View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by ScholarBank@NUS

FAULT DETECTION AND CORRECTION MODELING OF
SOFTWARE SYSTEMS

WU YANPING

NATIONAL UNIVERSITY OF SINGAPORE

2008

https://core.ac.uk/display/48624313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FAULT DETECTION AND CORRECTION MODELING OF
SOFTWARE SYSTEMS

WU YANPING
(B.S., USTC)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
DEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING
NATIONAL UNIVERSITY OF SINGAPORE

2008

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Xie Min, and Dr. Ng Szu Hui. Dr. Ng
and Prof. Xie has been my advisor ever since I came to National University of Singapore
in 2004. During my three more years’ PhD program here, Prof. Xie has been a great
mentor for me, leading me into and going further in the academic field. I am very grateful
for his guidance, suggestions, patience, and encouragement, which helps me to conduct
my research effectively and get through some difficult conditions. This thesis would not
have been possible without Prof. Xie’s help. Dr. Ng Szu Hui is always available for my
questions and asking for help. I have also learned a lot from Dr. Ng as her teaching
assistant, both the scientific knowledge and the way to be a good teacher. Thank you very

much, Dr. Ng!

I would also like to thank the other faculty members for the modules I have ever taken.
Thank you, Prof. Goh, Prof. Poh, Prof. Tang, Dr. Jaruphongsa, Dr. Chai and Dr. Lee.
Also, I would like to thank Ms. Lai Chun for the convenience they provided during my
study and research period in our department. In addition, I would like to thank both the
seniors and juniors within the batches of Prof. Xie’s students, especially Dr. Hu Qingpei,
Liu Jiying, Zhang Lifang, Jiang Hong, Long Quan, Zhang Haiyun, Shen Yan and Qian
Yanjun. Also, thanks are due to the other student friends, especially members in the

Computing Lab. I really enjoyed the time spending together with all of you!

Finally, I am grateful to my mother and my father in China for their love and support.

TABLE OF CONTENTS

ACKNOWLED GEMENTS .. oottt e e e et r e e e s e st s b bbb e e e e e s s saabbbbeeeeeessasabenes |
TABLE OF CONTENTS ..ottt e vttt e e s et e e e eate e e s sab e e s ebb e s e sbaeeessabeeesesbeeeesnbeneesssreneas 1]
S LYY A /2 Vi
I Y IO T i I =] I SR VI
LIST OF FIGURES ...ttt e e s e s e e e e e s s s b bbb e e e e s s s sbbbeaeeeessssaaees IX
LIST OF SYIMBOLS ... e e e s s e bbb e e e e e s s et bbb b e e e e e e s sa bbb bbaeeeeeessaees Xl
CHAPTER 1 INTRODUCTION. ...ttt ettt e e e e s s s st b e e e e s s s s sbbbraeeeeseaas 1
1.1 FAULT DETECTION AND CORRECTION MODELINGccotttuttteeeeeeeiiirreeeeeeeeesiisrrreeeeeeesiisssreseeeeeessnnreseens 3
1.2 INSPECTION EFFECTIVENESS MODEL WITH BAYESIAN NETWORKSvevviiiiiiiiiieeieeeeeeiiriereeeeeeseenneneeeees 8
1.3 RESEARCH OBJECTIVE AND SCOPEocoeiutiieiiteeeeeeteeeeeeeeeeeeeeeeeeeeteeeeeeeaeeeeeeaeeeeeetaeeeeeaeeeeeeneeeeeeseeeeennns 10
CHAPTER 2 LITERATURE REVIEW.....co ettt 13
2.1 SOFTWARE RELIABILITY IMODELScvviiiiiiiiiiteeieeeeeeeiteeeeeeeeeeetaeeeeeeeeeeetaaeeeeeeeeeessssseseseseennistrereeeseesnns 13
2.1.1 Goel-Okumoto MOlcccooeeoeieiieeii e 15

212 DUGRE MOUECL ... e e e e e e e e e e e e e e e e e e 16

2.1.3 Yamada Delayed S-shaped Modelccoocoivoiiiiioiiiiiiiiee e 16

2.1.4 K-stage Erlangian (gamma) Growth Curve Model (K=3)ccccccovvemiiiiiiiiiiiieieeee e 17

2.2 PARAMETER ESTIMATIONociiittiiiiitiiieeeteeeeettee e ettt e e eete e e eetaeeeeetteeeeeaaaeeeeaaseeeeeaseeeeenseeeeenssneeenseeeeennes 19
2.3 OPTIMAL RELEASE POLICY ...ccoiiiiiitiiiiii ettt e ettt e e et e e e e eeeaaaaaeeeeeeeesaarereeeeeeens 19
2.4 MODELS TO MEASURE INSPECTION PROCESSccoiiiiiuitiiieeeeeecciieee e e e eeeetree e e e e e eeeearaeeeeeeeeesnnrreeeeeeeenns 22
2.4.1 The Importance of Measuring INSPeCtion PrOCESS.............c.ccociciecieoiereniniiiniaiseeieeene e 24

2.4.2 A Brief Review of Software INSPection PPOCESSccccuivoeioeioeeiieiieeeeeesieseee e 25

2.4.3 A Brief Introduction of Bayesian Network Modelsc.ccccoceoeieiinoiiciiiiiiiieieieee 26

il

CHAPTER 3 MODELING OF THE FAULT DETECTION AND CORRECTION PROCESS29

3.1 THE MODELING FRAMEWORK OF FDP AND FCP........c..cccooiiiiiiiiic 30
3.1.1 Fault Detection MOEIS................c..ccoocoueuiiieiieieeee et 31
3.1.2 Fault Correction MOGEIS..................cccceeuioiioiiniiiiiiiiiiiititeieeees ettt 33
3.1.3 Paired FDP and FCP MOGEIS..............c.cccociiimiiiiiiiiiiiiiiiieieteeteeeese et 33

3.2 MODELS FOR FAULT CORRECTIONcvouiuiiiiiiniiietiniitetene sttt sttt 36
3.2.1 Exponentially Distributed Time Delay....................c.cccovuruimiiiiiaiieieeiesieesieeie e sse e 37
3.2.2 Normally Distributed Time Dely................ccccoouiviiiriiiiiiiiiiiiiieieieese sttt 38
3.2.3 Gamma Distributed Time Delaycccccooviiiiiiiiiiiiie et 38

3.3 RESIDUAL NUMBER OF FAULTS ..ottt 39

] 0.1 N OSSO 40

CORRECTION PROCESS ... oot ettt sn e n e n e 41
4.1 MAXIMUM LIKELTHOOD ESTIMATIONccuciuiiiiiiiiiiiiiiiii ittt sttt s 41

4. 1.1 POINE ESHIMATION ..ottt ettt ettt ettt e et et et e enaeenaeeneas 41

4.1.2 Interval ESHMATIONc.cccooiiiiiie ettt ettt ettt et 45

4.1.3 Modified Likelihood Function Based On Execution Timecc.ccocooieonoiiieieneieieee, 47

4.2 NUMERICAL APPLICATION....c.ciiuiiuiiuiitiieiesteett ettt et st ettt ae st b st et eaesnesae e s ene e ennene 48

4. 2.1 ML ESHIQEION.cccuveeeeeiiiie ettt e et e e et e e e et e e e e tbseeesaaseeeentseaeesssseeennns 50

4.2.2 ML Estimates Based On Modified Likelihood FURCEIONcccocooiroiniiiiiniiiiiiiiiricnencn 58

4.3 SUMMARY ..ottt sttt ettt et ettt et ettt ettt sa e bt s bt e st et et e bt st bt eae et et et et nn e bt bt eae et ennenee 62
CHAPTER S5 PREDICTION ANALYSIS OF FDP FCP MODELcccccooiiiiiiiiieiee e 64
5.1 PREDICTION PERFORMANCEcoutiuiiiiiintinieniteitetetente sttt sttt eseensesestesbesaeeseeseensesesenaesaeeneeneennennennen 64
5.2 MONTE CARLO SIMULATION STUDYoeutruiiuiiiieiiiieniiniesiteieeiteneetesteste st esesseessetessesaesaessesueeneensennennens 69
5.2.1 Simulation MeEthOd...................cccoooeuveeiueiiiiieiee ettt 70

5.2.2 A SImulAtion SHUAYccccociiiiioiiiiiiee et e 71

5.3 SUMMARY vttt te sttt et ettt sa e bt sae bt et et e st e bt bt bt st eat et et bt sh e bt eaeeae s enten 74

il

CHAPTER 6 OPTIMAL RELEASE TIME ANALYSIS ..o 77

6.1 COST FACTORS AND COST CRITERIAcoueiritiiietietieteeitenieenteenteestesaeesaeesueenseenseeasesanesseenseenseensesnsenaes 83
0. 1.1 COSE FACEOTS. ...ttt e e et e e et e e e et e e e et e e e e tb e e e eensbaeeentreaeas 83
0.1.2 STOPPING RULES ...ttt ettt ettt 84

6.2 TRADITIONAL SOFTWARE COST IMODELScoittetieiieiteetientienteete et sitesieestee et et entesseesseenbeenseeneesneesae 85

6.3 ANEW ECONOMIC MODEL CONSIDERING TIME DELAYc.coitiiiiiiiiieiieniceiceieeeeie st 88
0.3 1 ASSUMPDIIONS ..ottt ettt e et e et e et e et e et e entte e st e enseeensaeenseeenseeesseannneenseen 89
6.3.2 The Impact of Time DIycccccoiriiiiiiiiiiiiiaieieie ettt e 90

6.4 INTERPRETATION OF THE COST PARAMETERSoeitieiieiiiitietieteeieeeesieesteenaeeteenteeseesseesseesseeneeeneeens 91

6.5 OUR GENERALIZED OPTIMIZATION IMODEL.......ceittitieiieiiestienieeieeteeee e seeesaeeteenteeneesseesseenseenaeeneeens 92

6.6 THE OPTIMAL RELEASE TIME.....cccutiitiiiiiiiiienitestt ettt ettt st s se et et ebt e sbee b e be e s s 94
6.6.1 SOIULION WItROUE CONSIFQINES.c..ccvveveeeiieiieeieecieeeie ettt ettt e ste e be e ae s ereesse e 95
6.6.2 SOIULIONS WIth CORSIFQINLSccoveeveeiieeieeie ettt ettt ettt be e ae s ere e s e 98

6.7 NUMERICAL EXAMPLE AND SENSITIVITY ANALYSISetetteientenieenieeieeteerenieenaeesseeseesseesnessnesseennees 101
6.7.1 A Simple Cost Model Considering Time Delay.................ccccoocieviaiiiiaiiiaiieieeee e 101
6.7.2 A Generalized Cost Model Considering Time Delaycccccouieiiieniiioiiioiiieiieieeeene 102
0.7.3 IMPACE OF THE FACTOFS ...ttt 109
6.7.4 Interval Estimation of Parameters in the Cost Model.....................ccccccovvvevieviiecinieiieneeennn 111
6.7.5 Sensitivity Analysis of Optimal Release Timec.cccoccvevievieeinieiieiieeeeee e 112

6.8 SUMMARY ..ottt ettt ettt ettt et ettt sa e bt eat e easesasesbe e be e bt esbeeasesaeesueebeenteenseeanesanenunenseen 114

CHAPTER 7 BAYESIAN NETWORKS MODELING FOR SOFTWARE INSPECTION

EFFECTIVENESS ...ttt b bt bt bt st e b b e s b e e b e e sbe e sbe e b e embeabeenbeenbeanbe e 116
7.1 SOFTWARE INSPECTION PROCESSccuiiuiiiiiiiiiieitiieienienitete ettt ettt st aesae st sae e eseennennens 118
7.2 BAYESTAN NETWORKS.ooutiuiiiiiiieiitiie sttt ettt st sttt et s st besae st oo e e saesaesbesaeeneeneennennens 122
7.3 MODEL DEVELOPMENTc.uiiuiiiiiiiiiitiiti ittt ettt sttt sa e st sae st sbe s 125

7.3.1 Bayesian NetwWork FrameWO K.ccccocicieiiioiiiiiiiiit ittt e 125
7.3.2 Bayesian Network CONfIGUIATION.c.ooceiiiiieiieii ettt 127

iv

T ANUMERICAL EXAMPLEocoiiiiiiiiiiiieeeeeeiieeeeeeeeeeeaeee e e e e et eetaaeeeeeeeeeetaaaeeeeeeeeessasseeeseesennaareeeeeeeennsrees 132

7.4.1 Bayesian Network MOAEIiNGcccooueoiiiiiiiiiiiiiit et 132

7.4.2 Networks Probability DiSIFIDULIONScccccouioiiiiriiiiiitiiieieeseee et 133

7.4.3 MOAEL ARQLYSIS.......c.eeeeeieeeee e ettt ettt 137

7.4.4 Dynamic Analysis of the Node “Remaining number of faults”...........cccccoovoioeinnenenene, 139

7.4.5 SenSTtiVIty ANGLYSIScccoeiiiiiiieee ettt et 142

7.5 SUMMARY ..ottt ettt a et a ettt 147
CHAPTER 8 CONCLUSION AND FUTURE WORKcoociiiiiiiienne s 149
8.1 RESEARCH RESULTS ..ottt 149
8.2 FUTURE RESEARCHcocouiiiiiiiiiiiiiiti ittt st s 151
REFERENCESottt ettt h e bbbtk eh ekt e r et ekt sb e bt e r e e ebean e ere s 154

SUMMARY

This thesis investigates the modeling problem of software reliability, extending
traditional reliability models through relaxing some specific restrictive assumptions.
Related analysis issues, especially optimal release time and optimal resource allocation,
are addressed with the corresponding extended models. Centered on this line, research

has been developed as follows.

Extended software reliability modeling approaches are proposed through combining both
FDP (fault detection process) and FCP (fault correction process). Traditional software
reliability models assume immediate fault correction. However, practical software testing
process is composed of three sub-processes: fault detection, fault correction and fault
introduction. We proposed the combined fault detection and correction modeling by
considering various fault correction time. Our extensions are developed with both
traditional NHPP and BN models, with paired NHPP and BN modeling frameworks
proposed. Practical numerical application is developed for the purpose of illustration.
Analysis results show the advantage of the incorporation of the fault correction process
into the software reliability modeling framework. Basing on paired FDP and FCP models,
time problem of optimal release is explored as well. We have further developed the

software cost models based on our proposed fault detection and correction models.

Our study follows the intuitive approach of incorporating historical failure data into the
frameworks of current models. Different approaches are proposed to incorporate the data

collected from previous similar projects/releases. For paired FDP and FCP models, we

vi

assume the testing and debugging environments keep stable over two consecutive
projects. As a result, the fault detection and correction rates will not vibrate a lot, and
then the rates estimated from previous project can be utilized in the early phase of current
project. Failure data from multiple similar projects can be incorporated. Case studies
conducted with two applications show the better performance of this approach in the

early phase.

Besides considering the fault correction time during software testing process, we can also
improve the software reliability via review and walk-through during the inspection
process. For the Bayesian networks application in software reliability, we also explore the
issue of software inspection effectiveness analysis. Software inspection has been broadly
accepted as a cost effective approach for software defect removal during the whole
software development lifecycle. To keep inspection under control, it is essential to
measure its effectiveness. As human-oriented activity, inspection effectiveness is due to
many uncertain factors that make this study a challenging task. Bayesian Networks are
powerful for reasoning under uncertainty and have been used to describe the inspection
procedure. With this framework, some further extensions are explored in this thesis. The
number of remaining defects in the software is incorporated into the proposed framework,
providing more information on the dynamic changing status of the inspection process.
Also, a systematic approach to extract prior information is studied with a numerical

example for detailed illustration.

vii

LIST OF TABLES

TABLE 4. 1 FAULT DETECTION AND CORRECTION DATA (INCREMENTAL AND CUMULATIVE

FAULTS) veteeeeuttteeeeiureeeeestteeeeeststeeeassseeeeaassaaeesasssaeaeaassseseeaassssesessssasesassssesessnsssesesssssens 49
TABLE 4. 2 THE FITTED DATASET WITH EXPONENTIAL TIME DELAYcvvvvveieeeeeiiiinrreeeeeenn. 50
TABLE 4. 3 SUMMARY OF PAIRED MODEL ESTIMATES, AND GOODNESS-OF-FIT 57
TABLE 4. 4 COMPARISON OF PAIRED MODEL ESTIMATES, AND GOODNESS-OF-FIT.............. 62

TABLE 5. 1 GOODNESS-OF-FIT AND PREDICTION USING FIRST 12 DATASET WITH MLE 66

TABLE 5. 2 GOODNESS-OF-FIT AND PREDICTION USING FIRST 12 DATA POINTS WITH LSE . 67

TABLE 5. 3 PREDICTION PERFORMANCE WITH CRITERION MRE..............cooiiiiiiii, 69
TABLE 5.4 THE MRE OF PREDICTED VALUE SIMULATING 120 DATASETSccceevuvieeeennnen. 73
TABLE 7. 1 CPD OF NODE Siiiiiitiieiiteeite ettt e et e st e eivee st e ssbteesasaeesnbeeesanees 124
TABLE 7. 2 PRIOR CPD OF INSPECTION EFFECTIVENESS OVER INSPECTION QUALITY 134

TABLE 7. 3 PAIR-WISE COMPARISON MATRIX FOR THE NODE “INITIAL QUALITY OF
PRODUCT ettt eaaaeeeeaaaeeeenaaeeeeaaaaaaes 135
TABLE 7.4 SENSITIVITY ANALYSIS WITH ENTROPY REDUCTION ...ueteieeeeeeeeeeeeeeeeeeeeeennnns 146

TABLE 7. 5 SENSITIVITY ANALYSIS OF “INSPECTOR’S EXPERIENCE” WITH ENTROPY......... 147

viii

LIST OF FIGURES

FIGURE 3. 1 TWO CLASSES OF MEAN VALUE FUNCTION MD(T) ...veeeovvieeiieeeiieesrieesneeennnees 33

FIGURE 4. 1 ACTUAL VERSUS FITTED NUMBER OF FAULTS WITH EXPONENTIAL TIME DELAY

FIGURE 4. 6 ACTUAL VERSUS FITTED NUMBER OF FAULTS WITH EXPONENTIAL TIME DELAY
WITH REVISED LIKELITHOOD FUNCTIONcutiuiiuiiuiiiiiniiiiniiiieicnen e enenenennens 59

FIGURE 4. 7 ACTUAL VERSUS FITTED NUMBER OF FAULTS WITH S-NORMALLY DISTRIBUTED
TIME DELAY WITH REVISED LIKELIHOOD FUNCTIONcccvtuiiuiiniiniiniininiinininenennennens 60

FIGURE 4. 8 ACTUAL VERSUS FITTED NUMBER OF FAULTS WITH GAMMA TIME DELAY WITH

REVISED LIKELIHOOD FUNCTIONcutiiiiiiiieeeiiiteeeeeeireeeeesreeeeesareeeeessseseeannsseesesnsnees 61
FIGURE 5. 1 ML ESTIMATORS PREDICTION USING DATA OF THE FIRST 12 WEEKS 66
FIGURE 5. 2 LS ESTIMATION PREDICTION USING DATA OF THE FIRST 12 WEEKS................. 68
FIGURE 5. 3 PREDICTION COMPARISON OF MLE WITH LSEooooviiiiiiiiiiee, 68
FIGURE 5.4 PLOT OF THE AVERAGE OF REoiiiiiiiii e 72
FIGURE 6. 1 PLOT OF THE TOTAL COST FUNCTIONS OF A SIMPLE COST MODEL.................. 102

X

FIGURE 6. 2 PLOT OF THE TOTAL COST FUNCTIONS ..ettuuuueeeteeeettimieeeeeeeeeeremnneneeseeeeesennnnns 103

FIGURE 6. 3 PLOT OF THE TOTAL COST FUNCTIONS WITH TESTING RELIABILITY CRITERION

CONSTRAINT ..eetteeetttt e e et e et eteaaeeeeeeeee et eaaaaaeeseseeesasaaaesessessssnnnassseseeresnnnaaanees 104

FIGURE 6. 4 PLOT OF THE TWO TOTAL COST FUNCTIONS WITH TWO RELIABILITY CRITERIA

FIGURE 7. 1 A SIMPLE EXAMPLE OF BAYESIAN NETWORKccccvterriiierireenireenieeenreeennnes 123
FIGURE 7.2 A PROPOSED BAYESIAN NETWORK MODELcceeruiieriieenireenieeenieeenneeennnes 127
FIGURE 7. 3 PART OF BAYESIAN NETWORK MODEL........ctiiiiiieeiiieniieenieeesieeesneeesreeennns 133
FIGURE 7. 4 NUMERICAL EXAMPLE OF BBN (PART OF THE BN MODEL).......cccccveeruveennne. 138

FIGURE 7. 5 INSPECTION EFFECTIVENESS CHANGES WITH RESPECT TO REMAINING NUMBER

OF FAULTS ettt et ettt et e e e e eteaaaeeeesee e e et taaaaaeeseseeesaaeaaeseeeeesanannssseeeeresnanannees 140

FIGURE 7. 6 CORRESPONDING CHANGE OF OTHER NODES WHILE CHANGE THE SATE OF THE

NODE “INSPECTOR’S EXPERIENCE™uuttiiiiieeieeeeiiiieeeeeeeeeeeeceitreeeeeeeeeeesensrsnesesaeeens 141
FIGURE 7. 7 CHANGE OF THE PROBABILITY OF PRODUCT COMPLEXITYvvvvveeeeeeecnnnnnen. 143
FIGURE 7. 8 CHANGE OF THE PROBABILITY OF QUALITY OF INSPECTION PROCESS............ 144
FIGURE 7.9 CHANGE OF THE PROBABILITY OF PRODUCT SIZEccccceeeeeeiiiirireeeeeeeeeenvnnennn. 145

FDP

FCP
GO-Model
NHPP

SR

SRGM
MLE

LSE

MSE
MSE4

MSE,

MRE
md(t)
m(t)

Aa(t)

LIST OF SYMBOLS

Fault Detection Process

Fault Correction Process

Goel-Okumoto Model

Non-homogeneous Poisson Process

Software Reliability

Software Reliability Growth Model

Maximum Likelihood Estimation

Least Square Estimate

Mean Square Error

Mean squares of errors of fault detection process
Mean squares of errors of fault correction process
Relative Errors

Mean of Relative Errors

mean value function of FDP

mean value function of FCP

the intensity function

total number of detected faults

fault detection rate per fault

iid.
i=12,--- ~ A, the time delay between FCP and FDP
{Ai | Ai >1; _ti—l}

{Ai |Ai < ; _ti—l}

X1

n; cumulative number of faults detected by time¢,

m; cumulative number of faults corrected by time¢,

0, e®@cR" parameters in the fault detection and correction modeling
P(n,,m,) the probability of detecting n; faults and correcting m; faults by time ¢;
P,() the probability distribution function for the detection process
2() the probability distribution function for the correction process

L the likelihood function

Z, the (1- ¢) quantile of the standard s-normal distribution

RE the predictive validity

MRE the mean of relative errors

T software release time

T* optimal release time

E(T) the expected total cost of a software system at time 7'

cl the expected cost of removing a fault during the testing phase

2 the expected cost of removing a fault during the operation phase
3 the expected cost per unit time for testing

R software reliability

Xii

Chapter 1 Introduction

Nowadays, computer systems composed of both hardware and software are widely used
in everyday life in this world. As software systems play an increasingly important role in
complex systems, the reliable performance of software systems becomes an important
issue. Since 1970 researches have been conducted to study the reliability of the software
system. Methodologies for assuring software reliability form an important part of
reliability studies. With new technologies, the reliability of hardware can achieved quite a
high level, while the reliability of software can still dependents greatly on human factors.
As it is well known, software reliability is the application of statistical techniques to data
collected during system development and operation to specify, predict, estimate, and
assess the reliability of software-based systems. Since there are many human factors
related operation, the reliability of software can not achieve as high level as hardware
does. Thus, the reliability of software has become the focus of basic requirement for
computer system. The reliability of software can get even worse with the increase of
software complexity at the same time. The software crisis is often talked about when
problems are involved with software products, for example, increasing development cost,
lack of the ability to perform an intended task correctly, etc. The application of software
systems has now crossed many different areas. Software has become an essential part of
many industrial and commercial systems. Furthermore, it also plays an important role in
military systems. In the high automated aviation industry, misunderstandings between
computers and pilots have been implicated in several airline crashes in the past few years

(Lyu, 1996). As a result, the need for reliable software has attracted great interest in both

practice and research in the software community. Therefore, developing the required
techniques for software reliability engineering is a major challenge. That is the
motivation for us to carry out the fault detection and correction analysis within the

software system.

Lots of research in software reliability modeling has been developing for over three
decades. Many models have been developed to adapt to different testing environments
and under different assumptions as well (Xie, 1991; Lyu, 1996). These models provide
essential tools for software reliability prediction, estimation, and assessment. These
measurements are essential for the management to make decision in this phase, such as
software cost analysis (Huang et al., 2003; Xie et al., 2004a), testing-resource allocation
(Yamada et al., 1995; Dai et al., 2004), optimal release policy (Xie and Hong, 1999;
Chang and Jeng, 2006), and fault-tolerance system analysis (Han et al., 2003; Levitin,

2005).

Those traditional software reliability models have been successfully applied in practice,
and until now there are currently a number of practical papers summarizing their
application experience (Musa, 1993), and providing some unified theories for software
reliability models (Huang et al., 2003; Lee et al., 2004). There are many factors being
considered and those traditional software reliability models are being revised based on
more practical assumptions (Chang, 2001; Huang and Kuo, 2003; Pham and Zhang, 2003;
Pham, 2003; Shyur, 2003; Zhang et al., 2003; Chiu et al., 2008; Lin and Huang, 2008;

Kapur et al., 2008).

In software reliability literature, different authors use different synonyms referring to
software reliability problems, such as fault, defect, bug, etc. A fault is always an existing
part in the software and it can be removed by correcting the erroneous part of the
software (Xie, 1991). Some authors use the word defect, error, bug, etc, these
terminologies need to be clarified and to be unified. In this thesis, as we mainly discuss
about the fault detection and correction process modeling of the software system, we
unify different synonyms and use the word fault. Generally, during the software testing
process, program code is executed and the erroneous outputs are identified. For each
incorrect output, it can be count as a failure (Xie, 1991). Faults that caused the failure are
identified and removed. Thus, the failure process during the software testing phase can be
identified as a process for fault detection and correction. The reliability of the software
will be increased as more and more faults are being detected and corrected. The
reliability improvement phenomenon is then called reliability growth (Xie, 1991).
However, the assessment of the software reliability is not easy as they are many factors
lead to failure. The level of the reliability is usually estimated by using some appropriate

models applied to the empirical data from the software failure history.

1.1 Fault Detection and Correction Modeling

Software reliability modeling plays a critical role in software development, particularly
during the software testing stage. In the last few decades, generalizations and extensions
of software reliability growth models (SRGMs) have continued to attract researchers in

the field. The software reliability models can be categorized into two groups: analytical

software reliability models and data-driven software reliability models (Musa et al., 1987;
Xie, 1991; Lyu, 1996; Pham, 2000). Bothe analytical and data-driven modeling
approaches have their model assumptions which can be exposed by dividing the testing
process into three sub-processes: fault-detection, fault correction, and fault introduction.
Analytical models assume perfect and immediate fault correction. Data-driven models
only analyze the historical data from the fault detection process, ignoring the collected

fault correction data. As a result, fault correction is not incorporated for both approaches.

According to different modeling techniques, these models can also be grouped into
NHPP (non-homogeneous Poisson process) models, Markov models, and Bayesian
models. Among these three models, NHPP models are applied broadly for their flexibility
and simplicity, and Bayesian models are mostly developed from the corresponding
Markov and NHPP models. Analytical software reliability models describe the software
failure behavior during the software testing process and model the process as a stochastic
process, while data-driven models focus on the failure data generated through the
software testing process and model the software reliability prediction as a time-series

analysis problem.

However, there are some restrictive assumptions for those general models. The reason for
this is probably that the assumptions made for each model are correct or are good
approximations of the reality just in some situations. Those restrictive assumptions are
not compatible with the practical software testing/developing environments. These

assumptions might not be realistic in practice or too complicated to be realized.

One thing of great interest and attracts attention is that it is not realistic and practical to
ignore the fault correction in software reliability modeling. Although there are many
research papers on software reliability modeling, few of them address the realistic time
delays between fault detection and fault correction processes. Most of the models
consider only software fault detection process in the testing stage, assuming perfect and
immediate fault correction with no debugging time. While in fact, in reality, each
detected fault is reported, diagnosed, corrected, and then verified. The time between
detection and correction should not be neglected in practical software testing process

(Zhang and Pham, 1998).

Unlike fault introduction, the fault correction data can be extracted from related historical
reports. With more information of fault correction data, software reliability models
considering both fault detection and correction can be developed. Recently, more and
more researchers emphasized the great importance of the fault correction modeling
(Schneidewind, 1975; Xie and Zhao, 1992; Schneidewind, 2001; Schneidewind, 2003;
Stutzke and Smidts, 2001; Bustamantea and Bustamante, 2003; Zhang et al., 2003; Hu et
al., 2007). However, due to lack of actual data, no systematic work has been carried
further in modeling the fault detection and correction processes together based on NHPP

models.

Fault correction is a difficult and time-consuming exercise. When the performance of
fault detection and fault correction are to be evaluated from test data to measure the

software reliability, the evaluation method is usually to construct a reliability model.

These models use empirical data and assumptions about the software development
process, and they usually result in estimation of model parameters and prediction of
future failures. As a result, combined fault detection and correction modeling could
present more practical models for software testing process, and it could give more
accurate reliability prediction and trend analysis, which could provide crucial information
for decision making and reliability engineering for most projects. Therefore, research has
been focused on extending the modeling by relaxing some restrictive assumptions so as
to adapt to flexible software environments. That is the motivation for us to make some

further development based on traditional software reliability growth models.

Besides realistic modeling, the problem of accurately estimating software faults remains a
difficult one. Fitting a proposed model to the actual data of faults detection and correction
involves estimating the model’s parameters from the real test data sets. Once able to
estimate those parameters, we can give accurate predictions to the future behavior of the
fault detection and correction process, which will help software managers to allocate

testing resources and study the software release problems.

Parameter estimation method is also addressed in this thesis. For traditional software
reliability models, Least Square (LS) estimation method has been applied in most studies
to estimate the complex fault detection modeling parameters (Xie et al., 2007; Inoue and
Yamada, 2006; Zhao et al., 2006; Jiang and Xu, 2007). However, it is well accepted that
the Maximum likelihood estimation (MLE) is one of the most popular estimation

techniques with many desirable properties, such as asymptotic normality, admissibility,

robustness and consistency, and it is quite straightforward and has been widely used to
estimate the parameters for SRGMs (Inoue and Yamada, 2004; Zou, 2003; Musa et al.,
1987; Schneidewind, 1993; Xie, 1991). Maximum likelthood (ML) parameters are
estimated by solving a set of simultaneous equations and then the confidence interval of
those parameters can be easily derived. Up to now, no MLE method has been applied in
the existing studies to estimate parameters in the fault detection and correction process. In
this thesis, we take into account the time dependency and consider the issue of applying
the ML estimation method to the combined FDP and FCP from both a theoretical and an

experimental perspective.

Once the parameters are estimated, accurate predictions of the future failure behavior can
be made. In addition to predicting the number of faults remaining in software, other
process characteristics can also be estimated. With the realistic consideration of the time
dependencies, more accurate estimations and decisions can be made on managing project
resources. A direct and useful application of this combined time dependent model is in

the optimal release time determination problem.

In the first part of this thesis, a systematic study on the fault detection and correction
process is carried out, a framework is proposed to incorporate the time dependencies
between the fault detection and fault correction processes with the emphasis on the fault
correction process. Various fault correction models are proposed considering different

forms of the time delay.

1.2 Inspection Effectiveness Model with Bayesian Networks

The study on the fault detection and correction process develops a method to help
software managers to make a decision of when to release the software so as to receive a
high reliability and satisfied quality. However, since the cost for the fault detection and
correction during the software testing phase is considerably high, another question comes
into our consideration. That is, how to remove as many software faults as possible while

keeping the debugging cost relatively low within the software development lifecycle.

Generally, the longer a defect remains in a product, the more costly it is to remove it.
Research showed that a high proportion of software errors were introduced at the start of
the development lifecycle during the requirement phase (Delic et al., 1995). In addition,
further faults may be introduced by the fault debugging. Considering this point of view, it
1s necessary to remove faults as early as possible so as to save money and energy within
the development lifecycle. Except for testing, the only other widely applicable technique
for detecting and eliminating software defects is to review and walkthrough during the

inspection process.

Software inspection is a systematic technique to examine any software artifact for defect
detection and removal. It has been broadly accepted as a cost effective approach for
software defect removal during the whole software development lifecycle. It is accepted
that inspection can detect and eliminate faults more cheaply than testing; the inspection
method can be used to improve productivity and to shorten development schedules. In

general, they can reduce cost and schedule of testing. Inspection process is considered

important, and inspection effectiveness is considered as an important criterion to judge
the inspection performance. That is the motivation for us to construct models to measure

the inspection effectiveness.

To keep inspection under control, it is essential to measure its effectiveness and many
different attempts have been made to measure software inspection effectiveness. With
this measurement, we can develop relevant decision-making, such as when to stop testing.
Starting from this point, we propose a systematic method to analyze the inspection
effectiveness so as to find out factors that can improve the inspection performance, that is,
to improve the efficiency of detecting and eliminating software defects. A Bayesian
network (BN) model is proposed to describe the interdependencies within the inspection
structure and the contribution of each factor to the overall belief on inspection

effectiveness, and a systematic approach is developed to extract knowledge from experts.

As human-oriented activity, inspection effectiveness is due to many uncertain factors,
which makes such a study a challenging task. As we have known, Bayesian networks
modeling is a powerful approach for the reasoning under uncertainty and it can describe
the inspection procedure well. Based on a Bayesian networks model, extensions will be
explored in several directions, and software inspection can be modeled as a dynamic
process and the belief on effectiveness will be updated with new information collected.
Systematic approach to extract knowledge from experts can be explored in case of

introducing more uncertainty and possible inconsistency into the modeling framework.

In the second part of this thesis, some extensions have been explored modeling the
inspection effectiveness with the Bayesian network framework developed in Cockram
(2001). Specifically, the number of remaining defects in the software is proposed to be
incorporated into the framework, with expectation to provide more information on the
dynamic changing status of the software. Also, considering the learning process usually
happening in software development, the dynamic evolution of inspector’s experience
with the advance of inspection is studied. In addition, a different approach is adopted to
elicit the prior belief of related probability distributions for the network. Specially,
sensitivity analysis is developed with the model to locate the important factors to

inspection effectiveness.

1.3 Research Objective and Scope

The purpose of this thesis is to develop comprehensive and practical models to measure
software reliability, providing more accurate information for management to make cost-
effective decisions. Specifically, traditional software reliability models, both NHPP and
BN, will be extended through modeling both the fault detection process and the fault
correction process. Also, Bayesian networks will be used to measure the effectiveness of
the software inspection, a reliability related measurement in the very early phase of

software development.

Extensions on current NHPP models will generalize the time-delayed relationship

between the fault detection and correction processes with a general framework. The inter-

10

relationship between fault detection and correction will be incorporated as well with no
restrictive assumptions. For both kinds of models, software testing will be described more
practically. As a result, more accurate software reliability predictions would be available
to help software project managers to make decisions in activities such as cost estimation,

stopping-point determination, and resource allocation.

Clearly, more data is needed than the traditional modeling frameworks. This requirement
on data is usually not a problem with modern software companies, as they have plenty of
historical data stored in their databases. However, few data is available in published

works. Then both simulated and field data is used to illustrate the proposed approach.

The remainder of this thesis is organized as follows. In chapter 2 we provide the general
background of basic software reliability models and some related software reliability
analysis topics. In chapter 3 the systematic paired analytical FDP and FCP models are
proposed and the related reliability analysis problem is explored there. In chapter 4
parameter estimation methods are discussed and maximum likelihood estimates of
combined models are derived from an explicit likelihood formula under various time
delay assumptions. In chapter 5, various characteristics of the combined model, like the
predictive capability, are also analyzed and compared with the traditional least squares
estimation method. Since no single comparison is adequate to determine the method with
better prediction performance, a Monte Carlo simulation analysis is carried out as well. In
chapter 6 we study a direct and useful application of the proposed model and estimation

method to the classical optimal release time problem faced by software decision makers.

11

Comprehensive comparisons among various software cost models are conducted. The
results illustrate the effect of time delay on the optimal release policy and the overall
software development cost. In chapter 7, a revised BN model is given using NETICA
software to measure the inspection effectiveness. Sensitivity analysis is carried out to
identify the uncertain factors that have the largest impact on the software inspection
process. Since the initialization of the BN model requires establishing the prior belief of
the conditional probability distribution of intermediate variables and the prior belief of
the probability distribution of the root parent nodes, two methods are proposed to obtain
those prior probabilities. The first method is given through calculating the pair-wise
comparison matrix using EXPERT CHOICE software. The second method is given using
maximum likelihood estimation method to find out the distribution for the normalized
data value and finally give the a-priori conditional probability table. The proposed
method can help maximizing the inspection effectiveness, improving the efficiency of
removing faults as early as possible, and finally improving the software quality even
before the software testing phase begins. Chapter 8 concludes current research work and

discusses some further research topics.

12

Chapter 2 Literature review

2.1 Software Reliability Models

Software reliability is one of a number of aspects of computer software which can be
taken into consideration when determining the quality of the software. Building good
reliability models is one of the key problems in the field of software reliability. A good
software reliability model should give good predictions of future failure behavior,
compute useful quantities and be widely applicable. Therefore, a very important goal of
current software reliability research is to develop general prediction models. Existing
models typically reply on assumptions about development environments, the nature of
software failures and the probability of individual failure occurrences. Thus each model
can be shown to perform well with a specific failure data set, but no model appears to

perform well for all cases.

Generally, software reliability growth models (SRGMs) are composed of both analytical
and data-driven models (Xie, 1991). Analytical SRGMs have three major sub-categories:
non-homogenous Poisson process (NHPP) models, Markov models, and Bayesian models.
A stochastic process is usually incorporated in the description of the failure phenomenon,
such as the Markov process assumption and non-homogeneous Poisson process which are
widely used. They are constructed by analyzing the dynamics of the software failure

process, and their applications are developed by fitting them against software failure data.

13

Some other models deal mainly with the inference problems based on the failure data and

these models include Bayesian models and other statistical methods.

Software reliability, defined as the probability of failure-free software operation for a
specified period of time in a specified environment (Lyu, 1996), is supposed to be a good
measurement to quantify software failures. Lots of software reliability growth models
(SRGMs) have been proposed to measure the software failure process successfully (Teng
and Pham, 2004, Huang et al., 2003; Tamura and Yamada, 2006; Xie and Yang, 2003;
Shyur, 2003; Chatterjee, 2004), among them some are based on non-homogeneous

Poisson process (NHPP) (Musa et al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000).

In the course of development of software reliability research, many models have been
built to predict future failures. Software failure dependencies are being analyzed (Dai et
al., 2004, 2005; Levitin and Xie, 2006); software cost models and optimal release policies
are being proposed (Xie et al., 2004a); the reliability of fault tolerant software is also
analyzed (Levitin et al., 2007). Software grid service reliability is also considered (Dai et
al., 2005). Some of the models are described as Non-homogeneous Poisson Process
(NHPP) models, because the mean value function m(?) represents the cumulative number
of faults exposed up to time t. in practice, many of the NHPP models are proved to be

effective only in a particular environment.

Traditional SRGMs only consider the fault detection process assuming perfect and

immediate fault correction. Software fault-detection process N(?) is usually assumed to

14

follow a NHPP, in which the intensity function 44(%) is time-dependent. Given A,(?), the

mean value function (MVF) my(?) satisfies

m, (1) = [; A, (s)ds (2.1)

The mean value function my(?) is the characteristic of the NHPP model. Generally,
different fault detection models can be obtained by using different non-decreasing

functions my().

There are four classical NHPP models as follows.

2.1.1 Goel-Okumoto Model

The GO-model (Goel and Okumoto, 1979) is one of the most influential NHPP software

reliability models. The mean value function is given as

m,(t)y=a-(1-e™), a,b>0 (2.2)

where a is the number of faults that can be detected by the testing process, and b can be

interpreted as the failure occurrence rate per fault.

15

2.1.2 Duane Model

The Duane model which is also referred to as the Weibull process model assumes that the

mean value function satisfies

m(t) =at’ (2.3)

In the above, the parameters can be estimated by using collected failure data.

One of the most important advantages of the Duane reliability growth model is that if we
plot the cumulative number of failure versus the cumulative testing time on a log-log-
scaled paper, the plotted points tends to be close to a straight line if the model is valid. As
pointed out by Xie (1991), some of the disadvantages of the Duane model are that it gives
an infinite ROCOF (Rate Of oCcurrence Of Failures) at time zero and it gives zero
ROCOF at time infinity. Littlewood (1984) then proposed a modified version of the

Duane model.

2.1.3 Yamada Delayed S-shaped Model

The Yamada delayed S-shaped (DSS) model is an S-shaped curve for the cumulative
number of detected faults. The failure rate initially increases and later decreases. Yamada
assumed that the fault detection rate was a time-dependent function described by an S-

shaped curve because the testers’ skills would gradually improve as time went by (Xie,

16

1991). It is used to model the delayed reporting phenomenon for fault detection. The

mean value function is given as

m,(t)y=a-[1-(1+bt)e"], a,b>0 (2.4)

with parameter @ denoting the number of faults to be detected, and b corresponding to a

fault detection rate.

2.1.4 K-stage Erlangian (gamma) Growth Curve Model (k=3)

The K-stage Erlangian growth curve model, usually called the K-Model, was applied by
Khoshgoftaar (1988). He observed that the Goel and Okumoto model and the S-shaped

model could be described as special cases of a Gamma function. The mean value

function with the value of K equal to 3 is:

m(t)= a[l —[1 +bt +(1’%)2Je-bfj (2.5)

Two special cases of the K-Model are K=1 and K=2, where the K-Model reduces to the
G-0O model and the S-shaped model, respectively. Usually the K-Model is studied at the

case where K=3.

17

In these NHPP models as illustrated above, usually parameter a represents the mean
number of software failures that will eventually be detected, and parameter b represents
the probability that a failure is detected in a constant period. Mainly there are two classes
of my(t) used to describe different fault detection processes: concave and S-shaped
models. Concave my(t) describes the fault detection process with exponential decreasing
intensity. Differently, S-shaped mg4(2) describes fault detection process with increasing-

then-decreasing intensity, which can be interpreted as a learning process.

To highlight the idea and approach in our study, we propose our fault detection and
correction model based on the G-O model as an example, although there are many other
classical SRGMs based on NHPP that can be used like the Yamada exponential model,

the Yamada Rayleigh model.

Unified theories have been discussed for SRGM models (Huang et al., 2003; Sharma and
Trivedi, 2007). Various factors are combined to software reliability models (Chang, 2001;
Pham, 2003; Shyur, 2003; Zhao et al., 2006; Gokhale et al., 2006; Jain and Maheshwari,
2006; Huang et al., 2007). Model applications and performance analysis are carried out as
well (Satoh and Yamada, 2001; Teng and Pham, 2004; Keiller and Mazzuchi, 2002;
Satoh and Yamada, 2002; Nahas and Nourelfath, 2005). An overwhelming majority of
publications on NHPP considers just two monotonic forms of the NHPP’s rate of
occurrence of failures (ROCOF): the log-linear model and the power law model
(Krivtosov, 2007). Software prediction is also studied widely in current software

reliability research (Li et al., 2007; Madsen et al., 2006).

18

2.2 Parameter Estimation

The NHPP model is a very important class of software reliability models and is widely
used in software engineering. NHPPs are characterized by their intensity functions. The
parametric statistical methods are often applied to estimate or to test the unknown
reliability models. Maximum likelihood Estimation (MLE) method has been widely
analyzed in current research. Weighted likelihood function has been proposed addressing
the problem of estimating the parameter of an exponential distribution (Ahmed et al.,
2005). A number of studies have been carried out to study the properties of Maximum
Likelihood Estimation (Bottai, 2003; Burdick et al., 2006; You and Zhou, 2006; Zhao et
al., 2006; Karlis and Meligkotsidou, 2006). Other parameter estimation methods are also
discussed, such as Bayesian method (Goldstein and Bedford, 2006) and Markov Chain

Monte Carlo (MCMC) method (Pang et al., 2007).

2.3 Optimal Release Policy

As software systems become more and more complex, they are prone to having more and
more faults inside. Increased software system complexity challenges software mangers
and testers to maintain quality control over the development process with effective and
efficient test plans. While exhaustive testing of software can ensure the deployment of
high quality software, exhaustive testing is never practical due to the significant costs of
running many test cases. In contrast, if the software is tested inadequately, then failures
during the actual deployment of the software can lead to significant expenses involved in

fixing the software, loss of goodwill, and potential legal liabilities. What is needed is an

19

optimal level of testing that balances the risks of failures with the costs incurred while
testing the software to meet software reliability requirements. With different software
reliability models combined with different release criteria, there are many papers dealing
with this topic (Ross, 1985; Dalal, 1988; Littlewood, 1997; Kimura et al., 1999; Xie and

Hong, 1999; Zhang and Pham, 1998; Dai et al., 2004; Xie, 2004a; Huang, 2005a).

One of the challenging problems for software companies is to find the optimal time of
release of the software so as to minimize the total cost expended on testing and potential
penalty cost due to unresolved faults. If the software is for a safety critical system, then
the software release time becomes more important. Bhaskar and Kumar (2006) developed
a total cost model based on criticality of the fault and cost of its occurrence during
different phases of development for N-version programming scheme, a popular fault-
tolerant architecture. Boudali and Dugan (2006) presented a continuous-time Bayesian
network (CTBN) framework for dynamic systems reliability modeling and analysis.
Chang and Jeng (2006) investigated stopping rules for software testing and proposed two
stopping rules from the aspect of software reliability testing based on the impartial

reliability model.

The overall lifecycle cost associated with product failures exceeds 10% of yearly
corporations’ turnover. A major factor contributing to the loss is ineffective performance
of software and systems verification, validation and testing (VVT). Engel and Last (2006)
then proposed a set of quantitative probabilistic models for estimating costs and risks

stemming from carrying out any given VVT strategy. Fenton et al. (2007) described a

20

more general approach that allowed causal models to be applied to any lifecycle. For
projects within the range of the models, defect predictions are very accurate. This
approach enabled decision-makers to reason in a way that was not possible with

regression-based models.

Pham and Wang (2001) modeled software reliability and testing costs using a quasi-
renewal process. Xie and Yang (2003) extended a commonly used cost model to the case
of imperfect debugging, which means that faults are not immediately corrected and more
time are needed to locate and correct it. Xie et al. (2004a) presented a general cost model
and a solution algorithm for the determination of the optimal number of hosts and optimal
system debugging time. Huang (2005b) proposed a software cost model that could be
used to formulate realistic total software cost projects and discussed the optimal release
policy based on cost and reliability considering testing effort and efficiency. Teng and

Pham (2004) first incorporated the random field environmental factor into the cost model.

The determination of the optimal release time for a new piece of software is of primary
importance in the process of software development. Boland and Chuiv (2007) studied a
model where initially there were N faults in the software, but where the probability of a
perfect repair of a fault when found is p (in general repair is not perfect). They
investigated various cost models for the situation and gave some insight into how the

optimal release times and costs for the software vary with the failure detection rate and p.

21

2.4 Models to Measure Inspection Process

Software inspection is ‘a well-structured technique that originally began on hardware
logic and moved to design and code, test plans and documentation with the intended
purpose of effectively and efficiently identifying defects early in the development
process’ (Fagan, 1976, 1986). It has been generally accepted in software development as
a cost-effective approach for quality improvement through defect removal (Aurum et al.,
2002). Such a static verification technique was first introduced in Fagan (1976), and has
been studied and applied extensively with a variety of applications (Kelly and Shepard,
2004b; Miller and Yin, 2004). Zhao et al. (2007) developed a model to evaluate the

reliability and optimize the inspection schedule for a multi-defect component.

Software inspection process is a complicated process with many uncertain factors. This
process can be characterized by different objectives, participants, preparation,
participants’ roles, meeting duration, work product size, work maturity, output products,
and the process discipline (Aurum et al., 2002). With these basic elements, different
inspection processes have been introduced, such as active design review, two person
inspection, N-fold inspection, phased inspection, etc. To measure the effectiveness of

software inspection, the relationships of all the required variables should be addressed.

There have been many different attempts to measure software inspection effectiveness.
Some works suggest using the already detected defects to calculate the measurement, i.e.,
defect density (Porter et al., 1997; Perry et al., 2002). Also, the status of remaining

defects is proposed to be another measurement through both objective and subjective

22

approaches (Biffl, 2003), and Capture-recapture is a well studied approach to develop
related estimation (Emam and Laitenberger, 2001; Petersson et al., 2004). As pointed out
by Stringfellow (2002), the pre-screening method has a greater impact on components
with few defects. One way to compensate for that problem is to look at estimators that
tend to under-estimate. If overlap is reduced due to pre-screening, estimates will be

higher. Estimators that tend to under-estimate will compensate for defect scrubbing.

It should be noted that the experience-based method takes scrubbing into account.
Experience-based models adjust to the data. If the scrubbing is done in a similar way for
all releases, the estimates should be trustworthy. However, it is criticized with the extra
cost and difficulties added in defect implantation, and some alternatives are developed
through the time series trend or subjective judgments on the collected data (Amasaki et

al., 2005; Yin et al., 2004).

Unfortunately, these natural but simplistic measurement definitions regard software
inspection as a mechanical process. There is no unified inspection structure and there are
many factors contributing to its effectiveness for each specific procedure (Biffl and
Halling, 2003; Briand et al., 2004). Many of these factors are highly dependent on the
experience of individual inspectors and introduce great uncertainty into this process

(Kelly and Shepard, 2004a; Perry et al., 2002).

23

2.4.1 The Importance of Measuring Inspection Process

Delic et al. (1995) found that some 70% of software faults in mission-critical space
systems were due to errors introduced during requirement phase. In addition, the re-work
of the previous development stages was often at considerable expense and consequent re-
testing, and further faults may be introduced by the re-work. Remus and Ziles (1979)
provided a simple model of error removal and integrity progression using the reliability
figures from similar types of software, showing another way to reduce the remaining
faults number, that is, to find as many faults as possible during the inspection process so

as to improve the quality of software itself.

As the use of software products in today’s world has increased dramatically making
quality an important aspect of software development, there is a continuous need to
develop processes to control and increase software quality. As software code inspection
is one way to pursue this goal, Vreede et al. (2006) presented a collaborative code
inspection process that was designed during an action research study using collaboration
engineering principles and techniques. Results showed that regardless of the
implementation, the process was found to be successful in uncovering many major, minor,

and false-positive defects in inspected piece of code.

Along with improved quality, substantial productivity gains have also been reported.
Such gains are possible for two reasons. First, the longer a defect remains in a product,
the more costly it is to remove it. Second, except for reviews and walkthroughs, the only

other widely applicable technique for detecting and eliminating software defects is testing.

24

If inspections can detect and eliminate faults more cheaply than testing, they can be used

to improve productivity and to shorten development schedules.

The above shows that the inspection is very important before we begin modeling the fault
detection and correction during the testing phase. That motivates us to find a way to
measure the inspection effectiveness and to find out factors that can influence the
inspection effectiveness. By changing those influential factors, we can improve the
efficiency of detecting and eliminating software defects at the early stage of software

development, therefore, help saving lots of money and energy during the testing phase.

2.4.2 A Brief Review of Software Inspection Process

It has been widely accepted that software inspection is a cost-effective approach for
quality improvement through defect removal (Aurum et al., 2002). Such a static
verification technique is originally introduced in Fagan (1976), and has been studied and
applied extensively with many varieties (Kelly and Shepard, 2004b, Miller and Yin,
2004). Fagan (1986) described a fishbone diagram of the causal influence for the quality
of software inspection, which showed the influences on the quality of inspection
processes. Cockram (2001) redrawn Fagan’s diagram to give an indication of the type of
attributes that influenced the effectiveness of the inspection. Aurum et al. (2005)
investigated the inspection effectiveness by altering some of the inspection attributes,
such as the environmental context, document type and reading technique. Freimut et al.

(2005) proposed a model to measure inspection cost-effectiveness and a method to

25

determine the cost-effectiveness by combining project data and expert opinion. Generally
speaking, software inspection is a systematic technique to examine any software artifact
for defect detection and removal, and can be applied to the early phase in software

development.

However, software inspection process is flexible and complex. There is no unified
inspection structure and there are many factors contributing to its effectiveness for each
specific procedure (Biffl and Halling, 2003; Briand et al., 2004). Many of these factors
are highly dependent on the experiences of individual inspectors, introducing great
uncertainty into this process (Kelly and Shepard, 2004a; Perry et al., 2002). Bayesian
network widely known as a powerful approach to model under uncertainty is then

considered to help modeling the inspection process.

2.4.3 A Brief Introduction of Bayesian Network Models

Bayesian network (Pearl, 1986) is a directed acyclic probability graph, connecting the
relative variables with arcs, and this kind of connection expresses the conditional
dependence between the variables. The influence is not necessarily linear; in general if
one node can take n values and the other m values, the influence of one mode on the
other is a nxm matrix. Experience is used to provide a priori probability values for each
node matrix. Therefore, Bayesian network is well-known as a powerful approach for

reasoning under uncertainty.

26

To construct the Bayesian network requires three types of knowledge:

1) The structure of the network showing the node dependencies.
2) A matrix giving the conditional probability distribution for each link.

3) The structure of the network is acyclic.

Besides the Bayesian network construction, the Bayesian network can also include nodes
being set to a pre-defined value (evidence nodes), which falls under probabilistic
inference. Bayesian network inference is NP-hard for a general network which warrants

the use of BN software such as NETICA.

The application of Bayesian networks can provide a means of initializing the model from
inspectors’ experience, with the model having the ability to learn and optimize its
performance from the results of inspections. One of the basic assumptions in Bayesian
inspection models is that some prior knowledge is given about the number of defects in a
certain product or software system. The prior knowledge could be often described as a
probability distribution. Chun and Sumichrast (2006) proposed three conditions that
should be put forth as desirable properties for a prior probability distribution of the
number of defects in the product. Various prior probability distributions were reviewed
and tested if they met those conditions. The negative binomial distribution was found to
be the only one that satisfied all the desirable conditions. With the negative binomial
prior, the effects of various parameters were analyzed on the Bayesian estimate of the

number of undetected errors still remaining in the product.

27

Ganssle (2001) did a survey showing some striking examples of the value of code

inspections:

1) IBM managed to remove 82% of all defects before testing even began.

2) ATandT found inspections led to 14% increase in productivity and 10-fold
increase in quality.

3) HP found that 80% of the errors detected during inspections were unlikely to be
caught by testing.

4) HP, Shell Research, Bell Northern, and ATandT all found inspections 20-30 times

more efficient than testing in detecting errors.

Over the last decades, Bayesian networks (BN) have become a popular tool for modeling
many kinds of statistical problems. Langseth and Portinale (2007) discussed the
properties of the modeling framework that make BNs particularly well suited for
reliability applications, and point to ongoing research that is relevant for practitioners in
reliability. Melo and Sanchez (2006) pointed out that Bayesian networks have been

applied toe deal with uncertainties in software development recently.

Based on the diagram proposed by Fagan (1986), and the one revised by Cockram (2001),

we can provide a predictive model of the effectiveness of software inspections using

Bayesian network modeling.

28

Chapter 3 Modeling of the fault detection and
correction process

Software reliability modeling is to describe fault-related behaviors of software testing
process, which generally includes fault detection, correction and sometimes fault
introduction. In this chapter, our research is mainly based on traditional SRGMs, and the
aim is to further develop models with more realistic assumptions. Traditional SRGMs
consider the fault detection process only, usually assuming that the fault detected is
corrected immediately and perfectly, while in reality, it is not always that case. Imperfect
correction issue has been studied comprehensively (Xie and Yang, 2003; Bhaskar and
Kumar, 2006). However, relatively less research has been carried out to incorporate fault
correction process into software reliability models. In fact, the time needed for fault
correction can not be neglected in software testing practice. For each detected fault, it has
to be reported, diagnosed, removed and verified before it could be noted as corrected.
Furthermore, the fault correction time is an important factor for some critical decision
analysis (Stutzke and Smidts, 2001; Zhang et al., 2003). As a consequence, combined
fault detection and correction modeling could present more practical models for software

testing process, with better assistance to related decision-making activities.

Schneidweind (1975) first proposed the idea of modeling the fault correction process, in
which, the fault correction process is modeled as a separate process following the fault
detection process with a constant time lag. It was later highlighted in Xie and Zhao (1992)
where a time-dependent delay function was proposed. In Schneidewind (2001), the time

delay was assumed to be an exponentially distributed random variable. However, due to

29

the lack of actual data showing the fault detection and correction processes, little real

progress has been made.

In this chapter, a systematic study on the fault detection and correction processes is
carried out. We propose new models by considering the time delay, that is, the time spent
to correct the detected fault. We consider there is a time delay between fault correction
and fault detection; therefore, the fault correction process can be modeled as a delayed
fault detection process with random or deterministic delay. An actual data set is used to
illustrate the modeling framework and reliability analysis procedure. Below we propose
different models by presenting different forms of the time delay between these two
processes. To highlight our idea and approach, we are using G-O model for illustrative
purpose. Similar approach can be carried out based on other software reliability models

as well.

3.1 The Modeling Framework of FDP and FCP

When information about the fault detection process and the fault correction process are
all available, the fault correction process can be modeled as a process separate from fault
detection. They can then be analyzed in a way similar to that of traditional NHPP SRGMs
reviewed in chapter 2. On the other hand, it is more appropriate to consider the fault
correction process to be related to the fault detection process as a fault can only be
removed after its detection. The fault correction process can be assumed to be a delayed

fault detection process. Different models have been proposed by presenting different

30

forms of the time delay between these two processes. Extension can be made in two
directions: firstly, different NHPP models could be applied for different fault detection
processes; secondly, different time-delay forms can be generated under different fault

correction conditions.

3.1.1 Fault Detection Models

As reviewed in section 2 on NHPP models, software fault detection process is usually
assumed to follow a non-homogeneous Poisson process, in which the intensity function is

time-dependent. Given the intensity function A, (¢), the MVF m, (¢) satisfies

m,(t)=[; A, (s)ds (3.1)

The mean value function m,(¢)is the characteristic of the NHPP model. Generally,

different fault detection models could be obtained by using different non-decreasing

functions m,(¢). There are two major classes ofm,(¢)used to describe different fault
detection processes: concave and S-shaped models. A concavem, (¢)describes the fault

detection process with exponential decreasing intensity. Differently, S-

shapedm,, (t)describes fault detection process with increasing-then-decreasing intensity,

which could be interpreted as a learning process.

31

The G-O model is one of the most influential NHPP software reliability models. The

mean value function is given as

m,(t)=all—e™)a,b>0 (3.2)

Where a is the number of faults that can be detected by the testing process, and b can be

interpreted as the failure occurrence rate per fault (Goel and Okumoto, 1979).

There are many other models widely discussed, such as the Duane model, which is also
referred to as the Weibull process model, and the K-stage Erlangian (gamma) growth
curve model (k=3). Another widely discussed model is the delayed S-shaped model
studied in Yamada et al. (1984a). It is used to model the delayed reporting phenomenon

for fault detection. The mean value function is given as

m,(t)=a-[1-A+bt)e™], a,b>0 (3.3)

with parameter a denoting the number of faults to be detected and b corresponding to a

fault detection rate.

32

Myt 4 Myt

Concave S-shaped

Figure 3. 1 Two classes of mean value function md(t)

3.1.2 Fault Correction Models

Fault correction is related to the fault detection process, and it can be modeled with
reference to the NHPP models described previously. Specifically, a fault can be corrected
only after its detection, and the fault correction process can be modeled as a delayed fault
detection process. The difference between these two processes is the time delay, which is
the time spent to correct the detected fault. Such delay could be deterministic or random,
which in turn can also be time-dependent. Then similar to FDP models characterized with
MVF of mg(t), FCP models characterized with MVF of m,(t) can be derived from my(t)

and time delay A.

3.1.3 Paired FDP and FCP Models

In the fault detection and correction model we proposed, we define the time delay as the
correction time and denote it as A. This time delay can be modeled as a deterministic or
random delay. In practice, it is more realistic to assume the time delay as a random

variable. Similar to FDP models characterized with mean value function (MVF)m,,(¢),

33

FCP models can be characterized with MVFm,_(¢). The MVF of FCP models can be

derived frommy (¢) and the time delay A:m, () = ‘[; A (t)dt = I; E[A,(t—A)]dt . Traditional

models assume perfect debugging, which means that no faults are introduced when
correcting one and faults detected are immediately corrected. In our modeling, we
consider the imperfect debugging by assuming that faults are not immediately corrected.
There is a time lag between fault detection and fault correction process, as we need more
time to locate and correct it. However, we still assume that no faults are introduced when
correcting one; the total number of initial faults will not increase over time. To emphasize
the fault correction modeling, the G-O model is applied to the fault detection process for

illustrative purpose.

Combining the NHPP model for FDP and the correction time model related to FCP, we
can get the paired FDP and FCP modeling framework based on the following

assumptions.

1) The fault detection process can be described as an NHPP characterized with

intensity function A, (¢).

2) Each detected fault will be isolated and goes into correction immediately.

3) It will take a random time for its correction.

Accordingly, the paired model will be characterized with the following paired mean

value functions:

34

my(6)= [4, (s)ds (3.4)

m, () = [, A (dt = [E[2, (t - A)ldt 3.5)

Usually, the paired model contains some unknown parameters and the estimation is
carried out with the method of least squares. Specifically, against observations of fault
detection and correction, the parameters are estimated by minimizing the sum of squared
residuals, which is the difference between MVFs and the observations for both detected

and corrected faults (summed) as

3 [n, ()=, +(m.(t,)-c,)] (.6)
where d; and ¢, denote the cumulative number of detected and corrected faults collected

till time¢, respectively; ¢,, i =1,2,3,...,are the running times from the beginning of testing.

Commonly, numerical procedures have to be developed in order to obtain the LSEs (least
square estimates). With the LSE of the parameters, the performance of the paired model
can be evaluated through the goodness-of-fit criterion. MSE (Mean squared error) is
adopted as the measurement and it is calculated through the average of MSEs for both
fault detection and correction. Both MSEs are calculated through the average squared
difference between the estimated expectations and actual data, as in the following

equation:

35

MSE :%[MSEd +MSEC]:%-{—-Z(md(ti)—di)z +l-f(mc(t,-)—ci)2} (3.7
. Py

The MSE for the combined fault detection and correction process is defined as the
average value of MSE for fault detection process and MSE for fault correction process; it

can be minimized with respect to the model parameters when actual data is available.

Different paired models have different parameter combinations, and traditionally, all
parameters can be estimated together through least square method. In next chapter we
will discuss using Maximum Likelihood Estimation (MLE) to obtain the model

parameters.

3.2 Models for Fault Correction

As mentioned earlier, fault correction process is a delayed fault detection process.
However, there are different types of delay models that can be used. Here we provide
some discussions on different types of delay models, and we use the G-O model for FDP
for the purpose of illustration. Besides the parameters from NHPP models, there are
parameters for fault correction. The MLE parameter estimation method will be discussed

later in the next chapter.

The deterministic assumptions on correction time are simplistic and often not realistic. In
fact, software fault correction is closely related to human behavior, which is an

uncertainty factor. Also, detected faults are different and their appearance sequence is

36

random in system testing. Therefore, it would be more practical to model the correction

time with a random variable.

3.2.1 Exponentially Distributed Time Delay

The correction time approximately follows exponential distribution in many practical
software testing projects (Musa et al., 1987). Assuming the correction time for each

detected fault is exponentially distributed with A ~ exp(,u) , then with given fault

detection intensity function 44(2), the fault correction density function is

A.(t) = E[A,(t— A)] = jo’/ld (t—x)- - *dx (3.8)

The fault correction process can then be described by the following MVF:

m ()=m,(t—A)= [, A.(t)dt (3.9)

The fault correction MVF for GO-model is given as

a-l-+b0e™] pu=b
mc (t) = a- 1_ ,U efbt + b e—/ﬂ
H—b u—>b

(3.10)

where m.(?) has the same form as the m(?) for S-shaped NHPP model while £ =5 .

37

3.2.2 Normally Distributed Time Delay

Assuming faults are of equal size, then we can model the time delay as a normally
distributed variable with mean x and variance o, the fault correction density function

given the fault detection intensity function 44(2) is given as

2

_ 2
1 _(x y) b +2ﬂb—bt

ﬂae 2" dx=abe * [D(t—pu—b)—D(—u—Db)]

t
A.(0) = E[2,(t=M)] = | 2, (1)
(3.11)
The fault correction process can then be described by the following MVF:

b2+2,ub_

m(0)=m (= A)= [\ 2, (Odt = fjabe > [@(t—p-b)-®(-u-blar (3.12)

Simplifying the above formula, we get:

m,(t)= —ae"”“””bz"z/z(@(t, bo’ + u, O')—CD(O, bo® +u, 0'))+ a@(t, 1 o)-00, u o))

(3.13)

3.2.3 Gamma Distributed Time Delay

To provide more flexible modeling of the correction processes, some extended
distributions can be used for the correction time. One possible distribution is the Gamma
distribution, which is the generalized form of the exponential distribution. This
distribution is reasonable if the correction has to go through a few steps. In this case, the

Gamma distributed time delay A has density

38

f(A:x):mx“-le-“ﬁ, a,f>0,x>0 (3.14)

Given the fault detection intensity function A4(%), the fault correction density function is

2.0 = EL2, (¢ = M) = [2,(t=x)- £(x)- dx (3.15)

Then, the fault correction mean value function for GO-model is

() = [0 = [[abe = E " g B g o000 gy
B -I(a) £ T(a)
(3.16)
Simplifying the above equation we get
—bt ﬂ
m)=al(t,a,) ———T(t,a 3.17
() =dl'(t,a,p) (1 b T~ b,B) (3.17)

3.3 Residual Number of Faults

With models for both fault detection and correction processes, it is more close to the
reality of software testing. With inheritance of the traditional SRGMs as model for FDP,
one assumption is relaxed to incorporate FCP by introducing the concept of correction
time. As a whole, the software testing model is a paired model with both FDP model

and FCP model separately. Such paired model can help us to study one interesting

39

property of the number of detected but uncorrected faults. Residual faults can be

deducted as the difference between fault detection and fault correction.

3.4 Summary

In this chapter, a paired FDP and FCP modeling framework is proposed, by assuming
the relationship between FDP and FCP is the time delay. Generally, modeling both fault
detection and correction processes will provide more information than traditional
models. Therefore, more accurate and useful analysis and decision making can be
conducted. It is more realistic compared with traditional software reliability models as

this proposed model takes into account of the time delay.

40

Chapter 4 Maximum likelihood estimation for the fault
detection and correction process

Fitting a proposed model to the actual data of faults detection and correction involves
estimating the model’s parameters from the real test data sets. Up to now, no MLE
method has been applied in the existing studies to estimate parameters in the fault
detection and correction process; although it is well accepted that the MLE method is
quite straightforward having many desired properties such as asymptotic normality,
admissibility, robustness and consistency, and widely used to estimate the parameters for
SRGMs (Xie, 1991; Zou, 2003; Inoue and Yamada, 2004). In this chapter, we consider
the issue of applying the MLE method to the fault detection and correction modeling

from theoretical and experimental perspectives.

4.1 Maximum Likelihood Estimation

4.1.1 Point Estimation

Usually, the paired model contains some unknown parameters and the estimation is

carried out with the method of least squares.

In this section, we give a brief introduction of using maximum likelihood estimation
(MLE) method to estimate parameters in the fault detection modeling. To model the fault

detection process in software testing, consider a random sample d,.,d,,...,d, ,

where d; denotes the number of detected faults in time interval [s S),si,i > (0 are the

12"

41

running times from the beginning of testing, m,, (s,) is the mean value function of the fault
detection model at times, and @ represent the parameters in this model. The cumulative
number of software faults detected up to time t is assumed to be a NHPP, with
independent increments, therefore, d,,i > 0 are independent from each other. The joint

density of the detected fault counts over the given partition can be obtained, and the

likelihood function can be modeled:

di
L(db..-dk | 9)= ﬁe—['"d(sf)o-fnd(sfl)lg] (md (Si)|9 _dm'd (Si—1)|9) (4.1)

where the maximum likelihood (ML) estimates of model parameters

A

are d = argmax ,_g L(@).

Based on the MLE analysis of the fault detection process, we can further consider the

MLE method for the fault detection and correction process. Assume by timez, the number
of detected faults is n, and the number of corrected faults ism, . Since the fault correction

process is regarded as a delayed fault detection process, we can regard the above fault
correction process as a fault detection process which by time¢, - A have detected m, faults.

iid.
The time delayA,,i =1,2,... ~ A, where Ais assumed to be a random variable satisfying

a certain probability distribution. It is the time delay A, that decided whether the time¢, -
A,is before time?, or after times, . The timez,- A;should be less thant, since the total

number of corrected faults can not be greater than the total number of detected faults.

42

We get the following characteristics of the time delay:

1) The time delay should always be non-negative. Specifically, if the time delay is
equal to zero, that means the detected faults are removed immediately without
further delay.

2) Regarding the correction time as a constant is too simplistic to be the case in
practice. It would be more practical to model the correction time with a random
variable as correction is a repair activity that will not take a fixed amount of time

(Schneidewind, 2001).

In our model, we assume that any fault detected needs a correction time to be corrected.

The correction process is NHPP with intensity function

A.(t) = E[4, (t - A)] = J.(j A (t=x) - pu-e*dx and mean value

function m_(¢t) =m, (t—A): J'O[A.(t)dt . Therefore, if by time ¢, we have corrected m,

faults, we can say that by time ¢, — A, we have detected m, faults, if the delay time is fixed.
If there are faults detected duringz, , € (¢, —A,,t,), thent, , >, — A, < m, <n, . This is

27

what we have discussed in our likelihood function expression (4.2) on page 44.

Denoting n, and m, as the cumulative number of faults detected and corrected by
time ¢, respectively, andn, = m; =0. Assuming the fault detection process is NHPP, we
can see 7, depends onm, . Denote P(n,,m,)as the probability of detecting », faults and

correcting m, faults by timez,. P,(-)as the probability distribution function for detection

43

process, and P, (‘)as the probability distribution function for correction process. In this

dependent case, conditioning on the corrected number of faults, we can rewrite the

probability of detecting n, faults and correcting m, faults by time¢, at the very first step,

denotingA,” ={A, |A, <t, -t} A" ={A,|A, >t,—1,_,}, we have:

P(” m, | n,_,m, 1"90)
= P(n, |mz’n1 wmppeo)P(m' | ni—l’mi—l’eo)

_ {Pd(M5, -a, |‘9)P(ECEE T t,—A,]| 60) ft,<t,—A & m 2 nil}

P)\n, - sl t1]| 6, Pc(m; —m;_ys;, t1]| 60): ift.,>t,—-A & m<n,,

== OB =gl),
+de(”1' l*l’ipv t.]w) (m t o[ty tAw)[{ }

(4.2)
Denoting§, € ® — R" as the parameters in the fault detection and correction modeling,

then we can obtain the joint density of the detected and corrected fault counts over the

given partition.

k
P(nomyi=1,...k16,)=T] P(r.m |n_,m._.6,)

k
= H P(ni | mi’ni—lﬂmi—lﬁeo)P(mi ‘ ni—lﬂmi—lﬂeo)
i=1

ﬁ{—{i_Pt}(n'_mi’[tA 160)P, (m, - lm.tug)gl()z)}

d(ni_nzl’ ,t]|‘9) (m 119[tl,,|9)
Mol -a, t,]| go)Pd(mi_ni—I’[t,,l, t,—A,]|90)

x __H de (ni N, z‘]| 0,)Pc (mi M, z,]| 90)

m;<n;_,

i=1

I

yam
g
=

(4.3)

44

The likelihood function in this case is defined as this joint density, with §,replaced by @,

simplifying the above equation we get:

L= f(n,m.i=1,...k|6)
_ o 1mat)-ma(6)6] [md (tz’) —m, (ti) | 0]”’ o [mc (ti) —my, (ti—l) | e]mi o

i=1,. Lk (”i - mi) ! (m[L)!

m;>n;

i=1,. .k, (n,- - nH)! (mi —m)!

(4.4)
A general form of the likelihood function for the combined fault detection and correction

process is given in Eq. (4.4). Under various time delay assumption, the maximum

A

likelihood (ML) estimates of 6, can be obtained as 6 = arg max 0co L(H) .

Once the estimates of all the parameters are obtained, we can use the invariance property
of the MLEs to estimate other reliability measures by replacing the respective parameters
according to their corresponding ML estimates. An example is the estimation of the
failure intensity function. Jeske and Pham (2001) showed that the failure rate of the
software at time 7 was a function of the fundamental parameters of the G-O model, and

its ML estimate was consistent.

4.1.2 Interval Estimation

Denote L as the likelihood function in Eq. (4.4), and denote 0:(a,b, y)T. To obtain

approximate confidence limits for model parameters 6 = (a, b, ,u)T , the Fisher Information

45

matrix can be calculated to obtain the asymptotic variances and covariance of the ML

estimates of the parameters.

The Fisher information matrix for the three parameters of the fault detection and

correction process is

Y 7 A2 7 A2 7

_E61112L _EﬁlnL _EélnL
| Oa” | | Oadb | | Oadu |
A2] A2] A2]

P _EﬁlnL _E('ilriL _EalnL 4.5)

i 0aob | i ob | _ﬁbﬁ,u_
A2 7 A2 7 A2]

_EalnL _EﬁlnL _E61112L

| | Oadu | | O0bou | | ou”]

The asymptotic covariance matrix V of the ML estimates for parameters & = (a,b, ,u)T 1s

the inverse of the Fisher information matrix

Var(a) COV(A,Z;) Cov(a, f1
v=rF"=| colab) varlp) covlb.i (4.6)
Cov(a,) Cov(A,[J) Var(f1)

Employing large-sample s-normal distribution approximations, the two sided
approximate 100 & % confidence limits for model parameters @ = {a,b,u} can be

obtained as

@B, = O+ Z Var(®) 4.7)
a)luwer = a’\) - Za V Varia’))

46

where Z_ is the (1- ¢) quantile of the standard s-normal distribution.; the model

parameters @ can be a,b,or u .

Notice that the LS estimation method implicitly assumes normally distributed error. It
usually has no basis for constructing confidence intervals or testing hypothesis; whereas

both are naturally built into the ML estimation method.

4.1.3 Modified Likelihood Function Based On Execution Time

The likelihood function in Eq. (4.4) can be slightly modified and applied to other time

units such as execution time. Similarly, if by the cumulative computer execution timetz,,
we have corrected m, faults, we can say that by time ¢, — A, we have detected m, faults, if
the delay time is fixed. The time ¢, —A, will occur during two sequential computer

execution time [¢, ,,7,].

The probability that by time #,-A,, m, faults are detected can be expressed as the product

of two parts as in

P=P, (nj TMisli-a,)] | 6,)Pd (mi T, A, | 90) (4.8)

Denoting A, = {Al. |A, <t —tH}, A" = {Al. |A, >t —tH} , 6,e®@cR” as the

parameters in the fault detection and correction modeling, with 6, replaced by &, the

47

likelihood function of the detected and corrected fault counts over the given partition can

be obtained.

L=f(n,m,i=1,...k|0)

- H g i) [md (ti) — " (ti) | e]n,- B [mc (li) —m, (fi—l) | (9]"@- iy
=L,k (n,- —m,-)! (ml. -,)!

X H ei[m"’ (6 =m (2,1)0] [md (ti) —m, (ti—l) | 6]”[i1 . e_[m (t,-)‘ma (tj—l)\9]
l=‘1 »k (ni —l’ll._l)'

e} e)16} ™ o) i

(nj —mi)! (m,. - j—l)

(4.9)

Under various time delay assumption, the maximum likelihood estimates of 6, can be

A A

obtained as @ = argmax,_q L(@).

4.2 Numerical Application

Below we use the proposed fault detection and correction models to model a real data set
obtained from the testing process of a medium-sized software project, and then apply the
proposed MLE approach to estimate the parameters within the model. Different from
traditional software reliability data set, this dataset includes not only fault detection data
but also fault correction data. However, there is no tag information that indicates when a
certain fault is corrected, and only grouped data on the number of faults per week is
available. Usually, software reliability models are applied at the late phase of testing, and

related analysis will be updated with newly collected data.

48

Our analysis is based on the current stage of software testing, with all 17 available data
points. The data set in Table 4.1 is from the testing process on a medium-sized software
project and it counts the number of faults per week (Xie et al., 2007). Different from
traditional dataset, this includes both fault detection data and fault correction data. In
Table 4.1, Ad(t) denotes the incremental detected defaults per week; d(?) denotes
cumulative detected defaults by time t; Ac(z) denotes the incremental corrected defaults

per week; c(t) denotes cumulative corrected defaults by time t.

Table 4. 1 Fault detection and correction data (incremental and cumulative faults)

Week ¢ EAd(t) Ed(t) EAc(t) L c(t)
1
1 12 12 1 3 ' 3
2 |11 | 23 ' 0 |3
______ I+ ___LéeY ___ 1M Y
3 ____ 120 .43 V9 12
4 (21 .64 120 ;32
5 20 ;84 121 |53
6 113 1 97 125 178
7112 1109 111189 __
8 ~v2 111 9 198
1 1 1
9 D1 | 112 ' 9 | 107
10 12 ‘114 12 | 100
1 1 1 1
1 2 '16 'a '113
27Tl 17 T
13 13 v126 15 1125
14 12 128 12 127
15 14 1132 10 1127
1% +9 v141 '8 '135
17 13 1 144 1 8 1 143

To highlight the idea and approach, we apply the G-O model as an example, although any
other software reliability growth model (Xie, 1991) can be used. To illustrate the
application, GO-model paired with various fault correction models (due to various time

delay distribution) are tried with the dataset in Table 4.1. The proposed approach of ML

49

estimation is carried out. The information matrix can then be used to obtain an estimate

of the parameter variance.

4.2.1 ML Estimation

Exponential time delay. Assuming an exponentially distributed correction time for each
detected fault withA ~ exp(y), the ML estimates fora,b, and y are a=165, 520.12,
and 1 =1.63, respectively. Table 4.2 shows the data sets of detected and corrected

number of faults from the software testing process of a middle-sized software project.
The fitted values compared with the actual data are given in Table 4.2. In addition to the
actual observed faults number (the actual detected faults No. and the actual corrected
faults No.), using our proposed model we can estimate the number of faults detected and

corrected correspondingly.

Table 4. 2 The fitted dataset with exponential time delay

i actual detected : estimated detected : actual corrected ! estimated corrected

week fault No. fault No. fault No. fault No.
,,,,, Lo 12 i 866 b3 i 960
S-S S S IR 3521 . A DUNNRN USNRN 2540 ..
S B S S N 4988 i 12 4083
A e 6290 I 32 481
BT R S R 7445 L 3. b 6725
6 9T 8469 1 A S N 7830
A S 109 .. L BT A 89 e S 8811
_____ 8 Moo 1018 v 98 i........9680
A S 1 10897 & 107 i 10451
IR (A S 1na s .. 109 1135
R S S e .+ 12092 & w3 o 1742
SR O 123 12500 1200 12280
B 126 i 13033 oo 12s 12757
N 128 13425 & 127 o 13180
R N 132 . 13773 127 13556
B RN ML 14081 4135 13889

17 144 143.55 143 141.84

50

As the purpose is to highlight our idea and approach of the fault detection and correction
modeling, we are proposing our model based on G-O model; while in reality, it might be
better to use S-shaped model or other more complex models which can fit the real

situation better.

Using Eq. (4.4) as an approximation only, the asymptotic covariance matrix of the ML

estimates & = (a,b, ,u)T is calculated, and given as

355.80 -0.32 -0.12
Var(d)=17(6)=| —032 0.0004 0.0002 (4.10)
~0.12 0.0002 0.04

In this case, the ML estimator of a is 165, where the parameter a is related to the
number of total faults in the software. The 95% confidence interval is [128, 202]. Notice
that this confidence interval sees very wide. Nayak et al. (2008) discussed certain
parameter-based asymptotic properties of the ML estimators of the model parameters and
some logical implications of NHPP model assumptions; while there are also some
limitations of the ML estimates. As discussed by Jeske and Pham (2001), the failure rate
of the software at time 7 was a function of the fundamental parameters of the G-O model,
and its ML estimate was consistent; however, the ML estimate of parameter « of the G-O
model was not consistent when the observation period extends to infinity. The reason
could be that in reality, the testing time can never be infinity. This could be one of our

future topics.

51

The parameter b is interpreted as the testing efficiency, and it is related to the reliability
growth rate in the testing. The ML estimator for b is 0.12, and the 95% confidence
interval is [0.08, 0.16]. The parameter u is interpreted as the expected mean value of the

exponentially distributed time delay. For parameter 1z, the ML estimate is 1.63, and the

95% confidence interval is [1.23, 1.96]. The goodness-of-fits for FDP and FCP are shown
graphically in Figure 4.1.

Fault Detection with Exponential Time Delay
160 -+

140 -+

B R
©® O N
o o o
| I |

Number of Faults

20 - < —»— actual detected No.
77777 estimated detected No.

0] T T T T T T T T T T T T T T T T 1
week 1 3 5 7 9 11 13 15 17

(1)

Fault Correction with Exponential Time Delay
160 -
140 -
120 -

=

o

o
I

Number of Faults

——«— actual corrected No.

- - =-- - estimated corrected No.

0 T T T T T T T T T T T T T T T T 1
week 1 3 5 7 9 11 13 15 17

2)

Figure 4. 1 Actual versus fitted number of faults with exponential time delay

52

From Figure 4.1 we notice that except for the first few data points, the model can fit very
well. As discussed earlier, to highlight our idea and approach, we start with the simple
case by using G-O model for illustration. In reality, it might be better to use S-shaped
model or other more complex models which can take into more factors and fit the data
better. However, here we are using G-O model to illustrate our approach so as to have a
clear understanding of the method, and results seem to be satisfactory. In our future
research, we can apply our method based on more complex models and taking into
consideration many other factors as well, such as testing-effort, change-point.
Furthermore, the prediction performance of the model is more important compared with

goodness-of-fit, which in chapter 5 we will have some further discussion.

Once the model parameters are estimated, the confidence intervals for FDP and FCP can

be derived. In Figure 4.2, the confidence intervals using MLE and LSE techniques are

shown.

53

Confidence Interval for Cumulative Number of Confidence Interval for Cumulative Number of

180 T Faults (MLE) 180 T Faults (LSE)
160 + 160 T
140 + 140 T
120 + 120 T

® o
S S
I I
t t

—x—actual detected No.
—- -estimated detected No.
—o—ICL for FDP

—x—actual detected No.
— -estimated detected No.
—o—ICL for FDP

Number of Faults
Number of Faults
Z

N

20 + 5//1 —e—TUCL for FOP 207/ —a—TCL for FDP
0 +—+——+—+—+—+—F+—+—+—+—+—+—+—+—+—+— Ot
week 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 week 1 2 3 456 7 8 910111213 14151617
Confidence Interval for Cumulative Number of Confidence Interval for Cumulative Number of
Faults (MLE) Faults (LSE)
180 180
160 |- 160
@ 10 f o 140
— +
2120 F =120
k; -
4y 100 =100
° b
580 ¢ o 80
] 60 - —x—actual corrected No. -3
E}) S 60T
= ——- -estimated corrected No. E —x—actual corrected No.
40 —o—LCL for FCP = q0t —— -estimated corrected No.
20 —e— UCL for FCP . —o—LCL for FCP
VA @ —e—CL for FCP
week | sfx T 0778/)({/)({{{{{{{{‘{{{{{{{

12 3 45 6 7 8 910111213 14 15 16 17 week 1 2z 3 4 5 6 7 8 9 10 1l 1213 14 15 16 17

3) (4)

Figure 4. 2 Confidence Interval based on MLE and LSE with exponential time delay

In Figure 4.2, confidence intervals are derived based on MLE and LSE techniques
separately, for both fault detection process and fault correction process. From a goodness-
of-fit test point of view, the confidence intervals derived from LSE technique are
comparable to MLE. For fault detection process MLE is better; while for fault correction

process LSE is better.

54

S-normally distributed time delay. Following the same procedure, assuming the faults

are of equal size (Xie and Zhao, 1992), that is, each fault contributes the same amount to

the software failure probability, the time delay can be modeled as a s-normally distributed

variable with mean u ,and variance o?. The plots are shown in Figure 4.3.

160
140 +
120 -
100 -

(o]
o
I

Number of Faults
N)
o o
Il Il

N
o
I

Fault Detection with Normal Time Delay

—x— actual detected No.
————— estimated detected No.

3
®
o)
~ o

160
140 -
120 -

Number of Faults

[y

o

o
!

1 2 3 45 6 7 8 9 1011 1213 14 15 16 17

(1)

Fault Correction with Normal Time Delay

e —x— actual corrected No.
- --- estimated corrected No.

N H (e} [0}
o o O o O
I I I I

week 1 2 3 4 5 6 7 8 9 101112 13 14 1516 17

2)

Figure 4. 3 Actual versus fitted number of faults with s-normally distributed time delay

55

Gamma time delay. Assuming the random time delay to be a Gamma distributed

random variable A ~ I'(a, f), the plots are shown in Figure 4.4.

Number of Faults

160 ~
140 +
120 -
100 -

Number of Faults

80 A
60 -
40 ~
20 A

Fault Detection with Gamma Time Delay

. —— actual detected No.
estimated detected No.

0
week

160
140 A
120 A

100 ~

60 -

1 2 3 45 6 7 8 91011

12 13 14 15 16 17

(1)

Fault Correction with Gamma Time Delay

—x— actual corrected No.
----- estimated corrected No.

3 9 11 13 15 17

2)

Figure 4. 4 Actual versus fitted number of faults with Gamma time delay

56

From the above analysis, three paired models are applied to fit against the real data by
assuming different time delay distributions. Overall, the results showed a good agreement
between actual datasets and estimated datasets under the assumption of time delay. In
addition, the results of a good fitness to the dataset at the later stage of the software
testing imply better predictions, and probably mean better decision making processes to a
software manager (Huang and Lin, 2006; Lyu, 1996; Pham, 2000; Huang and Lyu,
2005a). The results of the estimation and the corresponding goodness-of-fit for all models
are shown in Table 4.3. We use MSE, to denote the mean squares of errors of fault
detection process, MSE, to denote the mean squares of errors of fault correction process,

MSE to denote the mean squares of errors of the combined fault detection and correction

process.
Table 4. 3 Summary of paired model estimates, and goodness-of-fit
Model Estimates MSE
La=165 | MSE,=55.02
Pair 1: Exponential time delay P h=0.12 I MSE.=132.98
! [l:163 E MSE=9%4
LATTO © MSE~82.38
Pair 2: Normally distributed time delay ' »=0.1 | MSE.=103.84
. 4=0.53, 6=0.1 | MSE=93.11
La=le6 | MSE,=55.14
Pair 3: Gamma time delay ' b=0.12 i MSE=140.64
=073, 5=0.83 | MSE=97.89

As can be seen from Table 4.3, the pair 1 model provides the best fit for this FDP data
set, and the pair 2 model provides the best fit for this FCP data set. The pair 2 model,

composed of the GO-FDP model and the FCP model, provides the best fit for this whole

57

data set. However, it should be noted that only one dataset is used here, and the purpose

is to illustrate the procedure of application.

Figure 4.5 below shows that the estimated fault correction data using the ML estimation
method under various time-delay forms can fit the actual fault correction data well after

the 5 week.

Goodness-of-fit Plot

160 ~
140 - e
— :Ij_i//ﬁ\
ezt
120 n ‘171
x=—5
100 - s
w7+
2 5
S 80 /X/“
i al
X

S 60 - P i+/
5 -2
S 40 - ¥ /

S A —x— actual corrected number of faults
pd N2 —x- - estimated exponential time delay
204 ,° / —+ - estimated normal time delay
1/4 X — - - estimated Gamma time delay
O x_x T T T T T T T T T T T T T T T 1

week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 4. 5 Plot of the goodness-of-fit for the FCP under various time-delay forms

4.2.2 ML Estimates Based On Modified Likelihood Function

Instead of using the likelihood function Eq. (4.4) to obtain the ML estimates, the revised

likelihood function Eq. (4.9) is used to obtain the ML estimates for the FDP and FCP

modeling analysis.

58

Exponential time delay. Assuming the correction time for each detected fault is

exponentially distributed with A ~ exp(y) , the ML estimates fora,b, and gz are a=158,

b=0.14, and [1=0.64, respectively. The results are shown in Figure 4.6.

Fault Detection with Exponential Time Delay

Fault Correction with Exponential Time Delay

160 -
140 -

140 -

120 4 120 A
. 100 4 mlOO b
5 = 80
& 80 &
S 6o g 60 1
2 o
E 40 - £ 401 .

7/
z / —x— actual detected No. = 20 | —x— actual corrected No.
201 - -~ estimated detected No. - — - estimated corrected No.
0 . . T T T T T T T T T T T T T T 1 0 T T T T T T T T T T T T T T T T 1

week 1 3 5 7 9 1 13 15 17 week 1 3 5 7 9 1

(D) 2)

Fault Detection and Fault Correction with

1 13 15 17

160 1 Exponential Time Delay
140 -+
120 -+
£ 100 -
3
L 80 -
S
8 60 -
€ —— actual detected No.
3 40 </ e estimated detected No.
20 —+— actual corrected No.
- -—-- estimated corrected No.
O T T T T T T T T T T T T T T T T 1
week 1 3 5 7 9 11 13 15 17

€)

Figure 4. 6 Actual versus fitted number of faults with exponential time delay with revised

likelihood function

59

S-normally distributed time delay. Assuming the correction time for each detected fault

is s-normally distributed withA ~ N (y, 02), the ML estimates fora,b, u, and o are

A

a=164, b=0.14, 1 =2.75, and & =1.04, respectively. The results are shown in Figure 4.7.

160 4
140 4

=
o
o

N
o

Number of Faults

N
o o
L

week

D [
o o
L L

Fault Detection with Normal Time Delay

—x— actual detected No.
- —— estimated detected No.

3 5 7 9 11 13 15 17

(1)

Fault Correction with Normal Time Delay

—x— actual corrected No.
- —— estimated corrected No.

0 T B e e e I S e m e |
week 1 3 5 7 9 11 13 15 17

2)

Fault Detection and Fault Correction with

160 - Normal Time Delay
140 - =
120 ~
2
S 100 -
&
Y— 80 n
o
2 60 A
c L/ —x— actual detected No.
= 40 —»=— actual corrected No.
20 - - -- - - estimated detected No.
————— estimated corrected No.
O T T T T T T T T T T T T T T T T 1

week 1 3 5 7

9 11 13 15 17

€)

Figure 4. 7 Actual versus fitted number of faults with s-normally distributed time delay
with revised likelihood function

60

Gamma time delay. Assume

the

random time delay to be

Gamma

distributed A ~ I'(«,) . Then the ML estimates of a,b, «, and fare a=165, 520.12,

a=1.12, and ,é =0.56, respectively. The results are shown in Figure 4.8.

Fault Detection with Gamma Time Delay

Fault Correction with Gamma Time Delay

160 - 160 -

140 140

120 A 120 ~
€100 »100 -
=3 =l
& 80 - & 80
° ©
& 60 = 60 4
= o
Sw| E 401 ~
= L,/ —— actual detected No. z —— actual corrected No.

20 -~ estimated detected No. 207 - - estimated corrected No.
0 T T T T T T T T T T T T T T T T 0 T T T T T T T T T T T T T T T T 1

(D

2)

Fault Detection and Fault Correction with

160 - Gamma Time Delay
140
120
&100 b
3
F 80 -
> 60
9 —x— actual detected No.
g 40 - —— actual corrected No.
4 - -- - estimated detected No.
20 7 - -~ - estimated corrected No.
0 T T T T T T T T T T T T T T T 1
week 1 3 5 7 9 11 13 15 17
(3)

17

Figure 4. 8 Actual versus fitted number of faults with Gamma time delay with revised
likelihood function

61

4.3 Summary

From above analysis, three paired models by considering different time delay function
are applied to fit against the real data using revised likelihood function Eq. (4.9) instead
of Eq. (4.4). The results of the estimation, and the corresponding goodness-of-fit

comparing likelihood function Eq. (4.4) with Eq. (4.9), are listed in Table 4.4.

The revised likelihood function is more complex and thus more accurate; therefore we
are expecting that the likelihood function with Eq. (4.9) should provide less variance and
be a better choice. However, in practice, software manager may prefer the one with Eq.

(4.4) instead, as it may not be that accurate but it is much easier to calculate and apply.

Table 4. 4 Comparison of paired model estimates, and goodness-of-fit

Model ML estimates of Eq. MSE of Eq. ML estimates of Eq. MSE of Eq.
ode (4.4) L @ey (4.9) L (4Y)
| a=165 | | a=158 |
Pair 1: L =012 . MSE=94 | =014 | MSE=58.11
Exponential time delay }--------- 7~ e S o L i < el)
: 4=1.63 i i £2=10.64
Pair 2: E ,,,,,,,,,, é _ f,ljé ,,,,,,,, J E ,,,,,,,,,, ‘?, ,?,1,6,4,' ,,,,,,,,,,
Normally distributed _15_ =0.1 | MSE=93.11 | 1_;_?_9__1 4 | MSE=82.54
| fmedely . A=053,6=0.1 : . A=275,6=1.04 ¢+
N a=l66 i a=165
G Pair 3: ; 5=0.12 | MSE=97.89 | 5=0.12 | MSE=92.78
amma time delay =~ {--------------" T = fommmm oo
¢=0.73, 4=0.83 | L a=1.12, #=0.56

As can be seen from Table 4.4, based on revised likelihood function Eq. (4.9), the pair 1
model, composed of the GO-FDP model and the FCP model, provides the best fit for the
whole dataset; while for the likelihood function Eq. (4.4), the best fit is the pair 2 model.
For this dataset the revised likelihood function based on execution time can give a better

goodness-of-fit compared with the one based on calendar time.

62

This result is within our expectation. Execution time and calendar time have been an
important topic in many papers (Musa and Okumoto, 1987; Xie, 1991). Execution time is
useful to obtain more accurate estimation compared with calendar time, as software
testing is in a sense much more uniform in execution time than in calendar time. However,
from the management point of view, calendar time models are more efficient for the
allocation of testing resource and for the determination of optimal release time. It is
possible to combine calendar time and execution time for many different software

reliability models and it could be one interesting topic for future study.

63

Chapter 5 Prediction Analysis of FDP FCP model

As pointed out by Li et al. (2007), building good reliability models is one of the key
problems in the field of software reliability. A good software reliability model should
give good predictions of future failure behavior, compute useful quantities and be widely
applicable. Therefore, a very important goal of current software reliability research is to
develop general prediction models (Karunanithi et al., 1992). For a software manager, it
is essential to be able to predict the future behavior of the fault detection and correction
process. The prediction is important for the allocation of further testing resources and for
the study of software release problems. No single measure alone is adequate to determine
the best parameter estimation method on a given dataset. In fact, software managers
would prefer to see gradually smaller percentage of the data predicted, because the
further the testing process running, the more expensive it becomes. Therefore, our main

attention is to give good predictions to the later stage of software testing.

5.1 Prediction Performance

To study the predictive capability, based on our proposed FDP and FCP model, the ML
estimates are obtained based on the proposed likelihood function Eq. (4.4) for illustration
purposes only. Assuming exponential time delay, predictions for 5 weeks ahead is
showed here, i.e., using the data of the first 12 weeks to predict the rest 5 weeks. The

predicted value is then compared with the real observed dataset.

64

Defining the predictive validity as RE = " L, where N, is the faults observed by

()-N
N

i
time ¢;, the comparison criterion used here is the mean of relative errors (MRE) defined

as

(5.1)

This measure shows the capability of the model to predict the fault behavior (Musa et al.,
1987), and a lower value of MRE indicates better predictive performance. We calculate
the MRE for fault detection process, and fault correction process separately, then we use
the weighted MRE (the average of the two MRE) as the criterion to judge the whole fault

detection and correction processes.

Based on the first 12 weeks data from (Xie et al., 2007), the ML estimates based on
likelihood function Eq. (4.4) are a=163, 520.12, and £1=1.37. The results of goodness-

of-fit of the first 12 weeks data are given in Table 5.1. The predictions for the next 5
weeks based on this model are then compared with the actual observations as shown in
Table 5.1, and plotted in Figure 5.1. For the data of the remaining 5 weeks, the MRE for
the detection process is 0.026, and the MRE for the correction process 0.027. The average

MRE is 0.026.

65

Table 5. 1 Goodness-of-fit and prediction using first 12 dataset with MLE

Goodness-of-fit (MLE)

. Actual detected Estimated detected Actual corrected Estimated corrected
Week : No. : No. : No. : No.

________ Voo12 1880 3 i 869

________ 2 23333238
,,,,,,,, 3 .48 v 580312 03929
,,,,,,,, 4 64 6314 032 i 5338
,,,,,,,, S84 i TA64 i 53 i 6597
________ 6 i 97 i &8 i 78 4 7713
________ 1o M9 939898700
,,,,,,,, 8 ..oy o1wrss oy 9% o 9574
,,,,,,,, o .o....oonz v 1878 oo 107 i 10347
Ao a4y 10911030 .
_______ o ooue oo 12049 1311634

12 123 125.35 120 121.68
! Prediction using first 12 data points (MLE)
_______ 1312612965 i 125 i 12641
_______ 4128 o 13346 G127 0 13058
,,,,,,, 5 v 132 i 1382 127 v 13428
e ooy o141 o 1397 135 13754 .
17 ! 144 ! 142.42 ! 143 ! 140.43

MLE Prediction Using the First 12 Data
160 T

140 T

— —
o DO
o (e}
| |
T

€]
o
I
T

—»—actual detected No.

-—+--estimated detected No.
—»—actual corrected No.
--o--estimated corrected No.

Number of Faults
(@)
(e)

Figure 5. 1 ML estimators prediction using data of the first 12 weeks

66

To have a general idea of the predictive performance of the ML estimates, the LS
estimates are studied in a similar way, and then compared with the ML estimates. Using
the same data set of the first 12 weeks, the LS estimates are obtained as a =165, l;=0.13,
and £=0.58. The results of goodness-of-fit of the first 12 weeks data are given in Table 6.
Predictions of the last 5 weeks are compared with the actual observations as shown in
Table 5.2, and plotted in Figure 5.2. The MRE computed for the 5 predicted points for the
detection process is 0.053, while the MRE for the correction process is 0.025. The

average MRE is 0.039.

Table 5. 2 Goodness-of-fit and prediction using first 12 data points with LSE

Goodness-of-fit (LSE)

Actual detected | Estimated detected | Actual corrected | Estimated corrected
Week t : : :
,,,,,,,,,,,,,,,,,,,,,,,,, No. =~ + No. + No. ¢+ ~ No
s 1 1997 . 3 Lo 4%
,,,,,,, 2 423 b 375403 b 1582
_______ 3 05298 22904
_______ 4 464 6656 i 32 4293
,,,,,,, 5 o+ 8% v 7851 o+ 53 5623
,,,,,,, 6 . 9% . 80 . 78 . 6858
_______ 74l i 9824 i 89 i 7981
_______ 8 410636 i 98 i 898
_______ > o2 oo 13s oy 107 v 9887
,,,,,,, o 4 19 . 109 10683
,,,,,,, .16 1253 13 . 11387
12 ; 123 ; 130.16 ; 120 ; 120.08
! Prediction using first 12 data points (LSE)
,,,,,,, 13 4 1260 13443 ¢ 125 0 12555
_______ 4 0128 4 13818 i 127 0 13037
_______ 5 o2 oo 14148 o127 413460
_______ 6 {4l U438 b3S T I3833
17 144 146.94 ' 143 ' 141.62

67

Number of Faults

LSE Prediction Using the First 12 Data

160 T
_+
140 +
120 +
w 100 T
Y
=
ks 80 T
[
° 60 T
=
<]
Q .
8§ 40 + < —*—actual detected No.
= —>»—actual corrected No.
20 + --+- estimated detected No.
- - - estimated corrected No.
0 1 1 1 1 1 1 | | | | | | | | | | !
week 1 3 5 7 9 11 13 15 17

Figure 5. 2 LS estimation prediction using data of the first 12 weeks

Predict the Rest 5 Weeks Data of FDP

Predict the Rest 5 Weeks Data of the FCP

150 - 145 1
145 + 140 -
140 - %135 |
135 &
;130 1
130 1 g
(5]
125 Fanl
—*—actual detected No. 5 —»—actual corrected No.
120 1 ==~ MLE predicted detected No. Z120 - - -—~ MLE predicted corrected No.
--o-~LSE predicted detected No. --o-- LSE predicted corrected No.
115 w 115 ‘
week 13 14 15 16 iy week 13 14 15 16 17
(1))

Figure 5. 3 Prediction comparison of MLE with LSE

Figure 5.3 showed that the prediction performance of the ML estimation method is better

than the LS estimation method based on this numerical example. The prediction result of

68

the ML estimation method for the fault detection process is better compared with the LS
estimation method. The summary of the prediction performance based on MRE is given
below in Table 5.3. The results of the MRE criterion show that the ML estimation

method has better predictive capability.

Table 5. 3 Prediction performance with criterion MRE

MRE criterion : Prediction with the MLE : Prediction with the LSE
Fault detection process : 0.026 : 0.053
***** Fanlt comrctionprocess | 0027 s
*********** Overal MRE 0026 o

From the economic perspective, the further developed the software testing is, the more
expensive it becomes, therefore, accurate prediction is quite important and it means a lot

to the software manager.

5.2 Monte Carlo Simulation Study

Since the real data for detection and correction process is limited, in order to provide the
reader a firm understanding of the prediction performance of the MLE method, we carry
out an empirical study by Monte Carlo simulation (Tausworthe and Lyu, 1996a;

Tausworthe and Lyu, 1996b).

69

5.2.1 Simulation Method

To study the performance of the ML estimation method in general, we complete a

simulation study. There are several approaches proposed (Lyu, 1996; Tausworthe and

Lyu, 1996a) to generate simulation code for the software reliability dataset. An empirical

study is given below by Monte Carlo simulation based on the GO model using

MATLAB software. The steps carried out are as follows:

1))

2)

3)

4)

S)

Generate two sequences of uniformly distributed data
{u,i=1,....N}{v,,i=1,...,N}; set N=300.

Generate the inter-arrival time of the HPP events as ¢; = —logu;, i=1,...,N.
From steps 1) and 2), the arrival time of the HPP events can be simulated as

SO :O,Si :S'—l +ti,i=1,...,N-

1

s;=m,(S,), i=1...,N is the simulation of NHPP data for fault detection

process, where m,(¢)is the MVF of GO model. When the arrival time goes to

infinity, the corresponding probability of fault arrival can be negligible (Lyu,
1996).

Based on A (¢)=A,(t—A), the arrival time of the NHPP data of the correction
process can be generated ass =g, +¢,i=1,...,N , where the exponentially
distributed time delay A ~ exp(,u) is simulated as ¢/ =-logv,/u, i=1,...,N, and

here u is the parameter for the exponential distribution.

70

6) Forj=1,....,k,i=1,...,N,ifs; <j, d; =d; +1,if s} < j, ¢; =c; +1. We choose
k =17 for illustrative purpose.

7) dj,j =1,....,k, and Ci»J = 1,...,k are the cumulative number of detected faults,

and number of corrected faults, respectively.

In our simulation, we generate data with exact detection time and correction time, while
the data we use for illustration is grouped data. Actually, there is no difference of the
prediction performance between grouped data and exact interval data. Wood (1996) did
some simulation and found that the predictions from the simulated exact data and the

weekly grouped data were essentially identical.

5.2.2 A Simulation Study

As an illustration, by using a =165, b =0.12, 4=1.6, and N=300, several sets of data are

then simulated. A comparison is made between the ML estimation predictions and the
LS estimation predictions. Based on the simulated datasets of the first 12 weeks, the ML
estimates, and the LS estimates are calculated separately. With the estimated parameters,
predictions for the next 5 weeks are made. The criterion used to determine the predictive

performance is the MRE as defined before.

Simulation of 10 data sets. 10 sets of data are initially simulated to get a general idea of
the predictive performance of the two methods. Figure 5.4 shows the results of the Monte

Carlo study by plotting the curves of the average value of RE of the predicted values for

71

the next 5 weeks, based on the ML estimation method, and the LS estimation method

separately.
The average Relative Errors of prediction performance
0.5 -
simulated dataset
0.4 -

—— MLE RE of detection
—+— MLE RE of correction
—— LSE RE of detection
—— LSE RE of correction

0.3

0.2 A

O.; et A ;\& -

average of Relative Errors

Figure 5. 4 Plot of the average of RE

The simulated datasets were generated with exact detection time and correction time,
while the actual dataset used for illustration was grouped data. Some simulations were
carried out in (Schneidewind, 2001), and their results showed that the predictions from
the simulated exact data were essentially identical to that of the weekly grouped data.
The simulation results here show that the ML estimation method had smaller RE
compared with the LS estimation method, indicating that the ML estimation method is

more stable, and provides narrower variance compared with the LS estimation method.

Simulation of 120 data sets. In order to provide the reader a firm understanding of the
prediction performance of the MLE method, in this study, 120 datasets of the fault

detection and correction process are simulated with the initial value #=1.6, x#=2, and

72

1 =3 separately. MRE is used as a criterion to determine the predictive performance.
Here, if the MRE of both detected fault data and corrected fault data of the ML
estimation method are less than that of the LS estimation method, the ML estimation
method is considered to give better predictions, percentage is used to calculate the
percentile of better predictions. If the reverse occurs, the LS estimation method is then
considered to give better predictions. In any other case, the two methods are considered
incomparable. MRED is used to denote the MRE of detected fault data, and MREC is

used to denote the MRE of corrected fault data.

Table 5. 4 The MRE of predicted value simulating 120 datasets

Initial : : : : :)
parameter for + MLE . MRED MREC v+ % + LSE .« MRED . MREC : %

time delay

. Mean - 0.038 - 0.034 - i Mean - 0.041 - 0.036

H=LO R $52.70% v e 47 30%
Std. - 0.023 - 0.021 - - Std. © 003 - 0.026 -
- Mean - 0.026 - 0.023 - - Mean - 0.028 - 0.025
H=2 e $60.20% £ 39.80%
Std. - 0.022 - 0.019 - . Std. - 0.025 - 0.022 -
Mean - 0.027 - 0.024 - Mean - 0.037 - 0.034
T L2 Z T 28%
Std. 1 002 1 0.02 | i Std. | 0.027 | 0.025 !

Table 5.4 shows the mean value, and the standard deviation of MRED, and MREC based
on the ML estimation method and the LS estimation method separately. The Monte Carlo
simulation results showed that the ML estimation method had a lower value for the mean

of MRE for both detection process, and correction process in the prediction performance;

73

and the standard deviations of MRE for both detection process, and correction process
were less than that of the LS estimation method, which means a more stable predictive
capability. The results appear to further confirm that the ML estimation method has a
more stable predictive capability compared with the LS estimation method, as more than

half of the 120 simulated results under three different values of parameter 4 show that

the ML estimation method gives better prediction compared with the LS estimation

method.

The results fall within our expectation. As for MLE method, the idea behind is to
determine the parameters that maximize the probability (likelihood) of the sample data.
From a statistical point of view, the method is considered to be more robust and yields
estimators with good statistical properties, thus may be able to give a better prediction
performance. While the LSE method is well known as linear regression, the sum of
squares error, and the root means squared deviation is tied to the method. Given a set of
data, it may be able to fit the curve very well, but sometimes it can be over-fit and not
able to give a better prediction result. LSE might be useful for obtaining a descriptive
measure for the purpose of summarizing observed data, but MLE is more suitable for

statistical inference.

5.3 Summary

In this chapter, based on traditional NHPP SRGMs, we have proposed a new model

considering the fault correction time, and a general framework is proposed to derive a

74

likelihood function for the combined fault detection and correction process. Based on the
new explicit formula, we have showed that MLEs can be easily obtained under different
time delay assumptions. An actual set of data from a software development project is
presented, different fault correction models are proposed and the ML estimates are
calculated given different time delay distributions assumption. Experimental results of
the simulation analysis show that the ML estimates with a fairly accurate prediction
capability compared with the LS estimates. The approach in our study can be further
extended to general SRGMs considering the fault detection and correction process. There
are also other researchers proposing their way of prediction analysis. Li et al. (2007)
illustrated their experiments in their paper showing that their prediction approach
performed quite well in the later stages of software development, and better than single
classical software reliability models. They showed that the method could automatically
select the most appropriate lower-level model for the data and performances were well in
prediction. Existing models typically reply on assumptions about development
environments, the nature of software failures and the probability of individual failure
occurrences. Thus, each model can be shown to perform well with a specific failure data
set, but no model appears to perform well for all cases. In recent years, many methods
have been proposed to improve the quality of reliability models. Some nonparametric
methods have been introduced into the field, such as Neural Network and Genetic
Programming. These types of method are flexible, but they often lack theoretical basis.
Further research can be down in this area. Myrtveit et al. (2005) pointed out that
empirical study on software prediction models do not converge with respect to the

question “which prediction model is best?”. They then did a simulation study, examined a

75

frequently used research procedure comprising three main ingredients: a single data
sample, an accuracy indicator, and cross validation. They found that it was the research
procedure itself that was unreliable. Thus, they suggest developing more reliable research
procedures before they can have confidence in the conclusions of comparative studies of
software prediction models. Further study can be carried out from this perspective of

Vview.

76

Chapter 6 Optimal Release Time Analysis

As for any traditional SRGMs, the modeling is not the ultimate goal for the analyst. With
the incorporation of the fault detection process, more practical information can be
extracted, which could be useful to improve the decision-making in a more practical way.
One of the important applications of software reliability models is the determination of
software release time, which is one of the most important decisions to be made in the
software development process. Most of the existing studies on this topic use models
based on SRGMs assuming instant fault debugging. In this paper, considering time delay,
fault detection and correction modeling analysis is carried out with a new likelihood
function derived and the ML estimators obtained. Within this framework, a new
economic cost model is proposed considering the time delay. Further analysis on the
software release time decision is carried out. This procedure is more reasonable and
useful for practical applications. The approach is illustrated with an actual set of data

from a software development project.

Based on proposed software reliability models, optimal software release time can be
determined by minimizing the total software system cost. In this section, to construct
economic models for the total software system cost, several costs that are encountered
during software development are reviewed, and various stopping criteria are compared
and reviewed. Given the total cost function, and software testing stopping criteria,
software cost models can be constructed and optimal release time can be determined.
Some traditional software cost models are reviewed considering different optimization

problems.

77

Software reliability is gaining an increasing importance in research and application
nowadays. There are many models that have been proposed in the past 20 years (Xie,
1991; Pham and Pham, 2000, 2001; Zhang et al., 2003; Teng and Pham, 2006). As for
any traditional SRGM, the modeling is not the ultimate goal for the analyst. The extracted
information from the analysis could help the management make decisions regarding the
software development project. One of the most important applications of software
reliability models is the determination of software release time (Catuneanu et al., 1991;
Petrova and Malevris, 1992; Xie and Hong, 1998, 1999; Dohi et al., 1999; Pham and
Zhang, a, b, 1999; McDaid and Wilson, 2001; Pham and Wang, 2001; Nishio and Dohi,
2003; Xie and Yang, 2003; Pham, 2003; Berman and Cutler, 2004; Chang and Hung,
2005; Huang, 2005a; Huang and Lyu, 2005a). If a software system is released too early,
the user will suffer the failures and great loss; if it is released too late, the competitors

will gain competitive advantages.

Okumoto and Goel (1980) first discussed a simple cost model addressing linear
developing cost during the testing and operational periods. Ohtera and Yamada (1990)
discussed the optimum software-release time problem with fault-detection during
operation and introduced two evaluation criteria for the problem: software reliability and
mean time between failures. Leung (1992) discussed the optimal software release time
given a cost budget. Kapur et al. (1993) discussed software release policies with the
optimization criterion minimizing cost subject to achieving a given level of reliability or
software performability. Xia et al. (1993) proposed the optimal software release policy

with a learning factor for imperfect debugging. Yang and Chao (1995) proposed two

78

criteria for deciding when to stop testing: the reliability reached and the gain in reliability.
Pham (1996) developed a cost model with an imperfect debugging and random life cycle
besides a penalty cost to determine the optimal release policies for a software system.
Huang and Lo (2006) presented an optimal resource allocation problem in modular

software systems during testing phase.

Chari and Hevner (2006) proposed an objective function of total cost, with four cost

terms considered:

1) The cost of fixing errors during system testing.
2) The cost of incurring software failures after the software is released.
3) The cost of testing.

4) The cost of delay.

The delay cost, which could represent the cost of missed market opportunity or the
penalty cost in meeting the delivery of software in a timely manner, is only incurred

when the testing time exceeds the time limit 7.

Dohi et al. (2000) pointed out that most existing software release problems have been

concerned with the direct minimization of the total expected software cost, but have not

taken account of a competitive market situation, which one can observe in the real world.

79

As traditional SRGMs determined the optimal software release schedule by assuming the
stochastic and/or statistical model, Dohi et al. (1999) proposed estimating the optimal
software release timing by which minimizing the relevant cost criterion, via artificial
neural networks. First, they interpret the underlying cost minimization problem as a
graphical one and show that it can be reduced to a simple time series forecasting problem.

Secondly, artificial neural networks are used to estimate the fault-detection time in future.

Schneidewind (2005) showed that risk factors have a significant negative effect on
reliability. They showed it was feasible to predict risk. They pointed out that although
using historical failure data to drive traditional software reliability models would produce
greater prediction accuracy, the opportunity to provide early prediction of reliability

using risk factors outweighs this advantage.

The optimization model proposed by Pham and Wang (2001) considered the variance of

NQ®).

C)=c, 1+ [200 —c, } V) S Par(vo)+ VO] 6.1)

Where ¢, as the deterministic part of the cost of fixing software fault; ¢, as the random
part of the cost of fixing software fault; and ¢, is the cost of testing per unit time. N() as

the cumulative number of software faults detected.

80

Which assume that the cost of fixing software fault i is a random variable and consists of

two parts- deterministic part ¢, and incremental random part c, .

However, most of those software cost models are based on the assumption that faults
detected are corrected immediately. They do not consider the time delay in the fault
debugging process and its impact to the optimal release decision policy, while in real life,
software managers need to spend some time correcting those faults. Thus, it is more

reasonable to assume a time delay between fault detection and fault correction.

Tamura and Yamada (2006) used the coefficient of variation in equation below to assess
the reliability requirement, which is a useful measure to decide an optimum time point

when the software system has to be released to its operation phase.

ey el (6.2)

 E[NG)

Rinsaka and Dohi (2004) considered a more complicated software cost model compared
with the simple linear one. They give assumptions that the cost to remove software faults
during the testing phase depends on the complexity of the faults, which consists of two

parts- the deterministic part and the incremental random part.

They supposed the cost to eliminate the i-th detected software fault could be expressed by

81

Co=c,+([i-1W,i=1,...a (6.3)

where ¢, (>0) is the deterministic cost to remove each software fault during the testing

phase; W (>0) is a random variable denoting cost to remove software faults during the
testing phase. Cw is the mean value of W. The above assumption can represent an
increasing property of fault removal cost in the state i. Hence, the expected total cost to

detect/ eliminate the software faults during the testing period can be given.

Gokhale (2003) proposed a new cost function considering fault correction process. He

considered the cost to customer operations in the field, denoted by ¢, which is a function

of the failure rate r(tr) of the software at release time, the expected execution time of the
software releases per field site, and the number of field sites. r(tr) is the failure rate of the
software in the presence of explicit fault correction. Under the assumption of

instantaneous fault correction, r(tr) will be the same as the fault detection rate.

To find a trade-off between risk of releasing too early and the cost of releasing too late,
especially considering the time delay, we propose fault detection and correction models
with a likelihood function derived to obtain the ML estimators. With incorporation of the
fault correction process, more practical information can be extracted, which could be
useful in decision-making. Here we investigate the issue of optimal software release
policy and propose a new economic model from a new perspective by using the

combined fault-detection and fault correction models in this paper.

82

First, we propose fault detection and correction modeling with a likelihood function
derived to obtain the ML estimators. Then several cost factors and cost criteria are
reviewed in details. Based on those models considering time delay, given different
stopping criteria, we propose new software cost models with more realistic assumptions.
Sensitivity analysis is carried out, and some statistical inferences (confidence intervals)
are obtained. Further numerical application in optimal release time determination is

discussed within our framework.

6.1 Cost Factors and Cost Criteria

6.1.1 Cost Factors

Most of the expected software system cost consists of the following parts.

1) Set-up cost. The initial testing cost which is the barest minimum requirement
(Kimura et al., 1999).

2) Testing cost. The expected cost per unit time for testing; the cost to perform
testing is assumed to be proportional to the testing time (Pham and Zhang, 1999a).

3) Debugging cost during the testing phase. The expected cost of removing a fault
during the testing phase; it is assumed that it takes time to remove each detected
fault and the time to remove each fault follows a certain distribution. Gokhale et
al. (2006) considered the cost of resolving a failure included the cost of failure

identification and fault diagnosis, and the cost of fault removal.

&3

4)

5)

6)

7)

Debugging cost during the operation phase. The expected cost of removing a fault
during the operation phase; Musa (1993) argued that a consideration of the
software’s operational profile should reduce system risk. Moreover, it also makes
the testing procedure faster and more efficient. Ozekici et al. (2000) proposed a
novel model to determine the optimal testing times of software under a given
operational profile.

The penalty cost. The penalty cost is defined as the cost which should be paid by
the manufacturers if the software is delivered after the scheduled delivery time
(Tamura and Yamada, 2006).

Warranty cost. The maintenance cost per one fault during the warranty period;
Kimura et al. (1999) discussed several cases in terms of the behavior of the
maintenance cost and assumed that the distribution of the warranty period was a
truncated-normal distribution.

Risk cost. There is a risk cost associated with the testing coverage. A software
provider has to pay each customer a certain amount of money for potential faults

in uncovered code (Pham and Zhang, 2003).

6.1.2 Stopping Rules

Software testing is an expensive process, and typically consumes a large part of the cost
of the software development project, thus, stopping rules play an important role in
constructing software cost models. Many researchers in the literature have addressed the

stopping rule problem. Since there are various stopping criteria, Yang and Chao (1995)

84

compared several stopping criteria which can influence product-release time or product

release coverage:

1) Number of remaining faults. Testing can be stopped when a fraction p of the
expected total number of faults are detected.

2) Failure intensity requirements. Testing can be stopped when the failure intensity
as measured as the end of the test phase reaches a specified value.

3) Reliability requirements. Testing can be stopped when the conditional reliability
in the operational phase reaches a required value. Or the ratio of the cumulative
number of detected faults at the time 7 to the expected number of initial faults
reaches a specified value (Hou et al., 1997).

4) Availability requirements, the minimum testing time (John and Eamonn, 2005),
the loss function of the loss due to testing for one stage (Morali, and Soyer, 2002),

and so on.

6.2 Traditional Software Cost Models

As reviewed by Ozekici and Catkan (1993), there are many distinct models in the
literature that try to find the optimal stopping time of the testing procedure. Okumoto and
Goel (1980) introduced a static optimization model based on the NHPP model for failures.
Yamada et al. (1984b) proposed an extension of the G-O model that minimized the total
average cost subject to a lower bound on reliability. Bai and Yun (1988) proposed a cost

model where the stopping decision was based on the number of the faults corrected

85

during testing. Hou et al. (1997) considered a model with scheduled delivery times and
penalty costs for delayed deliveries. The underlying reliability growth model involves the
hyper-geometric distribution. McDaid and Wilson (1997) used a Bayesian decision
theoretic approach to identify the optimal release time in a single stage model. That line
of research was extended by Morali and Soyer (2002) for the multistage case involving
sequential decision making. Huang and Lyu (2005b) proposed optimal release time with
emphasize on the cost function for acquiring or developing the automated test tools or
new techniques. Without loss of generality, they considered several possibilities of the
cost function for developing and acquiring the automated test tools and developed the
corresponding optimal software release time. The process of determining whether the
software system is ready for release to the next phase is considered as release decision. It
involved tradeoffs between continuous testing to increase reliability and prompt release
to decrease testing cost. One approach is to use stochastic models that provide measures
such as reliability, number of remaining faults, and mean time to failure. Those stochastic

models are often extended to include cost as the criterion.

There is a commonly used cost model (Xie, 1991) based on a model with mean value

function of m(?):

C=c,-m(T)+c, -[m(e0)—m(T)|+c,- T (6.4)

86

in which ¢, is the expected cost of removing a fault during the testing phase; ¢, is the
expected cost of removing a fault during the operation phase; c;is the expected cost per
unit time for testing. Usually, c; is at least two orders of magnitude higher than c;

The above cost model has its minimum value at

I*=argmin,_,. {03 -T—(c2 —cl)- m(T)} (6.5)

That is equal to find the optimal time 7%* with the shortest distance between

¢,-Tand(c, —¢,)-m(T).

Generally, this optimization problem can be solved numerically. For instance, if the
function m(7) is continuous and well-defined, and further is a non-decreasing, strictly

concave and bounded function of 7, the minimization problem will have a unique

d*m(T)

solution 7" from P < Ounder the assumption that ¢, is much larger than c,.

For the first time, Zhang and Pham (1998) developed a generalized cost model including
fault removal cost, warranty cost, and software risk cost due to software failures. The

following cost model calculates the expected total cost:

E(T)=Cy+CT° +Cym(T), + Cypty [m(T + T,) - m(T)]+ Ci[1-R(x | T)] (6.6)

&7

where C, is the set-up cost for software testing; C,, the software test cost per unit time; C,,
the cost of removing a fault per unit time during testing; C,, the cost to remove fault
detected during the warranty period, usually C, is much larger than C,; C,, the loss due
to software failure; E(T), the expected total cost of a software system at time T; x , the
expected time to remove a fault during the testing period; u,, the expected time to
remove a fault during the warranty period; 7, as the warranty period and R(x|T) as

reliability of lasting for another x time period. To start from the simplest case, we may

assume x, and x4, to be the same. ¢ is the discount rate of the testing cost.

The above cost model has its minimum value at

T*=argmin,_ {C,T° + oty m(T + T,)= [C,p1y — Co, In(T) - C,R(x| T)} (6.7)

Generally, this optimization problem can be solved numerically. More details are

discussed in section 6.6.

6.3 A New Economic Model Considering Time Delay

Usually, faults are assumed to be fixed immediately after detection, that is, the fault
removal time is negligible. That is unrealistic and with limited capability, because there is
only one process (detection process) and provide only passive information. Within the

framework of fault detection and correction modeling as described in chapter 3, based on

88

the literature review of traditional software cost models, an optimization model is

proposed in this section to find a way to give more accurate and useful analysis and

decision making, as further information about fault debugging time is included.

6.3.1 Assumptions

Here, new optimization models are proposed based on the following assumptions:

1)

2)

3)

4)

5)

Faults detected are not removed immediately, instead, we assume there is a fault
debugging time; in this paper, we assume the time to remove each error during the
testing period is a random variable with certain distribution under certain
conditions.

The software application is subject to failures at random times due to the
remaining faults within the software system.

Usually, the expected cost of removing a fault during the operation phase is at
least two orders of magnitude higher than the expected cost of removing a fault
during the testing phase,

The cost to perform testing is proportional to the testing time.

As software is often updated after release in reality. To make more reasonable
assumption, here we assume that there is software reliability growth occurring

after the testing phase.

&9

6.3.2 The Impact of Time Delay

In traditional SRGMs, m(?) is for the fault detection process, that is, our my(?). By
considering the impact of time delay, incorporating the fault correction process m.(t),
which is different from the fault detection process, the simple cost model mentioned

above (Xie, 1991) can be expressed as
C(I) =c, m (T)+c [my (@) =m (D)]+c; - T (6.8)

In which m.(T) is the total number of corrected faults at the time of release T my(0)-m.(T)
is the number of uncorrected faults that includes two components: undetected faults
mgy(©)-my(T) and detected but uncorrected faults my(7)-m.(T). By minimizing this cost
model with respect to time 7, a more practical optimal release time 7" can be calculated.
Generally, this optimization problem can be solved numerically. More details are

discussed in section 6.6.

Specifically, assuming a simple form considering time delay to be constant, analytical

solution can be reached. Based on the G-O model, the corresponding cost function is

C(T)=(c,~c,) m,(T)+c,-a+c, T
_ cratey T T<A (6.9)
- (Cz_Cl)'a'ebA'e_bT+cl-a+c3-T T>A

which has its minimum value at

90

0 A>A

T =1l [22% aplen aca (6.10)
b Cy
A’:ﬂ.a_l.{l_,_h{ﬂ.abﬂ (6.11)
Cy b Cy
Otherwise, if we do not consider the impact of time delay, then we have
C(T)=(c,—c,) my(T)+c,-a+c,-T
o (6.12)
:(c1 —cz)~a-(1—e’)+c2 ca+cy-T
which has its minimum value at
. 1 ¢, —¢
" =—:In -ab (6.13)
b Cy

Comparing Eq. (6.10) and Eq. (6.13) we can see the impact of time delay to the optimal
software release time. Based on above methods, we can further develop new cost models

with different time delay distributions (Xie et al., 2007).

6.4 Interpretation of the Cost Parameters

The interpretation of the cost parameters are of great importance, and the structure of the

optimal solution depend on their properties. As pointed out by Ozekici et al. (2000), all

91

economic and stochastic parameters of the model depend on the test case and the specific
operation performed. All debugging costs, during testing and after release, depend on the
operation that fails. Of course, all cost parameters are non-negative. We also assume that

a failure is more costly if it occurs after release other than during testing process.

6.5 Our Generalized Optimization Model

Many existing models assume that the error removal time is negligible, however, in
practice both time and money costs are incurred in the isolation of error removal. Also
the costs paid to remove these errors are usually quite considerable. Therefore, in order to
make the cost model more useful, the time and cost to remove errors and a penalty cost
due to the software failure must be addressed in the cost models. Based on the model
proposed by Zhang and Pham (1998), considering the fault detection and correction
process, assuming a random delay with exponential distribution between fault detection
and fault correction, a generalized optimization model can be constructed with several

parts of its cost described as below:

92

Notation

o0

N

w

a o ao Oa

=

c,r*
C2 ' lLl .mc (T)

Cy ' lm (T+T,)=m,(T)]

Cp-[1=R(x| ()]

R&|T)

set-up cost at the beginning of the software
development process

software test cost per unit time

cost of removing a fault per unit time during testing

cost to remove fault detected during the warranty period

the loss due to software failure

cost to perform the testing

cost incurred in removing errors during the testing
phase

cost incurred in removing errors during the warranty
period

risk cost due to software failure

discount rate of the testing cost

the time period required to remove each error during the
testing phase

mission time

warranty period

optimal software release time

reliability function of software by time T for a mission
time x

expected total cost of a software system at time T
expected time to remove a fault during the testing
period

expected time to remove a fault during warranty period

Thus, the expected total software cost can be expressed as the sum of the above

costs{E,(T)},i = 0,1,...,4. The generalized economic cost model considering time delay

between FDP and FCP is as below:

93

E(T)=Cy+CT° +Com (T, + Cspay [m (T + T)= m (T)]+ Co[1=R(x | T)] (6.14)

The cost model has its minimum value at

T*=argmin,_ {C,T° + Cyupym (T +T,,)~ |Copt)y — Copt! I, (T)= C,R(x| T)}

(6.15)
Generally, this optimization problem can be solved numerically. More details are
discussed in section 6.6. Under different stopping rules, we can obtain different optimal

release time. Details are discussed in the next section.

Teng and Pham (2004) considered dividing every item of the software cost model into
two items: one is related to testing process, the other is related to the operational process.
Similarly, we can consider the reliability during the testing process and the operational

process separately; details are shown in the next section.

6.6 The Optimal Release Time

As for any traditional SRGM, the modeling is not the ultimate goal for the analyst. The
extracted information from the analysis could help the management make decisions
regarding the software development project. With incorporation of the fault debugging

time, more practical information can be extracted, which could useful in decision-making.

94

Based on the proposed economic model, we can obtain the optimal software release time

subject to different software testing stopping criteria.

6.6.1 Solution without Constraints

Similar to what Okumoto and Goel (1980), Leung (1992), and Huang and Lyu (2005a)
have done, based on the software cost model in Eq. (6.14), assuming no other constraints,

some further discussion about the optimal release time is carried out as below.

OE(T ;_ , , '
)= O 71 s, (T, e (147,)~ 2D R (51 T) (616
2 !
)= TP st e e e[4 (7)< (D) e R)

(6.17)

. . * .
Givenc,,c,,c,,¢5, ¢4, X, 4y, [,,, Ty, , the optimal value T can be obtained under the

following conditions:

1. If u(T')is a decreasing function of 7, and
a) If u(0)< 0 and
(1)ify(0)< 0, thenT"=o0;
Proof: if u(0)<0 and u'(T)<0, we have u(T)<0 for T>0 ; as y'(T)=u(T)

and y(0)<0, then (7)< 0 for7>0. Since E'(T)= y(T), E(T)is a decreasing

95

function for all 7>0, therefore, the minimum of E(T) occurs when T — oo,
which means 7" =c0.
(2) if y(o0) > 0, then T =0;
Proof: similar as above, y'(T)=u(T)<0 forT>0. Then y(T)>0 forT >0 .
Therefore, E(T)is an increasing function for all 7>0, and the minimum of
E(T) occurs at T =0, which means 7" =0.
3)if ¥(0)>0,1(T)> 0,7 (0,y™'(0)|and y(T) < 0,T & (y ™' (0),) then

T" =0, if £(0)< E(w);

T" =, if E(0)> E(w).
Proof: Similarly, y'(T)=u(T)<0 for T>0 . Since E'(T)=y(T), »(0)>0,
¥(T)>0,7€(0,y7(0)] and (T)<0,7e(y"(0)w) , E(T) monotonically
increases when T e (0,y7'(0)] and decreases when T e (y™'(0),), then E(T)
reaches its maximum at 7 = y~'(0), and its minimum at 7" =0, if £(0)< E(c)

and T = oo, if E(0)> E(0).

b) If u(0)> 0and
(1)ify(0)> 0, thenT"=0;
(2) if y(0)< 0, then T " =co;
3)if ¥(0)< 0,1(T)< 0,7 (0,5 (0)]. ¥(T)> 0.7 (3" (0).0)thenT" = y7'(0);
Proof: Similar as above, so omitted here.

c) If u(O) >0, u(T) >0,T e (0, u (0))and u(T) <0, T e (u"l (0), oo)then

96

(1)if(0)> 0, then T"=0;

(2) ify(0)< 0, thenT " =o0;

2. If u(T') is an increasing function of 7, and
a) If u(0)> 0and
(1)ify(0)> 0, then T"=0;
(2) if y(0)< 0, then T =o0;
(3)if ¥(0)< 0,1(T)< 0,7 (0,5 (0)]. ¥(T)> 0,7 (3" (0).0)thenT" = y~'(0);
Proof: Similar as above, so omitted here.

b) If u(0)< 0and
(1)ify(0)< 0, thenT " =oo;
(2) if y(0)> 0, then T =0;
(3)ify(0)> 0, (T)> 0,7 (0, y " (0)]and ¥(T') < 0,T & (y ' (0),) then
T" =0, if E(0)< E(0);
T =oo, if E(0)> E(x).
o) If u(0) < 0,u(T)< 0,7 € (0,17 (0))and u(T)> 0,7 & (™" (0), o) then
(1) ify(0)> 0, then
T" =0, if E(0)< E(T,);
T" =T,, if E(0)> E(T,), T, =inf{T: y(T)> 0}

(2) ify(0)< 0,7 = y7'(0).

97

As pointed out by Ozekici et al. (2000), once the convexity of the cost function was
established, one could use the Kuhn-Tucker conditions to identify a global optimal

solution.

6.6.2 Solutions with Constraints

As reviewed above, there could be various constraints combined together with the
economic cost model. One of the most common stopping criteria is the reliability
criterion. Below we further consider the case of the optimal release time subject to

reliability criterion.

By minimizing the total cost function of the economic model with Eq. (6.14) while

satisfying the reliability criterion, we have:

min E(7) = C, + C,T“ + Cym (T)u, + Cypafy [m (T + T,)= m (T)]+ Co[1- R(x | T)]
stR(x|T)=R,

(6.18)
Note that the parameters should already be estimated by the proposed FDP-FCP model.
Those cost coefficients can be given based on experience knowledge. To solve the
optimization model with constraints, the Lagrange multiplier method can be applied. It is
well known that the conditions of Kuhn-Tucker are the most important theoretical results
in the field of non-linear programming, and they must be satisfied at any constrained
optimum, local or global, of any linear and most non-linear programming problems
(Bazaraa et al., 1993). Consequently, the above equation can be simplified associating

multiplier 2, and we need to minimize the equation as follows:

98

R e

Based on the Kuhn-Tucker conditions (KTC), the necessary conditions for a minimum
value of above equation are in existence and can be stated as below (Yamada et al., 1995;

Nishiwaki et al., 1996):

A2:T >0 (6.20)

A3: 2[R, - R(x|T)]=0

Refer to Yang and Xie (2000), there reliability criterion can be testing reliability,
R(x|T)=exp{-[m(x+T)-m(T)]} or operational reliability, R(x|T)=exp{-[A(T)x]} ,

denoting the reliability under testing or operational environment separately.

Given the optimal release time 7", we are able to give the confidence interval of the
reliability at the release time (Teng and Pham, 2006). Thus, we can give the lower bound
and upper bound of the reliability constraints, which enable us to give the optimal release

time with the worse case of software reliability and the better case of software reliability.

Denote by L the likelihood function in general, the Fisher Information for three

parameter 6 = (a,b, 2)’ models of failure detection/correction process can be given by

99

[0 logL(9) 0%logL(®) &% logL(6)]
oa’ 0aob oadu
2 2 2 2
F(0)=—E 0 log L(#) _ 49 logL() o logzL(H) 0* log L(6) 6.21)
060-00' 0adb ob obou
0’ logL(@) 0”logL(0) &% logL(6)
oadu obou ou’]
Thus, we have:
i M A2 T M A2] M A2 1]
_EélnL _EﬁlnL _EalnL
i oa’] | Oadb | | Oadu |
A2 7 A2 T A2]
Fo _Ea InL —E6 lr;L _E6 InL (6.22)
| Oadb | | Ob” | | Obou |
A2] A2] A2]
_EalnL _EﬁlnL _EalnzL
| | Oadu | | Obou | L ou”]

The large sample asymptotic covariance matrix V of the maximum likelihood estimators

for parameters is the inverse of the Fisher information matrix:

(6.23)

The two sided approximate 100¢ % confidence limits for the parameters can then be

obtained in standard way.

If we define a partial derivative vector for reliability R(x|?) as

ﬁ(xlt)=[aRg;|t),aRg;“),@R(ng t)} (6.24)

100

Then the variance of R(x|t) can be obtained as
Var[R(x | 1)]= R(x|t)- v - (R(x| 0)) (6.25)
Assume the reliability estimation follows the s-normal distribution; then the 95%

confidence interval for reliability prediction R(x|?) is:

[R(x|1)—1.96 x\[Var[R(x | 1)], R(x |)+ 1.96 x \[Var[R(x | 1)]] (6.26)

6.7 Numerical Example and Sensitivity Analysis

Below based on the dataset from the testing process on a middle-size software project
(Table 4.1), we develop our economic cost models based on the G-O model paired with
exponential time delay. The cost coefficients in the cost model are assumed to be known
already, as they are usually determined by empirical data, previous experiences, and the
nature of the applications (Pham, 2003). The other model parameters are estimated using
MLE method based on our proposed likelihood function. Optimal release time can be
determined subject to various stopping criteria. Sensitivity analysis is carried out and the

impact of time delay on optimal release time is analyzed.

6.7.1 A Simple Cost Model Considering Time Delay

For our numerical example, the analysis is illustrated as follows. Based on the simple cost

model with time delay in Eq. (6.8) we have: 4=158, h=0.14 and /1 =0.64 . Assuming

¢;=38300 ¢,=$500, c;=$100, it has its optimal point as7“=28.83. The cost function for

101

this data set with our model is plotted in solid line in Figure 6.1, with an apparent
minimum point. However, traditional analysis with single fault detection model will lead
to different result. Comparatively, against the fault detection data set, the G-O model has
estimates as 4 =154.21 and 5 = 0.1408, and then the corresponding cost function can be
reached as plotted in dashed in Figure 6.1, which has an earlier optimal point as

T =26.78. The difference between these two results shows the effects of correction time

over cost.
Optimal Release Policies based on Simple Cost Model
EIE T T T T T T T
. + With time delay
. — Without time delay
0751 .
0.7
&
= 0BA
=g

Total Cost
[}
o

0.55
05
|:|45 | 1 1 | 1 1 1
0 10 20 30 40 50 &0 70 a0
YWy'eek

Figure 6. 1 Plot of the total cost functions of a simple cost model

6.7.2 A Generalized Cost Model Considering Time Delay

1) Cost model without constraints

Based on our proposed economic model in Eq. (6.14) considering the time delay, we

have 4=158 , 5=0.14 and 4 =0.64 . Assuming C, =$50, c;=8700 c,=360, c3=83600,

102

C, =35000. To start from the simplest case, we assume x' and u; to be the same
asu, = p,=p =u,=1.7, x=1,T, =20, « =1. Without considering the time delay function,
the optimal release time is 7°=37.67 with total cost spent as § 47344.57. On the other
hand, if considering the time delay between FDP and FCP, we have the corresponding
optimal release time as7°=39.48 with total cost spent as § 48671.03.The corresponding

cost functions are plotted out in Figure 6.2. The difference between these two results

shows the effects of correction time over cost.

% 10 Dptimal release policies
9 T T T T T T T

4 — maoadel without time delay
8 LS — maodel with time delay

Total cost §
—_—
P

Figure 6. 2 Plot of the total cost functions

103

2) Cost model with reliability constraints

Based on the results above, we consider the proposed total software cost function subject
to various reliability constraints. Below we consider two constraints: testing reliability

and operational reliability.

Case 1: Cost model with testing reliability criterion

First we use testing reliability (Yang and Xie, 2000) as the criterion. a=158 ,
b=0.14 and =064 , assume C, =$50, c¢;=$700 c,=360, c3=$3600, C, =5000,
u,=p,=p = u,=1.7, x=1,T, =20, a =1, R, =0.95 . The optimal release time with time
delay considered is 7°=42.66 with total cost spent as § 49039.65.

Dptimal release time with reliability criterion

1 T T T T T — T T

09t T RO=0.95 |
Total cost § (109 Ve
1 1 |' 1 1 1
a0 40 50 0 70 a0
Wileelk

Figure 6. 3 Plot of the total cost functions with testing reliability criterion constraint

104

Figure 6.3 showed the influence of constraints on the optimal release time. With testing
reliability criterion, the optimal release time is delayed compared with unconstrained case.
It is easily understood as you need to spend more money to ensure higher reliability,,.

Given the optimal release time7 , we are able to give the confidence interval of the
reliability at the release time (Teng and Pham, 2006). With the help of MATLAB, we

finally get the variance matrix

355.8016 —0.3227 —0.1169
Varl0)=17(0)=| -0.3227 0.0004 0.0002 (6.31)
~0.1169 0.0002 0.0346

Then the variance of R(x| 7) when x=1, T=42.66 can be obtained as

Var[R(x| T))= R(x | T)-v- (R(x| T))

[ok ak], Jok ok
o4 ob da ob
355.8016 —0.3227

-0.3227 0.0004

=[-0.67686 0.000802]-[-0.00031 1.755697]
=0.001618

= [-0.00031 1.755697{ }[—0.00031 1755697 (6.32)

Assume the reliability estimation follows the s-normal distribution; also it is known

that R €[0,1], then the 95% confidence interval for reliability prediction R(x|7)is: [0.87, 1].

105

Case 2: Cost model with operational reliability criterion

Then, we use operational reliability as the criterion, considering the time delay function

the optimal release time is 7°=43.15 with total cost spent as § 49171.05.

Comparing optimal release time with two reliability criterian

oal Testing Reliability % po=n o5 |
0.s8+ &]
Total Cost OR (107
0.7 4
Total Cost TR (10°) #
0.6 /]
05F 4
0.4+ -
0.3 4
o2 Cperational Reliability _
o1} 4/ -
D 1 1 1 1 1 1
a 10 20 30 40 50 =0 7o (=1u]

Figure 6. 4 Plot of the two total cost functions with two reliability criteria

Then the variance of R(x|7)when x=1, T=43.15 can be obtained as

VarlR(x | T))= R(x|7)-7 - (R(x| 7))

oa ob oa ob
355.8016 —0.3227

—-0.3227 0.0004

=[-0.67788 0.000803]-[-0.00031 1.756751]
=0.001623

= [-0.00031 1.756751{ }[—0.00031 1.756751] (6.33)

106

Assume the reliability estimation follows the s-normal distribution; also it is known

that R €[0,1], then the 95% confidence interval for reliability prediction R(x|¢)is [0.87, 1].

We can see that the optimal release problem should be formulated according to the
operational reliability criterion since the testing reliability constraint can lead to an
incorrect value of the testing time. Figure 6.4 also shows the difference between the
testing times of unconstrained and constrained optimization problems. It is clear that for

ensuring the operational reliability of the software, more cost is required.

On the whole, from above numerical illustration, we find out that the operational
reliability constraint should be adopted instead of the testing reliability while adding a
reliability constraint to the software release problem; and the software manager should be

aware of the more expensive cost for ensuring the required reliability of the software.

Below, a different parameter estimation method is used to see if there is any effect on the
optimal software release time. Considering the case with no constraints, and assuming the
same initial values of ¢/=8300, c2=$500, c3=8100, and exponential time delays, the LS
estimation method is applied, and the estimated parameters are obtained as
a= 156,13 =0.14, f1=0.58 . The optimal release time is 7" =28.95, with a total cost of

$50409.39. The two optimal release policies are plotted in Figure 6.5.

107

w0 Optimal release policy using MLE and LSE
8ar

- LSE

Taotal cost §

Figure 6. 5 Plot of the total cost function comparing the MLE, and the LSE

From Figure 6.5, the optimal release times for the LS estimation model, and the ML

estimation model are T" =28.95, and T =31.29 respectively. It is well-known that
software testing accounts for a substantial portion of software development costs,
however, releasing software with unacceptable reliability is also very costly. As we
known that LSE has no basis for constructing confidence intervals and testing hypothesis,
to take a conservative point of view, software manager might adopt ML estimates as it is
more suitable for statistical inference, and it can give more accurate information on the

impact of the parameter changes. Therefore, in this case, it might be better to release the
software later at the optimal time of 7"=31.29 as estimated by the ML method instead of

T*=28.95 as estimated by the LS method. By adopting the conservative estimates of

108

software release time, it will ensure the software’s reliability and quality with good stable

performance, and it can also avoid the huge risk cost after it is released.

6.7.3 Impact of the Factors

The impacts of the cost coefficients on the simple cost model with time delay are
analyzed below. Similar analysis with more complex models and constraints can be

carried out in the same way.

1) The impact of the cost coefficients

The testing cost per unit time is expected to be very low in many applications compared
with costs associated with discovering and fixing bugs during testing/operational phase.
As it is expected that unreliable software will yield a high loss if it is released, the costs
associated with discovering and fixing bugs is usually assumed to be high. Morali and
Soyer (2002) showed it was important to note that the decision of when to stop testing
may be sensitive to the choice of above parameters. Thus, it is always desirable to
investigate the sensitivity of the results to the choice of prior parameters and loss function

components.

The impacts of the cost coefficients: ¢; c;and c;on the expected total cost are analyzed

below. Changing the values of the corresponding cost coefficients, the optimal release

109

time can be changed correspondingly. Below we increase the values of c¢; ¢ or c; and

keep the values of other parameters unchanged.

Increasing the cost coefficient of removing faults during testing phase, ¢; , from § 300 to
8 450, we find that the optimal release time changes from7 = 27.61 to7"= 18.29, which
can be interpreted as the impact of putting weights on cost during testing phrase. The

optimal release time is shortened because of high testing cost.

Increasing the cost coefficient of removing faults during operation phase, c,, from § 500
to § 750, we find that the optimal release time changes from7 = 27.61 to 7 =33.07,
which can be interpreted as the impact of putting weights on cost during operation phrase.
The optimal release time is delayed because of high operation cost, thus, it needs to

maker sure there is as few faults as possible within the software.

Increasing the cost coefficient of software test cost per unit time, ¢3 , from $ /00 to 8 250,
we find that the optimal release time changes from7°= 27.61 to7°=21.45, which can be
interpreted as the impact of putting weights on software test cost per unit time. The

optimal release time is shortened because of high test cost per unit time.

Increasing the cost coefficient of the loss due to software failure,C,, from $ 5000 to $

9000, we find that the optimal release time changes from7°= 39.48 to7"=39.90, which

can be interpreted as the impact of putting weights on the loss due to software failure.

110

The optimal release time is delayed because of high risk cost of software failure. The

similar analysis can be carried out comparing the other cost coefficients as well.

2) The impact of the warranty time7,,

Considering the impact of the warranty time 7, on the total cost function by increasing7,,

from 20 weeks to 50 weeks, we find that the optimal release time changes from 7= 39.48
to7°=40.29, which can be interpreted as the impact of putting weights on the warranty
time. The optimal release time is increased because of high risk cost of software failure is

increased due to longer warranty time.

3) The impact of the mission time x

Considering the impact of the mission time x on the total cost function by increasing x
from 1 week to 5 weeks, we find that the optimal release time changes from 7= 39.48 to
T°=40.56, which can be interpreted as the impact of putting weights on the mission time.
The optimal release time is increased because of high risk cost if the mission to lasting

longer time is failed.

6.7.4 Interval Estimation of Parameters in the Cost Model

The interval estimation of release time is recommended to avoid further excessive

adjustment of release time. We investigate the variation of the optimum release time due

111

to the variation of the estimated parameters. Usually, the software can only be released
when the reliability level has reached a predetermined level, which is usually the
customer requirement. For illustrative purpose, here we consider the case without any
constraints, the simplest case. We calculate the Fisher information matrix, that is, the
matrix of negative second partial derivatives of the log likelihood function, to obtain the

asymptotic variances and covariance of the ML estimates of the parameters a, b and 1 .

Example

Using the same dataset above, with the help of MATLAB, we can get the variance matrix

as below:

355.8016 —03227 —0.1169
Varlp)=1"(6)=| -03227 0.0004 0.0002 (6.34)
~0.1169 0.0002 0.0346

Given o =0.05, we can then give 95% confidence interval of those MLE estimated
parameters. For example, from the Fisher information matrix, we get Var(&) =355.8016,

thus, the 95% confidence interval of the parametera with estimated value of 165.37 is
[128.3991, 202.3409]. In the similar way, we can give interval estimation of other

parameters in the software cost model as well.

6.7.5 Sensitivity Analysis of Optimal Release Time

The sensitivity issue of software release time can be further studied, that is, the variations

of the optimum release time due to the variation of the estimated parameters. If an

112

overestimation of a parameter implies an underestimation of the release time which can
be costly as more failures are experienced by the consumers, we should try not to
overestimate the parameter (Xie and Hong, 1998). Also, if a parameter affects the release
time more than others, it is important to have this parameter estimated as accurately as

possible.
The sensitivity issue can be very complex, and it varies among different release time
models. Thus, here we can restrict it to the simple case, that is, the optimal release policy

by minimizing the cost only.

Denoting model parameters as variable 6 = (a,b, u)", then we have:

m(T,0)=a-|1- ey b et
u—>b u—b

E(T,0)=C,+CT* +Cym (T,0)d, + Cypayy [m (T + T,) —m (T),0)+ C;[1-R(x| T)] (6.35)

OE(T,0)

oa

with >0 for all 7>0, which implies that £(T,a)is an increasing function ofa . If

we overestimate parameter a, then we will overestimate the optimal release time; on the
other hand, if we underestimate parametera, then we will underestimate the optimal

release time as well. We can analysis other parameters in a similar way.

OE(T,0) §
b

OE(T,0)

If 0 (or < 0), we should try not to overestimate that parameter so as to

reduce the probability that customers experiencing more failures. The sensitivity analysis

result can help us better allocate resources for a more accurate estimation for the most

113

important parameters. It also provides a way to obtain reasonably conservative estimate

of the release time.

Example

Assume all other parameters are given, changing parameter a from 150 to 160, we can see
the total cost increase $ 1287.91; in the similar way, if changing parameter b from 0.14 to

0.15, we can see the total cost decrease $§ 1238.8, if changing i from 0.58 to 0.59, the

total cost amount decrease $ 23.81. Comparing the above three, we can see parameterb is

of the most important, while parameter 4 is of less importance. In this case, the sensitivity

analysis result indicates that it is important to have the parameter b estimated as

accurately as possible, then parameter a and parameter x . Different time delay function

and software cost function can give different results; therefore, it is important to carry out
the sensitivity analysis to help software managers have a better idea of all those model

parameters and their impact.

6.8 Summary

In this paper, fault detection and correction modeling analysis is carried out with a new
likelihood function derived and the ML estimators obtained. Within this framework, an
economic model based on FDP and FCP is proposed, and the optimal release policies
considering the time delay are analyzed in details. Many assumptions are relaxed in this
cost model, fault debugging time is considered and the warranty and risk cost issues are

included. The proposed new economic model can provide more accurate results and give

114

a more reasonable rationalizing measure to make a better decision of software release
policy. Software managers can obtain the corresponding optimal release time when the
mission time being changed, the warranty period shortened or prolonged, or any other
factors changing as well. Further studies can be done by taking into account imperfect
debugging so as to make more realistic assumptions. As the parameters of the failure
process and costs are dependent on the operations that the software performs, this can be

a future direction for further research.

115

Chapter 7 Bayesian networks modeling for software
Inspection effectiveness

Except for testing, the only other widely applicable technique for detecting and
eliminating software defects is to review and walkthrough during inspection process. As
removing faults during inspection process is much cheaper compared with testing process,
we consider finding as much errors as possible during the inspection process. Since
inspection effectiveness is considered as an important criterion to judge the inspection
performance, our concern is to construct a model to measure the inspection effectiveness.
However, software inspection process is flexible and complex. There is no unified
inspection structure and there are many factors contributing to its effectiveness for each
specific procedure. That motivates us to use Bayesian network models to measure the

inspection effectiveness.

Software inspection is a cost-effective approach to detect and remove defects from
software in the early phase of software development lifecycle. In order to control the
software inspection process, some related measurements are required. As reviewed before,
there have been many different approaches to measure software inspection effectiveness.
Unfortunately, these natural but simplistic measurement definitions regard software
inspection as a mechanical process. In fact, software inspection process is flexible and
complex, with no unified structure. Many contributing factors are highly dependent on

the experience of individual inspectors, introducing great uncertainty into this process.

116

Starting from this point, in this chapter, a Bayesian networks model has been proposed to
describe the interdependencies within inspection structure and the contribution of each
factor to the overall belief on inspection effectiveness (Cockram, 2001). We propose our
Bayesian network model based on the one given by Cockram (2001). Cockram proposed
a BN model which could help improving the inspection performance. This model is
interesting and it provides a framework to use Bayesian networks to develop uncertain
reasoning over inspection effectiveness. However, there are some shortcomings with this
model, which it failed to incorporate the critical information reflecting the status of the
inspection process, i.e., the remaining number of faults. Inspections are developed to
deduct the faults left in software artifact, and this measurement directly denotes the effect
of the inspection. Cockram (2001) did not incorporate this factor by arguing that those
quantities were not available at the time of inspection and may never be known unless the
execution of the software caused the errors to be manifested as faults, In fact, many
research work have been devoted in evaluating inspection effectiveness with respect to
this measurement through subjective or objective estimation approaches. Naturally, this
estimated variable would influence the belief over the inspection effectiveness, and it
should be regarded as collected evidence successively updated over the whole inspection

process.

By adding the variable of remaining number of faults, our evaluation on the effectiveness
can be updated with new collected data, keeping the inspection process under track.
Besides, we also propose a systematic method to establish the prior belief of those nodes

so as to initialize the Bayesian network. We propose two methods to obtain those prior

117

probabilities. The first method is given through calculating the pair-wise matrix using
Expert Choice software so as to give the prior belief of those root parent nodes in the BN.
The second method is given using Best-Fit software to find out the best-fit distribution

for the normalized data value and finally give the a-priori conditional probability table.

In this chapter, further investigation on modeling software inspection effectiveness
through Bayesian networks is carried out. Specifically, the former two shortcomings are
compensated with proposed approach. The rest part of this chapter is organized as
follows. Section 7.1 proposes the network structure and the systematic knowledge
extraction approach. In section 7.2, the proposed model and probability extraction
approach is illustrated with a numerical example. Also, related sensitivity analysis is

developed.

7.1 Software Inspection Process

Software has become a central part in any complex system, and software of quality has
become a common requirement. However, to develop software satistfying this
requirement within the constraints of budget and schedule is still a challenging problem.
Software inspection has been generally accepted in software development as a cost-
effective approach for quality improvement through defect removal (Aurum et al., 2002).
Such a static verification technique is originally introduced in Fagan (1976), and has been
studied and applied extensively with many varieties (Kelly and Shepard, 2004b; Miller

and Yin, 2004). Generally speaking, it is a systematic technique to examine any software

118

artifact for defect detection and removal, and can be applied to the early phase in

software development.

In order to control the software inspection process, some related measurements are
required. There have been many different attempts to measure software inspection
effectiveness. As inspection is to remove software defects, it is natural to use the related
defects number as the measurement. Gilb and Graham (1993) gave a definition of

inspection efficiency as:

Inspection efficiency = Number of defects (7.1)

Cost consumed by inspections

Some works suggest using the already detected defects to calculate the measurement, i.e.,
defect density (Porter et al., 1997; Perry et al., 2002). This measurement actually denotes
the efficiency of the developed inspection, and the remaining defects number seem to be
a better alternative as it denotes the effect of the inspection on the software. Both
objective and subjective approaches have been taken to develop estimation on this
measurement (Biffl, 2003). Capture-recapture is a well studied approach to develop
related estimation (Emam and Laitenberger, 2001; Petersson et al., 2004). However, it is
criticized with the extra cost and difficulties added in defect implantation, and some
alternatives are developed through the time series trend or subjective judgments on the
collected data (Yin et al.,, 2004; Amasaki et al., 2005). In order to evaluate the

effectiveness of the software inspections, we surveyed the literature and find there are

119

various evaluation of inspection effectiveness, such as inspection efficiency, return on

investment, and cost-effectiveness.

Besides the definition given above by Gilb and Graham (1993), Collofello and Woodfield
(1989) defined the economic impact of inspections in terms of the ratio between the cost

and the benefit measured as effort saved.

) . Cost saved by inspection
Inspection_effectiveness = Y ISP

: . (7.2)
Cost consumed by inspection

Franz and Shih (1994), Grady and Slack (1994) and Rico (2004) defined the economic

impact of inspections in terms of return-on-investment (ROI) as:

Cost saved by inspection - Cost consumed

ROI = - - (7.3)
Cost consumed by inspection
Kusumoto et al. (1992) defined inspection cost-effectiveness as:
Inspection effectiveness = Cost saved by inspection - Cost consumed (7.4)

Potential defect cost without inspection

In this paper, our definition of the inspection effectiveness is based on the third one that

is the definition proposed by Kusumoto et al. (1992).

120

These natural but simplistic measurement definitions regard software inspection as a
mechanical process. However, software inspection process is flexible and complex. There
is no unified inspection structure and there are many factors contributing to its
effectiveness for each specific procedure (Biffl and Halling, 2003; Briand et al., 2004).
Many of these factors are highly dependent on the experience of individual inspectors,
introducing great uncertainty into this process (Kelly and Shepard, 2004a; Perry et al.,
2002). Kollanus (2005) introduced several problems in inspection practices, such as
meeting scheduling may cause delay, meetings consume resources with few gains in
finding new defects, and participants do not understand inspection process, and then he
gave solutions to those problems so as to improve the inspection. However, there are still
many other factors that could influence the inspection process and the inspection
effectiveness too. Aurum et al. (2005) investigated the inspection effectiveness with
altering some of the inspection attributes, such as the environmental context, document
type and reading technique. Freimut et al. (2005) proposed a model to measure inspection
cost-effectiveness and a method to determine the cost-effectiveness by combining project
data and expert opinion. However, those models can only give analysis to a certain few
attributes. When we consider more and more attributes that influence the inspection

effectiveness, it would be quite difficult to analyze using their methods.

Starting from this point, a Bayesian networks model has been proposed to describe the
interdependencies within inspection structure and the contribution of each factor to the
overall belief on inspection effectiveness (Cockram, 2001). This model is interesting and

it provides a framework to use Bayesian networks to develop uncertain reasoning over

121

inspection effectiveness. However, there are some shortcomings with this model. Firstly,
the network excludes the factor of remaining number of faults, which is actually an
important measurement denoting the inspection effects on the software. Secondly, no
systematic approach other than brainstorming is developed to extract knowledge from
experts, and this brings more uncertainty and possible inconsistency into this modeling
framework. Thirdly, it measures the inspection effectiveness in a static way. Software
inspection is a dynamic process, and the updating of some information could cause the
belief change, such as the detected number of defects. Although the importance of
inspectors’ learning process is emphasized, its dynamic influence on the inspection
effectiveness is not well explored. Herein, further investigations on modeling software

inspection effectiveness through Bayesian networks are carried out.

7.2 Bayesian Networks

The definitions of a Bayesian network can be found in many versions, and the basic form
by (Pearl, 1986) is stated as follows: Bayesian network is a directed acyclic probability
graph, connecting the relative variables with arcs, and this kind of connection expresses

the conditional dependence between the variables.

In Bayesian networks, variables are used to express the events or objects. The problem
could be modeled with study on the behavior of these variables. In general, we first
calculate (or determine from expert experience) the probability distribution of each

variable and the CPD (Conditional Probability Distribution) between them and the

122

probability distributions of the root parents. Then with these distributions we can obtain
the joint distributions of these variables. Finally, some deduction can be developed for

some variables of interest with some other variables known.

To understand the approach of Bayesian networks, a simple example is shown here. As
shown in Figure 7.1, this Bayesian network models height relationships among three
members of a family: father, mother and son, which are denoted by the notes F, M and S
respectively. Their casual connections are obvious: the height of the son is influenced by

both the mother and father, which are expressed with the directed arcs in Figure 7.1.

Figure 7. 1 A simple example of Bayesian network

Accordingly, in the example there are three random variables, F, M, and S, each of which
is the height defined as tall (1) and short (0). Their relationships as shown in the figure
are expressed by CPD. As F and M do not have parent nodes, their probability
distributions can be defined as (Pr(F=1), Pr(F=0)) and (Pr(M=1),Pr(M=0)), with Pr()
expressing the probability. Node S has parents as F and M, so its CPD (Pr(S| F,M)) are

dependent on various combinations of F and M. To illustrate the problem, we assume the

123

related distributions as follows. Let Pr(F=1) =0.5, Pr(F=0) =0.5; Pr(M=1) =0.5, Pr(M=0)

=0.5, and Pr(S| F,M) is shown in Table 7.1.

Table 7. 1 CPD of node S

Pr(S| F,M) S=1 S=0
F=1, M=1 : 0.7 : 0.3
FoMel 05 hes
I Y= — s T
F 7 e N R N F A

Following this, some inferences can be developed based on this Bayesian network with

structure and relationships known.

Due to these desirable properties, Bayesian networks have been increasingly applied in
many fields, including software engineering. It has been used to predict software
reliability in the early phases of the development by incorporating information ahead of
testing (Smidts, 1998), to develop a causal model for software defect rates prediction

(Fenton, 1999), and to manage software project risk (Fan and Yu, 2004).

The Bayesian network has been proposed to model the software inspection process. The
first step in Bayesian networks modeling is to identify the contributing variables and their
inter-dependencies, i.e., to identify the network structure. This involves -clearly
description of the inspection process structure and investigation with experienced

inspectors.

124

To model the inspection process of software, first of all, we need to construct a network
and store in each node a conditional probability distribution of the variable, conditioned
on the outcome of all uncertain variables that are parents of that code. The initialization
of a Bayesian network requires that the priori belief in terms of the conditional
probability for each state of the variables in the parent nodes be specified. Experience is
used to provide a priori conditional probability value for each node matrix. For the root
parent nodes, which are at the bottom of the network, the initial distribution for each state
of these variables is set to be flat over its ranges, i.e. the evidence has an equal probability
for each state. For each node within the network the initial belief must be established as a

probability potential (conditional probability table).

7.3 Model Development

7.3.1 Bayesian Network Framework

To identify the contributing variables and their inter-dependencies is the first step in
Bayesian networks modeling, and it involves clearly description of the inspection process

structure and investigation with experienced inspectors.

Generally, the contributing variables can be divided into three groups: inspection
structure factors, artifacts under inspection, and related inspection proceeding status data.
Firstly, software inspection has no unified procedure and many variations have been
evolved ever since Fagan’s basic method. As a result, different Bayesian networks

structure should be developed for different inspection structures. Without loss of

125

generality, we take Fagan’s basic structure as illustration (Fagan, 1986). Secondly, the
software artifact under inspection has great influence on the effectiveness, both its size
and complexity. The Bayesian networks dealing with these two groups have been
proposed with a clearly defined hierarchical network structure (Cockram, 2001) for static

inspection analysis.

However, that model fails to incorporate the critical information reflecting the status of
the inspection process, i.e., the remaining number of faults. Inspections are developed to
deduct the faults left in software artifact, and this measurement directly denotes the effect
of the inspection. Cockram (2001) did not incorporate this factor by arguing that those
quantities were not available at the time of inspection and may never be known unless the
execution of the software causes the errors to be manifested as faults. However, as
denoted earlier, many research works have been devoted to evaluating the inspection
effectiveness with respect to this measurement through subjective or objective estimation
approaches. Naturally, this estimated variable variant would influence the belief over the
inspection effectiveness, and it can be regarded as collected evidence successively
updated over the entire inspection process. By adding this variable, our evaluation on the
effectiveness could be updated with new collected data, keeping the inspection process

under track.

To illustrate the modeling approach described in the former section, a numerical example

is developed in this section. The related analysis is developed with the aid of NETICA

software of version 2005. Below Figure 7.2 is the Bayesian network we proposed, based

126

on the one proposed by Cockram (2001), and refer to those BBNs proposed by Fan and

Yu (2004) and Laitenberger and Baud (2000).
Inspection

Product . Remaining
R Inspection faults No
Size .

quality
nitial

quality of Budget
produc

Product
Complexity

Product
quality

Inspection
duration

Inspection

environment Quality of

inspection
method

Quality o
inspection

team
Communications

quality of
moderator quality of
Skills team memeber

Inspection application
training experience
, >
. inspector s
Domain b .
. experience
experience

Figure 7. 2 A proposed Bayesian network model

Reading
technique

7.3.2 Bayesian Network Configuration

With the established Bayesian network model, we have the qualitative interdependencies
between these identified variables. However, in order to develop inference, further
quantitative dependencies need to be identified, i.e., the conditional probability

distribution over the dependent nodes and the probability distribution of the root parents.

127

Prior conditional probability distributions. Some questionnaires based on the brain-
storming of the inspectors have been used to generate these probabilities in (Cockram,
2001). Freimut et al. (2005) proposed using a triangular distribution to explicit the expert
opinion. That is, the expert is asked to provide a range, given by minimum and maximum

values, in which the estimate can be, and the most likely values.

Prior conditional probability distributions for the intermediate nodes. Some
questionnaires based on the brain-storming of the inspectors have been used to generate
these probabilities in the paper by Cockram (2001). Freimut et al. (2005) proposed using
a triangular distribution to explicit the expert opinion. That is, the expert was asked to
provide the most likely values, and a range in which the estimate could be, given by

minimum and maximum values.

An alternative approach is to assume the conditional distribution to follow some specific
distribution, and we can use the maximum likelihood estimation to fit the data obtained
from expert to find out the best fit distribution and get the corresponding parameters. As a
result, Most of the best-fit results of the data analysis tends to show that the conditional
probability distribution in the inspection process is a general Beta distribution with pdf

(probability density function) defined in [0, 1] as

(1—x)" " x*!

fxlea,p)= B(a.f)

(7.5)

in which B(-) is the beta function and o, > 0.

128

Prior probability distributions static nodes. The rest root parents’ probability
distributions are highly human-oriented and have to be extracted from experts’
knowledge. Cockram (2001) set those distributions to be uniformly distributed. Such a
scheme would waste the prior experience from inspectors. To develop model for any
specific inspection, it is favorable to extract the prior knowledge from experienced
inspectors. Rosqvist et al. (2003) proposed a method to encode the experts’ tacit
knowledge into probabilistic measures associated with the achievement level of software
quality attributes. The author argued that a software expert (developer or assessor) is
capable of expressing his opinion on the achievement level of a quality attribute based on

the mental model of the software.

Here considering the risk of inconsistent probability elicitation, mathematics-based AHP
method is proposed to elicit the consistent probabilities from experts. AHP is based on
the pair-wise judgments of the importance of the different attributes of interest, and then
a priority ordering of these attributes can be derived, with a measure of inconsistency.
Firstly, for each root parent node, all the possible values are given as its attributes, such
as “poor, fair, and good”. Then with respect to this variable, the pair-wise judgments are
generated on these values, and the priority is given as the distribution of this variable over
these values. The mathematics related to AHP provides a rule for consistency checking,

and it provides a systematic approach for prior belief elicitation.

As we have emphasized, “remaining number of faults” and “inspectors’ experience”

change over the inspection process, while the left factors keep static relatively. For those

129

root parent nodes which may change as time goes by, regarding them as dynamic nodes
we can use a Discrete Time Markov Chain (DTMC) model to model this learning process.
The parameters used in the modeling can be abstracted from former projects. Ergodic
DTMC s have a stable distribution after a warm-up process, which can be used to describe
the evolvement of those dynamic root parent nodes within the BN modeling.

Among these static factors, “preparation time”, “team size”, “formal actions” and “exit
criteria” are specific and can be measured in a general way. “Product size” and “product
complexity” are common software metrics, and they can be measured with the artifact
under inspection (Fenton, 1999). The rest root parents’ probability distributions are
highly human-oriented and have to be extracted from experts’ knowledge. In (Cockram,
2001), these distributions are set to be uniform, and such a scheme would waste the prior
experience from inspectors. To develop model for any specific inspection, it is favorable
to extract the prior knowledge from experienced inspectors. Rosqvist et al. (2003)
proposed a method to encode the experts’ tacit knowledge into probabilistic measures
associated with the achievement level of software quality attributes. The author argued
that a software expert (developer or assessor) is capable of expressing his opinion on the
achievement level of a quality attribute based on the mental model of the software. In our
paper, considering the risk of inconsistent probability elicitation, mathematics-based
AHP method (Saaty, 1980) is proposed to elicit the consistent probabilities from experts.
AHP is based on the pair-wise judgments of the importance of the different attributes of
interest, and then a priority ordering of these attributes can be derived, with a measure of

inconsistency. Firstly, for each root parent, all the possible values are given as its

130

attributes, such as “poor, fair, and good”. Then with respect to this variable, the pair-wise
judgments are generated on these values, and then the priority is then regarded as the
distribution of this variable over these values. The mathematics related to AHP provides a
rule for consistency checking, and it provides a systematic approach for prior belief

elicitation.

Prior probability distributions of dynamic factors. “Remaining number of faults” and
“inspectors’ experience” are two dynamic factors in software inspection process. During
inspection, each detected fault is recorded and submitted for correction. Although the
new faults could be introduced during correction, the number of remaining faults should
show a decreasing trend in the long run. The estimation of this can be developed through
a subjective approach (Emam et al., 2000; Yin et al., 2004). Combining the AHP
approach we proposed, this approach is developed as follows. The method is as below:

We need an inspector to provide a subjective estimate of his/her effectiveness, which will
be denoted as E . Therefore, if the inspector estimates that 75% of the defects in a
document were found, then the value of E would be 0.75. Then, if the detected faults No.
is d, then we have d/E as the total number of faults. Therefore, the remaining fault count

should be d/ £ -d.

Such an estimation procedure can be developed after a fixed period of time, such as one
week. Then the distribution is updated in the Bayesian network to estimate the inspection
effectiveness successfully. With the experts’ experience increasing, the subjective

estimation would become more and more convincing. The estimation before the

131

inspection can be developed by referring to inspection results on similar software project

(Xie et al., 1999).

“Inspectors’ experience” also changes over inspection process, and the evolution denotes
the learning process of the inspectors. We can use the similar approach to developed
estimation, but to use inspectors’ experience to generate the distribution f “inspectors’
experience” would have confliction inside. It is hard for an inexperienced inspector to
make judgments over his own experience level. Therefore, we propose to use a discrete
time Markov chain (DTMC) to model this learning process, and the parameters of the
model can be abstracted from former projects. Ergodic DTMCs have a stable distribution
after a warm-up process, which could be used to describe the evolvement of the

inspectors’ experience well.

7.4 Numerical Example

To illustrate the modeling approach described in the former section, a numerical example
is developed in this section. The related analysis is developed with the aid of decision-

analysis software, explained as below in detail.

7.4.1 Bayesian Network Modeling

Same as the network structure in Figure 7.2, the Bayesian network can be constructed

with the help of software tools. However, due to the size of the network and the limitation

132

of space, the following example is illustrated with part of the network as shown in Figure

Inspection
effectiveness

Product Prgduct Inspection
. Size .
quality quality
Budget

Product .

. Inspection
Complexity K

environment

quality of
moderator

7.3.

Remaining
faults No
Inspection
duration

Quality of
inspection
method

nitia
quality of
produc

Quality o
inspection
team

quality of
team memeber
. >
inspector’ s
experience

Figure 7. 3 Part of Bayesian network model

7.4.2 Networks Probability Distributions

Prior conditional probability table. Through investigation with software inspectors, a
large number of data are collected related to the conditional distributions. These data are
normalized into the value interval [0, 1], and we use maximum likelihood estimation
within the BEST-FIT software to find out the best-fit distribution for those data. Most of

them turn out to be a Beta distribution.

133

Table 7. 2 Prior CPD of inspection effectiveness over inspection quality

Inspection effectiveness ;| very poor : poor Emediumé good very good

Inspection quality ! 9 ! 9 ! 3 ! 0 ! 0

For example, we knew that the conditional probability distribution of inspection
effectiveness depends on various combinations of its four parent nodes. Here assuming
that the other three nodes are of medium state, we then obtained the conditional
probability distribution of the inspection effectiveness conditioning on the quality of the
inspection. We asked 21 experts to feedback on the inspection effectiveness (such as
poor, medium and good) given the inspection quality; the corresponding data is shown in
Table 7.2. The Pearson-Tukey three-point approximation is used for estimating the
probability distribution for each parameter whose variation is represented, which was
proposed (Keefer and Bodily, 1983) as the first of the discrete-distribution
approximations. The Pearson-Tukey approximation suggested using the 5, 50, and 95
percentiles to get the probabilities of the approximate p.m.f. as 0.185, 0.630, and 0.185.
We applied this method to give the proper value of those attributes of each node. For
example, we can use this method to define the value of poor, medium and good as value

of x, where f(x) is the 5, 50, and 95 percentiles of the p.d.f. function.

For example, we know that the conditional probability distribution of inspection
effectiveness depends on various combinations of its four parent nodes. Here assuming
that the other three nodes are of medium state, we can obtain the conditional probability
distribution of the inspection effectiveness conditioning on the quality of the inspection.

The best fit distribution turned out to be Beta-General (0.124, 0.126, 0, 9). By using that

134

method, we could give the conditional probability table to construct the Bayesian

network for software inspection.

Prior probability distribution. In order to estimate the prior probability distribution, we
need to ask the expert to give the pair-wise comparison matrix. In practice, the
inconsistency always occurs. As a compromise, we need to check whether the matrix is
acceptable or not. If not, we should ask the expert to re-judge the probability, and redo it
until we get the acceptable matrix. Then we will use AHP to get the corresponding sets of
weights. Thus, prior probability distributions of root parent nodes are obtained to be used

in Bayesian network.

For example, we have the expert opinion to evaluate the variable of initial quality of
product. Then, we use the Expert Choice software (Expert Choice, 2005) to treat it as the
Analytic Hierarchy Process (AHP). This variable is supposed to take attributes as poor,
fair, and good, and then we ask the expert to give their opinion with their experiences as
in Table 7.3. For example, the likelihood that the initial quality is poor vs. the likelihood

that the initial quality is fair is 4/3.

Table 7. 3 Pair-wise comparison matrix for the node “initial quality of product”

: Poor : Fair : Good
Poor | 1 | 43 | 4/3
------------------ e
_______ Fair & 34 + 1 ¢+ 1. |
Good | 34 | 1 1 1

135

The priorities are obtained, i.e., the distribution w = [0.4, 0.3, 0.3]. After that, we need to

check for the inconsistency of the matrix. Fortunately, we find that it was a perfectly

consistent matrix, and we take this as the belief for this variable.

In our proposed BN model, we assume that the nodes “remaining number of faults” and
“inspectors’ experience” change over the inspection process, with the rest factors kept
static relatively. Among these static factors, “preparation time”, “team size”, “formal
actions” and “exit criteria” are specific and can be measured in a general way. “Product

size” and “product complexity” are common software metrics, and they can be measured

with the artifact under inspection (Fenton, 1999).

“Remaining number of faults” and “inspectors’ experience” are two dynamic factors in
software inspection process. During inspection, each detected fault is recorded and
submitted for correction. Although the new faults could be introduced during correction,
the number of remaining faults should show a decreasing trend in the long run. The
estimation of this can be developed through a subjective approach (Emam et al., 2000;
Yin et al., 2004). Combining the AHP approach we proposed, this approach is developed

as follows. We need an inspector to provide a subjective estimate of his/her effectiveness,
which will be denoted as £ . Therefore, if the inspector estimates that 75% of the defects
in a document were found, then the value of E would be 0.75. Then, if the detected
number of faults is d, then we have d/ E as the total number of faults. Therefore, the

remaining number of faults should be d/ E -d. Such an estimation procedure can be

developed after a fixed period of time, such as one week. Then the distribution is updated

136

in the Bayesian network to estimate the inspection effectiveness successfully. With the
experts’ experience increasing, the subjective estimation would become more and more
convincing. The estimation before the inspection can be developed by referring to

inspection results on similar software project (Xie et al., 1999).

“Inspectors’ experience” also changes over inspection process, and the evolution denotes
the learning process of the inspectors. We can use the similar approach to develop
estimation, but to use inspectors’ experience to generate the distribution of “inspectors’
experience” would have confliction inside. It is hard for an inexperienced inspector to
make judgments over his own experience level. Therefore, a DTMC can be used to model
this kind of nodes. Similarly, the probability distributions for the other human-oriented

variables can be gathered to configure the Bayesian network model.

7.4.3 Model Analysis

With all the Bayesian network structure, the related conditional probability, and the
probabilities, some inferences can be developed for further insight to evaluate the
inspection effectiveness. Specifically, we are interested in exploring two related
properties: the dynamic changes of the inspection effectiveness with the process
proceeding, and the sensitivity analysis to find out variables contributing most to the

inspection effectiveness.

137

The basic inference is to follow the direction of networks: with the available
conditional/unconditional probability distributions and the collected metrics, it is
straightforward to deduct the distribution of the unknown variable of inspection
effectiveness as shown in Figure 7.4 using NETICA software (because of the limitation

of nodes No. within NETICA software, we use part of the BN model for illustration).

Inspection_effectiveness
rery lorw o - Remaining_faults_No
Oy g A R
. [4+——0—] b 50.0 p—
Initial_quality_of_product meﬁ'“m Slr"?]all 5000 i
T iy - = i
oo SoEH | N
4 Inspection_quality
I:IPm(Iucz:tE‘T(D|ualit_\.r Fqgr ggi ———
goo 0 air 4 — - —
medium 35,5 —— good 203 jmm | |IlS|)e(‘.IIOI]_(|lII:alI.0I?
poor 361 p— o 345 75 Iohngrt ggg :
sho .
= = / Inspection_environment ‘\
roduct_complexity -
high 00 EEEL ggg - Quality_of_inspection_m...
redium 30,0 — poar 50.0:
lovwe 20.0 - Product size Quality_of_inspection_te... good ED'D e
38 712 o] poar 35.0 k%
e 0 p— i =0
Budaet medium 30,0 a|rd 32'0 —
S‘D"Dﬂe i small 20.0 goo - -
poor . . 335748
good 500 3 712 /r &
lity_of_tea her
quality_of_moderator IDDr y_ol esiulg—lm.am:)el
poor 350 pmm Fair EE
fair 29.0 gDDd 234
good 36.0 e =%
d
inspector_experience
poor G0.0 p—
fair 200

good 200

Figure 7. 4 Numerical Example of BBN (part of the BN model)

We find that the parent nodes are static except the node of remaining number of faults
and the node of inspector experience. As a result, the inspection effectiveness should be
evaluated dynamically: updated with each new collected belief over the remaining fault
count and over the inspector experience. Such a scheme has the advantage of evaluating
the effectiveness of inspection along the process running, providing nearly on-line

feedback on the status of software inspection.

138

7.4.4 Dynamic Analysis of the Node “Remaining number of faults”

Below we give a dynamic analysis of inspection effectiveness over remaining number of
faults. To show the improvement of the inspection effectiveness over the decreasing of
remaining fault count, we consider the case assuming that the percentile of remaining
fault count of big over small is 100/0, 80/20, 50/50, 20/80, 0/100 for five weeks
consequently. That is, we assume that the No. of big faults remaining is decreasing over
time, and we give the assumption that the percentile of remaining big faults is 1, 0.8, 0.5,
0.2, and 0 for week 1, 2, 3, 4, 5 so as to carry a dynamic analysis in a more convenient

way.

The deducted believes over inspection effectiveness are described in Figure 7.5, showing
the dynamics of inspection effectiveness with the ongoing process, assuming all other
nodes in the BN model unchanged. We can see the belief over the inspection
effectiveness increases with the decreasing of the belief of the number of remaining faults
in the software. That is an example to show how to conduct dynamic analysis. We can
use the similar way to analyze each node that is dynamic and human related, and we can
plot out the change of its probability distribution and see the corresponding change of the

inspection effectiveness.

139

Distribution of Inspection Effectiveness

Distribution of Inspection Effectiveness

(week 1) (week 2)
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 I 0.2 I
0.1 0.1
0 . 0 l /A ==
very low medium high very high very low medium high very high
(1) (2)
Distribution of Inspection Effectiveness Distribution of Inspection Effectiveness
(week 3) (week 4)
0.7 0.7
0.6 0.6
0.5 0.5 1
0.4 0.4 1
0.3 0.3
0.2 0.2
0.1 0.1
0 [T s 0 J I . 1 |
very low low medium high very high very low low medium high very high

4)

3)
Distribution of Inspection Effectiveness
(week 5)
0.7
0.6
0.5
0.4
0.3
0.2 r
e
, o 1
very low medium high very high
(5)

Figure 7. 5 Inspection effectiveness changes with respect to remaining number of faults

140

Apart from such direct analysis, Bayesian networks inference can be developed from any
direction. Therefore, it is convenient and flexible to develop sensitivity analysis.
NETICA software is used to carry out a sensitivity analysis for this Bayesian network.
We only consider part of network due to the limitation of the version of the NETICA
software we used. The sensitivity analysis is to examine the corresponding change of the
network “output” with the change of some “input”. With the help of NETICA, the
analysis procedure is illustrated with an example as shown below in Figure 7.6; we give
the dynamic analysis of the node “inspection effectiveness” by changing the node
“inspection experience”. Below we only plot out a BN within 15 nodes due to the

limitation of the NETICA software.

Remalning fauls No
0.0

(M 2)

Hamalning fastts_Ha
g SO0 f—
sl 00—

Initial_gualiny of produet |
poor]

o

€)

Figure 7. 6 Corresponding change of other nodes while change the sate of the node
“inspector’s experience”

141

We can use the similar way to analyze each node that is dynamic and human related, and
we can plot out the change of its probability distribution and see the corresponding
change of the inspection effectiveness. With all the Bayesian network structure, the
related conditional probability, and the probabilities, some inferences can be developed
for further insight to evaluate the inspection effectiveness. Specifically, we are interested
to explore another related property: the variables contributing more to the inspection

effectiveness.

7.4.5 Sensitivity Analysis

Apart from such direct analysis, Bayesian networks inference can be developed through
any direction. Therefore, it is convenient and flexible to develop sensitivity analysis.
NETICA (NETICA 2005) is used to carry out a sensitivity analysis for this Bayesian
Network. The sensitivity analysis is to examine the corresponding change of the network
“output” with the change of some “input”. With the help of NETICA, the analysis
procedure is illustrated with the following Figures 7.7, Figure 7.8, and Figure 7.9. We

could change some factors and see the corresponding changes.

142

Initial_quality_of_product

Inspection_effectiveness

very low 34 4 jmmm

lows 224
medium 32.9 —
high G90p

wery high 3.39

poor 50.0
good 50.0]
Product_qual
good
medium
poor

Product_complexity

Inspection_dul

vl 346 75 'Uh"gn ggg
sho

Inspection_environment ‘

[Hat 50.0 Quality_of_inspecti

ality_of_inspecti
d 0.0
Sl = poor 50.0
gond 50.0

Product_size

Quality_of_insy

35 75

high 100
medium u}
low
0
Budget
poor 500
good 50.0
Initial_quality_of |
poor 50.0
good 50.0

large &00 [
medium 300 fair
small_ 20.0 : good T
ERF — .
i 3 " quality_of_team
quality_of i poor I
fair 266

poor 350 i
fair 29.0
good 36.0 H

good 234

inspector_ex

fair

poor

good

200

(1)

Inspection_effectiveness

very low 326
Lo 22,4 mm
medium 32.9
high 772
very high 4.31

Product_quality

good 3.4 E o —
madium 430 Inspection_duration
paar 256 v 345 75 g DL f—
shao
Fedlns = Inspection_environment
roduct_complexi
e L poor ggg Quality_of_inspection_m...
g poor 0.0
Product_size Quality_of i aood = ?EUI s
large 50.0] poor
BraTe medium ~ 30.0 (&Ml
S'E'I‘U“e i small 200pm good et
poor
good &00] Bl ik — -
quality_of mederater quality_of team_member
poor 350 pacr
fair 290 good
good 36.0

inspector_ex

poor
fair
good

B0.0
200
200

2)

Figure 7. 7 Change of the probability of product complexity

143

Inspection_effectiveness

r::\;f low ?gg - Remaining_faults_No
Initial_quality_of_product e #5 [
iy . "
SSSE wery high 1.15 \ 50 730
Inspection_quality
poor 100
good 230 fair o 5 q
medivm 389 good o | fo__| ‘Inspec(:;n;tlul.mon
poar 301 v 0 ong .
short 50.9
o] = / Inspection_environment A
roduct_complexity
Figh G| pgg& ggg Quality_of_inspection_m...
medium 30,0 4 ot & 0
low: 200 Product size Quality_of_inspection_te... || 222 .
3B 712 = T 554 36.574.8
large 500 ? =2
Budget medium 30.0 ar g e
E'D"D‘J" — [small 200 goo I
poor
good 500: B2 — =
- quality_of team_member
quality_of_mod Foe 57E
poor 424 fair 59
an"m o good 164
1 358749
inspector_experience
poor B5.1
fair 188
good 16.0

(1)

Inspection_effectiveness

very low 783 @ Remaining_faults_No

low 235 mm
———1 b 500
Initial_quality_of product medium 390 :- s:».gwau 50.0
n

paar 00 high 204
good 50.0 = ery]high M50 N SUtEY
~a /'

Inspection_quality
Product_qu oo T
?r?endd\um ;a;rﬂd mg Inspection_duratien
poor 0 long 608 "
e short 39.2

Prod loxi Inspection_en
roduct_complexity
gn 500 e =0 Quality_of_inspection_m...
medium 30.0 paor 276 i
low 200 P Tuality ol inspection_te.. | |20t 72.4 :
/12 = 328745
arge 0.0 poor 178
T medium 300 : Tair 253
TR smal 200] = EE gg i
poar
ood 5.0 oli2

quality_of team_member

quality_of_mod

poor 284 ! FSD"W
fair 279 good
good 437 i
inspector_ex|
poor 53.8
fair 21.3
good 249

2)

Figure 7. 8 Change of the probability of quality of inspection process

144

Inspection_effectiveness
ruext o gg; :' | E‘elll.iillglngahlllls_No
Initial_quality_of_product medium - 32.9 w— ool 500
poor 500 : high e 0730
. wery high 354
good 50.0 : !
\ Inspection_quality
Product_quality poor 46.2 i

(et 23 i Inspection_duration
medium 33.9 good 20.3 [0 e ML _qura

good 18.4 :
poor 417 i v AR lng 5000 :
/"

shot 50.0

P Tt Inspection_environment
roduct_complexity T
igh Bl gggé gg g = Quality_of_inspection_m...
medium 30.0 F poor 500 =
low 200 Product size Quality_of_inspection_te... good ?D 0
3|12 T 100 poor 35.0 e E
=% f 330
B medium af EIr
udget] ol ¢ good 320
poor 50.0 ;|] . 335748
good 50.0 i . =
quality_of moderater quality_of_team_member
e . poor 50.0
poor 350 ¢ Tair 55
aE'I’Dd =0 i good 23.4
1 : 3575
A
inspector_experience
poor GO.0 —
fair 200 mm
good 20.0
Inspection_effectiveness
“‘:‘H low gg g :' Remaining_faults_No
[hi 50.0 pu
Initial_quality_of_product medium 329 — s‘r?waH £00
500 high 7iZm :
ggg; ann very high 411 \ 50 730
Y Inspection_quality
dP|o(lu;})_g)lrality ?Uw ggi .
oo air . 5 5
medium 7.5 good 203 ! {-__| Inspection_duration
poor 325 - 4675 Iu':wgr1 ggg :
shol |
Pro T Inspection_environment h
roduct_complexity T
Figh 500 T ggg’d gg g i Quality_of inspection_m...
medium 30,0 puuvd ggg .
low 200 P FroELEEE Quality_of_inspection_te... | |-422
B/ 12 ol | 00r 350 £33
large o) F 390 b
Budget wedln (0 ood 20
udge small 100 - goo
poor 500 20 335748
good 500 — =
quality_of — quality_of_team_member
—— —r poor 50.0
poor 350jmm fait 26.6 i
fa"d ggg £ good 23.4
oo H e
F
inspector_experience
poor 60.0 p—
fair 200 pm
good 200 pm

2)

Figure 7. 9 Change of the probability of product size

In addition, entropy reduction, also called mutual information, is used as the criterion
here to identify the key attributes of software inspection which help increasing the quality

of software. The entropy of a discrete random variable X 1is defined to be

H (X)= —i log, P(X =X,)P(X = xl.)where P is the probability distribution of X. The
i=1

145

entropy of two discrete random variables X and Y (considered jointly) is given
by H(X,Y)=-Ylog, P(X =x.,Y = y,)P(X =x,,Y = y,) with H(X,Y)=H(Y,X) . The
i=l

mutual information of X and Y is given by / (X Y) =H (X)+ H (Y)— H (X Y) It follows
from this definition that /(X,Y)=1(Y,X). The mutual information of two random

variables is a measure of how much information a knowledge of one of the random
variable provides about the other. Entropy reduction is conducted in order to evaluate the
degree of heterogeneity or homogeneity of spatial natural resources. It would show the
degree of uncertainty represented in the model before and after entering the evidence.
That means the higher the entropy reduction is, the more sensitive the node is. With the
example shown in the figures above, the related sensitivity analysis results with entropy
reduction are shown as Table 7.4, in which the “remaining number of faults” has the most
influence over the ‘inspection effectiveness’, next is the node “inspection quality”, the

node “product quality” has the least influence over the “inspection effectiveness”.

Table 7. 4 Sensitivity analysis with entropy reduction

Important attributes i Entropy reduction Percentile (%)

Remaining faults No. | 0.494 | 49.40
Inspection quality : 0.135 : 8.95
Product quality : 0.021 : 1.32

In addition, we also interested in how the change of the node “inspection experience” can
influence the overall inspection effectiveness. As generally there is a learning process

during the inspection, the belief of inspection experience extracted from experts would

146

show an increasing trend over the inspection process. As a result, the inspection

effectiveness should also be evaluated in a dynamic way: updated with each new

collected belief over the inspection experience. Such a scheme can take the advantage of

using Bayesian Network, and give online feedback and update as the process running.

Using our numerical example, we can consider the influence of the change of this node as

shown in Table 7.5.

Table 7. 5 Sensitivity analysis of “inspector’s experience” with Entropy

Important attributes

Entropy reduction

Percentile (%)

Inspector’s experience

0.001304

0.0951

Here a systematic approach is proposed using Bayesian networks to analyze the

inspection process. As our numerical example is just for illustrative purpose, more

experimental data are needed to give further insight into the inspection process.

7.5 Summary

The above results showed that using BN model could help measuring the inspection

effectiveness, and finding out key factors of great influence. Based on that, software

manager can carry out some action to improve the effectiveness of inspection. Faults are

removed as early as possible, as much as possible, thus the debugging cost at the later

stage of testing are reduced and software quality improved as well.

147

Bayesian networks provide a convenient framework to model the inspection effectiveness
with both abstract knowledge and actual data. However, it is not an easy task for belief
elicitation over the probability distributions. Stepping from the early work in using
Bayesian network to model software inspection process (Cockram, 2001), some further
explorations are investigated under two major points. Firstly, we attempt to incorporate
the variable of remaining number of faults into the network structure, because this
information is nature to influence the belief on inspection effectiveness sequentially and
it can be available through estimation or expert opinion. Secondly, a more systematic
approach to gather the probability distributions is proposed. Specially, the mathematics-
based AHP is introduced to gather the probability distribution. Thirdly, the dynamic
analysis on the inspection effectiveness is developed with the Bayesian network, and
continuous evaluation on this measure is available to aid related decision-making. With
the established method, a numerical example is illustrated to show some applications of
these techniques and sensitivity analysis is developed. However, still there are some
works for further investigation. AHP can provide more information actually, such as the
overall weights for each factor. As a result, it would be interesting to study the
application of this information in Bayesian network modeling. Also, the example analysis
is not complete and it is favorable to develop systematic analysis with more experimental

data for further insight into the inspection process.

148

Chapter 8 Conclusion and Future Work

The main focus of the work presented in this thesis was to extend the traditional software
reliability models through different perspectives and to study the corresponding decision-
making problems. This chapter summarizes the results of the research work and discusses
their limitations and implications. Recommendations on further research and practical

application are also presented.

8.1 Research Results

Software testing process is composed of fault detection, correction, and possible
introduction. A major part of the study in this thesis was to incorporate the software fault
correction process into software reliability modeling frameworks, relaxing the restrictive
assumptions in traditional software reliability models. The models were developed

through both analytical and data-driven approaches.

At first, extensions on analytical NHPP software reliability models are presented in
chapter 3. A paired FDP and FCP modeling framework is proposed, by assuming the
relationship between FDP and FCP is the time delay. Generally, modeling both fault
detection and correction processes will provide more information than traditional
models. It is more realistic compared with traditional software reliability models as this

proposed model takes into account of the time delay.

149

Further extensions were also carried out within this framework in chapter 4 to obtain the
ML estimators of the model parameters. The ML estimated model parameters can give a

more accurate estimation of the combined software fault detection and correction process.

In chapter 5 the prediction performance is further analyzed. Experimental results of the
simulation analysis show that the ML estimates with a fairly accurate prediction
capability compared with the LS estimates. The approach in our study can be further

extended to general SRGMs considering the fault detection and correction process.

The corresponding decision-making problems of optimal software release time are further
discussed in chapter 6. Many assumptions are relaxed in this cost model, fault debugging
time is considered and the warranty and risk cost issues are included. The proposed new
economic model can provide more accurate results such as when the mission time being

changed, or the warranty period shortened or prolonged.

Besides the analytical approach, this thesis also explored the Bayesian networks
applications in the field of software reliability modeling and analysis. As except for
software testing, another way to reduce the software faults is through review and walk-
through during the inspection process. In chapter 7, Bayesian networks were applied in
modeling the software inspection process. Accordingly, this could adaptively update the
effectiveness evaluation with new data collected, which could be useful for inspection
stopping time determination. Also, a systematic approach to extract the distributions was

given, which ensures the feasibility of the application of this kind of model.

150

8.2 Future Research

Different software is developed under different environment, and the software testing
process is influenced by many uncertain factors. As a result, it is difficult to find a
universal software reliability model to suit all software testing processes. However,
extensions to current software reliability models have been developed by relaxing current
restrictive assumptions through incorporating more practical information. Another future
topic is as discussed earlier that while the ML estimate of the failure rate of the G-O
model was consistent; the ML estimate of parameter a of the G-O model was not
consistent when the observation period extends to infinity. This could be further analyzed

in future research.

Beyond the studies we explored in our current work, some other approaches can be
studied in the further. Although analytical NHPP models provided a simple approach for
software reliability analysis and release time determination, they were based on a
simplified assumption on the relationship between fault detection and correction. This
assumption can fit some testing environments where there is little on fault detection from
fault correction, but actually slow fault correction could delay fault detection and fast
fault correction could add pressure on fault detection. Therefore, the ‘feedback’ effect
from fault correction should be incorporated into the modeling framework. However, the
information provided with one-step prediction is quite limited. Multi-step prediction
should be carried out to provide more information useful for practical decision-making,
as the final goal of software reliability modeling is to help making decision. For both two

kinds of models, only one dataset with a few data points are applied in our current case

151

study. To justify the proposed models, more datasets should be used for applications of
the proposed models. Limited by the availability of published dataset, simulation could

be an alternative approach to acquire the data.

Furthermore, as software testing process is influenced by many uncertain factors, such as
imperfect debugging, change-point, more realistic models can be proposed (Zou, 2003;
Xie, et al., 2004b; Park et al., 2005), in addition, it would be interesting to extend this
general model in a stochastic way. Some extensions have been done to model the fault
detection process with a SDE stochastic differential equation (Yamada et al., 1995; Lee,
2004). However, there are no extensions on fault correction. As an extension to these
SDE models, random factors in both fault-detection and correction could be incorporated.
Technically, linear stochastic differential equations assure the existence of a unique
solution, and it is convenient to consider time-independent conditions. Accordingly, the
parameters in the model can be estimated through Maximum Likelihood methods and
useful measures are expected to be derived with the model to assist software testing

decision making.

At last, some BN models have been proposed dealing with software reliability issues
(Fenton and Neil, 1999), and there is still much scope for extending the methods and the
applications to reliability problems. The Bayesian Network modeling with software
reliability prediction is an interesting topic worth further exploration. Modern mature
software companies have many failure datasets within their own database. The flexibility

of BN modeling framework provides an approach to utilize this kind of information to

152

improve the software reliability prediction performance. There is no doubt that BBNs can

provide a powerful tool for reasoning with uncertainty.

Answers to these questions will provide more practical modeling and analysis approach
for a mature software company. Stepping from our current study on fault detection and
correction process modeling, above are some works that can still be left to be covered in

the future.

153

REFERENCES

Amasaki, S., Yoshitomi, T., Mizuno, O., Takagi, Y. and Kikuno, T., 2005, ‘A new
challenge for applying time series metrics data to software quality estimation’, Software
Quality Journal, vol. 13, no. 2, pp. 177-193.

Aurum, A., Petersson, H. and Wohlin, C. 2002, ‘State-of-the-art: software inspections
after 25 years’, Software Testing Verification and Reliability, vol. 12, no. 3, pp. 133-154.

Aurum, A., Wohlin, C., Petersson, H., 2005, ‘Increasing the understanding of
effectiveness in software inspections using published data sets’, Journal of Research and
Practice in Information Technology, vol. 37, no. 3, pp. 253-266.

Bai and Yun, 1988, ‘Optimum number of errors corrected before releasing a software
system’, IEEE Transactions on Reliability, vol. 37, pp. 41-44.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M., 1993, Nonlinear programming: theory
and algorithms. John-Wiley and Sons.

Berman, O. and Cutler, M., 2004, ‘Resource allocation during tests for optimally reliable
software’, Computers and Operations Research, vol. 31, pp. 1847-1865.

Biffl, S., 2003, ‘Evaluating defect estimation models with major defects’, Journal of
Systems and Software, vol. 65, no. 1, pp. 13-29.

Biffl, S. and Halling, M., 2003, ‘Investigating the defect detection effectiveness, and cost
benefit of nominal inspect-ion teams’, I[EEE Transactions on Software Engineering, vol.
29, no. 5, pp. 385-397.

Boland, P. J. and Chuiv, N. N., 2007, ‘Optimal times for software release when repair is
imperfect’, Statistics and Probability Letters, vol. 77, no. 12, pp. 1176-1184.

Briand, L. C., Freimut, B. and Vollei, F., 2004, ‘Using multiple adaptive regression
splines to support decision making in code inspections’, Journal of Systems and Sofiware,
vol. 73, no. 2, pp. 205-217.

Bustamantea, A. S. and Bustamante, B. S., 2003, ‘Multinomial-exponential reliability
function: a software reliability model’, Reliability Engineering and System Safety, vol. 79,
pp. 281-288.

Catuneanu, V. M., Moldovan, C., Popentiu, F. L. and Popovici, D., 1991, ‘Software
reliability release policy with testing effort’, Microelectronic Reliability, vol. 31, no.5, pp.
895-899.

Chang, Y. C., Hung, W. L., 2005, ‘Software release policies on a shot-noise process
model’. Applied Mathematics and Computation, vol. 171, no. 2, pp.746-759.

154

http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=R2jCJEJaAlKnBc7g@1i&Func=Abstract&doc=1/1
http://apps.isiknowledge.com.libproxy1.nus.edu.sg/WoS/CIW.cgi?SID=R2jCJEJaAlKnBc7g@1i&Func=Abstract&doc=1/1

Chari, K. and Hevner, A., 2006, ‘System test planning of software: an optimization
approach’, IEEE Transactions on Software Engineering, vol. 32, no. 7, pp. 503-509.

Chatterjee, S., Misra, R. B. and Alam, S. S., 2004, ‘N-version programming with
imperfect debugging’, Computer and Electrical Engineering, vol. 30, no. 6, pp. 453-463.

Chiu, K. C., Huang, Y.S., Lee, T. Z., 2008, ‘A study of software reliability growth from
the perspective of learning effects’, Reliability Engineering & System Safety, vol. 93,
no.10, pp. 1410-1421.

Cockram, T., 2001, ‘Gaining confidence in software inspection using a Bayesian belief
model’, Software Quality Journal, vol. 9, no. 1, pp. 31-42.

Collofello, J. and Woodfield, S., 1989, ‘Evaluating the effectiveness of reliability-
assurance techniques’, Journal of Systems and Sofiware, vol. 9, no. 3, pp. 191-195.

Dai, Y. S., Xie, M., Poh, K. L., 2004, ‘A model for correlated failures in N-version
programming’, IIE Transactions, vol. 36, no. 12, pp. 1183-1192.

Dai, Y. S., Xie, M., Poh, K. L., 2005, ‘Modeling and analysis of correlated software
failures of multiple types’, IEEE Transactions on Reliability, vol. 54, no. 1, pp. 100-106.

Delic, A. K., Mazzanti, F., Strigini, L, 1995, ‘Formalizing a Software Safety Case via
Belief Networks’, Technical report, Center for Software Reliability, City University,
London, U.K.

Dohi, T., Teraoka, Y. and Osaki, S., 2000, ‘Software release games’, Journal of
Optimization Theory and Applications, vol. 105, no.2, pp. 325-346.

Dohi, T., Nishio, Y. and Osaki, S. 1999, ‘Optimal software release scheduling based on
artificial neural networks’, Annals of Software Engineering, vol. 8, pp. 167-185.

Emam, K. E. and Laitenberger, O. and Harbich T., 2000, ‘The application of subjective
estimates of effectiveness to controlling software inspections’, Journal of Systems and

Software, vol. 54, pp. 119-136.

Emam, K. M. and Laitenberger, O., 2001, ‘Evaluating capture-recapture models with two
inspectors’, IEEE Transactions on Sofiware Engineering, vol. 27, no. 9, pp. 851-864.

Expert Choice, 2005, http://www.expertchoice.com/

Fagan, M. 1976, ‘Design and code inspections to reduce errors in program development’,
IBM Systems Journal, no.3, pp. 219 — 248.

Fagan, M. 1986, ‘Advances in software inspections’, I[EEE Transactions on Sofiware
Engineering, vol. 12, no. 7, pp. 744-751.

155

http://www.expertchoice.com/

Fan, C. F. and Yu, Y. C., 2004, ‘BBN-based software project risk management’, Journal
of Systems and Software, vol. 73, no. 2, pp. 193-203.

Fenton, N. and Neil, M., 1999, ‘Software metrics: successes, failures and new directions’,
Journal of Systems and Software, vol. 47, pp. 149-157.

Franz, L. A. and Shih, J. C., 1994, ‘Estimating the value of inspections and early testing
for software projects’, CS-TR-6, Hewlett-Packard Journal, pp. 60-67.

Freimut, B., Briand, L. C., and Vollei, F., 2005, ‘Determining inspection cost-
effectiveness by combining project data and expert opinion’, IEEE Transactions on
Software Engineering, vol. 31, no. 12, pp. 1074-1092.

Gilb, T. and Graham, D., 1993, Software Inspection, Addison-Wesley.

Grady, R. and Slack, T. V., 1994, ‘Key lessons in achieving widespread inspection use’,
IEEE Software, vol. 11, no. 4, pp. 46-57.

Goel, A. L. and Okumoto, K., 1979, ‘Time-dependent error-detection rate model for
software reliability and other performance measures’, IEEE Transactions on Reliability,
vol. 28, pp. 206-211.

Gokhale, S. S. 2003, ‘Optimal software release time incorporating fault correction’,
Proceedings of the 28" Annual NASA Goddard Software Engineering Workshop
(SEW’03), pp. 175-184.

Gokhale, S. S., Lyu M. R. and Trivedi, K. S. 2006, ‘Incorporating fault debugging
activities into software reliability models: a simulation approach’, IEEE Transactions on
Reliability, vol. 55, no. 2, pp. 281-292.

Hou, R. H., Kuo, S. Y. and Chang, Y. P., 1997, ‘Optimal release times for software
systems with scheduled delivery time-based on the HGMM’, [EEE Transactions on
Computer, vol. 46, pp. 216-221.

Hu, Q. P., Xie, M., Ng, S. H. and Levintin, G., 2007, ‘Robust recurrent neural network
modeling for software fault detection and correction prediction’, Reliability Engineering
and System Safety, vol. 92, no. 3, pp. 332-340.

Huang, C. Y., Lyu, M. R. and Kuo, S. Y., 2003, ‘A unified scheme of some NH
PP models for software reliability estimation’. [EEE Transactions on Software
Engineering, vol. 29, no. 3, pp. 261-269.

Huang, C. Y. 2005a, ‘Cost-reliability-optimal policy for software reliability models

incorporating improvements in testing efficiency’, Journal of Systems and Software, vol.
77, pp. 139-155.

156

Huang, C. Y. 2005b, ‘Performance analysis of software reliability growth models with
testing-effort and change-point’, Journal of Systems and Software, vol. 76, pp.181-194.

Huang, C.Y. and Lyu, M. R., 2005a, ‘Optimal release time for software systems
considering cost, testing-effort, and test efficiency’, IEEE Transactions on Reliability, vol.
54, no. 4, pp. 583-591.

Huang, C. Y. and Lyu, M. R., 2005b, ‘Optimal testing resource allocation, and sensitivity
analysis in software development’, /[EEE Transactions on Reliability, vol. 54, no. 4,
pp-592-603.

Huang, C.Y. and Lin, C. D., 2006, ‘Software reliability analysis by considering fault
dependency and debugging time lag’, IEEE Transactions on Reliability, vol. 55, no.
3, pp. 436-450.

Huang, C. Y. and Lo, J. H., 2006, ‘Optimal resource allocation for cost and reliability of
modular software systems in the testing phase’, Journal of Systems and Software, vol. 79,
pp. 653-664.

Huang, C. Y., Kuo, S. Y. and Lyu, M. R., 2007, ‘An assessment of testing-effort
dependent software reliability growth models’, IEEE Transactions on Reliability, vol. 56,
no. 2, pp. 198-211.

Inoue, S. and Yamada, S., 2004, ‘Testing-coverage dependent software reliability growth
modeling’, International Journal of Reliability, Quality and Safety Engineering, vol. 11,
no. 4, pp. 303-312.

Inoue, S. and Yamada, S., 2006, ‘Discrete software reliability assessment with discretized
NHPP models’, Computers and Mathematics with Applications, vol. 51, no. 2, pp. 161-
170.

Jain, M. and Maheshwari, S., 2006, ‘Generalized renewal process (GRP) for the analysis
of software reliability growth model’, Asia-Pacific Journal of Operational Research, vol.
23, no. 2, pp. 215-227.

Jeske, D.R. and Pham, H., 2001, ‘On the maximum likelihood estimates for the Goel--
Okumoto software reliability model’, The American Statistician, vol. 55, no. 3, pp. 219-

222.

Jiang, L. T. and Xu, G. Z., 2007, ‘Modeling and analysis of software aging and software
failure’, Journal of Systems and Software, vol. 80, no. 4, pp. 590-595.

Kapur, P. K., Garg, R. B. and Bhalla, V. K. 1993, ‘Release policies with random software
life cycle and penalty cost’, Microelectronic Reliability, vol. 33, no.1, pp. 7-12.

157

Kapur, P. K., Goswami, D. N., Bardhan, A. and Singh, O., 2008, ‘Flexible software
reliability growth model with testing effort dependent learning process’, Applied
Mathematical Modeling, vol. 32, no. 7, pp-1298-1307.

Karunanithi, N., Whitley, D. K. and Malaiya, Y., 1992, ‘Using neural networks in
reliability prediction’, IEEE Transactions on Software Engineering, pp. 53-59.

Kelly, D. and Shepard, T., 2004a, ‘Eight maxims for software inspectors’, Software
Testing Verification and Reliability, vol. 14, no. 4, pp. 243-256.

Kelly, D. and Shepard, T., 2004b, ‘Task-directed software inspection’, Journal of
Systems and Software, vol. 73, no. 2, pp. 361-368.

Keefer, D. L. and Bodily, S. E., 1983, ‘Three-point approximations for continuous
random variables’, Management Science, vol. 29, no. 5, pp. 595-609.

Khoshgoftaar, T. M., 1988, ‘Non-homogenous Poisson Processes for software reliability
growth’, Proceedings of 8" Symposium in Computational Statistics, pp. 11-12.

Kimura, M., Toyota, T. and Yamada, S., 1999, ‘Economic analysis of software release
problems with warranty cost and reliability requirement’, Reliability Engineering and
System Safety, vol. 66, pp. 49-55.

Kollanus, S., 2005, ‘Issues in software inspection practices’, Lecture Notes in Computer
Science, vol., 3547, pp. 429-442.

Kusumoto, S., Matsumoto, K., Kikuno, T. and Torii, K., 1992, ‘A new metric for cost-
effectiveness of software reviews’, IEICE transactions on Information and Systems, vol.
E75-D, no. 5, pp. 674-680.

Laitenberger, O., Baud J. M., 2000, ‘An encompassing life cycle centric survey of
software inspection’, Journal of Systems and Software, vol. 50, pp. 5-31.

Leung, Y. W., 1992, ‘Optimum software release time with a given cost budget’, Journal
of Systems and Software, vol. 17, pp. 233-242.

Levitin, G., 2005, ‘Optimal structure of fault-tolerant software systems’, Reliability
Engineering and System Safety, vol. 89, no. 3, pp. 286-295.

Levitin, G., Xie, M., 2006, ‘Performance distribution of a fault-tolerant system in the
presence of failure correlation’, I[E Transactions, vol. 38, no. 6, pp. 499-509.

Levitin, G., Xie, M., Zhang, T. L., 2007, ‘Reliability of fault-tolerant systems with

parallel task processing’, European Journal of Operational Research, vol. 177, no. 1, pp.
420-430.

158

Li, S. M., Yin, Q., Guo, P. and Lyu, M. R., 2007, ‘A hierarchical mixture model for
software reliability prediction’, Applied Mathematics and Computation, vol. 185, pp.
1120 - 1130.

Lin, C.T. and Huang, C. Y., 2008, ‘Enhancing and measuring the predictive capabilities
of testing-effort dependent software reliability models’, J. of Systems and Software, vol.
81, no. 6, pp.1025-1038.

Lyu, M. R. 1996, Handbook of Software Reliability Engineering, McGraw-Hill, New
York.

McDaid, K. and Wilson, S. P., 1997, ‘Optimal software testing under a time dependent
error detection rate model’, Technical Report, Department of statistics, Trinity College,
Dublin, Ireland, 1997.

McDaid, K. and Wilson, S. P., 2001, ‘Deciding how long to test software’, Statistician,
vol. 50, pp. 117-134.

Miller, J. and Yin, Z. C., 2004, ‘A cognitive-based mechanism for constructing software
inspection teams’, IEEE Transactions on Software Engineering, vol. 30, no. 11, pp. 811-
825.

Morali, N. and Soyer, R., 2003, ‘Optimal stopping in software testing’, Naval Research
Logistics, vol. 50, pp.88-104.

Musa, J. D., 1993, ‘Operational profiles in software reliability engineering’, [EEE
Software, vol. 10, pp. 14-32.

Musa, J. D., lannino, A. and Okumoto, K., 1987, Software reliability: measurement,
prediction, application, McGraw-Hill, New York.

Mpyrtveit, 1., Stensrud, E. and Shepperd, M., 2005, ‘Reliability and validity in
comparative studies of software prediction models’, IEEE Transactions on Software
Engineering, vol. 31, no. 5, pp. 380-391.

Nayak, K. T., Bose, S. and Kundu, S., 2008, ‘On inconsistency of estimators of
parameters of non-homogeneous Poisson process models for software reliability’,
Statistics & Probability Letters, vol. 78, no. 14, pp. 2217 — 2221.

NETICA, 2005, http://www.norsys.com/netica.html

Nishio, Y. and Dohi, T., 2003, ‘Determination of the optimal software release time based

on proportional hazards software reliability growth models’, Journal of Quality in
Maintenance Engineering, vol. 9, no. 1, pp. 48-65.

159

http://www.norsys.com/netica.html

Nishiwaki, M., Yamada, S. and Ichimori, T., 1996, ‘Testing resource allocation policies
based on an optimal software release problem’, Mathematica Japonica, vol. 43, no. 1, pp.
91-97.

Ohtera, H., Yamada, S., 1990, ‘Optimum software-release time considering an error-
detection phenomenon during operation’, /[EEE Transactions on Reliability, vol. 39, no.5.

Okumoto, K. and Goel, A. L., 1980, ‘Optimum release time for software systems based
on reliability and cost criteria’, Journal of Systems and Software, vol. 1, pp. 315-318.

Ozekici, S. and Catkan, 1993, ‘A dynamic software release model’, Computer and
Economics, Vol. 6, pp. 77-94.

Ozekici, S., Altinel, K. and Ozcelikyurek, S., 2000, ‘Testing of software with an
operational profile’, Naval Research Logistics, vol. 47, no. 8, pp. 620-634.

Park, J. Y., Hwang, Y. S., and Fujiwara, T., 2005, ‘Integration of imperfect debugging in
general testing-domain dependent NHPP SRGM’, International Jjournal of Reliability,
Quality and Safety Engineering, vol. 12, no. 6, pp. 493-505.

Pearl, J., 1986, ‘Fusion, propagation and structuring in belief network’, Artificial
Intelligence, vol. 29, pp. 241-288

Perry, D. E., Porter, A., Wade, M. W., Votta, L. G. and Perpich, J., 2002, ‘Reducing
inspection interval in large-scale software development’, IEEE Transactions on Software
Engineering, vol. 28, no. 7, pp. 695-705.

Petersson, H., Thelin, T., Runeson, P. and Wohlin, C., 2004, ‘Capture-recapture in
software inspections after 10 years research - theory, evaluation and application’, Journal

of Systems and Software, vol. 72, no. 2, pp. 249-264.

Petrova, E. and Malevris, N., 1992, ‘Rules and criteria for when to stop testing a piece of
software’, Microelectronic Reliability, vol. 32, no. %, pp. 101-117.

Pham, H., 1996, ‘A software cost model with imperfect debugging, random life cycle and
penalty cost’, International Journal of Systems Science, vol. 27, no. 5, pp. 455-463.

Pham, H., 2000, Software Reliability, Springer-Verlag, New York.

Pham, H., 2003, ‘Software reliability and cost models: perspectives, comparison, and
practice’, European Journal of Operational Research, vol. 149, pp. 475-489.

Pham, H. and Zhang, X.M., 1999 a, ‘A software cost model with warranty and risk costs’,
IEEE Transactions on Computers, vol. 48, no. 1, pp. 71-75.

160

Pham, H. and Zhang, X. M., 1999 b, ‘Software release policies with gain in reliability
justifying the costs’, Annals of Software Engineering, no. 8, pp. 147-166.

Pham, H., Zhang, X. M., 2003, ‘NHPP software reliability and cost models with testing
coverage’, European journal of Operational Research, vol. 145, pp. 433-454.

Pham, H. and Wang, H. Z., 2001, ‘A quasi-renewal process for software reliability and
testing costs’, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 31, no. 6, pp. 623-631.

Pham, L. and Pham, H., 2000, ‘Software reliability models with time-dependent hazard
function based on Bayesian approach’, IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 30, no. 1, pp. 25-35.

Pham, L. and Pham, H., 2001, ‘A Bayesian predictive software reliability model with
pseudo-failures’, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 31, no. 3, pp.233-238.

Porter, A. A., Siy, H. P, Toman, C. A. and Votta, L. G., 1997, ‘An experiment to assess
the cost-benefits of code inspections in large scale software development’, [EEE
Transactions on Software Engineering, vol. 23, no. 6, pp. 329-346.

Remus, H. and Zilles, S., 1979, ‘Prediction and management of program quality’, 4th
National Conference on Software Engineering, IEEE Computer Society Press, pp. 341-
350.

Rico, D.F., 2004, ROI of software process improvement, J. Ross Publishing.
Rinsaka, K. and Dohi, T., 2004, ‘Who solved the optimal software release problems
based on Markovian software reliability model?’, The 47" IEEE International Midwest

Symposium on Circuits and Systems, pp. 475-478.

Rosqvist, T., Koskela, M. and Harju, H., 2003, ‘Software quality evaluation based on
expert judgment’, Software Quality Journal, vol. 11, pp. 39-55.

Saaty, T. L., 1980, The analytic hierarchy process: planning, priority setting, resource
allocation, McGraw-Hill.

Schneidewind, N. F., 1975, ‘Analysis of error processes in computer software’,
Proceedings of International Conference on Reliable Software, IEEE Computer Society,
pp. 337-346.

Schneidewind, N. F., 1993, ‘Software reliability model with optimal selection of failure
data’, IEEE Transactions on Software Engineering, vol. 19, no. 11, pp. 1095-1104.

161

Schneidewind, N. F., 2001, ‘Modeling the fault correction process’, Proceedings of the
12th International Symposium on Software Reliability Engineering, pp. 185-190.

Schneidewind, N. F., 2003, ‘Fault correction profiles’, Proceedings of the I[4th
International Symposium on Software Reliability Engineering, pp. 257-267.

Schneidewind, N. F., 2005, ‘Predicting risk as a function of risk factors’, Innovations
Systems Engineering, no. 1, pp. 63-70.

Sharma, V. S. and Trivedi, K. S., 2007, ‘Quantifying software performance, reliability
and security: an architecture-based approach’, Journal of Systems and Software, vol. 80,
pp- 493-509.

Shyur, H. J., 2003, ‘A stochastic software reliability model with imperfect-debugging and
change-point’, Journal of Systems and Software, vol. 66, no. 2, pp. 135-141.

Smidts, C., Stoddard, R.W. and Stutzke, M., 1998, ‘Software reliability models: an
approach to early reliability prediction’, IEEE Transactions on Reliability, vol. 47, pp.
268-278.

Stringfellow, C., Andrews, A., Wohlin, C. and Petersson, H., 2002, ‘Estimating the
number of components with defects post-release that showed no defects in testing’,
Software Testing, Verification and Reliability, vol. 12, pp. 93-122.

Stutzke, M. A. and Smidts, C. S., 2001, ‘A stochastic model of fault introduction and
removal during software development’, [EEE Transactions on Reliability, vol. 50,
pp-184-193.

Tamura, Y. and Yamada, S., 2006, ‘A flexible stochastic differential equation model in
distributed development environment’, European Journal of Operational Research. vol.
168, no. 1, pp. 143-152.

Tausworthe, R. C. and Lyu, M. R., 1996a, ‘A Generalized Technique for Simulating
Software Reliability’, IEEE Software, vol. 13, no. 2, pp. 77-88.

Tausworthe, R. C. and Lyu, M. R.; 1996b, ‘Handbook of Software Reliability
Engineering’, Chapter Software Reliability Simulation, pp. 661-698, McGraw-Hill, New
York.

Teng, X. L. and Pham, H., 2004, ‘A software cost model for quantifying the gain with
considerations of random field environments’, IEEE Transactions on Computers, vol. 53,
no.3, pp. 380-384.

Teng, X. L. and Pham, H., 2006, ‘A new methodology for predicting software reliability
in the random field environments’, /EEE Transactions on Reliability, vol. 55, no. 3, pp.
458-468.

162

Wood, A. P., 1996, ‘Predicting software reliability’, IEEE Computer, pp. 69-77.

Wu, Y. P, Hu, Q. P, Xie, M. and Ng, S. H., 2007, ‘Modeling and analysis of software
fault detection and correction process by considering time dependency’, [EEE
Transactions on Reliability, vol. 56, no. 4, pp.629-642.

Xia, G. L., Zeephongsekul, P. and Kumar, S., 1993, ‘Optimal software release policy
with a learning factor for imperfect debugging’, Microelectronic Reliability, vol. 33, no.
1, pp. 81-86.

Xie, M., 1991, Software reliability modeling, World Scientific, Singapore.

Xie, M. and Zhao, M., 1992, ‘The Schneidewind software reliability model revisited’,
Proceedings of the 3rd International Symposium on Software Reliability Engineering, pp.
184-192.

Xie, M. and Hong, G. Y., 1998, ‘A study of the sensitivity of software release time’,
Journal of Systems and Software, vol. 44, pp. 163-168.

Xie, M. and Hong, G. Y., 1999, ‘Software release time determination based on
unbounded NHPP model’, Computers and Industrial Engineering, vol. 37, pp. 165-168.

Xie, M., Hong, G. Y. and Wohlin, C., 1999, ‘Software reliability prediction incorporating
information from a similar project’, Journal of Systems and Software, vol. 49, no. 1, pp.
43-48.

Xie, M. and Yang, B., 2003, ‘A study of the effect of imperfect debugging on software
development cost’, IEEE Transactions on Software Engineering, vol. 29, no. 5, pp. 471-
473.

Xie, M., Dai, Y. S., Poh, K. L., Lai, C. D., 2004a. ‘Optimal number of hosts in a
distributed system based on cost criteria’, International Journal of Systems Science, vol.
35, no. 6, pp. 343-353.

Xie, M, Dai, Y. S., Poh, K. L., Lai, C. D., 2004b, ‘Distributed system availability in the
case of imperfect debugging process’, International Journal of Industrial Engineering-
Theory Applications and Practice, vol. 11, no. 4, pp. 396-405.

Xie, M., Hu, Q. P., Wu, Y. P, Ng, S. H., 2007, ‘A study of the modeling and analysis of
software fault-detection and fault-correction processes’, Quality and Reliability
Engineering International, vol. 23, no. 4, pp. 459-470.

Yamada, S., Ohba, M. and Osaki, S., 1984a, ‘S-shaped software reliability growth

models and their applications’, IEEE Transactions on Reliability, vol. R-33, no. 4, pp.
289-292.

163

Yamada, S., Narihisa, and Osaki, S., 1984b, ‘Optimal release policies for a software
system with scheduled software delivery times’, International Journal of Systems Science,
vol. 15, pp. 905-914.

Yamada, S., Ichimori, T. and Nishiwaki, M., 1995, ‘Optimal allocation policies for
testing resource based on a software reliability growth model’, International Journal of
Mathematical and Computer Modeling, vol. 22, no. 10-12, pp. 295-301.

Yang, M. and Chao, A. 1995, ‘Reliability estimation and stopping rules for software
testing, based on repeated appearance of bugs’, IEEE Transactions on Reliability, vol. 44,
no. 2, pp. 315-321.

Yang, B. and Xie, M., 2000, ‘A study of operational and testing reliability in software
reliability analysis’, Reliability Engineering and System Safety, vol. 70, pp. 323-329.

Yin, Z. C., Dunsmore, A. and Miller, J., 2004, ‘Self-assessment of performance in
software inspection processes’, Information and Software Technology, vol. 46, no. 3, pp.
185-194.

Zhang, X. M. and Pham, H., 1998, ‘A software cost model with warranty cost, error
removal times and risk costs’, /IE Transactions, vol. 30, pp. 1135-1142.

Zhang, X. M., Teng, X. L. and Pham, H., 2003, ‘Considering fault removal efficiency in
software reliability assessment’, I[EEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 33, no. 1, pp. 114-120.

Zhao, J. , Liu, H. W., Cui, G. and Yang, X. Z., 2006, ‘Software reliability growth model
with change-point and environmental function’, Journal of Systems and Software, vol. 79,
no. 11, pp. 1578-1587.

Zou, F. Z., 2003, ‘A change-point perspective on the software failure process’, Software
Testing, Verification and Reliability, vol. 13, pp. 85-93.

164

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	SUMMARY
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	Chapter 1 Introduction
	1.1 Fault Detection and Correction Modeling
	1.2 Inspection Effectiveness Model with Bayesian Networks
	1.3 Research Objective and Scope

	
	Chapter 2 Literature review
	2.1 Software Reliability Models
	2.1.1 Goel-Okumoto Model
	2.1.2 Duane Model
	2.1.3 Yamada Delayed S-shaped Model
	2.1.4 K-stage Erlangian (gamma) Growth Curve Model (k=3)

	2.2 Parameter Estimation
	2.3 Optimal Release Policy
	2.4 Models to Measure Inspection Process
	2.4.1 The Importance of Measuring Inspection Process
	2.4.2 A Brief Review of Software Inspection Process
	2.4.3 A Brief Introduction of Bayesian Network Models

	Chapter 3 Modeling of the fault detection and correction process
	3.1 The Modeling Framework of FDP and FCP
	3.1.1 Fault Detection Models
	3.1.2 Fault Correction Models
	3.1.3 Paired FDP and FCP Models

	3.2 Models for Fault Correction
	3.2.1 Exponentially Distributed Time Delay
	3.2.2 Normally Distributed Time Delay
	3.2.3 Gamma Distributed Time Delay

	3.3 Residual Number of Faults
	3.4 Summary

	Chapter 4 Maximum likelihood estimation for the fault detection and correction process
	4.1 Maximum Likelihood Estimation
	4.1.1 Point Estimation
	4.1.2 Interval Estimation
	4.1.3 Modified Likelihood Function Based On Execution Time

	4.2 Numerical Application
	4.2.1 ML Estimation
	4.2.2 ML Estimates Based On Modified Likelihood Function

	4.3 Summary

	Chapter 5 Prediction Analysis of FDP FCP model
	5.1 Prediction Performance
	5.2 Monte Carlo Simulation Study
	5.2.1 Simulation Method
	5.2.2 A Simulation Study

	5.3 Summary

	Chapter 6 Optimal Release Time Analysis
	6.1 Cost Factors and Cost Criteria
	6.1.1 Cost Factors
	6.1.2 Stopping Rules

	6.2 Traditional Software Cost Models
	6.3 A New Economic Model Considering Time Delay
	6.3.1 Assumptions
	6.3.2 The Impact of Time Delay

	6.4 Interpretation of the Cost Parameters
	6.5 Our Generalized Optimization Model
	6.6 The Optimal Release Time
	6.6.1 Solution without Constraints
	6.6.2 Solutions with Constraints

	6.7 Numerical Example and Sensitivity Analysis
	6.7.1 A Simple Cost Model Considering Time Delay
	6.7.2 A Generalized Cost Model Considering Time Delay
	6.7.3 Impact of the Factors
	6.7.4 Interval Estimation of Parameters in the Cost Model
	6.7.5 Sensitivity Analysis of Optimal Release Time

	6.8 Summary

	Chapter 7 Bayesian networks modeling for software inspection effectiveness
	7.1 Software Inspection Process
	7.2 Bayesian Networks
	7.3 Model Development
	7.3.1 Bayesian Network Framework
	7.3.2 Bayesian Network Configuration

	7.4 Numerical Example
	7.4.1 Bayesian Network Modeling
	7.4.2 Networks Probability Distributions
	7.4.3 Model Analysis
	7.4.4 Dynamic Analysis of the Node “Remaining number of faults”
	7.4.5 Sensitivity Analysis

	7.5 Summary

	Chapter 8 Conclusion and Future Work
	8.1 Research Results
	8.2 Future Research

	REFERENCES

