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Summary

In a point-to-point communication link, multiple-input multiple-output (MIMO)

technology has been used to increase spectral efficiency and reliability of

transmissions, and in wireless networks, cooperative transmission techniques have

been developed for striking desirable tradeoffs among power, bandwidth, and

complexity. In both MIMO and cooperative relay systems, multiple antennas are used:

in MIMO systems, all the transmit/receive antennas are collocated at the same terminal

where all the transmit/receive antennas can fully cooperate, whereas in cooperative

relay systems, the transmit/receive antennas are distributed at different terminals and

thus the transmit/receive antennas cannot fully cooperate because the cooperative

relays do not have a priori or complete knowledge about information being transmitted

from a source, and the source and relays need to communicate with each other

over fading links. Even though multiple antennas are employed in both MIMO and

cooperative relay systems with different fashions, the use of multiple antennas offers

great potential to improve reliability and spectral efficiency of wireless transmissions

for both systems.

In this dissertation, we investigate performance limits and cooperative

transmission strategies for MIMO and cooperative relay communication systems.

We first obtain some bounds on the complementary cumulative distribution function

(CCDF) of the mutual information (MI) of a MIMO system in a Rician fading

environment. The MI distributions are obtained through the statistical distributions of

vi



Summary

the determinant and trace of a noncentral complex Wishart matrix. These bounds on the

CCDF of the MI show explicitly the effects of system parameters on the distribution of

the MI. We then turn our attention to cooperative relay systems. We derive the outage

probability and ergodic rate for a decode-and-forward (DF) relay system in a Rayleigh

fading environment, and propose optimal transmission strategies including transmit

signaling and power allocations to minimize outage probability or maximize ergodic

rate. We also derive the outage probability of DF relay systems in a Rician fading

environment. The information theoretic study, however, only provides performance

limits for the system; it does not allude to any methods for achieving these limits.

We apply differential modulation to relay systems and study the relay systems from

an end-to-end error performance perspective. For DF, we design maximum likelihood

and piecewise linear receivers at the destination which takes account of average error

probabilities of all the source-relay transmissions. For selection relaying, we shift

the computational complexity from the destination to relays which compute their own

instantaneous error probabilities and use them to make decisions on whether to transmit

or remain silent. We also obtain the average error probability of the relay systems for

both protocols over Rayleigh fading channels.
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Chapter 1

Introduction

The rapidly growing demands for wireless services such as high speed internet,

mobile television, and mobile computing have stimulated tremendous research efforts

towards improving reliability and throughput of communication links. Many technical

challenges stem from the time varying nature of wireless medium (e.g., multi-path

fading), interference, as well as power and bandwidth limitations. Among these

challenges, multi-path fading (often simply called fading) significantly degrades the

reliability of the transmission links, and becomes a bottleneck for enhancing data

rate in the wireless systems. In addition, the available radio spectrum is limited

and a significant increase in spectral efficiency is needed to meet the needs for

communication capacity.

One of the most effective solutions to mitigate the detrimental effects of fading is

to exploit diversity techniques. Roughly speaking, the basic idea is to send signals that

carry the same information through different paths, and obtain multiple independently

faded replicas of the data symbols at the receiver, thus achieving more reliable

detection. Depending on the domain where replicas of transmitted signals are created,

diversity techniques can be categorized into three types: time diversity, frequency

diversity and space diversity. Either time or frequency diversity induces a loss in

1



1. Introduction

bandwidth efficiency due to the redundancy introduced in time or frequency domain.

Compared to time and frequency diversities, space diversity, which can be provided

by sufficiently separated or differently polarized antennas, can enhance performance

without causing a loss in bandwidth efficiency. Therefore, space diversity has become

one of the most favored solutions in numerous wireless applications.

A conventional approach to achieving space diversity is to employ multiple

transmit and/or multiple receive antennas. If the antennas are placed sufficiently

far apart, the channel gains between different antenna pairs are independent. For

a mobile terminal, a half to one carrier wavelength separation among antennas is

sufficient to guarantee that the channel gains are independent. Through transmitting

the replicas of the signal through different antennas, and/or combining the different

replicas together at the receiver, space diversity can be achieved. Traditionally,

space diversity is achieved by employing multiple receive antennas (single-input

multiple-output or SIMO channels) at the receiver where combining, selection or

switching of the received signals is performed. This is so-called receive diversity. By

deploying multiple transmit antennas (multiple-input single-output or MISO channels)

at the transmitter, transmit diversity techniques shift the complexity associated with

realizing diversity to the transmitter. A well-known transmit diversity scheme is

space-time coding that is capable of achieving diversity and coding gains compared

to single-antenna uncoded transmissions.

Communication systems with multiple transmit and multiple receive antennas,

often simply called multiple-input multiple-output (MIMO) systems, provide even

greater potential. In addition to the aforementioned diversity benefits, it has been

revealed that increasing the number of both transmit and receive antennas has great

potential to enhance spectral efficiency of wireless transmissions. MIMO channels

exhibit fading and provide additional spatial dimensions. Under certain fading

2



1. Introduction

conditions, additional degrees of freedom can be provided by MIMO channels, and

be exploited to increase capacity which highlights the potential spectral efficiency

of MIMO channels. The capacity of the MIMO channels has been proved to grow

approximately linearly with the minimum number of transmit and receive antennas.

Therefore, MIMO technology not only leads an improved error performance but also

enables high spectral efficiency communication.

However, in wireless networks, there are many terminals (transmitters and/or

receivers), and each transmitter or receiver usually only has a single antenna

because of the transmitter’s and receiver’s size limitation. In addition, maintaining

direct reliable transmission links between widely separated terminals requires high

transmission power, which not only incurs energy inefficiency but also introduces

strong interference to the other nearby terminals. As an alternative, the communication

between a pair of far-apart terminals can take place through several intermediate

terminals. In this transmission mode, the multiple terminals can act as a virtual

antenna array to achieve space diversity in a distributed fashion. This space diversity

is called cooperative diversity. Cooperative diversity can be used in cellular, ad-hoc,

and hybrid networks in order to increase coverage, throughput and capacity. In cellular

networks, cooperative relay transmission has been used to extend network coverage.

In sensor networks such as military battlefield communication networks, the use of

wire-line infrastructure is often precluded and the radios might be substantially power

constrained. For these ad-hoc or sensor networks, wireless relay transmissions have

the potential to greatly improve reliability, energy efficiency, as well as throughput of

wireless networks.

We will introduce the conventional multiple antenna system and the cooperative

diversity system in the following two sections.

3



1.1 Multiple-Input Multiple-Output (MIMO) Systems

Transmitter Receiver
x yH

11h

mnh

MNh
��

Figure 1.1: Block diagram of a MIMO system.

1.1 Multiple-Input Multiple-Output (MIMO) Systems

The conventional multiple antenna system has one transmitter and one receiver

where multiple antennas are employed at the transmitter and/or receiver. The

multiple transmit/receive antennas are collocated at the transmitter/receiver, and full

cooperation among the transmit/receive antennas is possible.

1.1.1 MIMO System Model

A typical MIMO system with N transmit antennas and M receive antennas is shown

in Fig. 1.1. The input-output relationship can be expressed in vector form as

y = Hx + n, (1.1)

where H is the M × N channel matrix with the mn-th entry hmn describing the

channel gain between the n-th transmit antenna and the m-th receive antenna, x is an

N -dimensional transmitted vector with the n-th element the transmit signal from the

n-th transmit antenna, y is an M -dimensional received vector with the m-th element

the receive signal at the m-th receive antenna, and n is an additive white Gaussian

4



1.1 Multiple-Input Multiple-Output (MIMO) Systems

noise (AWGN) vector with the m-th element the AWGN at the m-th receive antenna.

There have been great interests in MIMO channels of the form shown in Fig.

1.1. It has been well documented that employing MIMO system not only improves

bit error rate (BER) performance but also boosts the channel capacity. Substantial

efforts have been made on characterizing the ultimate information theoretic limits of

the MIMO systems, and designing practical coding and decoding algorithms that have

high spectral efficiency.

1.1.2 Information Theoretic Performance Limits

Established by Claude Shannon, the notion of capacity is referred to the maximum

rate of communication for which an arbitrarily small error probability can be achieved,

and is commonly used to characterize the fundamental performance limit of reliable

communication.

In analyzing the capacity of fading channels, there are two commonly used

statistics: ergodic capacity and outage probability. In fading environments, since

the channel H is random, the mutual information (MI) associated with the MIMO

channel is a random variable (RV) and has a statistical distribution function. The

ergodic capacity is defined as the ensemble average of the MI. If the fading process

is ergodic, the ergodic capacity is equal to the Shannon capacity, and an arbitrary

small error probability can be achieved if the transmission rate is smaller than the

Shannon capacity assuming that an asymptotically optimal codebook is used. If the

fading process is non-ergodic, e.g., the channel is randomly selected at the beginning of

the transmission and remains constant during the transmission, the Shannon capacity

of the channel can be zero because there is a nonzero probability that a particular

realization of the channel is incapable of supporting arbitrarily low error rates, no

matter which code is selected. In this case, the ergodic capacity is not meaningful

5



1.1 Multiple-Input Multiple-Output (MIMO) Systems

and the performance measure is the outage probability. The outage probability is the

cumulative distribution function (CDF) of the MI, and measures the tradeoff between

the transmission rate and the reliability.

Ergodic Capacity of MIMO systems

There has been substantial work on characterizing the ergodic capacity of MIMO

systems under a variety of fading conditions. The ergodic capacity of the MIMO

channel has been developed for several different cases which depend on the availability

of channel state information (CSI) at the transmitter and/or receiver: CSI available to

the receiver only [1, 2]; CSI available to both the transmitter and the receiver [2];

and CSI available at neither the transmitter nor the receiver [3–5]. The information

theoretic study has revealed that MIMO systems have the potential to provide dramatic

increases in capacity. For example, when CSI is available at the receiver only, the

ergodic capacity of a MIMO system grows linearly with the minimum number of

transmit and receive antennas [2]. The linear increase of the ergodic capacity at high

signal-to-noise ratio (SNR) is due to the increase in degrees of freedom from spatial

multiplexing. The linear increase at low SNRs is due to a power gain from receive

beam-forming. The linear increase at intermediate SNR ranges is due to a combination

of both these gains. We will focus on flat fading channels with CSI available at the

receiver only.

A wireless channel is often too complex to be precisely modeled, and statistical

models for characterizing the channel effects are widely employed. There is a range

of relatively simple and accurate statistical models for fading channels depending on

the particular propagation environment. The two commonly used fading models are

Rayleigh fading and Rician fading.

Perhaps Rayleigh fading is the most commonly adopted model in the literature. If
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we assume that fading is caused by the superposition of a large number of independent

scattered components, then the in-phase and the quadrature components of the fading

coefficient are independent zero-mean Gaussian processes. Thus, the fading coefficient

is zero-mean complex Gaussian distributed. For independent Rayleigh fading among

the individual links, the ergodic capacity of a MIMO system was obtained exactly

in [2], where the ergodic capacity was expressed in terms of Laguerre polynomials.

Since the exact expression of the ergodic capacity is quite complex and is not given in

a closed form, [6] presented some tight lower bounds on the ergodic capacity in closed

forms, and [7] presented the limiting value of the ergodic capacity when the numbers

of transmit and receive antennas tend to infinity and the ratio of the number of transmit

antennas to the number of receive antennas is held constant. The capacity derivation

and the optimality of Gaussian codebooks are based on the assumption that perfect

CSI is available at the receiver. When channel estimation errors exist, performance

degradations in terms of the MI were investigated in [8], and some bounds on the

ergodic capacity were obtained in [9].

Rayleigh fading is known to be a reasonable channel model applicable to many

wireless systems. However, when line-of-sight (LOS) paths exist between transmit and

receive antennas, the fading coefficients are no longer zero-mean complex Gaussian

distributed, and they are nonzero-mean complex Gaussian distributed. In this case, the

channels are modeled as Rician fading which is more general than Rayleigh fading,

since Rician fading reduces to Rayleigh fading when the LOS component is equal to

zero.

The ergodic capacity of a MIMO system in Rician fading environments has been

presented in [10–14]. By making use of the joint distribution of the eigenvalues of a

noncentral Wishart matrix, the exact ergodic capacity was obtained in multiple integral

forms [10], which only can be evaluated by numerical integrations. Some tight upper
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and lower bounds on the ergodic capacity have been derived in [11–13] in simpler

forms. In [11], the MI was re-expressed as a linear sum of determinants of noncentral

Wishart distributed sub-matrices. The new expression of the MI, together with the

convexity and concavity of some functions, enables the ergodic capacity to be upper

and lower bounded [11]. Actually, [10, 11] only considered the case that the channels

between different transmit and receive antennas are statistically independent, and it

is not true if the antennas are not separated enough. The ergodic capacity bounds of

independent or single-correlated Rician fading MIMO channels with a rank-1 mean

matrix were derived in [12] through computing the expected values of the determinant

and log-determinant of a noncentral complex Wishart matrix. A more general study

on the ergodic capacity of spatially correlated Rician fading MIMO channels was

done in [13] through exploiting the statistical property of the noncentral matrix-variate

complex quadratic forms. Some upper and lower bounds on the ergodic capacity of

the single- or double- correlated channels with an arbitrary mean matrix were obtained

in [13].

Statistical Distribution of the MI of the MIMO Systems

Compared to the ergodic capacity, the statistical distribution of the MI is fairly useful

in either ergodic or non-ergodic fading channels, and it provides more comprehensive

information on the MIMO systems than the ergodic capacity does. Therefore, the

statistical distribution of the MI is of interest. However, because of the complexity of

the statistical distribution of a complex Wishart matrix and the determinant operation,

the study on the statistical distribution of the MI is quite involved.

There are several different studies [15–20] on the statistical distribution of the

MI in a Rayleigh fading environment. The complementary cumulative distribution

function (CCDF) of the MI was first studied in [15] via Monte Carlo simulations, which
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empirically provides us some information on the statistical distribution of MI. But the

experimental approach, e.g., Monte Carlo simulations, is quite time consuming and

cannot indicate how parameters affect the MI distribution. Later, based on the central

limit theorem, [16] proposed using a Gaussian distribution function to approximate the

statistical distribution of the MI, for which only the mean and the variance of the MI

need to be calculated. The Gaussian approximation is quite accurate for a large number

of antennas. But when the number of antennas is small, which is generally the case in

practice, the Gaussian approximation becomes loose. To overcome this shortcoming of

the Gaussian approximation, the exact CDF of the MI of a dual antenna MIMO system

was derived in [17] by using a Jacobian on the joint density function of the eigenvalues

of a complex Wishart matrix. However, the complexity of the Jacobian transformation

increases exponentially with the increase in the number of antennas. Thus the result

in [17] cannot be generalized to a system with a larger number of antennas. A more

comprehensive study on the distribution of the MI has been conducted in [18–20].

The characteristic function of the MI was obtained in [18] through rewriting the joint

distribution of the eigenvalues of a Wishart matrix in a new form; while the moment

generating function (MGF) of the MI has been given in [19, 20]. These results in

[18–20] are valid for an arbitrary number of antennas, and the CDF of the MI can be

expressed as the Fourier transform of the characteristic function or the inverse Laplace

transform of the MGF.

For Rician fading channels, the noncentral properties of a complex Wishart matrix

make the MI distribution much more complicated than that in the case of Rayleigh

fading channels. Similar to [17] which only considers Rayleigh fading channels, the

exact CDF of the MI for a dual antenna MIMO system was derived in [21] for Rician

fading channels by using a Jacobian transformation. Recently, [14] obtained the MGF

of the MI for independent Rician fading MIMO channels. However, to obtain the CDF
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of the MI for MIMO Rician fading channels, we need resort to numerical integrations

to take the inverse Laplace transform of the MGF. Based on the MGF of the MI, the

mean value and the variance of the MI were also obtained in [14] for independent

Rician fading channels. In addition, the mean and the variance of the MI were present

in [13] for single- or double-sided correlated Rician fading channels. With the mean

and variance of the MI, a Gaussian distribution has been used to approximate the

distribution of the MI in [13, 14].

All the aforementioned results on the distribution of the MI rely on the joint

density function of the eigenvalues of a central or noncentral Wishart matrix. Until

now, there is still no explicit expression available for the CDF of the MI, which

is an important performance measure of MIMO systems. Unfortunately, due to the

complicated mathematical problem related to the eigenvalues of a Wishart matrix, an

explicit expression for the CDF of the MI is very difficult to obtain. Instead, some

upper and lower bounds in simple forms may be derived.

1.1.3 Space-Time (ST) Coding

ST coding is an effective and practical way to improve spectral efficiency of

MIMO fading channels. Coding is performed in both space and time domains to

introduce correlation between signals transmitted from various antennas in various

time periods. ST coding can achieve transmit diversity and coding gain over uncoded

systems without sacrificing bandwidths. Typical examples of ST coding schemes

include space-time trellis codes (STTC), space-time block codes (STBC) and layered

space-time (LST) codes.

A well known upper bound on the pairwise error probability and the

corresponding STTC design criteria (rank and determinant criteria) were derived in

[22]. Alamouti’s scheme [23], which is for a system with two transmit antennas,
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admits a particularly simple linear decoding algorithm and achieves full diversity.

The key feature of the Alamouti’s scheme is the orthogonality between the sequences

transmitted by the two transmit antennas. Alamouti’s scheme was generalized to STBC

with an arbitrary number of transmit antennas [24]. A LST architecture that can attain

a tight lower bound on the MIMO channel capacity was proposed in [25]. Some other

forms of ST code, such as the differential ST code [26] and non-coherent unitary ST

code [27], also were proposed.

1.2 Cooperative Relay Systems

As we see in the previous section, using multiple antennas has offered high reliability

and spectral efficiency for point-to-point communication systems. In cooperative

relay systems, multiple antennas are utilized in a distributed manner such that

communications between nodes may take place through several intermediate nodes to

save power, reduce interference and increase diversity. Cooperative communications

in such systems are realized by exploiting the broadcast nature of the wireless medium

and allowing terminals to cooperatively transmit information through relaying. The

relaying system realizes many benefits over traditional MIMO systems in terms of

adaptability and capacity. In fact, every additional terminal added to the network

increases the overall connectivity and improves fault tolerance. In contrast to the

conventional forms of space diversity with physical arrays, cooperative relay systems

benefit from space diversity by using multiple terminals as a virtual antenna array. The

cooperative relay systems are fundamentally different from the point-to-point MIMO

systems in the sense that the cooperative relays do not have a priori or complete

knowledge about information transmitted from the source and only have faded and

noisy versions of the transmitted information.
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Figure 1.2: The classic relay channel model.

1.2.1 Relay System Models

A classic relay model [28–30] is shown in Fig. 1.2. The classic relay channel model

comprises of three terminals: a source that transmits information, a destination that

receives information, and a relay that both receives and transmits information in order

to enhance communication between the source and destination. As illustrated in Fig.

1.2, the relay performs the following function: receiving signals transmitted from the

source, processing those received signals, and transmitting the processed signals to the

destination. Roughly speaking, the use of the relay transmission is able to increase the

capacity and/or improve reliability of an end-to-end transmission from the source to

destination.

For a cooperative relay system with multiple relays (L relays), there are two

categories of relay systems: parallel relay system as shown in Fig 1.3, and serial

relay system as shown in Fig. 1.4. As illustrated in Fig 1.3, for a parallel relay system,

all the L relays receive signals transmitted from the source, and the destination receive

signals transmitted from the source and all the L relays. As illustrated in Fig. 1.4, for

a serial relay system, relaying can be performed in multiple stages and relays receive

signals transmitted from the source and the previous several relays, such that relays as

well as the destination benefits from space diversity.

Cooperative communication [31, 32] is a generalization of the relay channel to
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. . .. . .

Figure 1.3: The parallel relay channel model with L relays.Source DestinationRelay LRelay rRelay 1 ...+ + +...
Figure 1.4: The serial relay channel model with L relays.

multiple sources which have information to be transmitted and also serve as relays for

one another. In this case, the sources and relays act as partners for one another [33].

A combination of relaying and cooperation is also possible, and is often referred to

generically “cooperative communications”.

Cooperative relay communication leverages space diversities available when

multiple transmission links are independently faded. For example, if the direct link

from the source to the destination experiences a deep fade, there remains a significant

probability that the signal transmitted from the source can be effectively communicated

to the destination via one of the relays.

Cooperative communication in a wireless network involves issues of protocol
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layering and cross-layer architectures. In physical layer, encoding and signal

processing are required at the source and relay(s) [31,32,34], and decoding and signal

processing are required at the destination and relay(s) [35–37]. Scheduling [38–40]

for transmissions in time and frequency has to be addressed by protocols in the

link layer and medium-access control layer in coordination with the physical layer.

Symbol, frame and carrier synchronization [41–43] is also of particular importance at

the physical and link layers. Placing participating terminals into cooperating groups

is a cross-layer issue that can involve the physical, medium-access control, link and

even network layers [34, 44, 45]. In addition, the overhead introduced by internode

communications might detract from the gains obtained via cooperation. Designing

an effective cooperative communication system requires insights about all of these

issues. Appropriate architecture and algorithms (specific encoding, decoding and

signal processing) are very important, and can depend upon the radio hardware, system

complexity and application context.

Full-Duplex Mode and Half-Duplex Mode

A relay node can work either in full-duplex mode or half-duplex mode. If a relay node

works in a full-duplex mode, the relay node receives and transmits at the same time on

the same frequency band. Since the relay node has full knowledge of what to transmit,

it can cancel the interference from its transmit antenna at its receive antenna. The

full-duplex mode has high spectral efficiency, but high complexity.

In contrast to the full-duplex mode, a half-duplex mode means that the relay

node cannot transmit and receive at the same time or at the same frequency

band. There are two types of half-duplex modes: time-division-duplex (TDD) and

frequency-division-duplex (FDD). In the TDD mode, for a given time interval D, the

relay node is in receive mode for a fraction of the time aD and in transmit mode for
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the rest of the time (1 − a)D. Similarly, in the FDD mode, a given bandwidth W is

divided into a bandwidth of aW over which the relay node receives, and a bandwidth

(1− a)W over which the relay node transmits. The destination listens over the whole

bandwidth W . Clearly, from an information theoretic point of view, TDD and FDD

are equivalent. Compared to the full-duplex mode, the half-duplex mode is easier to

realize, but it has lower spectral efficiency.

Relay Protocols

A relay node can employ one of several protocols to process the received signals

and forward to the destination. The most commonly used four protocols are given

as follows.

• Amplify-and-Forward (AF) [35, 44]: The relay node transmits a linear

combination of its past received signals. The main advantage of the AF protocol

is its simple operation at the relay node. But the transmit signals from the relay

are analog signals, and the end-to-end performance is limited since the noise at

the relay is also amplified and forwarded to the destination.

• Compress-and-Forward (CF) [30, 46–49]: The relay node transmits a

compressed and quantized version of its past received signals. Compression is

done using Wyner-Ziv source coding. When the relay-destination link is strong,

the CF cooperative relay channel behaves like a SIMO channel [49, Remark 20].

The main drawback of the CF protocol is its relatively high complexity.

• Decode-and-Forward (DF) [30, 44]: The relay node applies some form of

detection and/or decoding algorithms to its received signals and re-encodes

the information into its transmit signals. This decoding and re-encoding

process often corresponds to a non-linear transformation of the received signals.
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Although decoding at the relays has advantages of reducing the impact of

receiver noise, the performance of the DF protocol is limited by the source-relay

link. If the source-relay link is strong, the DF cooperative relay channel behaves

like a MISO channel [49].

• Selection Relaying (SR) [44, 50, 51]: The performance of the DF protocol is

constrained by the reliability of the source-relay link. In the DF protocol, if a

relay makes detection errors, erroneous symbols from the relay will lead to a

degradation in post-combining SNR at the destination, and a symbol error at

the destination becomes highly likely. This can be viewed as a form of error

propagation in the relay system. If a relay retransmits all the symbols regardless

of the reliability in their decisions, the possible error propagation will limit

the end-to-end performance of the DF relaying. If the systems are designed

with embedded error detection codes, the relay can forward only if no error is

detected. In this case, the relay also can correct some symbol errors by decoding

and re-encoding the received data block. Alternatively, the instantaneous SNR

of the source-relay link can be used as an indicator of the reliability of the

relay detection. If the source-relay instantaneous SNR is larger than a certain

threshold, the probability of an error at the relay is small and hence the relay

transmits the signal. Otherwise, the relay remains silent.

There are many other relaying protocols which are extended versions of the above

protocols, e.g., partial DF, dynamic DF, estimate-and-forward, etc.

It has been shown that cooperative relaying techniques offer great performance

improvement from various perspectives: increased capacity or enlarged capacity

region [30, 49, 52]; improved reliability in terms of diversity gain [34, 44, 53, 54],

diversity-multiplexing tradeoff [55], and bit or symbol error probabilities [35, 37,
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56–58]. In the following, we will introduce cooperative relay systems from two

perspectives: an information theoretic perspective and an end-to-end performance

perspective.

1.2.2 Information Theoretic Study on Cooperative Relay Systems

Early formulation theoretic study on cooperative relay systems was launched in early

1970’s [28, 29], and continued by many others, e.g, Cover and El Gamal [30], with

a primary focus on the classic relay channel. More recently, multiple relay models

have been examined [49, 59–61]. For the classic relay model in Fig. 1.2, Cover and

El Gamal [30] obtained the channel capacity for physically degraded1 relay channels,

and a capacity upper bound and an achievable rate for general relay channels. Various

study on cooperative relaying has been done from the information theoretic perspective

for decades, however, the capacity or capacity region, are not known in general.

Nevertheless, bounds on capacity and numerous achievable rates have been obtained

[49, 59–61].

The information rates achieved by various half-duplex relaying protocols and

their corresponding outage probabilities were obtained in [44]. In [52], some upper

and lower bounds on the capacity of classic relay channel were presented when the

relay node operates in full duplex mode or half-duplex mode. With the transmitter

CSI, several power allocation strategies that maximize the upper and lower bounds of

ergodic capacity or minimize the outage probability were also proposed in [52]. For

MIMO relay channels, [62] presented some upper and lower bounds on the capacity

of the classic relay channel when the relay node operates in full duplex mode for the

cases of both AWGN channels and Rayleigh fading channels. Capacity theorems and

1Degradedness means that the destination receives a corrupted version of what the relay receives, all

conditioned on the relay transmit signal.
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achievable rates for systems with multiple relays have been derived in [49, 60, 61]. It

was shown in [49] that for Rayleigh fading DF relay channels, the transmit signals

from source and relay, which maximize the ergodic rate, are statistically independent.

In the low SNR regime, the spatial power allocation strategy that maximizes the

ergodic rate was presented in [63], and the spatial power allocation strategy that

maximizes the upper bound of the ergodic capacity was derived in [64]. While the

work in [52,63,64] emphasizes on optimizing ergodic performance measures, a recent

paper [65] proposed a spatial power allocation strategy that minimizes the outage

probability of the information rate for AF relay channels.

For a classic relay channel employing DF protocol, the highest information rate

achievable until now was derived in [30]. The corresponding outage probability

and the ergodic rate in fading channels are the two important information theoretic

performance measures. However, the analytical expressions of these quantities are not

available in the literature for an arbitrary correlation between the transmit signals from

the source and relay. When transmitters only have statistical CSI, the optimal power

allocation and transmission strategies in the DF relay system to minimize the outage

probability or maximize the achievable rate are also needed.

1.2.3 End-to-End Performance in Cooperative Systems

For a relay system, several encoding strategies have been proposed for forwarding

the source message by the relay(s): simple uncoded or repetition coding, ST coding

[34], and more idealistic block Markov coding derived from the information theoretic

framework established by Cover and El Gamal [30]. The error probability analysis is

usually done for repetition coding or ST coding. In general, ST coding is superior

to uncoded and repetition, since ST coding provides diversity without causing a

substantial loss in spectral efficiency [22].
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End-to-End Performance of Uncoded Relay Systems

For a classic relay channel, the bit or symbol error probabilities have been derived

in [56] for AF relay, and in [37] for DF relay. It is worth noting that the work [56]

expressed the average received SNR at the destination as a harmonic mean of two

exponentially distributed RVs, and then obtained the MGF of the average received SNR

and the symbol error probability. The paper [37] proposed a cooperative maximum

ratio combining (C-MRC) scheme for DF relay channel and obtained its corresponding

symbol error probability.

The extensions of the error performance analysis from a classic relay channel

to a multiple relay channel are done for a parallel relay in [35], or a serial relay in

[57, 66], or a combination of these two in [58]. In [35], the maximum likelihood

(ML) receiver for the coherent AF parallel relay was designed. The ML receiver for

the coherent AF parallel relay is a linear operation on the received signals, and thus

easy to implement. The error probability analysis for the coherent AF relay is quite

difficult, since it requires averaging the performance over the fading coefficients. Some

progress in the error probability analysis of the coherent AF parallel relay has been

reported in [35,56,58]. In [57], four different models, which are classified according to

relay processing (AF or DF) and signal reception model (from all preceding terminals

or from the immediately preceding terminal only), were considered. In [66], each

relay coherently combines the signals received from the source and one or more of

the previous relays. In [58], symbol error probabilities for high SNR were derived for

parallel relay, serial relay and combined configurations.

All the aforementioned studies assume that the receivers have perfect CSI,

and utilize the CSI for coherent detection. However, channel estimation for

multiple transmission links is complex and costly in fading environments, and incurs

communication overheads, especially when the fading is rapid and the number of relay
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nodes is large. To obviate the need for channel estimation for wireless relay systems,

non-coherent or differential modulations are suitable alternatives.

The general non-coherent ML detector for the AF relay was derived in [67], and

the ML detectors for on-off keying (OOK) and binary frequency shift keying (BFSK)

non-coherent AF relay were derived in [68]. However, the ML detectors are not given

in closed form and involve numerical integrations, which makes the ML detectors very

difficult for implementation. The key challenge in deriving the ML decision rule for

the non-coherent AF relay is to obtain the statistics of the combination of products and

sums of Gaussian RVs. For a non-coherent DF relay system with BFSK modulation,

[36] derived the nonlinear ML detector and proposed a piecewise linear (PL) detector

which has performance similar to the ML detector.

For an AF relay system using differential modulations, various receivers and their

corresponding error probabilities have been studied in [69–72]. Linear combiners

at the destination have been proposed [69, 70, 72] based on the assumption that the

effective noise at the destination is Gaussian distributed. For a DF relays using

differential modulations, a nonlinear ML detector and an equal gain combiner with

low complexity were derived in [71] and [73], respectively. More recently, the paper

[72] derived the ML detector and the PL detector for the DF relay with differential

binary phase shift keying (DBPSK) modulation. All the results on relay systems with

differential modulations have made the assumption that the fading coefficients remain

unchanged in two consecutive symbol intervals. This assumption may not be valid

when the fading is relatively rapid.

Distributed ST Coding

In cooperative relay systems, several terminals can share their resources and cooperate

to work as a virtual MIMO system. Hence, the ST coding in conventional MIMO
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systems also can be extended to cooperative relay systems. The ST coding in

cooperative relay systems is called distributed ST coding due to the fact that the

encoding operation is distributed among cooperating terminals.

The use of distributed ST coding in cooperative relay channels was proposed

in [34] in which orthogonal STBC were used and each node transmits a column of

the STBC matrix. It is difficult to design orthogonal STBC [74] for a large number

of terminals, and a rate loss is unavoidable. Thus distributed orthogonal STBC can

only be applied to a network with a small total number of terminals. A new class

of distributed STBC was proposed in [75] where each node is assigned a unique

signature. [76] presented a regenerative relay system with the Alamouti code, and

analyzed the effects of errors at the relays for the regenerative distributed ST coding.

The non-regenerative relay system with Alamouti code was presented in [77]. An

error-aware distributed ST code was proposed in [78] for a cooperative relay system

with one or two relays. The error-aware distributed ST scheme allows feedback from

destination and error probability feedforward from relays. In [79], linear dispersion

ST codes were applied among relays in a parallel relay system. The pairwise error

probability, diversity gain and coding gain of the distributed linear dispersion ST

codes were analyzed. The distributed ST coding also has been extended to differential

modulation [50, 80] and non-coherent modulation [51].

1.3 Research Objectives and Contributions

As addressed in Section 1.1.2, the statistical distribution of the MI for a MIMO system

in a fading environment has great importance, but no explicit expression of the MI

distribution is available. We study in Chapter 2 the CCDF of the MI of a MIMO

system in a Rician fading environment. We propose a new approach that examines the
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MI distribution through investigating the statistical distribution of the determinant and

trace of a noncentral complex Wishart matrix, instead of using the joint distribution

of the eigenvalues of the Wishart matrix, as is common in the literature. The PDF

and CCDF of the determinant of a noncentral complex Wishart matrix derived in

Chapter 2 are important results in their own right, and may have applications beyond

the MI distribution analysis. Our result on the CDF of the MI serves as the outage

probability when the fading process is non-ergodic, which is an important performance

measure of the MIMO system in fading environments. The CDF also may be used to

evaluate the mean value of the MI or ergodic capacity. In addition, our study should

be easily reduced to the Rayleigh fading case since it is a special case of Rician

fading. Furthermore, our approach to the CCDF of the MI should greatly simplify

the calculation procedure, and may provide easy and accurate ways to deal with MI

related calculations for MIMO systems.

For a cooperative relay system, the outage probability of the highest information

rate and ergodic rate of the classic relay channel with DF protocol in a fading

environment are still unknown, as addressed in Section 1.2.2. We derive the outage

probability and ergodic rate of the classic relay channel employing the DF protocol

in Chapter 3 for Rayleigh fading environments. For fixed channel gains, we rewrite

the highest information rate in terms of a Hermitian complex Gaussian quadratic

form. It enables us to evaluate the outage probability and ergodic rate. Both the

outage probability and the ergodic rate are functions of the SNRs and the correlation

coefficient between the transmit signals from the source and relay. Based on the

derived outage probability and ergodic rate, we design optimal transmission strategies

which minimize the outage probability (we call it outage-optimal) or maximize the

ergodic rate (we call it ergodic-optimal). The optimal transmission strategies include

the optimal correlation coefficient of the transmit signals from source and relay, and
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the optimal transmit power allocation between source and relay. When no spatial

power allocation is available, we show that if the target transmission rate is smaller

than a certain threshold, the outage-optimal transmit signals from the source and

relay are independent; if the target transmission rate is larger than the threshold,

the outage-optimal transmit signals from the source and relay are not necessarily

independent, and their correlation generally depends on the SNRs of the links and the

target transmission rate. However, the ergodic-optimal transmit signals from the source

and relay are statistically independent irrespective of the SNRs. Moreover, we further

show that the ergodic rate is a monotonically decreasing function of the correlation

coefficient between the transmit signals from the source and relay. When spatial power

allocation between source and relay is feasible, we design optimal power allocation

strategies. In a small outage scenario, which is generally of practical interest, we

derive an outage-optimal spatial power allocation strategy between source and relay.

Our findings suggest that it is not always beneficial to use a relay. When the channel

from source to relay is weak, the relay terminal may have a large probability of making

decoding errors and the transmit signals from the relay may become interference at

the destination. The outage-optimal power allocation generally depends on several

parameters, including the total transmit power, the target transmission rate, and the

variances of the transmission links. Additionally, the ergodic-optimal spatial power

allocation strategy is obtained by numerically solving certain transcendental equations,

and it depends on the variances of the three links and the SNRs.

When an LOS path exists, wireless channels are subject to Rician fading which

is more general than Rayleigh fading in the sense that it includes Rayleigh fading as

a special case. We also extend our results in Chapter 3 for the outage probability of

a classic DF relay channel in a Rayleigh fading environment to the outage probability

in a Rician fading environment in Chapter 4. Due to the noncentral property of the
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Rician fading, the outage probability of the highest information rate in a Rician fading

environment is much more complicated than the one under Rayleigh fading. We

obtain an analytical expression for the outage probability, which can be computed by

using standard numerical techniques. Through a geometric interpretation of the outage

probability, we also obtain an upper bound and a lower bound on the outage probability

in simple closed forms. These bounds can serve as fairly good approximations to the

outage probability. Moreover, when the channel statistics (Rice factors and variances)

are known at the source and relay nodes, the outage probability can be minimized by

choosing an appropriate correlation coefficient between the transmit signals from the

source and relay. Relying on numerical methods, we obtain the optimal correlation

coefficient that minimizes the outage probability. Numerical results reveal that for

large values of Rice factors, the optimal correlation coefficient is not necessarily zero,

but instead, depends generally on SNRs, variances and Rice factors of the channels, as

well as the rate threshold.

After studying the cooperative relay systems from an information theoretic

perspective, we investigate the cooperative relay systems from an end-to-end error

performance perspective in Chapter 5. The error probability of a parallel relay system

using differential modulation is analyzed for both DF protocol and SR protocol. For

the DF protocol, the destination takes account of the average error probabilities of all

the source-relay transmissions and performs ML or PL detection. The PL detector has

similar performance to the nonlinear ML detector. In both the ML and PL detectors, the

received signals at the destination from the source and all the relays are combined with

different weights, because the transmission links in the relay system have different

statistics. Then, the BER of the PL detector is derived, whereas the BER analysis

for the nonlinear ML detector appears intractable. For a DF single relay system,

we obtain the exact BER of the PL detector and its high SNR approximation. The
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exact BER is a simple function of the SNRs, the variances and fade rates of all the

transmission links. The BER approximation at high SNR explicitly shows the diversity

order and the different effects of the source-relay link and the relay-destination link

on the end-to-end error performance. Moreover, for a DF multiple relay system, we

obtain a Chernoff upper bound on the BER and a high SNR approximation on the BER.

For the SR protocol, the computational complexity is shifted from the destination to

the relays. The relays need to compute their own instantaneous error probabilities in

detecting source information and make decisions on whether to transmit or remain

silent according to certain instantaneous error probabilities. At one frame, the relays

that are transmitting form a random set which is a subset of the set containing all the

potential relays. The destination performs simple MRC reception, and the end-to-end

performance is analyzed at high SNR. It reveals that the SR protocol offers a space

diversity order of the number of all the potential cooperating nodes, not just the number

of nodes that are transmitting to the destination.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 investigates the statistical distribution of the MI for a MIMO system in

a Rician fading environment. The PDF and CCDF of the determinant of a noncentral

complex Wishart matrix are derived, and some upper and lower bounds on the CCDF

of the MI are proposed. In non-ergodic fading, these bounds on capacity CCDF can

provide insight of MI outage probability.

Chapter 3 presents the outage probability and ergodic rate for a classic DF

relay system with full-duplex transmission in a Rayleigh fading environment. With

statistical CSI, optimal transmission strategies including optimal transmit signaling
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and spatial power allocation are derived to minimize the outage probability or

maximize the ergodic rate.

Chapter 4 extends the results in Chapter 3 to the case of Rician fading. An

analytical expression for the outage probability, and an upper bound and a lower bound

on the outage probability in simple closed forms are obtained. When the channel

statistics (Rice factors and variances) are known at the source and relay nodes, we

obtain the optimal correlation coefficient that minimizes the outage probability using

numerical methods.

Chapter 5 is devoted to receiver design and error probability analysis for parallel

relay systems with differential modulation for DF or SR protocols. The DF protocol

places the detection complexity at the destination while keeping relatively simple

transceivers at the relays. The SR protocol, on the other hand, shifts the computational

complexity to the relays and keeps simple detection at the destination.

Finally, Chapter 6 summarizes our work, and points out a number of future

research directions.
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Chapter 2

On the Mutual Information

Distribution of MIMO Rician Fading

Channels

In a fading environment, the statistical distribution of the MI of a MIMO system

depends on the joint distribution of the eigenvalues of a Wishart matrix, and is quite

complex in general. In this chapter, we obtain simple expressions for the statistical

distributions of the determinant and the trace of a Wishart matrix. Based on these

obtained expressions, we derive some simple and tight bounds on the CCDF of the MI

of a MIMO system in Rician fading environments. The obtained bounds on the CCDF

of MI provide further insights into the channel MI, and show the effects of the system

parameters on the MI distribution explicitly. In addition, results for the Rayleigh fading

channels are obtained as a special case.
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2.1 Introduction

In the past decade, the information theoretic study of MIMO fading channels has

attracted considerable research attention [1]. The primary focus of such a study is

on ergodic capacity, which is defined as the ensemble average of the MI1 over the

statistical distribution of the channels [81]. In particular, the ergodic capacity has

been investigated in [2, 3, 6] for Rayleigh fading, and in [10–14] for Rician fading.

For ergodic channels, the ergodic capacity is viewed as an important performance

measure, since it can be viewed as the Shannon capacity in the sense that we can

transmit with an arbitrarily small error probability when the transmission rate is less

than ergodic capacity. On the other hand, for non-ergodic channels, the ergodic

capacity has no physical significance and instead the proper performance measure

is the outage probability which is actually the CDF of the MI. In either ergodic or

non-ergodic channels, the statistical distribution of MI is fairly useful in obtaining

the corresponding performance measures, and more importantly it provides a more

comprehensive view about MIMO fading channels than the ergodic capacity does. This

motivates many recent studies on the distribution of MI.

However, because of the complexity of the statistical distribution of a Wishart

matrix, the study on the statistical distribution of MI becomes quite involved. For

Rayleigh fading channels, the CCDF of MI2 of a MIMO system was first studied by

Monte Carlo simulations in [15]. Although some heuristic discussions on the statistical

distribution of the MI were provided in [15], it is quite time consuming to use Monte

1When the transmit signals are independent circularly symmetric Gaussian distributed with equal

power at each transmit antenna, the MI is known as the capacity in [15–17], since this kind of transmit

signals can achieve the ergodic capacity in independent and identically distributed Rayleigh fading

channels.
2The MI is also called the conditional capacity in [11].
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Carlo simulations and rather difficult to examine how the system parameters will affect

the MI distribution through Monte Carlo simulations. Later, based on the central limit

theorem, [16] proposed using the Gaussian distribution function to approximate the

statistical distribution of MI, and obtained the variance of MI for MIMO Rayleigh

fading channels. The Gaussian approximation is accurate for a large number of

antennas. But when the number of antennas is small, which is in fact the case of

practical interests, the Gaussian approximation becomes loose. To overcome this

shortcoming of the Gaussian approximation, [17] and [21] derived the exact CDF of

the MI for dual antenna MIMO systems in Rayleigh and Rician fading environments,

respectively. Jacobian on the joint density of the eigenvalues of a Wishart matrix is

applied to obtain the CDF of MI in [17] and [21]. However, the complexity of Jacobian

increases exponentially with an increase in the number of antennas. This prohibits

the application of the methods in [17] and [21] to a system with a larger number of

antennas. More comprehensive studies on the statistical characterization of MI have

been conducted in [18–20] for Rayleigh fading environments, and in [13,14] for Rician

fading environments. These results are valid for an arbitrary number of antennas. The

characteristic function of MI was obtained in [18] by using a new expression for the

joint distribution of the eigenvalues of a Wishart matrix. The moment generating

function of MI was given in [19, 20] for Rayleigh fading environments, and in [14]

for Rician fading environments. However, to obtain the CDF of MI for MIMO fading

channels, one needs to take the inverse Laplace transform of the moment generating

function, and need to resort to numerical integrations. In addition, the mean and

variance of MI were also presented in [13] for single- and double-sided correlated

Rician fading channels with an arbitrary-rank mean matrix, and in [14] for independent

Rician fading channels, and then the Gaussian distribution was used to approximate the

CCDF of MI [13, 14]. All of the aforementioned results on the distribution of the MI
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rely on the joint distribution of the eigenvalues of a central or non-central Wishart

matrix. To date, no explicit expression is obtained for the CCDF of MI for MIMO

fading channels.

Instead of using the joint distribution of the eigenvalues of a Wishart matrix, as is

common in literature, a new approach is proposed in this chapter to derive some upper

and lower bounds on the statistical distribution, i.e., the CCDF, of the MI for MIMO

Rician fading channels. We first bound the MI by the determinant or trace of a complex

Wishart matrix. Then we derive the statistical distributions of the determinant and trace

of a non-central complex Wishart matrix. Finally, we use the derived distributions to

obtain upper and lower bounds on the CCDF of the MI in Rician fading environments.

Our approach to the CCDF of the MI greatly simplifies the calculation procedure,

and provides easy and accurate ways to deal with MI related calculations for MIMO

fading channels. The derived bounds on the CCDF of the MI are expressed in simple

forms, and show explicitly the effects of the system parameters on the distribution

of the MI. Furthermore, the bounds are valid for an arbitrary number of antennas,

and in particular, they are tight for small numbers of antennas, which is generally the

case in practical systems. In addition, since Rician fading reduces to Rayleigh fading

when LOS does not exist, our results can be readily applied to MIMO systems in

Rayleigh fading environments [82]. The statistical distribution of the determinant of a

complex Wishart matrix derived here is an important result in its own right, and may

have applications beyond the MI distribution analysis.

The remainder of this chapter is organized as follows. In Section 2.2, we

describe the system model and the assumptions. In Section 2.3, we present some

bounds on the MI of the MIMO system. In Sections 2.4 and 2.5, we investigate

the statistical distribution of the determinant and the trace of a non-central Wishart

matrix, respectively. In Section 2.6, new and simple bounds on the CCDF of the MI
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are obtained for MIMO Rician fading channels. In Section 2.7, the results for MIMO

Rayleigh fading channels are presented as a special case of Rician fading channels.

Comparisons of the results are shown in Section 2.8. Finally, we conclude with Section

2.9.

2.2 MIMO System Model

Consider a single user MIMO system with N transmit and M receive antennas. The

M -dimensional received vector is mathematically represented as [2, 15]

y = Hx + n, (2.1)

where H is the M × N channel matrix with the mn-th entry hmn describing the

channel gain between the n-th transmit antenna and the m-th receive antenna, x

is an N -dimensional transmitted vector, and n is AWGN. We assume E[|hmn|2] =

(1 + K)σ2, E[nnH ] = N0IM and E[xHx] = E. For a Rician fading environment,

the channel matrix H can be decomposed into the sum of a deterministic (specular)

matrix and a variable (scattered) matrix, i.e.,

H =
√

σ2K H +
√

σ2 H̃ , K ≥ 0, (2.2)

where H is a deterministic matrix and H̃ is a random matrix. The elements of H̃ ,

{h̃mn}, are independent and identically distributed (i.i.d.), complex, Gaussian random

variables with zero mean and unit variance, i.e., h̃mn ∼ CN (0, 1). The Rice factor,

K ≥ 0, represents the ratio of deterministic energy to scattered energy; K = 0

corresponds to Rayleigh fading; while K → ∞ corresponds to non-fading channels.

The mean matrix of H is E[H ] =
√

σ2KH . Thus, the channel matrix H has a matrix

variate complex Gaussian distribution, i.e.,

H ∼ CNM,N

(√
σ2K H , σ2IM ⊗ IN

)
. (2.3)
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We assume that the deterministic matrix H is of rank one [10]. By applying

singular value decomposition, an arbitrary rank-1 matrix H can be decomposed as

H = UMV H , where U and V are unitary matrices, and M = [m,0, · · · ,0] with

both m and 0 being M × 1 column vectors.

We consider the scenario where the receiver has perfect knowledge of the CSI, and

the transmitter has no channel knowledge at all (neither CSI nor fading distribution). In

this case, for any realization of H , the MI, I(x; y|H), is maximized when the transmit

signal is circularly symmetric, zero-mean, complex, Gaussian distributed. Only the

covariance matrix E[xxH ] of the capacity-achieving transmit signal depends on the

fading distributions. For i.i.d. Rayleigh fading channels, the capacity-achieving signal

covariance matrix is E[xxH ] = (E/N)IN . This kind of transmit signals is also robust

for transmission over Rician fading channels [10, 13, 14]. Hence, we still consider

circularly symmetric, zero-mean, complex, Gaussian distributed transmit signals with

covariance matrix E[xxH ] = (E/N)IN in the Rician fading case. Therefore, the MI

in this case is given by [81, Eq. (4.10)]

I = I(x; y|H) = log2 det
(
IN + γHHH

)
bps/Hz

= log2 det
(
IN + σ2γZHZ

)
bps/Hz, (2.4)

where γ = E/(N0) is the average SNR at each transmit antenna, and

Z =

√
1

σ2
H = H

√
K + H̃ , Z ∼ CNN,M(H

√
K, IN ⊗ IM).

Without loss of generality, we assume M ≥ N . Let λn(n = 1, 2, . . . , N) denote the

nonzero eigenvalues of ZHZ. The MI in (2.4) can be expressed as [2], [81, Eq. (4.13)]

I = log2

( N∏
n=1

(
1 + σ2γλn

))
. (2.5)

If M < N , the expression for the MI in (2.5) and our results in this chapter remain the

same, except for interchanging M with N .
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Note that since the channel matrix H is random, the MI, I in (2.5), is also a

RV. If the fading process is ergodic, a Shannon capacity exists and is given by C =

E[I], where the expectation is with respect to the channel H . If the fading process is

non-ergodic, a proper performance measurement is the outage probability P (I ≤ R).

Actually, in ergodic channels, the MI also has a statistical distribution function, e.g.,

the CDF. The statistical distribution of MI exists for both ergodic and non-ergodic

fading processes. We will investigate the CCDF of the MI of a Rician fading MIMO

system.

The MI (2.5) of the MIMO Rician fading channels is characterized by all the

eigenvalues of ZHZ. To study the statistical properties of the MI, the traditional

method is to make use of the joint distribution of the eigenvalues of ZHZ, which

is highly complex in general. We will use a new approach to studying the statistics of

the MI. Firstly, we will obtain some new bounds on the MI in the next section.

2.3 New Bounds on the MI of MIMO Channels

Making use of some inequalities and properties of the determinant and the trace of

a matrix, we will obtain, in this section, some bounds on the MI in terms of the

determinant or trace of ZHZ, instead of the eigenvalues. Specifically, we derive a

lower bound on the MI in terms of the determinant of ZHZ, and an upper bound and

a lower bound on the MI in terms of the trace of ZHZ.

2.3.1 Determinant Bounds

We first derive a lower bound on the MI in terms of the determinant det(ZHZ).

Applying the inequality [83, Eq. (15)]:
∏N

n=1(1 + xn) ≥ (1 + (
∏N

n=1 xn)1/N)N for
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xn > 0, to (2.5), we obtain a lower bound on the MI as

I ≥ N log2

(
1 + σ2γ

( N∏
n=1

λn

)1/N
)

. (2.6)

Since the determinant of a matrix is equal to the product of its non-zero eigenvalues:
∏N

n=1 λn = det(ZHZ), we can rewrite the above lower bound on the MI as

I ≥ Idet := N log2

(
1 + σ2γ det(ZHZ)1/N

)
, (2.7)

where Idet is the lower bound on the MI in terms of the determinant det(ZHZ).

2.3.2 Trace Bounds

We next derive an upper bound and a lower bound on the MI in terms of the trace

tr(ZHZ).

Upper Bound

Applying the arithmetic and geometric means inequality: (
∏N

n=1 xn)1/N ≤
∑N

n=1 xn/N for xn > 0, to (2.5), we can upper bound the MI as

I ≤ log2

( 1

N

N∑
n=1

(
1 + σ2γλn

))N

= N log2

(
1 +

σ2γ

N

N∑
n=1

λn

)
. (2.8)

Since the trace of a matrix is equal to the sum of its eigenvalues:
∑N

n=1 λn = tr(ZHZ),

we can rewrite the above upper bound on the MI as

I ≤ Itr U := N log2

(
1 +

σ2γ

N
tr(ZHZ)

)
, (2.9)

where Itr U is the upper bound on the MI in terms of the trace tr(ZHZ).

Lower Bound

Expanding
∏N

n=1(1 + σ2γλn), we obtain the inequality

N∏
n=1

(1 + σ2γλn) ≥ 1 + σ2γ
( N∑

n=1

λn

)
+ (σ2γ)N

( N∏
n=1

λn

)
≥ 1 + σ2γtr(ZHZ).
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This allows us to lower bound the MI as

I ≥ Itr L := log2

(
1 + σ2γtr(ZHZ)

)
, (2.10)

where Itr L is the lower bound on the MI in terms of the trace tr(ZHZ). The lower

bound Itr L is tight only at low SNRs, because the inequality (2.10) ignores the terms

containing second and higher powers of SNRs. In the low SNR regime, it was proved

in [6] that the lower bound Itr L is strictly tighter than the lower bound Idet.

Since the MI can be bounded by the quantities in terms of the determinant or trace

of the Wishart matrix ZHZ, in order to study the statistics of the MI, we will study the

statistics of the determinant of the Wishart matrix in the next section.

2.4 Statistical Distribution of the Determinant of a

Wishart Matrix

In this section, we derive the PDF and the CCDF of the determinant of a non-central

Wishart matrix, which will be used to evaluate the statistical distribution of the MI in

Section 2.6.

2.4.1 Determinant of a Wishart matrix

The matrix Z has a matrix variate complex Gaussian distribution, i.e., Z ∼
CNM,N(H

√
K, IM ⊗ IN), and ZHZ is called a noncentral complex Wishart matrix.

Note that in Section 2.2 we have the singular value decomposition H = UMV H .

Defining W = UHZV , we have det(ZHZ) = det(W HW ) and W = M
√

K +

UHH̃V . Since the entries of H̃ are i.i.d. Gaussian RVs with zero mean and unit

variance, and U and V are unitary matrices, the distribution of UHH̃V is the same

as the distribution of H̃ . Therefore, the matrix W also has a matrix variate complex
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Gaussian distribution, i.e., W ∼ CNM,N(M
√

K, IM ⊗ IN), and W HW is also a

noncentral complex Wishart matrix.

The Bartlett’s decomposition of the noncentral Wishart matrix is written as

W HW = T HT , where T is an upper-triangular matrix with positive diagonal

elements. It has been show in [12, Section II-C], [84, Section III] and [85, Theorem

10.3.8] that the elements of T , tmn(1 ≤ m ≤ n ≤ N), are all independent RVs.

Moreover, |t11|2 is non-central chi-square distributed with 2M degrees of freedom

and non-centrality parameter δ = KmHm = K‖M‖2
F = K‖H‖2

F , |tnn|2 (n =

2, . . . , N ) is central chi-square distributed with 2(M − n + 1) degrees of freedom,

and tmn(1 ≤ m < n ≤ N) is complex Gaussian distributed with zero mean and

unit variance, i.e., |t11|2 ∼ X 2
2M(δ), |tnn|2 ∼ X 2

2(M−n+1), (n = 2, . . . , N), and

tmn ∼ CN (0, 1), (1 ≤ m < n ≤ N).

Since the determinant of a triangular matrix equals the product of its diagonal

elements, we can express the determinant of the Wishart matrix W HW as

det(W HW ) = det(T HT ) = det(T H) det(T ) =
N∏

n=1

|tnn|2. (2.11)

From the above equation, we can see that det(ZHZ) = det(W HW ) is the product

of N independent RVs, one of which is non-central chi-square distributed and the

remaining (N − 1) ones of which are central chi-square distributed. Let Xn denote

|tnn|2, i.e., Xn = |tnn|2, (n = 1, 2, . . . , N), and thus X1 ∼ X 2
2M(δ), Xn ∼

X 2
2(M−n+1), (n = 2, . . . , N). The PDFs of the Xns are given by [86, Eqs. (2.118)

and (2.110)]

fX1(x1) =
(x1

δ

)(M−1)/2

e−(δ+x1)IM−1(2
√

δx1),

fXn(xn) =
1

(M − n)!
xM−n

n e−xn , n = 2, . . . , N, (2.12)

where Iα(x) is the αth-order modified Bessel function of the first kind. By using the

series representation of Iα(x) [86, Eq. (2.120)], the PDF of the non-central chi-square
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RV X1 can be expressed as a weighted sum of central chi-square PDFs with Poisson

distributed weights [87, Corollary 1.3.5],

fX1(x1) =
∞∑

k=0

e−δ δk

k!
· 1

(M − 1 + k)!
xM−1+k

1 e−x1 , (2.13)

where e−δδk/k! is a Poisson probability with mean δ. When the non-centrality

parameter δ equals zero, (2.13) only has the term corresponding to k = 0 and reduces

to the PDF of a central chi-square RV with 2M degrees of freedom.

Let det(ZHZ) = Y =
∏N

n=1 Xn, and fY (y) denote the PDF of Y . We now

study the statistical distribution, i.e., PDF and CCDF, of det(ZHZ) through studying

a product of independent RVs.

2.4.2 Distribution functions in Meijer G-functions

In this subsection, we will derive the PDF and CCDF of the determinant of a noncentral

Wishart matrix in terms of the Meijer G-functions by using the Mellin integral

transform.

The Mellin integral transform is typically used to study the distribution of the

products or quotients of RVs [87–89], because the Mellin transform of the PDF of a

product of independent RVs can be written as a product of the Mellin transforms of the

PDFs of individual RVs.

A real function, f(x), is Mellin transformable if the following conditions are

satisfied: 1) f(x) is defined only for x ≥ 0 and single valued almost everywhere for

x ≥ 0; 2) the integral
∫∞

0
xk−1|f(x)|dx is bounded for some real value k > 0. The

Mellin transform of f(x) is given by [87, Ch. 2.8]

Ms

(
f(x)

)
=

∫ ∞

0

xs−1f(x)dx, (2.14)
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and inverse Mellin transform is given by

f(x) = M−1
s

[
Ms

(
f(x)

)]
=

1

2πi

∫ c+i∞

c−i∞
x−sMs

(
f(x)

)
ds, (2.15)

where the path of integration is any line parallel to the imaginary axis and lying within

the strip of analyticity of Ms

(
f(x)

)
. Eqs. (2.14) and (2.15) constitute a transform pair,

and f(x) is uniquely determined by its Mellin transform Ms

(
f(x)

)
.

It is easy to see that fY (y) and fXn(xn) are Mellin transformable. By the definition

of Mellin transform, it is clear that Ms

(
fY (y)

)
= E[ys−1] and Ms

(
fXn(xn)

)
=

E[xs−1
n ]. Since {Xn}N

n=1 are independent RVs, according to the properties of Mellin

transform [87, Ch. 4.3], we can write the Mellin transform of fY (y) as a product of the

Mellin transforms of {fXn(xn)}N
n=1, i.e.,

Ms

(
fY (y)

)
=

N∏
n=1

Ms

(
fXn(xn)

)
.

Based on the PDF of Xn given in (2.12) and (2.13), we can easily compute the Mellin

transform of fXn(xn), and further obtain the Mellin transform of fY (y) as

Ms

(
fY (y)

)
=

N∏
n=1

Ms

(
fXn(xn)

)
=

e−δ

A

(∞∑

k=0

δk

k!

Γ(s + M − 1 + k)

(M − 1 + k)!

)
·

N∏
n=2

Γ(s+M−n),

(2.16)

where A =
∏N

n=2(M − n)!. Taking the inverse Mellin transform of Ms

(
fY (y)

)
, we

obtain the PDF fY (y) as

fY (y) =
e−δ

A

∞∑

k=0

δk

k!(M − 1 + k)!
GN,0

0,N

(
y|−M−1+k,M−2,M−3,··· ,M−N

)
, (2.17)

where Gm,n
p,q (x |······) is the Meijer G-function. The Meijer G-function, a generalization

of the generalized hypergeometric function, can be defined by the contour integral:

Gm,n
p,q

(
x

∣∣a1,a2,··· ,ap

b1,b2,··· ,bq

)
=

1

2πi

∫ c+i∞

c−i∞
x−s

∏m
j=1 Γ(s + bj)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(s + aj)
∏q

j=m+1 Γ(1− bj − s)
ds.

(2.18)
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The CCDF of Y can be obtained by using the Mellin transform of fY (y), i.e.,

Ms

(
P (Y > y)

)
= s−1Ms+1

(
fY (y)

)
[87, Eq. (4.3.7)]. Thus, we can obtain the CCDF

of Y as

P (Y > y) = M−1
s

[
s−1Ms+1

(
fY (y)

)]
=

1

2πi

∫ c+i∞

c−i∞
y−ss−1Ms+1

(
fY (y)

)
ds

=
e−δ

A

∞∑

k=0

δk

k!(M − 1 + k)!
GN+1,0

1,N+1

(
y

∣∣1
0,M+k,M−1,M−2,··· ,M−N+1

)
.(2.19)

The PDF and CCDF of Y are expressed by the Meijer G-functions. Even though

the Meijer G-functions can be computed in some mathematical software packages,

evaluating the Meijer G-functions normally involves a heavy computational load and

is time consuming. We next provide some bounds on the PDF and CCDF of Y in series

form.

2.4.3 Bounds on distribution functions in series form

In this subsection, we provide some bounds on the PDF and CCDF of Y in series

form instead of Meijer G-functions. Although these bounds are not the exact PDF and

CCDF of Y , they only involve some simple functions, and can be evaluated faster than

the Meijer G-functions.

The joint PDF of X1, · · · , XN is fX1···XN
(x1, · · · , xN) =

∏N
n=1 fXn(xn), and

hence the PDF of Y can be written as

fY (y) =

∫
· · ·

∫

D

1( ∏N−1
n=1 xn

)
( N−1∏

n=1

fXn(xn)

)
fXN

( y∏N−1
n=1 xn

)
dx, (2.20)

where the multiple integral domain is D = {0 ≤ x1, x2, · · · , xN−1 < ∞} and dx =

dx1dx2 · · · dxN−1. Substituting the PDFs of Xn’s from (2.12) and (2.13) into (2.20),

we obtain the PDF of Y as

fY (y) =
e−δ

A

∞∑

k=0

δkyM−N

k!(M−1+k)!

∫
· · ·

∫

D

xk
1

(N−1∏
n=1

xN−1−n
n

)
exp

(
−

N−1∑
n=1

xn− y∏N−1
n=1 xn

)
dx.

(2.21)

39



2.4 Statistical Distribution of the Determinant of a Wishart Matrix

The CCDF of Y can be calculated as P (Y > y) =
∫∞

y
fY (t)dt, and is expressed as

P (Y > y) =
e−δ

A

∞∑

k=0

δk

k!

∫
· · ·

∫

D

xk
1

(N−1∏
n=1

xM−n
n

)Γ
(
M−N+1, yQN−1

n=1xn

)

(M−1+k)!
exp

(
−

N−1∑
n=1

xn

)
dx

=
∞∑

k=0

e−δδk(M−N)!

Ak!(M−1+k)!

M−N∑
r=0

yr

r!

∫
· · ·

∫

D

xk
1

(N−1∏
n=1

xM−n−r
n

)
exp

(
−

N−1∑
n=1

xn− y∏N−1
n=1xn

)
dx,

(2.22)

in which Γ(α, x) is the upper incomplete gamma function, i.e., Γ(α, x) =
∫∞

x
tα−1e−tdt. When α is an integer n, we have Γ(n, x) = (n− 1)!e−x

∑n−1
k=0 xk/k!.

When N = 2, by making use of the integral formula

∫ ∞

0

xn exp(−x− y

x
)dx = 2y

1+n
2 K1+n(2

√
y),

the PDF (2.21) and CCDF (2.22) of Y are reduced, respectively, to

fY (y) =
e−δyM−2

(M − 2)!

∞∑

k=0

δk

k!

2y
1+k
2

(M − 1 + k)!
K1+k(2

√
y ),

P (Y > y) = e−δ2yM/2

∞∑

k=0

δk

k!

yk/2

(M − 1 + k)!

M−2∑
r=0

yr/2

r!
KM−r+k(2

√
y ), (2.23)

where Kn(x) is the nth-order modified Bessel function of the second kind. In fact,

(2.23) is the series form of (2.19) when N = 2. When N > 2, there is no closed-from

expression for the multiple integral in (2.21) and (2.22). However, we derive one

inequality which can be applied repeatedly to obtain lower bounds on (2.21) and (2.22).

Applying the following inequality (see Appendix A for the proof):

∫ ∞

0

xn exp
(− x− y

x

)
dx ≥ n! exp

(− y

n

)
, n = 1, 2, 3, · · · , (2.24)

for y ≥ 0 to (2.22) (N − 1) times, we can obtain the following lower bound on (2.22):

P (Y > y) ≥ e−δ

∞∑

k=0

δk

k!

M−N∑
r=0

(M − 1 + k − r)!

(M − 1 + k)!

( N−1∏
n=2

(M − n− r)!

(M − n)!

)
yr

r!

exp

(
− (M −N − r)!y

(M − 2− r)!(M − 1 + k − r)

)
.(2.25)

40



2.5 Statistical Distribution of the Trace of a Wishart Matrix

This is the lower bound on the CCDF of Y for N ≥ 2, and (2.23) is the exact CCDF

for N = 2. We will use these results to evaluate the CCDF of the MI of MIMO Rician

fading channels.

2.5 Statistical Distribution of the Trace of a Wishart

Matrix

In this section, we study the distribution of the trace of a Wishart matrix, which will

be used to evaluate the CCDF of the MI in the next section. The trace of ZHZ can be

expressed as a sum of the magnitude square of all the elements of a Gaussian variate

matrix, i.e.,

tr(ZHZ) = ‖Z‖2
F =

1

σ2
‖H‖2

F =
1

σ2

M∑
m=1

N∑
n=1

|hmn|2. (2.26)

It can be easily seen that tr(ZHZ) is non-central chi-square distributed with 2MN

degrees of freedom, variance 1/2 and non-centrality parameter δ = K‖H‖2
F , i.e.,

tr(ZHZ) ∼ X 2
2MN(δ). Thus, the CCDF of tr(ZHZ) is given by [86, Eq. (2.124)]

P
(
tr(ZHZ) > z

)
= QMN

(√
2δ,
√

2z
)

= e−δ−z

∞∑

k=0

δk

k!

MN−1+k∑
r=0

zr

r!
, (2.27)

where Qm(a, b) is the generalized Marcum Q-function of order m, i.e., Qm(a, b) =
∫∞

b
x(x/a)m−1e−(x2+a2)/2Im−1(ax)dx.

When the non-centrality parameter δ equals zero, the CCDF (2.27) reduces to

P
(
tr(ZHZ) > z

)
=

1

(MN − 1)!
Γ(MN, z) = e−z

MN−1∑
r=0

zr

r!
, (2.28)

where Γ(a, x) is the upper incomplete Gamma function, i.e., Γ(a, x) =
∫∞

x
ta−1e−tdt.
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2.6 New Approaches to CCDF of the MI of MIMO

Rician fading Channels

So far, the evaluations of the CCDF or CDF of the MI are based on the joint distribution

of the eigenvalues of ZHZ. The available expressions for the CCDF or CDF of the

MI either are the inverse Laplace transform of the moment generating function [14],

or are approximated by Gaussian distribution with the mean and variance of the MI

obtained in [14]. These expressions are quite difficult to evaluate. In this section, we

will provide some new and simple approaches to investigating the CCDF of the MI

based on the CCDF of the determinant or trace of the noncentral Wishart matrix. We

will present some new and simple, upper and lower bounds on the CCDF of the MI of

MIMO Rician fading channels.

2.6.1 Determinant Bounds

According to the lower bound (2.7) on the MI, the CCDF of the MI is lower bounded

as

P (I > R) ≥ Pdet(R) := P (Idet > R) = P
(
det(ZHZ) > aN(2R/N− 1)N

)
, (2.29)

where a = 1/(σ2γ). We will derive here some lower bounds on the CCDF of the MI

using the distribution of det(ZHZ) given in (2.19), (2.23) and (2.25).

Bounds in Meijer G-functions

Applying (2.19) to (2.29), we can obtain a lower bound on the CCDF of the MI as

Pdet(R) =
e−δ

A

∞∑

k=0

δk

k!(M−1+k)!
GN+1,0

1,N+1

(
aN(2R/N− 1)N

∣∣1
0,M+k,M−1,M−2,··· ,M−N+1

)
.

(2.30)
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2.6 New Approaches to CCDF of the MI of MIMO Rician fading Channels

Although the lower bound Pdet(R) in (2.30) involves infinite series, the sum of infinite

series will converge very fast, and it will be illustrated later in Section 2.8. We also will

illustrate later that calculating the lower bound Pdet(R) in (2.30) is more computational

efficient than using Monte Carlo simulations.

Bounds in series form

When N = 2, the CCDF of det(ZHZ) can be expressed as (2.23). Thus, applying

(2.23) to (2.29), we obtain the lower bound on the CCDF of the MI for N = 2 as

Pdet(R) = e−δ2aM(2R/N− 1)M

∞∑

k=0

δk

k!

ak(2R/N− 1)k

(M − 1 + k)!
×

[
M−2∑
r=0

ar

r!
(2R/N− 1)rKM−r+k

(
2a(2R/N− 1)

)
]

. (2.31)

Since (2.25) is also a lower bound on the CCDF of det(ZHZ) for N ≥ 2, we can

apply (2.25) to (2.29), and obtain another lower bound on the CCDF of the mutual

information for N ≥ 2 as

Pdet(R) ≥ Pdet 1(R) := e−δ

∞∑

k=0

δk

k!

M−N∑
r=0

(M−1+k−r)!

r!(M−1+k)!

(N−1∏
n=2

(M−n−r)!

(M−n)!

)

arN(2R/N− 1)rN exp

(
−(M−N−r)!aN(2R/N− 1)N

(M−2−r)!(M−1+k−!r)

)
. (2.32)

When N = 2, both (2.31) and (2.32) can serve as the lower bounds for the CCDF of

the MI. However, compared with (2.32), (2.31) is tighter though more complicated,

since it involves modified Bessel functions.

2.6.2 Trace Bounds

We will derive one upper bound and one lower bound on the CCDF of the MI based

on the properties of tr(ZHZ).
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Upper Bound

According to the upper bound (2.9) on the MI, the CCDF of the MI is upper bounded

as

P (I > R) ≤ Ptr U(R) := P (Itr U > R) = P
(
tr(ZHZ) > aN(2R/N− 1)

)
. (2.33)

By applying (2.27) to (2.33), the upper bound on the CCDF of the MI in (2.33) is

computed as

Ptr U(R) = QMN

(√
2δ,

√
2aN(2R/N − 1)

)
. (2.34)

Lower Bound

According to the lower bound (2.10) on the MI, the CCDF of the MI is lower bounded

as

P (I > R) ≤ Ptr L(R) := P (Itr L > R) = P
(
tr(ZHZ) > a(2R − 1)

)
. (2.35)

With (2.27) and (2.35), the lower bound on the CCDF of the MI in (2.35) is computed

as

Ptr L(R) = QMN

(√
2δ,

√
2a(2R − 1)

)
. (2.36)

The lower bound (2.36) is tight only at low SNR, because (2.10) ignores the terms

containing higher powers of SNR. In the low SNR regime, the lower bound Ptr L(R)

is strictly tighter than the lower bound Pdet(R) since Itr L is strictly tighter than Idet as

indicated in Section 2.3.

The upper bound Ptr U(R) and lower bound Ptr L(R) on the CCDF of the MI are

expressed in simple closed forms.
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2.7 CCDF of the MI of MIMO Rayleigh Fading

Channels

Rayleigh fading is a special case of Rician fading with the Rice factor K = 0. Our

results derived for the Rician fading case in the previous sections can be readily applied

to the Rayleigh fading case. In this section, we will explicitly give the statistical

properties of the MI for a MIMO system in Rayleigh fading environments.

For Rayleigh fading, the non-centrality parameter δ equals zero, and our bounds

obtained in Section 2.6 on the CCDF of the MI can be simplified. The lower bound

(2.30) on the CCDF of the MI is reduced to

Pdet(R) =
1∏N

n=1(M−n)!
GN+1,0

1,N+1

(
aN(2R/N− 1)N

∣∣1
0,M,M−1,M−2,··· ,M−N+1

)
.(2.37)

For N = 2, the lower bound (2.31) on the CCDF of the MI is also reduced to

Pdet(R) =
2aM(2R/N − 1)M

(M − 1)!

M−2∑
r=0

ar

r!
(2R/N− 1)rKM−r(2a). (2.38)

For N ≥ 2, another lower bound on the CCDF of the MI for N ≥ 2 is

Pdet(R) ≥ Pdet 1(R) =
M−N∑
r=0

(M−1−r)!

r!(M−1)!

(N−1∏
n=2

(M−n−r)!

(M−n)!

)
arN(2R/N− 1)rN

exp

(
−(M −N − r)!aN(2R/N − 1)N

(M − 2− r)!(M − 1− r)

)
. (2.39)

We can see that for Rayleigh fading, the determinant bounds on the CCDF of MI are

simple. It involves evaluation of one Meijer-G function or a finite exponential series.

In Rayleigh fading, the upper bound (2.34), and the lower bound (2.36) on the

CCDF of the MI reduce, respectively, to

Ptr U(R) =
1

(MN − 1)!
Γ
(
MN, aN(2R/N − 1)

)
, (2.40)

Ptr L(R) =
1

(MN − 1)!
Γ
(
MN, a(2R − 1)

)
. (2.41)

The trace bounds on the CCDF of the MI are expressed by incomplete Gamma

functions, and are easy to evaluate.
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Figure 2.1: PDF of the determinant of a noncentral complex Wishart matrix with K = 0

dB and ‖H‖2
F = M .

2.8 Numerical Results

In this section, we first compare the analytical results on the statistical distribution

of the determinant of a non-central complex Wishart matrix with Monte Carlo

simulations. Then, we compare our bounds on the CCDF of the MI with the

Gaussian approximation results using the first and second moments of the MI derived

in [14] , and the CCDF results obtained from Monte Carlo simulations. The Monte

Carlo simulations results are obtained by generating 106 realizations of H̃ and then

evaluating the statistics of det(ZHZ) or I . The average received SNR at each receive

antenna is defined as η = (1 + K)σ2E/N0.

Fig. 2.1 plots the PDF of the determinant of the noncentral complex Wishart

matrix for different matrix dimensions. The analytical result for the PDF of det(ZHZ)
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Figure 2.2: PDF of the determinant of a noncentral complex Wishart matrix with M =

N = 2 and ‖H‖2
F = M .

is obtained by evaluating fY (y) in (2.17). As for the summation of infinite series in

fY (y) in (2.17), we only sum over the first 15 terms of the infinite series when K = 0

dB as in Fig. 2.1, and we can observe that very good accuracy is already achieved

compared with Monte Carlo simulations. Fig. 2.2 plots the PDF of the determinant of

the noncentral complex Wishart matrix for different Rice factors. As for the summation

of infinite series in (2.17), we only sum over the first 10 terms of the infinite series when

K = −5 dB and the first 30 terms of the infinite series when K = +5 dB. We plot the

CCDF of the determinant of the noncentral complex Wishart matrix in Fig. 2.3 and

Fig. 2.4. The analytical result for the CCDF of det(ZHZ) is obtained by evaluating

(2.19).

Fig. 2.5 plots the CCDF of the MI versus the rate threshold R for different SNRs
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Figure 2.3: CCDF of the determinant of a noncentral complex Wishart matrix with K =

5 dB and ‖H‖2
F = M .

when M = N = 2, K = 0 dB. As can be seen from the figure, the lower bound Pdet

and the upper bound Ptr U are fairly tight, and they can provide a good prediction for

the distribution of the MI. Although Pdet involves summation of Meijer-G functions,

the CPU time used to compute Pdet is only 1/3 of the CPU time spent to get the MI

CCDF through Monte Carlo simulations. In Fig 2.6, we plot the trace upper bound

Ptr U and lower bound Ptr L for a low SNR (η = −15 dB).

Fig. 2.7 plots the CCDF of the MI versus the rate threshold R for various

configurations of transmit and/or receive antennas. It shows that our lower bound, Pdet,

works well for small numbers of antennas. However, with an increase in the number

of antennas, our bound becomes slightly looser, while the Gaussian approximation

becomes tighter. In a practical cellular communication system, the number of antennas
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Figure 2.4: CCDF of the determinant of a noncentral complex Wishart matrix with M =

N = 3 and ‖H‖2
F = M .

at a mobile terminal is typically small, and hence our bound is a useful approximation

to the distribution of the MI in such a situation. Comparing our bounds with the exact

MI distribution in [21, Eq. (21)] which is valid only for two antennas, our results are

much simpler. Therefore, when the number of antennas is small, our bounds are good

approximations to the statistical distribution of the MI in Rician fading environments.

We illustrate the tightness of the lower bound Pdet at various Rice factors in Fig. 2.8.

It can be observed that the lower bound Pdet is tight for different Rice factors.
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When fading processes are non-ergodic, the CDF of MI is equal to the outage

probability. In Fig. 2.9, we investigate the effects of the Rice factor on the CDF of the

MI. We fix the SNR η and the rate threshold R, and plot the CDF of the MI versus the

Rice factor. It can be seen from the figure that our bounds, (1− Ptr U) and (1− Ptr L),

have the same trend as the CDF of the MI. Fig. 2.9 indicates that when the Rice factor

is relatively small, the CDF of the MI increases with an increase in the Rice factor, and

when the Rice factor is relatively large, the CDF of the MI decreases with an increase

in the Rice factor. This can be explained as follows. When the Rice factor is relatively

small, the diversity benefits dominate the line-of-sight benefits and hence the outage

probability increases with an increase in Rice factor. When the Rice factor is relatively

large, the line-of-sight benefits dominate the diversity benefits and hence the outage
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2.9 Conclusion

probability decreases with an increase in Rice factor.

2.9 Conclusion

In this chapter, we developed a novel approach to bounding the CCDF of the MI

of MIMO systems in Rician fading environments by exploiting the properties and

statistical distributions of the determinant and trace of a noncentral complex Wishart

matrix. This method avoids using the statistical distribution of the eigenvalues of a

noncentral Wishart matrix which is quite complex in general. Based on the proposed

approach, we derived some tight lower and upper bounds on the CCDF of the MI. The

results are also readily reduced to the case of Rayleigh fading. Compared with existing

results, our bounds are not only given in closed form, but also readily applicable to

the evaluation of the outage probability with sufficiently high accuracy. Furthermore,

the statistical distribution of the determinant of a noncentral complex Wishart matrix

derived in this chapter is an important result, and may have applications beyond the

MI distribution.

53



Chapter 3

Optimal Transmission Strategies For

Rayleigh Fading Relay Channels

In this chapter, we consider a DF single relay model working in full duplex mode

under a Rayleigh fading environment. The outage probability and ergodic rate for this

model are derived. With the objective of either minimizing the outage probability

or maximizing the ergodic rate, optimal and approximately optimal transmission

strategies are developed through selecting appropriate transmit signaling and/or spatial

power allocation. The derived transmission strategies only require the knowledge of

the second-order statistics of the channels at the transmitters, which can be readily

acquired in practice. Simulation results demonstrate that the optimal transmit signaling

and/or spatial power allocation can offer considerable performance improvements over

the equal power allocation strategy.

3.1 Introduction

In wireless networks, the cooperative relaying transmission is an effective technique

to improve power efficiency, enhance network coverage, and mitigate detrimental
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3.1 Introduction

fading effects of wireless channels. The study of such a transmission technique under

various settings, especially in relay channels, has received a considerable amount of

research attention [30–32, 44, 49, 90]. Until now, the capacity of the general relay

channels remains unknown except for some special cases [30]. Alternatively, the

highest information rates achieved by various relaying protocols such as DF, AF, and

CF have been extensively investigated [30,44,49]. In fading relay channels, the typical

information theoretic performance measures are the outage probability and the ergodic

rate, respectively, for non-ergodic and ergodic fading channels. These performance

measures generally depend on the statistical correlation of the signals transmitted from

source and relay, as well as the spatial power allocation between the two nodes. It was

shown in [49] that for Rayleigh fading DF relay channels, the transmit signals from

source and relay, which maximize the ergodic rate, are statistically independent. In a

low SNR regime, a spatial power allocation strategy that maximizes the upper bound of

the ergodic capacity was derived in [63,64]. In [52], several power allocation strategies

that maximize lower or upper bounds of ergodic capacity were developed for various

settings. Different from the previous work [52, 63, 64] which emphasizes primarily

on optimizing ergodic performance measures, a recent paper [65] proposed a spatial

power allocation strategy that optimizes the outage probability of the information rate

for AF relay channels. In this chapter, we consider Rayleigh fading DF single relay

channels with block Markov transmissions. Our focus is on the design of transmission

strategies that optimize the outage probability or ergodic rate. In [52], a similar

ergodic rate optimization problem was investigated. The key difference is that, at the

transmitters of the source and relay, the strategies in [52] assume the availability of

the complete knowledge of instantaneous CSI, whereas the strategies in this chapter

only need the knowledge of variances of the channels (statistical CSI). Relative to the

instantaneous CSI, the statistical CSI can be readily acquired at the transmitters and
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does not require frequent updates.

We first derive the outage probability and erogenic rate by using a Hermitian

quadratic form in complex Gaussian RVs. Based on the derived outage probability

and ergodic rate, we next obtain the transmission strategies that either minimize the

outage probability or maximize the ergodic rate, which we term as outage-optimal

and ergodic-optimal strategies respectively. In deriving these transmission strategies,

we restrict attention to two scenarios classified by the feasibility of spatial power

allocation. In the scenario where no spatial power allocation is available, we show

that the outage-optimal transmit signals, in contrast with the ergodic-optimal ones,

are not necessarily independent, and their correlation generally depends on the SNRs

of the links and the target transmission rate. Moreover, we further show that the

ergodic rate is a monotonically decreasing function of the correlation coefficient

between the transmit signals from the source and relay. In a small outage scenario,

which is generally of practical interest, we derive an outage-optimal spatial power

allocation strategy between source and relay. Our findings suggest that it is not

always beneficial to use a relay, and the optimal power allocation generally depends

on several parameters including the total transmit power, the target transmission rate,

and the variances of the channels. Additionally, we present ergodic-optimal spatial

power allocation strategies, which are obtained by numerically solving transcendental

equations.

The remainder of the chapter is organized as follows. The system model of a

single relay channel is introduced in Section 3.2. The outage probability and the

ergodic rate for Rayleigh fading DF relay channels are obtained in Section 3.3. The

outage-optimal and ergodic-optimal transmission strategies are derived in Sections 3.4

and 3.5, respectively. Finally, Section 3.6 concludes the chapter.
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Figure 3.1: The single-relay network channel.

3.2 System Model

Consider a single relay network model as illustrated in Fig. 3.1, which consists of a

source node s, a relay node r, and a destination node d. In this model, cooperating

with the source, the relay facilitates the ultimate transmission from the source to

destination. Specifically, the source sends a signal xs with power Es to both the relay

and destination. The relay receives a signal yr and performs the DF protocol where

the relay fully decodes xs, re-encodes it into a signal xr based on the prior received

signals, and sends xr to the destination with power Er. Mathematically, the respective

received signals at the relay and destination can be expressed as

yr =
√

Eshsrxs + nr,

yd =
√

Eshsdxs +
√

Erhrdxr + nd, (3.1)

where the AWGN terms nr and nd have mean zero and variance N0, and hij (ij ∈
{sr, sd, rd}) denotes the channel gain between nodes i and j. By taking account of

path loss, shadowing, and frequency nonselective fading [44], the channel gains hij

are modeled as independent complex Gaussian RVs with mean zero and variances σ2
ij ,

i.e., hij ∼ CN (0, σ2
ij). We further assume that the relay node works in the full-duplex

mode which usually offers higher spectral efficiency than the half-duplex counterpart;

perfect CSI at the corresponding receivers only; the variances of hsr, hsd and hrd are
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known at the source and relay; the transmit signals are subject to the power constraints

E(|xs|2) = 1 and E(|xr|2) = 1; Es and Er satisfy a total power constraint given as

Es + Er ≤ E.

3.3 Outage Probability and Ergodic Rate in Rayleigh

Fading Relay Channels

In this section, we begin with introducing the achievable rate for relay channels with

fixed channel gains. We next derive the outage probability, and the ergodic rate

for Rayleigh fading relay channels. These results will be used to derive optimal

transmission strategies in later sections.

3.3.1 Achievable Rate With Fixed Channel Gains

It follows directly from [30, Theorem 1] that if the channel gains hsr, hsd, and hrd are

fixed, the following information rate is achievable:

Idf = min{I(xs; yr | xr, hsr), I(xs, xr; yd | hsd, hrd)}.

Clearly, Idf depends on the statistical distribution of transmit signals. It was shown

in [49, Proposition 2] that for any fixed hij , zero-mean jointly Gaussian distributed

transmit signals, xs and xr, maximize Idf. By letting ρ be the correlation coefficient

between xs and xr, i.e., ρ = E[xsx
∗
r], the corresponding information rate Idf can be

written as [49, Eq. (106)], [52, Eq. (7)]

Idf = min
{
Isir, Imac

}
, (3.2)
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where

Isir = I(xs; yr | xr, hsr) = log2

(
1 + |hsr|2(1− |ρ|2)Es/N0

)
,

Imac = I(xs, xr; yd | hsd, hrd) = log2(1 + Q),

with

Q = |hsd|2Es/N0 + |hrd|2Er/N0 + 2<(ρhsdh
∗
rd)

√
EsEr/N0. (3.3)

Obviously, Idf in (3.2) depends on the parameter ρ that captures the ‘cooperation’

between the source and relay, as well as the parameter ν := Es/E that quantifies

the power allocation between these two nodes. It should be noted that to make (3.2)

non-trivial and meaningful, the parameter ν should be in the interval (0, 1). In the

extreme case of ν = 1, i.e., only the direct transmission takes place, the maximum

mutual information conditional on a channel realization is Isd = log2(1 + |hsd|2E/N0)

instead of Idf in (3.2).

3.3.2 Outage Probability

For non-ergodic fading channels, e.g., quasi-static fading channels [91, p. 187],

the outage probability is regarded as an important performance measure. In such a

scenario, Idf is a RV depending on hij , and the outage probability of Idf for a target

transmission rate R, is defined as

Pout(R) := P (Idf ≤ R).

Note that Pout(R) is actually the CDF of Idf.

Due to the mutual independence of hij , the CCDF of Idf with a target transmission

rate R can be written as P (Idf > R) = P (Isir > R) · P (Imac > R). Since |hsr|2 is

exponentially distributed and log(·) is a monotonically increasing function, P (Isir >
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R) can be easily computed as follows

FH(µ, ν, R̃) := P (Isir > R) = P
(|hsr|2 > R̃N0/(Esµ)

)
= exp

(−R̃/(ηsrµ)
)
, (3.4)

where R̃ := 2R − 1, µ := 1− |ρ|2, and ηsr := Esσ
2
sr/N0. Note that ηsr represents the

received SNR at the relay. In order to derive P (Imac > R), we need evaluate P (Q > r).

To do so, we express Q as a Hermitian quadratic form

Q =

[ √
Es/N0 h∗sd

√
Er/N0 h∗rd

]



1 ρ∗

ρ 1







√
Es/N0 hsd

√
Er/N0 hrd


 . (3.5)

Relying on (3.5), we derive the PDF and CCDF of Q, which are collectively presented

in the following lemma.

Lemma 3.1. The Hermitian quadratic form Q can be rewritten as

Q = α|h1|2 + β|h2|2 = αw1 + βw2, (3.6)

where h1 and h2 are i.i.d. complex Gaussian RVs with zero mean and unit variance,

w1 and w2 denote the magnitude squares of h1 and h2, respectively, i.e., w1 = |h1|2,

w2 = |h2|2, α and β are given as

α =
ηsd + ηrd

2
+

√(ηsd + ηrd

2

)2

− ηsdηrdµ,

β =
ηsd + ηrd

2
−

√(ηsd + ηrd

2

)2

− ηsdηrdµ, (3.7)

with ηsd := Esσ
2
sd/N0 and ηrd := Erσ

2
rd/N0. Moreover, the PDF fQ(q) and the CCDF

FQ(α, β, R̃) of Q are, respectively, given by

fQ(q) := (e−q/α − e−q/β)/(α− β), q ≥ 0, (3.8)

FQ(α, β, R̃) := P (Q > R̃) =
αe−R̃/α − βe−R̃/β

α− β
. (3.9)
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Proof. Define

h := [
√

Es/N0 hsd

√
Er/N0 hrd]

T and A :=




1 ρ∗

ρ 1


 .

Since 0 ≤ |ρ| ≤ 1, the matrix A is Hermitian and positive semi-definite. Let L be the

covariance matrix of h. Since the entries of h are independently Gaussian distributed,

L can be readily calculated as

L := E[hhH ] = diag{ηsd, ηrd} =




ηsd 0

0 ηrd


 .

Applying the noise whitening technique in [92], [93, pp. 28–29] and the

eigne-decomposition of L1/2AL1/2, we rewrite Q as

Q = (hHL−1/2)L1/2AL1/2(L−1/2h) = (hHL−1/2V )D(V HL−1/2h),

where D is a real diagonal matrix with diagonal elements being the eigenvalues of

L1/2AL1/2, α and β, and V is a unitary matrix with columns being the corresponding

eigenvectors, v1 and v2. Defining h1 = vH
1 L−1/2h and h2 = vH

2 L−1/2h, we

can further simplify Q to (3.6). It is straightforward to check that h1 and h2 are

i.i.d. complex Gaussian RVs with zero mean and unit variance. Additionally, the

eigenvalues α and β can be readily calculated as given in (3.7). Following [94, Eq.

(14)], the characteristic function of Q is given by

ΦQ(t) = (1− jtα)−1(1− jtβ)−1.

By applying the Fourier transform to ΦQ(t), the PDF of Q can be written as

fQ(q) =





e−q/α − e−q/β

α− β
, α > β ≥ 0, q ≥ 0, (3.10a)

α−2qe−q/α, α = β > 0, q ≥ 0. (3.10b)

When α equals β, (3.10a) reduces to (3.10b) by L’Hospital’s rule. Thus, the PDF of Q

can be simply expressed as in (3.8), and accordingly the CCDF of Q is obtained as in

(3.9).
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Remark 3.1. It should be noted that Q in (3.6) is a weighted sum of i.i.d. exponential

RVs. In light of this observation, we can interpret Imac in the following way. The rate

Imac, which is achieved by sending correlated signals (x1 and x2) with power Es and Er

over independent but not necessarily identically distributed fading channels (hsd and

hrd), is the same as the one achieved by sending independent signals with respective

power α and β over i.i.d. fading channels (h1 and h2).

Remark 3.2. Even though the quadratic form Q is a function of the complex quantity

ρ, the distributions of Q including PDF (3.8) and CCDF (3.9) depend only on |ρ|2 (or

µ), but not the phase of ρ. This is due to the fact that in the Rayleigh fading case, the

phase of ρ does not alter the distribution of the phase of ρhsdh
∗
rd, since the phase of

hsdh
∗
rd is uniformly distributed. As P (Isir > R) does not depend on the phase of ρ

either, so does not P (Idf > R). Besides the parameter µ, P (Idf > R) also depends on

ν and r, and thus we denote P (Idf > R) by FR(µ, ν, R̃).

Following directly from Lemma 3.1, we obtain a closed-form expression for the

CCDF of the rate Idf, which is given in the following Theorem.

Theorem 3.1. The CCDF FR(µ, ν, R̃) of the rate Idf is

FR(µ, ν, R̃) := P (Idf > R) =
αe−R̃/α − βe−R̃/β

α− β
e−R̃/(ηsrµ). (3.11)

Furthermore, note that the outage probability of the rate Idf, Pout(R), is simply

1− FR(µ, ν, R̃), which depends on the choices of µ, ν and R̃.

3.3.3 Ergodic Rate

For ergodic fading channels, e.g., block fading channels [91, p. 199], the ergodic rate

of the full-duplex DF relay system is given by [30, Theorem 1], [52, 62]

Rdf = min
{
E[Isir], E[Imac]

}
, (3.12)

62



3.3 Outage Probability and Ergodic Rate in Rayleigh Fading Relay Channels

where E[Isir] and E[Imac] are the ergodic rates of the source-relay link and the multiple

access links, respectively. It should be noted that the ergodic rate of the relay channel,

Rdf, is not equal to E[Idf] in general. To compute the ergodic rate Rdf in ergodic fading

channels, we need to compute the mean values of Isir and Imac. For ρ = 0, the mean

value of Imac, i.e., E[Imac], was obtained in [62]. However, to the best of our knowledge,

the result for ρ other than zero is not available in the literature. Based on Lemma 3.1,

we derive E[Imac] for an arbitrary ρ. This enables us to compute the ergodic rate for

Gaussian input signals with an arbitrary correlation.

Theorem 3.2. For ergodic Rayleigh fading channels, the ergodic rate Rdf of the

full-duplex DF relay system is a function of µ and ν, denoted by Rdf(µ, ν), and is

given by

Rdf(µ, ν) = min
{
Rsir(µ, ν), Rmac(µ, ν)

}
, (3.13)

where Rsir(µ, ν) and Rmac(µ, ν) are the means of Isir and Imac, respectively, and are

given by

Rsir(µ, ν) = E[Isir] = exp(µ−1η−1
sr )E1(µ

−1η−1
sr ) log2 e, (3.14)

Rmac(µ, ν) = E[Imac] =
log2 e

α− β

[
α exp(α−1)E1(α

−1)− β exp(β−1)E1(β
−1)

]
, (3.15)

with E1(x) denoting the exponential integral function, i.e., E1(x) =
∫∞

x
e−t/t dt (x >

0).

Proof. The proof follows immediately from Lemma 3.1 and [62, Eq. (49)].

Similar to the fixed channel gain case, ν should be in the interval (0, 1) to make

(3.12) meaningful. In the extreme case of ν = 1, the ergodic rate is Rsd = E[Isd]

instead of Rdf in (3.12).
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3.4 Outage-Optimal Transmission Strategies

In this section, we investigate the outage-optimal transmission strategies that minimize

the outage probability of the rate Idf. In particular, we study the following two cases

classified by whether spatial power allocation is available.

3.4.1 Outage-Optimal Transmit Signals Without Spatial Power

Allocation

We first consider a scenario where the source and relay can not share their power

resources and each of them has its own average transmit power constraint. In other

words, ν is fixed and does not need to be optimized. Designing an optimal transmission

strategy amounts to finding an optimal ρ that minimizes the outage probability of Idf (or

equivalently, finding an optimal µ that maximizes the CCDF of Idf). Mathematically,

the optimal µ, denoted by µo, is selected as

µo = arg min
0≤µ≤1

Pout(R) = arg max
0≤µ≤1

FR(µ, ν, R̃), (3.16)

and the optimal ρ, denoted by ρo, is
√

1− µo. Correspondingly, the resulting outage

probability is denoted as

P I
out(R) := min

0≤µ≤1
Pout(R) = 1− FR(µo, ν, R̃).

To tackle this problem, we need examine the monotonicity of FR(µ, ν, R̃) with respect

to µ, which is reflected by the sign of the quantity ∂FR(µ, ν, R̃)/∂µ given by

∂

∂µ
FR(µ, ν, R̃) =

αr + βκR̃ + ξ

µ(α− β)2
e−R̃/αFH(µ, ν, R̃)G(µ, ν, R̃), (3.17)

where κ := (α− β)/(ηsrµ), ξ := αβ(α + β)/(α− β), and

G(µ, ν, R̃) := φ− e−R̃(1/β−1/α) (3.18)
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with

φ :=
(ακ− β)R̃ + ξ

(βκ + α)R̃ + ξ
. (3.19)

Since α ≥ β ≥ 0 and µ ∈ [0, 1], the sign of ∂FR(µ, ν, R̃)/∂µ in (3.17) is the same as

that of G(µ, ν, R̃). Thus, the monotonicity of FR(µ, ν, R̃) simply depends on the sign

of G(µ, ν, R̃). Determining the sign of G(µ, ν, R̃) amounts to checking whether φ is

greater than or less than e−R̃(1/β−1/α). It is obvious that if φ is negative or equivalently

(ακ−β)R̃+ ξ < 0, then G(µ, ν, R̃) is negative. We thus only focus on the case where

(ακ− β)R̃ + ξ > 0 (or φ > 0). Taking logarithm of φ and e−R̃(1/β−1/α), we obtain an

equivalent expression for G(µ, ν, R̃) ≷ 0 as

g(R̃) := ln

[
(ακ− β)R̃ + ξ

(βκ + α)R̃ + ξ

]
+

α− β

αβ
R̃ ≷ 0. (3.20)

Due to the fact that g(0) = 0, the sign of the derivative of g(R̃) may be used to indicate

the sign of g(R̃). Hence, we calculate the derivative of g(R̃) as

g′(R̃) =
dg(R̃)

dR̃
=

α− β

αβ
· (ακ− β)(βκ + α)R̃2 + (α + β)(κξ + αβ)R̃ + αβκξ[

(ακ− β)R̃ + ξ
][

(βκ + α)R̃ + ξ
] .

(3.21)

To determine the sign of g(R̃), we introduce the following lemmas, which will be used

in our derivations of the outage-optimal transmission strategies.

Lemma 3.2. For any µ satisfying ακ− β ≥ 0, we have g(R̃) > 0 for any R̃ ∈ [0,∞).

Proof. It can be easily seen from (3.21) that if µ satisfies ακ − β ≥ 0, we have

g′(R̃) > 0 for all R̃ ≥ 0. It implies that g(R̃) is strictly increasing in R̃ for all R̃ ≥ 0.

Notice that g(0) = 0 for all µ ∈ [0, 1]. Hence, we can conclude that g(R̃) > g(0) = 0

for all µ ∈ [0, 1].

Lemma 3.3. For any µ satisfying ακ − β < 0, g(R̃) = 0 has a unique root R̃g ∈
[
0, R̃ξ), where R̃ξ := ξ/(β − ακ). Furthermore, g(R̃) ≥ 0 for r ∈ [0, R̃g], and

g(R̃) < 0 for r ∈ (R̃g, R̃ξ).
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Proof. Let us first prove the existence of a positive root of g(R̃) in its domain for any

µ satisfying ακ − β < 0. Notice that g′(0) > 0. Due to the continuity of the right

derivative of g(R̃), there exists a small interval (0, ε) such that g(R̃) > g(0) = 0

for any R̃ ∈ (0, ε). On the other hand, we have limR̃→R̃−ξ
g(R̃) < 0. Since g(R̃) is

continuous and well defined for R̃ ∈ [0, R̃ξ), g(R̃) has at least one root denoted by

R̃g ∈ [0, R̃ξ). We next prove the uniqueness of the root by contradiction. Suppose that

g(R̃) has at least two positive roots R̃g1 and R̃g2, and assume R̃g2 > R̃g1 > 0. Thus

we have g(0) = g(R̃g1) = g(R̃g2) = 0. According to Rolle’s theorem, there must be at

least two points R̃s1 ∈ (0, R̃g1) and R̃s2 ∈ (R̃g1, R̃g2) at which g′(R̃s1) = g′(R̃s2) = 0.

However, from (3.21), we know that g′(R̃) has no positive root when ακ−β > 0; g′(R̃)

has one negative root and one positive root when ακ − β < 0. Thus, it is impossible

that g′(R̃) has two positive roots R̃s1 and R̃s2. Hence, it is a contradiction. Together

with the existence, this shows that g(R̃) has a unique positive root. Again, from the

proof of the existence, we can readily conclude that g(R̃) > 0 for R̃ ∈ (0, R̃g), and

g(R̃) < 0 for R̃ ∈ (R̃g, R̃ξ).

Applying above two lemmas (Lemma 3.2 and Lemma 3.3), we obtain the

following outage-optimal transmission strategies.

Theorem 3.3. If ηsr, ηsd and ηrd satisfy

ηsdηrd|ηsd − ηrd| ≥ min(η2
sd, η

2
rd)ηsr, (3.22)

then µo is one (or ρo is zero) for any target rate R ∈ [0,∞) (the outage-optimal

signals transmitted from the source and relay are independent). Moreover, the outage

probability reduces to

P I
out(R) = 1− 1

ηsd − ηrd

{
ηsd exp

[− R̃(η−1
sr + η−1

sd )
]− ηrd exp

[− R̃(η−1
sr + η−1

rd )
]}

.

(3.23)
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Proof. By the definitions of α and β in (3.7), it is easy to conclude that β2/(α− β) is

monotonically increasing in µ. Noting that for any µ ∈ [0, 1], we have

β2/(α− β) ≤ min(η2
sd, η

2
rd)/|ηsd − ηrd|.

Condition (3.22) implies ηsdηrd/ηsr ≥ β2/(α − β) for µ ∈ [0, 1], or equivalently

ακ − β ≥ 0 for µ ∈ [0, 1]. By Lemma 3.2, we have g(R̃) ≥ 0 for any R̃ ≥ 0. It

implies that G(µ, ν, R̃) ≥ 0 for any R̃ ≥ 0 and µ ∈ [0, 1], or equivalently, FR(µ, ν, R̃)

is an increasing function of µ ∈ [0, 1] for any R̃ ≥ 0. Therefore, when condition (3.22)

is satisfied, µo is one for any target rate R ≥ 0.

We next define several parameters which will be used in the following Theorem.

R̃0 := (ηsd + ηrd)
(
(ηsd + ηrd)η

−1
sr + 1

)
, (3.24)

R̃1 :=
(ηsd + ηrd)(η

2
sd + η2

rd)(ηsd − ηrd)
−2 − 2(ηsd + ηrd + ηsdηrd)η

−1
sr

1 + (ηsd − ηrd)2η−2
sr + (η2

sd + η2
rd)

2(ηsdηrdηrd)−1(ηsd + ηrd)−1
, (3.25)

R̃2 :=
ηsd + ηrd

|ηsd − ηrd| ·
ηsdηrd min(ηsd, ηrd)

min(η2
sd, η

2
rd)− ηsdηrdη−1

sr |ηsd − ηrd| , (3.26)

R̃c := max(R̃1, R̃2). (3.27)

Theorem 3.4. If ηsr, ηsd and ηrd satisfy

ηsdηrd|ηsd − ηrd| < min(η2
sd, η

2
rd)ηsr, (3.28)

a) then for any rate R ∈ [0, R0] where R0 := log2(1 + R̃0), the outage-optimum

µo is one and hence the corresponding outage probability is the same as the one

given in (3.23);

b) and for any rate R ∈ [Rc,∞) where Rc := log2(1 + R̃c), the outage-optimum

µo is the unique root of G(µ, ν, R̃) in (3.18) and the outage probability is

P I
out(R) = 1− 1

αo − βo

{
αo exp

[− R̃(η−1
sr µ−1

o + α−1
o )

]−

βo exp
[− R̃(η−1

sr µ−1
o + β−1

o )
]}

, (3.29)
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where αo and βo are obtained by evaluating α and β in (3.7) at µ = µo,

respectively.

Proof. See Appendix B for the proof.

Remark 3.3. It can be observed from Theorems 3.3 and 3.4 that when the target

transmission rate R is less than R0, the outage-optimal transmitted signals from the

source and relay are independent (or µo = 1), irrespective of the transmission power.

Remark 3.4. Note that when ηsd = ηrd, condition (3.28) is satisfied, but Rc is infinite.

In this case, the value of µo can be obtained by solving G(µ, ν, R̃) = 0 numerically.

We next provide an illustrative example to validate our findings. In all the

examples of this chapter, we adopt the well-known path-loss model in which the

path-loss exponent is 3, i.e., σ2
ij∝d−3

ij , where dij denotes the distance between nodes i

and j. Without loss of generality, we assume that σ2
sd is normalized to one throughout

the chapter, i.e., σ2
sd = 1.

Example 3.1. In this example, we select dsr = dsd/3, drd = 2dsd/3, and Es/N0 =

Er/N0 = 10 dB such that the condition given in (3.28) is satisfied. These SNRs give

R0 = 5.63 bps/Hz and Rc = 6.40 bps/Hz. By solving G(µ, ν, R̃) = 0 numerically,

we find that ρo is zero for R ∈ [0, 6.25] bps/Hz, and ρo is non-zero for the value of R

beyond this interval. Fig. 3.2 plots the optimum ρo versus the target rate R. As can be

seen from Fig. 3.2, ρo depends on R for given SNRs. For a relatively small R, ρo is

always zero, while for a relatively large R, ρo is nonzero and increases as R increases.

Fig. 3.3 compares the CCDF of Idf for ρo and ρ = 0. It can be observed from Fig. 3.3

that the outage probabilities achieved by ρo is slightly smaller than that achieved by

ρ = 0.
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Figure 3.2: Optimal correlation coefficient ρo versus the target transmission rate R.

3.4.2 Outage-Optimal Spatial Power Allocation

We now consider the case where spatial power allocation between source and relay is

feasible. In such a case, apart from µ, the parameter ν also needs to be optimized. For

the DF relay channel, the outage-optimal transmission strategy is a pair (µ̃o, ν̃o) such

that

(µ̃o, ν̃o) := arg max
0≤µ≤1
0<ν<1

FR(µ, ν, R̃). (3.30)

It does not seem tractable to solve the problem analytically. However, we notice that,

the outage probability of practical interest is relatively small (nominally 10−1∼10−3).

This motivates us to consider a small outage scenario, which not only describes a

realistic situation but also simplifies the optimization problem (3.30).

Since Pout(R) = 1 − P (Isir > R)FQ(α, β, R̃), we can lower bound Pout(R) as
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Figure 3.3: Comparisons of the CCDF of Idf for the optimal ρo and ρ = 0.

follows.

Pout(R) > 1− FQ(α, β, R̃) = P (αw1 + βw2 ≤ R̃)

≥ P (αw1 ≤ R̃/2)P (βw2 ≤ R̃/2) >
[
1− exp

(
− R̃/2

α + β

)]2

, (3.31)

where the last inequality follows from the fact α+β ≥ α ≥ β. It follows directly from

(3.31) that the following inequality

R̃/(α + β) ≤ −2 ln
[
1−

√
Pout(R)

]

is always true. Thus, we always have R̃/(α + β) < 1 if Pout(R) < (1 − e−1/2)2 =

0.1548. In addition, it can be easily seen from (3.7) and (3.24) that

R̃0/(α + β) = R̃0/(ηsd + ηrd) ≥ σ2
sd/σ

2
sr + 1

for all ν ∈ (0, 1). Therefore, when outage probability Pout(R) is less than 0.1548, the
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inequality,

R̃/(α + β) < 1 ≤ 1 + σ2
sd/σ

2
rd ≤ R̃0/(α + β),

holds, and hence R < R0 is satisfied. In the following, we will consider the small

outage scenario where Pout(R) ≤ 0.1548. It is clear from Remark 3.3 that in such a

scenario, µ̃o = 1. Thus the optimization problem (3.30) is simplified to

ν̃o = arg max
0<ν<1

FR(1, ν, R̃). (3.32)

Moreover, in the case of ν = 1, as mentioned in Section 3.3, the maximum

conditional mutual information is Isd, and its CCDF is given by

FD(R̃) := P (Isd > R) = exp(−RN/σ2
sd), (3.33)

where RN := R̃N0/E = (2R − 1)N0/E and 1/RN is termed as rate normalized

SNR [44]. To determine whether the direct transmission or DF relay transmission

with optimal power allocation ν̃o should be used, we need compare FD(R̃) with

FR(1, ν̃o, R̃). The outage-optimal power allocation νo is thus determined as

νo =





ν̃o, FR(1, ν̃o, R̃) > FD(R̃),

1, FR(1, ν̃o, R̃) ≤ FD(R̃).
(3.34)

We now present optimal transmission strategies in the following two Theorems

for the afore-described small outage scenario where the outage probability Pout(R) is

smaller than 0.1548.

Theorem 3.5. If σ2
sr ≤ σ2

sd, the outage-optimal transmission strategy is to use only

direct transmission and allocate all the transmit power at the source, i.e., νo = 1.

Proof. If σ2
sr ≤ σ2

sd, it is clear from (3.11) that

FR(1, ν, R̃) < exp(−R̃η−1
sr ) < exp(−RNσ−2

sr ) ≤ FD(R̃)
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for all ν ∈ (0, 1). The outage probability of using a relay is greater than that of only

using the source-destination link. Thus, νo = 1.

This result agrees with our practical intuition: when the source-relay link is

weaker than the source-destination link, the decoder at the relay has a large likelihood

of making decoding errors. In such a case, it is quite likely that the signals transmitted

from the relay become interferences at the destination, and hence the relay should not

transmit to avoid generating any potential interferences that may reduce the reliability

of the source-destination link. However, in practice, the source-relay link is generally

stronger than the source-destination link (σ2
sr > σ2

sd). In such a scenario, it does not

appear mathematically tractable to obtain an exact solution to (3.34). We therefore

derive the following approximately optimal transmission strategies.

Theorem 3.6. Consider the case where σ2
sr > σ2

sd.

a) If σ2
rd/σ

2
sd → 0, then νo = 1;

b) If σ2
sd/σ

2
rd → 0 and σ2

sd/σ
2
sr → 0 (dual-hop), then νo = σrd(σsr + σrd)

−1;

c) If RN/σ2
ij ¿ 1, then

ν̃o = 1− [
(1 + 2σ2

sdσ
2
rdσ

−2
sr R−1

N )1/2 + 1
]−1

. (3.35)

Proof. a) Notice that σ2
rd/σ

2
sd → 0 implies that for any fixed ν ∈ (0, 1), α À β. From

(3.11), we have

FR(1, ν, R̃) ≈ exp
[−RN(σ2

sdν)−1 −RN(σ2
srν)−1

]

< exp
[−RN(σ2

sdν)−1
]

< FD(R̃)

for any ν ∈ (0, 1). Thus, νo = 1.

b) By the assumptions, the DF relay system is like a dual-hop system. We have

FR(1, ν, R̃) ≈ exp
[−RNσ−2

rd (1− ν)−1 −RN(σ2
srν)−1

]
.
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By setting ∂FR(1, ν, R̃)/∂ν to be zero, we obtain ν̃o = σrd(σsr + σrd)
−1. Actually,

FR(1, ν, R̃) is an increasing function of ν ∈ (0, ν̃o], and a decreasing function of ν ∈
[ν̃o, 1). Therefore, in this case (dual-hop), we have νo = ν̃o = σrd(σsr + σrd)

−1.

c) Due to the small outage probability assumption and the continuity of 1/ν for

ν > 0, we have

RN(σ2
sdν)−1 ¿ 1, RN(σ2

rd(1− ν))−1 ¿ 1, RN(σ2
srν)−1 ¿ 1

for any ν in a small neighborhood of ν̃o. Applying a Taylor’s expansion of FR(1, ν, R̃)

in (3.11) at RN = 0, we obtain

FR(1, ν, R̃) ≈ 1− 1

σ2
srν

RN +
[ 0.5

(σ2
srν)2

− 0.5

σ2
sdσ

2
rdν(1− ν)

]
R2

N .

Since RN(σ2
srν)−1 ¿ 1, the higher order term R2

N(σ2
srν)−2 can be ignored. Thus,

FR(1, ν, R̃) can be further approximated as

FR(1, ν, R̃) ≈ 1− 1

σ2
srν

RN − 0.5

σ2
sdσ

2
rdν(1− ν)

R2
N . (3.36)

By solving ∂FR(1, ν, R̃)/∂ν = 0, we obtain ν̃o as given in (3.35), which is the globally

optimal ν to maximize FR(1, ν, R̃). After finding ν̃o, we can determine νo according

to (3.34).

Remark 3.5. It should be pointed out that in the derivation of (3.35), certain

approximations are made and thus the solutions given in Theorem 3.6 are only

approximately optimal. However, at relatively high rate normalized SNRs, the impact

of approximation errors on the choice of ν̃o becomes negligible. To demonstrate this,

in Fig. 3.4, we compare the outage-optimal spatial power allocation obtained by using

computer search with the one given in (3.35). It can be observed from the figure that

these approaches offer almost the same power allocation strategies reflected in terms

of the parameter ν, especially at high rate normalized SNR.
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Figure 3.4: Outage-optimal spatial power allocation versus rate normalized transmit

SNR.

It is easy to check that ν̃o in (3.35) is in the interval (0.5, 1), which suggests that

the source should be allocated more power than the relay. This observation is consistent

with what has been shown in [65, Eq. (25)] for the AF case. In addition, we note that

ν̃o is an increasing function of σ2
sdσ

2
rd/σ

2
sr. Suppose that σ2

sd is fixed, e.g., the distance

dsd is fixed. With an increase of σ2
rd/σ

2
sr, which can be realized by moving the relay

toward the destination, more power should be allocated to the source, and vice versa.

Example 3.2. In Fig. 3.5, we illustrate the outage probabilities of the direct

transmission, the relay transmission with equal power allocation (ν = 0.5) and the

relay transmission with outage-optimal power allocation (νo in (3.34)). It shows that

relay transmissions provide considerable outage performance improvements over the

direct transmission, and the optimal power allocation strategy outperforms the equal
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Figure 3.5: Outage probabilities versus rate normalized transmit SNR.

power one by roughly 2 dB of rate normalized SNR at an outage probability of 10−2.

Example 3.3. In this example, we assume that the source, relay and destination are

collinear, i.e., dsr + drd = dsd. Fig. 3.6 depicts the outage performance comparisons

between the outage-optimal power allocation (νo) and the equal power allocation (ν =

0.5) strategies. As can be seen from Fig. 3.6, the performance of the equal power

allocation strategy approaches the optimal one as the relay moves toward the source,

i.e., dsr/dsd approaches zero. This observation agrees with what we can infer from ν̃o

in (3.35).
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3.5 Ergodic-Optimal Transmission Strategies

In this section, we present ergodic-optimal transmission strategies which maximize

the ergodic rate of ergodic fading channels for the two scenarios as discussed in the

preceding section.

3.5.1 Ergodic-Optimal Transmit Signals Without Spatial Power

Allocation

Following the similar discussion in Section 3.4.1, we consider the problem of

designing an ergodic-optimal transmission strategy for any fixed ν as

µe := arg max
0≤µ≤1

Rdf(µ, ν) = arg max
0≤µ≤1

min
{
Rsir(µ, ν), Rmac(µ, ν)

}
. (3.37)
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It has been concluded in [49, Theorem 8] that µe = 1 for a more general scenario,

in which multiple relays are considered and the phases of the channel gains are only

assumed to be uniformly distributed. We next introduce the following theorem that

restates a part of the result [49, Theorem 8] for the single relay case, but complements

it with our finding on the monotonicity of Rdf(µ, ν), and an alternative proof for the

optimality of µe = 1.

Theorem 3.7. The ergodic rate Rdf(µ, ν) is a monotonically increasing function of

µ ∈ [0, 1] for any fixed ν ∈ (0, 1), and hence µe = 1. Therefore, the maximum ergodic

rate, RI
df(ν), is

RI
df(ν) := Rdf(1, ν) = min

{
RI

sir(ν), RI
mac(ν)

}
, (3.38)

where

RI
sir(ν) := Rsir(1, ν) = exp(η−1

sr )E1(η
−1
sr ) log2 e,

RI
mac(ν) := Rmac(1, ν) =

ηsd exp(η−1
sd )E1(η

−1
sd )− ηrd exp(η−1

rd )E1(η
−1
rd )

ηsd − ηrd

log2 e.

Proof. Clearly, Rsir(µ, ν) is a monotonically increasing function of µ ∈ [0, 1].

However, the monotonicity of Rmac(µ, ν) is not obvious. To demonstrate the

monotonicity, we calculate

∂Rmac(µ, ν)

∂µ
= −ηsdηrd

α− β

[
∂Rmac(µ, ν)

∂α
− ∂Rmac(µ, ν)

∂β

]

= −ηsdηrd

α− β
E

[
w1 − w2

1 + αw1 + βw2

]
, (3.39)

where the second equality follows from (3.6) and Rmac(µ, ν) = E[log2(1+αw1+βw2)].

It has been shown in [95, Theorem 3.1] that E [(w1 − w2)/(1 + αw1 + βw2)] ≤ 0

when w1 and w2 are i.i.d. and α ≥ β. From (3.39), we can readily conclude that

∂Rmac(µ, ν)/∂µ ≥ 0. It implies that Rmac(µ, ν) is increasing in µ. Thus, Rdf(µ, ν) is

an increasing function of µ (or a decreasing function of |ρ|), and it is maximized at
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µ = 1 (or ρ = 0). Lastly, we obtain RI
sir(ν) and RI

mac(ν) by evaluating (3.14) and

(3.15) at µ = 1, respectively.

3.5.2 Ergodic-Optimal Spatial Power Allocations

We now investigate ergodic-optimal spatial power allocation strategies. Since the

ergodic-optimal µ is one for any ν ∈ (0, 1) (see Theorem 3.7), the two-dimensional

optimization problem reduces to a one-dimensional optimization problem, in which

we only need determine the value of ν that maximizes the ergodic rate RI
df(ν). For the

DF relay channel, the ergodic-optimal power allocation strategy is ν̃e such that

ν̃e = arg max
0<ν<1

RI
df(ν). (3.40)

Moreover, in the case of ν = 1, the ergodic rate is given by

Rsd = E[Isd] = E[log2(1 + |hsd|2E/N0)] = exp
( N0

σ2
sdE

)
E1

( N0

σ2
sdE

)
log2 e.

To determine whether to use the direct transmission or the DF relay transmission

with optimal power allocation ν̃e, we need compare Rsd with RI
df(ν̃e). Thus, the

ergodic-optimal power allocation νe is determined as

νe =





ν̃e, RI
df(ν̃e) > Rsd,

1, RI
df(ν̃e) ≤ Rsd.

(3.41)

We denote the corresponding maximum ergodic DF rate as

RJ
df = max{RI

df(ν̃e), Rsd}. (3.42)

Theorem 3.8. If σ2
sr ≤ σ2

sd, the ergodic-optimal transmission strategy is to use only

direct transmission and allocate all the transmit power at the source, i.e., νe = 1, with

RJ
df = Rsd.
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Proof. It follows from (3.38) that RI
df(ν) ≤ RI

sir(ν). Since RI
sir(ν) is increasing in ν

and σ2
sr ≤ σ2

sd, we have

RI
df(ν) ≤ RI

sir(ν) ≤ lim
ν→1

RI
sir(ν) ≤ Rsd, for all ν ∈ (0, 1).

It implies that to achieve the highest ergodic rate, all the power should be allocated to

the source.

As discussed in Section 3.4.2, the source-relay link is typically stronger than the

source-destination link, i.e., σ2
sr > σ2

sd. In such a case, we have

RI
df(ν̂e) ≥ lim

ν→1
RI

df(ν) = Rsd,

and thus νe = ν̃e. To determine ν̃e, we need to know the monotonicity of RI
sir(ν) and

RI
mac(ν). Clearly RI

sir(ν) is an increasing function, but the monotonicity of RI
mac(ν) is

not evident. In the following lemma, we present the monotonic properties of RI
mac(ν).

Lemma 3.4. The function RI
mac(ν) is an increasing function for ν ∈ [0, ν̂), and a

decreasing function for ν ∈ (ν̂, 1), where

ν̂ := arg max
0<ν<1

RI
mac(ν)

and is determined as follows:

a) If σ2
sd = σ2

rd, then ν̂ equals 1/2;

b) If σ2
sd 6= σ2

rd, then ν̂ is the unique root of the following equation
[

σ2
sdσ

2
rdP

ηsd − ηrd

+
σ2

sd

ηsd

]
exp(η−1

sd )E1(η
−1
sd )− σ2

sd =

[
σ2

sdσ
2
rdP

ηsd − ηrd

− σ2
rd

ηrd

]
exp(η−1

rd )E1(η
−1
rd ) + σ2

rd. (3.43)

Proof. Based on (3.6) and the optimality of µ = 1, RI
mac(ν) can be rewritten as

RI
mac(ν) = E[log2(1 + ηsdw1 + ηrdw2)].
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Because the second partial derivative of RI
mac(ν) is always non-positive, i.e.,

∂2

∂ν2
RI

mac(ν) = − log2 e · E
[
(Eσ2

sdw1 − Pσ2
rdw2)

2

(1 + ηsdw1 + ηrdw2)2

]
≤ 0,

the optimization problem, maxν RI
mac(ν), is a convex problem. It is straightforward to

calculate ∂RI
mac(ν)/∂ν = P (φ1−φ2) log2 e where φ1 := E[σ2

sdw1/(1+ηsdw1+ηrdw2)]

and φ2 := E[σ2
rdw2/(1+ηsdw1 +ηrdw2)]. The global optimum ν̂ is the unique solution

of φ1 = φ2 as shown in (3.43). Since ∂2RI
mac(ν)/∂ν2 is non-positive, ∂RI

mac(ν)/∂ν is

greater than zero and RI
mac(ν) is increasing in ν for ν ∈ [0, ν̂); ∂RI

mac(ν)/∂ν is less

than zero and RI
mac(ν) is decreasing in ν for ν ∈ (ν̂, 1]. In particular, when σ2

sd = σ2
rd,

we have ν̂ = 0.5.

We next introduce the ergodic-optimal spatial power allocation strategy for the

case of σ2
sr > σ2

sd.

Theorem 3.9. If σ2
sr > σ2

sd, the ergodic-optimal spatial power allocation νe = ν̃e is:

a) If RI
sir(ν̂) ≥ RI

mac(ν̂), then ν̃e = ν̂ and RJ
df = RI

mac(ν̂).

b) If RI
sir(ν̂) < RI

mac(ν̂), then ν̃e = ν∗ ∈ (ν̂, 1) and RJ
df = RI

sir(ν
∗), where ν∗

denotes the unique root of RI
sir(ν) = RI

mac(ν) in (ν̂, 1).

Proof. a) If RI
sir(ν̂) ≥ RI

mac(ν̂), the inequalities RI
df(ν) ≤ RI

mac(ν) ≤ RI
mac(ν̂) ≤

RI
sir(ν̂) hold for any ν ∈ (0, 1). This fact indicates that ν̃e = ν̂ and RJ

df = RI
mac(ν̂) by

the definition of RJ
df.

b) Define ψ(ν) := RI
sir(ν) − RI

mac(ν). Since RI
sir(ν̂) < RI

mac(ν̂) and σ2
sr > σ2

sd,

we have ψ(ν̂) < 0 and lim
ν→1

ψ(ν) > 0. This implies that ψ(ν) has at least one

root ν∗ ∈ (ν̂, 1). Furthermore, the fact that RI
mac(ν) is a decreasing function of

ν ∈ (ν̂, 1) (Lemma 3.4), together with the monotonicity of RI
sir(ν), implies that ψ(ν)

is a monotonically increasing function of ν ∈ (ν̂, 1). Therefore, ψ(ν) has a unique
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Figure 3.7: Ergodic rates RI
df(ν) versus power allocation ratio ν when E/N0 = 10 dB and

dsr = drd = dsd/2.

root ν∗ ∈ (ν̂, 1). With RI
df(ν) ≤ RI

sir(ν
∗) for ν ∈ (0, ν∗] and RI

df(ν) ≤ RI
mac(ν

∗) for

ν ∈ (ν∗, 1), we can easily conclude that ν̃e = ν∗ and RJ
df = RI

sir(ν
∗).

Example 3.4. In Fig. 3.7, we plot RI
df(ν) versus ν for E/N0 = 10 dB and dsr = drd =

dsd/2. It can be observed from Fig. 3.7 that the highest rate is achieved at roughly

ν = 0.58. Based on Theorem 3.9, we obtain ν̂ = 10−4 and νe = ν∗ = 0.5825 by

numerically solving the respective equations (3.43) and RI
sir(ν) = RI

mac(ν). This result

empirically validates our findings in Theorem 3.9.

Example 3.5. In Fig. 3.8, we compare the ergodic rates with the equal power

allocation (ν = 0.5), and with the ergodic-optimal power allocation (νe). The

ergodic-optimal power allocation strategy outperforms the equal power allocation one
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Figure 3.8: Ergodic rates versus transmit SNR.

by 0.8 dB for the case where dsr = drd = dsd/2, and by 1.5 dB for the case where

dsr = drd = 2dsd/3.

Example 3.6. Assuming that the source, relay, and destination are collinear, i.e.,

dsr + drd = dsd, we study the impacts of the location of the relay on the ergodic

rate in Fig. 3.9, for the equal power allocation (ν = 0.5) and ergodic-optimal power

allocation (νe). We observe that, when the relay is far from the source (dsr/dsd > 0.5),

the ergodic-optimal power allocation strategy can greatly improve the ergodic rates.

However, when the relay is close to the source (dsr/dsd < 0.5), the gain achieved by

adopting the ergodic-optimal power allocation becomes insignificant. In Fig. 3.10, we

plot the corresponding ergodic-optimal power allocation νe versus dsr/dsd.
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Figure 3.9: Ergodic rates versus distance ratio dsr/dsd when dsr + drd = dsd.

To determine ν̂ and ν∗, we need solve transcendental equations involving E1(x)

function. However, at low or high SNR, the respective optimal ν can be determined as

follows.

Low SNR Regime

When the SNR is sufficiently small, η−1
sr , η−1

sd and η−1
rd are much greater than one.

Applying E1(z) ≈ e−z/z for any z À 1, we approximate RI
sir(ν) and RI

mac(ν) as

RI
sir,l(ν) ≈ σ2

srPν log2 e

RI
mac,l(ν) ≈ [(σ2

sd − σ2
rd)ν + σ2

rd]P log2 e.
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Figure 3.10: Optimal power allocation ration νe versus distance ratio dsr/dsd when dsr +

drd = dsd.

If σ2
sd ≥ σ2

rd, it is obvious that ν = 1 is optimal. If σ2
sd < σ2

rd, we can obtain the

optimal value of ν by setting RI
sir,l(ν) = RI

mac,l(ν), and the optimal value of ν is

νe,l := σ2
rd(σ

2
rd + σ2

sr − σ2
sd)

−1.

High SNR Regime

When the SNR is sufficiently high, η−1
sr , η−1

sd and η−1
rd are much less than one. Applying

the approximations, E1(z) ≈ −γ − ln z and ez ≈ 1 for z ¿ 1 with γ denoting the

Euler’s constant (γ = 0.5772 . . .), we approximate RI
sir(ν) and RI

mac(ν) as

RI
sir,h(ν) ≈ −γ log2 e + log2 ηsr

RI
mac,h(ν) ≈ −γ log2 e +

ηsd log2 ηsd − ηrd log2 ηrd

ηsd − ηrd

.
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3.6 Conclusion

The parameter ν̂h that maximizes RI
mac,h(ν) is the solution of

(ηsd − ηrd)/(ln ηsd − ln ηrd) = σ2
sdσ

2
rdP/(σ2

sd + σ2
rd).

If RI
sir,h(ν̂h) ≥ RI

mac,h(ν̂h), the optimal value of ν is νe,h = ν̂h. If RI
sir,h(ν̂h) <

RI
mac,h(ν̂h), the optimal value of ν is νe,h = ν∗h ∈ (ν̂h, 1), where ν∗h is the unique

solution of RI
sir,h(ν) = RI

mac,h(ν).

3.6 Conclusion

We investigated optimal transmit signaling designs and spatial power allocation

strategies in both outage and ergodic settings for Rayleigh fading DF relay channels.

We considered two practical scenarios. In the first scenario where there is no spatial

power allocation available, we showed that the outage-optimal transmit signals are

not necessarily independent, and their correlation coefficient is generally determined

by several system parameters, whereas the ergodic rate in ergodic fading channels is

strictly decreasing in the correlation coefficient, and thus the ergodic-optimal transmit

signals are always independent. In the second scenario where spatial power allocation

is feasible, we derived optimal spatial power allocation strategies which depend on

the second-order statistics of three links and SNRs. We further disclosed that it is not

always beneficial to use a relay in this scenario.
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Chapter 4

Outage Probability of Rician Fading

Relay Channels

In this chapter, we extend the outage probability results in Chapter 3 for Rayleigh

fading channels to the ones in Rician fading channels. We investigate the outage

performance of the full-duplex DF relay system in a Rician fading environment. We

derive an analytical expression for the outage probability of the highest achievable

information rate of the system, which can be evaluated by employing numerical

techniques. We also obtain an upper bound and a lower bound on the outage

probability. These bounds are given in simple closed forms and can be easily evaluated.

Furthermore, we study the impact of transmit signaling on the outage performance.

4.1 Introduction

The cooperative relaying transmission technique has attracted considerable research

attention as it is capable of improving the reliability and power efficiency of wireless

networks. As an important performance measure in fading scenarios, the outage

probability of the achievable information rate has been investigated in Chapter 3 for
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Rayleigh fading channels. However, in practice, the wireless channels are some time

found to be Gaussian distributed with nonzero mean, i.e., Rician fading with finite Rice

factors. The outage performance analysis of such channels is, therefore, of practical

importance.

In this chapter, we consider a full-duplex DF relay system in a Rician fading

environment. We first express the highest achievable information rate of the system in

a Hermitian quadratic form to facilitate us to evaluate its statistical distribution. We

then derive an analytical expression for the outage probability, which can be evaluated

by using standard numerical techniques. Based on the geometrical representation

of the outage probability, we also obtain an upper bound and a lower bound on the

outage probability in simple closed forms. These bounds can work as fairly good

approximations to the outage probability. Moreover, when the channel statistics (Rice

factors and variances) are known at the source and relay nodes, the outage probability

can be minimized by choosing an appropriate correlation coefficient between the

transmit signals from the source and the relay. Relying on numerical methods, we

obtain the optimal correlation coefficient that minimizes the outage probability. Our

numerical results reveal that for large values of Rice factors, the optimal correlation

coefficient is not necessarily zero, but instead, depends generally on SNRs, variances

and Rice factors of the channels, as well as the rate threshold.

4.2 System Model

We consider the same DF single-relay system model as in Chapter 3, but operating

in a Rician fading environment. The channel gains are still modeled as independent

complex Gaussian random variables, but they are no longer zero mean. To differentiate

with the channel gains in Chapter 3, we use h̃ij (ij ∈ {sr, sd, rd}) in this chapter to
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4.3 Information Rate

denote the channel gain between nodes i and j in a Rician fading environment. For

Rician fading channels, each h̃ij can be decomposed into the sum of a deterministic

(or LOS) component and a variable (scattered) component, i.e.,

h̃ij =
√

Kijσ2
ij + hij. (4.1)

The hijs are independent zero-mean complex Gaussian RVs with variances E(|hij|2) =

σ2
ij . The Rice factor, Kij ≥ 0, represents the ratio of deterministic energy to random

energy in the corresponding link. Thus, the channel gain h̃ij is complex Gaussian

distributed with mean
√

Kijσ2
ij and variance σ2

ij , i.e., h̃ij ∼ CN (√
Kijσ2

ij , σ2
ij

)
. We

use the same notations as in Chapter 3: ηsr = Esσ
2
sr/N0, ηsd = Esσ

2
sd/N0, and ηrd =

Erσ
2
rd/N0.

4.3 Information Rate

Similar to the information rate in Chapter 3.3.2, the highest information rate achieved

by the DF single-relay systems can be written as

Ĩdf = min
{

Ĩsir, Ĩmac

}
, (4.2)

Ĩsir = log2

(
1 + |h̃sr|2(1− |ρ|2)Es/N0

)
, Ĩmac = log2(1 + Q̃),

where ρ is still the correlation coefficient of xs and xr as in Chapter 3.3.2, i.e., ρ =

E[xsx
∗
r], and Q̃ is given as

Q̃ = |h̃sd|2Es/N0 + |h̃rd|2Er/N0 + 2<(ρh̃sdh̃
∗
rd)

√
EsEr/N0. (4.3)

The outage probability of the information rate Ĩdf at a given rate threshold R in a

Rician fading environment is written as

Pout(ρ,R) = P (Ĩdf ≤ R) = 1− P (Ĩsir > R)P (Ĩmac > R). (4.4)
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Notice that since h̃sr is nonzero mean Gaussian distributed, |h̃sr|2 is noncentral

chi-square distributed with two degrees of freedom. The CCDF of Ĩsir is computed as

P (Ĩsir > R) = Q1

(√
2Ksr,

√
2R̃/

[
ηsr(1− |ρ|2)

])
, (4.5)

where R̃ = 2R − 1 and Q1(·, ·) denotes the first-order Marcum Q-function [96, Eq.

(4.33)]. Since Ĩmac = log2(1 + Q̃), the CCDF of Ĩmac becomes

P (Ĩmac > R) = P (Q̃ > R̃). (4.6)

In order to evaluate P (Ĩmac > R), we need study the statistical properties of Q̃, which

will be presented in the following section.

4.4 Quadratic Forms in Nonzero Mean Complex

Gaussian RVs

We can see that Q̃ has the same form as Q in (3.3) except that h̃sd and h̃rd are nonzero

mean. In this section, we first represent Q̃ as a Hermitian quadratic form in nonzero

mean complex Gaussian RVs to facilitate us to evaluate its distribution, and we next

derive the exact distribution of Q̃, which is given in an analytical form.

4.4.1 A Hermitian Quadratic Form Representation

Using the same technique as in Chapter 3.3.2, we can rewrite Q̃ as a Hermitian

quadratic form in nonzero mean complex Gaussian RVs:

Q̃ = α|h̃1|2 + β|h̃2|2, (4.7)

where α and β are given by (3.7) in Chapter 3.3.2, h̃1 and h̃2 are independent complex

Gaussian distributed with nonzero mean and unit variance. Then, |h̃1|2 and |h̃2|2 are
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independent noncentral chi-square random variables with two degrees of freedom and

respective non-centrality parameters

s2
1 =

[
αKsrd − (ηsdKrd + ηrdKsd) + 2

√
ηsdηrdKsdKrd<(ρ)

]
/(α− β), (4.8)

s2
2 =

[
αKsrd − (ηsdKsd + ηrdKrd)− 2

√
ηsdηrdKsdKrd<(ρ)

]
/(α− β), (4.9)

where Ksrd = Ksd + Krd. Note that when α equals β, both the numerators and

denominators in (4.8) and (4.9) are zero. In this case, Q̃ in (4.7) is noncentral

chi-square distributed with four degrees of freedom and non-centrality parameter Ksrd.

Comparing (4.3) with (4.7), we can see that the rate Ĩmac achieved by sending

correlated signals (xs and xr) with the transmit powers Es and Er over independent

nonzero mean fading channels (h̃sd and h̃rd), can be viewed as the one achieved by

sending independent signals with transmit powers α and β over independent nonzero

mean fading channels (h̃1 and h̃2). In fact, we can see from the expressions of Q̃

that P (Ĩmac < R) = P (Q̃ < R̃) is the same as the outage probability of a MISO

system [97].

4.4.2 Distribution of the Hermitian Quadratic Form

As expressed in (4.7), Q̃ is a linear combination (weighted sum) of independent

noncentral chi-square random variables. Its distribution can be expressed as infinite

series [93, Ch. 4.2]. In the following lemmas, we make use of (4.7) to derive the

characteristic function and statistical distributions of Q̃.

Lemma 4.1. The characteristic function of Q̃ is given by

E[ejwQ̃] =
1

(1− jwα)(1− jwβ)
exp

(
jwαs2

1

1− jwα
+

jwβs2
2

1− jwβ

)
. (4.10)

Proof. Based on (4.7) and the statistical independence of h̃1 and h̃2, the characteristic
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function of Q̃ can be written as

E[ejwQ̃] = E[ejwα|h̃1|2 ]× E[ejwβ|h̃2|2 ].

Since |h̃1|2 and |h̃2|2 are noncentral chi-square distributed, their characteristic

functions can be readily obtained as exp[jwαs2
1/(1 − jwα)]/(1 − jwα) and

exp[jwβs2
2/(1−jwβ)]/(1−jwβ), respectively. Thus, (4.10) follows immediately.

Lemma 4.2. For |ρ| = 1 (ρ = ejθ), the CCDF of the quadratic form Q̃, P (Q̃ > R̃), is

given by

P (Q̃ > R̃) = Q1

(√
2s2,

√
2R̃/(ηsd + ηrd)

)
, (4.11)

where s2 = (ηsdKsd + ηrdKrd + 2
√

ηsdηrdKsdKrd cos θ)/(ηsd + ηrd).

Proof. In this case, we have α = ηsd + ηrd and β = 0. Thus, the quadratic form Q̃

is noncentral chi-square distributed with two degrees of freedom, and P (Q̃ > R̃) is

readily obtained as (4.11).

Lemma 4.3. For |ρ| ∈ [0, 1), the CCDF of the quadratic form Q̃, P (Q̃ > R̃), is

expressed as

P (Q̃ > R̃) =Q1


√2 s1,

√
2
R̃

α


 +

e−s2
1

α
× (4.12)

∫ R̃

0

e−z/αI0

(
2s1

√
z

α

)
Q1


√2 s2,

√
2
R̃− z

β


 dz,

where I0(·) is the zeroth-order modified Bessel function of the first kind.

Proof. When |ρ| < 1, we have α ≥ β > 0. Defining w̃1 = α|h̃1|2 and w̃2 = β|h̃2|2,

we can write Q̃ = w̃1 + w̃2. By using Jacobian transformations, we obtain the PDFs

of w̃1 and w̃2 as

fw̃1(x) =
1

α
e−(s2

1+x/α)I0

(
2s1

√
x/α

)
, fw̃2(x) =

1

β
e−(s2

2+x/β)I0

(
2s2

√
x/β

)
.
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Because of the statistical independence of h̃1 and h̃2, the PDF of Q̃ is the convolution

of fw̃1(x) with fw̃2(x), i.e.,

fQ̃(x) =

∫ x

0

fw̃1(z)fw̃2(x− z)dz.

Once the PDF of Q̃ is known, the CCDF of Q̃ can be computed as P (Q̃ > R̃) =
∫∞

R̃
fQ̃(y)dy, and then expressed as a double integral

P (Q̃ > R̃) =

∫ ∞

R̃

∫ y

0

fw̃1(z)fw̃2(y − z)dzdy.

By interchanging the order of integrations, we can obtain P (Q̃ > R̃) as

P (Q̃ > R̃) =

∫ R̃

0

fw̃1(z)P (w̃2 > R̃− z)dz +

∫ ∞

R̃

fw̃1(z)P (w̃2 > 0)dz.

Since P (w̃2 > R̃ − z) = Q1

(√
2 s2,

√
2(R̃− z)/β

)
and P (w̃2 > 0) = 1, the CCDF

of Q̃ reduces to (4.12).

Remark 4.1. When ρ = 0 and ηsd = ηrd, we have α = β = ηsd. Thus, the CCDF in

(4.12) reduces to P (Q̃e > R̃) = Q2

(√
2Ksrd,

√
2R̃/ηsd

)
, where Q2(·, ·) denotes the

second-order Marcum Q-function defined in [96, Eq. (4.59)], and Q̃e is obtained by

evaluating Q̃ at ρ = 0 with ηsd = ηrd.

Remark 4.2. In a Rayleigh fading scenario, we have Ksd = Krd = 0. Due to the fact

that I0(0) = 1 and Q1(0, b) = exp(−b2/2), the CCDF of Q̃ in (4.12) reduces to

P (Q > R̃) = (αe−R̃/α − βe−R̃/β)/(α− β), (4.13)

where Q is obtained by evaluating Q̃ at Ksd = Krd = 0, and it is equal to the Q given

in Chapter 3 (3.3). This coincides with the result presented in Chapter 3 (3.9) for the

Rayleigh fading relay case.

Remark 4.3. In the Rician fading case, P (Q̃ > R̃) in (4.12) depends on both the

amplitude and phase of ρ, while in the Rayleigh fading case, P (Q > R̃) in (4.13) only
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depends on the amplitude of ρ. This is because, in the Rician fading case, the phases

of hsd and hrd are no longer uniformly distributed, and they depend on the Rice factors

Ksd and Krd, respectively. Thus, the phase of ρ affects the distribution of ρhsdh
∗
rd.

4.4.3 Geometrical Representation and Bounds on the Distribution

of the Hermitian Quadratic Form

The CCDF of Q̃ is expressed by a single integral in (4.12). Here, we give a geometrical

presentation of the CCDF of Q̃, and use it to obtain some simple bounds on the CCDF

of Q̃.

Based on (4.7), we rewrite the CCDF of Q̃ as

P (Q̃ > R̃) = P

( |h̃1|2
R̃/α

+
|h̃2|2
R̃/β

> 1

)
. (4.14)

From the above equation, we can see that in geometrical representation, P (Q̃ > R̃)

represents the probability of the two dimensional Rician vector (|h̃1|, |h̃2|)T lying

outside the quarter Ellipse-αβ which is centered at the origin with semi-minor axis√
R̃/α and semi-major axis

√
R̃/β, as depicted in Fig. 4.1. Thus, the CCDF of Q̃ can

be expressed as

P (Q̃ > R̃) = P
(
(|h̃1|, |h̃2|)T /∈ quarter Ellipse-αβ

)
.

The analytical expression for the probability of the vector (|h̃1|, |h̃2|)T lying

outside the quarter Ellipse-αβ is complicated. We will find some simple bounds on it

by making use of its geometrical representation. As illustrated in Fig. 4.1, the quarter

Circle-α and quarter Circle-β are the quarter circles centered at the origin, with radius√
R̃/α and

√
R̃/β, respectively. It is obvious from Fig. 4.1 that

quarter Circle-α ⊆ quarter Ellipse-αβ ⊆ quarter Circle-β.
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Figure 4.1: The geometrical representation of P (Q̃ > R̃)

Therefore, the probability of (|h̃1|, |h̃2|)T lying outside of the quarter Ellipse-αβ is less

than that of (|h̃1|, |h̃2|)T lying outside of the quarter Circle-α, and greater than that of

(|h̃1|, |h̃2|)T lying outside of the quarter Circle-β, i.e.,

P
(
(|h̃1|, |h̃2|)T /∈ quarter Ellipse-αβ

)
≤ P

(
(|h̃1|, |h̃2|)T /∈ quarter Circle-α

)
,

P
(
(|h̃1|, |h̃2|)T /∈ quarter Ellipse-αβ

)
≥ P

(
(|h̃1|, |h̃2|)T /∈ quarter Circle-β

)
.

We can easily compute the probabilities of the vector (|h̃1|, |h̃2|)T lying outside the

quarter circle-α and the quarter-circle-β, respectively, as

P
(
(|h̃1|, |h̃2|)T /∈ quarter Circle-α

)
= P (|h̃1|2 + |h̃2|2 > R̃/α)

= Q2

(√
2Ksrd,

√
2R̃/α

)
,

P
(
(|h̃1|, |h̃2|)T /∈ quarter Circle-β

)
= P (|h̃1|2 + |h̃2|2 > R̃/β)

= Q2

(√
2Ksrd,

√
2R̃/β

)
,

since (|h̃1|2 + |h̃2|2) is noncentral chi-square distributed with 4 degrees of freedom.
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Therefore, the CCDF of Q̃ can be bounded as

P (Q̃ > R̃) ≤ Q2

(√
2Ksrd,

√
2R̃/α

)
, (4.15)

P (Q̃ > R̃) ≥ Q2

(√
2Ksrd,

√
2R̃/β

)
. (4.16)

4.5 Outage Probability of the Information Rate

In this section, we derive the outage probability of the information rate, investigate

the effects of the correlation coefficient ρ on the outage probability, and determine the

optimal ρ which minimizes the outage probability by using numerical methods.

With (4.4), (4.5), (4.6), and Lemma 4.3, the outage probability of the information

rate for any fixed ρ ∈ [0, 1) is given by

Pout(ρ,R) = 1−Q1

(√
2Ksr,

√
2R̃/ηsr

1− |ρ|2
)

Q1

(√
2s1,

√
2R̃

α

)
−

e−s2
1

α
Q1

(√
2Ksr,

√
2R̃/ηsr

1− |ρ|2
)∫ R̃

0

e−y/αI0

(
2s1

√
y

α

)
Q1

(√
2s2,

√
2
R̃−y

β

)
dy.

(4.17)

The outage probability in (4.17) is expressed as a single integral, which can be

evaluated by standard numerical techniques. By making use of the upper and lower

bounds on P (Q̃ > R̃) in (4.15) and (4.16), the outage probability can be further

bounded as

Pout(ρ,R) ≥ 1−Q1

(√
2Ksr,

√
2R̃/[ηsr(1−|ρ|2)]

)
Q2

(√
2Ksrd,

√
2R̃/α

)
, (4.18)

Pout(ρ,R) ≤ 1−Q1

(√
2Ksr,

√
2R̃/[ηsr(1−|ρ|2)]

)
Q2

(√
2Ksrd,

√
2R̃/β

)
. (4.19)

Remark 4.4. When |ρ| = 1, Ĩdf is zero and the outage probability is one. This can be

interpreted as follows. The transmit signal, xr, at the relay is chosen based on the prior

received signals at the relay which are correlated with the prior transmitted signals
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Figure 4.2: Outage probability versus R for the case that ρ = 0, Ksr = Krd = Ksd + 3

(dB), and Ksd = −10,−3, 0, 3 (dB).

from the source xs. This, together with the fact that xs and xr are fully correlated

(|ρ| = 1), implies that xs is static (xs is a stochastic process), and hence no information

is delivered from the source to the destination, i.e., Ĩdf = 0.

Remark 4.5. In a Rayleigh fading environment, we have Ksr = Ksd = Krd = 0.

According to (4.13) and the fact that Q1(0, b) = exp(−b2/2), the outage probability

(4.17) reduces to

Pout(ρ,R) = 1− αe−R̃/α − βe−R̃/beta

α− β
exp

(−R̃/ηsr

1− |ρ|2
)
. (4.20)

This is consistent with the result presented in Chapter 3 (3.11) for the Rayleigh fading

case.

Denote ε2
ij = (1 + Kij)σ

2
ij . Suppose that ε2

sd = 1 and ε2
ij is proportional to

1/d3
ij , where dij is the distance between nodes i and j. We consider the case in which
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Figure 4.3: Outage probability versus SNR for the case that R = 2 bps/Hz, Es/N0 =

Er/N0 + 3 (dB), ρ = 0, Ksr = Krd = Ksd + 3 (dB), and Ksd = −3, 0, 3 (dB).

dsr = dsd/3 and drd = 2dsd/3. In Fig. 4.2, we compare the analytical expression of

the outage probability (4.17) with the ones obtained by Monte Carlo simulations for

Es/N0 = Er/N0 = 10 dB. The Monte Carlo simulations are carried out by generating

8 × 105 realizations of hsr, hsd and hrd, and by evaluating the statistics of Ĩdf in (4.2).

Our analytical results match well with the Monte Carlo simulations.

Fig. 4.3 shows the outage probability and the upper and lower bounds given in

(4.15) and (4.16) versus Er/N0 for a fixed rate R = 2 bps/Hz and Es/N0 = Er/N0 +3

(dB). As can be easily seen from Fig. 4.3, the upper and lower bounds are quite tight in

this case. Fig. 4.4 illustrates the effects of ρ and Rice factors on the outage probability.

It can be observed from the figure that the outage probability decreases as the Rice

factors increase. When the Rice factors are small, ρ = 0 yields the smallest outage
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Figure 4.4: Outage probability versus ρ for the case that the phase of ρ is zero, R = 3

bps/Hz and Ksd = 0 dB.

probability. While for relatively large Rice factors, the value of ρ which minimizes the

outage probability is not zero.

When the source and the relay know the means and variances of the three links, the

outage-optimal transmit signaling in the sense of minimizing the outage probability,

can be determined through choosing an optimal ρ as

ρopt = arg min
0≤|ρ|≤1

Pout(ρ,R), (4.21)

and the corresponding minimum outage probability is denoted by P opt
out (R). It appears

intractable to analytically solve this optimization problem. Instead, we use the

Optimization Toolbox in MATLAB (function: fmincon) to find ρopt numerically. In

Fig. 4.5, we compare the outage probability for ρopt and ρ = 0. We observe that

the optimal choice of ρ leads to a performance improvement, and it is determined by
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Figure 4.5: Outage probability versus Krd when Ksr = 6 dB and Ksd = 0 dB.

several factors such as SNRs, rate threshold R, and the channel statistics.

4.6 Conclusion

In this chapter, we derived an exact expression of the outage probability of the

full-duplex single relay DF system in a Rician fading environment. We also obtained

an upper bound and a lower bound on the outage probability. These obtained bounds

are expressed in simple closed forms, and hence can be easily evaluated. Based on

the derived results, we determined the optimal correlation coefficient between the

transmitted signals from the source and the relay by using numerical approaches, and

revealed that the optimal correlation coefficient generally depends on SNRs, the rate

threshold, the channel variances and the Rice factors.
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Chapter 5

Differential Modulation for

Decode-and-Forward Multiple Relay

Systems

We consider differential modulation and demodulation in a multiple relay system

where CSI is unknown to any node. Both the DF protocol and the SR protocol are

analyzed in this chapter. For the DF protocol, this chapter first derives the ML detector

and proposes a low complexity PL detector to closely approximate the nonlinear ML

detector. Both the ML and PL detectors take the average BERs of all the source-relay

transmissions into account. Then, the BER for the PL detector is analyzed. For a

DF single relay system, the exact BER is obtained as a simple function of SNRs,

the variances, and the fade rates of the transmission links. Based on the exact BER,

a BER approximation at high SNR is derived, and it explicitly shows the diversity

order and the different effects of the source-relay link and the relay-destination link on

the end-to-end error performance. For a DF multiple relay system, a Chernoff upper

bound on the BER and a high SNR approximation for the BER are obtained. For the

SR protocol, some computational complexity is shifted from the destination to all the
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relays. Each relay computes the instantaneous BERs of the source-relay transmission

and use the instantaneous BERs to decide whether to transmit or remain silent. The

destination performs simple MRC reception whose error performance is analyzed at

high SNR. It shows from an error probability prospective that the SR protocol offers a

space diversity of the number of all the potential cooperating nodes.

5.1 Introduction

In wireless communication systems, cooperative relay transmission is recognized as

an effective technique to mitigate fading effects and enhance network coverage [44].

Most of the existing relay transmission schemes assume that the receivers have perfect

CSI, and utilize the CSI for coherent detection [35, 37, 56, 58]. However, it is rather

costly or even infeasible to obtain accurate channel estimates of multiple transmission

links especially in rapid fading environments.

To obviate the need for channel estimation for wireless relay systems,

non-coherent or differential modulations are proposed. General non-coherent ML

detectors for AF and DF relay systems were derived in [67]. For AF relay systems

with differential modulations, some simple receiver structures along with the error

probability analysis had been obtained in [69, 70]. However in DF relay systems, due

to the nonlinear processing at the relay nodes, the ML receiver is quite complex. For a

non-coherent DF relay system with BFSK modulation, [36] derived the nonlinear ML

detector and proposed a PL detector which has similar performance to the ML detector.

In addition, the exact BER of the PL detector for single relay systems and the diversity

order for multiple relay systems were also derived in [36]. For DF relay systems with

differential modulations, the non-linear ML detector was derived in [71]. However,

the error probability analysis of the ML detector seems intractable. The paper [73]
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proposed a reduced complexity equal-gain combiner, and obtained its error probability.

Recently, a ML detector and a PL detector were derived in [72] for the DF single relay

system using DBPSK modulation. The paper [72] also computed the BER of the PL

detector in terms of several infinite series. All the aforementioned studies assume that

the fading coefficients remain unchanged in two consecutive symbol intervals. This

assumption may not hold in rapid fading environments.

Since relay nodes have some possibilities of making decoding errors, the SR

protocol was proposed to reduce error propagations at the relay nodes. From the outage

probability perspective, it has been shown in [34, 44] that SR protocols can offer full

space diversity. In [34, 44], the CSI of the source-relay link is used as the indicator

of the reliability of the relay detection. The error probability of two-user cooperation

working under the SR protocol for DBPSK modulation was analyzed in [50] where the

relay node uses cyclic redundance check (CRC) after differential decoding to decide

whether the relay makes correct detection.

In this chapter, we focus on a multiple relay system using DBPSK modulation.

The fading processes assumed here have an arbitrary Doppler spectrum with an

arbitrary Doppler bandwidth. We consider two protocols at the relay node: the DF

protocol and the SR protocol. For the DF protocol, we derive the nonlinear ML

detector and propose the PL detector which has similar performance to the nonlinear

ML detector. Both the ML and PL detectors take the average BERs of all the

source-relay transmissions into account, and the received signals at the destination

from the source and all the relays are combined with different weights, because the

transmission links in the relaying system have different statistics. Then, we derive

the BER of the PL detector, whereas the BER analysis for the nonlinear ML detector

appears intractable. For a DF single relay system, we obtain the exact BER and its high

SNR approximation. The exact BER is a simple function of the SNRs, the variances
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and fade rates of all the transmission links. The BER approximation at high SNR

shows explicitly the diversity order and the different roles of the source-relay link and

the relay-destination link in determining the end-to-end error performance. Moreover,

a Chernoff upper bound on the BER and a high SNR approximation for the BER are

obtained for a DF multiple relay system. For the SR protocol, each relay computes the

instantaneous BERs of the source-relay transmission and use the instantaneous BERs

to decide whether to transmit or remain silent. When the instantaneous BERs at a relay

satisfy certain criteria, the relay belongs to the coding set which is a random set and a

subset of the set containing all the potential relays. In this case, the ML receiver at the

destination is an MRC receiver. We analyze the error performance of the multiple relay

system working with the SR protocol at high SNR, and show from an error probability

prospective that the SR protocol offers full space diversity. More specifically, the SR

protocol offers a space diversity order of the number of all the potential cooperating

nodes, not just the number of nodes that are transmitting to the destination. The

analytical results match with simulations. Given the same total power constraint, the

relay system with DBPSK modulation outperforms a non-cooperative system which

only has a direct link and used also DBPSK modulation and ML detection.

5.2 Multiple-Relay System Model

We consider a relay network as illustrated in Fig. 5.1, which consists of a source node

s, a destination node d, and L relay nodes {r}L
r=1. In this model, the relays facilitate

the ultimate transmission from the source to the destination by cooperating with the

source. All the relays work in half-duplex mode in which they cannot transmit and

receive at the same time on the same frequency band. We assume that there are in total

(L + 1) orthogonal channels available in the network, and they can be realized in time
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Figure 5.1: The relay system with L relays.

division, frequency division, or code division. The source broadcasts its messages to all

the relays and the destination in one channel, and the relays transmit to the destination

in the remaining L orthogonal channels.

In the differential transmission scheme, the information s̃ is differentially encoded

in the transmit signal xs. By denoting the time index as k, the k-th symbol transmitted

from the source is given by

xs[k] = xs[k − 1]s̃[k], s̃[k] ∈ Ms, (5.1)

where Ms = {+1,−1}. We assume that s̃[k] has equal probabilities of being +1 and

−1, and there are Nf information symbols in one frame. Without loss of generality,

we assume that xs[0] = 1 is the initial reference signal.

The source transmits the signal xs with energy Es to all the relays and the

destination. The corresponding received signals at the relays and the destination in

the kth symbol interval are

ysr[k] =
√

Eshsr[k]xs[k] + nsr[k],

ysd[k] =
√

Eshsd[k]xs[k] + nsd[k], (5.2)
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where r = 1, 2, · · · , L. The r-th relay transmits xr[k] to the destination with energy

Er. The received signal at the destination corresponding to the r-th relay transmission

is given by

yrd[k] =
√

Erhrd[k]xr[k] + nrd[k]. (5.3)

Each hij[k], ij ∈ {sd, sr, rd}L
r=1, as illustrated in Fig. 5.1, denotes the fading

coefficient between nodes i and j at the k-th symbol duration. The fading coefficients

take account of path loss, shadowing and frequency nonselective fading as in [44].

Each sequence, {hij[k]}k, consists of samples of a zero-mean, complex, Gaussian

stochastic process with autocorrelation function E
[
hij[k]h∗ij[k − l]

]
= σ2

ijRij(l),

where σ2
ij is the average power of the fading process, and Rij(l) is the normalized

auto-correlation function evaluated at a time difference l. We denote the correlation

coefficient of the fading gains between two adjacent symbols by ρij = Rij(1), and

hence ρij is a measure of the fluctuation rate of the channel fading process. We assume

that the channel fading processes in different transmission links are independent, i.e.,

∀i 6= m or j 6= n, we have E
[
hij[k]h∗mn[k]

]
= 0. The sequence {nij[k]}k is complex

AWGN with mean zero and variance N0, i.e., E
[|nij[k]|2] = N0. The AWGNs

are mutually independent and are independent of all channel fading processes. The

transmit signals are subject to power constraints E[|xs|2] = 1 and E[|xr|2] = 1 with

E[·] denoting the expectation operator.
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5.3 Differential Detection and Error Probability at

Relay Nodes

5.3.1 Differential Detection at the r-th Relay

At the r-th relay, we will use the two adjacent received signals, ysr[k] and ysr[k−1],

to make differential detection. We write the two adjacent received signals as a vector

ysr = [ysr[k] ysr[k−1]]T . Conditioned on s̃[k], ysr[k] and ysr[k−1] are jointly complex

Gaussian distributed with mean zero and covariance matrix Σsr given as

Σsr = N0




ηsr + 1 ηsrρsrs̃[k]

ηsrρsrs̃
∗[k] ηsr + 1


 , (5.4)

where ηsr = Esσ
2
sr/N0 represents the average received SNR per bit on the link from

the source to the r-th relay. The joint PDF of ysr[k] and ysr[k−1] conditioned on s̃[k]

is

p
(
ysr[k], ysr[k−1] |s̃[k]

)
= p

(
ysr |s̃[k]

)
=

1

π2|Σsr| exp(−yH
srΣ

−1
sr ysr).

Taking natural logarithm of the joint PDF p
(
ysr[k], ysr[k−1] |s̃[k]

)
, and ignoring the

terms that are independent of s̃[k], we can obtain the differential ML detector at the

r-th relay node as

s̃r[k] = sign
(<(

y∗sr[k]ysr[k−1]
))

= sign
(
yH

srBysr

)
, (5.5)

where sign(·) is the sign function and B =




0 1

1 0


 .

5.3.2 Average BER at the r-th Relay

Define ε̄r as the average BER of detecting s̃[k] at the r-th relay. The average BER at

the r-th relay is equal to the average BER of a SISO system, and it is given by [98]

ε̄r = P
(<(

y∗sr[k]ysr[k−1]
)

< 0 | s̃[k] = +1
)

=
1

2(ηsr + 1)
+

(1− ρsr)ηsr

2(ηsr + 1)
. (5.6)
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5.3.3 Instantaneous BER at the r-th Relay

Although the CSI of the source-relay link is not available at the relay, the relay knows

its past received signal and can use it to compute instantaneous BERs.

Conditioned on s̃[k] = +1 and ysr[k−1], the PDF of ysr[k] can be computed as

p
(
ysr[k]

∣∣s̃[k]=+1, ysr[k−1]
)

=
p
(
ysr[k], ysr[k−1] |s̃[k]=+1

)

p
(
ysr[k−1]

) ,

and hence we can see that conditioned on s̃[k] = +1 and ysr[k− 1], the quantity

ysr[k] is complex Gaussian distributed with mean ysr[k−1]ηsrρsr/(ηsr+1) and variance

N0[(ηsr+1)2−η2
srρ

2
sr]/(ηsr+1). Therefore, <(

y∗sr[k]ysr[k−1]
)

is conditionally complex

Gaussian distributed with mean

E
(
<(

y∗sr[k]ysr[k−1]
) ∣∣s̃[k]=+1, ysr[k−1]

)
=

ηsrρsr

(ηsr+1)
|ysr[k−1]|2

and variance

Var
(
<(

y∗sr[k]ysr[k−1]
) ∣∣s̃[k]=+1, ysr[k−1]

)
=

N0[(ηsr+1)2 − η2
srρ

2
sr]

2(ηsr+1)
|ysr[k−1]|2 .

At the r-th relay node, the instantaneous BER of detecting s̃[k] conditioned on ysr[k−1]

can be computed as [98, Appendix]

εr[k] = P
(
<(

y∗sr[k]ysr[k−1]
)

< 0
∣∣s̃[k]=+1, ysr[k−1]

)

=
1

2
erfc

(√
η2

srρ
2
sr |ysr[k−1]|2

N0(ηsr+1)[(ηsr+1)2 − η2
srρ

2
sr]

)
(5.7)

<
1

2
exp

(
− η2

srρ
2
sr |ysr[k−1]|2

N0(ηsr+1)[(ηsr+1)2 − η2
srρ

2
sr]

)
,

where the last inequality is obtained by using erfc(x) < exp(−x2), and erfc(·) is the

complementary error function, i.e., erfc(x) = 2π−1/2
∫∞

x
e−t2dt. The quantity εr[k] is

the instantaneous BER at the r-th relay during the k-th symbol interval.

For a given average received SNR ηsr, noise power N0 and fade rate ρsr, the bit

errors between adjacent symbol intervals are correlated for DBPSK modulation, and

thus the instantaneous BERs, {εr[k]}Nf

k=1, are also correlated.
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5.4 Relaying Protocols

At the relay nodes, various protocols can be employed. We will consider the DF

protocol and the SR protocol, respectively.

5.4.1 DF Protocol

In the DF protocol, each relay differentially demodulates its received signal, and

generates an estimate s̃r[k] of s̃[k] according to (5.5). Then, the r-th relay differentially

remodulates s̃r[k] into xr[k] as

xr[k] = xr[k − 1]s̃r[k], (5.8)

with xr[0] = 1 as the initial reference signal, and transmits xr[k] to the destination with

energy Er.

5.4.2 SR Protocol

When some relay nodes make errors in decoding the source message, the signals

transmitted from these relay nodes become interferences at the destination, and result

in performance degradation. Therefore, when a relay has a large error probability in

decoding the source message, this relay should remain silent instead of transmitting to

the destination.

We assume that the r-th relay knows its average received SNR ηsr, the noise power

N0, and the fade rate ρsr. During the k-th symbol interval, since ysr[k−1] is available

at the r-th relay node, the instantaneous BER, εr[k], can be computed at the r-th relay

node according to (5.7). We can use the instantaneous BERs {εr[k]}k as a selection

criterion at the r-th relay to decide whether to transmit or remain silent.

We define the decoding set D to be the set containing the relay nodes at which
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every instantaneous BER in a whole frame is smaller than a threshold ε, i.e.,

r ∈ D ⇐⇒ εr[k] < ε, ∀k = 1, 2, · · · , Nf . (5.9)

In one frame, if there exists an instantaneous BER greater than the threshold ε at the

r-th relay node, then the r-th relay node does not belong to the decoding set D in this

frame.

If the r-th relay node belongs to the decoding set D, then the r-th relay transmits

to the destination using the DF protocol for the whole frame; if the r-th relay node

does not belong to the decoding set D, then the r-th relay remains silent for the whole

frame, i.e.,

xr[k] =





xr[k − 1]s̃r[k], r ∈ D
0, r /∈ D

, ∀k = 1, 2, · · · , Nf . (5.10)

The decoding set D is a subset of the set which contains all the relay nodes, and D is a

random set.

5.5 Differential Detection at the Destination

5.5.1 Differential Detection at the Destination for a DF Relay

System

We express the received signals at the destination from the source over two adjacent

intervals as a vector ysd = [ysd[k] ysd[k − 1]]T , and the received signals at

the destination from the r-th relay over two adjacent intervals as a vector yrd =

[yrd[k] yrd[k − 1]]T , r = 1, 2, · · · , L. We further express all the received signals

at the destination over two adjacent intervals as a 2(L + 1) × 1 vector yDF
d =

[
yT

sd yT
1d yT

2d · · · yT
Ld

]T . The detection of s̃[k] at the destination is made based on
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yDF
d . Given s̃[k], the PDF of yDF

d is

p(yDF
d |s̃[k]) =

∑

s̃1[k],··· ,s̃L[k]

p(yd|s̃[k], s̃1[k], s̃2[k], · · · , s̃L[k])
L∏

r=1

p(s̃r[k]|s̃[k]). (5.11)

Conditioned on s̃[k] and {s̃r[k]}L
r=1, the vectors, ysd and {yrd}L

r=1, are independent

because of the mutual independence of the fading coefficients of different transmission

links. Thus, the conditional PDF of yDF
d given s̃[k] can be rewritten as

p(yDF
d |s̃[k]) = p(ysd|s̃[k])

L∏
r=1

∑

s̃r[k]∈Ms

p(yrd|s̃r[k])p(s̃r[k]|s̃[k]). (5.12)

It is obvious that conditioned on s̃[k] and {s̃r[k]}L
r=1, the vectors, ysd and {yrd}L

r=1, are

zero-mean, complex, Gaussian distributed with covariance matrices Σsd and {Σrd}L
r=1,

respectively, i.e.,

Σsd = N0




ηsd + 1 ηsdρsds̃[k]

ηsdρsds̃
∗[k] ηsd + 1


, Σrd = N0




ηrd + 1 ηrdρrds̃r[k]

ηrdρrds̃
∗
r[k] ηrd + 1


, (5.13)

where ηsd = Esσ
2
sd/N0 and ηrd = Erσ

2
rd/N0 represent the average received SNRs per

bit in the corresponding links. Taking the log-likelihood ratio of yDF
d conditioned on

each value of s̃[k], substituting the expressions for ysd[k] in (5.2) and yrd[k] in (5.3)

into p(yDF
d |s̃[k]), and ignoring the terms that are independent of s̃[k], we obtain the

ML detector for s̃[k] at the destination as

s̃DF-ML
d [k] = sign

(
ts +

L∑
r=1

fML(ε̄r, tr)
)
, (5.14)

where ε̄r is given in (5.6) as the average BER at the r-th relay node, the function

fML(ε̄r, tr) is given by

fML(ε̄r, tr) = ln
(1− ε̄r) exp(tr) + ε̄r

(1− ε̄r) + ε̄r exp(tr)
, ε̄r ∈ (0, 1/2), tr ∈ (−∞,∞), (5.15)

110



5.5 Differential Detection at the Destination

and

ts = 2
wsd

N0

yH
sdBysd = 2

wsd

N0

<(
ysd[k]∗ysd[k − 1]

)
,

tr = 2
wrd

N0

yH
rdByrd = 2

wrd

N0

<(
yrd[k]∗yrd[k − 1]

)
,

wij =
ηijρij

(ηij+1)2 − η2
ijρ

2
ij

, ij ∈ {sd, rd}L
r=1. (5.16)

The wij is the weight for the output of each transmission link according to its channel

statistical information. It is easy to see that fML(ε̄r, tr) is an increasing function of tr

for any fixed ε̄r, and that fML(ε̄r, tr) ∈ (−Tr, Tr), where

Tr = ln[(1− ε̄r)/ε̄r] > 0. (5.17)

However, the nonlinearity of fML(ε̄r, tr) makes the ML detector complicated and the

error probability analysis intractable. It was shown in [36] that fML(ε̄r, tr) can be well

approximated by a PL function fPL(ε̄r, tr), i.e.,

fML(ε̄r, tr) ≈ fPL(ε̄r, tr) =





−Tr, tr ≤ −Tr

tr, −Tr ≤ tr ≤ Tr.

Tr, tr ≥ Tr

(5.18)

This leads to the following PL detector at the destination:

s̃DF-PL
d [k] = sign

(
ts +

L∑
r=1

fPL(ε̄r, tr)
)
. (5.19)

Furthermore, as we will see later, the performance of this PL detector provides a very

tight upper bound on the error probability of the ML detector.

Remark 5.1. For a DF single relay system, i.e., L = 1, when the source-destination

and relay-destination links have the same statistics and the fading coefficients remain

constant over two consecutive intervals, i.e., wsd = wrd and ρij = 1,∀ij ∈
{sd, sr, rd}, the ML detector (5.14) and the PL detector (5.19) reduce to the ML

detector [72, Eq. (21)] and the PL detector [72, Eq. (26)], respectively.
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5.5.2 Differential Detection at the Destination for a SR Relay

System

In the SR protocol, only the relay nodes which belong to the decoding set D will

transmit to the destination. Conditioned on D, the detection of s̃[k] at the destination

is made based on ysd and {yrd}r∈D. The received signals at the destination over two

adjacent intervals can be written as a 2(|D| + 1) × 1 vector ySR
d = [yT

sd, {yT
rd}r∈D]

with |D| representing the cardinality of the set D. Similar to the case of DF in the last

subsection, we can obtain the PDF of ySR
d conditioned on s̃[k] and D as

p(ySR
d | s̃[k],D) = p(ysd|s̃[k])

∏
r∈D

∑

s̃r[k]∈Ms

p(yrd|s̃r[k])p(s̃r[k]|s̃[k]). (5.20)

When the r-th relay belongs to the decoding set D, we have p(s̃r[k] 6= s̃[k]|s̃[k]) <

ε. Usually, the threshold ε is very small to make sure the relays that belong to the

decoding set have very small decoding error probabilities. Thus, we can have p(s̃r[k] 6=
s̃[k]|s̃[k]) ≈ 0 and p(s̃r[k] = s̃[k]|s̃[k]) ≈ 1. Therefore, the conditional PDF of ySR

d in

the above equation reduces to

p(ySR
d | s̃[k],D) = p(ysd|s̃[k])

∏
r∈D

p(yrd|s̃r[k]= s̃[k]). (5.21)

Taking the log-likelihood ratio of ySR
d conditioned on D and each value of s̃[k], and

ignoring the terms that are independent of D and s̃[k], we obtain the ML detector for

s̃[k] at the destination conditioned on D as

s̃SR
d [k] = sign

(
ts +

∑
r∈D

tr

)
, (5.22)

where ts and tr are given in (5.16).

Remark 5.2. For the SR protocol, we can see from (5.22) that the ML receiver at

the destination is an MRC receiver. Compared to the ML and PL receivers for the

DF protocol, the MRC receiver for the SR protocol is relatively simple, because some
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computational complexity is shifted from the destination to the relay nodes which need

to compute their instantaneous BERs and make decisions on whether to transmit or

remain silent for the SR protocol.

Remark 5.3. For the DF protocol, the destination needs to know the average BER for

all the relay nodes, i.e., {ε̄r}L
r=1. However, for the SR protocol, the destination only

needs to know the decoding set D for each frame.

5.5.3 Statistics of the Destination Decision Metrics

From (5.14), (5.19) and (5.22), we can see that the destination decision metrics are

functions of ts and tr. To evaluate the error performance of the detectors derived in

the previous two subsections, we need to know the statistics of ts, {tr}L
r=1, fPL(ε̄r, tr),

and (ts +
∑
r∈D

tr). It can be seen from (5.16) that ts and tr involve Hermitian quadratic

forms yH
ij Byij , ij ∈ {sd, rd}L

r=1, of zero-mean, complex, Gaussian vectors. Hence,

we will first study the statistics of the quadratic form yH
ij Byij . Based on this, we will

derive the PDF of ts, tr, the CDF of fPL(ε̄r, tr), and the CDF of (ts +
∑
r∈D

tr). These

results will be used later to evaluate the error performance of the relay system working

under the DF protocol or the SR protocol.

With the noise whitening and eigne-decomposition techniques [93, Section

3.1a.1], we can express the quadratic form yH
ij Byij as

yH
ij Byij =





N0(αij|uij|2−βij|vij|2), s̃i[k]=+1

N0(βij|ũij|2−αij|ṽij|2), s̃i[k]=−1
, (5.23)

where αij and βij are given as

αij = 1 + ηij + ηijρij, βij = 1 + ηij − ηijρij, (5.24)

while uij and vij are i.i.d. complex Gaussian RVs with zero mean and unit variance;

ũij and ṽij are also i.i.d. complex Gaussian RVs with zero mean and unit variance. We
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define zij = αij|uij|2−βij|vij|2 and z̃ij = βij|ũij|2−αij|ṽij|2. Notice that both zij and

z̃ij are the weighted differences between two independent exponential RVs. The PDF

and CDF of zij can be obtained respectively as

fzij
(z) =





1
αij+βij

ez/βij , z ≤ 0

1
αij+βij

e−z/αij , z ≥ 0
, (5.25)

P (zij ≤ z) =





βij

αij+βij
ez/βij , z ≤ 0

1− αij

αij+βij
e−z/αij , z ≥ 0

. (5.26)

The PDF and CDF of z̃ij are the same as the ones for zij except for interchanging αij

with βij . With the statistics of zij and z̃ij , the statistics of yH
ij Byij are obvious since

yH
ij Byij equals either N0zij or N0z̃ij .

From (5.16), we have ts = 2wsdzsd conditioned on s̃[k] = +1. Therefore, the

PDF of ts conditioned on s̃[k] = +1 is given by

fts|s̃[k]=+1(t) =





1
2wsd(αsd+βsd)

exp( t
2wsdβsd

), t≤0

1
2wsd(αsd+βsd)

exp( −t
2wsdαsd

), t≥0
. (5.27)

We also have tr = 2wrdzrd if s̃r[k] = +1, and tr = 2wrdz̃rd if s̃r[k] = −1. With the PL

function fPL(ε̄r, tr) in (5.18) and the CDF of zij , we can obtain the CDF of fPL(ε̄r, tr)

conditioned on ε̄r and s̃r[k] = +1 as

P
(
fPL(ε̄r, tr) ≤ t | ε̄r, s̃r[k]=+1

)
=





0, t∈ [−∞,−Tr)

βrd

αrd+βrd
e

t
2wrdβrd , t∈ [−Tr, 0)

1− αrd

αrd+βrd
e

−t
2wrdαrd , t∈ [0, Tr)

1, t∈ [Tr,∞)

. (5.28)

In addition, the CDF, P
(
fPL(ε̄r, tr) ≤ t | ε̄r, s̃r[k]=−1

)
, is the same as P

(
fPL(ε̄r, tr) ≤

t | ε̄r, s̃r[k]=+1
)

except for interchanging αrd with βrd.

Based on the expressions of ts and tr in (5.16), the term (ts +
∑
r∈D

tr) in (5.22) can
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be expressed as a quadratic form:

ts +
∑
r∈D

tr =
2

N0

(
w

1/2
sd ysd +

∑
r∈D

w
1/2
rd yrd

)H

B
(
w

1/2
sd ysd +

∑
r∈D

w
1/2
rd yrd

)
. (5.29)

It is clear that (w
1/2
sd ysd +

∑
r∈D

w
1/2
rd yrd) is a zero-mean, complex, Gaussian vector since

ysd and yrd are independent, zero-mean, complex, Gaussian vectors. Similar to the

case of yH
ij Byij in (5.23), conditioned on s̃[k] = +1, we can express (ts +

∑
r∈D

tr) as a

weighted difference between two independent exponential RVs, i.e.,

ts +
∑
r∈D

tr = 2(αD|uD|2 − βD|vD|2), (5.30)

where uD and vD are i.i.d. complex Gaussian RVs with zero mean and unit variance,

and αD and βD are given by

αD = wsdαsd +
∑
r∈D

wrdαrd, βD = wsdβsd +
∑
r∈D

wrdβrd. (5.31)

Similar to (5.26), we can obtain the CDF of (ts +
∑
r∈D

tr) conditioned on D and s̃[k] =

+1 as

P
(
ts +

∑
r∈D

tr ≤ t
∣∣ s̃[k] = +1,D

)
=





βD
αD+βD

exp( z
2βD

), t ≤ 0

1− αD
αD+βD

exp( −z
2αD

), t ≥ 0
. (5.32)

The PDF (5.27), and the CDFs (5.28) and (5.32) will be used in the next two

sections to evaluate the error performance of the relay systems under the DF protocol

and the SR protocol.

5.6 Error Performance for a Relay System With the DF

Protocol

In this section, we consider the error probability of a relay system working with

the DF protocol. We obtain a closed-form expression for the BER and a high SNR
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approximation for the BER of a single relay system, and a Chernoff upper bound on

the BER of a multiple relay system.

5.6.1 Error Probability for a DF Single Relay System

In this subsection, we consider the error probability of a single relay system, i.e., L =

1. We derive the exact BER of the PL receiver (5.19), and a high SNR approximation

for the BER.

Exact BER of a DF Single Relay System

According to the PL decision metric (5.19) and the equal probabilities of s̃[k] being

+1 and −1, the BER of the PL receiver at the destination is computed as

P DF-PL
e =P

(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1

)

=(1− ε̄1)P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = +1

)

+ ε̄1P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = −1

)
. (5.33)

Now, we compute the term P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = +1

)
in

(5.33) as follows:

P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = +1

)

= Ets|s̃[k]=+1

[
P

(
fPL(ε̄1, t1) < −t | ε̄1, ts = t, s̃1[k] = +1

)]

=

∫ ∞

−∞
P

(
fPL(ε̄1, t1) < −t | ε̄1, s̃1[k] = +1

)
fts|s̃[k]=+1(t)dt.

With the PDF of ts given in (5.27) and the CDF of fPL(ε̄1, t1) given in (5.28), we can

compute P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = +1

)
in the above equation as

P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = +1

)
=

βsd

αsd+βsd

− P DF-PL
e1 , (5.34)
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and similarly, we can obtain

P
(
ts + fPL(ε̄1, t1) < 0 | ε̄1, s̃[k] = +1, s̃1[k] = −1

)
=

βsd

αsd+βsd

− P DF-PL
e2 , (5.35)

where P DF-PL
e1 and P DF-PL

e2 are given as

P DF-PL
e1 = ϕPL(αrd, βrd, αsd, βsd, Tr)−ϕPL(βrd, αrd, βsd, αsd, Tr), (5.36)

P DF-PL
e2 = ϕPL(βrd, αrd, αsd, βsd, Tr)−ϕPL(αrd, βrd, βsd, αsd, Tr), (5.37)

with r = 1 and the function ϕPL(r1, r2, r3, r4, T ) is defined as

ϕPL(r1, r2, r3, r4, T ) =
r1

wsd(r1+r2)(r3+r4)

( 1

wrdr1

+
1

wsdr4

)−1

×
{
1− exp

[
−T

2

( 1

wrdr1

+
1

wsdr4

)]}
. (5.38)

Therefore, with (5.33), (5.34) and (5.35), we can obtain a closed-form expression for

the BER of a DF single relay system as

P DF-PL
e =

βsd

αsd+βsd

− (1− ε̄1)P
DF-PL
e1 − ε̄1P

DF-PL
e2 . (5.39)

This BER expression for the PL receiver is a simple function of the SNRs, the variances

and fade rates of all the transmission links. Actually, the exact BER of the PL receiver

is an upper bound on the BER of the nonlinear ML receiver. As we will see later, the

BER (5.39) of the PL receiver is very close to the BER of the nonlinear ML receiver

in all cases for a single relay system working with DF protocol. We will verify this by

simulations later.

The BER of the DF single relay system with DBPSK modulation was also

obtained in [72, Eq.(46)] under the assumption that the fading coefficients remain

constant over two consecutive symbol intervals. This is a special case of the BER

expression (5.39) when ρij = 1. Moreover, the BER expression in [72, Eq.(46)]

is expressed as the sum of several infinite series, whereas the BER result (5.39) is

expressed in a much simpler form.
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BER Approximation at High SNR for a DF Single Relay System

We next develop a high SNR approximation of P DF-PL
e (5.39). The approximation will

clearly show the effects of SNR, network geometry, and power allocation on the BER.

We assume that all the average received SNRs, ηij , ij ∈ {sd, sr, rd}, become

large, but remain in fixed proportion with one another. Specifically, we assume that

ηij = kijη, ij ∈ {sd, sir, rd}, (5.40)

where η is the average single-hop SNR per bit, kij’s are constants related to network

geometry and power allocation. We substitute (5.40) into (5.39), and express P DF-PL
e

(5.39) as a function of 1/η. The high SNR approximation can be obtained by applying

a Taylor expansion at the point 1/η = 0.

For simplicity, we assume that the fading coefficients of all the transmission links

vary very slowly, and remain approximately unchanged in two consecutive symbol

intervals, i.e., ρij = 1, ij ∈ {sd, sr, rd}. With this assumption and (5.40), we can

express αij, βij, wij and ε̄1 as functions of kij and 1/η as follows

αij =
2kij+1/η

1/η
, βij =1, wij =

kij

2kij+1/η
, ε̄1 =

1/η

2(ksr+1/η)
.

Using a Taylor expansion at the point 1/η = 0, and ignoring the terms containing the

3rd and higher powers of 1/η, we can approximate the three terms of P DF-PL
e in (5.39)

as

βsd

αsd+βsd

≈ 1

2ksd

1

η
− 1

2k2
sd

1

η2
,

(1−ε̄1)P
DF-PL
e1 ≈ 1

2ksd

1

η
− 1

2ksd

( 3

2krd

+
1

ksd

+
1

ksr

) 1

η2
, (5.41)

ε̄1P
DF-PL
e2

≈ − 4

ksdksr

1

η2
ln(1+2ksrη),

where the last approximation also makes use of the following approximation:

exp
[
ax ln

( x

x + b

)] ≈ 1− ax ln
(x + b

x

)
, when x → 0.
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Combining the three terms in (5.41), we have the BER approximation of P DF-PL
e at high

SNR as

P DF-PL
e ≈ 1

2ksd

[ 3

2krd

+
2 + ln(1+2ksrη)

2ksr

] 1

η2

=
1

2ηsd

[ 3

2ηrd

+
2 + ln(1+2ηsr)

2ηsr

]
. (5.42)

Remark 5.4. From (5.42), we can explicitly see that the BER of the PL receiver for a

single relay system decreases as (η−2 ln η) when η is large. According to the definition

of diversity order1, the DF single relay system with the PL receiver has a diversity

order of 2, i.e.,

− lim
η→∞

ln(η−2 ln η)

ln η
= 2− lim

η→∞
ln(ln η)

ln η
= 2.

Although the BER of the DF single relay systems is greater by a factor of (ln η) than

the BER of a traditional diversity system where BER decreases as η−2 for a large η,

the diversity order of the single relay system is still 2 since the diversity order only

captures the exponent of η−1 factor and ignores the smaller order terms.

Remark 5.5. From (5.42), we can see that ηsr and ηrd enter differently in the BER

expression for the differential DF relay system. This means that the source-relay link

and the relay-destination link play different roles in determining the end-to-end error

performance. At a high SNR, i.e., a large η, usually we have ln(1 + 2ksrη) = ln(1 +

2ηsr) > 1, and hence ηsr has greater effects on the BER than ηrd. This could be

interpreted as follows: the reliability of the source-relay link determines the amount of

possible error propagation, and hence has greater effects on the BER.

Note that ηsr and ηrd are related to both network geometry and power allocation

between the source and relay, i.e., ηsr = Esσ
2
sr/N0 and ηrd = Erσ

2
rd/N0. We will

illustrate how ηsr and ηrd will affect the BER in the numerical results.
1The diversity order is defined as − lim

SNR→∞
(log BER)/(log SNR).
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Furthermore, the BER approximation (5.42) for the differential DF relay reduces

to [36, Eq. (19)] which is the BER for the non-coherent DF relay case except for

replacing 2kij in (5.42) by kij . This is could be explained as follows. BFSK modulation

is used in [36], while DBPSK modulation is used in this chapter. Asymptotically,

DBPSK modulation is 3 dB more power-efficient than BFSK modulation. Thus, it is

2kij in (5.42), and kij in [36, Eq. (19)].

5.6.2 Error Probability for a DF Multiple Relay System

In this subsection, we consider the error probability of a multiple relay system, i.e.,

L ≥ 1. The complexity of the error probability analysis of the PL detector increases

exponentially in the number of relays. We develop a Chernoff upper bound on the

BER and a high SNR approximation for the BER of a multiple relay system with the

DF protocol.

The BER of a multiple relay system is defined as

P DF-PL
e = P

(
ts+

L∑
r=1

fPL(ε̄r, tr) < 0 | {ε̄r}L
r=1, s̃[k]=+1

)
.

By applying the Chernoff bound [86, Section 2.1.5] and the improved Chernoff bound

by a factor of two [99, Section 4.2.4], the BER in the above equation can be upper

bounded as

P DF-PL
e ≤ 1

2
E

[
exp

(
δts+δ

L∑
r=1

fPL(ε̄r, tr)
)
| {ε̄r}L

r=1, s̃[k]=+1

]

=
1

2

L∏
r=1

{
(1−ε̄r)E

[
eδfPL(ε̄r,tr) | ε̄r, s̃r[k]=+1

]
+ ε̄rE

[
eδfPL(ε̄r,tr) | ε̄r, s̃r[k]=−1

]}

× E[
eδts |s̃[k]=+1

]
, (5.43)

where δ ≤ 0 is the parameter to be optimized.

Based on the PDF of ts conditioned on s̃[k] = +1, and tr conditioned on

s̃r[k] = +1 or s̃r[k] = −1, we can easily compute the characteristic functions of
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ts and fPL(ε̄r, tr) as

E
[
eδts |s̃[k]=+1

]
= φ1(αsd, βsd, wsd, δ),

E
[
eδfPL(ε̄r,tr) | ε̄r, s̃r[k]=+1

]
= φ1(αrd, βrd, wrd, δ) +

2wrdδ

αrd+βrd

×

[φ2(βrd, wrd, Tr, δ)−φ2(αrd, wrd, Tr,−δ)], (5.44)

E
[
eδfPL(ε̄r,tr) | ε̄r, s̃r[k]=−1

]
= φ1(αrd, βrd, wrd,−δ) +

2wrdδ

αrd+βrd

×

[φ2(αrd, wrd, Tr, δ)−φ2(βrd, wrd, Tr,−δ)],

where −1/(2wsdβsd) < δ ≤ 0, and the functions φ1(α, β, w, δ) and φ2(α, w, T, δ) are

defined as

φ1(α, β, w, δ) =
1

(1−2wαδ)(1+2wβδ)
,

φ2(α, w, T, δ) =
α2

1+2wαδ
exp

[−T (
1

2wα
+δ)

]
.

Substituting (5.44) into (5.43), we can obtain the Chernoff bound on the BER. The

tightest bound has to be obtained by selecting δ that minimizes the right hand side of

(5.43). By solving the equation dφ1(αij, βij, wij, δ)/dδ = 0, it is easy to check that

the value of δ that minimizes φ1(αij, βij, wij, δ) is −1/2, regardless of ij. However,

it is very difficult to find the δ which minimizes the Chernoff bound (5.43) because

(5.43) and (5.44) are fairly complex. Therefore, we choose δ = −1/2 to evaluate the

Chernoff bound, and thus obtain the BER upper bound

P DF-PL
e ≤ 1

2

[
1−

( ηsdρsd

1+ηsd

)2
] L∏

r=1

[
(1− ε̄r)Cr + ε̄rDr

]
(5.45)

where Cr and Dr are given by

Cr = 1−
(ηrdρrd

1+ηrd

)2
{

1−exp
[
−Tr

2

(1+ηrd

ηrdρrd

)]}
= 1−

(ηrdρrd

1+ηrd

)2
[
1−

( ε̄r

1−ε̄r

) 1+ηrd
2ηrdρrd

]
,

Dr =
4αrdβrd

4αrdβrd−3(1+ηrd)2
+

ηrdρrd

1+ηrd

(
αrde

Tr

αrd−3βrd

+
βrde

−Tr

3αrd−βrd

)
exp

[
−Tr

2

(1+ηrd

ηrdρrd

)]
.
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The Chernoff upper bound on the BER is valid for a DF relay system with an arbitrary

number of relay nodes.

If all the relays have the same average BER ε̄ when detecting s̃[k], i.e., ε̄ = ε̄r

and T = Tr for any r = 1, 2, · · · , L, and all the transmission links from relays to

destination have the fade rate and the same average received SNR per bit, i.e., ρrd = ρd

and ηrd = ηd for any r = 1, 2, · · · , L, the Chernoff bound (5.45) on BER is reduced to

P DF-PL
e ≤ 1

2

[
1−

( ηsdρsd

1 + ηsd

)2
] [

(1− ε̄)C + ε̄D
]L

, (5.46)

where C = Cr and D = Dr for any r = 1, 2, · · · , L.

We next develop a high SNR approximation for the BER Chernoff bound given in

(5.45). For simplicity, we assume that the fading processes are stationary, i.e., ρij = 1,

ij ∈ {sd, sr, rd}L
r=1. In the same way as in (5.40), we assume that the average received

SNRs remain in fixed proportion. Substituting ηsr = ksrη into the expression of ε̄r in

(5.6) and applying a Taylor expansion at the point 1/η = 0, we can approximate ε̄r and

(1− ε̄r) as

ε̄r ≈ 1

2ksr

η−1, 1− ε̄r ≈ 1− 1

2ksr

η−1. (5.47)

We also substitute (5.40) into the expressions of Cr and Dr, apply a Taylor expansion

at the point 1/η = 0, and then obtain high SNR approximations for Cr and Dr as

Cr ≈ 2

krd

η−1 +
(
1− 2

krd

η−1
)√

ε̄r

1−ε̄r

≈ 1√
2ksr

η−1/2 +
2

krd

η−1 (5.48)

Dr ≈ − 1

3krd

η−1 +
(
1− 1

krd

η−1
)√

1−ε̄r

ε̄r

≈
√

2ksr η1/2 −
√

2ksr

krd

η−1/2. (5.49)

With the high SNR approximations for ε̄r, Cr and Dr, we can have the term
[
(1 −

ε̄r)Cr + ε̄rDr

]
be approximated as

(1− ε̄r)Cr + ε̄rDr ≈ 2√
2ksr

η−1/2 +
2

krd

η−1 =

√
2

ηsr

+
2

ηrd

, (5.50)
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and then obtain a high SNR approximation for the Chernoff bound on the BER as

P DF-PL
e ∼ 1

ηL/2+1

1

ksd

L∏
r=1

(√
2

ksr

+
2

krd

η−1/2
)

=
1

ηsd

L∏
r=1

(√
2

ηsr

+
2

ηrd

)
. (5.51)

Remark 5.6. From the high SNR approximation (5.51), we can see that the DF relay

system achieves a diversity order greater than (L/2 + 1). This result is consistent with

[36, Theorem 1] for a DF relay system with BFSK modulation. In [36, Theorem 1],

the diversity order lower bound (L/2+1) is obtained through using the Bhattacharyya

upper bound on BER.

Remark 5.7. For a DF multiple relay system, we also can see from (5.51) that ηsr

dominates the source-relay-destination transmission link, and ηsrs have greater effects

on the end-to-end BER than ηrds. This matches with the result in Remark 5.5 for a DF

single relay system.

5.7 Error Performance for a Relay System With the SR

Protocol

For a relay system with the SR protocol, the destination receiver is an MRC receiver

as shown in (5.22). In this section, we will analyze the error probability of the MRC

receiver for the relay system working with the SR protocol.

According to the destination decision metric in (5.22) and the fact that the

decoding set D is a random set, the BER of the relay system with the SR protocol

is computed as

P SR
e = P

(
ts +

∑
r∈D

tr < 0
∣∣ s̃[k] = +1

)

=
∑
D

P
(
ts +

∑
r∈D

tr < 0
∣∣ s̃[k] = +1,D

)
P (D), (5.52)
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where the second equality follows from the total probability theorem, P (D) is the

probability of a particular decoding set D, and
∑
D

(·) represents the summation over all

the possible decoding sets.

5.7.1 Error Probability Conditioned on the Decoding Set

Conditioned on D being the decoding set, the CDF of (ts +
∑
r∈D

tr) is given in (5.32).

Thus, we can obtain the BER conditioned on the decoding set D as

P
(
ts +

∑
r∈D

tr < 0
∣∣ s̃[k] = +1,D

)
=

βD
αD + βD

. (5.53)

Although (5.53) is an exact expression of the conditional BER, we cannot see the

effects of decoding set and various system parameters on the conditional BER. In

the following, we develop a Chernoff bound on the conditional BER, which shows

explicitly the effects of decoding set and various system parameters.

By applying the Chernoff upper bound [86, Section 2.1.5] and the improved

Chernoff bound by a factor of two [99, Section 4.2.4], the conditional BER in (5.53)

can be upper bounded as

P
(
ts+

∑
r∈D

tr < 0
∣∣ s̃[k]=+1,D

)
≤ 1

2
E

[
eδSRts |s̃[k]=+1

] ∏
r∈D
E

[
eδSRtr |s̃[k]=+1,D]

.

The characteristic function of ts is already given in (5.44), and the characteristic

function of tr takes the similar form as the one of ts. The tightest upper bound on

the conditional BER can be obtained by selecting δSR = −1/2, and given by

P
(
ts+

∑
r∈D

tr < 0
∣∣ s̃[k]=+1,D

)
≤ 1

2

[
1−

(ηsdρsd

1+ηsd

)2] ∏
r∈D

[
1−

(ηrdρrd

1+ηrd

)2]
. (5.54)

In fact, (5.54) is equal to the BER Chernoff bound for nonidentical MISO channels

[100, Eq. (33)].

In the same way as in Eq. (5.40) in Section 5.6.1, we assume that the average

received SNRs remain in fixed proportion. By applying a Taylor expansion of the right
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hand side of (5.54) at the point 1/η = 0, a high SNR approximation of the conditional

BER can be written as

P
(
ts+

∑
r∈D

tr < 0
∣∣ s̃[k]=+1,D

)
∼ 1

2

[
(1− ρ2

sd) +
2

ηksd

] ∏
r∈D

[
(1− ρ2

rd) +
2

ηkrd

]
.

We further assume that the fading coefficients of all the transmission links change very

slowly, i.e., ρij = 1, ij ∈ {sd, rd}. Then, the above high SNR approximation for the

conditional BER reduces to

P
(
ts+

∑
r∈D

tr < 0
∣∣ s̃[k]=+1,D

)
∼ 1

η(1+|D|) 2
|D| 1

ksd

∏
r∈D

1

krd

. (5.55)

From above equation, we can see that the conditional BER has a diversity order of

(1 + |D|).

5.7.2 Decoding Set Probability

We now consider P (D), the probability of a particular decoding set. Since all the

potential relays make their decisions independently, and the fading coefficients of the

links from the source to relays are also independent, we have

P (D) =
∏
r∈D

P (r ∈ D)×
∏

r/∈D
P (r /∈ D)

=
∏
r∈D

P (r ∈ D)×
∏

r/∈D

[
1− P (r ∈ D)

]
(5.56)

According to the relay selection criterion in (5.9) for the SR protocol, and the

instantaneous BER (5.7) at the r-th relay, the probability of the r-th relay belonging to

the decoding set D is computed as

P (r ∈ D) = P (εr[1] < ε, εr[2] < ε, · · · , εr[Nf ] < ε)

= P (|ysr[0]| > ysr, |ysr[1]| > ysr, · · · , |ysr[Nf−1]| > ysr)

= P (|ysr[0]| > ysr)

Nf−1∏

k=1

P
(|ysr[k]| > ysr

∣∣ |ysr[k−1]| > ysr

)
, (5.57)
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where ysr =
√

N0(ηsr+ 1)/(wsrηsrρsr) erfc−1(2ε), and erfc−1(·) represents the

inverse function of erfc(·).
Conditioned on xs[k] and xs[k−1], ysr[k] and ysr[k−1] are correlated, zero-mean,

complex, Gaussian RVs. Then, |ysr[k]| and |ysr[k−1]| are bivariate Rayleigh distributed

[96, Ch. 6.1]. The power correlation coefficient, %sr, of the two Rayleigh distributed

amplitudes,|ysr[k]| and |ysr[k−1]|, is given by [96, Section 6.1, Page 170]

%sr =

∣∣E(
ysr[k]y∗sr[k−1]

)∣∣2
E

(|ysr[k]|2) · E(|ysr[k−1]|2) =
η2

srρ
2
sr

(ηsr+ 1)2
.

The bivariate Rayleigh CCDF is given by [96, Section 6.1], [101, Eq.(4)]

P
(|ysr[k]| > ysr, |ysr[k−1]| >ysr

)
= exp

(
− y2

sr

N0(ηsr+ 1)

)
×

[
1−Q1(asrysr, bsrysr) + Q1(bsrysr, asrysr)

]
,

where Q1(·, ·) is the first order Marcum Q-function, and

asr =

√
2/(1−%sr)

N0(ηsr+ 1)
=

√
2wsr(ηsr+ 1)

N0ηsrρsr

, (5.58)

bsr = asr
√

%sr =

√
2wsrηsrρsr

N0(ηsr+ 1)
. (5.59)

Then, the conditional probability in (5.57) can be computed as

P
(|ysr[k]| > ysr

∣∣ |ysr[k−1]| > ysr

)
=

P
(|ysr[k]| > ysr, |ysr[k−1]| > ysr

)

P
(|ysr[k−1]| > ysr

)

= 1−Q1(asrysr, bsrysr) + Q1(bsrysr, asrysr). (5.60)

By substituting the conditional probability (5.60) into (5.57), the probability of the r-th

relay belonging to the decoding set D is expressed as

P (r ∈ D) = e−y2
sr/[N0(ηsr+1)]

[
1−Q1(asrysr, bsrysr)+Q1(bsrysr, asrysr)

]Nf−1
. (5.61)

The Marcum Q-functions in the above equation do not indicate how the systems

parameters affect P (r ∈ D). Hence, we derive an upper bound on P (r ∈ D) as (see
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Appendix C for details)

P (r ∈ D) ≤ (2ε)

[
1

wsrηsrρsr
+4(Nf−1)

β2
sr

(α2
sr+β2

sr)

]
. (5.62)

When the fading coefficients change very slowly in time, ρsr = 1, and the average

single-hop SNR η is very large, we can obtain a high SNR approximation for P (r ∈ D)

by a Taylor expansion of the right hand side of (5.62) at the point 1/η = 0, i.e.,

P (r ∈ D) ∼ 1− ln( 1
2ε

)

ksrη

(
2 +

Nf − 1

ksrη + 1

)
. (5.63)

The above Taylor expansion ignores the terms containing higher orders of 1/η. Since

the largest term which has been ignored is positive, the upper bound (5.62) becomes

the approximation (5.62). Substituting (5.63) in to (5.56), we can obtain a high SNR

approximation for the decoding set probability as

P (D) ∼
∏
r∈D

{
1− ln( 1

2ε
)

ηksr

[
2 +

Nf − 1

ηksr+1

]}
×

∏

r/∈D

{
ln( 1

2ε
)

ηksr

(
2 +

Nf − 1

ηksr+1

)}

∼ 1

ηL−|D|

[
ln

( 1

2ε

)]L−|D| ∏

r/∈D

1

ksr

(
2 +

Nf − 1

ηksr+1

)
. (5.64)

Combining (5.55) and (5.64) into (5.52), we can obtain a high SNR approximation for

the BER of the relay system with SR protocol as

P SR
e ∼

[
ln( 1

2ε
)
]L

ηL+1

1

ksd

×
∑
D

[
ln

( 1

2ε

)]−|D| ∏
r∈D

1

krd

∏

r/∈D

1

ksr

(
2 +

Nf − 1

ηksr+1

)
. (5.65)

For a multiple relay system with L relays, there are 2L possible decoding sets. Hence,

it is difficult to obtain the exact BER for an arbitrary L. However, from (5.65), we can

explicitly see that the relay system with the SR protocol achieves a diversity order of

(L + 1) from the error probability perspective.

Remark 5.8. Although high SNR is assumed in (5.65), the instantaneous channel gain

still can be very small, and instantanous error probability also can be quite high. The

diversity order of (L + 1) means that the relay system with the SR protocol offers full
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diversity in the number of all the potential cooperating nodes, not just the number of

nodes that are transmitting to the destination. This result is consistent with the diversity

order shown from the outage probability perspective in [34, 44].

5.8 Numerical Results

In this section, we present simulation results and numerical results for relay systems

that use DBPSK modulation and employ either the DF or SR protocol. The variances

of the fading coefficients are assigned using a path-loss model of the form σ2
ij ∝ d−4

ij ,

where dij denotes the distance between nodes i and j. The quantity σ2
sd is normalized

to one. The autocorrelation functions of the fading processes are assigned according to

Jake’s model, i.e., ρij = J0(2πfDTs),∀ij∈{sd, sr, rd}L
r=1, where fD is the maximum

Doppler frequency and Ts is the sampling period which is equal to the bit interval.

Suppose that the total transmit energy is E, i.e., E = Es +
∑L

r=1 Er. For simplicity,

we also assume that the source and all the relays have the same transmit energy per

bit, i.e., Es = Er = E/(L + 1),∀r = 1, 2, · · ·L. We compare the BER of a relay

system with that of a non-cooperative system which only has a direct link from the

source to the destination. For fair comparison, the transmitted energy per bit for the

non-cooperative system is selected to be E. In all the numerical results, we define SNR

as E/N0.
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Figure 5.2: Average BER of a DF single relay system for the case of fD = 75 Hz and

Ts = 2× 10−4s (ρij = 0.9978).
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Figure 5.3: Average BER of a DF single relay system for the case of fD = 75 Hz and

Ts = 2× 10−5s (ρij = 0.999978). 129
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In Figs. 5.2 and 5.3, we show the BER of single relay systems with the DF

protocol for various network geometries and fade rates. From the slopes of the BER

curves in Figs. 5.2 and 5.3, we can see clearly the diversity gains achieved by the relay

systems over the non-cooperative systems. It also can be observed that there are certain

shifts between the BER curves of the relay systems and that of the non-cooperative

system. These shifts correspond to power gains which combat path loss and depend

on the location of the relay. Furthermore, the exact BER curves of the PL detector

coincide with the simulation results of the nonlinear ML detector. Since the exact BER

(5.39) of the PL detector is in closed form and consists of only elementary functions,

it is convenient to estimate the BER of the ML detector by using the exact BER (5.39)

of the PL detector, rather than resorting to Monte Carlo simulations. The curves for

the BER approximation (5.42) at high SNR are also shown in Fig. 5.3. The BER

approximation (5.42) is very close to the exact BER when the SNR is greater than 12

dB.

To study the impacts of the location of the relay on the end-to-end BER for a DF

single relay system, we assume that the source, relay and destination are collinear, i.e.,

dsr + drd = dsd, and show the BER versus the distance ratio dsr/dsd in Fig. 5.4. From

Fig. 5.4, we can see that the end-to-end BER is decreasing with dsr/dsd when dsr/dsd

is small, and is increasing with dsr/dsd when dsr/dsd is large. It also can be observed

that, the end-to-end BER is minimized when the relay is closer to the source than the

destination, i.e., dsr/dsd < 0.5. This means that to minimize the end-to-end BER, the

source-relay link received SNR ηsr should be greater than the relay-destination link

received SNR ηrd.

Fig. 5.5 presents the simulated BERs and the Chernoff bounds (5.45) for DF

multiple relay systems. We can see that the Chernoff bounds (5.45) have the same

slopes as the simulation results, although the Chernoff bounds are not very tight.
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Figure 5.4: Average BER of a DF single relay system versus distance ratio dsr/dsd when

dsr + drd = dsd, for the case of fD = 75 Hz and Ts = 2× 10−5s (ρij = 0.999978).

Therefore, the Chernoff bounds still retain the diversity order in the BERs. In addition,

it is observed that the diversity benefit is increasing as the number of relays increases,

but the spectral efficiency is decreasing as the number of relays increases, since the

spectral efficiency is 1/(L + 1).

We compare the BER of the DF relay system with that of the SR relay system in

Fig 5.6. We can observe that for a single relay system, both the DF and SR protocols

achieve the same diversity order. However for a relay system with two relays, the DF

protocol only achieves the diversity order of a DF single relay system, whereas the SR

protocol achieves a diversity order of (L + 1). This can be interpreted as follows. For

the DF relay system, the ML and PL detectors only make use of the average BERs of

the source-relay transmission, while for the SR relay system, each relay makes use of
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Figure 5.5: Average BER for DBPSK modulation, with dsr = drd = 0.5dsd for the case of

fD = 75 Hz and Ts = 2× 10−5s.

the instantaneous BERs instead of the average BER of the source-relay transmission

to perform selection. The average BER of the source-relay transmission cannot fully

characterize the reliability of the source-relay transmission. Therefore, the ML and

PL detectors in the DF relay system cannot achieve full diversity when the number of

relay nodes is greater than one.

5.9 Conclusion

In this chapter, we propose receiver designs and analyze error probabilities for DF and

SR multiple relay systems with DBPSK modulation. For a DF relay system, the ML

and PL detectors are derived, and they take account of the average BERs of all the
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Figure 5.6: Average BER for relay systems with DF protocol or SR protocol, whendsr =

drd = 0.5dsd for the case of fD = 75 Hz and Ts = 2× 10−5s.

source-relay transmissions. The BER of the PL detector is analyzed. For a DF single

relay system, the exact BER of a PL detector is obtained as a simple function of SNRs,

faded rates and channel statistics. Based on the exact BER, a BER approximation at

high SNR is derived. The BER approximation shows explicitly the diversity order

and the different effects of the source-relay link and the relay-destination link on the

end-to-end error probability. For a DF multiple relay system, a Chernoff upper bound

on the BER and a high SNR approximation for the BER are obtained. The PL detector

has lower complexity and can achieve a BER performance similar to that of the ML

detector. For a SR relay system, each relay computes the instantaneous BERs of the

source-relay transmission and use them to decide whether transmit to the destination or

remain silent. In this case, the ML receiver at the destination is the MRC receiver. We
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have also analyzed the error probability of the SR multiple relay system at high SNR,

and have shown that the diversity order is the number of all the potential cooperating

nodes.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

A multiple antenna system, because of its space diversity and spectral efficiency, is one

of the most favorable solutions in numerous wireless applications. Multiple antennas

have been used in both point-to-point MIMO systems and cooperative relay systems.

In a point-to-point MIMO system, all the transmit antennas are collocated at the same

transmitter, and they have perfect knowledge of what the other transmit antennas

transmit, so they can fully collaborate to improve transmissions; Similarly, the receive

antennas are collocated at the same receiver, and they have perfect knowledge of what

the other receive antennas receive, so they can fully collaborate to improve receptions.

Whereas a relay system benefits from space diversity by using multiple terminals as a

virtual antenna array. The cooperative relay systems are fundamentally different from

the point-to-point MIMO systems, because information is not a priori known to the

cooperating relays and needs to be communicated over fading and noisy links. In this

dissertation, we have studied performance limits of point-to-point MIMO systems and

cooperative transmission strategies for cooperative relay system.

The MI of a MIMO system in a fading environment is an important information
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theoretical performance measure. We have studied the statistical distribution of the

MI under a Rician fading environment through studying the PDF and CCDF of the

determinant and trace of a noncentral complex Wishart matrix. While the trace of

a noncentral complex Wishart matrix is distributed as a noncentral chi-square RV,

the determinant is distributed as a product of independent noncentral chi-square RVs.

Then, by making use of the Mellin transform, we have obtained the PDF and CCDF

of the determinant of a noncentral complex Wishart matrix. Finally, some tight lower

and upper bounds on the CCDF of the MI are derived. Compared with existing results,

the bounds derived in this dissertation are not only given in closed forms, but are also

readily applicable to the evaluation of the outage probability with sufficiently high

accuracy. In addition, all the results can be reduced to the case of Rayleigh fading.

For a cooperative relay system, one objective of this dissertation is to derive

the outage probability and the ergodic rate of the DF relay system in a Rayleigh

fading environment. Based on the outage probability and ergodic rate, this dissertation

proposes an outage-optimal transmission strategy in order to minimize the outage

probability, and an ergodic-optimal transmission strategy in order to maximize the

ergodic rate. To the best of our knowledge, the outage probability or the ergodic rate

of the DF relay system in a Rayleigh fading environment for an arbitrary correlation

coefficient between the transmit signals from the source and relay are not available

in the literature, because of the complexity of the information rate. Using a new

approach that rewrites the information rate in terms of a Hermitian quadratic form,

we have derived the outage probability and ergodic rate for an arbitrary correlation

coefficient of the transmit signals from the source and relay. When the fading process

is non-ergodic, with the outage probability we obtained, we can measure the tradeoff

between transmission rate and reliability. When the fading process is ergodic, one

can transmit with vanishing errors at a rate equal to the ergodic rate we obtained. We
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have discovered a quite interesting finding that even though the information rate is

a function of the correlation coefficient of the transmit signals from the source and

relay, the outage probability and the ergodic rate only depend on the magnitude of the

correlation coefficient, but are independent of the phase of the correlation coefficient.

The independence is due to the uniform distribution of the phases of the channel gains

in Rayleigh fading environments. This finding is significant because it can guide

the design of transmission strategies at the source and relay. When one designs the

correlation coefficient of the transmit signals from the source and relay, one only needs

to design the magnitude of the correlation coefficient, and do not need to take the phase

of the correlation coefficient into account, since the phase does not have any effects on

the outage probability or the ergodic rate. We have also derived the outage-optimal

transmission strategy in which the outage-optimal correlation coefficient generally

depends on the second order statistics of the three transmission links, the transmit

power and the rate threshold. When the rate threshold is less than a certain value, we

have found that the outage-optimal correlation coefficient is zero irrespective of the

statistics of the transmission links and the transmit power. The outage-optimal power

allocation depends on the second order statistics of the three transmission links and

the rate threshold. We have also found that the source should always be allocated

more power than the relay. Furthermore, it has been shown for the first time that the

ergodic rate is a monotonically decreasing function of the correlation coefficient of the

transmit signals from the source and relay, and hence the ergodic rate is maximized

when the correlation coefficient is zero, regardless of the channel statistics and the

transmit power. We have also shown that it is not always beneficial to use the relay,

and the ergodic-optimal power allocation depends on the second order statistics of the

three transmission links. These transmission strategies can greatly improve the ergodic

rate.
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Moreover, we have also extended the outage probability of the DF relay system

in a Rayleigh fading environment to the ones in a Rician fading environment. The

extension to the Rician fading environment is not straightforward due to the noncentral

property of Rician fading. We have derived an analytical expression for the outage

probability in terms of a single integral. Moreover, we have provided a geometric

interpretation of the outage probability, and obtain an upper bound and a lower

bound on the outage probability based on the geometric interpretation. These bounds

can work fairly well to approximate the outage probability. When the channel

statistics are known to the source and relay, we used numerical methods to obtain

the optimal correlation coefficient of the signals transmitted from the source and relay

that minimizes the outage probability. For large values of Rice factors, the optimal

correlation coefficient is not necessarily zero, but instead, depends on SNRs, Rice

factors and variances of the channels, and the target transmission rate.

This dissertation also studies cooperative relay systems from an end-to-end

performance perspective. A parallel relay system with differential modulation is

considered for the DF protocol or the SR protocol. For the DF protocol, the destination

performs ML or PL detections which take account of the average error probabilities

at relays and the channel statistics. For a DF single relay system, we have derived

the exact BER and its approximation at high SNRs. The exact BER is a simple

function of the SNRs, the variances and fade rates of all the transmission links. The

BER approximation at high SNR explicitly shows the diversity order and the different

effects of the source-relay link and the relay-destination link on the end-to-end error

performance. Moreover, for a DF multiple relay system, a Chernoff upper bound

on the BER and a high SNR approximation for the BER are obtained. With the

same total power constraint, the DF relay with differential modulation outperforms

a non-cooperative system which only has a direct link and performs ML detection with
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the same differential modulation. For the SR protocol, the complexity is shifted from

the destination to the relays, and the relays make decisions on whether to transmit or

remain silent according to certain instantaneous error probabilities that also need to be

computed at each relay. The ML receiver at the destination is an simple MRC receiver.

It is revealed that the SR protocol offers a space diversity order of the number of all the

potential nodes, not just the number of nodes that are transmitting to the destination.

6.2 Future Work

6.2.1 Effects of Channel Estimation Errors on Relay Systems

In Chapters 2-4 of this dissertation, it is assumed that the CSI is perfectly known at

the corresponding receivers. Usually, the CSI is obtained by channel estimation. In

practice, the estimation of CSI at the receivers may not be accurate, although the

estimation error can be very small when a large number of pilot signals are sent.

In the classic relay system, there are three transmission links, each of which may

have a channel estimation error. The effects of these channel estimation errors on the

outage probability and the ergodic rate need to be studied. To employ outage-optimal

or ergodic-optimal spatial power allocations proposed in Chapter 3, the second-order

statistics of all the three transmission links need to be known at the transmitters at the

source and relay. It is assumed in this dissertation that the second-order statistics are

perfectly known at the transmitters. However, in practice, the statistics of the fading

links are estimated by receivers, and then fed back to transmitters. The feedback from

receivers to transmitters may have some errors, although the feedback errors can be

very small since the statistics of the transmission links vary quite slowly. We can take

the both channel estimation errors and the feedback errors into account in designing

the outage-optimal and ergodic-optimal transmission strategies.
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6.2 Future Work

6.2.2 Extension of the Classic Relay System to a Multiple Relay

System

One possible application of the outage-optimal and ergodic-optimal transmission

strategies proposed in this study is to use them as design criteria for the transmit

signals from the source and relay. The optimal correlation coefficient could be used

to find optimal codebooks with this correlation coefficient. Further study is needed to

extend the system with one relay to the system with multiple relays by using the same

approach in this study.

6.2.3 Decision-Feedback Channel Estimation Receiver

In Chapter 5, we have employed differential modulation in the parallel relay system. A

decision-feedback channel estimation receiver [102] may be employed at all the relays

and the destination. In this case, the error probability performance may be improved

compared to differential modulation.

6.2.4 Optimal Receiver and Error Probability Analysis for

Non-coherent AF Relay systems

Because of the multiplicative operation at the relay node in a AF relay system, the

noise at the destination is no longer Gaussian distributed for a non-coherent AF relay

system. A near-ML detector and a diversity combining detector were proposed in our

previous work [103]. The error probability for these receivers in [103] needs to be

analyzed.

140



Bibliography

[1] J. H. Winters, “On the capacity of radio communications with diversity in a
Rayleigh fading environment,” vol. 05, no. 5, pp. 871–5878, Jun. 1987.

[2] E. Telatar, “Capacity of multi-antennas gaussian channels,” Europ. Trans. on
Communications, vol. 10, no. 6, pp. 585–595, Nov.–Dec. 1995.

[3] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-antanna
communication link in Rayleigh flat fading,” IEEE Transactions on Information
Theory, vol. 45, no. 1, pp. 139–157, Jan. 1999.

[4] I. C. Abou-Faycal, M. D. Trott, and S. Shamai, “The capacity of a discrete-time
memoryless Rayleigh-fading channels,” IEEE Transactions on Information
Theory, vol. 47, no. 4, pp. 1290–1301, May. 2001.

[5] L. Zheng and D. N. C. Tse, “Communication on the Grassmann manifold:
A geometric approach to the noncoherent multiple-antenna channel,” IEEE
Transactions on Information Theory, vol. 48, no. 2, pp. 359–383, Feb. 2002.
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Appendix A

Proof of the Inequality (2.24)

In this appendix, we present the proof of the inequality (2.24)
∫ ∞

0

xn exp
(− x− y

x

)
dx ≥ n! exp

(− y

n

)

for y ≥ 0 and n = 1, 2, 3, · · · .

Proof. Consider the function

g(y) =

∫ ∞

0

xn exp
(− x− y

x
+

y

n

)
dx. (A.1)

The first derivative of g(y) is

g′(y) =
1

n
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dx− n
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(A.2)

where Kn(x) is the modified Bessel function of the second kind. By applying the

recursion formula for Kn(x) [104, p.982] xKn−1(x) − xKn+1(x) = −2nKn(x) to

(A.2), the first derivative of g(y) can expressed as

g′(y) =
2

n
y

n+1
2 e

y
n Kn−1(2

√
y) ≥ 0. (A.3)

Because g′(y) ≥ 0 and g(0) = n!, we have g(y) ≥ n!. Therefore exp(−y/n)g(y) ≥
n! exp(−y/n), that is

∫ ∞

0

xn exp
(− x− y

x

)
dx ≥ n! exp

(− y

n

)
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A. Proof of the Inequality (2.24)

for y ≥ 0 and n ∈ N. The inequality holds.
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Appendix B

Proof of Theorem 3.4

Proof. If condition (3.28) is satisfied, we have min(η2
sd, η

2
rd)/|ηsd − ηrd| > ηsdηrd/ηsr.

Since β2/(α − β) is monotonically increasing in µ ∈ [0, 1] and is in the range
[
0, min(η2

sd, η
2
rd)/|ηsd − ηrd|

]
, there exists a unique µ ∈ [0, 1], namely µ1, such that

ηsdηrd/ηsr − β2/(α − β) = 0 (which is equivalent to ακ − β = 0). By solving

ακ− β = 0, we obtain µ1 as

µ1 = −2
(ηsd + ηrd

ηsr

+
ηsdηrd

η2
sr

)
+

(
ηsd + ηrd +

2ηsdηrd

ηsr

)
×

√
1
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(ηsd + ηrd

ηsr

+
ηsdηrd

η2
sr

)
. (B.1)

It is clear that ακ − β ≥ 0 for µ ∈ [0, µ1], and ακ − β < 0 for µ ∈ (µ1, 1].

According to Lemma 3.2, for any µ ∈ [0, µ1], g(R̃) ≥ 0 when R̃ ≥ 0. It is thus easy to

see that FR(µ, ν, R̃) is an increasing function of µ ∈ [0, µ1] for any R̃ ≥ 0. Thus, we

now focus on the case of µ ∈ (µ1, 1].

a) For µ ∈ (µ1, 1], ακ − β < 0. According to Lemma 3.3, g(R̃) has a unique

positive root R̃g, i.e., g(R̃g) = 0, but it is not mathematically tractable to obtain an

analytical expression of R̃g. It also should be noted that R̃g depends on µ which is

actually the parameter we attempt to optimize. Hence, we turn to derive a lower bound

of R̃g, which is independent of µ. To do that, we first check the quadratic equation
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B. Proof of Theorem 3.4

g′(R̃) = 0, whose roots can be easily calculated. It can be observed from (3.21) that

in this case g′(R̃) has only one positive root R̃s, such that g′(R̃) ≥ 0 for R̃ ∈ [0, R̃s],

and otherwise g′(R̃) < 0. It implies g(R̃) > g(0) = 0 for R̃ ∈ (0, R̃s) and R̃s < R̃g.

Although R̃s still depends on µ, we can readily find a µ-independent lower bound for

R̃s as follows:

R̃s > − (α + β)(ξκ + αβ)

(ακ− β)(βκ + α)
≥ (α + β)(ξκ + αβ)

αβ

≥ (α + β)
(α + β

ηsr

+ 1
)

=: R̃0, (B.2)

where the first inequality follows from the fact that g′(R̃) has one negative root, and its

positive root R̃s must be greater than the sum of its two roots. Thus, we conclude that

R̃g > R̃s > R̃0. It implies that FR(µ, ν, R̃) is an increasing function of µ ∈ (µ1, 1] for

any R̃ ∈ [0, R̃0]. This, along with the previous claim that FR(µ, ν, R̃) is an increasing

function of µ ∈ [0, µ1] for any R̃ ∈ [0,∞), concludes that FR(µ, ν, R̃) is an increasing

function of µ ∈ [0, 1] for all R̃ ∈ [0, R̃0]. The optimal value of µ is one for any

R ∈ [0, R0], where R0 = log2(1 + R̃0).

b) For µ ∈ (µ1, 1] and a fixed R̃, we first investigate the monotonicity of φ in

(3.18) with respect to µ. Through some long but straightforward calculations, we

obtain the derivative of φ as

∂φ

∂µ
= − ηsdηrd(ηsd + ηrd)

(α− β)
[
(βκ + α)R̃ + ξ

]2 R̃[a(µ)R̃ + b(µ)], (B.3)

a(µ) = 1 +
(α− β)2

(ηsrµ)2
+

(α2 + β2)2

ηsrηsdηrd(ηsd + ηrd)µ2
,

b(µ) =
(ηsd + ηrd)

2 + α2 + β2

ηsrµ
− (ηsd + ηrd)(α

2 + β2)

(α− β)2
.

It is straightforward to check that both a(µ) and b(µ) are decreasing functions. Since

a(µ) > 0, the ratio −b(µ)/a(µ) is increasing in µ, i.e., −b(µ)/a(µ) ≤ −b(1)/a(1).

Define R̃1 := −b(1)/a(1), which can be written as (3.25). It is clear from (B.3) that
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∂φ/∂µ < 0 for any R̃ ∈ [max{0, R̃1},∞). Thus, φ is decreasing in µ ∈ (µ1, 1] for a

fixed r ≥ max{0, R̃1}. This, along with the fact that e−R̃(1/β−1/α) is increasing in µ,

implies that G(µ, ν, R̃) is a decreasing function of µ ∈ (µ1, 1] for any r ≥ max{0, R̃1}.

Define R̃2 as in (3.26). Since (3.28) is satisfied, R̃2 > 0. It is easy to check that

G(1, ν, R̃) < 0 for R̃ ≥ R̃2. Define R̃c := max{0, R̃1, R̃2} = max{R̃1, R̃2}. Since

G(µ1, ν, R̃) > 0, G(1, ν, R̃) < 0, and G(µ, ν, R̃) is a decreasing function of µ ∈ (µ1, 1]

for any R̃ ∈ [R̃c,∞), there exists a unique µo ∈ (µ1, 1) such that G(µo, ν, R̃) = 0 for

a fixed R̃ ∈ [R̃c,∞). It implies that for a fixed R̃ ∈ [R̃c,∞), FR(µ, ν, R̃) is increasing

in µ ∈ (0, µo), and decreasing in µ ∈ (µo, 1]. Hence, the optimal µ is µo.
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Appendix C

Approximation of the Decoding Set

Probability P (r ∈ D)

Since the first order Marcum Q-function satisfies the identity Q1(a, b) + Q1(b, a) =
1 + exp[−(a2 + b2)/2]I0(ab), we can obtain

1−Q1(asrysr, bsrysr) + Q1(bsrysr, asrysr)

= 2Q1(bsrysr, asrysr)− exp
(
− a2

sr+ b2
sr

2
y2

sr

)
I0(asrbsry

2
sr). (C.1)

According to the inequalities [105, Eq.(B.1) and (29a)], we can upper bound the right
hand side of (C.1) as

2Q1(bsrysr, asrysr)− exp
(
− a2

sr+ b2
sr

2
y2

sr

)
I0(asrbsry

2
sr)

≤ exp
{−2(1− sin |θ|)[erfc−1(2ε)]2

}
, (C.2)

where θ satisfies the following equation

1− cos θ

1 + cos θ
=

a2
sry

2
sr

b2
sry

2
sr

=
η2

srρ
2
sr

(ηsr + 1)2
, (C.3)

and hence we can compute sin |θ| as

sin |θ| = 2(ηsr + 1)ηsrρsr

(ηsr + 1)2 + η2
srρ

2
sr

. (C.4)

Combining (C.2) and (C.4) into (C.1), we can obtain

1−Q1(asrysr,bsrysr) + Q1(bsrysr, asrysr)

≤ exp

{
−2

(ηsr + 1− ηsrρsr)
2

(ηsr + 1)2 + η2
srρ

2
sr

[erfc−1(2ε)]2
}

. (C.5)
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C. Approximation of the Decoding Set Probability P (r ∈ D)

With (C.5) and (5.61), we can develop an upper bound on P (r ∈ D) as

P (r ∈ D) ≤ exp

{
−

[
1

wsrηsrρsr

+ 2(Nf − 1)
(ηsr+ 1− ηsrρsr)

2

(ηsr+ 1)2 + η2
srρ

2
sr

]
[erfc−1(2ε)]2

}

=

{
−

[ 1

wsrηsrρsr

+ 4(Nf − 1)
β2

sr

(α2
sr + β2

sr)

]
[erfc−1(2ε)]2

}
. (C.6)

Since erfc(x) ≤ exp(−x2), we have erfc−1(x) ≥ √− ln x, and hence, we can the
above upper bound be simplified to

P (r ∈ D) ≤ exp

{[ 1

wsrηsrρsr

+ 4(Nf − 1)
β2

sr

(α2
sr + β2

sr)

]
ln(2ε)

}

= (2ε)

[
1

wsrηsrρsr
+4(Nf−1)

β2
sr

(α2
sr+β2

sr)

]
. (C.7)
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