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Summary 
 
Gemcitabine (dFdC) is a broad spectrum antimetabolite effective for treating non-small 

cell lung cancer (NSCLC), breast cancer and nasopharyngeal cancer (NPC). Its complex 

disposition pathway and treatment schedule dependence provide a unique opportunity to 

investigate pharmacokinetic and pharmacodynamic interactions, including their genetic 

determinants in order to optimise clinical use.  

Firstly, the progress in gemcitabine research was reviewed with respect to its chemical 

structure, formulation and clinical application. This is followed by a discussion on the 

current status and the recent development in pharmacokinetics, pharmacodynamics and 

pharmacogenetics of gemcitabine. The possible drug resistance mechanisms were 

analyzed including the important aspects of gemcitabine intracellular transporters and 

metabolic enzyme activities. A novel potential combination chemotherapy was proposed 

based on the significant synergistic effect between gemcitabine and PXD101, a HDAC 

inhibitor.  

Validated analytical methods were developed to provide an important research platform 

for clinical study of gemcitabine. These included 1) a 16-fold improved sensitivity LC-

MSMS methodology which was validated and applied to Phase II clinical sample 

quantification of gemcitabine and its deaminated metabolite; 2) a more efficient 

quantitation of intracellular dFdCTP (gemcitabine triphosphate) which is the main active 

form of gemcitabine inside the cells. 

Sensitivity of NPC and NSCLC tumour cell lines to gemcitabine and the novel 

combination of gemcitabine with PXD101 were tested. In vitro experiments suggested 

that the duration of incubation would be the primary determinant of intracellular dFdCTP 
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accumulation when the real time concentration of dFdC was ≥ 2 µM.  A plateau 

concentration of intracellular dFdCTP was achieved after 8 h incubation with initial 

concentration above 10 µM dFdC. On the other hand, the cell viability was of the same 

magnitude with 48 h incubation when the initial exposure concentration of dFdC was ≥ 

10 µM. The resultant viability was consistent with the combined effect of dFdCTP 

accumulation level and retention duration (incubation time). Potent synergistic 

cytotoxicity was obtained even with different cell models especially with p53-null cell 

line (H1299) (Combination Index = 0.5001) when PXD101 was added to gemcitabine.  

Pharmacokinetics and pharmacodynamics of a fixed dose rate infusion of 10 mg/m2/min 

of gemcitabine was studied in human subjects. The result suggested that the target plasma 

gemcitabine concentration above 10 µM could be achieved after 75 min infusion of 

gemcitabine at a constant rate of 10 mg/m2/min. Pharmacokinetic comparison between a 

fixed dose rate infusion of 10 mg/m2/min of gemcitabine and standard 30-min infusion of 

1000 mg/m2 was conducted. Despite a 25% lower total dose of gemcitabine at an infusion 

rate of 10 mg/m2/min in combination with carboplatin in NSCLC, a similar clinical 

efficacy and safety profile was achieved compared to the standard 30-min infusion 

regimen. Pharmacokinetic analyses of gemcitabine and dFdCTP suggest that the 30-min 

infusion is a pharmacologically less efficient compared to a fixed dose rate of 10 

mg/m2/min. In addition, we found that intracellular dFdCTP exposure predicts 

myelosuppression in the 30-min infusion regimen but it is not useful for tumour response.  

Plasma metabolite/parent ratios at 120 min were found to be associated with the early 

phase (after 2nd cycle) tumor shrinkage. Briefly, the ratios of dFdU/gemcitabine for 

nonresponders were significantly higher than those of the responders according to 



 

 XX

RECIST criteria. There would be as high as 95% probability in predicting non-responders 

to infusion gemcitabine in combination with carboplatin as long as the ratios were ≥ 500 

due to fast deamination of gemcitabine. This finding has provided a useful marker in 

evaluating the efficacy of gemcitabine at an early phase of chemotherapy. 

Genetic variants in transporter hCNT2 (SLC28A2+65 C>T and SLC28A2+225 C>A) 

were identified as a potential determinant of neutropenia and patient survival in the 

gemcitabine-carboplatin combination treatment. These genotypic variants were 

significantly associated with increased hematological toxicity, response and survival in 

Asian patients with advanced non-small cell lung cancer (NSCLC) receiving gemcitabine 

based chemotherapy.  
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1.1 Introduction of Gemcitabine 

Gemcitabine hydrochloride (Gemzar®) was approved by FDA in 1996 as a novel 

anticancer agent in advanced or metastatic pancreatic cancer. Initially, gemcitabine, 2’-

deoxy-2’, 2’-difluorocytidine (dFdC), was investigated for its antiviral effects. However, 

this novel deoxycytidine analogue showed a high potential in cancer management, 

especially in solid tumors.[1] The gemcitabine chemical structure, formulation, 

pharmacokinetics, pharmacodynamics and pharmacogenetics  will first be reviewed. 

 

1.2 Chemistry and Formulation of Gemcitabine 

The anti-metabolite gemcitabine is a nucleoside pyrimidine analogue that has been used 

clinically as an anticancer drug for more than ten years. The chemical structure of 

gemcitabine is shown in Figure 1.1 in which the hydrogens on the 2’ carbon of 

deoxycytidine are replaced by fluorides. Its molecular weight is 263.1 and its pKa is 3.6. 

Gemcitabine is water soluble.  

 

 

 

Figure 1.1 The Chemical Structure of Gemcitabine 

 



Chapter I: Literature Review 

 3

It is marketed as Gemzar® by Eli Lilly. The nonpropietary name is gemcitabine 

hydrochloride and the Lilly compound number is LY188011 HCl. The chemical 

nomenclature is 2’-deoxy-2’, 2’-difluorocytidine monohydrochloride. The drug is a 

lyophilized product comprising of the equivalent of 200 or 1000 mg of gemcitabine free 

base and the inactive ingredients mannitol, sodium acetate, and water for injection. The 

drug is stable at room temperature. 

As a prodrug, gemcitabine exerts its anticancer activity after a rate limiting 

phosphorylation to gemcitabine diphosphate (dFdCDP) and gemcitabine triphosphate 

(dFdCTP) intracellularly by deoxycytidine kinase (dCK). Only 10% of gemcitabine is 

converted into its active dFdCDP and dFdCTP due to a fast and extensive deamination by 

cytidine deaminase (CDA) in blood, liver, kidney and other tissues to the inactive 

metabolite 2’-deoxy-2’, 2’-difluorouridine (dFdU) which will be excreted mainly in the 

urine. This rapid deamination also resulted in a very short half life (about 15 min) of 

gemcitabine in human blood. In order to overcome this, biopharmaceutical scientists have 

attempted to increase the efficacy of gemcitabine through chemical modification, 

formulation optimization as well as targeting delivery system. [2-5] 

Several series of gemcitabine derivatives have been synthesized. Among these 

compounds, esters or amides of gemcitabine derivatized by conjugating saturated and 

monounsaturated 18–20 carbon atom chains to the 3- and/or 5-OH and/or the 4-amino 

group showed improved cytotoxic activity than the parent drug.[6] Peripheral 

benzodiazepine receptors (PBRs) were selected as targets to selectively enhance 

gemcitabine delivery through a PBR ligand-drug conjugates due to the overexpression of 

PBRs in brain tumors compared to normal brain tissues.[7] Recently, a series of 
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increasingly lipophilic prodrugs of gemictabine were synthesized by linking the 4-amino 

group with valeroyl, heptanoyl, lauroyl and stearoyl linear acyl derivatives. These 

compounds were further developed into liposomes, prolonging their plasma half-life and 

increasing intracellular release of the free drug.[8] Gemcitabine-loaded liposomes were 

tested in human anaplastic thyroid carcinoma cells.[9] The results showed that liposome 

encapsulated gemcitabine has improved cytotoxicity at a lower concentration and shorter 

exposure time when compared to free gemcitabine. Liposome encapsulated gemcitabine 

promises to be an exciting alternative to clinicians considering lower doses and reduced 

toxicity.  

 

1.3 Bio-analyses of Gemcitabine and its Metabolites  

Gemcitabine is used in combination with cisplatin for the treatment of advanced non-

small cell lung cancer (NSCLC) in the first-line setting.[10, 11] Gemcitabine inhibits DNA 

synthesis through its intracellular phosphorylated metabolites, dFdCDP and dFdCTP.[12, 

13] Many new gemcitabine combinations are being tested in clinical trials to find the 

relationship between response rates, toxicities and pharmacokinetic profiles as well as 

genetic variants, including Asian patients.[14, 15] Even though gemcitabine is a prodrug, its 

plasma concentrations have been reported to be closely related to accumulation rate of its 

intracellular therapeutically active phosphate metabolites.[16] Hence, monitoring of 

gemcitabine and its intracellular metabolite concentrations is important for 

pharmacokinetic and pharmacodynamic study of gemcitabine and will result in 

pharmacologically guided individualized treatment in the clinical setting. 
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1.3.1 Quantification of dFdC and dFdU in Human Plasma 

After i.v. administration, gemcitabine is converted rapidly in the plasma to the inactive 

product dFdU by CDA. Hence, plasma quantification of dFdC is difficult because this 

prodrug has an extremely short half-life. [17] Metabolism and elimination of the drug is 

rapid and highly variable. Like most other anti-cancer drugs, gemcitabine has a narrow 

therapeutic index. The principle dose-limiting toxicity of gemcitabine therapy is 

myelosuppression. It is therefore critical to develop a simple and sensitive quantitative 

method to quantify dFdC for evaluation of the pharmacokinetic and pharmacodynamic 

profiles of gemcitabine in clinical trials. This method can be utilized for therapeutic drug 

monitoring as well. Furthermore, simultaneous quantitation of dFdU is necessary for us 

to understand the pharmacokinetic profile of the parent drug even though dFdU is 

regarded as inactive metabolite but may contribute to gemcitabine toxicity. [18] Several 

assays have been described for determination of gemcitabine and dFdU in plasma, urine 

and tissue using reversed-phase HPLC with or without ion-pair reagents. [19-26] Currently, 

the most sensitive assay using HPLC-UV is a normal-phase HPLC system.[27] A 0.05 

μg/ml limit of quantitation for both dFdC and dFdU was achieved in the assay. However, 

its tedious sample preparation limits its application in monitoring clinical samples. 

So far, several simultaneously analytical methods have been published for quantification 

of dFdC and dFdU in plasma, urine and tissues using high-performance liquid 

chromatography coupled with UV detection. However, it is very difficult to monitor the 

very low parent drug concentrations at later sampling points during the elimination phase 

because of, firstly, rapid decline of dFdC plasma concentration after the end of infusion 

and secondly the limitation of UV detection sensitivity. In order to overcome this 
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limitation of UV detection, a sensitive LC-MS method was developed for measurement 

of the anticancer agent gemcitabine and its deaminated metabolite at low concentrations 

in human plasma. [28] This method provided a ten-fold improvement on the detection 

sensitivity (5 ng/mL) compared to that of the most sensitive UV assay. In addition, a 

better specificity was also achieved by using mass spectrometry. A more sensitive and 

more specific HPLC-MSMS was also developed for simultaneous low concentration 

determination of gemcitabine and its metabolite in human urine. [29] 

1.3.2 Quantification of dFdCTP in White Blood Cells 

Since gemcitabine is a prodrug, it can be activated only after entering the cells. The 

activation is a multi-phosphoration process limited by dCK. The resultant nucleotides are 

gemcitabine monophosphate (dFdCMP), dFdCDP and dFdCTP. Among them, dFdCTP is 

the main active metabolite proposed to incorporate into DNA, resulting in inhibition of 

DNA synthesis and finally cell death. In addition, pre-clinical models have demonstrated 

a good correlation between intra-cellular dFdCTP accumulation and cytotoxic activity of 

gemcitabine. Thus, dFdCTP can be considered pharmacologically the most important 

metabolite of gemcitabine. [30, 31] 

Due to the importance of dFdCTP concentrations in interpreting pharmacodynamic 

effect, the quantification of intracellular dFdCTP content is crucial for gemcitabine 

clinical evaluation. In recent years, several analytical methods on determination of 

dFdCTP have been published including the latest one by using tandem mass 

spectrometry.[32-35] However, all of them are derived from a pioneer publication on 

analysis of 9-beta-D-arabinofuranosyladenine 5’-triphosphate levels in murine leukemia 

cells by high-pressure liquid chromatography as early as 1977. [36] 
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1.4 Pharmacokinetics of Gemcitabine 

1.4.1 Distribution, Metabolism and Excretion 

Due to its short half life, gemcitabine is usually administered by continuous infusion so 

as to reach the targeting blood concentration (10-15 µM). After i.v. infusion, gemcitabine 

is rapidly distributed into total body water with half life ranging from 2 to 42 minutes by 

using non-compartmental analysis. [18, 20] In modelling pharmacokinetic analysis, 

gemcitabine shows linear kinetics between doses of 53 to 1000 mg/m2. Gemcitabine 

shows biphasic elimination kinetics, with a t½ α and t½ β of 3.5 min and 8 min 

respectively. The drug can be rapidly deaminated by cytidine deaminase, likely in the 

liver and the kidney, to dFdU which exerts only minimal antitumor activity. Peak dFdU 

concentrations were observed 5-15 minutes after the end of gemcitabine infusion. [18] 

Unchanged parent drug accounts for only 5% of the dose and the rest of the gemcitabine 

dose is excreted as dFdU. Elimination of dFdU is biphasic with an initial t½ of 23.5-27 

minutes and a terminal t½ of 14-22.4 hours. About 98% of the gemcitabine dose is 

eliminated in the urine within one week. In addition, gemcitabine can be metabolized 

intracellularly by nucleoside kinases to active metabolites dFdCDP and dFdCTP; also 

metabolized intracellularly and extracellularly by cytidine deaminase to inactive 

metabolite difluorodeoxyuridine (dFdU). [37] The plasma protein binding is less than 10% 

due to its high polarity. [38] The proximal tubule of the kidney is known to be capable of 

nucleoside reabsorption. It is not clear if there are multiple different active nucleoside 

transporters. However, high concentrations of deaminase in kidney may contribute to the 

fast deactivation of gemcitabine to dFdU. [39] Gemcitabine Triphosphate in peripheral 

mononuclear cells appears to be saturated at a dosage of 350 mg/m2 through the 30-
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minute infusion of gemcitabine. This corresponds to the saturation of the rate-limiting 

enzyme deoxycytidine kinase in the cell. [18] In another study to determine if the 

saturation of dFdCTP was infusion rate dependent, a similar dose of 790 mg/m2 to 800 

mg/m2 with different infusion rates resulted in a 4-fold higher dFdCTP accumulation with 

a longer infusion time (60 min) than that with a shorter infusion time (30-minute) [40] 

 

1.4.2 Pharmacokinetic Parameters of Gemcitabine 

Gemcitabine shows linear kinetics between doses of 53 to 1000 mg/m2 and can be 

described by a 2-compartment model. The volume of distribution of gemcitabine is 

influenced by many factors such as infusion scheduling, age and sex. [41] This study 

showed that the volume of distribution is increased with longer infusions suggesting 

slowly equilibrating body compartments. However, clearance of gemcitabine is 

independent of the dose and the duration of infusion. But clearance of gemcitabine is 

quite variable with sex and age.  

A phase I study designed to evaluate the clinical feasibility of this pharmacologically-

based strategy showed that high weekly doses of gemcitabine administered at a fixed 

dose rate of 10 mg/m2/min was effective for patients with refractory malignancies with 

9.7% response rate and toxicity was tolerable. [42] The fixed infusion rate of 10 

mg/m2/min has been shown to achieve plasma gemcitabine concentrations of 15 to 20 

µM, resulting in maximizing the intracellular rate of accumulation of the active dFdCTP. 

Similar maximum concentrations (18.0 µM[43] and 18.6 µM[44]) were also achieved in 

other two clinical studies for fixed rate infusion of gemcitabine at 10 mg/m2/min for 80 

min or 120 min respectively. However, there were also some exceptional cases reported 
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such as a clinical trial conducted in The University of Texas MD Anderson Cancer 

Centre showed a nearly doubled Cmax (35.3 µM) [20] was achieved after the fixed rate 

infusion of gemcitabine at 10 mg/m2/min for 120 min (Table 1.1). 

 

  Table 1.1 Reported Pharmacokinetic Parameters of Gemcitabine [Mean (SD)] 

Study Sites 
subjects(n) 

Dose (mg/m2) 
Infusion Time(min) 

AUC 
(µM*h) 

Vd 
(L/m2) 

Cl 
(L/h/m2) 

T1/2 
(min) 

Cmax 
(µM) 

1 
(13) 

800 
80 

22.32† 
- 

52.2  
(28.6) 

136.3 
(40.8) 

17.0 
(11.6) 

18.0 
(5.5) 

2 
(5) 

1000 
30 

41.3 
(31.5) 

- 
- 

408.4 
(501.4) 

8.2 
(2.6) 

56.4 
(35.7) 

3 
(6) 

1200 
120 

28.9 
(5.7) 

- 
- 

- 
- 

10.7 
(3.4) 

18.6 
(6.8) 

4 
(5) 

1200 
120 

81.2 
(25.4) 

- 107.5 
(33.1) 

- 35.3 
(11.1) 

5 
(3) 

1000 
30 

42.25† 
- 

9.7 
(6..8) 

90.0 
(17.6) 

- 
- 

- 
- 

6 
(6) 

1000 
30 

32.2 
- 

22.0 
- 

124.7 
- 

 64.6 
- 

†: The value of AUC was calculated according to corresponding Clearance and Dose. 

1: University of North Carolina. [43]  

2. The University of Texas MD Anderson Cancer Centre. [18] 

3. Zhejiang University, China. [44] 

4. The University of Texas MD Anderson Cancer Centre. [20]  

5. City of Hope Comprehensive Cancer Center. [45] 

6. University of Southern California Norries Cancer Center. [46]  
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1.5 Pharmacodynamics of Gemcitabine 

Gemcitabine displays potent anticancer effects on several cancers, especially for solid 

tumors. Hematological toxicity is the major adverse effect of gemcitabine even though 

this generally used anticancer agent has been thought to be tolerable in most cases. The 

mechanisms of action for gemcitabine have been explored intensively in last decade. Its 

main mechanisms of action and pharmacodynamics will be briefed as follows. 

 

1.5.1 Mechanism of Action 

Like other prodrugs, gemcitabine is also needed to be activated by dCK through 

intracellular phosphorylation for its anticancer activity. It enters the cell through the 

sodium-dependent nucleoside transporter on the cell membrane and then undergoes 

phosphorylation to the active dFdCDP and dFdCTP. (Figure 1.2) Both dFdCDP and 

dFdCTP inhibit processes required for DNA synthesis even though they target different 

sites. The main mechanisms include inhibition of DNA synthesis, ribonucleotide 

reductase inhibition, poisoning Topoisomerase I and self-potentiation. Preclinical and 

clinical data suggest that many factors such as enzymes, transporters and tumour type 

may affect the intracellular gemcitabine phosphorylation activation. [47] 

 

1.5.1.1 Reduction of DNA Synthesis 

Biochemical studies demonstrated that the ultimate intracellular fate of gemcitabine is to 

become incorporated into DNA, causing cell death. [47] DNA synthesis decreased in an 

inverse relationship with the cellular accumulation of gemcitabine nucleotides. [12] A 

strong correlation was found between incorporation of gemcitabine into DNA and the 
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loss of viability which provided evidence for a mechanistic relationship between the 

mechanism of gemcitabine and its biologic actions. Incorporation of dFdCTP into DNA 

chain is most likely the major mechanism by which gemcitabine causes cell death. After 

incorporation of gemcitabine nucleotide on the end of the elongating DNA strand, one 

more deoxynucleotide is added, resulting in inhibition of further DNA synthesis. DNA 

polymerase epsilon is unable to remove the gemcitabine nucleotide and repair the 

growing DNA strands which resulted in masked chain termination. 

 

1.5.1.2 Ribonucleotide Reductase Inhibition 

The ribonucleotide reductase is the major source of deoxynucleotides, which are 

necessary components for DNA replication and for repair. The effect of gemcitabine on 

ribonucleotide reductase activity is closely correlated to a decrease in the concentration of 

deoxynucleotides in cells shortly after being exposed to the drug.[13] This is because 

nucleotides of dFdC may be viewed as potential alternative substrates or inhibitors of 

ribonucleotide reductase, causing a decrease of deoxynucleotide pools. Surprisingly, the 

analogue of gemcitabine, cytarabine, lacks this effect due to minor difference in their 

chemical structure. Studies with partially purified human enzyme indicated that dFdCDP 

is the inhibitory metabolite. [48]  

 

1.5.1.3 Poisoning Topoisomerase I 

The effects of gemcitabine incorporation on topoisomerase I (top1) activity and the role 

of top1 poisoning in gemcitabine-induced cytotoxicity in cancer cells were tested by 

purified oligodeoxynucleotides. It was found that top1-mediated DNA cleavage was 
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enhanced when gemcitabine was incorporated immediately 3' from a top1 cleavage site 

on the nonscissile strand. This position-specific enhancement was attributable to an 

increased DNA cleavage by top1 and was likely to have resulted from a combination of 

gemcitabine-induced conformational and electrostatic effects. [49]  

 

1.5.1.4 Self-Potentiation 

Furthermore, the unique actions that gemcitabine metabolites exert on cellular regulatory 

processes serve to enhance the overall inhibitory activities on cell growth. This 

interaction is termed "self-potentiation" and is evidenced for very few other anticancer 

drugs. [50] The reduction in the intracellular concentration of natural dCTP pool by the 

action of gemcitabine diphosphate enhances the incorporation of gemcitabine 

triphosphate into DNA through competitive mechanism. 
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  Figure 1.2 Activation Pathways of Gemcitabine 
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1.5.2 Molecular Pharmacology of Gemcitabine 

Cell-cycle kinetic studies have shown that gemcitabine is most active during the S phase. 

No obvious effect on the G1, G2, or M phases is seen. Due to the competitive inhibition, 

gemcitabine enters the cell through a saturable carrier-mediated process that is shared by 

other nucleosides. In addition, this process can even be reversible when normal 

nucleosides are increased continuously. Gemcitabine can be phosphorylated into its 

active metabolites once it enters the cell. These active metabolites vary significantly from 

patient to patient since the activation processes are controlled by a series of enzymes 

involved in its transportation, activation as well as elimination. In addition, the 

accumulation of gemcitabine di or triphosphates is also dependent on the infusion rate 

which is the rationale for proposing prolonged infusion of gemcitabine. [51] 

 

1.6 Pharmacogenetics of Gemcitabine 

Gemcitabine is used for several solid tumors including non-small cell lung cancer 

(NSCLC) but the determinants of toxicity and efficacy are not yet fully understood.   

 

1.6.1 Pathway of Disposition of Gemcitabine Metabolism 

The genetic metabolism pathway of gemcitabine to its active form gemcitabine 

triphosphate and gemcitabine diphosphate is complex (Figure 1.3). Gemcitabine enters 

the cell via members of the nucleoside transporter family, SLC28 and SLC29. [52, 53] 

Within the cell, gemcitabine is phosphorylated in a rate-limiting step by dCK to dFdCMP 

and subsequently by nucleotide kinases to dFdCDP and dFdCTP. Gemcitabine 

triphosphate is incorporated into DNA by DNA polymerase α and through the process of 
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masked chain termination inhibits DNA repair and synthesis. Gemcitabine and dFdCMP 

can be inactivated by CDA and deoxycytidylate deaminase (DCTD) to dFdU and 

difluorodeoxyuridine monophosphate (dFdUMP), respectively. [12] Additional targets of 

gemcitabine cytotoxicity are ribonucleotide reductase (RRM1, RRM2) and thymidylate 

synthase (TYMS) which are inhibited by dFdCDP and dFdUMP respectively. RRM1 

converts ribonucleotides to deoxyribonucleotides which are used in DNA synthesis and 

repair. [48] The inhibition of TYMS results in DNA damage. 

 

 

 Figure 1.3 Metabolism pathway of gemcitabine to its active metabolites     

 dFdCDP and dFdCTP. 
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1.6.2 Identification and distribution of SNP 

Inherited genetic variation in drug metabolizing enzymes, targets and transporters are 

associated with inter-patient and inter-ethnic variability in drug effect.  Genetic variations 

may be due to mutations, variation in tandem repeats and single nucleotide 

polymorphisms (SNPs), which account for over 90% of genetic variation in the human 

genome.[54, 55] Evaluating the association between gene variants involved in the 

gemcitabine pathway and clinical outcome is able to elucidate the effect of gene 

polymorphisms on chemotherapeutic outcome. 

 

1.7 Toxicity of Gemcitabine 

The profiles of the general pharmacological effects of gemcitabine were assessed in 

studies evaluating the cardiovascular and respiratory systems, renal function, the 

gastrointestinal system, the central nervous system, and the autonomic nervous system 

using animal models.[56] In general, gemcitabine showed limited organ toxicity but 

unpredictable severe toxicity such as myelosuppression. 

 

1.7.1 Non-hematology Toxicity 

Non-hematologic toxicity comprises fever, chills rigors, hypotension, flu-like symptoms, 

rash, alopecia, nausea, vomiting, constipation, diarrhea, stomatitis, somnolence, lethargy 

insomnia, elevated liver enzymes, proteinuria, hematuria, elevated creatinine and 

dyspnea. Hemolytic uremic syndrome has been reported in several cases. Among these, 

flu-like symptoms are common but can be relieved by acetaminophen. These results 

indicated that gemcitabine has a low potential to produce severe adverse pharmacological 
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effects on organs except for lungs. [57] 

 

1.7.2 Hematology Toxicity 

Like that of other antimetabolites, the dose-limiting toxicity of gemcitabine is 

myelosuppression. Myelosuppression consists of neutropenia, thrombocytopenia and 

anemia. The frequency of WHO Grade 3-4 adverse effects was summarized by Hui and 

Reitz. [1] The frequency ranges are 6-51%, 1-14% and 0.2-51% for neutropenia, anemia 

and thrombocytopenia respectively. These high variations in neutropenia and 

thrombocytopenia represent a major challenge in management of hematological toxicities 

during gemcitabine-based chemotherapy. The reasons could be due to different doses, 

different diseases, and different concurrent therapy as well as different genetic profiles, 

e.g. mutation of cytidine deaminase. [58]  

 

1.7.3 Models for Gemcitabine-induced Neutropenia  

Modelling the relationship between dose and concentration of anticancer drugs with 

myelosuppression is very important for clinicians to understand interpatient variability 

and select a better individualized treatment. This is because the use of these drugs is often 

limited by myelosuppression toxicities. This work can be done by empirical or 

physiology-based models. The most commonly used pharmacokinetic parameters are 

peak plasma concentration, the area under the concentration-time curve (AUC), time 

above certain plasma drug concentration and concentration at steady state (for continuous 

infusion). [59] For high protein bound compounds, the free drug concentrations would be 

calculated in evaluating their activities. Empirical neutropenic models have been 
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established for many drugs such as tipifarnib, irinotecan, etoposide and epirubicin, etc. 

[60-63] Comparatively, physiology-based models are preferred because ideal physiology-

based models are able to separate system parameters, common across drugs, from drug 

specific parameters. [64-66] However, these modeling procedures are time consuming and 

well trained modelers are required to build and optimize the pharmacokinetic and 

pharmacodynamic models.  

 

1.8 Preclinical Research of Gemcitabine 

1.8.1 in vitro Studies 

Nucleoside antimetabolites comprise one of the most effective classes of drugs for the 

treatment of cancer and viral diseases. Usually, nucleoside analogues are prodrugs and 

display their activities only after entry into the cell and phosphorylation to nucleotide 

metabolites. Gemcitabine has been confirmed to exhibit activity on several solid tumors 

due to its unique multiple mechanisms of action. Gemcitabine is regarded as a new 

landmark drug of antimetabolites in the past decade.  

Preclinical studies revealed gemcitabine had potent and broad spectrum activity against a 

variety of hematological and solid tumour cell lines like colorectal, renal cell, melanoma 

and NSCLC cells, etc. The antitumour activity against human myeloid HL-60, T-

lymphoid Molt-3, B-lymphoid RPMI-8392 cell lines was 2.6 to 17.3 fold higher than 

cytarabine after 48 hour incubation. [67-68] 

Concurrent addition of deoxycytidine to the cell culture system may cause about a 1000-

fold decrease in its biological activity. This implies that the activity of gemcitabine can be 

competitively inhibited by saturating dCK. [69] 
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1.8.2 In vivo Studies 

In human tumor xenografts derived from squamous cell carcinoma of the head and neck, 

gemcitabine was active.[70] Gemcitabine was tested for its antitumor effect in human 

tumor xenografts derived from squamous cell carcinoma of the head and neck (SCCHN). 

At equitoxic doses, gemcitabine was more active in this model than the drugs that are 

clinically used in SCCHN, i.e., cisplatin, methotrexate, 5-fluorouracil, and 

cyclophosphamide. 

A mode of resistance appeared to be lack of the activating enzyme dCK. Gemcitabine is 

not affected by the P-glycoprotein. [71] In an in vivo induction of gemcitabine resistance 

mode, an increase in expression of the RRM1 subunit gene was found in resistance 

phenotype but dCK activity was 1.7-fold decreased. [72] Preclinical studies demonstrated 

treatment schedule dependency of gemcitabine. The data on the effect of gemcitabine in 

animal tumour models indicated that the time interval between i.v. push injections was 

important when intermittent schedules were used and continuous infusions over a 24-

hour period might be highly effective for in vivo models.[73] It was found that treatment 

with 120 mg/kg gemcitabine, injected (i.p.) four times at 3-day intervals, was more 

effective than the schedules of daily (five times 2.5 to 3.5 mg/kg) or weekly (two times 

240 mg/kg) injections.  

In addition, the lack of cross resistance seen with gemcitabine may contribute to 

therapeutic synergism when gemcitabine is combined with other agents [74] In general, in 

vitro sensitivity to dFdC was highly related with dFdCTP accumulation and retention, but 

in vivo this relation was less clear. [75] Furthermore, the effect of gemcitabine is also 

dependent on dose scheduling.  Previous mechanistic studies indicate that a continuous-
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infusion schedule may be more effective compared to bolus injection. Furthermore, 

prolonged infusion of gemcitabine can give better antitumor activity and shows promise 

of being active in clinical trials. [21]  

 

1.9 Clinical Uses of Gemcitabine 

Despite the grim prognosis of NSCLC, some progress has been made in defining the role 

of chemotherapy in this once considered chemo-resistant disease. In the 1970s and 1980s, 

a number of chemotherapeutic agents were tested in phase II trials, of which several of 

them fulfilled the criteria of 15% overall response rate, considered to be “active” enough 

for further evaluation. These include cisplatin, ifosfamide, mitomycin-C, vinblastine, 

vindesine, and etoposide. [76] Accordingly, a series of combination clinical trials being 

proposed and tested in Europe and US resulted in superior cisplatin-based combination 

chemotherapy as a standard treatment of NSCLC. To date, platinum-based combinations 

are the most widely accepted regimens in the treatment of advanced NSCLC due to a 

clear improvement on survival in comparison with best supportive care alone.[77] Since 

the response rates have nearly reached a plateau for the cisplatin combination 

chemotherapies for NSCLC, novel doublets are continuously being explored by clinician 

scientists to provide improved treatment efficacy, less toxicities and better quality of life. 

This has been achieved with the development of third generation of agents which have 

been active for NSCLC. These agents include taxanes (paclitaxel and docetaxel), 

gemcitabine, vinorelbine, and irinotecan.[78] The candidate drugs used for combination 

therapy should possess proven anticancer effect, as well as tolerable toxicities. Among 

these new anticancer drugs, gemcitabine has been considered a potential agent for 
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combination chemotherapy due to its unique mechanism of action and relatively “good” 

toxicity profile.[14]  

 

1.9.1 Single-agent Gemcitabine 

Both in vitro and in vivo studies have demonstrated that gemcitabine is effective on 

various solid tumours, including NSCLC. [10] Used as a single agent in the treatment of 

metastatic NSCLC, gemcitabine achieved consistent response rates of 20% and above. 

Furthermore, the toxicity profile at the doses ranging from 800 to 1250 mg/m2 was 

modest, consisting mainly of a short-lasting decrease in leucocytes and thrombocytes, 

skin reactions (5-8%), peripheral oedema and transient increase in transaminase levels.[79] 

Nausea and vomiting were mild. Some patients (18.9%) experienced transient flu-like 

symptoms and mild fever was reported in 37.3% of flu patients. [80] Based on its response 

rates and modest toxicity which is non-overlapping with other active agents, gemcitabine 

is now being widely explored in various combination therapies in the treatment of 

NSCLC.  

 

1.9.2 Gemcitabine plus Platinium Compounds 

In vitro studies showed considerable synergy between cisplatin and gemcitabine.[81] 

Clinically, gemcitabine/cisplatin combination also showed an improved median and one 

year survival rate compared to single cisplatin, better time-to-disease progression and 

tumour response rates than its comparator arms in phase III studies. [82, 83]  These 

significant findings reviewed by FDA resulted in the approval of gemcitabine in 

combination with cisplatin as first-line therapy of patients with advanced NSCLC 
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patients. The efficacy of the every 4 week regimens was further confirmed by other 

investigators in the following trials. [84-86] In recent years, a more common schedule is 

every 3 weeks for gemcitabine 1000 or 1250 mg/m2 given on day 1 and 8 combined with 

cisplatin at doses ranging from 75 to 100 mg/m2. [87-89] These every three weeks schedule 

studies achieved equivalent response rates that ranged from 31.8%-42% as the every four 

weeks schedule with a response rates between 25.9% and 54.8% but with less 

myelotoxicity and better compliance. [90-94]This could be due to the difference in the dose 

intensity of each schedule of gemcitabine. 

Although the gemcitabine and cisplatin combination is currently one of the reference 

regimens for advanced NSCLC, this regimen has its own limitation due to significant 

non-hematologic toxicity and difficulty of use in outpatients (the need for hydration and 

prolonged administration time). In contrast, carboplatin, another platinum analogue, has 

less non-hematological toxicity associated with cisplatin. The efficacy of gemcitabine and 

carboplatin combination was confirmed by a recent Phase III trial to compare overall 

survival in patients with locally advanced or metastatic NSCLC when treated with single-

agent gemcitabine versus gemcitabine/carboplatin. [95] In advanced NSCLC, 

gemcitabine/carboplatin therapy resulted in significant survival benefit compared with 

single-agent gemcitabine.  

In addition, the gemcitabine and carboplatin doublet is effective, with a favorable safety 

profile, and is well tolerated in the outpatient setting. Even though gemcitabine combined 

with carboplatin is associated with more hematological toxicity, but the incidence of non-

hematological toxicity is significantly lower. Another advantage is that carboplatin can be 

easily administered in an outpatient setting since no prehydration is needed. [96] 



Chapter I: Literature Review 

 23

1.9.3 Gemcitabine plus non-platinium agents 

Since 1997, platinum-based combination has been recommended by ASCO for treatment 

of advanced NSCLC. Until 2003, a new guideline has been updated as “A First-line 

chemotherapy given to patients with advanced NSCLC should be a two-drug combination 

regimen. Non–platinum-containing chemotherapy regimens may be used as alternatives 

to platinum-based regimens in the first line”. [97] In recent years, a variety of 

gemcitabine-based combinations with non-platinum agents have been investigated for 

their efficacy, toxicity as well as quality of life. The efficacies of gemcitabine-based 

doublets combined with docetaxel, paclitaxel, or vinorelbine compared to any platinum-

based doublets or the single-agent schedules have been well documented in several Phase 

II trials [98-101] and further confirmed by Phase III studies as well. [102-105]  

 

1.10 Nucleoside Transporters 

Gemcitabine can be activated to its active metabolites only after entering the cell. Like 

other nucleoside drugs, gemcitabine is hydrophilic and would not be expected to readily 

permeate the plasma membrane by passive diffusion. Cellular uptake of gemcitabine 

requires the presence of specialized plasma membrane nucleoside transporter proteins. 

[106] Gemcitabine has been shown to be a substrate for five of the nucleoside transporters 

found in human. These transporters belong to the Solute Carrier families SLC28 (human 

concentrative nucleoside transporters: hCNT1, hCNT2 and hCNT3) and SLC29 (human 

equilibrative nucleoside transporters: hENT1 and hENT2). [107] CNTs are thought to play 

critical roles in nucleoside homeostasis at the organism level by maintaining systemic 

blood levels of nucleosides through absorption and elimination mechanisms and at the 
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cellular level by mediating influx of extracellular nucleosides into cells. On the other 

hand, these transporters play a critical role in drug response, facilitating drug absorption, 

metabolism, and elimination. Hence, genetic mutation in SLC transporters could be 

determinants of sensitivity and resistance to gemcitabine and toxicity of gemcitabine. 

 

1.10.1 Effect of Nucleoside Transporters on Activity of Gemcitabine 

Gemcitabine requires plasma membrane nucleoside transporter proteins to efficiently 

enter cells and exert its cytotoxicity. In vitro studies have demonstrated that deficiency of 

human equilibrative nucleoside transporter 1 (hENT1), the most widely abundant and 

distributed nucleoside transporter in human cells, confers resistance to gemcitabine 

toxicity. Patients with pancreatic adenocarcinoma with uniformly detectable hENT1 

immunostaining have a significantly longer survival after gemcitabine chemotherapy than 

tumors without detectable hENT1. Immunohistochemistry for hENT1 shows promise as a 

molecular predictive assay to appropriately select patients for palliative gemcitabine 

chemotherapy but requires formal validation in prospective, randomized trials. [108]   

 

1.10.2 Effect of Nucleoside Transporters on Excretion of Gemcitabine  

Eliminatory organs such as kidney, liver, and intestine defend the human body against 

potentially harmful effects of xenobiotics by transforming them into less active/inactive 

metabolites and by excretory transport process. Eventually, most drugs and 

environmental toxicants are excreted into the urine, either in the unchanged form or as 

biotransformation products. The mechanisms that contribute to their renal excretion are 

closely related to the physiological events occurring in the nephrons, i.e., filtration, active 
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secretion, and re-absorption.[109] The SLC28 family consists of three subtypes of sodium-

dependent, concentrative nucleoside transporters, CNT1, CNT2, and CNT3 (SLC28A1, 

SLC28A2 and SLC28A3, respectively). Each of them has their own substrate 

specificities. CNT1 is pyrimidine-nucleoside preferring, CNT2 is purine-nucleoside 

preferring but CNT3 has a more general substrate profile and can transport pyrimidine 

and purine nuclosides as well. [110] Novel evidence indicates that cytidine is a novel 

substrate for wild-type CNT2. [111] Both CNT1 and CNT2 are involved in re-absorption of 

nucleosides.  

In epithelia, CNT1 is localized to the apical membrane and works in concert with 

equilibrative nucleoside transporters localized predominately to the basolateral 

membranes of these tissues to mediate transepithelial nucleoside flux. Although CNT1 

prefers pyrimidine nucleoside, it works on transportation of naturally occurring 

pyrimidine nucleosides as well as the naturally occurring purine nucleoside, adenosine. 

[112,113] Many antiviral nucleoside analogues and cytotoxic cytidine analogues including 

gemcitabine are substrates of CNT1.  

Northern blot analysis has confirmed that human CNT2 is present in many tissues such as 

kidney, liver and heart, etc. [114] CNT2 shows different profile of substrates including 

antiviral compounds such as didanosine in treatment of HIV and ribavirin in treatment of 

hepatitis C. Of the nucleoside chemotherapeutic agents, it seems that these compounds 

are not the substrates of CNT2. However, a recent study demonstrated that gemcitabine is 

one of the substrates of CNT2. [115] Although each subtype of CNTs shows different 

substrate specificities, their specificities may become different due to transporter protein 

conformation changes. For example, the specificity of substrate for CNT1 can be 
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broadened from pyrimidine to pyrimidine plus purine nucleosides after replacing Ser318 

in rat CNT1 with corresponding residue in CNT2 (Gly). This fact implies that the single 

nucleotide polymorphism which encodes amino acid changes is important in determining 

the substrate profile for CNTs. This may produce significant clinical implication in 

interpreting efficacy and toxicity of nucleoside anticancer drugs. 

 

1.11 Chemo-resistance of Gemcitabine 

Like other chemotherapeutic agents, treatment effect of gemcitabine is also limited in 

clinical trials as a single agent or combination regimens due to resistance to gemcitabine. 

This resistance is believed to be caused by different activity and mutation of several 

enzymes which control the phosphorylation of gemcitabine and intracellular 

transportation as well as elimination processes. These include 1) human equilibrative 

transporter (hENT1); [116] 2) multidrug resistance proteins ABCC1 and ABCC5; [117] 3) 

gemcitabine intracellular phosphorylation by deoxycytidine kinase (dCK) to the active di 

or triphophate forms; [13] 4) Overexpression of rebonucleotide reductase (RRM1); [118] 5) 

Decreasing the intracellular normal deoxynucleotide triphosphate pools by inhibition of 

ribonucleotide reductase. [119] On the other hand, the sensitivity to gemcitabine also 

depends on the NSCLC pathological characteristics in relation to mutation and deficiency 

of tumor suppressor genes, silence of proapoptosis genes and overexpression of 

oncogenes.  
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1.12 Summary 

Lung cancer is the most common form of cancers throughout the world. In addition, 

advanced NSCLC is usually considered incurable. The development of third generation 

anti-cancer drugs such as taxanes, irinotecan and gemcitabine brings new hope in the 

armamentarium of drugs for chemotherapy for NSCLC. For the last ten years, the 

combination of platinum-based chemotherapy has resulted in significant improvements in 

treatment of NSCLC patients. Nevertheless, another treatment plateau (response rates of 

30-40%, median survival times of 8-10 months and 1-year survival rates of 

approximately 35% in patients with advanced NSCLC) has been reached even with the 

use of the third generation agents. [120]Although gemcitabine has been used in solid 

tumour treatment for more than ten years, there is still room to improve its efficacy by 

manipulating different infusion rates and dosages with the help of clinical 

pharmacologically-guided research. These findings will help clinicians to maximize the 

efficacy of gemcitabine and at the same time, manage the drug toxicity effectively 

through optimizing pharmacokinetic parameters and tailoring pharmacogenetics findings 

so as to optimally individualize the treatment for NSCLC patients.  
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Our study aims are: 

1. in vitro studies on cytotoxic sensitivities of NPC and NSCLC cell lines to 

gemcitabine and delineating the determinants for intracellular accumulation and 

retention of dFdCTP. 

 

2. Pharmacokinetic and pharmacodynamic study in fixed infusion rate of different 

dose of gemcitabine in combination with carboplatin (Phase I).  

 

3. Pharmacokinetic and pharmacodynamic study of gemcitabine in 2 different 

infusion rates of gemcitabine with carboplatin in patients with advanced NSCLC 

(Phase II).  

 

4. Association of pharmacokinetic parameters of gemcitabine in plasma or the 

intracellular dFdCTP with the various pharmacodynamic endpoints and 

pharmacogenetic single nucleotide polymorphisms involved in gemcitabine 

activation pathway. 
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Bioanalytical Method Development for 

Determination of Gemcitabine  

and Its Metabolites  
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2.1. Introduction 

2.1.1. Quantification of dFdC and dFdU in human plasma using LC-MSMS 

Gemcitabine plasma concentrations have been reported to be closely related to rate of 

accumulation of its intracellular therapeutically active metabolite-gemcitabine 

triphosphate even though gemcitabine is a prodrug,[14] Plasma quantitation of dFdC is 

difficult because it has an extremely short half-life due to rapid deamination to dFdU by 

CDA. [53,121] In addition, simultaneous analysis of dFdC and dFdU is important to define 

the elimination pathway of parent drug and its metabolites. [16] Furthermore, the ratio of 

AUC or concentration ratios of dFdU versus dFdC may be useful for evaluating 

gemcitabine deactivation rate which may be an important marker for drug efficacy. [122] 

During our phase I clinical study of gemcitabine, a HPLC-UV method was validated for 

quantification of gemcitabine and dFdU with the lower limit of quantitation (LLOQ) of 

80 ng/ml. [123] However, most of the concentrations from the last sampling points from 

our Phase II trial study are less than 80 ng/mL. Hence accurate determination of the last 

sampling points of dFdC during the elimination phase was not possible by using UV 

detectors because of, the rapid decline of dFdC plasma concentration after the end of 

infusion and the limitation of UV detection sensitivity. This gap in sensitivity of 

measurements initiated the development of the current much more sensitive and simpler 

analytical method using liquid chromatography-tandem mass spectrometry.  

In the clinical setting, gemcitabine's unique mechanism of action and its lack of 

overlapping toxicity with other cytotoxic agents make it as an ideal candidate for 

combination therapy. [23] Many novel gemcitabine combinations are being tested in 
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clinical trials resulting in a large number of plasma samples requiring quantitative 

analysis. Although two mass spectrometric assays were published for determination of 

dFdC and dFdU in human plasma and urine, [28, 29] the solid phase extraction (SPE) used 

for sample preparation is laborious and precludes rapid quantifications of dFdC and dFdU 

in patient plasma samples, especially in clinical laboratories. This is likely to hamper the 

widespread application of monitoring dFdC and dFdU concentrations in clinical practice 

due to shortage of trained analytical scientists. In addition, an analogue compound of 

gemcitabine was used as internal standard which may result in bias pharmacokinetic 

parameters due to matrix effect. Furthermore, the volume of plasma required for bio-

analysis is an important consideration in pharmacokinetic sampling, especially for 

pediatric clinical trials. In the LC-MS assay for plasma samples, 500 µl was used in 

quantification of dFdC and dFdU. [28] This sample volume is ten time larger than what we 

used (50 µl) in current LC-MSMS method. Due to the large difference in polarities of 

dFdC and dFdU (Figure 2.1), a gradient elution mode must still be utilized to 

simultaneously quantify both dFdC and dFdU even though tandem MS is a highly 

selective detector. The key limitation against high-throughput analyses of plasma samples 

is dependent on the sample preparation.  
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         Figure 2.1 The chemical structures of dFdC, dFdU and Internal Standard. 

 

 

In this study, we developed and validated a highly sensitive and simple liquid 

chromatography tandem mass spectrometry (LC-MSMS) method for dFdC and dFdU. 

Sample preparation involved only protein precipitation with acetonitrile, paving the way 

for high-throughput analysis of clinical samples. In addition, a commercially available 

isotope gemcitabine was used as internal standard. This ideal internal standard will allow 

analytical scientists to minimize the possible matrix effects. Therefore, this robust method 

is most applicable for clinical investigation of the pharmacokinetics of dFdC during 

elimination phase, to evaluate the AUC ratio of dFdC and dFdU as well as to monitor 

many samples within a short period. This method has been successfully applied to 

pharmacokinetics study of phase II clinical trial of gemcitabine in Asian population.  
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2.1.2. Ion-exchange HPLC determination of dFdCTP in human WBC 

As a prodrug, gemcitabine has to go through intracellular conversion to its active 

metabolites, gemcitabine diphosphate and gemcitabine triphosphate. Current research 

findings showed that dFdCTP is the main active metabolite and exerts its anticancer 

effect by incorporation into DNA chain. Several studies have confirmed that in vitro and 

in vivo efficacies as well as toxicity of gemcitabine are closely correlated to the 

intracellular accumulation of dFdCTP. Therefore, a sensitive and accurate analytical 

method is critical for clinicians to optimize the treatment schedule and correlate the 

intracellular pharmacokinetics of dFdCTP with pharmacogenetics, pharmacodynamics as 

well as cytotoxicity. However, bioanalytical method development is a challenge for 

quantifying intracellular active metabolite, dFdCTP because of 1) the large volume of 

blood needed for isolating enough white blood cells; 2) tedious procedure on handling, 

isolating white blood cells and cell counting; 3) sample stability during storage; 4) 

difficulty in developing sensitive HPLC method. 
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2.2. Objectives 

The aims are to develop and validate a highly sensitive method for plasma dFdC and 

dFdU quantitation using LC-MSMS and to accurately quantify intracellular metabolite 

(dFdCTP) using ion-exchange HPLC coupled with UV detector to study 

pharmacokinetics of gemcitabine.  

 

2.3. Materials and Methods  

2.3.1. Reagents and Standards 

Gemcitabine hydrochloride (dFdC, LY 188011), Gemcitabine Triphosphate (dFdCTP, LY 

264368) and 2’, 2’-difluorodeoxyuridine (dFdU, LY 198791) were kindly provided by Eli 

Lilly. (Indianapolis, IN, USA). The internal standard, Gemcitabine-13C, 5N2 

Hydrochloride, was purchased from Toronto Research Chemicals, Inc. (North York, ON, 

Canada). Tetrahydrouridine (THU) was purchased from Biosciences, Inc. (La Jolla, CA, 

USA). Ammonium dihydrogen phosphate (AG), phosphoric acid (AG), HPLC grade 

methanol and acetonitrile were purchased from Merck (Darmstadt, Germany). Milli Q 

water was used for mobile phase preparation. 

 

2.3.2. Sample Collection and Pretreatment  

This clinical trial was approved by the institutional review board of National Health 

Group of Singapore. Blood samples were collected from patients before initiation 

baseline (0 min) of a 30- to 75-minute gemcitabine infusion, 10 minutes, 30 minutes 

during infusion, 10 minutes before the end of the infusion, and 30 minutes, 1 hour, 2 

hours after the end of the infusion. At each point, 8 ml of blood was drawn into 15-ml 
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heparined plastic tubes that had been preloaded with 0.1 ml of a 10 mg/ml solution of 

tetrahydrouridine, a cytidine deaminase inhibitor. Blood samples were centrifuged for 15 

minutes at approximately 1,200 ×g at room temperature. The plasma portion of the 

samples were removed and kept at –20 °C until analysis. The buffy coat was for 

mononuclear blood cell isolation for quantification of dFdCTP, the intracellular main 

active metabolite.  

 

2.3.2.1. Plasma Sample Preparation 

Fifty microlitre of plasma or calibrator sample, 5 μl of 50 μg/ml aqueous solution of 

Gemcitabine-13C, 5N2 (internal standard), and 200 μl of acetonitrile were added together 

in a 1.5 ml Eppendorf tube. The tube was tightly capped and immediately vortex-mixed 

for 1 minute, and then centrifuged at 10,000×g for six minutes at 4 °C. One hundred 

microlitre of supernatant was transferred into another Eppendorf tube and dried under 

nitrogen and reconstituted with 50 μl of 10 mM ammonia acetate buffer solution pH 6.8. 

After mixing, 40 μl of the mixture was transferred to plastic insert for LC-MSMS 

analysis.  

 

2.3.2.2. Blood Cell Preparation 

2.3.2.2.1. WBC Isolation 

The buffy coat (1 ml) was gently collected using Pasteur pipette and transferred into a 15 

ml centrifuge tube. Balanced salt solution was added to make the volume of cell 

suspension to be 6 ml which is equal to the original blood volume used. The cell 

suspension was mixed using Pasteur pipette. Three milliliter of Ficoll-Paque was added 
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to another centrifuge tube (2 tubes for each point). Three milliliters of the diluted blood 

was layered carefully over the Ficoll-Paque. Next, the tubes were capped and centrifuged 

at 250 ×g at 5 °C for 20 minutes. The upper layer was drawn off carefully while leaving 

the WBC layer undisturbed. The WBC layer was collected and diluted with saline to 3 

ml. Twenty microlitres of cell suspension were diluted with 80 µl of 3% acetic solution 

and counted with hemacytometer. The number of WBC was calculated as follows: 

 N WBC = 5 (dilution factor) × cell number within each square × 104 (cells/ml). 

 

 

2.3.2.2.2. Storage of Cell Samples 

The remaining isolated WBC except those (20 µl) for counting was centrifuged at 500 ×g 

at 5 °C for 6 min. The supernatant was decanted off gently and the tube was put upside 

down on the tissue paper to drain off the water in the tube wall. The tubes were immersed 

in liquid N2 and kept in -80 ºC.  

 

2.3.2.2.3. Pre-analytical Preparation of WBC Samples 

Eighty microlitres of HClO4 (0.8 M) was added to the tube containing the WBC pellets 

above, vortex-mixed for 30 seconds and kept on ice for 3 min. Then the tube was 

centrifuged at 10,000 g at 4 ºC for 2 min. The supernatant was transferred to another 

centrifuge tube (0.6 ml) and the volume was adjusted to 130 µl. After that, 70 µl of 0.8 M 

KOH was added and the tube was kept on ice for ten min and centrifuged at 10,000 ×g at 

4 ºC for 5 min. The supernatant (150 µl) was transferred into injection insert tube (200 

µl) and 100 µl was injected into HPLC system for analysis. 
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2.3.3. Instrumentation 

2.3.3.1. HPLC-MSMS (dFdC and dFdU) 

The high-performance liquid chromatographic system was comprised of an Agilent 1100 

Binary pump equipped with an Agilent 1100 autosampler injector with 100 µl loop and 

1100 column oven set at 20°C (Germany). Chromatographic separations were achieved 

using a BDS HYPERSIL C18 column (2.1×100 mm) (Thermo Hypersil-Keystone, USA) 

following an Eclipse XDB-C8 guard column (2.1 mm x 50 mm, 5 µm) (Agilent 

Technologies, USA) with gradient elution of the analytes with an initial mobile phase 

composition of 2% methanol in 10 mM ammonium acetate buffer pH 6.8 (2:98, v/v). 

Methanol was increased to 15% in 1 min maintained for 4 min and decreased back to 2% 

methanol again in 0.5 min. Column was equilibrated at 2% methanol for another 6.5 min 

before the next injection. The flow rate was set at 0.2 ml /min. Ten microliters of 

reconstituted supernatant were injected to the HPLC column and the elutant directed to 

the mass spectrometer turboionspray source without splitting. In order to avoid 

contaminating the ion source detector, the solvent front eluting in the first 2.5 min was 

switched to waste container.  

LC-MSMS analyses were performed using an API 2000 triple-quadrupole mass 

spectrometer (Applied Biosystems, MDS SCIEX, Ontario, Canada). The instrument was 

operated in positive ion mode calibrated by polypropylene glycol. The plasma samples 

were analyzed by tandem MS using the IonSpray needle at +5500 V and the cluster 

breaking orifice voltage at 30 V. The ions of dFdC at m/z 264, dFdU at m/z 265.1 and 

internal standard at m/z 267.0 were passed through the first quadropole (Q1) and the 

product ions for dFdC (m/z 112.1), dFdU (m/z 113.2) and internal standard (m/z 115.0) 
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were monitored through the third quadrupole (Q3). The dwell time per channel was 300 

ms for data collection. Analyst software (version 1.3) was used to process quantitative 

data analysis.  

 

2.3.3.2. HPLC-UV (intracellular dFdCTP) 

The high-performance liquid chromatographic system consisted of a Hewlett Packard 

(HP) 1050 quaternary pump equipped with a (HP) 1050 autosampler injector with a 100 

μl loop, HP 1100 variable wavelength UV detector and HP ChemStation for data 

analysis. The analytical column Column is partisphere 5 SAX (Whatman).  

The mobile phase was optimized through different buffers, pH values and gradient 

compositions as well. The optimized analysis conditions were listed as follows: 

• HPLC conditions: 

-HPLC column is partisphere 5 SAX (Whatman). 

--Mobile phase consists of solution 1 (0.5M Ammoniun dihydrogen phosphate 

buffer, pH was adjusted to 3.5 using 85% H3PO4) and Solution 2 (0.2 M, H3PO4 pH 

2.1). The gradient was listed as follows: 

Time:            Pump C              Pump D 

0’                45%               55% 

30’               75%               25% 

 31’               45%               55%  

 

• Flow rate was 1.5 ml/min and Detection wave length was 275 nm. 

• Retention time was 14.5 min for dFdCTP and 17.0 min for ATP. 

 

2.3.4. Standard Solutions and Calibration Curves 

2.3.4.1. Gemcitabine and dFdU 

Standard stock solutions of dFdC, dFdU and IS prepared in methanol at 1 mg/ml and 
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were kept at –20 °C. These stock solutions were diluted with water to obtain the 

concentrations required for preparation of standard working solutions. For dFdC, working 

solutions of 0.05, 0.1, 0.25, 1, 2.5, 5, 10, 20 μg/ml and for dFdU, working solutions of 

0.5, 1, 5, 10, 25, 50, 100 and 200 μg/ml were prepared. A working solution of internal 

standard was prepared at 5 μg/ml (Table 2.1). 

 

Table 2.1 Calibrator Preparation 

calibrators C1 C2 C3 C4 C5 C6 C7 C8 
IS (5 ug/ml) 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 

0.05 0.1 0.25 1 2.5 5 10 20 dFdC (µg/ml) 
Vol (µl) 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 

0.5 1 5 10 25 50 100 200 dFdU (µg/ml) 
Vol (µl) 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 5 µl 
Control plasma 
(THU, 0.2 g/10ml) 

50 µl 50 µl 50 µl 50 µl 50 µl 50 µl 50 µl 50 µl 

 

Least-squares regression and standard curves weighted according to 1/x (x = 

concentration) were drawn using linear regression of the peak area ratios of dFdC or 

dFdU against internal standard obtained from LC-MSMS analysis of standard solution 

against actual standard concentrations.  

The limit of detection (LOD) was defined as the lowest concentration that the analytical 

assay can reliably differentiate from background levels (S/N > 3). The lower limit of 

quantification (LLOQ) was defined as the lowest calibrator with the inter-day coefficient 

of variation < 20%. [124] 

2.3.4.2. Gemcitabine Triphosphate (dFdCTP) 

Intracellular dFdCTP determination was developed using external method. A series of 

calibrators were prepared using HONE 1 cell line as a surrogate for control white blood 
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cells. The HONE 1 cell pellet was treated the same way as white blood cell preparation. 

1000 µM of dFdCTP was prepared as stock solution and was stored at -20 °C. This stock 

solution of dFdCTP were spiked into the alkalined cellular supernatant to prepare a series 

of working solution with concentration values of  0.4, 1, 1.5, 2, 3, 4, 5, 10 µM. 100 µl of 

working solutions were injected into HPLC to produce a standard curve. QC samples 

were prepared as 1.2, 2.5, 7.5 µM. The accuracy and precision were evaluated using four 

samples at each concentration intra-run and inter-run. Stability of neutralized samples and 

reproducibility of method will be evaluated to guarantee robustness of analytical 

intracellular method.  

 

2.3.5. Validation Description 

2.3.5.1. Gemcitabine and dFdU in plasma 

Quantification was based on the ratios of the peak areas of dFdC and dFdU against that of 

internal standard. Validation was performed through establishing intra and inter-day 

accuracy and precision of the method on quality control samples. Five different 

calibration curves of seven calibrators of dFdC and dFdU were prepared to determine the 

quality control (QC) samples. To determine intra-day and inter-day precision and 

accuracy of dFdC and dFdU, the method presented here was validated by analyzing three 

quality control samples, prepared at the nominal concentrations of 15, 200, 800 ng/ml for 

dFdC and those of 150, 2000 and 8000 ng/ml for dFdU in blank human plasma. Intra-day 

variability was tested on five different human plasma QC samples using the same 

calibration curve. Inter-day variability was tested on five different days using calibration 

curves obtained daily. The precision of the method at each QC concentration was 

expressed as a coefficient of variation (%C.V.) by calculating the standard deviation as a 
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percentage of the mean calculated concentration, while the accuracy of the assay was 

determined by expressing the percentage of the mean from the true value.  

The absolute recoveries at three different plasma concentrations of dFdC (15, 200, 800 

ng/ml) and dFdU (150, 2000, 8000 ng/ml) in triplicate and internal standard at 5000 

ng/ml were determined by comparing the peak area of dFdC, dFdU or internal standard 

from samples obtained through complete sample preparation with those obtained from 

direct injection of equivalent pure substances spiked into post extracted blank plasma. . 

 

2.3.5.2. Matrix effect evaluation 

Matrix effect is a common and harmful phenomenon in LC-MS or LC-MSMS procedure. 

According to FDA bioanalytical method validation guidance for industry, matrix effect 

should be investigated to achieve good precision and accuracy. The matrix effect 

[ME(%)] was evaluated according to the following formula: [125] 

 

ME (%) = [Peak Area in control matrix/ Peak Area in neat standard]×100 … (1) 

 

In our current validation procedure, six patient control plasma samples were used for 

matrix effect evaluation and recovery for three compounds. The standard concentration 

levels were QC1 and QC3 for dFdC and dFdU and that for internal standard was 500 

ng/ml. Three sets of these two concentrations (QC1 and QC3) were prepared. The first set 

of two QCs (set A) was prepared to evaluate the MS/MS response for neat standards of 

two analytes (dFdC and dFdU) and internal standard. The second set (set B) was prepared 

in plasma extracts taken from six different donors. The third set (set C) was prepared in 



Chapter II:BIOANALYTICAL METHOD DEVELOPMENT 

 42

plasma from the same six sources as in set B, but the plasma samples were spiked before 

extraction. By comparing absolute area of set B against those of set A, the matrix effect 

(ion suppression or enhancement) associated with a given lot of plasma can be measured. 

Similarly, the recovery was determined by comparing the mean peak areas of dFdC, 

dFdU and internal standard obtained in set C to those in set B at a given concentration. 

 

 

2.3.5.3. Gemcitabine Triphosphate in the Cell 

The stability of dFdCTP was of concern when the white cells were treated with strong 

acid (HClO4). Different situations were tested for optimizing the sample preparation. We 

tested how long dFdCTP is stable in strong acid environment (HClO4, 0.4 M). What was a 

better choice of ratio of hydroxide potassium (KOH) to HClO4 for neutralizing the acidic 

cellular supernatant after nucleotide extraction? Finally, we further tested how long 

neutralized dFdCTP would be stable in room temperature while queuing for HPLC 

analysis.  

 

2.4. Results and Discussion 

2.4.1. Gemcitabine and dFdU in Human Plasma 

2.4.1.1. Chromatographic Separation 

Liquid chromatography-tandem mass spectrometry has advantage for its excellent 

specificity in biopharmaceutical analysis. In most cases, chromatographic separation is 

considered by analytical scientists to avoid the possible ion suppression or enhancement 

during method development. In addition, another aspect has to be kept in mind for dFdC 
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and dFdU quantification due to very small mass difference between their parent ions with 

[M+H]+ as 264 amu for dFdC and 265 amu for dFdU as well as their daughter ions with 

mass transition as 264.0/112.1 for dFdC and 265.1/113.2 for dFdU. Hence, 

chromatographic conditions should be optimized to achieve good separation, optimized 

peak shape as well as ion interference free according to following aspects. 

Firstly, an optimized gradient mobile phase was needed to elute the dFdC and dFdU with 

baseline separation. Various pH values of mobile phases, organic modifiers, and elution 

modes were studied for optimization of baseline separation and run time. Since dFdC is a 

weak base with pKa values of 3.6. [126] it would exist mainly as a free base when pH value 

was greater than 5.6. Peak tailing of dFdC in reversed phase HPLC column was 

minimized by adjusting the pH of mobile phase to pH 6.8 with 10 mM ammonia acetate 

buffer. Methanol rather than acetonitrile was used because acetonitrile elutes dFdC too 

rapidly. A gradient elution mode was adopted for baseline chromatographic separation 

since the hydrophilicity of dFdU was much weaker than those of dFdC. This difference in 

their hydrophilic properties is mainly attributed to amine group in cytosine ring. (Fig.1). 

With the optimized chromatographic conditions described, dFdC and dFdU were eluted 

at about 7.5 and 9.4 min, respectively.(Fig 2) More importantly, a minor isotope peak of 

dFdC did not interfere with the quantification of dFdU due to the optimized baseline 

separation. Hence, these optimized chromatographic conditions guaranteed an excellent 

specificity for this quantitative method.  
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                Figure 2.2 The chromatograms of dFdC (upper) and  
                          dFdU (lower) at LLOQ in human plasma sample 
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2.4.1.2. Method Validation of dFdC and dFdU 

A simple sample preparation with protein precipitation was used and this was suitable for 

dealing with a large sample size in a short period. Although nitrogen gas drying was 

needed following the protein precipitation, the process was fast due to a small plasma 

sample volume (50 µl) and high percentage (4:1, Acetonitrile/plasma in volume) of 

acetonitrile used. Moreover, there was good recovery for all three compounds. The mean 

recovery for these three compounds ranged from 92-98.3% (Table 2). In addition, matrix 

effect was evaluated through quantification of QC1 and QC2 spiked in six blank human 

plasmas.  

 

Table 2.2 Intra-day and inter-day precision and accuracy for dFdC and dFdU  
(n = 5)   

 
 

The matrix effect [ME(%)] was calculated according to the formula mentioned 

experimental section. No serious matrix effect was observed under our optimized 

chromatographic conditions with ESI (electrospray ionization) interface using six patient 

control plasma samples (Table 2.3). Good linearity was achieved for concentration ranges 
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of 5-2,000 ng/ml for dFdC and 50-20,000 ng/ml for dFdU based on the current LC-

MS/MS conditions. The correlation coefficients r2 for dFdC and dFdU were 0.9969 (95% 

confidence interval, 0.9957-0.9981) and 0.9980 (95% confidence interval, 0.9969- 

0.9990), respectively. The lower limit of quantitation was 5 ng/ml and 50 ng/ml for dFdC 

and dFdU, respectively. This LC-MS/MS method is much sensitive than our previous 

HPLC-UV assay by using as little as 50 µL of human plasma. Their signal-to-noise ratios 

are 8.6 and 7.3, respectively. The assay sensitivity was more than adequate for all clinical 

samples with the last sampling time of 120 min after the end of dFdC infusion.  

 

Table 2.3 Matrix effect and recovery tested in patient control plasma at two 
concentration levels (n = 6). 

 

Set A: Neat standards of two analytes (dFdC and dFdU) and internal standard were 

dissolved in mobile phase; Set B: dFdC, dFdU and internal standard were dissolved 

in plasma extracts taken from six different donors; Set C: dFdC, dFdU and internal 

standard were spiked in plasma from the same six sources as in set B, then the 

spiked plasma QC samples will go through extraction. 
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The accuracy and precision of this method were evaluated from the QC samples. The 

precision and accuracy of dFdC and dFdU for QCs were listed in Table 2. The intra and 

inter-day precisions for dFdC and dFdU were ≤9 and ≤13 and their accuracy ranged from 

94 to 102 for quality control samples. 

The sample stability was judged by decrease of sample concentrations after one year 

storage of plasma samples at -20 ºC. Both dFdC and dFdU showed good stability 

(decrease in concentrations is less than 10%) over the period of one year.   
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Figure 2.3 Standard Curve for dFdC (upper, n = 3) and dFdU (lower, n = 3) 
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This LC-MSMS method is much more sensitive than our previous ion-pair HPLC 

method16 where most concentrations of the last sampling point (2 h) are below its LLOQ 

of gemcitabine (80 ng/mL). The method has been successfully used in multi-centre 

clinical trial of dFdC at a dosage of infusional dFdC given at a constant rate of 10 

mg/m2/min over 75 min or at 1000 mg/m2 in 30-min, when combined with a fixed dose 

of carboplatin. The sensitivity of this method is 16 fold higher than our previous HPLC-

UV method. [123] More importantly, a micro-volume of plasma (50 µL) is needed so that it 

is suitable for pediatric clinical trials since the safety of dFdC treatment in children has 

not been established. [30] 
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2.4.2 Gemcitabine Triphosphate 

2.4.2.1 Chromatographic Separation 

Figure 2.4 shows a clear baseline chromatographic separation of dFdCTP from other 

cellular endogenous substances such as ATP which was eluted at 17.5 min.   

 

  Figure 2.4 HPLC chromatogram of dFdCTP in Human Sample Analysis 
 

 

 

2.4.2.2 Method validation for determination of gemcitabine triphosphate 

Figure 2.5 showed a good linearity for quantitation of dFdCTP in saline. Due to the 

difficulty in getting human WBC, one of NPC cell line, HONE1, was used for method 

validation. According to validation table 2.4, the intra-run and inter-run were well 

validated with accuracy and precision in the range of 90 to 105%.  
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Figure 2.5 Mean Standard Curve of dFdCTP (HONE 1 cells as matrix) 
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Table 2.4 dFdCTP method development and validation using HONE1 

 

 

 

 

2.4.2.3. Optimization of dFdCTP extraction from human WBC  

Initially, 10 µM dFdCTP in PBS was used for stability testing. When treated with HClO4 

(0.4 M) alone, dFdCTP would degrade quickly after 15 min whether on ice or in room 

temperature. In contrast, the alkalined dFdCTP was very stable (Figure 2.6).  
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 Figure 2.6 Stability of dFdCTP in solution of HClO4 (0.4M) alone and various 

concentrations of KOH 

 

In order to evaluate the stability of dFdCTP for a longer time, two different 

concentrations of KOH (0.4M, 0.8 M) were tested. When HClO4 solution was neutralized 

with an equivalent concentration of KOH (0.4 M), dFdCTP became more stable 

compared to that in HClO4 solution. Although dFdCTP degraded slowly at first 5 hours, 

the percentage of degraded dFdCTP would degrade 10% after 11.5 hours and up to 36% 

after 24 hours (Figure 2.7). By increasing the concentration of KOH from 0.4 to 0.8 M, 

the stability of dFdCTP improved tremendously with decreased degrade rate of dFdCTP 

to 8.5 % from 36.2 % after 24 hours. Using this HClO4 (0.4 M)/ KOH (0.8 M), the 

prepared samples were stable for at least 12 hours (Figure 2.7) suitable for overnight 

storage of samples in room temperature for injection.  
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Figure 2.7 Stability of dFdCTP in mixture solution of HClO4 (0.4M)/ KOH (0.4M) 

and HClO4 (0.4M)/ KOH (0.8M)  
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2.5. Conclusions 

A highly sensitive LC-MS/MS method was validated and applied to a Phase II clinical 

plasma determination of gemcitabine and its deaminated metabolite. The sensitivity of 

this method is 16 fold greater than our previous HPLC-UV method. More importantly, 

only a micro-volume of plasma is needed so that it is suitable for pediatric clinical trials. 

In addition, a simple sample preparation procedure with acetonitrile precipitation is 

advantageous for high-throughput analysis for a multi-centre clinical trial context. Its 

simplicity and sensitivity will greatly improve the clinical applicability.  

Several studies have indicated that in vitro and in vivo efficacy of gemcitabine may be 

closely correlated to the intracellular accumulation of dFdCTP. Therefore, a sensitive and 

accurate analytical method is critical for oncologists and scientists to optimize the 

treatment scheduling. This intracellular dFdCTP quantitation is a platform for oncologists 

to evaluate the pharmacokinetics of gemcitabine more efficiently and provide a useful 

tool to correlate the pharmacokinetics to pharmacodynamics or pharmacogenetics in 

Asian population. 
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3.1. Introduction 

Gemcitabine is a prodrug. It is transported through the cell membrane via nucleoside 

transporters because it is highly hydrophilic. [106] Gemcitabine is converted to its active 

phosphorylated metabolites, dFdCDP and dFdCTP or to inactive metabolites like 

dFdUMP and dFdU within the cell. The cytotoxicity of gemcitabine is highly dependent 

on the accumulation of dFdCTP since this metabolite is the main component (more than 

95%) in the active metabolite pool. [127] The mechanisms of action of dFdCTP include its 

incorporation into DNA chain to stop DNA synthesis in S phase of cell proliferation cycle 

and competition with deoxycytidine triphosphate (dCTP) to inhibit DNA polymerase. [14] 

Thus, the efficacy of gemcitabine is mainly determined by accumulation and retention of 

intracellular dFdCTP.  

Another minor active metabolite, dFdCDP, is a potent inhibitor on ribonucleotide 

reductase. It exerts its anticancer effect through decreasing dCTP pool by inhibiting the 

activity of ribonucleotide reductase. This will interfere with DNA synthesis indirectly.  

Many factors are involved in the active conversion of gemcitabine to dFdCTP. 

Deoxycytidine kinase catalyses the rate-limiting reaction of gemcitabine activation which 

involves phosphorylation to gemcitabine monophosphate (dFdCMP). According to 

Michaelis-Menten Equation (V = Vmax[S]/([S]+Km), [S] being substrate concentration), 

dCK will be saturated when substrate (gemcitabine) concentration, [S], is much greater 

than Km. In this case, V ≈ Vmax. This means that dFdCTP concentration will be 

expected to reach a plateau after a period of exposure with a certain concentration of 

gemcitabine in cell culture. The minimum concentration which saturates dCK is defined 

as the cut-off value for gemcitabine. Accordingly, this concentration is considered 
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optimal to achieve maximum treatment effect.  

In this section, we designed an in vitro experiment to define this optimal concentration of 

gemcitabine in culture medium.  

An additional objective of this in vitro experiment was to study the synergistic activity of 

histone deacetylase inhibitor (PXD101) with gemcitabine cytotoxicity on NPC and 

NSCLC cell lines. The determinants of sensitivity and resistance to gemcitabine are not 

fully elucidated. Many factors involving intracellular dFdCTP and dFdCDP accumulation 

and metabolism can affect the efficacy of gemcitabine. Although several papers have 

proposed possible mechanisms of gemcitabine intrinsic and acquired resistance, the 

progress on reversing this resistance is very limited, especially for clinical strategy.  

PXD101 is one of novel histone deacetylase inhibitors (HDACi) which acts through 

disturbing tumour growth via regulating histone acetylation and restoring silenced tumor 

suppressor genes. However, the HDACi-regulated genes necessary and/or sufficient for 

their biological effects remain undefined. At the moment, PXD101 is undergoing phase II 

clinical trials in a variety of disease indications including hepatocellular carcinoma. 

Recently, several papers reported that PXD101 can potentiate several current 

chemotherapeutic agents such as 5-FU, paclitaxel and carboplatin in vitro and in vivo. [128, 

129] Two histone-deacetylase inhibitors, trichostatin A and SAHA, were also reported to 

enhance gemcitabine-induced cell death in pancreatic cancer. [130, 131] This prompted us to 

test if a novel HDAC inhibitor, PXD101, could produce a synergistic effect with 

gemcitabine on other tumours e.g. NPC and NSCLC. 
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3.2. Objectives 

 To evaluate the incubation time of gemcitabine on the effect of intracellular 

dFdCTP accumulation; 

 To determine the minimum concentrations of gemcitabine in culture medium that 

optimize intracellular dFdCTP accumulation; 

 To screen sensitivity of different cell lines to gemcitabine or gemcitabine 

combined with PXD101; 

 To explore the mechanism of the synergistic effect of gemcitabine and PXD101 

on different cell lines. 

 

3.3. Materials and Methods 

3.3.1. Drug and chemicals 

Gemcitabine hydrochloride (dFdC, LY 264368), Gemcitabine Triphosphate (dFdCTP, LY 

264368) were kindly provided by Eli Lilly & Co. (Indianapolis, IN, USA). The internal 

standard, Gemcitabine-13C, 5N2 Hydrochloride, was purchased from Toronto Research 

Chemical (Canada), Tetrahydrouridine (THU) was purchased from Biosciences, inc. La 

Jolla, CA 92039-2087.  MTS + PES reagent (CellTiter 96® Aqueous One Solution Cell 

Proliferation Assay, Promega, USA). PXD101 (N-hydroxy-3-[phenylsulphamoylphenyl] 

acryl amide) was kindly provided by TopoTarget (Oxford, UK). RPMI-1640 media 

(GIBCO, Invitrogen corporation, USA); Fetal Bovine Serum (Sigma, St Louis, MO, 

USA; 100 U/ml penicillin (GIBCO, Invitrogen corporation, USA); 100 µg/ml 

streptomycin, USA); Phosphate-buffered saline (PBS) (NUMI, National University of 

Singapore). Propidium iodide (PI) and Triton X-100 were purchased from Sigma-Aldrich 
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(USA). HPLC grade methanol and 70% ethanol were purchased from Merck Darmstadt 

(Germany). All other chemicals were of analytical grade and commercially available, 

unless otherwise specified. 

 

3.3.2. Cell lines and cell culture 

Nasopharyngeal carcinoma cell lines include CNE1, HK1, HONE1 and Lung Cancer cell 

lines include H1299 and H292 were provided Dr Hsieh from Singapore Johns Hopkins 

International Medical Centre.  

Cells were routinely grown in culture in RPMI 1640 medium containing of 10% fetal 

bovine serum and 100 units /ml penicillin and 100 µg/ml streptomycin. The cells were 

kept growing at 37 °C in an incubator in a humidified atmosphere containing 95% air and 

5% CO2. 

 

3.3.3. Growth inhibition study 

1. Seeding the cells in triplicate in 96-well plate. The plating cell number was set as 

2000-2500 cells/well except for HK1(5000 cells/well); 

2. Cell suspension was prepared at cells density of 25,000 cells/ml and 50,000 

cells/ml for HK1 with 100 µl of cell suspension for each well of 96-well plate; 

3. After incubating 24 hrs, 100-µl drug solution or blank medium was added into 

each well of 96-well plate; 

4. 48 or 72 hours later, 20 µl of MTS/PES was added into each well for incubation 

for 3 hours;  
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5. Measurement of OD value on wavelength 490 nm with reference wavelength set 

at 650nm; 

6. At least five drug concentrations were used to determine the IC50 values. 

 

 
3.3.4. dFdCTP and dFdC quantitation 

Analytical determinations of dFdCTP and dFdC were the same as those described in 

Chapter II. The only difference was that the samples are from in vitro experiment. Sample 

collection and preparation were described as follows. 

 

3.3.4.1. dFdC sampling and preparation 

Eppendorf tubes (1.5 ml) were prepared for culture medium sample collection by adding 

50 µl of THU (cytidine deaminase inhibitor) solution and stored in a covered box at -20 

°C. The sampling times were as follows: 

 

Table 3.1 Culture media sampling time point for determination of dFdC 

Unit Minutes hours 

Time point 0 10 20 30 1 1.5 2 3 4 6 8 24 30 48

 

 

These samples were used for determination of dFdC concentration left in the medium at 

different incubation time. At above mentioned time points, 50 µl of medium from the 

culture flask (75 ml containing 15-ml medium) was transferred into a THU containing 

Eppendorf tube. After centrifuging at 10,000 g for ten minutes, the 90-ul supernatant was 

transferred into HPLC insert and 20 ul supernatant was injected into LC-MSMS system 
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for quantifying dFdC and using established LC-MSMS method. A series of calibrators in 

blank media for dFdC were prepared to establish standard curves. 5 µl of Gemcitabine-

13C, 5N2 (5 ug/ml) was added into each tube as internal standard. Since the sample 

collected in Eppendorf tube was diluted, the final concentrations should be equal to 2-

fold calculated concentrations.  

 

3.3.4.2. Cell harvesting and preparation  

The cell pellets were collected at 1, 4, 8, 24 and 48 hrs for determination of dFdCTP 

accumulation after incubation with various concentrations of gemcitabine in the culture 

medium. The cells were trypsinized and washed with PBS. After centrifugation at 200 g 

for 5 min, the supernatant was fully discarded. Then, 100 µl PBS was added into the 15 

ml centrifuge tube and the cell pellets were homogenized and transferred into another 

Eppendorf tube. This tube was frozen immediately in liquid nitrogen and then stored in 

freezer at - 80°C for dFdCTP quantitation.  

The sample for HPLC analysis was prepared according to the following protocol. 

i). Add 80 µl of HClO4 (1M) into cell pellet containing tubes; 

ii). Vortex for 30 seconds; 

iii). Centrifuged at 10,000 g for 2 min; 

iv). Transfer the supernatant into another Eppendorf tube containing 30 ul of KOH (3 M); 

v). Vortex 30 seconds; 

vi). Kept on ice for 20 minutes; 

vii). Centrifuged at 10,000 g for 5 min; 

viii). 100 µl of supernatant was injected into HPLC system for analysis. 
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3.3.5. Titration of gemcitabine concentration for maxium accumulation of dFdCTP 

A nasopharyngeal carcinoma cell line, HONE1, was used as the in vitro model to 

evaluate the effects of gemcitabine’s exposure concentrations in culture medium and 

incubation time on the accumulation of dFdCTP inside the cells. In this study, the 

concentrations of gemcitabine used were increased from 2 µM to 100 µM. The 

incubation time was set at 1, 4, 8, 24 and 48 hr. At each time point, the cells were 

trypsinized and collected for determination of intracellular dFdCTP and dFdC 

concentrations as described previous section 3.3.4.  

 

3.3.6. Combination Study 

In order to evaluate the drug interaction, two methods were used to measure the the effect 

of PXD101 on cytotoxicity of gemcitabine; the Modulate Effect for enhancement or the 

Combination Index for antagonistic, synergistic or additive effect .  

For enhancement effect of PXD101 on gemcitabine’s anticancer activity, the Modulate 

Effect (ME%) was defined as:  

Modulate Effect (%)= (IC50 of dFdC/IC50 of dFdC combined with PXD101)×100 

The Combination Index (CI) was defined as: 

Combination Index (CI) = (Am)50/(As)50 + (Bm)50 + (Bs)50 

Where (Am)50 is the concentration of drug A necessary to achieve 50% inhibitory  

effect in the combination; (As)50 is the concentration of the same drug that will  

produce the identical level of effect by itself; (Bm)50 is the concentration of drug B  

that will produce a 50% inhibitory effect in the combination, and (Bs)50 is the  

concentration of drug B that will produce the same level of effect by itself. 
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CI > 1 indicates antagonism;  

CI < 1 indicates synergy; and 

CI = 1 indicates an additive Effect [132] 

 

3.3.7. DNA content measurement 

Fix cells with ethanol 

1. Prepare the fixative by filling 12×75 mm-centrifuge tubes with 4.5 ml of 70% ethanol. 

Keep tubes on ice. 

2. Collect cells and suspend 106 to 107 cells in 5 ml PBS in a centrifuge tube. 

3. Centrifuge cells 6 min at 200 g. 

4. Thoroughly re-suspend cells in 0.5 ml PBS using a Pasteur pipette. (Note: It is 

important to achieve a well-dispersed suspension). 

5. Transfer the cell suspension into the tubes containing 70% ethanol. Keep cells in 

fixative ≥ 2 hrs. (Note: Cells suspended in 70% ethanol can be stored at 0 °C to -20 °C 

for several months). 

Stain cells with propidium iodide (PI) 

6. Centrifuge the ethanol-suspended cells 5 min at 200 g. Decant ethanol thoroughly. 

7. Suspend the cell pellet in 5 ml PBS, wait 60 seconds and centrifuge 5 min at 200 g. 

8. Suspend cell pellet in 1 ml PI/Triton X-100 staining solution with RNase A. Keep 

either 15 min at 37 °C or 30 min at room temperature. 

Perform Flow Cytometric Analysis 

9. Set up and adjust the flow cytometer for excitation with blue light and detection of PI 

emission at red wavelengths. 
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10. Measure cell fluorescence in the flow cytometer. Use the pulse width-pulse area 

signal to discriminate between G2 cells and cell doublets and gate out the latter.  

11. Analyze the data using DNA content frequency histogram deconvolution software. 

 

3.4. Results and discussion 

3.4.1. Gemcitabine’s chemical stability in culture medium without cells 

Gemcitabine (20 µM) was incubated in culture medium in incubator at 37 °C for 5 days. 

100-µl media containing gemcitabine were sampled at the start point, 24 h and 120 h 

after incubation. The drug analysis was processed with HPLC-UV. The result showed that 

gemcitabine was stable at least for 5 days in the cell culture incubation condition (Figure 

3.1.) 

 

Figure 3.1 Determination of gemcitabine stability in incubation culture medium  
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3.4.2. Gemcitabine’s sensitivity on NPC cell lines 

Gemcitabine’s sensitivity on NPC cell lines were shown as follows (Table 3.2). 

Gemcitabine was active against all three NPC cell lines. HK-1 was the most sensitive, 

followed by HONE1 and CNE-1. The Cmax of gemcitabine in the clinical setting could 

be as high as 64.6 µM when dosed at 1000 mg/m2 with 30 min infusion but the Cmax for 

fixed dose rate infusion of gemcitabine were reduced significantly to the range of 18-35 

µM (Table 1.1). Thus, we could conclude that NPC cell lines were sensitive to 

gemcitabine in vitro since their IC50 values are much less than the generally acceptable 

target 10-20 µM plasma concentration for gemcitabine. [15, 133] 

 

Table 3.2 IC50 of NPC cell lines to gemcitabine after 72 h incubation 

NPC Cell lines HK1 HONE1 CNE1 

(n = 3) 

IC50 ± SD (µM) 

 

1.30 ± 0.23 2.10 ± 0.38 2.62 ± 0.41 

 

 

3.4.3. Impact of incubation time on IC50 of gemcitabine for HK1 

Incubation time was expected to be an important factor on the drug activity since 

gemcitabine is a prodrug and time would be required for it to be transported and 

converted into its active metabolites inside the cells. In order to understand the effect of 

time course on gemcitabine’s activity, HK1 was used as the cell model to evaluate the 

role of incubation time on IC50 of gemcitabine. HK1 cells were incubated for various 

incubation times ranging from 4h to 72h. The IC50 values were labeled in Figure 3.2. The 
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results showed that IC50 values of gemcitabine changed dramatically in terms of 

incubation time. If the incubation time was equal to or less than 24 hrs, the IC50 could not 

be attained up to 100 µM gemcitabine. When the incubation time was increased to 48 hrs, 

the IC50 value was dramatically decreased to 2.6 µM. If the incubation time was further 

increased to 72 hrs, the IC50 was decreased to 1.3 µM which was only half of that with 48 

h incubation. This phenomenon might be because that gemcitabine itself is a produrg 

which needed to be converted into its active metabolites, gemcitabine diphosphate and 

triphosphate, to play the effects against cancer cells through inhibiting ribonucleotide 

reductase and stopping DNA elongation. Besides, gemcitabine produced a pro-apoptosis 

effect on cancer cells through interfering S-phase transition.  

 

Figure 3.2 Effect of incubation time on the inhibition of HK1 by gemcitabine 
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3.4.4. Effect of incubation time and concentration of dFdC on intracellular 

accumulation rate of dFdCTP using HONE1 cell model  

We have learned from the IC50 values of gemcitabine with HK1 cells experiment that 

incubation time is a key factor on cell proliferation. However, we have no idea on the 

kinetics of dFdCTP accumulation during the incubation period. Since gemcitabine’s 

activation involved multiple steps, and exposure time would be expected to play an 

important role on its activity through modulating the intracellular accumulation and 

elimination of dFdCTP. This effect was evaluated through determining kinetic change of 

dFdCTP concentrations using various concentrations of gemcitabine. HONE1 cell line 

was used because it would grow faster than HK1 cells. The cells were incubated with the 

indicated concentrations of dFdC, the accumulation concentrations of dFdCTP were 

measured after variable incubation times. There was an increase in intracellular 

concentration of dFdCTP with increasing concentrations of dFdC in culture medium. Our 

finding was similar to the results from other investigators. [14] But the accumulation of 

dFdCTP reached a plateau after 8 h incubation when the initial incubation concentration 

of dFdC was 10 µM or above. After 8 h incubation, the intracellular concentrations of 

dFdCTP were shown to peak in the indicated time points (Figure 3.3). This implied that 

the activation process of dFdC to dFdCTP might be saturable at this point, assuming that 

Vmax was reached. The concentration of substrate (dFdC) had no influence on formation 

rate of dFdCTP.  
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Figure 3.3 Effect of incubation time on the accumulatin of dFdCTP in HONE1 with 

various concentrations of gemcitabine. 

When the incubation time was extended to 24 h, dFdCTP could not be detected in the cell 

pellets exposed to 2 µM of dFdC. There were two postulated reasons for this 

phenomenon. The first one was that the elimination rates of dFdCTP showed different 

kinetic characteristics, linear elimination was proposed for low concentrations of 

dFdCTP. And elimination seemed to become saturated at high concentrations of dFdCTP. 

[127] We could expect that the elimination rate of dFdCTP was fast when the initial 

concentration of dFdC in culture medium was less than 50 µM. For example, when dFdC 

was at 2 µM, all the dFdCTP inside the cells would be completely eliminated and finally 

converted to its non-active metabolite (dFdU) after a certain time (24 h) (Figure 3.3). 

However, we could observe that dFdCTP elimination pattern was changed when dFdC 

concentration was ≥ 50 µM. Over exposure dFdC could induce an inhibition of 

deaminase, resulting in a decrease of dFdCTP catabolism. The elimination could be 

switched to concentration-dependent kinetics from linear elimination. If the incubation 

time was further increased up to 48 h, the dFdCTP was only detected in the cells with 

equal or greater than 20 µM of dFdC and dFdCTP showed a similar concentration for 
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both 50 and 100 µM dFdC. On the other hand, the intracellular dFdCTP concentrations 

were dependent on the constant exposure of dFdC in the culture medium. With increase 

of dFdC concentrations, an exposure window for dFdC at a minimum 2 µM would be 

increased significantly (Figure 3.4). This could provide enough dFdC for intracellular 

phosphoralation.  
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Figure 3.4 Kinetics of dFdC in culture medium for variable incubation 

concentrations of gemcitabine (upper: full concentration scale; lower: enlarged 

for concentrations below 5 µM). 
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3.4.5. Effect of dFdC concentration on cell viability with an increasing exposure time 

In order to understand the association of dFdCTP accumulation with cell viability, the 

cultured cells were trypsinized and counted at indicated time points. The cells were 

incubated in 5% of trypan blue. Then the total cell number and viable cell number were 

counted under microscope. The viability was calculated by the ratio of viable cell number 

versus total cell number. The cell viabilities for cells incubated in various concentrations 

of dFdC were shown in Figure 3.5. When incubation time was ≤ 8 h, cell viability would 

be maintained at a relatively high level. No difference existed among different 

concentrations of dFdC. With the increase of incubation time, the cell viability decreased 

quickly, especially for those cells incubated in 10 µM or higher concentration of dFdC. 

However, the cell viability values were nearly the same when the concentrations of dFdC 

were in the range of 10 to 100 µM. This trend was in accordance with the results of 

dFdCTP accumulation. It was found that the cell’s survival was mainly dependent on the 

exposure durations of dFdC rather than its incubation concentrations as long as the 

concentrations of dFdC were above 2 µM during incubation. In addition, a high initial 

concentration of dFdC (≥ 10 µM) resulted in a significant change on cell viability after 48 

h incubation. 
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Figure 3.5 The influence of incubation time and gemcitabine concentration on the 
viability changes of HONE1 

  
  
 
 

3.4.6. Combination of gemcitabine with PXD101 

As a novel HDAC inhibitor, PXD101 showed a good anticancer activity with a tolerable 

toxicity. It has been used as a single agent in several tumors in the clinical setting. At the 

same time, various combinations with other current anticancer agents are being explored 

and some of these combinations have been confirmed as effective combination with 

synergistic effects.  

In this study, we investigated the efficacy of gemcitabine and PXD101 combination using 

different cell models including CNE1, H292 and H1299. CNE1 is one of NPC cell line 

and H292 and H1299 are NSCLC cell lines. Since gemcitabine was also used clinically 

for NPC and NSCLC, therefore the results would potentially be relevant for planning 

future clinical trials.  
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3.4.6.1. CNE1 cell model 

Gemcitabine was shown to be active to CNE1 with IC50 of 2.61 µM after 72 h incubation. 

This concentration is within the clinical therapeutic range. If CNE1 cells were exposed to 

2 µM of PXD101 together with different concentrations of gemcitabine simultaneously, 

the IC50 of gemcitabine was dramatically decreased to 0.48 µM (Figure 3.6). The 

enhancement effect was obvious with a modulate effect of 5.3 (Modulate Effect = IC50 of 

dFdC / IC50 of dFdC+PXD101 = 5.3). 

.  

  Figure 3.6 IC50 of gemcitabine to CNE1 with PXD101 (2 µM) after 72 h  

 

3.4.6.2. H292 cell model 

H292 is one of non-small cell lung cancer cell lines and has been frequently used as a 

lung cancer model. In order to evaluate the synergistic effect of gemcitabine and PXD101 

on lung cancer, we measured the IC50 values of gemcitabine in single or combination 

with PXD101 (2.5 µM). After 72 h incubation, the IC50 values were 3.5 µM and 0.43 µM 

for gemcitabine alone and gemcitabine and PXD101 combination, respectively. Thus, the 

modulate effect can be calculated as follows: 

Modulate Effect = IC50 of dFdC / IC50 of dFdC+PXD101 = 8.1 
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According to clinical pharmacokinetic parameters of PXD101 in human plasma, the peak 

concentration could reach up to 200 µM. The concentrations of PXD101 in patients’ 

plasma were kept at a concentration higher than 2.5 µM for the first 2 hours when the 

dosage administered was 1200 mg/m2 by 30 min i.v. infusion according to our phase I 

trial. In addition, PXD101 at this dosage (1200 mg/m2) was also well tolerable by cancer 

patients in our current Phase I study on hepatocarcinoma. Thus, 2.5 µM of PXD101 was 

expected to have very mild toxicity but efficacious when used as single agent. We used 

this concentration of PXD101 (2.5 µM) to test the synergistic effect .The results showed 

that there was a strong synergistic effect between gemcitabine and PXD101 (Figure 3.7).  
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  Figure 3.7 IC50 of gemcitabine alone to H292 and IC50  

of gemcitabine combined with PXD101 (2.5 µM)  

 

 

 

This synergistic effect was further confirmed with cell morphological characters and cell 

density (Figure 3.8). The cells in A are H292 without any treatment after 72 h incubation. 

The cells in B are H292 treated with 5 µM of gemcitabine alone after 72 h incubation. 

The cell proliferation was inhibited by gemcitabine at 5 µM but there was no obvious 

3.5 0.5 
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change on cell morphology. The cell in C is H292 treated with 2.5 µM of PXD101 after 

72 h incubation. The cell proliferation was also inhibited like that in B. However, a 

significant difference was shown in D using the combination. The cell density was much 

less compared to those treated with either single agent. This indicated that the cell growth 

was not only inhibited but the cells were killed by this combination of gemcitabine and 

PXD101.  

 

Figure 3.8 Microscope observation on H292 treated with indicated  

concentrations of gemcitabine, PXD101, or both after 72 h incubation 

 

 

 

A: Control (no treatment) B: dFdC (5uM) 

C: PXD101 (2.5uM) D: dFdC (2.5uM) + PXD101 (2.5uM)
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As discussed in previous parts, the synergism was detected between gemcitabine and 

PXD101. In order to understand the mechanism, a DNA content experiment was designed 

to observe cell cycle change as well as percentage of the apoptosis cell population. The 

results were shown in Figure 3.9. M1, M2, M3 and M4 represent sub G1, G1, S and 

G2/M, respectively. For the control cell (without any treatment), there was no cell in sub 

G1. When the cell was treated with gemcitabine (5 µM) alone, the G1 was significantly 

decreased and the S phase increased. This indicated that the DNA synthesis in S phase 

was blocked when the cell was treated with gemcitabine. On the other hand, high 

percentage of sub-G1 resulted in cell apoptosis. When PXD101 alone was used, the 

obvious change was that a relative high of G2/M was observed. This implied that the cell 

was mainly on G2/M arrest. Lastly, the combination of gemcitabine and PXD101 resulted 

in significant apoptosis and S phase arrest.    

 

Figure 3.9 Flowcytometry of H292 treated with indicated drugs 
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3.4.6.3. H1299 cell model (Drug resistant NSCLC) 

p53 being one of tumor-suppressor genes, responsible for directing repair of damaged 

DNA or committing a cell to apoptosis, is mutated or otherwise altered in more than 50% 

of lung cancers, including 40% to 70% of non-small cell lung cancers. A majority of 

clinical studies suggested that lung cancers with p53 alterations carry a worse prognosis 

and lack of p53 is an important factor attributed to drug resistance. H1299 is a NSCLC 

cell line without p53 expression. Any novel chemotherapy would have high clinical 

implication if its potency could be demonstrated in p53 mutant or null cell lines like 

H1299. Herein, we tested the combination of gemcitabine and PXD101 on the 

cytotoxicity on H1299. In order to measure the combination index (CI), the IC50 values of 

gemcitabine and PXD101 were measured separately. The IC50 of PXD101 is 3.2 µM for 

H1299 (Figure 3.10).  
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 Figure 3.10 IC50 of PXD101 on H1299 after 72 h incubation 

 
 

 

The IC50 value of gemcitabine on H1299 was 88.99 µM (Figure 3.11). In combination 

study, PXD101 was fixed as half of its IC50 (1.6 µM). A serial of gemcitabine 

concentration was applied to test the IC50 of gemcitabine combined with 1.6 µM of 

PXD101. In this case, the IC50 value was dramatically decreased 6898 fold from 89 µM 

to 0.013 µM. This experiment demonstrated the combination of gemcitabine and 

PXD101 showed a very strong synergistic effect on this drug resistant cell. 
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   Figure 3.11 IC50 of gemcitabine combined with 1.6 µM  

of PXD101 on H1299 after 72 h incubation 
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The modulate effect and CI were calculated and listed as follows (Table 3.3.). Obviously, 

this enhancement effect was much more significant than p53 wild-type cell (H292). CI 

was equal to 0.5001. This also suggested a very strong synergistic effect of gemcitabine 

and PXD101 on H1299.  

 

 

Table 3.3 IC50 of gemcitabine, PXD101 or in combination on H1299 after 72 h  

 

 

 

 

This strong synergistic effect was also confirmed through microscope observation (Figure 

3.12). The cell in A is H1299 without any treatment after 72 h incubation. The cell in B is 

H1299 treated with 5 µM of gemcitabine alone after 72 h incubation. The cell density 

was less compared to control but a quite number of cancer cells still survived after being 

exposed to 5 µM of gemcitabine for 72 h. The cell in C is H1299 treated with 2.5 µM of 

PXD101 after 72 h incubation and the cell density was in the same magnitude as in B. 

The cell morphology looked undamaged after being incubated in 2.5 µM of PXD101 for 

72 h. However, the situation was changed significantly in drug combination D. The cell 

morphology was changed and the cell density was much less compared to those treated 

with either single agent. The results indicated that this combination of gemcitabine and 

Drug IC50 (µM) Modulate Effect (%) Combination Index

PXD101 3.2 NA NA 

Gemcitabine 88.99 NA NA 

Gmcitabine+ PXD101 0.0139 6898 0.5001 
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PXD101 was effective for tumor cells regardless to the status of p53. In terms of 

overcoming drug resistance, this finding has an important clinical implication to 

identifying the combination of gemcitabine and PXD101 as a promising combination for 

further evaluation NSCLC. 

 

 

Figure 3.12 Microscope observations on H1299 treated with indicated 

concentrations of gemcitabine, PXD101, or both after 72 h incubation 

 

 

 

 

B: dFdC (5µM) 

C: PXD101 (2.5µM) 

A: Control (no treatment)

D: dFdC (2.5µM) + PXD101 (2.5µM) 



Chapter III: In vitro Study of Gemcitabine 

 83

The cell cycle changes of H1299 were shown as follows (Figure 3.13). For the control 

cell (without any treatment), there was no cell in sub G1 phase. When the cell was treated 

with gemcitabine (5 µM) alone, some portion of G1 was shifted to S phase and G2/M 

was obviously decreased. This indicated that the cells were arrest in S Phase and DNA 

synthesis was blocked when the cell was treated with gemcitabine. At the same time, a 

significant increase in sub-G1 resulted in cell apoptosis. When PXD101 alone was used, 

the cells were arrested at G2/M phase. But the the percentage in sub-G1 was relatively 

lower compared to gemcitabine. However, the combination of gemcitabine and PXD101 

resulted in a significant increase on both cell apoptosis and S phase arrest.    

 

Figure 3.13 Flowcytometry of H1299 treated with indicated drugs 
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Furthermore, the percentage of apoptosis cells was statistically significant higher in 

combination of gemcitabine and PXD101 compared to gemcitabine alone (Figure 3.14). 

  

 

 

 

 

Figure 3.14 Cell cycle changes of H1299 treated with gemcitabine alone or in 

combination of gemcitabine and PXD101 
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3.5. Conclusions 

Our in vitro experimental results suggested that the duration of incubation was the 

determinant for intracellular dFdCTP accumulation when the concentration of dFdC of 

incubation medium was ≥ 2 µM. A plateau concentration of intracellular dFdCTP would 

be achieved after 8 h incubation when initial incubation concentration of dFdC was ≥ 10 

µM. In accordance with this observation, the cell viability was reduced by the same 

magnitude with 48 h incubation when the exposure concentration of dFdC was in the 

concentration range of 10-100 µM. The viability was due to the combined effect of 

dFdCTP accumulation level and retention duration (incubation time). With regards to 

combining PXD101 with gemcitabine, the potent synergistic effect was verified using 

different cell models (NPC and NSCLC) especially with the p53-null resistant lung 

cancer cell line (H1299). This combination would be used in vivo to test its effect on solid 

tumors. This novel combination might have high potential to become a very promising 

chemotherapy for cancer treatment.  
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4.1. Introduction 

Developments in the clinical administration of gemcitabine are focusing on efforts to 

extend the duration of exposure to the drug to counteract its rapid metabolism in the 

circulation. [134] The infusion of gemcitabine at 10 mg/m2 per min has demonstrated 

increased tumor efficacy in a randomized phase II study of advanced pancreatic 

cancer.[135] A higher median intracellular gemcitabine triphosphate concentration is 

achieved in the fixed dose rate schedule. However, infusion of gemcitabine at a fixed 

dose rate generally results in higher toxicity like increased myelosuppression and hepatic 

dysfunction than a standard 30-min infusion.[86] In addition, more phase II studies of  

infusion gemcitabine at 10 mg/m2 per min have suggested tolerability and a favorable 

response rate in combination with platinum compounds in patients with advanced 

NSCLC have been reported.[136, 137] 

The pharmacologic advantage of administering gemcitabine at a fixed dose rate of 10 

mg/m2/min and the proven efficacy of combination with carboplatin in NSCLC provided 

the basis for our study.  

We conducted a phase I-II study of fixed dose rate (10 mg/m2 per min) gemcitabine in 

combination with fixed AUC-dose carboplatin in patients with advanced-stage NSCLC. 

The study was to establish the maximal tolerated dose (MTD) of gemcitabine, to evaluate 

the toxicity and to determine the pharmacokinetics of plasma gemcitabine in this 

regimen. 
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4.2. Objectives 

In this chapter, a phase I clinical trial was conducted to titrate the dosing of infusion 

gemcitabine administered at 10 mg/m2 per min and evaluate the response rates and 

toxicities of this fixed rate infusion of gemcitabine in combination with carboplatin in 

advanced NSCLC. In addition, pharmacokinetic parameters of gemcitabine at different 

doses would be calculated and analyzed. And finally, the toxicities would be associated 

with doses and pharmacokinetic parameters. 

 

4.3. Methodology 

4.3.1. Patient selection 

The eligibility criteria for study entry included histologically or cytologically confirmed 

stage IIIB or stage IV NSCLC. Patients were required to have measurable or evaluable 

disease and to have received one or no prior chemotherapy for advanced disease. 

Previous neoadjuvant or adjuvant chemotherapy, or chemotherapy given concurrently 

with radiotherapy for non-metastatic disease was allowed if the last dose had been 

administered 6 months or more before study entry. Patients who had received prior 

platinum and/or gemcitabine were excluded. Patients with symptomatic central nervous 

system metastases requiring steroid were excluded. Prior radiotherapy was allowed as 

long as the indicator lesion(s) was not within the previous radiation field and the last dose 

of radiotherapy had been completed at least 3 weeks before study entry. Patients were 

required to have a Karnofsky performance status of ≥70%, WBC count ≥3500/µL, 

neutrophils ≥2000/µL, platelet count ≥100,000/µL, hemoglobin ≥9 g/dL, serum 

creatinine 
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<133µmol/L or creatinine clearance >30 ml/min, serum bilirubin not more than 1.5 times 

the upper limit of normal (ULN), serum transaminase levels not more than twice ULN 

(not more than five times ULN if liver metastases were present), life expectancy >3 

months, and age ≥18 years. The study was approved by the institutional review board and 

all patients were required to provide written informed consent. 

 

 

4.3.2. Treatment plan  

Treatment consisted of carboplatin on day 1 followed by fixed dose rate of infusion 

gemcitabine on days 1 and 8 every 21-day cycle. 5-Hydroxytryptamine-3 receptor 

antagonists were routinely used as antiemetics. Prophylactic growth factors were not used 

routinely. Carboplatin was given at a dose to target an area under the curve (AUC) of 5 

mg/ml×min over 1 h. [138, 139] The dosing of carboplatin was calculated according to 

Calvert formula, with AUC of 5 mg/ml×min used as the end point [Dose (mg) = Target 

AUC × (GFR+25)]. The GFR was calculated according to the Cockroft-Gault formula 

[GFR (ml/min) = (140-age) × Body weight (in kg)/0.81 × serum creatinine (µmol/l)]. For 

female, the correction factor is 0.85 (×calculated GFR). Gemcitabine was infused at a 

constant rate of 10 mg/m2 per min. The starting dose level of gemcitabine was 600 mg/m2 

with subsequent 150 mg/m2 increments to 750 and 900 mg/m2. The duration of infusion 

is increased according to the following schema (Figure 4.1). 
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  Figure 4.1 Treatment doses of gemcitabine 

 

 

The duration of infusion was identical for days 1 and 8 in any individual patient. Doses 

were assigned at registration and no dose escalation was allowed in an individual patient. 

Treatment-related toxicity was evaluated after each cycle. The dose limiting toxicity 

(DLT) was defined based on toxicities experienced during the first cycle of chemotherapy 

only. Cohorts of at least three patients were treated at each dose level. Dose escalation 

proceeded if no patients developed DLT after the first cycle. If one of three patients 

experienced DLT, a further three patients were treated at that level. Dose escalation was 

stopped if one-third of patients at a given dose level developed DLT. The last patient at 

each dose level was evaluated for first cycle toxicity before a new patient was entered 

into the next dose level. DLT was defined as grade 4 neutropenia for 7 days or more, 
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grade 4 thrombocytopenia, grade 3 neutropenia with fever or grade 3 thrombocytopenia 

with active bleeding, failure to recover from toxicity to receive a second cycle of 

chemotherapy despite a delay of more than 1 week from the scheduled day and non-

hematologic toxicity of grade 3 or more (except for reversible elevation of transaminases, 

nausea, vomiting and alopecia). MTD was defined as the dose level immediately below 

the level that resulted in at least one-third of patients experiencing DLT. If DLT was 

experienced, responding patients were allowed to continue treatment with dose reduction. 

Dose modifications were based on weekly blood counts and assessment of toxicity. 

Toxicities were graded according to the National Cancer Institute Common Toxicity 

Criteria, version 2. (http://ctep.cancer.gov/forms/CTCv20_4-30-992.pdf). On day 22 of 

each cycle, for neutropenia of grade 1 or more and/or platelets <100,000/µL, treatment 

was delayed for 1 week. On day 8 of each cycle, for neutropenia of grade 3 or more and 

thrombocytopenia of grade 2 or more, the gemcitabine dose was reduced by 25% and 

maintained for the next cycle, and for grade 4 neutropenia and/or grade 3/4 

thrombocytopenia, gemcitabine was omitted and then decreased by 25% for the next 

cycle after marrow recovery and carboplatin was also reduced by 10% for the next cycle. 

The nadir count of the previous cycle also influenced dose adjustment for the next cycle. 

Gemcitabine was reduced by 25% and carboplatin by 10% for a grade 4 neutropenia with 

fever, or grade 4 neutropenia for more than 7 days or thrombocytopenia of grade 3 or 

more with bleeding or platelets <25,000/µL. Patients requiring a third dose reduction 

were taken off study. Patients who experienced a non-hematologic toxicity of grade 3 or 

more, except for nausea, vomiting, fatigue and reversible elevation of transaminases, 

were taken off study. 
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4.3.3. Patient evaluation 

Before initiation of chemotherapy, all patients underwent a history and physical 

examination and determination of performance status. A complete blood count with 

differential, serum biochemistry, urinalysis, and ECG were obtained at baseline for each 

patient. Chest radiography, thoracic and abdominal computed tomography (CT) scans 

were performed as required for assessment of measurable or evaluable disease. CT scan 

of the brain and bone scan was performed if clinically indicated. Patients were assessed 

weekly throughout treatment by complete blood count, serum biochemistry and recording 

of toxicities. Tumor response evaluation was performed after every two cycles according 

to the RECIST criteria.[140] Patients with at least stable disease or better continued with 

treatment to a maximum of six cycles. If DLT was experienced, responding patients 

continued treatment with a reduced dose. Patients with progressive disease were 

withdrawn from the study. 
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4.4. Results  

4.4.1. Patient Characteristics 

A total of 15 patients were enrolled into the study. Their median age was 57 years (range 

35 to 81 years) and 11 were male. Of the 15 patients, 3 and 12 had stage IIIB and IV 

disease, respectively, and 13 had a Karnofsky performance status (KPS) of at least 90% 

and 2 a KPS of 70–80%. (Table 4.1) Adenocarcinoma was the predominant histologic 

subtype (n=10). All patients were chemonaive. All patients were assessed for toxicity. A 

total of 51 cycles were administered. The median number of cycles per patient 

administered was three (range one to six). The relative dose intensities of gemcitabine at 

levels 1, 2 and 2A were 78%, 82% and 85%, respectively. 
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Table 4.1 Karnofsky performance scale and explanation 

Scale Summary 

100: Normal, no complaints; no evidence 

of disease 

90:  Able to carry on normal activity; 

minor signs or symptoms of disease 

80: Normal activity with effort; some signs 

or symptoms of disease 

Able to carry on normal activity; no special 

care needed 

70: Cares for self; unable to carry on 

normal activity or to do active work 

60: Reqires occasional assistance but is 

able to care for most of his needs 

50: Requires considerable assistance and 

frequent care 

Unable to walk; able to live at home and 

care for most personal needs; a varying 

amount of assistance is needed 

40: Disabled; requires special care and 

assistance  

30: Severely disabled; hospitalization is 

indicated although death not imminent 

20: Very sick; hospitalization necessary; 

active supportive treatment is necessary 

10: Moribund; fatal processes progressing 

rapidly 

Unable to care for self; requires equivalent 

of institutional or hospital care; disease 

may be progressing rapidly 

0: Dead  
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4.4.2. Toxicity 

At dose level 1, with infusion of gemcitabine over 60 min, no DLT were observed in 

three patients. The MTD was exceeded at dose level 2 (90 min). The DLT observed was 

grade 3 liver failure in one patient and grade 3 thrombocytopenia with hematemesis in the 

second patient. A study amendment was made to include an intermediate dose level (level 

2A) of gemcitabine 750 mg/m2 over 75 min. At this level, one out of six patients 

experienced DLT, which was grade 3 neutropenia with failure to recover in time to 

receive the second cycle of chemotherapy. The frequency of cycle 1 grade 3/4 

hematologic toxicity was low (Table 4.2). However, when all cycles of chemotherapy at a 

given level were analyzed, a different hematologic profile was observed. At level 1 (60 

min), 50% of cycles were complicated by a nadir neutrophil count of grade 3 or 4. At 

levels 2 and 2A, 20% and 43% of cycles, respectively, were complicated by neutropenia 

grade 3 or 4. There were no episodes of febrile neutropenia. Cumulative 

thrombocytopenia, in contrast, was not as frequent (Table 4.3). Non-hematologic side 

effects including fatigue, nausea, vomiting, constipation and fever were mild and not 

dose-dependent (Table 4.4). One patient developed grade 3 vomiting. Aspartate 

transaminase was mildly elevated in six patients but was not clinically significant and 

was reversible. Transient fever and rash were uncommon. One patient developed a non-

hematologic DLT, manifested by grade 3 clinical liver failure (asterixis) at level 2. This 

patient had a previous history of heavy alcohol intake ceasing 5 months prior to study 

entry. At the time of chemotherapy, he had a grade 2 hypoalbuminemia, but liver 

function was otherwise normal. On day 15 of cycle 1 of chemotherapy, he developed 

confusion and asterixis. He had a grade 3 hypoalbuminemia, grade 1 transaminases and 
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grade 2 hyperbilirubinemia. The patient recovered with supportive care but did not 

receive further therapy and was subsequently withdrawn from the study. 

 

 

Table 4.2 Cycle 1 hematologic toxicities by dose level (n = 15) 

Neutropenia grade  Thrombocytopenia grade Dose Level No. of 

patients 1/2 3 4  1/2 3 4 

1 (60 min) 3 1 0 0  1 0 0 

2 (90 min) 6 1 0 1a  1 1a 0 

2A(75 min) 6 3 2 0  1 0 0 
aSame patient 

 

 

 

Table 4.3 Cumulative grade 3/4 hematologic toxicities by dose level  
Numbers in parentheses are the percentage of courses having the indicated toxicity 
(n = 15) 

Neutropenia grade  Thrombocytopenia 

grade 

Dose Level No. of 

patients 

Cycle 
 

3 4  3 4 

1 (60 min) 3 8 1 
(12) 

3 
(38) 

 3 
(38) 

0 
(0) 

2 (90 min) 6 20 3 
(15) 

1 

(5) 
 2 

(10)a 
0 

(0) 
2A(75 min) 6 23 10 

(43) 
0 

(0) 
 0 

(0) 
0 

(0) 
 

 

 

 



Chapter IV: PK & PD of fixed dose rate infusion gemcitabine  

 

 97

 

Table 4.4 Non-hematologic toxicity (n = 15) 

NCI CTC grade Side Effect 

1/2 3/4 

Nausea 
Vomiting 
Constipation 
Anorexia 
Mucositis 
Hyperbilirubinemia 
Elevated alanine transaminase 
Elevated aspartate transaminase 
Clinical liver failure 
Peripheral neuropathy 
Weight loss 
Rash 
Fatigue 
Fever 
Alopecia 

6 
5 
4 
1 
1 
2 
4 
6 
0 
3 
3 
2 
10 
2 
4 

1 
0 
0 
0 
0 
0 
0 
0 
1a  
0 
0 
0 
0 
0 
0 
 

aDLT 
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4.4.3. Response 

Of the 15 patients, 10 were evaluable for response. A partial response was documented in 

two patients (20%) and stable disease was seen in five patients. One partial response was 

seen at level 1 and one at level 2A. 

 

4.4.4. Pharmacokinetic data 

The mean pharmacokinetic parameters for gemcitabine based on serial plasma 

concentration-time data from six patients at dose level 2A and one patient at level 2 are 

shown in Table 4.5. Plots of time against mean gemcitabine and dFdU concentrations at 

75 min and 90 min infusions of gemcitabine are shown in Figure 4.2. Plasma 

concentrations of gemcitabine were above 10 µM between 20 and 90 min in all patients. 

 

Table 4.5 Pharmacokinetic parameters of plasma dFdC.  

Values are means ± SD (only one full data set available at 900 mg/m2)  

Dose 
(mg/m2) 

AUC0-inf 
(µg/mL·min) 

Cl 
(L/min) 

Cmax 
(ng/mL) 

T1/2 
(min) 

Vss 
(L) 

750 (n = 6) 315.4 ± 98.8 4.11 ± 1.20 4.79 ± 1.26 15.0 ± 3.5 76.0 ± 38.3 

900 (n = 1) 730.9 2.24 9.16 12.4 34.3 

Note: AUC: area under the concentration-time curve; Cl: clearance; Cmax: maxium 
concentration; T1/2: half-life; Vss: volume steady state.  
Blood sampling scheme was described on page 34, Chapter II. 
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Figure 4.2 Plots of time vs mean gemcitabine and dFdU concentrations with 75-min 

and 90-min infusions of gemcitabine (10 mg/m2/min). The horizontal line represents 

the gemcitabine plasma concentration of 10 µmol/L (2630 ng/ml). The plots for the 

75-min infusion represent the mean concentration values (n = 6) at each time point. 

The data for 90-min is from one patient (●gemcitabine, 75-min infusion; ○dFdU, 75-

min infusion; ▼gemcitabine, 90-min infusion; ∆ dFdU, 90-min infusion). 
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4.5. Discussion 

In this study, we determined that the MTD for fixed dose rate infusion of gemcitabine at 

10 mg/m2 per min was 900 mg/m2 when given in combination with carboplatin at a 

targeted AUC of 5 mg/mL×min. The dose-limiting toxicities encountered included 

thrombocytopenia, neutropenia and liver dysfunction. 

The 750 mg/m2 dose of gemcitabine was found to be tolerable based on the occurrence of 

DLT in one out of six patients, in whom there was failure to recover from neutropenia for 

retreatment in the first cycle. As observed in previous study, [86] there was increased and 

cumulative hematopoietic toxicity with prolonged infusion. Hepatotoxicity had also been 

reported to be more frequent with longer infusions of gemcitabine [141] and was reflected 

by the frequency of elevated transaminases in our study patients, but this resulted in DLT 

in only one patient. 

For any chemotherapy combination to be feasible, recommended dosing should allow 

maintenance of relative dose intensity with repeated dosing without dose delay due to 

cumulative toxicity. In our study, there was an increase in hematopoietic toxicity with 

repeated dosing, but the relative dose intensity was still an acceptable 85% and three out 

of six patients at the recommended phase II dose completed six cycles of treatment. 

Although the recommended phase II dose of gemcitabine in our study was 750 mg/m2, it 

appeared that by infusing gemcitabine at 10 mg/m2 per min, hematological toxicities 

especially neutropenia, were similar to regimens using 30-min administration of 

gemcitabine at 1000 mg/m2 higher doses.  

The pharmacokinetics showed that gemcitabine plasma concentrations relevant for 

optimizing intracellular phosphorylated gemcitabine were achieved in most patients after 
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10 min of infusion. Clearance of gemcitabine was rapid, with a mean terminal half-life of 

15 min. The patient with DLT from neutropenia at 75 min infusion did not have the 

highest AUC of plasma gemcitabine. This is expected of antimetabolites like 

gemcitabine, where intracellular active metabolites reflect better clinically observed 

pharmacodynamics. With constant rate infusion, it might be possible to increase the 

duration of exposure to pharmacologically relevant concentrations of active metabolites, 

resulting in better cytotoxicity. 

In our Phase I study, there were high frequencies of grade 3/4 neutropenia. Based on data 

analysis, the frequency of grade 3/4 neutropenia did not increase proportionally with 

dosage of gemcitabine (Table 4.6). On the contrary, the frequency of grade ¾ neutropenia 

showed an inverse correlation (Fig. 4.3). The possible reasons would be explored from 

phenotypic and genotypic factors in our phase II study.  
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Table 4.6 Reverse effect of dosage of gemcitabine and frequencies of severe 

neutropenia (grade 3/4). (Numbers in parentheses are the percentage of course having 

the indicated toxicity). 

 

 

 

 

            Figure 4.3 Correlation of toxicity rate (%) and dosage of gemcitabine 
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4.6. Conclusions 

A relative new regimen of gemcitabine administered as a 75-min infusion at a constant 

rate of 10 mg/m2 per min in combination with carboplatin was found to be tolerable and 

active in Asian NSCLC patients in our Phase I trial. Pharmacokinetic studies 

demonstrated that the target plasma gemcitabine concentration above 10 µM was 

achieved from 20-90 min during the 75 min infusion of gemcitabine at the stated constant 

rate regimen.  
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5.1. Introduction 

Preclinical studies showed that intracellular dFdCTP accumulation is dependent on the 

total exposure time and rate of administration of gemcitabine in human cell lines and 

xenografts [142, 143]Hence, the efficacy and toxicity of gemcitabine are influenced by the 

dose and dosing schedule [144] The clinical benefits from fixed dose rate infusion of 

gemcitabine at 10 mg/m2/min have also been reported in a randomized phase II study for 

patients with pancreatic adenocarcinoma, where higher intracellular dFdCTP 

accumulation in peripheral blood mononuclear cells was achieved compared to the 

standard 30-min infusion .[16] Since there were evidences to support prolonged infusion 

schedule of gemcitabine resulting in favourable activity of gemcitabine and carboplatin 

combination in advanced NSCLC, [145] we conducted a randomized phase II study of 

gemcitabine in combination with carboplatin in patients with advanced NSCLC utilizing 

two different infusion rates of gemcitabine. The dose for fixed dose rate infusion of 

gemcitabine was based on our previous phase I study.[15]  
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5.2. Objectives of the study 

Our study aims were to analyze plasma and cellular pharmacokinetics of gemcitabine and 

its metabolites; to evaluate the response rate, overall survival and toxicity of carboplatin 

and gemcitabine given at a fixed rate infusion (arm A) and standard 30-minute infusion 

(arm B) and to correlate the pharmacokinetic parameters of gemcitabine and its 

metabolites with toxicity of gemcitabine and tumor shrinkage. 
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5.3. Methodology 

5.3. 1. Patient selection 

The Eligibility criteria included histologically or cytologically confirmed NSCLC with 

measurable disease, stage IIIB unsuitable for radical radiotherapy or stage IV disease. 

Patients were required to have a Karnofsky performance status (KPS) of ≥ 70%, age ≥ 18 

years, life expectancy > 3 months, hemoglobin ≥ 9g/dL, white blood cell count ≥ 

3500/µL, neutrophils ≥ 2000/µL, platelet count ≥ 100 000/µL, serum creatinine < 133 

µmol/L or creatinine clearance > 30 mL/min (based on the Cockcroft formula), serum 

bilirubin ≤1.5 times the upper limit of normal (ULN), and serum transaminase levels ≤ 

two times ULN or ≤ five times ULN if hepatic metastases were present. The study was 

approved by the institutional review board of each participating centre and all patients 

gave written informed consent. Previous chemotherapy for advanced disease was not 

allowed. Prior neoadjuvant or adjuvant chemotherapy or chemotherapy given with 

radiotherapy for non-metastatic disease was allowed if the last dose was administered ≥6 

months before study entry. Patients were excluded if they had received prior gemcitabine 

therapy or had symptomatic central nervous system metastases requiring steroids. Prior 

radiotherapy was allowed provided the indicator site(s) had not been irradiated and the 

last dose of radiation therapy had been completed ≥3 weeks before study entry. 

 

5.3.2. Treatment Plan 

Patients were randomly assigned to the following two treatment arms: gemcitabine 750 

mg/m2 over 75 min at a constant infusion rate (arm A) or gemcitabine 1000 mg/ m2 over 

30 min (arm B) on days 1 and 8 every 3 weeks. An infusion pump was used to ensure 
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exact infusion time. In both arms, carboplatin targeting AUC of 5 mg/ml×min was given 

over 1 h on day 1 prior to the gemcitabine infusion. Stratified randomization was 

performed using the minimization method based on study site, KPS (90–100% versus 

70–80%), and disease stage (IIIB versus IV). Dose modifications were based on weekly 

blood counts and toxicity. On day 22 of each cycle, for grade ≥ 1 neutropaenia and/or 

platelets < 100 000/ µL, treatment was delayed for 1 week. On day 8 of each cycle, for 

grade 3 neutropaenia and grade 2 thrombocytopaenia, the dose of gemcitabine was 

reduced by 25% and maintained for the next cycle, and for grade 4 neutropaenia and/or 

grade 3/4 thrombocytopaenia, gemcitabine was omitted and decreased by 25% for the 

next cycle following marrow recovery and carboplatin was also reduced by 10% the next 

cycle. Gemcitabine was also reduced by 25% and carboplatin by 10% for a grade 4 

neutropenic fever or grade 4 neutropaenia for > 7 days or thrombocytopaenia grade ≥ 3 

with bleeding or platelets <25000/µL. Patients requiring a third dose reduction, or 

experienced a nonhaematologic toxicity of > 3 (except for nausea, fatigue, or reversible 

elevation of transaminases) were taken off study. 

 

5.3.3. Patient Evaluation 

Prior to chemotherapy, patients underwent a history and physical examination, chest X-

ray, chest and abdominal computed tomography (CT) scans, complete blood count 

(CBC), serum biochemistry, urinalysis, and ECG. Additional radiological imaging was 

performed if clinically indicated. A physical examination, recording of toxicities, serum 

biochemistry was performed prior to each cycle of therapy. Weekly CBC was obtained 

during each cycle. 



Chapter V. PK & PD of Gemcitabine at Two Infusion Rates 

 109

5.3.4. Early Phase Tumor Response  

Tumor response was evaluated after every two cycles. Patients with stable disease or 

better continued with treatment to a maximum of six cycles. Confirmed responses 

required repeat CT scans at least 4 weeks later. Early detection of tumor shrinkage could 

provide a valuable marker for oncologists to decide whether to switch patient’s treatment 

at the early phase of chemotherapy. 

We used tumor shrinkage data from first two cycles mainly because on the one hand, 

there was usually a delay time for tumor response and there would be few cases to 

observe significant dimension changes of tumors in the first cycle of chemotherapy. 

Hence, tumor response would not be evaluated after the first cycle. On the other hand, it 

would be too late to switch chemotherapy treatment for many patients if oncologists got 

the information on the tumor shrinkage after routine six cycles of chemotherapy. In order 

to fill this gap, we associated the plasma concentration ratios of metabolite/gemcitabine 

with early phase tumor shrinkage data to identify potential disease progression markers 

for gemcitabine-based chemotherapy. Tumor response was assessed according to 

standard RECIST criteria (Table 5.1)  

Table 5.1 RECIST response criteria for evaluation of target lesions 
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If the value is less than 30 %, the case was taken as non-responders including PD and SD. 

The others (equal or bigger than 30 %) were regarded as responders including CR and PR 

according to RECIST criteria. [140] 

 

5.3.5. Pharmacokinetic Analysis 

This study plan was to determine the relationships between pharmacodynamic measures 

(hematologic toxicity, tumour shrinkage), against the plasma pharmacokinetics of 

gemcitabine, and cellular pharmacokinetics of gemcitabine using peripheral mononuclear 

cells. The pharmacokinetic information obtained will enable correlative study with the 

clinical endpoints like toxicity and efficacy. We studied gemcitabine and dFdU 

concentrations in the plasma, as well as the concentrations of dFdCTP in the peripheral 

mononuclear cells. All pharmacokinetic sampling was done in the first cycle of treatment. 

 

5.3.5.1. Plasma dFdC and dFdU concentrations 

Ten millilitres of blood were drawn at 0 hours (baseline), 10 minutes, 30 minutes, 10 

minutes before the end of the infusion, and 30 minutes, 1 hour, 2 hours after the end of 

the infusion. The blood was drawn into 10 ml tubes (green topped) containing heparin 

and 5 μmol tetrahydrouridine. The tubes were then centrifuged at 3300 rpm for 15 

minutes and the supernatant plasma was transferred to cryo tubes for immediate storage 

at –80 oC. Samples were labelled with the patient’s study number, dosage and sampling 

times and protocol number (Table 5.2). A pharmacokinetic form would accompany the 

plasma samples for pharmacokinetic analysis. 
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       Table 5.2 PK form of infusional gemcitabine   
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Gemcitabine and dFdU concentraions in plasma were measured using LC-MSMS method 

described in chapter two, section 2.3.3.1. Briefly, to a 1.5 ml Eppendorf tube was added 

50 μl of plasma samples or calibrators, 5 μl of 50 μg/ml aqueous solution of 

Gemcitabine-13C, 5N2 (internal standard), and 200 μl of acetonitrile. The tube was 

tightly capped and immediately vortex-mixed for 1 minute, and then centrifuged at 

10,000×g for six minutes at 4 °C. One hundred μl of supernatant was transferred into 

another Eppendorf tube and dried under nitrogen and reconstituted with 50 μl of 10 mM 

ammonia acetate buffer solution pH 6.8. After mixing, 40 μl of the mixture was 

transferred to plastic insert for LC-MSMS analysis.  

 

5.3.5.2. Intracellular dFdCTP levels 

Samples of blood from first cycle were collected to assay intracellular dFdCTP. Five 

samples per patient, obtained 10 min, 30 min, 10 min before completion of infusion, and 

30 min, 1 h, and 2 h after completion of the infusion, were assayed for dFdCTP.  

Plasma was first separated from the blood by centrifugation at 3300 rpm for 20 minutes. 

Mononuclear cells were then isolated by Ficoll-Hypaque density gradient centrifugation 

and deoxyribonucleoside triphosphates were extracted with 0.4 N HClO4, and the acid-

insoluble material was removed by centrifugation. The supernatant was then carefully 

neutralised with potassium hydroxide and kept on ice for 20 min for KClO4 precipitation. 

The precipitate was then removed by centrifugation. An ion-exchange high performance 

liquid chromatography method was then used to separate and quantitate the dFdCTP as 

described in chapter two, section 2.3.3.2. 
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5.3.5.3. Pharmacokinetic calculation 

Noncompartmental analysis was performed using WinNonlin 5.2. (Pharsight 

Corporation) to calculate the pharmacokinetic parameters, clearance (CL), half-life of the 

terminal disposition phase (t½), and volume of distribution at steady state (Vss) for 

gemcitabine and dFdCTP. Area under the concentration-time curve (AUC) was estimated 

using the log-linear trapezoidal option from time 0 to infinity. Derivation of the rate 

constant for the terminal phase, k, was done with the final three sampling time points and 

extrapolation of the last measured concentration to infinity. Clearance (CL), half-life (t½) 

and steady state volume of distribution (Vss) were computed.  

In addition, compartmental analysis was also used to fit and simulate the plasma 

gemcitabine concentrations through changing the infusion time. According to time-

concentration curve visualization and AIC criteria, two compartment modelling (model 

10) was adopted to calculate modeling pharmacokinetic parameters of dFdC 

concentrations and good fitting was achieved using a 1/Y weighting model. After that, 

simulation was processed according to the calculated pharmacokinetic parameters for 

different infusion time to evaluate the effect of infusion time on blood concentrations of 

dFdC.  

2 compartment IV-Infusion, macro-constants, no lag time, 1st order elimination 
 

 
 

C(T)=A*(EXP(-ALPHA*T)-EXP(-ALPHA*TSTAR)) 
+B(EXP(-BETA*T)-EXP(-BETA*TSTAR)) 
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5.3.6. Statistics 

Pharmacokinetic data between the two treatment arms and between male and female 

within same treatment schedules were compared using the Student’s t-test. The t-test was 

analyzed as two tailed distribution and two-sample unequal variance. The sample size 

was calculated based on the statistical selection theory. Assuming a 90% probability of 

correctly choosing the best treatment, and anticipating a baseline response rate of 40%, to 

detect a 15% superiority of the best treatment, a sample size of 37 patients per treatment 

arm was needed.  

Efficacy parameters were evaluated according to intent-to-treat (ITT) analysis. Survival 

and TTP (time to progression, were measured as the time from randomization until death, 

disease progression or last contact) were calculated using the Kaplan-Meier technique. 

Survival was calculated from the date of randomization to the date of death or last follow 

up. TTP was defined as the time from randomization until disease progression, or last 

contact. The difference between the two treatment groups was tested by log-rank test. 

In the phenotypic study, the difference in plasma concentration ratio of 

dFdU:gemcitabine between responders and non-responders was tested by Mann Whitney 

test. The frequency difference of the ratio larger than 500 distributed in responders and 

non-responders was tested by Chi Square test.  

A p value of <0.05 was considered to be statistically significant. 
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5.3.7. Hematological toxicity modeling 

Toxicities were evaluated every cycle using the National Cancer Institute Common 

Toxicity Criteria, version 2.0.  

Dependent variables included absolute Neutrophil Count Nadir (ANCnadir) for 1st cycle 

(ANCnadir_c1) and over all cycles (ANCnadir_all) and Platelet Count Nadir (PLTnadir) 

for 1st cycle (PLTnadir_c1) and over all cycles (PLTnadir_all). The natural logarithm 

transformation of the nadir neutrophil and nadir platelet values was used as a dependent 

variable for exploring pharmacodynamic relationships. The reason for this lies in the 

possible existence of polynomial relationships (powers of the predictor variables) 

between the predictor variables and the dependent variable [59] Separate Linear regression 

analysis was used to relate ANCnadir_c1, lnANCnadir_c1, ANCnadir_all, 

lnANCnadir_all, PLTnadir_c1, lnPLTnadir_c1, PLTnadir_all, and lnPLTnadir_all to the 

independent variables. Independent pharmacokinetic variables thought to affect 

hematological toxicity were considered for this correlation analysis, including dFdC 

exposure assessed by the first dose, AUC or body surface area normalized AUC, CL and 

duration of exposure of dFdC above 5 or 10 µM as well as intracellular dFdCTP exposure 

assessed by AUC and body surface area normalized AUC.  

Since our patients were assigned into two cohorts, 30 min infusion group and 75 min 

infusion group, a within group toxicity association analysis was used to exclude the 

confounding factor caused by different infusion schedules. All the linear regressions were 

performed using SPSS Version 13.0 through stepwise approach.   

Chi-square test was used to compare severe hematologic toxicities in arm A and arm B.  
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5.4. Results  

5.4.1. Patient characteristics 

Between July 2001 to February 2004, 76 patients were accrued from Singapore and 

Australia (Table 5.3). The study was approved by the institutional review board of each 

participating centre and all patients gave written informed consent. One patient withdrew 

consent after randomization and did not receive treatment. 

 

 

Table 5.3 Patient characteristics 

Treatment Arm A (n = 38) 
Fixed dose rate 

Arm B ( n = 37) 
Standard infusion 

Age (years)   
Median 55 62 
Range 39-77 32-76 
Sex   
Male 24 29 
Female 14 9 
Disease Stage   
IIIB 7 7 
IV 31 31 
KPS status (%)   
90-100 31 31 
70-80 7 7 
Histology   
Adenocarcinoma 19 26 
Squamous cell 5 4 
Large cell 4 4 
Others 9 4 
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5.4.2. Treatment  

A total of 322 cycles of chemotherapy was administered (150 in arm A and 172 in arm B) 

with a median number of four cycles (range 0 to 6). In arm A, gemcitabine was omitted 

in 3.7% and reduced in 21.3% of courses. In arm B, 2% and 15.7% of gemcitabine doses 

were omitted or reduced respectively. In both treatment arms, the most common reasons 

for dose omission and reduction were neutropaenia and thrombocytopaenia. Carboplatin 

was reduced in 18.7% of doses in arm A and 12.8% in arm B. The relative dose intensity 

(RDI, the dose intensity that was delivered compared with the intended dose intensity) of 

gemcitabine was 83% and 84% in arms A and B respectively. [146] RDI has been taken as 

an important prognostic factor for survival in diffuse large cell lymphoma treated with 

multidrug regimens. [147] 

 

5.4.3. Toxicity 

Seventy-five patients were assessed for toxicity (Arm A, n = 38, Arm B, n = 37). Grade 

3/4 anaemia and neutropaenia was similar in both treatment arms (Table 5.4) whilst grade 

3/4 thrombocytopaenia was more frequent in arm A (69% versus 50%), this, however, 

was not statistically significant with Pearson Chi-square test (p = 0.10). Two episodes of 

neutropaenic fever were reported, one in each treatment arm. Significant non-

hematological toxicities were infrequent and tolerable in both treatment arms (Table 5.5). 

There were no treatment related deaths. 
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Table 5.4 Hematological toxicities (% of patients) 

 Arm A Arm B p-value 

Toxicity Grade 3/4 Grade 3/4  

Anaemia 31 33 1 

Neutropaenia 68 75 0.61 

Thrombocytopaenia 69 52 0.10 

 

 

 

Table 5.5 Non-hematological toxicities for grade 3 or 4 (% of patients) 

Toxicity Arm A Arm B 
 Grade 3 Grade 4 Grade 3 Grade 4 
Anorexia 3 0 3 0 

Nausea 5 0 0 3 

Vomiting 5 0 0 0 

Diarrhoea 0 3 0 0 

Constipation 3 0 3 0 

Fatigue 8 3 5 0 

Rash 5 0 13 0 

ALT 0 0 3 0 

Musculoskeletal 0 0 0 3 
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5.4.4. Efficacy 

5.4.4.1. Response Rate and Survival 

Five patients (three in arm A, two in arm B) did not undergo tumor assessment because 

of early disease progression (three patients), lost to follow-up (one patient) and 

withdrawal of consent (one patient). All patients were included in the response 

assessment as per ITT (Intent-to-Treat) analysis. No patient had a complete response. 

Thirteen patients (34%, 95% CI 26–59%) in the fixed dose rate arm and sixteen patients 

(42%, 95% CI 20–51%) in the 30-minute arm had partial responses. The median follow 

up was 233 days. The median TTP (Time to Progression) was 160 days (95% CI 96–210 

days) in arm A and 157 days (95% CI 116–214 days) in arm B (Figure 5.1). No 

significant difference was seen between the two treatment groups (p = 0.73, log-rank test 

HR 1.08, 95% CI 0.68–1.73) The median survival and one year survival rate was 212 

days (95% CI 176–263 days) and 31.6% respectively for patients in arm A and 287 days 

(95% CI 191–394 days) and 35.6% respectively for patients in arm B. 

 

Figure 5.1 Progression free survival 
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5.4.4.2. Early Phase Tumor Response  

The tumor was measured at day 1 before gemcitabine chemotherapy and first two cycles 

later. The tumor shrinkage percentage was calculated according to following formula 1: 

Percentage Shrinkage (%) = (Diameterday1- Diameterday42)/Diameterday1×100          … (1) 

In consideration of slight check time difference on tumor size measurement due to 

logistic or physical reasons, we set an acceptable range for this tumor measurement time 

after first two cycles as day 42 ± 7. There were 58 subjects were from Singapore. Among 

them, five patients (three in arm A, two in arm B) did not undergo tumor assessment 

because of early disease progression (three patients), lost to follow-up (one patient) and 

withdrawal of consent (one patient). Among 53 patients left, four patients were 

withdrawn after 1st cycle of gemcitabine in combination with carboplatin from the study 

due to disease progression. Thirteen subjects were found to have shrinkage percentage 

≥30 and these were considered as responders while there were 36 non-responders with 

shrinkage percentage <30.  

 

5.4.5. Pharmacokinetic data 

5.4.5.1. Non-compartmental Anaysis 

Plasma gemcitabine were analyzed in 58 patients using non-compartmental analysis (29 

in each arm, all from Singapore) and intracellular dFdCTP was determined in 33 patients 

(arm A 15 patients, arm B 18 patients). Peak plasma gemcitabine concentrations occurred 

earlier in arm B than in arm A (Table 5.6A). In arm A, Cmax of gemcitabine was 20.8 ± 

17.2 µM at 51 min compared to 41.2 ± 13.9 µM at 29 min in arm B (Table 5.6B). Mean 

gemcitabine AUC was 1345.9 ± 1112.6 µM×min and 1432.4 ± 528.9 µM×min in arm A 
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and B, respectively. Terminal elimination was similar, with a mean clearance of 164.0 ± 

64.0 l/h/m2 in arm A and 181.6 ± 74.5 l/h/m2 in arm B (Table 5.6A). The volume of 

distribution of gemcitabine was 65.0 ± 37.2 L in arm A and 74.5 ± 41.2 L in arm B, 

indicating that irrespective of the infusion rate, gemcitabine was widely distributed in the 

tissues.  

 

 

Table 5.6 Pharmacokinetic parameters of (A) plasma gemcitabine and (B) 

intracellular gemcitabine triphosphate. Values are expressed as mean ± SD, 

Cmax maximum concentration, Tmax time to maximum concentration, AUC 

area under the concentration time curve, Vss volume of distribution at steady 

state, CL clearance. 

A: Plasma gemcitabine pharmacokinetic parameters 
 Arm A (n = 29) Arm B (n = 29) 
Dose gemcitabine (mg) 1193 ± 145.3 1600 ± 197.5 
Cmax (µM) 20.8 ± 17.2 41.2 ± 13.9 
Tmax (min) 51.3 ± 17.2 28.8 ± 8.6 
AUC0-inf (µM*min) 1,345.9 ± 1112.6 1,432.4 ± 528.9 
AUC extra (%) 0.3 ± 0.3 0.3 ± 0.3 
Vss (L) 65.0 ± 37.2 74.5 ± 41.2 
CL (L/h) 261.8 ± 106.7 293.0 ± 128.1 
CL (L/h/m2) 164.0 ± 64.0 181.6 ± 74.5 
t1/2 (min) 18.2 ± 4.2 17.1 ± 3.1 
 
B: Intracellular gemcitabine triphosphate pharmacokinetic parameters 
 Arm A (n = 29) Arm B (n = 29) 
Cmax (µM) 173.9 ± 77.3 224.8 ± 73.8 
Tmax (min) 1.6 ± 0.4 0.9 ± 0.2 
Apparent AUC0-inf (µM*min) 35079 ± 18216 32249 ± 11267 
AUC extra (%) 32 ± 7 28 ± 5 
Apparent CL (L/h) 8.6 ± 3.4 11.0 ± 4.1 
Apparent CL (L/h/m2) 5.2 ± 2.0 7.0 ± 2.6 
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The pharmacokinetic profiles of dFdC and the inactive dFdU were shown in Figure 5.2 

and that of intracellular dFdCTP accumulation was shown in Figure 5.3. Higher 

intracellular dFdCTP accumulation was observed in Arm B but was unlikely to be at 

saturation point according to our previous in vitro results (Chapter three), showing that 

the incubation time is the determinant of intracellular dFdCTP accumulation and 

retention. The saturation of intracellular dFdCTP was only achieved after 8 h incubation 

when applied concentration of dFdC was ≥ 10 µM. In contrast, our clinical infusion time 

was one seventh of the exposure time of in our in vitro experiment. 
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Figure 5.2 The pharmacokinetic profile of gemcitabine and dFdU in plasma 
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Thus, the increase of infusion time from 30 min to 75 min might enhance the intracellular 

accumulation of dFdCTP, but its contributory effect could be compromised by the dose 

reduction (1000 mg/m2 in 30-min arm vs 750 mg/m2 in 75-min arm). Intracellular 

dFdCTP AUC was similar at 35 079 ±18 216 µM×min and 32 249 ± 11 267 µM×min in 

arms A and B (p = 0.08, t-test), respectively (Table 5.6B). Their pharmacokinetic profiles 

were shown in Figure 5.3. 
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     Figure 5.3 The pharmacokinetic profile of dFdCTP in PBMC 
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Figure 5.7 showed the plasma concentration ratios of dFdU/gemcitabine with time. Since 

gemcitabine was metabolized very fast in plasma, its plasma concentration would 

decrease quickly after stopping infusion. Thus, the range of the plasma concentration 

ratios of dFdU/gemcitabine increased quickly with increase of sampling time after 

infusion.    

  

Table 5.7 Plasma concentration ratio of dFdU/gemcitabine in NSCLC patients 

 
Sampling    

Time Subjects Range Minimum Maximum Mean 

10 min 48 2.07 .06 2.13 .7475 
30 min 51 13.71 .95 14.66 2.5090 
(-)10 min 52 4.29 .79 5.08 2.2357 
(+) 30 min 52 123.58 4.25 127.83 27.7444 
(+) 60 min 50 403.78 7.76 411.54 94.0594 
(+) 120 min 49 1149.88 106.12 1256.00 484.1816 

 
 

 

5.4.5.2. Compartmental Analysis on Gemcitabine Plasma Concentration 

Most previous studies report plasma pharmacokinetic parameters of gemcitabine using 

non-compartmental analysis (NCA). This is due to the limitation of gemcitabine 

determination sensitivity, especially in elimination phase where the concentrations are 

very low. The disadvantage of NCA is that the data obtained are not useful for 

simulations of different infusion rates before initializing new clinical trials. Recent 

development in LC-MSMS applications has resulted in enhanced sensitivity. We utilized 

compartmental modeling to fit our data. In our model selection exercises, one and two 

compartment models with or without weighting were compared. Three compartment 

models could not be tested due to the limitation of sampling points. According to the 



Chapter V. PK & PD of Gemcitabine at Two Infusion Rates 

 125

results of concentration-time profile visualization and minimized Akaike Information 

Criterion (AIC), a two-compartment model (model 10) with 1/Y weighting provided the 

better fitting model and was used for the plasma concentrations of gemcitabine. The 

pharmacokinetic parameters for two treatment schedules were listed in Table 5.8. The 

dose of gemcitabine applied in arm A is 30 % less than that in arm B. The differences in 

AUC were in the same magnitude as their doses. The clearances and Vss in both arms 

were similar. Maximum concentrations in arm B were significant higher than those in 

arm A. AIC criteria from 1/Y weighting model was much lower than those without 

weighting in most cases and other weightings.   

 

 

 

 

    
Table 5.8 Difference of Pharmacokinetic parameters of plasma gemcitabine 
 between arm A (75-min infusion) and arm B (30-min infusion).   
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5.4.6. Hematological models 

Although seventy-six patients were accrued in this study, fifty-eight patients with plasma 

pharmacokinetic data of gemcitabine and dFdU were available for analysis. Among them, 

thirty-three patients with dFdCTP intracellular concentrations were available for 

hematologic toxicity association analysis with dFdCTP exposure. Initially, we analyzed 

the pooled data from both arms. No relationship was found between neutrophil nadir 

/platelet nadir and gemcitabine pharmacokinetic parameters or dose. Hence, an individual 

correlation analysis was carried in individual arm. Among the parameters tested, only 

AUC of dFdCTP in arm B was identified to have a modest linear relationship with natural 

log neutrophil nadir (r = -0.51) (Table 5.9) and was also found to be associated with in 

natural log platelet nadir (r= -0.692) (Table 5.10, Figure 5.4). However, arm A did not 

show such relationship. 

 

 

Table 5.9 Arm B Univariate linear regression of PK parameters tested with the 

lnANCnadir_all 

PK 
parameters 

r intercept β p value F value 

CldFdC -0.095 6.528 -0.030 0.722 0.131 

CldFdC_BSA -0.232 6.793 -0.129 0.371 0.850 

AUCdFdC 0.265 5.802 0.000 0.304 1.132 

AUCdFdC_BSA 0.095 6.171 0.000 0.712 0.142 

AUCdFdCTP -0.365 7.110 -0.000023 0.151 2.295 

AUCdFdCTP_BSA -0.515 7.110 -0.000048 0.034 5.415 
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Table 5.10 Arm B Univariate linear regression of covariates tested with the 
lnPLTnadir_all 

PK  
parameters 

r intercept β p value F value 

CldFdC -0.263 4.226 -0.124 0.309 1.110 

CldFdC_BSA -0.263 4.226 -0.124 0.309 1.110 

AUCdFdC 0.212 3.439 0.000 0.412 0.711 

AUCdFdC_BSA 0.155 3.548 0.000 0.549 0.375 

AUCdFdCTP -0.698 5.015 -0.000038 0.002 14.256 

AUCdFdCTP_BSA -0.692 4.933 -0.000055 0.002 13.782 

 

 

 

Figure 5.4 Association of thrombocytopenia with dFdCTP exposure for arm B 
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5.4.7. Correlation of dFdU/gemcitabine ratios with demography & tumor shrinkage 

To investigate whether there is any correlation between metabolite/parent ratios and 

demography as well as response, the dFdU/gemcitabine ratios were computed for each of 

sampling times (Table 5.7). Pearson correlation and t test showed no correlation and 

effect of demography on the concentation ratios of dFdU/gemcitabine (Table 5.11).  

 

 
Table 5.11 Effect of demographic factors on plasma concentration ratio of dFdU 

versus gemcitabine  

 

 

 

 

When the metabolite/parent ratios at the different sampling times were statistically tested 

(Mann-Whitney U test) with early phase tumor response (section 5.4.4.2), it was found 

that the ratios at 120 min were significantly different (Table 5.12 and Fig. 5.5). The ratios 

of the responders were much smaller than those of the non-responders.  
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Table 5.12 Relationship between responders and plasma concentration ratio of 

dFdU versus gemcitabine 

Sampling Time 10 min 30 min (-) 10 
min 

(+) 30 
min 

(+) 60 
min 

(+) 120 
min 

Mann-Whitney U 193.500 201.000 181.500 233.000 197.000 125.000 
Wilcoxon W 298.500 306.000 286.500 338.000 302.000 216.000 
Z -1.831 -1.102 -1.636 -.549 -1.062 -2.555 
Asymp. Sig.  
(2-tailed) .067 .270 .102 .583 .288 .011 

a  Grouping Variable: responder 
 

 

 

 

Figure 5.5 Box plot of response vs concentration ratios of dFdU and gemcitabine  

  at 120 min after infusion 
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In order to predict the responders or non-responders, a frequency histogram was drawn 

according to concentration ratios of dFdU/gemcitabine at 120 min (Fig. 5.6).  

 

 

Figure 5.6 Frequency histogram for the concentration ratios of dFdU/gemcitabine at 

120 min (red line represents midpoint of concentration ratios of dFdU/gemcitabine). 

 

 

 

The ratios of dFdU/gemcitabine were widely distributed in the range of 106 to 1256. The 

middle value with 575 was labeled as a red line in Figure 5.6. This line possessed a 

different meaning for each group. For non-responders, this line nearly separated this 

group equally. It could not be used as a marker to identify non-responders from the study 

cohort. However, there was a different situation for responders. Among 13 responders, 

only one subject (7.69%) had the ratio of dFdU/gemcitabine bigger than 575. This result 



Chapter V. PK & PD of Gemcitabine at Two Infusion Rates 

 131

indicated that in general responders to gemcitabine treatment were most likely to have 

low dFdU/gemcitabine ratios. This result also suggested that gemcitabine’s deamination 

rate could be a determinant factor in chemotherapeutic activity where a larger ratio 

represents faster deamination rate.  

Through Figure 5.6, the red line could distinguish non-responders from the all subjects. 

When the ratio was larger than 575, there would be 94% (16 out of 17) probability to 

predict this subject as a non-responder. In addition, a ratio of 500 would be a better cutoff 

value to predict non-responders. In this case, the probability to predict non-responders 

was increased nearly to 95% (18 out of 19). 

Hence, the cutoff ratio was set as 500, subjects with ratios < 500, would be slow 

deaminators, while those with ratios ≥ 500, would be fast deaminators. In the responders, 

only one in thirteen (7.69%) had a value >500. On the contrary, there was a much higher 

percentage (50%, 18 over 36) with >500 in non-responders. This difference was 

statistically significant Chi Square test (p = 0.004). This finding provided an important 

marker in evaluating the efficacy of gemcitabine at an early phase (2nd cycle) of 

gemcitabine chemotherapy. For example, if the ratio is ≥ 500, it might imply that the 

patient might not respond to gemcitabine and alternative anti-cancer drugs could be tried.   
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5.5. Discussion 

This randomized phase II study compared the pharmacokinetics of plasma gemcitabine 

and intracellular dFdCTP in a large set of patients receiving gemcitabine either as a fixed 

dose rate or as a standard infusion rate in combination with carboplatin. In addition, 

pharmacodynamics and toxicities were also compared between the two arms. Early phase 

response was evaluated and a potential progression marker was explored to predict non-

responders to gemcitabine combination therapy with carboplatin in NSCLS patients.  

 

5.5.1. Phase II pharmacokinetic study of gemcitabine dosing 10 mg/m2/min for 75 

min or 1000 mg/m2 for 30 min 

One of main objects of this study was to evaluate the pharmacokinetics of plasma 

gemcitabine and intracellular dFdCTP between the two treatment arms. According to 

Table 5.6, although both AUC0-inf and CL in arm A were 89% of those in arm B, these 

differences were not statistically significant (p = 0.38 for AUC0-inf and p = 0.32 for CL). 

However, the mean exposure time above 10 µM (Figure 5.2) was 80 min and 50 min for 

arm A and arm B, respectively. This suggested that fixed rate infusion might be more 

efficient than standard 30 min infusion.  

On the other hand, the AUC0-inf of intracellular dFdCTP was similar in both treatment 

arms despite the dose of gemcitabine being 25% higher in arm B. Consistent with 

previously reported studies, [18, 46, 148] the pharmacokinetic data demonstrated that the 30-

min infusion arm was a pharmacologically less efficient method of administering 

gemcitabine compared to a fixed dose rate of 10 mg/m2/min. In arm B, a higher mean 

plasma gemcitabine Cmax of 41.2 uM was reached, a value that was well outside the 
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concentration range known to optimize the rate of gemcitabine phosphorylation.  

 

5.5.2. Phase II pharmacodynamics and toxicities of gemcitabine dosing 10 

mg/m2/min for 75 min or 1000 mg/m2 for 30 min 

The response rates in both study arms were consistent with the established efficacy of this 

regimen in NSCLC. Similar outcome measures of response rates, time to disease 

progression, survival and toxicities were found using carboplatin with gemcitabine at 750 

mg/m2 in a 75-min infusion or at 1000 mg/m2 in a 30-min infusion in the treatment of 

advanced NSCLC. Response rates were reported to range from 29% to 42% in studies 

using carboplatin and 30-min infusion gemcitabine [97, 121, 149] and 34% to 47% in studies 

of gemcitabine administered at 10 mg/m2/min with carboplatin or cisplatin. [17, 150] Whilst 

significant myelosuppression was seen in both treatment arms, the frequency of 

neutropaenic fever and bleeding from thrombocytopaenia was low. The relative-dose 

intensity (RDI, a scientific term refers to the amount of a particular chemotherapy given 

over a specific time in relation to what was originally ordered) of gemcitabine in arm A of 

83% was similar to that in arm B (84%) and compared favorably with the 75% for 

gemcitabine reported in a phase II study of carboplatin and gemcitabine 1200 mg over 

120 min in NSCLC. [151] Therefore, a fixed dose rate infusion of gemcitabine with 

carboplatin was feasible without major cumulative toxicities. Previous studies using a 

prolonged gemcitabine infusion schedule reported elevation in hepatic transaminases; [12] 

this, however, was not seen in our study and could be related to duration of the infusion.  

As phosphorylation of gemcitabine was more efficient in the fixed dose rate arm, a lower 

dose of gemcitabine could be administered, with the resultant benefit of reduced 
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chemotherapy costs. This advantage, however, might be offset by increased charges 

associated with a longer infusion time and nursing costs as well as greater inconvenience.  

Regarding to hematological toxicity modeling, logarithm transformation of the nadir 

neutrophil counts and platelet counts was used as dependent variables due to following 

two reasons. One of our assumptions was based on logarithmic transformation of the 

equation:  

SF = e[-k×AUC] which yields a linear relationship, e.g.  

ln (nadir/platelet counts) = ln (pretreatment count)-k×AUC, where SF is the survival 

fraction of cells and k is the rate constant that determines the slope of the decay curve, 

AUC is the area under the curve of the antineoplastic agent under study, and ln is the 

natural logarithm. The other reason was that we assumed that the logarithm 

transformation of neutrophil/platelet nadir counts could result in a better normalization 

which made the data more predictable. [59]  

Our results showed that AUC of dFdCTP correlated with hematological toxicity like 

thrombocytopenia only in arm B (Fig 5.4). The possible reason might be that gemcitabine 

is a highly hydrophilic compound and enters the cell through active human nucleotide 

transportation. When infusion rate (e.g. 75 minute infusion) was low, gemcitabine might 

be more efficiently transported into the cells. The percentage of drug remaining in blood 

circulation system would be low. However, when the infusion rate (e.g. 30 minute 

infusion) was high, potential saturation on human nucleoside transporters could result in 

a greater percentage of gemcitabine in blood circulation system during infusion. Different 

concentrations of gemcitabine in blood circulation system might produce a different 

dFdCTP accumulation velocity in the white blood cells. According to Michaelis_Menten 
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equation, the velocity of dCK would highly depend on the concentration of gemcitabine, 

the substrate of dCK. If the peak concentrations of gemcitabine were at about 10 µM in 

case of 75 min infusion, the enzyme velocity would vary sharply since the concentration 

of substrate was the same magnitude as Km (Km was reported as being in the range of 5-

10 µM).[152, 153]  If the peak gemcitabine concentrations were at relatively high value in 

case of 30 min standard infusion (33 mg/m2 per minute), the enzyme velocity would 

approach maximum value at the plateau phase to saturate dCK. [154] Only in this situation, 

the formation rate of dFdCTP could reach its maximal value and the resultant values from 

different subjects could represent their dCK activities. Thus, the differences among 

individuals in toxicities could be differentiated. Hence, only for arm B, the difference of 

dFdCTP accumulation between individuals could be compared each other since their 

enzyme velocities were at the ceiling status and dFdCTP accumulation was highly 

dependent on enzyme’s activity for each patient. Therefore, this would account for the 

fact that there was a good correlation between dFdCTP exposure and myelosuppression, 

especially for thrombocytopenia only in arm B. If we analyzed all the subjects from two 

arms, the data from arm A (75 min infusion) would become a confounding factor. Thus, 

we could not find any correlation in the combined dataset. 

 

5.5.3. Early phase progression marker for non-responders to gemcitabine treatment 

in NSCLC 

Individualization of chemotherapy for cancer patients is currently becoming more and 

more important in minimizing adverse effects without compromising efficacy. However, 

the biggest challenge is to identify and validate sensitive and specific markers for each 
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cancer treatment. One of the most important markers is early phase tumor shrinkage 

maker which is useful for oncologists to evaluate the therapeutic efficacy so as to decide 

if alternative agents should be sorted for non-responders to current treatment instead.  

The effect of chemotherapeutic agents on solid tumors is most commonly categorized and 

reported based on the RECIST. This classification divides both target and non-target 

lesions’ response into four categories-complete response (CR), partial response (PR), 

progressive disease (PD) and stable disease (SD) in all treatment cycles. It offers a simple 

criterion that standardizes the measurement and interpretation of tumor responses across 

clinical trials, allowing cross comparison between trials and anticancer drugs. However, 

this all cycle based evaluation assay may finally result in a treatment failure for non-

responders who could miss the best opportunities for other anti-cancer drugs in early 

treatment phase. Hence, early detection of non-responders is a big challenge in achieving 

higher successful chemotherapeutic rates. In our study, a novel tumor shrinkage marker 

(ratio of dFdU:gemcitabine at the 120 min sample point) was identified to predict non-

responders to gemcitabine treatment in NSCLC with as high as 95% prediction 

probability. Furthermore, no difference on demographic parameters was detected between 

responders and non-responders (section 5.4.7). In addition, there was no significant 

difference on the ratios of metabolite/parent for other sampling times except for 120 min. 

Responders generally had a smaller the ratio of dFdU/gemcitabine at 120 min. With a 

cutoff value of 500, the ratio of dFdU/gemcitabine at 120 min could be used to predict 

non-responders to gemcitabine treatment combined with carboplatin in NSCLC. As long 

as this marker could be validated with larger datasets in clinical setting, it would be easily 

accessible and useful in evaluating tumor progression in the early phase.  
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5.6. Conclusions 

Based on our pharmacokinetic study,  by using a 25% lower dose of gemcitabine at an 

infusion rate of 10 mg/m2/min in combination with carboplatin in NSCLC, an equivalent 

clinical efficacy and safety profile was achieved compared to standard 30-min infusion 

regimen. In addition, our pharmacokinetic-pharmacodynamic association analysis 

showed that intracellular dFdCTP exposure could be a potential tool to predict 

thrombocytopenia due to gemcitabine based chemotherapy in 30 min infusion regimen. 

Due to the difficulty in measuring intracellular dFdCTP, other convenient surrogate 

markers in pharmacokinetics and pharmacogenetics should be further explored in order to 

better predict the efficacy of chemotherapy by optimizing individualized treatment. 

Moreover, our results showed that the early phase (after 2nd cycle) tumor shrinkage was 

highly related to plasma concentration ratio of dFdU/gemcitabine (metabolite:parent). 

The average ratio of non-responders at the 120 min sample point was significantly (p = 

0.011; Mann Whitney test) higher than that of the responders. However, this surrogate 

marker is not correlated to patient survival time, one of the most important endpoints. A 

large prospective clinical trial would be designed to further validate our finding that the 

ratio of dFdU/gemcitabine is a good and valuable marker to predict non-responders in 

early phase tumor shrinkage through gemcitabine based chemotherapy in NSCLC 

patients.  
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6.1. Introduction 

Gemcitabine displays a good anticancer effect profile on many types of cancers, 

especially for solid tumors due to its special mechanisms of action. Although it possesses 

a minor difference of chemical structure compared to that of cytarabine, gemcitabine 

shows a superior anticancer activity through its active phosphorylated metabolites 

(gemcitabine diphosphate and triphosphate) after it enters the cells. This may be 

attributed to high accumulation and slow elimination of gemcitabine triphosphates which 

inhibits processes required for DNA synthesis and RRM. According to the previous 

clinical trials, gemcitabine shows a better tolerable toxicity profile compared to other 

commonly used anticancer drugs. However, a significant variability in its toxicity and 

efficacy resulted in difficulty in toxicity management and treatment optimization. In 

order to improve clinical treatment efficacy and minimize the toxicity of gemcitabine, it 

is essential for scientists to better understand its transportation, activation and metabolism 

pathway. In addition, those functional single-nucleotide polymorphisms in gemcitabine 

disposition pathway will be identified through analyzing genotypic and phenotypic 

association. Membrane transporters are important in drug response as they are major 

determinants of drug absorption, distribution, and elimination. There are two major 

families of NTs: CNT and ENT. Although there are different specificities for these 

transmembrane transporters, gemcitabine has been proven to be the substrate to several of 

them including hENT1, hCNT1 and hCNT2. [107-112]  

Hematological toxicities are the major adverse effects of gemcitabine even though this 

widely used anticancer agent has been thought to be tolerable in most cases. Severe 

neutropenia is usually dose limiting toxicity in clinical setting. [155-157] Gemcitabine 
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triphosphate concentration in the white cell has been used as a surrogate marker to 

evaluate the efficacy and toxicities of gemcitabine due to the difficulty in quantifying 

concentrations of dFdCTP inside tumor tissues. In this chapter, we screened 25 loci 

involved in gemcitabine disposition pathway and further analyzed the association 

between genetic variants and pharmacokinetic parameters of gemcitabine in Asian 

NSCLC patients.  

 

6.2. Objectives 

The main objectives are to comprehensively screen gene SNPs which are thought to play 

an important role on intracellular transportation, metabolism and activation of 

gemcitabine; to correlate the pharmacokinetic parameters of gemcitabine and its 

metabolites with polymorphism of genes involved in pathways of gemcitabine 

transportation, metabolism and activity and to identify genotypic variants associated with 

hematological toxicity, response and survival in Asian patients with advanced non-small 

cell lung cancer (NSCLC) receiving gemcitabine based chemotherapy. 
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6.3. Patients and Methods 

6.3.1. Study population  

In this clinical trial, the study population consisted of 94 healthy volunteers recruited at 

the blood donation clinic and 53 patients with NSCLC receiving treatment for their 

disease in the National University Hospital in Singapore. All patients were newly 

diagnosed cases treated with first-line gemcitabine at 750-1000 mg/m2 on days 1 and 8 

and carboplatin at AUC = 5 mg/ml x min on day 1 every 3 weeks. Among them, 43 

(81%) were Chinese and 10 (19%) were Malays, 36 (68%) were male and the median age 

was 59 years (range 39-74 years). Some 44 (83%) had stage IV disease and 42 (79%) had 

a Kanorfsky Performance Score of ≥ 90. The patients’ eligibility criteria were described 

in detail in previous chapter five. The institutional review board of the National 

University Hospital approved the study and informed consent forms were obtained from 

all subjects. Toxicities were evaluated every cycle using the National Cancer Institute 

Common Toxicity Criteria, version 2.0.  

6.3.2. Blood Sampling 

In pharmacokinetic analysis of dFdCTP, blood samples were collected from 33 patients 

as per described in chapter five. In pharmacogenetic analysis, 8ml of peripheral blood 

was drawn into heparinised vacutainer tubes (Becton Dickinson) from each subject 

before drug treatment and mononuclear cells isolated by Ficoll-Hypaque density gradient 

centrifugation according to manufacturer’s instructions (GE Healthcare, Chalfont St. 

Giles, United Kingdom). DNA was extracted from the mononuclear cells using the 

Puregene DNA purification kit (Gentra Systems, Minneapolis, MN). 
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6.3.3. Quantitation of dFdCTP and Pharmacokinetic Analysis 

The quantitation and pharmacokinetic analysis have been described in Chapter two and 

five, respectively. 

 

6.3.4. Selection of SNP loci 

SNP loci for analysis were identified from publications on genotypes of genes involved 

in gemcitabine transport, metabolism and activity [158-161] and a comprehensive search of 

various public databases: Genecards; (http://www.genecards.org), pharmGKB; 

(http://www.pharmgkb.org), NCBI; (http://www.ncbi.nlm.nih.gov). Candidates were 

selected based on the following priorities (1) their presence in coding regions (2) non-

synonymous coding and (3) reported allele frequencies of greater than 5%. The 

designation of which genotypes were wild type was according to the NCBI database and 

nucleotide numbering began at the translational start site ATG. 

 

6.3.5. Pharmacogenetic analysis 

SNP detection was done by TI lab of Oncology Research Institute. Briefly, 50 ng of DNA 

was amplified in a 25µl reaction containing 1 x FastStart Reaction Buffer, 2mM 

magnesium chloride, 10µM deoxynucleotide mix and 1 unit FastStart Taq Polymerase 

(Roche Diagnostics, Mannheim, Germany) and 5µM each of forward and reverse primers 

obtained either from previous reports or using PSQ Assay design software (Biotage AB, 

Uppsala, Sweden). PCR cycling comprised 4 minutes at 95oC, followed by 40 cycles of 

30 seconds at 95oC, 30secs at the appropriate annealing temperature and 1 min at 72oC, 

before conclusion with a 1 minute at 72oC in a Master Cycler (Eppendorf, Hamburg, 

Germany). 
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PCR products were incubated with 3µl of streptavidin magnetic beads (Amersham 

Pharmacia Biotech, Uppsala, Sweden) and 1x binding buffer (10mM Tris–HCl, 2M 

NaCl, 1mM EDTA, 0.1% Tween 20) and thoroughly mixed for 10min at 37oC. The 

product mix was then denatured by 5 seconds incubation in 0.2M NaOH solution and 

washed in annealing buffer (20mM Tris–acetate, 2mM magnesium acetate) for 10 

seconds. The single-stranded products were transferred to an annealing buffer containing 

15 pmol of the sequencing primer and incubated for 2 min at 80oC in a Hybaid Maxi 14 

hybridization oven (Thermo Electron, USA). Pyrosequencing was then performed on a 

PSQ96MA pyrosequencer instrument (Biotage AB, Uppsala, Sweden) with optimized 

nucleotide dispensation orders. 

 

6.3.6. Statistics 

Compliance with Hardy-Weinberg equilibrium was assessed using Clump software. 

Linkage disequilibrium between gene loci was calculated using exact test a Markov 

chain. The chi-squared test was used to assess differences in the genotype frequency 

between Asians and Caucasians healthy subjects [159-162] as well as associations between 

gene variants and tumor response in NSCLC patients. Associations between hematologic 

toxicity or pharmacokinetic parameters and gene variants were assessed using the Mann-

Whitney test. Kaplan-Meier methods and log-rank test were used to compare overall 

survival and time to progression. Cox proportional hazards models were used to adjust 

for stage and performance status. All statistical tests were two-sided and SPSS software 

version 13.0 (SPSS Inc, Chicago, IL) was used. A p value of less than 0.05 was 

considered to indicate statistical significance. 
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6.4. Results 

6.4.1. Distribution of gemcitabine pathway genotypes in healthy Caucasians and 

Asians 

An extensive search of publications and genome databases on sequence variants in genes 

encoding proteins involved in pathways of gemcitabine transport, metabolism and 

activity identified 25 loci in 9 genes that qualified for analysis (see Figure 6.1.). 

 

Figure 6.1 Selection of Gene loci involved in pathways of gemcitabine transport, 
metabolism and activity from an extensive search of publications and genome 
databases  
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Pyrosequencing enabled genotyping of all 25 loci in all 94 healthy Asian donors 

including 57 (61%) Chinese, 20 (21%) Malay and 17 (18%) Indian. The Primers, PCR 

annealing temperatures and dispensation sequences and used for genotyping in this study 

were listed as follows (Table 6.1). 

 

 

Table 6.1 Primers, PCR annealing temperatures and dispensation sequences used 
for genotyping in this study 
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The frequency of each genotype with variation (19 SNPs) is depicted in Figure 6.2.  

 

 

Figure 6.2 Difference in sequence variants distribution between 94 healthy Asians 

and Caucasians [158-161] 
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All gene frequencies were in Hardy-Weinberg equilibrium. There was no sequence 

variation at 6 gene loci (CDA+208, RRM1+17, RRM1+5 36, RRM1+589, RRM1+2333, 

and SLC29A1+600), hence these loci were excluded from further analysis. The following 

gene loci pairs were in linkage disequilibrium: CDA+79 and CDA+435 (r2=0.209), 

RRM1 (-756) and RRM1 (-269) (r2=0.905), SLC28A2+65 and SLC28A2+225 

(r2=0.937), SLC28A1+565 and SLC28A1+709 (r2=0.608), SLC28A1+1528 and 

SLC28A1+1561 (r2=0.601). 

Comparison of the genotype distributions of the Asian populations assessed in this study 

with those reported from Caucasians showed difference in 10/19 (53%) loci between 

Caucasians and Chinese, 10/19 (53%) between Caucasians and Malays and 7/19 (37%) 

between Caucasians and Indians (Figure 6.2.). There were no significant differences 

among genotype distributions for Asians (Chinese, Malays and Indians combined) in this 

study and those reported previously. [158-161] 

 

6.4.2. Impact of hCNT2 Polymorphism on Neutropenia  

Grade 3/4 neutropenia frequencies of gemcitabine in combination with carboplatin were 

found to associate strongly with sex in our previous phase I trial with 15 subjects. [15] In 

this current phase II study, we further tested if sex was still an important determinant on 

hematological toxicity with a much larger sample size (n = 58) using nonparametric test 

(Mann Whitney test). The results showed that there was a strong association between sex 

and neutrophil nadir (Figure 6.3).  
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Figure 6.3 Effect of sex on neutrophil nadir to gemcitabine treatment 

 

 

Baseline neutrophil counts between male and female subjects were comparable. The 

average counts for males and females were 6.60 ± 2.75 and 6.09 ± 3.84 respectively. No 

significant difference was detected by using t-test (p = 0.63) as well as Mann Whitney 

test (p = 0.78). However, female subjects had significant lower nadir neutrophil counts 

than those of male subjects after chemotherapy. 

In order to answer why sex could result in a significant difference on neutropenia, 

pharmacokinetic and pharmacogenetic data analyses were conducted.  
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6.4.2.1. The Effect of Sex on Pharmacokinetics of Gemcitabine  

Pharmacokinetic analysis was performed using WinNonLin version 5.2 (Pharsight Inc., 

Mountain View, California, USA). Non compartmental analysis was used to estimate the 

pharmacokinetic parameters. The terminal portion of the curve was determined by 

extrapolation of the log –linear concentration –time curve to infinity and regression of the 

last three points of the curve without weighting.  

The important pharmacokinetic parameters like AUC, Cmax and Cl of gemcitabine and 

dFdCTP as well as AUC ratio of dFdU/gemcitabine were compared between males and 

females but no significant difference was detected [e.g. the average AUC0-inf of 

gemcitabine (1287.60 ± 541.22 µM*min) for females vs males (1437.94 ± 981.83 

µM*min) was not significantly different (p = 0.56, t-test)].  

 

6.4.2.2. Phenotypic and Genotypic analysis  

Since neutropenia is a very common adverse effect during gemcitabine treatment, we 

only selected those SNPs which possess more than 10% frequency both for males and 

females. In addition, we focused on evaluating those SNPs with more than 2-fold 

difference between males and females. According to these two criteria, only two SNPs 

within one gene, SLC28A2+65 and SLC28A2+225, were selected as our study target 

SNPs (Figure 6.4).   
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Figure 6.4 SNPs distribution between males and females     

Both SLC28A2+65 C>T and SLC28A+225 C>A variants were associated with neutrophil 

nadir. For SLC28A2+65 C>T variants, patients with CC genotypes had a higher median 

neutrophil nadir than those with CT/TT genotypes (0.82 x109 cells/L and 0.46 x109 

cells/L respectively, p=0.021) (Figure 6.5, left). For SLC28A+225 C>A variants, the 

median neutrophil nadir for genotypes CC vs CA/AA was 0.82 x109 cells/L and 0.46 x109 

cells/L respectively (p=0.049) (Figure 6.5, right) 

 

 

Figure 6.5 Association of SLC28A2+65 C>T (left) and SLC28A2+225 C>A 

(right) with neutrophil nadir 
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In addition, these two variants in SCL28 were also associated with patients’ survival. The 

median overall survival of patients with the CC genotype was 8.2 (5.7-10.3) months and 

for CT/TT genotypes 18.3 (11.6-25.0) months (p=0.001) (Figure 6.6 left). The median 

overall survival in patients with CC and CA/AA genotypes was 8.5 (6.2-10.8) months and 

18.3 (7.7-28.9) months respectively (p=0.003) (Figure 6.6 right). 

 

 

 

 

Figure 6.6 Association of SLC28A2+65 C>T (left) and SLC28A2+225 C>A 

(right) with survival 
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In separate multivariate analyses, both SLC28A2+65 CT/TT (Hazard Ratio = 0.31 [95% 

confidence interval = 0.15-0.65], p=0.002) and SLC28A+225 CA/AA (0.35 [0.17-0.71], 

p=0.004) genotypes were independently associated with improved overall survival after 

adjusting for stage and performance status. With both genotypes, stage and performance 

status entered, SLC28A2+65 CT/TT (0.09[0.01-0.84], p=0.035) was the only 

independent variable. 

Neutropenia frenquency and survival of NSCLC patients in gemcitabine and carboplatin 

combination therapy are mainly dependent on genetic variants on human SLC28A2 

(hCNT2) according to our systematic genetic screening on gemcitabine genetic pathways. 

Although sex seemed to have an important impact on neutropenia (Figure 6.7), with data 

showing significant differences in grade 0 and grade 4 neutropenia between males and 

females in 53 subjects, this influence could not be supported when the frequency analysis 

was done within mutant hCNT2 cohort (Figure 6.8). 
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  Figure 6.7 Comparison between neutropenia grade and frequency  
of all subjects (n = 53) 
 

 

 

 

Figure 6.8 Comparison between neutropenia grade and frequency  
within the cohort expressing S28A2+225 (C>A) (n = 17) 
 
 
 
 
 
 
 
 



Chapter VI:  Genotypic and Phenotypic Association of Gemcitabine 

 154

6.5. Discussion 

Studies have identified various gene polymorphisms that are associated with outcome and 

toxicity in patients with NSCLC. Recently, a polymorphism in the gene uridine 

diphosphate-glucuronosyltransferase 1A1 was associated with toxicity and survival in 

NSCLC patients treated with irinotecan-based chemotherapy has been reported.[163] To 

our knowledge, our study is the first to systematically assess the association between 

gemcitabine transport pathway gene polymorphisms with clinical outcome in NSCLC 

patients receiving gemcitabine-based chemotherapy. 

The frequency of gene variants involved in the gemcitabine pathway has been previously 

reported in the healthy Caucasians [158] whereas data on Asian subjects have been limited 

to genes involved in the gemcitabine transport, SLC28A1, SLC28A2 [159, 161]and 

ribonucleotide reductase.[160] Our study contributes further to the literature by providing 

data on healthy Chinese, Indian and Malay subjects. No significant differences among the 

Asians with regards to genotypes distribution were found in our study. However we did 

find a significant difference in the distribution of up to 10 gene loci between healthy 

ethnic Asians and the Caucasian population.  

Gemcitabine is a prodrug and its efficacy is highly dependent on intracellular drug 

concentration of dFdCTP. Some pioneer work in gemcitabine study showed that dFdCTP 

concentration in the peripheral leucocytes might be used as a surrogate marker to 

evaluate the efficacy and toxicities to gemcitabine treatment since dFdCTP was the major 

intracellular active metabolite (85-90%). [12, 47] Due to the difficulty in harvesting, sample 

preparation and quantification of dFdCTP concentrations in clinical samples, very few 

results were available on clinical pharmacokinetic studies of intracellular dFdCTP. Our 
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PK analysis did not show significant relationship between intracellular dFdCTP PK and 

the selected transporter genetic variants studied. 

Sex seemed to influence neutropenia in our 53 NSCLC patients during their 

chemotherapy with gemcitabine and carboplatin combination therapy but no difference 

on neutropenia severity and frequencies were formed between males and females in the 

hCNT2 cohort. This strongly suggested that genetic variants but not sex would be a 

determinant factor in neutropenia and survival for infusion gemcitabine based therapies. 

Our data showed that both SLC28A2+65 C>T and SLC28A+225 C>A variants were 

significantly associated with neutrophil nadir and survival as well. Two adjacent amino 

acid changes in 2 SNPs variants could change substrate specificity of hCNT2. Previously 

even though hCNT2 was not regarded to be selective for pyrimidine nucleoside 

substrates, it has been identified as one of gemcitabine transporters according to latest 

research findings. [113, 117] Herein, we proposed that hCNT2 mutations (SLC28A2+65 

C>T and SLC28A+225 C>A) could be potential genetic markers for better survival and 

more severe neutropenia to gemcitabine treatment. The reasons for high impact of 

hCNT2 on gemcitabine neutropenia and survival may be due to the change of substrate 

specificity of hCNT2 when mutations take place. Under normal physiological conditions, 

gemcitabine is mainly transported through hCNT1 and hCNT3 due to their substrate 

specificities for pyrimidine nucleosides. Under this condition, the effect of hCNT2 on 

gemcitabine’s intracellular transportation could be negligible. However, when hCNT2 

mutates, its impact on gemcitabine intracellular accumulation would be dramatically 

increased. Thus, this could result in a significant increase of dFdCTP concentration in 

hCNT2 mutant subjects since both variants of SLC28A2+65 C>T and SLC28A2+225 



Chapter VI:  Genotypic and Phenotypic Association of Gemcitabine 

 156

C>A are located in coding region of this transport gene. [161] Therefore, this genetic 

marker on hCNT2 could be very useful for oncologists to individualize patient treatment 

as patients with SLC28A2+65 C>T and SLC28A2+225 C>A would be expected to have a 

significant benefit on survival. In the mean while, this group of patients may also 

experience higher riskes of severe neutropenia. This genetic variant-drug response marker 

would have a greater clinical implication if it could be validated with a larger population. 

SLC28A2 +65 C>T variants were significantly lower in Chinese (12%) and Malays 

(55%) compared with Caucasians (63%) whereas the frequency of SLC28A2 +225 C>A 

variants was lower in the Chinese (12%) compared with Caucasians (55%). Based on the 

differences in the distribution of these gene variants, we speculated that Asians may have 

a lower risk of hematological toxicity but also a lower overall survival through 

gemcitabine treatment. The effect of ethnicity on gemcitabine pharmacology should be 

further investigated in larger scale clinical trials. 
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6.6. Conclusions 

Although the genetic distribution of gemcitabine activation pathway related genes have 

been studied intensivly in Caucasians, less information is available for Asians. A systemic 

screening of genetic polymorphism was processed in our study for understanding genetic 

distribution in healthy Asian population; ten gene loci were found to be significantly 

different in the distribution of genotypes between Asians and Caucasians among 25 

SNPs.  

Sex seemed to have some impact on hematological toxicities to gemcitabine treatment in 

our Phase I clinical trial and a larger scale clinical Phase II study. However, this influence 

of sex was found to be not important factor in our study. Instead, SNPs in hCNT2 were 

identified as a potential determinant on hematological toxicities and patient survival in 

gemcitabine treatment combined with carboplatin although no pharmacokinetic 

differences were detected between wild-type and variants of hCNT2. With current 

advanced gene screening technique, it would be very convenient and fast to analyze the 

SNPs in hCNT2 for NSCLC patients in gemcitabine based treatment. This could provide 

oncologists with valuable information for individual patient’s treatment. Nevertheless, a 

larger clinical trial would be necessary to further validate our current findings.  
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In this thesis on Pharmacology of gemcitabine in the Asian Population, bioanalytical 

methods for accurate, reliable and precise quantitation of plasma gemcitabine and dFdU 

as well as intracellular dFdCTP formed the essence for the studies. These methods were 

successfully developed and validated. 

The chapter on in vitro study demonstrated that exposure time above 2 µM gemcitabine 

was an important factor for achieving cytotoxic effects on HONE1 cells. In addition, 

gemcitabine resistance can be overcome by novel combination therapies, e.g. 

gemcitabine plus PXD101.  

For the clinical studies, the initial dose finding trial for fixed rate infusion of 10 

mg/m2/min gemcitabine indicated that 75 min infusion (total dose of 750 mg/m2) was 

tolerable for Asian patients. This fixed rate schedule was selected as arm A for 

comparison with arm B, the standard 30 min infusion of 1000mg mg/m2 in the later phase 

II trial. The results showed no significant differences between the two arms with regards 

to pharmacokinetic parameters, patients’ toxicities and clinical efficacy even though there 

was a 25% lower total dose of gemcitabine at the fixed rate infusion schedule. One 

interesting indication found was that the metabolite/parent (dFdU/gemcitabine) ratios at 

120 min were highly related to early phase response rate according to RECIST criteria. 

The ratios of dFdU/gemcitabine at 120 min for non-responders were significantly higher 

than those of the responders. Ratios larger than 500 seemed to predict that the patient 

would be a non-responder in the early phase treatment cycle to gemcitabine.  

Finally, the genetic status in hCNT2 was identified as a determinant of hematological 

toxicities and survival in treatment with gemcitabine in combination with carboplatin 

through pharmacogenetic and pharmacodynamic association. The patients with genetic 
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variants both in SLC28A2+65 C>T and SLC28A2+225 C>A would have a longer 

survival but also could experience more serious toxicities than those with wild-type. 

Genetic screening for hCNT2 could be a useful clinical disease progression marker.  

Both the dFdU/gemcitabine ratios at 120 min as a potential predictor for early phase 

response as well as the patients’ genetic status of hCNT2 as a useful marker for toxicities 

and survival need to be validated with a larger prospective trial.   
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