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Abstract 

Consistent particle properties are an important goal for industrial batch 

crystallizations. Several control strategies, from unseeded linear cooling to 

seeded supersaturation control, were evaluated for the cooling crystallization of 

glycine. Particle properties were assessed in-line using ATR-FTIR, FBRM, and 

PVM. Closed-loop supersaturation-control was not superior to open-loop 

temperature-control, and seeding was by far the most effective strategy in this 

comparison. Unseeded systems do not achieve consistency, because primary 

nucleation is unpredictable and do not occur at a fixed temperature. In this work, 

the FBRM was successfully used to detect primary nucleation, after which control 

strategies were automatically implemented in unseeded cooling crystallization 

systems. A novel technique to counter the problem of inconsistent crystal 

products due to randomness of primary nuclei was also proposed. This employs 

FBRM in a closed feedback loop, which involves adjusting the coefficient of 

variance (c.v.) of the primary nuclei. Consistent crystal products from unseeded 

systems were hence achievable. 
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Summary 
 
 

Consistent particle properties are an important goal for industrial batch 

crystallizations. Several control strategies, from unseeded linear cooling to 

seeded supersaturation control, were evaluated for the cooling crystallization of 

glycine. Particle properties were assessed in-line, facilitating assessment of 

process consistency. Closed-loop supersaturation-control was not superior to 

open-loop temperature-control; and changing the pre-set cooling profile, or the 

pre-set supersaturation limit, showed limited benefits. Seeding was by far the 

most effective strategy in this comparison. The possible reason for this observed 

insensitivity to cooling modes is that crystal growth rates matched the rate of 

supersaturation increase for all cooling rates, so that seeded processes operated 

entirely within the metastable zone. In contrast, unseeded systems did not 

achieve consistency, because primary nucleation is unpredictable and do not 

occur at a fixed temperature.  

Seeded systems are advantageous in producing consistent crystal products. 

However, in view of the constraints on the usage of ports available in the 

crystallization vessel, a trade-off exist between using a port for the insertion of an 

in-line probe for monitoring of the process or using it for the addition of seeds. 

The implementation of in-line instrumentation cannot be over-emphasized, hence 

this necessitates a means to internally generate the seeds.  

 



 vii

The utilization of Focused Beam Reflectance Measurement (FBRM) probe has 

increased tremendously, as evident from the large number of recent publications. 

There has yet been any published record of closed-loop feedback technique 

involving FBRM. Primary nucleation is unpredictable and does not occur at a 

fixed temperature, hence, a means to improve automation of the process through 

a closed-loop feedback strategy using the FBRM would be beneficial. In this work, 

the FBRM was successfully used to detect nucleation, after which control 

strategies were automatically implemented in unseeded cooling crystallization 

systems. In addition, the randomness of primary nucleation produces 

inconsistent initial nuclei for different runs, thereby resulting in inconsistent 

product crystals. A method to counter this problem using FBRM closed-loop 

feedback control is also addressed in this thesis, which involves adjusting the 

coefficient of variance (c.v.) of the primary nuclei. Consistent crystal products 

from unseeded systems were thus achievable. 

 



 viii

List of Tables 
 

Table 5-1: Glycine system: FBRM statistics (in the 1-1000 μm range) for final 
product crystals  obtained from various temperature profiles 
implemented on (a) seeded and (b) unseeded systems. ...................83 

 
Table 5-2: Glycine system: Averaged FBRM statistics (in the 1-1000 μm range) 

for the CLDs of self-nucleated seeds in eight unseeded experiments.
...........................................................................................................86 

 
Table 5-3: Glycine system: FBRM statistics (in the 1-1000 μm range) for final 

product crystals of (a) seeded experiments at two Sset values (0.01 
and 0.02 g/g-water), (b) five seeded and (c) five unseeded S-control 
performed with Sset = 0.02 g/g-water. ...............................................90 

 
Table 5-4: Glycine system: Duration of cooling temperature ramp and stoppage 

temperature upon detection of primary nucleation for various cooling 
temperature ramps. .........................................................................110 

 
Table 5-5: Glycine system: FBRM statistics (in the 1-1000 μm range) for initial 

CLDs of similar seeds (product crystals in sieve fraction of 125-212 
μm) in different masses. ..................................................................123 

 
Table 5-6: Glycine system: FBRM statistics (in the 1-1000 μm range) for initial 

CLDs of different seed masses of different sizes.............................126 
 
Table 5-7: Glycine system: Averaged FBRM statistics for various seeding 

methods for eight different runs each. .............................................130 



 ix

List of Figures 
 

Figure 2-1: Modes and Mechanisms in Nucleation .............................................13 

Figure 2-2: Schematic of Primary Homogeneous Nucleation .............................15 

Figure 2-3: Metastable Zone Width for various types of Nucleation (Ulrich and 
Strege, 2001)....................................................................................18 

 
Figure 2-4: Concept of seeded and unseeded batch cooling crystallization 

(Fujiwara et al., 2005). ......................................................................26 
 
Figure 3-1: Diagram illustrating travel path of ray of light....................................38 

Figure 3-2: Schematic Diagram of FBRM Probe Tip...........................................50 

Figure 3-3: Chord length measurements ............................................................51 

Figure 3-4: Different Orientations of FBRM probe...............................................52 

Figure 4-1: Experimental set-up for crystallization experiments. In-line 
instruments used include the ATR-FTIR, FBRM, and PVM..............61 

 
Figure 5-1: Calibration of the ATR-FTIR for α-glycine-water using robust 

chemometrics (Togkalidou et al., 2001, 2002) gave a relative error of 
less than 1% with respect to our lowest concentration measurement.
.........................................................................................................74 

 
Figure 5-2: Solubility and metastable zone width of α-glycine measured.  

Reference solubility data were taken from Mullin (2001).  Equation 
shown is the linear fit between measured solubility and temperature.
.........................................................................................................75 

 
Figure 5-3: Typical microphotograph of glycine crystals obtained from 

crystallization experiments.  Scale bar represents 500 μm...............76 
 
Figure 5-4: Comparison of PSD measured with the microscope and FBRM 

square-weighted and non-weighted CLDs for glycine. .....................77 
 
Figure 5-5: Plot of FBRM square-weighted data vs microscope measurements of 

the product crystals of four different runs for glycine. .......................77 
 
Figure 5-6: (a) Sphere corresponding to the longest chord length; (b) Sphere 

corresponding to the other chord lengths .........................................78 
 
Figure 5-7: User-Friendly Control Interface developed in Visual Basic. ..............79 



 x

Figure 5-8: Temperature profiles implemented in T-control experiments for 
glycine system..................................................................................81 

 
Figure 5-9: Glycine system: Normalized square-weighted CLDs of product 

crystals obtained from (a) seeded and (b) unseeded T-control 
experiments; (c): initial CLDs of primary nuclei before the 
implementation of various temperature profiles, of which the product 
crystals are shown in (b).. .................................................................82 

 
Figure 5-10: Supersaturation and FBRM particle counts profiles of a seeded T-

control (linear 0.3 oC/min) run for glycine........................................83 
 
Figure 5-11: Normalized square-weighted CLDs of self-nucleated seeds from 

eight unseeded crystallization experiments for glycine system. .....85 
 
Figure 5-12: Supersaturation and temperature profiles of seeded crystallization 

under S-control at (a) Sset = 0.01 g/g-water and (b) Sset = 0.02 g/g-
water for glycine system. ................................................................88 

 
Figure 5-13: Normalized square-weighted product crystal CLDs obtained from 

seeded systems when Sset = 0.01 g/g-water and Sset = 0.02 g/g-
water for glycine system. ................................................................90 

 
Figure 5-14: Normalized square-weighted product crystal CLDs of (a) five seeded 

and (b) five unseeded S-control experiments at Sset = 0.02 g/g-water 
for glycine system...........................................................................92 

 
Figure 5-15: Temperature profiles obtained from (a) five seeded and (b) five 

unseeded S-control experiments at Sset = 0.02 g/g-water for glycine 
system. ...........................................................................................93 

 
Figure 5-16: Schematic diagram showing the flow of Information in a feedback 

loop.................................................................................................98 
 
Figure 5-17: Detection of the onset of nucleation using FBRM by monitoring the 

number of successive readings showing positive increase in Total 
Counts. .........................................................................................100 

 
Figure 5-18: Temperature Profile of a typical run for glycine system. ...............103 

Figure 5-19: Normalized square-weighted initial CLDs (i.e. CLDs were taken just 
prior to the implementation of any control strategies) from eight (a) 
unseeded, (b) seeded and (c) unseeded with FBRM-Control 
crystallization experiments for glycine system. .............................104 

 



 xi

Figure 5-20: Plot of coefficient of variance (c.v.) vs time in the presence and 
absence of exponential filter for glycine system. ..........................106 

 
Figure 5-21: Normalized square-weighted product crystal CLDs of five (a) 

unseeded (Chew et al.), (b) seeded, and (c) unseeded with FBRM-
Control S-control experiments at Sset = 0.02 g/g-water for glycine 
system. .........................................................................................109 

 
Figure 5-22: Square-weighted CLDs after the detection of primary nucleation for 

glycine system. .............................................................................111 
 
Figure 5-23: (a) Normalized and (b) Non-normalized Square-weighted CLDs after 

adjusting the c.v. for glycine system.............................................112 
 
Figure 5-24: Typical micrograph of paracetamol crystals obtained from 

crystallizationo experiments. Scale bar represents 500 μm..........115 
 
Figure 5-25: Plot of FBRM Square-weighted Data vs Sieve Analysis Data of 

product crystals for paracetamol system. .....................................116 
 
Figure 5-26: Plot of coefficient of variance (c.v.) vs time in the presence and 

absence of exponential filter for paracetamol system...................117 
 
Figure 5-27: Normalized square-weighted CLDs (a) upon primary nucleation and 

(b) after heating to attain setpoint c.v. for paracetamol system ....119 
 
Figure 5-28: (a) Square-weighted and (b) Normalised square-weight CLDs of 1 

and 5 g of seeds (125-212 μm) for glycine system.......................123 
 
Figure 5-29: (a) Square-weighted and (b) Normalized square-weighted CLDs of 

different masses of seeds of different sizes for glycine system. ...126 
 

 
 
 



 1

1) Introduction 

 

 

 

Crystallization is of enormous economic importance in the chemical industry. 

Worldwide production rates of basic crystalline commodity products exceed 1 

Mt/year (Tavare, 1995) and the demand is ever-increasing. In the manufacture of 

these chemicals, crystallization is an important step, which borders on multiple 

disciplines such as physical chemistry, chemical reaction engineering, and 

surface, material, mineral, and biological sciences. Crystallization is employed 

heavily as a separation technique in the inorganic bulk chemical industry in order 

to recover salts from their aqueous solution; while in the organic process industry, 

it is also used to recover crystalline product, to refine the intermediary, and to 

remove undesired salts. The crystallization processes range from the production 

of a bulk commodity crystalline chemical on a very large capacity to clean two-

phase systems to complex multi-phase, multi-component systems involving 

multiple steps in a process sequence.  

 

A key concern of the pharmaceutical industry is to maximize production efficiency 

while improving consistency and quality of the final products. Because many 

drugs are produced and marketed in the crystalline solid state for stability and 

convenience of handling, developments in the governing and regulating of 

crystallization have generated much interests in recent years (see Braatz et al. 
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(2002)  and Yu et al. (2004) and references cited therein). The goal is to ensure 

product consistency and quality through controlling the performances of known 

critical steps and parameters in the manufacturing process.  

 

The fundamental driving force for crystallization from solution is the difference 

between the chemical potential of the supersaturated solution and that of the 

solid crystal face. It is common to simplify this by representing the nucleation and 

growth kinetics in terms of the supersaturation, which is the difference between 

the solution concentration and the saturated concentration. Supersaturation is 

typically created in crystallizers by cooling, evaporation, and/or by adding a 

solvent by which the solute has a lower solubility, or by allowing two solutions to 

intermix. 

 

Control of crystallization processes is critical in a number of industries, including 

microelectronics, food, and pharmaceuticals, which constitute a significant and 

growing fraction of the world economy (Braatz, 2002). Poor control of crystal size 

distribution (CSD) can completely halt the production of pharmaceuticals, 

certainly a serious concern for the patients needing the therapeutic benefit of the 

drug. 

 

The challenges in controlling crystallization are significant. First, there are 

significant uncertainties associated with their kinetics (Braatz, 2002; Gunawan et 

al., 2002; Nagy and Braatz, 2002; Ma et al., 1999; Qiu and Rasmuson, 1994; 
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Nylvt, 1968;). Part of the difficulty is that the kinetic parameters can be highly 

sensitive to small concentrations of contaminating chemicals, which can result in 

kinetic parameters that vary over time. Also, many crystals are sufficiently fragile 

that the crystals break after formation (Kougoulos et al., 2005; Gahn and 

Mersmann, 1995), or the crystals can agglomerate (Yu et al., 2005; Paulaime et 

al., 2003; Fujiwara et al., 2002; Yin et al., 2001; Masy and Cournil, 1999) or 

erode or re-dissolve (Garcia et al., 2002, 1999; Prasad et al., 2001; Sherwood 

and Ristic, 2001) or other surface effects that are difficult to characterize. Another 

significant source of uncertainty in industrial crystallizers is associated with 

mixing. Although crystallization models usually assume perfect mixing, this 

assumption is rarely true for an industrial-scale crystallizer.   

 

Crystallization processes are highly non-linear, and are modeled by coupled 

nonlinear algebraic integro-partial differential equations (Attarakih et al., 2002; 

Rawlings et al., 1992). The very large number of crystals is most efficiently 

described by a distribution. For the case of distribution in shape as well as overall 

size, there are at least three independent variables in the equations. Simulating 

these equations is challenging because the crystal size distribution can be 

extremely sharp in practice, and can span many orders of magnitude in crystal 

length scale and time scale (Hu et al., 2005; Puel et al., 2003; Monnier et al., 

1997).  
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Another challenge in crystallization is associated with sensor limitations. The 

states in a crystallizer include the temperature, the solution concentration, and 

the crystal size and shape distribution. The solution concentration must be 

measured very accurately to specify the nucleation and growth kinetics.  

 

 

1.1) Motivation and Objective 

This thesis presents the work carried out in the control of batch cooling 

crystallization. The objective of this project is chiefly to evaluate the benefits of 

new methods for controlling crystallizations over conventional methods using 

temperature control. S-Control, the more common method of feedback control 

using in-line instrumentation Attenuated Total Reflection-Fourier Transform 

Infrared (ATR-FTIR), was evaluated. Then, a novel concept of using Focussed 

Beam Reflectance Measurement (FBRM) in a closed-loop feedback loop was 

investigated. 

 

The reason for the prevalent use of the indirect approach is the lack of accurate 

in-line sensors for the measurement of particle size and solution concentrations.  

In recent years, accurate in-line sensors that are robust enough to be used in 

production environment have become available (see Yu et al. (2004) and Braatz 

(2002) and references cited therein). This opens up the possibility of using such 

measurements to control crystallizations interactively. The most commonly used 

feedback control method is the closed-loop supersaturation-control (S-control) 
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using ATR-FTIR technique in which supersaturation is controlled at a constant 

level. This control method has been implemented for a variety of cooling and 

more recently, anti-solvent crystallizations (Yu et al., 2006; Zhou et al., 2006). 

These past studies have shown that S-control is sensitive to the pre-set 

supersaturation value (Sset). A suitable Sset value should be one that will promote 

growth while suppress nucleation and ensure a reasonable batch time. To 

encourage growth relative to nucleation, Sset has to be somewhere between the 

solubility curve and metastable zone limit. A lower Sset is expected to give better 

quality product crystals with narrower CSD due to its increased suppression of 

secondary nucleation, but is disadvantageous in terms of increased batch time. 

On the other hand, a higher Sset is expected to generate more fines due to faster 

growth as a consequence of its proximity to the metastable limit, but is 

advantageous in terms of reduced batch time. 

 

The claimed benefits for S-control approach include more consistent products in 

terms of CSD and improved robustness (Yu et al., 2006; Gron et al., 2003; 

Fujiawara et al., 2002). Therefore the aim of this study was to assess the benefits 

of in-line control, specifically S-control, over conventional control (T-control) for 

achieving consistent particle properties and avoiding fines in cooling 

crystallizations. Namely, the following hypotheses have been tested: 

 Non-linear temperature profiles will give improvements over linear 

profiles. 

 S-control is better than T-control. 
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 S-control is effective in unseeded as well as seeded crystallizations. 

 S-control is sensitive to Sset. 

 

FBRM has emerged as a widely used technique for the in situ characterization of 

crystallization systems (refer to Chapter 3.3). It has been used to develop and 

optimize crystallization processes (Doki et al., 2004; Worlitschek and Mazzotti, 

2004; Tadayyon and Rohani, 2000), track and trouble-shoot crystallizer systems 

(Wang et al., 2006; Wang and Ching, 2006; Yu et al., 2006; O’Sullivan and 

Glennon, 2005; Deneau and Steele, 2005; Kougoulos et al., 2005; Heath et al., 

2002; Abbas et al., 2002; Barrett and Glennon, 1999), to monitor polymorphic 

forms (Scholl et al., 2006; O’Sullivan et al., 2003), and in control of crystallization 

systems (Barthe and Rousseau, 2006; Barrett and Ward, 2003; Barrett and 

Becker, 2002). The objective of any process monitoring is to ultimately bring 

about control to the process. Yet, despite the proven useful applicability of FBRM 

in crystallization, there has not been any published work of implementation of 

closed-loop feedback control using FBRM to the best of the authors’ knowledge. 

 

In seeded crystallization processes, the point of seeding is pre-determined, 

hence ensuring consistency in the process. On the contrary, in unseeded 

systems, initial nuclei are generated by primary nucleation, which is 

unpredictable in that it may occur at different temperatures for different runs. 

Primary nucleation is deemed to have occurred when the fresh nuclei starts 

forming spontaneously from the clear solution. Parsons et al. (2003) termed this 
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the ‘cloud point’. Since primary nucleation is unpredictable and do not occur at a 

fixed temperature, the usual practice is for an operator to be physically present to 

monitor the point of occurrence of nucleation then manually start the control 

profiles thereafter, subject to the discretion of the operator in defining the exact 

point of primary nucleation. Alternatively, the point of primary nucleation is simply 

deemed to have occurred at some point during the cooling profile, which is pre-

determined despite the inability to predict the exact point of primary nucleation 

prior. This hence necessitates a means to detect nucleation, after which different 

cooling profiles are implemented. A closed-loop feedback control using the 

FBRM could improve automation of the process. As Barthe and Rousseau (2006) 

have pointed out, the onset of nucleation is clearly identified by the sudden 

increase in the chord counts by the FBRM. Barrett and Glennon (2002) have also 

used FBRM to successfully detect the metastable zone width (MZW). The 

feasibility and applicability of automating primary nucleation detection through the 

use of a feedback loop involving FBRM is investigated in this work. 

 

In contrast to seeded systems in which the amount of seeds added is specific, 

the initial nuclei formed by primary nucleation in unseeded systems are random 

and irreproducible for different runs. Even with exactly the same initial conditions 

and cooling rate in approaching nucleation, primary nucleation gives different 

initial seeds; hence product consistency is not possible for every run. Seeding is 

known to be advantageous in ensuring product consistency because the size 

range of the seeds, whether the seeds are added dry or wet, the temperature at 
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which the seeds are added, and the amount of seeds are all pre-determined, 

thereby ensuring increased consistency in product crystals. However, the 

scarcity of ports in crystallization vessels in the industry makes the port 

requirement for seeding a disadvantage. Industries have to weigh the pros and 

cons of using a port of a crystallization vessel for the insertion of a probe for in-

line monitoring or for the purpose of seeding. The trade-off for using the port for 

seeds addition instead of for insertion of a probe for in-line monitoring is the loss 

of useful data for constant monitoring of the crystallization process. On the 

contrary, if the port were to be used for probe insertion, the crystallization 

process has to be operated as unseeded systems, which subjects the system to 

the irreproducibility and randomness of primary nucleation. Oftentimes, a 

decision has to be made between seeding or the insertion of an in-line probe. 

This hence motivates a means to manipulate the nuclei generated by primary 

nucleation in unseeded systems to achieve consistent nuclei from primary 

nucleation in different runs, which thereby provides a viable alternative to 

external seeding and allows for in-line monitoring of the process through a probe 

(Yu et al., 2004; Sistare et al., 2005; Birch et al., 2005; and Barrett et al., 2005). 

 

The strategy employed in this work is to manipulate the system temperature 

according the FBRM statistics to enforce consistency in the initial seeds 

generated by primary nucleation. Cerreta and Liebel (2000) have asserted that 

the FBRM provides the necessary and sufficiently accurate in-line assessment to 

return a deviation to a set-point. FBRM Control Interface gives users many 
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different statistics, and the paramount concern is which of these statistics should 

be controlled to bring about an improvement to a crystallization process. 

Controlling the absolute particle counts (Doki et al., 2004), in particular the fines 

particle counts, may seem like a good idea at first; however, such a control is not 

easily amenable for scale-up nor for a different system, hence is not as useful, 

although counts may be the most reliable statistic generated by FBRM.  

 

A model system for such a study should have a suitable solubility curve for 

aqueous crystallizations, as well as being readily available and non-toxic. Glycine 

met these criteria. The potential disadvantage of known polymorphism was not 

relevant because unseeded crystallizations from water always give the 

metastable α-glycine, which is kinetically stable. Moscosa-Santillan et al. (2000) 

used a spectral turbidimetrc method for on-line crystal size measurement and 

simulation to devise an optimal temperature profile for seeded batch cooling 

crystallization of glycine.  Doki et al. (2004) reported a process control strategy 

for the seeded production of glycine by manipulating the alternating temperature 

profile and the final termination temperature, resulting in the avoidance in the 

generation of fines.  In their work, however, the ATR-FTIR was used only to 

monitor the system supersaturation, without the implementation of a closed-loop 

feedback control loop.  Our current work considers the potential advantages of 

implementing an automated approach of supersaturation control (S-control) for 

controlling seeded and unseeded batch crystallization of glycine.   
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1.2) Thesis Overview 

Fundamentals of crystallization, comprising of nucleation, metastable zone, and 

growth are first presented in Chapter 2. 

 

Next, techniques and instruments measuring various aspects of crystallization in-

line are discussed in Chapter 3. The Process Analytical Technology (PAT) 

initiative is discussed. The principles and applicability of ATR-FTIR, FBRM, and 

PVM, the instruments of interest in this work, are then elucidated.  

 

Chapters 4 and 5 describe the control strategies used in batch cooling 

crystallization in this work. The benefits, or lack thereof, of closed-loop feedback 

Supersaturation Control (S-control) was analyzed against the conventional open-

loop Temperature Control (T-control). Subsequently, two novel strategies 

involving closed-loop feedback using FBRM was proposed and investigated. In 

the first strategy, FBRM was used in the automatic detection of primary 

nucleation. The second strategy involves using FBRM to achieve consistent 

initial ‘seeds’ generated through primary nucleation, thereby superseding the 

advantage of external seeding. 

 

Finally, the first section of chapter 6 gives an overall conclusion of the results in 

this work, while the second discusses compelling trends and potential future 

opportunities in the field of solution crystallization research. 
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2) Background 

 

 

 

Crystallization from solution can be considered a two-step process. The first step 

is a phase separation, called nucleation, and the second step is the subsequent 

growth of nuclei to crystals. The prerequisite for crystallization to occur is a 

supersaturated solution, and supersaturated solutions are not at equilibrium. 

Since every system strives to reach equilibrium, supersaturated solutions finally 

crystallize. By crystallizing, the solutions move towards equilibrium and 

supersaturation is relieved by a combination of nucleation and crystal growth. 

Various nucleation mechanisms (Yin et al., 2001; Mersmann, 1996; Nyvlt, 1984) 

and crystal growth mechanisms (Mullin, 2001; Ulrich, 1989) have been proposed 

to explain these phenomenons. 

 

The two kinetic steps - nucleation and crystal growth - dominate the production 

process of crystalline products. In industrial crystallization, crystal size 

distribution (CSD) and mean crystal size as well as external habit and internal 

structure are important characteristics for further use of the crystals. With regard 

to product characteristics, nucleation, as the first of the two kinetic steps, usually 

has a strongly predetermining influence on the second step crystal growth. 

Nucleation and growth are strongly interrelated to the width of the metastable 

zone or the metastability of a system set to crystallize.  
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The relation of the degree of nucleation to crystal growth determines important 

product properties, such as product crystal size and size distribution. But even 

the crystal shape (Hentschel and Page, 2003; Winn and Doherty, 2000) can be 

influenced distinctly by the conditions of growth, such as type of solvent used 

(Lahav and Leiserowitz, 2001; Li et al., 2000; Granberg et al., 1999) or presence 

of impurities (Li et al., 2001; Prasad et al., 2001; Hendriksen et al., 1998). A 

given crystal face can also be ‘seeded’ by exposing it to a particular nucleating 

surface (Yin et al., 2001). The crystalline form of the drug, as well as the 

characteristics of the particles, determine the end-use properties of the 

pharmaceutical product such as the in vivo dissolution rate, and the various 

transport properties involved in the delivery of the active ingredient.  Furthermore, 

the purity of crystalline products strongly depends on the growth rate, since, for 

example, fast growth may lead to liquid inclusions. The above-mentioned aspects 

clarify the necessity for the control of crystallization processes. Without the 

control of crystallization processes no desired and reproducible product quality 

comprising crystal size distribution (CSD), shape and purity can be ensured. 

 

This chapter presents the fundamentals of crystallization comprising of concepts 

of nucleation, metastable zone and growth.  
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2.1) Nucleation 

Nucleation from solution is the generation of new crystalline phase, under 

conditions where a free energy barrier exists. Nuclei are the first formed embryos, 

which subsequently grow to produce visible tangible crystals. It occurs due to the 

clustering or aggregation of molecules or ions in a supersaturated melt, solution 

or vapor, to a size at which such entities become viable in that they will grow 

rather than re-dissolve. 

 

Nucleation can be distinctly divided into two subsets – primary and secondary. 

Figure 2-1 summarizes the modes and mechanisms of nucleation aptly. 

 

 

Nucleation

Primary Secondary 
(spontaneous; without crystalline matter) (induced by crystals) 

Shear Attrition 
(due to fluid 

flow) 
(due to particle 

impact or fluid flow) Homogeneous Heterogeneous 
(spontaneous 

nucleation from 
clear solution) 

(induced by 
foreign particles)

Contact Fracture 
(with other crystals or 

crystallizer parts) 
(due to particle 

impact) 

Needle 
(due to particle 

disruption) 

Figure 2-1: Modes and Mechanisms in Nucleation 
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The condition of supersaturation or supercooling alone is not sufficient for a 

system to begin to crystallize. Before crystals can develop there must exist in the 

solution a number of minute solid bodies, embryos, nuclei or seeds, which act as 

centers of crystallization. Nucleation may occur spontaneously or it may be 

induced artificially. It is not always possible, however, to determine whether a 

system has nucleated with or without the influence of some external stimulus. 

 

Nucleation can often be induced by agitation, mechanical shock, friction and 

extreme pressures within solutions and melts. The erratic effects of external 

influences such as electric fields, spark discharges, ultra-violet light, X-rays, γ-

rays, sonic and ultrasonic irradiation have also been studied, but none so far has 

found any significant application in large-scale crystallization practice (Jones, 

2002). 

 

 

2.1.1) Primary Nucleation 

Primary nucleation occurs mainly at high levels of supersaturation and is thus 

most prevalent during unseeded crystallization or precipitation. This mode of 

nucleation may be subdivided into homogeneous (i.e. spontaneous nucleation 

from clear solution) and heterogeneous (i.e. nucleation due to the presence of 

foreign solid particles). 
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Homogeneous nucleation occurs when there are no special objects inside a 

phase which can cause nucleation (Figure 2-2). It involves forming a stable 

nucleus in a supersaturated solution. Not only have the constituent molecules to 

coagulate and resist the tendency to re-dissolve, but they also have to become 

oriented into a fixed lattice. The number of molecules in a stable crystal nucleus 

can vary from about ten to several thousands (Mullin, 2001). However, a stable 

nucleus could hardly result from simultaneous collision of the required number of 

molecules since this would constitute an extremely rare event. Gibbs considered 

the change of free energy during homogeneous nucleation, which leads to the 

classical nucleation theory and to the Gibbs-Thompson relationship in Eq. 1-1 

(Mullin, 2001).  
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         (Eq. 1-1) 

 

where γ is the interfacial tension, v is the molecular volume, k is the Boltzmann 

constant, S is the supersaturation ratio *c
c , c is the solution concentration and c* 

is the equilibrium saturation concentration.  

 

 

 

 

 
Figure 2-2: Schematic of Primary Homogeneous Nucleation 

 
. 
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Heterogeneous nucleation, on the other hand, occurs when there are foreign 

particles or surfaces inside a phase which can cause nucleation. It becomes 

significant at lower supersaturation levels. Although most primary nucleation in 

practice is liable to be heterogeneous rather than homogeneous, it is difficult to 

distinguish between the two types. The functional form of the nucleation rate is 

similar to that in Eq. 1-1, but the overall effect is to reduce the critical level of 

supersaturation or metastable zone width. 

 

 

2.1.2) Secondary Nucleation 

Secondary nucleation takes place only because of the prior presence of crystals 

of the material being crystallized. A supersaturated solution nucleates much 

more readily, i.e. at a lower supersaturation, when crystals of the solute are 

already present or deliberately added. The crystal surface at the solid-liquid 

interface appears to play an important role in all the secondary nucleation 

processes. Most experimental observations tend to indicate that the secondary 

contact nucleation process provides an important source for producing nuclei and 

that in industrial practice the secondary nucleation has predominant influence on 

the overall performance (Tavare, 1995). 

 

The nucleation rate may in general be represented by the semiempirical relation 

in Eq. 2-2. The nucleation rate constant kb may be a function of many other 

variables, in particular, temperature, hydrodynamics, presence of impurities, and 
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crystal properties. The power law term  represents the kj
kµ

th moment of the CSD 

in the crystallizer. Normally, the use of the third moment is found to be suitable to 

account for the secondary nucleation effects. 

bj
kb ckB ∆= µ'                                                    (Eq. 2-2) 

 
 

 

2.2) Metastable Zone  

The metastable zone is a region bounded by the equilibrium and metastable 

curves, where the solution is supersaturated while spontaneous crystallization 

does not occur. This constitutes the allowable supersaturation level during every 

crystallization process. Only by further increase of the supersaturation will a 

certain degree of supersaturation be reached at which spontaneous nucleation 

occurs: the metastable limit. This metastable limit is, in contrast to the saturation 

limit, thermodynamically not founded and kinetically not well defined. It depends 

on a number of parameters such as temperature level, rate of generating the 

supersaturation, solution history, impurities, fluid dynamics, reactor dimensions 

and configurations, etc.  

 

The metastable zone width (MZW) results from the specific characteristics of 

nucleation in a supersaturated solution of soluble substances. The metastable 

zone width can be considered as a characteristic property of crystallization for 

each system. Also it is an important parameter to analyze the specifications of 

the products obtained from the industrial crystallization processes, such as 
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product crystal size, crystal size distribution (CSD) and crystal shape by its 

contribution to nucleation and crystal growth (Kim and Mersmann, 2001). 

 

It is difficult to predict the metastable zone width (MZW) because it is difficult to 

pinpoint the exact type of nucleation acting in each system. Most of the 

parameters associated with MZW estimation are closely connected with the 

description of nucleation behavior in the solution. Figure 2-3 compares the 

metastable zone width for different modes of nucleations.  

 

 
Figure 2-3: Metastable Zone Width for various types of Nucleation (Ulrich and Strege, 

2001) 
 
 

Many authors have tried to express the MZW with certain parameters as semi-

empirical relationships (Kim and Ryu, 1997; Nyvlt et al., 1970). Mullin and Jancic 

(1979) and Nyvlt (1968) have published the experimental methods to measure 

the MZW and the procedure to interpret the nucleation order according to simple 

empirical nucleation equation. Regardless of the type of nucleation, the 

measurement of MZW is mainly carried out by the polythermal method, in which 
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nuclei are detected visually or instrumentally (Parsons et al., 2003; Barrett and 

Glennon, 2002; Fujiwara et al., 2002; Nyvlt et al., 1970). Little attention has been 

paid so far to the prediction of MZW because it is difficult to know what 

nucleation is contributing to metastability in each system. A simplified model 

based on integral growing of nucleus in nucleation was presented to predict the 

MZW, which was limited for seeded solutions (Mersmann and Bartosch, 1997). 

Kim and Mersmann (2001) attempted prediction of the MZW for several 

nucleation processes. Their study aimed at obtaining the relations which would 

enable a satisfactory estimate of MZW in the crystallizer acting with 

homogeneous nucleation, heterogeneous nucleation, and surface nucleation.  

 

A control of the actual supersaturation is mandatory to be able to exert a targeted 

influence on nucleation and growth processes (Fujiwara et al., 2005). In order to 

design products by crystallization processes it is essential to measure on- and in-

line supersaturation and metastability. Only optimum nucleation points as well as 

optimum growth rates throughout the process can ensure the desired product 

quality. In other words, optimum crystallization processes can only be 

accomplished if the metastable zone width and the actual operation point of the 

crystallizer within this zone is known and controlled during the entire process. 

This necessitates sensors and control strategies capable of serving that purpose. 
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2.3) Growth 

Once a stable nuclei has been formed in a supersaturated or supercooled 

system, it begins to grow into crystals of visible size. Many theories have evolved 

to explain the mechanisms of crystal growth. 

 

The diffusion theories presume that matter is deposited continuously on a crystal 

face at a rate proportional to the difference in concentration between the point of 

deposition and the bulk of the solution (Jones, 2002). The mathematical analysis 

is similar to that used for other diffusional and mass transfer processes. In this 

theory, crystal growth is a diffusion and integration process, modified by the 

effect of the solid surfaces on which it occurs. When a crystal surface is exposed 

to a supersaturated environment, the flux of growth units (atoms, ions, 

molecules) to the surface exceeds the equilibrium flux so that the number of 

growth units joining the surface is greater than that leaving. The adsorption-layer 

theories have received much attention too (Tai et al., 1992; Mullin, 2001). At the 

surface, the growth units must become organized into the space lattice through 

an adsorbed layer. This results in growth of the surface. The ability of a surface 

to capture arriving growth units and integrate them into the crystal lattice is 

dependent upon the strength and number of interactions that can form between 

the surface and the growth unit. This theory suggests that crystal growth is a 

discontinuation process, taking place by adsorption, layer by layer, on the crystal 

surface. 
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The rate of crystal growth can be expressed as the rate of displacement of a 

given crystal surface in the direction perpendicular to the face. Variations occur in 

the shape of the crystal when individual faces grow at different rates, the overall 

crystal habit being determined by the slowest growing face (Mullin, 2001). It has 

been proposed that crystal growth rates are particle size dependent.  

 

Size-dependent growth theory is concerned with the growth rate change of a 

crystal solely on account of its size. In this theory, three effects cause larger 

crystals to grow faster: 

 

• The effect of size is closely linked to the solution velocity: Larger particles 

have higher terminal velocities than those of smaller particles, hence in cases 

where diffusion plays a dominant role in the growth process, the larger the 

crystals the higher the growth rate. 

 

• The Gibbs-Thomson effect exerts a powerful effect at sizes smaller than a 

few micrometers. Crystals at near-nucleic size may grow at extremely slow 

rates because of the lower supersaturation they experience owing to their 

higher solubility. Hence the smaller the crystals, the lower their growth rate.  

 

• Surface integration kinetics is postulated to be size-dependent. The number 

of dislocations in a crystal increases with size due to mechanical stresses, 

incorporation of impurity species into the lattice, etc. In addition, the larger the 
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crystals the more energetically will they collide in agitated suspensions and 

the greater are the potential for surface damage. Both these effects favor 

faster surface integration kinetics and lead to higher growth rates with 

increasing crystal size. 

 

In contrast, the growth rate dispersion theory refers to the fact that individual 

crystals, all initially of the same size, can grow at different rates, even if each 

apparently is subjected to exactly identical growth environments. Ulrich (1989) 

and Tavare (1991) have made excellent reviews on this topic. Growth rate 

dispersion stems mainly from different interfaces with the surface integration 

kinetics on different crystals. The less ductile the crystals, the more likely they 

are prone to growth rate dispersion. 

 

Various growth rate measurements can be categorized in a number of ways 

(Garside et al., 2002). 

 

• Measurements can either be made on single crystals, or on a population, i.e. 

a large number of crystals. The former are particularly valuable for 

fundamental studies of growth mechanisms and habit modification, while the 

latter are usually employed for purposes more directly related to design. 

 

• Supersaturation and crystal size may be approximately constant during the 

growth period, or there may be significant variations in these parameters. In 
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the former case, point values of growth rate are obtained directly; in the latter, 

point values have to be extracted from the overall system responses. These 

two cases correspond to the differential and integral techniques respectively, 

as widely used in chemical reaction engineering. 

 

• The measurement defining the growth rate can be obtained from changes in 

the crystals (e.g. increases in their size or mass) or changes in the solution 

concentration arising from the deposition of solute into the crystal. These two 

cases, depending on the ‘solid side’ and ‘solution side’ information 

respectively, are linked through a mass balance, as expressed follows: 

dt
dM

Vdt
dw c

LLρ
1

=−                                  (Eq. 2-3) 

Where w is the mass fraction solution concentration, Mc is the total mass of 

crystals in suspension, ρL is the solution density, and VL is the volume of 

solution in the crystallizing system. 

 

• Experiments can be carried out isothermally or non-isothermally. The former 

is the more common procedure, although the latter offers the possibility of 

determining activation energies of crystal growth directly. 
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2.4) Control Strategies for Batch Cooling Crystallization 

The principal consequences of a bad control of crystallizers are the non-

reproducibility and the low quality of the solids produced (Jones, 2002; Mullin, 

2001). In uncontrolled crystallization processes, nucleation starts stochastically 

and as a result, product quality varies distinctively. Consequently, the feedback 

control of industrial crystallizers or at least the optimization of operating 

conditions is of potentially great importance.  

 

Since the generation of supersaturation conditions in solution crystallization 

mainly depends on the cooling rate, substantial research activity has been 

devoted to the computation of optimal temperature trajectories (Jones, 1974; 

Jones and Mullin, 1974; Mullin and Nyvlt, 1971), or optimal operating policies 

(Ward et al., 2006; Rohani et al., 2005a, b; Yu et al., 2005; Takiyama et al., 

2002). Most past studies in batch crystallization control have dealt with finding 

the open-loop temperature versus time trajectory that optimizes some 

characteristics of the desired crystal size distribution (CSD), as discussed in 

several papers (Braatz, 2002; Monnier et al., 1997; Matthews et al., 1996; Miller 

and Rawlings, 1994; Rawlings et al., 1993; Barrera and Evans, 1989). This 

classical approach requires the development of a first-principles model with 

accurate growth and nucleation kinetics, which can be obtained in a series of 

continuous or batch experiments. Uncertainties in the parameter estimates, 

nonidealities in the model assumptions, and disturbances have to be taken into 

account to ensure that this approach results in the expected optimized product 
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quality (Nagy and Braatz, 2004; Ma and Braatz, 2003; Togkalidou et al., 2002; 

Ma et al., 1999; Eaton and Rawlings, 1990).  

 

However, the efficiency of such control policies strongly depends upon the 

accuracy of the nucleation and growth kinetic parameters which are required to 

calculate optimal temperature profile (Nagy and Braatz, 2004; Ma et al., 1999). 

Moreover, the assessment of these parameters requires cautious and complex 

experimental work, which is impractical in the context of industrial development. 

The optimal strategies in question are basically “open-loop”, which means no in-

line or on-line measurement of the crystallization process is necessary. As such, 

deviations of the process conditions, quality, productivity and reproducibility are 

almost inevitable due to industrial disturbances (e.g. batch-to-batch variations of 

Impurities). An immediately conceivable solution to this problem lies in the 

“closed-loop” control of crystallizers, which has recently been an active field of 

research. Several review papers have been published on this topic (Fujiwara et 

al., 2005; Braatz, 2002; Miller and Rawlings, 1994; Eaton and Rawlings, 1990). 

 

Usually the main objective of batch crystallization is to produce large uniform 

crystals (to ease downstream processing) within a given time. Since a large 

number of nuclei form if the supersaturation crosses the metastable limit, most 

crystallizers are operated by adding seeds near the start of the batch and 

maintaining the supersaturation within the metastable zone, where the nucleation 

and growth processes compete for the solute molecules. Both the nucleation and 
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growth rates are positively correlated with supersaturation. An optimal control 

strategy should have a high enough supersaturation that the growth rate is 

significant (so that the batch runs are not too long) but low enough 

supersaturation to keep the rate of nucleation low. Seeding reduces the 

productivity of each batch, but can lead to more consistent crystals when the 

crystallizer is poorly controlled (Chung et al., 1999). An alternative unseeded 

method creates the seed inside the crystallizer. Figure 2-4 shows typical 

operating lines for each method, in the concentration versus temperature 

diagram. For seeded operation, the seed is introduced shortly after the solubility 

curve is crossed and the operating line should remain within the metastable zone. 

For unseeded operation, the operating line first reaches the metastable limit to 

generate primary nucleation and then the supersaturation should be kept below 

the metastable limit similar to the seeded system. 
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Figure 2-4: Concept of seeded and unseeded batch cooling crystallization (Fujiwara et al., 
2005). 
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Fujiwara et al. (2005) reviewed the recent technological advances in the in-situ 

control of pharmaceutical crystallization processes. First principles and direct 

design approaches were compared and their relative merits and demerits were 

discussed. First principles approach provides more insight into crystallization 

process through simulation but parameter uncertainties and non-idealities in the 

model assumptions hamper its effectiveness in controlling crystallization. Direct 

design approach circumvents such modeling issues and is simpler to design and 

implement. The authors also compared T- and S-control strategies and 

concluded that S-control is less sensitive to most practical disturbances and to 

variations in nucleation and growth kinetics. 
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3) In-Line Monitoring Techniques 

 

 

 

Crystallization is one of the most critical and least understood pharmaceutical 

manufacturing processes. Many process and product failure can be traced to a 

poor understanding and control of the crystallization process.  

 

Most crystallization processes in the pharmaceutical industry are designed and 

controlled based on trial-and-error experimentation, which can be time 

consuming and expensive. Recent advances in process sensor technologies 

have improved the monitoring capabilities during the operation of crystallization 

processes (see Braatz, 2002 and references cited therein). And the whole 

objective of monitoring the process in-situ is so that some form of control can be 

brought about in the event that the process has veered away from product 

specifications. 

 

Faster computers and advances in sensor technologies and simulation and 

control algorithms are removing the main bottlenecks that limited progress in 

crystallization control. Recently, in-line sensors have enabled the development of 

systematic first-principles (model-based) and direct design (measurement-based) 

approaches for the control of industrial crystallization processes (Fujiwara et al., 

2005). Pharmaceutical processes are increasingly making use of in-line sensors 
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to monitor in real time and bring about enhanced control of the crystallization 

process. Further advances are expected to lead to even more utilization of these 

techniques to reduce time-to-market and increase productivity, which are key 

industrial ideals.  

 

A few examples of in-line sensors that have received much attention are as ATR-

FTIR (Chapter 3.2), FBRM (Chapter 3.3), and PVM (Chapter 3.4). In addition, 

both near-infrared (NIR) spectroscopy (Norris et al., 1997) and Raman 

spectroscopy coupled with fiber optics have been used for the in situ detection 

and optimization of various polymorphs (Scholl et al., 2006; Ono et al., 2004; 

Starbuck et al., 2004; Agarwal and Berglund, 2003). Raman spectroscopy has 

been also used for monitoring solution concentration during protein crystallization 

(Schwartz and Berglund, 2002, 2000; Tamagawa et al., 2002).  

 

Even with these advances in in-line sensors and a better understanding of the 

crystallization mechanisms at the molecular level (Winn and Doherty, 2002), 

pharmaceutical crystallization processes can be challenging to control due to 

variations in solution thermodynamics and kinetics due to small concentrations of 

contaminating chemicals, complex nonlinear dynamics associated with non-ideal 

mixing and dendritic growth, and unexpected polymorphic phase transformations 

(Rodriguez-Hornedo and Murphy, 1999).  
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In this chapter, the Process Analytical Technology (PAT) concept is first 

introduced. Then, the three main instruments – ATR-FTIR, FBRM, and PVM - 

used in this work is reviewed. The principles belying and their applications will be 

presented. 

 

 

3.1) Process Analytical Technology (PAT) 

The Food and Drug Administration’s (FDA) process analytical technology (PAT) 

initiative is a collaborative effort with industry to introduce new and efficient 

manufacturing technologies into the pharmaceutical industry. Although PAT has 

been widely used in the chemical industry, its application in the pharmaceutical 

industry is still at its infant stage (Yu et al., 2004). PAT’s are systems for design, 

analysis, and control of manufacturing processes, based on timely 

measurements of critical quality and performance attributes of raw and in-

process materials and products, to assure high quality of products at the 

completion of manufacturing. The application of PAT to crystallization is currently 

an area of high interest for both the chemical development and manufacturing 

arenas. This scenario is partly due to the growing emphasis on PAT as a tool for 

“21st Century Manufacturing” as described in the guideline document “PAT – A 

Framework for Innovative Pharmaceutical Development, manufacturing, and 

Quality Assurance” issued by the U.S. FDA in 2004①.  This effort, however, is 

also a reflection of the increasing awareness within the chemical industry that 

                                                 
① FDA guidelines on PAT: http://www.fda.gov/cder/guidance/6419fnl.htm 
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crystallization processes are often poorly understood and poorly controlled (Birch 

et al., 2005). 

Implementation of PAT involves scientifically based process design and 

optimization, appropriate sensor technologies, statistical and information tools 

(chemometrics), and feedback process control strategies working together to 

produce quality products (Yu et al., 2004; Sistare et al., 2005; Barrett et al., 2005). 

There are many current and new tools available that enable scientific, risk-

managed pharmaceutical development, manufacture, and quality assurance. 

These tools, when used within a system can provide effective and efficient 

means for acquiring information to facilitate process understanding, develop risk-

mitigation strategies, achieve continuous improvement, and share information 

and knowledge. In the PAT framework, these tools can be categorized as②: 

• Multivariate data acquisition and analysis tools  

• Modern process analyzers or process analytical chemistry tools  

• Process and endpoint monitoring and control tools  

• Continuous improvement and knowledge management tools  

An appropriate combination of some, or all, of these tools may be applicable to a 

single-unit operation, or to an entire manufacturing process and its quality 

assurance.  

 

                                                 
② FDA’s PAT initiative: http://www.fda.gov/cder/OPS/PAT.htm#Introduction 
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Yu et al. (2004) gave a review on the application of PAT to crystallization 

processes and discussed the various in-situ analytical tools available.  A few 

case studies were used to illustrate the use of the PAT concept to control 

important aspects of product quality, e.g. particle size, shape and polymorphic 

form.  FTIR-ATR, FBRM and PVM, which are used in this work, have been 

highlighted as the three major tools in the monitoring and control of particle size 

and shape.  Barrett et al. (2005) also presented a review on the use of PAT for 

the understanding and optimization of batch crystallization process.  This review, 

however, concentrates only on discussing the ability of FBRM in monitoring the 

change in PSD in different crystallization systems.  Other authors presented 

industrial case studies on how PAT was employed to provide insights into 

crystallization processes (Scott and Black, 2005).   

 

Applications of PAT to crystallization processes can be broadly classified into 

four categories as follows (Birch et al., 2005): 

 

• The use of in-line sensors to monitor and control solution concentration 

throughout the crystallization process. Dunuwila et al. (1994) was the first to 

propose and demonstrate the applicability of ATR-FTIR for monitoring 

solution concentration in-line (refer to Chapter 3.2). FTIR spectroscopy has 

since garnered widespread interest from industry and academia, sprouting 

several publications of its application for the control of crystallization (Gron et 

al., 2003; Fevotte, 2002; Liotta and Sabesan, 2002; Togkalidou et al., 2001).  
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• The use of PAT to monitor polymorph or pseudo polymorph conversion in real 

time, with a view to understand the kinetics of the transition and gain 

knowledge necessary to develop a robust process (Ono et al., 2004; Agarwal 

and Berglund, 2003; Starbuck et al., 2002). 

 

• Applications to a control strategy based on first principles, as described in 

Togkalidou et al. (2004). 

 

• Particle engineering through monitoring and control of the CSD via a PAT tool. 

FBRM③ has been the instrument at the forefront of research in this field (refer 

to Chapter 3.3). 

 

A goal of the PAT initiative is to encourage the application of process engineering 

expertise in pharmaceutical manufacturing and regulatory assessment (Yu et al., 

2004). The results of PAT are a depth of process knowledge leading to optimized 

operation with control systems that ensure quality outcomes. While models 

analyzing the information obtained from process measurements provide a 

framework for representing process knowledge, PAT enables such 

measurements and modeling to be performed in real-time and on-line. Quality-

control using PAT is based on in-process electronic data rather than laboratory 

testing on a subset of the final product. Thus, PAT holds the potential for 

                                                 
③ Details of FBRM can be found at Mettler-Toledo’s website: http://www.mt.com/lasentec. 
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improving efficiency and quality. Some of the benefits PAT bestows on 

pharmaceutical manufacturing include: 

• Enhancing process understanding and reducing process failures 

• Ensuring quality through optimal design, continuous monitoring, and feedback 

control 

• Reducing cycle time to improve manufacturing efficiency 

• Identifying the root causes of process deviations 

• Basing regulatory scrutiny on process knowledge and scientifically based risk 

assessment 

 

Production crystallizations can be difficult processes to characterize and improve. 

Traditionally, pharmaceutical crystallization processes have been developed 

empirically. Thus, there is much to be gained in applying PAT to these systems. 

Aspects of PAT applied to crystallization include identification of critical variables, 

sensor technologies to observe these variables, chemometrics tools to manage 

and interpret data, and process control schemes. 

 

 

3.2) Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) 

ATR-FTIR spectroscopy enables accurate measurement of solution 

concentrations for crystallization processes (Liotta and Sabesan, 2004; Fujiwara 

et al., 2002; Groen and Roberts, 2001; Lewiner et al., 2001; Dunuwila and 

Berglund, 1997), including the multi-solvent multi-solute organic systems 
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commonly encountered during pharmaceutical crystallization. A significant 

advantage of ATR-FTIR spectroscopy over most other methods for solution 

measurement is the ability to provide simultaneous measurement of multiple 

chemical species. ATR-FTIR spectroscopy has also been applied to the 

detection of the metastable limit (Barrett and Glennon, 1999), monitoring during 

polymorphic transitions (O’Sullivan et al., 2003; Aldridge et al., 1996; Buckton et 

al., 1998; Salari and Young, 1998; Skrdla et al., 2001), and evaluation of 

impurities (Otte et al., 1997) during crystallization. 

 

In ATR-FTIR spectroscopy, the infrared spectrum is characteristic of the 

vibrational structure of the substance in immediate contact with the ATR 

immersion probe. IR Spectroscopy is well suited to provide real-time structural 

and kinetic data about dissolved organic molecules or particles in suspension 

during solid/liquid operations (e.g. crystallization processes) without complicated 

hardware developments. The MIR (Mid IR) region is the region of fundamental 

stretching modes i.e. for C-C, C-H; while NIR reflects anharmonic overtones, and 

is mostly seen for highly energetic excitations of groups such as O-H, N-H. But 

the information from MIR tends to be more selective so that the calibration 

procedures allowing the quantitative measurement of chemical species from the 

recorded spectra require less tedious and less time-consuming tasks than using 

NIR data (Hu et al., 2001; Fevotte, 2002). Most pharmaceutical applications of IR 

spectroscopy have so far been focused on the off-line characterization of raw 

materials and manufactured products, and in particular to the detection of "off-
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specification" products. Recently, several groups (Dunuwila and Berglund, 1997; 

Braatz et al., 2002; Fevotte, 2002; Fujiwara et al., 2002; Lewiner et al., 2001, 

2001a; Togkalidou et al., 2001; Feng and Berglund, 2002; Grön et al., 2003) 

have shown that the in situ ATR FTIR technique can be successfully applied to 

the in-line measurement of supersaturation during the solution crystallization of 

organic products and, consequently, of drugs.  

 

 

3.2.1) Principle of ATR-FTIR Technique 

Currently applied methods for measurement of solubility and supersaturation 

based on viscometry, refractometry, interferometry and density require the 

separation of phases prior to measurement. ATR-FTIR Spectroscopy provides a 

unique configuration in which the infrared spectrum of a liquid phase can be 

obtained in a slurry in-situ without phase separation. Infrared spectroscopy is 

essentially a non-destructive method for providing chemical information on 

organic and some inorganic materials. ATR-FTIR uses the principle of total 

internal reflection. Infrared light is passed through an appropriate infrared 

transparent crystal in contact with the sample. The evanescent field penetrates 

the surface, probing the infrared absorption of chemical species. 

 

ATR spectroscopy is based on the presence of an evanescent field in an optically 

rarer medium (the sample) in contact with an optically denser medium (the ATR 

probe crystal) within which radiation is propagated due to internal reflection. The 
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depth of penetration of the evanescent wave is the order of the wavelength, so 

one can postulate that the interaction of this field is limited to the solution phase. 

That is why such technique allows the measurement of the solute concentration 

in the slurry without being disturbed by the solid particles. The crystal of the ATR 

probe is chosen such that the depth of penetration of the infrared energy into the 

solution is smaller than the liquid phase barrier between the probe and the solid 

crystal particles. Hence when the ATR probe is inserted into a crystal slurry, the 

substance in immediate contact with the probe will be the liquid solution of the 

slurry, with negligible interference from the solid crystals. That the crystals do not 

significantly affect the infrared spectra collected using the ATR probe has been 

verified experimentally (Dunuwila and Berglund, 1997; Dunuwila et al., 1994). 

The depth of penetration is given as follows: 
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              (Eq. 3-1) 

where λ is the wavelength of the incident radiation, n1 and n2 are, respectively, 

the refractive indices of the crystal and of the solution, and θ is the angle of 

incidence of the propagating radiation. 

Figure 3-1 is a schematic representation of path of a ray of light for total internal 

reflection. The ray penetrates a fraction of a wavelength (dp) beyond the 

reflecting surface into the optically rarer medium of refractive index n2 and there 

is a certain displacement (D) upon reflection. 
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Figure 3-1: Diagram illustrating travel path of ray of light 
 

The possibility of designing immersion probes with various ATR element 

materials (i.e. crystal of high refractive index) offers unique advantages for the 

monitoring of crystallization processes  (Lewiner et al., 2001):  

• No external sampling is necessary. Consequently, many problems related 

to the use of temperature-controlled external sampling loops, and phase 

separation devices are avoided. 

• The technique is insensitive to the presence of solid particles in the 

crystallizing medium. ATR is not affected by scattering in the presence of 

particles, bubbles or dispersed droplets. 

• FTIR spectroscopy provides real-time information on the time variations of 

many chemical species present in the solution, including impurities. 

Further developments of the technique could therefore allow new control 

strategies taking into account, for example, batch-to-batch variations due 

to the impurities content. 

However, from an industrial standpoint, several concerns arise from the use of 

ATR probes, which have to be carefully examined.  
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• Potential for performance variation results from the fact that the effective 

path length depends on θ. Therefore, any mechanical change is likely to 

result in a change in the measured absorbance, thus impairing the 

calibration used to monitor the dissolved solid concentration. 

• Any operating condition allowing a non-uniform distribution of chemical 

composition in the neighborhood of the ATR crystal, such as adhesion or 

imperfect mixing, can lead to inaccurate measurements. For example, 

encrustation of the probe can easily occur and appropriate solutions have 

to be developed. 

• Chemical deterioration of the ATR elements will take place in strongly 

aggressive chemical media, in particular when strong acids and oxidizing 

agents are present in solution. 

• Due to unknown reasons, possibly mechanical and/or thermal stress, the 

short lifetime of the ATR immersion probes is sometimes incompatible 

with industrial applications; while the choice of hard materials is not 

always possible.  

• As Eq. 3-1 shows, in the case of products absorbing at high values of λ, 

the depth of penetration is increased and it is therefore important to check 

that no drift in the spectra is observed during the crystallization of 

industrial slurries with high solids content. 
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3.2.2) Chemometrics 

 

Chemometrics is defined as the use of multivariate data analysis and 

mathematical tools to extract information from chemical data. Modern in-line or 

on-line sensors are capable of collecting huge amounts of data from chemical 

processes. The application or development of chemometric tools to this wealth of 

process data is termed “process chemometrics” and seeks to provide additional 

insights into the chemical process through monitoring, modeling and control 

(Workman et al., 1999). Chemometric tools are useful in both the design stage of 

crystallization processes when experimental design methods aid in the 

optimization of the many operating variables and in the interpretation of the 

multivariate data collected by process sensors (Yu et al., 2005).  

 

ATR-FTIR spectroscopy has been coupled with chemometrics to provide highly 

accurate in situ solution concentration measurement in dense crystal slurries 

(Togkalidou et al., 2002, 2001; Dunuwila and Berglund, 1997, 1994). 

Transformation of the spectra data to concentration information is a critical step 

towards obtaining reliable and accurate results. Traditional regression methods 

can be applied by correlating the heights or areas of specific peaks, or 

alternatively a ratio of specific peaks to a concentration of the measured 

constituent can be used (Dunuwila and Berglund, 1997; Fevotte, 2002; Lewiner 

et al., 2002). However, traditional regression methods should not be applied to 

correlated variables, which the spectral variables typically represent (Pollanen et 
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al., 2006). In complex chemical systems, the bands in the IR spectrum from 

different constituents often overlap one another, the absorbencies of specific 

compounds of interest can be low and, consequently, no single peak can be 

found to correlate reliably with concentration. In addition, random variation, in 

part due to instrument drift, is an inherent feature, which makes for error if a 

specific peak is relied on for concentration data.  

 

Multivariate methods, e.g. partial least squares (PLS) regression and principal 

component regression (PCR) calibration models, can be applied to solute 

concentration prediction from crystallization systems (Pollanen et al., 2005; 

Togkalidou et al., 2001, 2002; Feng and Berglund, 2002; Profir et al., 2002). PLS 

enables the linear modeling of correlated variables. A large number of variables, 

in this case spectra points, can be included in the model. PLS reduces the 

dimensions of the original data and simultaneously reduces the noise level. The 

PLS calibration can be improved by careful data collection and selection, model 

validation steps, and using an appropriate data preprocessing technique.  

 

When predicting solution concentration, including multiple absorbances in the 

calibration model averages measurement noise over multiple spectral 

frequencies and allows the explicit consideration of peak shifts. The strong 

correlations within the data make it impossible to construct an ordinary least 

squares (OLS) model between the multiple absorbances and the solution 

concentration. The ability of the chemometrics methods of Principal Component 
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Regression (PCR) and Partial Least Squares (PLS) to handle highly correlated 

data allows these chemometrics methods to construct calibration models based 

on multiple absorbances. The calibration model used in this work has the form  

y = bTx                                                         (Eq. 3-2) 
 

where y is the output prediction (a solution concentration), x is the vector of 

inputs (the IR absorbances from the ATR-FTIR and temperature), b is the vector 

of regression coefficients. 

 

There are numerous chemometrics methods, most being variations of PLS or 

PCR, which can give very different calibration models for data sets (Togkalidou, 

2001).  The robust chemometrics approach is to apply several chemometrics 

methods and then to select the calibration model which gives the most accurate 

predictions. The six different methods considered in this work were: 

• Top-down Selection PCR (TPCR) 

• Correlation PCR (CPCR) 

• Forward Selection PCR 1 (FPCR1) 

• Forward Selection PCR 2 (FPCR2) 

• Confidence Interval PCR (CIPCR) 

• Partial Least Squares (PLS) 

 

The mean width of the prediction interval was used as a criterion to select 

amongst the calibration models. All chemometric calculations were performed 

using MATLAB codes (generated in Braatz group at the University of Illinois at 



 43

Urbana-Champaign), except for the PLS algorithm which is featured in MATLAB 

itself. 

 

 

3.2.3) Applicability of ATR-FTIR to the monitoring and control of batch 
crystallizations 
 

ATR-FTIR technique has continued to be the method for in-situ monitoring of 

concentration. A variety of calibration methods have been developed in the 

literature.  Groen and Roberts (2004) used transmittance ratio of peak intensities 

characteristics of methanol and urea as calibration parameter for urea-water-

methanol system.  Peak shift was observed in aqueous urea solutions due to the 

high degree of hydrogen bonding.  Borissova et al. (2004) set up a calibration 

routine that can choose up to eight wavenumbers within the spectral range of 

4000 – 650 cm-1 and the intensity of the corresponding peaks are read into the 

control software. The absorbance peak ratio was calculated based on two peak 

heights. Three different calibration models (exponential, linear and power) were 

then computed. The wavenumbers and the calibration models that gave the best 

prediction were chosen. These calibration methods, despite being simpler and 

more straightforward, are often unable to account for peak drift due to a change 

of solvent content especially in mixed solvent systems. The calibration method 

based on range of wavenumbers and advanced chemometrics have been shown 

to be more reliable and accurate (Fujiwara et al., 2002).  Besides measuring 

concentration of different molecular components, Schöll et al. (2006) extended 
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the application of FTIR-ATR to monitoring the speciation of L-glutamic acid 

during pH-shift precipitation.  The identification of different L-glutamic acid 

species is possible because different ionic species exhibit different 

characteristics absorbance bands.  Using FTIR-ATR information in combination 

with FBRM data, the nucleation kinetics of the precipitation of L-glutamic acid 

were determined in-situ. 

 

The evaluation of solubility and metastability curves is required to design any 

industrial solution crystallization operation. In usual industrial practice, little time 

may be devoted to such an evaluation, and only few data points of the curves in 

question are generally available. In order to shorten and to refine the 

determination of the solubility curve, a procedure using ATR-FTIR has been 

developed (Fujiwara et al., 2002). Under supersaturated conditions, if the cooling 

rate remains moderate and/or if the growth rate is high, the concentration profile 

quickly reaches the solubility curve, and therefore provides a way to measure it. 

Such an experimental determination of the solubility can be referred to as a 

“supersaturated approach”. In opposition to usual solubility determinations, this 

new method provides continuous solubility curves which offer attractive potential 

advantages: 

• Continuous data have richer information content than usual discrete data 

obtained from samples, and might be used to improve the knowledge of the 

crystallization system.  
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• The solute concentration profiles allow the user to know with assurance when 

the equilibrium has been reached. Such information represents significant 

benefit in terms of saving of time during the determination of the solubility 

curve. 

• The measured solute concentration profiles can provide valuable information 

about the dissolution mechanisms and kinetics, especially in the field of 

pharmacy. 

 

The evaluation of the limits of the metastable zone is also an important issue of 

crystallization processes. It is well known that many practical and fundamental 

aspects of nucleation phenomena arise from the variability of the limit of 

metastability curves which have to be investigated in relationship with operating 

conditions such as the method of cooling, the rate of temperature decrease, the 

effect of the hydrodynamic conditions in the crystallizer or of potential impurities, 

etc. To assess the limits of metastable zone, a solution of known concentration is 

maintained under undersaturated conditions at a given temperature. The 

temperature is then decreased according to a pre-set cooling rate while the FTIR 

spectrometer monitors in-line the evolution of solute concentration. When 

nucleation occurs, the concentration decreases significantly and the 

corresponding temperature is recorded. The use of both the calibration 

procedure and the solubility curve of the system under consideration is a 

straightforward exercise to compute in-line the time variations of supersaturation 

(Lewiner et al., 2001). 
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Liotta and Sabesan (2004) implemented real time feedback Supersaturation-

Control (S-Control) on the cooling crystallization of a Schering-Plough API drug 

candidate using FTIR-ATR and FBRM. FTIR-ATR was calibrated using partial 

least square (PLS) method across a range of wavenumbers. A cascaded control 

structure was set up where the primary loop minimized error between the 

measured supersaturation and set-point supersaturation by manipulating the 

cooling rate set-point. The secondary loop adjusted the heater/chiller 

performance to ensure that the new temperature set-point specified by the 

primary loop was achieved. S-control was shown to be effective in avoiding 

secondary nucleation and thereby producing large crystals as long as an 

appropriate supersaturation set-point was used. Although cascade control 

structure may give faster response, it requires tuning of feedback controller 

parameters, whose values are dependent on the unknown crystallization kinetics, 

to follow the set-point supersaturation. In contrast, the control structure used in 

this work does not require controller tuning except the initial tuning of the 

heating/refrigerated circulator. 

 

By using rigorous calibration procedures accounting for the temperature 

dependence of MIR spectra, the in situ ATR-FTIR technique can be successfully 

applied to the investigating and monitoring of crystallization processes. The 

design of automatic procedures for the acquisition of fundamental data such as 

solubility or MZW has been shown to be convenient and time-saving for process 

development purposes. In addition, the in-line ATR-FTIR technique also offers a 
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practical means of monitoring polymorphism, and therefore a new tool to better 

investigate phase transition phenomena. The absence of metastability with 

respect to the undesired polymorphic form throughout the crystallization process 

was confirmed by applying ATR-FTIR in Muller et al. (2006). 

 

 

3.3) Focused Beam Reflectance Measurement (FBRM) 

Off-line sensors for the measurement of CSD have long delay times, because 

physical processes such as sedimentation, sieving, and centrifugation are 

required before measurement can be taken. In situ CSD sensors are needed for 

efficient control of crystallization. Forward light scattering is not feasible as it 

cannot be applied in dense suspensions. In industrial crystallization processes, 

laser backscattering is the technique most commonly employed. 

 

In recent years, Lasentec FBRM has emerged as a widely used technique for the 

in situ characterization of high-concentration particulate slurries. FBRM is a 

probe-based measurement tool, which is installed directly into the system without 

the need for sample dilution or manipulation. The Lasentec FBRM probe offers 

the potential for monitoring in situ changes in particle characterization (particle 

size and structure) over a wide range of suspension concentrations and 

applications. Some applications involving FBRM includes  the field of 

crystallization (Wang et al., 2006; Kougoulous et al., 2006, 2005a and b; Scholl 

et al., 2006a and b; Wang and Ching, 2006; Barthe and Rousseau, 2006; Yu et 
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al., 2006, 2005; Shaikh et al., 2005; O’Sullivan and Glennon, 2005; Scott and 

Black, 2005; Deneau and Steele, 2005; Worlitschek et al., 2005, 2004; 

Kougoulos et al., 2005; Kim et al., 2005; Doki et al., 2004; Barrett and Ward, 

2003; O’Sullivan et al., 2003; Barrett and Gennon, 2002; Barrett and Becker, 

2002; Abbas et al., 2002; Loan et al., 2002; Ruf et al., 2000; Tadayyon and 

Rohani, 2000; Barrett and Glennon, 1999), polymerization (Hukkanen and Braatz, 

2003; Heath et al., 2006a and b; Negro et al., 2006; Yoon and Deng, 2004; Swift 

et al., 2004; Shi et al., 2003; Owen et al., 2002), fermentation (Ge et al., 2006), 

papermaking (Ravnjak et al., 2006; Dunham et al., 2000), fiber cement 

production (Negro et al., 2006), emulsion (Dowding et al., 2001), biological 

systems (Pearson et al., 2004, 2003; Jeffers et al., 2003; Choi and Morgenroth, 

2003; McDonald et al., 2001), waste water treatment (de Clercq et al., 2004;), 

reaction systems (Custers et al., 2002), and other particulate processes (Clarke 

and Bishnoi, 2005; Li et al., 2005; Bagusat et al., 2005; Benesch et al., 2004; 

Heath et al., 2002; Alfano et al., 2000; Richmond et al., 1998).  

 

 

3.3.1) Principle of FBRM Technique  

The FBRM probe utilizes laser light backscattering technology to supply, in real 

time, a chord length distribution (CLD) as the laser light randomly traverses 

particles passing through the measurement zone. The CLD measured is a 

function of the number, size, and shape of particles under investigation (Barrett 

and Glennon, 1999). As the beam crosses the surface of a particle or particle 
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structure, light from the beam is backscattered into the probe. The duration of 

each reflection is multiplied by the velocity of the scanning beam, resulting in a 

chord length. The measurement range is 1 to 1000µm, with the distribution 

sorted by chord length into various linear or logarithmic channel distributions. 

Typically, many thousands of chord lengths are measured per second, with the 

numbers of counts dependent on the concentration of solids present in the 

suspension. Hence, the number of chords reported and their measured length 

will be intimately related to both the particle diameter and shape. Spherical 

particles will give chord lengths closer to the average particle size than rod-like 

crystals, for which the dominant chord length may be closer to the minor axis 

length.  

 

An FBRM probe is inserted into a flowing medium of any concentration or 

viscosity. A laser beam is projected through the sapphire window of the FBRM 

probe and highly focused just outside the window surface. This focused beam is 

then moved so it follows a path around the circumference of the probe window. 

The focused beam is moving at a high speed (2 m/s to 6 m/s, depending on the 

application) so that particle motion is insignificant to the measurement. As 

particles pass by the window surface, the focused beam will intersect the edge of 

a particle. The particle will then begin to backscatter laser light. The particle will 

continue to backscatter the light until the focused beam has reached the 

particle's opposite edge. The backscatter is collected by the FBRM optics and 
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converted into an electronic signal. Figure 3-2 shows the schematic illustration of 

the FBRM probe. 

 

 

Figure 3-2: Schematic Diagram of FBRM Probe Tip 
 
 
FBRM uses a unique discrimination circuit to isolate the time period of 

backscatter from one edge of an individual particle to its opposite edge. This time 

period is multiplied by the scan speed and the result is a distance, which is the 

chord length of the particle. A chord length (see Figure 3-3) is a straight line 

between any two points on the edge of a particle or particle structure 

(agglomerate). FBRM typically measures tens of thousands of chords per second, 

resulting in a robust number-by-chord-length distribution (number of counts per 

second sorted by chord length into 90 logarithmic size bins). 
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Figure 3-3: Chord length measurements 

 
 

The data generated by FBRM is a chord-length distribution (CLD), which is a 

highly precise and sensitive means of tracking changes in both particle 

dimension and particle population. In addition, with a number-per-length-per-

second distribution, specific regions of the distribution can be isolated to enhance 

resolution to change (i.e., number of fine particles or number of coarse particles 

in a given dimensional range). Because no particle shape is assumed, the CLD is 

essentially unique for any given particle size and shape distribution, which means 

CLDs of different systems cannot be compared per se. Assuming the average 

particle shape is constant over millions of particles, changes to the CLD are 

solely a function of the change in particle dimension and particle number. Where 

shape is also changing, this information can typically be filtered out or enhanced, 

depending on the goal of the application. An important caveat to note is that 

materials that do not backscatter (e.g., materials that only produce specular 

reflection such as optical-grade glass beads, optically clear polystyrene, and pure 

oils in pure water) cannot be measured with FBRM.  

 

Probe location and orientation is crucial to ensure the successful implementation 

of the FBRM in optimal measurement of the particles in the system. The side-

mounted positions generally allow better sample presentation to the window, at 
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least for a radial impeller. These positions provide higher counts, and thus the 

collected data may be regarded as more statistically robust than the data 

collected in the top-mounted positions. With the probe mounted from the side, 

the liquid and the suspended particles impinge directly on the window, whereas, 

with the probe mounted from the top, there is less direct flow impingement. 

Therefore, the side-mounted positions allow the receipt of a better sample for 

measurement (Barrett and Glennon, 1999). While it is not always possible to 

mount the probe at a perfect orientation to the flow, probe location is important 

for the best possible presentation of material to the probe window (Figure 3-4). 

As shown in Figure 3-4(a), (b), and (c), flow of particles to the probe window is 

obstructed. Figure 3-4(d) is the only probe orientation that allows the flow of 

particles to be adequately impinging on the window surface. The flow carries 

particles close to the window for the best measurement presentation. The action 

of the particles against the window prevents buildup of scale on the window 

surface. The best orientation is achieved when the angle of the probe window is 

between 30o and 60o to the flow, though 45° is the optimum angle. 

 

 

  (a)         (b)              (c)      (d) 

Figure 3-4: Different Orientations of FBRM probe 
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In general, probe location becomes more important with: 

• Extremes in individual particle density (i.e., very low or very high) vs. the 

carrying solution. 

• Lower solids concentration. 

• Lower carrying-solution viscosity. 

• Larger median particle size. 

• Wider particle size distribution. 

• Greater particle shape deviation from a sphere.  

 
 
3.3.2) Applicability of FBRM to the monitoring and control of batch 
crystallizations 
 

The FBRM probe requires no sample dilution, which has important industrial 

implications. Rapid in-line data collection allows for the possibility of real time 

process control, thereby enabling an immediate response to any process change, 

presenting the potential for minimizing waste and maximizing in-specification 

production. The FBRM output can be related to changes in particle shape, solids 

concentration and rheological behavior of fluid suspensions. Overall, the FBRM 

probe is ideal for industrial utilization as a quality and process control device, 

providing rapid and accurate data accumulation, with the collected information 

requiring minimal attention from the plant operators (Barrett and Glennon, 1999). . 

Work published to date on the FBRM system has attempted to either directly 
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relate the measured chord length data to the particle size data or, more 

successfully, to simply correlate it to properties dependent on particle size 

(Bloemen and De Kroon, 2005; Worlitschek et al., 2005, 2004; Li et al., 2005; 

Hukkanen and Braatz, 2003; Wynn, 2003; Heath et al., 2002; Ruf et al., 2000). 

Others have investigated some of the relevant operating issues associated with 

its use (O’Sullivan and Glennon, 2005; Sistare et al., 2005; Worlitschek and 

Mazzotti, 2003; Barrett, 2003). 

 

FBRM has emerged as a widely used technique for the in situ characterization of 

crystallization systems. Chord length distributions (CLD) recorded by FBRM are 

generally used for qualitative analysis and are difficult to compare with particle 

size distribution (PSD) measured by other techniques. Li et al. (2005a) compared 

the different particle sizing techniques and cautioned the use of CLD to describe 

PSD because CLD result is complex, depending not only on the PSD, but also on 

particle optical properties and shape. Despite the apparent difficulties, several 

researchers have devoted efforts into restoring PSD from CLD through 

complicated mathematical modelling (Bloemen and De Kroon, 2005; Li and 

Wilkinson, 2005; Li et al., 2005b; Worlitschek et al., 2005; Barthe and Rousseau, 

2006). Although these authors were able to verify their models with experimental 

data, their algorithms are only applicable to well defined systems with known 

shape and optical properties and may not be extendable to systems in general.  
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FBRM can be used to dynamically quantify and control the effect of process 

variables (reaction rate, temperature, addition rates, residence time, mixing 

speed, etc.) on a particulate system, as well as to quantify the effect of the 

particulate system on downstream performance (separation, reactivity, 

dispersability, formulations, etc.). Also, FBRM data can be correlated directly with 

any upstream or downstream process variable or final product specification (size, 

rheology, zeta potential, etc.) that is a function of the particle shape, dimension, 

and/or number of particles in the particle system. The typical parameters 

evaluated with FBRM are particle behavior (including primary growth, 

agglomeration, dispersion, dissolution, breakage, attrition, and morphology shift), 

and particle count in isolated regions of the distribution④. 

 

In addition to process optimization and control, the FBRM measurement is 

unique in its ability to “fingerprint” each batch at its process concentration based 

on particle size, particle shape, and particle population. System data is collected 

at regular intervals in-line and in real time, hence processes can be tracked 

throughout the run. This makes FBRM an excellent tool to monitor batch-to-batch 

consistency.  

 

FBRM has been used to develop and optimize crystallization processes 

(Tadayyon and Rohani, 2000; Worlitschek and Mazzotti, 2004; Doki et al., 2004), 

track and trouble-shoot crystallizer systems (Wang et al., 2006; Wang and Ching, 

2006; Yu et al., 2006; O’Sullivan and Glennon, 2005; Deneau and Steele, 2005; 
                                                 
④ Refer to Lasentec FBRM Hardware Manual 
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Kougoulos et al., 2005; Heath et al., 2002; Abbas et al., 2002; Barrett and 

Glennon, 1999), to monitor polymorphic forms (O’Sullivan et al. , 2003; Scholl et 

al., 2006), and in control of crystallization systems (Barthe and Rousseau, 2006; 

Barrett and Ward, 2003; Barrett and Becker, 2002). The objective of any process 

monitoring is to ultimately bring about control to the process. Yet, despite the 

proven useful applicability of FBRM in crystallization, there has not been any 

published work of automated closed-loop feedback control using FBRM, which is 

what is attempted in this work. Barthe and Rousseau (2006), Doki et al. (2004), 

and Tadayyon and Rohani (2000) have presented work involving usage of FBRM 

as a means of controlling crystallization process, but these are not carried out in 

a closed-loop feedback loop, as in this work.  

 

The main topic of study in Barthe and Rousseau (2006) was to control the 

distribution in a batch crystallizer. Estimates of the CSD in the batch crystallizer 

were obtained by applying a model of the octahedral paractamol crystals to a 

CLD obtained from FBRM. Equipped with process data from FBRM, preferential 

fines removal was implemented, which led to larger crystal sizes but significantly 

wider distributions. A peristaltic pump drew fines-rich stream upwards so that 

larger crystals, whose terminal velocity was greater than the upward liquid 

velocity, fell back into the well-mixed region of the crystallizer. The rate of 

removal of fines from the crystallizer was determined by the speed of the pump, 

and the fines are subsequently dissolved in a separate heating bath before the 

solution is channeled back to the crystallizer. Fines were removed at a fixed rate, 
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and FBRM was only used as a monitoring tool to investigate the optimal cooling 

rate. 

 

Doki et al. (2004) presented T-control strategy for α-glycine using ATR-FTIR and 

FBRM. Fines were eliminated from the product by repeated temperature-cycling.  

When the FBRM count increased to a certain point, of which a value was chosen 

on-site, heating was started until the crystal count returned to the value of the 

original seed crystals and then the cooling was started again and continued at 

the same cooling rate.  Intermittent heating was repeated during the course of 

cooling until the final temperature was reached. ATR-FTIR was only used for 

monitoring purpose rather than for control. Such control method is 

straightforward but suffer from the drawback of being system dependent and the 

count number at which heating should be activated requires determination on 

site. 

 

Tadayyon and Rohani (2000) investigated cooling crystallization of KCl using 

fines dissolution rate as the manipulated variable. One control variable was the 

125 µm chord length count rate measured by FBRM. Control of fines suspension 

density was accomplished using the FBRM technique.  The cooling rate was 

forced to reach its setpoint by manipulating fines dissolution rate. The control 

loop could successfully reject disturbance in the fines density and handle the 

step increase in the feed flow rate.  
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In short, Lasentec FBRM instruments provide in-process, real-time, particle size 

and high solids concentration particle count. The benefits inferred by the FBRM 

are as follows: 

• Does not assume spherical particles.  

• Provides both the size distribution and count in each size range at regular 

intervals.  

• Enables monitoring of particle count in specific size regions (fines, coarse, 

etc.) to increase precision, sensitivity, and early warning to process 

dynamics.  

• Can be used to fingerprint batch endpoint based on particle size, shape, 

and count.  

In this work, automation of the entire unseeded crystallization process was 

brought about, making use of signals from the FBRM. Furnished with FBRM 

data, automatic detection of primary nucleation and subsequent heating to 

achieve consistency in the internally-generated seeds was brought about, 

superseding the advantage of external seeding. Chapter 5 details this work. 

 

 

3.4) Particle Vision and Measurement (PVM) 

An alternative method for measuring the CSD is through periodic sampling, video 

microscopy, and image analysis (Puel et al., 1997; Patience and Rawlings, 2001). 

Sampling can be problematic in an industrial environment. A commercial 
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instrument that has become available is the Lasentec Particle and Vision 

Measurement (PVM) system, in which images of crystals in solution are obtained 

using a probe inserted directly into the dense crystal slurry.  

 

Process video microscopy (PVM) is becoming increasingly used to image the 

crystals as they grow in solution, to visualize the extent of agglomeration and 

changes in crystal size and shape (Braatz, 2002). In recent years most of these 

techniques have been used to design new pharmaceuticals crystallization 

processes, and to troubleshoot problems with existing processes.  

PVM instruments are in-process video microscopes built for lab and production 

environments. They are typically used in applications where the solids 

concentration is between 1 % and 40 %. Minimum particle size resolution is 

particle-system dependent, but valuable information usually starts between 5 µm 

and 10 µm. On the upper end, the practical limit is 1 mm. The enabling of direct 

observation of crystals, which allow for shape information to be obtained is a 

major advantage. 

PVM’s high-resolution imaging at up to 50% solids provides a unique qualitative 

understanding of the process especially in the following cases: 

• Where system sampling is difficult.  

• The process is not well understood.  

• Multiphase particle systems are under investigation.  
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• In-depth shape analysis is required.  

In-line imaging microscopy has the advantage that the crystals are directly 

observed. PVM allows a rapid collection of data of 10-30 frames per second, 

providing two-dimensional snapshots of the crystals in real-time. Although the 

contrast of the images is insufficient for direct image analysis, the specific shape 

of the crystals can be obtained through image data reduction and robust 

chemometrics. A significant weakness of the PVM is that it can only image 

crystals not smaller than 5 µm (Pacek et al., 1994). Filtration efficiency as well as 

the behavior of the crystallization process however depends on crystals smaller 

than 5 µm. If crystals of smaller sizes can be imaged, then imaging could have 

significant advantage over laser backscattering for the in-line measurement of 

crystal size distribution. 

 

The PVM is a rugged instrument suitable for use in industrial applications. The 

main use of in-line video microscopy today is for qualitative troubleshooting 

(Wang et al., 2006b; Scholl et al., 2006a; Barrett and Glennon, 2002). The on-

line estimation of characteristics of the CSD has been demonstrated using a 

combination of PVM, FBRM, and robust chemometrics (Togkalidou et al., 2001b). 

Given the importance of crystal shape in pharmaceutical applications, and that 

progress becomes easier as computers continue to increase in speed, the 

accuracy of such predictions can be expected to improve in future years (Braatz, 

2002). 
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4) Experimental Method 

 

 

 

4.1) Experimental Set-Up 

 

A photograph of the experimental set-up for crystallization experiments is shown 

in Figure 4-1.  
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Figure 4-1: Experimental set-up for crystallization experiments. In-line instruments used 
include the ATR-FTIR, FBRM, and PVM. 
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Crystallization experiments were performed using glycine (≥99% purity, Sigma) in 

a 500 ml jacketed baffled flat bottom crystallizer. An overhead stirrer with a four-

bladed Teflon impeller was used to agitate the system at 550 rpm. De-ionized 

water was used to prepare the solutions. The same experimental set-up was 

used for all experiments. 

 

A FBRM probe (Model D600L, Lasentec) was inserted into the turbulent zone of 

the suspension. Chord length distributions (CLD) were obtained every 10 

seconds using the Control Interface Software version 6.0b16. Data acquired 

were analyzed using the Data Review Software version 6.0b16, which displays 

CLD and related statistics.   

 

Absorbance spectra were collected every minute using a Nicolet Nexus 4700 

FTIR equipped with a Dipper-210 Axiom Analytical Attenuated Total Reflectance 

(ATR) probe. Zinc Selenide was the internal reflectance element.A spectral 

resolution of 4 cm-1 was used and every spectrum was the average of 32 scans 

in the range of 650-4000 cm-1. Deionized water at room temperature was used 

for the background measurement. The spectrometer is continuously being 

purged with purified air supplied through a purge gas generator (Parker Balston, 

model 75-52-12VDC).   

 

The system temperature was controlled by a Julabo FP50-HL circulator and 

measured every two seconds using a stainless steel Pt100 thermocouple. 
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The Lasentec Particle Vision and Measurement (PVM) probe was inserted into 

the system for visual monitoring of the evolution of the crystals, mainly to detect 

any significant attrition, agglomeration, secondary nucleation or any change in 

habit.   

 

 

4.2) Calibration for In-Line Solution Concentration Measurement 

Specific amounts of glycine and deionized water were added into the 500 ml 

crystallizer. With the overhead stirrer agitating the system, the slurry was heated 

to about 15 oC above the saturation temperature and maintained at this elevated 

temperature for at least 30 minutes to ensure that all crystals have dissolved. 

Absorbance spectra were collected every minute while the solution was cooled at 

0.5 oC/min. Data acquisition was stopped once nucleation occurred because the 

solute concentration would not be the same as the starting concentration. The 

spectra acquired after first crystals appeared were excluded from the calibration 

set. Absorbance spectra were collected for six different solution concentrations in 

the range from 0.20 to 0.40 g/g-water, while temperatures span the range from 

15 to 70 oC. These ranges are inclusive of concentration and temperature values 

required in all the experiments.   
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4.3) Solubility Measurements 

The solubility of α-glycine in the temperature range 20-60 oC was measured 

using the calibrated ATR-FTIR. Glycine was dissolved in excess into de-ionized 

water in the 500 ml crystallizer. The slurry was equilibrated at each temperature 

for about an hour before spectral data were acquired at that temperature. 

Solubility values were calculated using the calibration model described later on in 

this paper. Glycine crystals were taken from the slurry after equilibration at each 

temperature and X-ray powder diffraction (XRPD) analysis was carried out to 

verify the polymorphic form. 

 

 

4.4) Metastable Zone Widths (MZW) Measurements 

 

The Metastable Zone is the region where the solution is supersaturated but 

spontaneous nucleation does not occur. The measurement of the MZW was 

necessary to provide an estimation of the point of nucleation for unseeded 

systems, and to give an indication of the temperature at which seeds should be 

added for seeded systems. 

 

MZWs of glycine were investigated in the temperature range of 20-70 oC. Glycine 

of various concentrations was prepared in a 500 ml crystallizer. The solution was 

heated to and maintained at 10 oC above the saturation temperature for at least 

30 minutes, then cooled at various constant rates (0.5 oC/min, 1 oC/min and 1.5 
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oC/min) until nuclei formed via primary nucleation were detected by the FBRM.  

FBRM D600 probe has previously been employed to detect nucleation by other 

researchers (Fujiwara et al., 2002; Barrett and Glennon, 2002). Fujiwara et 

al.(2002) have further provided a thorough comparison of MZW determination by 

FBRM with that by visual observation and by ATR-FTIR, and found that FBRM 

detected nucleation the earliest amongst the three methods. 

 

 

4.5) Correlation between CLD and PSD 

Data from FBRM were relied on in the comparison analysis of our product 

crystals; hence verification of the validity of FBRM statistics is essential. PSD 

measured under an optical microscope was used to compare with CLD obtained 

from FBRM. Images of product crystals were captured with an Olympus BX51 

polarizing light microscope. The images were converted into digital images 

through a color video camera (JVC KY-F55B 3-CCD) and were processed by an 

image analysis software (AnalySIS). The length of the longest dimension of each 

crystal was recorded as the geometric crystal size. More than 1000 product 

crystals from each batch were measured. 

 

 

4.6) Temperature-Control (T-control) Crystallization 

Both seeded and unseeded systems were used in T-control experiments.  

 



 66

An appropriate amount of glycine corresponding to a saturation temperature of 

50 oC was dissolved in de-ionized water in the 500 ml crystallizer. The system 

was then heated to and maintained at 60 oC for at least 30 minutes before a 

cooling ramp of 0.5 oC/min was imposed to approach the onset of nucleation 

(unseeded systems) or the point of seeding (seeded systems). A cooling rate of 

0.5 oC/min was chosen because slower rates give fewer initial nuclei and longer 

batch time, while faster rates result in excessive nucleation and fine crystals. The 

final temperatures for all experiments were 20 oC. 

 

For seeded systems, the system was cooled at 0.5 oC/min to a point midway 

between the solubility curve of α-glycine and the metastable limit (which 

corresponded to 45 oC in this case) before seeds were added dry. This was to 

ensure that the seeds would not dissolve and that spontaneous nucleation would 

be avoided. The solubility of α-glycine was used to determine the point of seed 

addition because XRPD data showed that the product crystals crystallized from 

water in our experiments were consistently the α form. Seeds were product 

crystals from previous batches in the sieve fraction of 125-212 µm. Amount of 

seeds added corresponded to 2 % of the total mass of raw glycine used. The 

temperature was held at 45 oC for 10 minutes after seed addition, to allow time 

for adequate dispersion of seeds, before T-control was activated  

 

In unseeded systems, to avoid the need for manual observation, the system was 

cooled to 35 oC at 0.5 oC/min and held for 20 minutes. Primary nucleation was 
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always observed although the temperature at which nucleation occurs varied due 

to the stochastic nature of nucleation. The CLDs of the self-nucleated seeds 

were recorded at the end of the 20 minutes, after which T-control was activated. 

Pre-determined temperature profiles include linear, concave, and convex cooling. 

Various linear cooling rates were implemented. The convex profile was 

determined by the cubic formula in Eq. 4-1, derived by Mayrhofer and Nyvlt 

(1988) for a batch system with negligible nucleation rate and constant growth 

rate, while the concave profile was the mirror image of the convex profile.   

)T(T)
t

t(TT f0
3

total
0set −−=    (Eq. 4-1) 

where Tset, T0, and Tf denote set-point, initial and final temperatures respectively, 

t represents time and ttotal represents the duration of the convex profile.   

 

 

4.7) Supersaturation-Control (S-control) Crystallization 

The experimental procedures for S-control crystallization are the same as that for 

T-control crystallization. The set-point supersaturation profile is the result of a 

compromise between the desire for fast crystal growth and low nucleation rate 

(Fujiwara et al., 2005). In our case, a constant Sset was used and a closed-loop 

feedback control was implemented to manipulate the system temperature to 

match the set-point. A program was written in Microsoft Visual Basic 6.0 to 

implement the S-control, reading the system concentration as computed from the 
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absorbance data acquired by the ATR-FTIR and then manipulating the system 

temperature by sending signals to the circulator.  

 

 

4.8) Detection of Primary Nucleation in Unseeded Crystallization Systems 
Using FBRM 
 

An appropriate amount of glycine corresponding to a saturation temperature of 

50 oC was dissolved in de-ionized water in the 500 ml crystallizer.  The system 

was then heated to and maintained at 60 oC for at least 30 minutes before a 

cooling ramp of 0.5 oC/min was imposed to approach the onset of primary 

nucleation. The FBRM was used to detect the point at which primary nucleation 

occurs, after which the decreasing temperature ramp in approaching primary 

nucleation was then halted automatically. 

 

 

4.9) Feedback Loop employing FBRM in Unseeded Batch Cooling 
Crystallization 
 

After the decreasing temperature ramp is halted automatically upon detection of 

primary nucleation, the system is held at that temperature for 15 minutes to allow 

for the primary nucleation to complete and the system statistics to stabilize. 

Subsequently, an increasing temperature ramp is imposed to adjust the 

coefficient of variance (c.v.) of the crystals to a pre-determined setpoint to 
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achieve consistency in the nuclei generated by primary nucleation in different 

runs. Thereafter, T-Control is implemented.  

 

 

 
4.10) Investigation on the applicability of the FBRM Feedback Loop 
techniques on an alternative system 
 

Exactly the same methods that was used for the glycine-water system was tested 

on paracetamol-water system. 

 

An appropriate amount of paracetamol corresponding to a saturation temperature 

of 50 oC was dissolved in de-ionized water in the 500 ml crystallizer.  The system 

was then heated to and maintained at 60 oC for at least 30 minutes before a 

cooling ramp of 0.5 oC/min was imposed to approach the onset of primary 

nucleation. The FBRM was used to detect the point at which primary nucleation 

occurs, and the decreasing temperature ramp in approaching primary nucleation 

is then halted automatically. 

 

After the decreasing temperature ramp is halted automatically upon detection of 

primary nucleation, the system is held at that temperature for 15 minutes to allow 

for the primary nucleation to complete and the system statistics to stabilize. 

Subsequently, an increasing temperature ramp of 0.3 oC/min is imposed to adjust 

the coefficient of variance (c.v.) of the CLDs to a pre-determined setpoint to 
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achieve consistency in the nuclei generated by primary nucleation in different 

runs.  

 

FBRM data for paracetamol crystals so formed were validated, via comparison 

with results from sieve analysis (Sonic sifter, model L3P from ATM Co.). The 

smallest aperture used was 150 µm and the largest 1000 µm. All particles 

retained on one sieve were assumed to have the same size, which is the 

arithmetic mean aperture size of two adjacent sieves. Crystal products were 

filtered and washed repeatedly with mother liquor. Then the crystals were left to 

dry at room temperature for a day before sieve analysis was carried out.  
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5) Results and Discussion 

 

 

 

This chapter presents the results of experiments carried out in the investigation 

of the optimal control strategy for batch cooling crystallization.  

 

 

5.1) Overview 

Consistent particle properties are an important goal for industrial batch 

crystallizations. Several control strategies, from unseeded open-loop T-control to 

seeded S-control, were evaluated for the cooling crystallization of glycine. 

Particle properties were assessed in-line using ATR-FTIR, FBRM, and PVM, 

facilitating investigations of process consistency. Surprisingly, the more 

sophisticated closed-loop feedback S-control did not give better crystal quality 

over the simple traditional T-control. Changing the pre-set cooling profile, or the 

pre-set supersaturation limit, showed limited benefits. In this comparison, 

seeding was by far the most effective strategy.  

The prime reason for crystal product inconsistency in unseeded systems is that 

primary nucleation is unpredictable and do not occur at a fixed temperature. This 

hence necessitates a means for automated detection of the onset of primary 
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nucleation and a strategy to tune the primary nuclei so formed to achieve 

consistency as per external seeding. 

In this work, a novel concept of using FBRM in a feedback control loop has been 

developed and investigated. FBRM was successfully used to detect primary 

nucleation, after which control strategies were automatically implemented in 

unseeded cooling crystallization systems. Another disadvantage of unseeded 

systems is that the randomness of primary nucleation produces inconsistent 

initial nuclei for different runs, thereby resulting in inconsistent product crystals. A 

method to counter this problem employing FBRM in a closed feedback loop is 

also addressed in this thesis, which involves adjusting the c.v. of the primary 

nuclei. Consistent crystal products from unseeded systems were hence 

achievable. A further validation of these two new techniques proposed was 

observed in the successful implementation in a more challenging system, 

paracetamol-water. 

 

 

5.2) Calibration Model 

Temperature and the absorbance spectra in the range of 650 to 1800 cm-1 were 

correlated with glycine concentration through chemometric methods, as detailed 

by Togkalidou et al. (2001, 2002). Their chemometric approach takes into 

account spectra over a wide range of wavenumbers, producing calibration 

models that are an order-of-magnitude more accurate than methods based on 
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absorbances at peaks. A significant advantage of using chemometrics to 

construct the calibration model is its ability to automatically factor in the relative 

signal-to-noise ratios as well as the magnitude of absorbances, and its ability to 

average the effect of noise over many absorbances (Fujiwara et al., 2002). 

Fujiwara et al. (2002) has shown that their chemometric approach measures 

concentration accurately even for a low concentration system like paracetamol-

water. 

 

As shown in Figure 5-1, the relative error of our calibration model is about 1 % 

with respect to the lowest concentration used (lowest required concentration is 

0.23 g/g-water, which is the solubility of α-glycine at our lowest temperature of 20 

oC). The sensitivity to the measured temperature is approximately 1 % per 1 oC 

according to the calibration model. Since the solubility of glycine in water is high, 

the contribution of noise becomes insignificant, and accurate solution 

concentration is attained. Systems with high solubilities are more amenable to 

use with ATR-FTIR as the effects of instrument drift becomes less significant. 

Such instrument drift is inherent in the IR system due to source instability and 

configuration changes in the optical conduits (Feng and Berglund, 2002). 
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Figure 5-1: Calibration of the ATR-FTIR for α-glycine-water using robust chemometrics 
(Togkalidou et al., 2001, 2002) gave a relative error of less than 1% with respect to our 

lowest concentration measurement. 
  

 

5.3) Solubility Curve and Metastable Zone Width (MZW) Determination 

Figure 5-2 shows the solubility data of α-glycine obtained together with the 

reference data from Mullin (2001). It can be seen that our measurements are in 

good agreement with the reference data. This verifies the accuracy of our ATR-

FTIR calibration model.   
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Figure 5-2: Solubility and metastable zone width of α-glycine measured.  Reference 
solubility data were taken from Mullin (2001). 

 

Figure 5-2 shows also the MZW measured by FBRM. As expected, the slower 

the cooling rate, the higher the temperature at which nucleation occurred and 

hence the narrower the MZW. The magnitude of the MZW is about 0.04 g-

glycine/g-water. In this case, MZW is calculated with respect to the solubility 

curve of α-glycine because product crystals formed were consistently the α-

polymorph. 

 

 

5.4) Correlation between CLD and PSD (Glycine) 

A typical microphotograph of the crystals is shown in Figure 5-3. In-situ 

observation using PVM showed that agglomeration and attrition were 

insignificant during crystallization. Therefore, the product crystals harvested are 
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mainly single crystals which made measurement under the microscope relatively 

easy. The length of the longest dimension of each crystal was recorded as the 

geometric crystal size. 

 

 

Figure 5-3: Typical microphotograph of glycine crystals obtained from crystallization 
experiments.  Scale bar represents 500 µm. 

 

Figure 5-4 compares the measured PSD with non-weighted and square-weighted 

CLDs. It is obvious that square-weighted CLD corresponds more closely to the 

PSD measured. Hence square-weighted CLDs are used for subsequent analysis 

in this work. Heath et al. (2002) have also found the square-weighted CLD of the 

FBRM to have closer resemblance to conventional laser diffraction distribution. 

Considering the critical parameters of standard deviation and mean, our results 

(Figure 5-5) show that the correlation between the FBRM square-weighted data 

and the measurements obtained by the microscope gave a R2 value of 0.9. This 

implies that the FBRM measurements give a reliable reflection of the width of the 

PSD and crystal sizes in the system. Because the longest dimension was 

measured under the microscope, the gradient of the correlation between FBRM 

square-weighted mean and microscopic mean is less than 1.0. Numerically the 
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FBRM data do not correspond exactly to microscopy data as they are based on 

different principles of measurement; but trends could be observed and analyzed 

to give an understanding of the progress of the crystallization process. 
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Figure 5-4: Comparison of PSD measured with the microscope and FBRM square-
weighted and non-weighted CLDs for glycine. 
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Figure 5-5: Plot of FBRM square-weighted data vs microscope measurements of the 
product crystals of four different runs for glycine. 
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For the CSD derived from microscopic measurements, horizontal displacements 

of the plots were observed as compared with the FBRM CLD (Figure 5-4). Such 

is expected; the position of this distribution depends on how the crystals were 

measured. Crystals are 3-dimensional, but measurements can only be made 2-

dimensionally. Since glycine crystals are not spherical (Figure 5-3), different 

measured dimensions will result in different positions on the horizontal axis of the 

distribution (see Figure 5-6). If, as in this case, the longest dimension of each 

crystal was measured, a rightward shift of the microscopic distribution would be 

expected. Because the FBRM measures chord lengths randomly, the longest 

dimension of each crystal is not always captured. 

 

(a) (b) 

 

Figure 5-6: (a) Sphere corresponding to the longest chord length; (b) Sphere 
corresponding to the other chord lengths 

 

 

 

5.5) Case Study 1: Open-Loop Temperature Control (T-control) - Seeded 

Figure 5-7 shows the user-friendly control interface developed in Visual Basic for 

T-control, S-control and FBRM-control. 
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Figure 5-7: User-Friendly Control Interface developed in Visual Basic. 

 
The temperature profiles implemented in the T-control experiments are shown in 

Figure 5-8. For seeded systems, the product crystal CLDs were similar (Figure 5-

9(a)) despite the significant differences in the various temperature profiles. The 

convex profile, widely regarded as the optimal cooling profile, did not yield better 

crystal products compared to the other profiles; the concave profile, akin to 

natural cooling, gave crystal products of the same quality. The different linear 

cooling rates of 1 oC/min and 0.3 oC/min also did not result in any variations in 

product crystal quality, although the faster cooling rate was expected to generate 

more fines and should result in wider CLD. This observation of similarity of CLDs 

is further quantified by the FBRM statistics in Table 5-1(a). Mean and standard 

deviations agree closely for the different runs. This suggests that the product 

CLD is not affected by different cooling profiles. The supersaturation and FBRM 
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particle counts profiles of the linear 0.3 oC/min run are illustrated in Figure 5-10, 

showing that the supersaturation was kept below 0.02 g/g-water and the particle 

counts remained quite constant for the entire run.  Other T-control runs show 

similar profiles.  A closer inspection of the supersaturation profiles of all four runs 

show that the supersaturation were all kept below 0.025 g/g-water, which is well 

below the metastable limit of 0.04 g/g-water shown in Figure 5-2, further verifying 

the absence of secondary nucleation observed. The wide MZW allows for a 

greater range of controls without violating the metastable limit, resulting in similar 

product crystal quality from all seeded runs. These data show that for seeded 

crystallizations, variations in crystallization trajectory within the metastable zone 

have little effect on the product particle size. Extremes of cooling rates may have 

more prominent effects on the CLDs, but such extremes may not be attainable at 

industrial scales.  
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Figure 5-8: Temperature profiles implemented in T-control experiments for glycine 
system. 
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Figure 5-9: Glycine system: Normalized square-weighted CLDs of product crystals 
obtained from (a) seeded and (b) unseeded T-control experiments. (c): initial CLDs of 
primary nuclei before the implementation of various temperature profiles, of which the 

product crystals are shown in (b). 
 
 
 



 83

Table 5-1: Glycine system: FBRM statistics (in the 1-1000 µm range) for final product 
crystals obtained from various temperature profiles implemented on (a) seeded and (b) 

unseeded systems. 
 

(a) 
 

FBRM Statistics Linear  
1 oC/min 

Linear  
0.3 oC/min Convex Concave 

Mean 196.3 216.8 208.3 195.2 
Standard Deviation 143.7 152.5 148.0 138.0 

 
(b) 

 

FBRM Statistics Linear  
1 oC/min 

Linear  
0.3 oC/min Convex Concave 

Mean 175.75 153.05 186.57 149.48 
Standard Deviation 132.35 142.63 155.29 165.87 
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Figure 5-10: Supersaturation and FBRM particle counts profiles of a seeded T-control 
(linear 0.3 oC/min) run for glycine. 
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5.6) Case Study 2: Open-Loop Temperature Control (T-control) - Unseeded 

Unseeded crystallizations were carried out with the same temperature profiles 

shown in Figure 5-8. In contrast to the seeded case, Figure 5-9(b) and Table 5-

1(b) show that the product CLDs obtained from unseeded systems were 

considerably different when different temperature profiles were employed. One 

advantage of in-line technology is that the source of such variability can be 

investigated. The difference in product crystal quality is a consequence of the 

inherently disparate CLDs of self-nucleated seeds, rather than the effect of the 

different cooling profiles. Figure 5-9(c) shows the CLDs of the primary nuclei 

(point B in Figure 5-8), after holding for 20 minutes at 35 oC and before the 

implementation of the various temperature profiles. It is obvious that the 

discrepancies in the primary nuclei generated (Figure 5-9(c)) is the cause for the 

differences in the product CLDs (Figure 5-9(b)). This supports the hypothesis that 

the major source of variability in unseeded crystallizations is primary nucleation. 

 

Figure 5-11 shows that CLDs of self-nucleated seeds from eight different runs 

varied considerably even though nucleation was approached at the same cooling 

rate before the activation of T-control. The CLDs were taken after holding the 

system at 35 oC for 20 minutes, and before the implementation of T-control or S-

control (point B in Figure 5-8). The FBRM statistics of the self-nucleated seeds 

are listed in Table 5-2, giving a quantitative analysis of the variations in the 

CLDs. The average variabilities (numbers after the ± signs) are significant, 

indicating the substantial differences in the initial seeds formed. Square-weighted 
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mean vary by up to 30%, and square-weighted standard deviation varies by 

nearly 40% with respect to the average of the eight runs. Lack of control of size 

distribution in the self-nucleated seeds produced by spontaneous nucleation is a 

key feature in unseeded systems, as primary nucleation is random and 

irreproducible. In view of this, comparing the product CLDs of unseeded systems 

as a means of drawing a conclusion as to which profile is superior is thus not 

substantial, as higher variations in product CLDs obtained in unseeded systems 

may be attributed to the higher variations of the initial CLDs formed by primary 

nucleation. The observation here also demonstrates the power of in-line 

technique. The inconsistencies in the initial CLDs due to spontaneous nucleation 

would not have been detected if FBRM had not been used and the differences in 

product CLDs would have been attributed to the different temperature profiles 

used. 
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Figure 5-11: Normalized square-weighted CLDs of self-nucleated seeds from eight 
unseeded crystallization experiments for glycine system. 
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Table 5-2: Glycine system: Averaged FBRM statistics (in the 1-1000 µm range) for the 
CLDs of self-nucleated seeds in eight unseeded experiments. 

 
FBRM Statistics Averaged 

Mean 122.76 ± 35.75 
Standard Deviation 106.49 ± 40.28 

 

 

5.7) Case Study 3: Closed-Loop Supersaturation-Control (S-control) – 
Seeded 

After calibrating the ATR-FTIR, the next step in S-control is to determine a 

suitable set-point supersaturation value (Sset). To attain a compromise between 

fast growth and low nucleation, a set-point half-way between the solubility curve 

and metastable limit was chosen. Analysis of the solubility and MZW chart 

(Figure 5-2) gives this value to be approximately 0.02 g/g-water, corresponding 

to an undercooling of about 4 oC. 

 

Here, supersaturation (S) is represented as the difference between the solution 

concentration (C) and the saturated concentration (C*) at the same temperature 

(S = C-C*) instead of as a concentration ratio ( *

*

C
CCS −

= ). This is primarily 

because of the greater errors associated with the latter, especially at lower 

values of C* (Liotta and Sabesan, 2004).  In view of our calibration error of ± 

0.001 g/g-water and the noise inherent in the ATR-FTIR measurement of 

concentration, set-point supersaturation value of two decimal places was used.  

A lower Sset was expected to bring about better crystal product quality because 

the concentration-temperature trajectory would be further away from the 
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metastable limit leading to a narrower PSD. To investigate if a lower Sset is 

beneficial towards better crystal product quality, Sset = 0.01 g/g-water was 

implemented in a seeded system. A notable feature of S-control is the lack of any 

time constraint on the system. The duration of S-control in this case was three 

hours. In another experiment, Sset = 0.02 g/g-water, which is half-way between 

the solubility and metastable limit curves was implemented, resulted in a batch 

time of one hour. The reason for the difference in duration is that, for a higher 

Sset, the concentration of the system has to decrease at a faster rate to generate 

higher supersaturation in the system to match the set-point. This hence forces 

the system temperature to decrease at a faster rate.  The temperature profiles for 

these two runs are shown in Figure 5-12. The cooling ramps are almost linear, 

with rates of 0.15 oC/min and 0.45 oC/min respectively for Sset = 0.01 g/g-water 

and Sset = 0.02 g/g-water.  No secondary nucleation was observed in both cases. 
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Figure 5-12: Supersaturation and tem
control at (a) Sset = 0.01 g/g-water 
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perature profiles of seeded crystallization under S-
and (b) Sset = 0.02 g/g-water for glycine system. 

 two runs are shown in Figure 5-12. In both 

aturation never reached the set-point 

ase of Sset = 0.01 g/g-water, the measured 

closely at approximately 0.009 g/g-water. 

0.02 g/g-water, the system was maintained at 

r for most of the duration of S-control. The 

inherent instrumentation constraints. Because 

sured at one-minute intervals, the calculated 

to respond fast enough to correspond to the 

stem. The difference between the system and 

s set-point supersaturation increases because 

d. A shorter measurement interval was not 
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feasible in this case for a couple of reasons. Firstly, the acquisition of every FTIR 

spectrum, which was the average of 32 scans, took about 25 seconds. Secondly, 

the control program was not robust at shorter time intervals due to the very large 

amount of data collected each time. Despite the instrumentation limit, the 

supersaturation was controlled to the same relatively constant level in all runs at 

the same Sset. The supersaturation offsets are due to the inability of the circulator 

to adjust the system temperature to the set-point temperature fast enough during 

cooling. The difference between the system and set-point temperatures 

increases as set-point supersaturation increases because of the faster cooling 

rate required. Despite the instrumentation limit, the supersaturation was 

controlled to the same relatively constant level in all runs at the same Sset.   

 

The experiment with Sset = 0.02 g/g-water is expected to generate more fines and 

result in a wider CLD because of the increased possibility of secondary 

nucleation at higher supersaturation. However, this was not observed. As shown 

in Figure 5-13, the product CLDs obtained from the two experiments were very 

similar in terms of width of CLD and mean chord length. To further substantiate 

this observation, a quantitative comparison was carried out using FBRM statistics 

(Table 5-3(a)). The means and standard deviations are in good agreement, 

indicating that smaller Sset was not superior in giving higher quality product 

crystals. It can thus be concluded that Sset = 0.02 g/g-water is more efficient than 

Sset = 0.01 g/g-water for obtaining the same crystal quality but requiring only a 

third of the batch time. 
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Figure 5-13: Normalized square-weighted product crystal CLDs obtained from seeded 
systems when Sset = 0.01 g/g-water and Sset = 0.02 g/g-water for glycine system. 

 
 
 
 

Table 5-3: Glycine system: FBRM statistics (in the 1-1000 µm range) for final product 
crystals of (a) seeded experiments at two Sset values (0.01 and 0.02 g/g-water), (b) five 

seeded and (c) five unseeded S-control performed with Sset = 0.02 g/g-water. 
 

(a) 
 

FBRM Statistics Sset = 0.01  
g/g-water 

Sset = 0.02  
g/g-water 

Mean 219.4 207.4 
Standard Deviation 153.5 149.0 

 
(b) 

 
FBRM Statistics Averaged 

Mean 201.6 ± 5.27 
Standard Deviation 143.5 ± 3.86 

 
(c) 

 
FBRM Statistics Averaged 

Mean 175.0 ± 25.8 
Standard Deviation 160.7 ± 11.6 
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The next step was to check the reproducibility, which is an important concern in 

industries. Reproducibility in terms of both product crystal quality and batch time 

was investigated. The set-point supersaturation of 0.02 g/g-water was used for 

five runs of S-control. There are two reasons for using set-point supersaturation 

of 0.02 g/g-water instead of 0.01 g/g-water: firstly, it gives a shorter batch time; 

secondly, a Sset lower than the system supersaturation will cause the control 

system to increase the temperature to match the set-point temperature, resulting 

eventually in complete dissolution of the crystals if not properly monitored. The 

product CLDs of five seeded runs, as shown in Figure 5-14(a), are very similar, 

hence providing evidence of the high reproducibility of S-control systems. The 

duration of S-control for each run fell within the narrow range of 50 minutes and 

an hour, another indication of reproducibility. The temperature profiles obtained 

for these five runs are shown in Figure 5-15(a). It is observed that the 

temperature profiles are almost linear, with cooling rates between 0.43 oC/min 

and 0.50 oC/min. The FBRM statistics in Table 5-3(b) shows quantitatively that 

the variations of mean and standard deviations are within 3% of the average, 

another evidence of the high reproducibility. Linearity in the temperature profiles 

is in contrast to the observation of Liotta and Sabasen (2004) and our 

expectation of a cubic temperature profile. The probable explanation is that the 

solubility curve of glycine is approximately linear in the temperature range 

studied.   
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Figure 5-14: Normalized square-weighted product crystal CLDs of (a) five seeded and (b) 

five unseeded S-control experiments at Sset = 0.02 g/g-water for glycine system. 
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Figure 5-15: Temperature profiles obtained from (a) five seeded and (b) five unseeded S-

control experiments at Sset = 0.02 g/g-water for glycine system. 
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5.8) Case Study 4: Closed-Loop Supersaturation-Control (S-control) – 
Unseeded 

Unseeded systems have irreproducible initial CLDs when nucleation occurs, 

hence the final product CLDs are unlikely to be similar. This is evident from the 

product crystal CLDs shown in Figure 5-14(b) and FBRM statistics shown in 

Table 5-3(c). At the same set-point supersaturation value, the variability 

(quantities after the ± sign) of the product crystal CLDs for five different runs are 

at least three times greater than for the seeded systems. The duration of S-

control ranged from 40 to 70 minutes. The temperature profiles obtained from 

unseeded runs (Figure 5-15(b)) were almost linear as in the seeded runs but the 

cooling rates span a larger range of 0.22 – 0.37 oC/min. These observations 

suggest that reproducibility or batch-to-batch consistency is hard to achieve in 

self-seeded crystallizations and even the most sophisticated closed loop S-

control is unable to overcome the variability of primary nucleation.  

 

 

5.9) Comparison between T-control and S-control  

Comparing the results from seeded T-control and S-control experiments (Table 

5-1(a) and Table 5-3(b)), S-control did not display any advantage over T-control 

in terms of product quality since the standard deviations of the CLDs are similar. 

The insignificant difference between the effectiveness of S-control and T-control 

may be due to the fast growth rate of glycine. The average linear growth rate at 

cooling rate of 0.3 oC/min is estimated to be 62 nm/s by optical microscopy, and 

that is equivalent to at least 124 molecules being incorporated onto the crystal 
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per second. As a result, the controlling factor in glycine crystallization is the 

nucleation step. Once nuclei are formed (or seeds are introduced), the 

magnitude of the cooling rate will not make a significant difference because of 

the rapid growth rate. This also explains why seeding is important for glycine 

crystallization from water if reproducibility of product quality and process 

conditions are of prime concern. 

 

Thus far, it has been shown that large variability in product crystal CLDs was 

observed in unseeded crystallization experiments regardless of whether open-

loop or closed-loop control was implemented. This is primarily due to the 

unpredictable nature of primary nucleation. Product crystal quality became more 

consistent and reproducible when seeds were employed for both S- and T-

control experiments. However, S-control did not demonstrate any significant 

advantage over T-control in terms of product crystal quality. S-control has been 

found to be insensitive towards the pre-set supersaturation values tested in this 

work of cooling crystallization of glycine from water. Insignificant attrition and 

agglomeration were observed. It can be concluded that sophisticated S-control 

was unnecessary for glycine. The possible reason for the insensitivity of product 

quality to the control strategy could be the fast growth rate of glycine. A similar 

conclusion was reached in a separate study on a well-behaved pharmaceutical 

compound (Black et al., 2006). This conclusion may be generally valid for all fast-

growing systems.   
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Moscosa-Santillan et al. (2000) have used turbidimetry as a control tool in 

cooling crystallization of glycine, and showed that the alternative temperature-

time profiles so obtained improves product crystal quality of seeded systems.  

Moreover, the convex profile was observed to yield larger crystal product with 

lower coefficient of variation than the linear profile.  However, in our present work, 

S-control and different variations of T-control profiles yielded similar crystal 

product quality. As shown in Figure 5-10, secondary nucleation was negligible, 

which was not the case for Moscosa-Santillan et al. (2000) whereby significant 

secondary nucleation was observed. The dissolution of fines through an 

alternating temperature profile would hence undoubtedly prove advantageous in 

giving higher quality crystal products in their case. The most probable 

explanation for the apparent inconsistency with the data presented here is that 

secondary nucleation occurred during the work of Moscosa-Santillan et al. (2000), 

whereas it was specifically excluded here (Figure 5-10). This may be because 

the supersaturations were larger in the previous work, or that the MZW’s were 

smaller. One advantage of the in-line technologies deployed here is they would 

be capable of distinguishing between these two phenomena.  

 

The differences in secondary nucleation rate may be due to the different agitator 

used, different stirring speed, different hydrodynamics within the crystallizer and 

other differences in operating conditions. The success of crystallization control 

hinges on control of the operation within the MZW. This metastable limit is, in 

contrast to the saturation limit, thermodynamically not founded and kinetically not 
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well defined. It depends on a number of parameters such as temperature level, 

rate of generating the supersaturation, solution history, impurities, fluid dynamics, 

etc. Because of the wide MZW (Figure 5-2) in our chosen model system and 

conditions, a wider range of controls that do not violate the metastable or 

solubility limits was possible which resulted in similar product crystals.  

 

Consistent particle properties are an important goal for industrial batch 

crystallizations. Several control strategies, from unseeded linear cooling to 

seeded supersaturation control, were evaluated for the cooling crystallization of 

glycine. Particle properties were assessed in-line, facilitating investigations of 

process consistency. External seeding was by far the most effective strategy. 

Changing the pre-set cooling profile, or the pre-set supersaturation limit, showed 

limited benefits. Primary nucleation is unpredictable and do not occur at a fixed 

temperature, which nullifies the impact of any types of control in giving consistent 

product crystal.  

 

 

5.10) Feedback Loop Involving FBRM 

 

The control program was implemented using Microsoft Visual Basic 6.0 (Figure 

5-7), which is hosted on a Pentium IV computer. FBRM statistics are transmitted 

to the computer to be analyzed at 60 s interval, and then a signal is sent to the 

circulator to adjust the crystallizer temperature, which in turn affects the FBRM 



 98

statistics. A schematic of this flow of information is shown in Figure 5-16. In this 

work, a fairly large measurement interval of 60 s was used because the control 

program was not robust at shorter time intervals due to the very large amount of 

data collected each time. 

 

Adjusts System  Real-time 
measurement 

FBRM 
statistics Temperature  Crystallizer FBRM

Controller Circulator 
Temperature 

Setpoint 
Setpoint (counts or c.v.) 

 

Figure 5-16: Schematic Diagram showing the Flow of Information in a Feedback Loop. 
 

 

5.11) Detection of Primary Nucleation in Unseeded Systems Using FBRM 

The appearance of crystals from the clear supersaturated solution is the 

definition for the occurrence of primary nucleation (Mullin, 2002). Since an 

increase in particle counts from its baseline level is a sure indication of the onset 

of primary nucleation, the FBRM’s ability to track particle counts in-line facilitates 

the detection of primary nucleation. Jeffers et al. (2003) and Barrett and Glennon 

(1999) have found that the chord lengths measured per unit time recorded by the 

FBRM can be linearly correlated with solids density within a certain range, hence 

verifying FBRM’s ability to monitor particle counts in the system. 
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A caveat to note is that to simply define an absolute number of particle counts 

above which primary nucleation is deemed to have occurred may lead to errors. 

Noise is inherent in FBRM measurements, and occasional spikes in 

measurement would lead to false detection of nucleation. Also, in view of 

potential fouling of FBRM probe even in clear solution, this strategy makes for 

errors in nucleation detection. More importantly, the absolute particle counts 

statistic is not amenable to scale-up nor to a different system, hence is not useful 

as a universal benchmark. 

 

In this work, to override the fluctuation due to noise or fouling in the detection of 

primary nucleation, nucleation is deemed to have occurred only when there is a 

monotonous increase in the consecutive number of counts measured by the 

FBRM. At the onset of primary nucleation, the increase in counts is very steep, 

ensuring that successive readings of particle counts would show an increase in 

spite of fluctuation caused by noises in the measurement (Figure 5-17).  
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Figure 5-17: Detection of the onset of nucleation using FBRM by monitoring the number 
of successive readings showing positive increase in Total Counts. 

 

If successive increase in the counts measured by FBRM is to be used as an 

indication of primary nucleation detection, a reasonable number of successive 

readings has to be pre-set as the threshold number of consecutive monotonously 

increasing readings of FBRM counts (N*) above which primary nucleation would 

definitely have occurred. If N* is set too low (e.g. N* = 3 or below), false detection 

of nucleation may result due to fouling or noise. On the other hand, if N* is set 

too high (e.g. N* = 10), the time lag between the onset of nucleation and 

subsequent control action could be unacceptably large. 

 

For our experiments on the glycine-water system, with a measurement interval of 

60 s, it was found that a value of N* = 4 was effective in detecting primary 

nucleation unambiguously. Figure 5-17 shows the measured values of Total 
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Counts in a typical experimental run. When the system detects a positive 

increase in Total Counts over the previous reading, an internal counter N is set to 

the value of 1. Only if the next and immediately subsequent readings continue to 

show an increase, then N is incremented by 1 at each time step. Otherwise, N is 

reset to 0. If N reaches the value of N* (= 4), then nucleation is deemed to have 

occurred, and the system is sent a signal to take subsequent control action as 

described earlier. 

 

Figure 5-17 also shows the Fines Counts as an alternative statistic to Total 

Counts. It can be seen that for our system, the relative profile of Fines Counts 

follows very closely to that of Total Counts, and therefore it would be feasible to 

base our nucleation detection technique on either statistic. However, Total 

Counts was preferred since our experience indicates that Fines Counts were 

more susceptible to systematic fluctuations. 

 

Our technique is expected to work for different models of the FBRM probe. Three 

models of FBRM probes (S400, D600L, and D600P) are available in our lab, and 

all worked equally well for this method of nucleation detection. The different 

models of probes are catered for different vessel dimensions, but operate on the 

same principle. That primary nucleation causes a rapid successive increment of 

Total Counts measurements is true regardless of scale.  
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5.12) Case Study 5: Using FBRM in a Feedback Loop to Improve 
Consistency in Unseeded Crystallization Systems 
 

As concluded in Section 5.9, the randomness and unpredictability of primary 

nucleation in unseeded systems is the prime cause for the lack of reproducibility 

in product crystals, even when sophisticated controls like S-Control was 

implemented. The objective here is thus to manipulate the primary nuclei of 

different runs to achieve consistency in the beginning, before various modes of 

controls are implemented. Also, in view of the fact that many industrial players 

are reluctant to implement the ATR-FTIR in the production systems due to its 

vulnerabilities (Chapter 3.2), the ability to solely rely on FBRM for reproducibility 

in product crystals would be a great advantage. 

 

The temperature profile for a typical experimental run is shown in Figure 5-18. 

The saturated solution (Point A) is cooled at a pre-set rate until nucleation is 

detected by the FBRM (Point B). The system is allowed to stabilize at the 

temperature of Point B for a fixed time (15 minutes), by which time primary 

nucleation is completed as shown by the counts profile in Figure 5-17. Then, the 

temperature is raised at a constant rate while using the FBRM to monitor the 

particle size distribution (PSD) of the “seed” crystals. The heating gradually re-

dissolves the fines, thereby narrowing the PSD. When the desired quality of 

these internally generated “seeds” is achieved (Point D), the system is cooled at 

a constant rate to allow the crystals to grow until the final yield is attained (Point 

E). 
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Figure 5-18: Temperature Profile of a typical run for glycine system. 

 

In Figure 5-11, it has been shown that spontaneous primary nucleation arising 

from unseeded cooling crystallizations produced initial crystal nuclei with 

inconsistent PSD from batch to batch. This is hardly surprising, given the random 

and irreproducible nature of the nucleation process. In seeded crystallization 

processes, on the other hand, it is fairly simple to ensure that the PSD of the 

initial seeds is consistent. This difference is amply illustrated in the contrast 

between Figure 5-19(a) and Figure 5-19(b) for the case of sample data from 

several unseeded and seeded systems respectively. It is demonstrated in this 

work that it is possible to obtain consistency from internally-generated primary 

nuclei by manipulating the CLDs in Figure 5-19(a) to achieve that in Figure 5-

19(c) through a closed-loop feedback technique involving FBRM. 
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Figure 5-19: Normalized square-weighted initial CLDs (i.e. CLDs were taken just prior to 
the implementation of any control strategies) from eight (a) unseeded, (b) seeded and (c) 

unseeded with FBRM-Control crystallization experiments for glycine system. 
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The FBRM data (Figure 5-19) shown are in the form of normalized square-

weighted chord length distributions (CLDs) Although FBRM-measured chord 

lengths are never equivalent to actual particle sizes, it has been demonstrated 

square-weighted CLD correlates well with the microscopic CSD (Section 5.4) for 

glycine crystals, and therefore we have used this statistic in the present work. 

 

The complete mathematical definition of a particle size distribution (PSD) is often 

cumbersome, and it is more convenient to use one or two single numbers 

representing say the mean and spread of the distribution (Jones, 2002). For 

example, the mean particle size enables a distribution to be represented by a 

single dimension, while its standard deviation indicates its spread about its mean. 

The coefficient of variance (c.v.), which quantifies the width of the distribution 

function with respect to its mean, and is defined as the ratio of the standard 

deviation to the mean, has been reported to be useful for description and 

comparison of experimental results (Warstat and Ulrich, 2006). In the present 

work, a target value of the c.v. is used as the objective in the FBRM feedback 

loop. 

 

Upon the detection of nucleation, an increasing temperature ramp of 0.3 oC/min 

was used to manipulate the c.v. of the internally-generated “seed” crystals.  A 

slower heating rate gives tighter control but increases batch time, while a faster 

heating rate gives coarser control but reduces batch time; hence an intermediate 

heating rate of 0.3 oC/min is chosen. A set-point value of 0.7 was used to 
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determine the end of this heating stage of the process; the value 0.7 is based on 

a typical PSD of external seeds (Figure 5-19(b)). To ensure robust operation, an 

upper temperature limit was set (45 oC in this case) to avoid total dissolution. If 

this temperature is reached, the final cooling phase (D – E in Figure 5-18) is 

initiated even though the c.v. has not reached its set-point. For all the runs, the 

c.v. attained the set-point value without violating this temperature constraint. 

 

A foreseeable problem that the practical implementation of FBRM-Control faces 

is related to the usually noisy FBRM data especially in systems with low solids 

concentrations. It can be seen in Figure 5-20 that despite the relatively high 

solids concentration of glycine crystals in our experiment, the raw c.v. 

measurement is very noisy, which could cause erroneous control action. 
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Figure 5-20: Plot of coefficient of variance (c.v.) vs time in the presence and absence of 

exponential filter for glycine system. 
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In this work, an exponential filter, which is a time-averaging feature of the FBRM 

Control Interface Software, was used to smoothen out the noisy FBRM data. 

Unlike the moving-average filter, the exponential filter does not give equal weight 

to past measurements, but gives exponentially declining weight to measurements 

further back in time. Figure 5-20 shows the FBRM data for c.v. with and without 

exponential filter (α = 0.1) applied, and it is clear that the filtered data are much 

more amenable to be used for control. 

 

Figure 5-19(c) shows the measured FBRM CLDs of internally-generated seeds 

from eight different runs after manipulation by heating to attain a c.v. of 0.7. The 

CLDs are remarkably similar, demonstrating that automatic internal generation of 

seeds with high consistency can be achieved using this technique. After the 

desired quality of seeds is obtained (Point D in Figure 5-18), the system is cooled 

at a constant rate to allow steady crystal growth, until the desired yield is 

obtained (Point E in Figure 5-18). One could also apply more sophisticated 

control strategies at this stage (Point D), for example, constant supersaturation 

control with in-line ATR-FTIR measurements (Yu et al., 2006, Zhou et al., 2006; 

Fujiwara et al., 2005; Liotta and Sabesan, 2004).  

 

Results for the CLDs of the final crystal product (five different runs) after linear 

cooling are shown in Figure 5-21(c). This can be compared with equivalent final 

product CLDs from previous work on unseeded (Figure 5-21(a)) and externally 

seeded (Figure 5-21(b)) crystallizations. The results clearly demonstrate that the 
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final product consistency from our fully automated FBRM technique for 

nucleation detection and internal seed conditioning is much better than for 

unseeded systems in terms of product consistency. 
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Figure 5-21: Normalized square-weighted product crystal CLDs of five (a) unseeded, (b) 
seeded, and (c) unseeded with FBRM-Control S-control experiments at Sset = 0.02 g/g-

water for glycine system. 
 
 
 
A closer inspection of Figure 5-21(b) and Figure 5-21(c) also shows that even 

external seeding (with its attendant operational complexities) produces 

marginally less consistent product as compared with our automated technique. 

 

 

5.13) Sensitivity Analysis through In-Line Monitoring of the Crystallization 
Process using FBRM 
 

In the event that the temperature-control of the system fails and extremes of 

temperature ramps (cooling / heating) are encountered, a robust feedback loop 

should still be able to detect primary nucleation and adjust the system c.v. 

without fail. This section shows the usefulness of the FBRM as an in-line 

instrument for monitoring crystallization processes. 
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In the detection of primary nucleation, extreme cooling rates of 0.1 oC/min and 1 

oC/min were investigated. N* was similarly set to 4. Detection of primary 

nucleation was successful in both cases. Table 5-4 shows the stoppage 

temperature upon nucleation detection and duration of cooling temperature ramp. 

For a slower cooling rate, the batch time is too much longer despite the narrower 

metastable zone width. A cooling rate of 0.5 oC/min was chosen for our runs in 

the previous sections in view of the batch time and stoppage temperature upon 

detection of primary nucleation. Figure 5-22 shows the square-weighted CLDs of 

the primary nucleation (Point C in Figure 5-18), implying that more nuclei were 

formed for faster cooling rates due to the higher supersaturation generated.  

 

Table 5-4: Glycine system: Duration of cooling temperature ramp and stoppage 
temperature upon detection of primary nucleation for various cooling temperature ramps. 
 

 Duration of cooling 
temperature ramp (min) 

Stoppage temperature upon 
detection of primary nucleation (oC) 

0.1 oC/min 216.3 38.4 
0.3 oC/min 57.7 31.2 
1 oC/min 36.6 23.4 
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Figure 5-22: Square-weighted CLDs after the detection of primary nucleation for glycine 

system. 
 

Extreme heating rates of 0.1 oC/min and 1 oC/min in the adjustment of c.v. of the 

primary nuclei were investigated too. The cooling rate in approaching nucleation 

was a constant 0.5 oC/min for the three different runs. It is seen in Figure 5-23(a) 

that it was possible to use a wide range of heating rates to achieve similar 

consistency in the CLDs, but using the same heating rate enhanced the 

consistency more (Figure 5-19(c)). As seen in Table 5-4, a lower heating rate 

results in longer batch time, which is hence less efficient. However, a higher 

heating rate results in a rapid decrease in c.v., making control more tricky. Also, 

higher heating rate causes rapid dissolution of nuclei, resulting in noisier CLDs 

due to lower solids concentration. In view of this, an intermediate heating rate of 

0.3 oC/min was chosen in the previous sections. 
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Figure 5-23: (a) Normalized and (b) Non-normalized Square-weighted CLDs after 

adjusting the c.v. for glycine system 
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5.14) Investigation of applicability of FBRM Feedback Loop on 
Paracetamol-Water System 
 

Unlike S-Control, whereby it has been tested on several systems and proven to 

work, the technique involving the FBRM feedback loop proposed here is new. 

Hence, it is necessary to investigate its effectiveness in an alternative system. 

Paracetamol-water system was chosen for this, as it has been known to be a 

challenging system to measure the characteristics of the particle size distribution 

of (Fujiwara et al., 2002) due to its low solubility. Moreover, agglomeration, which 

is a common problem in the crystallization of pharmaceuticals, is prevalent in this 

system (Alander et al., 2003, 2004; Yu et al., 2005), and hence serves as a 

useful benchmark for the applicability of this technique. Accurate interpretation of 

size distribution measurements from particle size analyzers is much more difficult 

for agglomerating systems. Also, there is ample literature on the crystallization of 

this system (del Rio and Rousseau, 2006; Zhou et al., 2006; Granberg and 

Rasmuson, 2005; Worlitschek and Mazzotti, 2004; Femi-Oyewo and Spring, 

1994; Yu et al., 2006; Chew et al., 2004; Al-Zoubi et al., 2002; Prasad et al., 

2001; Rodriguez-Hornedo and Murphy, 1999). 

 

The primary nucleation detection technique was successfully implemented for the 

paracetamol-water system. N* = 4 was similarly used in this case. Although 

probe fouling was a severe problem, the fact that primary nucleation causes a 

rapid successive increment of Total Counts measurement overrides the distortion 
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of FBRM data due to fouling. FBRM signals and CLDs were noisier in this case, 

but such was not an obstacle for this technique. 

 

The second new technique proposed served to improve consistency in unseeded 

crystallization systems through ensuring consistency in the internally-generated 

seeds from primary nucleation. The objective was for the primary nuclei 

generated to achieve a setpoint c.v. The temperature scheme used here is 

similar to that in Figure 5-18.  

 

FBRM data were first validated against results obtained from sieve analysis (Yu 

et al., 2006). A typical micrograph of paracetamol crystals obtained from 

crystallization experiments is shown in Figure 5-24. As shown in Figure 5-25, 

FBRM square-weighted and sieve analysis mean and c.v. are well-correlated, 

with R2 values of 0.86 and 0.97 respectively. However, absolute FBRM value is 

only about one-fifth of sieve analysis data. Sieve analysis measures the second 

longest chord length, while FBRM measures random chord lengths. 

Agglomeration is postulated to be the prime reason for the huge discrepancy in 

the absolute values between that obtained via sieve analysis and FBRM. This is 

a testament to the reliability of FBRM as a means to observe trends but not for 

absolute values. Since this work does not require absolute values from FBRM, 

such high R2 values are sufficient grounds for dependence on FBRM data 

directly for this system.   
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Figure 5-24: Typical micrograph of paracetamol crystals obtained from crystallization 
experiments. Scale bar represents 500 µm. 
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Figure 5-25: Plot of FBRM Square-weighted Data vs Sieve Analysis Data of product 

crystals for paracetamol system. 
 

For the paracetamol-water system, the FBRM signals were very noisy, despite 

the implementation of exponential filter as before to smooth out the data 

obtained. Figure 5-26 shows the c.v. derived from FBRM signals after the 

application of exponential filter. In contrast to Figure 5-20 for the glycine-water 

system, it is shown that although the exponential filter lessens the noise, the 

signals obtained still fluctuates much, complicating control using FBRM. The 

deterioration of FBRM signal quality in this system is due to several reasons. 

Firstly, probe fouling is a very prevalent problem for this system. For all the 

experiments, the FBRM probe has to be withdrawn from the system for cleaning 

due to severe fouling upon the onset of primary nucleation. That the FBRM probe 

is connected to a fiber optic makes for convenient removal and re-insertion of the 

probe. Secondly, since FBRM measures chord length (Figure 3-3 in chapter 3), 
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agglomeration which results in jagged edges increases the noise in the FBRM 

signals. Paracetamol crystals are known to agglomerate to a large extent, 

especially in water (Fujiwara et al., 2002).  
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Figure 5-26: Plot of coefficient of variance (c.v.) vs time in the presence and absence of 
exponential filter for paracetamol system. 

 

Figure 5-26 also shows that heating does not decrease the c.v. as much as it 

does in Figure 5-20. While the glycine system’s c.v. decreased by up to 0.2 over 

a temperature increase of 6 oC (Figure 5-20), the paracetamol system’s c.v. only 

decreased by 0.1 over a temperature increase of 11 oC. Compounded with the 

fluctuations, it makes for difficult attainment of a setpoint c.v. The setpoint c.v. in 

this case was determined to be 0.65, which was chosen based on a few 

observations of primary nucleation c.v. and the decrease in c.v. achievable by 



 118

heating. Since consistency is of prime consideration here, the concern was to 

ensure this c.v. setpoint is attainable for all runs. To circumvent the problem of 

fluctuations, the increasing temperature ramp was halted only after the system 

c.v. is lower than the setpoint for three consecutive times. 

 

The CLDs obtained through FBRM upon primary nucleation (point C on Figure 5-

18) and after heating (point D on Figure 5-18) are shown in Figure 5-27(a) and 

Figure 5-27(b) respectively. Hence, the technique proposed in this work has 

been successfully implemented for the paracetamol-system too, to achieve 

consistent internally-generated seeds, and hence improving batch-to-batch 

consistency in unseeded systems. It is observed in Figure 5-27(b) that, in 

comparison with Figure 5-19(c), the CLDs do not superimpose on one another as 

closely. A few factors contribute to this. Firstly, the noisy FBRM signals hamper 

the monitoring of system c.v., causing difficulties in the determination of the point 

at which the setpoint is attained. Secondly, the magnitude of c.v. decrease upon 

heating is smaller than for the glycine system, posing a restriction to the extent of 

adjustment of c.v. Thirdly, the greater extent of agglomeration damper the 

dissolution of fines during the heating process, again deterring the attainment of 

the setpoint c.v. 
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Figure 5-27: Normalized square-weighted CLDs (a) upon primary nucleation and (b) 

after heating to attain setpoint c.v. for paracetamol system. 
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5.15) FBRM as In-Line Instrumentation in a Closed Feedback Loop 
 

Closed-loop feedback control involving FBRM has been implemented on 

unseeded crystallization of glycine crystals and paracetamol crystals from water 

to improve the consistency of product crystals. 

 

The FBRM has proven to be useful in the detection of primary nucleation in 

unseeded systems, hence making it possible to accurately define the point of 

nucleation automatically. This allows for enhanced control in unseeded systems. 

Primary nucleation is defined to have occurred after four successive increases in 

counts measurement, after which the temperature ramp used in approaching 

primary nucleation is automatically stopped. 

 

This work has also shown that it is possible to manipulate the c.v. of the self-

nucleated seeds generated by primary nucleation in unseeded systems using 

closed-loop feedback control of FBRM to ensure reproducibility in the initial 

nuclei CLDs, superseding a prime advantage of seeding. Since product crystal 

consistency hinges on consistency at the start of spontaneous seeding by 

primary nucleation in unseeded systems, the successful implementation of 

FBRM-Control allows for unseeded systems to be used for producing consistent 

product crystals that was hitherto only possible for seeded systems. 
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5.16) FBRM Data Evaluation (Glycine) 

This section serves to give a critical evaluation of FBRM data.  

 

In analyzing the FBRM data, it is necessary to choose a common basis (for 

example, similar particle counts) to ensure valid comparison, and a suitable 

agitation speed to ensure suspension of particles at the probe window.   

 

Seeds of the same size (product crystals in the sieve fraction of 125-212 µm) 

were added into separate systems in different amounts (1g and 5g).  Figure 5-

28(a) and Figure 5-28(b) show the CLDs of different seed masses, with the latter 

showing the percentage of counts per chord length to reflect the similarity of the 

two CLDs. It is obvious in Figure 5-28(a) that the area under the square-weighted 

CLD for the 5g seeds is larger, reflecting the higher mass of particles in the 

system. Heath et al. (2002) showed that FBRM measures the first diameter 

weighting (moment) of the chord distribution, which means that applying a 

square-weighting is effectively a cube (volume) weighting, hence the square-

weighted CLD reflects the mass of the particles in the system. Since the seeds 

are of the same size, a five times increase in seed mass should result in a five 

times increase in the number of particles in the system. The FBRM counts per 

second statistic is expected to be five times more, but, in Table 5-5, there is only 

an approximately two times difference between the two runs. Jeffers et al. (2003) 

showed in their work there is a strong linear relationship between FBRM counts 

and mass in the system. However, in this work, this was not the case. This 
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seeming inconsistency in the results is not surprising, as the FBRM system 

measures a particular chord length instead of a specific dimension, and results 

are sensitive to both particle shape and particle size. Heath et al. (2002) and 

Barrett and Glennon (1999) have shown similar results in that total FBRM counts 

did not correlate well with solid fraction, tapering off at high particle 

concentrations. Such can be explained as follows. When there is a higher 

concentration of solids, a smaller volume of the system is sampled, as the laser 

beam is blocked by more solids. Since the sample size in the 5-g seeds system 

is smaller, a smaller number of particles are reflected in the FBRM statistics. Also 

notable in Table 5-5 is the difference in the median value. A higher median was 

registered for the smaller seed mass. In view that the agitation speed was the 

same in both cases, a plausible explanation would be that a greater number of 

bigger particles were suspended near the FBRM window in the case of the 

smaller seed mass.  
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Figure 5-28: (a) Square-weighted and (b) Normalised square-weight CLDs of 1 and 5 g 

of seeds (125-212 µm) for glycine system. 
 

 

Table 5-5: Glycine system: FBRM statistics (in the 1-1000 µm range) for initial CLDs of 
similar seeds (product crystals in sieve fraction of 125-212 µm) in different masses. 

 
FBRM Statistic Weighting 1-g seeds 5-g seeds 

Counts per Second Non-Weighted 621.04 1173.83 
Median Non-Weighted 27.06 25.44 
Mean Square-Weighted 86.90 83.44 

Standard Deviation Non-Weighted 29.23 27.56 
Standard Deviation Square-Weighted 52.65 51.27 

 

 

In view of this, it is noteworthy that the magnitude of the FBRM statistic not be 

taken as an absolute value, but only as an observation of the trend in the system.  

 

Another experiment was carried out to further investigate the significance of the 

FBRM data. Using seeds of two different size ranges (product crystals in the 
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sieve fraction range of 300-355 µm and 125-212 µm) in two separate 

experiments, an attempt was made to add sufficient amounts of seeds such that 

the counts per second statistic as registered by the FBRM are similar. 10 g of 

300-355 µm seeds were needed to match 4 g of 125-212 µm seeds in terms of 

particle counts recorded by FBRM. Calculation of the ratio of the surface area of 

the two seed batches added revealed that they have similar total surface area, 

which implies these two batches of seeds are comparably as effective as seeds. 

For the same surface area, bigger seeds have larger masses, hence a larger 

mass of seeds were added for the bigger seeds. As previously stated, the area 

under the square-weighted CLD is correlated to the mass of the particles in the 

system. The area under the CLD for the batch of 4 g of 125-212 µm seeds is 

clearly smaller than the other seed batch (Figure 5-29(a)), hence re-affirming our 

claim.  The normalized CLDs in Figure 5-29(b) show clearly a shift of the CLD 

along the chord length axis between the different seed batch, a reflection of the 

different seed sizes. The FBRM statistics in Table 5-6 shows a distinct difference 

in the mean sizes of the seeds in the systems. The median of the larger sized 

seeds is presumed to be larger than that for the smaller ones, but unexpectedly, 

the medians of the two seed batches are similar. Again, both these systems were 

at the same agitation speed. Hence, it can be explained similarly as before that in 

the case of the bigger mass of bigger seeds, only the smaller particles are 

suspended near the FBRM window.  Heath et al. (2002) pointed out that the 

probability of a particle being detected is proportional to its diameter, introducing 

a bias. Also, although the seed range of 300-355 µm is smaller than 125-212 µm, 
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both the non-weighted and square-weighted standard deviation of the latter is 

greater. In view of the fact that glycine crystals are not fragile and hence abrasion 

of the crystals by the impeller is not significant, the only plausible reason for the 

disparity is again due to the same agitation speed used in both cases. 
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Figure 5-29: (a) Square-weighted and (b) Normalized square-weighted CLDs of different 

masses of seeds of different sizes for glycine system. 
 
 
 
Table 5-6: Glycine system: FBRM statistics (in the 1-1000 µm range) for initial CLDs of 

different seed masses of different sizes. 
 

FBRM Statistic Weighting 300-355 µm (10 g) 125-212 µm (4 g) 
Counts per Second Non-Weighted 500.26 475.78 

Median Non-Weighted 23.51 23.34 
Mean Square-Weighted 142.91 97.50 

Standard Deviation Non-Weighted 42.86 32.06 
Standard Deviation Square-Weighted 91.78 57.83 

 

 

Taking these into account, a caveat is that comparing different systems based on 

FBRM data is not conclusive. FBRM data can be used for comparison analysis 

only for the same system, as differences in shape and size results in bias in the 

data. 
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5.17) Summary 

 

With the use of in-line instrumentations as per the PAT initiative, several control 

strategies for batch cooling crystallization were investigated.  

 

Current common measurement techniques include the use of the ATR-FTIR, 

FBRM, and PVM. Further improvements of such instruments promise 

breakthrough of the present bottleneck, allowing greater precision and more 

information of the crystallization process. The choice of the control approach may 

dramatically influence the performances of a certain crystallization process. The 

purpose of this thesis is to evaluate the benefits of new methods of controlling 

crystallization against conventional ones, thereby providing a useful guide for the 

crystallization control community in the choice of the appropriate control strategy. 

 

Most of the previous control studies have dealt with finding the open-loop 

temperature versus time trajectory that optimizes some characteristics of the 

desired crystal size distribution. Such an approach requires the development of a 

detailed model with accurate growth and nucleation kinetics, which is time-

consuming and inaccurate due to varying process conditions. An alternative 

control approach is to control the solution concentration as a function of 

temperature, so that the crystallizer follows a preset supersaturation curve in the 

metastable zone. The metastable zone is bounded by the solubility and the 

metastable curves. The setpoint supersaturation curve is the result of the 
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compromise between the desire of fast crystal growth rate that occurs near the 

metastable curve and low nucleation rate which takes place near the solubility 

curve. The advantage of this approach is that, unlike to the first approach, it does 

not require the derivation of accurate growth and nucleation kinetics. Hence, it 

can be easily implemented based on the practical determination of the solubility 

and metastable curves of a certain crystallization process. 

 

Closed-loop feedback S-control was implemented on glycine-water system, and 

found not to give any significant benefits over simple T-control for seeded 

systems. The insignificant difference between the effectiveness of S-control and 

T-control may be due to the fast growth rate of glycine. The average linear 

growth rate at cooling rate of 0.3 oC/min is estimated to be 62 nm/s by optical 

microscopy, and that is equivalent to at least 124 molecules being incorporated 

onto the crystal per second. As a result, the controlling factor in glycine 

crystallization is the nucleation step. Once nuclei are formed (or seeds are 

introduced), the magnitude of the cooling rate will not make a significant 

difference because of the rapid growth rate.   

 

Product consistency was however not observed in unseeded systems due to the 

inconsistent initial seeds generated by primary nucleation, even when S-control 

was implemented. Hence, consistent seeding is important for glycine 

crystallization from water if reproducibility of product quality and process 

conditions are of prime concern. 



 129

In view of the constraint on the number of available vessel ports in industry, a 

decision often has to be made between insertion of a probe for in-line monitoring 

or for external seeding. An in-line probe has the advantage of enabling constant 

monitoring such that any off-specification instants in the entire process are 

pinpointed. On the other hand, primary nucleation is random and unpredictable, 

conferring much discrepancy in the product crystals. Hence, a trade-off exists 

between the two choices. A strategy is thus proposed here to use FBRM to 

automatically detect primary nucleation and condition the seeds so generated to 

achieve consistency in different unseeded runs. 

 

The novel concept of a closed feedback loop involving FBRM was successfully 

implemented on the glycine-water and paracetamol-water systems. Whereas 

product crystal consistency could not be achieved previously for unseeded 

glycine-water system even with the implementation of sophisticated S-control, 

this technique made it possible. FBRM was first used to detect the onset of 

primary nucleation, after which the cooling temperature ramp in approaching 

nucleation was automatically halted. Subsequently, a heating ramp was initiated 

to dissolve the fines such that the CLDs attain a pre-determined setpoint c.v. This 

step ensured the achievement of consistent initial seeds generated by primary 

nucleation. As proven previously, consistency in the initial seeds ensured 

consistency in the product crystals, regardless of the ensuing temperature profile.  
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Table 5-7 gives the averaged FBRM statistics the system before the 

implementation of T-control or S-control (point B in Figure 5-8). The 

inconsistencies of primary nuclei are obvious in average variability (the value 

after the ± signs) of eight separate runs each. The enormous benefit of using 

FBRM monitoring and control is obvious in the significant reduction in the 

average variability (values after ± sign). Although external seeding still seems to 

be the most consistent, external seeding has its attendant problems as described 

earlier; hence the technique of internally generating the seeds is an 

advantageous option.  

 

Table 5-7: Glycine system: Averaged FBRM statistics for various seeding methods for 
eight different runs each. 

 
Averaged FBRM 

Statistics 
Unseeded 

(primary nuclei) 
Externally 

seeded 
Internally generated 

seeds 
Mean 122.76 ± 35.75 99.10 ± 1.61 149.80 ± 6.02 

Standard Deviation 106.49 ± 40.28 61.45 ± 2.36 103.96 ± 5.47 
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6) Overall Conclusion and Future Opportunities 

 

 

 

6.1) Conclusions 

• The novel concept of using FBRM in a feedback loop in the control of 

batch cooling crystallization has been successfully implemented. 

 

• Two techniques involving this closed loop have been proposed. 

 To detect the onset of primary nucleation. 

 To achieve consistent internally generated seeds in unseeded 

systems, hence providing a viable alternative to external seeding. 

 

• A successful control strategy for unseeded crystallization systems involves 

the following procedure: 

1. Monitor the onset of primary nucleation using FBRM. 

2. Adjust the system c.v. derived from FBRM statistics to achieve 

consistent internally generated ‘seeds’. 

3. Implement T-control or S-control. 

 

• Internally generated seeds are as reproducible as external seeds. 
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• Techniques have been proven to work for glycine-water and paracetamol-

water systems. 

 

 

6.2) Future Opportunities  

There are a few compelling trends in the field of solution crystallization research. 

 

The first is crystallization control. The vast majority of papers on crystallization 

control have investigated the control of some characteristic (e.g., weight mean 

size) of the CSD. The aim is of obtaining better quality crystals in terms of shape, 

size distribution, purity etc by means of measuring supersaturation and crystal 

sizes in-line. “Good crystalline product” can mean a pure product, a special size 

distribution or a good filterable product. In addition, the process should also be 

optimized, which means low energy consumption, small volume, easily handled 

products, and no unusable batches (Ulrich, 2003). Most crystallization processes 

are batch processes, and it is essential to operate them with a controlled 

temperature program, taking into account the need to adjust the supersaturation 

level to optimize growth rate. Furthermore, the crystallization must start at the 

right moment in the middle of the MZW (Fujiwara et al., 2005). It is also important 

to know the MZW in relation to process conditions. 

 

Sensor development is hence the prime issue. Despite the urgent need for 

progress in the measurement of accurate and reliable process data, available 
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sensors are lagging far behind the progress in software for computer simulations 

of crystallization processes (Ulrich and Jones, 2004). To control crystal growth at 

an optimum level requires constant information regarding the position of the 

process with respect to both the supersaturation of the system and the MZW 

under the pertinent process conditions. Since the MZW is dependent partly on 

impurities and these are increasing in concentration in process time, only a 

control by means of a sensor for the metastability of the system can provide a 

complete control (Ulrich, 2003). New sensors have been developed, for example 

using infrared spectrometer (refer to Chapter 3.2) and as an ultrasound 

technique (Ruecroft et al., 2005; Gracin et al., 2005; Guo et al., 2005; Kim et al., 

2003; Sayan and Ulrich, 2002; Hipp et al., 2000; Cains et al., 1998). Additionally, 

there are control algorithms and powerful software tools available. Other 

concepts involve observing the evolution of the CSD and using this as sensor 

information for the control of the crystallizer, as is done in this work. 

 

The second trend is the molecular modeling of crystals, to achieve a better 

understanding and control of crystal shapes and the effects of additives and 

solvents. The focus is on finding “tailor made additives” by computer simulations. 

The additive should influence the crystal shape to help the post crystallization 

operations like solid-liquid separation or the solid handling. The computer 

simulation should save time and lower laboratory costs. The initiation and 

progress of this research arena is due to the fast development of hardware and 

software in computer science in the last 20 years.  
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The main idea is first to simulate the crystal behavior of the pure compound from 

fundamental data, then to simulate what an impurity molecule does to the crystal. 

The commercially available software packages still cannot simulate everything 

due to the incorporated model assumptions and additional algorithms are 

required (Simons et al., 2004; Cue et al., 2001; Bellies et al., 2001; Chen et al., 

1994).  In the near future, the screening of substances in order to find one which 

can change the crystals from needles or plates to more bulky bodies will be 

possible at the computer level rather than in the laboratory (Ulrich et al., 2003). 

The progress in the last few years must be sustained in the years to come, so 

that much money and time can be saved by this way of searching. 

 

The third trend is for a more detailed insight and control of polymorphism and 

pseudo polymorphism of the crystal products. There has been a rapid growth of 

experimental literature devoted to the study of polymorphism, with the desired 

objective being to produce one polymorph while avoiding others. Unexpected or 

undesired polymorphic transformation of pharmaceutical is often observed during 

manufacturing processes including crystallization, which has serious 

consequences in terms of U.S. Food and Drug Administration (FDA) approval of 

the drug use in human subjects (Morris et al., 2001). The increase in 

crystallization research in this field has shown a marked increase, as it is 

important to the food and pharmaceuticals industries. To ensure consistent 

production of the desired polymorph, better control over the crystallization 
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process is needed. Strategies for obtaining the desired polymorphs include 

seeding, choice of solvents, and crystal engineering (see (Beckmann, 2000; 

Threlfall, 2000; Yu et al., 2000) and references therein). Although the theoretical 

framework for solvent-mediated polymorphic transformation (Davey et al., 1986) 

is available, it is still difficult to predict and control during pharmaceutical 

crystallization (Rodrigues-Hornedo and Murphy, 1999). In a high-throughput 

evaluation of various crystallization conditions for paracetamol polymorphs, some 

irreproducibility was observed, consistent with the known intractable nature of the 

polymorphic transformation (Peterson et al., 2002). For the efficient design of 

robust and reliable crystallization processes, a more integrated approach based 

on underlying physical mechanisms is desired rather than trial-and-error. 

Fujiwara et al. (2005) believe that controlling polymorphic transformation during 

pharmaceutical crystallization is an area where the implementation of more 

advanced modeling and control strategies can make a great impact.  

 

Another area where modeling and control strategies can be beneficial is 

macromolecular crystallization. Due to recent developments in genomics and 

proteomics, there has been an increasing demand in protein crystallization for 

structure-based drug design. For faster protein structure determination, high-

throughput approaches have been developed for rapid screening of numerous 

crystallization conditions that result in protein crystal formation (Fujiwara et al., 

2005). Because many of the protein crystals produced this way are not of 

diffraction quality, there is a need for optimization of high-throughput protein 
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crystallization process to produce large high quality crystals for structural 

analysis (Chayen and Saridakis, 2002). It has been shown that larger crystals of 

several model proteins, such as lysozyme and aprotinin, can be obtained by 

controlling the supersaturation level by changing the temperature or the ionic 

strength of the solution (Tamagawa et al., 2002; Schall et al., 1996; Jones et al., 

2001). This strategy or a more advanced control strategy could be used in 

combination with a high-throughput technique to improve protein crystal growth. 

Protein crystallization is also important in manufacture of biopharmaceuticals. 

Therapeutic proteins require different crystal characteristics, where small uniform 

crystals with narrow distribution are preferred (Merkle and Jen, 2002). Also, they 

are produced at a much larger scale than proteins for structural studies. In this 

respect, a better understanding of issues associated with scale-up, such as the 

effect of mixing on protein crystallization, is desired. Currently, insulin is the only 

therapeutic protein commonly produced in crystalline form (Shenoy et al., 2001). 

Recently it was shown that some crystalline proteins exhibited increased stability 

compared to the amorphous form, suggesting that an increasing number of 

therapeutic proteins may be produced in the crystalline form in formulation 

(Shenoy et al., 2001). These recent developments in drug delivery and 

biotechnology open many opportunities to apply advanced control strategies in 

the crystallization of proteins and other biomolecules. 

 

Solution crystallization has much to offer to continuing research. If the speed of 

research can be maintained, more prediction based knowledge rather than 



 137

experience and experiments can be expected in the future and will make 

crystallization an even more interesting technology for purification and particle 

design. 
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