (University of Western Australia). c-Met was from Origene 

Technologies Inc. (Rockville, MD) and subcloned into PXJ40 vector (courtesy of Dr E Manser, 

Institute of Molecular and Cell Biology) using NotI/NotI restriction sites. Point mutations in 

FLAG–Spry2 and HA–Cbl were generated by site-directed mutagenesis using Pfu DNA 

polymerase from Promega (Madison, WI). 

 

2.2.2 Complex formation and crystallization 

Tyrosine phosphorylated peptides of Human Sprouty2 49–61 (Spry249–61), Sprouty4 69–

81 (Spry469–81), EGFR 1063–1075 (EGFR1063–1075), Syk tyrosine kinase 317–329 (Syk317–329) and 

Met receptor 997–1009 (Met997–1009), (Sigma Genosys) were reconstituted in Cbl-TKB storage 

buffer and incubated with the purified Cbl-TKB in two-fold molar excess at room temperature 
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for 1 h for complex formation. The Cbl-TKB:peptide complexes were concentrated to 5 mg/ml 

in Amicon Ultra ultrafiltration devices (Millipore, Billerica, MA). Complexes were screened for 

crystals against crystal screen kits from Hampton Research, CA and Jena Biosciences, DE using 

hanging drop and under oil vapour diffusion methods respectively.  Initial crystallization 

conditions were optimised by varying precipitant or additive concentrations. 

 

2.2.3 Data collection, structure determination and refinement 

Data for the Cbl-TKB:EGFR1063–1075 complex crystals were collected with an R-axis IV++

 

 

image plate detector mounted on a RU-H3RHB rotating anode generator (Rigaku Corp., Tokyo, 

Japan). Data for all other complex crystals were collected at X29 beamline in the National 

Synchrotron Light Source, Brookhaven National Laboratory (Upton, NY). Data were processed 

and scaled with HKL2000 (Otwinowski and Minor, 1997). The TKB domain of c-Cbl from the 

ZAP70:Cbl complex structure, PDB code 2CBL (Meng et al., 1999) was used as a starting model 

for molecular replacement solution using the programme Molrep (Vagin and Teplyakov, 1997). 

Subsequent rigid body refinement reduced the R-factors close to 30%. At this stage, the 

calculated difference electron density map clearly showed the presence of substrate peptides. 

Model building and refinement were carried out in O (Jones et al., 1991) and CNS (Brunger et 

al., 1998) programmes, respectively. After several cycles of map fitting and refinement the R-

values were converged. 
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2.2.4 Protein Data Bank accession code 

Coordinates and structure factors of all of the Cbl-TKB:phosphopeptide complexes have 

been deposited with RCSB Protein Data Bank with codes 3BUM (Spry2), 3BUN (Spry4), 3BUO 

(EGFR), 3BUW (Syk) and 3BUX (Met). 

 

2.2.5 Isothermal titration calorimetry (ITC) 

Both phosphorylated and unphosphorylated peptides of Spry249–61, Spry469–81, EGFR1063–

1075, Src tyrosine kinase (Src413–425), Syk317–329, VEGFR (VEGFR11327–1338), VEGFR11327–1338 

V1331N mutant, VEGFR11327–1338 L1332R mutant, c-Met997–1009 and macrophage stimulating 1 

receptor 1011–1023 (Ron1011–1023

 

) were titrated against 10.8μM Cbl-TKB in a VP-ITC 

microcalorimeter (Microcal, Northampton, UK) performed under identical conditions. All 

peptides were maintained in storage buffer at 22°C and titrated in 10 μl injections into Cbl-TKB 

also in storage buffer. The heat of dilution, determined by titrating peptide into storage buffer, 

was subtracted from the raw data before curve fitting and refinement. The dissociation constants 

of Cbl-TKB to the various peptides were determined by least squares method and the binding 

isotherm was fitted using Origin v7.0 (Microcal) assuming a single-site binding model. All 

measurements were repeated at least twice for verification. 
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2.2.6 Antibodies and reagents 

Rabbit anti-Cbl (C-15), anti-FGFR1 (C-15), anti-Myc (A-14), anti-EGFR (1005), anti-

Grb2 (C-23) anti-insulin Rβ (C-19), and mouse anti-Myc (9E10) and anti-EGFR (528) were 

from Santa Cruz Biotechnology (Santa Cruz, CA). Mouse anti-c-Cbl and anti-Grb2 were from 

Transduction Laboratories (Lexington, KY). Mouse anti-Met (25H2) was from Cell Signaling 

Technology (Beverly, MA) and rat anti-HA was from Roche Diagnostics (Basel, Switzerland). 

Mouse anti-FLAG, rabbit anti-HA, goat anti-HGFR, agarose-conjugated anti-FLAG M2 beads, 

recombinant human (rh) FGF-2, and goat anti-rabbit-HRP and anti-mouse-HRP were from 

Sigma Aldrich (St Louis, MO). rhEGF was from Upstate Biotechnology Inc. (Lake Placid, NY) 

and rhHGF was from Calbiochem (EMD Chemicals, San Diego, CA). 

 

2.2.7 Cell culture and transfection 

Human embryonic kidney 293T cells (ATCC, Manassas, VA) were cultured, maintained 

and transfected as previously outlined (Wong et al., 2001; Yusoff et al., 2002). For binding 

between WT c-Cbl and Spry2 point mutants, cells were transfected with FLAG–Spry2 and 

FGFR1 for 16 h and precipitated for endogenous c-Cbl. Cells were transfected with WT c-Cbl or 

Cbl bearing various point mutations with WT Spry2, Spry4, Met, EGFR or APS with IR-B for 

16 h or 40 h (in the case of Met). For Spry2, Spry4 or Grb2 experiments, cells were stimulated 

with 20 ng/ml FGF-2 for 2 h.  Met-transfected cells were stimulated with 100 ng/ml of HGF 30 

min. EGFR-transfected cells were stimulated with 100 ng/ml of EGF for 10 min. For APS 

experiments, cells were stimulated as described previously (Hu and Hubbard, 2005). 
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2.2.8 Cell lysis, immunoprecipitation and western blotting 

Cells lysis and western blotting was performed as described previously (Wong et al., 2001). 

Immunoprecipitation was carried out using FLAG–M2 beads (Spry2), anti-HA (c-Cbl), anti-

HGFR (Met), anti-myc (APS) or anti-EGFR (528). 
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2.3 Results 

2.3.1 Purification of recombinant Cbl 

 The human c-Cbl-TKB domain (residues 25–351; Cbl-TKB) was cloned into pGEX4T-1 

plasmid vector (GE Healthcare, Buckinghamshire, UK) and transformed into Escherichia coli 

expression strain Rosetta.  100ml of Luria-Bertani (LB) media supplemented with 100μg/ml 

ampicillin was inoculated with one colony of Rosetta(pGEX4T1-Cbl-TKB) and grown overnight 

at 37ºC with aeration.  The overnight culture was amplified to 1L medium and protein expression 

induced with 0.1mM isopropyl-thio-galactoside (IPTG) for 16h at 20ºC during mid-log phase of 

cellular growth.   

 GST-fused Cbl-TKB was harvested by six cycles of 1min sonication with 40sec interval 

between cycles.  Cbl-TKB in the cleared lysate was purified and cleaved on GST-sepharose (GE 

Healthcare, Buckinghamshire, UK) as described by Meng et al., 1999.  Cbl-TKB was purified to 

homogeneity by gel filtration using Superdex G200 column (GE Healthcare, Buckinghamshire, 

UK), eluting at 80ml as a single symmetrical peak (Fig. 2.2) and migrating as a single band in 

12.5% denaturing polyacrylamide gel electrophoresis (SDS-PAGE) (Fig. 2.1). 
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Fig. 2.1. Purification profile of Cbl-TKB.  Samples from different stages of purification were collected, separated by 
12.5% SDS-PAGE and visualized by Coomassie staining.  GST fused Cbl-TKB was bound to GST-Sepharose and 
released from column by thrombin cleavage.  Eluted Cbl-TKB migrated as an approximately 36kDa band.   

 

 

 

Fig. 2.2.  Gel filtration profile of cleaved Cbl-TKB in a 120ml column volume Superdex-200 column.  Cleaved Cbl-
TKB was purified to homogeneity by gel filtration and eluted in storage buffer.  Blue plot indicate Cbl-TKB gel 
filtration profile, grey line is gel filtration molecular size standard with molecular weight of the peaks labeled 
(BioRad, CA). 
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2.3.2 Verification of purified Cbl-TKB functional properties 

 Purified Cbl-TKB was incubated with increasing amounts of phosphorylated Spry249–61 

for 1h on ice. Glutaraldehyde, a cross-linking agent whose aldehyde groups that reacts with 

nitrogen atoms of amino acids in close proximity, was added with stirring to a final concentration 

of 0.1% after 1h of complex formation.  The covalently linked Cbl-TKB: Spry249–61 was 

separated on 12.5% SDS-PAGE.   

 

 

 

 

Fig. 2.3.   Glutaraldehyde cross-linking of Cbl-TKB with various molar ratios of phosphorylated Spry246-61. 
Uncrosslinked Cbl-TKB (without adding glutaraldehyde) and uncomplexed, crosslinked Cbl-TKB (without Spry246-

61 peptide) were negative controls, while Cbl-TKB was complexed with Spry246-61 in various molar ratios as 
indicated above each lane. 

 

At low peptide concentrations, cross-linked Cbl-TKB was observed to form high 

molecular weight complexes that were unable to move into the separating gel, possibly due to the 

non-specific oligomerization of Cbl-TKB molecules.  With increasing peptide concentration, 
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Cbl-TKB: Spry249–61 was increasingly observed to migrate as a band larger than the molecular 

weight of uncomplexed Cbl-TKB (Fig. 2.3).  This observation confirms that the structure of 

purified recombinant Cbl-TKB was preserved, since ligand binding requires all three sub-

domains of the TKB domain to be structurally intact (Meng et al., 1999). 

 

2.3.3 Crystallization 

 The ability of the TKB domain to bind to two different consensus motifs—

(D/N)XpY(S/T)XXP or DpYR—but still appropriately align the protein for ubiquitination 

suggests that there would be a common binding mechanism. The motifs on Spry2, EGFR, Syk 

and Met that recognize c-Cbl-TKB domain (herein referred to as Cbl-TKB) have previously been 

identified and, as Spry4 has three of the four conserved residues, it was also explored whether 

Spry4 binds to c-Cbl, as results for this are currently inconclusive.  Cbl-TKB was therefore 

concentrated to 5mg/ml and incubated with excess of phosphorylated Spry249–61, Spry469–81, 

EGFR1063–1075, Syk317–329, and Met997–1009 peptides.  Complexes were screened for crystals in 1μl 

protein to 1μl mother liquor hanging drops with 500μl reservoir solution.   

The initial crystals obtained were too small, too flat or twinned to be of diffraction quality 

(Fig. 2.4).  These initial conditions were optimized and finally each of the complexes crystallized 

in a different condition.  Cbl-TKB:Spry249–61 complex crystals grew in 0.1M Na-HEPES pH 7.5, 

75mM ammonium sulphate, 25% PEG3350 and 4% n-propanol; Cbl-TKB:Spry469–81 complex 

crystals grew in 0.2M Na/K tartrate and 20% PEG3350; Cbl-TKB:EGFR1063–1075 crystals grew in 

0.25M sodium formate and 20% PEG3350; Cbl-TKB:Syk317–329 crystals grew in 0.1M Bis-Tris 
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pH 6.5, 0.12M ammonium acetate and 18% PEG3350; Cbl-TKB:Met997–1009 crystals grew in 

0.15M malic acid and 20% PEG3350 (Fig 2.5).  

 

 

       
Cbl-TKB: Spry249–61                                                      Cbl-TKB: Spry469–81 

 

      
Cbl-TKB: EGFR1063–1075                                                                           Cbl-TKB: Syk317–329 
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Cbl-TKB: Met997–1009 

Fig. 2.4.  Initial crystals from the screening of Cbl-TKB complexed with phosphorylated peptides obtained using 
hanging drop vapour diffusion method.  These crystals were obtained from conditions in the Hampton Research 
Index Screen Kit (Hampton Research, CA). 

 

      
Cbl-TKB: Spry249–61                                                      Cbl-TKB: Spry469–81 

 

      
Cbl-TKB: EGFR1063–1075                                                                           Cbl-TKB: Syk317–329 
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Cbl-TKB: Met997–1009 

 

Fig. 2.5.  Diffraction quality crystals of Cbl-TKB complexed with phosphorylated peptides obtained after initial 
crystals optimization using hanging drop vapour diffusion method.  These crystals were cryo-protected by 
dehydration method using mother liquor supplemented with increasing concentrations of glycerol and flash frozen in 
liquid nitrogen before data was collected. 

 

2.3.4 Data collection, structure determination and refinement 

 Except Cbl-TKB:EGFR1063–1075, all other complex crystals were diffracted at the X29 

beamline in the National Synchrotron Light Source, Brookhaven National Laboratory (Upton, 

NY).  The structures of the complex crystals between Cbl-TKB and the phosphorylated 13-mer 

peptides of these five proteins were determined between 1.35–2.60Å resolutions and crystallized 

in two different space groups (Table 2.1).  
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Table 2.1.  Data collection and refinement statistics. 
Data collection Cbl-N Spry2 Cbl-N Spry4 Cbl-N EGFRa Cbl-N Syk Cbl-N Met 
 Resolution (Å) 50.00 - 1.98 

(2.05-1.98) 
50.00-2.00 
(2.07-2.00) 

50.00 - 2.60 
(2.69-2.60) 

50.00-1.45 
(1.50-1.45) 

50.00 – 1.35 
(1.40-1.35) 

 Space group P6 P6 P21 P21 P21 
 Unit cell (Å) a= b= 122.26 

c= 54.71 
 

a= b= 122.85 
c= 55.54 
 

a= 63.86 
b= 110.17 
c= 55.82 
β= 89.94° 

a=63.79 
b=104.81 
c=52.78 
β= 89.83° 

a= 63.18 
b= 104.80 
c= 52.60 
β= 90.41° 

 Molecules / a.s.u. 1 1 2 2 2 
 Reflections (total/unique) 528974/32750 566291/31352 59344/21945 181855/36701 930080/142157 
 Rsym (%)b 8.3 (34.6) 5.2 (15.1) 10.9 (33.5) 7.6 (25.4) 10.9 (23.6) 
 Completeness (%)c 99.9 (99.1) 96.3 (82.1) 91.9 (83.0) 92.7 (66.0) 95.0 (87.2) 
Refinementd      
 Resolution (Å) 20.00 – 2.00 20.00-2.00 20.00 - 2.60 20.00-1.45 20.00 – 1.35 
 Rwork (%)e 22.40(29469) 20.13(29166) 23.04(15455) 22.41(95507) 22.52(127952) 
 Rfree (%)f 26.24(2221) 24.24(2128) 27.48(2304) 23.84(2176) 23.98(2208) 
Average B-factors (Ǻ2) (no. of atoms)      
 Cbl-TKB 29.71(2489) 40.11(2489) 33.65(4980) 21.79(4994) 17.21(4994) 
 Peptide 25.94 (74) 48.82(63) 35.29(190) 33.02(162) 22.76(140) 
 Water 42.86(297) 53.97(355) 32.18(235) 30.71(575) 26.66(686) 
r.m.s.d bond lengths (Å) 0.009 0.010 0.009 0.006 0.006 
r.m.s.d bond angles (°) 1.24 1.36 1.32 1.10 1.11 
Ramachandran plotg      
 Most favoured regions (%) 89.8 90.5 81.3 89.3 89.1 
 Additionally allowed regions (%) 9.8 9.1 16.9 10.0 10.1 
 Generously allowed regions (%) 0.4 0.4 1.8 0.7 0.7 
 Disallowed regions (%) 0.0 0.0 0.0 0.0 0.0 
Values in parentheses indicate statistics for the highest-resolution shells. 
aNCS restraint was kept throughout the refinement of Cbl–TKB EGFR. 
bRsym = |Ii – <I>| / |Ii| where Ii is the intensity of the ith measurement, and <I> is the mean intensity for that reflection. 
cCompleteness = (number of independent reflections)/(total theoretical reflections). 
dFor all models, reflections with I>σI was used in the refinement. 
eR factor = 100 x Σ|FP – FP(calc) | / Σ FP. 
fR-free was calculated with approximately the same number of reflections in all the complexes’ test set. 

gStatistics for the Ramachandran plot from an analysis using PROCHECK (Laskowski et al, 1993). 
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Four of the five complexes resembled the binding pattern for c-Cbl with a phosphorylated 

peptide that has previously been identified, with several exceptions (Meng et al., 1999; Hu and 

Hubbard, 2005) (Fig. 2.6K), whereas the Met peptide bound to Cbl-TKB in the reverse 

orientation, with backbone directionality extending from C- to N- terminus. This reversed 

binding has not been observed for the TKB domain or for any other SH2 or PTB domain to date. 

The Cbl-TKB:Met complex 1.35Å resolution also represents the highest-resolution structure 

currently available for c-Cbl. The structure of the Cbl-TKB:peptide complexes for Spry249–61, 

EGFR1063–1075 and Met997–1009 are shown as ribbon diagrams to illustrate the position of the 

peptide relative to the subdomains of the TKB domain (Fig. 2.6A, E and I). Although the main 

site of interaction is at the SH2 region, all three subdomains must be intact before binding 

occurs.  In particular, the SH2 domain was found to shift and pack against the 4H upon ligand 

binding to complete the pTyr binding pocket (Meng et al., 1999).  The Cbl-TKB:peptide 

complexes for Spry469–81 and Syk317–329 resemble the Cbl-TKB:Spry2 complex (Fig. 2.6C and 

G).  Electrostatic surface representations for the Spry2, EGFR and Met complexes are shown in 

Figure 2.6B, F and J respectively and in the Figure 2.6D and H for Spry4 and Syk, demonstrating 

peptide binding and the surface morphology of the TKB domain. Electron density maps for each 

of the peptides are provided in Figure 2.7. In all of the complexes, extreme N- and C-terminal 

residues are absent in the electron density map and presumed to be disordered. 
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Fig. 2.6. Crystal structure and electrostatic surface representations of TKB domain complexed with Spry2, Spry4, 
EGFR, Syk and Met (Ng et al., 2008). Crystal structures of the Cbl-TKB complexed with each of the peptides (A) 
Spry249–61 (cyan), (C) Spry469–81 (green), (E) EGFR1063–1075 (yellow), (G) Syk317–329 (grey) and (I) Met997–1009 (pink), 
and surface representations of the Cbl-TKB complexed with (B) Spry249–6, (D) Spry469–81, (F) EGFR1063–1075, (H) 
Syk317–329,  (J) Met997–1009 and (K) ZAP-70 phosphopeptide (Meng et al., 1999). The c-Cbl-TKB domain is shown as 
a ribbon diagram with helices, β-strands and loops coloured light brown. Phosphopeptides are shown as stick 
models. Intrapeptidyl H-bonds are shown as grey dotted lines. Residues at the extreme N and C termini of the 
phosphopeptides are disordered and not included. The figure was prepared using Pymol (DeLano, 2002) and the 
APBS plugin (Baker et al., 2001). 
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Fig. 2.7. Stereo diagrams showing omit electron density maps of (A) Spry249-61 (cyan), (B) Spry469–81 (green), (C) 
EGFR1063-1075 (yellow), (D)  Syk317–329 (grey) and (E) Met997-1009 (pink) peptides whose structures were solved in 
complex with Cbl-TKB (Ng et al., 2008).  Intra-molecular hydrogen bonds are shown as grey dotted lines.  With the 
exception of EGFR whose map was contoured at 1.6 σ level, all other maps were contoured at level 2.0 σ and 
calculated phases up to their maximum diffraction resolution as stated in Table 2.1.  The figure was prepared using 
Pymol (DeLano, 2002). 
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2.3.5 Conserved residues in (D/N)XpY(S/T)XXP motif contribute to binding in varying 

degrees 

The Cbl-TKB:peptide interactions from the PTK subgroup—Spry2, Spry4, EGFR and 

Syk—are primarily mediated by 9–13 H-bonds (<3.2 Å) (Figure 2.8; Table 2.2). The essential 

pTyr residue occupies a positively charged binding pocket on Cbl-TKB and makes five to six H-

bond contacts with several residues of the TKB domain (Arg294, Ser296, Cys297 and Thr298), 

supporting previous reports that the pTyr contributes almost 50% of the free energy of 

association to c-Cbl binding (Liu et al., 2006). A close-up view of this interaction is shown for 

Spry2 and EGFR (Fig. 2.8A and C), with H-bonds represented by grey dotted lines, and an 

extended linear view of these interactions (Fig. 2.8B and D) with green dotted lines representing 

H-bonds. 

The interactions mediated by the other conserved residues of the PTK subgroup were 

more varied. The (pY+4)Pro of Spry2, Spry4 and EGFR peptides occupies a shallow 

hydrophobic cleft flanked by Tyr307, Thr317 and Phe336 on Cbl-TKB. The Syk peptide lacks 

this interaction and binds solely to the NXpY region, possibly further stabilized by additional H-

bonds with Asn79 of Cbl-TKB through its nonconserved (pY-4)Ser319, which is not observed 

with the other complexes. The conserved (pY+1)Ser/Thr residue of Spry2 and EGFR interacts 

with Gln316 of Cbl-TKB through a backbone–backbone H-bonding contact. However, this pY+1 

residue was more tolerant of degeneracy than expected, as the amide N of both (pY+1)Ile54 in 

Spry4 and (pY+1)Glu324 in Syk also formed backbone H-bonding contacts with Gln316 of Cbl-

TKB. This explains the lesser preference for conserved residues in the pY+1 position (Lupher et 

al., 1997), although residues with large side chains are likely to have steric clashes and may not 
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be preferred. In all five complexes, the backbone carbonyl O of the pY-1 residue forms a H-bond 

with the OH of Tyr274 on Cbl-TKB, irrespective of the pY-1 residue. 

 The (pY-2)Asn in the peptides of the PTK subgroup formed a H-bonding contact through 

the N of the carboxamide side group with the carboxyl O of Pro81 on Cbl-TKB, as shown for 

Spry2 (Figure 2.8A and B). The (pY-2)Asn of Syk forms an additional H-bond with Ser80, 

which is not seen with the other peptides. Interestingly, for EGFR, which lacks the conserved 

(pY-2)Asn, the (pY-1)Arg appears to assume this role by forming a H-bond with the carboxyl O 

of Pro81 in the 4H bundle of Cbl-TKB in a manner similar to the other complexes (Figure 2.8C 

and D). This 'rescue'-binding mechanism of EGFR may enable it to acquire a higher binding 

affinity than would be expected. 
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 Table 2.2. Hydrogen bonding interactions between Cbl-TKB and the various peptides 
Cbl-TKB Spry249-61 Spry447-59 EGFR1063-1075 Syk317-329 Met997-1009 

Asn79 Nδ2 
 

   Ser319 N, 3.04 
 

 

Ser80 Oγ 
 

   Asn321 Oδ1, 2.52 Arg1004 NH1, 2.62 

Pro81 O Asn53 Nδ2, 2.90 Asn51 Nδ2, 3.04 Arg1068 NH1, 2.81 
Arg1068 NH2, 2.66 
 

Asn321 Nδ2, 3.09 Arg1004 NH2, 2.85 

Tyr274 OH 
 

Glu54 O, 2.68 Asp52 O, 2.80 Arg1068 O, 2.81 Pro322 O, 2.71 Asp1002 Oδ2, 2.58 

Arg294 NH1 
              NH2 

 
pTyr55 OH, 2.89 
pTyr55 PO3, 2.91 
 

 
pTyr53 OH, 2.89 

 
pTyr1069 PO2, 3.03 
pTyr1069 OH, 2.88 

pTyr323 PO2, 3.02 
pTyr323 OH, 2.93 

pTyr1003 PO2, 2.97 
pTyr1003 OH, 2.93 

Ser296 Oγ 
 

pTyr55 PO3, 2.76 pTyr53 PO3, 2.71 pTyr1069 PO3, 3.13 pTyr323 PO3, 2.72 pTyr1003 PO3, 2.67 

Cys297 N 
 

pTyr55 PO3, 2.98 pTyr53 PO2, 2.95  pTyr323 PO2, 2.92 pTyr1003 PO2, 3.04 

Thr298 Oγ1 
              N 
 

pTyr55 PO3, 2.55 
pTyr55 PO3, 2.89 

pTyr53 PO3, 2.70 
pTyr53 PO3, 2.88 

pTyr1069 PO3, 2.94 
pTyr1069 PO3, 2.77 

pTyr323 PO3, 2.56 
pTyr323 PO3, 3.01 

pTyr1003 PO3, 2.61 
pTyr1003 PO3, 2.99 

Tyr307 OH 
 

    Glu999 O, 2.53 

Gln 316 O 
 
               N 
 

Thr56 N, 2.84 
Thr56 Oγ1, 3.21 

Ile54 N, 2.84 Ser1070 N, 2.75 
 
 

Glu324 N, 2.85 pTyr1003 N, 2.86 
 
Asp1002 Oδ1, 2.88 

Thr317 Oγ1 
 

  Ser1070 O, 2.56   

His320 Nε 
              

 Asp55 Oδ2, 2.77 
 

   

Lys322 Nξ 
 

  Asp1072 Oδ2, 3.06   

Glu334 Oε1 
 
              Oε2 

   Thr1074 Oγ1, 2.96 
 

 Glu999 Oε1, 3.03 
Glu999 Oε2, 2.92 
Glu999 Oε1, 2.84 
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Fig. 2.8. The conserved intrapeptidyl hydrogen (H) bond and neighbouring H-bonds for the conserved pTyr of 
Spry2, EGFR and Met (Ng et al., 2008). Close-up view of the tyrosine-binding pocket of the c-Cbl-TKB domain 
complexed with (A) Spry249–61 (cyan), (C) EGFR1063–1075 (yellow) and (E) Met997–1009 (pink) shows the conserved 
intrapeptidyl H-bonds between the pTyr and the (pY-2)Asn of Spry2 or the (pY-1)Arg of Met. Intrapeptidyl H-
bonds are shown as dotted red lines and other H-bonds are shown as grey dotted lines. The figure was prepared 
using Pymol (DeLano, 2002). A schematic linear extended view of the c-Cbl-TKB domain with (B) Spry2, (D) 
EGFR and (F) Met. The phosphopeptides are coloured red and the Cbl residues are blue. Residues participating in 
van der Waals contacts are highlighted in gold with the interacting surfaces as gold curved lines. H-bonds are 
indicated by green dashed lines and the intrapeptidyl H-bond is depicted by a black dashed line between the 
phosphate group of the conserved tyrosine and the side chain of the Asn53 (Spry2), Arg1068 (EGFR) or the 
Arg1004 (Met). 
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2.3.6 Met binds to the TKB domain in the reverse orientation 

 One of the more unexpected findings was that the Met peptide bound to c-Cbl-TKB 

domain in the reverse orientation from C to N terminus (Fig. 2.6I and J, 2.8E and F). This is 

contrary to previous modelling predictions (Peschard et al., 2004) and demonstrates that the 

conserved Asp1002 and Arg1004 residues have more than a supporting role for the pTyr in the 

binding of Met and c-Cbl. Similar to the other peptides of the PTK group, Met binding in the 

reverse direction forms six H-bond contacts from the essential pTyr residue with Arg294, 

Ser296, Cys297 and Thr298 on c-Cbl in a positively charged binding pocket (Fig. 2.8E and F), 

and similar to the binding with EGFR, the Arg1004 in Met substitutes for the missing (pY-2)Asn 

and forms H-bond contacts with Pro81. Arg1004 also forms an additional H-bond with Ser80, 

similar to that observed with the Syk complex, but not with the other phosphopeptides. 

 The Asp1002 residue in Met assumes the role of the conserved (pY+1)Ser/Thr in the 

PTK subgroup by interacting with Gln316 and Tyr274 on Cbl-TKB. In contrast to the modelling 

predictions by Peschard et al., (2004), neither the backbone carbonyl nor amino groups of either 

residue interact with Cbl-TKB, and no salt bridge is formed between the side chains of Asp1002 

and Arg1004 to orientate the phosphorylated tyrosine residue into its binding cleft on Cbl-TKB. 

Rather, the side chains of both residues are orientated into the Cbl-TKB:Met interface in the 

same direction as pTyr1003. The Glu999 residue of Met forms unique H-bonding contacts with 

Glu334 of the Cbl-TKB that is not observed in any other complex; its aliphatic part of the side 

chain partially occupies the hydrophobic cleft that is occupied by (pY+4)Pro residues of the PTK 

subgroup. 
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2.3.7 An intrapeptidyl hydrogen bond is conserved across all TKB domain-binding 

proteins 

 Within the peptides of Spry2, Spry4 and Syk, the formation of an intarpeptidyl H-bond 

was observed between the (pY-2)Asn the phosphate oxygen (represented as a red dotted line in 

the Spry2 peptide in Fig. 2.8A, or a black dotted line in Fig. 2.8B when bound to the TKB 

domain. This H-bond was reported in earlier studies (Meng et al., 1999; Hu and Hubbard, 2005); 

however, no significance was assigned to its existence. The presence of this H-bond across all 

peptides with a (pY-2)Asn strongly suggests that it is evolutionarily conserved. In addition, a 

similar intrapeptidyl H-bond between the phosphate oxygen of the pTyr and the guanidium 

group of the Arg at the pY-1 position in the EGFR peptide (Arg1068) was also observed, which 

appears to be compensating for the loss of (pY-2)Asn (Fig. 2.8C and D). Likewise, with a 

reversal in the binding mode of the Met peptide, the same intrapeptidyl H-bond as seen in EGFR 

was also observed to form between the (pY+1)Arg1004 and the phosphate oxygen of the pTyr in 

the Met peptide (Fig. 2.8E and F). Taken together, these findings demonstrate that an 

intrapeptidyl H-bond between the pTyr and the (pY-2)Asn, the (pY-1)Arg or the (pY+1)Arg in 

the reverse orientation (hereafter also referred to as the adjacent Arg) is conserved across TKB 

domain-binding substrates, and we propose that this intrapeptidyl H-bond is essential for binding 

with the Cbl-TKB domain. 
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2.3.8 Full-length protein binding confirms that (pY-2)Asn and pTyr residues of Spry2 are 

indispensable for binding 

 To confirm and extend upon our structural studies using full-length proteins, the relative 

importance of each of the four conserved residues was tested by creating alanine point mutations 

in the TKB-binding motif of Spry2 and examining how this affects its interaction with 

endogenous c-Cbl under stimulated conditions (Fig. 2.9A). When compared to WT Spry2 

binding, it was observed that binding to c-Cbl was disrupted with the Spry2 N53A and Spry2 

Y55A mutants, reduced with the Spry2 T56A and P59A mutants and unaffected with the Spry2 

E54A mutant. This supports the crystal structure observations that (pY-2)Asn and pTyr are 

essential for Cbl-TKB binding and suggests that Cbl's interactions with T56A and P59A are 

important, but not essential for binding, whereas the nonconserved Spry2 E54A mutant is not 

involved in binding. 
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Fig. 2.9.  Site-directed mutagenesis to determine the importance of conserved residues (Ng et al., 2008). (A) 293T 
cells were transfected with FGFR1 and FLAG-tagged wild-type Spry2 or Spry2 bearing alanine point mutations as 
indicated. The cells were lysed 24 h post-transfection and FLAG–Spry2 proteins were immunoprecipitated (IP) 
using FLAG–M2 beads. IP and total cell lysates (TCL) were immunoblotted with anti-Cbl (C-15), anti-FLAG or 
anti-FGFR1 (C-15) as labelled. (B) Diagram of c-Cbl with an enlargement of the TKB domain. The point mutations 
created in the SH2 subdomain of Cbl are described. (C–H) 293T cells were transfected with HA-tagged WT c-Cbl 
and Cbl bearing various point mutations as described in (B), along with (C) FLAG–Spry2, (D) Spry4, (E) EGFR, (F) 
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Met, (G) myc-APS in combination with insulin receptor-B (IR-B) or (H) alone for endogenous Grb2. Cells were 
stimulated as described in the Materials and methods and lysed 24 or 48 h post-transfection. In (C) and (D), anti-
FLAG and anti-Cbl IPs (C-15) and TCLs were immunoblotted with anti-FLAG and anti-HA (Cbl). In (E), anti-
EGFR IPs (528) and TCLs were immunoblotted with anti-HA (Cbl) and anti-EGFR (1005). In (F), anti-HGFR IPs 
and TCLs were immunoblotted with anti-HA and anti-Met (25H2). In (G), anti-myc IPs (A-14) and TCLs were 
immunoblotted with anti-HA, anti-c-myc (9E10) and IR-β (C-19). In (H), anti-Grb2 IPs (C-23) and TCLs were 
immunoblotted with anti-HA and anti-Grb2. 

 

 

2.3.9 Binding between full-length Cbl and its targets validates the peptide- and domain-

derived structural studies 

 To further validate the crystal structures, key residues on c-Cbl that were shown to 

mediate binding in the crystal structures were mutated (Fig. 2.9B) to test their interaction with 

WT proteins. In all cases, binding was observed for WT c-Cbl with Spry2 (Fig. 2.9C), Spry4 

(Fig. 2.9D), EGFR (Fig. 2.9E), Met (Fig. 2.9F) and APS (Fig. 2.9G). This binding was abrogated 

with the c-Cbl G306E mutant, a nonbinding mutation originally discovered in a genetic screen 

on Sli-1, the Caenorhabditis elegans homologue of c-Cbl (Levkowitz et al., 1999) that was 

shown to disrupt the binding with full-length ZAP-70 (Meng et al., 1999); included here as a 

negative control. 

As with the G306E mutant, a phenylalaine to Tyr substitution (Y274F) in c-Cbl also 

caused a loss of binding to Spry2, Spry4, EGFR and Met. The OH of Tyr274 on Cbl-TKB binds 

to the invariant backbone carbonyl O of the pY-1 nonconserved residue of Spry2, Spry4 and 

EGFR or the (pY-1)Asp of Met, which is tested and confirmed by the E45A mutant that retains 

binding (Fig. 2.9A). The side chains of residues Arg294, Ser296 and Thr298 on c-Cbl formed H-

bond contacts with the essential pTyr on all of the peptides, and this is confirmed by a loss or 

reduction in binding with alanine substitutions of these residues. The S296 residue, however, 
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appeared to be less important as some or all of the binding was retained. Phe336 participates in 

hydrophobic interactions with (pY+4)Pro, and an alanine substitution caused a reduction in 

binding between c-Cbl and all of the WT proteins, where present. (pY-4)Glu999 of Met occupies 

the same cleft, and an alanine mutation of its side chain causes a similar reduction in binding. 

Alanine point mutations were also included for K322 and E334 as the crystal structures 

showed specific interactions for EGFR (Asp1072) and both EGFR (Thr1074) and Met (Glu999), 

respectively. However, in addition to EGFR, we observed a reduction in binding for Spry2 and 

Met with the c-Cbl K322A mutant. K322 is a solvent-exposed residue, and an alanine mutation 

may alter the surface conformation of c-Cbl and reduce its binding with proteins that are in close 

proximity to c-Cbl. This is possibly the case with the C termini of Spry2, Met and EGFR 

peptides when compared with C termini of Spry4 and Syk, which bend away from the c-Cbl's 

surface and are therefore unaffected. In contrast, binding was retained for all of the WT proteins 

with the c-Cbl E334A mutant, suggesting that the binding mediated by this residue is not 

essential. 

Finally, to ensure that the structural changes created in the c-Cbl mutants did not 

influence c-Cbl's interaction with other proteins C-terminal to the TKB, such as Grb2 which 

binds via its SH3 domain to c-Cbl's proline-rich region, binding of these mutants to Grb2 was 

tested.  The results confirmed that binding to Grb2 was unaffected by the mutations created in 

the TKB domain (Fig. 2.9H). 

 

 

 



70 
 

2.3.10 Isothermal titration calorimetry reveals that Spry2 has the highest binding affinity 
to Cbl-TKB 

 To validate the necessity of the intrapeptidyl H-bond, it was examined whether binding 

can still occur in proteins that lack either the (pY-2)Asn or the adjacent Arg, as well as the 

relative contributions to binding made by the conserved residues in the consensus motifs. The 

binding affinities of nine 13-mer phosphopeptides were determined by titration against the Cbl-

TKB domain in isothermal titration calorimetry (ITC) experiments (Table 2.3): six sequences 

from the PTK subgroup (Spry2, Spry4, EGFR, Src, Syk, p75 NTR and VEGFR), with the 

exception of Spry2, other sequences lacking at least one of the conserved residues, the APS 

sequence and two sequences belonging to the Met subgroup (Met and Ron). Importantly, 

although the binding affinity for APS differed from that previously reported by Hu and Hubbard 

(2005) who used a pH 8.0 for their measurements, when the measurements were repeated 

measurements at pH 8.0 instead of pH 7.0, our findings replicated Hu and Hubbard's findings 

(Table 2.3; Fig. 2.10B). 
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Table 2.3.  Sequence, affinity and favourability of the c-Cbl TKB binding motifs. 

Peptide Sequence  N  Ka  
(x106 M-1)  

Kd  
(μM)  

ΔH  
(kcal/mol)  

TΔS  
(kcal/mol)  

ΔG  
(kcal/mol)  

Spry249-61  IRNTNEpYTEGPTV 0.920 ± 0.007 3.11 ± 0.25 0.32 -13.44 ± 0.14 -4.663 -8.777 
APS623-632 RAVENQpYSFY 1.010 ± 0.007 2.54 ± 0.20 0.39 -  6.44 ± 0.07  2.217 -8.653 
Spry447-59 SHVENDpYIDNPSL 1.060 ± 0.007 1.65 ±0.09 0.61 -  5.11 ± 0.05  3.276 -8.386 
EGFR1063-1075 DSFLQRpYSSDPTG 0.993 ± 0.01 1.14 ± 0.11 0.88 -  9.11 ± 0.15 -0.871 -8.242 
Src413-425 LIEDNEpYTARQGA 0.969 ± 0.01 0.756 ± 0.055 1.32 -  6.33 ± 0.11  1.612 -7.939 
Syk317-329 TVSFNPpYEPELAP 0.969 ± 0.01 0.673 ± 0.066 1.49 -  3.07 ± 0.08  4.811 -7.882 
Ron1011-1023 LYSGSDpYRSGLA 1.000 ± 0.01 0.644 ± 0.056 1.55 -  1.58 ± 0.03  6.257 -7.835 
Met997-1009 SNESVDpYRATFPE 1.080 ± 0.03 0.424 ± 0.053 2.36 -  1.60 ± 0.06  5.991 -7.593 

 
Met997-1009 D1002R, R1004D SNESVRpYDATFPE 1.02 ± 0.01 0.436 ± 0.022 2.29 -  1.09 ± 0.02  6.522 -7.612 
        
APS623-632 pH 8.0 RAVENQpYSFY 0.911 ± 0.002 18.4 ± 1.1 0.054 -10.96 ± 0.04 -1.071 -9.889 
EGFR1063-1075 pH 8.0 DSFLQRpYSSDPTG 0.991 ± 0.004 2.97 ± 0.12 0.336 -  6.178 ± 0.03  2.603 -8.781 
        
VEGFR1327-1338 YNSVVLpYSTPPI 0 0 0 0 0 0 
VEGFR1327-1338 V1331N YNSVNLpYSTPPI 1.050 ± 0.002 3.01 ± 0.09 0.33 -  5.003 ± 0.02 3.748 -8.751 
VEGFR1327-1338 L1332R YNSVVRpYSTPPI 0.997 ± 0.003 1.38 ± 0.04 0.72 -  3.238 ± 0.02 5.047 -8.285 
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(A) ITC at pH 7.0, 200mM NaCl 

  
Spry2                                                   APS                                                     Spry4 

 

 
EGFR                                                    Src                                                        Syk 
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                                 Ron                                                    Met                                      Met D1002R / R1004D 

 

 
                           VEGFR1                                     VEGFR1 V1331N                               VEGFR L1332R 
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(B) ITC at pH8.0, 100mM NaCl (reproducing data of Hu and Hubbard, 2005) 

 
                                                         APS                                                  EGFR 
 

(C) Negative control using non-phosphorylated peptide 

 
Spry2 

 
 

Fig. 2.10.  The binding affinities of phosphorylated Spry249–61, APS623–632, Spry469–81, EGFR1063–1075, Src413–425, 
Syk317–329, Met997–1009, Met997–1009 D1002R / R1004D, Ron1011–1023, VEGFR1327–1338, VEGFR1327–1338 V1331N and 
VEGFR1327–1338 L1332R phosphopeptides to the c-Cbl-TKB domain were measured by ITC and profiles shown 
respectively (Ng et al., 2008). The figures show the injection profile after baseline correction and the bottom panels 
show the integration (heat release) for each injection (except the first one). The solid lines in the bottom panel show 
the fit of the data to a function based on a one-site binding model. The binding constants (Ka and Kd), number of 
binding sites (N), enthalpy (∆H) and entropy (ΔS) changes of Cbl-TKB to the various peptides are provided in 
(Table 2.3).  ITC experiments for APS623–632 and EGFR1063–1075 were also repeated at pH 8.0 according to Hu and 
Hubbard (2005). Non-phosphorylated Spry249–61 was titrated against Cbl-TKB as a negative control.  The 
concentration of the TKB domain was 10.8 μM in all experiments. 
 



75 
 

 Of the nine peptides examined, binding between the Cbl-TKB and the phosphorylated 

Spry2 peptide occurred with the highest affinity and the most negative Gibbs free energy change 

(Table 2.3), suggesting that this reaction is most favoured. In descending order of affinity, the 

dissociation constants (Kd) were as follows: Spry249–61(0.32μM) > APS623–632 (0.39μM) > 

Spry469–81(0.61μM) > EGFR1063–1075 (0.88μM) > Src413–425 (1.32μM), Syk317–329 (1.49μM), 

Ron1011–1023 (1.55μM) and Met997–1009 (2.36μM); the latter four were not significantly different 

from each other.  Strikingly, the phosphorylated VEGFR11327–1338 that did not possess a 

conserved (pY-2)Asn or (pY-1)Arg and was unable to bind Cbl-TKB, supporting our hypothesis 

that the intrapeptidyl H-bond is essential for binding to the Cbl-TKB domain.  The ITC profiles 

are shown in Fig. 2.10.     

 When comparing between the (pY-2)Asn and the adjacent Arg, it was observed that the 

Asn residue provides a greater contribution to binding affinity, as demonstrated by Spry2 versus 

EGFR, both of which contain the other three conserved residues, and by Src versus Ron/Met, 

which only have one other conserved residue. A degenerate peptide library characterization of 

the (D/N)XpY(S/T)XXP motif indicated that the most favourable residues for binding N-

terminal of pTyr are: (pY-2)Asn, (pY-2)Asp or (pY-3)Asp (Liu et al., 2002). Surprisingly, an 

Arg residue N-terminal of pTyr was not significantly selected for binding. It is likely that there is 

no preference for Arg at the pY-1 position, because an Asn provides higher affinity binding and, 

as their roles overlap in this context, an Asn at the pY-2 position will be preferred. 

 Contributing next to the binding affinity is the (pY+4)Pro residue, as shown by the higher 

affinity of EGFR compared with Met and Ron, and the higher affinity of Spry2 compared with 

Src and Syk. APS, whose affinity is just below Spry2, also lacks the (pY+4)Pro, but appears to 

compensate for this by using other conserved residues N-terminal to the pTyr to enhance 
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binding. Interestingly, the extent of the hydrophobic interaction between the (pY+4)Pro and its 

corresponding cleft on Cbl-TKB was directly correlated with the peptide's affinity for the latter: 

hydrophobic interaction was most extensive with Spry2 at this cleft, followed by Spry4 and, to a 

lesser extent, EGFR. The conserved (pY+1)Ser/Thr appears to contribute least to the binding 

affinity, as suggested by the insignificant differences in affinity between Src and Syk. All of 

these results support the variations in binding we observed with the full-length proteins. 

 The (pY-1)Asp of Ron and Met does not appear to contribute substantially to binding 

affinity, as these peptides have no significant differences in affinities with Syk, which has no 

additional residues other than the (pY-2)Asn. Interestingly, most of the interactions between Met 

and c-Cbl are mediated by the DpYR residues. The side chain of the (pY-1)Asp binds to the 

Tyr274 of Cbl-TKB, whereas in other complexes, this interaction is mediated by the backbone of 

the pY+1 residue (Table 2.3). Since the Met D1002A mutation cannot bind to c-Cbl (Peschard et 

al., 2004), and since the Cbl Y274F mutant cannot bind to Met, this may indicate why the Asp 

residue in the Met family of proteins has been conserved. 

 

2.3.11 The intrapeptidyl H-bond is essential for binding to the TKB domain 

 To further validate the importance of the intrapeptidyl H-bond, two mutant 

phosphorylated peptides for VEGFR1 harbouring Asn or Arg substitutions were included.  These 

mutations would permit formation of an intrapeptidyl H-bond and facilitate binding if these 

amino acids were the key requirement for binding: (1) VEGFR1 with a Val1331Asn substitution 

at the pY-2 position, and (2) VEGFR1 with a Leu1332Arg substitution at the pY-1 position. This 

substitution would also endow VEGFR1 with four conserved residues, and it would therefore be 
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expected to bind with similar affinities to Spry2 and EGFR, respectively. Indeed, both of these 

substitutions facilitated peptide binding to the Cbl-TKB domain (Fig. 2.10) and, as expected, 

binding affinities were similar to Spry2 and EGFR (0.33 and 0.72μM respectively) were 

observed (Table 2.3). These findings confirm the requirement for the formation of an 

intrapeptidyl H-bond between pTyr and (pY-2)Asn or an adjacent Arg at the pY-1 or pY+1 

position when reversed, and also substantiate the greater contribution of Asn towards a 

substrate's affinity for Cbl-TKB. 

 

2.3.12 Inversion of the DpYR motif in Met preserves binding 

 The finding that Met binds to Cbl-TKB in a reverse orientation, with (pY+1)Arg 

replacing the role of (pY-2)Asn to form an essential hydrogen bond with phosphotyrosine, lead 

to the hypothesis that the Met peptide would still be able to bind Cbl-TKB if the DpYR motif 

was flipped to RpYD, provided that the adjacent residues do not pose any steric hindrances.  

Indeed, ITC of phosphorylated Met997-1009 D1002R / R1004D shows that the binding affinity of 

this Met double mutant was not significantly different from the wild type Met997-1009 sequence 

(Table 2.3), suggesting that residues flanking the DpYR motif are not necessary for binding to 

Cbl-TKB, although this hypothesis remains to be confirmed by structural studies. 
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2.4 Discussion 

 The aim of this study was to address two major questions: (1) Why does the TKB domain 

recognize an unusually broad set of sequence-recognition motifs and (2) could variations in the 

binding affinity of TKB domain-binding proteins result in the selective sequestration of c-Cbl by 

higher-affinity binding proteins. In addressing the latter, results suggest that differences in 

binding affinity do exist between different TKB-binding proteins.  We cannot confirm, however, 

whether the sequestration of c-Cbl is physiologically important. Given a favourable cellular 

localization, it is possible that Spry2 with its higher binding affinity, could influence the binding 

of c-Cbl to particular RTKs (e.g. EGFR) or other TKB-binding proteins. In addressing the first 

question, two novel and unexpected elements have been revealed: (1) binding is essentially 

achieved through (D/N)XpY, RpY or pYR (in the reverse orientation) through the formation of 

an intrapeptidyl H-bond, and (2) the Cbl-TKB domain can bind to substrates in two orientations. 

The unique diversity of the TKB domain in its recognition of three consensus sequences 

is an unusual characteristic for an SH2 domain. These five complexes demonstrate some 

consistency in binding between the Cbl-TKB targets, and together indicate that the TKB domain 

recognizes a less-radical set of motifs. The intrapeptidyl H-bond between pTyr and (pY-2)Asn, 

(pY-1)Arg or (pY+1)Arg in the reverse is necessary for the directed, 'hand-in-glove' fit of the 

peptide into a positively charged pocket of the SH2 region of the Cbl-TKB domain (depicted in 

Fig. 2.11A–D for Spry2 and Met), whether before binding to c-Cbl or concomitantly. Although 

this intrapeptidyl H-bond was identified in both of the previously characterized c-Cbl structures 

(Meng et al., 1999; Hu and Hubbard, 2005), proper consideration was not attributed to it due to a 

lack of supporting evidence to highlight its significance. When combined with these five 

structures, we are able to assign importance to the intrapeptidyl H-bond as a rule for binding and 
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an event crucial for the directed positioning of the substrate on c-Cbl. Furthermore, with the ITC 

characterizations of the three VEFGR peptides, we show convincing evidence that binding to c-

Cbl cannot occur without this intrapeptidyl H-bond, despite the presence of other conserved 

residues (depicted with a model diagram in Fig. 2.11E–G).    These other conserved residues—

(pY+1)Ser/Thr, (pY+4)Pro and (pY-1)Asp—tweak the binding affinity, and such as in the case 

of APS, high-affinity binding can be compensated for by these other residues. Substrate binding 

is further stabilized in concert with the 4H subdomain and EF-hand, particularly the 4H 

subdomain, which contributes to binding via the Pro81 residue to the conserved (pY-2)Asn or 

compensating Arg (Fig. 2.11), and structural evidence suggests that these sub-domains form an 

intimate, multifaceted association with the SH2 subdomain, linker sequence and RING domain 

in its interaction with the appropriate E2 enzyme, creating what appears to be a precise, rigid 

structure. 
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Fig. 2.11.  Orientation of the intrapeptidyl hydrogen (H) bond within the binding pocket of the Cbl-TKB (Ng et al., 
2008). A cross-sectional perspective of the binding topograph in Figure 2B and F illustrates the fit of the 
phosphopeptides on the surface of the Cbl-TKB domain for (A) Spry249–61 (cyan) and (B) Met997–1009 (pink). (C, D) 
Peptides superimposed from two different angles. (E–G) Schematic diagrams illustrating the importance of the 
intrapeptidyl H-bond between pTyr and (E) (pY-2)Asn for Spry2 or (F) (pY+1)Arg for Met in the reverse 
orientation. In the absence of an intrapeptidyl H-bond (G), pTyr is disorientated and unable to dock into the pTyr-
binding pocket on Cbl-TKB, as indicated by VEGFR. 

 

A comprehensive search of the known SH2 domain structures available in the protein 

data bank resulted in only four complex models where a pTyr formed a H-bond with the side 

chain of another residue in the peptide (Gunther et al., 2003; Cho et al., 2004; Frese et al., 2006). 

For the first case, the H-bond was not conserved among the different peptides complexed with 

the SH2 domain of Gads (Cho et al., 2004). In the Nck1-SH2:phospho-Tir and Nck2-

SH2:phospho-Tir complexes, a degenerate peptide library scan showed a preference for 

hydrophobic residues over the interacting His at that position (Frese et al., 2006). The last 

complex model between the SH2 domain of PI3 kinase and the phospho-platelet-derived growth 
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factor receptor peptide identified the preference for negatively charged residues N-terminal to the 

pTyr that were not essential for binding nor bound to its SH2 domain in the same manner as the 

conserved (pY-1)Asp binds to the TKB domain of c-Cbl in the Met family of proteins (Gunther 

et al., 2003). 

Similarly, a search performed on known structures of PTB-binding peptides bearing the 

conserved D/NXpY and complexed with PTB domains also revealed that none of these binding 

conformations had the signature H-bond between the pTyr and the (pY-2)Asn. To the best of our 

knowledge, there are no conserved intrapeptidyl H-bonds between pTyr and its neighbouring 

Asn/Arg residues for SH2 and PTB domain-binding proteins. The formation of the intrapeptidyl 

H-bond in the D/NXpY, RpY or pYR (in the reverse) motifs is likely to be an essential 

specificity determinant for the recognition and docking of c-Cbl to its activated (phosphorylated) 

target proteins, whether before or during binding, and thus represents a mechanism that is unique 

to Cbl. 

The most surprising finding from the crystal structure analyses is the reversed binding of 

the Met phosphopeptide. From these results, it would be presumed that other members of the 

Met subgroup also bind in the reverse direction. Interestingly, many of these family members 

have a proline residue at the pY-4 position (Fig. 1.14), which would align with the (pY+4)Pro 

residue in members of the PTK subgroup in the reverse orientation, and presumably increase 

their binding affinity to c-Cbl over Met. 

There are several analogous situations where ligand binding can occur in two orientations 

of a specific domain. The SUMO-binding amino-acid sequence motif of RanBP2 and PIASX-P 

have been shown to bind to the surface of SUMO-1 in two different orientations (Reverter and 
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Lima, 2005; Song et al., 2005) and similarly, the SH3 domain of Src can bind to proline-rich 

peptide ligands in two orientations (Feng et al., 1994). Furthermore, the PH domain of ArhGAP9 

accommodates both PI(3,4)P2 and PI(4,5)P2 at 180° rotations via a shallow, noncanonical 

binding pocket (Ceccarelli et al., 2007). To our knowledge, however, there is no precedent for an 

SH2-domain-binding protein to bind to an SH2 domain in two orientations, and raises the 

question whether this may also occur. However, as the TKB domain accomplishes binding in 

conjunction with the 4H subdomain, its absence in other SH2 domains may restrict them from 

having such flexibility of binding. 

The reverse binding of Met and the previously unidentified importance of the (pY-1)Arg 

in EGFR suggests that there is a larger cohort of Cbl-TKB domain targets, particularly those with 

an RpYD or RpYS/T motif. Searching the human proteome, nearly 300 signal transduction 

proteins containing the RYD sequence have been identified, and while it still remains to be 

determined whether these proteins are substrates for c-Cbl, this emphasizes the likelihood that 

other unrevealed c-Cbl targets exist. In addition, the reversed binding of Met may reflect the 

need for Cbl to bind to targets in two orientations for steric reasons, as the DpYR residues in Met 

lie very close to the plasma membrane in the juxta-membrane domain. This reversed binding 

presumably allows the appropriate distance for the subsequent ligation of ubiquitin moieties. In 

contrast, the reversed binding may also allow c-Cbl to bind to proteins without resulting in their 

ubiquitination, expanding Cbl's role as an adapter protein in signalling complexes other than the 

APS family of proteins. Together, these findings provide not only further clues to Cbl's role in 

signalling but also the incentive to revisit previously identified binding motifs of other proteins, 

with the potential of redefining the apparently established paradigms of modular signaling. 
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Chapter III 

 

 

 

CaM Regulation of  

Voltage-gated Sodium Channels 
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3.1 Introduction 

 The regulation of VGSC by CaM was surprising but not unprecedented, as CaM appears 

to be an important regulator of several different ionic currents.  Saimi and Cheng (2002) 

proposed that CaM itself could be considered a channel subunit.  Interestingly, all previous 

accounts of Ca2+ influence on ion channels involve proteins that modify but are not directly 

involved in generating and propagating the action potential.  The association of CaM for VGSC 

is the first description of such a basic and essential channel for the action potential being 

regulated by Ca2+.  Furthermore, all VGSC isoforms possess the conserved IQ domain for CaM 

binding, but are not regulated in the same way (Deschenes et al., 2006).  Although the common 

feature is coupling to cytoplasmic Ca2+ regulation, it is not understood why the need for certain 

VGSCs to be Ca2+ dependent. 

In the early 1990s, a model was proposed in which an auto-inhibitory domain becomes 

displaced from the active site upon binding of CaM, leading to the activation of the enzymes.  

However, with the determination of an increasing number of CaM-complex structures, it became 

evident that there is no general model for binding, since each complex represent a different 

binding mode (Vetter and Leclerc, 2003).  Using two VGSC isoforms from skeletal muscle and 

neurons, Nav1.4 and Nav1.6 respectively, we propose to characterize and compare the 

association of CaM with these IQ motifs of high sequence identity.  This will be towards 

understanding (1) the mechanism by which VGSC IQ motifs bind to CaM but retain flexibility to 

regulate the Na+ current in different ways, and (2) how differences in binding affinity translate to 

the need for Ca2+ in various isoforms. 
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3.2 Method and Material 

3.2.1 Plasmid constructs, cloning and expression 

Wild type full length mouse (Mus musculus) Calmodulin isoform 1 (CaM) cDNA was 

cloned into pET3a plasmid (Novagen, Darmstadt, DE) between NdeI and BamHI restriction 

sites. Recombinant CaM was overexpressed in Escherichia coli expression host strain 

BL21(DE3) and purified according to Hayashi et al., 1998 with modifications. The purified 

protein (1 mg/ml) was stored in buffer A (50mM Tris-HCl pH 7.5, 1mM CaCl2) and used for 

crystallization and ITC experiments. 

E88A and E128A mutations on CaM were performed according to Wang and Malcolm, 

1999.  Both mutants were expressed in E. coli and purified similar to wild type CaM. 

Mouse neuronal VGSC subtype Nav1.6 cytoplasmic domain (ΔNav1.6) corresponding to 

residues 1517-1687 was inserted into pET25b (Novagen, Darmstadt, DE) between NdeI and 

XhoI restriction sites.  Recombinant ΔNav1.6 was expressed as a His-tagged fusion protein (His-

ΔNav1.6) in BL21(DE3) (GE Healthcare, Buckinghamshire, UK) and purified from inclusion 

bodies according to the protocol established by Oganesyan et al., 2005. 

 

3.2.2 Isothermal titration calorimetry 

Nav1.4IQ and Nav1.6IQ were titrated against 1mM CaM in a VP-ITC microcalorimeter 

(Microcal, Northampton, UK) in the high and low Ca2+ concentrations. The peptides were 

reconstituted in buffers A and C at 22°C and titrated in 10 μl injections into CaM maintained in 
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the respective buffers. The heat of dilution was determined by titrating peptide into buffer in a 

separate experiment and subtracted from the raw data before curve fitting and refinement. The 

dissociation constants of Cbl-TKB to the various peptides were determined by least squares 

method and the binding isotherm was fitted using Origin v7.0 (Microcal) assuming a single-site 

binding model. All measurements were repeated at least twice for verification. 

 

3.2.3 Computational modelling  

 In parallel to co-crystallisation experiments, the structures of Nav1.4IQ and Nav1.6IQ in 

complex with Ca2+/CaM were modelled using DeepView (Guex and Peitsch, 1997).  The initial 

template model was derived from a 2.0Å crystal structure of the Cav1.2 IQ domain – Ca2+

 

/CaM 

complex, pdb code 2BE6 (Petegem et al., 2005).  Positions of the side-chains were refined by 

energy minimisation.   

3.2.4 Complex formation and crystallization 

IQ domain peptides of mouse Nav1.4 1719-1742 (Nav1.4IQ) and Nav1.6 1645-1668 

(Nav1.6IQ) (Sigma Genosys) were reconstituted in buffer A and buffer C and incubated with the 

purified CaM in two-fold molar excess at room temperature for 1 h for complex formation. The 

CaM: peptide complexes were concentrated to 20mg/ml and CaM: His-∆Nav1.6 concentrated to 

5mg/ml using an Amicon Ultra ultrafiltration devices (Millipore, Billerica, MA). These 

complexes were screened for crystals using commercial screen kits from Hampton Research, 
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CA, Qiagen, NL and Jena Biosciences, DE using hanging drop vapour diffusion and under oil 

methods respectively.  Initial crystallization conditions were optimised by varying precipitant or 

additive concentrations.   

The crystals of Nav1.6IQ: Ca2+

 

/CaM complex were tested and a partial dataset was 

collected with a Platinum135CCD detector mounted on a Microstar-H rotating anode x-ray 

generator (Bruker AXS, DE). 
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3.3 Results 

3.3.1 Cloning of CaM, ΔNav1.6 

 Mouse CaM (447bp) and ΔNav1.6 (510bp) cDNAs were isolated from whole mouse 

brain by RT-PCR.  Total RNA from whole mouse brain was extracted using Trizol reageant 

(Invitrogen, California, USA), from which the first strand of total brain cDNAs were synthesized 

from mRNA using oligo-dT primer.  CaM and ΔNav1.6 cDNAs with flanking restriction enzyme 

cut sites were amplified by PCR using their respective primers (Fig. 3.1). 

 

  

(A)                                    (B)               
                                     

Fig. 3.1.  PCR amplification of (A) CaM and (B) ΔNav1.6 cDNAs.  RT-PCR was used to clone CaM and ΔNav1.6 
from mouse brain, yielding fragments of approximately 450bp and 510bp that correspond to the molecular weights 
of these two genes. 

 

 The 450bp and 510bp fragments were gel-purified and digested with NdeI / BamHI and 

NedI / XhoI restriction enzymes, and inserted into pET3b and pET25b respectively.  Positive 
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ligation clones were screened by colony PCR, and the correct DNA sequence verified by gene 

sequencing (Fig. 3.2). 

 

  

(A)               (B)        

 

Fig. 3.2.  Colony PCR of ligated and transformed (A) CaM and (B) ΔNav1.6 clones.  The inserted genes of interest 
were amplified using vector primers pair T7 promoter / T7 terminator flanking the multiple cloning sites.  The 
amplified fragments were thus approximately 150bp and 260bp larger than the inserted genes respectively, which 
correspond to the approximately 600bp fragment observed in (A) and 770bp fragment observed in (B). 

 

3.3.2 Expression of ΔNav1.6 and association with CaM 

The cloned ΔNav1.6 was transformed into Escherichia coli expression strain 

BL21(DE3).  100ml of Luria-Bertani (LB) media supplemented with 100μg/ml ampicillin was 

inoculated with one colony of BL21(DE3)(pET25b- ΔNav1.6) and grown overnight at 37ºC with 

aeration.  The overnight culture was amplified to 1L and protein expression induced with 0.1mM 

isopropyl-thio-galactoside (IPTG) for 16h at 20ºC during mid-log phase of cellular growth.   
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 His tagged ΔNav1.6 (His-ΔNav1.6) was harvested by six cycles of 1min sonication with 

40s interval between cycles.  Most His-ΔNav1.6 expressed as inclusion bodies and was pelleted 

in the insoluble fraction.  ΔNav1.6 was successfully purified to homogeneity from the insoluble 

fraction by 8M urea denaturation and refolding according to the method described by Oganesyan 

et al., 2005 (Fig. 3.3).   

 

 

 
Fig. 3.3.  12.5% SDS-PAGE purification profile of His-ΔNav1.6 purified by 6M urea denaturation and refolding 
being visualized by Coomassie staining.   
 

The eluted His-ΔNav1.6 from Ni-NTA was stable without any visible precipitate even 

after a week.  It was further purified by using a Superdex-G200 (GE Healthcare, 

Buckinghamshire, UK) gel filtration column.  His-ΔNav1.6 eluted as a homogeneous monomeric 

species in buffer A with 100mM NaCl and 10mM βME (Fig. 3.4). 
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Fig. 3.4.  Gel filtration profile of His-ΔNav1.6 in a 120ml column volume Superdex-200 column.  His-ΔNav1.6 was 
purified to homogeneity by gel filtration and eluted in buffer A+100mM NaCl and 10mM βME.  Blue plot indicate 
His-ΔNav1.6 gel filtration profile, grey line is gel filtration molecular size standard with molecular weight of the 
peaks labeled (BioRad, CA). 

 

3.3.3 Expression and purification of CaM 

The cloned CaM was transformed into Escherichia coli expression strain BL21(DE3), 

expressed and harvested the same way as His-ΔNav1.6.  CaM was purified by a phenyl-

sepharose column (GE Healthcare, Buckinghamshire, UK) according to the Hayashi et al., 1998 

protocol.  Further purification was achieved by using Superdex-G75 (GE Healthcare, 

Buckinghamshire, UK) gel filtration column.  Purified CaM eluted as a single monomeric peak 

at an approximate peak volume of 80mL in the presence of 100mM NaCl, but in the absence of 
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salt, CaM behaved as a trimer and eluted at an approximate peak volume of 64mL from the same 

column (Fig. 3.5C).   

 

 

(A) Phenyl-sepharose purification profile of cleared lysate containing CaM 

 

 

 

 

 

 

CaM 
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(B) 12.5% SDS-PAGE purification profile of CaM 

 

 

       

(C) Gel filtration profiles of purified CaM 

 
(I) CaM elution in 100mM NaCl 
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(II) CaM elution without NaCl 

 
Fig. 3.5.  Purification and preliminary characterization of CaM.  (A) Phenyl-sepharose purification profile of CaM.  
(B) Samples were obtained at different stages of purification and separated in 12.5% SDS-PAGE.  CaM eluted with 
little impurity phenyl-sepharose and was purified to homogeneity by gel filtration superdex G-75, migrating as an 
approximately 17kDa band.  (C) Eluted CaM was applied to Superdex-G75 gel filtration column and eluted as a 
single peak of monomeric species in 100mM NaCl (I) but as a trimer in the absence of NaCl (II). Red plot represents 
gel filtration profile of CaM in buffer A, while blue plot represents CaM elution profile in buffer C.  The CaM peak 
is indicated by black arrows. 

 

 

3.3.4 Pull down assays and gel filtration confirm Nav1.6 binds to CaM 

In order to ascertain if VGSC binds to CaM in vitro, resolubilised His-ΔNav1.6 was used 

as a representative of the two isoforms (Nav1.4 and Nav1.6) that share high sequence similarity 

(54% sequence identity and 80% sequence similarity) in the IQ motif.  His-ΔNav1.6 was divided 

into two batches of identical protein concentration and bound to CaM-Sepharose (GE 

Healthcare, Buckinghamshire, UK).  One batch was bound and rinsed in buffer A with 100mM 

NaCl and the other batch in buffer C with 100mM NaCl.  His-ΔNav1.6 in high Ca2+ 

concentration (buffer A) showed greater binding to CaM, as indicated on SDS-PAGE (Fig. 

3.6A.).  This observation is typical of most CaM binding proteins.   

CaM 
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(A) His-ΔNav1.6 bound and rinsed in buffer A+ 100mM NaCl 

 

 

 

(B) His-ΔNav1.6 bound and rinsed in buffer C + 100mM NaCl 
 
 

 

 

 

Fig. 3.6.  12.5% SDS-PAGE purification profile of His-ΔNav1.6 trapped by CaM-sepharose in (A) high Ca2+ 
concentration and (B) low Ca2+ concentration, visualized by Coomassie staining.  The presence of Ca2+ enhances 
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binding affinity of His-ΔNav1.6 for CaM-speharose, shown by the ability of the latter to retain His-ΔNav1.6 in 
buffer A but not buffer C. 

 

 Purified His-ΔNav1.6 was further incubated with Ca2+/CaM in a 1:1 molar ratio and 

applied to Superdex-G200.  The complex was eluted as a single peak at 83mL, which 

corresponds to a 1:1 His-ΔNav1.6: CaM complex ratio that is approximately 40kDa in size (Fig. 

3.7).   

 
Fig. 3.7.  Superimposed elution profiles of His-ΔNav1.6 (red), Ca2+/CaM (Blue) and His-ΔNav1.6:Ca2+/CaM 
complex (green) from Superdex-G200.  His-ΔNav1.6 was mixed in a 1:1 ratio with Ca2+/CaM in buffer A + 
100mM NaCl and 10mM βME prior to loading.  Peak shift of about 10mL clearly indicates complex formation. 
 

 

His-ΔNav1.6: Ca2+/CaM 
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3.3.5 Isothemal titration calorimetry reveals that binding affinity is stronger in the 

presence of Ca2+ and NaCl 

 Unfortunately, binding affinity of CaM for ΔNav1.6 by ITC was unobtainable as the 

domain was insoluble at high concentrations required for ITC experiments. The binding affinities 

and influence of NaCl on VGSC isoforms IQ motif for CaM were therefore further determined 

by titrating the interacting peptides derived from Nav1.4IQ and Nav1.6IQ  against 50μM purified 

CaM in the presence and absence of NaCl, along with high and low concentrations of Ca2+.   

Of the two peptides examined, Nav1.6IQ bound to CaM in a 1:1 ratio at a single binding 

site.  The binding affinity of Nav1.6IQ for apoCaM and Ca2+/CaM is the same in the absence of 

NaCl (Fig. 3.6B) but Nav1.6IQ exhibits approximately seven-fold stronger binding to Ca2+/CaM 

compared to apoCaM and a more negative Gibbs free energy change in the presence of 100mM 

NaCl.  These observations may be attributed to the differences in the structure of monomeric 

apoCaM and Ca2+/CaM (Fig. 1.8; Vetter and Leclerc, 2003).  However, when compared to its 

affinity in the absence of NaCl, binding of the IQ motif is still weaker than in the presence of 

NaCl. 

Unlike Nav1.6IQ, the association of Nav1.4IQ for CaM was more complex.  Binding 

kinetics for apoCaM and Ca2+/CaM changed drastically in the presence and absence of NaCl.  

apoCaM bound to Nav1.4IQ in a 1:1 ratio that was readily fitted with a single site binding model 

only in the presence of NaCl, in a manner similar to Nav1.6IQ.  In the absence of NaCl, the 

binding of apoCaM to Nav1.4IQ changed to adopt a complex pattern of two events that was 

reproducible and consistent over many experimental repeats – (1) a high affinity, exothermic 

reaction largely driven by enthalpy of 1:1 binding ratio, and (2) a lower affinity, endothermic and 
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entropy driven reaction where only a third of the CaM sites were occupied, possibly due to the 

trimeric nature of CaM without NaCl.  Notably reminiscent of Nav1.6IQ, the second yielded 

affinities and Gibbs free energy changes that were not significantly different from Ca2+/CaM: 

Nav1.4IQ without salt. We thus conclude that the second reaction is the association of Nav1.4IQ 

to apoCaM.   

In the presence of NaCl, the Ca2+/CaM: Nav1.4IQ reaction does not tend to saturation 

even when peptide to CaM ratio was increased during titration.  This incomplete binding is 

indicated by the large ΔH pleateau (~ -0.15 ucal/s) that is not caused by the heat of dilution 

(~0.04ucal/s) (Fig. 3.8A and C).  However, as with Nav1.6IQ, affinity calculations still indicate 

that Ca2+/CaM: Nav1.4IQ binding is tighter than apoCaM/Nav1.4IQ in the presence of NaCl.  In 

the absence of NaCl, incomplete binding was also present but not as pronounced for Ca2+/CaM: 

Nav1.4IQ. 

From the above discussed ITC results, the following conclusions can be drawn: (1) when 

NaCl is present, both peptides bind more strongly to Ca2+/CaM than to apoCaM, (2) when NaCl 

is absent, the binding affinity of Nav1.6IQ for apoCaM and Ca2+/CaM is the same, but (3) the 

binding dynamics of Nav1.4IQ changes.  The ability of NaCl to influence binding indicates that 

hydrogen bonds or charge-charge interactions play an important role in the interactions between 

VGSC isoforms and CaM. 
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(A)  ITC in 100mM NaCl (monomeric CaM) 
Cell  Ligand  N  Ka  

(x106 M-1)  
Kd  
(μM)  

ΔH  
(kcal/mol)  

TΔS  
(kcal/mol)  

ΔG  
(kcal/mol)  

ApoCaM  Nav1.4IQ 1.08   ± 0.0043 0.650 ± 0.032 1.53 -  2.937 ± 0.016  4.899 -7.836 
 
 

Nav1.6IQ 1.03   ± 0.0042 0.121 ± 0.0025 8.26 -10.320 ± 0.058 -3.453 -6.867  

Ca2+/CaM  Nav1.4IQ 0.994 ± 0.0048 1.690 ± 0.14 0.592 -  1.480 ± 0.010   6.936 -8.416 
 Nav1.6IQ 1.06   ± 0.0032 0.858 ± 0.033 1.17  -11.540 ± 0.047 -3.512 -8.028 
 

 
         apoCaM:Nav1.4IQ                                 apoCaM:Nav1.6IQ                                Ca2+/CaM:Nav1.4IQ                              Ca2+/CaM:Nav1.6IQ 
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(B) ITC in no NaCl (trimeric CaM) 
Cell  Ligand  N  Ka  

(x106 M-1)  
Kd  
(μM)  

ΔH  
(kcal/mol)  

TΔS  
(kcal/mol)  

ΔG  
(kcal/mol)  

ApoCaM  Nav1.4IQ N1: 1.03   ± 0.0052 
N2: 0.358 ± 0.057 

K1: 23.0     ± 8.2 
K2:   0.238 ± 0.068 

K1: 0.043 
K2: 4.20 

H1:-7.165 ± 0.021 
H2: 2.842 ± 0.63 

TS1:   2.780 
TS2: 10.094 

G1: -9.945 
G2: -7.252 

 
 

Nav1.6IQ 1.04   ± 0.0032 1.58   ± 0.083 0.633 -15.81 ± 0.071 -7.438 -8.372  

Ca2+/CaM  Nav1.4IQ 1.05   ± 0.011 0.248 ± 0.017 4.032 -  3.26 ± 0.046  4.044 -7.301 
 Nav1.6IQ 1.06   ± 0.0028 1.58   ± 0.054 0.633  -11.18 ± 0.041 -2.807 -8.373 
 

 
        apoCaM:Nav1.4IQ                                apoCaM:Nav1.6IQ                                 Ca2+/CaM:Nav1.4IQ                             Ca2+/CaM:Nav1.6IQ 
.   
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(C) ITC control by titrating Nav1.4IQ into buffer A + 100mM NaCl 

 

Fig. 3.8. The binding affinities of Nav1.4IQ and Nav1.6IQ peptides to CaM were measured by ITC (A) in 100mM 
NaCl, (B) without NaCl and (C) without CaM.  The profiles are shown respectively.  The binding constants (Ka and 
Kd), number of binding sites (N), enthalpy (∆H) and entropy (ΔS) changes of CaM to the various peptides are 
provided in the tables.  Figures below the tables show the injection profile after baseline correction and the bottom 
panels show the integration (heat release) for each injection (except the first one). The solid lines in the bottom panel 
show the fit of the data to a function based on a one-site binding model. Nav1.4IQ was titrated against buffer A + 
100mM NaCl as a negative control and for subtraction of the heat of dilution.  The concentration of the CaM was 
50μM in all experiments. 
 

3.3.6 Computational modelling and model verification by ITC 

 Motifs that interact with CaM generally assume an α-helix upon binding (Rhoads and 

Friedberg, 1997; Osawa et al., 1999).  Based on structural and computational analyses of IQ 

motifs from myosins and VGCCs in complex with CaM, it has been shown that the preferred 

conformation of the IQ motif is a seven-turn α-helix when bound to CaM (Hamilton et al., 2000; 

Fallon et al., 2005; Houdusse et al., 2006).  By combining literature and sequence analysis, we 

chose the 2.0Å structure of VGCC isoform 1.2 in complex with Ca2+/CaM (PDB code 2BE6) as 

the starting template to model Nav1.4 and Nav1.6 IQ motif peptide complexes with Ca2+/CaM.  

It is noteworthy that the VGCC shares the highest sequence similarity to the IQ motifs of Nav 

isoforms, and is a representative of an IQ motif from ion channel receptors.   The structures of 
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Nav1.4IQ and Nav1.6IQ in complex with Ca2+/CaM were modelled and energy minimised (Fig. 

3.9). 

 

 
 
 
 
(A) Nav1.4IQ: Ca2+/CaM 
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(B) Nav1.6IQ: Ca2+/CaM 

 
Fig. 3.9.  The inferred modelled structures of (A) Nav1.4IQ and (B) Nav1.6IQ with Ca2+/CaM showing potential 
hydrogen bonds that may govern binding.  CaM residues participating in hydroen bond interactions are grey 
coloured and labelled.  Hydrogen bonds are depicted as magenta dotted lines and the IQ motifs of Nav1.4 and 1.6 in 
green and cyan respectively.  Figure was prepared using Pymol (DeLano, 2002). 
 

 

 From the inferred models, most of the residues in the substrate binding cleft of CaM 

interact with both Nav1.4 and Nav1.6 peptides.  In particular, the side chains of Glu12, Glu88, 

Glu124 and Glu128 are in the vicinity of the peptide to form potential hydrogen bonding 

contacts (Fig. 3.9).  The IQ motifs also make extensive hydrophobic interactions with CaM (Fig. 

3.10). 
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(A) Nav1.4IQ: Ca2+/CaM 
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(B) Nav1.6IQ: Ca2+/CaM 

 
Fig. 3.10.  Hydrophobic patches on CaM that form stacking interactions with (A) Nav1.4IQ and (B) Nav1.6IQ 
interacts with.  Hydrophobic patches are shown as transparent white surfaces.  The Nav1.4IQ peptide is green and 
the Nav1.6IQ peptide is cyan.  Figure was prepared by Pymol (DeLano, 2002). 
 

 

 To verify that the CaM: peptide models, two residues on CaM (E88, E128) whose side-

chains can potentially form hydrogen bonding contacts with Nav1.4IQ but not with Nav1.6IQ 

were chosen and mutated to Ala.  ITC results showed an alteration in the binding profiles of 

Nav1.4IQ for the mutants (Fig. 3.11A and B).  However, no significant change in binding 

affinity was observed with the Nav1.6IQ peptide (Fig. 3.11 B and C). 



106 
 

  
             (A) Nav1.4IQ: Ca2+/E88ACaM                (B) Nav1.4IQ: Ca2+/E128ACaM 
 

  
             (C) Nav1.6IQ: Ca2+/E88ACaM               (D) Nav1.6IQ: Ca2+/E128ACaM 
 
Fig. 3.11.  The binding affinities of Nav1.4IQ and Nav1.6IQ peptides to CaM mutants were measured by ITC in 
bffer A. (A) Nav1.4IQ: Ca2+/E88ACaM, (B) Nav1.4IQ: Ca2+/E128ACaM, (C) Nav1.6IQ: Ca2+/E88ACaM, (D) 
Nav1.6IQ: Ca2+/E128ACaM.  The injection profiles are shown respectively baseline correction. Bottom panels show 
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the integration (heat release) for each injection (except the first one). The solid lines in the bottom panel show the fit 
of the data to a function based on a one-site binding model. The concentration of CaM was 50μM in all experiments. 
 
 

 Our ITC studies on the CaM mutants clearly indicate that the inferred models are reliable.  

The observed change in the binding affinity with Nav1.4IQ could be a result of disrupting the 

formation of potential H-bonds between the peptide and CaM.  However, Nav1.6IQ still binds 

with CaM because Glu88 and Glu128 do not participate in any hydrogen bonding contact with 

CaM.  In order to further validate our results, we are currently in the process of obtaining co-

crystal structures of these complexes. 

 

3.3.7 Crystallization  

  In order to confirm the Nav1.4IQ: and Nav1.6IQ: Ca2+/CaM inferred models and 

elucidate their mechanism action, the IQ motif peptides are presently being co-crystallised with 

CaM.  Complex crystal structures will help in understanding the differences in binding dynamics 

between the VGSC isoforms for CaM.  To this end, Ca2+/CaM was concentrated to 18mg/ml and 

incubated with two-fold molar excess of Nav1.4IQ and Nav1.6IQ peptides separately.  

Ca2+/CaM was also incubated with His-∆Nav1.6 in a 1:1 molar ratio and concentrated to a 

maximum concentration of 5mg/ml. The crystallisation screen was performed by mixing 1μl 

protein with 1μl mother liquor and equilibrated against 500μl reservoir solution using hanging 

drop vapour diffusion method.  No crystals were obtained from commercial screen kits such as 

Hampton Research, Qiagen and Jena Biosciences.  Analysis of all the crystallisation drops 

showed that the protein remained soluble in most 2-Methyl-2,4-pentanediol (MPD) conditions.  

When compared with the conditions of previously crystallised CaM complexes, the MPD 

concentrations in commercial screen kits were at least 20% lower.  Since the calculated pI of 



108 
 

CaM is approximately 4.5, the CaM: Nav1.4 and Nav1.6 complexes were further screened in 

specially prepared conditions with pH varied from 3.0 to 6.5 and MPD concentrations between 

45 to 65% v/v.   

Initially, needle shaped crystals of Nav1.4IQ, Nav1.6IQ: Ca2+/CaM and His-∆Nav1.6: 

Ca2+/CaM were obtained from a condition containing 0.1M sodium acetate pH 4.5, 65% MPD 

and 20mM CaCl2 at 4°C.  These crystals were too small to be diffracted (Fig 3.12).  Further 

optimisation marginally improved the crystal quality. Nav1.4IQ: Ca2+/CaM complex crystals 

grew in 0.1M Bis-Tris pH 5.5, 65% MPD and 20mM CaCl2 (Fig. 3.13) and is currently being 

optimised. 

 

      
                         Nav1.4IQ: Ca2+/CaM                                                              Nav1.6IQ: Ca2+/CaM 
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His-∆Nav1.6: Ca2+/CaM 

Fig. 3.12.  Initial crystals from the screening of Nav1.4IQ: Ca2+/CaM, Nav1.6IQ: Ca2+/CaM and His-∆Nav1.6: 
Ca2+/CaM complexes obtained using hanging drop vapour diffusion method.   
 
 
 

      
                          Nav1.4IQ: Ca2+/CaM                                                              Nav1.6IQ: Ca2+/CaM 
 
Fig. 3.13.  Current crystals of Nav1.4IQ: Ca2+/CaM and Nav1.6IQ: Ca2+/CaM obtained after grid optimization by the 
hanging drop vapour diffusion method.  Crystals of Nav1.4IQ: Ca2+/CaM could not be diffracted; those of 
Nav1.6IQ: Ca2+/CaM as indicated by the red arrows were used for diffraction.  These crystals were cryo-protected 
using mother liquor and flash frozen in liquid nitrogen before data was collected. 
 

 Similarly, crystals of the Nav1.6IQ: Ca2+/CaM complex were optimised with a reservoir 

solution of 0.1M sodium acetate pH 4.5, 55% MPD, 20mM CaCl2 and 8% n-propanol.  These 

crystals diffracted to 3.3Ǻ (Fig. 3.15), and a partial dataset was collected.  This crystallisation 

condition currently being optimised to improve crystal quality.  To verify whether the presence 

of CaM: Nav1.6IQ peptide complex in the crystals, several crystals were collected from drops 
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and extensively washed in reservoir solution prior to its separation in a 16% SDS-PAGE under 

denaturing conditions.  The crystals migrated as two bands, one corresponding to CaM’s 

molecular weight of 16.8kDa and the other band smaller than the 6kDa band of a protein 

molecular weight standard (Biorad), presumably the Nav1.6IQ peptide which is approximately 

3kDa (Fig. 3.14).  Smearing of the lower molecular weight bands in the protein marker and 

sample lanes are most likely to be caused by the low percentage gel for this peptide.  Higher 

percentage gels could not be used, since it would affect the migration of calmodulin.  The 

presence of these two bands clearly indicates that the crystals obtained are the Nav1.6IQ: 

Ca2+/CaM complex. 

 

 

 

 
Fig. 3.14.  16% SDS-PAGE profile of Nav1.6IQ: Ca2+/CaM crystals.  The uncrystallised complex was included in 
the third lane as a comtrol. 
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Fig. 3.15.  Diffraction image of Nav1.6IQ: Ca2+/CaM crystal.  The crystal diffracted to a resolution of 3.3Å.  Data 
was collected using Platinum135 CCD detector mounted on a Microstar-H rotating anode generator (Bruker, DE) 
given a 20s exposure. 
 

 

 The crystals are currently being optimised to collect complete datasets.  
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3.4 Discussion  

Most of the IQ motifs crystallised with Ca2+/CaM to date belong to the VGCC isoforms.  

Athough the importance of calcium regulation as a feedback mechanism in VGCC is clear; it is 

less obvious why Ca2+ should play a part in the sodium current of the action potential.  The 

importance of Ca2+ regulation, underscored by the fact that all VGSC isoforms possess IQ 

motifs, is ironic because only certain isoforms exhibit strong affinity for CaM (Herzog et al., 

2002).  Each VGSC isoform also has their activity differently regulated by CaM although 

sharing sequence similarity to a large extent (Herzog et al., 2003).  In this study on two IQ 

domains sharing high sequence identity, namely skeletal muscle VGSC isoform Nav1.4 and 

neuronal VGSC isoform Nav1.6 (percentage identity and similarity between IQ motifs of the two 

isoforms is 54% and 80% respectively), we aimed to uncover, if any, (1) the fundamental 

binding mechanism by which VGSC IQ motifs bind to CaM but retain flexibility to interact in 

different ways, and (2) whether the differences in binding affinities between isoforms represents 

the need for Ca2+ recognition during the action potential. 

 The ability of IQ motifs to bind CaM in several ways suggests that each protein recruits 

and utilizes CaM in a unique way.  This is exemplified by the difference in binding dynamics 

between Nav1.4IQ and Nav1.6IQ.  Alignment of Nav1.4IQ, Nav1.6IQ and the IQ motif 

consensus sequences indicate that amino acids differences between isoforms may be responsible 

for differences in the binding modes (Fig. 3.16).  Unlike Nav1.6 that possesses all the conserved 

residues of the IQ motif, Nav1.4IQ does not possess a moderately conserved Gly residue in 

seventh position, or the highly conserved Arg/Lys residue at 11th position.  Non conserved 

residues of both isoforms share high sequence identity in amino acids up to the 12th position. 
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Fig. 3.16.  Sequence alignment of previously identified VGSC isoforms Nav1.4 and Nav1.6 IQ motifs. Coloured 
residues refer to the conserved residues in the sequence; residues coloured red are strictly conserved across IQ 
motifs, the moderately conserved G at seventh position is coloured green, while blue residues are those that are 
conserved between Nav1.4 and Nav1.6 isoforms but not part of an IQ motif’s identity. 

   

From the inferred model, the aliphatic part of the side chain of Arg/Lys11 is important for 

forming extensive hydrophobic interactions with CaM.  However, the similar aliphatic part of 

Glu11 side chain in Nav1.4IQ does not engage with CaM and is not involved in stabilising the C-

terminal part of the IQ motif.  The conserved Gly7 is a surface expose residue in Nav1.6IQ.  The 

equivalent residue in Nav1.4IQ is Arg7 which folds back to occlude a part of the CaM surface 

which is exposed in the presence of Gly7 instead.  The residues of Nav1.6IQ fits more 

comfortably into the Ca2+/CaM surface compared with Nav1.4IQ (Fig. 3.17). All of the above 

observations may have contributed to maintaining a stable Nav1.4IQ:apo/CaM complex in the 

absence of NaCl, and also to the unsaturated binding of Nav1.4IQ:Ca2+/CaM as discussed in the 

previous section.   
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Fig.  3.17. Superimposition of the modelled Nav1.4IQ (green) and Nav1.6IQ (cyan) peptides on to CaM surface 
(grey).  The C-terminal of Nav1.4IQ protrudes from the CaM surface to a greater extent than Nav1.6IQ, as shown by 
the predominance of green surfaces. 

 

IQ motifs that lack a conserved basic residue in the 11th position have been reported to 

require Ca2+ for binding (Houdusse and Cohen, 1995; Munshi et al., 1996). This conserved basic 

residue is present in Nav1.6 but absent in Nav1.4.  Indeed in conditions without NaCl, apoCaM 

and Ca2+/CaM was observed to have identical affinity for Nav1.6 but the binding of Nav1.4 was 

drastically different in apoCaM and Ca2+/CaM.  These differences may be due to the ability of 

Nav1.6, but not Nav1.4, to stabilise itself on the CaM surface through hydrophobic interaction as 

described above (Fig. 3.17).  However, the molecular details of these interactions can only be 

fully understood from crystal structures of these complexes. 

Although both isoforms share a high sequence similarity in the IQ motif, these results 

indicate a hypersensitivity of CaM towards residue differences in the IQ motif of the two 

IQ motif C-terminal 
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isoforms which may explain why and how highly similar sequences’ binding and regulation by 

CaM are different.  Of course, the influence of residues flanking the IQ motif in CaM interaction 

cannot be ruled out.   

We propose that in tissues where other CaM target proteins are located e.g. in the brain, 

there is competitive sequestration of CaM.  Proteins that require calcium regulation in certain 

states increase their affinities over others for CaM momentarily until a time when a signal has 

passed, such as the increase in affinity of the VGSCs for CaM in the presence of Ca2+.  However, 

proteins that constitutively require CaM for function bind regardless of the Ca2+ concentration.  

High affinity VGSCs, such as Nav1.4 and Nav1.6 may represent a class of ion channels that 

require a Ca2+ sensor at basal level in resting state, but increasing Ca2+ causes a positive feedback 

that increases channel sensitivity for calcium through the increased sequestration of CaM.  These 

proposals however, await to be confirmed by further structural and physiological studies.  
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Chapter IV 

 

 

 

Conclusions and Future Directions 
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A recurring and fundamentally important theme in the study of signal transduction 

pathways is protein-protein interactions.   Many diseased states are caused by deregulation of 

signalling pathways as a result of abnormal interaction and activating or inhibiting mutations in 

the core components of these pathways.  In order to understand the essential mechanisms 

through which regulatory proteins perform their function, two examples of receptor protein 

regulators from the ERK/MAPK pathway were chosen – c-Cbl and CaM with their respective 

substrates of tyrosine kinases and VGSCs. 

In this thesis, the binding dynamics of both systems were thoroughly described.  In the 

case of c-Cbl, five crystal structures of Cbl-TKB complexed with the different tyrosine kinase 

substrates and another regulator of the ERK/MAPK pathway, Spry2, has illustrated the mode of 

the binding with the TKB domain.  The Cbl-TKB: Met structure also represents the highest 

resolution Cbl atomic model to date.  Elucidation of the Cbl-TKB complex structures has 

unexpectedly revealed the presence of an essential intrapeptidyl H-bond between pTyr and its 

neighbouring residue which binds to Cbl-TKB regardless of the orientation of the sequence. 

 The reverse binding mode of Met, together with its ability to bind to Cbl-TKB when the 

DpYR motif was reversed, suggests the likelihood of other Cbl targets yet to be discovered.  

Although not all potential targets are in vivo binders due to localization, temporal and steric 

factors, it is worth screening for such interactors on a proteomic scale, possibly through the use 

of microarray technology. 

 In depth understanding of the importance of substrate orientation in the context of Cbl 

role in signal transduction would require that structural characterization of Cbl-substrate 

complexes extend beyond peptides.  Proteins harbouring the DpYR motif with a (pY-4)Pro can 
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be interesting candidates for future study, together with proteins whose regulation by Cbl is 

already established, such as EGFR and APS.  Taken together, results from these analyses would 

greatly enhance the understanding of Cbl’s mode of action as an adaptor or as a ubiquitin ligase 

– two distinctly different functions. 

Biophysical and computational modelling data has provided interesting insights towards 

understanding how CaM regulates the VGSCs.  However, the necessity of further work is duly 

acknowledged.  The ITC results obtained may only be explained with a comparative study of the 

real molecular structures of both isoforms in complex with CaM at atomic resolution, an aim that 

we hope to achieve through X-ray crystallography.  However, difficulty in producing diffraction 

quality single crystals even after extensive optimisation is the bottleneck.  Nav1.4IQ: CaM 

would not diffract and the data collected from the Nav1.6IQ:CaM is not complete.  

Improving current crystal quality is the first priority for the CaM: VGSC complexes 

project.  As a final resort, nuclear magnetic resonance spectroscopy (NMR) will also be 

employed to determine the complex structures.   

Two major questions were posed at the outset of this study – (1) What is the fundamental 

mechanism governing VGSC: CaM interaction, and (2) why do certain VGSCs require tight 

binding to CaM but not others.  The first question may be ascertained once complex structures 

are known. Mutation of key residues in the full length receptor to examine its interaction with 

CaM may extend and confirm conclusions drawn from structural studies on the shorter IQ motif 

peptides.  Given the present limited data, a reason to the second question may only be speculated 

from ITC observations.  Resolving the second question requires the full understanding of the 
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CaM signalosome in different VGSC expressing tissues which may be feasible only through the 

use of high throughput proteomic technologies. 
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