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SUMMARY 

 

 In robust parameter design, mean and variance models are estimated with data 

from a combined array experiment, and are subsequently used for process and product 

optimization. The design of the combined array experiment and estimation of the mean 

and variance models depend on the means and covariances of the noise variables, 

which are quantities assumed known with certainty in the literature. However, this is 

rarely the case in practice, as the parameters are often estimated with field data. 

Therefore, standard experimentation and optimization conducted with estimated 

parameters can lead to results that are far from optimal due to variability in the data. 

To ensure that the best results are obtained with the available resource, field data 

collection and experiment must be planned in an integrated way.  

 In this thesis, a methodology that integrates planning of the combined array 

experiment with planning of the estimation of the means and variances of the noise 

variables is proposed. It is assumed that random samples from the process are used to 

estimate those parameters. Novel ideas introduced with the methodology are 

expounded in this thesis. A method for specifying the levels of the noise variables is 

presented. The effect of errors in estimating the means and variances of the noise 

variables on the estimated mean and variance models is investigated. In addition, the 

variances of the estimators for the mean and variance models are derived. It is 

demonstrated that the variances can be inflated considerably by sampling variation. 

 Because sampling error is as significant as experiment error as a source of 

variability, simultaneous planning of the sampling effort and experiment is proposed 

so that total resource is optimally allocated for estimation of the mean and variance 

models. A mathematical program is formulated to find the sample sizes and mixed 



 vii

resolution design that minimizes the average variance of the estimator for mean model. 

A similar mathematical program is formulated for the minimization of the average 

variance of the unbiased estimator for the variance model minus the residual mean 

square. It is proven that the continuous relaxations of these programs have convex and 

differentiable objective functions. A third mathematical program is offered for finding 

solutions that compromise between the minimization of the two objectives. In addition, 

a greedy algorithm for finding schemes that have low values of the average variances 

given a candidate set of design points is proposed. 

 The variances of the estimators for the mean and variance models depend on 

parameters of the response model. A similar problem, which is the dependence of 

optimal designs on model parameters, occurs in nonlinear experimental design. A 

review of methods proposed to address this problem is made. Application of these 

methods to the problem of specifying unknown parameters in the variance formulas for 

the estimators of the mean and variance models is discussed. Expected variance criteria 

are introduced to allow the use of prior distributions instead of point estimates for the 

parameters in determining the optimal sample sizes and mixed resolution designs. 

Additionally, a discussion of how ideas from the robust optimization literature can be 

employed to handle uncertainty in the model parameters is given. Finally, graphical 

plots are introduced to allow comparison of the performances of alternative 

combinations of sample sizes and designs. 
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CHAPTER 1 

 

 

INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1 Introduction 

  

 The means and covariances of the noise variables are important information in 

the design and analysis of experiments for robust parameter design. These parameters 

are the basis with which the levels of the noise variables are set in the experiment. In 

addition, they are also used in the estimation of the mean and variance models. In 

practice, the means and covariances of noise variables are often not known with 

certainty. In some cases, they can be estimated with field data whereas in others, the 

engineer has to guess the values of the parameters.  

 However, in the robust parameter design literature, the means and covariances 

of the noise variables are typically assumed known. This ignores the possibility that 

standard experimentation and estimation of the mean and variance models can produce 

results that are seriously in error if the means and covariances of the noise variables are 

badly estimated. For existing processes, data can be collected to estimate the means 

and covariances of the noise variables. In this case, the effect of variability in the 

process data on the estimation of the mean and variance models must be explicitly 

taken into account in the development of a statistical estimation procedure. In addition, 

to ensure that the best results are obtained with the available resource, the data 

collection effort and experiment must be planned in an integrated way. Very little has 
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been done in these directions. In this thesis, we attempt to fill this gap. We propose a 

procedure for estimating the mean and variance models that integrates planning of the 

combined array experiment with planning of the estimation of the means and 

covariances of the noise variables. Within the framework of the procedure, we treat the 

problems of estimation of the mean and variance models, and the design of the data 

collection and experiment plans to optimize the estimation of the models.   

 The remaining parts of this chapter are organized as follows. The next section 

introduces robust parameter design. In Section 1.3, we review the literature on 

experimental designs for robust parameter design; in Section 1.4, we review the 

literature on the statistical analysis of experiments for robust parameter design. Section 

1.5 presents the widely accepted theoretical framework for the estimation of the mean 

and variance models with a combined array experiment, which assumes that the means 

and covariances of the noise variables are known. Lastly, Section 1.6 highlights the 

extensions made by this research to the framework given in Section 1.5 and outlines 

the structure of this thesis.   

 

1.2 Robust Parameter Design 

 

Robust parameter design (RPD), as it was originally introduced by Taguchi, is 

a quality improvement methodology based on design of experiments for designing 

products and processes that are insensitive to variation in a set of variables, called 

noise variables. Noise variables can usually be controlled during experimentation but 

not during process operation or product use. Examples include deviations from the 

nominal values of process variables, variation in raw material properties, variation in 

tooling geometry, in-plant environmental factors such as humidity and variables 



 3

representing customer use conditions (Abraham and MacKay, 1993). On the other 

hand, control variables are variables whose values are under the control of the process 

or product designer. The objective of robust parameter design is to find settings of the 

control variables to neutralize the variability in one or more responses caused by the 

noise variables and to optimize the responses. This objective relates to Taguchi’s 

quality philosophy, which advocates the minimization of “loss to society” due to 

deviations of a quality characteristic from its target value (Taguchi et al., 1993). 

Although the use of statistical design of experiments has been the focus in robust 

parameter design, awareness of the need to reduce variation by creating insensitivity to 

noise variables has led to various other methods to achieve this objective (Arvidsson 

and Gremyr, 2007).  

 Taguchi not only introduced the concept of robust parameter design, but also 

experimental designs and analysis methods to achieve the desired objectives (see for 

example, Taguchi et al. (1993)). However, as pointed out by many authors (for 

example, Bisgaard, 1996; Myers et al., 1992; Box, 1988), his designs and analysis 

methods are generally not statistically sound. This led to much research into alternative 

designs and accompanying analysis approaches that are theoretically better than those 

proposed by Taguchi. As can be seen in the recent review of the robust parameter 

design literature by Robinson et al. (2004), modeling of the variance of the response, 

optimization methods for finding robust solutions, and designs that accommodate both 

control and noise variables have received the bulk of attention from researchers.  

 

 

 

 



 4

1.3 Experimental Designs for Robust Parameter Design  

 

The designs introduced by Taguchi for RPD experiments are called crossed 

array designs. A crossed array design consists of a chosen orthogonal array for the 

control variables, called the inner array, crossed with a chosen orthogonal array for the 

noise variables, called the outer array. Many degrees of freedom are used to estimate 

unimportant higher order interactions between the control and noise variables in these 

designs (Shoemaker et al., 1991). Although heavily fractionated orthogonal arrays in 

which control x control interactions are confounded with the main effects of the 

control variables are often used, many of the designs are still uneconomically large 

(Myers and Montgomery, 2002). This leads to two criticisms of Taguchi’s crossed 

array designs: uneconomical design size and inability to estimate control x control 

interactions (Myers et al., 1992). However, Shoemaker et al. (1991) point out that the 

crossed arrays provide some protection against modeling difficulties since they allow 

direct estimation of a performance measure such as the sample variance at each 

combination of control variable settings in the inner array. The recent comparison of 

crossed and combined arrays in a physical experiment by Kunert et al. (2007) 

illustrates the importance of this built-in robustness to modeling problems. 

An alternative to Taguchi’s crossed arrays is the combined array designs, 

which are designs that accommodate both control and noise variables (Shoemaker et 

al., 1991). Combined arrays are response surface designs such as the central composite 

designs or computer generated alphabetic optimal designs that allow estimation of all 

terms in a regression model that contains both control and noise variables (Myers and 

Montgomery, 2002). Frequently, a model that contains up to second order terms in the 

control variables, linear terms in the noise variables, and terms representing control x 
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noise interactions is assumed. The mixed resolution (MRD) designs are a class of 

combined array designs specifically introduced to estimate models of this form (Borror 

and Montgomery, 2000; Borkowski and Lucas, 1997). Advantages of the MRD over 

Taguchi’s crossed arrays include control x control interactions that are estimated clear 

of main effects and control x noise interactions, and a design size that is usually 

smaller (Borror and Montgomery, 2000; Borkowski and Lucas, 1997). The MRD 

design also has superior variance properties to most other combined array designs 

(Borror et al., 2002). However, MRD designs may not be optimal with respect to a 

specific alphabetic criterion. Alphabetic optimal designs would be desirable if the aim 

of the experiment is to achieve a specific inference objective such as estimation of a 

subset of model parameters (Silvey, 1980). Ginsburg and Ben-Gal (2006) show how 

designs that minimize the variance of the estimated minimum-loss control variable 

settings can be constructed. 

 Split-plot designs are another class of designs that are useful for RPD 

experiments (Box et al., 2005; Box and Jones, 1992). In split-plot designs, a set of 

factors is placed in the whole-plot and another set is placed in the subplot. Whole-plot 

treatments are randomly assigned to experiment units and corresponding to each 

whole-plot treatment, subplot treatments are randomly assigned. 

 Depending on the manner in which a crossed array design is run, it can be a 

combined array design or a split-plot design. If a crossed array is fully randomized, it 

is a combined array design. The structure of crossed arrays, however, suggests that 

they are often run as split plot designs.  
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1.4 Statistical Analysis of Experiment Data 

 

 Data from a crossed array can be analyzed based on summary measures 

computed at each combination of control variable levels in the inner array. Taguchi 

advocates the use of quantities called signal-to-noise ratios as summary measures. 

Different signal-to-noise ratios are defined for problems in which the objective is to 

keep the response on target, as large as possible or as small as possible (Myers and 

Montgomery, 2002). Use of the signal-to-noise ratios for the latter two cases can be 

very inefficient (Box, 1988). Furthermore, use of the signal-to-noise ratios for the 

objective of achieving a target value can only be justified with the assumption of 

specific types of underlying models (Leon et al., 1987). As alternatives to Taguchi’s 

signal-to-noise ratios, Box (1988) proposes the use of transformations based on the 

observed data. Leon et al. (1987) propose the use of criteria derived from an assumed 

model for the response that they call performance-measures-independent-of-

adjustment.  

 A better method of analyzing fully randomized crossed array designs is to fit a 

single model relating the response to both control and noise variables. The resulting 

model is called a response model (Shoemaker et al., 1991). For combined array 

designs that are not crossed arrays, analysis with summary measures is not possible 

and fitting a response model is the appropriate analysis method (Wu and Hamada, 

2000). When the residual variance is constant, the response model should be fitted with 

least squares. However, when the residual variance is not constant, generalized linear 

modeling methods should be used (Robinson et al., 2004). Myers (1991) and Myers et 

al. (1992) show how mean and variance models can be derived and estimated. The 

problem of simultaneous optimization of the mean and variance models has received 
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considerable attention in the literature (for example, see Koksoy and Doganaksoy 

(2003) and Lawson and Madrigal (1994)). Various formulations of the problem and 

solution methods have been proposed to find a solution that achieves a desirable 

tradeoff between the objective for the mean and the objective for the variance.  

 Steinberg and Bursztyn (1998) demonstrate that explicit modeling of the noise 

variables in a response model can lead to significant increases in power of detecting 

dispersion effects over the summary measure modeling approach. Another advantage 

of response model fitting over the use of summary measures is that it provides the 

experimenter an opportunity to better understand the system through examination of 

control x noise interaction plots (Wu and Hamada, 2000; Shoemaker et al., 1991).  

 Appropriate analysis methods for split-plot designs are discussed by Box et al. 

(2005), and Myers and Montgomery (2002). These take into account the error structure 

of a split plot experiment, which consists of a whole plot error and a subplot error.  

 

1.5  Estimation of the Mean and Variance Models with a Combined 

 Array Experiment: The Dual Response Surface Approach  

  

 The objectives of robust parameter design can be achieved by estimating the 

mean and variance models and then optimizing the process or product based on the 

estimated models. To estimate the mean and variance models with a combined array 

experiment in the case where the mean μ  and covariance matrix Σ  of the noise 

variables are known, the experimenter follows the standard procedure given in Figure 

1.1. This procedure is based on the procedures given by Montgomery (2005b), Khuri 

and Cornell (1996), and Leon et al. (1993). 
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Figure 1.1: Standard Procedure for Estimating the Mean and Variance Models with a 
Combined Array Experiment: Known μ  and Σ  

 

 Step 1 is assumed the responsibility of the experimenter, who should use her 

engineering or process knowledge to make the decisions. In Step 2, the experimenter 

determines the region of the control variables within which experiment runs may be 

made. In Step 3, the experimenter determines the region of the noise variables within 

which experiment runs may be made. Common practice in the literature is to specify 

the region for the noise variables based on the means and variances of those variables 

(see Equation (1.2) below). Assuming that the regions for the control and noise 

variables can be specified independently, the Cartesian product of the regions will give 

the design space (Silvey, 1980). After the design space is specified, a design is 

obtained by choosing design points from the design space. Many papers in the 

literature, such as Borror et al. (2002), discuss designs for Step 4. At this point in our 

discussion, there are two things to note. Firstly, there is really no precedence 

relationship between Steps 2 and 3. Secondly, the procedure for choosing a design, 

specifically Steps 2 to 4 discussed above, is based on the formulation of the design 

problem in optimal design theory. An alternative formulation of the design problem is 

presented by Box and Draper (1987). In their formulation, there are two distinct types 

Step 1: Selection of the response, control variables, and noise variables. 

Step 2: Choice of levels of the control variables that are allowable for the 
 experiment.  
 
Step 3: Choice of levels of the noise variables that are allowable for the experiment. 

Step 4: Selection of the design matrix. 

Step 5: Execution of the experiment. 

Step 6: Estimation of the mean and variance models. 
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of regions: the region of operability and the region of interest. The experimenter is not 

expected to explicitly specify her region of interest. Rather, the experimenter is 

supposed to choose a design and the corresponding levels of the factors at the design 

points based on various considerations, one of which is her interest in predicting at 

various points. This formulation, however, shall not be adopted in this thesis.  

In Step 6, the response is assumed a function of the control and noise variables 

plus a term representing the contribution of unknown causes of variation. This model, 

called the response model, is assumed to hold under conditions of process operation or 

product use in addition to the conditions of the experiment. The commonly assumed 

form of the response model is given by (Myers et al., 2004; Robinson et al., 2004) 

  ΔqxqγBxxβxqx, ''''0)(y ,       (1.1) 

where x  is the 1k  vector of control variables in coded units; q  is the 1n  vector of 

noise variables in coded units; 0 , β , B ,  γ , and Δ  are the coefficients of the model 

and   is a random variable representing residual variation, which is assumed to have 

mean zero and constant variance 2 .  

Let ' ),...,,( 21 nξ  denote the levels of the noise variables in un-coded units. 

Common practice in the literature (Miro-Quesada and Del Castillo, 2004; Myers and 

Montgomery, 2002; Myers et al., 1997) is to assume that the vector q  in Equation (1.1) 

is given by  
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q ,       (1.2) 

where njc j ,,1,   are the scaling factors, and j  and j  are the mean and standard 

deviation of the thj  noise variable respectively. This assumes that all noise variables 

are continuous. 
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 Although the noise variables are held fixed in each experiment run, they are 

random in actual process operation or product use. Let Q  denote the random vector of 

the noise variables in the coded units q . Substituting Q  for q  in (1.1) and taking 

expectation with respect to Q  and the residual error  , we obtain the mean model  

Bxxβx ''0  Y .         (1.3) 

 Similarly, substituting Q  for q  in (1.1) and applying the variance operator 

with respect to Q  and  , we obtain the variance model 

22 ))(var()( '''   xΔγQxΔγY ,       (1.4) 

where it is assumed that   is independent of Q  and )var(Q  is the covariance matrix 

of Q , which is assumed known.      

 The validity of (1.4) as a model for the variance of the response rests on the 

assumption that the only sources of heterogeneity of variance (dependence of the 

variance of the response on x ) are the noise variables represented by Q  (Myers and 

Montgomery, 2002). This assumption is implicit in the assumption that   has constant 

variance.  

 Having performed the experiment, the response model can be fitted with 

ordinary least squares to give the fitted response model 

qΔxqγxBxβxqx, ˆˆˆˆˆ)(ˆ ''''0  y .       (1.5) 

An estimator for the mean model Y̂  is obtained by replacing the unknown 

coefficients in (1.3) with the corresponding least squares estimates in (1.5), giving  

xBxβx ˆˆˆˆ ''0  Y  .         (1.6) 

Similarly, an estimator of the variance model 2ˆYB  is obtained by replacing the 

unknown coefficients in (1.4) with the corresponding least squares estimates in (1.5) 

and 2  with the residual mean square 2̂ , giving  
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22 ˆ)ˆˆ)(var()ˆˆ(ˆ '''   xΔγQxΔγYB .       (1.7) 

 The estimator Y̂  is an unbiased estimator of Y . However, 2ˆYB  is a biased 

estimator of 2
Y  (hence, the subscript). To obtain an unbiased estimator of 2

Y , a 

biased correction term (Myers and Montgomery, 2002) is subtracted from (1.7) to give  

]})[var(1{ˆ)ˆˆ)(var()ˆˆ(ˆ 22 ''' CQxΔγQxΔγ traceY   ,     (1.8) 

where 2/)ˆˆvar( ' xΔγC  .          

 The idea of estimating the mean and variance models with the above equations 

seems to have been first discussed by Myers (1991) and Myers et al. (1992). 

O’Donnell and Vining (1997) derive the bias and variance of the biased estimator of 

the variance model. The unbiased estimator of the variance model is recommended by 

Myers and Montgomery (2002) and Miro-Quesada and Del Castillo (2004).  

The approach introduced above for estimating the mean and variance models is 

called the dual response surface approach (Myers et al., 1992). Several other papers 

address specific issues in this approach. Myers et al. (1997) discuss the construction of 

a confidence region for the minimum variance point, a prediction interval for a future 

response, and one-sided tolerance intervals. Brenneman and Myers (2003) introduce 

the use of the multinomial distribution as a model for categorical noise variables. An 

extension to the case of multiple responses is presented by Romano et al. (2004). Miro-

Quesada and Del Castillo (2004) discuss a method for specifying the scaling factors. 

They also introduce a new objective function for finding robust settings, which is said 

to be robust to errors in estimating the model coefficients. Although the above papers 

consider various aspects of the dual response surface approach, they assume that the 

means and covariance matrix of the noise variables are known. 
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1.6 Outline of Research and Organization of Thesis 

 

In the discussion of the dual response surface approach in Section 1.5, the mean 

μ  and covariance matrix Σ  (in un-coded units) of the noise variables are assumed 

known. However, in practice, μ  and Σ  are frequently not known. Variations in the 

settings of process variables such as fluctuations in the conveyor speed of a wave 

soldering process may never be recorded. In some cases, measurement of certain 

quality characteristics can also be costly so that measurements are seldom made. For 

instance, measuring the various dimensions of a geometrically complicated component 

may require the use of a Coordinate Measuring Machine and therefore, measurements 

may be made only when a quality problem is suspected.  

The unknown parameters μ  and Σ  are often estimated with process data. 

Sampling from the process to obtain information about the distributions of the noise 

variables is well suited for robust design of existing products and processes. For 

example, in the case studies presented by Radson and Herrin (1995), O’Neill et al. 

(2000), Shore and Arad (2003), and Dasgupta (2007), information on the distribution 

of the noise variables was obtained by taking samples of observations on those 

variables.  

 When the means and covariances of the noise variables are estimated with data 

sampled from the process, the levels of the noise variables and estimated mean and 

variance models are affected by sampling error. Many issues associated with the 

estimation of the mean and variance models in this situation have not been addressed. 

In particular, the statistical properties of the estimators for the mean and variance 

models have not been generalized to take into account sampling variation. Furthermore, 

the need for simultaneous planning of the sampling effort and experiment so that total 
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resource is allocated to achieve efficient estimation of the mean and variance models 

has not been recognized. In this thesis, we examine these problems. We propose a 

procedure for estimating the mean and variance models that incorporates estimation of 

μ  and Σ  with sampled data. The procedure integrates planning of sample data 

collection with planning of the combined array experiment to achieve the best possible 

estimation of the mean and variance models. Novel ideas introduced with the 

procedure are developed in this thesis. In particular, we address the issues of 

specification of the levels of the noise variables, estimation of the mean and variance 

models, repeated sampling properties of the estimators, and optimal allocation of 

resource to sampling and experimenting. This research is motivated by the suggestions 

of Miro-Quesada and Del Castillo (2004) and Myers et al. (1997) for further research 

into the problem where μ  and Σ  are replaced with estimates.  

The remainder of this thesis is organized as follows. Chapter 2 presents the 

proposed procedure for estimating the mean and variance models. A method for 

specifying the levels of the noise variables based on estimates for the means and 

variances of those variables is proposed. The true means and variances of the noise 

variables are replaced with estimates in deriving estimators for the mean and variance 

models. The effect of sampling error, the bias and variances of the estimators, and the 

increase in the variances due to sampling error are investigated.  

Chapter 3 examines the problem of optimal allocation of resource to sampling 

and experimenting for the case where the specified design is an MRD. We call a 

combination of sample sizes and a design a scheme, and mathematical programs are 

formulated to find optimal schemes. Two different objective functions are considered. 

One is the average variance of the unbiased estimator for the variance model minus the 

residual mean square, which is a measure of the performance of a scheme at estimating 
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the variance model. The other is the average variance of the estimator for the mean 

model, which is a measure of the performance of a scheme at estimating the mean 

model. The sample sizes, and number of factorial, axial, and center point replicates of 

the MRD are taken as decision variables. A method for finding schemes that 

compromise between the optimization of the two objective functions is also discussed. 

In the last part of the chapter, an algorithm for finding schemes that perform well with 

respect to the two objectives given a candidate set of design points is introduced. 

Chapter 4 suggests solutions to two problems in the optimal allocation of 

resource. Values of some of the parameters in the response model must be known or 

estimated if the mathematical programs given in Chapter 3 are to be used. Methods 

proposed in the literature of nonlinear experimental design to solve the problem of 

dependence of optimal designs on model parameters are reviewed and their application 

to the problem of specifying the unknown parameters in the response model is 

discussed. The mathematical programs given in Chapter 3 are modified to allow the 

use of prior distributions for the unknown parameters. In addition, a discussion of how 

uncertainty in model parameters may be handled using ideas from the robust 

optimization literature is given. The second problem examined in this chapter is the 

comparison of schemes with designs other than the MRD. For this problem, plots 

called cumulative distribution plots, which are based on the FDS plots introduced by 

Zahran et al. (2003), are proposed for comparing schemes.  
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CHAPTER 2 

 

 

ESTIMATION OF THE MEAN AND VARIANCE 

MODELS WHEN MEANS AND VARIANCES OF THE 

NOISE VARIABLES ARE UNKNOWN 

 

 

2.1  Introduction 

 

This chapter presents the procedure developed in this research for estimating 

the mean and variance models. We describe the proposed procedure, which is a 

modification of the standard procedure presented in Figure 1.1. In order to develop 

various aspects of the proposed procedure, we make a number of assumptions, which 

we state explicitly. Two aspects of the proposed procedure that differ from the 

standard procedure are discussed in this chapter. Firstly, the problem of specifying the 

levels of the noise variables based on estimates of the means and variances of those 

variables is addressed. Secondly, estimation of the mean and variance models is 

examined. The effect of errors in estimating the means and variances of the noise 

variables on the estimated mean and variance models is investigated. Formulas for the 

mean squared error of the estimators for the mean and variance models are derived. It 

is demonstrated that a large part of the variability of the estimators can be due to 

variability in data sampled from the process. 
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2.2 Proposed Procedure for Estimating the Mean and Variance Models 

 

 We propose the procedure given in Figure 2.1 for estimating the mean and 

variance models. The main advantage of using this procedure is that it allows for an 

integrated planning of the experiment and process data collection. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Proposed Procedure for Combined Array Experiment 

 

 Step 1 in this procedure is identical to Step 1 in the standard procedure in 

Figure 1.1. The purpose of Steps 2 and 3 is to specify the design space. Denote the 

coded levels of the control variables by x , and the coded levels of the control variables 

in the thl  design run by Nll ,,1, x . Define R , the design region for the control 

variables as the set of vectors x  such that NlRl ,,1, x  for all permissible design 

matrices. In Step 2, x  and R  are specified. In contrast to the control variables, we fix 

the coded levels of the noise variables in the design matrix and allow the process data 

Step 1: Selection of the response, control variables, and noise variables.  
 
Step 2: Specification of the set of coded levels of the control variables from which   
 design points are to be chosen and the corresponding set of un-coded levels.   
 
Step 3: Specification of the scaling factors and the set of coded levels of the noise    
 variables from which design points are to be chosen.  
 
Step 4: Specification of design type/points and optimization of proposed criteria to 
  determine sample sizes and design matrix.  
 
Step 5: Estimation of the means and variances of the noise variables with process   
 data. 
 
Step 6: Computation of the un-coded levels of the noise variables for each 
 experiment run. 
 
Step 7: Execution of the experiment. 
 
Step 8: Estimation of the mean and variance models.  
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to determine the corresponding un-coded levels through the coding. In particular, we 

fix the coding for the noise variables as 

'
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z ,       (2.1) 

where j̂  is the thj  element of μ̂ , an estimator for μ  and 2ˆ j  is the thj  diagonal 

element of Σ̂ , an estimator for Σ . Denote the coded levels of the noise variables in the 

thl  run by lz , where Nl ,,1  and define S , the design region for the noise 

variables, as the set of vectors z  such that NlSl ,,1, z , for all permissible 

design matrices. In Step 3, the design region S , and the scaling factors njc j ,,1,   

in Equation (2.1) are specified. Note that although specification of x  and R  is labeled 

as Step 2 while specification of S  and njc j ,,1,   is labeled as Step 3, there is 

really no precedence relationship between the two steps. 

 Step 4 calls for the design matrix to be specified together with the sample size 

for each noise variable njm j ,,1,  . The design matrix is to be assembled from 

design points chosen from the design space, which is the Cartesian product of R  and 

S . Observe that the proposed procedure calls for simultaneous consideration of the 

process data collection and experiment effort. This is desirable because it would then 

be possible to plan the allocation of effort between the two activities in an optimal way. 

We shall introduce tools to aid the specification of the design and sample sizes such 

that estimation of the mean and variance models is optimized. In Step 5, process data 

collection, which we also call sampling, is carried out. This involves making jm  

observations on the thj  noise variable.  

 Steps 3- 5 imply that the design matrix is to be specified before any 

observations on the noise variables are taken. Therefore, at the point after the design 
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matrix is specified and before any observations on the noise variables are taken, the 

un-coded levels of the noise variables for the thl  experiment run lξ  is a random vector 

given by  

'' )ˆˆ,,ˆˆ(),ˆ,ˆ(),,( 11111 nnlnnlllnll czczT    zΣμξ ,    (2.2) 

where ljz  is the thj  element of lz . In addition, observe that ξS , the region obtained by 

mapping all points z  in S  via the transformation ),ˆ,ˆ( zΣμT , is random. In Step 6, the 

un-coded levels of the noise variables for each experiment run are determined through 

Equation (2.2). This is followed by the execution of the experiment, which is Step 7. In 

Step 8, the mean and variance models are estimated with data from the experiment.  

 The proposed procedure is a modification of the standard procedure. Steps 3-4 

in the standard procedure are replaced with Steps 3-6 in the proposed procedure. In 

Step 3 of the standard procedure, both the sets of coded and un-coded levels of the 

noise variables are specified based on μ  and Σ . This is followed by the construction 

of the design matrix. Thus, the un-coded levels of the noise variables for the 

experiment runs do not depend on process data. Another difference between the 

standard procedure and the proposed procedure is that Step 8 of the proposed 

procedure involves the use of a theoretically different set of estimators than that used 

in the standard procedure. 

 Step 3 and Step 8 of the proposed procedure are discussed in this chapter. Step 

4, which is the design step, is treated at length in the next two chapters. 

 

2.2.1 Assumptions 

 

 In this section, assumptions that are made throughout this research are stated. 
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Unless stated otherwise, these assumptions apply wherever they are relevant. 

Assumption 2.1 All noise variables are continuous.   

Remark: The method of specifying the levels of the noise variables described in the 

preceding section necessarily requires that this assumption be made. If the noise 

variables are not continuous, the experimenter may not be able to fix the levels of the 

noise variables according to (2.2).  

 

Assumption 2.2 Let   be the union of all possible realizations of ξS  and let   be the 

set of ξ  over which the joint density of the noise variables is non-zero. We assume that 

for ξ  and Rx , the response model is given by  

  ξΔxξγxBxβxξx ξξξξξ ''''0),(y ,      (2.3) 

where   has mean zero and variance 2 , and ξ0 , ξβ , ξB , ξγ , and ξΔ  are the model 

coefficients. 

Remark: Note that the response model is written as a function of the coded form of 

the control variables x  and the un-coded form of the noise variables ξ . The response 

model given in (2.3) is equivalent to that given by (1.1) since (2.3), when rewritten in 

the variables x  and q , is of the form given in (1.1). Observe that if the response model 

given in (2.3) holds for each ξ  and Rx , the true mean and variance models are 

given in (1.3) and (1.4) respectively. On the other hand, if the response model given in 

(2.3) holds for each ξ  and Rx , the same response model will fit the experiment 

data without any bias due to model inadequacy. Thus, this assumption implies that the 

response for the thl  experiment run is given by 

lllllllll ey  ξΔxξγxBxβxξx ξξξξξ ''''0),(  , 
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where le  is the experiment error in the thl  run. The response is a function of the 

random variables μ̂ , Σ̂ , and le . For illustration, when 1k  and 1n , the response 

for the thl  experiment run, where ),(),( 1111 llxx   , is  

llllllll eczxczxxxy  )ˆˆ()ˆˆ(),( 111111111111
2
11111011  ξξξξξ . 

 Assumption 2.2 appears to be too restrictive because it requires that the 

response model holds for each ξ , which may be a very large set. However, 

the mean model in (1.3) and the variance model in (1.4) are derived based on the 

assumption that the response model holds for each ξ . Furthermore, the 

unbiasedness of the estimators in Equations (1.6) and (1.8) are established assuming 

that the response model holds in 0ξ  and Rx , where 0  represents the fixed 

experiment region for the noise variables. Therefore, Assumption 2.2 is, in fact, merely 

an extension of the assumption implicitly made in the dual response surface approach. 

As long as  , Assumption 2.2 is not more restrictive than the assumption 

implicit in the derivation of (1.3) and (1.4), which are the mean and variance models 

given in the literature (see Section 1.5). To have  , the region ξS  should be 

within the region of values of the noise variables that are possible to occur. This 

implies that for the case of independently distributed noise variables (see Assumption 

2.4), the range over which each noise variable is varied in the experiment should be 

within the range of variation of the variable. Reasonable RPD experiments should have 

  so that the experiment does not study the response across values of the noise 

variables that never occur in practice. The case of known means and covariances of the 

noise variables is similar since the RPD experiment should be designed so that 

0 . 
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In the literature, it is commonly assumed that the noise variables are normally 

distributed (see Assumption 2.5). Theoretically, the normal distribution has an 

unbounded sample space. Therefore,   and   are the n -dimensional real space if it 

is assumed that the noise variables are normally distributed. As such, for normally 

distributed noise variables, we require that Equation (2.3) hold over the n -dimensional 

real space. However, in any particular practical setting, we cannot really expect 

Equation (2.3) to hold over the n -dimensional real space nor can we expect the noise 

variables to be perfectly normally distributed. Thus, despite Assumption 2.2, it would 

be inappropriate to conduct experiments over wide ranges of values of the noise 

variables. In the next section, we introduce a method to specify S  and njc j ,,1,   

that would enable us to control the size of ξS . 

 

Assumption 2.3 Each noise variable is distributed independently of the levels of the 

control variables and each has finite mean and variance. 

Remark: This implies that the mean and variance of each noise variable exist, and 

they are not functions of the levels of any of the control variables.  

 

Assumption 2.4 The noise variables are known to be independently distributed.  

Remark: The assumption of independently distributed noise variables is commonly 

made in the literature (Myers et al., 2004). The fact that the noise variables are 

independent may be known by physical considerations. For example, when the noise 

variables are difficult-to-control process variables or raw material properties, it is 

reasonable to assume that they are independent (Myers et al., 2004; Borror et al., 2002). 

It follows logically from this assumption that Σ̂  should also be diagonal.  
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Assumption 2.5 The noise variables are normally distributed. 

Remark: The assumption of normally distributed noise variables is made in many 

statistical papers and case studies in the literature (for example, see Miro-Quesada et al. 

(2004), Jeang et al. (2007) and Li et al. (2007)). Therefore, this assumption appears to 

be reasonable in most cases. 

 

Assumption 2.6 For each nj ,,1 , the estimators j̂  and 2ˆ j  are defined on a 

random sample of size jm . In other words, the sample observations are independent. 

Remark: The assumption of random sampling may not always be valid since in some 

cases, the values of a noise variable over time may be auto-correlated (Jin and Ding, 

2004). However, if data collection were done such that the intervals between 

successive observations on a noise variable are sufficiently long, the observations for 

the noise variable would be approximately independent (Montgomery, 2005a).  

 

Assumption 2.7 The estimators μ̂  and Σ̂  are independent of the vector of experiment 

error e .  

Remark: Physical considerations suggest that this should be the case. Sampling and 

experimenting are different activities at two distinct points in time.  

 

Assumption 2.8 The expectation of e , the vector of experiment error, is a zero vector. 

The elements of e  are independent and identically distributed, each with variance 2 . 
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2.3  Specification of Levels of the Noise Variables 

 

 Step 3 of the proposed procedure calls for the design region S  and the scaling 

factors njc j ,,1,   to be chosen prior to sampling. This is necessary in order to have 

the advantage of being able to plan both the experiment and sampling simultaneously. 

In this section, we address the question of choosing S  and njc j ,,1,  .   

 Consider the design of a factorial experiment with a single noise variable that is 

normally distributed in process operation with known mean 1  and known variance 

2
1 . Following common practice, the high and low levels of the noise variable may be 

set at 111  c  and 111  c  respectively for some 1c . The value chosen for 1c  

should be such that the noise variable is varied over a range that is representative of its 

variation during actual process operation or product use. For example, it does not seem 

appropriate to choose 11 6   for the high level and 11 6   for the low level since 

the levels are too extreme. It also does not seem appropriate to choose 11 1.0    for 

the high level and 11 1.0    for the low level since the change in the response would 

be easily masked by experiment error. However, there is no rigid rule for choosing 1c . 

It appears that any value within the interval ]2,1[  are reasonable choices for 1c . Now, 

if 1  and 2
1  are replaced with 1̂  and 2

1̂  respectively, selecting 1c  is not as clear. 

We propose considering the problem as one of constructing a tolerance region for the 

distribution of the noise variable with the interval ]ˆˆ,ˆˆ[ 111111  cc  . Let II  be the 

proportion of the probability density of the noise variable contained by the interval on 

the average. Choosing II  to be moderately large is a logical way to express the rule 

that “a noise variable should be varied over a range that is representative of its 



 24

variation during actual process operation or product use.” For instance, given the 

sample size, we may choose 1c  so that II  takes the value of 0.8. This would lead to a 

factorial experiment that varies the noise variable over a range that, on the average, 

contains 80 percent of the distribution of the noise variable. The idea just introduced 

for specifying 1c  is generalized below. 

 Given the sample sizes and the estimators μ̂  and Σ̂ , we propose that S  and 

njc j ,,1,   be specified such that ξS , the set of un-coded levels corresponding to S , 

is a tolerance region of a reasonable size for the joint distribution of the noise variables. 

Specifically, we propose that the experimenter choose S  and njc j ,,1,   so that the 

expected proportion of the joint distribution contained within ξS  is some suitable value 

II . This is called a type II tolerance region (Chew, 1966). In addition to the degree 

with which ξS  represents conditions of process operation, specification of II  for the 

type II tolerance region also requires a consideration of the tradeoff between bias due 

to model inadequacy and variance of the fitted response model. Hence, a value such as 

0.999 for II  may not be considered appropriate for most cases, as bias due to model 

inadequacy may be large. 

 Assuming that the noise variables are normally and independently distributed 

(Assumptions 2.4 and 2.5), a type II tolerance region may be obtained by constructing 

type II tolerance intervals with expected coverage of n/1
II  for each noise variable. The 

Cartesian product of the intervals gives the desired tolerance region. By a result given 

by Chew (1966), a n/1
II  type II tolerance interval for the thj  noise variable is given by 

the set of values j  that satisfy the inequality 

jj
/n

jjjj mmFm /)1,1,1()1(ˆ/)ˆ( 1
II

22   ,       (2.4) 



 25

where jm  is the sample size, j̂  and 2ˆ j  are the sample mean and sample variance 

respectively, and )1,1,1( 1
II  j

/n mF   is the upper )1(100 1
II

/n  percent point of the F  

distribution with 1 and 1jm  degrees of freedom. Although there is no hard and fast 

rule for the value of II , reasonable choices are such as 0.7, 0.8, and 0.9. Suppose that 

nmmm  1  and },,1,11);,,{( 1 njzzzS jn   . Then, the scaling 

factor nccc  1  that give a value of n/1
II  for each noise variable is 

mmFm /)1,1,1()1( 1/n
II   .  The values of c  for 9.0,8.0,7.0II   and several 

different values for n  and m  are given in Table 2.1.  It is seen that for given II  and 

m , c  increases as n  increases. The increase in c  when n  increases ensures that the 

tolerance region contains the same proportion of the joint distribution on the average. 

Table 2.1 also suggests that tolerance regions for 30m  are close to the asymptotic 

( m ) tolerance regions. It follows that in the specification of S  and njc j ,,1,  , 

μ̂  and Σ̂  may be treated as if they were the true values if the sample sizes are 

sufficiently large. This means that instead of using Equation (2.4) and referring to the 

F  distribution, the experimenter can use the standard normal distribution as a rough 

guide.  

 According to Myers et al. (1992), in many of Taguchi’s applications, the high 

and low levels of a noise variable are set at 2/3  standard deviations from its mean. 

They also state that it is common in applications for the high and low levels of a noise 

variable to be set at 1 or 2 standard deviations from its mean. However, as we shall see 

in examples in this thesis, arbitrarily using commonly employed values for the scaling 

factors can lead to experiments that are not representative of process conditions. 
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Table 2.1: Values of c  to Achieve Given II  for Various Values of n  and m  

 7.0II   8.0II   9.0II   

m  1n  2n  3n  1n  2n  3n  1n  2n  3n  
10 1.15 1.59 1.85 1.45 1.89 2.14 1.92 2.36 2.61 
20 1.09 1.49 1.71 1.36 1.74 1.95 1.77 2.13 2.33 
30 1.07 1.45 1.67 1.33 1.70 1.90 1.73 2.07 2.26 
40 1.06 1.44 1.65 1.32 1.68 1.87 1.71 2.04 2.22 
50 1.06 1.43 1.63 1.31 1.67 1.86 1.69 2.02 2.20 
60 1.05 1.42 1.63 1.31 1.66 1.85 1.68 2.01 2.18 
70 1.05 1.42 1.62 1.30 1.65 1.84 1.68 2.00 2.17 
80 1.05 1.42 1.62 1.30 1.65 1.84 1.67 1.99 2.16 
90 1.05 1.41 1.61 1.30 1.64 1.83 1.67 1.99 2.16 

100 1.05 1.41 1.61 1.30 1.64 1.83 1.67 1.98 2.15 
  1.04 1.39 1.59 1.28 1.62 1.80 1.64 1.95 2.11 

 

 There are two points that should be noted. Firstly, the recommendation that II  

be between 0.7 and 0.9 is based on the assumption that the design points will be 

selected such that the convex hull of the points Nll ,,1, z  is nearly the size of S . 

Otherwise, S  can be replaced by a smaller design region, which has a smaller II . 

Secondly, because II  depends on the sample sizes, we need to iterate between Step 3 

and Step 4 of the proposed procedure to achieve a tolerance region of the desired size.  

 

2.4  Estimation of the Mean and Variance Models and Propagation of 

 Sampling Error 

            

 Consider the case where there is a single noise variable and a single control 

variable. Suppose that estimates for the mean and variance of the noise variable are 

5.10~
1   and 22

1 5.1~   respectively. Suppose that the fitted response model is 

5.1/)5.10(35.1/)5.10(43521~
111

2
11   xxxy , 

and an estimate of the experiment error is 1~ 2  . 
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 Given the information above, how may the mean and variance models be 

estimated? In process operation or product use, 1  will vary randomly with mean 1  

and variance 2
1 , which are unknown. The experimenter’s best guess of 1  and 2

1  

are 5.10  and 25.1  respectively. Therefore, it seems reasonable to estimate the mean 

model by substituting 5.10  for 1  in the expression for y~ . This gives the estimate 

2
11 3521 xx  , which can be obtained from (1.6) if 1

~  is treated as if it were 1 . 

Similarly, the experimenter’s best guess of ]5.1/)5.10var[( 1   is 1. Therefore, an 

apparently reasonable estimate for the variance model is 1)34( 2
1  x , which can be 

obtained from (1.7) by treating 2
1

~  as if it were 2
1 . Certainly, an estimate for the 

variance model can also be obtained from (1.8) by treating 2
1

~  as if it were 2
1 . 

 In the following, we formalize the preceding idea of estimating the mean and 

variance models. In a subsequent section, we shall examine how errors in estimating μ  

and Σ  affect estimates of the mean and variance models obtained through this method.  

The assumed response model in (2.3) when written in terms of the variables x  

and z  is given by 

  zΔxzγxBxβxzx, zzzzz ''''0)(y ,      (2.5) 

where z0 , zβ , zB , zγ , and zΔ  are the model coefficients, and as before,   has mean 

zero and variance 2 . 

Let the corresponding model fitted with least squares be given by 

zΔxzγxBxβxzx, zzzzz
ˆˆˆˆˆ)(ˆ ''''0  y .       (2.6) 

 If the experimenter treats μ̂  and Σ̂  as if they were μ  and Σ  respectively and 

uses Equation (1.6), the estimator for the mean model actually used is given by  

xBxβx zzzz
ˆˆˆˆ ''0  Y .         (2.7) 
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Similarly, referring to (1.7) and (1.8), and assuming independently distributed 

noise variables (Assumption 2.4), apparently reasonable estimators for the variance 

model are given by either 

22 ˆ)ˆˆ()ˆˆ(ˆ '''   xΔγVxΔγ zzzzzYB        (2.8) 

or 

)](1[ˆ)ˆˆ()ˆˆ(ˆ 22 ''' VCxΔγVxΔγ zzzzz traceY   ,     (2.9) 

where 
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V , and 2/])ˆˆ[(var ' zxΔγC zz  .   

  Equations (1.6)-(1.8) are derived assuming that the means and variances of the 

noise variables are known. When these parameters are substituted with estimates, 

Equations (2.7)-(2.9) are obtained. The following example demonstrates that errors in 

estimating the means and variances of the noise variables can be significant 

components of errors in the estimation of the mean and variance models. 

 

2.4.1 Example 2.1 

 

Consider the case where there is one control variable and one noise variable. 

Let the coded level of the control variable be represented by 1x  and let the un-coded 

level of the noise variable be represented by 1 . Suppose that unknown to the 

experimenter, the mean and variance of the noise variable are 31   and 22
1 2  

respectively and the true response model is 

2

)3(
  where,85765),( 1

1111
2
1111





qqxqxxqxy . 
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 Imagine the following scenario. The experimenter specifies 

}11:{ 11  xxR , }11:{ 11  zzS , and 121  cc . She chooses the MRD 

design shown in Table 2.2 and specifies a sample size of 10. After sampling from the 

process, she obtains the estimates 5.3~
1   and 22

1 3~   for the mean and variance of 

the noise variable. Based on those estimates and the design matrix, she sets the high 

level of the noise variable at 6.5 un-coded units and the low level at 0.5 un-coded units. 

Because experiment error is negligible, she observes the response values given by the 

deterministic model ),( 11 qxy  in the experiment, which are given in the column labeled 

y  in Table 2.2. 

 
Table 2.2: Experiment Design, Un-coded Levels of Noise Variable  

and Experiment Data for Example 2.1  
 

1x  1z  1  y  

-1 -1 0.5 9.75 
1 1 6.5 40.75 
-1 -1 0.5 9.75 
1 1 6.5 40.75 
-1 0 3.5 5.25 
1 0 3.5 21.25 
0 0 3.5 6.25 

 

 Consider estimating the mean and variance models with the data in Table 2.2. 

The fitted response model is 111
2
1111 125.77825.6),(~ zxzxxzxy  , where 

3/)5.3( 11  z . Using (2.7), we estimate the mean model as 2
11 7825.6~ xxY z   

and using (2.8) or (2.9), we estimate the variance model as 0)125.7(~ 2
1

2  xY z . 

Note that the true mean model is 2
11 765 xxY   whereas the true variance model 

is 2
1

2 )85( xY  . In Figure 2.2, zY
~  and Y  are plotted while in Figure 2.3, 2~

zY  and 
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2
Y  are plotted. These figures show that the estimates are in error. This can only be due 

to the errors in estimating 1  and 2
1  as there is no experiment error.  

 

Figure 2.2: Graphs of zY
~  and Y  

 

Figure 2.3: Graphs of 2~
zY  and 2

Y  

0

5

10

15

20

25

-1 -0.5 0 0.5 1

x

M
e

a
n

Estimated         
Mean

True Mean

0

50

100

150

200

250

300

350

400

-1 -0.5 0 0.5 1

x

V
a

ri
a

n
c

e Estimated        
Variance

True Variance



 31

2.4.2 Relationships Between Coefficients of Response Models 

 

Example 2.1 indicates that the coefficients of the response model in (1.1) and 

the coefficients of the response model in (2.5) are, in general, different. This occurs 

because the coding scheme z  in (2.1) is in general different from the coding scheme q  

in (1.2). The relationship between the model coefficients z0 , zβ , zB , zγ , and zΔ , 

and the model coefficients 0 , β , B , γ , and Δ  can be established by using the fact 

that given a particular x  and ξ , Equations (2.5) and (1.1) must yield exactly the same 

values when the error term   is set to zero. This gives  

.
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          (2.10) 

Since both sides of (2.10) define exactly the same function in the variables x  and ξ , 

we obtain the following relationships by equating the coefficients of each of the 

variable terms j , jix  , ix , ji xx  and the “constant” on both sides of (2.10). 

j
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ˆ

 z ,    nj 1,..., .               (2.11) 

ij
j

j
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
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 z ,    njki 1,...,   ;1,...,  .             (2.12) 
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From (2.11)-(2.15), it can be seen that the coefficients z0 , zβ , zγ , and zΔ   

are not in general equal to 0 , β , γ , and Δ  which are used in the definition of the true 

mean and variance models given in (1.3) and (1.4). This causes estimates computed 

from zY̂ , 2ˆ
zYB , and 2ˆ

zY  to be in error even if there were no experiment error 

because given μ̂  and Σ̂ , the expectation of z0̂ , zβ̂ , zγ̂ , and zΔ̂  equal z0 , zβ , zγ , 

and zΔ  respectively.  

If the activities of sampling from the process and experimenting are repeated, 

z0 , zβ , zγ , and zΔ  also vary randomly. Hence, there is a component of variation in 

the estimators zY̂ , 2ˆ
zYB , and 2ˆ

zY  due to sampling variation in addition to the 

component due to experiment error. Thus, if either the sampling or experiment plan is 

poorly specified, optimization or any decisions based on the estimated mean and 

variance models may produce highly variable results. 

  

2.4.3 Example 2.2 

 

 Consider again example 2.1. Due to the fact that 0e  , where 0  is a vector of 

zeros, 111
2
111111 125.77825.6),(~),( zxzxxzxyzxy  .   

 One may verify that Equations (2.11)-(2.15) give the relationships between the 

coefficients of ),( 11 zxy  and the coefficients of 111
2
1111 85765),( qxqxxqxy  . 

 It can be seen that because the coefficients of ),( 11 zxy  are different from that 

of ),( 11 qxy , the estimates zY
~  and 2~

zY  are in error.  
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2.5  Sampling Properties of the Estimators for the Mean and Variance 

 Models 

 

 The bias and variances of zY̂ , 2ˆ
zY , and 2ˆ

zYB  are important performance 

measures of those estimators. In addition, a good allocation of experiment effort to 

sampling and experimenting is one that takes into account the effect of sample sizes 

and design on the mean squared errors of the estimators. In this section, we establish 

some results concerning the bias and variance of each of the estimators zY̂  and 2ˆ
zY . 

A reason for preferring 2ˆ
zY  to 2ˆ

zYB  is given. In the next section, the variances of zY̂  

and 2ˆ
zY  are compared with the variances of Y̂  and 2ˆY  respectively.  

In this section, s  is used to represent the vector of sample observations. The 

notation )(
s
E  denotes the expectation of the quantity in the brackets with respect to s . 

Since an estimator that is a function of μ̂  and/or Σ̂  can be rewritten as a function of s , 

expectation with respect to s  implies expectation with respect to μ̂  and/or Σ̂ . The 

notation )(
e
E  denotes the expectation of the quantity in the brackets with respect to 

e , which is defined as the vector of experiment error. The variance operators )(var 
s

 

and )(var 
e

 are similarly defined and interpreted.  

 

2.5.1  Bias and Variance of the Estimator for the Mean Model 

   

 In this section, we give our main results concerning the bias and variance of 

zY̂ . Except for Assumption 2.5, all assumptions in Section 2.2.1 are assumed to hold. 
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Proposition 2.1 If μ̂  is an unbiased estimator for μ , zY̂  is an unbiased estimator of 

the mean model.  

Proof: 

 Equations (2.13)-(2.15) can be rewritten as 

wγz '00   , Δwββ z  , and BBz  ,  

where 
')ˆ(

,...,
)ˆ(

,
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

w . 

 Since μ̂  is unbiased, 0)( wE . Thus, 00 )(  zE  and ββ z )(E . It follows 

that 

. 
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Bxxβx

Bxxβx

sxBxβx

zz
s
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



E

EE

E Y

        

Remark: The result given in this proposition does not require Assumptions 2.4 and 2.5. 

 

Proposition 2.2 The variance of zY̂  is given by the formula 

2'''' ))(var()()ˆvar(  CCCY xVxxΔγwxΔγz  ,              (2.16) 

where '),,,,,,,,,1( 121
22

11 kkkkC xxxxxxxx  x  and CV  is obtained as follows. Let 

X  be the design matrix expanded to the form of the response model. Let the columns 

of X  be arranged in the order 

),,,,,,,,,,,,,,,,,,1( 11111121
22

11 nknnkkkkk zxzxzzxzxzxxxxxxxx   .  

The matrix CV  is the square matrix obtained by deleting the last nkn   columns and 

rows of 1)( ' XX . 
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Proof: 

Using the conditional variance formula, )ˆvar( zY  is given by 

. )ˆˆˆ(var)ˆˆˆ(var

)ˆˆˆ(var)ˆvar(
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             (2.17) 

This expresses )ˆvar( zY  as the sum of two terms. The first term is reduced as follows. 
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 Now, note that the design matrix is specified before sampling. Therefore, X  is 

considered fixed and we have   
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where 0  is an 1)(  nkn  vector of zeros. 

 Putting together (2.17)-(2.19) gives (2.16).      

Remark: The result given by Proposition 2.2 does not require Assumption 2.5. (In fact, 

it also does not require Assumption 2.4). Define ))(var()( ''' xΔγwxΔγ SM  and 

2' CCCEM xVx . Hence, ESY MM )ˆvar( z . Now, if μ̂  is consistent for μ , 

)ˆvar()ˆvar(lim
,,1

YEY
n

M
mm

 
 z

, where Y̂  is as given in (1.6). This suggests that 

SM  may be viewed as the contribution from sampling error whereas EM  may be 



 36

viewed as the contribution from experiment error. It can be seen that if μ̂  is restricted 

to unbiased estimators, choosing each j̂  as the minimum variance unbiased estimator 

minimizes )ˆvar( zY .  

 

Corollary 2.1 If for each nj ,,1 , j̂  is the sample mean of a random sample of 

size jm , the variance of zY̂  is given by 

. 
1

)ˆvar(
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
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  
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               (2.20) 

Proof: 

 This follows from Proposition 2.2 and the fact that )var(w is a diagonal matrix 

with diagonal elements )/(1,),/(1),/(1 2
2

2
21

2
1 nn mcmcmc  . 

Remark: Equation (2.20) also holds when Assumption 2.5 does not hold.  

 

 In order to interpret the variance or standard deviation of zY̂ , knowledge of 

the distribution of zY̂  would be helpful. The following proposition gives the 

distribution of zY̂ .  

 

Proposition 2.3 If in addition to the assumptions in Section 2.2.1, e  has a spherical 

normal distribution (see Arnold (1981)) and each j̂  is the sample mean of a random 

sample of size jm , zY̂  at a given x  is normally distributed. 
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Proof: 

 Conditioned upon a given s , we know from the theory of linear models 

(Arnold, 1981) that zY̂  is normally distributed with mean 

),( '''''' 00 ΔwxwγBxxβxBxxβx zz    

and variance 

2' CCC xVx . 

 Since each j̂  is normally distributed, )( ''''0 ΔwxwγBxxβx   is 

normally distributed with mean Y  Bxxβx ''0  and variance 

 
  



















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n

j
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i
iijj

jj

x
mc1

2

1
2

1
))(var()( ''' xΔγwxΔγ .  

 Therefore, the unconditional distribution of zY̂  is normal with mean Y  and 

variance given by (2.20). 

 

2.5.2  Bias and Variances of the Estimators for the Variance Model 

  

 In this section, we give our main results concerning the bias and variance of 

2ˆ
zY . We also compare the mean squared errors of 2ˆ

zY  and 2ˆ
zYB . Except for 

Assumption 2.5, all assumptions in Section 2.2.1 are assumed to hold. 

 

Proposition 2.4 If Σ̂  is an unbiased estimator of Σ , i.e. each 2ˆ j  is an unbiased 

estimator of 2
j , 2ˆ

zY  is an unbiased estimator of the variance model.  
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Proof: 
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Remark: The result given in this proposition does not require Assumption 2.5. 

 

Proposition 2.5 Suppose that e  has a spherical normal distribution (see Arnold 

(1981)). If Σ̂  is an unbiased estimator of Σ , then the variance of 2ˆ
zY  is given by 

ESY VV )ˆvar( 2
z ,                              (2.21) 

where 
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jlC  is the element in the thj  row and thl  column of C , which is the covariance matrix 

defined after Equation (2.9) and dfSSE  is the residual degrees of freedom. Note that 
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should be removed from the expression for EV .  
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Proof: 

 Using the conditional variance formula, we have 
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This expresses )ˆvar( 2
zY  as the sum of two terms. The first term is reduced as follows. 
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 The derivation of a formula for the second term in (2.22) is simplified by 

making use of the general expression for )ˆvar( 2
YB  derived by O’Donnell and Vining 

(1997). Furthermore, note that C  is fixed because it does not depend on any sample or 

experiment observations. It follows directly from the expression given by O’Donnell 

and Vining (1997) and the fact that C  is fixed that 
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 Putting (2.22)-(2.24) together yields (2.21). 
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Remark: This proposition holds whether or not Assumption 2.5 holds. Now, if Σ̂  is 

consistent for Σ , 1)/ˆ(lim 
 jj

j
E

m
  for each nj ,,1 , (see Theorem B.2 in 

Appendix B) and      
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  z ,  

where 2ˆY  is given in (1.8). This suggests that SV  may be thought of as the component 

of )ˆvar( 2
zY  due to sampling error and EV  as the component due to experiment error. 

If C  is diagonal and if Σ̂  is restricted to unbiased estimators, choosing each 2ˆ j  as the 

minimum variance unbiased estimator minimizes )ˆvar( 2
zY . 

 

For the purposes of computation, expressions for )/ˆ( jjE  , )/ˆvar( 22
jj  , 

and C  are needed. We discuss how to obtain these expressions below. 

1. Expression for )/ˆ( jjE  : If the thj  noise variable is normally distributed and 2ˆ j  

is the sample variance,  
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(Voinov and Nikulin, 1993; Fisher, 1925), where )(  denotes the gamma function. 

However, if the thj  noise variable is not normally distributed, the approximation 

1)/ˆ( jjE   may be used. This is justified by the fact that if 2ˆ j  is consistent for 2
j , 

1)/ˆ( jjE   as jm . This result follows from probability theory (see Theorem 

B.2 in Appendix B).  
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2. Expression for )/ˆvar( 22
jj  : If 2ˆ j  is the sample variance of a random sample of 

size jm  and the distribution of the thj  noise variable has finite moments of order up to 

four, 

j

j

jj

j
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
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



,                             (2.26) 

where ),2[2 j  is the excess kurtosis of the distribution of the noise variable (Box 

et al., 1978; Box, 1953). 

3. Expression for C : Define '),,,1( 11 kxx x , and denote the nn  identity matrix 

by nI . Define DV  as the square matrix obtained from the elements indexed by the last 

nkn   rows and columns of 1)( ' XX , where 1)( ' XX  is as defined in Proposition 2.2. 

The matrix C  is given by  

''' )()( 11 xIVxIC  nDn ,                  (2.27)  

where   is the Kronecker product (see Harville (1997) for a definition). This 

expression is derived by O’Donnell and Vining (1997). 

 Up to this point, we have only investigated the bias and variance of 2ˆ
zY . A 

competitor to the unbiased estimator 2ˆ
zY  is the biased estimator 2ˆ

zYB , which is 

simpler to compute and use. Hence, it is natural to ask whether the unbiased estimator 

is really better than the biased estimator. Note that an unbiased estimator is not 

necessarily a good one in the sense that the estimator may not give estimates as close 

to the true value as compared to the estimates given by a biased estimator (Kiefer, 

1987). A better criterion for comparing the two estimators is the mean squared error. A 

comparison based on this criterion yields the following proposition, which is proven in 

Appendix A.  
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Proposition 2.6 If Σ̂  is unbiased for Σ , 2ˆ
zY  has a smaller mean square error than 

2ˆ
zYB  for every x  when 2dfSSE . 

Remark: The result holds whether or not Assumption 2.5 holds. 

 Proposition 2.6 suggests that 2ˆ
zY  should be used instead of 2ˆ

zYB  whenever the 

design size is two or more than the number of model parameters. Because this is 

frequently the case, we consider only the estimator 2ˆ
zY  in the rest of this thesis.      

 

2.5.3  Discussion 

 

 We do not justify zY̂  and 2ˆ
zY  by proving any optimality property of these 

estimators. However, in Appendix B we show that if μ̂  and Σ̂  are consistent 

estimators (so that μ̂  and Σ̂  converge to μ  and Σ  respectively as nmm ,,1  ), 

zY̂  and 2ˆ
zY  converge in distribution to Y̂  and 2ˆY  respectively as nmm ,,1  . 

This result, which does not require Assumptions 2.5-2.8, justifies the use of zY̂  and 

2ˆ
zY  because by increasing the sample sizes, the sampling variation transmitted to the 

estimators decreases and converges to zero. Alternatively, we can justify the estimators 

by the fact that as the sample sizes and the number of replications of a design increase, 

zY̂  and 2ˆ
zY  converge to Y  and 2

Y  respectively if μ̂  and Σ̂  are consistent (This 

result is shown in Appendix B).  

There are two other points about the derivations in Sections 2.5.1 and 2.5.2 that 

deserve some attention. Firstly, it should be noted that if the noise variables are not 

normally distributed, the sample mean and sample variance might not be efficient 
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estimators. For example, it is not efficient to estimate the mean and variance of a 

uniform distribution with the sample mean and sample variance. However, in the case 

where the noise variables are not normally distributed, a coding different from that of 

(2.1) may be more appropriate for constructing tolerance regions. Moreover, the 

response will not be normally distributed and optimizing the response based on the 

mean and variance models appears to be questionable.    

Secondly, the assumption that the noise variables are known to be 

independently distributed may be relaxed at the expense of a more complicated 

investigation of the estimator for the variance model. In this case, the ),( ji  element in 

the matrix V  in Equation (2.9) should be )/(ˆ jiij cc , where ij̂  is an estimator of the 

correlation coefficient for the thi  and thj  noise variables ( 1ˆ ii ). However, 

neglecting the correlations when they in fact exist may cause errors in estimating the 

variance model.  

 

2.6  Inflation of Variances Due to Sampling Error 

 

 In the literature, the fact that μ  and Σ  are often estimated with process data is 

ignored, giving rise to the use of the estimators Y̂  and 2ˆY  for the purposes of 

theoretical development. However, it seems that zY̂  and 2ˆ
zY  more closely resemble 

reality. A comparison of the variances of both sets of estimators is made in this section. 

We consider only the case where each njj ,,1,ˆ   is the sample mean and each 

njj ,,1,ˆ 2   is the sample variance.  

Using Equation (2.20) and the fact that EY M)ˆvar( , we have 
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Thus, 0)ˆvar()ˆvar(  YY  z  if and only if x  is such that 0)()( '''  xΔγVxΔγ . 

In other words, the variance of the estimator for the mean model at points where 2
Y  is 

minimized is unaffected by sampling variation. This however, does not imply that 

)var( *x , where *x  is such that 0)ˆˆ()ˆˆ( ** '''  xΔγVxΔγ zzzz , is not inflated by 

sampling variation. Note that the difference )ˆvar()ˆvar( YY  z  tends to increase as 

2
Y  increases. For the case where mmm n 1 , 

mYYY /)()ˆvar()ˆvar( 22  z .   

 Now, consider the variance of 2ˆ
zY  compared to the variance of 2ˆY . Assuming 

normally distributed noise variables and experiment error and that C  is a diagonal 

matrix, 
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The above equation also holds approximately when C  is not a diagonal matrix because 

)ˆvar( 2
YEV   when nmm ,,1   are sufficiently large (see remark after Proposition 2.5). 

Similar to the case of the mean model, 0)ˆvar()ˆvar( 22  YY  z  if and only if x  is such 

that 0)()( '''  xΔγVxΔγ . In addition, )ˆvar()ˆvar( 22
YY  z  also tends to increase 

as 2
Y  increases. 

It follows from our discussion that in experiments where the noise variables 

have large effects, the variances of zY̂  and 2ˆ
zY  at most points x  in the design region 

R  are inflated considerably by sampling variation. In many RPD experiments, interest 

is in studying those noise variables that appear to cause a great amount of variation in 
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the response. Therefore, it is likely that in most cases, SM  will at least be comparable 

to EM  and SV  will at least be comparable to EV  at many points x  in R .  

 

2.6.1 Example 2.3  

 

 Consider the case where 2k , 2n , }2,1,11);,{( 21  ixxxR i , 

}2,1,11);,{( 21  jzzzS j , 5.121  cc , and 6021  mm . This gives 

73.0II  . Suppose that the experimenter chooses the MRD design that comprises:  

1. The 42  factorial in which the coded levels of each factor are at 1 .  

2. One replicate of the axial points for the control variables with axial distance 1 .  

3. Four center points.  

 Suppose that the parameters γ , Δ , and 2  are given by 











2

3
γ , 










15.1

15.1
Δ , and 12  . 

The sizes of the elements of γ  and Δ  relative to   appear to be reasonable based on 

an inspection of some real and hypothetical examples in the literature. Note that 93 

percent of the size of 2
Y  at 0x  is attributed to the noise variables. At )1,1( x , 

022  Y  whereas at )1,1(x , 2
Y  is a maximum. Figure 2.4 plots )ˆvar( zY  and 

)ˆvar( Y  versus x  while Figure 2.5 plots )ˆvar( 2
zY  and )ˆvar( 2

Y  versus x . These 

figures demonstrate that even with a moderately large sample size for each noise 

variable, sampling variation can significantly inflate the variances of zY̂  and 2ˆ
zY . 
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Figure 2.4: Plots of )ˆvar( zY  and )ˆvar( Y  versus x  

 

 

Figure 2.5: Plots of )ˆvar( 2
zY  and )ˆvar( 2

Y  versus x  

 

)ˆvar( zY  

)ˆvar( Y  

)ˆvar( 2
zY  

)ˆvar( 2
Y  



 47

Remark: Example 2.3 suggests that when the means and variances of the noise 

variables are unknown and estimated with sample data, it makes little sense to focus on 

choosing the most efficient experimental design only. Efficient experiment designs 

have received much attention in the literature while the problem of planning process 

data collection seems to be considered an insignificant problem. Although SM  and SV  

tend to be small around the point where 022  Y , they can be very large at other 

points in R . Frequently, interest is in predicting the mean and variance of the response 

over the region R  rather than at only the point where 022  Y , which in any case 

is usually unknown. Furthermore, tradeoffs between the objectives of minimizing the 

variance, minimizing operating or product costs, and optimizing the mean of the 

response must be made by the decision maker in many cases and accurate estimation 

of the mean and variance models is required for this purpose.  

 

2.7 Summary  

  

 This chapter gives the proposed procedure that combines planning of the 

sampling effort and planning of the combined array experiment in a single step. Key 

assumptions that are and shall be made in further developing the procedure into a 

complete approach are given in Section 2.2.1. The problem of choosing the design 

region for the noise variables S , and the scaling factors njc j ,,1,   is treated. 

Equation (2.4) is used to determine the values of njc j ,,1,   that would give a 

desired II  given an S  that is the Cartesian product of intervals for each noise variable. 

Estimators for the mean and variance models, i.e. zY̂ , 2ˆ
zY , and 2ˆ

zYB  are given in 

Equations (2.7)-(2.9). The question of how errors in estimates of the means and 
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variances of the noise variables are transmitted to estimates of the mean and variance 

models is resolved with the derivation of Equations (2.11)-(2.15). Based on these 

equations, the bias and variance of each of the estimators zY̂  and 2ˆ
zY  are 

investigated. In Proposition 2.1, we show that zY̂  is unbiased if μ̂  is unbiased and in 

Proposition 2.2, we derive the variance of zY̂ . Formulas for the variance of zY̂  are 

given in Equations (2.16) and (2.20), the latter for the case where μ̂  is a vector of 

sample means. In Proposition 2.4, we show that if each 2ˆ j  is unbiased, 2ˆ
zY  is 

unbiased. The variance of 2ˆ
zY  is derived in Proposition 2.5 and is given in Equation 

(2.21). Proposition 2.6 gives a reason for preferring 2ˆ
zY  to 2ˆ

zYB . In addition, 

asymptotic properties of the estimators zY̂  and 2ˆ
zY  that provide justifications for the 

use of those estimators are mentioned in Section 2.5.3. Finally, we compare the 

variance of  zY̂  with the variance of Y̂  and also the variance of 2ˆ
zY  with the 

variance of 2ˆY . The comparisons show that sampling variation can significantly 

inflate the variance of the estimators for the mean and variance models. 
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CHAPTER 3 

 

 

OPTIMAL ALLOCATION OF EXPERIMENT EFFORT 

TO SAMPLING AND EXPERIMENTING  

 

 

3.1  Introduction 

 

 Cost can be an important consideration in the practice of design of experiments. 

A discussion of cost considerations in the selection of the appropriate split plot 

arrangement for robust design is given by Box et al. (2005). Wu and Hamada (2000) 

discuss cost considerations in selecting between crossed arrays and combined arrays. 

Park et al. (2005) present G-optimal designs generated with a genetic algorithm that 

satisfy certain cost constraints. In practice, any experiment program is allocated a finite 

budget and must be completed within a specific length of time. Therefore, in the 

setting of the proposed procedure given in Figure 2.1, it is of practical interest to 

determine the sample sizes and design that best estimates the mean and variance 

models given constraints on time and budget. In the remainder of this thesis, a 

specification of njm j ,1,   and a design shall be called a scheme. Hence, our 

problem is to find a scheme that best estimates the mean and variance models given the 

available resource. In considering the problem, we shall always assume that each j̂  
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and 2ˆ j  are the sample mean and sample variance respectively of a random sample of 

size jm . 

 Alternative schemes can be evaluated based on the values of )ˆvar( zY  and 

)ˆvar( 2
zY  at various Rx . However, instead of )ˆvar( 2

zY , we use )ˆˆvar( 22  zY  as a 

basis for evaluating alternative schemes in this research. One reason is the following. 

The variance model 2
Y  comprises two components: )()( ''' xΔγxΔγ   representing 

the component of 2
Y  due to the noise variables to be studied in the combined array 

experiment, and 2  representing the component of 2
Y  due to unidentified noise 

variables. There is, however, usually more interest in estimating the quantity 

)()( ''' xΔγxΔγ   than the constant 2 . This can be seen by surveying criteria 

proposed in the literature for evaluating a combined array design. For instance, Borror 

et al. (2002) propose evaluating designs based on njCx jj

k

i
iijj ,,1,ˆˆvar

1













 , 

which are called the slope variances. In another paper, Castillo et al. (2007) propose 

the criterion 




  ])ˆˆ[(var ''

ˆ,ˆ
QΔxγ

ΔγQ
E  for evaluating and generating designs for RPD 

experiments. These two criteria represent attempts to quantify the performance of a 

design at estimating the sensitivity of the response to changes in the noise variables. 

They do not reflect interest in 2 . Now, an estimator for )()( ''' xΔγxΔγ   is 

22 ˆˆ  zY . Evidently, 22 ˆˆ  zY  is unbiased for )()( ''' xΔγxΔγ  . In addition, 

22 ˆˆ  zY  has a smaller mean squared error than 22 ˆˆ  zYB  when 3dfSSE . 

Therefore, when there is more interest in estimating )()( ''' xΔγxΔγ   than 2 , a 

scheme should be evaluated based on )ˆˆvar( 22  zY . It can be shown that  
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ESY VV  )ˆˆvar( 22  z ,                     (3.1) 

where SV  is as defined in Equation (2.21) and EV  is given by  
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Note that EV  is obtained from EV  by replacing the term 24 )](1)[/2( VCtracedfSSE   

with 24 )]()[/2( VCtracedfSSE .  

In this research, we consider only the sample sizes and the design as decision 

variables in the allocation of resource with the objective of improving the estimation of 

the mean and variance models. The scaling factors njc j ,,1,   appear in the 

expressions for )ˆvar( zY , )ˆvar( 2
zY , and )ˆˆvar( 22  zY . However, it should be noted 

that although wider levels of the noise variables reduce )ˆˆvar( 22  zY  by reducing EV  

and reduce )ˆvar( 2
zY  by reducing EV , they have no effect in reducing SV  and 

)ˆvar( zY . This can be seen by noting that if the scaling factor for the thj  noise 

variable jc  is replaced by 0,  jjjj kckc , then the coefficient j  of the response 

model given in (1.1) should be replaced by jjj k    and the coefficients 

kiij ,,1,   should be replaced by kik ijjij ,,1,   . Therefore, as each jc  

increases, EV  tends to zero and EV  tends to dfSSE/2 4  but )ˆvar( zY  and SV  remain 

constant. However, as discussed in Section 2.3, larger scaling factors give a tolerance 

region ξS  that is expected to contain a larger proportion II  of the joint distribution of 

the noise variables and this raises concern about model inadequacy. For this reason, we 
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do not consider the scaling factors as decision variables to be chosen to improve 

estimation of the variance model.  

 

3.1.1  General Formulation of Resource Allocation Problem 

 

 This chapter considers special cases of the general resource allocation problem, 

which is formulated below.  

General 
Formulation of 

Resource 
Allocation 
Problem 

min߮ ቂ )ˆvar( zY , )ˆˆvar( 22  zY ቃ Explanation of 
Constraint 

subject to:    ܠ௟ א ܴ, ݈ ൌ 1,… , ܰ, 
Coded levels for 
control variables must 
be in ܴ.  
 

௟ܢ א ܵ, ݈ ൌ 1,… ,ܰ, 
Coded levels for noise 
variables must be in 
ܵ. 
 

ܰ ൒ ݌ ൅ 1, 

Number of runs must 
be at least ݌ ൅ 1, 
where ݌ is the number 
of coefficients in the 
response model. 
 

௝݉ ൒ 2, ݆ ൌ 1,… , ݊, 

Sample size for each 
noise variable must be 
at least two so that the 
variances can be 
estimated. 
 

,ሺܰ,݉ଵݐݏ݋ܥ … ,݉௡ሻ ൑  ,ܭ
The maximum cost of 
the scheme is ܭ.  
 

π ቂ )ˆvar( zY , )ˆˆvar( 22  zY ቃ ൑ ܷ, 
The maximum value of 
some function of the 
variances is ܷ. 
 

ܰ,݉ଵ, … ,݉௡ are integers.  
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In the above formulation, the coded levels of the control and noise variables for 

each experiment run, the number of experiment runs, as well as the sample sizes for 

each noise variable are decision variables. The objective is to minimize some function 

of the variances ߮ ቂ )ˆvar( zY , )ˆˆvar( 22  zY ቃ. Explanations of the constraints are 

provided in the space to the right of the constraint. There is a constraint on the total 

cost and an upper bound is placed on the value of some function of the variances 

π ቂ )ˆvar( zY , )ˆˆvar( 22  zY ቃ. This latter constraint will be important in cases where 

the objective is a function of only one of the variances (for instance, 

߮ ቂ )ˆvar( zY , )ˆˆvar( 22  zY ቃ ൌ ߮ ቂ )ˆvar( zY ቃ) since it would then be possible to place 

some restriction on the values of the other variance. 

 The general resource allocation problem is extremely difficult to solve. There 

appears to be no result in the literature that may readily be used to solve the simpler 

problem of finding an (exact) design that optimizes ߮ൣ )ˆvar( Y ൧  or ߮ ቂ )ˆˆvar( 22  Y ቃ, 

where Y̂  and 2ˆY  are given in Equations (1.6) and (1.8). In fact, cases of exact 

optimum design problems are frequently simplified by assuming that there is a finite 

set of candidate points with which to construct the optimal design and researchers 

seem to have focus only on the D-optimality criterion (Donev and Atkinson, 1988; 

Welch, 1982). In view of these facts, we do not attempt to solve the general resource 

allocation problem. Instead, we simplify it by:  

1. Assuming that the design to be used is an MRD.  

2. Assuming that there is a finite set of candidate points from which the design is to be 

constructed.  
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3.1.2 Optimization of Resource Allocation for Schemes with the MRD 

Design 

 

 In this chapter, we focus our attention on the case where the specified design is 

an MRD. Two optimization problems shall be formulated and solved: the objective 

function   of the first is the average of )ˆˆvar( 22  zY  over Rx  whereas that of the 

second is the average of )ˆvar( zY  over Rx . The problem of finding schemes that 

perform well with respect to the two conflicting objectives shall also be considered.  

 The MRD is the most widely studied and recommended combined array design 

for RPD experiments. It has three distinct set of points: the factorial points, the axial 

points, and the center points. The factorial portion of the design is a fractional factorial 

that is chosen such that all main effects and two-factor interactions corresponding to 

the response model (2.5) can be estimated. It is a convention to code the high and low 

levels of each factor in the fractional factorial by 1  and 1  respectively. With axial 

points for the control variables, the pure quadratic coefficients for the control variables 

can be estimated. In the special case where the axial points are at a distance k  from 

the origin, at least one center point is also needed. Because there are no axial points for 

the noise variables and the coded levels of the noise variables in an MRD are either 1 , 

0 , or 1 , the MRD will be a suitable design for the case where   

},,1,11);,,{( 1 njzzzS jn   .       (3.2) 

We shall assume that S  is as given in (3.2) in the remainder of the thesis. 

Along with the sample sizes used to estimate the means and variances of the 

noise variables, the number of replicates of each of the three sets of points in an MRD 

design determines the values of )ˆvar( zY  and )ˆˆvar( 22  zY  at a given x . Therefore, 
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it is naturally of interest to determine the sample sizes njm j ,1,  , the number of 

factorial replicates fr , the number of axial point replicates ar , and the total number of 

runs N  (or equivalently, the number of center points cr ) such that the objective 

function   is optimized subject to some constraint on the available resources. The 

need for judiciously choosing fr , ar , cr  and njm j ,1,   is demonstrated in the 

following example. 

            

3.1.3  Motivating Example 

            

Consider the case in which there are two control variables and two noise 

variables. Suppose that we set 121  cc  whatever the sample sizes and the true 

variance model is 

16)448()765( 2
21

2
21

2

1

2

22

1

2 







  

 

xxxxx
j i

iijjY  . 

Now, let jh1  denote the cost of making one observation on the thj  noise 

variable, let 2h  denote the cost of performing one experiment run, and let K  denote 

the available budget/ time for the particular experiment under consideration. 

 Let R  be given by }11,11);,{( 2121  xxxxR , and let the axial 

points for the control variables be set at one unit from the origin. Suppose that 

2.01211  hh , 12 h , and 40K . To simplify matters, add the constraint 

21 mmm   to this problem. With an MRD design in which the 42  factorial 

constitutes one factorial replicate, the experimenter must decide on the values of fr , ar , 

cr , and m . We present two possible schemes that costs 40 units each: 
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A: 4,4,1,10  caf rrrm       

B: 4,1,1,40  caf rrrm  

 In terms of design properties, Scheme A appears to be more attractive since the 

design size is larger. The larger number of axial points enables each pure quadratic 

coefficient of the control variables to be estimated with a much smaller variance 

( 2125.0   for Scheme A versus 2321.0  for scheme B). Considering only experiment 

error, Scheme A is clearly better than Scheme B.  

However, taking into consideration the effect of sampling variation in addition 

to experiment error, Scheme B turns out to be superior to Scheme A. In fact, the values 

of )ˆvar( zY  and )ˆˆvar( 22  zY  for Scheme B are smaller than that for Scheme A 

everywhere in the region R , as shown in Figures 3.1 and 3.2.  

Thus, the experimenter should not pick a scheme arbitrarily or without 

consideration of variation due to sampling errors because a seemingly reasonable 

choice may lead to significantly inflated variance. 

Remark: Consider the choice of scaling factors 121  cc  in this example. This 

choice leads to 4.0II   for Scheme A and 45.0II   for Scheme B. Consequently, 

the noise variables are varied over ranges that may be too small for the experiment to 

effectively capture the range of variation experienced by the response during process 

operation. Therefore, the scaling factors should be increased and we see that it is not 

appropriate to choose scaling factors without considering their effect on II .  
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Figure 3.1: Variance of zY̂  for Scheme A and Scheme B 

 

   

Figure 3.2: Variance of 22 ˆˆ  zY  for Scheme A and Scheme B 

 

B

A

A

B
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3.2  Choice of Objective Function  

 

 In Section 3.1.3, it is seen that the performance of different schemes in 

estimating Y  and 22  Y  may be evaluated by plotting )ˆvar( zY  and 

)ˆˆvar( 22  zY  versus x . However, when x  has three or more elements, it is difficult 

to compare the performance of different schemes in this manner. Furthermore, when 

there are many possible schemes, comparison by plotting )ˆvar( zY  and 

)ˆˆvar( 22  zY  versus x  may be awkward. In such cases, it is natural to cast the 

problem as a mathematical optimization problem with an objective function   to be 

optimized. In this section, we discuss briefly, what seems to us some reasonable 

choices of  .  

Due to research in optimal design theory, many single valued criteria are used 

for summarizing different aspects of the performance of a design. G-optimality and IV-

optimality are two main criteria that quantify a design’s performance in prediction. A 

G-optimal design minimizes the maximum of the variances of the predicted values 

over the design region while an IV-optimal design minimizes the average of the 

variances of the predicted values over the design region. For our problem, we consider 

using summary measures of the behavior of )ˆvar( zY  and )ˆˆvar( 22  zY  over R  as 

objective functions. By drawing analogy with optimal design theory, some apparently 

reasonable alternatives for the objective function   are the average or maximum of 

)ˆvar( zY  over R  and the average or maximum of )ˆˆvar( 22  zY  over R . However, 

the maximum of )ˆvar( zY  and )ˆˆvar( 22  zY  over R  tend to occur at points x  

where the variance of the response 2
Y  is a maximum. Since such points will rarely be 
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of interest to the researcher, judging the desirability of a scheme by the value of the 

maximum of )ˆvar( zY  or )ˆˆvar( 22  zY  can hardly be considered appropriate. 

Therefore, it appears that the average of )ˆvar( zY  and the average of )ˆˆvar( 22  zY  

are more reasonable criteria. Note that we consider it more convenient to consider   

as a function of )ˆvar( zY  and   as a function of )ˆˆvar( 22  zY  separately. Rather 

than consider a composite criterion, schemes that perform well when evaluated with 

respect to both )ˆvar( zY  and )ˆˆvar( 22  zY  will be found by searching the set of 

Pareto optimal solutions.  

 In a particular problem setting, the criterion   should ideally be chosen to 

reflect the experimenter’s objectives. The average of )ˆvar( zY  is an appropriate 

criterion when the experimenter is interested in estimating Y  and the average of 

)ˆˆvar( 22  zY  is an appropriate criterion when the experimenter is interested in 

estimating 22  Y  or 2
Y . Estimating Y  and 2

Y  is essential when the experimenter 

faces one of the following situations: 

1. The control variables cannot be divided into those that affect the variance of the 

response and those that affect the mean of the response only. In this situation, 

tradeoffs between achieving the objective for the mean and achieving the 

objective for the variance must be considered.     

2. The experimenter may want to take into consideration other factors such as cost 

before deciding on the control variable settings to use. Hence, control variable 

settings that give a predicted variance slightly higher than the minimum 

variance may be selected because of lower operating costs.   
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3. Constraints in design of the product may also exist so that the use of levels of 

the control variables that give the minimum predicted variance may not be 

possible. For example, in the case where a component is made of sheet metal, 

constraints on the supplier’s process and standardization of process tooling may 

necessitate the use of metal sheets of standard thicknesses. 

  

 A criterion that is based on )ˆvar( zY  or )ˆˆvar( 22  zY  is a natural one in the 

dual response surface approach to robust parameter design. The distinctive 

characteristic of this approach to robust parameter design is the construction of 

response surfaces for the mean and variance models. This is claimed an advantage over 

Taguchi’s approach: “it leads to a better understanding of the system-not just a 

computation of an optimum condition” (Myers et al., 1992). It is also said that 

construction of the mean and variance response surfaces allows understanding of the 

variance-mean tradeoff over the entire design region and gives the decision maker 

flexibility in selecting alternative product designs or process operating conditions 

(Myers and Montgomery, 2002; Montgomery, 1999; Myers et al., 1992).   

  

3.3  Design of Scheme for Optimal Estimation of Variance Model  

 

 As was discussed, when estimation of the variance model is the primary 

interest of the experimenter, one reasonable choice for the objective function   is 

 
RR Y ddIVV xxz /)ˆˆvar( 22  . In this section, we discuss how values of 

njm j ,1,  , fr , ar , and cr  that minimize IVV  may be found.  
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 For an MRD, each njC jj ,,1,   is equal to 







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


k

i
if xfr

1

21 1)( , where f  is 

the number of factorial points that constitute one factorial replicate, and 0jlC  for all 

lj  . We consider f  a parameter that is specified by the experimenter. Let p  denote 

the number of model coefficients in the response model and let N  denote the total 

number of runs. We have pNdfSSE  , where 2/)1)(22(  knkp . Therefore, 

for an MRD design, Equation (3.1) gives 
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                       (3.3) 

where it is assumed that each 2ˆ j  is the sample variance, and j2  is the excess kurtosis 

of the distribution of the thj  noise variable.   

Integrating Equation (3.3) over Rx  and dividing by the volume of R , we get 

the following expression for IVV . 
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 Below, we formulate the problem of minimizing IVV  as a nonlinear integer 

program, which we call Program V (explanations of the constraints in the program are 

also provided). 

 

Program V: 

IVV
Nrmm fn ,,,,1

min


 

Explanation of Constraint 

subject to: 

KNhmh
n

j
jj 


2

1
1  Cost constraint. 

kfrN f 2  

Total number of runs must be 
greater than or equal to the 
number of factorial runs and 
one replicate of axial points. 
 

1fr  
Number of factorial replicates 
must be greater than or equal 
to one. 
 

njm j ,,1 ,2   

Sample size for each noise 
variable must be at least two so 
that the variances can be 
estimated. 
 

integers are ,,,1 ,Nrmm fn   

 

 There are several points to note about Program V. Firstly, note that Assumption 

2.5 implies that for all nj ,,1 , 02 j . We include the excess kurtosis in (3.3) and 

(3.4) as a reminder that IVV  and consequently Program V can be sensitive to 

departures from normality. Different values of njj ,,1,2   can be tried to assess the 

sensitivity of the optimal solution to violations of Assumption 2.5. 

 Secondly, the constraint kfrN f 2  must be changed to 12  kfrN f  

when the axial points are at a distance k  from the origin so that at least a single 
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center point can be assigned to the design to ensure that XX'  is nonsingular. Thirdly, 

because one replicate of the fractional factorial allows estimation of all except the pure 

quadratic terms in the response model, it is always the case that 12  pkf . Hence, 

the constraints kfrN f 2  and 1fr  ensures that 1 pN . Lastly, it can be seen 

that ar  and cr  are not decision variables in Program V. However, given N  and fr , the 

possible values of ar  and cr  are limited by the equation fca frNrkr 2 . 

 Define the continuous relaxation of Program V as the nonlinear program that is 

obtained from Program V by dropping the last constraint. All constraints in the 

continuous relaxation of Program V are linear functions of the decision variables 

nmm ,,1  , N , and fr . In addition, if the integrality requirements on the decision 

variables are dropped, IVV  is a convex differentiable function of those variables on 

the open set },0 ,,,1,1);,,,,{( 1 pNrnjmNrmmO fjfnV   . This fact is 

proven in Appendix C. Let the set of feasible solutions to the continuous relaxation of 

Program V be denoted by VP . It can be seen that VV OP  . Therefore, we have the 

following facts about the continuous relaxation of Program V: its constraints are linear 

in the decision variables and the objective function of this program is convex and 

differentiable on an open set that has as its subset the set of feasible solutions. These 

facts imply that a solution to the continuous relaxation of Program V is a global 

minimum if and only if the first order Karush-Kuhn-Tucker (KKT) condition is 

satisfied (Rockafellar, 2007; Bazaraa et al., 1993). This is an important observation 

because typical nonlinear programming solvers utilize algorithms that converge to the 

first order KKT condition.  

 Due to the characteristics of the continuous relaxation of Program V, the global 

optimal solution of Program V can be obtained by using the branch-and-bound 



 64

algorithm (Li and Sun, 2006). In the branch-and-bound algorithm, successive bounds 

on the decision variables are added as constraints to Program V giving rise to new 

nodes. At each node, a lower bound for the optimal objective function value is required 

for deciding whether to prune the node or continue branching from it. A valid lower 

bound for each node can be obtained by solving the continuous relaxation of the 

program at the node. Owing to the characteristics of the continuous relaxation of 

Program V and the fact that bounds on decision variables are linear constraints, the 

first order KKT condition is necessary and sufficient for a global optimal solution for 

the continuous relaxation of the program at each node.  

There are published studies in the literature that discuss the problem of 

designing efficient branch-and-bound algorithms for solving nonlinear integer 

programs. In particular, Gupta and Ravindran (1985) and Sherali and Myers (1985) 

give detailed descriptions of the branch-and-bound algorithm for solving convex 

nonlinear integer programs. They investigated the effects of various rules for selecting 

the branching variables and branching nodes and give recommendations for designing 

efficient branch-and-bound algorithms. The above studies do not examine the issue of 

solving the continous relaxations of the programs generated at the nodes of the branch-

and-bound algorithm. However, these programs can be solved by one of many 

algorithms proposed for solving nonlinear programs and most of these are designed to 

converge to points that satisfy the first order KKT condition (Bazaraa et al., 1993). 

Given the developments pointed out above, it is clear that the problem of solving 

Program V can be achieved by modern mathematical programming methods. In this 

thesis, Program V and all mathematical programs proposed in later sections are solved 

by using a software package for solving mathematical programs called Lingo.  

 



 65

3.4  Design of Scheme for Optimal Estimation of Mean Model 

            

 In this section, the problem of minimizing  
R RY ddIVM xxz /)ˆvar(  is 

considered. Recall that ESY MM )ˆvar( z , where 2' CCCEM xVx . Thus, to 

formulate the problem as a nonlinear integer program, the quantity 

 RR CCCE ddIM xxxVx // '2  must be expressed explicitly in terms of the decision 

variables fr , ar , and cr . Following Khuri and Cornell (1996), we have 

. ]/[// ''2  
RR CCCRR CCCE ddtraceddIM xxxxVxxxVx     (3.5) 

 General formulas for  RR CCR dd xxxxμ /'  can be obtained for two common 

cases of R  in response surface methodology:  

1. The hyper-sphere centered at the origin with radius  , which we denote by 1R . 

Mathematically, });,,{( 222
111  kk xxxxR  .  

2. The hypercube centered at the origin with sides of length two, which we denote 

by 2R . Mathematically, },,1,11);,,{( 12 kixxxR ik   .  

 First, let '),...,,,1( 211 kxxxx  and '),...,,,,...,,( 13121
22

2
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Let k1  denote a 1k  vector of 1s and tI  denote a tt   identity matrix, where t  is a 

positive integer. Let 0  represent a matrix of 0s, with dimensions that shall be clear 

from the context. Khuri and Cornell (1996) give the following expressions for 11μ , 12μ , 

and 22μ  for the case where 1RR  .  
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For the case where 2RR  , it can shown that  
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The matrices 11μ , 12μ , and 22μ  for other types of region R  can be obtained by 

computing the integrals in Equation (3.6).  

An expression for CV  in terms of fr , ar , and cr  is found as follows. For an 

MRD design, the XX'  matrix has the following form.  
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C

M0

0M
XX' , 
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where CM  corresponds to the columns X  that represent the terms in the mean model 

whereas DM  corresponds to the columns of X  that represent the other terms in the 

response model (the noise main effects and control x noise interactions). 

It follows that  
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This gives us 

1 CC MV . 

Let   be the distance of the axial points from the origin. It can be shown that CM  is 

given by 
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Using the fact that for a square matrix A , IAB   when 1 AB  and B  is unique 

(Hoffman and Kunze, 2002; Harville, 1997), one may verify that CV  is as given below. 
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and caf rkrfrN  2 . Observe that when 1k , there is no control x control 

interaction. Hence, for 1k , the last columns and rows of 22μ  in (3.9) and (3.12), 

CM  in (3.13), and CV  in (3.14) corresponding to 


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


2
kI  should be removed. 

 Putting together (3.5)-(3.9) and (3.14), the following expression for 2/EIM  

for the case where 1RR   is obtained.  
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 Using Equations (3.5), (3.6), (3.10)-(3.12), and (3.14), the following expression 

for 2/EIM  for the case where 2RR   is obtained.  
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where A , B , C , and D  are obtained from (3.14) by setting 1 .  

 The average of SM  over R  is given by 
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xx  and it is assumed that each j̂  is the 

sample average. Thus, an expression for  
R RY ddIVM xxz /)ˆvar(  is given by 
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where EIM  is given by (3.15) when 1RR   and is given by (3.16) when 2RR  . 

 With expressions (3.15)-(3.17), IVM  can be written explicitly in terms of the 

decision variables. Using these results, the minimization problem can be formulated as 

the following nonlinear integer program, which we call Program M (explanations of 

the constraints in the program are also provided).  

 

Program M: 

IVM
cafn rrrmm ,,,,,1

min


 

subject to: 
Explanation of Constraint 

Krkrfrhmh caf

n

j
jj 



)2(2
1

1  Cost constraint. 

1fr  
Number of factorial replicates 
must be greater than or equal 
to one. 
 

1ar  
Number of axial point 
replicates must be greater than 
or equal to one. 
 

njm j ,,1 ,2   

Sample size for each noise 
variable must be at least two so 
that the variances can be 
estimated. 
 

0cr  Number of center points must 
be at least zero. 
 

integers are ,,,,,1 cfan rrrmm    

 

 There are several points to note about Program M. Firstly, as long as each j̂  

is the sample average, IVM  and therefore, Program M is not affected by whether the 

noise variables are normally distributed. This is in contrast to Program V, which 
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depends on the excess kurtosis of the distribution of the noise variables. Secondly, the 

constraint 0cr  must be changed to 1cr  when the axial points are at a distance k  

from the origin to ensure that XX'  is nonsingular. Thirdly, although a single 

observation is sufficient for computing the sample mean, at least two observations are 

needed for computing the sample variance. Therefore, assuming that both mean and 

variance models are to be estimated, we must have the constraints njm j ,,1  2  .  

 Now, let us drop the integrality requirements on fr , ar , and cr . For 1k , 

0f , and 0 , which is always the case, the inverse of the matrix CM  (3.13) 

exists, and is given by CV  (3.14) (where A , B , C , and D  are as defined after the 

equation) for all values of fr , ar , and cr  in the set 

)}2/())(2(,0,0);,,{( 422  afafcafcaf rkfrkrfrrrrrrr  . 

This result can be obtained by directly verifying that CV  as given in (3.14) is the 

inverse of CM  for all points ),,( caf rrr  in  . In addition, observe that A , B , C , and 

D  are differentiable with respect to the triple fr , ar , and cr  at all points in  . 

Therefore, )(/ 2
RCE traceIM μV , which is a linear function of A , B , C , D , 

)2/(1 2
af rfr  , and )/(1 ffr , is differentiable at all points in  . In Appendix D, it is 

also shown that for any bounded R , which is always the case in practice, 2/EIM  is 

convex at all points ),,( caf rrr  in the convex set  . We point out that the 

differentiability and convexity of 2/EIM  for any bounded region R  also follows 

from the fact that it is a special case of the linear criterion function in optimal design 

theory (Silvey, 1980), and that the elements of CM  are linear functions of fr , ar , and 
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cr . However, optimal design theory does not explicitly provide the set of values of 

),,( caf rrr  over which 2/EIM  is convex and differentiable. 

 Temporarily forgetting about the integrality requirements on all decision 

variables in Program M, it can be seen that IVM  is convex and differentiable in the 

decision variables nmm ,,1  , fr , ar , and cr  when 0,,1 nmm  , and ),,( caf rrr . 

Denote by MO  the set }),,(,0,,);,,,,,{( 11  cafncafn rrrmmrrrmm   and denote 

by MP  the set of feasible solutions to the continuous relaxation of Program M. We see 

that MM OP  . Because IVM  is convex and differentiable on MO , and the constraints 

in the continuous relaxation of Program M are all linear, a solution to the relaxed 

program is a global optimal solution if and only if the first order KKT condition is 

satisfied (Rockafellar, 2007; Bazaraa et al., 1993). Consequently, Program M, which 

has the requirement of integer-valued decision variables, can be solved for a global 

optimal solution with the branch-and-bound algorithm (see the discussion in Section 

3.3). A valid lower bound for each node created in the execution of the branch-and-

bound algorithm can be obtained by relaxing the integrality requirements on the 

decision variables and solving the resulting mathematical program.  

  

3.5  Pareto Optimal Solutions  

            

 In most cases, the optimal solutions for Program M and Program V are 

conflicting. This occurs when the optimal values of nmm ,,1   or fr  for both programs 

differ. It can be seen that each decision variable, i.e. njm j ,,1,  , fr , ar , and cr  

carries about equal weight in the minimization of IVM  since the sample observations, 

factorial points, axial points, and center points all contribute to the estimation of the 
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mean model. On the other hand, only njm j ,,1,   and fr  are influential in the 

minimization of IVV . Given a fixed number of experiment runs N , one often finds 

that choosing an allocation of fr , ar , and cr  such that fr  takes on the maximum 

possible value minimizes IVV . Therefore, we expect that the optimal solution for 

Program V can be far from optimal for Program M and vice versa. Since the 

experimenter is often equally interested in estimating the mean and variance models, 

some method of finding a compromise solution is needed. In this research, we consider 

generating a string of Pareto optimal solutions. We assume the generated alternative 

solutions are presented to the decision maker, who is supposed to choose one from 

among those solutions for implementation.  

 To generate a set of Pareto optimal solutions, first solve Program M and 

Program V. Then, add the constraints caf rkrfrN  2  and UIVV   to Program M, 

where U  is greater than or equal to the optimal value of Program V. Let us call the 

resulting mathematical program, Program UP . Starting with a value of U  near the 

minimum of IVV , a string of Pareto optimal solutions is obtained by incrementally 

increasing U  and solving Program UP  until the optimal objective value for Program 

UP  is the same as the optimal objective value for Program M.  

 The continuous relaxation of Program UP  has a nonlinear constraint UIVV  . 

Nevertheless, IVV  is convex in the decision variables. This implies that the 

continuous relaxation of Program UP  is a convex program (Rockafellar, 2007; Bazaraa 

et al., 1993). Thus, Program UP  can be solved successfully with the branch-and-bound 

algorithm because the continuous relaxation of the program at each node is a convex 

program. The first-order KKT condition is sufficient for optimality for the relaxed 
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program at each node. However, it is not a necessary condition (Rockafellar, 2007; 

Bazaraa et al., 1993). 

 

3.6  Discussion 

  

 In this section, we discuss several issues that concern Program V, Program M, 

and Program UP .  

 Firstly, we point out that the number of decision variables for each of the three 

programs increases linearly with the number of noise variables. In a practical scenario, 

the number of decision variables will likely be less than about ten because it is rare for 

dozens of noise variables to be studied in any one experiment. This can be seen by 

noting the number of noise variables considered in papers in the RPD literature. For 

instance, Borkowski and Lucas (1997) provide a catalogue of fractional factorials for 

MRD designs that covers cases of up to 10 noise variables. We have found that on a 

Toshiba Portege M6 notebook with two Intel Processors of 2.53GHz, Lingo could 

solve Program V, Program M, and Program UP  for problems of up to three noise 

variables in a few seconds. Thus, we believe that the computation effort and solution 

time required to solve these programs will not be an issue in most cases.  

In Section 2.3, it was proposed that the design region S  and the scaling factors 

njc j ,,1,   be specified in such a way that ξS  is a tolerance region of reasonable 

size. We assumed that the sample sizes are given in discussing the problem. On the 

other hand, in considering the problem of optimal allocation in this chapter, we assume 

that S  and njc j ,,1,   are given, and that the sample sizes are decision variables. 



 74

Nevertheless, because the noise variables are assumed independently and normally 

distributed, we may fix S  as in (3.2) and use the scaling factors to control II .  

 For the case of minimizing the average of )ˆvar( zY  (Program M), the scaling 

factors can be adjusted without changing )ˆvar( zY . This implies that the optimal 

sample sizes are independent of the scaling factors. Thus, we can first choose any 

values for the scaling factors, solve Program M, and then readjust the scaling factors to 

achieve a given II  based on the optimal sample sizes. For the case of minimizing the 

average of )ˆˆvar( 22  zY  (Program V) and Program UP , the optimal sample sizes are 

dependent on the scaling factors because )ˆˆvar( 22  zY  is dependent on the scaling 

factors. A trial and error approach of specifying the scaling factors can be used to 

achieve the desired II  with the optimal sample sizes. However, as was pointed out in 

Section 2.3, the choice of II  is generally flexible. Furthermore, Table 2.1 suggests that 

the values of the scaling factors that give the desired II  for a large range of sample 

sizes can be well approximated by the values of the scaling factors that give the desired 

II  when all sample sizes become infinitely large. In view of this, the use of 

asymptotic results for specifying the values of the scaling factors is sufficient in most 

cases. As a check, the exact value of II  can be computed after solving Program V or 

Program UP . If II  is within an acceptable range of values, no changes to the scaling 

factors are required. In the examples in subsequent sections, we shall adopt this 

approach for all three programs, i.e. Program M, Program V, and Program UP . 

 Computation of the quantities G , jF , and jH , nj ,,1  in the objective 

function of Program V and the quantities njE j ,,1,   in the objective function of 

Program M requires integration over the region R . In the following, we briefly discuss 



 75

how the required integrations can be done for the case where 1RR   and 2RR  , 

where 1R  and 2R  are as defined in Section 3.4. Integration over 2R  is straightforward. 

One simply integrates over the interval ]1 ,1[  for each variable in x . For example, 
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 When 1RR  , integration is more complicated. For the case where 2k , 

integration may be carried out with a transformation to polar coordinates and when 

3k , integration may be carried out with a transformation to spherical coordinates. 

For higher dimensions, an appropriate set of transformations is given by (Edmonson, 

1930) 
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      (3.18) 

In each case, it should be observed that the change of variable formula for multiple 

integrals should be used (Khuri, 2002). Integration over hyperspheres of high 

dimension tends to be complicated. However, as noted by Lucas (1974), composite 

designs for hyperspheres of dimension 4k  with radius k  are seldom used in 

practice because such designs have axial point distance k  even though the factorial 

points are at 1 .  
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Finally, in choosing the fractional factorial design to use for the MRD, the 

catalogue provided by Borkowski and Lucas (1997) might be useful. The number of 

runs of the smallest fractional factorial that allows estimation of all except the pure 

quadratic terms in the response model is a suitable choice for the value of f  (the 

number of factorial points that constitute a replicate). However, if 1fr  in the optimal 

scheme, the experimenter may run a replicate of a larger fractional factorial with ffr  

runs if such a fractional factorial exists or two replicates of a fractional factorial with 

2/ffr  runs if such a fractional factorial exists, and so on. In other words, a larger 

fraction replicated so that the total number of runs is the same as the total number of 

factorial runs in the optimal scheme may be used. The advantage of a larger fractional 

factorial is that it allows more effects to be estimated. For example, if f  represents the 

number of runs in a quarter fraction and the optimal number of factorial replicates for 

Program V turns out to be 2fr , the actual design implemented can be a half fraction 

so that many more effects are estimable.  

 

3.7 Examples  

 

 In the following, we present three examples to illustrate the material we present 

in this Chapter.  

 

3.7.1 Example 3.1 

 

Consider the motivating example in Section 3.1.3 where the data are the 

following. 
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2n , 2 k , 2RR  , 121  cc ;  

51  , 82  , 611  , 721  , 412  , 4 22  , 162  ; 

2.011 h , 2.012 h , 12 h , 40K , 16f . 

Numerical integration gives 
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 Adding the constraint mmm  21  to Program V and Program M and solving 

the programs, the optimal solutions shown in Table 3.1 are obtained. Because 1fr  

and 20N  in the optimal solution for Program V, we must have 1ar  and 0cr . 

Scheme B in the motivating example is the optimal solution for Program M. In this 

case, it is seen that the optimal solution for Program M also performs quite well when 

evaluated with respect to IVV .  

 

Table 3.1: Optimal Solutions for Program V and Program M:  
121  cc  (Example 3.1) 

 
Optimal for Program 

V M 

IVV  1532.4 1691.1 

IVM  12.086 6.2783 

1m  50 40 

2m  50 40 

fr  1 1 

ar  1 1 

cr  0 4 

  

 It was pointed out in Section 3.1.3 that the scaling factors are too narrow. 

Consider using a new set of scaling factors 1c  and 2c . Set 221  cc  so that 

asymptotically, 91.0II  . Because the scaling factors change, the coefficients of the 
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response model change. The new set of coefficients are given by 101  , 162  , 

1211  , 1421  , 812  , and 822  . Let the new set of values for jE , jF , and 

jH  be represented by jE , jF , and jH . Because jjjj EccE 2)/( , jjjj FccF 4)/( , 

and jjjj HccH 2)/( , we have 
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 The optimal solutions for Program M and Program V are given in Table 3.2. 

They are the same as those given in Table 3.1. However, because of the use of larger 

scaling factors, the values of IVV  for the optimal solutions are reduced considerably. 

The exact values of II  for both solutions are about 0.9. 

 

Table 3.2: Optimal Solutions for Program V and Program M:  
221  cc  (Example 3.1) 

 
Optimal for Program 

V M 

IVV  847.33 1006.9 

IVM  12.086 6.278 

1m  50 40 

2m  50 40 

fr  1 1 

ar  1 1 

cr  0 4 

 

3.7.2 Example 3.2 

 

Consider the following design problem.  

2n , 2 k , 2RR  , 5.121  cc ;  

51  , 82  , 611  , 721  , 412  , 4 22  , 162  ; 
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25.011 h , 25.012 h , 112 h , 100K , 16f  (implying a full factorial). 

The coefficients 2,1, jj  and 2,1,2,1,  jiij  are the same as those given 

in Example 3.1 except that they are for larger scaling factors. This implies that for this 

example, changing either of the noise variables by one standard deviation leads to a 

smaller absolute change in the response. 

A set of five Pareto optimal solutions obtained by solving Program UP  is given 

in Table 3.3. For each solution in Table 3.3, 7.0II  . Therefore, the specified scaling 

factors are acceptable. The optimal solution for Program V is the solution labeled S1 

whereas the optimal solution for Program M is the solution labeled S5. It is seen that 

the optimal solution for Program V performs poorly when evaluated with respect to 

IVM  whereas the optimal solution for Program M performs poorly when evaluated 

with respect to IVV . Therefore, when estimation of both Y  and 2
Y  is important, it 

seems that the solutions labeled S2, S3, and S4 are much better choices.  

 

Table 3.3: Pareto Optimal Solutions: 2]1,1[R  (Example 3.2) 

 S1 S2 S3 S4 S5 

IVV  122.45 139.36 159.74 171.37 248.33 

IVM  9.4690 2.3502 1.7683 1.7217 1.6827 

1m  91 70 79 68 81 

2m  101 82 93 80 95 

fr  3 3 2 2 1 

ar  1 2 3 4 6 

cr  0 6 13 15 16 

 

Now, suppose that R  is a circle of radius 2  instead of the square 

assumed above, and let 2 . Note that in this case, the design must have at least 

one center point so that all terms in the response model are estimable. Therefore, the 
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constraint 0cr  in Program M is changed to 1cr  and the constraint kfrN f 2  

in Program V is changed to 12  kfrN f . Integration with a change of variables to 

polar coordinates gives  
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 The optimal solutions for Program V and Program M are given in Table 3.4. 

The optimal values of fr  and N  for Program V dictate the values of ar  and cr  given 

in the table. The solutions in Table 3.4 are very similar to the solutions obtained when 

the R  is a square, i.e. solutions S1 and S5 in Table 3.3. This suggests that the solutions 

to Program M and Program V are not very sensitive to the choice of the region R . 

 

Table 3.4: Optimal Solutions for Program V and Program M: 
}2);,{( 2

2
2
121  xxxxR (Example 3.2) 

 

 
Optimal for Program

V M 

IVV  173.99 351.56 

IVM  7.1632 1.8858 

1m  94 82 

2m  94 90 

fr  3 1 

ar  1 6 

cr  1 17 

    

3.7.3 Example 3.3 

 

 Consider an example given by Montgomery (1999) where 3n , 2k , 

1321  ccc , 95.0~ 2  , and the fitted response model is 
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.56.143.101.258.289.027.0

33.233.273.287.218.260.213.492.237.30~

322212312111

32121
2
2

2
121

qxqxqxqxqxqx

qqqxxxxxxy




 

In the example, the design used is an MRD design, which consists of a 152 
V  factorial, 

one replicate of the axial points for the control variables with axial point distance 

2 , and three center points. Asymptotically, 32.0II  . Thus, the scaling factors 

appear to be too small and the results obtained from the experiment may be 

unrepresentative of actual process conditions. 

Suppose we choose to perform another experiment with larger scaling factors 

1c , 2c , and 3c . Choose 2321  ccc  so that asymptotically, 87.0II  . Rewriting 

the fitted response model in terms of 2/11 qq  , 2/22 qq  , and 2/33 qq  , we have 

.12.386.202.416.578.154.0

66.466.446.587.218.260.213.492.237.30~

322212312111

32121
2
2

2
121

qxqxqxqxqxqx

qqqxxxxxxy




 

 Let R  be the circle centered at the origin with radius 2. Set 2  and let the 

152 
V  fractional factorial constitute one factorial replicate. Suppose that the cost 

estimates 11h , 12h , 13h , and budget available K  are given by 1131211 hhhh  , 

12 h , and 70K . Integration with a change of variables to polar coordinates gives 
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 The left part of Table 3.5 gives four Pareto optimal solutions for the case where 

1.01 h  and the right part of Table 3.5 gives four Pareto optimal solutions for the case 

where 2.01 h . The optimal solutions for Program V and Program M are labeled S1 

and S4 respectively. All solutions in Table 3.5 seem to perform quite well when 

evaluated with respect to IVV  and IVM .      
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Table 3.5: Pareto Optimal Solutions: }4);,{( 2
2

2
121  xxxxR  (Example 3.3) 

 
1.01131211  hhhh  2.01131211  hhhh  

S1 S2 S3 S4 S1 S2 S3 S4 

IVV  17.011 18.000 18.926 20.175 27.371 27.947 29.999 30.681 

IVM  0.52414 0.45916 0.42520 0.42381 0.73102 0.69695 0.67854 0.66035 

1m  164 152 145 132 82 81 79 74 

2m  117 124 123 111 59 62 65 63 

3m  219 184 162 147 109 101 91 83 

fr  1 1 1 1 1 1 1 1 

ar  1 2 2 3 1 1 1 2 

cr  0 0 3 3 0 1 3 2 

 

 Suppose that R  and   are changed to 2RR    and 1  respectively. 

Numerical integration gives 

;836.33

,498.25

,296.35

3

2

1







E

E

E

   

;3.2384

,09.997

,0.1925

3

2

1







F

F

F

   ;
45

133
G    

.625.59

,506.43

,288.60

3

2

1







H

H

H

 

 Table 3.6 presents a set of four Pareto optimal solutions for the case where 

1.01 h . The optimal solution for Program V is labeled S1 whereas the optimal 

solution for Program M is labeled S4. Tables 3.5 and 3.6 indicate that the optimal 

solutions for Program V and Program M are somewhat insensitive to the choice of R . 

However, the optimal solution for Program V performs poorly with respect to IVM  

when 2RR  , in contrast to the case where 1RR  . In fact, in Table 3.6, the optimal 

solution for Program V has a value of IVM  that is about 2.5 times the minimum 

whereas in the left part of Table 3.5, the optimal solution for Program V has a value of 

IVM  that is about 1.25 times the minimum. The reason for this marked difference is 

that estimation of the pure quadratic terms for the control variables is improved with 

larger values of  . 
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Table 3.6: Pareto Optimal Solutions: 2]1,1[R  (Example 3.3) 

 S1 S2 S3 S4 

IVV  6.3168 6.6977 7.1991 7.6160 

IVM  0.70881 0.33633 0.30342 0.29728 

1m  177 162 145 134 

2m  127 136 116 114 

3m  196 162 149 132 

fr  1 1 1 1 

ar  1 1 2 2 

cr  0 4 5 8 

  

3.8 Greedy Algorithm for Finding Optimal Schemes 

 

 In this section, we propose a greedy algorithm for finding schemes that perform 

well in estimating either the mean model, the variance model, or both models given a 

candidate set of design points. The algorithm is represented by the following steps. 

1. Specify a finite candidate set of design points ሼሺܠ௟
ᇱ, ௟ܢ

ᇱሻ, ݈ ൌ 1,… ,  .ሽܮ

2. Set the objective function ߮ to either ܸܸܫ ,ܯܸܫ, or ݓଵ ቂ
ூ௏ெ

୫୧୬ ሺூ௏ெሻ
ቃ ൅ ଶݓ ቂ

ூ௏௏

୫୧୬ሺூ௏௏ሻ
ቃ, 

where min ሺܯܸܫሻ and min (IVV) are the minimum values of ܯܸܫ and ܸܸܫ found 

so far. In the latter objective, ݓଵ and ݓଶ, which we may call weights, are positive 

real numbers such that ݓଵ ൅ ଶݓ ൌ 1. Specify the cost estimates ܭ, ݄ଵଵ, … , ݄ଵ௡, ݄ଶ. 

3. Start with a design ۲଴ with ܰ ൌ ݌ ൅ 1 runs (that allows estimation of the response 

model). Set ݅ ൌ 0, ۲௜
כ ൌ ۲଴, and ܭ௜ ൌ ܭ െ ݄ଶܰ. 

4. Allocate the ܭ௜ units of resource to give ௝݉ ൌ ௝݉,௜
כ  , ݆ ൌ 1,… , ݊. This is done by 

minimizing 


n

j
jjj cmE

1

2 )]/([  if ߮ ൌ  ,ܯܸܫ
















n

j j

j

j

j

j c

F

mm1
4

2

1

2 
 if ߮ ൌ  and ,ܸܸܫ
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

















n

j j

j

j

j

j

n

j
jjj c

F

mmIVV

w
cmE

IVM

w

1
4

22

1

21

1

2

)min(
)]/([

)min(


 if 

߮ ൌ ଵݓ ቂ
ூ௏ெ

୫୧୬ ሺூ௏ெሻ
ቃ ൅ ଶݓ ቂ

ூ௏௏

୫୧୬ሺூ௏௏ሻ
ቃ. (We propose minimizing the latter two 

quantities because 1)/ˆ( jjE   when jm  is large so that EV  is approximately 

independent of the sample sizes.) 

5. If ݅ ൌ 0, set ߮଴
כ  equal to the value of ߮ evaluated at ۲௜

כ ൌ ۲଴ and  

௝݉ ൌ ௝݉,଴ 
כ , ݆ ൌ 1,… , ݊. Set ߮ିଵ

כ  to any value greater than ߮଴
כ , and go to Step 12. 

Otherwise, go to Step 6. 

6. Set ݈ ൌ 1 and ߮௜
כ ൌ ߮௜ିଵ

כ . 

7. Add the point ሺܠ௟
ᇱ, ௟ܢ

ᇱሻ to the design ۲௜ିଵ
כ .  

8. Evaluate ߮ for the scheme comprising the design obtained in Step 7 and 

௝݉ ൌ ௝݉,௜
כ  , ݆ ൌ 1,… , ݊. 

9. If ߮ ൏ ߮௜
then ߮௜ ,כ

כ ൌ ߮. 

10. If ݈ ൌ ݈ go to Step 11. Otherwise, set ,ܮ ൌ ݈ ൅ 1 and go to Step 7.  

11. If ߮௜
כ ൒ ߮௜ିଵ

כ , stop. Return the design ۲௜ିଵ
כ  and the sample sizes 

௝݉ ൌ ௝݉,௜ିଵ
כ  , ݆ ൌ 1,… , ݊. Otherwise, set ۲௜

to be the design corresponding to ߮௜ כ
  .כ

12. Set ݅ ൌ ݅ ൅ 1 and ܭ௜ ൌ ௜ିଵܭ െ ݄ଶ.  

13. If  



n

j
ji hK

1
12 , stop and return the design ۲௜ିଵ

כ  and the sample sizes ௝݉ ൌ

௝݉,௜ିଵ
כ  , ݆ ൌ 1,… , ݊. Otherwise, return to Step 4.            

Remark: ܯܸܫ and ܸܸܫ should be computed by integrating Equations (2.20) and (3.1) 

respectively, where the expressions in (2.25) and (2.26) are to be substituted for 

)/ˆ( jjE   and )/ˆvar( 22
jj   in Equation (3.1). The equations for ܯܸܫ and ܸܸܫ given 

in Sections 3.3 and 3.4 are only valid for the MRD design. 
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3.8.1 Example 3.4 

 

Consider the case where ݇ ൌ 1, ݊ ൌ 1, ܿଵ ൌ ଵߛ ,1 ൌ ଵଵߜ ,1 ൌ 1, and ߪଶ ൌ 1. 

Suppose that the cost estimates are ܭ ൌ 20, ݄ଵଵ ൌ 0.5, ݄ଶ ൌ 1 and the candidate set of 

design points ሺݔଵ, ,ଵሻ is ሼሺെ1,െ1ሻݖ ሺ0, െ1ሻ, ሺ1, െ1ሻ, ሺെ1,1ሻ, ሺ0,1ሻ, ሺ1,1ሻሽ. 

 Let the initial design be specified by ݎଵ ൌ ڮ ൌ ଺ݎ ൌ 1, where  ݎଵ, ,ଶݎ … ,  ଺ areݎ

the number of replicates of each of the six candidate points in the design. 

 Table 3.7 presents the result of an implementation of the greedy algorithm 

given in the preceding section with ߮ ൌ  The algorithm converges after seven .ܯܸܫ

iterations. The final scheme that is obtained is given in the last column of Table 3.7 

and for this scheme, ܯܸܫ ൌ 0.2658. An implementation of the greedy algorithm for 

the case where ߮ ൌ  ܸܸܫ is presented in Table 3.8. We see that the minimum of ܸܸܫ

that is found is 1.0515. Finally, we implement the algorithm for the case where 

߮ ൌ 0.5 ቀ ூ௏ெ

଴.ଶ଺ହ଼
ቁ ൅ 0.5 ቀ ூ௏௏

ଵ.଴ହଵହ
ቁ. The result is given in Table 3.9. Note that we give the 

values of 100߮ in the table, which are percentages, and the ideal percentage is 100. 

A comparison of Tables 3.8-3.9 reveals that the sample sizes and design sizes 

in the optimal schemes for the two cases are the same. The optimal scheme for the case 

of ߮ ൌ  has a slightly larger design. In addition, we see that the optimal scheme ܯܸܫ

for ߮ ൌ ,has most replications at ሺ0 ܯܸܫ െ1ሻ and ሺ0,1ሻ. Likewise, the scheme that 

optimizes ߮ ൌ 0.5 ቀ ூ௏ெ

଴.ଶ଺ହ଼
ቁ ൅ 0.5 ቀ ூ௏௏

ଵ.଴ହଵହ
ቁ has most replications at these two points. In 

contrast, the optimal scheme for ߮ ൌ ,has most replications at ሺ1 ܸܸܫ െ1ሻ and ሺ1,1ሻ. 

It should be pointed out that in a few of the iterations shown in Tables 3.7-3.9, 

there are more than one candidate design point that give the maximum reduction in the 

value of ߮. However, due to Step 9, the lowest indexed candidate point is selected. 
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Table 3.7: Implementation of Greedy Algorithm with ߮ ൌ  ܯܸܫ

݅  0 1 2 3 4 5 6 7 
 ܯܸܫ 0.4476 0.3713 0.3222 0.3030 0.2889 0.2783 0.2685 0.2658 
 1.2078 1.3563 1.4894 1.4975 1.5550 1.6088 1.7693 1.9315 ܸܸܫ
ଵݎ   1 1 1 1 1 2 2 2 
 ଶݎ 1 2 2 3 3 3 3 3 
 ଷݎ 1 1 1 1 1 1 1 2 
 ସݎ 1 1 1 1 1 1 1 1 
 ହݎ 1 1 2 2 3 3 3 3 
 ଺ݎ 1 1 1 1 1 1 2 2 
݉ଵ  28 26 24 22 20 18 16 14 

 

Table 3.8: Implementation of Greedy Algorithm with ߮ ൌ  ܸܸܫ

݅  0 1 2 3 4 5 6 
 ܸܸܫ 1.9315 1.5813 1.2696 1.1797 1.0965 1.0675 1.0515 
 0.4056 0.4121 0.4222 0.4216 0.4222 0.4339 0.4476 ܯܸܫ
ଵݎ   1 1 1 1 1 2 2 
 ଶݎ 1 1 1 1 1 1 1 
 ଷݎ 1 2 2 3 3 3 3 
 ସݎ 1 1 1 1 1 1 2 
 ହݎ 1 1 1 1 1 1 1 
 ଺ݎ 1 1 2 2 3 3 3 
݉ଵ  28 26 24 22 20 18 16 

 

Table 3.9: Implementation of Greedy Algorithm with ߮ ൌ 0.5 ቀ ூ௏ெ

଴.ଶ଺ହ଼
ቁ ൅ 0.5 ቀ ூ௏௏

ଵ.଴ହଵହ
ቁ 

݅  0 1 2 3 4 5 6 
100߮  176.0273 153.96 137.1005 124.8193 112.3552 109.0376 107.0813
 0.2722 0.2828 0.3000 0.3095 0.3222 0.3713 0.4476 ܯܸܫ
 1.1753 1.1744 1.1763 1.4009 1.6088 1.7693 1.9315 ܸܸܫ
ଵݎ   1 1 1 1 1 1 1 
 ଶݎ 1 2 2 2 2 3 3 
 ଷݎ 1 1 1 2 2 2 2 
 ସݎ 1 1 1 1 1 1 1 
 ହݎ 1 1 2 2 2 2 3 
 ଺ݎ 1 1 1 1 2 2 2 
݉ଵ  28 26 24 22 20 18 16 
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CHAPTER 4 

 

 

TWO ISSUES OF PRACTICAL INTEREST IN DESIGN  

 

 

4.1  Introduction 

 

 In this chapter, we address two issues of practical interest. Firstly, observe that 

before Program V and Program M can be solved, the values of the parameters γ , Δ , 

and 2  must be specified. These are unknown quantities and therefore, it is not 

obvious as to how Program V and Program M can be utilized in practice. In the first 

part of this chapter, we discuss how this problem may be overcome. We show how 

Program V and Program M may be modified when prior knowledge is captured in the 

form of a prior distribution for the unknown parameters. In addition, we discuss the 

application of robust optimization ideas to handle uncertainty in estimates of the 

parameters γ , Δ , and 2 .  

 Another problem of practical interest is the comparison of schemes comprising 

different types of designs. Designs other than the MRD can be used for an RPD 

experiment. Borror et al. (2002), Robinson et al. (2004), and Castillo et al. (2007) 

discuss these possibilities. However, Program V and Program M are limited only to 

finding optimal schemes when the design is constrained to be an MRD. Even though 

the MRD designs possess many attractive properties, there may be other more 

desirable designs for a particular problem. For example, when the experimenter’s 
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secondary objective is to estimate the model coefficients as precisely as possible, a D-

optimal design is appealing because it minimizes the volume of the confidence 

ellipsoid for the coefficients of the response model in x  and z . In evaluating 

alternative schemes, the average of )ˆvar( zY  and )ˆˆvar( 22  zY  may not give a good 

idea of the performance of the schemes over the entire region R . Considering only 

experiment error, it is known that designs can have a small average for )ˆvar( Y  but 

very large values for )ˆvar( Y  at certain points in R . Hence, a graphical tool that gives 

a more comprehensive picture of the values of )ˆvar( zY  and )ˆˆvar( 22  zY  over R  

can be helpful for evaluating alternative schemes. In the last part of this chapter, we 

show how schemes with different types of designs can be compared with graphical 

plots called cumulative distribution plots, which are modifications of the fraction of 

design space (FDS) plots introduced by Zahran et al. (2003). 

  

4.2  Problem of Unknown Parameters  

 

To allocate the resources of an experiment using Program M and Program V, 

the unknown parameters γ , Δ , and 2  must be specified or estimated. A similar 

problem occurs in nonlinear experimental design (Ford et al., 1989) in which the 

design that is best with respect to a design criterion usually depends on the parameters 

of the model. Referring to this problem, Steinberg and Hunter (1984) comment 

“investigators are thus in the rather paradoxical position of having to know at the 

design stage the very quantities that they are conducting the experiment to estimate!” 

Similarly, Cochran (1973) remarks that this problem places the statistician in a difficult 

position, which is literally like telling the experimenter “you tell me the value of   and 



 89

I promise to design the best experiment for estimating  .” To date, there still seems to 

be no completely satisfactory method of dealing with this problem. However, there are 

some methods proposed in the literature on nonlinear experimental design for solving 

the problem. These are reviewed in Sections 4.2.1-4.2.3. In Section 4.2.4, we discuss 

how the methods reviewed in Sections 4.2.1-4.2.3 can be applied to solve the problem 

of specifying γ , Δ , and 2 . 

 

4.2.1 Point Estimates and Prior Distributions 

 

In nonlinear experimental design, either point estimates or prior distributions 

are specified for the unknown parameters. Technically, a prior distribution is simply a 

distribution from which it is assumed that an unknown parameter of another 

distribution is drawn. The use of prior distributions, however, does not necessarily 

imply that the design criteria used must be motivated by Bayesian considerations 

(Atkinson, 1996; Atkinson et al., 1995; Chaloner and Verdinelli, 1995). When a point 

estimate is available, a design that is optimal with respect to the point estimate may be 

derived. When a prior distribution for the unknown parameters is available, a design 

that optimizes the expected value of the design criterion taken with respect to the prior 

distribution can be obtained (Atkinson, 1996; Atkinson et al., 1995; Atkinson and 

Donev, 1992; Pronzato and Walter, 1985; Atkinson, 1982). Pronzato and Walter (1985) 

discuss ED-optimal designs for nonlinear models and algorithms for constructing such 

designs. The ED-criterion is defined as the expectation of the determinant of the Fisher 

information matrix taken with respect to the prior distribution for the unknown 

parameters.  
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There are two ways to obtain point estimates and prior distributions for 

unknown parameters: prior knowledge and sequential experimentation. 

 

4.2.2  The Use of Prior Knowledge 

 

In problems of nonlinear experimental design in which all runs are to be 

performed before any analysis of the experiment takes place and the optimal design 

depends on unknown parameters to be estimated, it is necessary to rely on prior 

knowledge of the values of the parameters in choosing a design. A prior distribution is 

used to capture prior knowledge of the values of the unknown parameters. Prior 

distributions are usually elicited from the experimenter by asking him or her large 

numbers of simple questions (Press, 2003; Kiefer, 1987). Specific elicitation methods 

are discussed by Press (2003), Chaloner et al. (1993), and Garthwaite and Dickey 

(1988). However, Kiefer (1987) remarks that since eliciting prior distributions are 

often difficult and time-consuming, many Bayesians do not pretend to go through a 

formal process for eliciting the required prior distributions. He claims that in many 

practical settings, the prior distributions used are simply rough summaries of the 

statistician’s feelings about the chances of the various states of nature. It is important 

to point out that prior distributions that quantify the opinion of a person do not have a 

physical meaning and they are referred to as “subjective” probability laws (Kiefer, 

1987). Nevertheless, in some special cases, prior distributions can be specified based 

on past experiments and past data (Press, 2003; Chaloner and Verdinelli, 1995) so that 

the element of subjectivity is reduced. In some cases, the experimenter may be willing 

to provide a guess of the values of the parameters. A point estimate obtained in this 

way is considered a special type of prior distribution, called a degenerate prior. 
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4.2.3  Sequential Experimentation 

 

Another way of dealing with the problem of unknown parameters in nonlinear 

experimental design is to perform experiment runs sequentially. Sequential designs are 

constructed by adding one run at a time or a number of runs at a time (Ford et al., 

1989). After each run or each batch of runs, estimates of the unknown parameters are 

updated and the next run or next batch of runs is chosen to optimize some design 

criterion evaluated at the updated estimates. Repeated sampling inference is difficult in 

the case of sequential designs. Ford et al. (1985) point out the dependence of a design 

point on the preceding set of design points and observations, and argue that this 

dependence should not be ignored in the construction of valid confidence intervals. 

This implies that inference made as if the achieved design were fixed at the start of the 

experiment is not strictly correct. Theoretical research has focused on providing 

asymptotic justifications to validate certain inference procedures (for example, see 

Chaudhuri and Mykland (1993)). However, the conditions required for the asymptotic 

results to hold are often difficult to verify (Atkinson and Bailey, 2001; Ford et al., 

1989).  

Note that it is sometimes assumed that point estimates are obtained from some 

preliminary experiment (Sitter and Wu, 1999; Herzberg and Cox, 1969). However, 

unless the preliminary experiment is performed on another system of similar 

characteristics and not on the system on which the planned experiment is to be carried 

out, it should rightly be regarded as the first phase of a sequence of experiments (Sitter 

and Wu, 1999).  
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4.2.4  Specification of γ , Δ , and 2  

    

 Based on the discussions in the preceding sections, it is seen that either point 

estimates or a prior distribution can be specified for the unknown parameters γ , Δ , 

and 2 . If no experiment precedes the planned experiment, the experimenter can 

either guess the values of γ , Δ , and 2  or use a prior distribution that roughly 

summarizes his or her belief about the parameters. If each parameter can be assumed 

independent a priori, percentiles of the prior distribution for each parameter can be 

assessed using a method given by Press (2003) (page 86). For the case where there is 

more than one person involved in the RPD experiment and it is desired to use a prior 

distribution that reflects the belief of all the experimenters, the method of assessing a 

subjective prior distribution for a group discussed by Press (2003) (pages 94-97) can 

be utilized. However, there remains the problem of developing a method to assess a 

joint prior distribution for the parameters for the case where we cannot assume that the 

parameters are independent. Optimization of resource allocation based on a prior 

distribution for γ , Δ , and 2  is discussed in subsequent sections. 

A sequential procedure for our problem would conceivably involve alternating 

between sampling and performing experiment runs. Such a procedure seems to present 

serious inference problems as in sequential design for nonlinear models. In addition, 

when the data is obtained in a sequential manner, the repeated sampling properties of 

the estimators for the mean and variance models are likely to be very different from 

those derived in Chapter 2.  

Nevertheless, sequential experimentation is a highly recommended practice 

(Box et al. 2005; Box, 1993, Myers et al., 1992). We suggest the following simple but 

possibly sub-optimal two-stage procedure. First, collect some process data to estimate 
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the means and variances of the noise variables, and perform a screening experiment. 

Use the data to determine the active factors and to estimate the unknown parameters γ , 

Δ , and 2  by zγ̂ , zΔ̂ , and 2̂  respectively. These activities constitute the first stage. 

Thus, the purpose of the first stage is to obtain the necessary information to optimize 

the design of the second stage, which has the objective of estimating the mean and 

variance models. A Bayesian analysis of the screening experiment may also be 

performed to obtain a posterior distribution for γ , Δ , and 2 , which will be a prior 

distribution for the second stage. Next, carry out the second stage according to the 

proposed procedure given in Figure 2.1. In particular, optimize the allocation of 

resource for the second stage using the point estimates or prior distribution for γ , Δ , 

and 2  obtained in the first stage. Then, collect process data and perform the 

experiment as planned to estimate the mean and variance models. Note that available 

resource can probably be better utilized if more resource is allocated to the second 

stage. This is because estimation of the mean and variance models is the main 

objective, and resource allocation can be optimally planned in the second stage.  

 

4.3 Expected Variance Criteria 

 

When point estimates for the unknown parameters γ , Δ , and 2  are available, 

they can be used in place of the parameters in solving Program V and Program M. In 

other words, the point estimates may be treated as if they were the true values. 

Examples 3.1-3.3 can be viewed as examples where schemes that are optimal with 

respect to point estimates for the unknown parameters are found. When a prior 

distribution for the unknown parameters is specified, the criteria IVV  and IVM  must 



 94

be modified to incorporate uncertainty in the parameters. In this section, we propose 

modifications to Program M, Program V, and Program UP  to allow for the use of a 

prior distribution for γ , Δ , and 2 .  

Let the elements of γ , Δ , and 2  be concatenated in a vector Λ  and let 

)(
Λ
E  denote the expectation of the quantity in the brackets with respect to Λ . The 

expectation is obtained by multiplying the quantity in the brackets by the prior )(ΛP  

of Λ  and integrating over the sample space of Λ . Schemes that minimize )(IVVE
Λ

 

appear to be good candidates for estimating 2
Y  since they minimize an average of 

IVV  values, weighted by their plausibility of occurrence. In a similar sense, schemes 

that minimize )(IVME
Λ

 appear to be good candidates for estimating Y . Thus, we 

consider replacing IVM  and IVV  with )(IVME
Λ

 and )(IVVE
Λ

 respectively. Observe 

that these criteria are analogous to the ED-criterion mentioned in Section 4.2.1.  

The quantities )(IVVE
Λ

 and )(IVME
Λ

 are given by 

,
)(4111

)(

)(
2

)(

1

2

)(

1
4

22

1
2

1
42

4

1
4 













































n

j j

j

f

n

j j

n

j jf

n

j j

j

j c

HE

frcpNc
G

fr

E

c

FE

m

IVVE


ΛΛΛ

Λ

 

and )(
)(

)( 2
2

1
2


 Λ

Λ

Λ
E

IM

cm

EE
IVME E

n

j jj

j
 



, 

where we set 022221  n   in the expression for IVV . Note that by 

definition,  RR CCCE ddIM xxxVx // '2 ; hence, it does not depend on Λ . 

 Computation of the quantities )( jEE
Λ

, )( jFE
Λ

, and )( 2jHE
Λ

 can be done in the 

following way. First, express jE , jF , and jH  explicitly in terms of the elements of γ  
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and Δ , i.e. obtain an explicit expression for the integrals defining those terms. It is 

straightforward to perform the integrations required for jE , jF , and jH  by hand when 

1RR   or when 2RR  . In addition, mathematical software such as MATLAB and 

MAPLE can be used to perform the integrations. Next, multiply each jE , jF , and 

2jH  by the prior )(ΛP  and integrate over the sample space of Λ . This gives the 

expectation with respect to Λ . For some priors, the expectation can be convenient to 

compute using standard formulas. Alternatively, one can use numerical integration or 

Monte Carlo simulation to do the computation. To illustrate, consider the case where 

2RR  . By expanding the integrands and carrying out the integrations in the 

definitions of jE , jF , and jH , we obtain for nj ,,1 ,  
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Now, if we set 12   and each parameter njkjjj ,,1,,,, 1    is assigned a 

normally and independently distributed prior with mean 0  and variance 2
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 It can be seen that IVV  and )(IVVE
Λ

 are of the same form when written as 

functions of the decision variables. Likewise, IVM  and )(IVME
Λ

 are of the same form 

when written as functions of the decision variables. Thus, replacing IVV  with 

)(IVVE
Λ

 and IVM  with )(IVME
Λ

 in Program M, Program V, and Program UP  does 

not change any characteristics of the mathematical programs. In particular, no change 

in solution method is required. In the following, two numerical examples are given. In 

the examples, it is assumed that the experimenter specifies a degenerate prior for 2 , 

12  .  

 

4.3.1 Example 4.1 

 

Suppose 2n , 3k , }3,2,1,11);,,{( 321  ixxxxR i , and 5.121  cc  

(so that asymptotically, 75.0II  ). Assign to each 2,1,3,2,1 ; ,  jiijj   a uniform 

prior density over the interval ]5 ,5[ . Assume that 2.011 h , 2.012 h , 12 h , 

51K , and choose 16f . The 16 distinct factorial points correspond to those of a 

resolution V fractional factorial. Integration gives 15/64G . Using Equations (4.1)-

(4.3) and Monte-Carlo simulation with 30,000 runs, we obtain 

11.753)()( 21  FEFE
ΛΛ

, 45.35)()( 21  HEHE
ΛΛ

, and 62.16)()( 21  EEEE
ΛΛ

. 

 Minimization of )(IVVE
Λ

 gives 721 m , 732 m , 1fr , and 22N . For 

this optimal scheme, 84.11)( IVVE
Λ

, and 5510.0)( IVME
Λ

. Note that 1fr  and 

22N  implies 1ar  and 0cr . 



 97

 Minimization of )(IVME
Λ

 gives 551 m , 552 m , 1fr , 2ar , and 1cr . 

For this optimal scheme, 54.14)( IVVE
Λ

, and 4626.0)( IVME
Λ

.  

 Both solutions perform almost equally well with respect to both objectives. 

Therefore, it does not really matter which scheme is implemented. 

 

4.3.2 Example 4.2 

 

Consider the problem given in Example 4.1. Suppose now that we assign to 

each 2,1,3,2,1  ; ,  jiijj   a normally and independently distributed prior density 

with mean 0 and variance 92 P . Suppose 100K  and that all other parameters are 

the same as in the previous example. Using Equations (4.4)-(4.6), we obtain 

8.1036)()( 21  FEFE
ΛΛ

, 4.38)()( 21  HEHE
ΛΛ

, and 18)()( 21  EEEE
ΛΛ

.  

 Minimization of )(IVVE
Λ

 gives 1551 m , 1552 m , 2fr , and 38N . For 

this scheme, 2194.7)( IVVE
Λ

 and 41180.0)( IVME
Λ

. Note that 2fr  and 38N  

implies 1ar  and 0cr . 

 Minimization of )(IVME
Λ

 gives 1331 m , 1322 m , 1fr , 5ar , and 

1cr . For this scheme, 036.10)( IVVE
Λ

 and 23486.0)( IVME
Λ

. 

 Again, it appears that both solutions perform almost equally well when judged 

by the criteria )(IVVE
Λ

 and )(IVME
Λ

. 

 

 

 

 



 98

4.4 Robust Optimization  

 

In the case where there is considerable uncertainty in the estimates of γ , Δ , 

and 2 , it may be desirable to utilize the robust optimization approaches of Ben-Tal 

and Nemirovski (1998) and  Xu and Albin (2003). Ben-Tal and Nemirovski (1998) 

propose using a minimax objective to deal with uncertainty in the parameters of a 

mathematical program whereas Xu and Albin (2003) propose the use of a minimax 

deviation objective for response surface optimization. Program M and Program V can 

be converted into programs with a minimax or a minimax deviation objective. Assume 

that a confidence interval is available for each element of Λ  so that the Cartesian 

product of the intervals form a hypercube   (recall that Λ  represents γ , Δ , and 2 ). 

Consider the cases where 1RR   or 2RR  . It can be shown that jE , jF , and 

njH j ,,1,   are functions of the squares of each element in γ  and Δ . This is 

evident from Equations (4.1)-(4.3) for the case where 2RR  . For the case where 

1RR  , we can see that jE , jF , and njH j ,,1,   are functions of the squares of 

each element in γ  and  Δ  by expanding the integrands in the definition of those terms 

and noting that 021
2

2
1

1
1  k

k
k dxdxdxxxx aa

R

a
  whenever one of kiai ,,1,   is an 

odd integer. It follows that the minimax objectives for Program V and Program M are 

)(min maxΛΛ IVV  and )(min maxΛΛ IVM , where maxΛ  is any vector of maximum 

norm in  . These objectives have the same functional forms as IVV  and IVM , and 

so the resulting programs may be solved in the same way as Programs V and M. 

Theorem 1 in Xu and Albin (2003) can be used to formulate the minimax deviation 

objective for IVM  as a tractable mathematical program. Define ),,,( 2
1 nM EE θ . 
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Since the set }),(;{  ΛΛθθ MMM  is a hypercube, we can convert the semi-

infinite program that results from employing the minimax deviation objective to a 

finite optimization problem (see Theorem 1 in Xu and Albin (2003)). Let 

12,,2,1,  ni
M i θ  be the extreme points of M . The finite optimization problem has 

constraints 1

1

2,,1,)(min)(
,,,,,

 ni
M

cafn

i
M iMIVMIVM

rrrmm



θθ , in addition to the 

constraints in Program M, and has the objective min . This problem is a convex 

nonlinear integer program. Unlike the case with IVM , Xu and Albin’s (2003) result 

does not apply to IVV  due to the functional relationship between jF  and jH . 

 

4.5 Cumulative Distribution Plots for Comparing Alternative Schemes  

 

 In this section, we introduce the cumulative distribution plots for comparing 

alternative schemes. The plots can be constructed with either a point estimate or a prior 

distribution for Λ . When a point estimate is used, the construction of a cumulative 

distribution plot is the same as that of an FDS plot (Zahran et al., 2003) and it can be 

interpreted in the same manner as an FDS plot. However, the cumulative distribution 

plots can also be constructed with a prior distribution for the unknown parameters. 

Because of the different interpretation of the plots in this case, we call the plots 

cumulative distribution (CD) plots instead of FDS plots. In this section, we discuss the 

construction and interpretation of CD plots for comparing schemes based on )ˆvar( zY  

and )ˆˆvar( 22  zY . We call a CD plot constructed with the former criterion a CD plot 

for the mean model and a CD plot constructed with the latter criterion a CD plot for the 

variance model.  
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 To construct a CD plot for the mean model with a prior distribution for Λ , 

sample a value for Λ  from the prior distribution and a value for x  from the uniform 

probability density over R . Using the sampled values, compute )ˆvar( zY  for each 

scheme. Repeat the procedure r  times for some large number r , order the r  values of 

)ˆvar( zY  for each scheme, and plot them versus the quantiles 1,,/2,/1 rr . This is 

similar to the procedure described by Ozol-Godfrey et al. (2005) for constructing FDS 

plots but with the added step of sampling from a prior distribution for Λ . CD plots for 

the variance model are constructed in the same way as a CD plot for the mean model 

except that the values of )ˆˆvar( 22  zY  are computed and plotted. Note that x  can be 

sampled from probability densities other than the uniform density. These place unequal 

weights over R . The probability density for x  can be viewed as a prior density that 

summarizes the decision maker’s belief about the chances that prediction would be 

made at various points in R . However, in this thesis, we consider only drawing values 

of x  from a uniform density. 

 CD plots constructed with a point estimate for Λ  are essentially FDS plots. In 

this case, we sample x  from a uniform distribution, compute the values of )ˆvar( zY  

or )ˆˆvar( 22  zY  for each scheme, and order and plot the values versus the quantiles. 

Thus, at a point on the graph for a scheme, the x -coordinate gives the fraction of the 

volume of R  with a variance value at or below the value of the y -coordinate (Zahran 

et al., 2003). We may also interpret the x -coordinate as the probability that a point x  

chosen randomly from R  will give a variance value at or below the value of the y -

coordinate. On the other hand, when a CD plot is constructed with a prior density for 

Λ , the x -coordinate of a point on the graph for a scheme should be interpreted as the 
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probability that an x  chosen randomly from R  and a value of Λ  sampled from the 

prior density will give a variance value at or below the value of the y -coordinate. 

 A cumulative distribution plot is shown in Figure 4.1. We can obtain from a 

CD plot various performance measures for each scheme that is being evaluated. For 

instance, we may compare the schemes based on the median variance, the interquartile 

range of the variance, and the average/expected variance (which is the arithmetic mean 

of the variance values used to construct the CD plot).  The decision maker has the 

flexibility to compare schemes based on any performance measure that can be derived 

from the CD plot. The performance measure used for any particular experiment should 

depend on the preference of the decision maker and the goals of the experiment. For 

instance, a risk-averse decision maker might prefer a scheme that minimizes the th90  

percentile variance value. If this criterion is used, Scheme 2 in Figure 4.1 is superior to 

Scheme 1. On the other hand, when one goal of the experiment is to achieve a certain 

precision in prediction of Y  or 2
Y  over R , a scheme that has maximum probability 

of achieving that precision, as measured by the variance, might be chosen. Explicitly 

defining a criterion for comparing schemes will be important to avoid ambiguous 

comparisons especially when the graphs for the schemes being compared crosses, as is 

the case with the graphs in Figure 4.1.  

 It may sometimes be preferred to make a pairwise comparison of schemes. A 

reasonable way to do this is to employ a CD plot for the difference in variance for each 

pair of schemes. Suppose that we intend to compare the performance of Scheme 1 and 

Scheme 2 in Figure 4.1. We may do so by plotting the CD plot for the difference in 

variance 21 )]ˆ[var()]ˆ[var( zz YY   , as shown in Figure 4.2. We see clearly from the 

figure that there is a 60% chance that Scheme 1 will give a lower variance value than 

Scheme 2 (since there is a 60% chance that the difference is negative). We also see that 
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despite the higher chance of a lower variance value, the difference in variance tends to 

be greater when Scheme 1 has a higher variance value. Thus, the CD plot for the 

difference in variance allows us to determine which of two schemes are better based on 

the probability of getting a lower variance, and the magnitude of the difference in 

variance between the two schemes. 

 

Figure 4.1: Example of a Cumulative Distribution Plot 

 

 In constructing the CD plots, it would be computationally easier to use explicit 

expressions for )ˆvar( zY  and )ˆˆvar( 22  zY . To obtain these expressions, CCC xVx'  

and C  must be expressed explicitly in terms of the elements of x . This can be done by 

using software that performs symbolic manipulation.  

 In the following, we give three examples in which CD plots for the mean and 

variance models are employed to compare several schemes. Each plot is constructed 

with 30000r  sampled values. The first example uses data from Example 4.1 and 
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includes a comparison based on the CD plot for the difference in )ˆvar( zY .  The 

second example uses data from Example 4.2. In these examples, a point estimate for 

the residual variance 12   is utilized. In the last example, data from Example 3.2 is 

used.     

 

Figure 4.2: CD Plot for the Difference in Variance Values Between Two Schemes 

 

4.5.1 Example 4.3  

 

 In this example, we extend Example 4.1 by comparing four different schemes 

with CD plots for the mean and variance models. The first scheme consists of sample 

sizes 3521  mm , and an MRD design determined by 1fr , 3ar , and 3cr . 

The second scheme is the solution of Program V and the third scheme is the solution of 

Program M. These were given in Example 4.1. The fourth scheme consists of the 24-
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run NFS-optimal design given by Castillo et al. (2007) for 3k  and 2n . This 

design is given in Appendix E. For the fourth scheme, the remaining resource 

272451  NK  is distributed approximately evenly to give 681 m  and 

672 m . Note that for this problem, R  is the cube defined in Example 4.1, S  is as 

given in (3.2), and 5.121  cc . The four schemes are summarized in Table 4.1. 

 

Table 4.1: Summary of the Four Schemes for Example 4.3 

Scheme Design Design Size 1m  2m  

1 MRD 3,3,1  caf rrr 35 35 

2 MRD 0,1,1  caf rrr  72 73 

3 MRD 1,2,1  caf rrr  55 55 

4 NFS 24N  68 67 

 

 The CD plots for the four schemes given in Table 4.1 are displayed in Figures 

4.3 and 4.4. Values for each of the elements of γ  and Δ  are sampled from a uniform 

distribution over the interval ]5,5[  and values for x  are sampled from a uniform 

distribution over R .  

 In Figure 4.3, for any value, say b , of )ˆvar( zY , the corresponding value given 

by the abscissa axis is the probability that a point x  selected at random from R  and 

each element of γ  and Δ  drawn from their prior distributions, will yield a value for 

)ˆvar( zY  less than or equal to b . This probability, although of a subjective nature, is a 

measure of the goodness of a scheme. The CD plot for the variance model can be 

similarly interpreted.  
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Figure 4.3: CD Plot for the Mean Model (Example 4.3) 

 

 

Figure 4.4: CD Plot for the Variance Model (Example 4.3) 
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Examination of Figure 4.3 reveals that Scheme 4 is a poor candidate for 

estimating the mean model because the curve for Scheme 4 is higher than the curves 

for the other three schemes almost everywhere. Although Scheme 1 started with the 

lowest values of )ˆvar( zY , it rises more steeply than Schemes 2 and 3, eventually 

rising higher than the graphs for the latter two schemes. If Scheme 1 is used, we have a 

90% chance that )ˆvar( zY  has a value less than or equal to 1.1. For Schemes 2 and 3, 

there is a 90% chance that the value is less than or equal to 0.8. Therefore, based on the 

90th percentile, Schemes 2 and 3, which are the optimal solutions of Programs V and 

M respectively, are better candidates for estimating the mean model. Examination of 

Figure 4.4 reveals that Schemes 2 and 4 perform almost equally well in estimating the 

variance model, Scheme 3 performs slightly worse than Schemes 2 and 4, whereas 

Scheme 1 performs badly in estimating the variance model. It appears that all 

percentiles other than the zero percentile of the probability density of )ˆˆvar( 22  zY  

for Scheme 1 are larger than the corresponding percentiles for Scheme 3, and the 

percentiles for Scheme 3 are in turn, larger than the percentiles for Schemes 2 and 4.   

A marked feature of the CD plot in Figure 4.4 is that the graphs for each 

scheme rises sharply to the maximum at the right end. This implies that the maximum 

variances can be very large. However, based on the discussion in Section 2.6, it is 

known that large variances tend to occur at points where the variance of the response is 

a maximum. As such, we should not be too worried about the sharp rise near the right 

end of each graph. 

In Figure 4.5, the CD plot for the difference in )ˆvar( zY  for each pair of 

schemes is plotted. We can see for example, that there is more than a 95% chance that 

Sheme 2 has a lower variance value than Scheme 4. Table 4.2 summarizes these 
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probabilities. Each entry in Table 4.2 is the probability that the scheme indicated by 

the row heading has a lower variance than the scheme indicated by the column heading. 

The probabilities allow us to rank the schemes in the order 3, 1, 2, 4 in terms of their 

performance at estimating the mean model.  

 

Figure 4.5: CD Plot for Difference in )ˆvar( zY  for Each Pair of Schemes
 

 

Table 4.2: Probability that Scheme Corresponding to Row has a  
Smaller )ˆvar( zY  Than Scheme Corresponding to Column 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Scheme 1 - 0.6 0.27 0.82 

Scheme 2 0.4 - 0.13 0.96 

Scheme 3 0.73 0.87 - 0.97 

Scheme 4 0.18 0.04 0.03 - 
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the design. For the design in Scheme 4, the value of 2/EIM , which is the average of 

CCC xVx'  (see Equation (3.5)), is 5475.0 . In contrast, the value of 2/EIM  for the 

design in Scheme 2, which has 2 runs less than the design in Scheme 4, is 3472.0 . In 

fact, it is estimated by simulation that the set of points x  at which Scheme 4 has a 

smaller value of CCC xVx'  than Scheme 2 occupies a volume of only about %8.5  of 

the volume of R . This is not surprising as the NFS criterion is closely linked to the 

estimation of the variance model but is not linked to the estimation of the mean model 

(see Castillo et al. (2007)). In summary, this example demonstrates that the 

performance of a scheme depends as much on the proper choice of sample sizes as on 

the design.  

 

4.5.2 Example 4.4 

 

In this example, we extend Example 4.2 by comparing four different schemes 

with CD plots for the mean and variance models. The first scheme consists of a D-

Optimal design with 45 runs, constructed by MINITAB using the 53  factorial as the 

candidate set of points. The sequential optimization option for constructing the initial 

design and Fedorov’s method for improving the initial design are the chosen options 

for constructing the design. Given that the total cost of the scheme must be 100, the 

remaining resource of 55 is divided approximately equally to give 1381 m  and 

1372 m . The second scheme is the solution of Program V whereas the third scheme 

is the solution of Program M. Both schemes were given in Example 4.2. The design in 

the fourth scheme is a 25-run D-Optimal design generated by the same method as with 

the D-Optimal design in the first scheme. For the fourth scheme, the remaining 75 
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units of resource are divided approximately equally to give 1881 m  and 1872 m . 

The designs for the first and fourth schemes are presented in Appendix E. For this 

problem, R  is the cube defined in Example 4.1, S  is as given in (3.2), and 

5.121  cc . A summary of the four schemes is given in Table 4.3.  

 

Table 4.3: Summary of the Four Schemes for Example 4.4 

Scheme Design Design Size 1m  2m  

1 D-Optimal 45N  138 137 

2 MRD 0,1,2  caf rrr  155 155 

3 MRD  133 132 

4 D-Optimal 25N  188 187 

 

The CD plots for the four schemes given in Table 4.3 are presented in Figures 

4.6 to 4.9. Values for each element of γ  and Δ  are sampled from a normal prior 

density with mean 0 and variance 92 P . We present 3 CD plots for the variance 

model because the graphs for Schemes 1, 2 and 4 are nearly identical so that they 

would be difficult to distinguish in a single figure. The figures show that Scheme 3 is 

excellent for estimating the mean model, but is poor for estimating the variance model. 

It seems that all percentiles other than the zero percentile of the probability density of 

)ˆˆvar( 22  zY  for Scheme 3 are larger than the corresponding percentiles for the other 

three schemes. Although Schemes 1, 2, and 4 perform almost equally well in 

estimating the variance model, Scheme 1 performs better than Schemes 2 and 4 in 

estimating the mean model. Therefore, if interest lies in estimating both mean and 

variance models, Scheme 1, which comprises the 45-run D-optimal design, is a good 

candidate. This example demonstrates that D-optimal designs can be better than MRD 

designs and so, should be seriously considered for any given problem.    

1,5,1  caf rrr
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Figure 4.6: CD Plot for the Mean Model (Example 4.4) 

 

 

Figure 4.7: CD Plot for the Variance Model: Schemes 1 and 3 (Example 4.4) 
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Figure 4.8: CD Plot for the Variance Model: Schemes 2 and 3 (Example 4.4) 

 

 

Figure 4.9: CD Plot for the Variance Model: Schemes 3 and 4 (Example 4.4) 
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4.5.3 Example 4.5 

 

 In this example, we extend Example 3.2 by comparing three different schemes 

chosen from the Pareto optimal solutions in Table 3.3 with the CD plots. In this case, 

point estimates for γ , Δ , and 2  are used in constructing the CD plots. Thus, an 

interpretation of the CD plots is that given a point on the graph for a scheme with a 

value b  on the ordinate axis, the corresponding value on the abscissa gives the fraction 

of volume of the design space with a variance at or below b  (Zahran et al., 2003). The 

first scheme to be studied in this example is the solution labeled S3 in Table 3.3. The 

second scheme is the optimal solution of Program V whereas the third scheme is the 

optimal solution of Program M. The three schemes are summarized in Table 4.4. 

 

Table 4.4: Summary of the Three Schemes for Example 4.5 

Scheme Design Design Size 1m  2m  

1 MRD 13,3,2  caf rrr 79 93 

2 MRD 0,1,3  caf rrr  91 101 

3 MRD 16,6,1  caf rrr 81 95 

 

 The CD plots for the three schemes given in Table 4.4 are displayed in Figures 

4.10 and 4.11. They show that Scheme 2, despite being the best scheme for estimating 

the variance model, performs very badly at estimating the mean model. Scheme 3, 

which is optimal for estimating the mean model, is undesirable for estimating the 

variance model. Lastly, Scheme 1 is almost as good as Scheme 3 for estimating the 

mean model while it is second best for estimating the variance model. If interest is in 

estimating both the mean and variance models, Scheme 1 is a good choice. This 

example demonstrates the potential usefulness of Pareto optimal solutions.  
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Figure 4.10: CD Plot for the Mean Model (Example 4.5) 

 

 

Figure 4.11: CD Plot for the Variance Model (Example 4.5) 
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CHAPTER 5 

 

 

CONCLUSIONS AND FURTHER RESEARCH 

 

 

 The main contribution of this work is to propose an approach for estimating the 

mean and variance models with a combined array experiment for the case where the 

means and variances of the noise variables are unknown. In the approach, planning of 

estimation of the means and variances of the noise variables with data sampled from 

the process is integrated with planning of the combined array experiment. This takes 

into consideration the fact that in practice, the means and covariances of the noise 

variables are estimated with process data because they are unknown. Thus, the 

proposed approach extends the dual response surface approach presented by Myers et 

al. (1992), and Myers and Montgomery (2002), which assumes the means and 

covariances of the noise variables are known.    

 Novel ideas introduced with the proposed procedure are expounded in this 

thesis. These include specification of the levels of the noise variables, estimation of the 

mean and variance models, and optimal allocation of resource to sampling and 

experimenting. We propose a method to determine the appropriate scaling factors and 

design region so that the noise variables are varied over ranges that are representative 

of their variation during actual process operation or product use but are not varied over 

unnecessarily wide ranges. 

 The consequences of errors in estimating the means and variances of the noise 

variables on the estimation of the mean and variance models have previously been a 
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subject that is ignored in the literature. We examine the estimators for the mean and 

variance models given in the literature in light of sampling and experiment error. 

Expressions for the bias and variance of the estimators are derived.  

 Within the framework of our proposed procedure, the problem of allocating 

experiment effort between sampling and experimenting is of practical interest. This 

thesis shows how mathematical programs can be used to find sample sizes and MRD 

designs that optimize estimation of the mean model or that optimize estimation of the 

variance model. We also show how sample sizes and MRD designs that compromise 

between the estimation of both models can be found. A greedy algorithm is proposed 

to find schemes that perform well in estimating either the mean model, the variance 

model, or both models for the case where the design is to be constructed from a 

candidate set of points. In addition, cumulative distribution plots are proposed for 

evaluating schemes that may consist of designs other than the MRD. 

  The optimal allocation of effort depends on unknown parameters of the 

response model. Although prior knowledge can be captured in the form of point 

estimates or a prior distribution, this approach may yield estimates that are far from the 

true values or a prior density that places little weight on the true values. In addition, the 

two-stage procedure discussed in Section 4.2.4 may be suboptimal with respect to 

allocation of total resource because the stages are planned separately. A sequential 

procedure in which its various stages are considered in an integrated way so that 

allocation of the total resource is optimized is an interesting extension. 

 Relaxing the assumption of random sampling, normally and independently 

distributed noise variables, and generalizing the results in this thesis to cases in which 

the response model is of a form different from that given in (2.3) will be useful. The 

robustness of the variance formulas derived in this thesis and the performance of 
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schemes that minimize the average variances to violations of assumptions are also 

subjects for further research. Of special interest is robustness to model misspecification 

because the validity of the mean and variance models and the variance formulas for the 

estimators of those models depends on the assumption that the response model holds 

exactly. 

 Finally, application of the methodology developed in this thesis to real 

problems may lead to modifications that improve the applicability of the methodology. 
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APPENDIX A 

 

Proof of Proposition 2.6 

 

Proposition 2.6 If Σ̂  is unbiased for Σ , 2ˆ
zY  has a smaller mean square error than 

2ˆ
zYB  for every x  when 2dfSSE . 

Proof: 

 The expectation of 2ˆ
zYB  with respect to s  and e  is given by 
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Using the law of conditional variance and the fact that the residual mean square 

2̂  is independent of the least squares estimators zγ̂  and zΔ̂  when s  is held fixed, the 

variance of 2ˆ
zYB  with respect to s  and e  is given by 

. 
2

})]ˆˆ()ˆˆ[(var{)]()[(var

])ˆ([var})]ˆˆ()ˆˆ[(var{

)]}(1[)(){(var

}]ˆ)ˆˆ()ˆˆ[(var{}]ˆ)ˆˆ()ˆˆ[({var

]}ˆ)ˆˆ()ˆˆ{(var)ˆvar(

4

2

2

22

2

,

2

''''''

'''

'''

''''''

'''











dfSSE
E

EE

trace

EE

YB











sxΔγVxΔγxΔγVxΔγ

ssxΔγVxΔγ

VCxΔγVxΔγ

sxΔγVxΔγsxΔγVxΔγ

xΔγVxΔγ

zzzz
es

zzzz
s

es
zzzz

es

zzzz
s

zzzz
es

zzzz
es

zzzz
esz

 

Therefore, the mean squared error of 2ˆ
zYB  is 

. 
2

})]ˆˆ()ˆˆ[(var{

)]()[(var)]([)ˆ(

4

222
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
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xΔγVxΔγVC

zzzz
es

zzzz
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   (A1) 
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 The mean squared error of 2ˆ
zY  is equal to its variance. Hence, from (2.22) and 

(2.23), we have 

. 
2

)](1[

})]ˆˆ()ˆˆ[(var{)]()[(var

))]}(1[ˆ{var(

})]ˆˆ()ˆˆ[(var{)]()[(var

)]})(1[ˆ)ˆˆ()ˆˆ{(var(

])()[(var)ˆ(

42
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''''''

''''''
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
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
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E

traceE
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MSE Y

VC
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sVC

sxΔγVxΔγxΔγVxΔγ

VCxΔγVxΔγ

xΔγVxΔγ

zzzz
es

zzzz
s

es

zzzz
es

zzzz
s

zzzz
es

zzzz
sz













  (A2) 

Comparing expressions (A1) and (A2), we see that 2ˆ
zY  is better than 2ˆ

zYB  

when 

44242 2
)]([

2
)](1[ 

dfSSE
trace

dfSSE
trace  VCVC . 

 The inequality must hold when 2dfSSE  since 0)( VCtrace . 
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APPENDIX B 

  

Asymptotic Properties of the Estimators for the  

Mean and Variance Models 

 

 We prove two results concerning the asymptotic properties of the estimators  

zY̂  and 2ˆ
zY . In order to prove the results, we need two other results from probability 

theory, which are stated without proof in Theorem B.1 and Theorem B.2. In the 

following, we denote by AA
D

t   the statement that ,, 21 AA  is a sequence of 

random variables that converges in distribution to A  and we denote by ηB
p

t   the 

statement that ,, 21 BB  is a sequence of random variables that converges in 

probability to η . In addition, we write ηb   to mean that b  approaches η  in the 

usual calculus sense.  

 

Theorem B.1 If ),( bag  is a function jointly continuous at every point of the form 

),( ηa  for some fixed η , and if AA
D

t   and ηB
p

t  , then ),(),( ηABA gg
D

tt  . 

Remark: This result is given in Haven et al. (2005). 

 

Theorem B.2 If g  is a function continuous at the point η  and ηB
p

t  , then 

)()( ηB gg
p

t  .  

Remark: This result is given in Arnold (1981). 
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Theorem B.3 Assume that Assumptions 2.1-2.4 stated in Section 2.2.1 hold. If μ̂  and 

Σ̂  are consistent estimators, Y

D

Y  ˆˆ z  and 22 ˆˆ Y

D

Y  z  as nmm ,,1  . 

Proof: 

 Firstly, we reason that zY̂  and 2ˆ
zY  are continuous functions of e , μ̂ , and Σ̂ . 

This follows from the following observations.  

 The response for the thl  experiment run is 

lllllllll ey  ξΔxξγxBxβxξx ξξξξξ ''''0),(  ,  

where )ˆˆ,,ˆˆ(),,( 11111 nnlnnllnll czcz   ξ . Thus, ),( lly ξx  is linear in 

le , μ̂ , and the square root of each diagonal element of Σ̂ . 

 Now, let z0̂ , zβ̂ , zB̂ , zγ̂ , and zΔ̂  be represented by zθ̂ . Note that 

YXXXθ z '' 1)(ˆ  ,  

where Y  is the column vector of observations on the response, which has elements 

Nly ll ,,1),,( ξx . Therefore, it is seen that each element of zθ̂  is linear in the N  

observations on the response Nly ll ,,1),,( ξx . Because of this, each element of zθ̂  

is a linear function of e , μ̂ , and the square root of each diagonal element of Σ̂ . 

 In addition, it can be shown that 

)/(}][{ˆ ''' 12 pNN   eXX)X(XIe , 

where N  is the number of experiment runs and NI  is an NN   identity matrix. 

 Therefore, it is clear that 

xBxβx zzzz
ˆˆˆˆ ''0  Y  

and )](1[ˆ)ˆˆ()ˆˆ(ˆ 22 ''' VCxΔγVxΔγ zzzzz traceY    
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are continuous functions of e , μ̂ , and Σ̂  (observe that because the noise variables are 

independent, Σ̂  is diagonal). 

 Now, let us write 

)]ˆ,ˆ(,[ˆ 1 Σμez gY  , 

and )]ˆ,ˆ(,[ˆ 2
2 Σμez gY  . 

By Theorem B.1., if μ̂  and Σ̂  are consistent estimators so that μ̂  and Σ̂  converge in 

probability to μ  and Σ  respectively as nmm ,,1  , we have 

Y

D

Y gg  ˆ)],(,[)]ˆ,ˆ(,[ˆ 11  ΣμeΣμez  

and 2
22

2 ˆ)],(,[)]ˆ,ˆ(,[ˆ Y

D

Y gg   ΣμeΣμez  

as nmm ,,1  . 

 

Theorem B.4 Suppose that Assumptions 2.1-2.4 and Assumption 2.8 stated in Section 

2.2.1 hold. Assume that μ̂  and Σ̂  are consistent estimators and the design matrix 

expanded to model form X  has full column rank. Let the number of replicates of the 

design be denoted by r . Then, Y

p

Y  z
ˆ  and 22ˆ Y

p

Y  z  as nmmr ,,, 1  . 

Proof: 

 If X  is replicated r  times, 





r

j
jr 1

1 '' )(
1ˆ YXXXθz ,                    (B1) 

where jY  is the vector of observations on the response in the thj  replicate. 

 Now, 

jj eXθY z  ,          (B2)  



 132

where zθ  represents z0 , zβ , zB , zγ , and zΔ , and je  is the vector of experiment 

error for the thj  replicate. 

 Putting together (B1) and (B2), we have 

















r

j
j

r

j
j

r

r

1

1

1

1

''

''

)(
1

)()(
1ˆ

eXXXθ

eXθXXXθ

z

zz

        (B3) 

 Because each of the elements of each of the vectors ,, 21 ee  are independently 

and identically distributed with mean zero and constant variance,  

0)(
1

1

1 ''
pr

j
jr




 eXXX  as r   

by the Weak Law of Large Numbers. 

 Furthermore, it can be seen from (2.11)-(2.15) that 00 
p

z , ββ z

p

 , BBz

p

 , 

γγ z

p

 , and ΔΔ z

p

  as nmm ,,1   since μ̂  and Σ̂  are consistent estimators. 

Thus, if we write θ  for 0 , β , B , γ , and Δ , we have 

θθ z

p

  as nmm ,,1  .  

 Hence, by (B3), θθ z

p

ˆ  as nmmr ,,, 1  . Let N  be the total number of 

experiment runs. Arnold (1981) shows that 22ˆ 
p

  as N . Now, since N  is a 

linear function of r , 22ˆ 
p

  as r . Thus, we have ),()ˆ,ˆ( 22  θθ z

p

  as 

nmmr ,,, 1  . Because zY̂  and 2ˆ
zY  are continuous functions of )ˆ,ˆ( 2zθ , it 

follows by Theorem B.2 that Y

p

Y  z
ˆ  and 22ˆ Y

p

Y  z .  
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APPENDIX C 

 

Convexity of the Objective Function of Program V 

 

 To proof that IVV  is convex on the open convex set 

},0 ,,,1,1);,,,,{( 1 pNrnjmNrmmO fjfnV   ,  

we use the fact that a sum of convex functions is convex and a twice-differentiable 

function is convex if its Hessian is positive semidefinite (Bazaraa et al., 1993). First, 

observe that IVV  is a sum of the functions 

nj
c

F

mm j

j

j

j

j

.,1  ,
1

2
4

2 














,       (C1) 
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
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






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



















2

1
2

1
4

2
2 111

2
n

j j

n

j jf cpNc
G

fr


,       (C2) 




n

j j

j

f c

H

fr 1
4

2

4


.          (C3) 

It is shown that each of the functions given by (C1)-(C3) is convex on VO .  

 Since for each nj ,,1 , 22 j  and 0jF ,  

1 0
2

)1(

4

1

2
43

2

34

2

2

2





























 j
j

j

j

j

jj

j

j

j

jj

m  
c

F

mmc

F

mmdm

d 
,  

Therefore, each function in (C1) must be convex on VO .  

 The Hessian of the function in (C2) with respect to fr  and N  is 
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Now, a 22  matrix is positive semidefinite if and only if its diagonal elements and 

determinant are non-negative (Bazaraa et al., 1993). It can be seen that the matrix in 

(C4) satisfies this requirement when 0fr  and pN   (note that 0G ). Therefore, 

the function in (C2) is convex on VO . 

 Finally, since each 0jH , we have 

0   084
1

43

2

1
4

2

2

2














f

n

j j

j

f

n

j j

j

ff

r
c

H

frc

H

frdr

d 
. 

This implies that the function in (C3) is convex on VO . 

 Since IVV  is a sum of functions that are convex on VO , it is convex on VO .
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APPENDIX D 

 

Convexity of IME /σ2 

 

 The convexity of 2/EIM  is proven through the following series of results. 

Note that it is always assumed that k  is a positive integer, and f  and   are positive 

real numbers. 

  

Lemma D.1 A symmetric matrix H  can be expressed as 'JJ  for some matrix J  if and 

only if it is positive semidefinite. 

Proof: 

By the principle axis theorem, 'ΓDΓH  , where Γ  is an orthogonal matrix 

and D  is the matrix of eigenvalues (Arnold, 1981). Suppose '' JJΓDΓ  , then 

ΓJΓJΓJJΓD ''''' )( . 

Therefore, the eigenvalues of H  cannot be negative so that H  is positive semidefinite.  

Conversely, suppose that H  is positive semidefinite. If we let 2/1ΓDJ  , we 

have 'JJH  . 

Remark: A slightly different proof of this result is given in Harville (1997).  

 

Lemma D.2 If R  is bounded, the matrix of region moments  RR CCR dd xxxxμ /'  is 

a positive semidefinite matrix.  

Proof: 

Let u  denote the number of parameters in the mean model, which is 

2/)1(21  kkk . 
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Note that 

0][/'  RRR CC tracedd HμxxHxx  for any arbitrary positive semidefinite matrix H  

of dimension uu   that is not a function of x .  

Since Rμ  is symmetric, 'ΓDΓμ R , where Γ  is an orthogonal matrix and D  

is the matrix of eigenvalues. 

Now, since H  can be any arbitrary positive semidefinite matrix, choose 

'ΓWWΓH  , where W is a diagonal matrix with real diagonal elements 

ujw j ,,1,  . Thus, we have 
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 Observe that we may choose 0jw  and jiwi  ,0 . Therefore, we see that 

each 0jd . This means that Rμ  is positive semidefinite. 

 

Theorem D.1 Suppose the elements of CM  are linear functions of t  over a convex set 

T  such that CM  is positive definite for all Tt . In addition, suppose that R  is 

bounded. Then,  RR CCCE ddIM xxxVx // '2 , where 1 CC MV , is a convex 

function of t  for all Tt .  

Proof: 

Let 'UUμ R  for some square matrix U . We have 
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)()(/ ''2 UVUUUV CCE tracetraceIM  . 

If we let jU  denote the thj  column of U , we can write 





u

j
jCjEIM

1

2 '/ UVU . 

  Groves and Rothenberg (1969) and Rahman and Ahsanullah (1973) showed 

that for any two positive definite matrices A  and B , and any vector d , 

dBAd 1])1[()( '  f  is a convex function of   so that dAd 1'   is convex in 

A . Rearrange the elements of A  into a column vector a . Therefore, dAd 1'   is a 

convex function of the elements of a  over Ξ , where Ξ  is the set of values of a  such 

that A  is positive definite. Note that Ξ  is a convex set. We may write dAda 1')( g  

so that )(ag  is a convex function of a  for Ξa . In addition, if a  is a linear function 

of t  so that bPta   for some matrix P  and column vector b , )( bPt g  is a 

convex function of t  on the convex set 0T , where 0T  is the set of all t  such that 

ΞbPta   whenever 0Tt . Therefore, )( bPt g  is also a convex function of t  

on a convex set 0TT  .  

 If we set jUd   and CMA   in the arguments in the preceding paragraph, we 

see that jCj UVU'  is a convex function of the elements of CM  over the set of values 

where CM  is positive definite. If these elements are linear functions of a set of 

variables represented by t , jCj UVU'  is a convex function of t  on any convex set T  

such that CM  is positive definite for all Tt . Finally, since the sum of convex 

functions is convex, 2/EIM  is a convex function of t  on T . 
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Theorem D.2 CM  is positive definite over 

)}2/())(2(,0,0);,,{( 422  afafcafcaf rkfrkrfrrrrrrr  , which is a 

convex set. 

Proof: 

 Let ),,,( 21' uddd d  be an arbitrary vector. First, consider the case where 

2k . We have 
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 Note that 0f , and 0 . Therefore, 0' dMd C  for all 0d  only if 

0fr  and 0ar . To see this, observe the following. 

1. If 0fr , choose nonzero values for ukldl ,,22,   and zero values for all 

other elements of d , and we have 0' dMd C  for some 0d . 
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2. If 0ar , choose 01 d ; 12,,2,  kkldl  , not all zero, such that 





12

2

0
k

kl
ld ; 

and zero values for all other elements of d . This leads to 0' dMd C  for some 0d . 

 Given that 0fr  and 0ar , we want to find the minimum of dMd C'  so that 

we can determine the values of cr  such that 0' dMd C  for all 0d . Note the 

following facts. 

1. 0)2(
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22  
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u

kl
lf
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l
laf dfrdrfr   is minimized when each 0ld , where 

),,32,22,1,,3,2( ukkkl   . 
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each 0ld , where )12,,3,2(  kkkl  .  

 Thus, if the constraint 01 d  is imposed on d , the minimum of dMd C'  is 

zero, and is achieved when 0d  regardless of the value of cr . 

 If 01 d , we may write 
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Consider the function  
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122 )1(21),,(   .   (D1) 

It has the following first and second order derivatives. 
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The Hessian matrix of ),,( 122  kk    is given by 
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Now, let kI  be the kk   identity matrix and   a scalar. Using the diagonal 

expansion rule of the determinant (Searle, 1982), we find that 
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Because the eigenvalues of a symmetric matrix are real (Arnold, 1981), all eigenvalues 

of H  are positive, and the Hessian is positive definite. This implies that the global 

minimum of   can be found by solving the equations 
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Now, the following two equations are obtained from (D2). 
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Substituting (D3) and (D4) into (D1), we have the following expression for the global 

minimum of  , which we denote by min . 
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Therefore, 0  for any real values assigned to 12,,2,  kkmm   when 

)2/())(2( 422  afafc rkfrkrfrr  . 

Hence for 2k , we conclude that CM  is positive definite if and only if 

),,( caf rrr , where 

)}2/())(2(,0,0);,,{( 422  afafcafcaf rkfrkrfrrrrrrr  . 

 Now, consider the case where 1k . We have 
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31 )2()(2)(' drfrdrddrddfr afcafC  dMd . 

 It can be seen that if 0fr  and 0ar , 02 d  so that dMd C'  is minimized. 

Now, if we set 01 d , then dMd C'  is minimized at 0d  for any cr . On the other 

hand, if 01 d , the minimum of ])/1(2)/1([ 2
13

22
13

2
1 caf rddrddfrd    is 

])2/()1)(2[( 4222
1 cafaf rrfrrfrd   . Thus, for the case where 1k , CM  is 

positive definite on 

)}2/()1)(2(,0,0);,,{( 422  afafcafcaf rfrrfrrrrrrr  . 
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 Now, since )2/())(2( 422  afaf rkfrkrfr   is a convex function of fr  and 

ar  as can readily be verified by deriving the Hessian of the function, it follows that   

is a convex set.  

 

Corollary D.1 ]/[/ '2 
RR CCCE ddtraceIM xxxxV  is convex in the variables fr , ar , 

and cr  over )}2/())(2(,0,0);,,{( 422  afafcafcaf rkfrkrfrrrrrrr  .  

Proof: 

 This follows directly from Theorems D.1 and D.2, and the fact that the 

elements CM  are linear functions of fr , ar , and cr . 
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APPENDIX E 

 

Experimental Designs for Schemes Compared with CD Plots 

 

D.1 Design for Scheme 4 of Example 4.3 

 

Design given by Castillo et al. (2007) for 2,3  nk  

1x  2x  3x  1z  2z  

-1 1 -1 -1 -1 
1 -1 1 -1 1 
-1 -1 -1 1 1 
-1 -1 -1 -1 -1 
-1 1 -1 1 -1 
1 -1 -1 -1 1 
-1 1 1 -1 -1 
1 1 -1 -1 -1 
-1 1 -1 1 -1 
1 1 -1 1 1 
-1 1 -1 1 1 
-1 -1 1 1 -1 
1 -1 1 -1 -1 
1 1 1 -1 1 
-1 1 1 1 1 
1 1 1 1 -1 
-1 1 -1 -1 1 
1 -1 -1 1 -1 
1 0 0 1 1 
1 -1 1 1 1 
0 0 1 0 0 
1 0 0 -1 -1 
-1 -1 1 -1 1 
0 -1 0 0 0 
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D.2 Design for Scheme 1 of Example 4.4   

 

45 Run D-Optimal Design 

1x  2x  3x  1z  2z   
1x  2x  3x  1z  2z  

-1 -1 -1 -1 -1 0 1 1 -1 -1 
-1 -1 1 1 1 1 0 1 -1 1 
-1 1 -1 1 1 1 1 0 -1 1 
-1 1 1 -1 -1 0 1 1 1 1 
1 -1 -1 -1 1 -1 1 0 1 -1 
1 -1 -1 1 -1 -1 -1 -1 1 -1 
1 1 1 -1 1 1 1 -1 1 -1 
1 1 1 1 -1 -1 -1 -1 -1 1 
1 -1 1 -1 -1 -1 1 1 -1 1 
1 -1 1 1 1 1 -1 -1 -1 1 
1 1 -1 -1 -1 -1 -1 1 -1 -1 
1 1 -1 1 1 -1 1 -1 -1 -1 
-1 -1 -1 1 1 -1 0 1 1 -1 
-1 -1 1 -1 1 0 1 -1 -1 1 
-1 1 -1 -1 1 1 0 -1 1 1 
0 -1 0 -1 -1 1 1 1 1 1 
0 0 -1 -1 -1 1 -1 -1 -1 -1 
-1 -1 1 1 -1 1 1 1 -1 -1 
-1 1 -1 1 -1 -1 0 0 -1 1 
-1 1 1 1 1 1 -1 1 1 -1 
0 -1 0 1 1 1 -1 0 1 1 
0 0 -1 1 1 0 -1 1 -1 1 
1 0 0 -1 -1 
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D.3 Design for Scheme 4 of Example 4.4 

 

25 Run D-Optimal Design 

1x  2x  3x  1z  2z  

-1 -1 -1 -1 -1 
-1 1 1 -1 -1 
1 -1 -1 -1 1 
1 -1 -1 1 -1 
1 1 1 -1 1 
1 1 1 1 -1 
1 -1 1 -1 -1 
1 -1 1 1 1 
1 1 -1 -1 -1 
1 1 -1 1 1 
-1 -1 -1 1 1 
-1 -1 1 -1 1 
-1 1 -1 -1 1 
-1 -1 1 1 -1 
-1 1 -1 1 -1 
0 -1 0 1 1 
-1 0 1 1 1 
-1 1 0 1 1 
0 1 1 1 1 
1 0 0 -1 1 
1 0 0 1 -1 
-1 -1 0 -1 -1 
0 1 -1 -1 -1 
0 0 1 -1 -1 
-1 0 -1 -1 1 

 

 


