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ABSTRACT

This thesis studies a new optimization model called monotropic semidefi-

nite programming and a type of numerical methods for solving this prob-

lem. The word “monotropic programming” was probably first popular-

ized by Rockafellar in his seminal book, which means a linearly constrained

minimization problem with convex and separable objective function. The

original monotropic programming requires the decision variable to be an

n-dimensional vector, while in our monotropic semidefinite programming

model, the decision variable is a symmetric block-diagonal matrix. This

model extends the vector monotropic programming model to the matrix

space on one hand, and on the other hand it extends the linear semidefi-

nite programming model to the convex case.

We propose certain modified alternating direction methods for solving

monotropic semidefinite programming problems. The alternating direction

method was originally proposed for structured variational inequality prob-

lems. We modify it to avoid solving difficult sub-variational inequality prob-

lems at each iteration, so that only metric projections onto convex sets are

sufficient for the convergence. Moreover, these methods are first order algo-

rithms (gradient-type methods) in nature, hence they are relatively easy to

implement and require less computation in each iteration.
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We then specialize the developed modified alternating direction methods

into the algorithms for solving convex nonlinear semidefinite programming

problems in which the methods are further simplified. Of particular interest

to us is the convex quadratically constrained quadratic semidefinite program-

ming problem. Compared with the well-studied linear semidefinite program,

the quadratic model is so far less explored although it has important appli-

cations.

An interesting application arises from the covariance matrix estimation

in financial management. In portfolio management covariance matrix is a

key input to measure risk, thus correct estimation of covariance matrix is

critical. The original nearest correlation matrix problem only considers linear

constraints. We extend this model to include quadratic ones so as to catch

the tradeoff between long-term information and short-term information. We

notice that in practice the investment community often uses the multiple-

factor model to explain portfolio risk. This can be also incorporated into our

new model. Specifically, we adjust unreliable covariance matrix estimations

of stock returns and factor returns simultaneously while requiring them to

fit into the previously constructed multiple-factor model.

Another practical application of our methods is the matrix completion

problem. In practice, we usually know only partial information of entries of

a matrix and hope to reconstruct it according to some pre-specified proper-

ties. The most studied problems include the completion problem of distance

matrix and the completion problem of low-rank matrix. Both problems can

be modelled in the framework of monotropic semidefinite programming and
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the proposed alternating direction method provides an efficient approach for

solving them.

Finally, numerical experiments are conducted to test the effectiveness

of the proposed algorithms for solving monotropic semidefinite programming

problems. The results are promising. In fact, the modified alternating direc-

tion method can solve a large problem with a 2000× 2000 variable matrix in

a moderate number of iterations and with reasonable accuracy.
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1. INTRODUCTION

Optimization models play a very important role in operations research and

management science. Optimization models with symmetric matrix variables

are often referred to as semidefinite programs. The study on these models

has a relatively short history. Intensive studies on the theory, algorithms, and

applications on semidefinite programs have only begun since 1990s. However,

so far most of the work has been concentrated on the linear case, where,

except the semidefinite cone constraint, all other constraints as well as the

objective function are linear with respect to the matrix variable.

When one attempts to model some nonlinear phenomena in the above

fields, linear semidefinite programming (SDP) is not enough. Therefore

the research on nonlinear semidefinite programming (NLSDP) began from

around 2000. Interestingly enough, some of the crucial applications of the

nonlinear model arise from financial management and related business areas.

For example, the nearest correlation matrix problem is introduced to adjust

unqualified covariance matrix estimation. Then the objective, which is the

distance between two matrices, must be nonlinear. In Chapters 5 and 6, more

such applications can be raised. They motivated our project in an extent.

Much work is yet to be done to effectively solve an NLSDP. Nonlinearity
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could bring significant difficulty in designing algorithms. In addition, the

semidefinite optimization problems easily lead to large-scale problems. For

example, a 2000 × 2000 symmetric variable matrix has more than 2,000,000

independent variables. The situation becomes even worse if there are more

than one matrix variable in the problem. Technically, we could combine all

the variable matrices into a big block-diagonal matrix, but it is often not wise

to do so for computational efficiency. In our research, we keep the different

matrix variables and concentrate on how to take advantage of the problem

structure such as separability and linearity.

1.1 Monotropic Semidefinite Programming

We study a new optimization model called monotropic semidefinite program-

ming (MSDP) in this thesis research. “Monotropic programming”, first pop-

ularized by Rockafellar in his seminal book [55], deals with a linearly con-

strained minimization problem with convex and separable objective function.

The original monotropic programming assumes the decision variable to be

an n-dimensional vector, while in our MSDP model, the decision variable

is a set of symmetric matrices. In other words, we replace each variable xi

in the original model by a symmetric matrix Xi ∈ <pi×pi. As a result, the

block-diagonal matrix

X = diag (X1, · · · , Xn)
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of dimension
n∑

i=1

pi could be thought of as the decision variable. Obviously, if

p1 = · · · = pn = 1, this model reduces to the n-dimensional vector case. On

the other hand, if n = 1, this model reduces to a linearly constrained convex

NLSDP problem. Since we allow additional set constraints as specified later,

the later model could include nonlinear constraints and thus it is actually

the convex NLSDP without loss of generality.

The MSDP has the formulation as follows.

min

n∑

i=1

fi (Xi) (1.1)

s.t.
n∑

i=1

Ai (Xi) = b

Xi ∈ Ωi ≡

m⋂

j=1

Ωij, i = 1, · · · , n,

where b ∈ <l, Xi ∈ <pi×pi, fi : <pi×pi → < is a convex function, and

Ωij is a convex set in <pi×pi. Furthermore, Ai denotes the linear operator:

<pi×pi → <l,

Ai (Xi) ≡




〈Ai1, Xi〉

...

〈Ail, Xi〉




.

Usually, each Ωij is a simple convex set and we assume that it is easy to

compute the projection of a point onto this set. One example is a box Ωij =
{
Xi : X i ≤ Xi ≤ X i

}
, where the matrix inequality is understood entry-wise.

Another example is a ball Ωij =
{
Xi : ‖Xi − C‖2 ≤ ε

}
. However, the most

interesting case is when Ωij is a semidefinite cone. In this case the projection
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of Xi onto Ωij involves the evaluation of eigenvalues of Xi.

1.2 The Variational Inequality Formulation

Let us introduce new variables

Yij = Lij (Xi) , i = 1, · · · , n, j = 1, · · · , m,

where Lij : <pi×pi → <pi×pi is a fixed given invertible linear operator. That

is, there exists a linear operator L−1
ij : <pi×pi → <pi×pi such that

L−1
ij (Lij (Xi)) = Xi.

The adjoint operator LT
ij : <pi×pi → <pi×pi is defined by

〈
X

′

i ,Lij (Xi)
〉

=
〈
LT

ij

(
X

′

i

)
, Xi

〉
.

Here and below, unless otherwise specified, the inner product 〈·, ·〉 is the

Frobenius inner product defined as 〈A, B〉 = trace(AT B). Let µij be fixed

constants satisfying

0 ≤ µij ≤ 1 and

m∑

j=0

µij = 1, for i = 0, 1, · · · , n. (1.2)
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Then we may re-write (1.1) equivalently as

min

n∑

i=1

(
µi0fi (Xi) +

m∑

j=1

µijfi ◦ L
−1
ij (Yij)

)
(1.3)

s.t. Yij = Lij (Xi) , i = 1, · · · , n, j = 1, · · · , m

(Y11, · · · , Yn1) ∈ Ω
′

≡

{
(Y11, · · · , Yn1) :

n∑

i=1

Ai ◦ L
−1
i1 (Yi1) = b

}

Yij ∈ Ω
′

ij ≡
{
Yij : L−1

ij (Yij) ∈ Ωij

}
, i = 1, · · · , n, j = 2, · · · , m

Xi ∈ Ωi1, i = 1, · · · , n.

Compared with its original form, (1.3) looks more complicated because

of the addition of many new variables. In fact we do this to separate the

set constraint for each Xi so that each Ωij is as simple as possible. Then it

is easy to compute the projection onto it which is critical in our proposed

methods. For example, consider that Xk belongs to the intersection of several

balls. The set constraint Xk ∈ Ωk is not simple enough. After introducing

new variables Ykj and letting Ykj = Xk, each Ykj is only required to be in

one ball onto which there is a close-form formula for the projection. Besides,

the update of Yij at each iteration can be done in parallel in our proposed

methods as shown later; hence in practice there will not be much additional

computational load.

The reason behind defining the matrix-to-matrix operator Lij rather

than directly defining them as matrices is that we would like to keep some

specific properties of matrices, e.g., the requirement of positive semidefi-

niteness for symmetric matrices. The flexible choice of linear operator Lij
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enables us the possibility to simplify the original problem (1.1). In Chapter

4.1 we will show that ellipsoid-type set with all positive eigenvalues can be

converted to ball-type set by choosing suitable linear operators. Then the

projection onto balls, rather than ellipsoids, can be calculated by using a

formula instead of by using numerical algorithms such as those introduced

in [14].

About the choice of µij, j = 0, · · · , m, the trivial way is to let µi0 = 1

and let the other µijs be zero. However, the rule of (1.2) also allows other

specifications of µij based on some prior information.

The Lagrangian function of Problem (1.3) is

L ≡

n∑

i=1

(
µi0fi (Xi) +

m∑

j=1

µijfi ◦ L
−1
ij (Yij)

)

−
n∑

i=1

m∑

j=1

〈λij,Lij (Xi) − Yij〉 . (1.4)

Notice that the Lagrangian multipliers λij, i = 1, · · · , n, j = 1, · · · , m, are

matrices. From now we assume each fi, i = 1, · · · , n, is continuously differ-

entiable and its first order derivative is written as ∇fi. It is well known that

under mild constraint qualifications (e.g., Slater’ condition), strong duality

holds and hence, X∗
i is a solution of (1.3) if and only if there exists λ∗

ij such
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that
(
X∗

i , Y ∗
ij, λ

∗
ij

)
satisfies





〈
Xi − X∗

i , µi0∇fi (X
∗
i ) −

m∑
j=1

LT
ij

(
λ∗

ij

)
〉

≥ 0,

∀ Xi ∈ Ωi1, i = 1, · · · , n
n∑

i=1

〈
Yi1 − Y ∗

i1, µi1

(
L−1

i1

)T
◦ ∇fi ◦ L

−1
i1 (Y ∗

i1) + λ∗
i1

〉
≥ 0,

∀ (Y11, · · · , Yn1) ∈ Ω
′

〈
Yij − Y ∗

ij, µij

(
L−1

ij

)T
◦ ∇fi ◦ L

−1
ij

(
Y ∗

ij

)
+ λ∗

ij

〉
≥ 0,

∀ Yij ∈ Ω
′

ij, i = 1, · · · , n, j = 2, · · · , m

Lij (X∗
i ) = Y ∗

ij, i = 1, · · · , n, j = 1, · · · , m.

(1.5)

For convenience, we make a basic assumption to guarantee that the

MSDP problem (1.3) under consideration is solvable.

Assumption 1.2.1. The solution set
(
X∗

i , Y ∗
ij, λ

∗
ij

)
of KKT system (1.5) is

nonempty.

Consequently, under this assumption, Problem (1.1) is solvable and

X∗
i , i = 1, · · · , n, is a solution to Problem (1.1).

1.3 Research Objectives and Results

The objectives of this thesis are:

• To study a new optimization model, namely MSDP. This model extends

the monotropic programming model from vectors to matrices on one
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hand, and the linear SDP model to the convex case on the other hand.

Then we study its optimal condition as a variational inequality problem.

• To propose some general algorithms for solving MSDP problems. The

alternating direction method (ADM) appears to be an efficient first

order algorithm (gradient-type method), which can take advantage of

the special structure of the problem. However, the sub-variational in-

equality problems that appear at each iteration are not easy to solve in

practice. Hence we modify the ADM so that solving the sub-variational

inequalities is substituted by computing a metric projection onto a con-

vex set. The MSDP problems with a quadratic objective function and

with a general nonlinear objective are investigated, respectively. There

are two respective modification procedures (the modified ADM and the

prediction-correction ADM) to deal with them. For each of the modi-

fications we present detailed convergence proof under mild conditions.

• To investigate convex NLSDP as a special case of MSDP. Particularly,

we consider the convex quadratically constrained quadratic semidefinite

programming (CQCQSDP) problem which generalizes the so-called

convex quadratic semidefinite programming (CQSDP). We also con-

sider the general convex nonlinear semidefinite programming (CNLSDP)

problem as a special case of MSDP. These new algorithms are relatively

easy to implement and require less computation at each iteration.

• To explore some important applications of MSDP in business manage-

ment. The covariance matrix estimation problem is essential in finan-

cial management. We build a new optimization framework to extend
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the nearest correction matrix problem and the least squares covariance

matrix problem. The generalized model can take into consideration the

tradeoff between long-term data and short-term data. Furthermore the

multiple-factor model, which is popular in investment management, can

be also incorporated. Another application studied is the matrix com-

pletion problem, including the completion problem of distance matrix

and the completion problem of low-rank matrix. They are very useful

in practice and the proposed ADM provides another efficient solution

approach for these problems.

• To perform numerical experiments on the proposed algorithms.

1.4 Structure of the Thesis

The remaining chapters of the thesis are organized as follows. In Chapter 2

we review the literature on SDP and ADM. We modify the ADM for solving

MSDP problems with quadratic objective and general nonlinear objective in

Chapter 3 and prove the convergence properties for two such modifications.

Chapter 4 will consider the specializations on convex NLSDP, including CQC-

QSDP and CNLSDP. Practical applications including the covariance matrix

estimation problem and the matrix completion problem are considered re-

spectively in Chapters 5 and 6. In Chapter 7 we present numerical results

to show the efficiency of proposed algorithms. Finally, Chapter 8 concludes

the thesis with a summary of results.



2. LITERATURE REVIEW

In this chapter, we briefly review the literature on SDP, focusing on NLSDP,

and ADM. We also introduce our notations.

2.1 Review on Semidefinite Programming

Let Sn be the finite-dimensional Hilbert space of real symmetric matrices

equipped with the Frobenius inner product 〈A, B〉 = trace(AT B). Let Sn
+

(Sn
++, respectively) be the subset of Sn consisting of all symmetric positive

semidefinite (definite, respectively) matrices. Clearly, Sn
+ is a convex cone

and is called the positive semidefinite cone. As a convention, we write X � 0

(X � 0, respectively) to represent X ∈ Sn
+ (X ∈ Sn

++, respectively). We

write X � Y or Y � X to represent X − Y � 0, respectively. Similarly we

define X � Y and Y ≺ X. The so-called standard form of SDP is as follows.

min 〈C, X〉 s.t. X � 0, 〈Ai, X〉 = bi, i = 1, · · · , m,

where b ∈ <m, Ai ∈ Sn, and C ∈ Sn are given. This model has attracted

researchers from diverse fields, including experts in convex optimization, lin-
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ear algebra, numerical analysis, combinatorics, control theory, and statis-

tics. The main reason is that a lot of applications lead to SDP problems

[5, 7, 53]. As a consequence, there are many different approaches for solving

SDP, among which the interior point method is well known for its polynomial

computational property. A comprehensive survey of the early work can be

found in [68].

A natural extension of SDP is NLSDP, in which either the objective

function or a constraint is nonlinear in X. Certainly NLSDP model is more

general and can therefore have specific applications beyond the applications

of SDP. Actually NLSDP has been used in, for instance, feed back control,

structural optimization, and truss design problems, etc. [4, 37].

While the mathematical formats of NLSDP may be different in various

applications, it is convenient to consider the following general model.

min f(X) s.t. h(X) = 0, g(X) ∈ K, (2.1)

where f : Sn → <, h : Sn → <m, and g : Sn → Y are given continuously

differentiable functions, Y is a Hilbert space, and K is a symmetric (homoge-

nous, self-dual) cone in Y. If in addition, f is convex, h is linear, and the

constraint g(X) ∈ K defines a convex set, Problem (2.1) becomes a convex

semidefinite program.

The first order and second order optimality conditions for NLSDP have

been studied in [6, 59, 60]. On the other hand, research on numerical algo-

rithms for NLSDP is mainly in its developing stage. Comparing with linear
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programming, nonlinear programming is much more difficult to solve. The

same happens to NLSDP.

Recently, some different methods have been proposed. Kocvara and

Stingl [36] developed a code (PENNON) supporting NLSDP problems, where

the augmented Lagrangian method was used. Later Sun, Sun, and Zhang

[62] analyzed the convergence rate for augmented Lagrangian method in the

NLSDP setting. A smoothing Newton method for NLSDP, which is a second

order algorithm, is considered in Sun, Sun, and Qi [61]. A variant of the

smoothing Newton methods is subsequently studied in [38]. Similar Newton-

type methods [33, 34] originally proposed for SDP can also be extended to

solve NLSDP. An analytic center cutting plane method is investigated by Sun,

Toh, and Zhao [63, 66], which can be used for solving CNLSDPs. Another

approach called successive linearization method appears in Fares, Noll, and

Apkarian [20], Correa and Ramirez [12], and Kanzow et al. [35]. Noll and

Apkarian [51, 52] also suggested the spectral bundle methods. In Jarre [32],

Leibfitz and Mostafa [44], and Yamashita, Yabe, and Haradathe [69], interior

methods are discussed. In addition, Gowda and his collaborators have exten-

sively studied complementarity problems in general symmetric cone setting

[26, 27], which are closely related to the solution of NLSDPs.

Other works focus on solving some special classes of NLSDP. Among

them, the CQSDP problem, perhaps the most basic NLSDP problem in a

sense, has received a lot of attention because of a number of important appli-

cations in engineering and management. In the CQSDP model, the objective

is a convex quadratic function and the constraints are linear, together with
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the semidefinite cone constraint. For example, in order to find a positive

semidefinite matrix that best approximates the solution to the matrix equa-

tion system

〈Ai, X〉 = bi, i = 1, · · · , m,

we need to solve the matrix least-square problem

min

m∑

i=1

‖〈Ai, X〉 − bi‖
2 s.t. X � 0, (2.2)

which is in the form of CQSDP.

In [50], a theoretical primal-dual potential reduction algorithm was pro-

posed for CQSDP problems by Nie and Yuan. The authors suggested to use

the conjugate gradient method to compute an approximate search direction.

Subsequent works include Qi and Sun [57] and Toh [64]. Qi and Sun used

a Lagrangian dual approach. Toh introduced an inexact primal-dual path-

following method with three classes of pre-conditioners for the augmented

equation for fast convergence under suitable nondegeneracy assumptions. In

two recent papers, Malick [48] and Boyd and Xiao [8], respectively applied

classical quasi-Newton method (in particular, the BFGS method) and the

projected gradient method to the dual problem of CQSDP. More recently,

Gao and Sun [25] designed an inexact smoothing Newton method to solve a

reformulated semismooth system with two level metric projection operators

and demonstrated the efficiency of the proposed method in their numerical

experiments.
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2.2 Review on the Alternating Direction Method

The general advantage of first order algorithms is twofold. Firstly, this type of

methods are relatively simple to implement, thus they are useful in finding an

approximate solution of the problems, which may become the “first phase” of

a hybrid first-second order algorithm. Secondly, first order methods usually

require much less computation per iteration, therefore might be suitable for

relatively large problems.

Among the first order approaches for solving large optimization prob-

lems, the augmented Lagrangian method is an effective one. It has desirable

convergence properties. The augmented Lagrangian function of Problem

(1.3) is

Laug ≡
n∑

i=1

m∑

j=1

‖Lij (Xi) − Yij‖
2
βij

−
n∑

i=1

m∑

j=1

〈λij,Lij (Xi) − Yij〉

+
n∑

i=1

(
µi0fi (Xi) +

m∑

j=1

µijfi ◦ L
−1
ij (Yij)

)
, (2.3)

where ‖Lij (Xi) − Yij‖
2
βij

= 〈Lij (Xi) − Yij, βij (Lij (Xi) − Yij)〉 and βij is a

self-adjoint positive definite linear operator. Note that a (general) quadratic

penalty term has been added to the Lagrangian function (1.4). This addi-

tional term is usually not separable respective to Xi and Yij, which makes

the augmented Lagrangian method more difficult to implement, therefore

less attractive in practice.

To overcome this difficulty, the ADM is introduced. The ADM generally

consists of three steps.
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(I) Minimize the augmented Lagrangian function (2.3) with respective to

Xi only.

(II) Minimize the augmented Lagrangian function (2.3) with respective to

Yij only.

(III) Update the Lagrangian multipliers λij.

Repeat (I), (II), and (III) until a stopping criterion is satisfied.

The ADM can be seen as the block Gauss-Seidel variants of the aug-

mented Lagrangian approach. The fundamental principle involved is to use

the most recent information as they are available. Furthermore, it can take

advantage of block angular structure. Consequently it is very suitable for

parallel computation in a data parallel environment. The ADM was prob-

ably first considered by Gabay [23] and Gabay and Mercier [24]. As shown

in [46], the ADM is actually an instance of the Doulgas-Rachford splitting

procedure of monotone operators [15]. It is also related to the progressive

hedging algorithm of Rockafellar and Wets [56]. The ADM has been stud-

ied quite extensively in the settings of optimization and numerical analysis.

Eckstein [17] and Kontogiorgis [39] gave the detailed analysis of ADMs and

tested their efficiency using numerical experiments in the parallel computa-

tion environment. Some versions of the ADMs for solving different separable

convex optimization problems, including monotropic optimization problems,

appeared in [18, 22, 40].

The ADM is very suitable to be applied to MSDP problems in that

it can take advantage of the separability structure. We are interested in
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the technique of decomposition − dividing a large-scale problem into many

smaller ones that can be solved in parallel. The ADM just has such a nice

property. When applied to Problem (1.3), the ADM becomes the following.

Algorithm 2.2.1. The ADM for MSDP

Do at each iteration until a stopping criterion is met

Step 1.
(
Xk

i , Y k
ij , λ

k
ij

)
→
(
Xk+1

i , Y k
ij , λ

k
ij

)
, i = 1, · · · , n, where Xk+1

i satisfies

〈
Xi − Xk+1

i , µi0∇fi

(
Xk+1

i

)
−

m∑

j=1

LT
ij

(
λk

ij − βij

(
Lij

(
Xk+1

i

)
− Y k

ij

))
〉

≥ 0, ∀Xi ∈ Ωi1 (2.4)

Step 2.
(
Xk+1

i , Y k
ij , λ

k
ij

)
→
(
Xk+1

i , Y k+1
ij , λk

ij

)
, i = 1, · · · , n, j = 1, · · · , m,

where Y k+1
ij satisfies

n∑

i=1

〈
Yi1 − Y k+1

i1 , µi1

(
L−1

i1

)T
◦ ∇fi ◦ L

−1
i1

(
Y k+1

i1

)

+λk
i1 − βi1

(
Li1

(
Xk+1

i

)
− Y k+1

i1

)〉

≥ 0, ∀ (Y11, · · · , Yn1) ∈ Ω
′

(2.5)
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and

〈
Yij − Y k+1

ij , µij

(
L−1

ij

)T
◦ ∇fi ◦ L

−1
ij

(
Y k+1

ij

)

+λk
ij − βij

(
Lij

(
Xk+1

i

)
− Y k+1

ij

)〉

≥ 0, ∀ Yij ∈ Ω
′

ij, i = 1, · · · , n, j = 2, · · · , m (2.6)

Step 3.
(
Xk+1

i , Y k+1
ij , λk

ij

)
→
(
Xk+1

i , Y k+1
ij , λk+1

ij

)
, i = 1, · · · , n, j = 1, · · · , m,

where

λk+1
ij = λk

ij − βij

(
Lij

(
Xk+1

i

)
− Y k+1

ij

)
(2.7)

Arbitrary X0
i , Y 0

ij, and λ0
ij are chosen as the starting point. The ADM

reaches optimality by taking alternating steps in the primal and dual space.

The updates of variables Xi, Yij, and λij could be done in parallel for all i

and j. Primal feasibility, dual feasibility, and complementary slackness are

not maintained; instead, all of them are satisfied as the algorithm finds a

fixed point of the recursions.

Further studies of ADM can be found, for instance, in [11, 19, 29, 30, 41].

The inexact versions of ADM were proposed by Eckstein and Bertsekas [19]

and Chen and Teboulle [11], respectively. He et al. [29] generalized the

framework and proposed a new inexact ADM with flexible conditions for

structured monotone variational inequalities. Recently, He et al. [30] con-
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sidered alternating projection-based prediction-correction methods for struc-

tured variational inequalities. All of the work above, however, was devoted

to vector optimization problems. It appears to be new to apply the idea of

ADM to develop methods for solving MSDP problems.



3. MODIFIED ALTERNATING DIRECTION METHODS

AND THEIR CONVERGENCE ANALYSIS

If we implement the original ADM for solving MSDP problems, we would

have to solve sub-variational inequality problems on matrix spaces at each

iteration. Although there are a number of methods for solving monotone

variational inequalities, in many occasions it is not an easy task. As a mat-

ter of fact, there seems to be little justification on the effort of obtaining

the solutions of these sub-problems at each iteration. Therefore, we modify

the original ADM to make the implementation of each iteration much eas-

ier. Specifically, after the modification, the main computational load of each

iteration is only the metric projections onto convex sets in the matrix space.

Thus, the proposed modified ADMs are simple and easy to implement. They

belong to inexact ADM in nature because we solve each iteration of the orig-

inal ADM only approximately after the modification. Although generally

inspired by the research of inexact ADM [11, 19, 29, 30], the procedures here

are different because of special operations for matrices.

We will consider to modify ADM for monotropic quadratic semidefinite

programming (MQSDP) and monotropic nonlinear semidefinite program-

ming (MNLSDP), separately. The reason for doing so is that the quadratic
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case allows a more specific modification that roughly requires only half of

the workload, compared to the general case. For MNLSDP problems with

general nonlinear objective functions, the procedure is more complicated. In

fact, it is necessary to call on a correction phase to produce the new iterate

based on a predictor computed in the prediction phase. For the two different

modifications, we give detailed convergence analysis under some mild con-

ditions. It is proved that the distance between iterative point and optimal

point is monotonically decreasing at each iteration.

3.1 The Modified Alternating Direction Method for

Monotropic Quadratic Semidefinite Programming

In the following, we will modify the ADM into an algorithm for solving

MQSDP problems. The matrix convex quadratic function has the general

form

f(X) = 〈X, F (X)〉,

where F : <p×p → <p×p is a self-adjoint positive semidefinite linear operator.

Then its first order derivative is F (X). In the monotropic case the objective

function is
n∑

i=1

fi(Xi) =

n∑

i=1

〈Xi, Fi(Xi)〉,

and ∇fi(Xi) = Fi(Xi).

At Step 1 and Step 2 of Algorithm 2.2.1, we should solve variational

inequalities in matrix spaces which might be a hard job. Thus we hope to
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convert them to simpler projection operations through some proper modifi-

cations. We now design a modified ADM based on certain good properties

of quadratic functions and prove its convergence.

Similar to the classical variational inequality [16], it is easy to see that

(2.4) is equivalent to the following nonlinear equation

Xk+1
i = PΩi1


Xk+1

i − αi0


µi0Fi

(
Xk+1

i

)
−

m∑

j=1

LT
ij

(
λk

ij − βij

(
Lij

(
Xk+1

i

)
− Y k

ij

))



 ,

(3.1)

where αi0 can be any positive number. However, it is generally impossible

to select an αi0 so that the Xk+1
i s on the right hand side are cancelled. We

therefore suggest to solve (3.1) approximately. Let

Ri0

(
Xk

i , Xk+1
i

)
≡ µi0

(
Fi

(
Xk+1

i

)
− Fi

(
Xk

i

))
+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk+1

i

)

−
m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
− γi0

(
Xk+1

i − Xk
i

)
(3.2)

for certain constant γi0. Given a self-adjoint linear operator V defined on a

finite dimensional inner product space, we let λmax(V) be its largest eigen-

value. Note that |λmax(V)| = ‖V‖ ≡ max {‖V(M)‖ : ‖M‖ ≤ 1}. We choose

γi0 so that

γi0 ≥ λmax

(
µi0Fi +

m∑

j=1

LT
ij ◦ βij ◦ Lij

)
.

Ri0

(
Xk

i , Xk+1
i

)
can be seen as an approximate term and will converge to

0 as Xk
i converges. With adding it in the projection of (3.1), we obtain a new



3. Modified Alternating Direction Methods and Their Convergence Analysis 22

formula for updating Xi as follows. It is still denoted as Xk+1
i for simplicity.

However, remember that it is defined different from (3.1) and only solves

(3.1) approximately.

Xk+1
i = PΩi1

[
Xk+1

i − αi0

(
µi0Fi

(
Xk+1

i

)

−
m∑

j=1

LT
ij

(
λk

ij − βij

(
Lij

(
Xk+1

i

)
− Y k

ij

))
− Ri0

(
Xk

i , Xk+1
i

)
)]

= PΩi1

[
Xk+1

i − αi0

(
γi0X

k+1
i + µi0Fi

(
Xk

i

)
− γi0X

k
i

+
m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
−

m∑

j=1

LT
ij

(
λk

ij + βij

(
Y k

ij

))
)]

. (3.3)

Setting

αi0 =
1

γi0

,

and

Di0 = µi0Fi

(
Xk

i

)
+

m∑

j=1

LT
ij ◦βij ◦Lij

(
Xk

i

)
−γi0X

k
i −

m∑

j=1

LT
ij

(
λk

ij + βij

(
Y k

ij

))
,

we obtain

Xk+1
i = PΩi1

[−αi0Di0] . (3.4)
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Similarly, we can also find a solution to (2.6) by computing

Y k+1
ij = PΩ

′

ij

[
Y k+1

ij − αij

(
µij

(
L−1

ij

)T

◦ Fi ◦ L
−1
ij

(
Y k+1

ij

)
+ λk

ij − βij

(
Lij

(
Xk+1

i

)
− Y k+1

ij

))]
,

(3.5)

where αij can be any positive number. Let the approximate term

Rij

(
Y k

ij , Y
k+1
ij

)
≡ µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k+1

ij

)
+ βij

(
Y k+1

ij

)
− βij

(
Y k

ij

)

−µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)
− γij

(
Y k+1

ij − Y k
ij

)
(3.6)

for certain constant γij such that

γij ≥ λmax

(
µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij + βij

)
.

Then we have the following formula for approximately solving (3.5), but

still denote it as Y k+1
ij for simplicity.

Y k+1
ij = PΩ

′

ij

[
Y k+1

ij − αij

(
µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k+1

ij

)
+ λk

ij

−βij

(
Lij

(
Xk+1

i

)
− Y k+1

ij

)
− Rij

(
Y k

ij , Y
k+1
ij

))]

= PΩ
′

ij

[
Y k+1

ij − αij

(
γijY

k+1
ij + µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)

+βij

(
Y k

ij

)
− γijY

k
ij + λk

ij − βij ◦ Lij

(
Xk+1

i

))]
. (3.7)

By setting

αij =
1

γij
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and

Dij = µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)
+ βij

(
Y k

ij

)
− γijY

k
ij + λk

ij − βij ◦ Lij

(
Xk+1

i

)
,

(3.8)

we obtain

Y k+1
ij = PΩ

′

ij
[−αijDij] . (3.9)

There is some difference for the process of (2.5). Define the following

approximate term

Ri1

(
Y k

i1, Y
k+1
i1

)
≡ µi1

(
L−1

i1

)T
◦ Fi ◦ L

−1
i1

(
Y k+1

i1

)
+ βi1

(
Y k+1

i1

)
− βi1

(
Y k

i1

)

−µi1

(
L−1

i1

)T
◦ Fi ◦ L

−1
i1

(
Y k

i1

)
− γi1

(
Y k+1

i1 − Y k
i1

)
(3.10)

for certain constant γi1. However, here we need an additional requirement

γ11 = γ21 = · · · = γn1. Thus the choice of γ11 is restricted to

γ11 ≥ max
i=1,··· ,n

{
λmax

(
µi1

(
L−1

i1

)T
◦ Fi ◦ L

−1
i1 + βi1

)}
.
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According to this, the approximate solution of (2.5) is

(
Y k+1

11 , · · · , Y k+1
n1

)
= PΩ′

[ (
Y k+1

11 , · · · , Y k+1
n1

)

−α11

(
µ11

(
L−1

11

)T
◦ F1 ◦ L

−1
11

(
Y k+1

11

)
+ λk

11

−β11

(
L11

(
Xk+1

1

)
− Y K+1

11

)
− R11

(
Y k

11, Y
k+1
11

)
,

· · · , µn1

(
L−1

n1

)T
◦ Fn ◦ L−1

n1

(
Y k+1

n1

)
+ λk

n1

−βn1

(
Ln1

(
Xk+1

n

)
− Y K+1

n1

)
− Rn1

(
Y k

n1, Y
k+1
n1

))]

= PΩ′

[(
Y k+1

11 , · · · , Y k+1
n1

)

−α11

(
γ11Y

k+1
11 + D11, · · · , γ11Y

k+1
n1 + Dn1

)]
, (3.11)

where the definition of Di1, i = 1, · · · , n, is the same with that of (3.8).

Setting α11 = 1
γ11

, we have

(
Y k+1

11 , · · · , Y k+1
n1

)
= PΩ′ [−α11 (D11, · · · , Dn1)] . (3.12)

In summary, the modified ADM is given as follows.

Algorithm 3.1.1. The Modified ADM for MQSDP

Do at each iteration until a stopping criterion is met

Step 1.
(
Xk

i , Y k
ij , λ

k
ij

)
→
(
Xk+1

i , Y k
ij , λ

k
ij

)
, i = 1, · · · , n, where

Xk+1
i = PΩi1

[−αi0Di0] (3.13)
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Step 2.
(
Xk+1

i , Y k
ij , λ

k
ij

)
→
(
Xk+1

i , Y k+1
ij , λk

ij

)
, i = 1, · · · , n, j = 1, · · · , m,

where

(
Y k+1

11 , · · · , Y k+1
n1

)
= PΩ

′ [−α11 (D11, · · · , Dn1)] (3.14)

and

Y k+1
ij = PΩ

′

ij
[−αijDij] , i = 1, · · · , n, j = 2, · · · , m (3.15)

Step 3.
(
Xk+1

i , Y k+1
ij , λk

ij

)
→
(
Xk+1

i , Y k+1
ij , λk+1

ij

)
, i = 1, · · · , n, j = 1, · · · , m,

where

λk+1
ij = λk

ij − βij

(
Lij

(
Xk+1

i

)
− Y k+1

ij

)
(3.16)

Note that the major computation in Algorithm 3.1.1 is the metric pro-

jections onto the convex sets Ωi1, Ω′, and Ω
′

ij. Compared with the original

ADM, the computation is much simplified. In the following, we will prove a

convergence result. Firstly, we prove an important proposition.

Proposition 3.1.2. The sequence
{
Xk

i , Y k
ij , λ

k
ij

}
generated by the modified
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ADM for MQSDP satisfies

n∑

i=1

(
〈
Xk+1

i − X∗
i , Ri0

(
Xk

i , Xk+1
i

)〉
+

m∑

j=1

〈
Y k+1

ij − Y ∗
ij, Rij

(
Y k

ij , Y
k+1
ij

)〉

+

m∑

j=1

〈
λk+1

ij − λ∗
ij, β

−1
ij

(
λk

ij − λk+1
ij

)〉
)

≥

n∑

i=1

〈
Xk+1

i − X∗
i ,

m∑

j=1

LT
ij ◦ βij

(
Y k+1

ij − Y k
ij

)
〉

, (3.17)

where
(
X∗

i , Y ∗
ij, λ

∗
ij

)
are defined as in (1.5).

Proof. Note that (3.3) can be written equivalently as

〈
Xi − Xk+1

i , µi0Fi

(
Xk+1

i

)
−

m∑

j=1

LT
ij

(
λk+1

ij + βij

(
Y k

ij − Y k+1
ij

))
− Ri0

(
Xk

i , Xk+1
i

)〉

≥ 0, ∀Xi ∈ Ωi1.

Setting Xi = X∗
i in it, we obtain

〈
Xk+1

i − X∗
i ,−µi0Fi

(
Xk+1

i

)
+

m∑

j=1

LT
ij

(
λk+1

ij + βij

(
Y k

ij − Y k+1
ij

))
+ Ri0

(
Xk

i , Xk+1
i

)〉
≥ 0.

(3.18)

Let Xi = Xk+1
i in inequality (1.5). Then

〈
Xk+1

i − X∗
i , µi0Fi (X

∗
i ) −

m∑

j=1

LT
ij

(
λ∗

ij

)
〉

≥ 0. (3.19)
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Adding (3.18) and (3.19) together, it follows that

〈
Xk+1

i − X∗
i ,

m∑

j=1

LT
ij

(
λk+1

ij − λ∗
ij

)
+

m∑

j=1

LT
ij ◦ βij

(
Y k

ij − Y k+1
ij

)
〉

+
〈
Xk+1

i − X∗
i , Ri0

(
Xk

i , Xk+1
i

)〉

≥
〈
Xk+1

i − X∗
i , µi0Fi

(
Xk+1

i

)
− µi0Fi (X

∗
i )
〉
≥ 0. (3.20)

Note that (3.7) can be written equivalently as

〈
Yij − Y k+1

ij , µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k+1

ij

)
+ λk+1

ij − Rij

(
Y k

ij , Y
k+1
ij

)〉

≥ 0, ∀Yij ∈ Ω
′

ij.

Setting Yij = Y ∗
ij, we obtain

〈
Y k+1

ij − Y ∗
ij,−µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k+1

ij

)
− λk+1

ij + Rij

(
Y k

ij , Y
k+1
ij

)〉
≥ 0.

(3.21)

Let Yij = Y k+1
ij in inequality (1.5). Then

〈
Y k+1

ij − Y ∗
ij, µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y ∗

ij

)
+ λ∗

ij

〉
≥ 0. (3.22)
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Adding (3.21) and (3.22) together, it follows that

〈
Y k+1

ij − Y ∗
ij, λ

∗
ij − λk+1

ij + Rij

(
Y k

ij , Y
k+1
ij

)〉

≥

〈
Y k+1

ij − Y ∗
ij , µij

(
L−1

ij

)T

◦ Fi ◦ L
−1
ij

(
Y k+1

ij

)
− µij

(
L−1

ij

)T

◦ Fi ◦ L
−1
ij

(
Y ∗

ij

)〉

≥ 0. (3.23)

Similarly, there holds

n∑

i=1

〈
Y k+1

i1 − Y ∗
i1, λ

∗
i1 − λk+1

i1 + Ri1

(
Y k

i1, Y
k+1
i1

)〉
≥ 0. (3.24)

It follows from (3.20), (3.23), and (3.24) that

n∑

i=1

〈
Xk+1

i − X∗
i ,

m∑

j=1

LT
ij

(
λk+1

ij − λ∗
ij

)
+

m∑

j=1

LT
ij ◦ βij

(
Y k

ij − Y k+1
ij

)
+ Ri0

(
Xk

i , Xk+1
i

)〉

+

n∑

i=1

m∑

j=1

〈
Y k+1

ij − Y ∗
ij , λ

∗
ij − λk+1

ij + Rij

(
Y k

ij , Y
k+1
ij

)〉

=
n∑

i=1

〈
Xk+1

i − X∗
i , Ri0

(
Xk

i , Xk+1
i

)〉
+

n∑

i=1

m∑

j=1

〈
Y k+1

ij − Y ∗
ij, Rij

(
Y k

ij , Y
k+1
ij

)〉

+

n∑

i=1

m∑

j=1

〈
λk+1

ij − λ∗
ij , β

−1
ij

(
λk

ij − λk+1
ij

)〉

+
n∑

i=1

〈
Xk+1

i − X∗
i ,

m∑

j=1

LT
ij ◦ βij

(
Y k

ij − Y k+1
ij

)〉

≥ 0.

The proof is complete.
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We next prove the convergence theorem of the modified ADM for MQSDP.

Theorem 3.1.3. The sequence
{
Xk

i

}
generated by the modified ADM for

MQSDP converges to a solution point X∗
i of system (1.5).

Proof. We denote

W ≡




Xi

Yij

λij




, G ≡




Ri0 0 0

0 Rij 0

0 0 β−1
ij




, G
′

≡




0 0 0

0 βij 0

0 0 0




,

where Ri0 = γi0I − µi0Fi −
m∑

j=1

LT
ij ◦ βij ◦ Lij, Rij = γijI − µij

(
L−1

ij

)T
◦ Fi ◦

L−1
ij − βij, and I is the identical operator with I(M) = M . Because of the

choice of γi0 and γij, clearly G and G
′

are positive semidefinite. We define

the G-inner product and G
′

-inner product of W and W
′

respectively as

〈W, W ′〉G ≡
n∑

i=1

(〈
Xi, Ri0

(
X

′

i

)〉
+

m∑

j=1

〈
Yij, Rij

(
Y

′

ij

)〉
+

m∑

j=1

〈
λij, β

−1
ij

(
λ

′

ij

)〉)
,

〈W, W ′〉G′ ≡
n∑

i=1

m∑

j=1

〈
Yij, βij

(
Y

′

ij

)〉
,

and the associated G-norm and G
′

-norm respectively as

‖W‖G ≡




n∑

i=1


‖Xi‖

2
Ri0

+

m∑

j=1

‖Yij‖
2
Rij

+

m∑

j=1

‖λij‖
2
β−1

ij






1

2

,
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‖W‖G
′ ≡

(
n∑

i=1

m∑

j=1

‖Yij‖
2
βij

) 1

2

,

where ‖·‖2
Ri0

≡ γi0 ‖·‖
2 − µi0 〈·, Fi (·)〉 −

〈
·,

m∑
j=1

LT
ij ◦ βij ◦ Lij (·)

〉
, ‖·‖2

Rij
≡

γij ‖·‖
2 − µij

〈
·,
(
L−1

ij

)T
◦ Fi ◦ L

−1
ij (·)

〉
− 〈·, βij (·)〉, ‖·‖2

βij
≡ 〈·, βij (·)〉, and

‖·‖2
β−1

ij
≡
〈
·, β−1

ij (·)
〉
. Based on these, we define the G + G

′

-inner product of

W and W
′

as

〈W, W ′〉G+G
′ ≡ 〈W, W ′〉G + 〈W, W ′〉G′ ,

so that the associated G + G
′

-norm is

‖W‖G+G
′ ≡

(
‖W‖2

G + ‖W‖2
G

′

) 1

2 .

Note that Ri0

(
Xk

i , Xk+1
i

)
= Ri0

(
Xk

i

)
−Ri0

(
Xk+1

i

)
and Rij

(
Y k

ij , Y
k+1
ij

)
=

Rij

(
Y k

ij

)
− Rij

(
Y k+1

ij

)
, then (3.17) can be written as

〈
W k+1 − W ∗, W k − W k+1

〉
G

≥

n∑

i=1

〈
Xk+1

i − X∗
i ,

m∑

j=1

LT
ij ◦ βij

(
Y k+1

ij − Y k
ij

)
〉

. (3.25)

Observe that solving the optimal condition (1.5) is equivalent to finding
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a zero of the residual function

‖e(W )‖

≡

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Xi − PΩi1

[
Xi − αi0

(
µi0Fi(Xi) −

m∑
j=1

LT
ij(λij)

)]

(Y11, · · · , Yn1) − PΩ′

[
(Y11, · · · , Yn1) − α11

(
µ11

(
L−1

11

)T
◦ F1 ◦ L

−1
11 (Y11) + λ11, · · · , µn1

(
L−1

n1

)T
◦ Fn ◦ L−1

n1 (Yn1) + λn1

) ]

Yij − P
Ω

′

ij

[
Yij − αij

(
µij

(
L−1

ij

)T

◦ Fi ◦ L
−1
ij (Yij) + λij

)]

βij (Lij(Xi) − Yij)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

Then we have from (3.3), (3.7), and (3.11) that

∥∥∥e(W k+1)
∥∥∥

2

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥

αi0

(
m∑

j=1
LT

ij ◦ βij

(
Y k

ij − Y k+1
ij

)
+ Ri0

(
Xk

i , Xk+1
i

))

αijRij

(
Y k

ij , Y
k+1
ij

)

βij

(
Lij

(
Xk+1

i

)
− Y k

ij

)
+ βij

(
Y k

ij − Y k+1
ij

)

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥

αi0

(
m∑

j=1
LT

ij ◦ βij

(
Y k

ij − Y k+1
ij

)
+ Ri0

(
Xk

i

)
− Ri0

(
Xk+1

i

))

αij

(
Rij

(
Y k

ij

)
− Rij

(
Y k+1

ij

))

βij

(
Lij

(
Xk+1

i

)
− Y k

ij

)
+ βij

(
Y k

ij − Y k+1
ij

)

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ δ

n∑

i=1



∥∥∥Xk+1

i − Xk
i

∥∥∥
2

Ri0

+
m∑

j=1

∥∥∥Y k+1
ij − Y k

ij

∥∥∥
2

Rij

+

m∑

j=1

∥∥∥Lij

(
Xk+1

i

)
− Y k

ij

∥∥∥
2

βij


 , (3.26)
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where δ is a positive constant.

Thus,

∥∥∥W k+1 − W ∗
∥∥∥

2

G+G
′

=
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−
∥∥∥W k+1 − W k

∥∥∥
2

G+G
′
− 2

〈
W k+1 − W ∗,W k − W k+1

〉
G+G

′

=
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−
∥∥∥W k+1 − W k

∥∥∥
2

G+G
′
− 2

〈
W k+1 − W ∗,W k − W k+1

〉
G

−2
〈
W k+1 − W ∗,W k − W k+1

〉
G

′

≤(3.25)
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
− 2

n∑

i=1

〈
Xk+1

i − X∗
i ,

m∑

j=1

LT
ij ◦ βij

(
Y k+1

ij − Y k
ij

)〉

−
∥∥∥W k+1 − W k

∥∥∥
2

G+G
′
− 2

n∑

i=1

m∑

j=1

〈
Y k+1

ij − Y ∗
ij, βij

(
Y k

ij − Y k+1
ij

)〉

=
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−
∥∥∥W k+1 − W k

∥∥∥
2

G+G
′
+ 2

n∑

i=1

m∑

j=1

〈
λk+1

ij − λk
ij, Y

k+1
ij − Y k

ij

〉

=
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−

n∑

i=1



∥∥∥Xk+1

i − Xk
i

∥∥∥
2

Ri0

− 2

m∑

j=1

〈
λk+1

ij − λk
ij , Y

k+1
ij − Y k

ij

〉

+

m∑

j=1

∥∥∥Y k+1
ij − Y k

ij

∥∥∥
2

Rij

+

m∑

j=1

∥∥∥Y k+1
ij − Y k

ij

∥∥∥
2

βij

+

m∑

j=1

∥∥∥λk+1
ij − λk

ij

∥∥∥
2

β−1

ij




=
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−

n∑

i=1



∥∥∥Xk+1

i − Xk
i

∥∥∥
2

Ri0

+

m∑

j=1

∥∥∥Y k+1
ij − Y k

ij

∥∥∥
2

Rij

+

m∑

j=1

∥∥∥λk+1
ij − λk

ij − βij

(
Y k+1

ij − Y k
ij

)∥∥∥
2

β−1

ij




=
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−

n∑

i=1



∥∥∥Xk+1

i − Xk
i

∥∥∥
2

Ri0

+

m∑

j=1

∥∥∥Y k+1
ij − Y k

ij

∥∥∥
2

Rij

+

m∑

j=1

∥∥∥Lij

(
Xk+1

i

)
− Y k

ij

∥∥∥
2

βij




≤(3.26)
∥∥∥W k − W ∗

∥∥∥
2

G+G
′
−

1

δ

∥∥∥e
(
W k+1

)∥∥∥
2
. (3.27)
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From the above inequality, we have

∥∥W k+1 − W ∗∥∥2

G+G
′ ≤

∥∥W k − W ∗∥∥2

G+G
′ ≤ · · · ≤

∥∥W 0 − W ∗∥∥2

G+G
′ . (3.28)

That is, the sequence
{
W k
}

is bounded. Thus there exists at least one cluster

point of
{
W k
}
.

It also follows from (3.27) that

∞∑

k=0

1

δ

∥∥e
(
W k+1

)∥∥2
< +∞.

This implies that

lim
k→∞

∥∥e
(
W k
)∥∥ = 0.

Let W be a cluster point of
{
W k
}
, and let

{
W kj

}
be a corresponding sub-

sequence converging to W . Then,

∥∥e
(
W
)∥∥ = lim

j→∞

∥∥e
(
W kj

)∥∥ = 0,

which means that W is a zero of the residual function. Therefore W satisfies

(1.5). Setting W ∗ = W in (3.28), we have

∥∥W k+1 − W
∥∥2

G+G
′ ≤

∥∥W k − W
∥∥2

G+G
′ , ∀k ≥ 0.
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Thus, the sequence
{
W k
}

has a unique cluster point and

lim
k→∞

W k = W.

This completes the proof.

3.2 The Prediction-Correction Alternating Direction Method

for Monotropic Nonlinear Semidefinite Programming

In the following, we will modify the ADM for solving MNLSDP problems with

general nonlinear objective
n∑

i=1

fi(Xi). Assume each fi(Xi), i = 1, · · · , n, is

continuously differentiable with the first order derivative ∇fi(Xi) = Fi(Xi).

Furthermore, we require the operator Fi(·), i = 1, · · · , n, to be Lipschitz

continuous on Ωi1 ∩ Ωi2 ∩ · · · ∩ Ωim with a constant Li, respectively.

Here the basic consideration of modifying ADM is still to remove difficult

matrix variational inequalities at each iteration. Unlike the MQSDP case

there are no simple formulas like (3.13)-(3.15) for computing Xk+1
i and Y k+1

ij .

In order to remove the implicit components in (2.4)-(2.6), we propose a more

complicated prediction-correction ADM and prove its convergence.

We suggest the following approximate approaches for Step 1 and Step 2
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of Algorithm 2.2.1. For Xi, i = 1, · · · , n, introduce the term

R
′

i0

(
Xk

i , X̃k
i

)
≡ Xk

i − X̃k
i − α

′

i0

(
µi0

(
Fi

(
Xk

i

)
− Fi

(
X̃k

i

))

+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

))
,

where positive scalar α
′

i0 is chosen so that

α
′

i0 ≤
η

µi0Li +
m∑

j=1

∥∥LT
ij

∥∥ ‖βij‖ ‖Lij‖
, i = 1, · · · , n, (3.29)

with a fixed 0 < η < 1. Then

X̃k
i = PΩi1

[
X̃k

i − α
′

i0

(
µi0Fi

(
X̃k

i

)

−

m∑

j=1

LT
ij

(
λk

ij − βij

(
Lij

(
X̃k

i

)
− Y k

ij

)))
+ R

′

i0

(
Xk

i , X̃k
i

)]

= PΩi1

[
Xk

i − α
′

i0

(
µi0Fi

(
Xk

i

)
+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)

−
m∑

j=1

LT
ij

(
λk

ij + βij

(
Y k

ij

))
)]

. (3.30)

Similarly for Yij, i = 1, · · · , n, j = 2, · · · , m, we introduce

R
′

ij(Y
k
ij , Ỹ

k
ij) ≡ Y k

ij − Ỹ k
ij − α

′

ij

(
µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)

−µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Ỹ k

ij

)
+ βij

(
Y k

ij

)
− βij

(
Ỹ k

ij

))
,
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and choose positive scalar α
′

ij so that

α
′

ij ≤
1

λmax (βij)
, (3.31)

where λmax (βij) is the largest eigenvalue of βij and

α
′

ij ≤
η

µijLi

∥∥∥
(
L−1

ij

)T∥∥∥
∥∥L−1

ij

∥∥ + ‖βij‖
, i = 1, · · · , n, j = 1, · · · , m, (3.32)

where 0 < η < 1. Adding this approximate term,

Ỹ k
ij = PΩ

′

ij

[
Ỹ k

ij − α
′

ij

(
µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Ỹ k

ij

)
+ λk

ij

−βij

(
Lij

(
X̃k

i

)
− Ỹ k

ij

))
+ R

′

ij

(
Y k

ij , Ỹ
k
ij

)]

= PΩ
′

ij

[
Y k

ij − α
′

ij

(
µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)
+ λk

ij

−βij

(
Lij

(
X̃k

i

)
− Y k

ij

))]
. (3.33)

Lastly, with the additional requirement α
′

11 = α
′

21 = · · · = α
′

n1 for the

positive scalars α
′

i1, define the following approximate term for (2.5).

R
′

i1

(
Y k

i1, Ỹ
k
i1

)
≡ Y k

i1 − Ỹ k
i1 − α

′

11

(
µi1

(
L−1

i1

)T
◦ Fi ◦ L

−1
i1

(
Y k

i1

)

−µi1

(
L−1

i1

)T
◦ Fi ◦ L

−1
i1

(
Ỹ k

i1

)
+ βi1

(
Y k

i1

)
− βi1

(
Ỹ k

i1

))
.



3. Modified Alternating Direction Methods and Their Convergence Analysis 38

Then the approximate solution of (2.5) is equivalent to

(
Ỹ k

11, · · · , Ỹ k
n1

)

= PΩ′

[(
Ỹ k

11, · · · , Ỹ k
n1

)
+
(
R

′

11

(
Y k

11, Ỹ
k
11

)
, · · · , R

′

n1

(
Y k

n1, Ỹ
k
n1

))
− α

′

11

(
µ11

(
L−1

11

)T
◦ F1 ◦ L

−1
11

(
Ỹ k

11

)
+ λk

11 − β11

(
L11

(
X̃k

1

)
− Ỹ k

11

)
, · · · ,

µn1

(
L−1

n1

)T
◦ Fn ◦ L−1

n1

(
Ỹ k

n1

)
+ λk

n1 − βn1

(
Ln1

(
X̃k

n

)
− Ỹ k

n1

))]

= PΩ′

[(
Y k

11, · · · , Y k
n1

)
− α

′

11

(
µ11

(
L−1

11

)T
◦ F1 ◦ L

−1
11

(
Y k

11

)
+ β11

(
Y k

11

)
+ λk

11 − β11 ◦ L11

(
X̃k

1

)
, · · · ,

µn1

(
L−1

n1

)T
◦ Fn ◦ L−1

n1

(
Y k

n1

)
+ βn1

(
Y k

n1

)
+ λk

n1 − βn1 ◦ Ln1

(
X̃k

n

))]
.

(3.34)

Till now all implicit parts within the projections have been successfully

cancelled. However, we cannot prove the convergence by just doing so. In-

stead we use these as the predictor and will correct them in the correction

phase.

Algorithm 3.2.1. The Prediction-Correction ADM for MNLSDP

Do at each iteration until a stopping criterion is met

The Prediction Phase:
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Step 1.
(
Xk

i , Y k
ij , λ

k
ij

)
→
(
X̃k

i , Y k
ij , λ

k
ij

)
, i = 1, · · · , n, where

X̃k
i = PΩi1

[
Xk

i − α
′

i0

(
µi0Fi

(
Xk

i

)
+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)

−

m∑

j=1

LT
ij

(
λk

ij + βij

(
Y k

ij

))
)]

(3.35)

Step 2.
(
X̃k

i , Y k
ij , λ

k
ij

)
→
(
X̃k

i , Ỹ k
ij , λ

k
ij

)
, i = 1, · · · , n, j = 1, · · · , m, where

(
Ỹ k

11, · · · , Ỹ k
n1

)
= PΩ

′

[(
Y k

11, · · · , Y k
n1

)
− α

′

11

(
µ11

(
L−1

11

)T
◦ F1 ◦ L

−1
11

(
Y k

11

)
+ β11

(
Y k

11

)
+ λk

11 − β11 ◦ L11

(
X̃k

1

)
, · · · ,

µn1

(
L−1

n1

)T
◦ Fn ◦ L−1

n1

(
Y k

n1

)
+ βn1

(
Y k

n1

)
+ λk

n1 − βn1 ◦ Ln1

(
X̃k

n

))]

(3.36)

and

Ỹ k
ij = PΩ

′

ij

[
Y k

ij − α
′

ij

(
µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)
+ λk

ij

−βij

(
Lij

(
X̃k

i

)
− Y k

ij

))]
, i = 1, · · · , n, j = 2, · · · , m (3.37)

Step 3.
(
X̃k

i , Ỹ k
ij , λ

k
ij

)
→
(
X̃k

i , Ỹ k
ij , λ̃

k
ij

)
, i = 1, · · · , n, j = 1, · · · , m, where

λ̃k
ij = λk

ij − βij

(
Lij

(
X̃k

i

)
− Ỹ k

ij

)
(3.38)
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The Correction Phase:

Step 4.
(
X̃k

i , Ỹ k
ij , λ̃

k
ij

)
→
(
Xk+1

i , Y k+1
ij , λk+1

ij

)
, i = 1, · · · , n, j = 1, · · · , m,

where

Xk+1
i = PΩi1

[
Xk

i − γkR
′

i0

(
Xk

i , X̃k
i

)]
(3.39)

(
Y k+1

11 , · · · , Y k+1
n1

)
= PΩ′

[ (
Y k

11, · · · , Y k
n1

)

−γkα
′

11

(
β11

(
Y k

11 − Ỹ k
11

)
, · · · , βn1

(
Y k

n1 − Ỹ k
n1

))

−γk
(
R

′

11

(
Y k

11, Ỹ
k
11

)
, · · · , R

′

n1

(
Y k

n1, Ỹ
k
n1

)) ]
(3.40)

Y k+1
ij = PΩ

′

ij

[
Y k

ij − γkR
′

ij

(
Y k

ij , Ỹ
k
ij

)
− γkα

′

ijβij

(
Y k

ij − Ỹ k
ij

)]
,

i = 1, · · · , n, j = 2, · · · , m (3.41)

λk+1
ij = λk

ij − γk
(
λk

ij − λ̃k
ij

)
(3.42)

The positive scalar γk < 1
2

is the step-length and its optimal choice will be

given later.

In order to solve MNLSDP problems by the prediction-correction ADM,

we only need to compute the metric projections onto the convex sets Ωi1, Ω′,

and Ω
′

ij. Without the special structure of quadratic objective function in

MQSDP, twice as many projections are necessary. However, compared with

the original ADM the computation is simplified. In the following, we will

prove a convergence result. Similar to Proposition 3.1.2, with the added ap-

proximate terms, there is an important proposition for the prediction phase.
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Proposition 3.2.2. The sequence
{

Xk
i , Y k

ij , λ
k
ij, X̃

k
i , Ỹ k

ij , λ̃
k
ij

}
generated by

the prediction-correction ADM for MNLSDP satisfies

n∑

i=1

(
1

α
′

i0

〈
X̃k

i − X∗
i , R

′

i0

(
Xk

i , X̃k
i

)〉
+

m∑

j=1

1

α
′

ij

〈
Ỹ k

ij − Y ∗
ij, R

′

ij

(
Y k

ij , Ỹ
k
ij

)〉

+

m∑

j=1

〈
λ̃k

ij − λ∗
ij, β

−1
ij

(
λk

ij − λ̃k
ij

)〉)

≥
n∑

i=1

〈
X̃k

i − X∗
i ,

m∑

j=1

LT
ij ◦ βij

(
Ỹ k

ij − Y k
ij

)〉
, (3.43)

where
(
X∗

i , Y ∗
ij, λ

∗
ij

)
are defined as in (1.5).

Proof. Similar to the proof of Proposition 3.1.2.

Corollary 3.2.3. The sequence
{
Xk

i , Y k
ij , λ

k
ij, X̃

k
i , Ỹ k

ij , λ̃
k
ij

}
generated by the

prediction-correction ADM for MNLSDP satisfies

n∑

i=1

(
1

α
′

i0

〈
X̃k

i − X∗
i , R

′

i0

(
Xk

i , X̃k
i

)〉
+

m∑

j=1

〈
λ̃k

ij − λ∗
ij, β

−1
ij

(
λk

ij − λ̃k
ij

)〉

+

m∑

j=1

1

α
′

ij

〈
Ỹ k

ij − Y ∗
ij, R

′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)〉)

≥
n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij, Ỹ

k
ij − Y k

ij

〉
, (3.44)

where
(
X∗

i , Y ∗
ij, λ

∗
ij

)
are defined as in (1.5).

Proof. Add
n∑

i=1

m∑
j=1

〈
Ỹ k

ij − Y ∗
ij, βij

(
Y k

ij − Ỹ k
ij

)〉
to both sides of (3.43).
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We denote

W ≡




Xi

Yij

λij




and G ≡




(
α

′

i0

)−1
0 0

0
(
α

′

ij

)−1
0

0 0 β−1
ij




.

Clearly, G is positive definite. We define the G-inner product of W and W
′

as

〈
W,W ′〉

G
≡

n∑

i=1


 1

α
′

i0

〈
Xi, X

′

i

〉
+

m∑

j=1

1

α
′

ij

〈
Yij , Y

′

ij

〉
+

m∑

j=1

〈
λij, β

−1
ij

(
λ

′

ij

)〉

 ,

and the associated G-norm as

‖W‖G ≡

(
n∑

i=1

(
1

α
′

i0

‖Xi‖
2 +

m∑

j=1

1

α
′

ij

‖Yij‖
2 +

m∑

j=1

‖λij‖
2
β−1

ij

)) 1

2

,

where ‖·‖2
β−1

ij
≡
〈
·, β−1

ij (·)
〉
.

Then (3.44) can be written as

〈



X̃k
i − X∗

i

Ỹ k
ij − Y ∗

ij

λ̃k
ij − λ∗

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

≥
n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij, Ỹ

k
ij − Y k

ij

〉
. (3.45)

According to the choice criterion of α
′

i0 and α
′

ij, we have the following
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lemma.

Lemma 3.2.4. There hold

α
′

i0

∥∥∥∥∥µi0

(
Fi

(
Xk

i

)
− Fi

(
X̃k

i

))
+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)

−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

)∥∥∥∥∥

≤ η
∥∥∥X̃k

i − Xk
i

∥∥∥ , (3.46)

α
′

ij

∥∥∥µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Y k

ij

)
− µij

(
L−1

ij

)T
◦ Fi ◦ L

−1
ij

(
Ỹ k

ij

)

+βij

(
Y k

ij

)
− βij

(
Ỹ k

ij

)∥∥∥

≤ η
∥∥∥Ỹ k

ij − Y k
ij

∥∥∥ , (3.47)

and ∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥
G

≥ (1 − η)
∥∥∥W k − W̃ k

∥∥∥
G

. (3.48)

Proof. (3.46) and (3.47) can be immediately derived from the conditions

(3.29) and (3.32).
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It follows from (3.46) that

∥∥∥R′

i0

(
Xk

i , X̃k
i

)∥∥∥

=

∥∥∥∥X
k
i − X̃k

i − α
′

i0

(
µi0

(
Fi

(
Xk

i

)
− Fi

(
X̃k

i

))

+
m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

))∥∥∥∥

≥
∥∥∥Xk

i − X̃k
i

∥∥∥−
∥∥∥∥α

′

i0

(
µi0

(
Fi

(
Xk

i

)
− Fi

(
X̃k

i

))

+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

))∥∥∥∥

≥ (1 − η)
∥∥∥Xk

i − X̃k
i

∥∥∥ . (3.49)

Similarly, from (3.47) there is

∥∥∥R′

ij

(
Y k

ij , Ỹ
k
ij

)∥∥∥ ≥ (1 − η)
∥∥∥Y k

ij − Ỹ k
ij

∥∥∥ . (3.50)

Then we have (3.48) directly from (3.49) and (3.50).

Before the main convergence result, we need another lemma based on

the choice criterion of α
′

i0 and α
′

ij.
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Lemma 3.2.5. Define

Ψ
(
Xk

i , Y k
ij , λ

k
ij, X̃

k
i , Ỹ k

ij , λ̃
k
ij

)

≡

〈




Xk
i − X̃k

i

Y k
ij − Ỹ k

ij

λk
ij − λ̃k

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

+

n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij, Ỹ

k
ij − Y k

ij

〉
,

then there are two lower bounds for it.

2Ψ
(
Xk

i , Y k
ij , λ

k
ij, X̃

k
i , Ỹ k

ij , λ̃
k
ij

)

≥

∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

+

∥∥∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

, (3.51)

and

4Ψ
(
Xk

i , Y k
ij , λ

k
ij, X̃

k
i , Ỹ k

ij , λ̃
k
ij

)

≥

∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

. (3.52)
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Proof. It follows from (3.46) that

2
〈
Xk

i − X̃k
i , R

′

i0

(
Xk

i , X̃k
i

)〉

= 2

〈
Xk

i − X̃k
i , Xk

i − X̃k
i − α

′

i0

(
µi0

(
Fi

(
Xk

i

)
− Fi

(
X̃k

i

))

+
m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

))〉

≥
∥∥∥Xk

i − X̃k
i

∥∥∥
2

− 2

〈
Xk

i − X̃k
i , α

′

i0

(
µi0

(
Fi

(
Xk

i

)
− Fi

(
X̃k

i

))

+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)
−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

))〉

+

∥∥∥∥∥α
′

i0

(
µi0

(
Fi

(
Xk

i

)
−
(
X̃k

i

))
+

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
Xk

i

)

−

m∑

j=1

LT
ij ◦ βij ◦ Lij

(
X̃k

i

))∥∥∥∥∥

2

=
∥∥∥R′

i0

(
Xk

i , X̃k
i

)∥∥∥
2

. (3.53)

Similarly, from (3.47) there is

2
〈
Y k

ij − Ỹ k
ij , R

′

ij

(
Y k

ij , Ỹ
k
ij

)〉
≥
∥∥∥R′

ij

(
Y k

ij , Ỹ
k
ij

)∥∥∥
2

. (3.54)

For two self-adjoint linear operators S and V, the notation S � V means
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that 〈M,S(M)〉 ≤ 〈M,V(M)〉 for all M . Because of (3.31), we have

α
′

ijλmax (βij) ≤ 1

=⇒ α
′

ijβ
2
ij � βij

=⇒ α
′

ij

∥∥∥Y k
ij − Ỹ k

ij

∥∥∥
2

β2
ij

≤
∥∥∥Y k

ij − Ỹ k
ij

∥∥∥
2

βij

=⇒
1

α
′

ij

∥∥∥α′

ijβij

(
Y k

ij − Ỹ k
ij

)∥∥∥
2

≤
∥∥∥Y k

ij − Ỹ k
ij

∥∥∥
2

βij

=⇒

∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥

2

G

≤

n∑

i=1

m∑

j=1

∥∥∥Y k
ij − Ỹ k

ij

∥∥∥
2

βij

. (3.55)

Thus

4Ψ
(
Xk

i , Y k
ij , λ

k
ij, X̃

k
i , Ỹ k

ij , λ̃
k
ij

)

= 4

n∑

i=1

(
1

α
′

i0

〈
Xk

i − X̃k
i , R

′

i0

(
Xk

i , X̃k
i

)〉
+

m∑

j=1

1

α
′

ij

〈
Y k

ij − Ỹ k
ij , R

′

ij

(
Y k

ij , Ỹ
k
ij

)〉

+

m∑

j=1

∥∥∥Y k
ij − Ỹ k

ij

∥∥∥
2

βij

+

m∑

j=1

∥∥∥λk
ij − λ̃k

ij

∥∥∥
2

β−1

ij

+

m∑

j=1

〈
λk

ij − λ̃k
ij, Ỹ

k
ij − Y k

ij

〉)

= 4
n∑

i=1

(
1

α
′

i0

〈
Xk

i − X̃k
i , R

′

i0

(
Xk

i , X̃k
i

)〉
+

m∑

j=1

1

α
′

ij

〈
Y k

ij − Ỹ k
ij , R

′

ij

(
Y k

ij , Ỹ
k
ij

)〉

+
1

2

m∑

j=1

∥∥∥Y k
ij − Ỹ k

ij

∥∥∥
2

βij

+
1

2

m∑

j=1

∥∥∥λk
ij − λ̃k

ij

∥∥∥
2

β−1

ij

+
1

2

m∑

j=1

∥∥∥λk
ij − λ̃k

ij − βij

(
Y k

ij − Ỹ k
ij

)∥∥∥
2

β−1

ij

)
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= 2

n∑

i=1

(
2

α
′

i0

〈
Xk

i − X̃k
i , R

′

i0

(
Xk

i , X̃k
i

)〉
+

m∑

j=1

2

α
′

ij

〈
Y k

ij − Ỹ k
ij , R

′

ij

(
Y k

ij , Ỹ
k
ij

)〉

+
m∑

j=1

∥∥∥Y k
ij − Ỹ k

ij

∥∥∥
2

βij

+
m∑

j=1

∥∥∥λk
ij − λ̃k

ij

∥∥∥
2

β−1

ij

+
m∑

j=1

∥∥Lij

(
Xk+1

i

)
− Y k

ij

∥∥2

βij

)

≥
(3.53)
(3.54) 2

n∑

i=1

(
1

α
′

i0

∥∥∥R′

i0

(
Xk

i , X̃k
i

)∥∥∥
2

+
m∑

j=1

1

α
′

ij

∥∥∥R′

ij

(
Y k

ij , Ỹ
k
ij

)∥∥∥
2

+

m∑

j=1

∥∥∥Y k
ij − Ỹ k

ij

∥∥∥
2

βij

+

m∑

j=1

∥∥∥λ′

ij − λ̃k
ij

∥∥∥
2

β−1

ij

+

m∑

j=1

∥∥Lij

(
Xk+1

i

)
− Y k

ij

∥∥2

βij

)

≥(3.55) 2




∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥

2

G

+

∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥

2

G




+2
n∑

i=1

m∑

j=1

∥∥Lij

(
Xk+1

i

)
− Y k

ij

∥∥2

βij

≥ 2




∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥

2

G

+

∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥

2

G




≥

∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥

2

G

.
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The following is the main convergence theorem.

Theorem 3.2.6. The sequence
{
Xk

i

}
generated by the prediction-correction

ADM for MNLSDP converges to a solution point X∗
i of system (1.5).

Proof. Observe that solving the optimal condition (1.5) is equivalent to

finding a zero of the residual function

‖e(W )‖G

≡

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Xi − PΩi1

[
Xi − α

′

i0

(
µi0Fi(Xi) −

m∑
j=1

LT
ij(λij)

)]

(Y11, · · · , Yn1) − PΩ′

[
(Y11, · · · , Yn1) − α

′

11

(
µ11

(
L−1

11

)T
◦ F1 ◦ L

−1
11 (Y11) + λ11, · · · , µn1

(
L−1

n1

)T
◦ Fn ◦ L−1

n1 (Yn1) + λn1

)]

Yij − PΩ
′

ij

[
Yij − α

′

ij

(
µij

(
L−1

ij

)T

◦ Fi ◦ L
−1
ij (Yij) + λij

)]

βij (Lij(Xi) − Yij)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
G

.
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Then we have from (3.30), (3.33), and (3.34) that

∥∥∥e(W̃ k)
∥∥∥

G

≤

∥∥∥∥∥∥∥∥∥∥∥

α
′

i0

m∑
j=1

LT
ij ◦ βij

(
Y k

ij − Ỹ k
ij

)
+ R

′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij

∥∥∥∥∥∥∥∥∥∥∥
G

≤

∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥
G

+

∥∥∥∥∥∥∥∥∥∥∥




α
′

i0

m∑
j=1

LT
ij ◦ βij

(
Y k

ij − Ỹ k
ij

)

0

0




∥∥∥∥∥∥∥∥∥∥∥
G

≤ δ




∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥
G

+

∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥
G




, (3.56)

where δ is a positive constant.
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Thus

∥∥∥W k+1 − W ∗
∥∥∥

2

G

=

∥∥∥∥∥∥∥∥∥∥∥∥




Xk+1
i − X∗

i

Y k+1
ij − Y ∗

ij

λk+1
ij − λ∗

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

≤

∥∥∥∥∥∥∥∥∥∥∥∥




Xk
i − γkR

′

i0

(
Xk

i , X̃k
i

)
− X∗

i

Y k
ij − γkR

′

ij

(
Y k

ij , Ỹ
k
ij

)
− γkα

′

ijβij

(
Y k

ij − Ỹ k
ij

)
− Y ∗

ij

λk
ij − γk

(
λk

ij − λ̃k
ij

)
− λ∗

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

=
∥∥∥W k − W ∗

∥∥∥
2

G
+
(
γk
)2

∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

−2γk

〈




Xk
i − X∗

i

Y k
ij − Y ∗

ij

λk
ij − λ∗

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

≤(3.45)
∥∥∥W k − W ∗

∥∥∥
2

G
+
(
γk
)2

∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

−2γk

〈




Xk
i − X̃k

i

Y k
ij − Ỹ k

ij

λk
ij − λ̃k

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

−2γk

n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij, Ỹ

k
ij − Y k

ij

〉
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≤(3.52)
∥∥∥W k − W ∗

∥∥∥
2

G
−
(
2γk − 4(γk)2

) n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij , Ỹ

k
ij − Y k

ij

〉

−
(
2γk − 4(γk)2

)

〈




Xk
i − X̃k

i

Y k
ij − Ỹ k

ij

λk
ij − λ̃k

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

(3.57)

≤(3.51)
∥∥∥W k − W ∗

∥∥∥
2

G
−
(
γk − 2(γk)2

)




∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

+

∥∥∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥∥∥

2

G




(3.58)

≤
∥∥∥W k − W ∗

∥∥∥
2

G
−

γk − 2(γk)2

2


∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥
G

+

∥∥∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥∥∥
G




2

≤(3.56)
∥∥∥W k − W ∗

∥∥∥
2

G
−

γk − 2(γk)2

2δ2

∥∥∥e
(
W̃ k
)∥∥∥

2

G
. (3.59)

From the above inequality, we have

∥∥W k+1 − W ∗∥∥2

G
≤
∥∥W k − W ∗∥∥2

G
≤ · · · ≤

∥∥W 0 − W ∗∥∥2

G
. (3.60)
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That is, the sequence
{
W k
}

is bounded. It follows from (3.58) that

∞∑

k=0

(
γk − 2(γk)2

)




∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

+

∥∥∥∥∥∥∥∥∥∥∥∥




0

α
′

ijβij

(
Y k

ij − Ỹ k
ij

)

0




∥∥∥∥∥∥∥∥∥∥∥∥

2

G




< +∞.

This implies that

lim
k→∞

∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥
G

= 0 =⇒(3.48) lim
k→∞

∥∥∥W k − W̃ k
∥∥∥

G
= 0.

Thus the sequence
{
W̃ k
}

is also bounded. Then there exists at least one

cluster point of
{
W̃ k
}

.

It also follows from (3.59) that

∞∑

k=0

γk − 2(γk)2

2δ2

∥∥∥e
(
W̃ k
)∥∥∥

2

G
< +∞.

This implies that

lim
k→∞

∥∥∥e
(
W̃ k
)∥∥∥

G
= 0.

Let W be a cluster point of
{
W̃ k
}

, and let
{
W̃ kj

}
be a corresponding

subsequence converging to W . Note that

∥∥e
(
W
)∥∥

G
= lim

j→∞

∥∥∥e
(
W̃ kj

)∥∥∥
G

= 0,
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which means that W is a zero of the residual function. Therefore W satisfies

(1.5). Setting W ∗ = W in (3.60), we have

∥∥W k+1 − W
∥∥2

G
≤
∥∥W k − W

∥∥2

G
, ∀k ≥ 0. (3.61)

Since lim
j→∞

∥∥∥W̃ kj − W
∥∥∥

G
= 0 and lim

k→∞

∥∥∥W k − W̃ k

∥∥∥
G

= 0, for any given ε > 0,

there exists an integer l > 0 such that

∥∥∥W̃ kl − W
∥∥∥

G
<

1

2
ε and

∥∥∥W kl − W̃ kl

∥∥∥
G

<
1

2
ε. (3.62)

Therefore, for any k > kl, it follows from (3.61) and (3.62) that

∥∥W k − W
∥∥

G
≤
∥∥W kl − W

∥∥
G
≤
∥∥∥W kl − W̃ kl

∥∥∥
G

+
∥∥∥W̃ kl − W

∥∥∥
G
≤ ε.

Thus, the sequence
{
W k
}

has a unique cluster point and

lim
k→∞

W k = W.

This completes the proof.
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Remark: We can set optimal step-length γk as follows

γk

≡ νγk
∗

= ν

〈




Xk
i − X̃k

i

Y k
ij − Ỹ k

ij

λk
ij − λ̃k

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

+ν

n∑
i=1

m∑
j=1

〈
λk

ij − λ̃k
ij , Ỹ

k
ij − Y k

ij

〉

∥∥∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥∥∥

2

G

,

where ν ∈ (0, 2) is a relaxation factor. This choice of γk
∗ is to maximize the
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function

2γk

〈



Xk
i − X̃k

i

Y k
ij − Ỹ k

ij

λk
ij − λ̃k

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

+2γk

n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij, Ỹ

k
ij − Y k

ij

〉
−
(
γk
)2

∥∥∥∥∥∥∥∥∥∥




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




∥∥∥∥∥∥∥∥∥∥

2

G

,

which is a lower bound for the measure of improvement

∥∥W k − W ∗∥∥2

G
−
∥∥W k+1 − W ∗∥∥2

G
.

Furthermore, γk
∗ will not be too small even when (Xk

i , Y k
ij , λ

k
ij) is close to the

solution. Actually from (3.52), we can see γk
∗ ≥ 1

4
. At this case, all parts of

the convergence proof keep the same, except that (3.57) is changed to

∥∥∥W k+1 − W ∗
∥∥∥

2

G

≤
∥∥∥W k − W ∗

∥∥∥
2

G
− ν(2 − ν)γk

∗

(
n∑

i=1

m∑

j=1

〈
λk

ij − λ̃k
ij , Ỹ

k
ij − Y k

ij

〉
+

〈




Xk
i − X̃k

i

Y k
ij − Ỹ k

ij

λk
ij − λ̃k

ij




,




R
′

i0

(
Xk

i , X̃k
i

)

R
′

ij

(
Y k

ij , Ỹ
k
ij

)
+ α

′

ijβij

(
Y k

ij − Ỹ k
ij

)

λk
ij − λ̃k

ij




〉

G

)
.(3.63)



4. SPECIALIZATION: CONVEX NONLINEAR

SEMIDEFINITE PROGRAMMING

Convex NLSDP, in which all the matrix functions and constraints are convex,

receives more and more interests now because a number of important appli-

cations in management and engineering lead to it. However, as mentioned

in Chapter 2, the research on it is basically at the developing stage. This

chapter is devoted to convex NLSDP. The modified ADM developed in the

last chapter is first specialized for solving CQCQSDP problems. Thereafter,

the prediction-correction ADM is specialized for solving general CNLSDP

problems. In each of the specializations, we pay attention to the special

structure of the problems, including the simplicities of the functions and the

sets. Thus, the specialized methods are simpler and more efficient.
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4.1 Convex Quadratically Constrained Quadratic

Semidefinite Programming

We are concerned with the following CQCQSDP problem.

min q0(X) ≡
1

2
〈X, Q0(X)〉 + 〈B0, X〉 (4.1)

s.t. qi(X) ≡
1

2
〈X, Qi(X)〉 + 〈Bi, X〉 + ci ≤ 0, i = 1, · · · , m

X � 0,

where Qi : Sn → Sn, i = 0, 1, · · · , m, is a self-adjoint positive semidefinite lin-

ear operator; Bi ∈ Sn and ci ∈ R is a scalar. Basic examples of Q(X) include

the symmetrized Kronecker product U ⊗U(X) = (UXUT +UXT UT )/2 for a

given U ∈ Sn
+ and the Hadamard product H◦X defined as (H◦X)ij = HijXij

for some H ∈ Sn ∩ <n×n
+ , etc.

Problem (4.1) is a convex optimization problem in the space Sn and gen-

eralizes CQSDP model by allowing quadratic constraints. Then our proposed

algorithm for CQCQSDP can be also used to solve CQSDP. In contrast, cur-

rent methods [8, 25, 48, 50, 57, 64] designed for solving CQSDP heavily

depend on the linearity of the constraints, thus they cannot be readily ex-

tended to solve CQCQSDP problems.

We also notice that in [3] Beck studied quadratic matrix programming

of order r which may not be convex. He constructed a special semidefinite

relaxation and its dual and showed that under some mild conditions strong

duality holds for the relaxed problem with at most r constraints. However,
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Beck’s model does not include the semidefinite cone constraint. Therefore,

it is essentially a vector optimization model, rather than a semidefinite opti-

mization problem like (4.1).

Recall that qi(X) ≡ 1
2
〈X, Qi(X)〉 + 〈Bi, X〉 + ci ≤ 0. By introducing

artificial constraints

Yi = X and Ωi = {Yi : qi(Yi) ≤ 0} , i = 1, · · · , m, (4.2)

we may re-write (4.1) equivalently as

min q0(X) s.t. X � 0, X = Yi, Yi ∈ Ωi, i = 1, · · · , m. (4.3)

After this transformation, we can see that Problem (4.3) is exactly a

special case of MQSDP. Thus the modified ADM for MQSDP Algorithm

3.1.1 can be applied to it. Our general Assumption 1.2.1 is specialized to

Assumption 4.1.1. The solution set (X∗, Y ∗
i , λ∗

i ) of KKT system of Problem

(4.3) is nonempty.

A sufficient condition that guarantees the assumption to be valid is that

the CQCQSDP is feasible and at least one of Q0, ..., Qm is positive definite.

Let

R
(
Xk, Xk+1

)
≡ Q0

(
Xk+1

)
− Q0

(
Xk
)
− γ

(
Xk+1 − Xk

)
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for certain constant γ such that γ ≥ λmax (Q0), where λmax (Q0) is the largest

eigenvalue of Q0. Set

α =

(
m∑

i=1

βi + γ

)−1

and D = B0 −
m∑

i=1

(
λk

i + βiY
k
i

)
− γXk + Q0

(
Xk
)
,

where βi, i = 1, · · · , m, is certain positive scalar. The modified ADM is

given as follows.

Algorithm 4.1.2. The Modified ADM for CQCQSDP

Do at each iteration until a stopping criterion is met

Step 1.
(
Xk, Y k

i , λk
i

)
→
(
Xk+1, Y k

i , λk
i

)
, where

Xk+1 = PSn
+

[−αD] (4.4)

Step 2.
(
Xk+1, Y k

i , λk
i

)
→
(
Xk+1, Y k+1

i , λk
i

)
, i = 1, · · · , m, where

Y k+1
i = PΩi

[
Xk+1 −

1

βi

λk
i

]
(4.5)

Step 3.
(
Xk+1, Y k+1

i , λk
i

)
→
(
Xk+1, Y k+1

i , λk+1
i

)
, i = 1, · · · , m, where

λk+1
i = λk

i − βi

(
Xk+1 − Y k+1

i

)
(4.6)



4. Specialization: Convex Nonlinear Semidefinite Programming 61

In order to solve (4.3) by the modified ADM, we only need to compute

the metric projections of a matrix onto Ωi and Sn
+. The projection onto Ωi

can be computed in a similar way as computing the Euclidean projection of a

vector onto an ellipsoid in the real vector space. Therefore, the computation

of this projection can be very fast, see, for example, [14] for the corresponding

algorithms.

Remark: If some Qi(·) is positive definite, we can introduce a specially

designed constraint Yi = Li(X) with the invertible linear operator Li(·) =

Q
1

2

i (·). Then

〈X, Qi(X)〉 =
〈
Q

1

2

i (X), Q
1

2

i (X)
〉

= 〈Yi, Yi〉 .

Thus the original ellipsoid-type convex set Ωi becomes

Ω
′

i =

{
Yi :

1

2
〈Yi, Yi〉 +

〈(
L−1

i

)T
(Bi) , Yi

〉
+ ci ≤ 0

}
,

which is a ball. This choice of Li can make the projection easy.

Let vec be an isometry identifying Sn with Rn×n so that 〈B, X〉 =

vec (B)T vec (X). Let the matrix representation of operator Q under this

isometry be Q̄. Then for any X, we have vec (Q(X)) = Q̄ vec (X). Since Q is

self-adjoint and positive semidefinite, Q̄ is a symmetric positive semidefinite

matrix.

By using the vec function, we can convert the convex set Ω
′

i to one
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with variable vec (Yi) as follows.

Ω
′′

i =

{
vec (Yi) :

1

2
vec (Yi)

T
vec (Yi) + vec

((
L−1

i

)T
(Bi)

)T

vec (Yi) + ci ≤ 0

}
.

There is a close-form formula to compute the projection onto Ω
′′

i , namely

PΩ
′′

i
( vec (Y ))

=





vec (Y ) , if
∥∥∥vec (Y ) + vec

((
L−1

i

)T
(Bi)

)∥∥∥
2

≤ vec

((
L−1

i

)T
(Bi)

)T

vec

((
L−1

i

)T
(Bi)

)
− 2ci;

√
vec

(
(L−1

i )
T

(Bi)
)T

vec

(
(L−1

i )
T

(Bi)
)
−2ci

(
vec (Y )+ vec

(
(L−1

i )
T

(Bi)
))

∥∥∥ vec (Y )+ vec

(
(L−1

i )
T

(Bi)
)∥∥∥

− vec

((
L−1

i

)T
(Bi)

)
, otherwise

4.2 General Convex Nonlinear Semidefinite Programming

Another special form of MSDP problems is the CNLSDP problem defined in

Sn as follows.

min c0(X) s.t. X � 0, ci(X) ≤ 0, i = 1, · · · , m, (4.7)

where ci : Sn → <, i = 0, 1, · · · , m, is a convex continuously differentiable

function. Let Ci(X), i = 0, 1, · · · , m, denote the first order derivative of

ci(X). Furthermore, we require the operator C0(·) to be Lipschitz continuous
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with a constant L.

Notice that most current algorithms for solving NLSDP focus on solving

the following alternative form:

min f(x) s.t. h(x) = 0, G(x) � 0, (4.8)

where f : <n → <, h : <n → <m, and G : <n → Sp are given. However, in

some applications the variable is naturally in the space of Sn
+. In this case it

seems more straightforward to consider (4.7).

By introducing

Yi = X and Ωi = {Yi : ci(Yi) ≤ 0} , i = 1, · · · , m, (4.9)

we re-write (4.7) equivalently as

min c0(X) s.t. X � 0, X = Yi, Yi ∈ Ωi, i = 1, · · · , m. (4.10)

After this transformation, we can see Problem (4.10) is exactly a special

case of the MNLSDP. Thus the prediction-correction ADM for MNLSDP

Algorithm 3.2.1 can be applied to it.

For convenience, we state the basic assumption to guarantee that Prob-

lem (4.10) under consideration is solvable.

Assumption 4.2.1. The solution set (X∗, Y ∗
i , λ∗

i ) of KKT system of Problem
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(4.10) is nonempty.

A sufficient condition for this assumption to be valid is the Slater condi-

tion, which says the interior of the feasible set of Problem (4.10) is nonempty.

Let

R
′

(
Xk, X̃k

)
≡

(
1 − α

′

m∑

i=1

βi

)(
Xk − X̃k

)
− α

′

(
C0

(
Xk
)
− C0

(
X̃k
))

,

where βi, i = 1, · · · , m, is certain positive scalar and we choose positive

scalar α
′

so that α
′

≤ η

L+η
m∑

i=1

βi

with 0 < η < 1. The prediction-correction

ADM is reduced to the following form.

Algorithm 4.2.2. The Prediction-Correction ADM for CNLSDP

Do at each iteration until a stopping criterion is met

The Prediction Phase:

Step 1.
(
Xk, Y k

i , λk
i

)
→
(
X̃k, Y k

i , λk
i

)
, where

X̃k = PSn
+

[
X̃k − α

′

(
C0

(
X̃k
)
−

m∑

i=1

(
λk

i − βi

(
X̃k − Y k

i

)))

+R
′

(
Xk, X̃k

)]

= PSn
+

[
Xk − α

′

(
C0

(
Xk
)
−

m∑

i=1

(
λk

i − βi

(
Xk − Y k

i

))
)]

(4.11)
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Step 2.
(
X̃k, Y k

i , λk
i

)
→
(
X̃k, Ỹ k

i , λk
i

)
, i = 1, · · · , m, where

Ỹ k
i = PΩi

[
X̃k −

1

βi

λk
i

]
(4.12)

Step 3.
(
X̃k, Ỹ k

i , λk
i

)
→
(
X̃k, Ỹ k

i , λ̃k
i

)
, i = 1, · · · , m, where

λ̃k
i = λk

i − βi

(
X̃k − Ỹ k

i

)
(4.13)

The Correction Phase:

Step 4.
(
X̃k, Ỹ k

i , λ̃k
i

)
→
(
Xk+1, Y k+1

i , λk+1
i

)
, where

Xk+1 = PSn
+

[
Xk − γkR

′

(
Xk, X̃k

)]
(4.14)

Y k+1
i = PΩi

[
Y k

i − γk
(
Y k

i − Ỹ k
i

)]
, i = 1, · · · , m (4.15)

λk+1
i = λk

i − γk
(
λk

i − λ̃k
i

)
, i = 1, · · · , m (4.16)

The positive scalar γk < 1 is the step-length.

In order to solve (4.10) by the prediction-correction ADM, we only need

to compute the metric projections of a matrix onto Ωi and Sn
+. The metric

projections on these sets can be readily computed. Actually the projection

onto convex set Ωi can be computed by solving special convex nonlinear

programming on the vector space. The interested readers can refer to [45]
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for the algorithms of computing the vector projection onto general convex

set.

As pointed out in the Remark of Theorem 3.2.6, we can set optimal γk
∗

to maximize a lower bound of the improvement function as follows.

γk
∗ ≡

α
′

m∑
i=1

1
βi

∥∥∥λk
i − λ̃k

i

∥∥∥
2

+ α
′

m∑
i=1

βi

∥∥∥Y k
i − Ỹ k

i

∥∥∥
2

+
〈
Xk − X̃k, R

′

(
Xk, X̃k

)〉

α′

m∑
i=1

1
βi

∥∥∥λk
i − λ̃k

i

∥∥∥
2

+ α′

m∑
i=1

βi

∥∥∥Y k
i − Ỹ k

i

∥∥∥
2

+
∥∥∥R′

(
Xk, X̃k

)∥∥∥
2

.

This optimal step-length will not be too small (actually we can prove γk
∗ ≥ 1

2
)

even when the iterate point is close to the solution.



5. APPLICATION: THE COVARIANCE MATRIX

ESTIMATION PROBLEM

For a random vector x = (x1, · · · , xn)T , the covariance matrix is defined as

Σ ≡ E
(
(x − E(x)) (x − E(x))T

)
,

where E(·) stands for the expected value. By definition, any covariance

matrix must be positive semidefinite.

The covariance matrix estimation problem is common in multivariate

analysis. It occurs in many applications which involve statistical data anal-

ysis, such as in engineering design and data mining. In the field of portfolio

management, the quality of covariance matrix estimation will significantly

influence the measure of risk.

Markowitz [49] started modern portfolio theory in the 1950s. He stated

the portfolio management problem as one of balancing expected return with

risk. The famous mean-variance model is as follows

min wTΣw s.t. wTe = 1, wTµ = q, (5.1)
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where e is the vector of ones, µ and Σ are the estimated mean and estimated

covariance matrix of stock returns respectively, and q is the required expec-

tation of the portfolio’s return. The essence of this model is to show the

trade-off between risk, which is measured as the portfolio’s variance here,

and the return. Thus the reduction of risk can translate into the increase

of return. To compute the risk more accurately, the correct estimation of

covariance matrix is crucial.

The traditional way of computing Σ is to use the sample covariance ma-

trix. Sample covariance matrix is estimated from historical data, often taken

as the maximum likelihood matrix under normality. It is a straightforward

principle to let and only let the data speak. However, it will be problematic

if there are missing elements in the observed data set. One approach is to

treat the estimation of each variance or pairwise covariance separately. For

example, we can compute sample covariance of pairs of stocks based on days

on which both stocks have valid returns. Under the assumption that the data

are missing at random, this kind of covariance matrix estimation is unbiased.

However, the problem is that the obtained matrix is not guaranteed to be

positive semidefinite. This could lead to negative risk for some portfolios

in Markowitz’s mean-variance model. Actually in some other situations of

finance and statistics, the estimations of covariance matrices are also proba-

bly found to be inconsistent, i.e. Σ � 0. To circumvent this obstacle, some

modification work ought to be done for the unqualified estimators. In this

chapter, we will review some previous models based on CQSDP for solving

this problem and generalize them in the framework of MSDP, so that the
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modified ADMs can be applied.

5.1 The Nearest Correlation Matrix Problem and Its

Extensions

Higham [31] introduced the following nearest correlation matrix problem.

For arbitrary symmetric matrix C, one solves the optimization problem

min
1

2
‖X − C‖2 s.t. X ∈ Sn

+, Xii = 1, i = 1, · · · , n. (5.2)

In [31], Higham used the modified alternating projections method to com-

pute the solution for (5.2). Later, Qi and Sun [57] proposed a quadratically

convergent Newton method for solving it.

Recently, Gao and Sun [25] extended this model to more general one.

min
1

2
‖X − C‖2 (5.3)

s.t. 〈Ai, X〉 = bi, i = 1, · · · , p

〈Ai, X〉 ≥ bi, i = p + 1, · · · , m

X ∈ Sn
+,

where Ai, i = 1, · · · , m, are given symmetric matrices and b ∈ <m is also

given. It is called the least squares covariance matrix problem. Compared

with (5.2), it allows the presence of linear inequality constraints. For exam-
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ple, if we hope to restrict specific components of variable matrix X within

some range based on parts of prior information, this kind of constraints will

arise. Gao and Sun designed an inexact smoothing Newton method to solve

the reformulated semidefinite system with two level metric projection oper-

ators.

For solving this linearly constrained quadratic SDP, Nie and Yuan [50],

Malick [48], Boyd and Xiao [8], and Toh [64] suggested the conjugate gradi-

ent method, BFGS method, the projected gradient method, and an inexact

primal-dual path-following method with pre-conditioners, respectively.

We can further extend (5.3) by adding some quadratic items to the con-

straint. When we want to compute a sample covariance matrix, one natural

question comes out: How many historical data should we gather? In fact,

we face the tradeoff between long-term data and short-term data. By using

long-term data the obtained sample covariance matrix might be more sta-

ble, but less updated information has been caught; by using short-term data

we can focus on current situation, but the sample covariance matrix could

contain a lot of errors because of a smaller data size. It thus makes sense to

combine two kinds of approaches to achieve better estimation for covariance

matrix. We propose a new model for robust estimation of covariance matrix
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as follows.

min
1

2
‖X − C‖2 (5.4)

s.t.
1

2

∥∥∥X − C
′

∥∥∥
2

≤ ε

〈Ai, X〉 = bi, i = 1, · · · , p

〈Ai, X〉 ≥ bi, i = p + 1, · · · , m

X ∈ Sn
+,

where C, C
′

are the sample covariance matrices from short-term data and

long-term data respectively and ε is a positive constant to control the size

of trust region from the long-term stable estimation. Note that C can be

just a given symmetric matrix if some observations are missing or wrong like

Problems (5.2) and (5.3). Basically, Problem (5.4) is to find the nearest co-

variance matrix from short-term sample estimation within the trust region

from the long-term sample estimation. Furthermore, additional linear equal-

ity and inequality constraints can be included. The optimal solution of (5.4)

can be desirable because it will not be too far away from the long-term stable

estimation while at the same time it can contain current information as much

as possible through minimizing the distance with short-term estimation. By

doing so, the estimation error can be also systematically reduced.

The next key question is how to solve the model (5.4). The problem

(5.4), including (5.2) and (5.3), is exactly the special case of CQCQSDP

(4.1), thus it can be solved by the modified ADM specified in Algorithm
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4.1.2. Indeed, by introducing artificial constraints

Yi = X, i = 1, · · · , m + 1, and

Ωi = {Yi : 〈Ai, Yi〉 = bi} , i = 1, · · · , p,

Ωi = {Yi : 〈Ai, Yi〉 ≥ bi} , i = p + 1, · · · , m,

Ωm+1 =

{
Ym+1 :

1

2

∥∥∥Ym+1 − C
′

∥∥∥
2

≤ ε

}
,

we consider the equivalent problem of (5.4)

min
1

2
‖X − C‖2 s.t. X � 0, X = Yi, Yi ∈ Ωi, i = 1, · · · , m + 1. (5.5)

Notice that except the convex set Ωm+1 containing quadratic item, other

convex sets only involve linear equality or linear inequality. Thus it is easy

to get the projections onto them comparing with the computation of the

projection onto one ellipsoid which needs fast algorithm in [14]. As pointed

in Remark of Algorithm 4.1.2, if the weighted Frobenius norm used in Ωm+1 is

positive definite, we can change the ellipsoid set to a ball set through suitable

chosen linear operator Lm+1 and the equation Ym+1 = Lm+1(X). Then there

is a close-form solution for the projection onto this set.

5.2 Covariance Matrix Estimation in Multiple-factor Model

In the 1960s and 1970s, single-factor model and further multiple-factor model

were proposed and developed to explain expected return by many researchers.
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The same structure used in the search for expected return can also be applied

to explain portfolio risk, see [28]. Multiple-factor model has been popular in

the investment community for many years because of good performance in

making use of incisive, intuitive, and important factors to predict risk and

understand return. The model can be used to analyze current portfolio risk,

as well as to construct a portfolio that optimally trades off risk with expected

returns. Thus it helps portfolio managers to control risk in an effective way.

The multiple-factor model has the following structure.

rn =

K∑

k=1

Vn,kfk + un, (5.6)

where

• rn = the excess return (return above the risk-free return) of stock n,

• Vn,k = the exposure of asset n to factor k,

• fk = the factor return of factor k,

• un = stock n’s specific return. This is the return that cannot be ex-

plained by the factors.

Assume that the specific returns are uncorrelated with the factor returns

and the specific returns are not correlated with each other. With these

assumptions, we can express the risk structure as follows.

Xn,m =

K∑

k1,k2=1

Vn,k1Fk1,k2Vm,k2 + 4n,m, (5.7)
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where

• Xn,m = the covariance of asset n with asset m (if n = m, this gives the

variance of asset n),

• Vn,k1 = the exposure of asset n to factor k1,

• Fk1,k2 = the covariance of factor k1 with factor k2 (if k1 = k2, this

gives the variance of factor k1),

• 4n,m = the specific covariance of asset n with asset m. By assumption,

all specific risk correlations are zero, so this term is zero unless n = m.

In that case, this term gives the specific variance of asset n.

The art of building a multiple-factor model is to choose appropriate

factors. However, there is one key constraint: All factors must be a priori

factors. That is, even though the factor returns are unknown, the factor

exposures must be certain at the beginning of period. With this constraint,

a wide variety of factors are possible. Among them, those chosen should

satisfy three criteria: incisive, institutive, and interesting. According to [28],

the factors can be typically divided into two broad categories: industries and

risk indexes. Industry factors measure the different behavior of stocks in

different industries. Industry exposures are usually 1/0 variables although

the industry factors of large corporations with business in several industries

must account for multiple industry memberships. Risk indexes measure the

different behavior of stocks across non-industry dimensions such as volatility,

momentum, liquidity, growth, value, earnings volatility, and financial lever-

age. Because various kinds of risk indexes involve different units and ranges,
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all raw exposure data must be rescaled:

Vnormalized =
Vraw − E(Vraw)

SD(Vraw)
,

where E(Vraw) is the mean of raw exposure value and SD(Vraw) is the stan-

dard deviation of raw exposure.

In a more compacted format, the multiple-factor model (5.6) and (5.7)

can be written as

r = V f + u and X = V FV T + 4, (5.8)

where r is an N vector of a stock’s excess returns, V is an N by K matrix

of stock factor exposures, f is a K vector of factor returns, u is an N vector

of specific returns, X is the N by N covariance matrix of stock returns, F is

the K by K covariance matrix of the factor returns, and 4 is the N by N

diagonal matrix of specific variance.

In a multiple-factor model, the matrix of stock factor exposures V is

preliminarily determined through some economical insights or statistical re-

gression. Then as the covariance matrix estimation between factor returns

and the estimation of each asset’s specific variance are input, we can compute

a covariance matrix estimation between asset returns through (5.8). How-

ever, these inputs may be of some errors which could transfer to the result.

For example, if the covariance matrix estimation between factor returns is

itself not positive semidefinite, the calculated covariance matrix estimation
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between asset returns might be not positive semidefinite either. Thus we

need to modify them. In addition, the information of sample covariance ma-

trix between asset returns directly from trading data can be also included.

Then the new model is shown as follows:

min
X,F,4

∥∥X − X
∥∥2

+
∥∥F − F

∥∥2
+
∥∥4−4

∥∥2
(5.9)

s.t. X = V FV T + 4

X ∈ SN
+ , F ∈ SK

+ , 4ii ≥ 0, i = 1, · · · , N, and 4ij = 0, i 6= j,

where X, F , and 4 are known matrices from pre-estimations. At the same

time, more advanced models with additional linear and/or quadratic con-

straints are also possible. Through adding some structure in the modelling,

the errors will be reduced systemically. Problem (5.9) is of the form of

MQSDP problems, therefore the modified ADM Algorithm 3.1.1 can be used

to solve it.



6. APPLICATION: THE MATRIX COMPLETION

PROBLEM

In many applications of interest, one hopes to recover a matrix from an

incomplete set of its entries. A motivating example is to infer answers in

a partially filled survey. In practice, it is usual to only know very limited

information. In general, it is difficult to complete the matrix and recover

the entries that we have not seen. Actually we need to take advantage of

the special structure of the matrix we wish to complete. If the incomplete

set avoids any column or row of matrix, it is hopeless to reconstruct this

unknown matrix. Thus throughout this chapter, we assume that we know at

least one observation per row and one observation per column.

In the following we will consider two matrix completion problems. One

is the completion problem of distance matrix and the other is the completion

problem of low-rank matrix. They belong to the most studied matrix comple-

tion problems. In the first problem, we allow approximate completion which

makes sense with the existence of errors. However, we require to exactly fit

the data in the second problem. It is easy to switch this requirement in the

models, based on the actual quality of data. For the completion problem

of low-rank matrix the objective is nonconvex, therefore we only consider
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to solve its convex relaxation. Both problems can be seen as special cases

of MSDP problems, then the ADM is applicable and it is believed that the

algorithm would be efficient in solving these two problems.

6.1 The Completion Problem of Distance Matrix

An n×n symmetric matrix D = (Dij) is called an Euclidean distance matrix

(abbreviated as distance matrix) if there exist vectors v1, · · · , vn ∈ <r for

some r ≥ 1 such that

Dij = ‖vi − vj‖
2 , i, j = 1, · · · , n.

The smallest value of r is called the embedding dimension of D. Note that

r ≤ n − 1 always.

The distance matrix is closely related to positive semidefinite matrix.

The following basic connection was established by Schoenberg [58].

Proposition 6.1.1. Given an n × n symmetric matrix D = (Dij) with zero

diagonal entries, consider the (n− 1)× (n− 1) symmetric matrix X = (Xij)

defined by

Xij ≡
1

2
(Din + Djn − Dij), i, j = 1, · · · , n − 1. (6.1)

Then, D is a distance matrix if and only if X is a positive semidefinite
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matrix.

The applications of the distance matrix completion problem come from

many areas such as multidimensional scaling in statistics [43] and molecular

conformation problems in chemistry [13]. Some of these applications require

a low embedding dimension. About many useful theoretical properties of dis-

tance matrix completion problem, interested readers can refer to the survey

article by Laurent [42].

As pointed out in [67], one cannot provide an efficient rule to decide

whether a distance matrix completion exists or not. Thus it seems more rea-

sonable to allow approximate completions. In [2], Alfakih et al. introduced

the following weighted closest Euclidean distance matrix problem.

min ‖H ◦ (A − D)‖2 (6.2)

s.t. D ∈ Υ,

where A is a real symmetric partial matrix with zero diagonal entries, Υ

denotes the cone of distance matrix, H is an n × n symmetric matrix with

nonnegative elements, and ◦ denotes Hadamard product. For notational

purposes, we assume that the free elements of A are set to 0 if they are not

specified. Note that Hij = 0 means that Dij is free, while Hij > 0 puts a

weight to force the component Dij ≈ Aij, i.e., Dij is approximately fixed.

We can add other linear equality constraints to force some components of D

to exactly equal the corresponding components of A.

Then Alfakih et al. reformulated (6.2) as an equivalent SDP problem
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with quadratic objective

min
X,D

‖H ◦ (A − D)‖2 (6.3)

s.t. Xij =
1

2
(Din + Djn − Dij), i, j = 1, · · · , n − 1

X � 0,

and used a primal-dual interior point algorithm to solve it.

We notice Problem (6.3) is also of the form of MQSDP, therefore the

modified ADM Algorithm 3.1.1 applies.

6.2 The Completion Problem of Low-rank Matrix

In many fields of engineering and science, a low-rank matrix need to be

completed from small portion of entries observed. A good example is the

well known Netflix problem [1]. This US large online DVD renting company

needs to provide recommendations to users based on their submitted ratings

on some films. That means one would like to infer their preference for unrated

items. This problem seems very hard in that we should fill in the missing

entries of the matrix from only small samples. However, the matrix of all

user-ratings to recover has low rank because there is only a few factors to

explain an individual’s preference for films. Then it can be modelled as
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follows.

min rank(X) (6.4)

s.t. Xij = Mij, (i, j) ∈ Ω

X ∈ <m×n,

where M is the unknown matrix and Ω is a set of pairs of indices for known

entries.

To generalize, the affine rank minimization problem is introduced.

min rank(X) (6.5)

s.t. A(X) = b

X ∈ <m×n,

where A : <m×n → <p is a linear operator and b ∈ <p. This slight general-

ization appears useful in many areas such as machine learning, control, and

Euclidean embedding.

Notice that the affine rank minimization problem (6.5) is an NP-hard

nonconvex optimization problem. A convex relaxation is given in [21].

min ‖X‖∗ (6.6)

s.t. A(X) = b

X ∈ <m×n,
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where ‖X‖∗ is the nuclear norm of X. The nuclear norm of X is defined as

‖X‖∗ =

q∑

i=1

σi(X),

where q = min{m, n} and σi(X), i = 1, · · · , q, is the singular value of X.

Actually the nuclear norm is the best convex approximation of the rank

function over the unit ball of matrices. Candes and Recht [10] proved that a

random low-rank matrix can be recovered exactly with high probability from

a rather small portion of entries by solving (6.6).

The problem (6.6) can be reformulated as a SDP problem [54].

min
1

2
(〈W1, Im〉 + 〈W2, In〉) (6.7)

s.t. A(X) = b


W1 X

XT W2


 � 0.

In [10] SDPT3, one of the most advanced SDP solvers based on interior

point methods, has been used to solve (6.7). However, the computational

cost grows very fast as m and n increase.

The first order methods may therefore provide a promising alternative to

the interior point method due to their low sensitivity to problem sizes. Ma et

al. [47] proposed a Bregman iterative algorithm for solving (6.6). Recently,

Cai et al. [9] proposed a singular value thresholding algorithm for solving
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the following Tikhonov regularized version of (6.6).

min ‖X‖∗ +
1

2β
‖X‖2 (6.8)

s.t. A(X) = b

X ∈ <m×n,

where β > 0 is a given parameter. They also showed that if β goes to ∞, the

sequence of optimal solution X∗
β for (6.8) converges to the optimal solution

of (6.6) with minimum Frobenius norm. Hence this algorithm approximately

solves (6.6) for sufficiently large β.

Another possible model for the rank minimization problem is the nuclear

norm regularized least squares problem.

min
1

2
‖A(X) − b‖2 + µ‖X‖∗, (6.9)

where µ > 0 is a given parameter. Here A(X) = b might not be feasible be-

cause of the existence of noise. Problem (6.9) is an unconstrained nonsmooth

convex optimization problem. In [65], Toh and Yun proposed an accelerated

proximal gradient algorithm, which terminates in O( 1√
ε
) iterations with an

ε-optimal solution, to solve it.

We point out that the ADM is also applicable here. Besides, it only
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needs mild condition for convergence. We may re-write (6.6) equivalently as

min ‖X‖∗ (6.10)

s.t. Y = X

Y ∈ Ω ≡ {Y : A(Y ) = b}

X ∈ <m×n.

When applied to Problem (6.10), the detail of ADM is shown as follows,

where β is certain positive scalar.

Algorithm 6.2.1. The ADM for Problem (6.10)

Do at each iteration until a stopping criterion is met

Step 1.
(
Xk, Y k, λk

)
→
(
Xk+1, Y k, λk

)
, where Xk+1 solves

min
X∈<m×n

‖X‖∗ −
〈
λk, X

〉
+

β

2

∥∥X − Y k
∥∥2

(6.11)

Step 2.
(
Xk+1, Y k, λk

)
→
(
Xk+1, Y k+1, λk

)
, where Y k+1 solves

min
Y ∈Ω

〈
λk, Y

〉
+

β

2

∥∥Xk+1 − Y
∥∥2

(6.12)
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Step 3.
(
Xk+1, Y k+1, λk

)
→
(
Xk+1, Y k+1, λk+1

)
, where

λk+1 = λk − β
(
Xk+1 − Y k+1

)
(6.13)

At Step 1 and Step 2 we need to solve two sub-optimization problems.

(6.11) is an unconstrained optimization problem and can be reformulated to

min
X∈<m×n

‖X‖∗ +
β

2

∥∥∥∥X −

(
Y k +

1

β
λk

)∥∥∥∥
2

(6.14)

after ignoring some constant term. Fortunately we can solve (6.14) analyt-

ically. There is an important lemma about its solution. For the proof, see

Theorem 2.1 of [9] or Theorem 3 of [47].

Lemma 6.2.2. The solution of the minimization problem

min
X∈<m×n

τ

2
‖X − G‖2 + µ‖X‖∗

for τ, µ > 0 is given in a closed form by

Sτ (G) = UDiag

((
σ −

µ

τ

)
+

)
V T , (6.15)

where G = UΣV T and Σ = Diag(σ) are from the singular value decomposi-

tion (SVD) of G.
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Let Gk = Y k + 1
β
λk, then for solving (6.14) we only need to compute

Xk+1 = Sβ

(
Gk
)
,

where Sβ

(
Gk
)

has the form in (6.15) but with µ = 1.

It is easy to see that (6.12) is equivalent to the following nonlinear equa-

tion

Y k+1 = PΩ

[
Y k+1 − α

(
λk − β

(
Xk+1 − Y k+1

))]
,

where α can be any positive number. Thus by choosing α = 1
β
, the right

hand side item Y k+1 is cancelled. That is, in order to solve (6.12) we only

have to compute

Y k+1 = PΩ

[
Xk+1 −

1

β
λk

]
. (6.16)

In summary, the refined ADM for solving (6.10) is given as follows.

Algorithm 6.2.3. The Refined ADM for Problem (6.10)

Do at each iteration until a stopping criterion is met

Step 1.
(
Xk, Y k, λk

)
→
(
Xk+1, Y k, λk

)
, where

Xk+1 = Sβ

(
Gk
)

(6.17)
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Step 2.
(
Xk+1, Y k, λk

)
→
(
Xk+1, Y k+1, λk

)
, where

Y k+1 = PΩ

[
Xk+1 −

1

β
λk

]
(6.18)

Step 3.
(
Xk+1, Y k+1, λk

)
→
(
Xk+1, Y k+1, λk+1

)
, where

λk+1 = λk − β
(
Xk+1 − Y k+1

)
(6.19)

The main computational cost at each iteration of the refined ADM lies on

computing the SVD of Gk. However, it suffices to know those singular values

greater than the parameter 1
β

and corresponding singular vectors. Therefore

if this parameter is larger, the singular values to be evaluated is smaller.

This motivates us to choose small β to make the decomposition of large-scale

matrix possible.



7. NUMERICAL EXPERIMENTS

In this chapter, we present primary numerical results for the modified ADMs

in solving MSDP problems. We should emphasize that our purpose here

is not to conduct extensive computational tests but to demonstrate that

the algorithms proposed are correct and can be potentially efficient. These

algorithms may be taken as prototypes of those sophisticated and tailor-made

algorithms for solving different classes of problems.

The codes were written in MATLAB (version 6.5) and the computations

were performed on a 1.86 GHz Intel Core 2 PC with 3GB of RAM.

7.1 The Covariance Matrix Estimation Problem

We consider the following testing examples.

Example 1. QSDPs arising from the nearest correlation matrix problem

(5.2). The matrix C is generated from the MATLAB segment: x = 10∧[−4 :

4/(n− 1) : 0]; C=gallary(′randcorr′, n ∗x/sum(x)). For the test purpose, we

perturb C to

C = C + 10−3 ∗ E, or C = C + 10−2 ∗ E, or C = C + 10−1 ∗ E,
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where E is a randomly generated symmetric matrix with entries in [−1, 1].

The MATLAB code for generating E is: E = rand(n); E = (E + E ′)/2; for

i = 1 : n; E(i, i) = 1; end. Note that we make the perturbation larger than

10−4 ∗ E considered in [31]. To consider the robustness of our algorithm, we

use three sets of starting point:

• a) (X0, Y 0, λ0) = (C, C, 0);

• b) (X0, Y 0, λ0) = (In, In, 0);

• c) X0 = rand(n); X0 = [X0 + (X0)′]/2; for i = 1 : n; X0(i, i) = 1; end;

Y 0 = X0; λ0 = 0.

We test for n = 100, 500, 1000, 2000, respectively.

Example 2. CQCQSDPs without linear constraints arising from the

extended nearest correlation problem (5.4). The matrix C is generated from

the MATLAB segment: x = 10.∧[−4 : 4/(n − 1) : 0]; C=gallary(′randcorr′,

n ∗ x/sum(x)). For the test purpose, we perturb C in the following four

situations:

• C ′ = C + 10−1 ∗ E ′; C = C + 10−1 ∗ E;

• C ′ = C + 10−2 ∗ E ′; C = C + 10−2 ∗ E;

• C ′ = C + 10−2 ∗ E ′; C = C + 10−1 ∗ E;

• C ′ = C + 10−1 ∗ E ′; C = C + 10−2 ∗ E;

where E and E ′ are two random symmetric matrices generated as in Example

1. We use (X0, Y 0, λ0) = (C, C, 0) as the starting point. We take ε =
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r ∗ norm(C − C ′) with r = 0 : 0.2 : 1.2 to consider the effect of trust region

size for n = 100. Then using r = 0.8, we test for n = 100, 500, 1000, 2000,

respectively.

Example 3. The same as Example 2 but the diagonal entries of variable

matrix are additionally required to be ones, i.e., it is a correlation matrix.

We use (X0, Y 0
1 , Y 0

2 , λ0
1, λ

0
2) = (C, C, C, 0, 0) as the starting point and set

ε = 0.8 ∗ norm(C − C ′).

It is worth to mention that we simply use the parameters γ = 1 and

β = 1 in the modified ADMs although we can possibly adjust them to further

reduce the iteration numbers. The convergence was checked at the end of

each iteration using the condition,

max{‖Xk − Xk−1‖∞, ‖Y k − Y k−1‖∞, ‖λk − λk−1‖∞}

max{‖X1 − X0‖∞, ‖Y 1 − Y 0‖∞, ‖λ1 − λ0‖∞}
≤ 10−6.

We also set the maximum number of iterations to 500.

The main computational cost at each iteration is matrix eigenvalue de-

composition. The performance results of our modified ADMs are reported

in Tables 1-4. The columns corresponding to “No. It” give the iteration

numbers and the columns corresponding to “CPU Sec.” give the CPU time

in seconds. “∗” means that the algorithm reaches the set maximum number

of iterations before the accuracy is achieved.

From the numerical results reported in Table 1, we can see for problem’s

size n = 100, 500, 1000, 2000, the algorithm obtains the solutions mostly in

less than 30 iterations and with reasonable accuracy 10−6. These results



7. Numerical Experiments 91

Table 1: Numerical results for Example 1

Example 1 C+10−3*E C+10−2*E C+10−1*E
n= case No. It CPU Sec. No. It CPU Sec. No. It CPU Sec.

100
a) 7 0.4 14 0.6 24 1.0
b) 20 0.9 21 0.9 28 1.2
c) 21 1.0 20 0.9 24 1.1

500
a) 10 47.3 14 60.4 23 90.7
b) 20 95.0 21 92.1 27 111.5
c) 23 105.1 23 98.5 25 109.1

1000
a) 10 370.7 15 537.9 24 777.3
b) 20 701.2 22 730.2 29 957.5
c) 23 809.7 23 791.2 26 843.2

2000
a) 11 2972 14 3843 25 6321
b) 20 5485 23 6377 31 7956
c) 24 6362 24 6408 27 6823

Table 2: Numerical results for Example 2 with different trust

region sizes

Example 2 C=C+10−1*E C=C+10−2*E C=C+10−1*E C=C+10−2*E
n=100 C′=C+10−1*E′ C′=C+10−2*E′ C′=C+10−2*E′ C′=C+10−1*E′

r= No. It No. It No. It No. It
0 * * * *

0.2 * * 47 58
0.4 * 26 22 26
0.6 23 17 15 15
0.8 17 17 14 15
1.0 1 9 2 1
1.2 1 1 1 1

Table 3: Numerical results for Example 2 with r = 0.8

Example 2 C=C+10−1*E C=C+10−2*E C=C+10−1*E C=C+10−2*E
r=0.8 C′=C+10−1*E′ C′=C+10−2*E′ C′=C+10−2*E′ C′=C+10−1*E′

n= No. It CPU Sec. No. It CPU Sec. No. It CPU Sec. No. It CPU Sec.
100 17 0.9 16 0.9 15 0.9 16 0.9
500 16 84.2 16 80.8 13 65.2 17 84.7
1000 16 622.2 16 648.3 13 516.3 17 693.7
2000 15 4638 15 5047 13 4054 18 5726
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Table 4: Numerical results for Example 3

Example 3 C=C+10−1*E C=C+10−2*E C=C+10−1*E C=C+10−2*E
r=0.8 C′=C+10−1*E′ C′=C+10−2*E′ C′=C+10−2*E′ C′=C+10−1*E′

n= No. It CPU Sec. No. It CPU Sec. No. It CPU Sec. No. It CPU Sec.
100 53 2.5 33 1.6 36 1.8 36 1.7
500 38 161.2 33 147.0 35 151.6 35 157.3
1000 37 1248 33 1169 36 1257 35 1254
2000 36 9571 33 9207 36 9665 36 10103

are comparative with those in [25, 64]. Actually the usage of CPU time by

our proposed algorithm is between the result reported in [25] and the result

reported in [64] for solving same scale problems. Furthermore, the modified

ADM is quite robust for solving the nearest correlation problem (5.2) because

it is little affected by the choices of starting point.

For cases with quadratic constraint for which the algorithms in [25, 64]

cannot apply, the numerical results reported in Tables 2-4 are also promis-

ing. Too small r results in empty feasible set while too large r results in the

uselessness of the trust region constraint. These are all verified by the nu-

merical results reported in Table 2. It seems r = 0.8 is a suitable parameter

regardless of different choices of C and C ′. Using this r for problem’s size

n = 100, 500, 1000, 2000, the numerical results reported in Tables 3 and 4

show that our algorithm is effective to solve CQCQSDPs both without linear

constraints and with linear constraints.
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7.2 The Matrix Completion Problem

The random matrix completion problems considered in our numerical exper-

iments are as follows.

Example 4. Convex relaxation problem (6.10) of low-rank matrix com-

pletion problem. For each (n, r, p) triple, where n (we set m = n) is the

matrix dimension, r is the predetermined rank, and p is the number of en-

tries to sample, we generate M = MLMT
R as in [10, 65], where ML and MR

are n× r matrices with i.i.d. standard Gaussian entries. Then a subset Ω of

p elements uniformly at random from {(i, j) : i = 1, · · · , n, j = 1, · · · , n} is

selected. Therefore, the linear map A is given by

A(X) = XΩ,

where XΩ ∈ <p obtained from X by selecting those elements whose indices

are in Ω. We take β = 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5, 1 to consider the

effect of parameter for n/r = 100/10. Then using β = 0.1, we test for

n/r = 200/10, 200/20, 500/10, 500/20, 500/50, respectively.

We choose the initial iterate to be X0 = Y 0 = rand(n) and λ0 = 0. The

stopping criterion we use is:

∥∥Xk − Xk−1
∥∥

F

max {‖Xk‖F , 1}
< 10−4.

The accuracy of the computed solution Xsol by our algorithm can be mea-
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Table 5: Numerical results for Example 4 with different β

Example 4 Unknown M ADM
β= n/r p p/dr iter #sv error
0.01 100/10 5666 3 135 19 1.4e-02
0.02 100/10 5666 3 83 18 5.6e-03
0.05 100/10 5666 3 53 13 5.3e-03
0.08 100/10 5666 3 63 11 7.0e-04
0.1 100/10 5666 3 71 10 3.5e-04
0.2 100/10 5666 3 106 10 1.2e-03
0.5 100/10 5666 3 202 11 3.7e-03
1 100/10 5666 3 351 12 8.2e-03

sured by the relative error defined as follows:

error ≡

∥∥Xsol − M
∥∥

F

‖M‖F

,

where M is the original matrix.

For each case, we repeat the procedure 5 times and report the perfor-

mance results of the refined ADM Algorithm 6.2.3 in Tables 5 and 6. The

columns corresponding to “iter”, “#sv”, and “error” give the average number

of iterations, the average number of nonzero singular values of the computed

solution matrix, and the average relative error, respectively. As indicated in

[9], an n × n matrix of rank r has dr ≡ r(2n − r) degrees of freedom. Then

the ratio p/dr is also shown in the tables.

In order to free ourselves from the distraction of having to consider

the storage of too large matrices in MATLAB, we only use examples with

moderate dimensions. Furthermore, we compute the full SVD of Gk to obtain

Sβ

(
Gk
)

at each iteration k. From Table 5, it seems β = 0.1 is a suitable
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Table 6: Numerical results for Example 4 with β = 0.1

Example 4 Unknown M ADM
β= n/r p p/dr iter #sv error
0.1 200/10 15665 4 95 10 3.7e-04
0.1 200/20 22800 3 99 20 3.5e-04
0.1 500/10 49471 5 158 10 4.3e-04
0.1 500/20 78400 4 146 20 3.8e-04
0.1 500/50 142500 3 152 50 4.1e-04

parameter. Then using this β, the numerical results reported in Table 6

are competitive with those obtained by using the fixed point continuation

algorithm and the accelerated proximal gradient algorithm in [65], which are

proposed to solve easier unconstrained counterpart (6.9) instead.



8. CONCLUSIONS

We study several modified ADMs for solving MSDP problems. These meth-

ods only need first order information. They may be able to deal with large-

scale problems when second order information is time-consuming or even

impossible to obtain.

In order to avoid solving difficult sub-variational inequality problems on

matrix space at each iteration, we establish a set of projection-based algo-

rithms. We discussed ADMs in different ways to deal with quadratic objective

and general nonlinear objective. These algorithms appear to be the most ef-

ficient when they are specialized to solve convex quadratic problems, either

with linear or quadratic constraints, such as CQSDP and CQCQSDP. When

they are specialized to solve CNLSDP a prediction phase and a correction

phase should be used, which only double the work of computing projections.

A practical application comes from the covariance matrix estimation

problem. We proposed two new models, the extended nearest correlation ma-

trix problem and the covariance matrix estimation in multiple-factor model,

which are special cases of MSDP problems. Another practical application is

from the matrix completion problem. We considered the completion problem

of distance matrix and the completion problem of low-rank matrix. Both of
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them can be modelled as convex matrix optimization problems and certain

modified ADM applies.

We also conducted numerical tests for problems arising from the afore-

mentioned applications. Although the numerical results are preliminary, we

are encouraged by the simplicity of the program codes, and the ability of

the codes to handle medium to large sized problems. We conclude that the

ADM is a promising method for MSDP.

A potential disadvantage of the first order methods, including the pro-

posed modified ADMs, is that they cannot obtain highly accurate optimal

solutions, compared with the second order methods such as the Newton

method. However, we think it may not be a concern for many practical ap-

plications such as the covariance matrix estimation problem and the matrix

completion problem. Moreover, for large-scale problems, it is usually very

hard to get a solution even if the solution is not accurate. In this regard, we

believe that the first order methods still have a room to develop.
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