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Abstract

This paper provides an efficient method to find all feasible offsets for a given separation in a
single-layer channel routing problem. With n nets, c columns, and c = O(n), the algorithm runs
in time O(n1.5 lg n), which improves upon the more straightforward O(n2) approach. (Results
for river routing do not apply, since we allow single-sided nets.) As a corollary of this result, the
optimal offset (the one that minimizes separation) can be found in O(n1.5 lg2 n) time. We also
provide results for the case in which c 6= O(n). In addition, we achieve better running times
for the cases in which there are no two-sided nets or all single-sided nets are on one side of the
channel.

1 Introduction

Much attention has been given to planar or single-layer wire routing for VLSI chips. Most popular
has been river routing in the restricted sense of the term, the connection of two parallel rows of
corresponding points1, e.g., [12, 14, 11, 9, 5, 15]. Other works have considered routing within a
rectangle [2], placement and routing within a ring of pads [1], or routing between very general
arrangements of modules [10, 8, 3].

Ironically, single-layer routing may become more relevant as technology evolves towards chips
with increasing numbers of layers. With a larger number of layers, it becomes more likely that
an individual layer can be dedicated to a coplanar subset of the original collection of nets. For
example, the heuristic multi-layer channel router MulCh [6] improved upon previous multilayer
channel routers by dividing the problem into essentially independent subproblems of one, two, or
three layers.

In this paper, we consider the single-layer channel routing problem, which is more general
than the more heavily studied river routing problem. But before exploring this distinction, it is
important to recognize that “routing problem” is used in a loose sense in this paper and throughout
the literature. That is, given fixed (and feasible) positions of the terminals, it is relatively easy to
find actual paths for all the requisite connecting wires in the optimal time of O(n2). (Here n is the
number of nets, or if nets can have more than a constant number of terminals, n should represent
the number of terminals.) But more interesting versions of the problem involve some form of

1This is the only usage of the term “river routing” in this paper; we refer to more complicated variations of the
problem as “single-layer” or “planar” routing.
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Figure 1: An example of single-layer channel routing

optimization of the terminal positions subject to certain constraints and generally run faster than
just O(n2).

The problem inputs for channel routing and river routing are similar in that both deal with the
interconnection of terminals lying in two parallel rows (sides of the channel); also, for simplicity, we
restrict attention to 2-point nets as in river routing. But we allow nets that have both their terminals
on the same side of the channel, contrary to river routing. The existence of these single-sided nets is
both realistic (as in the example problems of [6]) and a significant algorithmic complication. Figure 1
shows an example of a routed single-layer channel. As the figure shows, the usual convention is to
draw the rows of terminals horizontally, so that the terminals lie on the top and bottom sides of the
channel. We refer to single-sided nets that have their two terminals on the top (bottom) as upper
(lower) nets. Nets with terminals on opposite sides, the only type of net in river routing problems,
are referred to as two-sided nets. Throughout this paper we restrict attention to a rectilinear, grid-
based model in which terminals lie on gridpoints and wires are disjoint paths through grid edges.
We use c to denote the total number of grid columns from the leftmost terminal to the rightmost
terminal and n to denote the number of nets.

The greatest attention has been given to the minimum separation version of the problem. In
this case, we assume that the horizontal positions of the terminals are completely fixed, but we seek
the minimum vertical separation between the two rows of terminals (also referred to as channel
width) that allows the routing to be completed. An O(n) time solution in the river routing case
was given in [5]. The attempt to extend this result to channel routing has lead to publication of
erroneous solutions in the literature; but a simple and correct O(n) algorithm is provided in [7].

In this paper, we extend two other important versions of the river routing problem to the
channel routing case. In both of these problems, we allow the rows of terminals to be offset relative
to one another. That is, we allow the upper row of terminals to be slid as a block to the left
or right, though individual terminals do not shift position relative to one another. (This models
the situation in which we are trying to wire together two modules each having terminals on one
side, and we have substantial freedom on how to place the modules.) The optimal offset problem
involves finding the offset that minimizes the amount of separation necessary to route the problem.
A related problem, which we refer to as the feasible offset problem is to determine all offsets that
are feasible (i.e., give enough room to route) at a given separation. In the river routing context, the
second problem is usually called the offset range problem, since the feasible offsets always constitute
a single continuous range, but this property does not hold for channels with single-sided nets.

Mirzaian [11] showed that feasible offset and optimal offset can both be computed in O(n) time
in the river routing case, but we are not aware of any published solutions for channels with single-
sided nets. One of the complications that arises when single-sided nets are included is that the
solution time is no longer insensitive to the number of columns in the problem (at least in the case
of feasible offset). As illustrated in Figure 2, if the number of columns can be large, the number
of feasible offsets may be on the order of n2. But if c = O(n), we show that feasible offset can be
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Figure 2: The number of feasible offsets of the channel above is on the order of n2

solved in O(n1.5 lg n) time. This is an improvement upon the relatively naive O(cn) time (O(n2)
when c = O(n)) obtained by running the O(n) algorithm for the minimum separation problem at
each of the 2c offsets that may need to be checked. In the remainder of this paper, we express
our running times in terms of c as well as n where necessary, but we concentrate on obtaining a
good running time when c = O(n). For somewhat larger c, the results of Sections 2 and 3 remain
attractive, but we show in Section 4 that when c is very large, we are better off discarding some of
this work in favor of an approach that solves the problem in O(n2 lg n) time.

The remainder of this paper is organized as follows. In Section 2, we introduce some additional
terminology and notation, and we show how to solve the feasible offset problem for a channel in
which all nets are single-sided. In this case, the running time with c = O(n) is O(n1.5

√
lg n), which

leads to an O((n lg n)1.5) algorithm for optimal offset. In Section 3, we show how to combine ideas
from Section 2 with some new ideas to obtain solutions for channels with both single-sided and
two-sided nets. For the general channel, the running times for feasible offset and optimal offset
become O(n1.5 lg n) and O(n1.5 lg2 n), respectively. Finally, in Section 4, we provide concluding
remarks, including discussion of the situation in which c is much larger than O(n).

2 Channels with Single-Sided Nets Only

In this section, we deal with the special case of channels with only single-sided nets. Much of
the work we do here will help us in the next section where we consider channels that have both
single-sided and two-sided nets. We begin by explaining some notation and terminology that we
use throughout these two sections.

First, we often need to refer to subsets of the nets in the channel. We use L, U , and T for
the sets of lower, upper, and two-sided nets, respectively, and N for the complete set of nets in
the channel. (Reminders of this notation appear elsewhere in the paper to keep different portions
more self-contained.) In addition, we often use the same notation interchangeably for a set of nets
or for a lower or upper contour. The contour of a set of lower nets is the upper boundary of the
routing region consumed in the routing of these nets that minimizes total wire length. That is,
when the nets are routed as tightly as possible against the bottom of the channel, the contour
is formed by the uppermost nets and portions of the channel boundary. The contour of a set of
upper nets is defined similarly. We also refer often to subsets of contours, which simply means
restricting the contour to certain columns (even though there may be no set of nets that would
generate the resulting contour). We use the notations FOP and OOP to refer to the feasible offset
problem and optimal offset problem, respectively. We also use the more precise notation FOP(s,A)
to represent the set of solutions to the feasible offset problem with separation s and the set A of
nets (or contours or contour fragments). We also use analogous notations SSFOP and SSOOP for
the corresponding problems in the case that all nets are single-sided.

Our first step in solving SSFOP is to find the contours of the upper and lower nets. The lemma
below indicates that we can find contours in O(n) time, by which we mean finding the coordinates
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of all the bends in the contour. (In the sequel, we will sometimes assume that we have generated
the entire path of the contour across all c columns, which is a trivial O(c) time task once we have
found all the bends.)

Lemma 1 (Pinter) The contour of a set of n single-sided nets can be found in O(n) time.

Proof. This is proved in [13].

Once we find the contours of the upper and lower nets, SSFOP can be expressed simply in terms
of these contours. At each column, we define the extension of a contour to be the distance that
the contour extends into the channel at that column. Then we are simply seeking all offsets for
which no vertical cut corresponds to extensions of the upper and lower contours that sum to more
than the separation under consideration. One way to solve this problem would be to compute the
convolution of the two sequences of extensions (after padding them out with some 0’s) with the max
and + operators substituted for the usual + and ×. But it is unknown whether max,+ convolution
can be computed in less than O(n2) time. We’ll solve SSFOP more efficiently by making use of the
fact that the extensions are not completely arbitrary, but rather, come from a set of single-sided
nets.

We begin with a general lemma allowing us to decompose SSFOP into smaller instances of
the problem. In each of the smaller problems, we use only a portion of the lower contour, while
retaining the entire upper contour. In fact, the lemma applies even when there are also two-sided
nets. (Naturally, we also could switch the roles of the lower and upper contour.)

Lemma 2 Let L1, L2, . . . , Lk be any subsets of the contour L of the lower nets such that L1 ∪L2 ∪
· · · ∪ Lk = L, and let A be an additional set of nets, then FOP(s, L ∪A) =

⋂k
i=1 FOP(s, Li ∪A).

Proof. If an offset is not feasible for any subset, then it is not feasible for the whole set. Therefore,
FOP(s, L ∪ A) ⊆

⋂k
i=1 FOP(s, Li ∪ A). Conversely, if an offset is not feasible for the whole set,

we can find the column where the sum of the upper and lower extensions is greater than s and
the subset containing that lower extension. The offset will be unfeasible for that subset, thus
FOP(s, L ∪A) ⊇

⋂k
i=1 FOP(s, Li ∪A).

We now proceed to decompose the lower contour into pieces that are easier to handle and are
not too numerous. The next three lemmas are directed towards handling pieces of the contour that
have large extension, and the following two lemmas handle portions of the contour in which there
are not too many distinct extensions. Then we show how to put these two ideas together to solve
the entire problem.

For the next lemma, we define a special type of contour fragment, such that if it comprises the
entire lower contour, then SSFOP is particularly easy to solve. A monotonic subset of the lower
contour L is a subset of L, such that the extensions within the selected columns are monotonically
nondecreasing or monotonically nonincreasing as we move across the columns.

Lemma 3 If Lm is a monotonic subset of the lower contour, and U is the upper contour, then we
can solve SSFOP(s, Lm ∪ U) in O(n) time.

Proof sketch. Without loss of generality, assume the monotonic piece has (nondecreasing) extensions
la, la+1, . . . , la+k from left to right, where subscripts indicate the columns covered, and denote the
upper extensions by u1, u2, . . . , uc. For simplicity, we pad out the sequence of upper extensions
with c 0’s on both sides and denote the new sequence as u−c+1u−c+2 · · ·u2c. Then the procedure
in Figure 3 solves the problem in O(c) time. The idea of the procedure is to consider vertical
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1 q ← 0
2 for i← −c to 2c do
3 while q > 0 and la+q + ui > s
4 q ← q − 1
5 endwhile
6 if la+q + ui ≤ s
7 then
8 q ← q + 1
9 endif

10 if q = k + 1
11 then
12 mark i− (a + k) as a feasible offset
13 q ← q − 1
14 endif
15 endfor

Figure 3: The pseudocode to solve SSFOP for a monotonic subset of L.

cuts that intersect the monotonic piece of contour as it slides across the channel from a far left
position (highly negative offset) to a far right position. As the monotonic lower contour moves
left to right, we check the relevant extensions of the upper contour in a left to right fashion as
well. We never have to recheck an upper extension that did not lead to infeasibility at a previous
offset, since the lower contour is nondecreasing. Furthermore, each time that an upper extension
does lead to infeasibility, we know that we should increment the offset, and we can only increment
the offset O(c) times. (Offsets beyond c columns in either direction are guaranteed to be feasible.)
Though we have only shown a running time of O(c), we can actually solve the problem in O(n)
time, because we really only need to look at columns where the upper contour bends.

In the next lemma, we show that not only are monotonic pieces of contour easy to handle, but
that we don’t have to check too many of them as long as we restrict attention to sections of contour
with large extension. Here we define a monotonic subset to be maximal if no other monotonic subset
contains it. Now we bound the number of maximal monotonic subsets with extensions greater than
or equal to h.

Lemma 4 Let Lg be the subset of the lower contour containing only extensions greater than or
equal to h, then Lg contains at most c/2h maximal monotonic pieces.

Proof. To have a maximal monotonic piece of the lower contour with extension h, there must be
h lower nets nested one inside the next. Therefore, a maximal monotonic piece with extensions
greater than or equal to h must span at least 2h columns. There are totally c columns, so Lg

contains at most c/2h maximal monotonic pieces.

We now put together Lemmas 3 and 4 to show that we can solve SSFOP efficiently for any
piece of lower contour in which all extensions are large enough.

Lemma 5 If Lg is a subset of the lower contour containing only extensions greater than or equal
to h, and U is the upper contour, then we can solve SSFOP(s, Lg ∪ U) in O(cn/h) time.

5



Proof. By Lemma 2, we know that it suffices to solve the problem independently for each of the
maximal monotonic pieces of Lg. By Lemma 4 there are O(c/h) such pieces, and by Lemma 3,
O(n) time suffices for each piece.

What remains is to solve the SSFOP for the portion of the lower contour with small extensions.
(Later, we’ll show how to choose h, the dividing point between large and small extensions.) The
next lemma handles the simplified case in which all extensions on the lower contour are 0 or 1. The
following lemma goes on to handle h distinct extensions.

Lemma 6 If all extensions are 0 or 1, we can solve SSFOP in O(c lg c) time.

Proof. The only interesting case is separation 1, and the feasible offsets correspond to the zero
entries in the convolution of the upper and lower extensions. The convolution can be computed in
O(c lg c) time as explained in [4], for example.

Lemma 7 If all extensions of the lower contour are less than or equal to h, then we can solve
SSFOP in O(hc lg c) time.

Proof. From lemma 2, SSFOP(s, L ∪ U) =
⋂h

i=1 SSFOP(s, Li ∪ U), where Li is the subset of the
lower contour with extension i. We can now solve SSFOP(s, Li ∪U) using lemma 6 after assigning
1 to the lower extensions in Li and those upper extensions exceeding s − i, and 0 to the other
extensions. Since we have a total of h problems, each solvable in O(c lg c) time, the total time is
O(hc lg c).

Now we can provide an overall solution to SSFOP by combining our results for contours with
large extensions and contours with small extensions.

Theorem 8 SSFOP can be solved in O(c
√
n lg c) time.

Proof. SSFOP(s, L ∪ U) = SSFOP(s, Ll ∪ U) ∩ SSFOP(s, Lg ∪ U), where Ll is the subset of L
with extensions less than h and Lg is the subset of L with extensions greater than or equal to h.
SSFOP(s, Ll ∪ U) can be solved in O(hc lg c) time using lemma 7, and SSFOP(s, Lg ∪ U) can be
solved in O(cn/h) time using lemma 5. By letting h =

√
n/ lg c, the combined time is O(c

√
n lg c).

Corollary 9 SSFOP can be solved in O(n1.5
√

lg n) time for c = O(n).

Corollary 10 SSOOP can be solved in O((n lg n)1.5) time when c = O(n).

Proof. The optimal offset problem can be solved by performing binary search on separation and
seeing whether there are any feasible offsets at each stage. Since the separation cannot exceed n,
the run time is O(lg n) times the time for SSFOP.

3 General Single-Layer Channel

In this section, we use the ideas of section 2 to solve FOP and OOP in the more general case
in which there are two-sided as well as single-sided nets. As before, we begin by computing the
contours of the upper nets and the lower nets. As in the single-sided case, we consider separately
the portions of the lower contour with large extensions and the portions with small extensions and
then show how to put the two ideas together. But first we consider an intermediate case, when
there are both single-sided and two-sided nets but all the single-sided nets are on one side.

6
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Figure 4: The effect of two-sided nets in (a) is incorporated into the top contour in (b).

Lemma 11 When all single-sided nets are on one side, FOP and OOP can be solved in O(n lg n)
time.

Proof sketch. The idea is to use binary search on offset as in [5]. At any given offset, define a
left-going (right-going) two-sided net as a net whose upper terminal is to the left (right) of the
lower terminal. The separation with right-going (left-going) nets omitted can’t decrease as the set
of upper terminals shifts to the left (right). Consequently, by seeing which of these two separations
is at least as large as the other, we can eliminate either all larger or all smaller offsets, while
retaining an optimal offset among those offsets still under consideration. It takes O(n) time to find
the separation [7], thus O(n lg c) time suffices to solve OOP, since there are only 2c meaningful
offsets. Furthermore, as in the case when there are no single-sided nets, there are actually just
O(n2) critical offsets that must be checked, so the time can be reduced to O(n lg n) as in [5]. FOP
can be solved similarly.

In order to deal with the extra complications of two-sided nets, we also must introduce two new
definitions.

First, let L0 be a subset of the contour of the lower nets and T a set of two-sided nets whose lower
terminals are all to the left of L0. Define T/L0 to be the set of nets obtained by pulling up the lower
terminals of the nets in T and reconnecting them to the upper side to the left of any preexisting
terminals. That is, we convert the nets in T to single-sided nets without violating planarity and
without moving what were their lower terminals to the wrong side of L0. This notation is also used
analogously for any set T of two-sided nets and any piece C of either the upper or lower contour,
whether T is to the left or right of C. In all cases T/C is a set of single-sided nets formed by moving
terminals in T on the same side as C away from C. Figure 4 illustrates the definition of T/L0.

For the second definition, let M be a subset of the contour of the upper or lower nets. We
define M |s to be a new contour in which we replace all extensions exceeding s with extension s.

We now proceed in the next two lemmas to handle a portion of lower contour with only large
extensions. As before, the first lemma shows how to handle a monotonic piece of lower contour,
and the second lemma handles a contour portion with large extensions by dividing it into maximal
monotonic pieces.

Lemma 12 Let A be a set of upper and two-sided nets. Then after O(n lg n) preprocessing, we can
solve FOP(s, Lm ∪A) in O(n) time, where Lm is a monotonic portion of the lower contour.

Proof. The solution is the intersection of the feasible offsets from two subproblems: (1) Solve
FOP without Lm. (2) Solve FOP by considering (at each offset) only those columns Lm intersects.
Subproblem (1) is solved by Lemma 11 with O(n lg n) preprocessing. The idea to solve subproblem
(2) is to reroute the two-sided nets in the fashion shown in Figure 4. By doing so we incorporate
into the upper contour any effect of two-sided nets that can come into play with Lm. But we may
be building up the upper contour excessively in columns beyond the range of Lm, which effect is
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eliminated by truncating the new upper contour to extension s. (This truncation does not hurt
when columns of the upper contour fall into the range of Lm, since any upper extension of s or
greater will be enough to flag infeasibility when matched to any (nonzero) extension of Lm.) By
this reasoning, the solution to subproblem (2) is given by SSFOP(s, Lm ∪ (U ∪ T/Lm)|s). Using
lemma 1 and lemma 3, we can solve SSFOP(s, Lm ∪ (U ∪ T/Lm)|s) in O(n) time.

Now we can solve FOP for a subset L with large extensions. As before, we define large as
exceeding h and specify the value of h later.

Lemma 13 If Lg is a subset of L containing only extensions greater than or equal to h, then we
can solve FOP(s, Lg ∪ U ∪ T ) in O(cn/h + n lg n) time.

Proof. By lemma 2, L0 can be decomposed into maximal monotonic subsets L1, L2, . . . , Lk. Using
lemma 12, we have

FOP(s, Lg ∪ U ∪ T ) =
k⋂

i=1

FOP(s, Li ∪ U ∪ T )

=
k⋂

i=1

[FOP(s, U ∪ T ) ∩ FOP(s, Li ∪ (U ∪ T/Li)|s)]

= FOP(s, U ∪ T ) ∩
k⋂

i=1

FOP(s, Li ∪ (U ∪ T/Li)|s) .

Now, k is O(c/h) by lemma 4. FOP(s, U ∪ T ) corresponds to the O(n lg n) preprocessing in
Lemma 12, and each FOP(s, Li ∪ (U ∪ T/Li)|s) can be solved in O(n) time by Lemma 12. Thus,
the total running time is O(cn/h + n lg n).

Now that we have taken care of FOP with large extensions, we use the next two lemmas to deal
with small extensions. The next lemma tells us how to transform certain instances of FOP into
SSFOP, and will be used in handling general instances of FOP with small extensions.

Lemma 14 Let Tl and Tr be two sets of two-sided nets such that all the nets in Tl are to the left
of those in Tr. (That is, the upper terminals in Tl are to the left of those in Tr and similarly for
the lower terminals.) Also let Ul be a set of upper nets in which all terminals are to the left of (the
upper terminals of) Tr, and Lr a set of lower nets in which all terminals are to the right of Tl.
Then,

FOP(s, Ul ∪ Tl ∪ Tr ∪ Lr) = FOP(s, Ul ∪ Tl ∪ Tr) ∩ FOP(s, Lr ∪ Tl ∪ Tr) ∩
FOP(s, (Ul ∪ Tl/Lr)|s ∪ (Lr ∪ Tr/Ul)|s) .

Proof. The argument is similar to the one for lemma 12. At any given offset that is infeasible,
either there is a vertical cut demonstrating infeasibility that goes through both Ul and Lr, or there
is not. In the former case, we know that we can incorporate the effect of the two-sided nets into
the upper and lower contours; i.e., we solve FOP(s, (Ul ∪Tl/Lr)|s ∪ (Lr ∪Tr/Ul)|s) as illustrated in
Figure 5. On the other hand, if the infeasibility does not result from interaction between Ul and Lr,
it suffices to solve FOP(s, Ul ∪ Tl ∪ Tr) and FOP(s, Lr ∪ Tl ∪ Tr). Thus, intersection of the feasible
offsets from these three problems provides the feasible offsets for the original problem.

We can now solve FOP with small extensions.

8



(a) (b)

Figure 5: The effect of two-sided nets in (a) is incorporated into the upper and lower contours in
(b).

. . . . . . . . . . . . . . . . . . . . . . . .

4h two-sided nets4h two-sided nets4h two-sided nets

Figure 6: The partition for s < 4h.

Lemma 15 If the extensions of the upper and lower contours are all less than h, then we can solve
FOP in O(hc lg2 c) time.

Proof. Let t be the number of two-sided nets. We first consider the case when s < 4h. Divide the
channel into t/4h blocks B1, B2, . . . , Bt/4h, each spanning 4h two-sided nets as shown in Figure 6.
Let Li, Ui, and Ti denote the lower single-sided nets, upper single-sided nets, and two-sided nets in
block i. (Single-sided nets at a boundary between blocks of two-sided nets are assigned to exactly
one of those blocks.) Since the upper side and lower side of a block may not be of the same length,
we define ci to be the sum of the number of columns the upper side spans and the number of
columns the lower side spans.

From lemma 2, FOP(s,N) =
⋂t/4h

i=1 FOP(s, Li ∪T ∪U). Since s < 4h, there must be fewer than
4h two-sided nets through any vertical cut at any feasible offset. Therefore, any offset with vertical
cuts through Li and Uj for j > i + 1 or j < i− 1 would be an unfeasible offset, because such a cut
would be crossed by all the nets in Ti+1 or Ti−1. Thus we can write

FOP(s,N) =

t/4h⋂
i=1

[FOP(s, Li ∪ T ∪ Ui) ∩ FOP(s, Li ∪ T ∪ Ui+1) ∩ FOP(s, Li ∪ T ∪ Ui−1)] .

Note also that no vertical cuts through both Li and Uj can cut any two-sided nets outside blocks
i through j, so we can rewrite FOP(s,N) as

t/4h⋂
i=1

[FOP(s, Li ∪ Ti ∪ Ui) ∩ FOP(s, Li ∪ Ti ∪ Ti+1 ∪ Ui+1) ∩ FOP(s, Li ∪ Ti−1 ∪ Ti ∪ Ui−1)] .

Now we can solve each of FOP(s, Li ∪ Ti ∪ Ti+1 ∪ Ui+1) and FOP(s, Li ∪ Ti−1 ∪ Ti ∪ Ui−1) in time
O(h(ci−1 + ci + ci+1) lg(ci−1 + ci + ci+1)) as follows. We use Lemma 14 to further decompose the
problem, Lemma 1 for the computation of new contours (which will still have O(h) extensions),
and Lemmas 11 and 7 to solve the subproblems.
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To solve FOP(s, Li ∪ Ti ∪ Ui), we use a recursive method, for which we consider the general
problem of solving FOP(s, L∗ ∪ T ∗ ∪ U∗) with |T ∗| = t∗ ≤ 4h. We decompose such a problem into
left and right blocks, each having half as many two-sided nets as the original. Using subscripts l
and r to denote the portions of L∗, T ∗, and U∗ falling in the left and right blocks, we know from
Lemma 2 that

FOP(s, L∗ ∪ T ∗ ∪ U∗) = FOP(s, L∗
l ∪ T ∗ ∪ U∗) ∩ FOP(s, L∗

r ∪ T ∗ ∪ U∗)

= FOP(s, L∗
l ∪ T ∗

l ∪ U∗
l ) ∩ FOP(s, L∗

l ∪ T ∗ ∪ U∗
r ) ∩

FOP(s, L∗
r ∪ T ∗ ∪ U∗

l ) ∩ FOP(s, L∗
r ∪ T ∗

r ∪ U∗
r ) .

The restrictions from T to T ∗
l and T ∗

r are by reasoning similar to that used above. Also as above, we
use Lemma 14, Lemma 1, Lemma 11, and Lemma 7 to solve FOP(s, L∗

l ∪T ∗∪U∗
r ) and FOP(s, L∗

r ∪
T ∗∪U∗

l ) in time O(hc∗ lg c∗), where c∗ is the sum of the number of top and bottom columns spanned
by L∗, T ∗, and U∗. FOP(s, L∗

l ∪ T ∗
l ∪ U∗

l ) and FOP(s, L∗
r ∪ T ∗

r ∪ U∗
r ) are just recursive calls; we

denote the sum of the number of top and bottom columns in these subproblems as c∗l and c∗r . Then,
the time to compute FOP(s, L∗ ∪ T ∗ ∪ U∗), T (t∗, c∗), can be written as

T (t∗, c∗) = T (t∗/2, c∗l ) + T (t∗/2, c∗r) + O(hc∗ lg c∗) ,

where c∗l +c∗r = c∗, and T (1, c) = O(hc lg c). There are O(lg h) stages in the recursion, and the total
work on all subproblems at any given stage is O(hc∗ lg c∗) time. Thus, T (t∗, c∗) = O(hc∗ lg c∗ lg t∗),
and, in particular, T (4h, ci) = O(hci lg ci lg h) = O(hci lg2 c).

Putting everything together, the time to solve FOP(s,N) is

T (t, c) =

t/4h∑
i=1

T (4h, ci) +

t/4h∑
i=1

O((ci−1 + ci + ci+1)h lg c)

=

t/4h∑
i=1

O(hci lg2 c) + O(hc lg c)

= O(hc lg2 c) + O(hc lg c)

= O(hc lg2 c).

Finally, we must return to solving the original problem in the case that s ≥ 4h. We divide
the channel into s/2h blocks, each spanning 2h two-sided nets. From Lemma 2, FOP(s,N) =⋂t/2h

i=1 FOP(s, Li ∪ T ∪ U). Furthermore, at any offset, we need not consider any vertical cut for
which the number of two-sided nets crossing the cut is less than s − 2h or greater than s. In the
former case, we know the cut cannot provide evidence of infeasibility; in the latter case infeasibility
is guaranteed. Thus, we can write

FOP(s,N) =

t/2h⋂
i=1

[FOP(s, Li ∪ Ti ∪ Ti+1 ∪ · · · ∪ Ti+s/2h ∪ Ui+s/2h−1 ∪ Ui+s/2h) ∩

FOP(s, Li ∪ Ti ∪ Ti−1 ∪ · · · ∪ Ti−s/2h ∪ Ui−s/2h+1 ∪ Ui−s/2h)].

At this point, we could proceed as when s < 4h by incorporating two-sided nets into the upper and
lower contours, but there are too many two-sided nets to get the desired running time; we might
end up with more than O(h) distinct extensions in the contours. Instead, we take out the s − 4h
two-sided nets between Li and Ui+s/2h−1, and the s− 4h two-sided nets between Li and Ui−s/2h+1,
and we decrease s by s−4h. Each unfeasible offset in this new problem actually denotes the center
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of a range of 2(s− 4h) + 1 unfeasible offsets of the original problem, but with this proviso, the task
is to solve

t/2h⋂
i=1

[ FOP(4h, Li ∪ Ti ∪ Ti+s/2h−1 ∪ Ti+s/2h ∪ Ui+s/2h−1 ∪ Ui+s/2h) ∩

FOP(4h, Li ∪ Ti ∪ Ti−s/2h+1 ∪ Ti−s/2h ∪ Ui−s/2h+1 ∪ Ui−s/2h)] .

We can solve these subproblems using Lemmas 14, 1, 11, and 7 as before. Also, with a similar
analysis for the combined running time of the subproblems, we get a total time of O(hc lg c).

Theorem 16 FOP can be solved in O(c
√
n lg c) time.

Proof. We can use Lemma 2 to write FOP (s,N) = FOP (s, Ll ∪ T ∪ Ul) ∩ FOP (s, Lg ∪ T ∪ U) ∩
FOP (s, Ug ∪ T ∪ L), where Ll is the subset of L with extensions less than h, and Lg is the subset
of L with extensions greater than or equal to h, and similarly for Ul and Ug. The first subproblem
can be solved in O(hc lg2 c) time using Lemma 15, and the latter two subproblems can be solved in
O(cn/h+n lg n) time using Lemma 13. By letting h =

√
n/ lg c, FOP can be solved in O(c

√
n lg c)

time.

Corollary 17 FOP can be solved in O(n1.5 lg n) time for c = O(n).

Corollary 18 OOP can be solved in O(n1.5 lg2 n) time when c = O(n).

Proof. The optimal offset problem can be solved by binary search on separation, thus the time
bound is O(n1.5 lg2 n).

4 Conclusion and Further Results

We have shown how to solve the feasible offset and optimal offset problems for single-layer channel
routing with c = O(n) in time O(n1.5 lg n) and O(n1.5 lg2 n), respectively. (We have also obtained
times of O(n1.5

√
lg n) and O((n lg n)1.5) for the case in which all nets are single-sided and O(n lg n)

for both problems when all single-sided nets are on one side of the channel.) Furthermore, we
have shown how to solve the feasible offset problem in O(c

√
n lg c) time for any value of c (and

O(c
√
n lg c lg n) time for optimal offset), which improves upon the more naive bound of O(cn)

except for truly huge values of c. But, we can do even better than O(c
√
n lg c) for moderately large

values of c, i.e., larger than about n1.5. Essentially all the necessary machinery is already in place
for this further result that FOP can be solved in O(n2 lg n) time independent of the number of
columns.

Theorem 19 FOP can be solved in O(n2 lg n) time.

Proof. Using lemma 2, we decompose the lower contour into maximal monotonic subsets. Since
there are only n nets, we have at most n monotonic subsets. We can find the feasible offsets for
each subset in O(n) time using lemma 12 after O(n lg n) preprocessing time. The total time to find
the feasible offsets for all of the subsets of the lower contour is O(n2). Now, each subset has a set
of feasible offsets that can be expressed as at most 2n nonoverlapping intervals with the endpoints
of the intervals in sorted order. Two sets of nonoverlapping intervals with endpoints in sorted
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order can be intersected in time proportional to the total number of intervals, which is an upper
bound on the output size. We intersect the O(n) sets of intervals in a tournament style, i.e., we
go from n sets with 2n intervals in each set, to n/2 sets with 4n intervals in each sets,. . ., to 1 set
with n2 intervals. There are lg n stages, with O(n2) work at each stage, yielding a total time of
O(n2 lg n).

One direction for further research is to improve the time for feasible offset when the number of
columns is large. We know that Ω(n2) is a lower bound on the worst case running time, but we
suspect that it may not be difficult to obtain an O(n2) upper bound as well. Another remaining
open question is whether our upper bounds for feasible offset with smaller c can be improved. We
know of no nontrivial lower bounds, i.e., better than Ω(min{c, n2}). It also might be possible to
improve the time to solve optimal offset without making further progress on feasible offset. Though
it seems unlikely that optimal offset would be much easier than feasible offset, optimal offset has a
much smaller output size, and output size is the only basis for our lower bounds on feasible offset.
Finally, it might be possible to improve our running time for problems with all the single-sided nets
on one side. Though O(n lg n) time was a sufficient tool for solving the general problem, it may be
possible to bring the time down to O(n) for problems with all single-sided nets on one side.
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