View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Loyola eCommons

LOYOLA
- Loyola University Chicago
Loyola eCommons
gtorzzf\t;\';grrfscience: Faculty Publications and Faculty Publications
4-1990

The Fat-Pyramid: A Robust Network for Parallel Computation

Ronald I. Greenberg
Loyola University Chicago, Rgreen@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

b Part of the Computer and Systems Architecture Commons, and the Computer Sciences Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

Greenberg, Ronald I.. The Fat-Pyramid: A Robust Network for Parallel Computation. Proceedings of the
Sixth MIT Conference on Advanced Research in VLSI,, : 195-213, 1990. Retrieved from Loyola eCommons,
Computer Science: Faculty Publications and Other Works, http://dx.doi.org/10.1.1.55.6540

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola
eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
MIT Press ©1990

https://core.ac.uk/display/48612485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1.1.55.6540
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

The Fat-Pyramid: A Robust Network for
Parallel Computation

Ronald I. Greenberg

Department of Electrical Engineering

and Institute for Advanced Computer Studies
University of Maryland

College Park, MD 20742
rig@umiacs.umd.edu

Abstract

This paper shows that a fat-pyramid of area ©(A) built from processors
of size 1g A requires only O(lg? A) slowdown in bit-times to simulate any
network of area A under very general conditions. Specifically, there is no
restriction on processor size (amount of attached memory) or number of
processors in the competing network, nor is the assumption of unit wire delay
required. This paper also derives upper bounds on the slowdown required
by a fat-pyramid to simulate a network of larger area in the case of unit wire
delay.

1 Introduction

This paper introduces the fat-pyramid network and shows that it is a good
candidate as the basis for a general-purpose parallel computer. The flexi-
bility of this network stems from its ability to efficiently simulate any other
network of comparable physical size under general conditions.

Especially notable is the capability of the fat-pyramid to contend with
the issue of long wires. Previous work on universal networks has generally
assumed that unit time suffices to traverse a wire of any length. But this
paper shows that such an assumption is unnecessary since competing net-
works may be simulated on a fat-pyramid in such a way that the distance
traversed by any message is not much greater in the fat-pyramid than in the
competing network.

Most previous work on universal networks has actually ignored not only
wire length issues but also the broader issue of wiring difficulty and area
consumption. That is, network cost has usually been measured in terms
of processor count and perhaps the degree of the nodes. This paper seeks
to better measure real-world costs by focusing on area consumption under
standard VLSI modeling assumptions as in some other recent works [6, 8, 9,
10]. Though the results in this paper are stated in terms of area in a two-
dimensional design space (constant number of chip layers), the extension to
three-dimensions is fairly straightforward [6] using the ideas in [7].

The basic mode of operation assumed for fat-pyramids and any other par-

allel computer will be as in the distributed random-access machine (DRAM)
model of Leiserson and Maggs [13]. All memory is local to the processors,
and a processor can read, write, and perform arithmetic and logical functions
on values stored in its local memory. It can also read and write memory in
other processors by routing messages through an underlying network. (Other
models are easily accommodated; for example, a “dance-hall” model which
places processors and memory modules in different locations on a network
can be viewed as a special case of the model considered here.)

The basic structure of the fat-pyramid network was suggested by Charles
Leiserson and Tom Cormen and is related to the fat-tree introduced by
Leiserson [10]. The fat-pyramid may be viewed as a fat-tree in the style
introduced in [8, Sec. 7] (the butterfly fat-tree) augmented by hierarchical
mesh connections as illustrated in Figure 1. Ignoring the mesh connections,
shown with thick lines, the network may be viewed as as based upon a 4-ary
tree in which each internal node is replaced by a collection of switches and
processors are placed at the leaves. A collection of wires corresponding to an
edge in the underlying 4-ary tree is referred to as a channel, and the number
of wires in a channel is called its capacity, denoted by cap(c). By using
two types of constant-size switches, it is possible to build fat-pyramids with
essentially arbitrary channel capacities as illustrated in Figure 2 borrowed
from Leiserson [12]. (The capacities of the mesh connections in the fat-
pyramid match those of the adjacent channels.)

The choice of channel capacities is of key importance in specifying the
design of fat-pyramids or its fat-tree precursors. As the channel capacities
are increased, the communication bandwidth increases, and it is easier for
the network to perform complex computations, but the area of the network
also increases. Judicious choice of the channel capacities yields a network of
modest area which is still able to efficiently route all the messages generated
in a competing network of comparable area.

Major issues and organization of this paper

Intuitively, the fat-pyramid combines the strengths of the fat-tree and the
mesh. A fat-tree with appropriate channel capacities can efficiently simu-
late any network of comparable area under the unit wire delay assumption.
(Some details of this result are given in Section 2.) This is perfectly accept-
able if the wires are not too long, and the time to send messages along a
path in the network is dominated by the number of switches on the path.
But maximum wire length in the fat-pyramid grows rapidly with network
size; straightforward layouts of the fat-pyramid have maximum wire length

!The choice of the name “fat-pyramid” for this network stems from the observation
that if all channel capacities were equal to one, the result would be a network which has
been called the “pyramid” by Tanimoto (and earlier a “recognition cone” by Uhr) [15,
p- 3]. The addition of mesh connections to the fat-tree is also similar to the introduction
of “brother” connections in trees to obtain the X-Tree network [5, 14].

g SHCEHI S

T
*
¥
*

Figure 1: A fat-pyramid. This network is obtained by superposing hierar-
chical mesh connections on a butterfly fat-tree. The original fat-tree connec-
tions are represented by thin lines and the mesh connections by thick lines.
(A different layout of the fat-pyramid is used to obtain results independent

of wire delay.)
20 00 &
% \d %‘ﬁ

(] (]
) L

L Gl o

8;@?3”0

Opg; @
O[

H

a
toul] |

>
@

S N —

e0|llee
oo oo

Op
1l

JQ
oo oo

I
% 0 00

Figure 2: A scalable fat-tree. Essentially arbitrary channel capacities can
be obtained by using two types of constant-size switches.

ﬁQLL

O(V/A) for a network of area A. If the fat-tree is used to simulate a mesh,
any mapping of processors in the mesh to processors in the fat-tree will place
on “opposite sides of the root” some processor pairs that are adjacent in the
mesh. If the time to transmit a bit is a linear function of wire length, the
fat-tree will require Q(v/A) time to route messages between such a a pair of
processors. But the mesh network could be performing a computation re-
quiring only nearest neighbor communication so that the fat-tree simulation
would have polynomial (Q(v/A)) overhead, which is much worse than the
polylogarithmic overhead attainable in the unit wire delay case. The mesh,
on the other hand, is universal in the case of linear wire delay. But if delay is
less sensitive to wire length, the mesh may also suffer polynomial slowdown
as can be seen by considering simulation of a tree. Since a tree of area A
(using the H-tree layout) contains essentially the same number of proces-
sors as a mesh of area A, the mapping of tree processors to the mesh will
expand some routing path between processors from O(lg A) switches in the
tree to ©(v/A) in the mesh. The fat-pyramid, in contrast to the fat-tree or
the mesh, can achieve polylogarithmic simulation overhead under essentially
any interesting model of wire delay.

In addition to coping with nonunit wire delay, this paper provides some
other extensions to the universality results of [8]. These issues are intro-
duced in the context of universality results for fat-trees, but some of the
analyses readily carry over to the fat-pyramid and the case of nonunit wire
delay. In particular, this paper explicitly considers the size (amount of at-
tached memory) of processors comprising the networks being compared. One
reason processor size is important is that processors in a fat-tree of area A
must be of size (g A) in order to address all the other processors.? This pa-
per indicates the outcome of comparison between networks of larger and/or
different processors and considers the question of best processor size for a
universal network. This paper also uses fat-tree channel capacities that yield
a denser packing of processors than in [8], so that artificial restrictions on
the number of processors in a competing network are removed.3

The foregoing results, found in Sections 2 and 3 are applicable in the
context of nonunit wire delay as discussed in Section 4. Section 5, on the
other hand, considers only the case of unit wire delay; it analyzes the ability
of a universal network to simulate other networks that use more total area
but the same processor area.

Section 6 contains concluding remarks.

2The requirement is Q(Ign), where n is the number of processors, implying Q(lg A)
unless the number of processors in the fat-tree is too small to achieve any reasonable
simulation.

3Leighton, Maggs, and Rao [9] also eliminate this restriction by a different means.

Additional background and terminology

In this paper, universality results are obtained by invoking known results
for routing messages on fat-trees and extending these routing results for use
on the fat-pyramid. The routing results are expressed in terms of simple
characteristics of the set of messages to be routed. Within the fat-tree, the
difficulty of routing a set M of messages between pairs of processors is well
summarized by a measure we refer to as the load factor, A\(M). First, let us
define the load load(M, c¢) of M on a channel ¢ of a fat-tree to be the number
of messages in M which must pass through ¢. Then the load factor of M on
cis

MM, ¢) = load (M, c)

cap(c)

and the load factor of M on the entire fat-tree is

)

ANM) = méax/\(M, c) .

The load factor A is a lower bound on the time required to deliver a
set of messages on a fat-tree, and the routing algorithms which have been
demonstrated for fat-trees obtain (high probability) upper bounds on the
delivery time ¢§ in the form

6(A,n) = f(n)A+g(n) ,

where f and g are small polylogarithmic functions? of the number of proces-
sors, n. (Note that this formulation ensures that §(O(X),n) = O(6(\,n));
this fact will be used several times in the following sections.)

Of particular interest is the case where n does not exceed 2%, implying
that the delivery time is just a small polynomial function of A. We will use
0 with one argument to represent this case, i.e.,

(A =6\, 2Y) .

The known routing schemes for fat-trees obtain §(Ign) in the range of 1g%n
to lg* n in bit-times. The packet routing scheme of Leighton, Maggs, and
Rao [9] achieves §(Ign) = lg?n bit-times on a fat-tree.”> This scheme in-
volves selecting random keys which are used to prioritize packets as they
pass through the switches; only constant-size queues are required. Included
in [8] are circuit-switched algorithms which randomize in the choice of mes-
sages to send in each of a series of delivery cycles and work with switches
that fill their output lines from an arbitrary subset of the input messages.
Once an appropriate probability is used for the sending of each message from
its source processor, the internal switches need not perform any comparison

4That is, these functions are upper bounded by a polynomial in the logarithm of the
argument. Thus, functions such as Ig2n or 1g® nlglg n qualify.
5This result has been translated from lgn time in the word model.

of priorities or other message characteristics. (Some of the algorithms in [8]
apply not to the butterfly fat-tree but to fat-trees with large concentrator
switches as introduced by Leiserson [10]. Many of the results in this paper
can be applied to fat-trees of either variety, but the results independent of
wire delay require a fat-pyramid based upon the butterfly fat-tree.)

The focus in this paper is on the choice of universal network and the
mapping of other networks to it in order to achieve a modest communications
burden. We obtain results about how good a network can be at facilitating
this mapping and generally leave open the possibility of applying various
routing approaches, but the results are occasionally specified concretely using
the 6(lgn) = lg?n approach of Leighton, Maggs, and Rao [9]. Thus, it
is possible to see the effect which would result from an improved routing
algorithm as well as the current best known results.

In this paper, we make a few important but reasonable assumptions
relating to time and space. First of all, the technology being used determines
a minimum feature size, which is our unit of space. (Sometimes processor
size will be taken as the measure of unit space for simplicity, but ultimately
we will seek to explicitly account for processor size in terms of the more
fundamental unit of space.) Second there is a fundamental lower bound on
the time to switch a wire of unit length, which will be used as our basic unit
of time. In VLSI technologies, such a bound is determined by the capacitance
and resistance of a minimum-size transistor and the necessity of increasing
capacitance if resistance is to be reduced. In fact, we will initially assume
that this is the only source of delay and that transmission along any wire
can be accomplished in unit time, but later we will relax this assumption.
In any case, we assume that the number of bits which can leave an area of
a chip in unit time is proportional to the perimeter of the area.

It is also convenient to assume that operation of any competing network
is divided into separate phases of intraprocessor computation and interpro-
cessor communication. Thus, to bound asymptotic simulation time, it will
suffice to take the maximum of the overheads for simulation of the compu-
tation and simulation of the communication. In fact, this approach should
be valid even if the competing network interleaves computation and com-
munication in a more complicated fashion. The validity of the simplification
is established rigorously in [6, Sec. 4.5] in the case of unit wire delay; the
nonunit delay case requires a more involved analysis and routing results that
allow the pipelining of message sets injected into the universal network at
different times.

For convenience, we will use the following terminology throughout this

paper:

Definition: We say that network B can A-simulate network A
if, for any t, the operations performed by network A in time ¢
can be performed by network B in time tA.

2 A linear-size fat-tree

This section considers comparisons between networks built out of the same
processors. It begins by constructing a fat-tree on unit-size processors which
occupies area linear in the number of processors. With processors packed so
densely, a very simple one-to-one mapping of a competing network’s proces-
sors to those of the fat-tree ensures that message sets delivered in unit time
by a competing network of area A have O(lg A) load factor in the fat-tree.
Fat-tree routing mechanisms require processors of size at least logarithmic
in the number of processors (in order to address all other processors), but
by simply scaling the measure of area everywhere, the load factor result for
unit-size processors leads to a valid simulation result for networks built out of
the same processors of size 2(lg A). Nonetheless, we will explicitly introduce
processor area since it yields an improved bound for very large processors
and prepares the way for comparisons between networks built from different
processors.

Specifying the universal fat-tree requires making an appropriate choice of
the channel capacity function ¢(p), which denotes the capacity of a fat-tree
channel on top of a subtree of p processors. This section will show that the
best construction may not be modular, i.e., the channel capacity on top of
a subtree of the network may depend on the total size to which the network
is to be built rather than depending just on the size of the subtree. It will
be shown that modularity can be obtained using processors of size lg? A to
build a fat-tree of area A, but we will see in later sections that this may
increase the cost of simulating networks with processors of a different size
if fat-tree or fat-pyramid routing strategies are developed which come closer
to the lower bound on routing time.

Observe first that if we let ¢(p) = [/p/lg A|, we can build a fat tree of
A unit-size processors in area ©(A). The area can be derived by solving a
recurrence relation for the side length S(n) of a fat-tree on n processors in
the H-tree layout style of Figure 1. We have

S(n) = 2S(n/4)+ O(c(n)) ,

with solution

log, n—1

S(n)=vnS(1)+ > 2'0(c(n/4)) . (1)
=0

Substituting for S(1) = 1 and ¢(n/4") < 1+ \/n/4i/1g A, we obtain

S(n) < O2vn++/n(logyn)/1gA),

and S(A) = O(v/A). (We have assumed constant-size switches, but larger
switches can be accomodated as required in [9] as long as we use larger
processors and channel capacities as discussed below.)

Now we are prepared to present a result which strengthens the main
universality result in [8] (translated to two dimensions) in that the restriction
on the number of processors in the competing network is removed, but the
proof here is actually more direct. Rather than using the ideas for balancing
decomposition trees developed by Bhatt and Leighton [3] and Leiserson [10],
we can consider a straightforward geometric mapping of competing networks
to fat-trees. (This idea was actually introduced in [8] but only in the case
of a fat-tree simulating networks of slightly smaller area.)

Lemma 2.1 Consider networks with unit-sized processors, and let R be the
set of all networks of area A. Then, there exists a fat-tree F of area ©(A)
such that any message set delivered in unit time by a network in R induces
a load factor of O(1g A) on F.

Proof. We use the channel capacities c(p) = [,/p/lgA] to build a fat-
tree of n = A processors, which we have shown requires area ©(A). Then
we can just recursively bisect any R € R in the straightforward geometric
fashion, cutting nonsquare pieces in the shorter direction, until we have A
pieces. There can be at most one processor in each of the pieces of the
recursive bisection, and these processors can be mapped to F' so that the
recursive bisection of R matches the obvious recursive bisection of F. Then
the perimeter of a piece of R corresponding to a subtree of n/ 2! processors
in Fis O(v/A/2/?). Thus, for a channel at level [of the decomposition, the
load factor of messages generated in unit time is

A= O((VA/2%)[e(n/2) (2)

= O((VA/2%)/(\/A4/2!]1g 4))
= 0O(g4).

Od

It is actually quite easy to generalize the above results to processors of
size . For simplicity, we assume that processors are square, i.e., v/a by /.
By building a fat-tree on n = A/« processors with channel capacity function
c(p) = [/pa/1g(A/a)], we obtain area A and load factor O(1g(A/«)). This
can be seen by simply making the correct substitutions into Equations 1
and 2.

We can also make the channel capacities slightly larger at the lower levels
of the tree than was just indicated. (Such a change is required by some of
the routing algorithms discussed in [8].) Specifically, if we increase channel
capacities to [/a + \/pa/1g(A/a)|, the asymptotic area of the fat-tree does
not increase, as can be seen by substituting into Equation 1. The load factor
bound remains valid, of course, when the channel capacities are increased.

Using our bound on the load factor, we can now state a simulation result
in terms of the running time §(-) of the message delivery algorithm.

Theorem 2.2 Consider networks with processors of size a = Q(lg A), and
let R be the set of all networks of area A. Then, there exists a fat-tree F of
area ©(A) which can O(§(1g(A/)))-simulate any network in R.

Proof. We have seen that processors can be mapped one-to-one, and the
load factor for each message set of a competing network in R is O(1g(A4/a)).
Thus, the delivery time for each message set is O(d(1g(A/a))). O

Using the routing scheme of Leighton, Maggs, and Rao [9], which has
§(Ign) = lg®n, yields the following corollary:

Corollary 2.3 Consider networks with processors of size a = Q(lg A), and
let R be the set of all networks of area A. Then, there exists a fat-tree F of
area O(A) which can O(1g*(A/a))-simulate any network in R. O

This result is similar to a result given in [9] using a fat-tree with the lower
levels replaced by meshes. By using the construction here, it is possible to
instead retain a uniform routing strategy throughout all levels of the tree.
The idea of adding mesh connections to a fat-tree is, however, a useful one
when wire delay concerns are addressed, as we shall see in Section 4.

One final note is in order. When a = ©(Ig? A), we can achieve a modular
design; we can use c(p) = [\/ﬂ, or rounding slightly differently, capacities
which double at every other level as in Figure 1. These channel capacities
are not adequate to justify the use of one of the routing algorithms presented
in [8], the one which required channels of capacity Q(lgn), but other routing
algorithms remain valid.

3 Different sized processors

In this section, we consider the possibility of comparing a universal network
with processors of one size to other networks with processors of different
size. In doing so, we must establish correspondences of single processors in
one network with multiple processors in another network. We consider both
many-to-one and one-to-many mappings of a competing networks’ processors
to those of a universal network. The combined observations show that a
universal network designed to simulate networks of arbitrary processor size
is best built with processors of size « in the range lg A < o < §(Ig A).

In order to compare parallel machines within the framework of this pa-
per, we must place some limitations on how we compare machines built
from different processors. Rather than get involved in such issues as RISC
vs. CISC or other detailed questions of best design for an individual pro-
cessor, we assume that the processors of networks to be compared have the
same instruction set and are equally well-engineered to provide the same
operations at the same cost in time and space. The one difference in proces-
sors which remains under consideration is the amount of memory attached.
For simplicity, we assume that the size of the memory does not affect the

instruction execution time; incorporating a small cost for increasing memory
size would cause little change to the results given here.

We consider in turn the two cases of the universal network having proces-
sors which are larger or smaller than the processors of the simulated network.
Then we consider more general statements independent of the sizes of pro-
cessors in the competing network. In any case, let ax represent the area of
a processor in routing network X.

First, let us consider a competing network with processors smaller than
those from which the universal network is to be built. In this case, we
can map the competing network R to the universal fat-tree F' as before,
except that the decomposition of R stops before we get down to individual
processors. Instead, we map ar/apg processors of R to each processor of F.
The computations performed by this block of processors in time ¢, excluding
any communication with processors outside the block, can be realized in
time O(tap/agr) on the processor of F. Meanwhile, the communication
between blocks can be accomplished with overhead O(d(1g(A/ar))), yielding
the following generalization of Theorem 2.2:

Theorem 3.1 For any agr, let R be the set of all networks of area A built
out of processors of area ar. Then, for any arp > max{ag,lg A}, there
exists a fat-tree of area O(A) built out of processors of area ap which can
O(max {0(lg(A/ar)), ap/agr})-simulate any network in R. O

Now, let us consider a competing network with processors larger than
those from which the universal network is to be built. In this case, we
decompose the competing network R € R down to individual processors
as before, but we assign ar/ap processors of the fat-tree F' to simulate
each processor of R. We divide the memory of a processor of R among the
corresponding ag/ap processors of F. Then as long as processors of F' are
large enough to address the ar/ap regions of memory, we can treat the flow
of data to the different pieces of memory just as we would the communication
among a set of processors being simulated. Thus, we can view the operation
of R as proceeding on the larger number A/ap of subdivided processors,
yielding an additional generalization to Theorem 2.2:

Theorem 3.2 For any arp > 1g A and any ar > ap, there exists a fat-tree
of area ©(A) built out of processors of area ap which can O(d(1g(A/ar)))-
simulate any network of area A and processors of area ap. O

It is straightforward to generalize Theorems 3.1 and 3.2 to situations in
which a single simulated network has processors of many different sizes. In
that case, we can simply let ag represent the minimum size of processors
in R, and both theorems will still hold, though the proofs change slightly.
In fact, we can combine Theorems 3.1 and 3.2, since the ap/ar term in
Theorem 3.1 becomes irrelevant for ap > ap:

10

Theorem 3.3 For any agr, let R be the set of all networks of area A with
each processor having area at least ag. Then, for any ap > lgA, there
exists a fat-tree of area O(A) built out of processors of area ap which can
O(max {d(lg(A/aF)), ar/ar})-simulate any network in R. O

Since the overhead in Theorem 3.3, will never exceed O(d(lg A)) for ar >
ar, we see that the overhead for a fat-tree simulating a network with larger
processors is largely insensitive to the relative size of processors. Thus, if we
wish to build a universal fat-tree to simulate networks of unknown processor
size, it seems that we do best by making the fat-tree processors small enough
that d(lg A) will always dominate ap/apg in comparisons against networks
with smaller processors. Recalling that fat-tree routing mechanisms require
that processors of F' should be large enough to address £2(A) processors, we
are led to choose the processor size to satisfy lg A < ap < d(Ig A). Then we
have the following corollaries to Theorem 3.3.

Corollary 3.4 There is a fat-tree of area ©(A) that can O((lg A))-simulate
any network of area A and processors of arbitrary area. O

Corollary 3.5 There is a fat-tree of area ©(A) that can O(lg? A)-simulate
any network of area A and processors of arbitrary area. O

4 The fat-pyramid and nonunit wire delay

In this section we consider the effect of dropping the unit wire delay as-
sumption. The general graph layout framework developed by Bhatt and
Leighton [3] shows that there is enough room in our fat-tree layouts to build
sufficiently large drivers for each wire to keep the wire delay constant in the
capacitive model. This section shows that even if this constant switching
time is not the dominant determiner of wire delay, the bounds on simulation
time shown in earlier sections can almost always be obtained by using an
appropriate layout of the fat-pyramid network. A routing path of length d in
a competing network of area A corresponds to a path of length O(d + 1g A)
in the fat-pyramid, which generally implies that asymptotic simulation over-
head is no worse than in the unit wire delay case. Some of the ideas in this
section were suggested by Charles Leiserson and Tom Cormen of MIT.

It should be noted that it is reasonable to assume wire delay to be no
worse than linear in wire length, since repeaters (extra switches) can always
be used to reduce delay to linear. Linear wire delay would be the correct
model if technology could be improved to the point where only speed of light
limitations constrain the time to switch a length of wire. Then, the measure
of unit time would be much smaller, but linear wire delay would be required
of any competing network.

It is also helpful to assume a mild “regularity” condition on the wire delay
function. (Similar regularity conditions are used elsewhere in the literature

11

(e. g., [2, 4, 11],[1, p. 280]) in order to obtain results about large classes of
functions.) Specifically, let w(d) denote the time required to transmit a bit
along a wire of length d; then we seek two properties for the function w.
First, w should be nondecreasing, and second it should satisfy the following
condition:

Definition: A function w is said to satisfy Condition C1 if there
exists a constant ¢ such that

w(d+a:)<lgd+a:
w(d) — lgd

forallz >0 and d > c.

It should be noted that Condition C1 is satisfied by most functions likely
to be of interest in the context of wire delay. For example, it is satisfied by
all functions of the form ¢n?lg¥ n for constants ¢, ¢, and k such that either
g<1l,org=1andk <0. One way to see that all of these functions satisfy
Condition C1, is to observe that they satisfy a simpler regularity condition
C2, which implies C1.

Definition: A function w is said to satisfy Condition C2 if there
exists a constant ¢ such that

wd+z) d+x
wid) = d

forallz >0and d > c.

Condition C2 implies condition C1 because 1+ x/d < 1+ x/lgd for any
x>0 and d > 0.

(Without changing the asymptotic results given below, we can actually
weaken conditions C1 and C2 in order to admit an even larger class of
functions than already mentioned. Specifically we could define conditions C1
and C2 to be that the old conditions are satisfied to within a constant factor.
Then the conditions are satisfied by any function w satisfying ¢;n?lghn <
w(n) < canl 1g¥ n for sufficiently large n, with ¢ and k as before and positive
constants ¢; and ca.)

To obtain results independent of wire delay, we must consider a regular
layout of a fat-tree, that is, one in which the components at any given level
of the tree are regularly spaced throughout the layout. We can produce such
a layout by using the “fold and squash” technique of Bhatt and Leighton
[3, pp. 325-326] and Thompson [16, pp. 36-38]. It may be easiest to think
about a fold and squash transformation of a butterfly fat-tree and then a
superposition of the hierarchical mesh connections, requiring only a constant
factor expansion in area. The result of the fold and squash transformation
is illustrated in Figure 3 with inter-level connections omitted but switches

12

O O_0O O_0O O_0O
2 a1 2 2
OD OLJO OI_JO DO

[0]
[1] (1]
Olo olo olo Olo0
[2] (2] 2] (2]
OTO oTO OTO OT0

olo olo olo olo
2] 2] 2] 2]
oT0 o0 oT0 oTO0

[1]

olo olo olo olo
2] 2] 2] 2]
o © o © O © O ©

Figure 3: A regular layout of the fat-pyramid, but with the original fat-
tree connections removed for ease of illustration. Each switch is numbered
with its level from the top of the tree so that this figure can be compared
with Figure 1. The network shown here allows good results to be obtained
without the unit wire delay assumption.

labeled according to the number of levels from the top of the tree. (Visual-
ization of the transformation of the inter-level connections may be aided by
viewing the regular layout of the two-dimensional tree of meshes illustrated
in [7].) In general, we must stop folding when we reach a level at which
the channel capacities stop decreasing sufficiently (by a factor of 2 at every
level in the underlying 4-ary tree), so we may be left with H-trees near the
leaves. In any case, we use a fat-tree with processors of area at most lgZ A in
accordance with the results of Section 3, and the area of the H-tree blocks
is 1g2 A.

Messages in the the fat-pyramid are routed over the same paths as in the
fat-tree, except that we allow each message to take one shortcut via one or
two of the new mesh edges. More precisely the routing path is formed by
going up tree edges until a switch is reached that is adjacent horizontally,
vertically, or diagonally in the mesh at that level to a switch from which the
destination can be reached by going down tree edges. As long as the mesh
edges are of sufficiently large constant capacity, all of the existing routing
algorithms work as well as before; the shortcuts do not cause any extra
messages to go through any of the tree edges, and the messages which go

13

through any mesh edge are only those which would have gone up the tree
from a constant number of nearby switches.

A key property of the layout in Figure 3 is that the wires connected to a
switch [levels up from the H-tree blocks are of length O(2!1g A), where A is
the area of the fat-tree. To see this, observe that the H-tree blocks near the
leaves have side length lg A, and the upper levels can be embedded in a tree
of meshes graph of O(lg A) levels in such a way that each edge connected to
a switch [levels up is mapped to at most O(2l) edges in the tree of meshes.
The fold and squash layout of the tree of meshes given in [3] has maximum
edge length O(lg A), and there is at most lg A extra length caused by the
H-tree blocks in our layout. Thus, the length of an edge connected to a
switch [levels up in the folded and squashed fat-pyramid is O(2!1g A).

Now we can show that the mapping of competing networks to a universal
fat-pyramid (having channel capacities as in a universal fat-tree) does not
stretch any wires by very much.

Theorem 4.1 Let R be a network occupying a square of area A. Then, R
can be mapped to a fat-pyramid F of area ©(A) so that any message following
a path of length d in R travels only O(d +1g A) distance in F.

Proof. Observe first that if we use the straightforward mapping of R to F,
processors separated by distance d in R are at most [d/1lg A| H-tree blocks
apart when mapped to F. Since four adjacent subtrees on ([d/lg A])? H-
tree blocks must suffice to cover such a pair of processors, the routing path
connecting these processors needs only to go up lg([d/1g A]) levels and use
two mesh edges. Since any wire connected to a switch [levels up is of length
O(2'1g A), the length of the routing path connecting processors at distance
din Ris O(d+1gA). O

The above result can be used to almost always insure that asymptotic
simulation time does not degrade in the case of nonunit wire delay. Clearly,
simulation time does not degrade if the competing network operates in sep-
arate phases of communication and computation and frequently produces
messages which must travel over distance at least Q(Ig A). But we can ob-
tain more general results by using the regularity conditions assumed for the
wire delay function w and introducing some modifications to known routing
algorithms and analyses.

Extension of the circuit-switched routing approach of [8] to the nonunit
wire delay case is discussed in [6]; here we concentrate on the packet routing
approach of Leighton, Maggs, and Rao [9]. Also, a nonconstructive result is
given here, some additional technical details being necessary to provide an
on-line routing algorithm. Leighton, Maggs, and Rao show that for unit wire
delay in the word model, there exists a schedule for routing any set of packets
in time proportional to the sum of the maximum congestion (largest number
of messages that must traverse a single wire) and the maximum distance
(largest number of switches in a message path). They also show that the

14

maximum congestion on a fat-tree is O(A +1g A), where A is the load factor
of the set of messages. This result carries over to the fat-pyramid since the
use of short cuts of appropriate capacity does not increase congestion in any
part of the network.

To apply the results of Leighton, Maggs, and Rao in the case of nonunit
wire delay, we can imagine additional switches on each wire of the fat-
pyramid in number equal to the delay for that wire. With the inclusion
of these imaginary (and trivial) switches, we can view the routing problem
as fitting into the unit wire delay framework; we have simply increased the
maximum distance (in terms of switches) that messages must travel. Now
consider any set of messages generated by the competing network in which
the maximum physical distance that a message travels in the competing net-
work is d. Let T be the time required to deliver the set of messages in
the competing network, and note that 7' > w(d). Also, the load factor of
this message set is O(T'1g A). Furthermore, the maximum number of fat-
pyramid edges which a message must traverse is 21g d, each containing at
most w(d+1g A) real and imaginary switches. Thus the simulation overhead
A can be bounded as follows:

w(d+1g A)O(lgd) + O(T'1lg A)

A
- T
w(d+1g A)O(lgd) O(TlgA)
- w(d) + T
(lgd+1g A)O(1g d)

g d +0(lgA)

< O(gA) ,

where the third line follows from regularity condition C1.

5 Simulating larger networks

This section obtains upper bounds on the time required by a universal fat-
tree to simulate networks that occupy more area but have the same amount
of area devoted to processors. The reason for the latter restriction is that
for any significant difference in memory, there are computations which can
be performed in the larger amount of memory space but not in the smaller
amount of memory space. Rather than placing restrictions on the type
of computation, it is probably more meaningful to look at restrictions on
the way that space is allocated. That is, if the larger network uses the
same amount of processor area (including memory) and simply uses more
interconnect area, then we can make meaningful comparisons between the
networks. As would be expected, simulation difficulty increases as the area
of the competing network does, but only up to a certain threshold beyond
which extra area does not help the competition.

In this section we return to a reliance on the unit wire delay assumption
due to a change in the means of mapping competing networks to the universal

15

network. The results are, of course, applicable to the fat-pyramid, but it is an
open problem to show that unit wire delay is unnecessary when a universal
network simulates a larger network.

As we open up the issue of restricting the processor area used by com-
peting networks, it may seem natural to ask about situations in which the
competing network has less processor area than is allowed for the univer-
sal network. Indeed, we could have considered this question earlier when
comparing networks of the same total area. But when the processor area of
competing networks is so restricted, the best results are obtained by tailor-
ing the universal network to the particular mix of processor and interconnect
area, with the most difficult case occurring when the competing network has
no less processor area than the universal network. Thus, the results given
so far are worst-case results for simulating networks of essentially the same
total area. In this sense, these networks are the best known to build in a
given area. Rather than digress to networks tailored to particular mixes of
processors and interconnect, we now ask how well the networks discussed so
far can do when they are actually matched against networks of larger area
but with no greater processor area.

In what follows, we let Ax represent the area of network X. Of necessity,
however, we consider only competing networks in which the processor area
does not exceed that of our universal fat-tree F'. We are, of course, interested
in the case where the competing network R has at least as much area as F,
i.e., A > Ap. When Ar < Ap, our earlier results apply. For simplicity, we
assume unit-size processors; the other variations discussed in the previous
subsection are easily incorporated.

We use the same basic strategy as before for demonstrating universality
results; that is, we recursively bisect the competing network and map ap-
propriate pieces to the fat-tree processors. But when the competing network
may have greater area than processor area, extra care is required to ensure
that the decomposition is balanced; that is, when we bisect the area of the
competing network, we must also bisect the competing processors (or pieces
of processor area as in Section 3). Fortunately, we can invoke the general
theory developed by Bhatt and Leighton [3] and, in a fashion that is cleaner
for our purposes, by Leiserson [10]. (It is not desirable to use this approach
when unnecessary due to a “loss of locality” in the mapping, which destroys
the results on nonunit wire delay in Section 4.) These results tell us that
since the competing network of area Ar has a decomposition using cuts of
size /AR/ 2L/2 at level 1, it has a balanced decomposition using cuts of the
same size (up to a constant factor). Keeping this fact in mind, we can prove
the following theorem:

Theorem 5.1 Let R be the set of networks of total area Ar and processor
area Ap. A universal fat-tree of area O(Ap) can O(6(/Ar/Arlg Ap, AF))-
simulate any network in R.

Proof. Using a balanced decomposition for R € R as described above, we

16

find that the load factor of a set of messages delivered by R in unit time is

VAR/2'/?

1/AF/2l/lgAF

at level [from the root of the fat-tree. The result follows. O

When the area of the competing network is much larger than the area
of the universal fat-tree, we can actually do better than is suggested by
Theorem 5.1. When Ap is Q(A%), the competing network is limited more
by the restriction on processor area than by its total area. This is true
because communication out of a piece of network R is limited not only by
the perimeter of that piece but also by the perimeter of the processors in the
piece. Thus, at level [in the balanced decomposition of R, only O(Ar/2')
messages can leave a corresponding piece of R in unit time. Dividing by fat-
tree channel capacity to determine the load factor, we obtain the following
result:

@)

Theorem 5.2 A universal fat-tree of area O(Ar) can O(0(v/ Arlg Ar, Ar))-
simulate any network having processor area Ap. O

6 Conclusion

This paper has shown that a fat-pyramid network can efficiently simulate
any other network built in the same amount of area, without significant
additional restrictions. The results allow an essentially arbitrary relationship
of delay to wire length and allow arbitrary processor size and density in
competing networks.

This paper has also obtained bounds on the time required by a universal
network to simulate larger networks of the same total processor area. Unfor-
tunately the latter result is not readily extended to the case of nonunit wire
delay, due to the use of decomposition trees that are balanced. It is an open
question whether or not this extension can be achieved. Perhaps it could
be shown that there is a balanced decomposition tree which will not force
nearby processors to be mapped too far from each other in the universal
fat-pyramid.

The results given in this paper suggest that when building a universal
network of area A, the best processor size to use is O(lg A), or O(Ig A) if
modularity is more important than the ability to simulate networks of very
small processors. The apparent lesson for the design of general-purpose par-
allel machines is that as total memory demands increase, most of the effort
should go into expanding the number of processors rather than individual
processor size.

A key open question is whether or not the routing algorithms for univer-
sal networks can be improved. It is possible that a better fat-tree routing
algorithm could yield only O(lg A) slowdown in bit-times. Furthermore, it

17

might be possible to take greater advantage of the hierarchical mesh con-
nections in the fat-pyramid. If the notion of load factor is generalized to
arbitrary networks by considering arbitrary cuts of the network as opposed
to fat-tree channels, then network mappings onto the fat-pyramid yield con-
stant load factor. It is possible that a routing scheme more clever than one
relying almost exclusively on the tree connections could yield better message
delivery times.

Acknowledgements

Thanks to Charles Leiserson of MIT for suggesting many of the areas of
research covered in this paper and for providing extensive comments on
earlier drafts. Thanks also to Tom Cormen and Bruce Maggs of MIT for
helpful discussions.

This research was initiated at the Massachusetts Institute of Technol-
ogy and was supported in part by the Defense Advanced Research Projects
Agency under Contract N00014-87-K-0825, by the Office of Naval Research
under Contract N00014-86-K—-0593, and by a Fannie and John Hertz Foun-
dation Fellowship.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA,
1974.

[2] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general
method for solving divide-and-conquer recurrences. Technical Report
CMU-CS-78-154, Department of Computer Science, Carnegie-Mellon
University, December 1978.

[3] Sandeep N. Bhatt and Frank Thomson Leighton. A framework for
solving VLSI graph layout problems. Journal of Computer and System
Sciences, 28(2):300-343, April 1984.

[4] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal
power series. Journal of the ACM, 25(4):581-595, October 1978.

[5] Alvin M. Despain and David A. Patterson. X-Tree: A tree structured
multi-processor computer architecture. In Proceedings of the 5th Annual
Symposium on Computer Architecture, pages 144-151. ACM/IEEE,
1978.

[6] Ronald I. Greenberg. Efficient Interconnection Schemes for VLSI and
Parallel Computation. PhD thesis, Department of Electrical Engineer-

ing & Computer Science, Massachusetts Institute of Technology, August
1989. MIT/LCS/TR-456.

18

[7]

Ronald I. Greenberg and Charles E. Leiserson. A compact layout for
the three-dimensional tree of meshes. Applied Mathematics Letters,
1(2):171-176, 1988.

Ronald I. Greenberg and Charles E. Leiserson. Randomized routing
on fat-trees. In Silvio Micali, editor, Randomness and Computation.
Volume 5 ofAdvances in Computing Research. JAI Press, 1989. To
appear. Earlier versions available in MIT /LCS/TM-307 and Proceedings
of the 26th Annual Symposium on Foundations of Computer Science,
1985, pages 241-249.

Tom Leighton, Bruce Maggs, and Satish Rao. Universal packet routing
algorithms. In Proceedings of the 29th Annual Symposium on Foun-
dations of Computer Science, pages 256-269. IEEE Computer Society
Press, 1988.

C. E. Leiserson. Fat-trees: universal networks for hardware-efficient
supercomputing. IEEE Trans. Computers, C-34(10):892-901, October
1985.

Charles E. Leiserson. Area-efficient graph layouts (for VLSI). In Pro-
ceedings of the 21st Annual Symposium on Foundations of Computer
Science, pages 270-281. IEEE Computer Society Press, 1980.

Charles E. Leiserson. VLSI theory and parallel supercomputing. In
Charles L. Seitz, editor, Advanced Research in VLSI: Proceedings of the
Decennial Caltech Conference on VLSI, pages 5-16. MIT Press, 1989.

Charles E. Leiserson and Bruce M. Maggs. Communication-efficient
parallel algorithms for distributed random-access machines. Algorith-
mica, 3:53-77, 1988.

C. H. Séquin, A. M. Despain, and D. A. Patterson. Communication in
X-TREE, a modular multiprocessor system. In ACM 78: Proceedings
1978 Annual Conference, pages 194-203, 1978.

Steven L. Tanimoto. Towards hierarchical cellular logic: Design consid-
erations for pyramid machines. Technical Report 81-02-01, Department
of Computer Science, University of Washington, February 1981.

C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Depart-
ment of Computer Science, Carnegie-Mellon University, 1980.

19

	The Fat-Pyramid: A Robust Network for Parallel Computation
	Author Manuscript
	Recommended Citation

	root.dvi

