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SUMMARY

Biochemical genetics and extensive characterization of different metabolic mutants

helped establish that lipid catabolism via peroxisomal and mitochondrial fatty acid

beta-oxidation pathways is essential for the pathogenicity of Magnaporthe grisea. The

isolation of nonpathogenic mutants harboring insertions in genes encoding

peroxisome biogenesis proteins (PEX6 and PEX1) provided the foundation for further

investigation of the metabolic requirements during fungal pathogenesis. The pex6∆

strain was completely nonpathogenic due to nonfunctional appressoria, which were

incapable of elaborating penetration pegs. An analysis of the ultrastructure of pex6∆

appressoria showed that the melanin layer, which functions in the maintenance of the

high hydrostatic pressure required for appressorial function, was completely absent.

These results indicate that peroxisome-associated metabolism is essential for

biosynthesis of appressorial melanin. As melanin in M. grisea is synthesized through

the polyketide pathway using acetyl-CoA as precursor molecules, the acetyl-CoA

product of fatty acid oxidation within the peroxisomes must be utilized for synthesis

of appressorial melanin. The movement of acetyl-CoA molecules across cellular

compartments requires the transfer of the acetyl moiety to carnitine via a reaction

catalyzed by carnitine acetyltransferases (CrAT). To confirm the role of peroxisome-

derived acetyl-CoA in appressorial melanin synthesis, a targeted deletion of the two

genes encoding putative M. grisea carnitine acetyltransferases (PTH2 and CrAT2)

was undertaken. Between the two CrATs, only Pth2 contributed the major cellular

carnitine acetyltransferase activity and was required for fatty acid metabolism and

pathogenicity. The appressoria of pth2∆ possessed a greatly reduced melanin layer

and was incapable of host penetration. High concentrations of exogenous glucose

could partially restore penetration peg formation in the pth2∆ appressoria, which
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suggests that acetyl-CoA generated from peroxisomal metabolism is also utilized in

gluconeogenic pathways. The products of gluconeogenesis may be used to synthesize

cell wall components, which are required for elaboration of penetration pegs and

development of infectious hyphae. As characterization of pex6∆ and pth2∆ mutants

strongly indicated a role for lipid catabolism during M. grisea pathogenesis, creation

and characterization of mutants harboring targeted deletions in genes encoding fatty

acid beta-oxidation enzymes was done to specifically determine the contributions of

this metabolic pathway to different stages of fungal pathogenesis and development. In

addition to peroxisomes, fatty acid beta-oxidation is known to take place as well

within the mitochondria. A concurrent characterization of two mutants in a

peroxisome-specific (Fox2) and a mitochondria-specific (EchA) beta-oxidation

enzyme demonstrated the presence of a mitochondrial beta-oxidation pathway in M.

grisea and the requirement for both pathways during pathogenesis. The cooperative

function of peroxisomal and mitochondrial beta-oxidation is necessary during growth

on fatty acids and during the early stages of pathogenic development, particularly in

the degradation of lipid bodies, appressorium morphogenesis and host penetration.

The drastic reduction of the appressorial melanin layer only in the fox2∆ mutant

confirmed that acetyl-CoA generated from peroxisomal fatty acid beta-oxidation

serves as the preferred pool of precursors for melanin biosynthesis. Mitochondrial

beta-oxidation, on the other hand, is required for optimum vegetative growth,

maintenance of mitochondrial morphology and proliferation of the infectious hyphae

within the host tissue.
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CHAPTER I  INTRODUCTION

1.1 Magnaporthe grisea, the rice blast pathogen

The filamentous fungus M. grisea is the causal pathogen of the agriculturally

important blast disease, which affects cereal crops and other grass species (Ou, 1985).

During field trials of upland cultivars in South America from 1995-97, rice blast

disease was found to cause grain yield losses of up to 18-44% (Prabhu et al., 2003).

Present day rice blast disease management strategies, which consist of deployment of

blast-resistant varieties and fungicide applications, have proven inadequate for long

term disease control. Breakdown of resistant varieties occurs after one or two seasons

of planting owing to the limited disease resistance incorporated and to the continuous

evolution of new pathogen populations. Fungicides have demonstrated some

effectiveness in controlling blast/leaf spot disease during initial applications; however

resistant isolates of M. grisea have promptly emerged (Avila-Adame and Koller,

2003; Sawada et al., 2004).

The infection cycle of M. grisea is comprised of distinct developmental and

morphogenetic events during the host pre-penetration and the in planta proliferation

stages (Tenjo and Hamer, 2002) (Figure 1). The disease is initiated by asexual spores

or conidia, which in nature are dispersed mainly by water splashes and moist air.

Upon landing and subsequent hydration on the leaf surface, the conidium germinates

and forms a short germ tube (Howard et al., 1991a). The tip of the germ tube

differentiates into a dome-shaped infection structure known as appressorium. The

development of a mature and functional appressorium involves the synthesis of molar

concentrations of glycerol within the appressorial cell (De Jong et al., 1997) and the

deposition of a melanin layer between the cell wall and the plasma membrane
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(Chumley and Valent, 1990). The influx of water from the environment in response to

the high internal glycerol concentration generates an enormous hydrostatic pressure

within the appressorium.  The melanin layer deposited at the periphery of the cell

maintains the turgor pressure by effectively decreasing the membrane pore size to

prevent the efflux of glycerol (Howard and Ferrari, 1989). The mature appressorium

utilizes this massive hydrostatic pressure as a mechanical force to push a thin

penetration peg through the host cuticle (Howard et al., 1991b). Once inside the host,

the penetration peg develops into an infectious hypha, which ramifies and colonizes

adjacent plant cells (Hamer and Talbot, 1998). At later stages of infection, the

invading hyphae develop aerial mycelia, which in turn produce spores that serve as

inoculum for successive rounds of the disease cycle.

In addition to being an agriculturally and economically important pathogen, M. grisea

serves as a good model system to study fungal pathogenesis. M. grisea can easily be

propagated and maintained under laboratory conditions (Tenjo and Hamer, 2002).  Its

pathogenicity phenotype can be readily assessed under greenhouse conditions or

under laboratory conditions using simple detached leaf assays. It is possible to

cytologically and biochemically monitor and assess distinct events of its pathogenesis

cycle in the laboratory using either artificial membranes or leaf surfaces. The

appealing characteristic of M. grisea as being genetically tractable and amenable to

molecular manipulations has been amply demonstrated through extensive research

carried out in order to identify pathogenicity genes using different approaches

(Sweigard et al., 1998; Balhadere et al., 1999; Ebbole et al., 2004).
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1.2  Genetic and biochemical regulation of M. grisea pathogenesis

The comprehensive study of M. grisea pathogenesis has resulted in the discovery of

key components involved during the infection cycle. One of the most critical aspects

of pathogenic development is the formation of a functional appressorium, which is

required by the fungus to breach the host epidermis. Signaling pathways mediated by

cyclic adenosine monophosphate (cAMP) and mitogen activated protein (MAP)

kinases play a role in the developmental decision for appressorium formation

(Lengeler et al., 2000). The capability of exogenous cAMP to induce appressorium

formation from germinating conidia or vegetative hyphae on noninductive surfaces

first suggested a central role for this signaling molecule during appressorium {Lee,

1993 #32}. Strains harboring mutations in MAC1, which encodes a membrane-bound

adenylate cyclase that catalyzes the production of cAMP from ATP, exhibit

pleiotropic vegetative and pathogenic defects (Choi and Dean, 1997). Vegetative

growth defects include poor mycelial growth, decreased conidiation and inability to

form sexual perithecia. The pathogenic defects include inability to form

appressoria,which can be rescued by exogenous cAMP (Choi and Dean, 1997). The

function of cAMP during appressorium formation is likely mediated via the cAMP-

dependent protein kinase A (PKA) (Mitchell and Dean, 1995). However, mutants in

the catalytic subunit of PKA, cpkA∆, are not blocked in appressorium formation

(Adachi and Hamer, 1998). The various pleiotropic defects of the mac1∆ strain can be

suppressed by a mutation, which alters the cAMP-binding domain of the regulatory

subunit of PKA (SUM1). The mac1∆ sum1-99 strain exhibits wild-type vegetative

growth and appressorium formation on hydrophilic surfaces and in the presence of 2%

yeast extract, which are conditions that are inhibitory to wild-type appressorium

formation (Adachi and Hamer, 1998). As protein kinase activity in the fungus can be
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solely attributed to CpkA, it is hypothesized that other downstream effectors may be

required to mediate cAMP signaling during pathogenesis (Adachi and Hamer, 1998).

The ability of cAMP supplementation to partially restore appressorium formation in

the MAP kinase 1 mutant pmk1∆ indicated that there is a crosstalk between cAMP

and MAP kinase signaling pathways (Xu and Hamer, 1996). In the presence of

exogenous cAMP, the tips of the germ tubes of pmk1∆ could be induced to undergo

swelling and hooking and form incipient appressoria (Xu and Hamer, 1996). Site-

specific mutation experiments of PMK1, which encodes a homolog of S. cerevisiae

pheromone response MAP kinase Fus3, have demonstrated that the kinase activity

and the phosphorylation sites of Pmk1 are required for its role during pathogenesis

(Bruno et al., 2004).

The signaling pathways mediated by cAMP and MAP kinases have been shown to

directly regulate the metabolic processes, which take place during the development of

the appressorium (Lengeler et al., 2000). As the major storage products in the conidia

consist of lipids and glycogen, the energy source and the secondary metabolites

required for pathogenicity are derived primarily from the metabolism of

carbohydrates and fatty acids (Wang et al., 2005). The mass transfer of glycogen and

lipid bodies from the germinating conidium into the germ tube tip takes place during

the early stage of appressorium (Thines et al., 2000). Once compartmentalized within

the incipient appressorium, the glycogen and lipid stores are broken down rapidly.

The complete degradation of the storage products coincides with the breaching of the

host cuticle with a penetration peg by the mature appressorium. Mutants in PMK1 and

CPKA exhibit a block and retardation, respectively, in the mobilization of lipid bodies
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from the germinated conidium into the incipient appressorium. And a mutation in the

regulatory subunit of PKA (mac1∆sum1-99) results in the accelerated, untimely

degradation of lipid bodies within the appressoria. The regulated mobilization and

catabolism of storage reserves, which is required for the development of a functional

appressorium, is under the genetic control of the cAMP and PMKI MAP kinase

pathways (Thines et al., 2000).

Catabolism of lipid reserves is of primary importance during appressorium

morphogenesis. Lipid bodies are autophagocytosed and rapidly degraded within the

vacuoles of the developing appressorium (Weber et al., 2001). The synthesis of

glycerol, which is the central osmolyte for the generation of turgor pressure within the

appressorial cell, is achieved via the catabolism of lipids by triacylglycerol lipases

(TGL) (Thines et al., 2000). TGL enzyme activity exhibits a progressive increase

concurrent with the period of appressorium maturation. In contrast, the enzyme

activity of glycerol-3-phosphate dehydrogenases, which are involved in glycerol

production from carbohydrate sources, remains at a similar level during appressorium

development. The contribution of lipid metabolism for fungal pathogenesis is likely to

extend further than glycerol synthesis, as can be inferred from the work on another M.

grisea metabolic mutant. The deletion of the gene encoding the glyoxylate cycle

enzyme Isocitrate lyase 1 (ICL1) resulted in the delay and impairment of virulence-

associated functions such as conidial germination, appressorium formation and host

cuticle penetration (Wang et al., 2003). The glyoxylate cycle serves as an auxiliary

pathway of lipid metabolism wherein the C2 product (acetyl-CoA) of fatty acid

oxidation can be utilized to generate C4 carbon compounds for gluconeogenesis.
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In addition to lipid and glycogen catabolism, there are most likely other metabolic

pathways which function during the different stages of pathogenesis. The opposite

pathways of biosynthesis and breakdown of the storage carbohydrate trehalose

participate in two independent infection-related events during pathogenesis (Foster et

al., 2003). The initial stages of appressorium morphogenesis and host penetration

require trehalose biosynthesis. Disruption of TPS1, which encodes trehalose-6-

phosphate synthase, results in impairment of turgor generation and penetration peg

formation. However, once the fungus is inside the host, the breakdown of trehalose is

required for its efficient in planta proliferation. Mutation of the gene encoding neutral

trehalase 1 (NTH1) results in compromised pathogenicity due to inefficient

colonization of host tissue after ingress (Foster et al., 2003). The significance of other

metabolic pathways and their secondary metabolite is suggested by studies on an M.

grisea mutant lacking the polyketide synthase/peptide synthase Ace1 (Bohnert et al.,

2004). The product of Ace1 biosynthetic activity acts as an avirulence protein, which

enables the host plant to detect the invading pathogen and consequently mount a

defense response. However, the exact identity of the secondary metabolites produced

by Ace1 activity remains to be ascertained.

Due to the extensive research effort of many labs, a basic understanding of the signal

transduction and metabolic pathways involved in M. grisea pathogenesis has been

obtained. There is also a continuous accumulation of knowledge regarding other

pathogenesis-related aspects such as surface sensing and the role of “novel”

pathogenesis genes.  More effort is clearly needed for a better understanding of the

known mechanisms in fungal pathogenesis, and to gain new insights into yet-to-be

discovered aspects of pathogenesis.
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1.3 Overview of lipid catabolism

1.3.1. General pathway of cellular lipid catabolism

The basic mechanism of lipid catabolism within the cell is through the beta-oxidation

of fatty acids. Cellular lipid stores are composed of triacylglycerols, which are acted

upon by different lipases to release free fatty acids (Wagner and Daum, 2005). Based

on the length of the carbon chain fatty acids are classified as being short-chain (from

C4 to C6), medium-chain (from C8-C12), long-chain (from C14-C18) or very long-

chain (greater than C22). The starting molecule of the beta-oxidation pathway is a

fatty acid, which could be of any chain length, esterified to Coenzyme A (CoA)

(Hiltunen and Qin, 2000). The activation of a fatty acid to its acyl-CoA derivative is

catalyzed by fatty acyl-CoA synthetases, which exhibit chain length-based

specificities (Osmundsen et al., 1994).

The fatty acid beta-oxidation pathway is a cycle of four consecutive enzymatic

reactions, which at every turn shortens the starting fatty acyl-CoA molecule by two

carbons which are released as one acetyl-CoA (Kunau et al., 1995). Thus, lipid

oxidation is achieved by the repetitive chain shortening of a fatty acid coupled with

the production of acetyl-CoA. Following are the four enzymatic reactions of a typical

beta-oxidation cycle: (1) dehydrogenation of the beta-carbon of the fatty acyl-CoA

which results in desaturation in the 2,3-position (enoyl-CoA intermediate); (2)

hydration of the enoyl-CoA intermediate which results in hydroxylation at the 3-

position; (3) dehydrogenation of the hydroxyacyl-CoA intermediate which results in

the oxidation of the hydroxyl group to a carbonyl group; and (4) thiolytic cleavage at

the 3-position by CoA thereby generating the two-carbon acetyl-CoA molecule. The

enzymes which catalyze these reactions are as follows: (1) acyl-CoA oxidase (AOX)
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or acyl-CoA dehydrogenase (ADH); (2) 2-enoyl-CoA hydratase (ECH); (3) 3-

hydroxyacyl-CoA dehydrogenase (HADH); and (4) 3-ketoacyl-Co thiolase. The

oxidation of fatty acids involves the transfer of electrons to either molecular oxygen

(O2) or nicotine adenine dinucleotide (NAD) or flavin adenine dinucleotide (FADH)

coenzymes. Therefore, the byproducts of fatty acid beta-oxidation include hydrogen

peroxide or reduced derivatives of NAD (NADH) or FAD (FADH2) (Hiltunen et al.,

2003).

Essentially, fatty acid beta-oxidation occurs via the successive dehydrogenation-

hydration-dehydrogenation-thiolysis reactions, which are catalyzed by corresponding

enzymes (Hashimoto, 2000). However, a level of complexity exists due to the

presence of various types of fatty acid substrates, which are processed via beta-

oxidation. Besides saturated fatty acids of varying chain length, beta-oxidation

substrates include unsaturated, methyl-branched and dicarboxylic fatty acids. Thus,

multiple isoforms of the beta-oxidation enzymes with different yet overlapping

specificities are present in the cell to accommodate these various fatty acid substrates

(Kunau et al., 1988). These multiple beta-oxidation isozymes are distinct not only for

their substrate specificities but also for their cellular compartmentalization, their

capacity to catalyze single or multiple reactions, their ability to form monofunctional

units or enzymatic complexes and the alternative stereochemistry of the intermediates

(Hiltunen and Qin, 2000).

1.3.2. Genetic regulation of lipid catabolism

Fatty acids have been shown to be capable to inducing the expression and activity of

enzymes involved in their metabolism. A similar phenomenon of massive
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proliferation of peroxisomes and significant induction of the activity of beta-oxidation

enzymes have been observed in the budding yeast S. cerevisiae and the filamentous

fungi Aspergillus nidulans after glucose-grown cells were transferred to oleic acid

medium (Veenhuis et al., 1987; Valenciano et al., 1996). In S. cerevisiae, the most

characterized regulatory elements involved in oleic acid induction are Pip2p and

Oaf1p (Rottensteiner et al., 1996) (Luo et al., 1996).  The strong oleic acid induction

of beta-oxidation genes is mediated by a heterodimer of Oaf1p and Pip2p, which

binds to upstream activating sequences (UAS) called oleate response elements (ORE)

(Rottensteiner et al., 1997). A UAS, which was subject to oleate induction and

glucose repression, was first characterized in the gene encoding peroxisomal acyl-

CoA oxidase POX1 (Wang et al., 1994).  Presently, the ORE consensus consists of

palindromic CGG triplets spaced by 14 to 18 intervening nucleotides (Hiltunen et al.,

2003). However, a survey of Oaf1p-Pip2p binding sites revealed that a defined

consensus is not always requisite for regulation of some ORE-responsive genes

(Karpichev and Small, 1998). Recently, in A. nidulans, two genes regulating the

transcriptional induction of lipid catabolic genes by short- and long-chain fatty acids

were identified (Hynes et al., 2006). farA and farB encode Zn2-Cys6 binuclear

proteins and operate through a 6-basepair binding site, which has been found to be

conserved in the 5’ region of genes involved in fatty acid beta-oxidation, peroxisome

biogenesis and the glyoxylate cycle (Hynes et al., 2006).

1.4 Cellular compartmentalization of fatty acid beta-oxidation

Two parallel pathways of cellular fatty acid beta-oxidation have been identified.

These two pathways consist essentially of the same four consecutive enzymatic

reactions, but are located in two different organelles, the peroxisome and the
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mitochondrion. However, not all organisms have been shown to possess two separate

beta-oxidation pathways. The earliest studies of beta-oxidation in animals indicated

that fatty acid catabolism is the exclusive function of the mitochondria (Schulz, 1991).

However, observations that hypolipidemic drugs, which reduce serum lipid levels,

also induced a proliferation of peroxisomes, hinted at a possible role for peroxisomes

in lipid catabolism. Different structurally unrelated types of hypolipidemic drugs were

all similarly capable of inducing an increase in peroxisome number (Reddy and

Krishnakantha, 1975). A fatty acyl-CoA oxidizing system, which was also induced by

hypolipidemic drugs was then detected in the peroxisomal fraction of treated mice

liver (Lazarow and De Duve, 1976). This peroxisomal beta-oxidation pathway

utilized the same mitochondrial beta-oxidation enzymatic reactions of hydration-

dehydrogenation-thiolysis and also produced acetyl-CoA (Lazarow, 1978).

In plants, investigations on lipid catabolism focused on the germinating seeds which

depended on lipid catabolic products for energy and macromolecular synthesis. Here,

fatty acid beta-oxidation takes place in specialized organelles called glyoxysomes,

which house fatty acid catabolic machinery and an auxiliary pathway called the

glyoxylate cycle (Cooper and Beevers, 1969). The glyoxylate cycle allows the

utilization of beta-oxidation products for biosynthesis reactions. Recently, however,

beta-oxidation enzymes have been detected in mitochondrial fractions (Bode et al.,

1999), suggesting the existence of fatty acid breakdown machinery within the

mitochondria.

In yeasts, which have been extensively used to study fatty acid catabolism, beta-

oxidation is thought to be exclusively located in the peroxisome organelle (Kunau et
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al., 1988). Yeasts are useful in studying beta-oxidation as they exhibit peroxisome

proliferation and induction of beta-oxidation enzymes during growth on fatty acids. In

Candida lipolytica, a fatty acid-inducible acyl-CoA oxidizing system was detected

only in the peroxisomes (Mishina et al., 1978). Recently, however, the activity of

mitochondrial beta-oxidation enzymes has been demonstrated in the yeast-like fungus

Sporidiobolus (Feron et al., 2005). In the filamentous fungus Neurospora crassa, the

beta-oxidation pathway is housed in specialized microbodies, which also contain the

glyoxylate cycle enzymes (Kionka and Kunau, 1985). However, Aspergillus nidulans

contains the mitochondrial as well as the peroxisomal beta-oxidation machineries

(Maggio-Hall and Keller, 2004).

The dual compartmentalization of the beta-oxidation pathway is found in many, but

not all, organisms. As the two pathways utilize the same enzymatic mechanisms,

multiple isoforms of the beta-oxidation enzymes exist and are differentially targeted

to the peroxisomes or the mitochondria.  The peroxisomal and mitochondrial

isozymes exhibit extensive similarity which suggests that they are derived from a

common ancestor and had probably acquired targeting information during evolution

(Arakawa et al., 1987). The prevalence of two distinct lipid catabolic pathways within

the cell suggests different physiological roles for each of them. The numerous and

extensive studies on dual pathways of fatty acid oxidation have led to the

identification of certain features which are characteristic to either peroxisomal or

mitochondrial fatty acid oxidation.
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1.5 Peroxisomal beta-oxidation

1.5.1 The peroxisomes

1.5.1.1 Types of peroxisomes and cellular functions

The peroxisome is a single-membrane bound organelle, which belongs to the

microbody family (Latruffe et al., 2003). These organelles were first observed as the

cellular compartments of catalase and peroxidase enzymes. Over the years, diverse

metabolic functions have been attributed to peroxisomes in different organisms and

have resulted in the identification of different types of peroxisomes (Titorenko and

Rachubinski, 2004). Moreover, some peroxisome types lack the characteristic

peroxidase and catalase content (Thieringer and Kunau, 1991a) (Jedd and Chua,

2000). In animals, peroxisome function is required for fatty acid beta-oxidation as

well as for cholesterol and bile synthesis (Wanders, 2000). The critical requirement

for peroxisomal metabolic function in normal physiology is exemplified by the

numerous genetic disorders, which are attributed to a lack of either all or a subset or

peroxisomal functions (Gould and Valle, 2000). In plants, peroxisomes undergo

several morphological and metabolic transformations during development (Hayashi et

al., 2000). In germinating seeds, peroxisomes house both enzymes of the beta-

oxidation pathway and the glyoxylate pathway and are thus referred to as

glyoxysomes {Cooper, 1969 #244). When the plant is capable of photosynthesis, the

peroxisomes mostly house the photorespiration enzymes. During senescence,

glyoxysomes constitute a majority of the peroxisome population (Nishimura et al.,

1993). In filamentous fungi, besides the typical peroxisomes for beta-oxidation, a

specialized class of peroxisomal vesicles called Woronin bodies is found which

functions in septal pore sealing (Jedd and Chua, 2000; Soundararajan et al., 2004).
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1.5.1.2 Peroxisome biogenesis

Two major hypotheses have been put forth regarding the biogenesis of the peroxisome

organelle. The first hypothesis suggests that peroxisomes originate only from pre-

existing peroxisomes (Lazarow and Fujiki, 1985). The other hypothesis, for which

there is recent favorable evidence, suggests that peroxisomes are derived from the

endoplasmic reticulum {Hoepfner, 2005 #200}. In either hypothesis, a group of

proteins known as Peroxins encoded by peroxisome biogenesis genes (PEX) have

been implicated as key players during peroxisome biogenesis (Subramani et al.,

2000). About 32 peroxins have been identified to date and most of them have

homologs across different organisms (Purdue and Lazarow, 2001). These include

peroxisomal membrane proteins (Schliebs and Kunau, 2004), peroxisomal import

receptors (Pex5 and Pex7) (Rehling et al., 1996; Elgersma et al., 1998; Kragler et al.,

1998), peroxisome proliferation regulators (Pex11) (van Roermund et al., 2000; Li

and Gould, 2002; Thoms and Erdmann, 2005) and ATPases Associated with diverse

cellular Activities (AAA ATPases) (Pex1 and Pex6) (Portsteffen et al., 1997) (Kiel et

al., 1999).

The proper targeting of peroxisomal membrane proteins requires Pex3 and Pex19. In

the absence of Pex3 and Pex19, peroxisomal matrix proteins accumulate and are

rapidly degraded in the cytosol. (Hettema et al., 2000). During the early stage of

peroxisome biogenesis from the endoplasmic reticulum, the integral membrane

protein Pex3 was shown to aggregate in distinct foci on the membrane. Subsequently,

the farnesylated cytosolic protein Pex19 is enriched at the Pex3-containing foci and is

thought to regulate the budding of immature peroxisomes (Hoepfner et al., 2005).

Vps1 is a dynamin-like protein, which has been shown to regulate peroxisome
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numbers. The protein may be involved in the membrane fission events of peroxisome

biogenesis (Hoepfner et al., 2001).

1.5.1.3 Peroxisomal protein import machinery

There are at least two known mechanisms by which peroxisomes import proteins.

Both of these involve conserved peroxisome targeting sequences (PTS) and receptor

proteins. The conserved PTSs are either the highly conserved PTS1 class present as

A/S-K/R-L tripeptide at the carboxy terminus of the imported peroxisomal proteins

(Gould et al., 1989; Keller et al., 1991) or the less conserved PTS2 type nonapeptide

at the amino terminus (Flynn et al., 1998; Petriv et al., 2004). The receptor proteins

are Pex5 for PTS1 (Klein et al., 2001) and Pex7 for PTS2 (Rehling et al., 1996). The

receptor proteins through binding to the PTS1 or PTS2 of the peroxisomal protein

deliver the proteins to the peroxisomal membrane (van der Klei and Veenhuis, 2002).

After which, the proteins are translocated across the peroxisomal membrane while the

receptors are recycled back to the cytoplasm. The peroxisomal matrix protein import

machinery consists of Pex13 and Pex14, which serve as docking sites for the Pex5

and Pex7 receptors (Schell-Steven et al., 2005).  In addition to PEX5- and PEX7-

mediated peroxisomal import pathways, some peroxisomal matrix proteins are

thought to “piggy-back” with other targeted/imported peroxisomal proteins (Holroyd

and Erdmann, 2001). Fatty acid beta-oxidation enzymes utilize either a Pex5 or Pex7

import mechanism. A conserved PTS1 has been identified in AOX (Koller et al.,

1999). Peroxisomal import of thiolase is mediated by a PTS2 signal (Johnson and

Olsen, 2003).
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1.5.1.4 Peroxin 6

The Pex1 and Pex6 peroxins are members of the family of AAA (ATPase associated

with diverse cellular activities) proteins. Pex6 and Pex1 have been shown to interact

in an ATP-dependent manner (Faber et al., 1998). The physical association/interaction

of Pex6 and Pex1 in vivo requires their first AAA cassette (D1) as well as ATP

binding to the 2nd AAA cassette (D2) of Pex1 (Birschmann et al., 2005). The

heterodimeric Pex6-Pex1 complex is associated with membranous vesicles that are

important for peroxisome biogenesis (Faber et al., 1998). Pex1-Pex6 interaction

requires ATP binding to both D1 and D2 but not ATP hydrolysis in D2 of both

proteins. Pex1 forms cytoplasmic homo-oligomers which are disrupted by its

interaction with Pex6 (Tamura et al., 2006). Pex1 and Pex6 initially interact in the

cytosol and then associate with the peroxisomal membranes through the membrane

anchor Pex15. The dissociation of the AAA-complex from the peroxisomal

membrane requires Pex4 (Rosenkranz et al., 2006). The biogenesis of mature

peroxisomes is hypothesized to proceed through a multistep pathway involving the

formation and fusion of various peroxisomal vesicular intermediates (Titorenko et al.,

2000). The two AAA family ATPases have been shown to be required during the

membrane fusion step of the peroxisomal intermediates (Titorenko and Rachubinski,

2000). The recruitment of Pex6 to peroxisomal membranes is through an interaction

with an integral membrane protein that requires ATP binding and hydrolysis at its

AAA cassettes (Birschmann et al., 2003; Tamura et al., 2006). In S. cerevisiae, Pex15,

a phosphorylated integral peroxisomal membrane protein, functions as the recruiting

partner of Pex6 (Elgersma et al., 1997; Birschmann et al., 2003). In mammalian cells,

Pex26 serves as the membrane receptor for Pex6 (Matsumoto et al., 2003; Tamura et

al., 2006).
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The loss of Pex6 function in Chinese hamster ovary cells results in the formation of

peroxisomal membrane structures devoid of protein content, which are known as

peroxisomal ghosts (Hashiguchi et al., 2002). This then suggests a possible role for

Pex6 in peroxisomal matrix protein import. In Pichia pastoris, PEX6 and PEX1

mutants likewise possess only vesicular remnants of the peroxisomes (with some

residual matrix proteins) with the bulk of peroxisomal proteins mislocalized to the

cytosol (Faber et al., 1998). Based on epistatic interactions among different pex

mutants in P. pastoris, Pex1 and Pex6 are predicted to act late in peroxisomal matrix

protein import, and after the matrix protein translocation step (Collins et al., 2000).

During peroxisomal protein import, Pex6, and Pex1 play a role in the recyling of the

Pex5 receptor (Platta et al., 2005). The dislocation of the Pex5 receptor from

peroxisomal membranes after delivery of peroxisomal proteins requires ATP binding

and hydrolysis by the second conserved AAA domain (Platta et al., 2005).

1.5.2 Peroxisomal beta-oxidation machinery

1.5.2.1 Substrate specificity and import

The substrates of peroxisomal beta-oxidation comprise a broad range of fatty acids,

which include saturated, unsaturated, methyl-branched and dicarboxylic fatty acids of

various chain lengths (Schulz, 1991). Peroxisomal beta-oxidation is capable of

oxidizing very long chain fatty acids but is incapable of catabolizing fatty acids

shorter than eight carbons (Schulz, 1991). Depending on the chain length of the fatty

acid substrate, two pathways may be utilized for fatty acid uptake into the

peroxisomes (Hettema and Tabak, 2000). Medium chain length fatty acids enter the

peroxisomes as free fatty acids and are then activated to their acyl-CoA form by the
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peroxisomal acyl-CoA synthetase (FAA2) (Johnson et al., 1994). The peroxin Pex11

is hypothesized to play a role during the import of medium chain fatty acids across the

peroxisomal membrane (van Roermund et al., 2000). However, work by another

group suggests that Pex11 has a direct role in peroxisome division with only a

consequent indirect effect on peroxisome metabolism (Li and Gould, 2002). Even in

the absence of peroxisomal metabolic activity, overexpression of Pex11 has been

shown to promote peroxisomal division. Long chain fatty acids, on the other hand, are

esterified to coenzymeA in the cytosol and then transported into the peroxisome by

ATP Binding Cassette (ABC) transporters located in the peroxisomal membranes

(Hettema et al., 1996).

1.5.2.2 Enzymology

The first enzyme of the conventional peroxisomal beta-oxidation pathway is an acyl-

CoA oxidase (AOX), which transfers electrons from the fatty acyl-CoA substrate to

molecular oxygen thereby generating hydrogen peroxide (Okazaki et al., 1986). The

hydrogen peroxide thus generated is degraded by the peroxisomal catalases.  The

constant association between catalase and peroxisomal lipid catabolism is a

consequence of the perceived requirement for catalase activity to detoxify hydrogen

peroxide. Catalase A and acyl-CoA oxidase have been demonstrated to be coinduced

in cells cultivated in fatty acids (Skoneczny et al., 1988). Multiple isoforms of AOX

which exhibit different substrate specificities are present in the peroxisomes and thus

impart the capability to metabolize a broad range of substrates including straight-

chain and branched-chain fatty acids (Van Veldhoven et al., 1992; Vanhove et al.,

1993).
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However, in N. crassa, the fatty acid-inducible beta-oxidation system does not

involve the AOX enzyme but rather an acyl-CoA dehydrogenase activity ADH

(Kionka and Kunau, 1985). This is perhaps consistent with the characteristic of the

atypical N. crassa beta-oxidation pathway, which is located in specialized

peroxisomes that are devoid of catalases (Thieringer and Kunau, 1991a).

Interestingly, sequences coding for AOXs are not present in the genome of

Magnaporthe grisea, though multiple ADH-encoding sequences are have been

identified (Dean et al., 2005).

The second and third steps of peroxisomal beta-oxidation are catalyzed by a

multifunctional protein (MFP) or bifunctional protein (BFP), which has both 2-enoyl-

CoA hydratase (ECH) and 3-hydroxyacyl-CoA dehydrogenase (HADH) activities. In

rat, exon I-V codes for the enoyl-CoA hydratase activity whereas exon VII has 3-

hydroxyl-CoA-dehydrogenase activity (Ishii et al., 1987; Minami-Ishii et al., 1989).

The N-terminal part of rat MFEII is responsible for the 3-hydroxyacyl-CoA

dehydrogenase activity (Qin et al., 1997). There are two distinct isoforms of this

protein, which reflects the two possible stereoisomers through which the reaction may

proceed (Furuta et al., 1980; Adamski et al., 1992). The 3-hydroxyacyl-CoA

intermediate can be either in D-isomer or in the L-isomer depending on the MFP

enzyme, i.e. either D-BP or L-BP (Jiang et al., 1996). In mammals, the L-BP and the

D-BP isoforms have both been identified (Osumi and Hashimoto, 1979){Qin, 1997

#90. The D-BP exhibits activity towards both straight and branched-chain substrates.

It is also thought that only the D-BP is required for oxidation of methyl-branched fatty

acids (Jiang et al., 1997) and bile acids (Dieuaide-Noubhani et al., 1996). Only a D-

isoform of the MFP known as FOX2 exists in the yeast Saccharomyces cerevisiae
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(Hiltunen et al., 1992). The FOX2 protein of N. crassa, however, is the L-isoform

(Thieringer and Kunau, 1991b). The physiological significance of this alternative

stereochemistry is uncertain as rat peroxisomal MFE which is L-intermediate isomer

specific is capable of complementing the loss of the D-specific MFP of yeast

(Filppula et al., 1995). The different MFP isoforms may indicate some underlying

evolutionary relationships across different organisms. For example, only the human

D-BP exhibits homology to the yeast multifunctional proteins (Wanders et al., 2000).

In addition to the ECH and HADH activities, some multifunctional proteins also

possess other enzyme functions. For instance, an additional isomerase activity was

detected in the rat BP, which potentially enables it to metabolize polyunsaturated fatty

acids (Palosaari and Hiltunen, 1990). The MFP in Candida tropicalis and in N.crassa

possesses an additional epimerase domain (Moreno de la Garza et al., 1985;

Thieringer and Kunau, 1991b). These additional enzymatic functions complement the

hydratase-dehydrogenase activities and perhaps enable the organism to metabolize a

broader range of substrates. Alternatively, different isomers of the intermediates of

the beta-oxidation pathway may allow these molecules to be redirected to other

pathways, such as the polyhydroxyalkanoate synthesis in bacteria (Park and Lee,

2003).

Peroxisomal multifunctional enzymes are targeted to the peroxisome via a conserved

PTS1 at the carboxy terminus. Rat MFEII possesses a C-terminal AKL (Qin et al.,

1997). The MFPs of Glomus mossease (Requena et al., 1999), Dictyostelium

(Matsuoka et al., 2003) and S. cerevisiae (Hiltunen et al., 1992) all possess a C-

terminal SKL.
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The peroxisomal 3-ketoacyl-CoA thiolase enzyme which catalayzes the last step of

the beta-oxidation cycle also exists in multiple isoforms. The isoforms differ in the

transcriptional profiles, one being expressed at a low constitutive level and the other

significantly induced with clofibrate treatment (Hijikata et al., 1990), as well as their

substrate specificities with only one of the two exhibiting activity towards methyl-

branched fatty acids (Antonenkov et al., 1997).

1.6 Mitochondrial beta-oxidation

1.6.1 The mitochondria

1.6.1.1 Functions and origin

Mitochondria are organelles surrounded by double membranes of which the inner one

is organized into cristae-like structures. The mitochondria contribute diverse cellular

roles which include aerobic respiration to generate ATP, regulation of apoptosis and

fatty acid synthesis. Mitochondria are capable of generating and conveying calcium

signals primarily emitted from the endoplasmic reticulum (Ichas et al., 1997). The

most favored model for the origin of the mitochondria is the serial endosymbiosis

theory (Gray, 1989). This model suggests that a bacterial endosymbiont which

became established in a nucleus-containing but amitochondriate host is the ancestor of

the mitochondria (Dyall et al., 2004). However, recent discoveries which are mostly

attributed to the comparative analyses of diverse mitochondrial genomes (Lang et al.,

1999) have led to the hypothesis that the mitochondria may have originated at the

same time as the nucleus rather than at a later event (Gray et al., 1999).

1.6.1.2 Morphological architecture
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The name mitochondrion is derived from the Greek term meaning “thread-grain”

which corresponds to the two distinct architectures of these organelles (Skulachev,

2001). These two structures consist of an extended filamentous network (thread) and

isolated spherical bodies (grain) which are interchangeable. The mitochondrial

filaments are thought to represent an electrical continuum which facilitates the

distribution of energy to remote parts of the cell (Amchenkova et al., 1988). Extended

mitochondrial networks form when cells experience a high energy demand.  On the

other hand, the isolated mitochondria represent the “transportable form” of these

organelles. During the initiation of programmed cell death (PCD), the clustering of

spherical mitochondria around the nucleus is thought to facilitate the delivery of

mitochondrial pro-apoptotic proteins to the nucleus (De Vos et al., 1998; Susin et al.,

1999). In addition, isolated forms of the mitochondria are important for proper

segregation of these organelles during cell division. Recently, fatty acid synthesis has

been shown to be required for the maintenance of mitochondrial morphology and

function. The disruption of a mitochondrial 3-hydroxyacyl-ACP dehydratase, which is

one of the enzymes of FA synthesis, in S cerevisiae results in abnormal mitochondrial

morphology and respiratory defects (Kastaniotis et al., 2004).

1.6.1.3 Protein import

The mitochondrial organelle synthesizes a minimal component of its protein content.

The majority of mitochondrial proteins is encoded by nuclear genes and synthesized

in the cytosol.  Thus a specific need for a mitochondrial protein import machinery for

the sorting and delivery of mitochondria-specific proteins. Mitochondria-specific

proteins are synthesized as preproteins which possess an N-terminal presequence

responsible for its recognition by the mitochondrial import machinery. The 20-50
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residue long presequences of different mitochondrial proteins do not share amino acid

similarity but have conserved characteristics such as being enriched in positively-

charged, hydroxylated and hydrophobic residues (Roise and Schatz, 1988). The

presequences enable the recognition and interaction of the mitochondrial preproteins

with mitochondrial outer and inner membrane translocases which guide such proteins

into the matrix. Once inside the matrix, the presequences are cleaved by peptidases

and the mature proteins folds into their functional conformation (Pfanner, 2000).

1.6.2 Mitochondrial beta-oxidation machinery

1.6.2.1 Substrate specificity and import

Mitochondrial beta-oxidation accepts long-, medium- and short-chain fatty acids as

substrates (Kerner and Hoppel, 2000). The uptake of long chain (C16) fatty acids

across the mitochondrial membrane involves the formation of import-competent

carnitine intermediates (McGarry and Brown, 1997). The fatty acyl molecule is

transferred from coenzyme A to carnitine, by carnitine palmitoyltransferase I (CPTI)

which is an integral membrane protein of the mitochondrial outer membrane (Prip-

Buus et al., 1998). The transport of the fatty acyl-carnitine derivative across the inner

mitochondrial membrane is facilitated by a specific mitochondrial membrane

translocase, carnitine/acylcarnitine translocase (CACT) (Idell-Wenger, 1981). Once

inside the inner mitochondrial lumen, the fatty acyl-carnitine is reactivated to its CoA

derivative by carnitine palmitoyl transferase II (CPTII), which catalyzes the exchange

of the carnitine moiety with Coenzyme A (Woeltje et al., 1990).

1.6.2.2 Enzymology
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The enzyme activities utilized during mitochondrial beta-oxidation are essentially

similar to those in peroxisomal beta-oxidation. These common enzymatic reactions

are catalyzed by multiple enzyme isoforms, which are as monofunctional units or

incorporated into multi-enzyme complexes.  The monofunctional units consist of: (1)

short, medium and long-chain acyl-CoA dehydrogenase, (2) short chain enoyl-CoA

hydratase, (3) short-chain 3-hydroxyacyl-CoA dehydrogenase and (4) 3-ketoacyl-CoA

thiolase. The multienzyme complex is comprised of long chain enoyl-CoA

hydratase/long chain 3-hydroxyacyl-CoA dehydrogenase (alpha subunit) and long

chain 3-ketoacyl-CoA thiolase (beta-subunit) (Kamijo et al., 1993). These two distinct

enzyme organizations utilize the same pathway, which proceeds via the sequential

dehydrogenation-hydration-dehydrogenation-thiolysis reaction.

The first dehydrogenation step of mitochondrial beta-oxidation is catalyzed by acyl-

CoA dehydrogenases (ADH), which transfer the electrons from fatty acyl-CoA to a

flavoprotein coenzyme electron acceptor (FAD) (Wanders et al., 1999). The

byproduct of this first step is a reduced electron acceptor (FADH2), which can

immediately participate in the electron transport chain. The mitochondrial ADHs are

classified into four types based on their substrate specificity: short chain ADH

(SCAD) for C4, medium chain ADH (MCAD) for C6-C10, long chain ADH (LCAD)

for C14-C22 and very long chain (ACAD) (Ikeda et al., 1985; Izai et al., 1992).

The second step of mitochondrial beta-oxidation involves the hydration of trans-delta

2,3-enoyl-CoA intermediates and is catalyzed by enoyl-CoA hydratases (ECH). There

are two known isoforms of ECH enzymes (Fong and Schulz, 1977). ECH1 or

crotonase shows maximal activity towards C4 enoyl-CoA intermediates and its
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activity decreases progressively as the substrate chain length increases. ECH2 or long

chain enoyl-CoA hydratase, on the other hand, exhibits maximal activity towards C8

intermediates, has greater activity than crotonase for substrates up to C16 carbons and

has very low activity for C4 substrates (Schulz, 1974) ECH1 and ECH2 work in a

complimentary manner to ensure that all the unsaturated intermediates of the fatty

acid beta-oxidation pathway are hydrated (Fong and Schulz, 1977). In addition, ECH1

and ECH2 are proposed to work together to catalyze an epimerization reaction based

on a dehydration-hydration reaction (Hiltunen et al., 1989).

The enoyl-CoA hydratases belong to a family of hydratase/isomerases, thus some

members exhibit both hydratase and isomerase activities.  Two conserved glutamic

acid (Glu) residues have been shown to be critical for hydratase and/or isomerase

catalytic activities. Glutamic acid at position 144 is conserved in ECHs possessing

only the hydratase activity (Wu et al., 1997). On the other hand, glutamic acid at

position 164 is conserved in ECH-proteins capable of catalyzing hydration and

isomerization reactions (Muller-Newen et al., 1995). Multifunctional enzymes

capable of hydratase activities also maintain the conserved Glu164 residue. The

Glu164 residue does not play a role in substrate binding but rather in the protonation

and deprotonation reactions (Muller-Newen et al., 1995). Replacement of the

conserved Glu residues with alanine results in a protein still capable of proper folding

and assembly but with greatly reduced hydratase activity (Kiema et al., 1999).

Mitochondrial ECH1 possesses the conserved Glu164 residue and also has isomerase

catalytic properties (Kiema et al., 1999).
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Resolved crystal structures of the ECH enzyme have provided insights into the

protein’s capability to bind different substrates and the stereochemistry of the

hydratase reaction. The ability of ECH to bind fatty acids of different chain lengths is

accomplished by the movement of the B-factor loop in the fatty acid binding pocket

(Engel et al., 1998). ECH forms an extended conformation to accommodate the tail of

longer chain fatty acids. Two geometric isomers, (S) or (R) 3-hydroxyacyl-CoA are

possible with ECH hydration reaction. The higher preference for the (S) isomer is due

to the selective activation of this bound substrate form (Bell et al., 2002). In bacterial

fatty acid beta-oxidation, the (R) 3-hydroxyacyl-CoA product, which is formed by a

specialized ECH, is re-directed to the polyhydroxyalkanoate pathway (Park and Lee,

2003). Quite intriguingly, N. crassa cells grown in sucrose exhibit a relatively high

basal level of mitochondria-associated enoyl-CoA hydratase activity (Kionka and

Kunau, 1985). The failure to detect other mitochondria-associated beta-oxidation

enzymatic activities suggests that this mitochondrial ECH activity is involved in

pathways other than fatty acid catabolism.

The third step of mitochondrial beta-oxidation is the dehydrogenation of the 3-

hydroxyacyl-CoA intermediate and involves a 3-hydroxyacyl-CoA dehydrogenase.

The terminal step of thiolytic cleavage is catalyzed by 3-ketoacyl-CoA thiolase.

Alternatively, the 2nd, 3rd and 4th steps of mitochondrial beta-oxidation can be

catalyzed by a trifunctional protein, which contains the hydratase-dehydrogenase

activities in its alpha-subunit and the thiolase activity in the beta-subunit (Uchida et

al., 1992).
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1.7 Auxiliary pathways of lipid catabolism

1.7.1 Carnitine-mediated pathways

The acetyl-CoA generated from fatty acid beta-oxidation in the peroxisomes needs to

be transported to either the cytosol for macromolecular biosynthesis or the

mitochondria for energy production and complete oxidation via the tricarboxylic acid

cycle. Acetyl-CoA in itself is membrane impermeable. The transport of acetyl-CoA

across membranes requires the transfer of the acetyl unit from coenzyme A (CoA) to

carnitine. Carnitine is a methylated derivative of the amino acid lysine and is essential

for metabolic processes. Higher eukaryotes are capable of synthesizing carnitine

endogenously. Yeasts, however, are unable to synthesize carnitine but rely on its

uptake up from the extracellular environment (Swiegers et al., 2001).

The formation of acetyl-carnitine intermediates is catalyzed by the enzyme carnitine

acetyltransferase (CRAT). This enzyme belongs to a family of carnitine

acyltransferases, which catalyze the reversible exchange of acyl groups between

coenzyme A and carnitine (Ramsay et al., 2001). In addition to CRAT which is

specific for the acetyl moiety and short chain fatty acids, this family includes carnitine

palmitoyltransferase I and II (CPT I/II) and carnitine octanoyltransferase (COT)

which have substrate preferences for long chain and medium chain fatty acids,

respectively (Kerner and Hoppel, 2000). CPT I/II participates in the transport of long-

chain fatty acids destined for beta-oxidation across the mitochondrial inner

membrane. COT is involved in the transfer of shortened medium chain fatty acid

products of peroxisomal beta-oxidation to the mitochondria for complete oxidation.

Based on the structural analysis of CRAT, the family of carnitine acyltransferases is

inferred to be capable of catalyzing the hydrolysis of both acyl-CoA and acylcarnitine
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without the formation of an acyl-enzyme intermediate (Jogl and Tong, 2003; Wu et

al., 2003).

In S. cerevisiae, acetyl-CoA is generated from peroxisomal fatty acid beta-oxidation

and cytosolic metabolism of acetate and ethanol. The catabolism of ethanol and

acetate involves the enzymes of the mitochondrial tricarboxylic acid cycle and the

glyoxylate and gluconeogenic pathways (McCammon, 1996). The complete oxidation

of the cytosolic acetyl-CoA by the tricarboxylic acid cycle requires its transport to the

mitochondria. Three different genes encoding CRAT have been identified in budding

yeast (Kispal et al., 1991; Schmalix and Bandlow, 1993). And the CRAT activities

found to be induced by fatty acids and other nonfermentable carbon sources such as

acetate, glycerol and ethanol.

The major carnitine acetyltransferases activity in budding yeast is due to the YCat/Cat

enzyme (Kispal et al., 1991), which is localized predominantly in the mitochondria.

Its primary function is thought to be in the delivery cytosol-activated acetyl units from

acetate into the mitochondrial matrix (Kispal et al., 1993). A canonical type 1

peroxisome targeting sequence, however, is present at its C-terminus, which indicates

a possible peroxisomal localization (Schmalix and Bandlow, 1993). Through the

mechanism of alternative splicing Ycat gets dually localized in the mitochondria

and/or peroxisomes (Elgersma et al., 1995). Yat1, which localizes to the

mitochondrial outer membrane, contributes <1% of total mitochondrial CRAT activity

(Schmalix and Bandlow, 1993). Yat2, which is localized to the cytosol, contributes

major CRAT activity during growth on ethanol (Swiegers et al., 2001).
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Though carnitine-dependent metabolism is essential for utilization of fatty acids and

other non-fermentable carbon sources, a bypass pathway involving the glyoxylate

cycle has been identified in budding yeast. The viable phenotype of any of the single

CRAT gene deletion mutants on fatty acid and/or acetate medium indicate the

presence of another pathway which enables the transport of acetyl/acyl activated

molecules without the requirement for carnitine. This bypass pathway is thought to be

through the citrate and succinate products of the glyoxylate shunt (van Roermund et

al., 1995).

In Aspergillus nidulans, two different carnitine acetyltransferases, AcuJ and FacC, are

essential for the metabolism of fatty acids and for acetate, respectively (Stemple et al.,

1998). AcuJ CRAT activity represents the major cellular CRAT and is induced by

both acetate and Tween80 (Midgley, 1993). AcuJ is required for growth on both

acetate and fatty acids and suggests that it may also be dually localized to the

peroxisome and the mitochondria.  FacC, on the other hand is required for growth on

acetate, and its cytosolic CRAT activity is induced solely by acetate (Stemple et al.,

1998). The glyoxylate bypass mechanism which complements the yeast carnitine

mutants does not seem to function similarly in A. nidulans.

The transport of acetylcarnitine molecules from the mitochondrial matrix to the

cytosol involves a carnitine/acylcarnitine transporter. In A. nidulans, AcuH encodes

one such enzyme.. AcuH, which is required for growth on acetate and long-chain fatty

acids, contains a hydrophobic domain which is highly conserved among diverse

members of the mitochondrial carnitine carrier family (De Lucas et al., 1999). Crc1,

the orthologous protein in S. cerevisiae, has been shown to function in the transport of
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acetylcarnitine molecules from the peroxisome to the mitochondria (van Roermund et

al., 1999).

1.7.2 Glyoxylate pathway

The glyoxylate cycle is a modified version of the tricarboxylic acid cycle (TCA),

which bypasses two decarboxylation steps thereby allowing the net synthesis of C4

intermediates for gluconeogenesis (Eastmond and Graham, 2001). The following

enzymes are common between the glyoxylate cycle and the TCA: citrate synthase,

aconitase and malate dehydrogenase. Isocitrate lyase (ICL) and malate synthase

(MLS) are unique to the glyoxylate pathway. Through the activity of ICL, citrate

(product of acetyl-CoA and oxaloacetate) is cleaved to form glyoxylate and succinate.

Succinate then serves as the key C4 intermediate for the synthesis of sucrose.  There

is a strong correlation between the expression of ICL and MLS and lipid catabolism

during postgerminative growth (Kornberg and Krebs, 1957). Through the glyoxylate

pathway, acetyl-CoA derived from fatty acid beta-oxidation is utilized for

biosynthesis of sugars. The inhibition of fatty acid breakdown in germinating

seedlings of Arabidopsis icl mutants indicates that there is coordinated regulation

between lipid catabolism and the glyoxylate cycle (Eastmond et al., 2000). Though

the glyoxylate cycle is not essential during postgerminative growth under optimum

conditions, it was found to be required for seedling establishment during suboptimum

light conditions. Experiments, which utilize radioactively-labelled molecules, have

shown that the incorporation of acetate moieties into sugars is accomplished primarily

through the glyoxylate pathway. Exogenous sucrose is capable of rescuing the

phenotypic defects associated with the loss of ICL function. The glyoxylate cycle also
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functions to replenish TCA cycle intermediates during growth on fatty acid substrates

(Eastmond and Graham, 2001).

1.7.3 Polyketide synthesis

The polyketide pathway is long recognized as an important pathway for the synthesis

of diverse secondary metabolites such an antibiotics (Hutchinson and Fujii, 1995).

One of the well-studied products of the polyketide pathway is fungal melanin, which

serves as critical virulence/pathogenicity factors for plant and animal pathogens (Bell

and Wheeler, 1986). The melanin of M. grisea consists of polymers of

dihydroxynapthalene (DHN) (Langfelder et al., 2003) and is likely synthesized

through the polyketide pathway utilizing acetyl-CoA as precursor(Chumley and

Valent, 1990). In the related pathogenic fungus Colletotrichum lagenarium, malonyl-

CoA, which is a carboxylated derivated of acetyl-CoA has been shown to be utilized

during the pentaketide synthesis of melanin (Fujii et al., 2000). The sequential steps of

the polyketide pathway that leads to the synthesis of melanin is as follows:

transformation of malonyl-CoA to 1,3,6,8 tetrahydroxynapthalene (1,3,6,8 THN) by

PKS1 (polyketide synthase 1), reduction of 1,3,6,8 THN to scytalone, dehydration of

scytalone to 1,3,8 trihydroxynapthalene which is afterwards reduced to vermelone,

and final dehydration of vermelone to 1,8 dihydroxynapthalene (DHN) (Langfelder et

al., 2003). DHN then dimerizes and polymerizes to form melanin.

1.8 Physiological roles of lipid catabolism

1.8.1 Requirement for lipid catabolism during pathogenesis

The importance of lipid catabolism for pathogenicity is strongly indicated by the

upregulation of lipid metabolic genes during pathogenesis and the isolation of
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nonpathogenic strains, which harbor mutations in genes encoding components of lipid

metabolic pathways. Transcriptional profiling of the human opportunistic pathogen

Candida albicans showed that beta-oxidation and glyoxylate cycle genes are

upregulated during the macrophage sequestration stage of its infection cycle (Prigneau

et al., 2003). Three of these upregulated genes were found to encode carnitine

acetyltransferases, CTN1, CTN2 and CTN3. Based on primary sequence data, the

subcellular localization of these proteins is predicted to be: cytosolic for Ctn1,

peroxisomal and mitochondrial for Ctn2 and peroxisomal for Ctn3 (Prigneau et al.,

2003). A ctn3∆ exhibits reduced viability within macrophages and has a defect in

forming filamentous hyphae both within macrophages and on solid media (Prigneau

et al., 2004). Genes coding for the isocitrate lyase 1 (ICL1) and malate synthase 1

(MLS1) enzymes of the glyoxylate cycle were also found to be upregulated during

macrophage phagocytosis (Lorenz and Fink, 2001). The icl1∆ exhibits decreased

virulence in a mouse model. Survival within the macrophage most likely requires a

metabolic re-programming that involves a switch to lipid catabolism. In addition, C.

albicans grown on lipids and serum and C. albicans recovered from in vivo

incubation in mice both exhibited an increase in peroxisome number and formation of

fibrillar extensions from the cell (Sheridan and Ratledge, 1996).

Icl1 function is required for the successful colonization and pathogenicity of

Leptosphaeria maculans on oilseed rape (Idnurm and Howlett, 2002). Development

of wild-type lesion size in the icl1∆ can be restored by exogenous supplementation

with 2.5% glucose. Overexpression of peroxisomal 3-ketoacyl-CoA thiolase results in

reduced pathogenicity of L. maculans attributed to a defect in invasive growth (Elliott

and Howlett, 2006). The overexpressing strain exhibit decreased pycnidiospore
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germination away from inoculation site and sparse hyphal growth at inoculation site.

Exogenous supplementation with either 25mM Tween80 or 25mM glucose did not

rescue pathogenicity defect and resulted only in increased pycnidiospore germination

at the surface and hyphal proliferation at inoculation site but not into plant tissue

(Elliott and Howlett, 2006).

1.8.2 Lipid catabolism during development

1.8.2.1 Lipid catabolism during plant development

Lipid catabolism is of primary importance as a source of energy and carbohydrates for

macromolecular synthesis during the process of seed germination (Penfield et al.,

2005). Fatty acid beta-oxidation interconnects with the glyoxylate cycle, through

which acetyl-CoA is converted to succinate, which in turn is converted into glucose or

other metabolic intermediates. The transfer of metabolites between the fatty acid beta-

oxidation and glyoxylate cycle is facilitated by the colocalization of the components

of both pathways within glyoxysomes (Cooper and Beevers, 1969). Upon

development of photosynthetic capabilities, which generate glucose, glyoxysomes are

replaced by peroxisomes which are devoid of isocitrate lyase and malate synthase

activities (Baker et al., 2006). Seedling establishment requires the function of the

peroxisomal multifunctional beta-oxidation enzyme MFP2 (Rylott et al., 2006).

During seed germination, acetyl-CoA from fatty acid beta-oxidation is transported out

of the peroxisome as citrate. Disruption in genes encoding peroxisomal citrate

synthases CSY1 and CSY2 impairs seed germination and blocks triacylglycerol

metabolism (Pracharoenwattana et al., 2005). The utilization of endospermic lipid

reserves requires gluconeogenesis and transport of sugars to the germinating embryo

(Penfield et al., 2005). The energy requirements and the production of specialized
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signaling and structural metabolites during reproductive development is also

dependent on fatty acid beta-oxidation (Richmond and Bleecker, 1999). A mutation of

AIM1, which is a homolog of MFP2, results in plants with normal vegetative growth

but exhibits abnormal meristem development. Inflorescence development was found

to be delayed and to consist of abnormal patterning.

1.8.2.2 Lipid catabolism during animal development

In animal models, peroxisomal lipid catabolism has been shown to be essential during

neurological development. Peroxisomes were found to be abundant in mice glial cells

thereby indicating a requirement for peroxisomal function during neuronal cell

development (Nagase et al., 2004). Mice harboring a mutation in the peroxisomal

multifunctional protein MFP2 exhibit a neurological phenotype characterized by

astroglial damage (Huyghe et al., 2006b). An impairment of mitochondrial fatty acid

beta-oxidation in Drosophila has been found to result in severe developmental

defects. The scully gene, which encodes a mitochondrial beta-oxidation enzyme with

hydroxylacyl-CoA dehydrogenase activity, is essential for reproductive development

(Torroja et al., 1998). Mutant scully males exhibit reduced testes, which accumulate

lipids in the cytoplasm, whereas mutant scully females are blocked in oogenesis.

There is presumably a high reliance on mitochondrial beta-oxidation for the provision

of energy generation during reproductive development. The formation of rhabdomere

structures within the eye organ is also abolished in scully mutants. Mitochondrial

beta-oxidation is also hypothesized to provide intermediates for lipid synthesis during

rhabdomere formation (Torroja et al., 1998). A disruption in the Enigma locus, which

encodes the first enzyme in the mitochondrial beta-oxidation cycle results in a
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developmental delay characterized by a prolonged larval and pupal stage (Mourikis et

al., 2006).
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CHAPTER II  MATERIALS AND METHODS

2.1 Molecular methods

2.1.1 Creation of plasmid vectors for targeted deletion and genetic

complementation

Gene-deletion mutants were generated using the standard one-step gene replacement

strategy in M. grisea.  For each locus, about 1 kb regions immediately upstream and

downstream of the ORF were PCR amplified and ligated sequentially into either

pFGL44/59 or pFGL97 to flank the selectable marker cassette (hygromycin

phosphotransferase gene (HPH1) or bialaphos resistance gene (BAR), respectively,

under the control of the TrpC promoter). The PCR-amplified fragments were cloned

into either the right border side of the construct (PstI/HinDIII sites) or the left border

side of the construct (combination between XhoI, EcoRI, SacI, KpnI, SmaI and BamHI

sites). For this study, the targeted deletion of the following genes was performed:

PEX6 (MG00529.4), CRAT1/PTH2 (MG01721.4), CRAT2 (MG06981.4), FOX2

(MG06148.4) and ECHA (MG06272.4). The primers used for the amplification of the

5’ and 3’ fragments are given in Table 1. The deletion constructs were confirmed by

DNA sequencing prior to their introduction into the wild-type M. grisea strain.

For genetic complementation of pex6∆, the rescuing construct consisted of a 7.25 kb

KpnI fragment from BAC clone 2A14 which contained the entire PEX6 ORF and

about 800 bp of 5’UTR cloned into pFGL97. For genetic complementation of the

fox2∆ and echA∆ strains, the genomic fragment carrying the full-length locus with at

least 1 kb of upstream and downstream sequences were PCR amplified and cloned
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into pFGL97 or pFGL44, respectively. The primers used for the amplification of the

complementing genomic fragments are given in Table 1.

2.1.2 Creation of plasmid vectors for RFP and GFP tagging

For expression of GFP-PTS1, a fragment encoding GFP-SRL was cloned under the

control of the MPG1 promoter and TrpC terminator from plasmid pFC2-ORF-GFP (a

kind gift from Heidi Bohnert and Marc-Henri Lebrun). This construct was

transformed into the wild type and the pex6∆ strains. For subcellular localization of

Pth2 protein, an RFP-SKL tag was introduced at the C-terminus immediately before

the SKL coding region of the genomic copy of PTH2. The fusion construct pFGL421

was created by cloning 1 kb of the PTH2 3’UTR into the PstI/HinDIII sites of

pFGL347. The gene encoding Red Fluorescent Protein (RFP) was amplified from the

plasmid pDsRed-Monomer-N1 (Clontech, CA, USA) with a reverse primer that

incorporated the tripeptide SKL before the stop codon. The RFP-SKL was cloned in

frame with the last 377 bp of the PTH2 C-terminus (just proximal to the codons

encoding SKL, which were excluded) in the XhoI/BamHI sites of pFGL421. The

fusion construct was verified by nucleotide sequencing and transformed into a

Magnaporthe strain expressing GFP-PTS1. For subcellular localization of Fox2 and

EchA, about 1 kb of genomic sequence immediately before the stop codon was PCR-

amplified and translationally fused to RFP or GFP.

2.1.3 Bacterial transformations and plasmid preparations

Plasmid DNA was transformed into chemical competent E. coli strain XL1-Blue or

MC1061 by heat shock treatment. XL1-Blue and MC1061 were made chemically

competent by the calcium chloride method (Sambrook, 1989) and stored in 200 µl
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aliquots at -700C until use. For transformation, the cells were thawed on ice for 10

minutes, mixed with about 50 ng DNA, incubated at 420C for 100 seconds,

immediately transferred to ice and supplemented with 800 µl cold Luria-Bertani (LB,

per L: 10 g of tryptone, 5 g of yeast extract and 10 g of NaCl) medium.  After 1 hour

incubation at 370C, the cells were plated on LB plates containing 100 µg/ml

kanamycin. After overnight incubation at 370C, isolated colonies were inoculated in

2.5 ml of LB + kanamycin. The liquid cultures were incubated at 370C with 200 rpm

shaking for 10-16 hours. Two ml of the grown cultures were used for plasmid

extraction. Plasmid extractions were carried out using the Qiaprep Spin miniprep kit

according to manufacturer’s instructions (Qiagen Inc, Valencia, CA, USA).

2.1.4 Agrobacterium-mediated transformation of M. grisea

The constructs were electroporated in Agrobacterium tumefaciens strain AGL1. The

transformed Agrobacterium strain was activated in liquid induction medium (IM, per

liter: K salts 10 mL, M salts 20 mL, NH4NO3 (20%) 2.5 mL, CaCl2 (1%) 1 mL

Glucose 5 mM, MES 40 mM, Glycerol 0.5% w/v; K salts: K2HPO4, 20.5, KH2PO4

14.5%; M salts: MgSO4-7H2O 3%, NaCl 1.5%, (NH4)2SO4 2.5%) with acetosyringone

(ACS). To introduce the constructs into M. grisea, transformed Agrobacterium was

cocultivated with M. grisea conidia in minimal medium containing acetosyringone

according to previously described methodology {de Groot, 1998 #131}. The minimal

medium is composed of, per liter: K salts 10 mL, M salts 20 mL, Z salts 5 mL,

NH4NO3 (20%) 2.5 mL, CaCl2 (1%) 1 mL, Glucose 5 mM, MES 40 mM, Glycerol

0.5% w/v, FeSO4 (0.01%) 10 mL, Agar 20 g; Z salts: ZnSO4-7H2O, CuSO4-5H2O,

MnSO4-H2O, H3BO3, Na2MbO4-2H2O, each at 0.01%. After 48-96 hour incubation at

280C, the Agrobacterium was selectively killed with 200 µM cefotaxine and M. grisea
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transformants were selected either on CM containing 250 µg/ml hygromycin or

defined complex medium (DCM; 0.16% yeast nitrogen base without amino acids,

0.2% asparagine, 0.1% ammonium nitrate and 1% glucose, pH 6.0 with Na2HPO4)

containing 40 ug/ml ammonium glufosinate (Cluzeau Info Labo, France). Correct

gene replacement events were confirmed by PCR and DNA gel blot analyses.

2.1.5 DNA extraction and Southern blot analysis

The potassium acetate method was used for extraction of fungal DNA (Naqvi et al.,

1995). Mycelia harvested from a 3-5 day liquid culture was pressed dry on paper

towels and ground into a fine powder in liquid nitrogen. The ground mycelium was

resuspended in 850 µl of extraction buffer (100mM Tris-Cl, pH8.0, 100mM EDTA,

250mM NaCl) and 85 µl 10%SDS, thoroughly mixed and incubated at 650C for 30

minutes. The mixture was then acidified with 350 µl of 5M Potassium acetate and

stored on ice for 15 minutes after mixing. The mixture was centrifuged at 14000 rpm

for 10 minutes to precipitate cellular debris. The supernatant was transferred to a fresh

2ml tube and extracted with an equal volume of chloroform:isoamyl alcohol solution

(24:1). After centrifugation (14000 rpm, 5 minutes), the top layer was transferred to a

fresh tube and precipitated with 2/3 volume isopropanol. The DNA pellet was

recovered by centrifugation at 14000 rpm for 10 minutes and washed with 2 X 1ml

70% ethanol.  After air-drying, the pellet was resuspended in minimal volume of

sterile distilled water (~100 µl). DNA gel blot analysis was performed using standard

protocols (Sambrook, 1989). Probe-labeling and DNA blot detections were done

using the ECL direct nucleic acid labeling and detection system (Amersham

Biosciences, UK).
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2.1.6 RNA extraction and RT-PCR

For Reverse Transcriptase PCR (RT-PCR) analyses, total RNA was extracted from

cultures grown 24 h in glucose minimal medium and then transferred to the medium

containing either glucose, olive oil or acetate for 8 h. RNA was extracted using

sodium acetate buffer (50mM sodium acetate, 10mM EDTA, 1%SDS) and acidic

phenol and precipitated with isopropanol. AMV reverse transcriptase (Roche

Diagnostics, Penzberg, Germany) was used to synthesize cDNA from 2 µg of total

RNA. RT-PCR products were amplified using primers designed (Table 1) for the

following M. grisea genes: PTH2 (MG01721.4), CRAT2 (MG06981.4), MG00803.4

(β-tubulin) and MPG1 (MG10315.4). To assess the specificity and to serve as a

negative control, the RNA sample in each instance was also processed without a

reverse transcriptase step prior to the PCR amplification.



Table 1. List of oligonucleotide primers used in this study. Restriction enzyme sites introduced for cloning purposes are written in lower case in
the primer sequences.

Gene
(Locus)

Description Selection
marker Enzyme site Primer sequence

PEX6 Deletion construct Hygromycin
(MG00529.4)

CRAT1/PTH2 Deletion construct Hygromycin KpnI GAGAGTGAAggtaccCTAGGATTGTTTGGGTAT
(MG01721.4) BamHI GAGAGTGAggatccACAGCAGCAGCAGCACAG

PstI GAGAGTGTTctgcagACGGGTGGAGTCAGGTCA
HinDIII GAGAGTGTTaagcttTGAGAAGGGTGGCAGGCT

RT-PCR  -  - ATGGCTTCTGGAAGCAAAAG
ACATCCACTTGTAGCTGTCC

C-terminal tagging with RFP Hygromycin EcoRV GAGAGTGgatatcGAGGAGCGTGCGCACGCCTAC
NdeI GAGAGTGcatatgCTTGGGAGCCTCAATGGTG



Gene
(Locus)

Description Selection
marker Enzyme site Primer sequence

CRAT2 KO construct Bialaphos SmaI GAGAGTGAcccgggAACCACCACCACGATAGA
(MG06981.4) BamHI GAGAGTGAggatccGATTGTCGTCTGTCGTCA

PstI GAGAGTGTTctgcagAGGAATTGGATGCCGGTC
HindIII GAGAGTGTTaagcttAAATTTTCTTCTGCTTGA

RT-PCR - - ATGCCCAGCCAAGTTCGCAT
GAACAAACTCGAGTGCTGAT

FOX2 Deletion construct Hygromycin EcoRI GAGAGTGAgaattcGTAAGCGACACCTTGGTATC
(MG06148.4) BamHI GAGAGTGAggatccGGTATGTGATAGAGTAGAGG

PstI GAGAGTGTTctgcagGTGATCAGATGGGGGAAAGT
HinDIII GAGAGTGTTaagcttAACAAGCTCACGTGTCCATG

Genetic complementation Bialaphos EcoRI GAGAGTGAgaattcGCTTCAATGACGGTGGTTTG
BamHI GAGAGTGAggatccAACAAGCTCACGTGTCCATG

RT-PCR GACTTCCAGGTCTTGCCAAC
GAGATGCCAAAGAAGCAGAG

C-terminus tagging with RFP Hygromycin EcoRI GAGAGTGAgaattcCTTAAGTCGTACGGCAAG
NdeI GAGAGTGTTcatatgGTACAGCTCCGCCGCGGC



Gene
(Locus)

Description Selection
marker Enzyme site Primer sequence

ECHA KO construct Bialaphos KpnI GAGAGTGAAggtaccACGAACTCTCGATAATCTG
(MG06272.4) BamHI GAGAGTGAggatccGATGATCGATTTGTTCACAG

PstI GAGAGTGTTctgcagCTTGTTGCCAGAAGTATGCA
HinDIII GAGAGTGTTaagcttGAAAGCACAGAGGACAGCAG

Genetic complementation Hygromycin KpnI GAGAGTGAAggtaccGAATTATGCTGTCAGGTCCG
BamHI GAGAGTGAggatccCTCATGCACCCCAACATCAC

RT-PCR ATGAACGCCTTCAGAGCTCT
CCAAAGTTGGCCGATTCGGT

C-terminus tagging with GFP Hygromycin KpnI GAGAGTGAggtaccGACCTGACCACTCAGGTC
NdeI GAGAGTGAcatatgCTGATGAGTCCATTCGGG

MPG1 RT-PCR control  -  - ATCATCCCAAATGCTCACCA
(MG10315.4) TGATCGCATGCATCCCTGAT
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2.2  Carnitine acetyltransferase assays

M. grisea strains were grown for 3 days (280C, 120 rpm) in Minimal Medium (MM;

per liter: 0.5 g of KCl, 0.5 g of MgSO4, 1.5 g of KH2PO4, 6 g of NaNO3 and 10 g of

glucose) after which they were transferred to MM containing either 1% glucose or 1%

olive oil or 50 mM sodium acetate and incubated for another 4 hours.  Protein extracts

were prepared by grinding filtered mycelia in liquid nitrogen and resuspending in

extraction buffer (50mM Tris-Cl pH 7.5, 50mM NaCl, 0.2% Triton X-100, proteinase

inhibitors). Cell debris was removed by centrifugation and total protein concentrations

were determined using the Bio-Rad protein assay reagent (Bio-Rad Laboratories,

Hercules, CA, USA). Equal protein concentrations were used for the assays. CrAT

assays and quantifications of the specific activity therein, were performed as

described (Stemple et al., 1998). The reaction mixture contained 40 mM KH2PO4

(pH8.0), 0.05 mM acetyl-CoA, 0.12 mM 5,5’-dithiobis-(2-nitrobenzoic acid) (DTNB)

and crude protein extract. The reaction was initiated by addition of 2.2 mM DL-

carnitine. Reaction mixture without carnitine was used as a negative control.

2.3 Fungal strains and culture conditions

The Magnaporthe grisea wild-type strain B157 was obtained from the Directorate of

Rice Research (Hyderabad, India). Prune agar medium (PA; per liter: 40 mL of prune

juice, 5 g of lactose, 1 g of yeast extract and 20 g of agar, pH 6.0) was used for

standard culture maintenance and conidiation. PA plates inoculated with mycelial

plugs were incubated in the dark in a 280C incubator for five days. To induce

conidiation, plates were then exposed to continuous light at room temperature for

another five days. For harvesting conidia, ten ml of antibiotic water (sterilized
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distilled water containing 100 ug/ml carbenicillin and 100 ug/ml streptomycin sulfate)

was added to the light-exposed plates and the mycelial surface was gently scraped

with an inoculating loop. The suspension was filtered through two layers of miracloth

to remove mycelial debris and then briefly centrifuged. A minimal volume of

antibiotic water was used to resuspend the conidial pellet. Conidial suspensions were

adjusted to the required concentrations after counting with a hemacytometer.

For preservation of fungal cultures, sterilized 5 mm2 filter papers were placed on top

of mycelial growth from five-day old plates. The plates were incubated for another 3-

5 days in the 280C incubator to allow fungus to grow on the filter papers. Fungal-

colonized filter papers were removed aseptically and placed in sterile coin envelopes

which were dried using dehydrated silica gel. Dried samples were stored at –200 C.

For the assessment of carbon source utilization on plates, the basal medium consisted

of 0.67% yeast nitrogen base without amino acids, 0.1% yeast extract, adjusted to pH

6.0 with Na2HPO4 with 2% agar. The carbon sources tested were 1% glucose, 1%

olive oil/0.05% Tween20 (as emulsifier), 50 mM sodium acetate, 4.9 mM erucic acid,

6 mM oleic acid, 8.5 mM myristic acid, 10 mM lauric acid, 12 mM decanoic acid, 15

mM octanoic acid and 20 mM hexanoic acid. Colony growth was evaluated on plates

inoculated with mycelial plugs of wild-type and test strains after incubation at 280C

for 7-10 days.

For assessment of sensitivity to cell wall destabilizing chemicals, PA plates

containing 100 µg/ml calcofluor or congo red were inoculated with serial dilutions of
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conidial suspensions from the wild-type and test strains.  Growth was evaluated after

incubation at 280C for 3-5 days.

For extraction of genomic DNA, total RNA, and total protein, mycelial cultures were

grown in liquid medium, either complete medium (CM; per liter: 10 g sucrose, 6 g

casein hydrolysate, 6 g yeast extract) or minimal medium (MM), for 3-5 days at 280C

with 120 rpm shaking.

2.4      Evaluation of pathogenicity and pathogenicity-related traits

The detached barley leaf assay, adapted from Dr Marc-Henri Lebrun’s laboratory,

was used to assess pathogenicity in the laboratory. Three to five cm-long pieces of

barley leaves from 14-day old seedlings were washed for 2 minutes in 40% ethanol

and several rinses of sterile distilled water. Washed leaves were briefly dried on paper

towels and then mounted on kinetin agar plates (2 mg/ml kinetin, 1% agar). Conidial

suspensions were inoculated as 10-15 ul water droplets with increasing conidial

concentrations (500-2000 conidia/droplet). The plates were incubated in a 220C

humidified chamber with a 16-hour light/8-hour dark cycle. Disease symptoms were

assessed 7-10 days post-inoculation. For chemical supplementation experiments, the

conidial droplet contained 0.1% or 2.5% glucose, 1% sodium citrate, 1% sodium

malate or 1% succinate.

For assessment of pathogenicity on rice plants, 14-day old seedlings of cultivar CO39

were spray-inoculated with 104-105 conidia/ml suspension containing 0.01%

Tween20. To maintain a high humidity, the inoculated seedlings were kept covered

with a plastic bag sprayed with water and incubated for 24 hours in a humidity
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chamber before being transferred to a growth chamber.  Disease symptoms were

assessed 5-7 days after inoculation.

Quantitative assessment of appressorial function was performed on detached barley

leaf assays.  Inoculated barley leaves were harvested at different timepoints (24-, 48-,

72- and 96-hours post-inoculation) and cleared overnight with 100% methanol.

Cleared leaves were stained with aniline blue (0.1% aniline blue/67 mM K2HPO4, pH

9.0) to visualize host leaf papillary callose formation. Callose formation underneath

the appressoria was taken as a measure of penetration peg formation. In addition, the

number of infectious hyphae was counted under a bright field microscope.

Appressorium formation was assessed on the hydrophobic surface of artificial

polyester membranes (GelbondTM, Biowhittaker Molecular Applications, Rockland,

ME, USA) as well as on detached barley leaves. The total number of appressoria

formed was quantified after an incubation period of 24 hours.

2.5 Microscopy

2.5.1 Fluorescence microscopy

GFP epifluorescence was observed using a Zeiss LSM510 inverted confocal

microscope (Carl Zeiss Inc., Thornwood, N.Y., USA) equipped with a 30 mW argon

laser.  The objectives used were either a 63X Plan-Apochromat (numerical aperture,

1.4) or a 100X Achromat (n.a. 1.25) oil immersion lens. EGFP was imaged with 488

nm wavelength laser excitation, using a 505-530 nm band pass emission filter, while

RFP imaging used 543 nm laser and a 560 nm long-pass emission filter.
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2.5.2 Staining with fluorescent dyes

To visualize lipid bodies, fungal samples were incubated in a 2.5 µg/ml Nile Red

(Sigma-Aldrich, USA) solution in 50 mM Tris-maleate buffer, pH 7.5 with 20 mg/ml

polyvinylpyrrolidone (Thines et al., 2000). The following settings were used for

visualization: excitation at 450 to 490 nm, 505 nm dichroic mirror and 520 nm barrier

filter.  To visualize mitochondria, fungal samples were incubated for 15 minutes in a

100 nm Mitofluor594 (Molecular Probes, Invitrogen, Madison, WI, USA) solution in

1X phosphate buffered saline.

2.6 Phylogenetic analysis

For phylogenetic analysis, amino acid sequences of the requisite proteins were

submitted to the Internet Web Gene Bee services of the Belozersky Institute of

Moscow State University (www.genebee.msu.su). The phylogenetic trees were

generated using the ClustalW algorithm of the Tree Top phylogenetic tree prediction

software with bootstrap analysis of 100 iterations.
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CHAPTER III  PEROXISOME-ASSOCIATED METABOLISM DURING

Magnaporthe PATHOGENESIS

3.1 Introduction

Peroxisomes are ubiquitous single membrane-bound organelles which are capable of

diverse cellular functions (Purdue and Lazarow, 2001). Lipid metabolism with the

ensuing production of acetyl-CoA for energy production and breakdown of hydrogen

peroxide constitute the long established peroxisomal processes. Recently though,

novel peroxisomal functions in a wider range of cellular processes have begun to

emerge (Titorenko and Rachubinski, 2004). In humans, peroxisomal disorders

constitute an important class of genetic disorders attributed to either the loss of a

single peroxisomal enzyme function or the loss of the entire peroxisomal organelle

(Gould and Valle, 2000).

In plants, the most well-characterized peroxisomal function is lipid metabolism in

specialized peroxisomes known as glyoxysomes (Cooper and Beevers, 1969). The

metabolism of lipid stores is necessary to provide an energy source for the developing

embryo. Fatty acid beta-oxidation consists of a cycle of four enzymatic reactions

which progressively reduce fatty acids by two carbon units which are then liberated as

an acetyl-CoA moiety (Wanders et al., 2000). Acetyl-CoA is then made available to

other cellular compartments for energy production and biosynthesis reactions via

carnitine intermediates.  The peroxisome-based fatty acid beta-oxidation pathway then

interconnects with other metabolic pathways through the provision of acetyl-CoA

(Eastmond and Graham, 2001). A number of Arabidopsis peroxisome mutants are

developmental mutants whose embryonic lethal phenotype can be rescued by

exogenous sucrose (Schumann et al., 2003; Zolman and Bartel, 2004). Recently, it has
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been shown that peroxisome-derived reactive oxygen species, such as hydrogen

peroxide and nitric oxide, are important signaling ligands for the photomorphogenesis

in plants (Hu et al., 2002).

In filamentous fungi, a role for peroxisomes has been demonstrated in pathogenesis,

mating and stress response to hyphal lysis. The loss of pathogenicity in the

pex6∆ mutant of Colletotrichum lagenarium is attributed to the loss of the

appressorial melanin layer, which is essential for appressorium-mediated host

penetration (Kimura et al., 2001). The Podospora anserina pex2∆ mutant is impaired

in the nuclear fusion stage of sexual development (Boisnard et al., 2003). This pex2∆

phenotypic defect is likely related to the defect in peroxisomal fatty acid uptake and to

the accumulation of toxic substances since it is partially rescued by the

overexpression of the ABC1 (ATP Binding Cassette) transporter, which potentially

serves both functions (Boisnard et al., 2003). Woronin Bodies which are peroxisome-

derived vesicles have been shown to function in septal pore plugging during hyphal

lysis in Neurospora crassa (Jedd and Chua, 2000) and to be required for full

pathogenicity of M. grisea (Soundararajan et al., 2004).

To identify genes required for pathogenicity in M. grisea, a collection of insertional

mutants was generated by Agrobacterium Transferred-DNA (T-DNA) mediated

insertional mutagenesis and screened for pathogenicity defects. A number of

insertions were identified in genes required for the biogenesis of functional

peroxisomes.  The first of these insertions was in Peroxin 6 (PEX6). To investigate

the requirement for peroxisomal metabolic function during pathogenesis, I created

and extensively characterized a pex6∆ mutant. The loss of the melanin layer in the
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pex6∆ appressoria strongly indicated the importance of peroxisomal acetyl-CoA for

melanin biosynthesis. As an extension of the study of peroxisomal metabolism and

pathogenicity, deletion mutants for genes encoding enzymes, which catalyze the

export of peroxisome generated acetyl-CoA, were also created and characterized.

3.2 Results

3.2.1 Screening for nonpathogenic mutants using Agrobacterium-mediated T-

DNA insertions

An insertional mutagenesis screen was carried out to identify novel genes required

during M. grisea pathogenesis. Germinating conidia of M. grisea from wild-type

backgrounds B157 and Guy11 were transformed with plasmid pFGL59, which

contained a hygromycin resistance gene (HPH1) under the TRPC promoter cloned in

a T-DNA vector.  Transformants which harbored random insertions of PrTRPC-

HPH1 were selected on hygromycin-containing medium. As part of the general

laboratory effort, about 3,000 insertion mutants were isolated and characterized over a

period of three years. Conidia harvested from isolated transformants were used to

assess appressorium formation and pathogenicity in detached barley leaf assays.

One of the transformants which exhibited a total loss of pathogenicity was TMP6-2.

TMP6-2 contained a single insertion of the hygromycin resistance cassette (HPH1)

containing T-DNA and disrupted a region on Contig 2.95 (Magnaporthe Genome

Database, Broad Institute, USA). A 7.25 kb KpnI fragment was identified that

corresponded to this region and further annotation of this genomic fragment revealed

that the disruption was in the second exon of an open reading frame (ORF) predicted

to encode Peroxin6 (hereafter Pex6), a peroxisome biogenesis protein found in several



52

eukaryotes (Figure 2A). This gene was designated as MgPEX6 (hereafter simply

referred to as PEX6) and further in silico analyses of the deduced nucleotide sequence

of the gene and the coding sequence suggested that the ORF spans 4.309 kb and is

interrupted by two short introns (Figure 2A). PEX6 was predicted to encode a protein

of 1375 amino acid and showed a domain organization reminiscent of the members of

the AAA-ATPase family.
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In addition to TMP-6-2, a nonpathogenic transformant, TMT2298, was separately

identified which contained an insertion in the gene (PEX1) for a related peroxisome

biogenesis protein Peroxin1.

As both insertions occurred in genes related to peroxisome biogenesis, assessment of

fatty acid utilization, a known peroxisome-localized metabolic pathway, was done for

both mutants.  Both TMP6-2 and TMT2298 were totally incapable of growing on

medium containing 1% olive oil or oleic acid as sole carbon source though they grew

to wild-type levels on glucose-containing medium.  Taken together, these data

indicated that the insertions in PEX6 and PEX1 resulted in loss of functional

peroxisomes and likely led to the disruption of the fatty acid beta-oxidation pathway.

The functions of Pex6 and Pex1 during peroxisome biogenesis in yeast have been

well studied (Portsteffen et al., 1997; Kiel et al., 1999). Both peroxins belong to the

AAA-ATPase family and are known to interact with each other. They are essential for

the formation of functional peroxisomes through either the fusion of preperoxisomal

vesicles or the recycling of receptors which facilitate the import of peroxisomal

matrix proteins. Given that both Pex6 and Pex1 are known from other systems to act

in the same pathway and that both insertion mutants (TMP6-2 and TMT2298)

displayed similar phenotypic defects, further work was carried out on the PEX6 locus.

3.2.2 Creation of PEX6 deletion and complemented strains

The loss-of-function mutants (pex6::HPH; hereafter pex6∆) in the M. grisea PEX6

was created by replacing about 44% of the coding sequence, in particular the region

encoding the two catalytic AAA ATPase domains, with the HPH1 cassette, using
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homology-assisted recombination. This exercise was carried out in the wild-type

strain B157 and the resultant gene replacement events confirmed by DNA gel blot

analysis (Figure 2B).

The KpnI fragment containing the full-length genomic copy of PEX6 was introduced

into the deletion strains to test for complementation of the defects associated with the

loss of PEX6 function. An RFLP associated with the complementing allele was

identified between the wild-type (lane 1) and the complemented strain (lane 3).

Genomic DNA digested with EcoRI was probed with the PEX6 specific probe (Figure

2A). The WT showed a 2.1 kb and a 11.2 kb fragment, whereas the pex6∆  (lane 2)

showed the loss of the 2.1 kb band and the appearance of the 12.5 kb fragment. The

complemented strain regained the 2.1 kb specific fragment and in addition showed the

presence of the 3.5 kb fragment. At least two independent strains in each instance

(deletion and complemented) were used for confirmation and further investigations.

3.2.3 Peroxisomal defects of pex6∆ mutant

In yeasts, metabolism of medium (8-10 Carbon) and long chain (12-18 Carbon) fatty

acids occurs through the process of beta-oxidation which takes place in the

peroxisomes (Kunau et al., 1995). To evaluate peroxisomal function in the

pex6∆ strain, growth utilizing either glucose or olive oil as the sole carbon source was

assessed.  On basal medium with glucose as the carbon source, the pex6∆ mutant

showed slightly reduced growth compared to the wild-type (Figure 3). On olive oil

containing medium, the wild-type grew normally, whereas growth of the pex6∆ strain

was completely abolished (Figure 3).
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To evaluate the functional integrity of peroxisomes, peroxisomal matrix protein

import was assessed in the pex6∆ strain. Towards this end, GFP fused to a C-terminal

PTS1 (S-R-L, amino acid serine-arginine-leucine (Miura et al., 1992)) was introduced

into both the wild-type and the pex6∆ strains. Subcellular localization of GFP-SRL

epifluorescence was then investigated during the vegetative (mycelia) and the

pathogenic (conidia, germ tubes and appressoria) growth phases of the GFP-SRL

strains. In the GFP-SRL strain, punctate GFP fluorescence, indicative of intact

peroxisomes, was observed during all the growth stages (Figure 4). In contrast, only a

diffused cytoplasmic fluorescence was detected in the different growth stages of the

pex6∆/GFP-SRL strain. Taken together, these results indicated that the pex6∆ mutant

lacks functional peroxisomes and as a consequence is defective in β-oxidation of

long-chain fatty acids and in the import and transport of peroxisomal matrix proteins.





59

3.2.4 Loss of pathogenicity and pathogenicity-related defects of pex6∆

Since M. grisea infects several monocot species, the pathogenicity of pex6∆ mutant

was tested on two different hosts, barley and rice.  In a barley detached leaf assay,

inoculation with wild-type conidia resulted in the formation of visible blast lesions,

which started at four days post-inoculation and which continued to coalesce and

spread over the leaf surface (Figure 5, upper panels). However, the pex6∆ mutant did

not elicit any disease symptoms even when inoculated with a four-fold higher conidial

load. The pex6∆ was likewise completely nonpathogenic on rice cultivar CO39

(Figure 5, lower panels). Spray inoculations with even a two-fold higher conidial load

than the wild-type did not enable the pex6∆ to cause blast disease on rice seedlings.





61

Detailed microscopic observations of the infection process were undertaken to

determine which stage of pathogenesis was affected in the pex6∆ mutant. The ability

to form appressoria (upon conidial germination) was greatly reduced in the pex6∆

mutant. Quantitative appressorium formation assays conducted on artificial

membranes (GelbondTM, Biowhittaker Molecular Applications, Rockland, ME USA)

and on leaf surfaces demonstrated that the capability to form appressoria in the pex6∆

was reduced to ~50% of that observed in the wild-type strain (Figure 6A). Moreover,

appressoria formed by pex6∆ were completely nonfunctional and unable to elaborate

penetration pegs as judged by papillary callose deposition assays using aniline blue

(Figure 6A, appressorium function). The penetration pegs and infection hyphae were

never elaborated by pex6∆ appressoria during leaf infection assays even after 96 hours

post inoculation (Figure 6B). In wild-type inoculations, ramifying and invasive

infectious hyphae, which originate from the appressoria, were clearly seen 48 hours

after inoculation. These results suggest that the nonpathogenicity defect of

pex6∆ could be attributed directly to a defect in appressorium-mediated host

penetration.
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3.2.5 Loss of appressorial melanin layer in pex6∆

Light microscopic observations revealed that compared to the wild-type, the

pex6∆ mutant showed aberrant appressoria that appeared to lack the dark pigment

melanin (Figure 7A). To perform a better analysis of the melanization and to

determine why the pex6∆ appressoria were nonfunctional, thin-section electron

microscopy (TEM) was performed on 24-hour old appressoria from these strains. In

wild-type appressorial sections, an electron dense layer of melanin was distinctly

observed and was uniformly deposited along the periphery of the entire cell (Figure

7B, WT). At higher magnifications, a distinct melanin layer was clearly seen between

the appressorial cell wall and the plasma membrane.  In all the sections of various

pex6∆ appressoria (n=30) observed, this melanin layer was completely absent (Figure

7B). As a control for non-melanized appressoria, TEM was also conducted on

appressoria formed by wild-type conidia in the presence of tricyclazole, a well-known

inhibitor of melanin synthesis (Mares et al., 2006). As in pex6∆ appressoria, the

melanin layer was also found to be absent in tricyclazole-treated appressoria.

Furthermore, the melanin layer was restored in the complemented pex6∆ strain

(Figure 7B, complemented).
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3.2.6 Loss of Woronin bodies in pex6∆

In pex6∆, about 40% of the appressoria exhibit abnormal shapes such as double-

appressoria or bean-shaped appressoria (Figure 8A). The aberrant appressorial

morphology is reminiscent of the misshapen appressoria observed in the

hex1∆ mutant which lacks Woronin bodies (Soundararajan et al., 2004). Woronin

bodies (WB) are peroxisome-derived organelles which function to maintain cellular

integrity by sealing septal pores during stress conditions. The pex6∆ strain also

exhibited compromised growth in osmotic stress conditions as shown by its poor

growth in sorbose medium compared to wild-type (Figure 8B). This phenotypic defect

was also observed in the M. grisea hex1∆ mutant (Soundararajan et al., 2004). These

additional phenotypic defects of pex6∆ were therefore attributed to the loss of

peroxisome-derived Woronin bodies.
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In M. grisea and other filamentous fungi, WBs are easily observed as 100-200 nm

electron dense organelles usually localized near the septal pore (Momany et al., 2002;

Soundararajan et al., 2004). To determine if there is a defect in WB formation in the

pex6∆, thin section electron micrographs of the fungal mycelia were analyzed. In the

wild-type preparations, WBs were easily observed as single-membrane bound,

electron dense vesicles measuring ~100 nm at the medial section of the septum

(Figure 9A).  However, WBs were never observed among all the medial sections of

fungal mycelia of pex6∆ observed. In the pex6∆-complemented strain, WBs were

present at the same frequency as in the wild-type.
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The core of WBs consists of the Hex1p (Jedd and Chua, 2000). The presence of a

canonical PTS1 (tripeptide SKL) at the C-terminus of the Hex1p sequence indicates

the protein’s passage through the peroxisome for proper vesicle biogenesis. Using an

antibody against the Neurospora crassa Hex1p, which cross-reacts with M.grisea

Hex1p, a reduction in the levels of Hex1p was observed in the pex6∆ strain (Figure

9B).  These observations demonstrate that WBs require a functional peroxisome

organelle for biogenesis and that these vesicles are important for M. grisea during

osmotic stress and for appressorium morphogenesis.

3.2.7 Identification of M. grisea carnitine acetyltransferases

It has been proposed that fungal melanin synthesis utilizes acetyl-CoA as precursor

molecules (Chumley and Valent, 1990)  and that peroxisomal beta-oxidation of fatty

acids could be a potential source for acetyl-CoA biogenesis (Thines et al., 2000;

Kimura et al., 2001). Since pex6∆ is unable to metabolize long chain fatty acids, it is

likely that the transfer of fatty acids and acyl groups from peroxisomes to the

cytoplasm and/or to the mitochondria, will either be sub-optimal or abolished in this

mutant. In eukaryotes, the transfer of acyl groups across intracellular membranes is

facilitated by carnitine. Hence, the role of carnitine acetyltransferases (CrAT; EC

number 2.3.1.7), which play a role in the requisite modification and movement of

acetyl-CoA between membrane-bound organelles and the cytoplasm, was

investigated. In Saccharomyces cerevisiae, there are three CrAT enzymes with

specific and overlapping localizations to the peroxisome, mitochondria and

cytoplasm.  A TBLASTN (Altschul et al., 1997) search of the S. cerevisiae CrATs

against the Magnaporthe genome revealed that there are only two CrATs (designated
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CRAT1/MG01721.4 and CRAT2/MG06981.4) encoded within the M. grisea genome

(Figure 10).
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 The MG01721.4 locus was re-annotated and the Crat1 protein showed the highest

similarity to S. cerevisiae CAT2 and shared 40% amino acid identity (e=-116). Cat2p

localizes to both the mitochondrion and the peroxisome (Swiegers et al., 2001). In

silico analysis of Crat1 using subcellular localization prediction programs  (PSORTII

and TargetP; (Nakai and Horton, 1999; Emanuelsson et al., 2000) failed to reveal any

canonical mitochondrial localization motif. However, a distinct PTS1 (serine-lysine-

leucine; SKL) signature was detected at its C-terminus, thus supporting a peroxisomal

localization for the protein encoded by the CRAT1/MG01721 ORF. Since an

uncharacterized mutation REMI (Restriction enzyme mediated insertion) termed Pth2

(Sweigard et al., 1998) has been identified at the MG01721 locus, CRAT1/MG01721

was hereafter referred to as PTH2. MG06981, the other CrAT in M. grisea showed

the highest similarity to Neurospora crassa FacC (e=-34, 55% amino acid identity).

The FacC ortholog in A. nidulans has been well-studied and is predicted to localize to

the cytoplasm (Stemple et al., 1998). MG06981.4 ORF will henceforth be referred to

as CRAT2 and its product as Crat2.

3.2.8 Pathogenesis-related defects in CrAT minus mutants

To determine the role of CrATs in Magnaporthe pathogenesis, deletion strains for the

PTH2 or CRAT2 and a PTH2/CRAT2 double mutant were generated in the B157 wild-

type background. Using single step gene replacement strategy, the complete ORF of

PTH2 and CrAT2 were replaced with the selection markers coding for hygromycin

and bialaphos resistance, respectively. Polymerase chain reaction assisted specific

amplifications, and Southern hybridizations confirmed that the correct gene

replacement events had taken place in the selected single and double mutant
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transformants. At least two independent deletion strains in each instance were used

for all the phenotypic and functional analyses presented here.

The pathogenicity and pathogenesis-related traits of the different CrAT-delete

mutants were assessed in detached barley leaf infection assays. Inoculations with

increasing conidial loads of the pth2∆ and the pth2∆ crat2∆ strains demonstrated that

both mutants were completely nonpathogenic (Figure 11). In contrast, the crat2∆

strain elicited disease symptoms similar to wild-type levels.
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The rate and frequency of appressorium formation, was assessed at different time-

points during infection assays using the CrAT-delete mutants (Figure 12). Both pth2∆

and pth2∆ crat2∆ mutants exhibited a delay in appressorium formation during the

early period of the process. At four hours after inoculation, the number of appressoria

in these mutant strains was 50 ± 1.5% of those seen in the wild-type. At six hours post

inoculation, appressorium formation had increased to 80 ± 2.2% of that observed for

the wild-type. At the 24 hour timepoint, the overall number of appressoria was similar

in the wild-type and in the pth2∆ and pth2∆ crat2∆ mutants. Appressorium formation

of crat2∆ was similar to the wild-type rate throughout the duration of the process.
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Observations and quantifications for host penetration capability as judged by aniline

blue staining for callose deposits and penetration hyphae revealed that the pth2∆ like

the pex6∆ produced nonfunctional appressoria that failed to elaborate any penetration

pegs or infection/penetration hyphae (Figure 13). At the 48-hour, and even the 96-

hour time-point, these mutant appressoria did not elaborate any host penetration

structures. Thus, pth2 activity plays a major and essential role during the host

penetration step of the rice-blast infection cycle.
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3.2.9 Contribution of PTH2 to appressorial melanization

Since the host penetration defects observed during appressorium function of

pth2∆ mutant were remarkably similar to the ones shown by the pex6∆ appressoria,

the appressorial melanization in the pth2∆, crat2∆ and pth2∆ crat2∆ mutants was

evaluated. The pth2∆ mutant appressoria showed a significant reduction in the overall

melanization of the appressoria (Figure 14). Such reduction in melanin deposition was

not seen in the crat2∆ mutants, whereas the decreased melanization was again evident

in the appressoria formed by the pth2∆crat2∆ double mutant.  These results indicate

that Pth2 activity is involved in efficient melanization of appressoria, and that the

defect observed in the appressoria function could be a consequence of this reduction

of melanin. It is however possible that the loss of pathogenicity in the pth2∆ mutant

may not be due solely to such a reduction in pigmentation. Combinatorial defects in

the fatty acid utilization pathway, improper melanization in appressoria, or the general

defect in acetyl CoA transport as observed in the pth2∆ mutant could result in the

phenotypic defects observed therein.
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3.2.10 Metabolic function of M. grisea carnitine acetyltransferases

Carnitine acetyltransferase assays utilizing acetyl-CoA as a substrate were conducted

to quantify and compare the total levels of CrAT enzyme activity in the wild-type,

pth2∆, crat2∆ and the pth2∆ crat2∆ mutant (Figure 15). In the wild-type strain, the

total CrAT activity (specific activity 24.5 ± 1.1 nmol/min/mg protein) was induced by

olive oil and acetate but was not repressed by glucose. In the pth2∆ mutant, CrAT

activity was found to be significantly reduced (specific activity 1.6 ± 0.8

nmol/min/mg protein) and could not be elevated by either olive oil or acetate. In the

crat2∆, olive oil and acetate treatment elicited a slight induction in the enzyme

activity although not as effectively as in the wild-type strain. CrAT activity was

similar in wild-type and crat2∆ (specific activity 22.8 ± 1.6 nmol/min/mg protein)

strains during glucose treatment. The pth2∆crat2∆ double mutant strain showed

negligible amounts (0.09 ± 0.21 nmol/min/mg protein) of overall CrAT activity.
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The ability to metabolize different carbon sources was evaluated for the CrAT-minus

mutants (Table 2). Wild-type strain utilized glucose and olive oil equally efficiently,

whereas acetate was consumed to a lesser extent. The pth2∆ and the pth2∆ crat2∆

mutant grew normally on glucose containing medium but were unable to utilize olive

oil or acetate. There were no discernable differences between the growth of crat2∆

strain and the wild-type on all the carbon sources tested. These results demonstrate

that PTH2 function provides the major carnitine acetyltransferase activity in M. grisea

and it also regulates the utilization of fatty acids and acetate as carbon source. The

contribution of Crat2 to cellular carnitine acetyltransferase levels and its role in fatty

acid or acetate utilization were inferred to be insignificant.
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In order to assess whether the CrAT activity of the two predicted carnitine

acetyltransferases is regulated at the transcriptional level, semi-quantitative RT-PCR

was conducted to assess the relative amounts of each transcript. Such semi-

quantitative RT-PCR based analyses revealed that the transcription of PTH2 and

CRAT2 was induced by olive oil and acetate in the wild-type strain (Figure 16).

Additionally, these results likewise indicate that CrAT2 is actively transcribed and

thus is not a pseudogene.
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3.2.11 Subcellular localization of Crat1p/Pth2p

In silico predictions suggested a peroxisomal location for Pth2p, but the findings that

Pth2 was essential for acetate utilization raised the possibility that Pth2 might also be

present in a non-peroxisomal pool. A detailed analysis of the subcellular localization

of a Pth2-RFPSKL fusion protein during growth in olive oil or acetate containing

medium was conducted. The subcellular location of the Pth2-RFPSKL protein was the

same as that observed for the GFP-PTS1 signal, with both the fusion proteins co-

localizing predominantly within the peroxisomes (Figure 17). Such co-localization

pattern of the Pth2-RFPSKL and the GFP-PTS1 did not differ significantly when

compared between growth on olive oil or acetate. However, under both the

conditions, a separate albeit limited subcellular localization (inferred to be cytosolic)

of Pth2-RFPSKL was evident which was distinct from the GFP-PTS1 containing

compartments (Figure 17, magnified insets). This cytoplasmic pool appeared to be

more prominent when acetate was present as the primary carbon source (Figure 17,

arrowhead). These results demonstrate that PTH2 transcription is induced by fatty

acids and acetate and that Pth2 is predominantly peroxisomal but could also be

present in the cytosol although in very limited amounts.

It has been reported previously that Cat2, the S. cerevisiae ortholog of Pth2, encodes a

protein, which contains a mitochondrial targeting signal (MTS) at the N-terminus and

a type 1 peroxisome targeting signal (PTS1) at the C-terminus. Cat2 can be targeted to

either the mitochondria or the peroxisomes depending on the growth conditions

(Elgersma et al., 1995). Acetate- or glycerol-grown cells produce a longer Cat2

transcript, which contains the MTS. Whereas, during growth on oleate, a shorter Cat2

variant lacking the MTS is produced. As mentioned above, our re-annotation of the
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MG01721.4 sequence revealed the presence of a PTS1 at the C-terminus of the Pth2p

indicating a peroxisomal localization. However, inspection of sequences upstream of

the predicted ATG site revealed the presence of another ATG at -602 basepairs. The

upstream ATG was found to be in-frame with the first predicted ATG and translation

from the upstream ATG results in an additional 21 amino acids. Results from anaylsis

of the new protein sequence using MitoProtII predicted a 0.9918 probability of export

to the mitochondria, with cleavage site at amino acid 30. To determine the subcellular

location of MgPth2p, C-terminus tagging with RFP of the protein was undertaken. To

preserve the function of the innate C-terminal PTS1 of Pth2, the tagging construct was

designed such that an RFP-SKL tag was inserted at the extreme C-terminus and

replaced the sequences coding for the innate –SKL and the stop codon.

Transformation of the Pth2-tagging construct was performed in strains already

expressing the peroxisomal marker GFP-PTS1. Mycelia were first grown on glucose

for three days and then transferred to either olive oil or acetate medium for another 16

hours before imaging. In mycelia cultured in olive oil, there is a clear colocalization

between Pth2-RFP and GFP-PTS1. This demonstrates that Pth2 is targeted to

peroxisomes during growth on fatty acids. During growth on acetate, Pth2-RFP still

colocalizes predominantly with GFP-PTS1. There is faint cytoplasmic RFP

fluorescence, which may be attributed to either background fluorescence or Pth2p

cytosolic localization. The faint cytoplasmic fluorescence appeared diffuse and did

not resemble mitochondrial structures which appear as filaments when stained with

Mitotracker dyes. These results argue for a predominant peroxisomal localization of

Pth2p during growth on fatty acids or acetate.
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3.2.12 Role of peroxisomal acetyl-CoA in M. grisea pathogenesis

Studies in some lower eukaryotes have shown that acetyl-CoA produced by beta-

oxidation in the peroxisomes is transported to the mitochondrion to replenish the

intermediates of the citric acid cycle. However, the transport of the products of beta-

oxidation out of the peroxisomes and into the mitochondria is not well understood

(Hooks, 2002). Products of the peroxisomal beta-oxidation are also routed into

gluconeogenesis via the glyoxylate cycle, through which two carbon compounds are

assimilated into the tricarboxylic acid (TCA) cycle. The pex6∆ mutant might be

unable to supply such products and/or their precursors. Additionally, glucose

metabolism supplies some of the intermediates of the citric acid cycle in a peroxisome

independent manner. Appressorial function in the pex6∆ and the pth2∆ mutant in the

presence of excess metabolic intermediates such as glucose, citrate, malate or

succinate was then investigated. Appressorium-mediated host penetration and blast

disease elaboration was normal in the WT strain in the presence (or absence) of

glucose or citrate (Figure 18A). On the other hand and rather interestingly, the

presence of glucose (but not citrate or malate or succinate) caused a slight remediation

of the host penetration defect in the pth2∆ mutant. Upon quantification, such limited

restoration of appressorium function in the pth2∆ was found to be about 18.8 ± 0.4%

(Figure 18B). However, the resultant penetration hyphae in the glucose treated pth2∆

samples were found to be incapable of proper proliferation within the host tissue

(Figure 18C). Rather surprisingly, treatment with either glucose or citrate did not

restore the appressorial function (of host penetration) in the pex6∆ mutant, thus

maintaining the pex6∆ mutant’s inability to gain entry into (and to elicit disease

symptoms) on host leaf surfaces.
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Earlier results (Figure 14) hinted at a significant reduction in overall thickness of the

appressorial cell walls in the pth2∆ mutant. Tests were then conducted to determine

whether cell wall integrity was compromised in these mutants. To this end, the

sensitivity of the wild type, the pex6∆ and the pth2∆ strains to cell-wall-perturbing

agents such as Calcofluor white and Congo red was assessed. Compared to the wild-

type strain, the pth2∆ and the pex6∆ mutant were found to be significantly sensitive to

Calcofluor white (Figure 19) whereas the pex6∆ showed increased sensitivity to cell

wall perturbations with Congo red. Based on these results, it can be concluded that the

pth2∆ and the pex6∆ mutant possess weakened cell walls. It is possible that the

reduced cell wall integrity (or biosynthesis) in a glucose-deficient environment is the

likely cause of the loss of appressorial function in the pth2∆ and the pex6∆ mutant.

These results suggest that acetyl-CoA generated by peroxisomal activity likely feeds

into the glyoxylate cycle and gluconeogenic pathway for cell wall synthesis during

penetration-peg formation.

In summary, the characterization of mutants, defective in peroxisome biogenesis

(pex6∆) and export of peroxisomal acetyl-CoA (pth2∆) demonstrated that

peroxisomal metabolic function is essential during M. grisea pathogenesis. Fatty acid

beta-oxidation within the peroxisomes generates acetyl-CoA, which is likely utilized

in the polyketide pathway for melanin synthesis. Moreover, peroxisomal acetyl-CoA

is also most probably directed through the gluconeogenesis pathway for the synthesis

of cell wall components of penetration pegs.
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CHAPTER IV IMPORTANCE OF PEROXISOMAL AND

MITOCHONDRIAL FATTY ACID BETA-OXIDATION DURING

Magnaporthe PATHOGENESIS

4.1 Introduction

Lipid metabolism plays a key role during fungal pathogenicity. Mutations in genes,

which encode enzymes of primary or auxiliary lipid metabolic pathways, result in loss

of pathogenicity or attenuation of virulence in both plant (Idnurm and Howlett, 2002;

Wang et al., 2003) and animal pathogens (Lorenz and Fink, 2001; Piekarska et al.,

2006). Cellular lipid metabolism is accomplished via the beta-oxidation of fatty acids

(Kunau et al., 1995). Depending on the organism, fatty acid beta-oxidation occurs in

peroxisome and/or mitochondria. In fungi, owing to extensive studies in yeasts, it is

generally accepted that fatty acid oxidation is exclusive to the peroxisome organelle

(Hiltunen et al., 2003). However, recent studies have demonstrated the presence of a

mitochondrial beta-oxidation pathway in S. pararoseus (Feron et al., 2005) and in the

filamentous fungus A. nidulans (Maggio-Hall and Keller, 2004). Because my previous

work alluded to the importance of the peroxisomal beta-oxidation pathway in M.

grisea pathogenicity, I decided to investigate whether mitochondrial beta-oxidation

occurs in M. grisea and if so, what is the contribution of the peroxisomal or

mitochondrial pathway during pathogenesis.
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4.2 Results

4.2.1 Identification of peroxisomal multifunctional beta-oxidation enzyme

ortholog in M. grisea

In order to delineate whether the pex6∆ defects were due to loss of organellar integrity

or loss of metabolic function of beta-oxidation, a M. grisea ortholog of a specific

peroxisome-associated beta-oxidation enzyme was sought. A known distinct

characteristic of the enzymology of the peroxisome-based beta-oxidation machinery is

the presence of a multifunctional enzyme possessing both a dehydrogenase and a

dehydratase activity (Hashimoto, 2000). A well-characterized multifunctional protein,

which catalyzes the second and third steps of the beta-oxidation cycle in the

peroxisome, has homologs in yeast (Fox2 in Saccharomyces cerevisiae, (Hiltunen et

al., 1992); Mfe2 in Yarrowia lipolytica, (Smith et al., 2000)), filamentous fungi (in N.

crassa Fox2 and A. nidulans FoxA, (Thieringer and Kunau, 1991b; Maggio-Hall and

Keller, 2004)) and mammals (Mfe2;(Jiang et al., 1996)). The Magnaporthe genome

was then searched using the BLAST algorithm for  orthologs of the A. nidulans FoxA

(AN7111.2). The BLAST search yielded 42 hits, of which the first ten were closely

examined (Table 3).  MG06148.4 showed the highest percent identity (63%) and

highest percent similarity (Positives = 74%) to AN7111.2. A perusal of the available

HMMER predicted domains of these loci in M. grisea showed that only MG06148

contained both the dehydrogenase and dehydratase domains (Table 3). For the other

nine loci, only one of either a dehydrogenase or a dehydratase domain was predicted.

Because of its high similarity to AN7111.2 and the prediction of two requisite

enzymatic domains from its amino acid sequence, MG06148.4 was selected for

further characterization.
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A comparison of the predicted conserved domains of six characterized beta-oxidation

multifunctional proteins and MG06148 was done (Figure 20). The presence of two

short chain dehydrogenase domains (ADH) and one dehydratase domain (MaoC)

appears to be conserved in fungi as these domains were identified in all fungal

enzymes as well as MG06148. In comparison, the human Mfe2 (HsMfe2) possesses

only one dehydrogenase domain and one dehydratase domain. Among all the

enzymes, only the Glomus mosseae GmFox2 (Requena et al., 1999) and HsMfe2 has

a sterol carrier protein domain (SCP2).





99

A consensus peroxisomal targeting tripeptide sequence (S/A-K-L) was identified at

the C-terminus end of all the protein sequences analyzed except for the orthologs in

N. crassa and Magnaporthe (Figure 20). Previous reports on the characterization of

the S. cerevisiae (ScFox2) (Hiltunen et al., 1992), human (HsMfe2)  (Jiang et al.,

1996) and A. nidulans (AnFoxA) (Maggio-Hall and Keller, 2004) enzymes have

confirmed the localization of these proteins to peroxisomes. The subcellular

localization of the NcFox2, which lacked a peroxisomal targeting sequence, was

demonstrated to be in catalase-free microbodies (Thieringer and Kunau, 1991a). A

phylogenetic analysis of the different multifunctional enzymes showed that MG06148

was most closely related to NcFox2 (Figure 21).
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Based on the results of this in silico analysis, MG06148 is the best candidate for a M.

grisea peroxisome-associated multifunctional beta-oxidation enzyme. Hereafter, the

protein encoded by MG06148 is referred to as MgFox2.

To determine if MgFox2 is indeed a peroxisome-localized beta-oxidation enzyme,

MgFox2 was chromosomally tagged with a Red Fluorescent Protein (RFP) at its C-

terminus in a strain expressing GFP-PTS1. The resultant FOX2-RFP/GFP-PTS1 strain

was cultivated in olive oil medium and analyzed by epifluorescence microscopy.

MgFox2-RFP showed perfect colocalization with GFP-PTS1 (Figure 22). This

demonstrates that even though MgFox2 lacks the conserved C-terminal PTS1 it is still

targeted to the peroxisomes.
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4.2.2 Identification of mitochondrial beta-oxidation enzyme orthologs in M.

grisea

As two independent beta-oxidation pathways exist in the mitochondria and the

peroxisomes (Kunau et al., 1995), a concurrent investigation of both pathways is

required to better ascertain the role of lipid metabolism during M. grisea

pathogenesis. Appressorial assays using an M. grisea strain expressing GFP-PTS1 and

stained with Mitofluor594 enabled the visualization of both peroxisome and

mitochondrial organelles during appressorium morphogenesis. Both peroxisomes and

mitochondria were found to be abundant within the developing appressoria (Figure

23). Recently, a mitochondria-based beta-oxidation pathway in A. nidulans has been

described (Maggio-Hall and Keller, 2004). In this filamentous fungus, the

mitochondrial enzyme enoyl-CoA hydratase A (echA) was shown to be required for

the metabolism of short chain fatty acids. A BLAST search of the Magnaporthe

genome with the A. nidulans echA (AnechA) (GenBank Accession AN5916.2)

identified the following six loci: MG06272.4, MG03335.4, MG07309.4, MG04012.4,

MG08775.4 and MG0359.4. Based on analyses with the PSORTII subcellular

localization program (Nakai and Horton, 1999), only MG06272, MG03335 and

MG0359 are predicted to be mitochondrial. However, a peroxisomal localization is

possible for MG07309 and MG00359 based on the well-conserved PTS1 signal, -

AKL and –HKL (Gould et al., 1989) respectively. A phylogenetic tree was generated

using Tree Top  algorithm at the Web Gene Bee services of the Belozersky Institute

of Moscow State University (www.genebee.msu.su). The phylogenetic analysis

showed that MG06272 is the closest ortholog of the A. nidulans EchA (Figure 24).

The calculated distance between MG06272 and AN5916.2 is 0.39, whereas that of

next closest protein, MG03335, is already 0.789 (Table 4). The percent identity of the
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amino acid sequences is likewise highest between AN5916 and MG06272, i.e. 61%.

While the other five M. grisea loci analyzed had sequence identity ranging from 25.2-

16.8% with AN5916. Based on its close phylogenetic relationship to AnechA and on

the PSORTII mitochondrial prediction, MG06272 was selected for further

characterization.
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Sequence analysis of the annotated MG06272 locus, encoding a 1424 amino acid

product, revealed that there was misannotation of the sequence. A Reverse Position

Specific Blast of MG06272, via the World Wide Web at the National Centre for

Biotechnology Information, to identify conserved domains (Marchler-Bauer et al.,

1999; Marchler-Bauer et al., 2002) in the amino acid sequence showed that the enoyl-

CoA hydratase domain in MG06272 encompassed only amino acids 47 to 208.  In

addition, two zinc finger domains and one SH3 domain were identified in the last 424

amino acids of the sequence. After analysis using the EMBOSS pairwise alignment

algorithms of the European Bioinformatics Institute, only the first 292 amino acids of

MG06272 aligned with AN5916.  Based on these in silico analyses, MG06272 was

re-annotated and named as MgECHA. The re-annotated MgECHA includes only the

first 292 amino acids of the published MG06272 sequence and was used for further

experiments. In the Magnaporthe grisea genome database version 5.0, the

MG06272.4 locus had been re-annotated and split into two: MGG_12869.5 which is

3646 bp in length and MGG_12868.5. The domain for the enoyl-CoA

hydratase/isomerase family was identified in MGG12868.5.

The human and rat ECH enzyme is composed of 290 amino acids with a putative

amino-terminal mitochondrial targeting sequence of 29 residues (Minami-Ishii et al.,

1989; Kanazawa et al., 1993). Glutamic acid residues at positions 144 and 164 are

conserved in members of hydratase/isomerase families and are critical for the

enzyme’s catalytic activities (Muller-Newen et al., 1995; Kiema et al., 1999). Both

Glu144 and Glu164 are conserved in MgECHA. An additional phylogenetic analysis

of MG06272 with the enoyl-CoA hydratases of N. crassa (NCU06448.1), A. nidulans
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(AN5916.2) and human (P30084) showed that the M.grisea EchA has the closest

relationship with the N. crassa counterpart (Figure 25).

Results of the analysis of the amino acid sequence of MG06272 using the subcellular

localization prediction programs PSORTII and TargetP strongly indicated

mitochondrial localization for the protein. To confirm the subcellular location,

MgEchA was fused to GFP at the carboxy terminus. However, the resultant

MG06272-GFP transformants exhibited impaired growth on fatty acid medium. This

phenotypic defect suggests that tagging of the MG06272 with a GFP at its carboxy

terminus compromises the function of the protein.
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4.2.3 Creation of MgFOX2 and MgECHA deletion and complementation

strains

To characterize the biological function of MgFOX2 and MgECHA, independent gene-

deletion mutants were created, by replacing the entire ORF with selection markers for

hygromycin and bialaphos resistance, respectively (Figure 26, 27).  Molecular

confirmation of the targeted deletion was performed by Southern analysis. For

MgFOX2, a 3’probe detected two bands in the wild-type (Figure 26, lane 1), 2.777

and 3.679 kb, of which the former was diagnostic. In the MgFOX2 knockout (Figure

26, lane 2), the 3.679 kb band was retained and a 989 bp band was detected due to an

internal NcoI site in the selection marker. For MgECHA, a 5’ probe detected a 1.879

kb band in the wild-type (Figure 27, lane 1). In the MgECHA knockout (Figure 27,

lane 2), the loss of an internal PvuI site in the ORF, which was replaced by the

selection marker resulted in the disappearance of the 1.879 kb and the appearance of a

6.839 kb fragment due to a downstream EcoRV site.
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To be certain that the observed phenotypic defects were due solely to the disruption of

either MgFOX2 or MgECHA, genetic complementation of both deletion strains was

done. In each instance, PCR fragment encompassing the entire ORF and at least 1 kb

of upstream sequences was used to complement the respective deletion mutant

(Figure 26, 27). Southern analysis was conducted to confirm the complemented

strains. In both MgFOX2 and MgECHA complemented strains, the diagnostic band of

2.777 or 1.879 kb, respectively, was regained (Figure 26, lane 3 and Figure 27, lane

3).

4.2.4 Characterization of lipid metabolism of echA∆ and fox2∆

To determine the role of MgFOX2 and MgECHA in lipid metabolism, the deletion

strains were cultured on medium containing either glucose or olive oil as sole carbon

source (Figure 28). On glucose-containing medium, fox2∆ and the genetically

complemented deletion strains grew similar to wild type. However, echA∆ grew

slower and had a less dense colony. Both the deletion strains failed to grow on olive

oil medium, whereas the growth of the wild type and the respective complemented

strains were comparable.
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To examine the requirements for MgFOX2 and MgECHA for the catabolism of

different types of fatty acids, the deletion strains were cultivated on fatty acids of

different chain lengths (Figure 28). Equivalent carbon content as adjusted by the

molar concentrations of the following fatty acids was used: hexanoic acid (C6),

octanoic acid (C8), decanoic acid (C10), lauric acid (C12), myrisitic acid (C14),

palmitic acid (C16) and erucic acid (C22). At the concentrations used, hexanoic,

octanoic and decanoic fatty acids were toxic to wild-type M. grisea. On lauric acid,

the wild type grew in an abnormal and restricted manner. The fox2∆ and echA∆ were

both unable to metabolize myristic, palmitic and erucic acid. Based on these results, it

was not possible to differentiate between the peroxisomal and mitochondrial

capability or specificity to utilize fatty acids of different chain lengths.

To further investigate the role of these beta-oxidation genes during lipid metabolism,

the transcription of both genes upon induction with different carbon sources was

evaluated by RT-PCR (Figure 29). During growth in glucose, MgECHA transcripts

could not be detected whereas MgFOX2 transcripts were clearly visible. Though olive

oil induced the transcription of both genes, MgFOX2 was significantly upregulated

compared to MgECHA. This is consistent with a peroxisomal localization for

MgFox2, as fatty acids have been shown to induce the expression of nuclear-encoded

genes regulating peroxisomal beta-oxidation (Hiltunen et al., 2003). Acetate treatment

also resulted in the transcriptional upregulation of MgFOX2 and to a lesser extent

MgECHA.
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Taken together, these results suggest that although MgechA and Mgfox2 are required

for fatty acid metabolism, their distinct enzyme activities may contribute differently to

other metabolic requirements of the fungus.

4.2.5 Vegetative growth defect of echA∆

To further examine the observed compromised growth of echA∆ on glucose medium,

a conidial dilution series was inoculated on standard culture medium (prune agar

medium) (Figure 30). In wild-type and fox2∆, even with the lowest conidial

concentration, mycelial growth was substantial at three days post-inoculation. These

colonies from different conidial concentrations were fast growing and at day five had

reached equivalent colony diameters and density. However, with echA∆ inoculations,

at day three, only the highest conidial dilution exhibited growth and was comparable

to the colony in the lowest conidial inoculations of either the wild-type or the fox2∆.

The echA∆ colony grew slowly and at day five had a smaller diameter than any of the

colonies of the other two strains tested. Some slight growth could be observed from

the second highest conidial dilution of echA∆ at day five. These results indicate that

mitochondrial enoyl-CoA hydratase activity is required for optimal fungal vegetative

growth.
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4.2.6 Mitochondrial morphology of mutants

The vegetative growth defect of echA∆ is reminiscent of the slow growth phenotype

of S. cerevisiae petite mutants, which are known to have defects in mitochondrial

respiration (Tzagoloff and Dieckmann, 1990). As mitochondrial morphology has been

shown to be important for the respiratory capacity of these organelles (Skulachev,

2001), the mitochondria of the mutants were stained with Mitofluor 594 and observed

using epifluorescence microscopy. The mitochondrial structures of both wild type and

the fox2∆ consisted of long tubular networks (Figure 31). In contrast, the

mitochondria of echA∆ resembled spherical or short spiral structures. These results

suggest that normal mitochondrial morphology is perturbed in the echA∆ and may be

the cause of the growth defect observed during vegetative growth.
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4.2.7. Pathogenicity and pathogenic lipid metabolism

The overall pathogenicity of the MgFOX2 and MgECHA deletion and complemented

strains was evaluated on a detached barley leaf infection assay (Figure 32).

Inoculation of barley leaf explants with 20 µl droplets containing 3000 conidia was

sufficient for the development of blast lesions by the wild-type and the respective

complemented strains. The formation of spreading lesions was visible starting at three

days post-inoculation in the inoculations with the wild type and the complemented

strains. On the other hand, both fox2∆ and echA∆ mutants failed to elicit any disease

lesions on the inoculated barley leaves.
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During M. grisea pathogenesis, lipid bodies in the germinating conidium are

transported to the developing appressorium where they are immediately utilized/

degraded (Thines et al., 2000). Similar lipid mobilization and breakdown events have

been observed in other fungal pathogens (Both et al., 2005) and suggest that the

oxidation of storage fatty acids contributes essential metabolites during early

pathogenesis. The role of MgFOX2 and MgECHA during pathogenic lipid

metabolism was investigated by observing the fate of lipid bodies in the maturing

appressorium. Nile red stained lipid droplets were no longer detectable in wild-type

appressoria at 24 hours, in contrast to the fox2∆ and the echA∆ appressoria where they

accumulated in large numbers (Figure 33). The ultrastructural detail of wild-type

appressoria consisted of a large central vacuole and few small lipid bodies (Figure

33). In contrast, abundant lipid bodies were observed in thin electron microscopic

sections of both the fox2∆ and echA∆ mutant appressoria. Hence, lipid breakdown

during early pathogenic development and subsequent in planta infection requires both

MgFOX2 and MgECHA.
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4.2.8 Pathogenicity-related traits

To better characterize the loss-of-pathogenicity phenotype of fox2∆ and echA∆,

appressorium morphogenesis and appressorium-mediated host penetration were

carefully investigated. In addition, glucose supplementation was done during the

assays to check for possible remediation of observed defects.  Fatty acid oxidation

serves as a crucial energy source during different developmental processes (Schulz,

1991). If the phenotypic defects observed could be attributed to the loss of energy

source, then they could be remediated upon supplementation with an easily

metabolizable energy source such as glucose.

From light microscopic observations of appressorium assays on artificial membranes,

it was found that fox2∆ and echA∆  had a high frequency, 50-60%, of abnormal-

looking appressoria (Figure 34). Whereas most wild-type appressoria were spherical,

darkly-pigmented and had a uniform protoplasmic content punctuated with small

vesicles, the abnormal appressoria of the mutants were misshapen, more transparent

and had large vesicles clustered within the cytoplasm. Addition of high concentrations

of glucose (final concentration = 2.5%) at the start of appressorium assays resulted in

the formation of normal appressoria at wild-type frequency in the mutants (Figure

34). These results suggest that mitochondrial and peroxisomal beta-oxidation of fatty

acids provides a crucial energy source during appressorium morphogenesis.





128

The M. grisea pathogen invades its host by forcing a thin penetration peg from the

appressorium through the leaf epidermis (Talbot, 2003). As part of the plant’s defense

mechanism, callose material is deposited at the entry site of the fungal penetration peg

(Jacobs et al., 2003). This plant-derived callose deposition can be visualized by

aniline blue staining and is taken as a measure of fungal penetration peg formation

(Vogel and Somerville, 2000). At 48 hours post-inoculation, ~83% of wild-type

appressoria formed penetration pegs (Figure 35). These penetration pegs developed

into infectious hyphae, which ramified and colonized neighboring plant cells at 96

hours post-inoculation. Less than 1% of appressoria from either echA∆ or fox2∆

formed penetration pegs. However, there was no infectious hyphae formation from

the mutant appressoria even at 96 hours post-inoculation. Addition of glucose during

infection assays resulted in an increased frequency of callose deposition underneath

the appressoria of both mutants indicating a partial remediation of penetration peg

formation (Figure 35). However, typical infectious hyphae did not develop further

from these glucose-induced penetration pegs. Interestingly, a low frequency of

abnormal infectious hyphae was observed in echA∆, but not in fox2∆ (Figure 36).

These results suggest that fatty acid metabolism, in addition to providing an energy

source, produces other secondary metabolites which are essential for appressorium

mediated host penetration and host proliferation.
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The appressorial melanin layer in the fox2∆ and echA∆ was assessed by thin section

electron microscopy since the experiments on the PEX6 and PTH2 deletion mutants

implicated a role for peroxisomal metabolism for appressorial melanin synthesis. In

the wild type and echA∆ strains, the melanin layer was easily visible as a uniform

electron dense layer between the appressorial cell wall and the plasma membrane

(Figure 37). In contrast, the appressorial melanin layer in the fox2∆ appeared greatly

reduced. The reduction in the appressorial melanin layer of the fox2∆ mutant is

consistent with the defects in melanin deposition in the pex6∆ and pth2∆ appressoria

and supports the hypotheses that peroxisomal metabolism provides the precursor

acetyl-CoA molecules utilized for melanin synthesis. The presence of an intact

melanin layer in the echA∆ appressoria suggests that the acetyl-CoA molecules

produced during mitochondrial fatty acid oxidation do not contribute to the melanin

polyketide synthesis pathway.
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CHAPTER V  DISCUSSION

The extensive analysis of various metabolic mutants helped establish the role of lipid

catabolism via peroxisomal and mitochondrial beta-oxidation pathways during M.

grisea pathogenesis (Figure 38). Targeted deletions of genes required or essential for

peroxisome biogenesis (PEX6), for carnitine-mediated acetyl-CoA transport (PTH2)

and for peroxisomal beta-oxidation (FOX2) demonstrated that acetyl-CoA generated

from peroxisomal fatty acid beta-oxidation is utilized for synthesis of appressorial

melanin and likely for the biogenesis of the cell wall components in penetration pegs.

The presence of an additional fatty acid catabolism pathway in the mitochondria of M.

grisea was demonstrated through the creation and characterization of a strain lacking

the mitochondrial beta-oxidation enzyme ECHA. The mitochondrial component of

lipid catabolism is essential for utilization of fatty acids and is required during the

appressorium morphogenesis, host penetration and host proliferation stages of

pathogenic development. Exogenous addition of glucose only partially remediates the

host penetration defect in the mutants (pth2∆, fox2∆ and echA∆) and thus indicates

that acetyl-CoA is compartmentalized or its availability is temporally controlled.

Furthermore, these studies revealed that during pathogenesis metabolic pathways are

strictly regulated.
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5.1 Lipid metabolism plays a key role during fungal pathogenesis

5.1.1 Accumulation and mobilization of lipid stores

Triacylglycerols are the most efficient form of storage lipids in many organisms

(Murphy, 2001). These neutral lipids accumulate within the hydrophobic core of

single membrane bound organelles called lipid bodies. Upon mobilization, the stored

lipids provide an important source of chemical energy and precursors for membrane

phospholipids for the cell (Wagner and Daum, 2005). Lipid bodies are abundant in the

asexual spores (conidia) of M. grisea (Weber et al., 2001). During pathogenic

development, these lipid bodies are transported from the germinated conidium into the

tip of the germ tube (Thines et al., 2000). As the appressorium formed and matured

from the germ tube tip, these lipid bodies are rapidly degraded. The metabolism of

endogenous lipid stores is sufficient to provide the energy and biosynthetic

requirements of the developing appressoria. Ultrastructural analysis of the dormant

conidia of the anthracnose fungus Colletotrichum lagenarium demonstrated the

presence of abundant lipid bodies (Kimura et al., 2001). In the germinating spores of

the mycorrhizal fungus Glomus caldenonius, there is a sharp decline in the amount of

triacylglycerols with a concomitant increase in the free fatty acid content (Beilby and

Kidby, 1980). In the watermold Blastocladiella emersonii, a remarkable loss of

endogenous lipids in the zoospores is seen within the first 15 minutes of germination

(Smith and Silverman, 1973).

The preference to metabolize different types of energy sources has also been observed

in other fungal species. During germination and growth, the ascospores of

Neurospora tetrasperma utilize a combination of carbohydrate and lipid metabolism
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(Lingappa and Sussman, 1959). For the initial stage of germination and germ tube

protrusion, endogenous carbohydrate reserves are immediately metabolized. Five

hours after the initiation of germination, an accelerated degradation of endogenous

lipid reserves takes place. In M. grisea, both glycogen and lipid storage reserves are

translocated from the germinated conidium into the developing appressorium where

they are rapidly degraded. However, though enzymatic activities for both

carbohydrate and lipid catabolism are present in the germinating conidium, only

triacylglycerol lipase activity increases significantly during appressorium maturation

(Thines et al., 2000). In some fungi, such as the root rot fungus Phymatotrichum,

glycogen reserves represent the predominant energy source for germination of the

sclerotia (Ergle, 1948).

In other fungi, metabolism of endogenous lipid or carbohydrate reserves is

insufficient to support germination and an exogenous supply of nutrients is necessary

to initiate germination. In the damping-off disease causing fungus Fusarium roseum,

the germination of macroconidial spores requires an exogenous source of carbon,

nitrogen and inorganic nutrients (Sisler and Cox, 1954). In Fusarium solani, despite

an accumulation of lipid reserves in spores during vegetative growth on rich medium,

spores do not germinate in the absence of exogenous glucose (Cochrane et al., 1963).

Moreover, only a small fraction of the lipid stores is degraded during spore

germination.

5.1.2 Upregulation of genes related to lipid catabolism

The importance of lipid metabolism during pathogenic development is indicated by

the upregulation of genes and the increased activity of enzymes of lipid metabolism
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and its auxiliary pathways. Transcriptional profiling of different pathogenic stages of

the barley powdery mildew pathogen Blumeria graminis demonstrated that genes

involved in the degradation of lipids are upregulated during the early stages of

pathogenesis (Both et al., 2005). In M. grisea, the enzyme activity of triacylglycerol

lipase, which is the primary enzyme for mobilization of stored lipids, increases during

early pathogenesis (Thines et al., 2000). During the critical stage of host macrophage

sequestration during the pathogenesis of Candida albicans and Cryptococcus

neoformans, there is an increased transcription of genes coding for enzymes of the

glyoxylate cycle (Lorenz and Fink, 2001; Rude et al., 2002). As an auxiliary pathway

to lipid metabolism, the glyoxylate cycle enables the utilization of fatty acid oxidation

products for energy generation and macromolecular synthesis.

5.1.3 Loss or reduction in pathogenicity resulting from mutations in genes

involved in lipid metabolism

In this study, the loss of pathogenicity resulting from the independent deletion of four

different genes (PEX6, PTH2, FOX2 and ECHA) related to lipid metabolism

emphasizes the indispensable nature of this metabolic process to M. grisea

pathogenicity. The contribution of peroxisomal metabolic functions is underscored by

the pathogenicity-related defects of the pex6∆, pth2∆ and fox2∆ mutants. The host

penetration defect and the loss of the appressorial melanin in the M. grisea pex6∆ is

comparable to the defects observed in the pex6∆ strain of C. lagenarium (Kimura et

al., 2001). Acetyl-CoA produced from fatty acid catabolism within the peroxisomes

most likely contributes to the synthesis of appressorial melanin in both fungi. A

drastic reduction in the appressorial melanin layer was also observed in the pth2∆

mutant which is defective in transporting acetyl-CoA out of the peroxisome. The
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deletion of genes encoding for specific fatty acid beta-oxidation enzymes in the

peroxisome (FOX2) and mitochondria (ECHA) also results in the loss of

pathogenicity. Both genes are essential for utilization of fatty acid substrates. The

characterization of an Ustilago maydis mutant in the peroxisomal MFP2 reports the

consequences of the disruption of beta-oxidation enzymes on fungal pathogenesis

(Klose and Kronstad, 2006). The pathogenicity defect In the U. maydis mfp2∆ strain

is likely to be related to the impairment of in planta proliferation, which leads to a

reduction in virulence (Klose and Kronstad, 2006). The attenuation in virulence was

likewise observed in the C. albicans fox2∆ strain (Piekarska et al., 2006).

The importance of lipid catabolism during pathogenesis is mostly inferred from the

identification of pathogenicity mutants defective in the glyoxylate cycle, which serves

as an auxiliary pathway of lipid metabolism. In general, the disruption of the

glyoxylate cycle in different fungal phyto-pathogens results in the inability to utilize

fatty acids as sole carbon source in vitro (Idnurm and Howlett, 2002; Wang et al.,

2003). During pathogenesis, the impairment in the mobilization and degradation of

lipid bodies in the spores is also observed in these mutants (Wang et al., 2003;

Solomon et al., 2004). The common defect in conidial germination observed among

the different fungal species, either low germination rate (Idnurm and Howlett, 2002;

Solomon et al., 2004) or delayed germination (Wang et al., 2003), suggests that lipid

metabolism is required at a very early stage during pathogenesis. In addition, defects

in specific stages of pathogenic development were identified in these different

glyoxylate cycle mutants. The loss of the isocitrate lyase (Icl1) function in the

blackleg disease fungus Leptosphaeria maculans results in an acute impairment of

pathogenicity due to reduced hyphal growth at infection sites (Idnurm and Howlett,
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2002). As the icl1∆ is incapable of utilizing fatty acids as sole carbon source in vitro,

a defect in carbon (fatty acid) utilization on the plant surface may be the cause of

limited hyphal growth. On the other hand, the attenuation in virulence of a similar

icl1∆ in M. grisea is ascribed to a delay in the development of infection stages such as

appressorial maturation and host penetration (Wang et al., 2003). The disruption of

the glyoxylate pathway through the loss of malate synthase 1 (MLS1) function in the

wheat pathogen Stagonospora nodorum results in the failure of spores to germinate in

the absence of exogenous carbon (Solomon et al., 2004). In C. albicans, loss of ICL1

function leads to reduced virulence and decreased survival within host macrophages

(Lorenz and Fink, 2001). The crucial role of the glyoxylate pathway during

pathogenesis, however, does not seem to be universal. In Cryptococcus neoformans,

no defect in virulence or growth within macrophages was associated with the targeted

deletion of the single ICL gene (Rude et al., 2002).

Given the importance of lipid catabolic pathways to numerous cellular processes, the

possibility of a negative effect on the general fitness of Magnaporthe due to the

mutations in PEX6, PTH2, ECHA and FOX2 was always considered. This could

imply that the observed pathogenicity defect is not specific to pathogenicity and could

be due to secondary effects resulting from the impairment of fitness. Traits used to

assess the overall fitness of the mutants include: vegetative growth on standard

medium or in the presence of cell wall inhibiting chemicals and conidiation. Among

the mutants characterized, pth2∆ and fox2∆ exhibited wild-type levels of conidiation

and mycelial growth. On the other hand, the pex6∆ and echA∆ mutants did exhibit

some defects in these nonpathogenesis-related traits.  Both mutants had reduced
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growth on glucose medium and exhibited reduced levels of conidiation. In pex6∆,

these vegetative phase defects may be a consequent of the inability to form functional

peroxisomes.  As peroxisomes are known to be important in many processes, in

addition to fatty acid beta-oxidation, it is not surprising that pleiotropic effects are

observed. In echA∆, these vegetative phase defects may be due to impairment of the

mitochondrial respiratory pathway or even to the inability to maintain functional

mitochondrial structures. However, defects observed during vegetative growth may

not necessarily be relevant to pathogenic development as these two life cycle phases

may be relying on different metabolic pathways.

5.2 Establishment of mitochondrial beta-oxidation pathway in M. grisea

Mitochondrial fatty acid beta-oxidation machinery has been documented in many but

not all organisms. Complete oxidation of fatty acids requires the presence of beta-

oxidation systems within the peroxisomes and the mitochondria (Schulz, 1991). The

peroxisomal beta-oxidation cycle acts as a chain-shortening step during fatty acid

catabolism. Chain-shortened fatty acids and acetyl-CoA molecules are then routed to

the mitochondrial pathway for complete oxidation. It has been recently demonstrated

in A. nidulans (Maggio-Hall and Keller, 2004) that the mitochondrial beta-oxidation

pathway is required for the utilization of short chain fatty acids. In the present study,

through the mutational analysis of a mitochondrial beta-oxidation enzyme, ECHA, the

presence of a mitochondrial beta-oxidation system was demonstrated in M. grisea. In

M. grisea, mitochondrial beta-oxidation is required for metabolism of fatty acid and

for the host penetration stage during pathogenesis. The echA∆ appressoria are unable

to form penetration pegs but are completely melanized. This phenotypic defect

suggests that the products and intermediates of mitochondrial beta-oxidation
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contribute to the synthesis of pathogenicity-related metabolites other than melanin. In

humans, mitochondrial beta-oxidation provides a major source of energy for

respiration. It is possible that glycolysis can replenish acetyl-CoA products in

mitochondria through pyruvate and rescue the energy deficiency. Supplementation

with the easily utilizable energy source glucose, however, can only partially remediate

the host penetration defect of echA∆. Exogenous supply of high concentrations of

glucose has been shown to be insufficient for full restoration of pathogenicity.

Glucose supplementation of C. lagenarium pex6∆ mutant resulted in incomplete

restoration of pathogenicity, up to only 20% host penetration (Kimura et al., 2001).

This indicates that acetyl-CoA from glycolysis is not efficiently utilized to

compensate for acetyl-CoA generated by lipid breakdown. Moreover, the glucose-

induced penetration pegs in echA∆ do not develop into normal invasive infectious

hyphae. For pathogenic development, mitochondrial beta-oxidation may be important

in producing secondary metabolites essential for host penetration and may be a key

metabolic pathway, which is required during in planta proliferation.

5.3 The contributions of lipid oxidation to pathogenesis

5.3.1 Lipid metabolism as an energy source

In germinating lettuce embryos, the acetyl-CoA generated from beta-oxidation of

short-chain (hexanoate) and long-chain (palmitate) fatty acids is directed to the

tricarboxylic acid cycle, and hence contributes mainly to energy production (Salon et

al., 1988). Only 5% of the total level of acetyl-CoA metabolized through the

tricarboxylic acid cycle is directed through the glyoxylate cycle. In human hepatoma

G2 cells, a significant fraction of the acetyl-CoA from mitochondrial beta-oxidation is

incorporated into intermediates of the tricarboxylic acid cycle (Wong et al., 2004). In
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mammals, mitochondrial fatty acid oxidation represents the key mechanism by which

energy is derived from metabolism of fatty acids (Coates and Tanaka, 1992). Thus,

physiological defects associated with the loss of mitochondrial beta-oxidation, such as

cardiac myopathy, are aggravated during periods of prolonged fasting (Kurtz et al.,

1998).

5.3.2 Contribution of lipid metabolism to melanin biosynthesis

In M. grisea, melanin is composed of polymers of 1,3,6,8-tetrahydroxynapthalene,

which is synthesized via the polyketide pathway. Malonyl-CoA, which is formed

from the carboxylation of acetyl-CoA, serves as the starter unit in pentaketide

synthesis (Fujii et al., 2000). Loss of appressorial melanin in the pex6∆,  indicated that

acetyl-CoA derived from peroxisomal beta-oxidation comprises the major pool of

precursors for melanin synthesis. A block in the transport of peroxisomal acetyl-CoA

(pth2∆) or a disruption of peroxisomal fatty acid beta-oxidation (fox2∆) results only in

the drastic reduction of the appressorial melanin layer. These results indicate that

there may be other metabolic processes, which compensate for the loss of a

peroxisome-derived acetyl-CoA pool or other mechanisms, which enable the export

of peroxisomal metabolites. In addition to peroxisomal fatty acid oxidation, there are

a number of other metabolic pathways, which generate acetyl-CoA within the cell.

The enzyme ATP citrate lyase (ACL) produces cytosolic acetyl-CoA in a catalytic

reaction involving citrate and coenzyme A (Fatland et al., 2002). In plants, ACL-

derived acetyl-CoA has been shown to be carboxylated to malonyl-CoA and then

utilized for the synthesis of metabolites, which are essential for development (Fatland

et al., 2005). The fatty acid beta-oxidation pathway within the mitochondria also

generates acetyl-CoA can be re-routed to the cytosol either directly or through TCA
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intermediates such as citrate (Bartlett and Eaton, 2004). Studies on the Arabidopsis

acl knock down line suggest that the generation and utlization of acetyl-CoA pools is

strictly compartmentalized (Fatland et al., 2005). On the other hand, the expression of

a heterologous acetyl-CoA hydrolase in the mitochondria has been shown to result in

an increase in the overall levels of acetyl-CoA within the transgenic plants (Bender-

Machado et al., 2005). This therefore indicates that a compensatory reaction operates

during alterations in the concentration of acetyl-CoA pools and results in redirecting

carbon fluxes within the cell.

5.3.3 Lipid metabolism for synthesis of cell wall precursors

Exogenous glucose could partially restore the formation of penetration pegs in the

pth2∆ mutant suggests that peroxisomal acetyl-CoA is utilized in gluconeogenesis

pathways. It is possible that the carbohydrate cell wall components of penetration

pegs are produced through gluconeogenesis. Consequently, the pth2∆ and

pex6∆ mutants exhibit enhanced sensitivity to cell wall destabilizing agents. In plants,

the carbon flux from lipid catabolism has been shown to be important during cell wall

morphogenesis. In the endosperm tissue of Arabidopsis thaliana seedlings,

experiments with radioactive carbon demonstrate that the acetate moiety is not

respired but is incorporated into sucrose through dicarboxylic acids generated via the

glyoxylate cycle (Canvin and Beevers, 1961). In fungi and plants, the cytoplasmic

pool of the nucleotide sugar uridinediphosphoglucose (UDP-glucose) is used as the

precursor for the synthesis of cell wall polysaccharides (Seitz et al., 2000; Latge et al.,

2005). The enzymes responsible for the interconversion of nucleotide sugars to

commit them for cell wall synthesis are thought to interact metabolically with the

glycolytic and gluconeogenic pathways (Seifert, 2004). In A. thaliana, a defect in
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starch degradation results in altered composition of cell walls and upregulation of

lipid mobilization and gluconeogenesis genes (Gomez et al., 2006).

5.3.4 Lipid metabolism for glycerol synthesis

The possible metabolic source of glycerol within the developing appressoria of

Magnaporthe has been previously addressed (Thines et al., 2000). In this work, the

activity of enzymes related to lipid catabolism was found to be elevated during

appressorium maturation. In comparison, the activity of enzymes related to

carbohydrate metabolism was found to be present at steady levels throughout the

process. These results imply that lipid catabolic pathways may be more important for

glycerol synthesis during appressorium development. The possible role of the loss of

the different lipid catabolic gene functions investigated in this thesis to appressorial

glycerol synthesis was considered. Enyzmatic quantitations from bulk appressorial

extracts have estimated the internal glycerol concentration to be 3.2 M (De Jong et al.,

1997). However, the most accepted method to indirectly assess glycerol

concentrations within the appressoria is through the appressorium cytorrhysis (cellular

collapse) assay (Howard et al., 1991a). This assay involved the incubation of mature

appressoria in various concentrations of glycerol (1-5 M). Upon incubation of

appressoria in an external glycerol concentration, which is higher than the internal

concentration, appressoria collapse and are readily observed by light microscopy.

Cellular collapse of 50% of the appressoria were observed in an external glycerol

solution of 3.2 M which provides an estimate of 2-4 M of internal glycerol

concentration (Dixon et al., 1999). An attempt to determine possible changes in the

appressorial glycerol levels of the Magnaporthe mutants in this study was technically

unsuccessful.  An unexpectedly high percentage (~70%) of collapsed wild-type
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appressoria was observed even at relatively low external glycerol concentrations (~2

M). For future work, assessment of internal appressorial glycerol content may be

carried out through more sensitive quantitation methods such as high performance

liquid chromatography (HPLC) or mass spectrophotometry (MS), which would

require much lower amounts of appressorial extracts.

5.3.5 Lipid metabolism for organellar homeostasis

The critical metabolic functions of an organelle may exert a role in the maintenance of

its morphology, size and abundance. The mechanism by which this regulation is

achieved, however, is still uncertain. The loss of the multifunctional fatty acid beta-

oxidation enzyme MFE2 in the yeast Yarrowia lipolytica results in the formation of

predominantly larger peroxisomes (Smith et al., 2000). This aberrant peroxisome size

is attributed to the increased production of other beta-oxidation enzymes, such as

thiolase. On the other hand, in S. cerevisiae, the specific inhibition of medium chain

fatty acid oxidation either through the loss of a catalytic enzyme function or the

impairment of substrate provision induces the formation of only a few giant

peroxisomes (van Roermund et al., 2000). It was then thought that metabolites

derived from the oxidation of medium chain fatty acids act as signaling molecules,

which regulate peroxisome proliferation. In humans, larger peroxisomes with a five-

fold reduction in abundance are also associated with a general deficiency in

peroxisomal beta-oxidation machinery (Chang et al., 1999). In plants, the biogenesis

of glyoxysomes, which are specialized peroxisomes, is thought to be regulated at least

partially by the transcriptional and posttranscriptional regulation of the glyoxysomal

enzymes isocitrate lyase and malate synthase (Comai et al., 1989).
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Loss or inhibition of mitochondrial beta-oxidation also results in aberrations in

mitochondrial morphology. In Drosophila, deletion of Scully, which encodes the third

enzyme of the beta-oxidation pathway, results in the formation of fewer and smaller

mitochondria with reduced and swollen cristae (Torroja et al., 1998). Human and rat

liver slices which had been treated with inhibitors of mitochondrial beta-oxidation

exhibit aberrations in mitochondrial ultrastructure characterized by enlarged, C- or O-

shaped mitochondria with crystalline and granular inclusions (Vickers et al., 2006).

Quite interestingly, the mitochondria of the echA∆ mutant consists of spherical and

short tubular structures which are in marked contrast to the reticulate network of the

mitochondria in the wild-type strain. In addition, echA∆ grows much slower than wild

type on normal medium, which may be indicative of a respiratory defect. These

phenotypic defects are reminiscent of yeast petite mutants, which are incapable of

growth on nonfermentable carbon sources and exhibit morphological aberrations in

their mitochondrial membranes (Heslot et al., 1970).

5.4 Lipotoxicity as a possible consequence of the disruption of the beta-oxidation

pathway

It is possible that some of the phenotypic defects observed in the beta-oxidation

mutants, result from the accumulation of long chain fatty acids or toxic metabolic

intermediates. In human pathologies associated with increased risk to Type2 diabetes,

mitochondrial beta-oxidation of fatty acids is diminished and results in excessive

release of fatty acids from adipocytes (Maassen et al., 2006). Accumulation of

branched long-chain and very long chain fatty acids was recorded in patients showing

a deficiency in the peroxisomal multifunctional protein 2 (Huyghe et al., 2006a).

However, it is important to note that given the range of metabolic capacity amongst
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different fungi, the inhibitory effect of fatty acids on fungal growth has been shown to

vary depending on the fatty acid chain length and the fungal species. Acetic acid has

been shown to be toxic to the mycorrhizal fungus Boletus (at 1-2 nm) and to the litter

fungus Marasmius (at 8 mM) (Lindeberg and Lindeberg, 1974).  Aspergillus nidulans,

however, grows well on 50 mM acetate as sole carbon source (Hynes et al., 2006). In

my study, I found that Magnaporthe grew poorly on either 50 mM or 5 mM sodium

acetate as sole carbon source. As acetate proved not to be an optimal carbon source

for Magnaporthe, further consideration of acetate metabolism in the beta-oxidation

mutants was not included. Medium chain fatty acids (C6, C8, C10 and C12) are

fungitoxic to the blue mold cheese fungus Penicillum crustosum (Hatton and

Kinderlerer, 1991). Endogenous respiration of Boletus species is inhibited by C2-C12

fatty acids with the inhibitory effect increasing in proportion to chain length

(Pedersen, 1970). A. nidulans, however, grows well on medium containing either C4

(10 mM), C5 (10 mM) and C6 (5 mM) as sole carbon source (Hynes et al., 2006). I

have observed that fatty acids C6, C8 and C10, even at 5 mM concentrations, were

very toxic to Magnaporthe. Magnaporthe also failed to grow on media containing a

combination of either of these fatty acids and either glucose or lactose. However on

growth medium containing C12-fatty acids, Magnaporthe was able to grow although

the colony morphology appeared to be restricted and unusually fluffy. It is possible

that the block in the beta-oxidation pathway leads to the accumulation of  such toxic

fatty acids in the echA∆ and fox2∆ in Magnaporthe. The accumulation of these toxic

metabolites may contribute to some of the observed phenotypic defects such as the

compromised vegetative growth of echA∆. However, the abnormal appressorium

morphogenesis defect observed in both echA∆ and fox2∆ was rescued by exogenous

glucose. This would suggest that this particular phenotypic defect is most likely
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associated with the inability of the mutant to metabolize lipids for energy source.  For

future work, it would be interesting if a metabolic profiling of different lipid catabolic

mutants created in this study would be undertaken to address the possible role of toxic

metabolite accumulation in fungal development as well as to identify novel

metabolites important for pathogenicity.
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Summary

In lower eukaryotes, beta-oxidation of fatty acids is
restricted primarily to the peroxisomes and the result-
ant acetyl-CoA molecules (and the chain-shortened
fatty acids) are transported via the cytosol into the
mitochondria for further breakdown and usage. Using
a loss-of-function mutation in the 

 

Magnaporthe grisea
PEROXIN6

 

 orthologue, we define an essential role for
peroxisomal acetyl-CoA during the host invasion step
of the rice-blast disease. We show that an 

 

Mgpex6

 

D

 

strain lacks functional peroxisomes and is incapable
of 

 

b

 

-oxidation of long-chain fatty acids. The 

 

Mgpex6

 

D

 

mutant lacked appressorial melanin and host pene-
tration, and was completely non-pathogenic. We
further show that a peroxisome-associated carnitine
acetyl-transferase (Crat1) activity is essential for such
appressorial function in 

 

Magnaporthe

 

. 

 

CRAT1

 

-minus
appressoria showed reduced melanization, but were
surprisingly incapable of elaborating penetration
pegs or infection hyphae. Exogenous addition of
excess glucose during infection stage caused partial
remediation of the pathogenicity defects in the 

 

crat1

 

D

 

strain. Moreover, 

 

Mgpex6

 

D

 

 and 

 

crat1

 

D

 

 mycelia
showed increased sensitivity to Calcofluor white,
suggesting that weakened cell wall biosynthesis in a
glucose-deficient environment leads to appressorial
dysfunction in these mutants. Interestingly, 

 

CRAT1

 

was itself essential for growth on acetate and long-
chain fatty acids. Thus, carnitine-dependent meta-
bolic activities associated with the peroxisomes,
cooperatively facilitate the appressorial function of
host invasion during rice-blast infections.

Introduction

 

In eukaryotes, peroxisomes belong to the microbody class
of single-membrane bound organelles and perform
distinct functions in lipid metabolism, which includes 

 

β

 

-
oxidation of fatty acids and synthesis of cholesterol. In
addition, peroxisomes serve highly specialized functions
(Titorenko and Rachubinski, 2001; 2004) such as: perox-
ide detoxification, biosynthesis of antibiotics (van Der
Bosch 

 

et al

 

., 1992), occlusion of septal pores in filamen-
tous fungi (Jedd and Chua, 2000; Soundararajan 

 

et al

 

.,
2004), methanol utilization in yeasts (Muller 

 

et al

 

., 1991),
and photorespiration in plants (Tolbert, 1982). Peroxisome
biogenesis 

 

per se

 

 has been extensively studied in the
yeasts and mutant characterizations therein have
revealed a number of Peroxins (products of the PEX
genes) that are essential for this process (van der Klei and
Veenhuis, 1997; Subramani, 1998). Import of peroxisomal
proteins has been shown to be dependent on the consen-
sus peroxisomal targeting signals termed PTS1 or PTS2
(Subramani, 1993; Legakis and Terlecky, 2001).

The 

 

β

 

-oxidation of fatty acids is a well-conserved met-
abolic process that results in the degradation of fatty acids
to acetate. In mammalian cells, this process occurs in both
mitochondria and peroxisomes (Schulz, 1991; Wanders

 

et al

 

., 1997). Impaired peroxisomal 

 

β

 

-oxidation, however,
leads to several inherited diseases such as X-linked adre-
noleukodystrophy (Wanders 

 

et al

 

., 1995) or Zellweger
syndrome (Lazarow and Moser, 1989) in humans. In con-
trast to 

 

β

 

-oxidation of fatty acids in mammalian cells,
catabolism of fatty acids occurs exclusively in the peroxi-
somes in yeasts (Kunau 

 

et al

 

., 1988; Kurihara 

 

et al

 

., 1992;
Smith 

 

et al

 

., 2000). The resultant acetyl-CoA is then trans-
ported from the peroxisomes to the mitochondria for com-
plete oxidation to CO

 

2

 

 and H

 

2

 

O. The transfer of activated
acyl groups across intracellular membranes depends on

 

L

 

-carnitine. An important pathway for such a transport of
acetyl units has been established (van Roermund 

 

et al

 

.,
1995) and involves an initial conversion of acetyl-CoA into
acetyl-carnitine, catalysed by carnitine acetyl-transferase
(CrAT; Elgersma 

 

et al

 

., 1995), prior to its transportation.
As opposed to the wealth of information on the biogenesis
of peroxisomes in yeasts (Subramani, 1998) and peroxi-
somal metabolism detailed above, rather limited insights
have been made in the generation and fate of peroxisomal
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acetyl-CoA in the filamentous fungi (van Der Bosch 

 

et al

 

.,
1992; Kimura 

 

et al

 

., 2001). Mitochondrial 

 

β

 

-oxidation has
been recently documented in 

 

Aspergillus

 

 (Maggio-Hall
and Keller, 2004).

The rice-blast disease, caused by the ascomycete

 

Magnaporthe

 

, offers an excellent system (Valent, 1990)
to investigate the relationship between metabolism and
virulence-related development in a phytopathogenic fun-
gus. Several virulence-associated events require blast dis-
ease propagules (namely the conidia) to respond to
changes in the external environments such as the host
surface, and to rapidly mobilize lipid and/or carbohydrate
reserves and initiate their metabolic breakdown in the
appressoria (Wang 

 

et al

 

., 2003). An expected conse-
quence of such rapid lipolysis in 

 

Magnaporthe

 

 is the gen-
eration of long-chain fatty acids and subsequently, upon

 

β

 

-oxidation, of acetyl-CoA.
In this article, we report the isolation and characteriza-

tion of two non-pathogenic mutants of 

 

Magnaporthe

 

,
which could be assigned to two distinct complementation
and functional groups. The first group (

 

pex6

 

∆

 

) demon-
strates that the acetyl-CoA generated by peroxisomal
metabolism is essential for 

 

Magnaporthe

 

 pathogenicity.
The second category of mutants (

 

crat1

 

∆

 

) showed specific
defects in the carnitine-dependent acetyl-unit transport
from peroxisomes to cytosol and/or mitochondria. We fur-
ther demonstrate that the Pex6 and Crat1 proteins are
essential for the host invasion step during rice-blast patho-
genesis. Crat1 was found to be the major CrAT activity
associated with the peroxisomes, and contributed 

 

>

 

 95%
of the total CrAT activity in 

 

Magnaporthe

 

. Loss of 

 

PEX6

 

resulted in the loss of peroxisomal integrity, thus leading
to defects in import of matrix proteins, and as a conse-
quence led to a block in 

 

β

 

-oxidation of fatty acids. The

 

pex6

 

∆

 

 strain lacked appressorial melanin, whereas 

 

crat1

 

∆

 

appressoria showed reduced melanization. We further
show that Pex6 and Crat1 are essential for elaborating
penetration pegs and infection hyphae during pathogene-
sis. Interestingly, Crat1 function was found to be essential
for utilization of various carbon sources such as acetate
and long-chain fatty acids. The addition of glucose par-
tially suppressed the pathogenicity defects associated
with 

 

crat1

 

∆

 

 mutant, suggestive of distinct compartmenta-
tion of the acetyl-CoA generation, transport and utilization
within the unicellular appressorium. Thus, cooperative
interaction between the metabolism associated with
peroxisomes and the carnitine-mediated transport is
essential for appressorium function of host entry during
rice-blast infection.

 

Results

 

Isolation and characterization of MgPEX6

 

Random insertional mutagenesis using 

 

Agrobacterium

 

Transfer-DNA was carried out in 

 

Magnaporthe grisea

 

 to
identify novel pathogenicity factors in a forward genetics
approach. TMP6-2 was identified as a mutant strain inca-
pable of causing disease lesions on barley leaf explants.
As shown schematically in Fig. 1A, TMP6-2 contained a
single-copy insertion of the hygromycin-resistance cas-
sette (

 

HPH1

 

) containing T-DNA and disrupted a region on
Contig 2.95 (

 

Magnaporthe

 

 Genome Database, Broad
Institute, USA). A 7.25 kb KpnI fragment was identified
that corresponded to this region and further annotation of
this genomic fragment revealed that the disruption was in
the second exon of an open reading frame (ORF) encod-
ing a protein showing extensive homology to Peroxin6
(hereafter Pex6) found in several eukaryotes. We desig-
nated this gene 

 

MgPEX6

 

 (hereafter simply referred to as

 

PEX6

 

) and further 

 

in silico

 

 analyses of the deduced nucle-
otide sequence of the gene and the coding sequence
suggested that the ORF spans 4.309 kb and is interrupted
by two short introns (Fig. 1A). 

 

PEX6

 

 was predicted to
encode a protein of 1375 amino acids and depicted a
domain organization reminiscent of the members of the
AAA ATPase family (Fig. 1A). TMP6-2 failed to undergo
sexual development and therefore we created loss-of-
function mutants (

 

pex6::HPH1

 

; hereafter 

 

pex6

 

∆

 

) in the

 

PEX6

 

 gene by replacing about 44% of the coding
sequence, in particular the region encoding the two cata-
lytic domains, with the 

 

HPH1

 

 cassette, using homology-
assisted recombination. This exercise was carried out in
two separate wild-type (WT) strains B157 and Guy11 and
the resultant gene replacement events confirmed by DNA
gel blot analysis (Fig. 1B). The KpnI fragment containing
the full-length genomic copy of 

 

PEX6

 

 was introduced into
the deletion strains to test for complementation of the
defects associated with the loss of 

 

PEX6

 

 function. As
shown in Fig. 1B, an RFLP associated with the rescued
strain was identified between the WT (lane 1) and the
rescued strain (lane 3). Genomic DNA digested with
EcoRI was probed with the 

 

PEX6

 

 specific probe as
described in Fig. 1A. The WT showed a 2.1 kb and a
11.2 kb band, whereas the 

 

pex6

 

∆

 

 (lane 2) showed the
loss of the 2.1 kb band and the appearance of the 12.5 kb
fragment. The rescued strain regained the 2.1 kb specific
fragment and in addition showed the presence of the
3.5 kb fragment. At least two independent strains in each
instance (deletion and complemented) were used for con-
firmation and further investigations.

 

Peroxisomal defects of 

 

pex6

 

∆

 

 mutant

 

In fungi, metabolism of medium (6–10 Carbon) and long-
chain (12–18 Carbon) fatty acids occurs through the
process of beta-oxidation which takes place in the perox-
isomes (Kunau 

 

et al

 

., 1995). To evaluate peroxisomal
function in the 

 

pex6

 

∆

 

 strain, growth utilizing either glucose
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or olive oil as the sole carbon source was assessed. On
basal medium with glucose as the carbon source, the

 

pex6

 

∆

 

 mutant showed slightly reduced growth compared
with the wild type (Fig. 1C). On olive oil containing
medium, the wild type grew normally, whereas growth of
the 

 

pex6

 

∆

 

 strain was completely abolished (Fig. 1C).
To evaluate the functional integrity of peroxisomes, we

assessed the peroxisomal matrix protein import in the

 

pex6

 

∆

 

 strain. Towards this end, green fluorescent protein
(GFP) with a C-terminal PTS1 (SRL, Miura 

 

et al

 

., 1992)
was introduced into both the wild-type and the 

 

pex6

 

∆

 

strains. Subcellular localization of GFP-SRL epifluores-
cence was then investigated during the vegetative
(mycelia) and the pathogenic (conidia, germ tubes and
appressoria) growth phases of the transformed strains. In
the wild-type/GFP-SRL strain, punctate GFP fluores-
cence, indicative of intact peroxisomes, was observed
during all the growth stages (Fig. 2). In contrast, only a

diffused cytoplasmic fluorescence was detected in the
different growth stages of the 

 

pex6

 

∆

 

/GFP-SRL strain.
Taken together, these results helped us to conclude that
the 

 

pex6

 

∆

 

 mutant lacks functional peroxisomes and as a
consequence is defective in 

 

β

 

-oxidation of long-chain fatty
acids and in the import and transport of peroxisomal
matrix proteins.

 

Role of PEX6 during 

 

Magnaporthe

 

 pathogenesis

 

As 

 

M. grisea

 

 infects several monocot species, the patho-
genicity of 

 

pex6

 

∆

 

 mutant was tested on two different
hosts, barley and rice (Fig. 3A). In a barley detached leaf
assay, inoculation of wild-type conidia resulted in the for-
mation of visible lesions, starting at 4 days post inocula-
tion, which continued to coalesce and spread over the leaf
surface (Fig. 3A, upper panels). However, the 

 

pex6

 

∆

 

mutant did not elicit any disease symptoms even when

 

Fig. 1.

 

Identification and characterization of 

 

PEX6

 

 mutant in 

 

Magnaporthe

 

.
A. Annotation and schematic representation of the 

 

Magnaporthe PEX6

 

 locus spanning a KpnI (denoted as K; E refers to EcoRI sites) fragment 
on BAC clone 2A14 from 

 

M. grisea

 

. Solid bars and short open boxes indicate the coding regions and the introns respectively, and are drawn to 
scale. RB and LB represent the right and left border sequences of T-DNA (open box) integrated in the TMP6-2 mutant strain. Opposing arrows 
demarcate the genomic region deleted to create the 

 

pex6

 

∆

 

 strain using the 

 

HPH1

 

 cassette. The 

 

PEX6

 

 region spanning 1 kb either side of the 
first EcoRI site was used as the probe for the Southern blot analysis shown in (B). Scale bar denotes 1 kb.
B. DNA gel blot analysis of 

 

PEX6

 

 deletion and rescued strains. Genomic DNA from B157 wild type (1), 

 

pex6

 

∆

 

 (2) and a 

 

pex6

 

 rescued strain 
(lane 3; carrying an ectopic single copy integration of the KpnI fragment described above) was digested with EcoRI, and processed for DNA gel 
blot analysis. The appearance of the 12.5 kb band in the 

 

pex6

 

∆ strain, with the concomitant loss of the wild-type 11.2 kb and 2.1 kb band, was 
diagnostic of the correct gene replacement event. Ectopic integration of the complementation construct in the rescued strain resulted in the 
retention of the 12.5 kb band and the restoration of the wild-type 2.1 kb band. The appearance of a 3.5 kb band in the rescued strain is due to 
an internal EcoRI site in the rescue construct.
C. Loss of fatty acid metabolism in the pex6∆ strain. The wild-type, pex6∆ and pex6 rescued strains were grown on basal medium supplemented 
with either 1% glucose (upper panel) or 1% olive oil (lower panel) for 10 days.
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inoculated with a fourfold higher conidial load. The pex6∆
was likewise completely non-pathogenic on rice cultivar
CO39 (Fig. 3A, lower panels). Spray inoculations with
even a twofold higher conidial load than the wild type did
not enable the pex6∆ to cause blast disease on rice seed-
lings (Fig. 3A, lower panels).

Detailed microscopic observations of the infection pro-
cess were undertaken to determine which stage of patho-
genesis was affected in the pex6∆ mutant. The ability to
form appressoria (upon conidial germination) was greatly
reduced in the pex6∆ mutant. Quantitative appressorium
formation assays conducted on artificial membranes (Gel-
bondTM, Biowhittaker Molecular Applications, Rockland,
ME, USA) and on leaf surfaces demonstrated that the
capability to form appressoria in the pex6∆ was reduced
to ∼50% of that observed in the wild-type strain (Fig. 3B).

Moreover, appressoria formed by pex6∆ were completely
non-functional and unable to elaborate penetration pegs
as judged by papillary callose deposition assays using
aniline blue (Fig. 3B, appressorium function). The pene-
tration pegs and infection hyphae were never elaborated
by pex6∆ appressoria during leaf infection assays even
after 96 h post inoculation (shown later in Fig. 5B). In wild-
type inoculations, ramifying and invasive infectious
hyphae, which originate from the appressoria, were
clearly seen 48 h after inoculation. These results suggest
that the non-pathogenicity defect of pex6∆ could be attrib-
uted directly to a defect in appressorium-mediated host
penetration.

Light microscopic observations revealed that compared
with the wild type, the pex6∆ mutant showed aberrant
appressoria that appeared to lack the dark pigment

Fig. 2. Peroxisomal defects of the pex6∆ strain. Impairment of peroxisomal matrix protein import in the pex6∆ strain. The wild-type and the pex6∆ 
strains were transformed with a GFP-PTS1 construct and observed using epifluorescence microscopy during the different stages of vegetative 
and pathogenic development. In the wild-type strain, the GFP-PTS1 fusion protein was observed as punctate fluorescence, whereas in the pex6∆ 
strain, the GFP epifluorescence was predominantly cytoplasmic. Scale bars for panels showing the mycelia, germinating spores or the 
appressoria = 5 µm. Scale bars sizing conidia represent 10 µm.
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melanin (Fig. 4A). To perform a better analysis of the
melanization and to determine why the pex6∆ appressoria
were non-functional, we performed thin-section electron
microscopy (TEM) on 24-h-old appressoria from these
strains. In wild-type appressorial sections, an electron
dense layer of melanin was distinctly observed and was

uniformly deposited along the periphery of the entire cell
(Fig. 4B, WT). At higher magnifications, a distinct melanin
layer was clearly seen between the appressorial cell wall
and the plasma membrane (Fig. 4B). In all the sections of

Fig. 3. Pathogenicity of the pex6∆ strain.
A. Infection assays on barley and rice. Conidia from the wild-type, 
pex6∆ and rescued strains were used to inoculate leaf explants of 
barley (upper panel) and seedlings of rice cultivar CO39 (lower 
panel). The number of conidia inoculated on the detached barley leaf 
assay is indicated. Disease symptoms for both experiments were 
assessed 7 days post inoculation.
B. Pathogenesis-related defects of the pex6∆ strain. Equal number of 
conidia of the wild-type (black bar), pex6∆ (open bar) and rescued 
(grey bar) strains were inoculated on both artificial membrane and 
host surface to evaluate appressorium formation and appressorium 
function respectively. Appressorium formation was assessed as the 
number of germinated conidia which formed appressoria after 24 h. 
Appressorium function was evaluated as the number of appressoria 
which formed penetration pegs/infectious hyphae after 48 h. Mean 
values (± SD) presented as percentage points were derived from 
three independent experiments.

Fig. 4. Loss of appressorial melanin and Woronin bodies in the 
pex6∆ strain.
A. Conidia harvested from the wild-type strain or the pex6∆ or the 
rescued strain were incubated on artificial inductive surfaces for 24 h 
and observed by Hoffman modulation contrast optics based light 
microscopy.
B. Ultrastructural analysis of the appressorium and mycelium. Twenty-
four-hour-old appressoria of the wild-type, pex6∆ and rescued strains 
were processed for TEM. As a control for non-melanized appressoria, 
wild-type conidia were allowed to form appressoria in the presence 
of tricyclazole. Boxed area in the inset demarcates the magnified 
region of the outer layers of the appressoria presented in the WT 
panel. Bar = 200 nm.
C. Ultrastructure of pex6∆ mycelia. Mycelia, harvested from 48 h 
liquid cultures of the wild-type, pex6∆ and the rescued strains, were 
processed for TEM analysis. Bar = 200 nm.
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various pex6∆ appressoria (n = 30) observed, this mela-
nin layer was completely absent (Fig. 4B). As a control for
non-melanized appressoria, TEM was also conducted on
appressoria formed by wild-type conidia in the presence
of tricyclazole, a well-known inhibitor of melanin synthesis.
As in pex6∆ appressoria, the melanin layer was also found
to be absent in tricylazole-treated appressoria. Further-
more, the melanin layer was restored in the rescued strain
carrying the PEX6 complementing clone (Fig. 4B, res-
cued). The aberrant morphology of the pex6∆ appressoria
was reminiscent of the misshapen appressoria observed
in the mutant (hex1∆, Soundararajan et al., 2004) lacking
the Woronin bodies. TEM analysis of the pex6∆ mutant
confirmed that these strains were devoid of Woronin bod-
ies (Fig. 4C). We conclude that the pex6∆ strains lack
Woronin bodies; are incapable of appressorial melaniza-
tion and as a major consequence rendered non-functional
in the infection cycle.

Carnitine acetyl-transferases in Magnaporthe

It has been proposed that fungal melanin synthesis uti-
lizes acetyl-CoA as precursor molecules (Chumley and
Valent, 1990) and peroxisomal beta-oxidation of fatty
acids could be a potential source for acetyl-CoA biogen-
esis (Thines et al., 2000; Kimura et al., 2001). As pex6∆
is unable to metabolize long-chain fatty acids, we rea-
soned that the transfer of fatty acids and acyl groups from
peroxisomes to the cytoplasm and/or to the mitochondria,
will either be suboptimal or abolished in this mutant. In
eukaryotes, the transfer of acyl groups across intracellular
membranes is facilitated by carnitine. Hence, we decided
to investigate the role of CrAT (EC number 2.3.1.7), which
play a role in the requisite modification and movement of
acetyl-CoA between membrane-bound organelles and the
cytoplasm. In Saccharomyces cerevisiae, there are three
CrAT enzymes with specific and overlapping localizations
to the peroxisome, mitochondria and cytoplasm. A
TBLASTN (Altschul et al., 1997) search of the S. cerevisiae
CrATs against the Magnaporthe genome revealed that
there are only two CrATs (designated CRAT1/MG01721.4
and CRAT2/MG06981.4) encoded within the M. grisea
genome (Fig. S1).

We re-annotated the MG01721.4 locus and found that
the Crat1 protein shows the highest similarity to
S. cerevisiae CAT2 and shared 40% amino acid identity
(e = −116). Cat2p localizes to both the mitochondrion and
the peroxisome (Swiegers et al., 2001). In silico analysis
of Crat1 using subcellular localization prediction programs
(PSORTII and TARGETP; Nakai and Horton, 1999;
Emanuelsson et al., 2000) failed to reveal any canonical
mitochondrial localization motif. However, a distinct PTS1
(serine-lysine-leucine; SKL) signature was detected at its
C-terminus, thus supporting a peroxisomal localization for

the protein encoded by the CRAT1/MG01721 ORF. An as
yet uncharacterized mutation termed Pth2 (Sweigard
et al., 1998) has been identified at the MG01721 locus,
hereafter we refer to CRAT1/MG01721 as PTH2.
MG06981, the other CrAT that we identified in Mag-
naporthe showed the highest similarity to Neurospora
crassa FacC (e = −34, 55% amino acid identity). The FacC
orthologue in Aspergillus nidulans has been studied and
is predicted to localize to the cytoplasm (Stemple et al.,
1998). MG06981.4 ORF will henceforth be referred to as
CRAT2 and its product as Crat2.

Pathogenesis-related defects in CrAT minus mutants

To determine the role of CrATs in Magnaporthe pathogen-
esis, deletion strains of the PTH2, CRAT2 and PTH2
CRAT2 were generated in the B157 wild-type background.
Using single step gene replacement strategy, the com-
plete ORF of PTH2 and CrAT2 were replaced with the
selection markers coding for hygromycin and bialaphos
resistance respectively. PCR assisted specific amplifica-
tions, and Southern hybridizations confirmed that the cor-
rect gene replacement events had taken place in the
selected single and double mutant transformants (data not
shown). At least two independent deletion strains in each
instance were used for all the phenotypic and functional
analyses presented here.

The pathogenicity and pathogenesis-related traits of the
different CrAT-delete mutants were assessed in detached
barley leaf infection assays. Inoculations with increasing
conidial loads of pth2∆ and pth2∆ crat2∆ strains demon-
strated that both mutants were completely non-pathogenic
(Fig. 5A). In contrast, the crat2∆ strain elicited disease
symptoms similar to wild-type levels (Fig. 5A). The rate
and frequency of appressorium formation was assessed
at different time points during infection assays using the
CrAT-delete mutants. Both pth2∆ and pth2∆ crat2∆
mutants exhibited a delay in appressorium formation dur-
ing the early period of the process. At 4 h after inoculation,
the number of appressoria in these strains was 50 ± 1.5%
of those seen in the wild type. At 6 h post inoculation,
appressorium formation had increased to 80 ± 2.2% of
that observed for the wild type. At 24 h, the overall number
of appressoria was similar in the wild type and in the pth2∆
and pth2∆ crat2∆ mutants. Appressorium formation in
crat2∆ was similar to the wild-type rate throughout the
duration of the process. Observations and quantifications
for host penetration capability as judged by aniline blue
staining for callose deposits and penetration hyphae,
revealed that the pth2∆ like the pex6∆ produced non-
functional appressoria that failed to elaborate any pene-
tration pegs or infection/penetration hyphae (Fig. 5B). At
the 48 h, and even the 96 h time point, these mutant
appressoria did not elaborate any host penetration struc-
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tures (Fig. 5B). Thus, we conclude that Pth2 activity plays
a major and essential role in the host penetration step of
the rice-blast infection cycle.

PTH2 function is required for proper melanization during 
pathogenic growth

As the host penetration defects observed during appres-
sorium function of pth2∆ mutant were remarkably similar
to the ones shown by the pex6∆ appressoria, we decided
to test the appressorial melanization in the pth2∆, crat2∆
and pth2∆ crat2∆ mutants. As shown in Fig. 6, the pth2∆
mutant appressoria showed a significant reduction in the
overall melanization of the appressoria. Such reduction in
melanin deposition was not seen in the crat2∆ mutants,
whereas the decrease in the layer was again evident in
the appressoria formed by the pth2∆ crat2∆ double mutant
(Fig. 6, bottom panels). We conclude that the Pth2 activity
is involved in efficient melanization of appressoria, and the

defect observed in the appressoria function could be a
consequence of this reduction of melanin. It is, however,
possible that the loss of pathogenicity in the pth2∆ mutant
may not be due solely to such a reduction in pigmentation,
but could be due to combinatorial defects in the fatty acid
utilization pathway, improper melanization in appressoria,
or the general defect in acetyl CoA transport as observed
in the pth2∆ mutant.

Metabolic function of Magnaporthe CrAT

Carnitine acetyl-transferase assays utilizing acetyl-CoA
as a substrate were conducted to quantify and compare
the total levels of CrAT enzyme activity in the wild type,
pth2∆, crat2∆ and the pth2∆ crat2∆ mutant. We found that
in the wild-type strain, the total CrAT activity (specific
activity 24.5 ± 1.1 nmol min−1 mg−1 protein) was induced
by olive oil and acetate but was not repressed by glucose.
In the pth2∆ mutant, CrAT activity was found to be

Fig. 5. Pathogenicity related defects in the 
CrAT-delete mutants.
A. Detached barley leaf infection assay. Leaf 
explants from barley were inoculated with the 
indicated number of conidia from the wild type 
or the indicated CrAT mutants, and disease 
symptoms were assessed after 7 days.
B. Loss of host penetration in pth2∆ and pex6∆ 
mutants. Equal number of conidia from the wild-
type, pex6∆ or the pth2∆ strain were inoculated 
on barley leaf explants. The number of papillary 
callose deposits (asterisk) and infection hyphae 
(arrowhead) were quantified after staining with 
aniline blue at 48 h (top panel) or 96 h (lower 
panel) post inoculation. Scale bar represents 
10 µm.
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significantly reduced (specific activity 1.6 ± 0.8 nmol
min−1 mg−1 protein) and could not be elevated by either
olive oil or acetate. In the crat2∆, olive oil and acetate
treatment elicited a slight induction in the enzyme activity
although not as effectively as in the wild-type strain. CrAT
activity was similar in wild-type and crat2∆ (specific activ-
ity 22.8 ± 1.6 nmol min−1 mg−1 protein) strains during glu-
cose treatment. The pth2∆ crat2∆ mutant strain showed
negligible amounts (0.09 ± 0.21 nmol min−1 mg−1 protein)
of overall CrAT activity.

The ability to metabolize different carbon sources was
evaluated for the CrAT-minus mutants (Fig. 7A). Wild-type
strain utilized glucose and olive oil equally efficiently,
whereas acetate was consumed to a lesser extent. The

pth2∆ and the pth2∆ crat2∆ mutant grew normally on
glucose containing medium but were unable to utilize olive
oil or acetate. There were no discernable differences
between the growth of crat2∆ strain and the wild type on
all the carbon sources tested (Fig. 7A). Based on these
results, we conclude that PTH2 function provides the

Fig. 6. Reduction of appressorial melanization in the CrAT delete 
mutants. Conidiospores from the CrAT mutants (pth2∆, crat2∆ and 
the pth2∆ crat2∆) were spotted onto artificial inductive membranes 
and allowed to incubate for 24 h and then processed for TEM analysis 
as described. Bar = 200 nm. Representative images from two inde-
pendent appressoria from each mutant strain are depicted.

Fig. 7. Utilization of different carbon sources by CrAT-delete mutants 
and subcellular localization of Pth2.
A. Growth of CrAT minus mutants on different carbon sources. Mag-
naporthe wild-type and the indicated CrAT mutant strains were cul-
tured on basal medium containing either 1% glucose or 1% olive oil 
or 50 mM acetate as carbon source. Growth was assessed after 
10 days.
B. Subcellular localization of Pth2–RFPSKL. Magnaporthe strain 
B1163 (relevant genotype PTH2:RFP-SKL; GFP-PTS1) was cultured 
in medium containing either olive oil or acetate as the sole source of 
carbon. Laser scanning confocal microscopy using appropriate filters 
(or DIC, differential interference contrast) was then performed on such 
mycelia to image GFP and RFP epifluorescence. Scale bar depicts 
5 µm. The lower panels represent 4× magnifications of the regions 
denoted by the asterisk in each instance together with their respective 
GFP counterparts.
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major CrAT activity in Magnaporthe and it also regulates
the utilization of fatty acids and acetate as carbon source.
The contribution of Crat2 to cellular CrAT levels and its
role in fatty acid or acetate utilization were inferred to be
insignificant.

Our semiquantitative reverse transcriptase polymerase
chain reaction (RT-PCR) based analyses revealed that the
transcription of PTH2 (and to some extent CRAT2) was
induced by olive oil and acetate in the wild-type strain
(Fig. S2; also please refer to Bhambra et al., 2006 for
detailed analysis of PTH2 transcript levels). In silico pre-
dictions suggested a peroxisomal location for Pth2p, but
our findings that Pth2 was essential for acetate utilization
raised the possibility that Pth2 might also be present in a
non-peroxisomal pool. We therefore proceeded to carry
out a detailed analysis of the subcellular localization of a
Pth2–RFPSKL fusion protein (using strain B1163 and
laser scanning confocal microscopy) during growth in olive
oil or acetate containing medium. As shown in Fig. 7B, the
subcellular location of the Pth2–RFPSKL protein was the
same as that observed for the GFP-PTS1 signal, with both
the fusion proteins colocalizing predominantly within the
peroxisomes. Such colocalization pattern of the Pth2–
RFPSKL and the GFP-PTS1 did not differ significantly
when compared between growth on olive oil or acetate.
However, under both the conditions, a separate albeit
limited subcellular localization (inferred to be cytosolic) of
Pth2–RFPSKL was evident which was distinct from the
GFP-PTS1 containing compartments (Fig. 7B, magnified
insets). This cytoplasmic pool appeared to be more prom-
inent under acetate replete conditions (Fig. 7B, arrow-
head). We conclude that PTH2 transcription is induced by
fatty acids and acetate and that Pth2 is predominantly
peroxisomal but could also be present in the cytosol
although in very limited amounts.

Role of peroxisomal acetyl-CoA in Magnaporthe 
pathogenesis

Our findings showed that the pex6∆ mutant has a strong
defect in fatty acid β-oxidation in peroxisomes and further
suggested that the peroxisome-associated Pth2 activity
could be required to fulfil some of the β-oxidation pathway
requirements during pathogenesis. Further support for
this hypothesis came from the observation that the loss
of CRAT2 function did not influence Magnaporthe viru-
lence (Fig. 5A) and that CRAT2 was not expressed during
the pathogenic phase (Fig. S2).

Studies in some lower eukaryotes have shown that
acetyl-CoA produced by β-oxidation in the peroxisomes is
transported to the mitochondrion to replenish the interme-
diates of the citric acid cycle. However, the transport of
the products of β-oxidation out of the peroxisomes and
into the mitochondria is not well understood (Hooks,

2002). Products of the peroxisomal β-oxidation are also
routed into gluconeogenesis via the glyoxylate cycle,
through which two carbon compounds are assimilated into
the tricarboxylic acid (TCA) cycle. We reasoned that the
pex6∆ mutant might be unable to supply such products
and/or their precursors. Additionally, glucose metabolism
supplies some of the intermediates of the citric acid cycle
in a peroxisome-independent manner. We therefore inves-
tigated appressorial function in the pex6∆ and the pth2∆
mutant in the presence of excess metabolic intermediates
such as glucose, citrate, malate or succinate. As shown
in Fig. 8A, appressorium-mediated host penetration and
blast disease elaboration was normal in the WT strain in
the presence (or absence) of glucose or citrate. On the
other hand and rather interestingly, the presence of
glucose (but not citrate or malate or succinate) caused a
slight remediation of the host penetration defect in the
pth2∆ mutant (Fig. 8A). Upon quantification, such limited
restoration of appressorium function in the pth2∆ was
found to be about 18.8 ± 0.4% (Fig. 8B). However, the
resultant penetration hyphae in the glucose-treated pth2∆
samples were found to be incapable of proper proliferation
within the host tissue (Fig. 8C and A). Rather surprisingly,
treatment with either glucose or citrate did not restore the
appressorial function (of host penetration) in the pex6∆
mutant (Fig. 8A), thus maintaining the pex6∆ mutant’s
inability to gain entry into (and to elicit disease symptoms)
on host leaf surfaces (Fig. 8A and B).

Our earlier results (Fig. 6) hinted at a significant reduc-
tion in overall thickness of the appressorial cell walls in
the pth2∆ mutant. We therefore tested whether cell wall
integrity was compromised in these mutants. To this end,
we decided to analyse the sensitivity of the wild type, the
pex6∆ and the pth2∆ to cell wall-perturbing agents such
as Calcofluor white and Congo red. Compared with the
WT strain, the pth2∆ and the pex6∆ mutant were found
to be significantly sensitive to Calcofluor white (Fig. 8D)
whereas the pex6∆ showed increased sensitivity to cell
wall perturbations with Congo red (Fig. 8D). Based on
these results, we conclude that the pth2∆ and the pex6∆
mutant show weakened cell walls, and speculate that such
reduced cell wall integrity (or biosynthesis) in a glucose-
deficient environment is the likely cause of the loss of
appressorial function in the pth2∆ and the pex6∆ mutant.
We also construe that acetyl-CoA generated by peroxiso-
mal activity likely feeds into the glyoxylate cycle and
gluconeogenic pathway for cell wall synthesis during
penetration-peg formation.

Discussion

In recent years, it has become clear that fatty acid metab-
olism plays a crucial role during fungal pathogenesis
(Kimura et al., 2001; Both et al., 2005). In Magnaporthe,
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the degradation of lipid reserves contributes to turgor gen-
eration in the developing appressorium (Thines et al.,
2000). The loss or reduction in the pathogenicity of
mutants in different glyoxylate cycle enzymes, such as
isocitrate lyase (Lorenz and Fink, 2001; Idnurm and
Howlett, 2002; Wang et al., 2003) and malate synthase
(Solomon et al., 2004), likewise indicates that fatty acid β-
oxidation is the predominant catabolic process during
early pathogenesis in fungi. Across different organisms,
fatty acid β-oxidation has been shown to occur primarily
within the peroxisomes. However, very little is known
about the mechanisms that transport the products of the
peroxisomal fatty acid metabolism. In this study, we ini-
tially identified a PEX6 orthologue in Magnaporthe that is
required for growth on fatty acids and is essential for
pathogenicity. Loss of PEX6 function led to completely
non-melanized appressoria, which were unable to elabo-
rate penetration pegs and infection hyphae. Based on its
inability to utilize long-chain fatty acids, and the failure to
import PTS1-containing peroxisomal matrix proteins, we
showed that the pex6∆ mutant lacked functional peroxi-

somes. Through genetic complementation analysis using
a WT PEX6 allele, we confirmed that the phenotypic and
metabolic defects in the pex6∆ strain resulted solely from
the disruption of the PEX6 function in this mutant.

Previously characterized Magnaporthe mutants, which
harbour lesions that downregulate enzymes of the mela-
nin biosynthesis pathway, have been shown to be similarly
blocked in the initial host penetration stage (Chumley and
Valent, 1990). Fungal melanin is synthesized through a
polyketide pathway, which presumably utilizes acetyl-CoA
as precursor (Kimura et al., 2001). This raised the possi-
bility that acetyl-CoA derived from fatty acid catabolism in
peroxisomes is an important pool of such precursors for
appressorial melanin biosynthesis in Magnaporthe. The
acetyl-CoA molecule is membrane-impermeable and its
transport between intracellular compartments for energy
production and biosynthesis functions is mediated
through the formation of carnitine intermediates. CrAT
catalyse the reversible reaction, which transfers the ace-
tate moiety between coenzyme-A and carnitine (Ramsay
and Naismith, 2003). To further investigate the functional

Fig. 8. Chemical supplementation partially res-
cues the pathogenicity defects in pth2∆ strain.
A. Appressorium formation and function. 
Conidia from wild-type (WT), pth2∆ or pex6∆ 
strains were inoculated on barley leaf explants 
and allowed to form appressoria in water (Ctrl) 
or 2.5% glucose or 1% sodium citrate. The 
number of appressoria was assessed 24 h after 
inoculation and penetration efficiency after a 
36 h incubation. Disease symptoms were eval-
uated 7 days post inoculation.
B. Quantification of appressorium function. 
Conidia of wild-type, or pth2∆ strains were inoc-
ulated on barley leaf explants in the presence 
of water (a), 2.5% glucose (b) or citrate (c). 
Penetration peg formation and infectious 
hyphae development were evaluated 3 days 
post inoculation.
C. Light microscopic analysis of acid fuchsin 
stained fungal structures in the chemical reme-
diation experiments described in panels A and 
B above.
D. Weakening of fungal cell walls due to loss of 
PEX6 or PTH2 function. Conidia from the wild-
type, pex6∆ or the pth2∆ strains were grown in 
the presence (100 µg ml−1) or absence (control) 
of Calcofluor white or Congo red.
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importance of the peroxisomal acetyl-CoA pool and its
transport, we created loss-of-function mutants in the two
genes, PTH2 (MG01721) and CRAT2 (MG06981), encod-
ing CrAT in Magnaporthe. A double mutant that disrupted
both these CrATs was also analysed. Characterization of
these CrAT-delete mutants revealed that PTH2 was indis-
pensable for the appressorial function of host penetration
and that CRAT2 did not play any significant role during
the pathogenic growth phase in Magnaporthe.

In Aspergillus, CrAT activity is contributed by two genes:
ACUJ which encodes a putative peroxisomal and/or
mitochondrial CrAT, and FacC which produces a putative
cytosolic CrAT (Stemple et al., 1998). Using subcellular
localization studies, we confirmed that the Pth2–RFPSKL
fusion protein is predominantly peroxisomal, with a minor
pool confined to the cytoplasm. The intrinsic PTS1 signal
in Pth2 protein is thus fully functional as has been con-
firmed in a parallel study too (Bhambra et al., 2006). On
the other hand, Crat2 is expected to be exclusively cyto-
plasmic based simply on in silico predictions (European
Bioinformatics Institute, http://www.ebi.ac.uk; and PSORT,
http://psort.ims.u-tokyo.ac.jp).

Rather surprisingly, PTH2 was found to be essential
for utilization of long-chain fatty acids and of acetate.
In contrast, CRAT2 function was dispensable under these
growth conditions. In Aspergillus and in yeast, the major
source of CrAT activity depends on the growth substrate
and each CrAT is individually required for the metabolism
of a specific class of substrates, for example ACUJ for
fatty acids, FACC for acetate and YAT2 for ethanol (Elg-
ersma et al., 1995; Stemple et al., 1998; Swiegers et al.,
2001). Our quantifications of total CrAT specific activity in
non-induced (glucose) and induced (olive oil or acetate)
cultures of Magnaporthe WT and CrAT-delete strains
revealed that Pth2 provides the major CrAT activity (> 95%
of total) in the rice-blast fungus. Interestingly, PTH2 was
also found to be essential for mobilization of lipid bodies
during early appressorium development in Magnaporthe
(data not shown; Bhambra et al., 2006). It is thus possible
that the dual localization (peroxisomal and cytoplasmic)
of Pth2 allows it to function as a unique and the
major CrAT (and likely a fatty-acid acyl carrier too) in
Magnaporthe.

Our results proved that carnitine-based transport of
acetyl-CoA is essential for Magnaporthe infectivity. The
pathogenicity defects in the pth2∆ related particularly to
the delay in appressoria formation and to the lack of
penetration pegs were identical to those shown by the
pex6∆ further confirming that Pth2 is the major CrAT that
transports peroxisomal acetyl-CoA (and/or other related
products of fatty acid β-oxidation therein) in the appresso-
ria. Our observations that pth2∆ (and the pth2∆ crat2∆)
appressoria show reduced melanization, rather than a
complete loss of melanin deposition observed in pex6∆,

indicated that melanin biosynthesis in the appressoria
does not depend exclusively on the peroxisome-derived
acetyl-CoA pool. Thus, it is possible that there are other
distinct source(s) of acetyl-CoA available for melanin syn-
thesis in the appressorium, although these alternate pools
of acetyl-CoA are unable to compensate for the loss of
the peroxisomal pool. Alternatively, peroxisomes might
provide chain-shortened fatty acids to the mitochondrial
β-oxidation machinery in Magnaporthe and that the pro-
posed auxiliary fatty acid metabolism pathway (Maggio-
Hall and Keller, 2004) within the mitochondria contributes
some acetyl-CoA for melanin synthesis in the appressoria.
It is also possible that the peroxisomal acetyl-CoA takes
an alternate exit route, such as the glyoxylate shunt to be
assimilated in the TCA cycle and subsequently the gluco-
neogenesis pathway (Gainey et al., 1992; Lorenz and
Fink, 2001). The glyoxylate shunt has been shown at least
in part to be peroxisomal in plants and fungi, although it
does share some of the mitochondrial enzymes as well
(Gainey et al., 1992; Pracharoenwattana et al., 2005).

Our data from the chemical supplementation experi-
ments revealed that excess (2.5%) glucose could partially
suppress the pathogenicity defects associated with the
pth2∆ mutant. We did not find any remediation of these
mutant defects neither with lower concentrations of glu-
cose nor with the products of the glyoxylate pathway such
as citrate, malate or succinate. It is likely that such exog-
enous glyoxylate intermediates are not assimilated by the
mitochondria or that the overall reduction of cytoplasmic
acetyl-CoA (due to the loss of peroxisomal acetyl-CoA
pool) inactivates the pyruvate carboxylase.

Based on our observations that the cell walls in the
pex6∆ and the pth2∆ are weakened (as judged by sensi-
tivity to Calcofluor white and Congo red, and by direct
TEM analysis), and that glucose can partially remediate
the pathogenicity related defects in pth2∆, we tend to
believe that peroxisome-derived acetyl-CoA feeds into the
glyoxylate and gluconeogenic pathways for glucan and
chitin synthesis during the penetration peg formation. Glu-
cose-based remediation partially reinstated the formation
of penetration pegs and infectious hyphae in the pth2∆
mutant, thus supporting our working hypothesis that cell
wall biosynthesis in a nutrient-limiting environment is the
likely cause for the lack of appressorium function at least
in the pth2∆ mutant background. Although the pex6∆ and
pth2∆ mycelia were equally sensitive to Calcofluor white,
the perturbations with Congo red revealed a major differ-
ence between pex6∆ and pth2∆. The fungal cell wall
consists of mannosylated proteins and three kinds of
polysaccharide chains (reviewed in Klis et al., 2002) and
this apparently rigid and dynamic structure maintains a
high degree of flexibility for adaptation to different devel-
opmental programmes (Duran and Nombela, 2004). The
exact mechanism of action of Congo red remains elusive,

http://www.ebi.ac.uk
http://psort.ims.u-tokyo.ac.jp
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although it is known to interfere with proper cell wall
assembly and to associate with mannosylated proteins
(Kopecka and Gabriel, 1992). In budding yeast, treatment
with cell wall-perturbing agents elicits a cell survival
response called ‘the compensatory mechanism’ that is
characterized by an increase of chitin content, an over-
production of mannoproteins, changes in the association
between cell wall polymers, and redistribution of β-1, 3
glucan synthase and activation of stress signalling (Smits
et al., 2001; and references therein). Our data on sensi-
tivity of mutants towards Congo red suggest that intact/
functional peroxisomes are necessary for the elaboration
of such compensatory cell survival mechanism(s), which
perhaps does not rely as much on the transfer of acetyl-
CoA or fatty acids across the requisite organellar/subcel-
lular compartments.

Additionally, we have shown here that the pex6∆
lacks Woronin bodies, and shows similar defects in the
appressorial morphology as seen in the hex1∆ mutant
(Soundararajan et al., 2004). The lack of even a partial
restoration with glucose in the pex6∆ could be due to the
harmful effects either of excess fatty acid accumulation in
this mutant, or retention of some toxic intermediates, or
of defects in other peroxisomal activities related to either
Woronin body function in Magnaporthe (Soundararajan
et al., 2004) or those involved in the downregulation of
hydrogen peroxide. Future research will address some of
these issues and will aim to gain insight into the products
of the peroxisomal and mitochondrial β-oxidation machin-
eries, and examine the overall generation, transport and
specific utilization of acetyl-CoA within the unicellular
appressorium in Magnaporthe.

Experimental procedures

Fungal strains and culture conditions

The M. grisea wild-type strains B157 was obtained from the
Directorate of Rice Research (Hyderabad, India), and WT
strains Guy11 and TH3 were a kind gift from CIRAD (France).
For culture maintenance and conidiation, wild-type and
mutant strains were grown on prune agar medium (PA; per
litre: 40 ml of prune juice, 5 g of lactose, 1 g of yeast extract
and 20 g of agar, pH 6.0). For assessment of growth on
different carbon sources, basal medium (0.67% yeast nitro-
gen base without amino acids, 0.1% yeast extract, pH 6.0
with Na2HPO4) was supplemented with either 1% glucose or
1% olive oil or 50 mM sodium acetate. Mycelia used for
genomic DNA, total RNA, and total protein extractions was
harvested from cultures grown in liquid complete medium
(CM) or minimal medium (MM), as described previously
(Soundararajan et al., 2004).

Molecular methods

The potassium acetate method was used for extraction of

fungal DNA (Naqvi et al., 1995). DNA gel blot analysis was
performed using standard protocols (Sambrook et al., 1989).
Probe-labelling and DNA blot detections were done using the
ECL direct nucleic acid labelling and detection system (Amer-
sham Biosciences, UK).

Magnaporthe deletion mutants were generated using the
standard one-step gene replacement strategy. For each
gene, about 1 kb of 5′ and 3′ regions were PCR amplified
and ligated into pFGL59 or pFGL97 vector which contained
the hygromycin phosphotransferase gene or ammonium
glufosinate-resistance gene, respectively, under the TrpC pro-
moter. The gene-replacement constructs were introduced
into M. grisea and transformants were selected either on
CM containing 250 µg ml−1 hygromycin or defined complex
medium (DCM; 0.16% yeast nitrogen base without amino
acids, 0.2% asparagine, 0.1% ammonium nitrate and 1%
glucose, pH 6.0 with Na2HPO4) containing 40 µg ml−1 ammo-
nium glufosinate (Cluzeau Info Labo, France). Correct gene
replacement events were confirmed by PCR and DNA gel
blot analyses. A 7.2 kb KpnI fragment from BAC clone 2A14,
which contained the entire Magnaporthe PEX6 locus, was
used to rescue the pex6∆ strain.

For RT-PCR analyses, total RNA was extracted from cul-
tures grown 24 h in glucose MM and then transferred to the
medium containing either glucose, olive oil or acetate for 8 h.
RNA was extracted using sodium acetate buffer (50 mM
sodium acetate, 10 mM EDTA, 1% SDS) and acidic phenol
and precipitated with isopropanol. AMV reverse transcriptase
(Roche Diagnostics, Penzberg, Germany) was used to syn-
thesize cDNA from 2 µg of total RNA. RT-PCR products were
amplified using primers designed for the following Mag-
naporthe genes: PTH2 (MG01721.4), CRAT2 (MG06981.4),
MG00803.4 (β-tubulin) and MPG1. Additionally, ethidium bro-
mide-stained rRNA (not shown) served as a loading control
too. To assess the specificity and to serve as a negative
control (not shown), the RNA sample in each instance was
also processed without a reverse transcriptase step prior to
the PCR amplification.

For expression of GFP-PTS1, GFP-SRL was cloned under
the control of the MPG1 promoter and TrpC terminator from
plasmid pFC2-ORF-GFP (a kind gift from Heidi Bohnert and
Marc-Henri Lebrun). This construct was transformed into the
wild-type and the pex6∆ strains. For subcellular localization
of Pth2 protein, an RFP-SKL tag was introduced at the C-
terminus immediately before the SKL coding region of the
genomic copy of PTH2. The fusion construct pFGL421 was
created by cloning 1 kb of the PTH2 3′UTR into the PstI/
HindIII sites of pFGL347. The gene encoding red fluorescent
protein (RFP) was amplified from the plasmid pDsRed-
Monomer-N1 (Clontech, CA, USA) with a reverse primer that
incorporated the tripeptide SKL before the stop codon. The
RFP-SKL was cloned in frame with the last 377 bp of the
PTH2 C-terminus (just proximal to the codons encoding SKL,
which were excluded) in the XhoI/BamHI sites of pFGL421.
The fusion construct was verified by nucleotide sequencing
and transformed into a Magnaporthe strain expressing GFP-
PTS1 (see above). Transformants were selected on hygro-
mycin and bialaphos-supplemented medium and correct
gene replacement events confirmed by PCR and nucleotide
sequence analyses. Selected transformants (including the
strain B1163 that was finally used) were also tested for
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growth on olive oil medium to further confirm that the RFP-
SKL tag did not compromise the PTH2 function.

Appressorial assays and pathogenicity tests

Conidia were harvested from 10-day-old PA-medium grown
cultures and inoculated at equivalent concentrations on arti-
ficial membranes (GelbondTM, Biowhittaker Molecular Appli-
cations, Rockland, ME, USA) and/or detached barley leaves.
The total number of appressoria formed was quantified after
an incubation of 24 h. Appressorial function was assessed
by counting the number of penetration pegs and penetration
hyphae on barley leaves at 24, 48, 72 and 96 h after inocu-
lation with the requisite conidial suspension. We assessed
penetration peg formation by staining papillary callose
deposits with aniline blue (Adam and Somerville, 1996; Vogel
and Somerville, 2000; Jacobs et al., 2003). Penetration/
infection hyphae were detected by autofluorescence under
ultraviolet light or by aniline blue stainings (Jacobs et al.,
2003). For lesion formation on detached barley leaves,
inoculated samples were incubated for 9 days in a growth
chamber (22°C, 16 h light/8 h dark). Spray inoculations on
rice cultivar CO39 were conducted as previously described
(Naqvi et al., 1995). For chemical supplementation experi-
ments, equal number of conidia were inoculated on barley
leaf explants in the presence of 0.1% or 2.5% glucose, or 1%
sodium citrate, or 1% sodium malate or 1% succinate.

Carnitine acetyl-transferase assays

Magnaporthe grisea strains were grown for 3 days (28°C,
120 rpm) in MM + glucose, after which they were transferred
to MM containing either 1% glucose or 1% olive oil or 50 mM
sodium acetate and incubated for another 4 h. Protein
extracts were prepared by grinding filtered mycelia in liquid
nitrogen and resuspending in extraction buffer (50 mM Tris-
Cl pH 7.5, 50 mM NaCl, 0.2% Triton X-100, proteinase inhib-
itors). Cell debris was removed by centrifugation and total
protein concentrations were determined using the Bio-Rad
protein assay reagent (Bio-Rad Laboratories, Hercules, CA,
USA). Equal protein concentrations were used for the assays.
CrAT assays and quantifications of the specific activity
therein were performed as described (Stemple et al., 1998).

Fluorescence and electron microscopy

GFP epifluorescence was observed using a Zeiss LSM510
inverted confocal microscope (Carl Zeiss, Thornwood, NY,
USA) equipped with a 30 mW argon laser. The objectives
used were either a 63× Plan-Apochromat (numerical aper-
ture, 1.4) or a 100× Achromat (n.a. 1.25) oil immersion lens.
EGFP was imaged with 488 nm wavelength laser excitation,
using a 505–530 nm band pass emission filter, while RFP
imaging used 543 nm laser and a 560 nm long-pass emis-
sion filter.

Twenty-four-hour-old appressoria formed on inductive
membranes (GelbondTM) were processed for TEM. For tricyc-
lazole (Cluzeau Info Labo, France) treatment, wild-type
conidia were allowed to germinate and form appressoria in

the presence of 8 µg ml−1 tricyclazole. Processing and imag-
ing of TEM samples were done as described previously
(Soundararajan et al., 2004).
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