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SUMMARY 
 
This thesis investigates the modeling problem of software reliability, extending 

traditional reliability models through relaxing some specific restrictive assumptions. 

Related analysis issues, especially optimal release time and optimal resource allocation, 

are addressed with the corresponding extended models. Centered on this line, research 

has been developed as follows. 

 

Extended software reliability modeling approaches are proposed through combining both 

FDP (fault detection process) and FCP (fault correction process). Traditional software 

reliability models assume immediate fault correction. However, practical software testing 

process is composed of three sub-processes: fault detection, fault correction and fault 

introduction. We proposed the combined fault detection and correction modeling by 

considering various fault correction time. Our extensions are developed with both 

traditional NHPP and BN models, with paired NHPP and BN modeling frameworks 

proposed. Practical numerical application is developed for the purpose of illustration. 

Analysis results show the advantage of the incorporation of the fault correction process 

into the software reliability modeling framework. Basing on paired FDP and FCP models, 

time problem of optimal release is explored as well. We have further developed the 

software cost models based on our proposed fault detection and correction models. 

 

Our study follows the intuitive approach of incorporating historical failure data into the 

frameworks of current models. Different approaches are proposed to incorporate the data 

collected from previous similar projects/releases. For paired FDP and FCP models, we 



  vii

assume the testing and debugging environments keep stable over two consecutive 

projects. As a result, the fault detection and correction rates will not vibrate a lot, and 

then the rates estimated from previous project can be utilized in the early phase of current 

project. Failure data from multiple similar projects can be incorporated. Case studies 

conducted with two applications show the better performance of this approach in the 

early phase. 

 

Besides considering the fault correction time during software testing process, we can also 

improve the software reliability via review and walk-through during the inspection 

process. For the Bayesian networks application in software reliability, we also explore the 

issue of software inspection effectiveness analysis. Software inspection has been broadly 

accepted as a cost effective approach for software defect removal during the whole 

software development lifecycle. To keep inspection under control, it is essential to 

measure its effectiveness. As human-oriented activity, inspection effectiveness is due to 

many uncertain factors that make this study a challenging task. Bayesian Networks are 

powerful for reasoning under uncertainty and have been used to describe the inspection 

procedure. With this framework, some further extensions are explored in this thesis. The 

number of remaining defects in the software is incorporated into the proposed framework, 

providing more information on the dynamic changing status of the inspection process. 

Also, a systematic approach to extract prior information is studied with a numerical 

example for detailed illustration. 
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Chapter 1     Introduction 
 

Nowadays, computer systems composed of both hardware and software are widely used 

in everyday life in this world. As software systems play an increasingly important role in 

complex systems, the reliable performance of software systems becomes an important 

issue. Since 1970 researches have been conducted to study the reliability of the software 

system. Methodologies for assuring software reliability form an important part of 

reliability studies. With new technologies, the reliability of hardware can achieved quite a 

high level, while the reliability of software can still dependents greatly on human factors. 

As it is well known, software reliability is the application of statistical techniques to data 

collected during system development and operation to specify, predict, estimate, and 

assess the reliability of software-based systems. Since there are many human factors 

related operation, the reliability of software can not achieve as high level as hardware 

does. Thus, the reliability of software has become the focus of basic requirement for 

computer system. The reliability of software can get even worse with the increase of 

software complexity at the same time. The software crisis is often talked about when 

problems are involved with software products, for example, increasing development cost, 

lack of the ability to perform an intended task correctly, etc. The application of software 

systems has now crossed many different areas. Software has become an essential part of 

many industrial and commercial systems. Furthermore, it also plays an important role in 

military systems. In the high automated aviation industry, misunderstandings between 

computers and pilots have been implicated in several airline crashes in the past few years 

(Lyu, 1996). As a result, the need for reliable software has attracted great interest in both 
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practice and research in the software community. Therefore, developing the required 

techniques for software reliability engineering is a major challenge. That is the 

motivation for us to carry out the fault detection and correction analysis within the 

software system.  

 

Lots of research in software reliability modeling has been developing for over three 

decades. Many models have been developed to adapt to different testing environments 

and under different assumptions as well (Xie, 1991; Lyu, 1996). These models provide 

essential tools for software reliability prediction, estimation, and assessment. These 

measurements are essential for the management to make decision in this phase, such as 

software cost analysis (Huang et al., 2003; Xie et al., 2004a), testing-resource allocation 

(Yamada et al., 1995; Dai et al., 2004), optimal release policy (Xie and Hong, 1999; 

Chang and Jeng, 2006), and fault-tolerance system analysis (Han et al., 2003; Levitin, 

2005). 

 

Those traditional software reliability models have been successfully applied in practice, 

and until now there are currently a number of practical papers summarizing their 

application experience (Musa, 1993), and providing some unified theories for software 

reliability models (Huang et al., 2003; Lee et al., 2004). There are many factors being 

considered and those traditional software reliability models are being revised based on 

more practical assumptions (Chang, 2001; Huang and Kuo, 2003; Pham and Zhang, 2003; 

Pham, 2003; Shyur, 2003; Zhang et al., 2003; Chiu et al., 2008; Lin and Huang, 2008; 

Kapur et al., 2008).  
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In software reliability literature, different authors use different synonyms referring to 

software reliability problems, such as fault, defect, bug, etc. A fault is always an existing 

part in the software and it can be removed by correcting the erroneous part of the 

software (Xie, 1991). Some authors use the word defect, error, bug, etc, these 

terminologies need to be clarified and to be unified. In this thesis, as we mainly discuss 

about the fault detection and correction process modeling of the software system, we 

unify different synonyms and use the word fault. Generally, during the software testing 

process, program code is executed and the erroneous outputs are identified. For each 

incorrect output, it can be count as a failure (Xie, 1991). Faults that caused the failure are 

identified and removed. Thus, the failure process during the software testing phase can be 

identified as a process for fault detection and correction. The reliability of the software 

will be increased as more and more faults are being detected and corrected. The 

reliability improvement phenomenon is then called reliability growth (Xie, 1991). 

However, the assessment of the software reliability is not easy as they are many factors 

lead to failure. The level of the reliability is usually estimated by using some appropriate 

models applied to the empirical data from the software failure history. 

 

1.1 Fault Detection and Correction Modeling 
 

Software reliability modeling plays a critical role in software development, particularly 

during the software testing stage. In the last few decades, generalizations and extensions 

of software reliability growth models (SRGMs) have continued to attract researchers in 

the field. The software reliability models can be categorized into two groups: analytical 
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software reliability models and data-driven software reliability models (Musa et al., 1987; 

Xie, 1991; Lyu, 1996; Pham, 2000). Bothe analytical and data-driven modeling 

approaches have their model assumptions which can be exposed by dividing the testing 

process into three sub-processes: fault-detection, fault correction, and fault introduction. 

Analytical models assume perfect and immediate fault correction. Data-driven models 

only analyze the historical data from the fault detection process, ignoring the collected 

fault correction data. As a result, fault correction is not incorporated for both approaches.  

 

According to different modeling techniques, these models can also be grouped into 

NHPP (non-homogeneous Poisson process) models, Markov models, and Bayesian 

models. Among these three models, NHPP models are applied broadly for their flexibility 

and simplicity, and Bayesian models are mostly developed from the corresponding 

Markov and NHPP models. Analytical software reliability models describe the software 

failure behavior during the software testing process and model the process as a stochastic 

process, while data-driven models focus on the failure data generated through the 

software testing process and model the software reliability prediction as a time-series 

analysis problem.  

 

However, there are some restrictive assumptions for those general models. The reason for 

this is probably that the assumptions made for each model are correct or are good 

approximations of the reality just in some situations. Those restrictive assumptions are 

not compatible with the practical software testing/developing environments. These 

assumptions might not be realistic in practice or too complicated to be realized.  
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One thing of great interest and attracts attention is that it is not realistic and practical to 

ignore the fault correction in software reliability modeling. Although there are many 

research papers on software reliability modeling, few of them address the realistic time 

delays between fault detection and fault correction processes. Most of the models 

consider only software fault detection process in the testing stage, assuming perfect and 

immediate fault correction with no debugging time. While in fact, in reality, each 

detected fault is reported, diagnosed, corrected, and then verified. The time between 

detection and correction should not be neglected in practical software testing process 

(Zhang and Pham, 1998).  

 

Unlike fault introduction, the fault correction data can be extracted from related historical 

reports. With more information of fault correction data, software reliability models 

considering both fault detection and correction can be developed. Recently, more and 

more researchers emphasized the great importance of the fault correction modeling 

(Schneidewind, 1975; Xie and Zhao, 1992; Schneidewind, 2001; Schneidewind, 2003; 

Stutzke and Smidts, 2001; Bustamantea and Bustamante, 2003; Zhang et al., 2003; Hu et 

al., 2007). However, due to lack of actual data, no systematic work has been carried 

further in modeling the fault detection and correction processes together based on NHPP 

models.  

 

Fault correction is a difficult and time-consuming exercise. When the performance of 

fault detection and fault correction are to be evaluated from test data to measure the 

software reliability, the evaluation method is usually to construct a reliability model. 
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These models use empirical data and assumptions about the software development 

process, and they usually result in estimation of model parameters and prediction of 

future failures. As a result, combined fault detection and correction modeling could 

present more practical models for software testing process, and it could give more 

accurate reliability prediction and trend analysis, which could provide crucial information 

for decision making and reliability engineering for most projects. Therefore, research has 

been focused on extending the modeling by relaxing some restrictive assumptions so as 

to adapt to flexible software environments. That is the motivation for us to make some 

further development based on traditional software reliability growth models.  

 

Besides realistic modeling, the problem of accurately estimating software faults remains a 

difficult one. Fitting a proposed model to the actual data of faults detection and correction 

involves estimating the model’s parameters from the real test data sets. Once able to 

estimate those parameters, we can give accurate predictions to the future behavior of the 

fault detection and correction process, which will help software managers to allocate 

testing resources and study the software release problems.  

 

Parameter estimation method is also addressed in this thesis. For traditional software 

reliability models, Least Square (LS) estimation method has been applied in most studies 

to estimate the complex fault detection modeling parameters (Xie et al., 2007; Inoue and 

Yamada, 2006; Zhao et al., 2006; Jiang and Xu, 2007). However, it is well accepted that 

the Maximum likelihood estimation (MLE) is one of the most popular estimation 

techniques with many desirable properties, such as asymptotic normality, admissibility, 
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robustness and consistency, and it is quite straightforward and has been widely used to 

estimate the parameters for SRGMs (Inoue and Yamada, 2004; Zou, 2003; Musa et al., 

1987; Schneidewind, 1993; Xie, 1991). Maximum likelihood (ML) parameters are 

estimated by solving a set of simultaneous equations and then the confidence interval of 

those parameters can be easily derived. Up to now, no MLE method has been applied in 

the existing studies to estimate parameters in the fault detection and correction process. In 

this thesis, we take into account the time dependency and consider the issue of applying 

the ML estimation method to the combined FDP and FCP from both a theoretical and an 

experimental perspective.  

 

Once the parameters are estimated, accurate predictions of the future failure behavior can 

be made. In addition to predicting the number of faults remaining in software, other 

process characteristics can also be estimated. With the realistic consideration of the time 

dependencies, more accurate estimations and decisions can be made on managing project 

resources. A direct and useful application of this combined time dependent model is in 

the optimal release time determination problem.  

 

In the first part of this thesis, a systematic study on the fault detection and correction 

process is carried out, a framework is proposed to incorporate the time dependencies 

between the fault detection and fault correction processes with the emphasis on the fault 

correction process. Various fault correction models are proposed considering different 

forms of the time delay. 
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1.2 Inspection Effectiveness Model with Bayesian Networks 
 

The study on the fault detection and correction process develops a method to help 

software managers to make a decision of when to release the software so as to receive a 

high reliability and satisfied quality. However, since the cost for the fault detection and 

correction during the software testing phase is considerably high, another question comes 

into our consideration. That is, how to remove as many software faults as possible while 

keeping the debugging cost relatively low within the software development lifecycle.  

 

Generally, the longer a defect remains in a product, the more costly it is to remove it. 

Research showed that a high proportion of software errors were introduced at the start of 

the development lifecycle during the requirement phase (Delic et al., 1995). In addition, 

further faults may be introduced by the fault debugging. Considering this point of view, it 

is necessary to remove faults as early as possible so as to save money and energy within 

the development lifecycle. Except for testing, the only other widely applicable technique 

for detecting and eliminating software defects is to review and walkthrough during the 

inspection process.  

 

Software inspection is a systematic technique to examine any software artifact for defect 

detection and removal.  It has been broadly accepted as a cost effective approach for 

software defect removal during the whole software development lifecycle.  It is accepted 

that inspection can detect and eliminate faults more cheaply than testing; the inspection 

method can be used to improve productivity and to shorten development schedules. In 

general, they can reduce cost and schedule of testing. Inspection process is considered 
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important, and inspection effectiveness is considered as an important criterion to judge 

the inspection performance. That is the motivation for us to construct models to measure 

the inspection effectiveness. 

 

To keep inspection under control, it is essential to measure its effectiveness and many 

different attempts have been made to measure software inspection effectiveness. With 

this measurement, we can develop relevant decision-making, such as when to stop testing. 

Starting from this point, we propose a systematic method to analyze the inspection 

effectiveness so as to find out factors that can improve the inspection performance, that is, 

to improve the efficiency of detecting and eliminating software defects. A Bayesian 

network (BN) model is proposed to describe the interdependencies within the inspection 

structure and the contribution of each factor to the overall belief on inspection 

effectiveness, and a systematic approach is developed to extract knowledge from experts. 

 

As human-oriented activity, inspection effectiveness is due to many uncertain factors, 

which makes such a study a challenging task. As we have known, Bayesian networks 

modeling is a powerful approach for the reasoning under uncertainty and it can describe 

the inspection procedure well. Based on a Bayesian networks model, extensions will be 

explored in several directions, and software inspection can be modeled as a dynamic 

process and the belief on effectiveness will be updated with new information collected. 

Systematic approach to extract knowledge from experts can be explored in case of 

introducing more uncertainty and possible inconsistency into the modeling framework.  
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In the second part of this thesis, some extensions have been explored modeling the 

inspection effectiveness with the Bayesian network framework developed in Cockram 

(2001). Specifically, the number of remaining defects in the software is proposed to be 

incorporated into the framework, with expectation to provide more information on the 

dynamic changing status of the software. Also, considering the learning process usually 

happening in software development, the dynamic evolution of inspector’s experience 

with the advance of inspection is studied. In addition, a different approach is adopted to 

elicit the prior belief of related probability distributions for the network. Specially, 

sensitivity analysis is developed with the model to locate the important factors to 

inspection effectiveness. 

 

1.3 Research Objective and Scope 
 

The purpose of this thesis is to develop comprehensive and practical models to measure 

software reliability, providing more accurate information for management to make cost-

effective decisions. Specifically, traditional software reliability models, both NHPP and 

BN, will be extended through modeling both the fault detection process and the fault 

correction process. Also, Bayesian networks will be used to measure the effectiveness of 

the software inspection, a reliability related measurement in the very early phase of 

software development. 

 

Extensions on current NHPP models will generalize the time-delayed relationship 

between the fault detection and correction processes with a general framework. The inter-
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relationship between fault detection and correction will be incorporated as well with no 

restrictive assumptions. For both kinds of models, software testing will be described more 

practically. As a result, more accurate software reliability predictions would be available 

to help software project managers to make decisions in activities such as cost estimation, 

stopping-point determination, and resource allocation. 

 

Clearly, more data is needed than the traditional modeling frameworks. This requirement 

on data is usually not a problem with modern software companies, as they have plenty of 

historical data stored in their databases. However, few data is available in published 

works. Then both simulated and field data is used to illustrate the proposed approach. 

 

The remainder of this thesis is organized as follows. In chapter 2 we provide the general 

background of basic software reliability models and some related software reliability 

analysis topics. In chapter 3 the systematic paired analytical FDP and FCP models are 

proposed and the related reliability analysis problem is explored there. In chapter 4 

parameter estimation methods are discussed and maximum likelihood estimates of 

combined models are derived from an explicit likelihood formula under various time 

delay assumptions. In chapter 5, various characteristics of the combined model, like the 

predictive capability, are also analyzed and compared with the traditional least squares 

estimation method. Since no single comparison is adequate to determine the method with 

better prediction performance, a Monte Carlo simulation analysis is carried out as well. In 

chapter 6 we study a direct and useful application of the proposed model and estimation 

method to the classical optimal release time problem faced by software decision makers. 
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Comprehensive comparisons among various software cost models are conducted. The 

results illustrate the effect of time delay on the optimal release policy and the overall 

software development cost. In chapter 7, a revised BN model is given using NETICA 

software to measure the inspection effectiveness. Sensitivity analysis is carried out to 

identify the uncertain factors that have the largest impact on the software inspection 

process. Since the initialization of the BN model requires establishing the prior belief of 

the conditional probability distribution of intermediate variables and the prior belief of 

the probability distribution of the root parent nodes, two methods are proposed to obtain 

those prior probabilities. The first method is given through calculating the pair-wise 

comparison matrix using EXPERT CHOICE software. The second method is given using 

maximum likelihood estimation method to find out the distribution for the normalized 

data value and finally give the a-priori conditional probability table. The proposed 

method can help maximizing the inspection effectiveness, improving the efficiency of 

removing faults as early as possible, and finally improving the software quality even 

before the software testing phase begins. Chapter 8 concludes current research work and 

discusses some further research topics. 
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Chapter 2     Literature review 
 

2.1 Software Reliability Models 
 

Software reliability is one of a number of aspects of computer software which can be 

taken into consideration when determining the quality of the software. Building good 

reliability models is one of the key problems in the field of software reliability. A good 

software reliability model should give good predictions of future failure behavior, 

compute useful quantities and be widely applicable. Therefore, a very important goal of 

current software reliability research is to develop general prediction models. Existing 

models typically reply on assumptions about development environments, the nature of 

software failures and the probability of individual failure occurrences. Thus each model 

can be shown to perform well with a specific failure data set, but no model appears to 

perform well for all cases. 

 

Generally, software reliability growth models (SRGMs) are composed of both analytical 

and data-driven models (Xie, 1991). Analytical SRGMs have three major sub-categories: 

non-homogenous Poisson process (NHPP) models, Markov models, and Bayesian models. 

A stochastic process is usually incorporated in the description of the failure phenomenon, 

such as the Markov process assumption and non-homogeneous Poisson process which are 

widely used. They are constructed by analyzing the dynamics of the software failure 

process, and their applications are developed by fitting them against software failure data. 
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Some other models deal mainly with the inference problems based on the failure data and 

these models include Bayesian models and other statistical methods.  

 

Software reliability, defined as the probability of failure-free software operation for a 

specified period of time in a specified environment (Lyu, 1996), is supposed to be a good 

measurement to quantify software failures. Lots of software reliability growth models 

(SRGMs) have been proposed to measure the software failure process successfully (Teng 

and Pham, 2004, Huang et al., 2003; Tamura and Yamada, 2006; Xie and Yang, 2003; 

Shyur, 2003; Chatterjee, 2004), among them some are based on non-homogeneous 

Poisson process (NHPP) (Musa et al., 1987; Xie, 1991; Lyu, 1996; Pham, 2000).  

 

In the course of development of software reliability research, many models have been 

built to predict future failures. Software failure dependencies are being analyzed (Dai et 

al., 2004, 2005; Levitin and Xie, 2006); software cost models and optimal release policies 

are being proposed (Xie et al., 2004a); the reliability of fault tolerant software is also 

analyzed (Levitin et al., 2007). Software grid service reliability is also considered (Dai et 

al., 2005). Some of the models are described as Non-homogeneous Poisson Process 

(NHPP) models, because the mean value function m(t) represents the cumulative number 

of faults exposed up to time t. in practice, many of the NHPP models are proved to be 

effective only in a particular environment.  

 

Traditional SRGMs only consider the fault detection process assuming perfect and 

immediate fault correction. Software fault-detection process N(t) is usually assumed to 
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follow a NHPP, in which the intensity function λd(t) is time-dependent. Given λd(t), the 

mean value function (MVF) md(t) satisfies 

 

                                    ∫= t
dd dsstm 0 )()( λ                                                          (2.1) 

 

The mean value function md(t) is the characteristic of the NHPP model. Generally, 

different fault detection models can be obtained by using different non-decreasing 

functions md(t).  

 

There are four classical NHPP models as follows. 

 

2.1.1 Goel-Okumoto Model 
 

The GO-model (Goel and Okumoto, 1979) is one of the most influential NHPP software 

reliability models. The mean value function is given as 

 

                              )1()( bt
d eatm −−⋅= , 0, >ba                                  (2.2) 

 

where a is the number of faults that can be detected by the testing process, and b can be 

interpreted as the failure occurrence rate per fault.  
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2.1.2 Duane Model 
 

The Duane model which is also referred to as the Weibull process model assumes that the 

mean value function satisfies 

 

                                              ( ) battm =                                                     (2.3) 

                               

In the above, the parameters can be estimated by using collected failure data. 

 

One of the most important advantages of the Duane reliability growth model is that if we 

plot the cumulative number of failure versus the cumulative testing time on a log-log-

scaled paper, the plotted points tends to be close to a straight line if the model is valid. As 

pointed out by Xie (1991), some of the disadvantages of the Duane model are that it gives 

an infinite ROCOF (Rate Of oCcurrence Of Failures) at time zero and it gives zero 

ROCOF at time infinity. Littlewood (1984) then proposed a modified version of the 

Duane model. 

 

2.1.3 Yamada Delayed S-shaped Model 
 

The Yamada delayed S-shaped (DSS) model is an S-shaped curve for the cumulative 

number of detected faults. The failure rate initially increases and later decreases. Yamada 

assumed that the fault detection rate was a time-dependent function described by an S-

shaped curve because the testers’ skills would gradually improve as time went by (Xie, 



  17

1991). It is used to model the delayed reporting phenomenon for fault detection. The 

mean value function is given as  

 

                              ])1(1[)( bt
d ebtatm −+−⋅= , 0, >ba                                    (2.4) 

 

with parameter a denoting the number of faults to be detected, and b corresponding to a 

fault detection rate.  

2.1.4 K-stage Erlangian (gamma) Growth Curve Model (k=3)  
 

The K-stage Erlangian growth curve model, usually called the K-Model, was applied by 

Khoshgoftaar (1988). He observed that the Goel and Okumoto model and the S-shaped 

model could be described as special cases of a Gamma function.  The mean value 

function with the value of K equal to 3 is: 
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                                           (2.5) 

 

Two special cases of the K-Model are K=1 and K=2, where the K-Model reduces to the 

G-O model and the S-shaped model, respectively. Usually the K-Model is studied at the 

case where K=3. 

 



  18

In these NHPP models as illustrated above, usually parameter a represents the mean 

number of software failures that will eventually be detected, and parameter b represents 

the probability that a failure is detected in a constant period. Mainly there are two classes 

of md(t) used to describe different fault detection processes: concave and S-shaped 

models. Concave md(t) describes the fault detection process with exponential decreasing 

intensity. Differently, S-shaped md(t) describes fault detection process with increasing-

then-decreasing intensity, which can be interpreted as a learning process. 

 

 To highlight the idea and approach in our study, we propose our fault detection and 

correction model based on the G-O model as an example, although there are many other 

classical SRGMs based on NHPP that can be used like the Yamada exponential model, 

the Yamada Rayleigh model.  

 

Unified theories have been discussed for SRGM models (Huang et al., 2003; Sharma and 

Trivedi, 2007). Various factors are combined to software reliability models (Chang, 2001; 

Pham, 2003; Shyur, 2003; Zhao et al., 2006; Gokhale et al., 2006; Jain and Maheshwari, 

2006; Huang et al., 2007). Model applications and performance analysis are carried out as 

well (Satoh and Yamada, 2001; Teng and Pham, 2004; Keiller and Mazzuchi, 2002; 

Satoh and Yamada, 2002; Nahas and Nourelfath, 2005). An overwhelming majority of 

publications on NHPP considers just two monotonic forms of the NHPP’s rate of 

occurrence of failures (ROCOF): the log-linear model and the power law model 

(Krivtosov, 2007). Software prediction is also studied widely in current software 

reliability research (Li et al., 2007; Madsen et al., 2006). 
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2.2 Parameter Estimation 
 

The NHPP model is a very important class of software reliability models and is widely 

used in software engineering. NHPPs are characterized by their intensity functions. The 

parametric statistical methods are often applied to estimate or to test the unknown 

reliability models. Maximum likelihood Estimation (MLE) method has been widely 

analyzed in current research. Weighted likelihood function has been proposed addressing 

the problem of estimating the parameter of an exponential distribution (Ahmed et al., 

2005).  A number of studies have been carried out to study the properties of Maximum 

Likelihood Estimation (Bottai, 2003; Burdick et al., 2006; You and Zhou, 2006; Zhao et 

al., 2006; Karlis and Meligkotsidou, 2006). Other parameter estimation methods are also 

discussed, such as Bayesian method (Goldstein and Bedford, 2006) and Markov Chain 

Monte Carlo (MCMC) method (Pang et al., 2007). 

 

2.3 Optimal Release Policy 
 

As software systems become more and more complex, they are prone to having more and 

more faults inside. Increased software system complexity challenges software mangers 

and testers to maintain quality control over the development process with effective and 

efficient test plans. While exhaustive testing of software can ensure the deployment of 

high quality software, exhaustive testing is never practical due to the significant costs of 

running many test cases. In contrast, if the software is tested inadequately, then failures 

during the actual deployment of the software can lead to significant expenses involved in 

fixing the software, loss of goodwill, and potential legal liabilities. What is needed is an 
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optimal level of testing that balances the risks of failures with the costs incurred while 

testing the software to meet software reliability requirements. With different software 

reliability models combined with different release criteria, there are many papers dealing 

with this topic (Ross, 1985; Dalal, 1988; Littlewood, 1997; Kimura et al., 1999; Xie and 

Hong, 1999; Zhang and Pham, 1998; Dai et al., 2004; Xie, 2004a; Huang, 2005a). 

 

One of the challenging problems for software companies is to find the optimal time of 

release of the software so as to minimize the total cost expended on testing and potential 

penalty cost due to unresolved faults. If the software is for a safety critical system, then 

the software release time becomes more important. Bhaskar and Kumar (2006) developed 

a total cost model based on criticality of the fault and cost of its occurrence during 

different phases of development for N-version programming scheme, a popular fault-

tolerant architecture. Boudali and Dugan (2006) presented a continuous-time Bayesian 

network (CTBN) framework for dynamic systems reliability modeling and analysis. 

Chang and Jeng (2006) investigated stopping rules for software testing and proposed two 

stopping rules from the aspect of software reliability testing based on the impartial 

reliability model. 

 

The overall lifecycle cost associated with product failures exceeds 10% of yearly 

corporations’ turnover. A major factor contributing to the loss is ineffective performance 

of software and systems verification, validation and testing (VVT). Engel and Last (2006) 

then proposed a set of quantitative probabilistic models for estimating costs and risks 

stemming from carrying out any given VVT strategy. Fenton et al. (2007) described a 
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more general approach that allowed causal models to be applied to any lifecycle. For 

projects within the range of the models, defect predictions are very accurate. This 

approach enabled decision-makers to reason in a way that was not possible with 

regression-based models. 

 

Pham and Wang (2001) modeled software reliability and testing costs using a quasi-

renewal process. Xie and Yang (2003) extended a commonly used cost model to the case 

of imperfect debugging, which means that faults are not immediately corrected and more 

time are needed to locate and correct it. Xie et al. (2004a) presented a general cost model 

and a solution algorithm for the determination of the optimal number of hosts and optimal 

system debugging time. Huang (2005b) proposed a software cost model that could be 

used to formulate realistic total software cost projects and discussed the optimal release 

policy based on cost and reliability considering testing effort and efficiency. Teng and 

Pham (2004) first incorporated the random field environmental factor into the cost model. 

 

The determination of the optimal release time for a new piece of software is of primary 

importance in the process of software development. Boland and Chuiv (2007) studied a 

model where initially there were N faults in the software, but where the probability of a 

perfect repair of a fault when found is p (in general repair is not perfect). They 

investigated various cost models for the situation and gave some insight into how the 

optimal release times and costs for the software vary with the failure detection rate and p. 
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2.4 Models to Measure Inspection Process 
 

Software inspection is ‘a well-structured technique that originally began on hardware 

logic and moved to design and code, test plans and documentation with the intended 

purpose of effectively and efficiently identifying defects early in the development 

process’ (Fagan, 1976, 1986). It has been generally accepted in software development as 

a cost-effective approach for quality improvement through defect removal (Aurum et al., 

2002). Such a static verification technique was first introduced in Fagan (1976), and has 

been studied and applied extensively with a variety of applications (Kelly and Shepard, 

2004b; Miller and Yin, 2004). Zhao et al. (2007) developed a model to evaluate the 

reliability and optimize the inspection schedule for a multi-defect component.  

 

Software inspection process is a complicated process with many uncertain factors. This 

process can be characterized by different objectives, participants, preparation, 

participants’ roles, meeting duration, work product size, work maturity, output products, 

and the process discipline (Aurum et al., 2002). With these basic elements, different 

inspection processes have been introduced, such as active design review, two person 

inspection, N-fold inspection, phased inspection, etc. To measure the effectiveness of 

software inspection, the relationships of all the required variables should be addressed. 

 

There have been many different attempts to measure software inspection effectiveness. 

Some works suggest using the already detected defects to calculate the measurement, i.e., 

defect density (Porter et al., 1997; Perry et al., 2002). Also, the status of remaining 

defects is proposed to be another measurement through both objective and subjective 
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approaches (Biffl, 2003), and Capture-recapture is a well studied approach to develop 

related estimation (Emam and Laitenberger, 2001; Petersson et al., 2004). As pointed out 

by Stringfellow (2002), the pre-screening method has a greater impact on components 

with few defects. One way to compensate for that problem is to look at estimators that 

tend to under-estimate. If overlap is reduced due to pre-screening, estimates will be 

higher. Estimators that tend to under-estimate will compensate for defect scrubbing.  

 

It should be noted that the experience-based method takes scrubbing into account. 

Experience-based models adjust to the data. If the scrubbing is done in a similar way for 

all releases, the estimates should be trustworthy. However, it is criticized with the extra 

cost and difficulties added in defect implantation, and some alternatives are developed 

through the time series trend or subjective judgments on the collected data (Amasaki et 

al., 2005; Yin et al., 2004). 

 

Unfortunately, these natural but simplistic measurement definitions regard software 

inspection as a mechanical process. There is no unified inspection structure and there are 

many factors contributing to its effectiveness for each specific procedure (Biffl and 

Halling, 2003; Briand et al., 2004). Many of these factors are highly dependent on the 

experience of individual inspectors and introduce great uncertainty into this process 

(Kelly and Shepard, 2004a; Perry et al., 2002). 
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2.4.1 The Importance of Measuring Inspection Process 
 

Delic et al. (1995) found that some 70% of software faults in mission-critical space 

systems were due to errors introduced during requirement phase. In addition, the re-work 

of the previous development stages was often at considerable expense and consequent re-

testing, and further faults may be introduced by the re-work. Remus and Ziles (1979) 

provided a simple model of error removal and integrity progression using the reliability 

figures from similar types of software, showing another way to reduce the remaining 

faults number, that is, to find as many faults as possible during the inspection process so 

as to improve the quality of software itself. 

 

As the use of software products in today’s world has increased dramatically making 

quality an important aspect of software development, there is a continuous need to 

develop processes to control and increase software quality. As software code inspection 

is one way to pursue this goal, Vreede et al. (2006) presented a collaborative code 

inspection process that was designed during an action research study using collaboration 

engineering principles and techniques. Results showed that regardless of the 

implementation, the process was found to be successful in uncovering many major, minor, 

and false-positive defects in inspected piece of code. 

 

Along with improved quality, substantial productivity gains have also been reported. 

Such gains are possible for two reasons. First, the longer a defect remains in a product, 

the more costly it is to remove it. Second, except for reviews and walkthroughs, the only 

other widely applicable technique for detecting and eliminating software defects is testing. 
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If inspections can detect and eliminate faults more cheaply than testing, they can be used 

to improve productivity and to shorten development schedules.  

 

The above shows that the inspection is very important before we begin modeling the fault 

detection and correction during the testing phase. That motivates us to find a way to 

measure the inspection effectiveness and to find out factors that can influence the 

inspection effectiveness. By changing those influential factors, we can improve the 

efficiency of detecting and eliminating software defects at the early stage of software 

development, therefore, help saving lots of money and energy during the testing phase. 

 

2.4.2 A Brief Review of Software Inspection Process 
 

It has been widely accepted that software inspection is a cost-effective approach for 

quality improvement through defect removal (Aurum et al., 2002). Such a static 

verification technique is originally introduced in Fagan (1976), and has been studied and 

applied extensively with many varieties (Kelly and Shepard, 2004b, Miller and Yin, 

2004). Fagan (1986) described a fishbone diagram of the causal influence for the quality 

of software inspection, which showed the influences on the quality of inspection 

processes. Cockram (2001) redrawn Fagan’s diagram to give an indication of the type of 

attributes that influenced the effectiveness of the inspection. Aurum et al. (2005) 

investigated the inspection effectiveness by altering some of the inspection attributes, 

such as the environmental context, document type and reading technique. Freimut et al. 

(2005) proposed a model to measure inspection cost-effectiveness and a method to 
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determine the cost-effectiveness by combining project data and expert opinion. Generally 

speaking, software inspection is a systematic technique to examine any software artifact 

for defect detection and removal, and can be applied to the early phase in software 

development. 

 

However, software inspection process is flexible and complex. There is no unified 

inspection structure and there are many factors contributing to its effectiveness for each 

specific procedure (Biffl and Halling, 2003; Briand et al., 2004). Many of these factors 

are highly dependent on the experiences of individual inspectors, introducing great 

uncertainty into this process (Kelly and Shepard, 2004a; Perry et al., 2002). Bayesian 

network widely known as a powerful approach to model under uncertainty is then 

considered to help modeling the inspection process.  

 

2.4.3 A Brief Introduction of Bayesian Network Models 
 

Bayesian network (Pearl, 1986) is a directed acyclic probability graph, connecting the 

relative variables with arcs, and this kind of connection expresses the conditional 

dependence between the variables. The influence is not necessarily linear; in general if 

one node can take n values and the other m values, the influence of one mode on the 

other is a mn×  matrix. Experience is used to provide a priori probability values for each 

node matrix. Therefore, Bayesian network is well-known as a powerful approach for 

reasoning under uncertainty. 
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To construct the Bayesian network requires three types of knowledge: 

 

1) The structure of the network showing the node dependencies. 

2) A matrix giving the conditional probability distribution for each link. 

3) The structure of the network is acyclic. 

 

Besides the Bayesian network construction, the Bayesian network can also include nodes 

being set to a pre-defined value (evidence nodes), which falls under probabilistic 

inference. Bayesian network inference is NP-hard for a general network which warrants 

the use of BN software such as NETICA. 

 

The application of Bayesian networks can provide a means of initializing the model from 

inspectors’ experience, with the model having the ability to learn and optimize its 

performance from the results of inspections. One of the basic assumptions in Bayesian 

inspection models is that some prior knowledge is given about the number of defects in a 

certain product or software system. The prior knowledge could be often described as a 

probability distribution. Chun and Sumichrast (2006) proposed three conditions that 

should be put forth as desirable properties for a prior probability distribution of the 

number of defects in the product. Various prior probability distributions were reviewed 

and tested if they met those conditions. The negative binomial distribution was found to 

be the only one that satisfied all the desirable conditions. With the negative binomial 

prior, the effects of various parameters were analyzed on the Bayesian estimate of the 

number of undetected errors still remaining in the product. 
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Ganssle (2001) did a survey showing some striking examples of the value of code 

inspections: 

 

1) IBM managed to remove 82% of all defects before testing even began. 

2) ATandT found inspections led to 14% increase in productivity and 10-fold 

increase in quality. 

3) HP found that 80% of the errors detected during inspections were unlikely to be 

caught by testing. 

4) HP, Shell Research, Bell Northern, and ATandT all found inspections 20-30 times 

more efficient than testing in detecting errors. 

 

Over the last decades, Bayesian networks (BN) have become a popular tool for modeling 

many kinds of statistical problems. Langseth and Portinale (2007) discussed the 

properties of the modeling framework that make BNs particularly well suited for 

reliability applications, and point to ongoing research that is relevant for practitioners in 

reliability. Melo and Sanchez (2006) pointed out that Bayesian networks have been 

applied toe deal with uncertainties in software development recently. 

 

Based on the diagram proposed by Fagan (1986), and the one revised by Cockram (2001), 

we can provide a predictive model of the effectiveness of software inspections using 

Bayesian network modeling.  
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Chapter 3     Modeling of the fault detection and 
correction process 
 

Software reliability modeling is to describe fault-related behaviors of software testing 

process, which generally includes fault detection, correction and sometimes fault 

introduction. In this chapter, our research is mainly based on traditional SRGMs, and the 

aim is to further develop models with more realistic assumptions. Traditional SRGMs 

consider the fault detection process only, usually assuming that the fault detected is 

corrected immediately and perfectly, while in reality, it is not always that case. Imperfect 

correction issue has been studied comprehensively (Xie and Yang, 2003; Bhaskar and 

Kumar, 2006). However, relatively less research has been carried out to incorporate fault 

correction process into software reliability models. In fact, the time needed for fault 

correction can not be neglected in software testing practice. For each detected fault, it has 

to be reported, diagnosed, removed and verified before it could be noted as corrected. 

Furthermore, the fault correction time is an important factor for some critical decision 

analysis (Stutzke and Smidts, 2001; Zhang et al., 2003). As a consequence, combined 

fault detection and correction modeling could present more practical models for software 

testing process, with better assistance to related decision-making activities.  

 

Schneidweind (1975) first proposed the idea of modeling the fault correction process, in 

which, the fault correction process is modeled as a separate process following the fault 

detection process with a constant time lag. It was later highlighted in Xie and Zhao (1992) 

where a time-dependent delay function was proposed. In Schneidewind (2001), the time 

delay was assumed to be an exponentially distributed random variable. However, due to 
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the lack of actual data showing the fault detection and correction processes, little real 

progress has been made.  

 

In this chapter, a systematic study on the fault detection and correction processes is 

carried out. We propose new models by considering the time delay, that is, the time spent 

to correct the detected fault. We consider there is a time delay between fault correction 

and fault detection; therefore, the fault correction process can be modeled as a delayed 

fault detection process with random or deterministic delay. An actual data set is used to 

illustrate the modeling framework and reliability analysis procedure. Below we propose 

different models by presenting different forms of the time delay between these two 

processes. To highlight our idea and approach, we are using G-O model for illustrative 

purpose. Similar approach can be carried out based on other software reliability models 

as well. 

 

3.1 The Modeling Framework of FDP and FCP 
 

When information about the fault detection process and the fault correction process are 

all available, the fault correction process can be modeled as a process separate from fault 

detection. They can then be analyzed in a way similar to that of traditional NHPP SRGMs 

reviewed in chapter 2. On the other hand, it is more appropriate to consider the fault 

correction process to be related to the fault detection process as a fault can only be 

removed after its detection. The fault correction process can be assumed to be a delayed 

fault detection process. Different models have been proposed by presenting different 
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forms of the time delay between these two processes. Extension can be made in two 

directions: firstly, different NHPP models could be applied for different fault detection 

processes; secondly, different time-delay forms can be generated under different fault 

correction conditions.  

 

3.1.1 Fault Detection Models 
 

As reviewed in section 2 on NHPP models, software fault detection process is usually 

assumed to follow a non-homogeneous Poisson process, in which the intensity function is 

time-dependent. Given the intensity function ( )tdλ , the MVF ( )tmd  satisfies 

 

                                                        ( ) ( )dsstm t
dd ∫= 0λ                                                 (3.1) 

 

The mean value function ( )tmd is the characteristic of the NHPP model. Generally, 

different fault detection models could be obtained by using different non-decreasing 

functions ( )tmd . There are two major classes of ( )tmd used to describe different fault 

detection processes: concave and S-shaped models. A concave ( )tmd describes the fault 

detection process with exponential decreasing intensity. Differently, S-

shaped ( )tmd describes fault detection process with increasing-then-decreasing intensity, 

which could be interpreted as a learning process. 
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The G-O model is one of the most influential NHPP software reliability models. The 

mean value function is given as 

 

                                   ( ) ( ) 0,,1 >−= − baeatm bt
d                                                           (3.2) 

 

Where a is the number of faults that can be detected by the testing process, and b can be 

interpreted as the failure occurrence rate per fault (Goel and Okumoto, 1979). 

 

There are many other models widely discussed, such as the Duane model, which is also 

referred to as the Weibull process model, and the K-stage Erlangian (gamma) growth 

curve model (k=3). Another widely discussed model is the delayed S-shaped model 

studied in Yamada et al. (1984a). It is used to model the delayed reporting phenomenon 

for fault detection. The mean value function is given as 

 

                       ])1(1[)( bt
d ebtatm −+−⋅= , 0, >ba                                        (3.3) 

 

with parameter a denoting the number of faults to be detected and b corresponding to a 

fault detection rate. 
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Figure 3. 1 Two classes of mean value function md(t) 

 

3.1.2 Fault Correction Models 
 

Fault correction is related to the fault detection process, and it can be modeled with 

reference to the NHPP models described previously. Specifically, a fault can be corrected 

only after its detection, and the fault correction process can be modeled as a delayed fault 

detection process. The difference between these two processes is the time delay, which is 

the time spent to correct the detected fault. Such delay could be deterministic or random, 

which in turn can also be time-dependent. Then similar to FDP models characterized with 

MVF of md(t), FCP models characterized with MVF of mc(t) can be derived from md(t) 

and time delayΔ .  

 

3.1.3 Paired FDP and FCP Models 
 

In the fault detection and correction model we proposed, we define the time delay as the 

correction time and denote it asΔ . This time delay can be modeled as a deterministic or 

random delay. In practice, it is more realistic to assume the time delay as a random 

variable. Similar to FDP models characterized with mean value function (MVF) )(tmd , 
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FCP models can be characterized with MVF )(tmc . The MVF of FCP models can be 

derived from )(tmd and the time delay Δ: ∫∫ Δ−==
t

d

t

cc dttEdtttm
00

)]([)()( λλ . Traditional 

models assume perfect debugging, which means that no faults are introduced when 

correcting one and faults detected are immediately corrected. In our modeling, we 

consider the imperfect debugging by assuming that faults are not immediately corrected. 

There is a time lag between fault detection and fault correction process, as we need more 

time to locate and correct it. However, we still assume that no faults are introduced when 

correcting one; the total number of initial faults will not increase over time. To emphasize 

the fault correction modeling, the G-O model is applied to the fault detection process for 

illustrative purpose.  

 

Combining the NHPP model for FDP and the correction time model related to FCP, we 

can get the paired FDP and FCP modeling framework based on the following 

assumptions.  

 

1) The fault detection process can be described as an NHPP characterized with 

intensity function ( )tdλ . 

2) Each detected fault will be isolated and goes into correction immediately.  

3) It will take a random time for its correction. 

 

Accordingly, the paired model will be characterized with the following paired mean 

value functions: 
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                                                    ( ) ( )dsstm
t

dd ∫=
0
λ                                                  (3.4) 

                                     ∫ Δ−=∫= t
d

t
cc dttEdtttm 00 )]([)()( λλ                                 (3.5) 

 

Usually, the paired model contains some unknown parameters and the estimation is 

carried out with the method of least squares. Specifically, against observations of fault 

detection and correction, the parameters are estimated by minimizing the sum of squared 

residuals, which is the difference between MVFs and the observations for both detected 

and corrected faults (summed) as 

 

                                   ( )( ) ( )( )[ ]∑ −+−
=

n

i
iiciid ctmdtm

1

22                                             (3.6) 

where id and ic denote the cumulative number of detected and corrected faults collected 

till time it respectively; it , ,,3,2,1 K=i are the running times from the beginning of testing.  

 

Commonly, numerical procedures have to be developed in order to obtain the LSEs (least 

square estimates). With the LSE of the parameters, the performance of the paired model 

can be evaluated through the goodness-of-fit criterion. MSE (Mean squared error) is 

adopted as the measurement and it is calculated through the average of MSEs for both 

fault detection and correction. Both MSEs are calculated through the average squared 

difference between the estimated expectations and actual data, as in the following 

equation: 
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The MSE for the combined fault detection and correction process is defined as the 

average value of MSE for fault detection process and MSE for fault correction process; it 

can be minimized with respect to the model parameters when actual data is available.  

 

Different paired models have different parameter combinations, and traditionally, all 

parameters can be estimated together through least square method. In next chapter we 

will discuss using Maximum Likelihood Estimation (MLE) to obtain the model 

parameters.  

 

3.2 Models for Fault Correction 
 

As mentioned earlier, fault correction process is a delayed fault detection process. 

However, there are different types of delay models that can be used. Here we provide 

some discussions on different types of delay models, and we use the G-O model for FDP 

for the purpose of illustration. Besides the parameters from NHPP models, there are 

parameters for fault correction. The MLE parameter estimation method will be discussed 

later in the next chapter. 

 

The deterministic assumptions on correction time are simplistic and often not realistic. In 

fact, software fault correction is closely related to human behavior, which is an 

uncertainty factor. Also, detected faults are different and their appearance sequence is 
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random in system testing. Therefore, it would be more practical to model the correction 

time with a random variable. 

 

3.2.1 Exponentially Distributed Time Delay 
 

The correction time approximately follows exponential distribution in many practical 

software testing projects (Musa et al., 1987). Assuming the correction time for each 

detected fault is exponentially distributed with ( )μexp~Δ , then with given fault 

detection intensity function λd(t), the fault correction density function is  

 

                                ∫ −⋅⋅−=Δ−=
t x

ddc dxexttEt
0

)()]([)( μμλλλ                          (3.8) 

 

The fault correction process can then be described by the following MVF: 

 

                                       ( ) ∫=Δ−= t
cdc dtttmtm 0 )()( λ                                                 (3.9) 

 

The fault correction MVF for GO-model is given as 
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where mc(t) has the same form as the md(t) for S-shaped NHPP model while b=μ . 
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3.2.2 Normally Distributed Time Delay 
 

Assuming faults are of equal size, then we can model the time delay as a normally 

distributed variable with meanμ and variance 2σ , the fault correction density function 

given the fault detection intensity function λd(t) is given as 

 

( )

( ) ( )[ ]bbtabedxexttEt
btbb

t
x

ddc −−Φ−−−Φ=⋅−=Δ−=
−

+−
−

∫ μμ
σπ

λλλ
μ
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2
2

0
2

2

2

2

2
1)()]([)(

                                                                                                                                  (3.11) 

The fault correction process can then be described by the following MVF: 

     ( ) ( ) ( )[ ]∫ −−Φ−−−Φ=∫=Δ−=
−

+
t btbb

t
cdc dtbbtabedtttmtm 0

2
2

0

2

)()( μμλ
μ

      (3.12) 

 

Simplifying the above formula, we get: 

 

 ( ) ( ) ( )( ) ( ) ( )( )σμσμσμσσμσσμ ，，0，，，，0，， 222/22

Φ−Φ++Φ−+Φ−= ++− tabbtaetm bbbt
c   

                                                                                                                                     (3.13) 

3.2.3 Gamma Distributed Time Delay 
 

To provide more flexible modeling of the correction processes, some extended 

distributions can be used for the correction time. One possible distribution is the Gamma 

distribution, which is the generalized form of the exponential distribution. This 

distribution is reasonable if the correction has to go through a few steps. In this case, the 

Gamma distributed time delayΔ has density 
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                                βα
α αβ
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)(
1)( xexxf −−

Γ⋅
==Δ , 0,0, >> xβα                           (3.14)              

               

Given the fault detection intensity function λd(t), the fault correction density function is 

 

                              ∫ ⋅⋅−=Δ−=
t

ddc dxxfxttEt
0

)()()]([)( λλλ                                 (3.15) 

 

Then, the fault correction mean value function for GO-model is 

∫ ∫ ⋅⋅⋅
Γ⋅

=∫ ∫ ⋅
Γ⋅
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                                                                                                                                  (3.16) 

Simplifying the above equation we get  
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                       (3.17) 

 

3.3 Residual Number of Faults 
 

With models for both fault detection and correction processes, it is more close to the 

reality of software testing. With inheritance of the traditional SRGMs as model for FDP, 

one assumption is relaxed to incorporate FCP by introducing the concept of correction 

time. As a whole, the software testing model is a paired model with both FDP model 

and FCP model separately. Such paired model can help us to study one interesting 
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property of the number of detected but uncorrected faults. Residual faults can be 

deducted as the difference between fault detection and fault correction. 

 

3.4 Summary 
 

In this chapter, a paired FDP and FCP modeling framework is proposed, by assuming 

the relationship between FDP and FCP is the time delay. Generally, modeling both fault 

detection and correction processes will provide more information than traditional 

models. Therefore, more accurate and useful analysis and decision making can be 

conducted. It is more realistic compared with traditional software reliability models as 

this proposed model takes into account of the time delay. 
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Chapter 4     Maximum likelihood estimation for the fault 
detection and correction process 
 

Fitting a proposed model to the actual data of faults detection and correction involves 

estimating the model’s parameters from the real test data sets. Up to now, no MLE 

method has been applied in the existing studies to estimate parameters in the fault 

detection and correction process; although it is well accepted that the MLE method is 

quite straightforward having many desired properties such as asymptotic normality, 

admissibility, robustness and consistency, and widely used to estimate the parameters for 

SRGMs (Xie, 1991; Zou, 2003; Inoue and Yamada, 2004). In this chapter, we consider 

the issue of applying the MLE method to the fault detection and correction modeling 

from theoretical and experimental perspectives. 

 

4.1 Maximum Likelihood Estimation 

 

4.1.1 Point Estimation 
 

Usually, the paired model contains some unknown parameters and the estimation is 

carried out with the method of least squares. 

 

In this section, we give a brief introduction of using maximum likelihood estimation 

(MLE) method to estimate parameters in the fault detection modeling. To model the fault 

detection process in software testing, consider a random sample Tddd ,,, 21 K , 

where id denotes the number of detected faults in time interval [ )1,i is s− , 0, ≥isi are the 
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running times from the beginning of testing, )( id sm is the mean value function of the fault 

detection model at time is andθ represent the parameters in this model. The cumulative 

number of software faults detected up to time t is assumed to be a NHPP, with 

independent increments, therefore, 0, ≥idi are independent from each other. The joint 

density of the detected fault counts over the given partition can be obtained, and the 

likelihood function can be modeled: 

 

             ( ) ( ) ( )[ ] ( ) ( )( )
∏

−
=

=

−−− −
k

i i

d
ididsmsm

k d
smsmeddL

i

idid

1

1||
1 !

|||, 1 θθθθθL                        (4.1) 

 

where the maximum likelihood (ML) estimates of model parameters 

are ( )θθ θ L̂maxargˆ
Θ∈= . 

 

Based on the MLE analysis of the fault detection process, we can further consider the 

MLE method for the fault detection and correction process. Assume by time it the number 

of detected faults is in and the number of corrected faults is im . Since the fault correction 

process is regarded as a delayed fault detection process, we can regard the above fault 

correction process as a fault detection process which by time it - iΔ have detected im faults. 

The time delay Δ=Δ
...

~,2,1,
dii

i i K , whereΔ is assumed to be a random variable satisfying 

a certain probability distribution. It is the time delay iΔ that decided whether the time it -

iΔ is before time 1−it or after time 1−it . The time it - iΔ should be less than it since the total 

number of corrected faults can not be greater than the total number of detected faults.  
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We get the following characteristics of the time delay: 

 

1) The time delay should always be non-negative. Specifically, if the time delay is 

equal to zero, that means the detected faults are removed immediately without 

further delay. 

2) Regarding the correction time as a constant is too simplistic to be the case in 

practice. It would be more practical to model the correction time with a random 

variable as correction is a repair activity that will not take a fixed amount of time 

(Schneidewind, 2001). 

  

In our model, we assume that any fault detected needs a correction time to be corrected. 

The correction process is NHPP with intensity function 

( ) ∫ −⋅⋅−=Δ−=
t x

ddc dxexttEt
0

)(][)( μμλλλ  and mean value 

function ( ) ∫=Δ−=
t

cdc dtttmtm
0

)()( λ . Therefore, if by time it  we have corrected im  

faults, we can say that by time iit Δ−  we have detected im faults, if the delay time is fixed. 

If there are faults detected during ( )iiii ttt ,1 Δ−∈− , then 11 −− <⇔Δ−> iiiii nmtt . This is 

what we have discussed in our likelihood function expression (4.2) on page 44. 

 

Denoting in and im as the cumulative number of faults detected and corrected by 

time it respectively, and 000 == mn . Assuming the fault detection process is NHPP, we 

can see in depends on im . Denote ( )ii mnP , as the probability of detecting in faults and 

correcting im faults by time it . ( )⋅dP as the probability distribution function for detection 
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process, and ( )⋅cP as the probability distribution function for correction process. In this 

dependent case, conditioning on the corrected number of faults, we can rewrite the 

probability of detecting in faults and correcting im faults by time it at the very first step, 

denoting { } { }11 || −
+

−
− −>ΔΔ=Δ−≤ΔΔ=Δ iiiiiiiiii tttt ， , we have: 
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                                                                                                                                        (4.2) 

Denoting mR⊂Θ∈0θ as the parameters in the fault detection and correction modeling, 

then we can obtain the joint density of the detected and corrected fault counts over the 

given partition.  
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The likelihood function in this case is defined as this joint density, with 0θ replaced byθ , 

simplifying the above equation we get: 
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A general form of the likelihood function for the combined fault detection and correction 

process is given in Eq. (4.4). Under various time delay assumption, the maximum 

likelihood (ML) estimates of 0θ can be obtained as ( )θθ θ L̂maxargˆ
Θ∈= .  

 

Once the estimates of all the parameters are obtained, we can use the invariance property 

of the MLEs to estimate other reliability measures by replacing the respective parameters 

according to their corresponding ML estimates. An example is the estimation of the 

failure intensity function. Jeske and Pham (2001) showed that the failure rate of the 

software at time T was a function of the fundamental parameters of the G-O model, and 

its ML estimate was consistent. 

 

4.1.2 Interval Estimation 
 

Denote L as the likelihood function in Eq. (4.4), and denote ( )Tba μθ ,,= . To obtain 

approximate confidence limits for model parameters ( )Tba μθ ,,= , the Fisher Information 
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matrix can be calculated to obtain the asymptotic variances and covariance of the ML 

estimates of the parameters.  

 

The Fisher information matrix for the three parameters of the fault detection and 

correction process is 
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The asymptotic covariance matrix V of the ML estimates for parameters ( )Tba μθ ,,= is 

the inverse of the Fisher information matrix 
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Employing large-sample s-normal distribution approximations, the two sided 

approximate 100 α % confidence limits for model parameters { }μω ,,ba= can be 

obtained as 
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where αZ is the (1- α ) quantile of the standard s-normal distribution.; the model 

parameters ω  can be μor  ,,ba . 

 

Notice that the LS estimation method implicitly assumes normally distributed error. It 

usually has no basis for constructing confidence intervals or testing hypothesis; whereas 

both are naturally built into the ML estimation method. 

 

4.1.3 Modified Likelihood Function Based On Execution Time 
 

The likelihood function in Eq. (4.4) can be slightly modified and applied to other time 

units such as execution time. Similarly, if by the cumulative computer execution time it , 

we have corrected im  faults, we can say that by time iit Δ−  we have detected im faults, if 

the delay time is fixed. The time iit Δ−  will occur during two sequential computer 

execution time ],[ 1 jj tt − . 

 

The probability that by time it - iΔ , im faults are detected can be expressed as the product 

of two parts as in 
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Denoting { } { }11 || −
+

−
− −>ΔΔ=Δ−≤ΔΔ=Δ iiiiiiiiii tttt ， , mR⊂Θ∈0θ  as the 

parameters in the fault detection and correction modeling, with 0θ  replaced by θ , the 



  48

likelihood function of the detected and corrected fault counts over the given partition can 

be obtained.  
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Under various time delay assumption, the maximum likelihood estimates of 0θ  can be 

obtained as ( )θθ θ L̂maxargˆ
Θ∈= .  

 

4.2 Numerical Application 
 

Below we use the proposed fault detection and correction models to model a real data set 

obtained from the testing process of a medium-sized software project, and then apply the 

proposed MLE approach to estimate the parameters within the model. Different from 

traditional software reliability data set, this dataset includes not only fault detection data 

but also fault correction data. However, there is no tag information that indicates when a 

certain fault is corrected, and only grouped data on the number of faults per week is 

available. Usually, software reliability models are applied at the late phase of testing, and 

related analysis will be updated with newly collected data.  
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Our analysis is based on the current stage of software testing, with all 17 available data 

points. The data set in Table 4.1 is from the testing process on a medium-sized software 

project and it counts the number of faults per week (Xie et al., 2007). Different from 

traditional dataset, this includes both fault detection data and fault correction data. In 

Table 4.1, Δd(t) denotes the incremental detected defaults per week; d(t) denotes 

cumulative detected defaults by time t; Δc(t) denotes the incremental corrected defaults 

per week; c(t) denotes cumulative corrected defaults by time t. 

 

Table 4. 1 Fault detection and correction data (incremental and cumulative faults) 

Week t Δd(t) d(t) Δc(t) c(t) 
1 12 12 3 3 
2 11 23 0 3 
3 20 43 9 12 
4 21 64 20 32 
5 20 84 21 53 
6 13 97 25 78 
7 12 109 11 89 
8 2 111 9 98 
9 1 112 9 107 
10 2 114 2 109 
11 2 116 4 113 
12 7 123 7 120 
13 3 126 5 125 
14 2 128 2 127 
15 4 132 0 127 
16 9 141 8 135 
17 3 144 8 143 

 

To highlight the idea and approach, we apply the G-O model as an example, although any 

other software reliability growth model (Xie, 1991) can be used. To illustrate the 

application, GO-model paired with various fault correction models (due to various time 

delay distribution) are tried with the dataset in Table 4.1. The proposed approach of ML 
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estimation is carried out. The information matrix can then be used to obtain an estimate 

of the parameter variance. 

4.2.1 ML Estimation 
 

Exponential time delay. Assuming an exponentially distributed correction time for each 

detected fault with ( )μexp~Δ , the ML estimates for a , b , and μ  are â =165, b̂ =0.12, 

and μ̂ =1.63, respectively. Table 4.2 shows the data sets of detected and corrected 

number of faults from the software testing process of a middle-sized software project. 

The fitted values compared with the actual data are given in Table 4.2. In addition to the 

actual observed faults number (the actual detected faults No. and the actual corrected 

faults No.), using our proposed model we can estimate the number of faults detected and 

corrected correspondingly. 

 

Table 4. 2 The fitted dataset with exponential time delay 

week 
actual detected 

fault No. 
estimated detected 

fault No. 
actual corrected 

fault No. 
estimated corrected 

fault No. 
1 12 18.66 3 9.60 
2 23 35.21 3 25.40 
3 43 49.88 12 40.83 
4 64 62.90 32 54.81 
5 84 74.45 53 67.25 
6 97 84.69 78 78.30 
7 109 93.77 89 88.11 
8 111 101.82 98 96.80 
9 112 108.97 107 104.51 

10 114 115.30 109 111.35 
11 116 120.92 113 117.42 
12 123 125.91 120 122.80 
13 126 130.33 125 127.57 
14 128 134.25 127 131.80 
15 132 137.73 127 135.56 
16 141 140.81 135 138.89 
17 144 143.55 143 141.84 
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As the purpose is to highlight our idea and approach of the fault detection and correction 

modeling, we are proposing our model based on G-O model; while in reality, it might be 

better to use S-shaped model or other more complex models which can fit the real 

situation better. 

 

Using Eq. (4.4) as an approximation only, the asymptotic covariance matrix of the ML 

estimates ( )Tba μθ ,,= is calculated, and given as  

 

                       ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
== −

04.00002.012.0
0002.00004.032.0

12.032.080.355
ˆˆ 1 θθ IVar                                    (4.10) 

 

In this case, the ML estimator of a  is 165, where the parameter a  is related to the 

number of total faults in the software. The 95% confidence interval is [128, 202]. Notice 

that this confidence interval sees very wide. Nayak et al. (2008) discussed certain 

parameter-based asymptotic properties of the ML estimators of the model parameters and 

some logical implications of NHPP model assumptions; while there are also some 

limitations of the ML estimates. As discussed by Jeske and Pham (2001), the failure rate 

of the software at time T was a function of the fundamental parameters of the G-O model, 

and its ML estimate was consistent; however, the ML estimate of parameter a of the G-O 

model was not consistent when the observation period extends to infinity. The reason 

could be that in reality, the testing time can never be infinity. This could be one of our 

future topics. 
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 The parameter b  is interpreted as the testing efficiency, and it is related to the reliability 

growth rate in the testing. The ML estimator for b is 0.12, and the 95% confidence 

interval is [0.08, 0.16]. The parameter μ  is interpreted as the expected mean value of the 

exponentially distributed time delay. For parameterμ , the ML estimate is 1.63, and the 

95% confidence interval is [1.23, 1.96]. The goodness-of-fits for FDP and FCP are shown 

graphically in Figure 4.1. 
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Fault Correction with Exponential Time Delay
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Figure 4. 1 Actual versus fitted number of faults with exponential time delay 
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From Figure 4.1 we notice that except for the first few data points, the model can fit very 

well. As discussed earlier, to highlight our idea and approach, we start with the simple 

case by using G-O model for illustration. In reality, it might be better to use S-shaped 

model or other more complex models which can take into more factors and fit the data 

better. However, here we are using G-O model to illustrate our approach so as to have a 

clear understanding of the method, and results seem to be satisfactory. In our future 

research, we can apply our method based on more complex models and taking into 

consideration many other factors as well, such as testing-effort, change-point. 

Furthermore, the prediction performance of the model is more important compared with 

goodness-of-fit, which in chapter 5 we will have some further discussion. 

 

Once the model parameters are estimated, the confidence intervals for FDP and FCP can 

be derived. In Figure 4.2, the confidence intervals using MLE and LSE techniques are 

shown. 
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Confidence Interval for Cumulative Number of 
Faults (MLE)
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Confidence Interval for Cumulative Number of 
Faults (LSE)
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(3)                                                                      (4) 

Figure 4. 2 Confidence Interval based on MLE and LSE with exponential time delay 

 

In Figure 4.2, confidence intervals are derived based on MLE and LSE techniques 

separately, for both fault detection process and fault correction process. From a goodness-

of-fit test point of view, the confidence intervals derived from LSE technique are 

comparable to MLE. For fault detection process MLE is better; while for fault correction 

process LSE is better. 
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S-normally distributed time delay. Following the same procedure, assuming the faults 

are of equal size (Xie and Zhao, 1992), that is, each fault contributes the same amount to 

the software failure probability, the time delay can be modeled as a s-normally distributed 

variable with meanμ ,and variance 2σ . The plots are shown in Figure 4.3.  
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Fault Correction with Normal Time Delay
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Figure 4. 3 Actual versus fitted number of faults with s-normally distributed time delay 
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Gamma time delay. Assuming the random time delay to be a Gamma distributed 

random variable ),(~ βαΓΔ , the plots are shown in Figure 4.4. 
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Fault Correction with Gamma Time Delay
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Figure 4. 4 Actual versus fitted number of faults with Gamma time delay 
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From the above analysis, three paired models are applied to fit against the real data by 

assuming different time delay distributions. Overall, the results showed a good agreement 

between actual datasets and estimated datasets under the assumption of time delay. In 

addition, the results of a good fitness to the dataset at the later stage of the software 

testing imply better predictions, and probably mean better decision making processes to a 

software manager (Huang and Lin, 2006; Lyu, 1996; Pham, 2000; Huang and Lyu, 

2005a). The results of the estimation and the corresponding goodness-of-fit for all models 

are shown in Table 4.3. We use  MSEd to denote the mean squares of errors of fault 

detection process, MSEc to denote the mean squares of errors of fault correction process, 

MSE to denote the mean squares of errors of the combined fault detection and correction 

process. 

 

Table 4. 3 Summary of paired model estimates, and goodness-of-fit 

Model Estimates MSE 

â =165 
b̂ =0.12 Pair 1: Exponential time delay 
μ̂ =1.63 

MSEd=55.02 
MSEc=132.98 
MSE=94 

â  =176 

b̂ =0.1 Pair 2: Normally distributed time delay 
μ̂ =0.53, σ̂ =0.1 

MSEd=82.38 
MSEc=103.84 
MSE=93.11 

â  =166 

b̂ =0.12 Pair 3: Gamma time delay 
α̂ =0.73, β̂ =0.83 

MSEd=55.14 
MSEc=140.64 
MSE=97.89 

 

As can be seen from Table 4.3, the pair 1 model provides the best fit for this FDP data 

set, and the pair 2 model provides the best fit for this FCP data set. The pair 2 model, 

composed of the GO-FDP model and the FCP model, provides the best fit for this whole 
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data set. However, it should be noted that only one dataset is used here, and the purpose 

is to illustrate the procedure of application.  

 

Figure 4.5 below shows that the estimated fault correction data using the ML estimation 

method under various time-delay forms can fit the actual fault correction data well after 

the 5th week.  
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Figure 4. 5 Plot of the goodness-of-fit for the FCP under various time-delay forms 

 

4.2.2 ML Estimates Based On Modified Likelihood Function 
 

Instead of using the likelihood function Eq. (4.4) to obtain the ML estimates, the revised 

likelihood function Eq. (4.9) is used to obtain the ML estimates for the FDP and FCP 

modeling analysis.  
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Exponential time delay. Assuming the correction time for each detected fault is 

exponentially distributed with ( )μexp~Δ , the ML estimates for a ,b , andμ are â =158, 

b̂ =0.14, and μ̂ =0.64, respectively. The results are shown in Figure 4.6. 
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Fault Detection and Fault Correction with 
Exponential Time Delay
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Figure 4. 6 Actual versus fitted number of faults with exponential time delay with revised 
likelihood function 
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S-normally distributed time delay. Assuming the correction time for each detected fault 

is s-normally distributed with ( )2,~ σμNΔ , the ML estimates for a , b , μ , and σ  are 

â =164, b̂ =0.14, μ̂ =2.75, and σ̂ =1.04, respectively. The results are shown in Figure 4.7. 
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Fault Correction with Normal Time Delay
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Fault Detection and Fault Correction with 
Normal Time Delay
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Figure 4. 7 Actual versus fitted number of faults with s-normally distributed time delay 
with revised likelihood function 
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Gamma time delay. Assume the random time delay to be Gamma 

distributed ),(~ βαΓΔ . Then the ML estimates of a , b , α , and β are â =165, b̂ =0.12, 

α̂ =1.12, and β̂ =0.56, respectively. The results are shown in Figure 4.8. 
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Fault Detection and Fault Correction with 
Gamma Time Delay
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Figure 4. 8 Actual versus fitted number of faults with Gamma time delay with revised 
likelihood function 
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4.3 Summary 

From above analysis, three paired models by considering different time delay function 

are applied to fit against the real data using revised likelihood function Eq. (4.9) instead 

of Eq. (4.4). The results of the estimation, and the corresponding goodness-of-fit 

comparing likelihood function Eq. (4.4) with Eq. (4.9), are listed in Table 4.4. 

 

The revised likelihood function is more complex and thus more accurate; therefore we 

are expecting that the likelihood function with Eq. (4.9) should provide less variance and 

be a better choice. However, in practice, software manager may prefer the one with Eq. 

(4.4) instead, as it may not be that accurate but it is much easier to calculate and apply. 

Table 4. 4 Comparison of paired model estimates, and goodness-of-fit 

Model ML estimates of  Eq. 
(4.4) 

MSE of Eq. 
(4.4) 

ML estimates of Eq. 
(4.9) 

MSE of Eq. 
(4.9) 

â =165 â =158 

b̂ =0.12 b̂ =0.14 
Pair 1:  

Exponential time delay 
μ̂ =1.63 

MSE=94 
μ̂ =10.64 

MSE=58.11 

â  =176 â  =164 

b̂ =0.1 b̂ =0.14 
Pair 2:  

Normally distributed 
time delay μ̂ =0.53, σ̂ =0.1 

MSE=93.11 
μ̂ =2.75, σ̂ =1.04 

MSE=82.54 

â  =166 â  =165 

b̂ =0.12 b̂ =0.12 Pair 3:  
Gamma time delay 

α̂ =0.73, β̂ =0.83 
MSE=97.89 

α̂ =1.12, β̂ =0.56 
MSE=92.78 

   

As can be seen from Table 4.4, based on revised likelihood function Eq. (4.9), the pair 1 

model, composed of the GO-FDP model and the FCP model, provides the best fit for the 

whole dataset; while for the likelihood function Eq. (4.4), the best fit is the pair 2 model. 

For this dataset the revised likelihood function based on execution time can give a better 

goodness-of-fit compared with the one based on calendar time.  
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This result is within our expectation. Execution time and calendar time have been an 

important topic in many papers (Musa and Okumoto, 1987; Xie, 1991). Execution time is 

useful to obtain more accurate estimation compared with calendar time, as software 

testing is in a sense much more uniform in execution time than in calendar time. However, 

from the management point of view, calendar time models are more efficient for the 

allocation of testing resource and for the determination of optimal release time. It is 

possible to combine calendar time and execution time for many different software 

reliability models and it could be one interesting topic for future study. 
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Chapter 5     Prediction Analysis of FDP FCP model 
 

As pointed out by Li et al. (2007), building good reliability models is one of the key 

problems in the field of software reliability. A good software reliability model should 

give good predictions of future failure behavior, compute useful quantities and be widely 

applicable. Therefore, a very important goal of current software reliability research is to 

develop general prediction models (Karunanithi et al., 1992). For a software manager, it 

is essential to be able to predict the future behavior of the fault detection and correction 

process. The prediction is important for the allocation of further testing resources and for 

the study of software release problems. No single measure alone is adequate to determine 

the best parameter estimation method on a given dataset. In fact, software managers 

would prefer to see gradually smaller percentage of the data predicted, because the 

further the testing process running, the more expensive it becomes. Therefore, our main 

attention is to give good predictions to the later stage of software testing.  

 

5.1 Prediction Performance  
 

To study the predictive capability, based on our proposed FDP and FCP model, the ML 

estimates are obtained based on the proposed likelihood function Eq. (4.4) for illustration 

purposes only. Assuming exponential time delay, predictions for 5 weeks ahead is 

showed here, i.e., using the data of the first 12 weeks to predict the rest 5 weeks. The 

predicted value is then compared with the real observed dataset.  
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Defining the predictive validity as
( )

i

ii
N

Ntm
RE

−
= , where iN is the faults observed by 

time it , the comparison criterion used here is the mean of relative errors (MRE) defined 

as  

 

                                      ( )
∑

−
=

=

k

i i

ii

N
Ntm

k
MRE

1

1                                                   (5.1) 

 

This measure shows the capability of the model to predict the fault behavior (Musa et al., 

1987), and a lower value of MRE indicates better predictive performance. We calculate 

the MRE for fault detection process, and fault correction process separately, then we use 

the weighted MRE (the average of the two MRE) as the criterion to judge the whole fault 

detection and correction processes. 

 

Based on the first 12 weeks data from (Xie et al., 2007), the ML estimates based on 

likelihood function Eq. (4.4) are â =163, b̂ =0.12, and μ̂ =1.37. The results of goodness-

of-fit of the first 12 weeks data are given in Table 5.1. The predictions for the next 5 

weeks based on this model are then compared with the actual observations as shown in 

Table 5.1, and plotted in Figure 5.1. For the data of the remaining 5 weeks, the MRE for 

the detection process is 0.026, and the MRE for the correction process 0.027. The average 

MRE is 0.026. 
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Table 5. 1 Goodness-of-fit and prediction using first 12 dataset with MLE 

 Goodness-of-fit (MLE) 

Week 
Actual detected 

No. 
Estimated detected 

No. 
Actual corrected 

No. 
Estimated corrected 

No. 
1 12 18.80 3 8.69 
2 23 35.43 3 23.91 
3 43 50.13 12 39.29 
4 64 63.14 32 53.38 
5 84 74.64 53 65.97 
6 97 84.80 78 77.13 
7 109 93.79 89 87.00 
8 111 101.75 98 95.74 
9 112 108.78 107 103.47 

10 114 114.99 109 110.30 
11 116 120.49 113 116.34 
12 123 125.35 120 121.68 

 Prediction using first 12 data points (MLE) 
13 126 129.65 125 126.41 
14 128 133.46 127 130.58 
15 132 136.82 127 134.28 
16 141 139.79 135 137.54 
17 144 142.42 143 140.43 
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Figure 5. 1 ML estimators prediction using data of the first 12 weeks 
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To have a general idea of the predictive performance of the ML estimates, the LS 

estimates are studied in a similar way, and then compared with the ML estimates. Using 

the same data set of the first 12 weeks, the LS estimates are obtained as â =165, b̂ =0.13, 

and μ̂ =0.58. The results of goodness-of-fit of the first 12 weeks data are given in Table 6. 

Predictions of the last 5 weeks are compared with the actual observations as shown in 

Table 5.2, and plotted in Figure 5.2. The MRE computed for the 5 predicted points for the 

detection process is 0.053, while the MRE for the correction process is 0.025. The 

average MRE is 0.039. 

 

Table 5. 2 Goodness-of-fit and prediction using first 12 data points with LSE 

 Goodness-of-fit (LSE) 

Week t Actual detected 
No. 

Estimated detected 
No. 

Actual corrected 
No. 

Estimated corrected 
No. 

1 12 19.97 3 4.90 
2 23 37.54 3 15.82 
3 43 52.98 12 29.14 
4 64 66.56 32 42.93 
5 84 78.51 53 56.23 
6 97 89.01 78 68.58 
7 109 98.24 89 79.81 
8 111 106.36 98 89.89 
9 112 113.50 107 98.87 

10 114 119.78 109 106.83 
11 116 125.30 113 113.87 
12 123 130.16 120 120.08 

 Prediction using first 12 data points (LSE) 
13 126 134.43 125 125.55 
14 128 138.18 127 130.37 
15 132 141.48 127 134.60 
16 141 144.38 135 138.33 
17 144 146.94 143 141.62 
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LSE Prediction Using the First 12 Data
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Figure 5. 2 LS estimation prediction using data of the first 12 weeks 
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  (1)                                                                      (2) 

Figure 5. 3 Prediction comparison of MLE with LSE 

 

Figure 5.3 showed that the prediction performance of the ML estimation method is better 

than the LS estimation method based on this numerical example. The prediction result of 
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the ML estimation method for the fault detection process is better compared with the LS 

estimation method. The summary of the prediction performance based on MRE is given 

below in Table 5.3. The results of the MRE criterion show that the ML estimation 

method has better predictive capability. 

 

Table 5. 3 Prediction performance with criterion MRE 

MRE criterion Prediction with the MLE  Prediction with the LSE  

Fault detection process 0.026 0.053 

Fault correction process 0.027 0.025 

Overall MRE 0.026 0.039 

 

From the economic perspective, the further developed the software testing is, the more 

expensive it becomes, therefore, accurate prediction is quite important and it means a lot 

to the software manager. 

 

5.2 Monte Carlo Simulation Study 
 

Since the real data for detection and correction process is limited, in order to provide the 

reader a firm understanding of the prediction performance of the MLE method, we carry 

out an empirical study by Monte Carlo simulation (Tausworthe and Lyu, 1996a; 

Tausworthe and Lyu, 1996b).  

 

 



  70

5.2.1 Simulation Method 
 

To study the performance of the ML estimation method in general, we complete a 

simulation study. There are several approaches proposed (Lyu, 1996; Tausworthe and 

Lyu, 1996a) to generate simulation code for the software reliability dataset. An empirical 

study is given below by Monte Carlo simulation based on the GO model using 

MATLAB software. The steps carried out are as follows: 

 

1) Generate two sequences of uniformly distributed data 

{ }Niui ,,1, K= { }Nivi ,,1, K= ; set N=300. 

2) Generate the inter-arrival time of the HPP events as ii ut log−= , Ni ,,1 K= . 

3) From steps 1) and 2), the arrival time of the HPP events can be simulated as 

iii tSSS +== −10 ,0 , Ni ,,1 K= . 

4) ( )idi Sms 1−= , Ni ,,1 K=  is the simulation of NHPP data for fault detection 

process, where ( )tmd is the MVF of GO model. When the arrival time goes to 

infinity, the corresponding probability of fault arrival can be negligible (Lyu, 

1996). 

5) Based on ( ) ( )Δ−= tt dc λλ , the arrival time of the NHPP data of the correction 

process can be generated as Nitss iii ,,1, K=′+=′ , where the exponentially 

distributed time delay ( )μexp~Δ  is simulated as μ/log ii vt −=′ , Ni ,,1 K= , and 

hereμ is the parameter for the exponential distribution. 
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6) For kj ,,1K= , Ni ,,1 K= , if 1dd  ,s iii +=< j , if 1c c  ,s iii +=<′ j . We choose 

k =17 for illustrative purpose. 

7) kj ,,1,d j K= , and kj ,,1,c j K=  are the cumulative number of detected faults, 

and number of corrected faults, respectively.  

 

In our simulation, we generate data with exact detection time and correction time, while 

the data we use for illustration is grouped data. Actually, there is no difference of the 

prediction performance between grouped data and exact interval data. Wood (1996) did 

some simulation and found that the predictions from the simulated exact data and the 

weekly grouped data were essentially identical. 

 

5.2.2 A Simulation Study 
 

As an illustration, by using â =165, b̂ =0.12, μ̂ =1.6, and N=300, several sets of data are 

then simulated. A comparison is made between the ML estimation predictions and the 

LS estimation predictions. Based on the simulated datasets of the first 12 weeks, the ML 

estimates, and the LS estimates are calculated separately. With the estimated parameters, 

predictions for the next 5 weeks are made. The criterion used to determine the predictive 

performance is the MRE as defined before. 

 

 Simulation of 10 data sets. 10 sets of data are initially simulated to get a general idea of 

the predictive performance of the two methods. Figure 5.4 shows the results of the Monte 

Carlo study by plotting the curves of the average value of RE of the predicted values for 
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the next 5 weeks, based on the ML estimation method, and the LS estimation method 

separately. 

The average Relative Errors of prediction performance
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Figure 5. 4 Plot of the average of RE 

 

The simulated datasets were generated with exact detection time and correction time, 

while the actual dataset used for illustration was grouped data. Some simulations were 

carried out in (Schneidewind, 2001), and their results showed that the predictions from 

the simulated exact data were essentially identical to that of the weekly grouped data. 

The simulation results here show that the ML estimation method had smaller RE 

compared with the LS estimation method, indicating that the ML estimation method is 

more stable, and provides narrower variance compared with the LS estimation method. 

 

Simulation of 120 data sets. In order to provide the reader a firm understanding of the 

prediction performance of the MLE method, in this study, 120 datasets of the fault 

detection and correction process are simulated with the initial valueμ =1.6, μ =2, and 
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μ =3 separately. MRE is used as a criterion to determine the predictive performance. 

Here, if the MRE of both detected fault data and corrected fault data of the ML 

estimation method are less than that of the LS estimation method, the ML estimation 

method is considered to give better predictions, percentage is used to calculate the 

percentile of better predictions. If the reverse occurs, the LS estimation method is then 

considered to give better predictions. In any other case, the two methods are considered 

incomparable. MRED is used to denote the MRE of detected fault data, and MREC is 

used to denote the MRE of corrected fault data. 

 

Table 5. 4 The MRE of predicted value simulating 120 datasets 

Initial 
parameter for 

time delay 
MLE MRED MREC % LSE MRED MREC % 

Mean 0.038 0.034 Mean 0.041 0.036 
μ =1.6 

Std. 0.023 0.021 
52.70%

Std. 0.03 0.026 
47.30%

Mean 0.026 0.023 Mean 0.028 0.025 
μ =2 

Std. 0.022 0.019 
60.20%

Std. 0.025 0.022 
39.80%

Mean 0.027 0.024 Mean 0.037 0.034 
μ =3 

Std. 0.02 0.02 
72% 

Std. 0.027 0.025 
28% 

 

Table 5.4 shows the mean value, and the standard deviation of MRED, and MREC based 

on the ML estimation method and the LS estimation method separately. The Monte Carlo 

simulation results showed that the ML estimation method had a lower value for the mean 

of MRE for both detection process, and correction process in the prediction performance; 
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and the standard deviations of MRE for both detection process, and correction process 

were less than that of the LS estimation method, which means a more stable predictive 

capability. The results appear to further confirm that the ML estimation method has a 

more stable predictive capability compared with the LS estimation method, as more than 

half of the 120 simulated results under three different values of parameterμ  show that 

the ML estimation method gives better prediction compared with the LS estimation 

method. 

 

The results fall within our expectation. As for MLE method, the idea behind is to 

determine the parameters that maximize the probability (likelihood) of the sample data. 

From a statistical point of view, the method is considered to be more robust and yields 

estimators with good statistical properties, thus may be able to give a better prediction 

performance. While the LSE method is well known as linear regression, the sum of 

squares error, and the root means squared deviation is tied to the method. Given a set of 

data, it may be able to fit the curve very well, but sometimes it can be over-fit and not 

able to give a better prediction result. LSE might be useful for obtaining a descriptive 

measure for the purpose of summarizing observed data, but MLE is more suitable for 

statistical inference. 

 

5.3 Summary 

 
In this chapter, based on traditional NHPP SRGMs, we have proposed a new model 

considering the fault correction time, and a general framework is proposed to derive a 
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likelihood function for the combined fault detection and correction process. Based on the 

new explicit formula, we have showed that MLEs can be easily obtained under different 

time delay assumptions. An actual set of data from a software development project is 

presented, different fault correction models are proposed and the ML estimates are 

calculated given different time delay distributions assumption. Experimental results of 

the simulation analysis show that the ML estimates with a fairly accurate prediction 

capability compared with the LS estimates. The approach in our study can be further 

extended to general SRGMs considering the fault detection and correction process. There 

are also other researchers proposing their way of prediction analysis. Li et al. (2007) 

illustrated their experiments in their paper showing that their prediction approach 

performed quite well in the later stages of software development, and better than single 

classical software reliability models. They showed that the method could automatically 

select the most appropriate lower-level model for the data and performances were well in 

prediction. Existing models typically reply on assumptions about development 

environments, the nature of software failures and the probability of individual failure 

occurrences. Thus, each model can be shown to perform well with a specific failure data 

set, but no model appears to perform well for all cases. In recent years, many methods 

have been proposed to improve the quality of reliability models. Some nonparametric 

methods have been introduced into the field, such as Neural Network and Genetic 

Programming. These types of method are flexible, but they often lack theoretical basis. 

Further research can be down in this area. Myrtveit et al. (2005) pointed out that 

empirical study on software prediction models do not converge with respect to the 

question “which prediction model is best?”. They then did a simulation study, examined a 
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frequently used research procedure comprising three main ingredients: a single data 

sample, an accuracy indicator, and cross validation. They found that it was the research 

procedure itself that was unreliable. Thus, they suggest developing more reliable research 

procedures before they can have confidence in the conclusions of comparative studies of 

software prediction models. Further study can be carried out from this perspective of 

view. 
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Chapter 6     Optimal Release Time Analysis 
 

As for any traditional SRGMs, the modeling is not the ultimate goal for the analyst. With 

the incorporation of the fault detection process, more practical information can be 

extracted, which could be useful to improve the decision-making in a more practical way. 

One of the important applications of software reliability models is the determination of 

software release time, which is one of the most important decisions to be made in the 

software development process. Most of the existing studies on this topic use models 

based on SRGMs assuming instant fault debugging. In this paper, considering time delay, 

fault detection and correction modeling analysis is carried out with a new likelihood 

function derived and the ML estimators obtained. Within this framework, a new 

economic cost model is proposed considering the time delay. Further analysis on the 

software release time decision is carried out. This procedure is more reasonable and 

useful for practical applications. The approach is illustrated with an actual set of data 

from a software development project. 

 

Based on proposed software reliability models, optimal software release time can be 

determined by minimizing the total software system cost. In this section, to construct 

economic models for the total software system cost, several costs that are encountered 

during software development are reviewed, and various stopping criteria are compared 

and reviewed. Given the total cost function, and software testing stopping criteria, 

software cost models can be constructed and optimal release time can be determined. 

Some traditional software cost models are reviewed considering different optimization 

problems. 
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Software reliability is gaining an increasing importance in research and application 

nowadays. There are many models that have been proposed in the past 20 years (Xie, 

1991; Pham and Pham, 2000, 2001; Zhang et al., 2003; Teng and Pham, 2006). As for 

any traditional SRGM, the modeling is not the ultimate goal for the analyst. The extracted 

information from the analysis could help the management make decisions regarding the 

software development project. One of the most important applications of software 

reliability models is the determination of software release time (Catuneanu et al., 1991; 

Petrova and Malevris, 1992; Xie and Hong, 1998, 1999; Dohi et al., 1999; Pham and 

Zhang, a, b, 1999; McDaid and Wilson, 2001; Pham and Wang, 2001; Nishio and Dohi, 

2003; Xie and Yang, 2003; Pham, 2003; Berman and Cutler, 2004; Chang and Hung, 

2005; Huang, 2005a; Huang and Lyu, 2005a). If a software system is released too early, 

the user will suffer the failures and great loss; if it is released too late, the competitors 

will gain competitive advantages. 

 

Okumoto and Goel (1980) first discussed a simple cost model addressing linear 

developing cost during the testing and operational periods. Ohtera and Yamada (1990) 

discussed the optimum software-release time problem with fault-detection during 

operation and introduced two evaluation criteria for the problem: software reliability and 

mean time between failures. Leung (1992) discussed the optimal software release time 

given a cost budget. Kapur et al. (1993) discussed software release policies with the 

optimization criterion minimizing cost subject to achieving a given level of reliability or 

software performability. Xia et al. (1993) proposed the optimal software release policy 

with a learning factor for imperfect debugging. Yang and Chao (1995) proposed two 
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criteria for deciding when to stop testing: the reliability reached and the gain in reliability. 

Pham (1996) developed a cost model with an imperfect debugging and random life cycle 

besides a penalty cost to determine the optimal release policies for a software system. 

Huang and Lo (2006) presented an optimal resource allocation problem in modular 

software systems during testing phase. 

 

Chari and Hevner (2006) proposed an objective function of total cost, with four cost 

terms considered: 

 

1) The cost of fixing errors during system testing. 

2) The cost of incurring software failures after the software is released. 

3) The cost of testing. 

4) The cost of delay.  

 

The delay cost, which could represent the cost of missed market opportunity or the 

penalty cost in meeting the delivery of software in a timely manner, is only incurred 

when the testing time exceeds the time limit T. 

 

Dohi et al. (2000) pointed out that most existing software release problems have been 

concerned with the direct minimization of the total expected software cost, but have not 

taken account of a competitive market situation, which one can observe in the real world. 
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As traditional SRGMs determined the optimal software release schedule by assuming the 

stochastic and/or statistical model, Dohi et al. (1999) proposed estimating the optimal 

software release timing by which minimizing the relevant cost criterion, via artificial 

neural networks. First, they interpret the underlying cost minimization problem as a 

graphical one and show that it can be reduced to a simple time series forecasting problem. 

Secondly, artificial neural networks are used to estimate the fault-detection time in future. 

 

Schneidewind (2005) showed that risk factors have a significant negative effect on 

reliability. They showed it was feasible to predict risk. They pointed out that although 

using historical failure data to drive traditional software reliability models would produce 

greater prediction accuracy, the opportunity to provide early prediction of reliability 

using risk factors outweighs this advantage. 

 

The optimization model proposed by Pham and Wang (2001) considered the variance of 

N(t). 

 

         ( ) ( )( ) ( )( ) ( )[ ][ ]tNEtNVar
c

tNE
cc

tctC vv 20
3 22

2
++⋅⎥⎦

⎤
⎢⎣
⎡ −

+⋅=                        (6.1) 

 

Where 0c  as the deterministic part of the cost of fixing software fault; vc  as the random 

part of the cost of fixing software fault; and 3c  is the cost of testing per unit time. N(t) as 

the cumulative number of software faults detected. 
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Which assume that the cost of fixing software fault i  is a random variable and consists of 

two parts- deterministic part 0c  and incremental random part vc . 

 

However, most of those software cost models are based on the assumption that faults 

detected are corrected immediately. They do not consider the time delay in the fault 

debugging process and its impact to the optimal release decision policy, while in real life, 

software managers need to spend some time correcting those faults. Thus, it is more 

reasonable to assume a time delay between fault detection and fault correction.  

 

Tamura and Yamada (2006) used the coefficient of variation in equation below to assess 

the reliability requirement, which is a useful measure to decide an optimum time point 

when the software system has to be released to its operation phase. 

 

                                                
( )[ ]

( )[ ]tNE
tNVar

CV =                                                    (6.2) 

 

Rinsaka and Dohi (2004) considered a more complicated software cost model compared 

with the simple linear one. They give assumptions that the cost to remove software faults 

during the testing phase depends on the complexity of the faults, which consists of two 

parts- the deterministic part and the incremental random part. 

 

They supposed the cost to eliminate the i-th detected software fault could be expressed by 
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                                          ( ) aiWicCi ,,1,14 K=−+=                                         (6.3) 

 

where 4c  (>0) is the deterministic cost to remove each software fault during the testing 

phase; W (>0) is a random variable denoting cost to remove software faults during the 

testing phase. Cw is the mean value of W. The above assumption can represent an 

increasing property of fault removal cost in the state i. Hence, the expected total cost to 

detect/ eliminate the software faults during the testing period can be given. 

 

Gokhale (2003) proposed a new cost function considering fault correction process. He 

considered the cost to customer operations in the field, denoted by 5c , which is a function 

of the failure rate r(tr) of the software at release time, the expected execution time of the 

software releases per field site, and the number of field sites. r(tr) is the failure rate of the 

software in the presence of explicit fault correction. Under the assumption of 

instantaneous fault correction, r(tr) will be the same as the fault detection rate. 

 

To find a trade-off between risk of releasing too early and the cost of releasing too late, 

especially considering the time delay, we propose fault detection and correction models 

with a likelihood function derived to obtain the ML estimators. With incorporation of the 

fault correction process, more practical information can be extracted, which could be 

useful in decision-making. Here we investigate the issue of optimal software release 

policy and propose a new economic model from a new perspective by using the 

combined fault-detection and fault correction models in this paper. 
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First, we propose fault detection and correction modeling with a likelihood function 

derived to obtain the ML estimators. Then several cost factors and cost criteria are 

reviewed in details. Based on those models considering time delay, given different 

stopping criteria, we propose new software cost models with more realistic assumptions. 

Sensitivity analysis is carried out, and some statistical inferences (confidence intervals) 

are obtained. Further numerical application in optimal release time determination is 

discussed within our framework. 

 

6.1 Cost Factors and Cost Criteria 
 

6.1.1 Cost Factors 
 

Most of the expected software system cost consists of the following parts. 

 

1) Set-up cost. The initial testing cost which is the barest minimum requirement 

(Kimura et al., 1999). 

2) Testing cost. The expected cost per unit time for testing; the cost to perform 

testing is assumed to be proportional to the testing time (Pham and Zhang, 1999a). 

3) Debugging cost during the testing phase. The expected cost of removing a fault 

during the testing phase; it is assumed that it takes time to remove each detected 

fault and the time to remove each fault follows a certain distribution. Gokhale et 

al. (2006) considered the cost of resolving a failure included the cost of failure 

identification and fault diagnosis, and the cost of fault removal.  
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4) Debugging cost during the operation phase. The expected cost of removing a fault 

during the operation phase; Musa (1993) argued that a consideration of the 

software’s operational profile should reduce system risk. Moreover, it also makes 

the testing procedure faster and more efficient. Ozekici et al. (2000) proposed a 

novel model to determine the optimal testing times of software under a given 

operational profile. 

5) The penalty cost. The penalty cost is defined as the cost which should be paid by 

the manufacturers if the software is delivered after the scheduled delivery time 

(Tamura and Yamada, 2006). 

6) Warranty cost. The maintenance cost per one fault during the warranty period; 

Kimura et al. (1999) discussed several cases in terms of the behavior of the 

maintenance cost and assumed that the distribution of the warranty period was a 

truncated-normal distribution. 

7) Risk cost. There is a risk cost associated with the testing coverage. A software 

provider has to pay each customer a certain amount of money for potential faults 

in uncovered code (Pham and Zhang, 2003). 

 

6.1.2 Stopping Rules 
 

Software testing is an expensive process, and typically consumes a large part of the cost 

of the software development project, thus, stopping rules play an important role in 

constructing software cost models. Many researchers in the literature have addressed the 

stopping rule problem. Since there are various stopping criteria, Yang and Chao (1995) 
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compared several stopping criteria which can influence product-release time or product 

release coverage: 

 

1) Number of remaining faults. Testing can be stopped when a fraction p of the 

expected total number of faults are detected.  

2) Failure intensity requirements. Testing can be stopped when the failure intensity 

as measured as the end of the test phase reaches a specified value. 

3) Reliability requirements. Testing can be stopped when the conditional reliability 

in the operational phase reaches a required value. Or the ratio of the cumulative 

number of detected faults at the time T to the expected number of initial faults 

reaches a specified value (Hou et al., 1997). 

4) Availability requirements, the minimum testing time (John and Eamonn, 2005), 

the loss function of the loss due to testing for one stage (Morali, and Soyer, 2002), 

and so on. 

 

6.2 Traditional Software Cost Models  
 

As reviewed by Ozekici and Catkan (1993), there are many distinct models in the 

literature that try to find the optimal stopping time of the testing procedure. Okumoto and 

Goel (1980) introduced a static optimization model based on the NHPP model for failures. 

Yamada et al. (1984b) proposed an extension of the G-O model that minimized the total 

average cost subject to a lower bound on reliability. Bai and Yun (1988) proposed a cost 

model where the stopping decision was based on the number of the faults corrected 
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during testing. Hou et al. (1997) considered a model with scheduled delivery times and 

penalty costs for delayed deliveries. The underlying reliability growth model involves the 

hyper-geometric distribution. McDaid and Wilson (1997) used a Bayesian decision 

theoretic approach to identify the optimal release time in a single stage model. That line 

of research was extended by Morali and Soyer (2002) for the multistage case involving 

sequential decision making. Huang and Lyu (2005b) proposed optimal release time with 

emphasize on the cost function for acquiring or developing the automated test tools or 

new techniques. Without loss of generality, they considered several possibilities of the 

cost function for developing and acquiring the automated test tools and developed the 

corresponding optimal software release time. The process of determining whether the 

software system is ready for release to the next phase is considered as release decision. It 

involved tradeoffs between continuous testing to increase reliability and prompt release 

to decrease testing cost. One approach is to use stochastic models that provide measures 

such as reliability, number of remaining faults, and mean time to failure. Those stochastic 

models are often extended to include cost as the criterion.  

 

There is a commonly used cost model (Xie, 1991) based on a model with mean value 

function of m(t):  

 

                                [ ] TcTmmcTmcC ⋅+−∞⋅+⋅= 321 )()()(                                   (6.4) 
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in which c1 is the expected cost of removing a fault during the testing phase; c2 is the 

expected cost of removing a fault  during the operation phase;  c3 is the expected cost per 

unit time for testing. Usually, c2 is at least two orders of magnitude higher than c1. 

The above cost model has its minimum value at  

 

                               ( ){ })(minarg* 123 TmccTcT
RT

⋅−−⋅= +∈
                                   (6.5) 

 

That is equal to find the optimal time T* with the shortest distance between 

Tc ⋅3 and ( ) )(12 Tmcc ⋅− . 

 

Generally, this optimization problem can be solved numerically. For instance, if the 

function m(T) is continuous and well-defined, and further is a non-decreasing, strictly 

concave and bounded function of T, the minimization problem will have a unique 

solution T*  from ( ) 02

2

<
dT

Tmd under the assumption that 2c  is much larger than 1c . 

 

For the first time, Zhang and Pham (1998) developed a generalized cost model including 

fault removal cost, warranty cost, and software risk cost due to software failures. The 

following cost model calculates the expected total cost: 

 

   ( ) ( ) ( ) ( )[ ] ( )[ ]TxRCTmTTmCTmCTCCTE RWWy |13210 −+−++++= μμδ        (6.6) 
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where 0C is the set-up cost for software testing; 1C , the software test cost per unit time; 2C , 

the cost of removing a fault per unit time during testing; 3C , the cost to remove fault 

detected during the warranty period, usually 3C  is much larger than 2C ; RC , the loss due 

to software failure; E(T), the expected total cost of a software system at time T; yμ , the 

expected time to remove a fault during the testing period; Wμ , the expected time to 

remove a fault during the warranty period; wT  as the warranty period and  )|( TxR  as 

reliability of lasting for another x time period. To start from the simplest case, we may 

assume yμ and Wμ to be the same. δ is the discount rate of the testing cost. 

 

The above cost model has its minimum value at  

 

( ) [ ] ( ) ( ){ }TxRCTmCCTTmCTCT RyWWWRT |minarg* 2331 −−−++= +∈
μμμδ              (6.7) 

 

Generally, this optimization problem can be solved numerically. More details are 

discussed in section 6.6. 

 

6.3 A New Economic Model Considering Time Delay 
 

Usually, faults are assumed to be fixed immediately after detection, that is, the fault 

removal time is negligible. That is unrealistic and with limited capability, because there is 

only one process (detection process) and provide only passive information. Within the 

framework of fault detection and correction modeling as described in chapter 3, based on 



  89

the literature review of traditional software cost models, an optimization model is 

proposed in this section to find a way to give more accurate and useful analysis and 

decision making, as further information about fault debugging time is included. 

 

6.3.1 Assumptions 
 

Here, new optimization models are proposed based on the following assumptions: 

 

1) Faults detected are not removed immediately, instead, we assume there is a fault 

debugging time; in this paper, we assume the time to remove each error during the 

testing period is a random variable with certain distribution under certain 

conditions. 

2) The software application is subject to failures at random times due to the 

remaining faults within the software system. 

3) Usually, the expected cost of removing a fault during the operation phase is at 

least two orders of magnitude higher than the expected cost of removing a fault 

during the testing phase. 

4) The cost to perform testing is proportional to the testing time. 

5) As software is often updated after release in reality. To make more reasonable 

assumption, here we assume that there is software reliability growth occurring 

after the testing phase. 
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6.3.2 The Impact of Time Delay  
 

In traditional SRGMs, m(t) is for the fault detection process, that is, our md(t). By 

considering the impact of time delay, incorporating the fault correction process mc(t), 

which is different from the fault detection process, the simple cost model mentioned 

above (Xie, 1991) can be expressed as  

 

                            [ ] TcTmmcTmcTC cdc ⋅+−∞⋅+⋅= 321 )()()()(                                (6.8) 

 

In which mc(T) is the total number of corrected faults at the time of release T; md(∞)-mc(T) 

is the number of uncorrected faults that includes two components: undetected faults 

md(∞)-md(T) and detected but uncorrected faults md(T)-mc(T). By minimizing this cost 

model with respect to time T, a more practical optimal release time T* can be calculated.  

Generally, this optimization problem can be solved numerically. More details are 

discussed in section 6.6. 

 

Specifically, assuming a simple form considering time delay to be constant, analytical 

solution can be reached. Based on the G-O model, the corresponding cost function is 
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which has its minimum value at  
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Otherwise, if we do not consider the impact of time delay, then we have  
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which has its minimum value at  
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Comparing Eq. (6.10) and Eq. (6.13) we can see the impact of time delay to the optimal 

software release time. Based on above methods, we can further develop new cost models 

with different time delay distributions (Xie et al., 2007). 

 

6.4 Interpretation of the Cost Parameters 
 

The interpretation of the cost parameters are of great importance, and the structure of the 

optimal solution depend on their properties. As pointed out by Ozekici et al. (2000), all 
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economic and stochastic parameters of the model depend on the test case and the specific 

operation performed. All debugging costs, during testing and after release, depend on the 

operation that fails. Of course, all cost parameters are non-negative. We also assume that 

a failure is more costly if it occurs after release other than during testing process. 

 

6.5 Our Generalized Optimization Model  
 

Many existing models assume that the error removal time is negligible, however, in 

practice both time and money costs are incurred in the isolation of error removal. Also 

the costs paid to remove these errors are usually quite considerable. Therefore, in order to 

make the cost model more useful, the time and cost to remove errors and a penalty cost 

due to the software failure must be addressed in the cost models. Based on the model 

proposed by Zhang and Pham (1998), considering the fault detection and correction 

process, assuming a random delay with exponential distribution between fault detection 

and fault correction, a generalized optimization model can be constructed with several 

parts of its cost described as below: 
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Notation 

0C  
set-up cost at the beginning of the software 

development process 

1C  software test cost per unit time 

2C  cost of removing a fault per unit time during testing 

3C  cost to remove fault detected during the warranty period

RC  the loss due to software failure 
αTC1  cost to perform the testing 

( )TmC c⋅⋅ μ2  
cost incurred in removing errors during the testing 

phase 

( ) ( )[ ]TmTTmC cWc −+⋅′⋅ μ3  
cost incurred in removing errors during the warranty 

period 

( )( )[ ]TxRCR |1−⋅  risk cost due to software failure 

δ  discount rate of the testing cost 

Δ  

the time period required to remove each error during the 

testing phase 

x mission time 

WT  warranty period 

T* optimal software release time 

R(x|T) 

reliability function of software by time T for a mission 

time x 
( )TE  expected total cost of a software system at time T 

yμ′  

expected time to remove a fault during the testing 

period 

Wμ ′  expected time to remove a fault during warranty period 

 

Thus, the expected total software cost can be expressed as the sum of the above 

costs ( ){ } 4,,1,0, K=iTEi . The generalized economic cost model considering time delay 

between FDP and FCP is as below: 
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( ) ( ) ( ) ( )[ ] ( )[ ]TxRCTmTTmCTmCTCCTE RcWcWyc |13210 −+−+′+′++= μμδ       (6.14) 

 

The cost model has its minimum value at  

 

( ) [ ] ( ) ( ){ }TxRCTmCCTTmCTCT RcyWWcWRT |minarg* 2331 −′−′−+′+= +∈
μμμδ           

(6.15) 

Generally, this optimization problem can be solved numerically. More details are 

discussed in section 6.6. Under different stopping rules, we can obtain different optimal 

release time. Details are discussed in the next section.  

 

Teng and Pham (2004) considered dividing every item of the software cost model into 

two items: one is related to testing process, the other is related to the operational process. 

Similarly, we can consider the reliability during the testing process and the operational 

process separately; details are shown in the next section. 

 

6.6 The Optimal Release Time  
 

As for any traditional SRGM, the modeling is not the ultimate goal for the analyst. The 

extracted information from the analysis could help the management make decisions 

regarding the software development project. With incorporation of the fault debugging 

time, more practical information can be extracted, which could useful in decision-making. 
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Based on the proposed economic model, we can obtain the optimal software release time 

subject to different software testing stopping criteria. 

 

6.6.1 Solution without Constraints 
 

Similar to what Okumoto and Goel (1980), Leung (1992), and Huang and Lyu (2005a) 

have done, based on the software cost model in Eq. (6.14), assuming no other constraints, 

some further discussion about the optimal release time is carried out as below.  

 

  ( ) ( ) ( ) ( ) ( )[ ] ( )TxRcTTTcTcTc
T
TETy cWcwyc |432

1
1 ′−−+′+′+=

∂
∂

= − λλμμλδ δ    (6.16) 

( ) ( ) ( ) ( ) ( ) ( ) ( )TxRcTTTcTcTc
T

TETu cWcwyc |1 432
2

12

2

′′−⎥⎦
⎤

⎢⎣
⎡ ′−+′′+′′+−=

∂
∂

= − λλμμλδδ δ                       

                                                                                                                                 (6.17) 

Given 0c , 1c , 2c , 3c , 4c , x , yμ′ , wμ′ , WT , the optimal value *T  can be obtained under the 

following conditions: 

 

1. If ( )Tu is a decreasing function of T, and   

        a) If ( ) 00 ≤u and 

(1) if ( ) 00 ≤y , then *T =∞ ; 

Proof: if ( ) 00 ≤u and ( ) 0≤′ Tu , we have ( ) 0≤Tu  for 0≥T ; as ( ) ( )TuTy =′  

and ( ) 00 ≤y , then ( ) 0≤Ty for 0≥T . Since ( ) ( )TyTE =′ , ( )TE is a decreasing 
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function for all 0≥T , therefore, the minimum of ( )TE  occurs when ∞→T , 

which means *T =∞ . 

(2) if ( ) 0>∞y , then *T =0; 

Proof: similar as above, ( ) ( ) 0≤=′ TuTy  for 0≥T . Then ( ) 0>Ty  for 0≥T . 

Therefore, ( )TE is an increasing function for all 0≥T , and the minimum of 

( )TE  occurs at 0=T , which means *T =0. 

(3) if ( ) ( ) ( )( ]0,0,0,00 1−∈>> yTTyy and ( ) ( )( )∞∈< − ,0,0 1yTTy then 

               ( ) ( )∞≤= EET 0 if  ,0* ; 

               ( ) ( )∞>∞= EET 0 if  ,* . 

Proof: Similarly, ( ) ( ) 0≤=′ TuTy  for 0≥T . Since ( ) ( )TyTE =′ , ( ) 00 >y , 

( ) ( )( ]0,0,0 1−∈> yTTy  and ( ) ( )( )∞∈< − ,0,0 1yTTy , ( )TE  monotonically 

increases when ( )( ]0,0 1−∈ yT  and decreases when ( )( )∞∈ − ,01yT , then ( )TE  

reaches its maximum at ( )01−= yT , and its minimum at ( ) ( )∞≤= EET 0 if  ,0*  

and ( ) ( )∞>∞= EET 0 if  ,* . 

 

      b) If ( ) 0>∞u and 

(1) if ( ) 00 ≥y , then *T =0; 

(2) if ( ) 0<∞y , then *T =∞ ; 

(3) if ( ) ( ) ( )( ]0,0,0,00 1−∈<< yTTyy , ( ) ( )( )∞∈> − ,0,0 1yTTy then ( )01* −= yT ; 

           Proof: Similar as above, so omitted here. 

      c) If ( ) ( ) ( )( )0,0,0,00 1−∈≥> uTTuu and ( ) ( )( )∞∈< − ,0,0 1uTTu then 
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(1) if ( ) 00 ≥y , then *T =0; 

(2) if ( ) 00 <y , then *T =∞ ; 

 

2. If ( )Tu is an increasing function of T, and   

       a) If ( ) 00 >u and 

(1) if ( ) 00 ≥y , then *T =0; 

(2) if ( ) 0<∞y , then *T =∞ ; 

(3) if ( ) ( ) ( )( ]0,0,0,00 1−∈<< yTTyy , ( ) ( )( )∞∈> − ,0,0 1yTTy then ( )01* −= yT ; 

           Proof: Similar as above, so omitted here. 

      b) If ( ) 0<∞u and 

(1) if ( ) 00 ≤y , then *T =∞ ; 

(2) if ( ) 0>∞y , then *T =0; 

(3) if ( ) ( ) ( )( ]0,0,0,00 1−∈>> yTTyy and ( ) ( )( )∞∈< − ,0,0 1yTTy then 

               ( ) ( )∞≤= ET 0E if  ,0* ; 

               ( ) ( )∞>∞= ET 0E if  ,* . 

       c) If ( ) ( ) ( )( )0,0,0,00 1−∈≤< uTTuu and ( ) ( )( )∞∈> − ,0,0 1uTTu then 

(1) if ( ) 00 ≥y , then 

               ( ) ( )bTET ≤= 0E if  ,0* ; 

               ( ) ( )bb TETT >= 0E if  ,* , ( ){ }0:inf >= TyTTb  

(2) if ( ) ( )0,00 1−=< yTy . 
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As pointed out by Ozekici et al. (2000), once the convexity of the cost function was 

established, one could use the Kuhn-Tucker conditions to identify a global optimal 

solution.  

6.6.2 Solutions with Constraints 
 

As reviewed above, there could be various constraints combined together with the 

economic cost model. One of the most common stopping criteria is the reliability 

criterion. Below we further consider the case of the optimal release time subject to 

reliability criterion. 

 

By minimizing the total cost function of the economic model with Eq. (6.14) while 

satisfying the reliability criterion, we have: 

 

  
( ) ( ) ( ) ( )[ ] ( )[ ]

( ) 0

3210

|..

|1min

RTxRts

TxRCTmTTmCTmCTCCTE RcWcWyc

≥

−+−+′+′++= μμα

      

(6.18) 

Note that the parameters should already be estimated by the proposed FDP-FCP model. 

Those cost coefficients can be given based on experience knowledge. To solve the 

optimization model with constraints, the Lagrange multiplier method can be applied. It is 

well known that the conditions of Kuhn-Tucker are the most important theoretical results 

in the field of non-linear programming, and they must be satisfied at any constrained 

optimum, local or global, of any linear and most non-linear programming problems 

(Bazaraa et al., 1993). Consequently, the above equation can be simplified associating 

multiplierλ , and we need to minimize the equation as follows: 
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            ( ) ( ) ( ) ( )[ ]
( )[ ] ( )[ ]TxRRTxRC

TmTTmCTmCTCCTE
R

cWcWyc
||1               0

3210
−+−+

−+′+′++=′
λ

μμα

                      (6.19) 

 

Based on the Kuhn-Tucker conditions (KTC), the necessary conditions for a minimum 

value of above equation are in existence and can be stated as below (Yamada et al., 1995; 

Nishiwaki et al., 1996): 

 

                                           

( )

( )

( )[ ] 0|:3

0:2

0:1

0 =−

≥
∂
′∂

≥
∂
′∂

TxRRA
T
TETA

T
TEA

λ

                                                (6.20)         

 

Refer to Yang and Xie (2000), there reliability criterion can be testing reliability, 

( ) ( ) ( )[ ]{ }TmTxmTxR −+−= exp| or operational reliability, ( ) ( )[ ]{ }xTTxR λ−= exp| , 

denoting the reliability under testing or operational environment separately. 

 

Given the optimal release time ∗T , we are able to give the confidence interval of the 

reliability at the release time (Teng and Pham, 2006). Thus, we can give the lower bound 

and upper bound of the reliability constraints, which enable us to give the optimal release 

time with the worse case of software reliability and the better case of software reliability. 

 

Denote by L the likelihood function in general, the Fisher Information for three 

parameter ( )Tba μθ ,,=  models of failure detection/correction process can be given by 
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      ( ) ( )
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ELEF             (6.21) 

Thus, we have:   
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The large sample asymptotic covariance matrix V of the maximum likelihood estimators 

for parameters is the inverse of the Fisher information matrix: 

 

                               
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

== −

μμμ
μ
μ

ˆˆ,ˆˆ,ˆ
ˆ,ˆˆˆ,ˆ
ˆ,ˆˆ,ˆˆ

1

VarbCovaCov
bCovbVarbaCov
aCovbaCovaVar

FV                            (6.23)             

 

The two sided approximate 100α % confidence limits for the parameters can then be 

obtained in standard way. 

 

If we define a partial derivative vector for reliability R(x|t) as 

                                 ( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
∂

∂
∂

∂
=

μ
txR

b
txR

a
txRtxR |,|,||

r
                                    (6.24)        
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Then the variance of R(x|t) can be obtained as 

                                ( )[ ] ( ) ( )( )TtxRVtxRtxRVar |||
rr

⋅⋅=                                             (6.25)               

Assume the reliability estimation follows the s-normal distribution; then the 95% 

confidence interval for reliability prediction R(x|t) is: 

 

                       ( ) ( )[ ] ( ) ( )[ ]]|96.1|,|96.1|[ txRVartxRtxRVartxR ×+×−           (6.26) 

 

6.7 Numerical Example and Sensitivity Analysis 
 

Below based on the dataset from the testing process on a middle-size software project 

(Table 4.1), we develop our economic cost models based on the G-O model paired with 

exponential time delay. The cost coefficients in the cost model are assumed to be known 

already, as they are usually determined by empirical data, previous experiences, and the 

nature of the applications (Pham, 2003). The other model parameters are estimated using 

MLE method based on our proposed likelihood function. Optimal release time can be 

determined subject to various stopping criteria. Sensitivity analysis is carried out and the 

impact of time delay on optimal release time is analyzed. 

 

6.7.1 A Simple Cost Model Considering Time Delay 
 

For our numerical example, the analysis is illustrated as follows. Based on the simple cost 

model with time delay in Eq. (6.8) we have: 158ˆ =a , 14.0ˆ =b and 64.0ˆ =μ . Assuming 

c1=$300, c2=$500, c3=$100, it has its optimal point as ∗T =28.83. The cost function for 
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this data set with our model is plotted in solid line in Figure 6.1, with an apparent 

minimum point. However, traditional analysis with single fault detection model will lead 

to different result. Comparatively, against the fault detection data set, the G-O model has 

estimates as 21.154ˆ =a  and 1408.0ˆ =b , and then the corresponding cost function can be 

reached as plotted in dashed in Figure 6.1, which has an earlier optimal point as  

78.26=∗T . The difference between these two results shows the effects of correction time 

over cost. 

 

Figure 6. 1 Plot of the total cost functions of a simple cost model 

 

6.7.2 A Generalized Cost Model Considering Time Delay 
 
1) Cost model without constraints 
 
Based on our proposed economic model in Eq. (6.14) considering the time delay, we 

have 158ˆ =a , 14.0ˆ =b and 64.0ˆ =μ . Assuming 0C =$50, c1=$700, c2=$60, c3=$3600, 
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RC =$5000. To start from the simplest case, we assume yμ′  and Wμ ′ to be the same 

as yμ = Wμ = yμ′ = Wμ ′ =1.7, 20,1 == WTx , α =1. Without considering the time delay function, 

the optimal release time is ∗T =37.67 with total cost spent as $ 47344.57. On the other 

hand, if considering the time delay between FDP and FCP, we have the corresponding 

optimal release time as ∗T =39.48 with total cost spent as $ 48611.03.The corresponding 

cost functions are plotted out in Figure 6.2. The difference between these two results 

shows the effects of correction time over cost. 

 

 

Figure 6. 2 Plot of the total cost functions 
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2) Cost model with reliability constraints 
 

Based on the results above, we consider the proposed total software cost function subject 

to various reliability constraints. Below we consider two constraints: testing reliability 

and operational reliability. 

 
Case 1: Cost model with testing reliability criterion 
 

First we use testing reliability (Yang and Xie, 2000) as the criterion. 158ˆ =a , 

14.0ˆ =b and 64.0ˆ =μ , assume 0C =$50, c1=$700, c2=$60, c3=$3600, RC =5000, 

yμ = Wμ = yμ′ = Wμ ′ =1.7, 20,1 == WTx , α =1, 0R =0.95 . The optimal release time with time 

delay considered is ∗T =42.66 with total cost spent as $ 49039.65. 

 

Figure 6. 3 Plot of the total cost functions with testing reliability criterion constraint 
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Figure 6.3 showed the influence of constraints on the optimal release time. With testing 

reliability criterion, the optimal release time is delayed compared with unconstrained case. 

It is easily understood as you need to spend more money to ensure higher reliability,. 

Given the optimal release time ∗T , we are able to give the confidence interval of the 

reliability at the release time (Teng and Pham, 2006). With the help of MATLAB, we 

finally get the variance matrix 

 

                      ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
== −

0346.00002.01169.0
0002.00004.03227.0
1169.03227.08016.355

ˆˆ 1 θθ IVar                      (6.31) 

 

Then the variance of ( )TxR | when x=1, T=42.66 can be obtained as 
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        (6.32) 

 

Assume the reliability estimation follows the s-normal distribution; also it is known 

that [ ]1,0∈R , then the 95% confidence interval for reliability prediction ( )TxR | is: [0.87, 1]. 
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Case 2: Cost model with operational reliability criterion 
 

Then, we use operational reliability as the criterion, considering the time delay function 

the optimal release time is ∗T =43.15 with total cost spent as $ 49171.05. 

 

Figure 6. 4 Plot of the two total cost functions with two reliability criteria 

 

Then the variance of ( )TxR | when x=1, T=43.15 can be obtained as 
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Assume the reliability estimation follows the s-normal distribution; also it is known 

that [ ]1,0∈R , then the 95% confidence interval for reliability prediction ( )txR | is [0.87, 1]. 

 

We can see that the optimal release problem should be formulated according to the 

operational reliability criterion since the testing reliability constraint can lead to an 

incorrect value of the testing time. Figure 6.4 also shows the difference between the 

testing times of unconstrained and constrained optimization problems. It is clear that for 

ensuring the operational reliability of the software, more cost is required. 

 

On the whole, from above numerical illustration, we find out that the operational 

reliability constraint should be adopted instead of the testing reliability while adding a 

reliability constraint to the software release problem; and the software manager should be 

aware of the more expensive cost for ensuring the required reliability of the software. 

 

Below, a different parameter estimation method is used to see if there is any effect on the 

optimal software release time. Considering the case with no constraints, and assuming the 

same initial values of c1=$300, c2=$500, c3=$100, and exponential time delays, the LS 

estimation method is applied, and the estimated parameters are obtained as 

58.0ˆ,14.0ˆ,156ˆ === μba . The optimal release time is ∗T =28.95, with a total cost of 

$50409.39. The two optimal release policies are plotted in Figure 6.5. 
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Figure 6. 5 Plot of the total cost function comparing the MLE, and the LSE 

 

From Figure 6.5, the optimal release times for the LS estimation model, and the ML 

estimation model are ∗T =28.95, and ∗T =31.29 respectively. It is well-known that 

software testing accounts for a substantial portion of software development costs, 

however, releasing software with unacceptable reliability is also very costly. As we 

known that LSE has no basis for constructing confidence intervals and testing hypothesis, 

to take a conservative point of view, software manager might adopt ML estimates as it is 

more suitable for statistical inference, and it can give more accurate information on the 

impact of the parameter changes. Therefore, in this case, it might be better to release the 

software later at the optimal time of ∗T =31.29 as estimated by the ML method instead of 

∗T =28.95 as estimated by the LS method. By adopting the conservative estimates of 
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software release time, it will ensure the software’s reliability and quality with good stable 

performance, and it can also avoid the huge risk cost after it is released.  

 

6.7.3 Impact of the Factors 
 

The impacts of the cost coefficients on the simple cost model with time delay are 

analyzed below. Similar analysis with more complex models and constraints can be 

carried out in the same way. 

 

1) The impact of the cost coefficients  

 

The testing cost per unit time is expected to be very low in many applications compared 

with costs associated with discovering and fixing bugs during testing/operational phase. 

As it is expected that unreliable software will yield a high loss if it is released, the costs 

associated with discovering and fixing bugs is usually assumed to be high. Morali and 

Soyer (2002) showed it was important to note that the decision of when to stop testing 

may be sensitive to the choice of above parameters. Thus, it is always desirable to 

investigate the sensitivity of the results to the choice of prior parameters and loss function 

components. 

 

The impacts of the cost coefficients: c1, c2 and c3 on the expected total cost are analyzed 

below. Changing the values of the corresponding cost coefficients, the optimal release 
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time can be changed correspondingly. Below we increase the values of c1, c2 or c3 and 

keep the values of other parameters unchanged. 

 

Increasing the cost coefficient of removing faults during testing phase, c1 , from $ 300 to 

$ 450, we find that the optimal release time changes from ∗T = 27.61 to ∗T = 18.29, which 

can be interpreted as the impact of putting weights on cost during testing phrase. The 

optimal release time is shortened because of high testing cost. 

 

Increasing the cost coefficient of removing faults during operation phase, c2, from $ 500 

to $ 750, we find that the optimal release time changes from ∗T = 27.61 to ∗T =33.07, 

which can be interpreted as the impact of putting weights on cost during operation phrase. 

The optimal release time is delayed because of high operation cost, thus, it needs to 

maker sure there is as few faults as possible within the software. 

 

Increasing the cost coefficient of software test cost per unit time, c3 , from $ 100 to $ 250, 

we find that the optimal release time changes from ∗T = 27.61 to ∗T =21.45, which can be 

interpreted as the impact of putting weights on software test cost per unit time. The 

optimal release time is shortened because of high test cost per unit time. 

 

Increasing the cost coefficient of the loss due to software failure, RC , from $ 5000 to $ 

9000, we find that the optimal release time changes from ∗T = 39.48 to ∗T =39.90, which 

can be interpreted as the impact of putting weights on the loss due to software failure. 
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The optimal release time is delayed because of high risk cost of software failure. The 

similar analysis can be carried out comparing the other cost coefficients as well. 

 

2) The impact of the warranty time WT  

 

Considering the impact of the warranty time WT on the total cost function by increasing WT  

from 20 weeks to 50 weeks, we find that the optimal release time changes from ∗T = 39.48 

to ∗T =40.29, which can be interpreted as the impact of putting weights on the warranty 

time. The optimal release time is increased because of high risk cost of software failure is 

increased due to longer warranty time.  

 

3) The impact of the mission time x 

 

Considering the impact of the mission time x on the total cost function by increasing x 

from 1 week to 5 weeks, we find that the optimal release time changes from ∗T = 39.48 to 

∗T =40.56, which can be interpreted as the impact of putting weights on the mission time. 

The optimal release time is increased because of high risk cost if the mission to lasting 

longer time is failed. 

 

6.7.4 Interval Estimation of Parameters in the Cost Model  
 

The interval estimation of release time is recommended to avoid further excessive 

adjustment of release time. We investigate the variation of the optimum release time due 
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to the variation of the estimated parameters. Usually, the software can only be released 

when the reliability level has reached a predetermined level, which is usually the 

customer requirement. For illustrative purpose, here we consider the case without any 

constraints, the simplest case. We calculate the Fisher information matrix, that is, the 

matrix of negative second partial derivatives of the log likelihood function, to obtain the 

asymptotic variances and covariance of the ML estimates of the parameters a, b andμ . 

 

Example 

Using the same dataset above, with the help of MATLAB, we can get the variance matrix 

as below: 
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Given 05.0=α , we can then give 95% confidence interval of those MLE estimated 

parameters. For example, from the Fisher information matrix, we get ( ) 8016.355ˆ =aVar , 

thus, the 95% confidence interval of the parameter â with estimated value of 165.37 is 

[128.3991, 202.3409]. In the similar way, we can give interval estimation of other 

parameters in the software cost model as well. 

 

6.7.5 Sensitivity Analysis of Optimal Release Time 
 

The sensitivity issue of software release time can be further studied, that is, the variations 

of the optimum release time due to the variation of the estimated parameters. If an 
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overestimation of a parameter implies an underestimation of the release time which can 

be costly as more failures are experienced by the consumers, we should try not to 

overestimate the parameter (Xie and Hong, 1998). Also, if a parameter affects the release 

time more than others, it is important to have this parameter estimated as accurately as 

possible.  

 

The sensitivity issue can be very complex, and it varies among different release time 

models. Thus, here we can restrict it to the simple case, that is, the optimal release policy 

by minimizing the cost only. 

 

Denoting model parameters as variable ( )Tba μθ ,,= , then we have: 

( )   1, ⎥
⎦

⎤
⎢
⎣

⎡
−

+
−

−⋅= −− TbT
c e

b
be

b
aTm μ

μμ
μθ  

( ) ( ) ( ) ( )[ ] ( )[ ]TxRCTmTTmCTmCTCCTE RcWcWyc |1,,, 3210 −+−+′+′++= θμμθθ α         (6.35) 

 

with ( ) 0,
>

∂
∂

a
TE θ  for all T>0, which implies that ( )aTE , is an increasing function of a . If 

we overestimate parameter a , then we will overestimate the optimal release time; on the 

other hand, if we underestimate parameter a , then we will underestimate the optimal 

release time as well. We can analysis other parameters in a similar way. 

If ( ) 0,
<

∂
∂

b
TE θ (or ( ) 0,

<
∂

∂
μ
θTE ), we should try not to overestimate that parameter so as to 

reduce the probability that customers experiencing more failures. The sensitivity analysis 

result can help us better allocate resources for a more accurate estimation for the most 
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important parameters. It also provides a way to obtain reasonably conservative estimate 

of the release time. 

 

Example 

Assume all other parameters are given, changing parameter a from 150 to 160, we can see 

the total cost increase $ 1287.91; in the similar way, if changing parameterb from 0.14 to 

0.15, we can see the total cost decrease $ 1238.8, if changingμ from 0.58 to 0.59, the 

total cost amount decrease $ 23.81. Comparing the above three, we can see parameterb is 

of the most important, while parameterμ is of less importance. In this case, the sensitivity 

analysis result indicates that it is important to have the parameter b estimated as 

accurately as possible, then parameter a and parameterμ . Different time delay function 

and software cost function can give different results; therefore, it is important to carry out 

the sensitivity analysis to help software managers have a better idea of all those model 

parameters and their impact. 

 

6.8 Summary 
 

In this paper, fault detection and correction modeling analysis is carried out with a new 

likelihood function derived and the ML estimators obtained. Within this framework, an 

economic model based on FDP and FCP is proposed, and the optimal release policies 

considering the time delay are analyzed in details. Many assumptions are relaxed in this 

cost model, fault debugging time is considered and the warranty and risk cost issues are 

included. The proposed new economic model can provide more accurate results and give 
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a more reasonable rationalizing measure to make a better decision of software release 

policy. Software managers can obtain the corresponding optimal release time when the 

mission time being changed, the warranty period shortened or prolonged, or any other 

factors changing as well. Further studies can be done by taking into account imperfect 

debugging so as to make more realistic assumptions. As the parameters of the failure 

process and costs are dependent on the operations that the software performs, this can be 

a future direction for further research. 
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Chapter 7     Bayesian networks modeling for software 
inspection effectiveness 
 

Except for testing, the only other widely applicable technique for detecting and 

eliminating software defects is to review and walkthrough during inspection process. As 

removing faults during inspection process is much cheaper compared with testing process, 

we consider finding as much errors as possible during the inspection process. Since 

inspection effectiveness is considered as an important criterion to judge the inspection 

performance, our concern is to construct a model to measure the inspection effectiveness. 

However, software inspection process is flexible and complex. There is no unified 

inspection structure and there are many factors contributing to its effectiveness for each 

specific procedure. That motivates us to use Bayesian network models to measure the 

inspection effectiveness. 

 

Software inspection is a cost-effective approach to detect and remove defects from 

software in the early phase of software development lifecycle. In order to control the 

software inspection process, some related measurements are required. As reviewed before, 

there have been many different approaches to measure software inspection effectiveness. 

Unfortunately, these natural but simplistic measurement definitions regard software 

inspection as a mechanical process. In fact, software inspection process is flexible and 

complex, with no unified structure. Many contributing factors are highly dependent on 

the experience of individual inspectors, introducing great uncertainty into this process. 
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Starting from this point, in this chapter, a Bayesian networks model has been proposed to 

describe the interdependencies within inspection structure and the contribution of each 

factor to the overall belief on inspection effectiveness (Cockram, 2001). We propose our 

Bayesian network model based on the one given by Cockram (2001). Cockram proposed 

a BN model which could help improving the inspection performance. This model is 

interesting and it provides a framework to use Bayesian networks to develop uncertain 

reasoning over inspection effectiveness. However, there are some shortcomings with this 

model, which it failed to incorporate the critical information reflecting the status of the 

inspection process, i.e., the remaining number of faults. Inspections are developed to 

deduct the faults left in software artifact, and this measurement directly denotes the effect 

of the inspection. Cockram (2001) did not incorporate this factor by arguing that those 

quantities were not available at the time of inspection and may never be known unless the 

execution of the software caused the errors to be manifested as faults, In fact, many 

research work have been devoted in evaluating inspection effectiveness with respect to 

this measurement through subjective or objective estimation approaches. Naturally, this 

estimated variable would influence the belief over the inspection effectiveness, and it 

should be regarded as collected evidence successively updated over the whole inspection 

process.  

 

By adding the variable of remaining number of faults, our evaluation on the effectiveness 

can be updated with new collected data, keeping the inspection process under track. 

Besides, we also propose a systematic method to establish the prior belief of those nodes 

so as to initialize the Bayesian network. We propose two methods to obtain those prior 
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probabilities. The first method is given through calculating the pair-wise matrix using 

Expert Choice software so as to give the prior belief of those root parent nodes in the BN. 

The second method is given using Best-Fit software to find out the best-fit distribution 

for the normalized data value and finally give the a-priori conditional probability table. 

 

In this chapter, further investigation on modeling software inspection effectiveness 

through Bayesian networks is carried out. Specifically, the former two shortcomings are 

compensated with proposed approach. The rest part of this chapter is organized as 

follows. Section 7.1 proposes the network structure and the systematic knowledge 

extraction approach. In section 7.2, the proposed model and probability extraction 

approach is illustrated with a numerical example. Also, related sensitivity analysis is 

developed. 

 

7.1 Software Inspection Process 
 

Software has become a central part in any complex system, and software of quality has 

become a common requirement. However, to develop software satisfying this 

requirement within the constraints of budget and schedule is still a challenging problem. 

Software inspection has been generally accepted in software development as a cost-

effective approach for quality improvement through defect removal (Aurum et al., 2002). 

Such a static verification technique is originally introduced in Fagan (1976), and has been 

studied and applied extensively with many varieties (Kelly and Shepard, 2004b; Miller 

and Yin, 2004). Generally speaking, it is a systematic technique to examine any software 
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artifact for defect detection and removal, and can be applied to the early phase in 

software development.  

 

In order to control the software inspection process, some related measurements are 

required. There have been many different attempts to measure software inspection 

effectiveness. As inspection is to remove software defects, it is natural to use the related 

defects number as the measurement. Gilb and Graham (1993) gave a definition of 

inspection efficiency as:  

 

                       
sinspectionby  consumedCost 

defects ofNumber  =efficiency Inspection                          (7.1) 

 

Some works suggest using the already detected defects to calculate the measurement, i.e., 

defect density (Porter et al., 1997; Perry et al., 2002). This measurement actually denotes 

the efficiency of the developed inspection, and the remaining defects number seem to be 

a better alternative as it denotes the effect of the inspection on the software. Both 

objective and subjective approaches have been taken to develop estimation on this 

measurement (Biffl, 2003). Capture-recapture is a well studied approach to develop 

related estimation (Emam and Laitenberger, 2001; Petersson et al., 2004). However, it is 

criticized with the extra cost and difficulties added in defect implantation, and some 

alternatives are developed through the time series trend or subjective judgments on the 

collected data (Yin et al., 2004; Amasaki et al., 2005). In order to evaluate the 

effectiveness of the software inspections, we surveyed the literature and find there are 
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various evaluation of inspection effectiveness, such as inspection efficiency, return on 

investment, and cost-effectiveness. 

 

Besides the definition given above by Gilb and Graham (1993), Collofello and Woodfield 

(1989) defined the economic impact of inspections in terms of the ratio between the cost 

and the benefit measured as effort saved. 

 

                     
inspectionby  consumedCost 

 inspectionby  savedCost  =ness_effectiveInspection                         (7.2) 

 

Franz and Shih (1994), Grady and Slack (1994) and Rico (2004) defined the economic 

impact of inspections in terms of return-on-investment (ROI) as: 

 

                          
inspectionby  consumedCost 

 consumedCost  - inspectionby  savedCost  =ROI                                (7.3) 

 

Kusumoto et al. (1992) defined inspection cost-effectiveness as: 

 

          
inspectionut cost withodefect  Potential

 consumedCost -inspectionby  savedCost  esseffectiven  Inspection =               (7.4) 

 

In this paper, our definition of the inspection effectiveness is based on the third one that 

is the definition proposed by Kusumoto et al. (1992). 
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These natural but simplistic measurement definitions regard software inspection as a 

mechanical process. However, software inspection process is flexible and complex. There 

is no unified inspection structure and there are many factors contributing to its 

effectiveness for each specific procedure (Biffl and Halling, 2003; Briand et al., 2004). 

Many of these factors are highly dependent on the experience of individual inspectors, 

introducing great uncertainty into this process (Kelly and Shepard, 2004a; Perry et al., 

2002). Kollanus (2005) introduced several problems in inspection practices, such as 

meeting scheduling may cause delay, meetings consume resources with few gains in 

finding new defects, and participants do not understand inspection process, and then he 

gave solutions to those problems so as to improve the inspection. However, there are still 

many other factors that could influence the inspection process and the inspection 

effectiveness too. Aurum et al. (2005) investigated the inspection effectiveness with 

altering some of the inspection attributes, such as the environmental context, document 

type and reading technique. Freimut et al. (2005) proposed a model to measure inspection 

cost-effectiveness and a method to determine the cost-effectiveness by combining project 

data and expert opinion. However, those models can only give analysis to a certain few 

attributes. When we consider more and more attributes that influence the inspection 

effectiveness, it would be quite difficult to analyze using their methods. 

 

Starting from this point, a Bayesian networks model has been proposed to describe the 

interdependencies within inspection structure and the contribution of each factor to the 

overall belief on inspection effectiveness (Cockram, 2001). This model is interesting and 

it provides a framework to use Bayesian networks to develop uncertain reasoning over 
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inspection effectiveness. However, there are some shortcomings with this model. Firstly, 

the network excludes the factor of remaining number of faults, which is actually an 

important measurement denoting the inspection effects on the software. Secondly, no 

systematic approach other than brainstorming is developed to extract knowledge from 

experts, and this brings more uncertainty and possible inconsistency into this modeling 

framework. Thirdly, it measures the inspection effectiveness in a static way. Software 

inspection is a dynamic process, and the updating of some information could cause the 

belief change, such as the detected number of defects. Although the importance of 

inspectors’ learning process is emphasized, its dynamic influence on the inspection 

effectiveness is not well explored. Herein, further investigations on modeling software 

inspection effectiveness through Bayesian networks are carried out.  

 

7.2 Bayesian Networks 
 

The definitions of a Bayesian network can be found in many versions, and the basic form 

by (Pearl, 1986) is stated as follows: Bayesian network is a directed acyclic probability 

graph, connecting the relative variables with arcs, and this kind of connection expresses 

the conditional dependence between the variables.  

 

In Bayesian networks, variables are used to express the events or objects. The problem 

could be modeled with study on the behavior of these variables. In general, we first 

calculate (or determine from expert experience) the probability distribution of each 

variable and the CPD (Conditional Probability Distribution) between them and the 
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probability distributions of the root parents. Then with these distributions we can obtain 

the joint distributions of these variables. Finally, some deduction can be developed for 

some variables of interest with some other variables known.  

 

To understand the approach of Bayesian networks, a simple example is shown here. As 

shown in Figure 7.1, this Bayesian network models height relationships among three 

members of a family: father, mother and son, which are denoted by the notes F, M and S 

respectively. Their casual connections are obvious: the height of the son is influenced by 

both the mother and father, which are expressed with the directed arcs in Figure 7.1. 

 

F M

S 
 

Figure 7. 1 A simple example of Bayesian network 

 

Accordingly, in the example there are three random variables, F, M, and S, each of which 

is the height defined as tall (1) and short (0). Their relationships as shown in the figure 

are expressed by CPD. As F and M do not have parent nodes, their probability 

distributions can be defined as (Pr(F=1), Pr(F=0)) and (Pr(M=1),Pr(M=0)), with Pr() 

expressing the probability. Node S has parents as F and M, so its CPD (Pr(S| F,M)) are 

dependent on various combinations of F and M. To illustrate the problem, we assume the 
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related distributions as follows. Let Pr(F=1) =0.5, Pr(F=0) =0.5; Pr(M=1) =0.5, Pr(M=0) 

=0.5, and Pr(S| F,M) is shown in Table 7.1.  

 

Table 7. 1 CPD of node S 

Pr(S| F,M) S=1 S=0 

F=1, M=1 0.7 0.3 

F=0, M=1 0.5 0.5 

F=1, M=0 0.5 0.5 

F=0, M=0 0.3 0.7 

 

Following this, some inferences can be developed based on this Bayesian network with 

structure and relationships known.  

 

Due to these desirable properties, Bayesian networks have been increasingly applied in 

many fields, including software engineering. It has been used to predict software 

reliability in the early phases of the development by incorporating information ahead of 

testing (Smidts, 1998), to develop a causal model for software defect rates prediction 

(Fenton, 1999), and to manage software project risk (Fan and Yu, 2004).  

 

The Bayesian network has been proposed to model the software inspection process. The 

first step in Bayesian networks modeling is to identify the contributing variables and their 

inter-dependencies, i.e., to identify the network structure. This involves clearly 

description of the inspection process structure and investigation with experienced 

inspectors. 
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To model the inspection process of software, first of all, we need to construct a network 

and store in each node a conditional probability distribution of the variable, conditioned 

on the outcome of all uncertain variables that are parents of that code. The initialization 

of a Bayesian network requires that the priori belief in terms of the conditional 

probability for each state of the variables in the parent nodes be specified. Experience is 

used to provide a priori conditional probability value for each node matrix. For the root 

parent nodes, which are at the bottom of the network, the initial distribution for each state 

of these variables is set to be flat over its ranges, i.e. the evidence has an equal probability 

for each state. For each node within the network the initial belief must be established as a 

probability potential (conditional probability table).  

 

7.3 Model Development 
 

7.3.1 Bayesian Network Framework 
 

To identify the contributing variables and their inter-dependencies is the first step in 

Bayesian networks modeling, and it involves clearly description of the inspection process 

structure and investigation with experienced inspectors.  

 

Generally, the contributing variables can be divided into three groups: inspection 

structure factors, artifacts under inspection, and related inspection proceeding status data. 

Firstly, software inspection has no unified procedure and many variations have been 

evolved ever since Fagan’s basic method. As a result, different Bayesian networks 

structure should be developed for different inspection structures. Without loss of 
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generality, we take Fagan’s basic structure as illustration (Fagan, 1986). Secondly, the 

software artifact under inspection has great influence on the effectiveness, both its size 

and complexity. The Bayesian networks dealing with these two groups have been 

proposed with a clearly defined hierarchical network structure (Cockram, 2001) for static 

inspection analysis.  

 

However, that model fails to incorporate the critical information reflecting the status of 

the inspection process, i.e., the remaining number of faults. Inspections are developed to 

deduct the faults left in software artifact, and this measurement directly denotes the effect 

of the inspection. Cockram (2001) did not incorporate this factor by arguing that those 

quantities were not available at the time of inspection and may never be known unless the 

execution of the software causes the errors to be manifested as faults. However, as 

denoted earlier, many research works have been devoted to evaluating the inspection 

effectiveness with respect to this measurement through subjective or objective estimation 

approaches. Naturally, this estimated variable variant would influence the belief over the 

inspection effectiveness, and it can be regarded as collected evidence successively 

updated over the entire inspection process. By adding this variable, our evaluation on the 

effectiveness could be updated with new collected data, keeping the inspection process 

under track.  

  

To illustrate the modeling approach described in the former section, a numerical example 

is developed in this section. The related analysis is developed with the aid of NETICA 

software of version 2005. Below Figure 7.2 is the Bayesian network we proposed, based 
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on the one proposed by Cockram (2001), and refer to those BBNs proposed by Fan and 

Yu (2004) and Laitenberger and Baud (2000). 
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Figure 7. 2 A proposed Bayesian network model 

 

7.3.2 Bayesian Network Configuration 
 

With the established Bayesian network model, we have the qualitative interdependencies 

between these identified variables. However, in order to develop inference, further 

quantitative dependencies need to be identified, i.e., the conditional probability 

distribution over the dependent nodes and the probability distribution of the root parents.  
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Prior conditional probability distributions. Some questionnaires based on the brain-

storming of the inspectors have been used to generate these probabilities in (Cockram, 

2001). Freimut et al. (2005) proposed using a triangular distribution to explicit the expert 

opinion. That is, the expert is asked to provide a range, given by minimum and maximum 

values, in which the estimate can be, and the most likely values. 

 

Prior conditional probability distributions for the intermediate nodes. Some 

questionnaires based on the brain-storming of the inspectors have been used to generate 

these probabilities in the paper by Cockram (2001). Freimut et al. (2005) proposed using 

a triangular distribution to explicit the expert opinion. That is, the expert was asked to 

provide the most likely values, and a range in which the estimate could be, given by 

minimum and maximum values.  

  

An alternative approach is to assume the conditional distribution to follow some specific 

distribution, and we can use the maximum likelihood estimation to fit the data obtained 

from expert to find out the best fit distribution and get the corresponding parameters. As a 

result, Most of the best-fit results of the data analysis tends to show that the conditional 

probability distribution in the inspection process is a general Beta distribution with pdf 

(probability density function) defined in [0, 1] as 
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in which )(⋅B  is the beta function and 0, >βα .  
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Prior probability distributions static nodes. The rest root parents’ probability 

distributions are highly human-oriented and have to be extracted from experts’ 

knowledge. Cockram (2001) set those distributions to be uniformly distributed. Such a 

scheme would waste the prior experience from inspectors. To develop model for any 

specific inspection, it is favorable to extract the prior knowledge from experienced 

inspectors. Rosqvist et al. (2003) proposed a method to encode the experts’ tacit 

knowledge into probabilistic measures associated with the achievement level of software 

quality attributes. The author argued that a software expert (developer or assessor) is 

capable of expressing his opinion on the achievement level of a quality attribute based on 

the mental model of the software.  

 

Here considering the risk of inconsistent probability elicitation, mathematics-based AHP 

method is proposed to elicit the consistent probabilities from experts. AHP is based on 

the pair-wise judgments of the importance of the different attributes of interest, and then 

a priority ordering of these attributes can be derived, with a measure of inconsistency. 

Firstly, for each root parent node, all the possible values are given as its attributes, such 

as “poor, fair, and good”. Then with respect to this variable, the pair-wise judgments are 

generated on these values, and the priority is given as the distribution of this variable over 

these values. The mathematics related to AHP provides a rule for consistency checking, 

and it provides a systematic approach for prior belief elicitation.  

 

As we have emphasized, “remaining number of faults” and “inspectors’ experience” 

change over the inspection process, while the left factors keep static relatively. For those 
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root parent nodes which may change as time goes by, regarding them as dynamic nodes 

we can use a Discrete Time Markov Chain (DTMC) model to model this learning process. 

The parameters used in the modeling can be abstracted from former projects. Ergodic 

DTMCs have a stable distribution after a warm-up process, which can be used to describe 

the evolvement of those dynamic root parent nodes within the BN modeling. 

 

Among these static factors, “preparation time”, “team size”, “formal actions” and “exit 

criteria” are specific and can be measured in a general way. “Product size” and “product 

complexity” are common software metrics, and they can be measured with the artifact 

under inspection (Fenton, 1999). The rest root parents’ probability distributions are 

highly human-oriented and have to be extracted from experts’ knowledge. In (Cockram, 

2001), these distributions are set to be uniform, and such a scheme would waste the prior 

experience from inspectors. To develop model for any specific inspection, it is favorable 

to extract the prior knowledge from experienced inspectors. Rosqvist et al. (2003) 

proposed a method to encode the experts’ tacit knowledge into probabilistic measures 

associated with the achievement level of software quality attributes. The author argued 

that a software expert (developer or assessor) is capable of expressing his opinion on the 

achievement level of a quality attribute based on the mental model of the software. In our 

paper, considering the risk of inconsistent probability elicitation, mathematics-based 

AHP method (Saaty, 1980) is proposed to elicit the consistent probabilities from experts. 

AHP is based on the pair-wise judgments of the importance of the different attributes of 

interest, and then a priority ordering of these attributes can be derived, with a measure of 

inconsistency. Firstly, for each root parent, all the possible values are given as its 
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attributes, such as “poor, fair, and good”. Then with respect to this variable, the pair-wise 

judgments are generated on these values, and then the priority is then regarded as the 

distribution of this variable over these values. The mathematics related to AHP provides a 

rule for consistency checking, and it provides a systematic approach for prior belief 

elicitation.  

 

Prior probability distributions of dynamic factors. “Remaining number of faults” and 

“inspectors’ experience” are two dynamic factors in software inspection process. During 

inspection, each detected fault is recorded and submitted for correction. Although the 

new faults could be introduced during correction, the number of remaining faults should 

show a decreasing trend in the long run. The estimation of this can be developed through 

a subjective approach (Emam et al., 2000; Yin et al., 2004). Combining the AHP 

approach we proposed, this approach is developed as follows. The method is as below: 

We need an inspector to provide a subjective estimate of his/her effectiveness, which will 

be denoted as Ê . Therefore, if the inspector estimates that 75% of the defects in a 

document were found, then the value of Ê would be 0.75. Then, if the detected faults No. 

is d, then we have d/ Ê  as the total number of faults. Therefore, the remaining fault count 

should be d/ Ê -d. 

 

Such an estimation procedure can be developed after a fixed period of time, such as one 

week. Then the distribution is updated in the Bayesian network to estimate the inspection 

effectiveness successfully. With the experts’ experience increasing, the subjective 

estimation would become more and more convincing. The estimation before the 
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inspection can be developed by referring to inspection results on similar software project 

(Xie et al., 1999).  

 

“Inspectors’ experience” also changes over inspection process, and the evolution denotes 

the learning process of the inspectors. We can use the similar approach to developed 

estimation, but to use inspectors’ experience to generate the distribution f “inspectors’ 

experience” would have confliction inside. It is hard for an inexperienced inspector to 

make judgments over his own experience level. Therefore, we propose to use a discrete 

time Markov chain (DTMC) to model this learning process, and the parameters of the 

model can be abstracted from former projects. Ergodic DTMCs have a stable distribution 

after a warm-up process, which could be used to describe the evolvement of the 

inspectors’ experience well.  

 

7.4 Numerical Example 
 

To illustrate the modeling approach described in the former section, a numerical example 

is developed in this section. The related analysis is developed with the aid of decision-

analysis software, explained as below in detail.  

 

7.4.1 Bayesian Network Modeling 
 

Same as the network structure in Figure 7.2, the Bayesian network can be constructed 

with the help of software tools. However, due to the size of the network and the limitation 
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of space, the following example is illustrated with part of the network as shown in Figure 

7.3.  
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Figure 7. 3 Part of Bayesian network model 

 

7.4.2 Networks Probability Distributions 
 

Prior conditional probability table. Through investigation with software inspectors, a 

large number of data are collected related to the conditional distributions. These data are 

normalized into the value interval [0, 1], and we use maximum likelihood estimation 

within the BEST-FIT software to find out the best-fit distribution for those data. Most of 

them turn out to be a Beta distribution. 
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Table 7. 2 Prior CPD of inspection effectiveness over inspection quality 

Inspection effectiveness very poor poor medium good very good

Inspection quality 9 9 3 0 0 

 

For example, we knew that the conditional probability distribution of inspection 

effectiveness depends on various combinations of its four parent nodes. Here assuming 

that the other three nodes are of medium state, we then obtained the conditional 

probability distribution of the inspection effectiveness conditioning on the quality of the 

inspection.  We asked 21 experts to feedback on the inspection effectiveness (such as 

poor, medium and good) given the inspection quality; the corresponding data is shown in 

Table 7.2. The Pearson-Tukey three-point approximation is used for estimating the 

probability distribution for each parameter whose variation is represented, which was 

proposed (Keefer and Bodily, 1983) as the first of the discrete-distribution 

approximations. The Pearson-Tukey approximation suggested using the 5, 50, and 95 

percentiles to get the probabilities of the approximate p.m.f. as 0.185, 0.630, and 0.185. 

We applied this method to give the proper value of those attributes of each node. For 

example, we can use this method to define the value of poor, medium and good as value 

of x, where f(x) is the 5, 50, and 95 percentiles of the p.d.f. function. 

  

For example, we know that the conditional probability distribution of inspection 

effectiveness depends on various combinations of its four parent nodes. Here assuming 

that the other three nodes are of medium state, we can obtain the conditional probability 

distribution of the inspection effectiveness conditioning on the quality of the inspection. 

The best fit distribution turned out to be Beta-General (0.124, 0.126, 0, 9). By using that 
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method, we could give the conditional probability table to construct the Bayesian 

network for software inspection.  

 

Prior probability distribution. In order to estimate the prior probability distribution, we 

need to ask the expert to give the pair-wise comparison matrix. In practice, the 

inconsistency always occurs. As a compromise, we need to check whether the matrix is 

acceptable or not. If not, we should ask the expert to re-judge the probability, and redo it 

until we get the acceptable matrix. Then we will use AHP to get the corresponding sets of 

weights. Thus, prior probability distributions of root parent nodes are obtained to be used 

in Bayesian network.  

 

For example, we have the expert opinion to evaluate the variable of initial quality of 

product. Then, we use the Expert Choice software (Expert Choice, 2005) to treat it as the 

Analytic Hierarchy Process (AHP). This variable is supposed to take attributes as poor, 

fair, and good, and then we ask the expert to give their opinion with their experiences as 

in Table 7.3. For example, the likelihood that the initial quality is poor vs. the likelihood 

that the initial quality is fair is 4/3. 

 

Table 7. 3 Pair-wise comparison matrix for the node “initial quality of product” 

 Poor Fair Good 

Poor 1 4/3 4/3 
Fair 3/4 1 1 

Good 3/4 1 1 
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The priorities are obtained, i.e., the distribution w = [0.4, 0.3, 0.3]. After that, we need to 

check for the inconsistency of the matrix. Fortunately, we find that it was a perfectly 

consistent matrix, and we take this as the belief for this variable.  

 

In our proposed BN model, we assume that the nodes “remaining number of faults” and 

“inspectors’ experience” change over the inspection process, with the rest factors kept 

static relatively. Among these static factors, “preparation time”, “team size”, “formal 

actions” and “exit criteria” are specific and can be measured in a general way. “Product 

size” and “product complexity” are common software metrics, and they can be measured 

with the artifact under inspection (Fenton, 1999). 

 

“Remaining number of faults” and “inspectors’ experience” are two dynamic factors in 

software inspection process. During inspection, each detected fault is recorded and 

submitted for correction. Although the new faults could be introduced during correction, 

the number of remaining faults should show a decreasing trend in the long run. The 

estimation of this can be developed through a subjective approach (Emam et al., 2000; 

Yin et al., 2004). Combining the AHP approach we proposed, this approach is developed 

as follows. We need an inspector to provide a subjective estimate of his/her effectiveness, 

which will be denoted as Ê . Therefore, if the inspector estimates that 75% of the defects 

in a document were found, then the value of Ê would be 0.75. Then, if the detected 

number of faults is d, then we have d/ Ê  as the total number of faults. Therefore, the 

remaining number of faults should be d/ Ê -d. Such an estimation procedure can be 

developed after a fixed period of time, such as one week. Then the distribution is updated 
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in the Bayesian network to estimate the inspection effectiveness successfully. With the 

experts’ experience increasing, the subjective estimation would become more and more 

convincing. The estimation before the inspection can be developed by referring to 

inspection results on similar software project (Xie et al., 1999).  

 

“Inspectors’ experience” also changes over inspection process, and the evolution denotes 

the learning process of the inspectors. We can use the similar approach to develop 

estimation, but to use inspectors’ experience to generate the distribution of “inspectors’ 

experience” would have confliction inside. It is hard for an inexperienced inspector to 

make judgments over his own experience level. Therefore, a DTMC can be used to model 

this kind of nodes. Similarly, the probability distributions for the other human-oriented 

variables can be gathered to configure the Bayesian network model.  

 

7.4.3 Model Analysis 
 

With all the Bayesian network structure, the related conditional probability, and the 

probabilities, some inferences can be developed for further insight to evaluate the 

inspection effectiveness. Specifically, we are interested in exploring two related 

properties: the dynamic changes of the inspection effectiveness with the process 

proceeding, and the sensitivity analysis to find out variables contributing most to the 

inspection effectiveness. 
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The basic inference is to follow the direction of networks: with the available 

conditional/unconditional probability distributions and the collected metrics, it is 

straightforward to deduct the distribution of the unknown variable of inspection 

effectiveness as shown in Figure 7.4 using NETICA software (because of the limitation 

of nodes No. within NETICA software, we use part of the BN model for illustration). 

 

Figure 7. 4 Numerical Example of BBN (part of the BN model) 

 

We find that the parent nodes are static except the node of remaining number of faults 

and the node of inspector experience. As a result, the inspection effectiveness should be 

evaluated dynamically: updated with each new collected belief over the remaining fault 

count and over the inspector experience. Such a scheme has the advantage of evaluating 

the effectiveness of inspection along the process running, providing nearly on-line 

feedback on the status of software inspection. 
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7.4.4 Dynamic Analysis of the Node “Remaining number of faults” 
 

Below we give a dynamic analysis of inspection effectiveness over remaining number of 

faults. To show the improvement of the inspection effectiveness over the decreasing of 

remaining fault count, we consider the case assuming that the percentile of remaining 

fault count of big over small is 100/0, 80/20, 50/50, 20/80, 0/100 for five weeks 

consequently. That is, we assume that the No. of big faults remaining is decreasing over 

time, and we give the assumption that the percentile of remaining big faults is 1, 0.8, 0.5, 

0.2, and 0 for week 1, 2, 3, 4, 5 so as to carry a dynamic analysis in a more convenient 

way.  

 

The deducted believes over inspection effectiveness are described in Figure 7.5, showing 

the dynamics of inspection effectiveness with the ongoing process, assuming all other 

nodes in the BN model unchanged. We can see the belief over the inspection 

effectiveness increases with the decreasing of the belief of the number of remaining faults 

in the software. That is an example to show how to conduct dynamic analysis. We can 

use the similar way to analyze each node that is dynamic and human related, and we can 

plot out the change of its probability distribution and see the corresponding change of the 

inspection effectiveness. 
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Figure 7. 5  Inspection effectiveness changes with respect to remaining number of faults 
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Apart from such direct analysis, Bayesian networks inference can be developed from any 

direction. Therefore, it is convenient and flexible to develop sensitivity analysis. 

NETICA software is used to carry out a sensitivity analysis for this Bayesian network. 

We only consider part of network due to the limitation of the version of the NETICA 

software we used. The sensitivity analysis is to examine the corresponding change of the 

network “output” with the change of some “input”. With the help of NETICA, the 

analysis procedure is illustrated with an example as shown below in Figure 7.6; we give 

the dynamic analysis of the node “inspection effectiveness” by changing the node 

“inspection experience”. Below we only plot out a BN within 15 nodes due to the 

limitation of the NETICA software. 

 

            (1)                                                                    (2) 

 

(3) 
Figure 7. 6 Corresponding change of other nodes while change the sate of the node 

“inspector’s experience” 
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We can use the similar way to analyze each node that is dynamic and human related, and 

we can plot out the change of its probability distribution and see the corresponding 

change of the inspection effectiveness. With all the Bayesian network structure, the 

related conditional probability, and the probabilities, some inferences can be developed 

for further insight to evaluate the inspection effectiveness. Specifically, we are interested 

to explore another related property: the variables contributing more to the inspection 

effectiveness.  

 

7.4.5 Sensitivity Analysis 
 

Apart from such direct analysis, Bayesian networks inference can be developed through 

any direction. Therefore, it is convenient and flexible to develop sensitivity analysis. 

NETICA (NETICA 2005) is used to carry out a sensitivity analysis for this Bayesian 

Network.  The sensitivity analysis is to examine the corresponding change of the network 

“output” with the change of some “input”. With the help of NETICA, the analysis 

procedure is illustrated with the following Figures 7.7, Figure 7.8, and Figure 7.9. We 

could change some factors and see the corresponding changes. 
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(1) 

 

(2) 

Figure 7. 7 Change of the probability of product complexity 
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(1)  

 

 

(2) 

Figure 7. 8 Change of the probability of quality of inspection process 
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(1) 

 

(2) 

Figure 7. 9 Change of the probability of product size 

 

In addition, entropy reduction, also called mutual information, is used as the criterion 

here to identify the key attributes of software inspection which help increasing the quality 

of software. The entropy of a discrete random variable X is defined to be 

( ) ( ) ( )∑
=

==−=
n

i
ii xXPxXPXH

1
2log where P is the probability distribution of X. The 
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entropy of two discrete random variables X and Y (considered jointly) is given 

by ( ) ( ) ( )∑
=

====−=
n

i
iiii yYxXPyYxXPYXH

1
2 ,,log, with ( ) ( )XYHYXH ,, = . The 

mutual information of X and Y is given by ( ) ( ) ( ) ( )YXHYHXHYXI ,, −+= . It follows 

from this definition that ( ) ( )XYIYXI ,, = . The mutual information of two random 

variables is a measure of how much information a knowledge of one of the random 

variable provides about the other. Entropy reduction is conducted in order to evaluate the 

degree of heterogeneity or homogeneity of spatial natural resources. It would show the 

degree of uncertainty represented in the model before and after entering the evidence. 

That means the higher the entropy reduction is, the more sensitive the node is. With the 

example shown in the figures above, the related sensitivity analysis results with entropy 

reduction are shown as Table 7.4, in which the “remaining number of faults” has the most 

influence over the ‘inspection effectiveness’, next is the node “inspection quality”, the 

node “product quality” has the least influence over the “inspection effectiveness”. 

 

Table 7. 4  Sensitivity analysis with entropy reduction 

Important attributes Entropy reduction Percentile (%) 

Remaining faults No. 0.494 49.40 

Inspection quality 0.135 8.95 

Product quality 0.021 1.32 

 

In addition, we also interested in how the change of the node “inspection experience” can 

influence the overall inspection effectiveness. As generally there is a learning process 

during the inspection, the belief of inspection experience extracted from experts would 
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show an increasing trend over the inspection process. As a result, the inspection 

effectiveness should also be evaluated in a dynamic way: updated with each new 

collected belief over the inspection experience. Such a scheme can take the advantage of 

using Bayesian Network, and give online feedback and update as the process running. 

Using our numerical example, we can consider the influence of the change of this node as 

shown in Table 7.5. 

 

Table 7. 5 Sensitivity analysis of “inspector’s experience” with Entropy 

Important attributes Entropy reduction Percentile (%) 

Inspector’s experience 0.001304 0.0951 

 

Here a systematic approach is proposed using Bayesian networks to analyze the 

inspection process. As our numerical example is just for illustrative purpose, more 

experimental data are needed to give further insight into the inspection process. 

 

7.5 Summary 
 

The above results showed that using BN model could help measuring the inspection 

effectiveness, and finding out key factors of great influence. Based on that, software 

manager can carry out some action to improve the effectiveness of inspection. Faults are 

removed as early as possible, as much as possible, thus the debugging cost at the later 

stage of testing are reduced and software quality improved as well. 
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Bayesian networks provide a convenient framework to model the inspection effectiveness 

with both abstract knowledge and actual data. However, it is not an easy task for belief 

elicitation over the probability distributions. Stepping from the early work in using 

Bayesian network to model software inspection process (Cockram, 2001), some further 

explorations are investigated under two major points. Firstly, we attempt to incorporate 

the variable of remaining number of faults into the network structure, because this 

information is nature to influence the belief on inspection effectiveness sequentially and 

it can be available through estimation or expert opinion. Secondly, a more systematic 

approach to gather the probability distributions is proposed. Specially, the mathematics-

based AHP is introduced to gather the probability distribution. Thirdly, the dynamic 

analysis on the inspection effectiveness is developed with the Bayesian network, and 

continuous evaluation on this measure is available to aid related decision-making. With 

the established method, a numerical example is illustrated to show some applications of 

these techniques and sensitivity analysis is developed. However, still there are some 

works for further investigation. AHP can provide more information actually, such as the 

overall weights for each factor. As a result, it would be interesting to study the 

application of this information in Bayesian network modeling. Also, the example analysis 

is not complete and it is favorable to develop systematic analysis with more experimental 

data for further insight into the inspection process.  
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Chapter 8     Conclusion and Future Work 
 

The main focus of the work presented in this thesis was to extend the traditional software 

reliability models through different perspectives and to study the corresponding decision-

making problems. This chapter summarizes the results of the research work and discusses 

their limitations and implications. Recommendations on further research and practical 

application are also presented. 

 

8.1 Research Results 
 

Software testing process is composed of fault detection, correction, and possible 

introduction. A major part of the study in this thesis was to incorporate the software fault 

correction process into software reliability modeling frameworks, relaxing the restrictive 

assumptions in traditional software reliability models. The models were developed 

through both analytical and data-driven approaches. 

 

At first, extensions on analytical NHPP software reliability models are presented in 

chapter 3. A paired FDP and FCP modeling framework is proposed, by assuming the 

relationship between FDP and FCP is the time delay. Generally, modeling both fault 

detection and correction processes will provide more information than traditional 

models. It is more realistic compared with traditional software reliability models as this 

proposed model takes into account of the time delay. 
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Further extensions were also carried out within this framework in chapter 4 to obtain the 

ML estimators of the model parameters. The ML estimated model parameters can give a 

more accurate estimation of the combined software fault detection and correction process.   

 

In chapter 5 the prediction performance is further analyzed. Experimental results of the 

simulation analysis show that the ML estimates with a fairly accurate prediction 

capability compared with the LS estimates. The approach in our study can be further 

extended to general SRGMs considering the fault detection and correction process.  

 

The corresponding decision-making problems of optimal software release time are further 

discussed in chapter 6. Many assumptions are relaxed in this cost model, fault debugging 

time is considered and the warranty and risk cost issues are included. The proposed new 

economic model can provide more accurate results such as when the mission time being 

changed, or the warranty period shortened or prolonged. 

 

Besides the analytical approach, this thesis also explored the Bayesian networks 

applications in the field of software reliability modeling and analysis. As except for 

software testing, another way to reduce the software faults is through review and walk-

through during the inspection process. In chapter 7, Bayesian networks were applied in 

modeling the software inspection process. Accordingly, this could adaptively update the 

effectiveness evaluation with new data collected, which could be useful for inspection 

stopping time determination. Also, a systematic approach to extract the distributions was 

given, which ensures the feasibility of the application of this kind of model. 
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8.2 Future Research 
 

Different software is developed under different environment, and the software testing 

process is influenced by many uncertain factors. As a result, it is difficult to find a 

universal software reliability model to suit all software testing processes. However, 

extensions to current software reliability models have been developed by relaxing current 

restrictive assumptions through incorporating more practical information.  Another future 

topic is as discussed earlier that while the ML estimate of the failure rate of the G-O 

model was consistent; the ML estimate of parameter a of the G-O model was not 

consistent when the observation period extends to infinity. This could be further analyzed 

in future research. 

 

Beyond the studies we explored in our current work, some other approaches can be 

studied in the further. Although analytical NHPP models provided a simple approach for 

software reliability analysis and release time determination, they were based on a 

simplified assumption on the relationship between fault detection and correction. This 

assumption can fit some testing environments where there is little on fault detection from 

fault correction, but actually slow fault correction could delay fault detection and fast 

fault correction could add pressure on fault detection. Therefore, the ‘feedback’ effect 

from fault correction should be incorporated into the modeling framework. However, the 

information provided with one-step prediction is quite limited. Multi-step prediction 

should be carried out to provide more information useful for practical decision-making, 

as the final goal of software reliability modeling is to help making decision. For both two 

kinds of models, only one dataset with a few data points are applied in our current case 
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study. To justify the proposed models, more datasets should be used for applications of 

the proposed models. Limited by the availability of published dataset, simulation could 

be an alternative approach to acquire the data. 

 

Furthermore, as software testing process is influenced by many uncertain factors, such as 

imperfect debugging, change-point, more realistic models can be proposed (Zou, 2003; 

Xie, et al., 2004b; Park et al., 2005), in addition, it would be interesting to extend this 

general model in a stochastic way. Some extensions have been done to model the fault 

detection process with a SDE stochastic differential equation (Yamada et al., 1995; Lee, 

2004). However, there are no extensions on fault correction. As an extension to these 

SDE models, random factors in both fault-detection and correction could be incorporated. 

Technically, linear stochastic differential equations assure the existence of a unique 

solution, and it is convenient to consider time-independent conditions. Accordingly, the 

parameters in the model can be estimated through Maximum Likelihood methods and 

useful measures are expected to be derived with the model to assist software testing 

decision making. 

 

At last, some BN models have been proposed dealing with software reliability issues 

(Fenton and Neil, 1999), and there is still much scope for extending the methods and the 

applications to reliability problems. The Bayesian Network modeling with software 

reliability prediction is an interesting topic worth further exploration. Modern mature 

software companies have many failure datasets within their own database. The flexibility 

of BN modeling framework provides an approach to utilize this kind of information to 
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improve the software reliability prediction performance. There is no doubt that BBNs can 

provide a powerful tool for reasoning with uncertainty.  

 

Answers to these questions will provide more practical modeling and analysis approach 

for a mature software company. Stepping from our current study on fault detection and 

correction process modeling, above are some works that can still be left to be covered in 

the future. 
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