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ABSTRACT 

Malaria affects 198 million people and kills 584,000 each year, predominantly in 

Sub-Saharan Africa (WHO). The most severe form of malaria is caused by the protozoan 

parasite Plasmodium falciparum. Development of a vaccine against P. falciparum has 

been hindered by its complex life cycle with multiple antigenically distinct human and 

mosquito stages. To effectively prevent disease and reduce the parasite burden in 

populations, a vaccine will need to target multiple stages, including blocking 

transmission at the mosquito stage. 

Antibodies generated against P. falciparum mosquito stage antigen Pfs25 can 

prevent parasite transmission from humans to mosquitoes. However, Pfs25 is poorly 

immunogenic and immunization with the protein with alum as an adjuvant does not 

provide adequate transmission blocking activity. In this study I used adenovirus vectors 

(Ad) modified to express Pfs25 as a transgene or with capsid displayed Pfs25 epitopes to 

elicit a stronger anti-Pfs25 antibody response specifically directed at epitopes highly 

associated with transmission blocking. 

Although antibody titers are closely associated with transmission blocking 

activity, it is unlikely that all antibodies generated by immunization with whole protein 

are transmission blocking. Based on molecular models, EGF-like domains 2 and 3 appear 

to be most surface accessible on the parasite surface. However, antibodies raised against 

soluble Pfs25 equally recognize all 4 EGF-like domains. Thus, a vaccine involving in situ 
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expression of membrane anchored Pfs25 may better target antibody responses to domains 

2 and 3.  Additionally, using secondary immunization with capsid displayed Pfs25, I 

expected to further direct the antibody response to predicted B cell epitopes. Serum from 

mice immunized with these vectors can provide transmission blocking activity with lower 

antibody titers. 

Innate immune responses to Ad are an important component of generating 

adaptive immunity and may provide a means to further augment antibody responses to 

poorly immunogenic protein antigens. Molecules such as Pseudomonas aeruginosa 

flagellin (FliC) potently activate the innate immune system and could be used to modify 

vectors to induce greater adaptive immunity. We have generated Ad vectors with FliC 

attached to protein IX. Using these vectors with capsid displayed Pfs25 epitopes I 

assessed whether capsid displayed FliC increases antibody titers to Pfs25.
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CHAPTER ONE 

 

REVIEW OF LITERATURE 

 

Malaria: epidemiology 

Malaria is a mosquito borne illness caused by protozoan parasites in the genus 

Plasmodium. According to the 2014 World Malaria Report, 198 million cases and 

584,000 deaths as a result of malaria were recorded in 97 countries. 90% of deaths were 

in Africa. Worldwide, approximately 3.3 billion people are at risk of malaria and 1.2 

billion are at high risk (Figure 1). However, since 2000, prevalence of malaria and deaths 

due to malaria have decreased despite population growth in malaria endemic areas. This 

decrease has been due to aggressive efforts to prevent parasite transmission and ongoing 

efforts are necessary to maintain this trend (WHO). 
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Figure 1: Global incidence of malaria in 2013. Most cases of malaria are concentrated in 

Sub-Saharan Africa.
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Malaria: lifecycle and disease 

Malaria is caused by multiple Plasmodium spp, however, P. falciparum causes the 

most severe and life threatening illness and is responsible for 90% of mortality due to 

malaria (Snow 2015). The lifecycle of P. falciparum is complex and involves several 

antigenically and morphologically distinct stages. Sporozoites are the infectious stage of 

Plasmodium spp. and are transmitted by Anopheles spp. mosquitoes. While the mosquito 

feeds on its host, sporozoites in the salivary glands enter the bloodstream and travel to the 

liver. After invading hepatocytes, sporozoites divide many times to form schizonts. 

Schizonts contain thousands of merozoites, which enter the bloodstream when schizonts 

rupture 6 to 30 days post infection. Circulating merozoites invade red blood cells (RBC) 

and undergo maturation to schizonts over 48 hours. Infection of RBC causes multiple 

morphologic changes that lead to increased splenic clearance of RBC and anemia. 

Structural changes in the RBC surface can also lead to obstruction of small vessels which 

is especially problematic in the kidney and brain. After maturation is complete, schizonts 

rupture and RBC lyse, releasing merozoites that can then infect new cells. RBC lysis 

releases cell membrane remnants and hemoglobin degradation products, which are 

phagocytosed by macrophages and can also activate endothelial cells. This activation of 

immune cascades leads to release of pro-inflammatory cytokines, which suppress 

hematopoiesis and exacerbate anemia that results from parasite induced splenic clearance 

of RBC (McDevitt et al. 2004). 

While the majority of merozoites undergo this asexual cycle, some differentiate 

into male and female gametocytes and undergo a 3-4 day maturation process after which 
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they are released into the blood. Gametocytes make up only 1.8-5.7% of total parasitemia 

in blood (Ouedraogo et al. 2010). Mature gametocytes circulate in the bloodstream and 

can be ingested by a feeding mosquito. In the mosquito midgut, pH, temperature change 

and xanthurenic acid cause gametocytes to differentiate into male and female 

gametocytes. Male and female gametocytes mate to produce zygotes which develop into 

ookinetes and penetrate the gut wall. Ookinetes become oocysts, which eventually release 

sporozoites. Sporozoites migrate to the salivary glands and can initiate a new cycle of 

infection when the mosquito feeds on a new host (Leroy et al. 2014). 

The initial incubation stage of malaria is asymptomatic and lasts 12-14 days for P. 

falciparum. The incubation period can last longer due to partial immunity or ineffective 

prophylaxis (Schwartz et al. 2003). Symptoms occur during the erythrocytic stage and are 

a result of RBC lysis and release of pro inflammatory cytokines. Malaria begins with 

non-specific symptoms such as fever, malaise and fatigue. When merozoites are present 

in the serum, they can be visualized by microscopy of blood smears. In some cases 

malaria can become severe, especially with P. falciparum. Severe malaria often results 

from vascular occlusion by infected RBC and can include organ failure and cerebral 

malaria (WHO: Severe Malaria). 
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Figure 2: Lifecycle of Plasmodium falciparum. The lifecycle consists of human and 

malaria stages and each stage is antigenically distinct. Sexual reproduction occurs in the 

mosquito and asexual stages occur in humans. When a mosquito feeds on a host, it injects 

sporozoites that migrate to the liver and infect hepatocytes. After reproducing in 

hepatocytes to form schizonts, parasites emerge as merozoites and infect RBC. Most 

parasites undergo asexual reproduction, but a small fraction differentiate into male and 

female gametocytes. Gametocytes can be taken up by a mosquito during a blood meal 

and in the mosquito midgut they differentiate into gametes. Gametes fuse to form 

zygotes, which begin to invade the midgut wall and develop into oocysts. In the midgut 

wall, parasites multiply to form sporozoites which travel to the salivary glands where 

they are ready to initiate a new cycle of infection.
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Malaria: host response 

 Partial immunity to P. falciparum occurs in endemic areas following multiple 

infections. In areas of high transmission such as sub-Saharan Africa people develop 

almost complete protection from clinical disease by early adulthood. This delayed 

development of immunity leaves children and pregnant women at greatest risk for 

complicated disease (Langhorne et al. 2008). Immunity to severe clinical disease requires 

persistent stimulation by parasite antigens, wanes when individuals leave endemic areas 

and does not develop in areas of low transmission (Gupta et al. 1999). Natural malaria 

infections suppress B cell memory development, which leads to short lived antibody 

responses after infection, and P. falciparum induces expression of CD4+ T cell inhibitory 

factors (Hviid 2007, Kinyanjui et al. 2009, Anders 1986, Butler et al. 2012) 

Lifecycle stages are antigenically distinct from each other and immunity to one 

stage does not provide protection from other stages. Naturally acquired immune 

responses to malaria are mostly directed against blood stages including merozoites as 

well as intra-erythrocyte stages. Based on passive transfer experiments, antibodies are the 

major component of this protection and are involved in blocking merozoite invasion of 

RBC, antibody dependent cellular killing and surface bound antibodies leading to 

increased clearance of infected RBC (Blackman et al. 1990, Bouharoun-Tayoun et al. 

1995 and Bull et al. 1998). 

 Host immune responses also play a role in the pathology associated with malaria. 

TNF is protective (Taverne 1987) but high levels of TNF and other proinflammatory 

cytokines are associated with severe disease (Ochiel et al. 2005). IL-10 dysregulation also 
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plays a role and low IL-10 responses are associated with severe anemia, while 

abnormally high IL-10 responses are associated with respiratory distress (Kurtzhals et al. 

1998, Awandare et al. 2006). 

Malaria: current treatments 

 Treatment of malaria depends on a variety of factors including species, prior 

exposure, severity of disease and geographic location. Naïve patients are often 

hospitalized, whereas partially immune patients don’t always require hospitalization. 

During treatment, parasitemia is monitored using daily blood smears.  

 One of the major disadvantages of early synthetic anti-malarial drugs is that they 

only target erythrocytic stages, which are the most abundant and metabolically active. 

High parasite density and high mutation rates due to rapid metabolic activity increase the 

likelihood of drug resistance among erythrocytic stages compared to other life cycle 

stages that are less abundant and mutation prone (Fidock 2013). Drugs that only inhibit 

erythrocytic stages may not effectively inhibit transmission to mosquitoes by blocking 

asexual forms of P. falciparum, allowing the life cycle to continue (Leroy et al. 2014). 

 Chloroquine was the first mass produced drug for malaria treatment and 

prevention and is effective against all blood stages, additionally, it is well tolerated if 

administered orally (White 1996, Taylor and White 2004). Although chloroquine is still 

used to treat other forms of malaria, P. falciparum has developed widespread resistance, 

and chloroquine often cannot be used to treat falciparum malaria. 

The WHO recommends oral artemisinin combination therapy (ACT) as the first 

line treatment for uncomplicated falciparum malaria due to efficacy against all asexual 
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stages of the parasite lifecycle as well as gametocytes and minimal side effects. A second 

drug is administered with artemisinin derivatives to reduce resistance. Severe falciparum 

malaria is treated with i.v. administration of artemisinin or quinine. Artemisinins are 

preferable due to broader targeting of parasite life cycle stages and a more favorable side 

effect profile (ter Kuile et al. 1993).  

 Drug resistance varies between regions and should be considered when selecting 

therapy. Artemisinin resistance has been noted in areas where monotherapy was applied 

instead of using ACT (Das et al. 2013). Artemisinin resistance is particularly concerning 

because of the drug’s efficacy against multiple lifecycle stages and ability to block 

transmission by also targeting gametocytes. Quinine is used in areas where resistance to 

other drugs may be a problem but is not the preferred treatment due to severe side effects 

and bitter taste, which reduces compliance. Resistance has been documented for all 

currently used antimalarials and this threat has accelerated the need to develop newer 

methods of treatment and prevention (Leroy et al. 2014). 

Malaria: approaches to eradication 

 After World War II, DDT and chloroquine were first implemented, which led to 

decreased global distribution of Plasmodium falciparum and P. vivax. By the 1960’s it 

became apparent that insecticides and mass drug administration would not be sufficient to 

completely eliminate malaria (Dobson et al. 2000). This led to decreased interest in 

continuing mass eradication efforts and a resurgence in incidence and mortality (Cohen et 

al. 2012). The malaria epidemic in the 1990s in Africa (Snow et al. 2012) resulted in the 

development of a new elimination strategy in 2000 called the Roll Back Malaria Global 
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Action Plan (GMAP). Newer efforts have taken into account the heterogeneity of 

Plasmodium spp. and focused on interrupting transmission instead of just control (Alonso 

et al. 2011). Unlike previous efforts, which often bypassed local health systems, recent 

efforts have focused on long term solutions by integrating malaria control efforts into 

local health systems (Alonso et al. 2011). 

 Vector control is an important aspect of the malaria eradication program and 

methods such as insecticide treated nets (ITN) are particularly effective because they kill 

vectors before they become infectious, a process that takes several days after ingesting 

Plasmodium spp. (Enayati and Hemingway 2010). Use of insecticide treated nets has 

been widespread since 2006 but transmission rates remain high and mathematical models 

show that ITNs might not be adequate to reduce transmission in highly endemic areas 

(Noor et al. 2014, Griffin et al. 2010, Smith et al. 2009). In addition to drug resistance in 

parasites, mosquitoes have been developing resistance to insecticides, which requires 

developing new insecticides to maintain efficacy (Ranson et al. 2009). Additionally, not 

all vectors feed indoors and therefore may not be susceptible to ITN. As an alternative 

approach, genetic control programs have been proposed to reduce natural populations of 

these vectors (malERA 2011, Terenius et al. 2008 and Sinkins and Gould 2006). 

New approaches to developing antimalarials have focused on targeting multiple 

life cycle stages to eliminate parasites and according to the Medicines for Malaria 

Venture should cure disease by rapidly clearing parasites from the blood, target liver 

stages and block transmission by targeting asexual blood stages and be effective in a 

single dose (Leroy et al. 2014).  
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Targeting hepatic stages would have the advantage of preventing infection by 

blocking the first stage of the parasites lifecycle in humans and would prevent 

transmission by preventing formation of gametocytes, additionally, the low density of 

parasites during hepatic stages would reduce the likelihood of resistance compared to 

drugs that target erythrocytic stages (Lindner et al. 2012). Unfortunately, studying liver 

stages is difficult due to the low parasite load and no efficient high throughput liver stage 

drug screens exist (Leroy et al. 2014). 

Blocking parasite transmission is considered critical for eradication of malaria 

(Sinden et al. 2012). Therapies that block transmission should target gametocyte 

formation to prevent sexual stages from being ingested by mosquitoes. Several drugs to 

target sexual stages have been identified, including primaquine, which is in clinical use 

(White et al. 2012, Tanaka et al. 2013). The current method for assessing transmission 

blocking activity is the standard membrane feeding assay, where mosquitoes are fed 

serum containing gametocytes and candidate drugs and progression to oocysts is 

determined (Leroy et al. 2014). 

Malaria: vaccine development 

 Vaccines are an important component of the malaria eradication plan and would 

be especially beneficial for children in highly endemic countries who have not yet 

developed immunity (Alonso 2011). Evidence of resistance to clinical disease after 

multiple exposures and the ability of transferred IgG to protect naïve humans against 

disease indicate that a vaccine against malaria is possible and that antibodies can reduce 

disease (Schwartz et al. 2011). However, these responses are transient and prevent 
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clinical disease but do not completely prevent infection in endemic settings (Schwartz et 

al. 2011). The major challenge to developing a vaccine for P. falciparum are its multiple 

antigenically distinct lifecycle stages with several amplification phases. Natural immunity 

is not well understood at the molecular level and few target antigens have been identified 

(Moorthy and Kieny 2010). 

 According to the malaria eradication agenda developed in 2009-2010, effective 

eradication of malaria requires a focus on preventing transmission more than preventing 

morbidity (Schwartz et al. 2011). This includes vaccines that target pre-erythrocytic 

stages and therefore provide sterilizing immunity as well as vaccines that target sexual 

stages and mosquito antigens. However, the latter two have received the least amount of 

attention (Schwartz et al. 2011). Transmission blocking vaccines (TBV) target sexual and 

mosquito stages of P. falciparum (malERA 2011). The broader category of vaccines that 

interrupt transmission also includes vaccines against mosquito proteins that are essential 

for parasite development and highly effective erythrocyte vaccines that would also 

effectively prevent transmission (Alonso 2011).  

Naturally acquired immunity to P. falciparum may not be due to immune 

responses to pre-erythrocytic stages but immunization with pre-erythrocytic targets can 

induce protective immunity. This indicates that the immunity generated by pre-

erythrocytic vaccines would not mimic natural immunity but it may be more effective 

(malERA 2011). Pre-erythrocytic stage vaccines would prevent sporozoite invasion of 

hepatocytes or activate cellular immune responses to kill infected hepatocytes. If 

completely effective, this would eliminate parasites before they could infect erythrocytes 
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and prevent both disease and transmission. Even a partial reduction in parasites that leave 

the liver would reduce the severity of disease and could allow more time for the infected 

host to develop responses against later stages (Schwartz et al. 2011).  

Irradiated sporozoites inoculated by mosquito bite prevent infection upon 

experimental challenge, but this requires hundreds of bites and is transient (Cochrane et 

al. 1980, Clyde et al. 1973). Similar results were found using purified irradiated 

sporozoites, where high doses were required and did not provide adequate protection 

(Epstein et al. 2011, Daubenberger 2011). Another approach to induce immunity using 

whole parasites is chloroquine controlled infection, where infected mosquitoes bite 

people in the presence of chloroquine. This results in high levels of effector memory, less 

suppression of T cells and only requires 10-15 bites (Butler et al. 2012, Roestenberg et al. 

2011). However, drug resistance would reduce the utility of this approach (Schuldt and 

Amalfitano 2012). Additionally, storing whole sporozoites presents a challenge for using 

a sporozoite based vaccine in the field (Epstein et al. 2011). 

The most successful malaria vaccine candidate has been RTS,S produced by GSK 

and the PATH Malaria Vaccine Initiative. RTS,S is 80% effective, has completed Phase 3 

clinical trials and may receive WHO approval by the end of 2015. RTS,S is directed 

against the circumsporozoite protein, which is the most abundant surface antigen on 

sporozoites and liver stages and the vaccine can induce antibody and CD4+ T cell 

immunity. RTS,S is a fusion between CSP and hepatitis B surface antigen. In an effort to 

develop CD8+ responses to CSP, clinical trials are ongoing to boost immunize RTS,S 

immunized individuals with Ad35 encoding CSP (WHO 2010). Attempts to develop a 
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pre-erythrocytic vaccine using whole parasite have not been successful due to the large 

numbers of parasites needed for efficacy and stability concerns (Schwartz et al. 2011). 

Although naturally acquired immunity appears to be primarily due to targeting 

blood stages, developing a broadly effective blood stage vaccine is difficult due to 

antigenic polymorphism (Colling and Jeffery 1999). Merozoite surface protein 1 is a well 

characterized protein used by merozoites for invasion and antibodies against MSP-1 

reduce clinical malaria (Holder 2009, Fowkes et al. 2010). All studies use portions of 

MSP-1 due to its large size, which makes identification of critical epitopes important. 

Results using MSP-1 have been mixed due to allelic variation in the protein and have 

shown high immunogenicity but strain specific responses (Ogutu et al. 2009). Antibody 

titers to MSP3 have the most consistent association with protection from clinical malaria 

(Fowkes et al. 2010). Synthetic MSP3 peptide generates high antibody titers, but only in 

naïve individuals (Audran et al. 2005, Sirima et al. 2007, Nebie et al. 2009). Apical 

Membrane Antigen 1 is expressed on merozoites, sporozoites and hepatic stages and 

antibodies to AMA1 are major component of natural immunity (Courtin et al. 2009, 

Udhayakumar et al. 2001). However, AMA1 is highly polymorphic and developing a 

successful AMA1 vaccine would need to overcome this (Takala and Plowe 2009). 

Malaria: transmission blocking vaccines 

The importance of TBV has increased as a result of poor efficacy of most blood 

stage vaccine candidates in trials and the emphasis on reducing transmission as a means 

to eradicate malaria (Schwartz et al. 2011). Transmission blocking vaccines can target 

sexual stages of Plasmodium or mosquito vector antigens. Currently most sexual stage 
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vaccine projects are in preclinical stages (Schwartz et al. 2011). As of 2012, 24 proteins 

have been identified as targets of transmission blocking antibodies. There are four lead 

candidates: Pfs48/45 and Pfs230 are present on gametes and gametocytes and Pfs25 and 

Pfs28 are present on ookinetes (Sinden et al. 2012). The mosquito protein APN1 has also 

been the focus of some studies. 

One particular challenge for developing a TBV is that unlike blood stage or pre-

erythrocytic vaccines, a TBV would act at the community level rather than the individual 

level (Nunes et al 2014). However, over time this would translate to individual benefit by 

reducing disease in communities where vaccine recipients live and reduce the risk of re-

infection (PATH 2010). Additionally, primaquine is sometimes administered to infected 

patients to prevent transmission with no expectation of clinical benefit to the patient 

(WHO, Eziefula et al. 2014). Preliminary assessments of community acceptance of TBV 

shows that people in affected communities are open to these interventions (Bingham et al. 

2012, Ojakaa et al. 2011).  

Pfs25 

Pfs25 is the most studied sexual stage antigen. It is present primarily on ookinetes 

and is involved in invasion of the midgut wall. Anti Pfs25 antibody titers consistently 

correlate with transmission blocking activity by SMFA (Vuola et al. 2005). In this 

approach, a mosquito that feeds on an infected individual who has been immunized will 

take up gametocytes as well as anti-Pfs25. When Pfs25 is expressed in the mosquito 

midgut, antibodies bind to Pfs25 and block invasion of the midgut wall. Compared to 

other sexual stage antigens, serum from mice immunized with Pfs25 contains similar 
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levels of sexual stage antigen specific antibody titers but is significantly more effective at 

blocking transmission (Miura et al. 2013).  

Pfs25 administered with aluminum hydroxide (alum) as an adjuvant generates low 

antibody titers in mice and must be administered multiple times to block parasite 

transmission (Kubler-Kielb et al. 2006). Using various adjuvants, researchers have tried 

to improve the immunogenicity of Pfs25. A clinical study using Pfs25 adjuvanted with 

Montanide ISA 51 was discontinued due to low levels of antibody titers and adjuvant 

toxicity (Wu et al. 2008). A Pfs25 Pseudomonas aeruginosa ExoProtein A (EPA) 

conjugate with alum as an adjuvant has shown induction of high antibody titers and 

transmission blocking activity but this requires 3 injections (Qian et al. 2008, Qian et al. 

2007). Viral vectored approaches have also been investigated for Pfs25 immunization and 

a heterologous prime-boost with Ad5 and MVA induces a strong transmission blocking 

antibody response (Goodman et al. 2011). Cholera toxin and Neisseria menigitides outer 

membrane protein have also been investigated as adjuvants for Pfs25 (Arakawa et al. 

2005 and Wu et al. 2006). 

Pfs25: Structure 

 Pfs25 is a 25kDa protein composed of 4 epidermal growth factor (EGF) like 

domains. It is expressed on the surface of ookinetes. The N terminal portion contains a 

membrane secretion signal sequence and the C terminal portion has a GPI anchor 

sequence. Pfs25 is a cysteine rich protein and contains 11 disulfide bonds (Kaslow et 

al.1988 and Saxena et al. 2006). The protein has multiple surface exposed loops, which 
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are most prominent in EGF-like domain 2 and 3 and contain the most likely predicted B 

cell epitopes (Figure 1). 

 Pfs25 has been expressed in a variety of systems such as yeast, cell free 

translation in wheat germ, plants and algae (Barr et al. 1991, Kaslow and Shiloach 1994, 

Tsuboi et al. 2008, Farrance et al. 2011 and Gregory et al. 2012). Proper folding of Pfs25 

in ectopic expression systems is difficult due to its complex structure. Yeast expressed 

Pfs25 consists of two isoforms, which could reduce the efficacy of immunization with 

this recombinant protein (Tsai et al. 2006 and Kubler-Kielb et al. 2007). Expression in E. 

coli is complicated by ineffective formation of disulfide bonds in bacterial cells. All 11 

disulfide bonds in Pfs25 are necessary for proper folding and misfolded proteins must be 

solubilized and refolded to generate the appropriate arrangement of disulfide bonds 

(Kaslow et al. 1994). A successful purification and refolding of Pfs25 in the correct 

conformation has been described by Kumar et al. 2014.  

The cytoplasm in E. coli may contain proteases that could interfere with protein 

isolation and to address this strains such as BL21 have been developed, which lack ompT 

and lon proteases. Recombinant proteins expressed in E. coli often do not fold properly 

and require additional steps to refold them. Folding of disulfide bond containing proteins 

is particularly error prone in E. coli because of the reducing environment in the 

cytoplasm, which prevents disulfide bond formation (Sorensen and Mortensen 2005). The 

advantages of E. coli are that it is a well characterized expression system and high yields 

of protein can be collected from bacterial cultures. Despite the limitations on expressing 
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correctly folded disulfide bond containing proteins, multiple EGF like proteins have been 

refolded in vitro after expression in E. coli, including Pfs25. 
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Figure 3: Structure of Pfs25 modeled on the crystal structure solved for the related sexual 

stage antigen from Plasmodium vivax, Pvs25. Loops containing predicted B cell epitopes 

in domains 2 and 3 are highlighted in red.
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Antibody response to vaccines 

 After injection, antigen either diffuses to draining lymph nodes, or it can be 

internalized by DC at the site of injection and transported to lymph nodes. Proteins that 

encounter antigen specific naïve B cells bind to surface IgM and trigger a cascade that 

leads to formation of germinal centers where they proliferate and differentiate into 

plasma cells or memory B cells with help from APC and T cells.  

Activated B cells can proceed down the extrafollicular pathway, which leads to a 

rapid but short lived and low affinity antibody response or they can form germinal centers 

leading to memory formation. The germinal center pathway is more important for 

vaccine efficacy. The germinal center pathway begins when activated B and T cells 

migrate to B cell follicles as a result of signaling by FDC. In follicles, B cells receive 

signals from FDC and T cells and proliferate. During proliferation, they undergo class 

switch proliferation and switch from IgM production to IgG, IgA or IgE. They also 

undergo affinity maturation. High affinity B cells display vaccine antigens in MHCII and 

are bound by antigen specific TFH cells, which provide costimulatory molecules and leads 

to proliferation of B cells and differentiation to memory B cells or plasma cells. This 

process requires 10-14 days before hypermutated IgG appears in serum (Flehmig et al. 

1997). 

The antibody response to antigen depends on several factors. Intrinsic antigenicity 

of proteins is the main determinant of antibody response and is highly variable (Siegrist 

2011). Live vaccines elicit the strongest antibody responses because they are better at 

stimulating innate immune responses and non-live vaccines usually require at least two 
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vaccine doses (Pashine et al. 2005, Cassidy et al. 2001, VanDerWielen et al. 2000). Host 

factors also play a role in vaccine efficacy and genetic variability can affect the antibody 

response (Newport et al. 2004). Antigen dose is an important consideration and lower 

doses favor production of memory cells, while higher doses favor production of plasma 

cells (Ahman et al. 1999). 

The number of long lived plasma cells determines the duration of antibody 

secretion after immunization and becomes apparent after 6-12 months when the short 

lived plasma cell response wanes (Honorati et al. 1999, VanHerck et al. 2000). Long 

lived plasma cells form from GC plasma cells that migrate to the bone marrow as a result 

of signaling by bone marrow stromal cells (Minges Wols et al. 2002). Although the exact 

mechanism for LLPC formation and persistence is unknown, only live attenuated viral 

vaccines can induce antibody titers that persist for decades without requiring boost 

immunization (Manz et al. 2005). Memory B cells do not secrete antibody, therefore they 

are not protective unless they are stimulated by antigen to differentiate into plasma cells. 

However, antigen stimulation of memory B cells, such as during boost immunization, 

drives proliferation into plasma cells with higher affinity antibodies than those generated 

by primary immunization (McHeyzer-Williams and McHeyzer-Williams 2005). 

In the context of TBV, persistent antibody secretion is necessary as Pfs25 is not 

expressed in human stages and a previously immunized infected person would not be re-

exposed to antigen. As a result, low dose primary immunization to elicit a high memory 

response followed by a high dose boost immunization to elicit high levels of high affinity 
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plasma cells would be an effective strategy that could generate more LLPC and persistent 

antibody titers. 

Vaccine Adjuvants 

 Adjuvants are compounds that enhance the immune response against a co-

administered target antigen (Petrovsky and Aguilar 2004). Despite adjuvants being used 

in vaccines since the 1920’s, few adjuvants are licensed for clinical use due to limited 

knowledge of mechanisms of action (De Gregorio et al. 2013). Since adjuvants are used 

to improve immune responses, they may also be associated with toxicity due to over-

activation of immune pathways and the balance of potency and toxicity is an important 

consideration when developing adjuvants (Petrovsky and Aguilar 2004). 

 Aluminum salts (alum) were one of the first adjuvants used, with published 

reports of alum as early as 1926 (Glenny et al. 1926). Alum adjuvants are used in 

multiple vaccines including diphtheria, tetanus, pertussis, hepatitis A and B and anthrax 

(DeGregorio et al. 2013). When formulated with alum, antigens are adsorbed to the 

adjuvant, which can increase antigen stability and increases uptake of antigen by APC 

(Hem and White 1995, Flach et al. 2011). Alum also increases activation of DC and other 

immune effector cells (Sokolovska et al. 2007, Kool et al. 2008, Seubert et al. 2008). 

Alum activates the NLRP3 inflammasome, which is required for its adjuvant effect, but 

does not signal through TLR (Gavin et al. 2006, Eisenbarth et al. 2008, Kool et al. 2008). 

Additionally, alum induces release of DAMP’s such as uric acid and dsDNA, which 

contributes to its pro-inflammatory effect (Kool et al. 2008, McKee et al. 2013, Marichal 

et al. 2011). 
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 Freund’s complete adjuvant is an emulsion of water, mineral oil and killed 

mycobacteria and is the gold standard adjuvant, although it is too toxic for human use due 

to severe local reactions (Freund et al. 1937, Petrovsky and Aguilar 2004). Oil-in water 

emulsion adjuvants such as MF59 and AS03 are used in influenza vaccines. These 

adjuvants are a mix of squalene and surfactants with uniform sized 160nm particles 

(DeGregorio et al. 2013). MF59 does not directly activate monocytes but it stimulates 

them to produce chemokines and promotes antigen uptake by APC (Dupuis et al. 2001). 

Unlike alum, MF50 does not activate the Nlrp3 inflammasome (Seubert et al. 2011). 

AS03 also triggers innate responses in draining lymph nodes due to the presence of 

alpha-tocopherol (Garcon et al. 2012). 

 TLR agonists are a broad class of adjuvants that target PRR of the innate immune 

system and include dsRNA, ssRNA, CpG motifs, lipids, lipopeptides, bacterial cell wall 

components and flagellin (De Gregorio et al. 2013). TLR4 agonists such as MPL mimic 

the activity of LPS and are found in hepatitis B and HPV vaccines (Casella and Mitchell 

2008). TLR4 agonists enhance antibody responses and Th1 helper T cell responses 

(Didierlaurent et al. 2009). TLR9 is found on endosomes and recognizes DNA containing 

CpG, which is usually found in bacteria. TLR9 agonists can elicit different immune 

responses depending on the type of CpG motifs (Vollmer et al. 2004). Bacterial flagellin 

is recognized by TLR5. Since flagellin is a protein, it can be used to create fusion 

proteins with target antigen (Taylor et al. 2011). Flagellin has been successfully used in 

multiple vaccines to induce strong humoral responses and can increase transport and 

retention of antigen in lymph nodes (Sixt et al. 2005). The effects of flagellin are most 
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likely mediated by T cells and DC and it does not appear to signal directly through B 

cells (Mizel and Bates 2010). Viral RNA or synthetic RNA mimics stimulate TLR7 and 

TLR8 on endosomes (Akira and Hemmi 2003). TLR3 recognizes dsRNA and is the target 

of adjuvants such as Poly(I:C) (Jasani et al. 2009). 

 Viral vectors have also been investigated as adjuvants because of their strong 

ability to stimulate innate and adaptive immune responses. In particular adenovirus has 

been shown to trigger strong adaptive immune responses to antigens from multiple 

pathogens. Ad vectors can deliver large transgenes and can also accommodate antigenic 

epitopes in their capsid. 

Adenovirus 

 Adenoviruses are non-enveloped double stranded DNA viruses. Their 34-43kb 

genome is small enough to enable easy manipulation and large parts of the genome can 

be replaced. Ad are divided into serotypes based on antibody neutralization and six 

subgroups based on sequence homology and red blood cell agglutination (Tatsis and Ertl 

2004). Ad5, of subgroup C, is the most commonly studied of at least 52 human serotypes 

of Ad (Schuldt and Amalfitano 2012). 

 The Ad genome is divided into early and late genes based on their expression. 

E1A is involved in activation of other viral genes, therefore deleting this gene results in 

replication defective virus and can be replaced with a transgene for expression by 

recombinant virus (Anderson et al. 2000, He et al. 1998). The E3 gene product allows Ad 

to persist in lymphoid cells after acute infection and is also often removed (Tatsis and 

Ertl 2004).  
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 In immunocompetent hosts, human Ad cause mild upper respiratory or 

gastrointestinal disease. The surface exposed portion of hexon, the major capsid protein, 

contains flexible loops that are variable between serotypes and are the target of 

neutralizing antibodies (Tatsis and Ertl 2004). Neutralizing antibody titers to common 

serotypes such as Ad5 can be detected in up to 80% of some adult populatitons, 

indicating prior infection in these individuals (Tatsis and Ertl 2004). Ad potently activate 

the innate and adaptive immune responses. By expressing PAMPs, they stimulate 

production of cytokines and differentiation of antigen presenting cells (Tatsis and Ertl 

2004). 

Adenovirus vaccine vectors 

 Adenoviral vectors were originally proposed as gene therapy vectors, however, 

adaptive and innate immune responses to these vectors limited their utility for gene 

therapy. Ad vectors are useful as vaccine adjuvants for multiple reasons, including ease 

of propagation, mild disease in immunocompetent hosts and broad tropism (Tatsis and 

Ertl 2004). Although multiple viral vectors have been considered for use in malaria 

vaccines, only Ad and MVA have made it to clinical trials (Schuldt and Amalfitano 

2012). 

 Ad have been useful as vaccine vectors due to their ability to stimulate humoral 

and adaptive immune responses, which is partly due to stimulation of multiple innate 

immune responses by capsid and genome (Appledorn et al. 2008a,b, Hartman et al. 2008, 

Barlan et al. 2011). Ad vectors have been successfully used to generate adaptive 
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responses against antigens from rabies, cancer, HIV and malaria (Gabitzsch et al. 2009, 

Xiang et al. 1996, Shott et al. 2008, Naslund et al. 2007). 

 Compared to other adjuvants, Ad vector approaches can promote stronger antigen 

specific adaptive immune responses, including to malaria antigens (Rodrigues et al. 1997, 

Shott et al. 2008, Bruna-Romero et al. 2004, Bruder et al. 2010). Ad expressing CSP can 

induce equivalent antibody titers and an equivalent cellular response as RTS,S/AS01B 

and does not require additional adjuvants (Shott et al. 2008). Importantly Ad based 

malaria vaccines induce CD8+ T cell responses, which are important for protection 

against pre-erythrocytic stages (Rodrigues et al. 1997, Rodrigues et al. 1998, Bruna-

Romero et al. 2008). Ad vectors have also been used to increase antibody titers to blood 

stage malaria antigens. Ad expressing AMA-1 or APA-1 induces antibody titers 

equivalent to recombinant protein with adjuvant (Bruder et al. 2010).  

 Limitations of Ad vectors include neutralizing antibodies to vectors due to pre-

existing immunity or homologous primary immunization. In human trials using prime-

boost with Ad expressing CSP and AMA-1, boost immunization was less immunogenic 

than primary immunization and prime-boost did not protect against malaria challenge 

(Tamminga et al. 2011, Sedagh et al. 2011). Pre-existing immunity to Ad5 is a concern in 

Sub-Saharan Africa where over 50% of individuals have neutralizing antibody titers to 

Ad5, which would weaken immune responses to Ad5 vectored antigens (Barouch et al. 

2011, McCoy et al. 2007). To overcome this limitation, alternative Ad serotypes can be 

used (Limbach and Richie 2009). Ad35 based CSP vaccines induce equivalent T and B 

cell responses to CSP as Ad5 vectors and RTS,S/AS01B (Shott et al. 2008). Chimpanzee 
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Ad should have the lowest levels of pre-existing immunity in human populations and 

these vectors are also being investigated as alternatives to Ad5 (Reyes-Sandoval et al. 

2008). Immunization with ChAd63 expressing Pfs25 followed by MVA expressing Pfs25 

is as effective as Ad5/MVA prime-boost (Goodman et al. 2011). 

Improving Ad vectors for TBV 

 My goal is to evaluate how immunization with different Ad vectors affects the 

antibody response to EGF-like domains in Pfs25 and identify portions of the protein that 

are highly associated with transmission blocking. To do this I will first purify EGF-like 

domains from Pfs25 and use ELISA to assess domain specific titers in virus from mice 

immunized with Ad vectors expressing Pfs25 or displaying epitopes from Pfs25. Using 

epitope prediction tools, I will also develop new vectors with capsid displayed epitopes to 

focus the antibody response to multiple highly immunogenic epitopes that are the target 

of transmission blocking antibodies during infection. Finally, I will use Ad with capsid 

displayed FliC to determine if I can improve the ability of our vectors to stimulate 

antibody responses. 

 The results of this work will provide new information about how Ad vectors 

induce antibody responses to target antigens. I will also have a better understanding of 

how Ad vectors with capsid displayed epitopes can be used to focus antibody responses 

to functionally relevant epitopes. Using FliC, I will learn how capsid modifications target 

the adaptive immune response to antibody production.  
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CHAPTER TWO 

MATERIALS AND METHODS 

Cell Lines and Cell Culture 

 Our lab obtained HeLa and 293Trex cells from ATCC. We received 293β5 cells 

from Glen Nemerow. We used HyClone tissue culture reagents. We maintained HeLa, 

293β5 and 293Trex cells in Dulbecco Modified Eagle Medium (DMEM) with addition of 

1mg/mL streptomycin, 100IU/mL penicillin, 0.25mg/mL amphotericin B, non-essential 

amino acids, 2mM glutamine, 10mM HEPES buffer and 1mM sodium pyruvate. We 

maintained 293Trex cells with 5μg/mL blasticidin from Sigma Aldrich. 

Recombinant Virus Construction 

 We generated Ad5gfp as described by Wodrich et al. 2010. To generate Ad5Pfs25 

and Ad5Pfs25exo we used a version of the AdEasy system described by He et al. 1998 

and Luo et al. 2007. Using this system we inserted a shuttle vector containing the Pfs25 

or Pfs25exo gene into an E1/E3 deleted Ad5 genome. We generated the Pfs25 gene using 

Genescript and codon optimized it for expression in humans. To generate Pfs25exo, we 

generated the codon optimized sequence for Pfs25 and removed the C terminal 

transmembrane domain. To suppress Pfs25 and Pfs25exo expression during virus 

propagation, we inserted the tet operator (TO) from pcDNA4/TO/mycHisA upstream of 

the CMV promoter and propagated virus in 293Trex cells, which constitutively express 

the Tet repressor (TetR). In this system, TetR binds TO and blocks transcription of the 

Pfs25 or Pfs25exo transgene. Pfs25 expression prevents efficient recovery of virus 
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because we found that Pfs25 expression decreased viral yields more than 10-fold. To 

confirm that Pfs25exo expression is suppressed in 293Trex cells, we used IFA with Pfs25 

antiserum. To confirm that Pfs25exo is expressed by our construct, we used IFA with 293 

cells stained with Pfs25 antiserum. 

 I identified predicted B cell epitopes from Pfs25 using the ElliPro tool 

(http://tools.immuneepitope.org/ellipro/). We generated AdCD using galK recombineering 

as described by Warming et al. 2005. We created primers with the galK sequence flanked 

by sequences homologous to regions to either side of the insert site in HVR1 or HVR5 

and used these primers to amplify galK from a plasmid (pgalK), which our lab obtained 

from the NCI BRB Preclinical Repository (NCI-FCRDC). Using homologous 

recombination, we replaced target sites in HVR5 with galK and used positive selection on 

minimal media plates with galactose to select successful recombinants. To replace galK 

with sequences from Pfs25 we used homologous recombination with Pfs25 sequences 

flanked by sequences homologous to the regions to either side of galK, which we 

generated as gBlocks from IDT-DNA. To identify successful recombinants we used 

negative selection on minimal media plates containing X-gal, which is converted to toxic 

metabolites by cells that have retained galK. To confirm correct inserts, we used PCR 

amplification of the hexon region and sequencing. 

Virus Purification and Titering 

We used 293Trex cells to propagate Ad5Pfs25exo and 293β5 cells to propagate 

AdCD. After propagation, we purified virus using two rounds of cesium chloride 
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centrifugation and dialysed virus in 40mM Tris, 150mM NaCl, 10% glycerol and 1mM 

MgCl2 (pH 8.2) (Wiethoff et al. 2005). We determined virus concentration by Bradford, 

where 1mg protein corresponds to 4x109 viral particles (Bio-Rad Laboratories, Inc.), 

froze aliquots in liquid nitrogen and stored them at -80 °C. To determine viral titers of 

AdCD, we serially diluted virus on HeLa cells and used flow cytometry to quantify GFP 

expression. To determine titers of Ad5Pfs25 and Ad5Pfs25exo, we serially diluted virus 

on HeLa cells and used IFA to detect hexon. To confirm expression of Pfs25exo, we used 

IFA with Pfs25 anti-serum after treating cells with GolgiStop for 4 hours to prevent 

protein secretion. 

Reagents and Antibodies 

 For ELISA, we purchased 5x assay diluent (cat # 00-4202-56) and 1xTMB 

substrate from eBioscience (cat # 00-4201-56). For detection of primary mouse antibody 

we used HRP conjugated anti-mouse IgG from Abcam (ab97265). For protein 

purification we used TALON Metal Affinity Resin from Clontech (cat # 635501). We 

obtained the anti-Pfs25 antibodies from Kim Williamson (conformation specific: ID2, 

conformation independent: 4B7). 

ELISA 

 We coated high binding ELISA plates (Costar cat# 07-200-35) with Pfs25 or 

purified domains from Pfs25 at 1μg/ml in coating buffer (Sodium Bicarbonate, pH 10) 

shaking overnight at 4°C. The next day we washed plates 4 times with 200μl/well 1X 

PBST (0.05% Tween) and blocked with 200μl/well 1x AD (eBioscience 00-4202-56) for 



30 

 

 

1 hour. We washed the plates four times and added 100μl/well of serially diluted mouse 

serum or monoclonal anti-Pfs25 antibody in 1x AD to plates for 2 hours. After 4 washes 

we added a 100μl/well of secondary anti-mouse IgG diluted 1:2000 in 1x AD for 1 hour. 

We washed plates 4 times and developed them using 50μl/well 1x TMB substrate. After 

color change, we stopped the reaction with 25μl/well 1M sulfuric acid. We read plates 

with a KC Junior plate reader at an optical density of 450nm. We determined endpoint 

antibody titers (measured in ELISA units) using a dilution curve. 

Mice and Immunizations 

 We used C57BL/6 mice (Jackson Laboratories cat# 000663) for all experiments. 

The Institutional Animal Care and Use Committee of Loyola University Chicago 

(Maywood, IL) reviewed all studies. We immunized mice at 6-12 weeks old by injection 

in the left quadriceps. For primary immunization we immunized mice at 6-8 weeks of age 

and euthanized mice and collected serum by cardiac puncture after 21 days. For boost 

immunization experiments, we boost immunized 21 days after primary immunization and 

euthanized mice after 21 days and collected serum by cardiac puncture. We used a 

volume of 50μL for all injections.  

For immunizations with Pfs25 protein, we used yeast produced Pfs25 from the 

NIH adsorbed to aluminum hydroxide (alum) purchased as Alhydrogel (Invivogen cat# 

21645-51-2). To prepare protein-alum for injection, we added 25 μL alum to 2.5 μg Pfs25 

in a total volume of 50 μL. For all primary immunizations with virus we used 109 viral 

particles. For secondary immunization with AdCD we used 1010 viral particles. 
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We collected blood from euthanized mice by cardiac puncture. To isolate serum, 

we kept blood on ice for 1-4 hours and spun down red blood cells at 8000rpm for 5 

minutes. We aliquoted supernatants, froze them in liquid nitrogen and stored them at -

80°C. 

Pfs25 Domain Synthesis and Purification 

 We used a previously developed codon optimized Pfs25 sequence to select 

sequences encoding Pfs25 domains 1-4. For domain 4, we selected the sequence without 

the transmembrane domain. For domain 1 we removed the membrane secretion signal 

sequence. We ordered the domain sequences as gBlocks from IDT-DNA and ligated 

them into the pGEMT-easy vector. We digested pGEMT-easy-Pfs25Dx with NdeI and 

BamHI to free the Pfs25 domain sequence and ligated this fragment into protein 

expression vector pET15b that had been digested with NdeI and BamHI. We confirmed 

ligation by digesting pET15bPfs25Dx with NdeI and BamHI and using gel 

electrophoresis to identify bands corresponding to the Dx sequences.  

 To express Pfs25D1-4 we transformed BL21 E. coli, which are optimized for 

protein expression and grew cultures overnight in LB with ampicillin at 37⁰C. The next 

day we diluted overnight cultures 1:20 in 500mL LB with ampicillin and grew them at 

37⁰C until an OD600 of 0.6. We induced protein expression using 1mM IPTG for 4 hrs. 

We harvested cells by centrifugation at 0⁰C. We performed all subsequent steps on ice or 

at 0⁰C. To lyse cells we incubated the cell pellet with 40mL 1% triton X-100, 0.5mg/mL 

lysozyme and 1:100 DNase in 50mM PBS per liter of culture. To prevent protein 
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degradation we added 1:100 PMSF to all buffers. We solubilized the pellets in lysis 

buffer and centrifuged lysate at 13,000xG for 15 min. Due to presence of protein in lysate 

supernatant and reported presence in inclusion in bodies in pellet after lysis, we purified 

both soluble and insoluble fractions. 

 We purified Pfs25 domains present in inclusion bodies according to the Pfs25 

purification and refolding protocol developed by Kumar et al. 2014. To solubilize 

inclusion bodies and denature misfolded proteins, we incubated pellets from cell lysate in 

denaturation buffer (100mM tris, 8M urea, 1% BME) at 4⁰C overnight. After 

solubilization, we loaded pellets onto 0.5mL TALON cobalt resin columns. We loaded 

soluble Pfs25 directly onto columns and incubated with denaturation buffer overnight to 

reduce misfolded disulfide bonds. 

For on column refolding, we sequentially washed the column with 10mL 

refolding buffer (100mM TrisCl, 500mM NaCl, 10% glycerol, 1mM imidazole, 0.5mM 

GSSG and 5mM GSH) containing decreasing amounts of urea from 8M to 0M, 

incubating for 1hr at each step. To elute protein we used 150mM imidazole and dialyzed 

protein in a 3.5kD dialysis cassette in PBS with 1% glycerol. 

To purify protein for refolding by dilution, we loaded supernatant from BL21 on 

0.5mL TALON cobalt resin columns. We washed columns once with 10 mL Wash 

Buffer 1 (50mM phosphate, 500mM NaCl, 1mM imidazole and 1% triton X-100) and 

with 10mL Wash Buffer 2 (50mM phosphate, 500mM NaCl and 1mM imidazole) in 1 

mL increments. To elute protein we used 150mM imidazole and dialyzed protein in a 
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3.5kD dialysis cassette in PBS with 1% glycerol. We precipitated protein using 

trichloroacetic acid (dilute TCA to 10% in sample, precipitate overnight at -20⁰, spin 

sample, wash with acetone and evaporate acetone) and resuspended precipitated protein 

in denaturation buffer. After resuspending protein in denaturation buffer to achieve a 

concentration of 2µL, we diluted the solution 1:20 in 100mM tris with 0.5mM GSSG and 

5mM GSH. After dilution, we dialyzed samples in 3.5kD dialysis cassettes in PBS with 

1% glycerol. 

We determined concentration of protein by Bradford in all cases and used tris 

tricine gel electrophoresis (10% separating, 4% stacking) followed by Coomassie stain to 

confirm sample purity and Western Blot with Pfs25 anti-serum to confirm presence of 

Pfs25 domains. We used ELISA with conformation dependent antibody ID2 to assess 

refolding success for D3 and conformation independent antibody 4B7 to confirm that 

peptide is D3. 

SDS-PAGE and Western Blots 

 To determine location of Pfs25 domains during purification and assess purity of 

refolded domains, we loaded samples from each step of purification onto tris-tricine gels 

consisting of 4% stacking gel and 10% resolving gel and after electrophoresis detected 

proteins by Western blot. For Western blots we used yeast purified recombinant Pfs25 

from the NIH as a positive control. WE detected His tagged domains using polyclonal 

anti-Pfs25 serum diluted 1:250 or monoclonal antibody to 6X-His. For detection of 

primary antibody we used HRP-conjugates anti-ms IgG at a concentration of 1:1000. 
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Statistics 

 We assessed statistical significance (p<0.05) using Student’s T Test when 

comparing two groups. Data is presented as mean +/- SEM.
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CHAPTER THREE 

RESULTS 

EGF domains from Pfs25 are expressed in soluble fraction of BL21 E. coli lysates 

Pfs25 is composed of four EGF-like domains. In its native conformation on the 

parasite surface, Pfs25 domains 2 and 3 are thought to be the most surface exposed and in 

a previous study, domain 2 was most highly associated with transmission blocking 

antibodies (Figure 3, Stowers et al. 2000). To bind to Pfs25 and block transmission, 

antibodies must be directed at epitopes near sites of interaction with host receptors. 

Immunizations that direct the antibody response to domains 2 and 3 should be better at 

blocking transmission than strategies that target portions of Pfs25 more distal from these 

host receptor interacting sites or which are not accessible on the parasite surface. To 

compare domain specific antibody responses to immunization with different Ad vectors, I 

first had to purify and refold domains 1-4 from Pfs25. 

Kumar et al. 2014 reported that Pfs25 expressed in E. coli was present in 

insoluble cytoplasmic aggregates called inclusion bodies that they isolated by 

centrifugation after lysis. These aggregates often form during expression of recombinant 

proteins in E. coli, especially at high levels of expression and are a result of 

intermolecular interactions of misfolded protein (Palmer and Wingfield 2004). However, 

expression of smaller fragments of a protein could affect aggregation and reduce 

inclusion body formation. 
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To determine if EGF domain 3 from Pfs25 is expressed as insoluble aggregates in 

E. coli, I grew cultures of BL21 E. coli transformed with pET15b-domain 3 to an OD600 

of 0.6. After inducing protein expression with IPTG for 4 hours, I pelleted and lysed 

cells. I loaded supernatant from centrifuged lysate and cell debris in non-denaturing 

buffer on a tris tricine gel and transferred the band to a nitrocellulose membrane. To 

detect domain 3, I probed the membrane with an antibody against 6X-His. Unlike Pfs25, 

domain 3 is soluble, however, based on lack of a distinct band the peptide is most likely 

forming soluble aggregates (Figure 4). Aggregation is most likely due to intermolecular 

interactions between misfolded proteins and could be due to disulfide bonds, which 

would remain intact unless denatured. These aggregates appear to be soluble for domain 

3. 
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Figure 4: Expression of domain 3 in E. coli. I lysed cells in lysis buffer and pelleted cell 

debris. I loaded supernatant from lysate and resuspended pellet onto a tris-tricine gel 

under non-denaturing conditions. After transferring to a nitrocellulose membrane, I 

detected domain 3 using an antibody against the 6X-His tag present on the peptide. 
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Refolding of domains from Pfs25 

 Optimal refolding protocols vary even for similar proteins and screening several 

protocols is usually necessary to identify the most optimal refolding strategy. When 

refolding proteins that contain disulfide bonds, the first step is denaturing the protein and 

reducing disulfide bonds, for which I chose urea and β-ME. Once protein is denatured 

and reduced, it can be refolded by removing the denaturing reagent, urea, in the presence 

of a redox system. A mixture of reduced and oxidized glutathione is the most commonly 

used redox couple. This allows disulfide bonds to reshuffle until they reach the desired 

conformation. On column refolding allows more time for reshuffling of bonds as the 

concentration of urea slowly decreases but also leaves the protein more prone to 

aggregation at intermediate concentrations of urea. Alternatively, rapid dilution in a 

solution that contains GSH:GSSG but no urea prevents long periods of exposure to 

aggregation prone conditions but provides less time for refolding. Protein concentration is 

another important consideration because aggregation occurs more rapidly at high 

concentrations. The range of 10-100µg/mL is ideal to preserve the balance between 

refolding and aggregation (Mamathambika and Bardwell 2008). 

I first attempted refolding of domain 3 because I have a conformation specific 

antibody to an epitope in D3, which I can use to quickly assess folding success using 

ELISA. I expressed domain 3 in BL21 E. coli and collected lysates. I loaded lysates onto 

a TALON Cobalt affinity column and refolded domain 3 on the column, or purified it on 

the column and refolded by dilution. I determined concentration by Bradford assay. 

Concentrations for several purifications of domain 3 ranged from 74.7-99.4 ng/µL. To 



39 

 

 

assess purity of refolded protein, I loaded 0.5µg on a tris tricine gel and used Coomassie 

dye to detect proteins. Domain 3 peptides from both purification methods did not contain 

contaminating protein (Figure 5). These results indicate that I successfully isolated 

domain 3 and that the samples did not contain detectable protein contaminants. 

 To confirm that the purified protein is domain 3, I coated ELISA plates with 

equimolar amounts of domain 3 and Pfs25 that is presumed to be correctly folded 

(Kaslow et al. 1992) and probed with the conformation independent transmission 

blocking antibody 4B7. Titers for both purified domains 3 were similar to those for Pfs25 

(Figure 6A). This indicates that the purified peptide is domain 3 and that 4B7 titers 

accurately reflect the expected ratio of coated proteins. To determine if domain 3 is 

correctly folded, I coated plates with purified domain 3 or Pfs25 and probed with the 

conformation dependent transmission-blocking antibody ID2. ELISA titers against either 

refolded domain 3 preparation were significantly lower than those observed for full 

length Pfs25 (Figure 6B). This suggests that the ID2 epitope was misfolded in domain 3 

compared to full length Pfs25.  
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Figure 5: Purified and refolded domain 3. I loaded 0.5µg of domain 3 purified and 

refolded on column and domain 3 purified on column and refolded by dilution onto a tris 

tricine gel. I loaded samples under reducing conditions. 
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Figure 6: ELISA titers on plates coated with equimolar amounts of Pfs25, D3 refolded on 

column and D3 refolded by dilution detected using conformation independent 

monoclonal antibody 4B7 (A) or conformation dependent monoclonal antibody ID2 (B). 

Titers are shown on an inverse log scale. 
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Pfs25 expression by cells infected with Ad5Pfs25exo 

 Goodman et al. 2011 immunized mice with Ad vectors encoding a secreted form 

of Pfs25. Although this approach generated high titers of transmission blocking 

antibodies, displaying Pfs25 on the cell surface could more closely mimic its native state 

and generate a higher quality transmission blocking antibody response focused on surface 

accessible epitopes. In mice immunized with yeast purified Pfs25 domains, serum from 

immunization with domain 2 was most effective at blocking transmission even at low 

antibody titers (Stowers et al. 2000). Domains 2 and 3 contain predicted B cell epitopes 

and contain surface loops that are solvent exposed based on modeling. Targeting these 

two domains could lead to a higher quality transmission blocking response. 

Ad5Pfs25exo encodes a form of Pfs25 with no transmembrane domain and is 

therefore secreted by infected cells. I used IF to confirm that Ad5Pfs25exo infected cells 

express Pfs25 Figure 7). I treated Ad5Pfs25exo infected 293β5 cells with Golgi Stop for 

four hours to retain Pfs25 in cells and fixed them in 3.7% PFA. To visualize Pfs25, I 

probed with a monoclonal antibody against Pfs25. Infected cells stained positive for 

intracellular Pfs25. This indicates that cells infected with Ad5Pfs25exo express the 

transgene. 



43 

 

 

 
Figure 7: IFA of 293β5 cells infected with Ad5Pfs25exo. I infected 293β cells with 

Ad5Pfs25exo overnight. To prevent secretion of Pfs25, I treated cells with GolgiStop for 

four hours before I fixed infected cells in 3.7% PFA and stained them with a monoclonal 

antibody against Pfs25 (4B7). (A) cells infected with Ad5Pfs25 as a positive control. (B) 

uninfected cells. Two different images of cells infected with Ad5Pfs25exo shown with 

DAPI staining (C) and without DAPI staining (D). 

A 

C 

B 

D 
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Immunization with Ad5Pfs25exo generates lower antibody titers compared to 

immunization with Ad5Pfs25  

To determine if membrane bound Pfs25 elicits similar antibody titers to whole 

Pfs25 as soluble Pfs25, I immunized mice with Pfs25-alum, Ad5Pfs25 and Ad5Pfs25exo 

and collected serum after 21 days. Ad5Pfs25exo expresses a Pfs25 transgene with 

transmembrane domain removed. Mice immunized with Ad5Pfs25exo develop lower 

antibody titers than mice immunized with Ad5Pfs25, which indicates that membrane 

bound Pfs25 is a superior immunogen to soluble Pfs25 (Figure 8). Pfs25alum generates 

the lowest antibody titers. These results support using Ad5Pfs25 for primary 

immunization. 
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Figure 8: Antibody titers by ELISA in serum from mice immunized with Pfs25-alum, 

Ad5Pfs25 and Ad5Pfs25exo. I immunized mice with 2.5µg protein or 109 viral particles 

and collected serum after 21 days. 
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Immunization with Ad5Pfs25exo targets different EGF like domains than Ad5Pfs25 

 Mice immunized with soluble recombinant Pfs25 develop similar antibody titers 

to each domain (Stowers et al. 2000). I expected that membrane bound Pfs25 would alter 

the balance of antibody response to domains that are more surface accessible and 

therefore more likely to be important for transmission blocking. In contrast, I expected 

soluble Pfs25 delivered as Ad5Pfs25exo would activate more cells reactive against 

domains that are not normally accessible on the parasite surface. In particular domain 2 

has been associated with the highest level of transmission blocking and domains 2 and 3 

contain the most likely predicted B cell epitopes (Stowers et al. 2000). A TBV that 

preferentially targets these domains would be more effective than a vaccine that targets 

epitopes that are not surface accessible. I purified and refolded domains 1-4 according to 

the on column purification and refolding by dilution protocol used for domain 3. 

 To assess which Pfs25 domains are targeted by immunization with Ad5Pfs25 or 

Ad5Pfs25exo, I coated plates with domains 1-4 and probed with serum from immunized 

mice. Ad5Pfs25 and Ad5Pfs25exo elicit equivalent titers of antibodies against domain 3, 

which contains the best predicted B cell epitopes. Additionally, Ad5Pfs25 serum contains 

high titers to domain 1 (Figure 9). 
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Figure 9: Domain specific antibody titers by ELISA using serum from mice immunized 

with Ad5Pfs25 or Ad5Pfs25exo. I immunized mice with 109 viral particles and collected 

serum after 21 days. For ELISA, I coated plates with 25ng of Pfs25 domains and probed 

with serum from immunized mice. 
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Domain specific antibody response to AdCD vectors 

 Mice immunized with individual yeast purified domains followed by boost with 

full length Pfs25 develop similar titers to all 4 domains despite low domain specific titers 

after primary immunization with domains 3 and 4 (Stowers et al. 2000). This indicates 

that antigen primed cells to each domain can be boosted even if prime immunization 

generates a weak domain specific antibody response. To generate the most effective 

TBV, we need to target Pfs25 epitopes that are surface exposed and can elicit the 

strongest B cell response. 

I expected immunizing mice with vectors that display epitopes from Pfs25 to 

focus the antibody response to the domain where the epitope is found. This would 

generate a higher quality transmission blocking response by targeting biologically 

relevant portions of Pfs25. I used serum from mice immunized with Pfs25-alum and 

boost immunized with Pfs25-alum, Ad5HVR5D2 or Ad5HVR5D3 for ELISA on plates 

coated with domains 1-4. I used Pfs25-alum for primary immunization instead of 

Ad5Pfs25 to avoid generating neutralizing antibodies to the vector, which could reduce 

the efficacy of AdCD vectors. Ad5HVR5D3 increases antibody titers to domain 3 relative 

to both Ad5HVR5D2 and Ad5Pfs25-alum, suggesting that this may be a means to better 

focus antibody responses to transmission blocking epitopes (Figure 10). Unexpectedly, 

Ad5HVR5D2 did not increase titers to domain 2 relative to the other sera tested.  
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Figure 10: Domain specific ELISA titers for serum from mice primed with Pfs25-alum 

and boost immunized with Pfs25-alum, Ad5HVR5D2 or Ad5HVR5D3. Protein 

immunization was with 2.5µg Pfs25 and virus immunizations were with 1010 viral 

particles. 
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Transmission blocking activity of serum from mice immunized with AdCD 

 I expected immunization with AdCD to focus the antibody response against Pfs25 

to epitopes that are surface exposed and highly correlated with transmission blocking 

activity. Although Ad5Pfs25/AdCD immunized mice develop lower antibody titers than 

mice boost immunized with Pfs25-alum, the antibody response should be more focused 

to capsid displayed epitopes. If these epitopes are the target of transmission blocking 

antibodies, then I expect to see a potent transmission blocking response even with lower 

antibody titers. 

 I assessed transmission blocking activity using SMFA, where mosquitoes feed on 

serum from immunized mice mixed with P. falciparum gametocytes. SMFA was 

performed by K. Miura and C. Long at the NIH. At the highest dilution used (1:20), 

serum from mice immunized with Ad5Pfs25 and boost immunized with Pfs25-alum or 

AdCD blocked formation of oocysts (Figure 11). Serum from mice immunized with 

Pfs25-alum/Pfs25-alum did not inhibit parasite transmission more than serum from mice 

immunized with empty Ad5 vector. 
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Figure 11: Transmission blocking activity of serum from mice immunized with 

Ad5Pfs25/AdCD compared to Ad5Pfs25/Pfs25-alum and Pfs25-alum/Pfs25-alum 

measured by standard membrane feeding assay. Serum was diluted 1:20. 4B7 is a 

monoclonal antibody against an epitope in Pfs25 used as a control. 
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A new epitope from Pfs25 domain 3 

 So far I have created vectors that display two epitopes, D2 and D3. However, 

these only represent two surface exposed loops on Pfs25 and are not the only potential 

epitopes in domains 2 and 3 (Figure 3). Eventually, I could use a combination of AdCD 

displaying different epitopes for boost immunization to focus the antibody response to 

epitopes associated with transmission blocking. 

I used ElliPro B cell epitope prediction software to identify a new epitope to use 

in AdCD vectors, D3C. D3C is an epitope in domain 3 that is the second most likely 

predicted B cell epitope in Pfs25 after D3 and is found on the second loop in Pfs25 

domain 3 (Figure 3). Ad5HVR5D3C PF has similar viral titers to other AdCD, which 

indicates that it is able to effectively replicate. Antibody titers by ELISA to serum from 

mice immunized with Ad5Pfs25 and boost immunized with Ad5HVR5D3C PF are 

comparable to mice immunized with Ad5HVR5D3 with or without PF and lower than for 

mice immunized with Ad5HVR5D2 (Figure 12). 
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Figure 12: Comparison of antibody titers by ELISA for serum from mice immunized with 

Ad5Pfs25/Pfs25alum and four AdCD vectors. 
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AdCD vectors with FliC do not induce higher antibody titers than AdCD vectors 

without FliC 

 Flagellin (FliC) has previously been used as an adjuvant to increase antibody 

titers and is a potent activator of multiple innate and adaptive immune pathways (Mizel 

and Bates 2010). I have developed Ad vectors with a C-terminal peptide from FliC 

appended to pIX and capsid displayed Pfs25 epitopes. I expected that vectors with FliC 

would elicit higher antibody titers than vectors without FliC. I previously made AdCD 

displaying the D3 epitope in HVR5 and compared them to Ad5HVR5D3 PF. 

I boost immunized Ad5Pfs25 primed mice with Ad5HVR5D3 with or without 

FliC attached to pIX. I collected serum after 21 days and used it to probe ELISA plates 

coated with Pfs25. I did not detect a significant difference between serum from mice 

immunized with AdCD or AdCDPF (Figure 13). This indicates that capsid displayed FliC 

does not improve the antibody response to D3 displayed in HVR5. To determine if boost 

immunization with AdCD PF affects titers to Ad5 capsid, I coated ELISA plates with Ad5 

capsid and probed with serum from immunized mice. Mice immunized with vectors that 

contain PF develop higher antibody titers compared to vectors with wild type pIX (Figure 

14).



55 

 

 

 

Figure 13: Antibody titers by ELISA for serum from mice immunized with 109 viral 

particles Ad5Pfs25 and boost immunized with 1010 viral particles Ad5HVR5D3 or 

Ad5HVR5D3 PF. I collected serum 21 days after boost immunization. 
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Figure 14: Antibody titers to Ad5 capsid for mice immunized with 109 viral particles 

Ad5Pfs25 and boost immunized with 1010 viral particles Ad5HVR5D3 or Ad5HVR5D3 

PF. I collected serum 21 days after boost immunization. 
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CHAPTER FOUR 

DISCUSSION 

 Despite decreasing incidence and mortality, malaria due to Plasmodium 

falciparum continues to be a problem and eradication requires ongoing efforts. As drug 

resistance spreads and mosquitoes become resistant to insecticides, the need for new 

drugs and vaccines becomes more urgent to achieve the current goal of complete 

eradication. Several vaccine candidates have been identified to target multiple stages in 

the lifecycle of P. falciparum, including transmission blocking vaccines that target the 

sexual stages. Of the sexual stage antigens, Pfs25 has been studied the most and has been 

used in clinical trials with various adjuvants. Antibodies to Pfs25 have also been found to 

be more effective at blocking transmission than antibodies to any other P. falciparum 

protein. I have developed Ad vectors to deliver Pfs25 or selected epitopes from Pfs25 and 

propose Ad vectors as the best adjuvant for creating an effective TBV against Pfs25. 

My goal in this work was two-fold.  First, I wanted to determine whether I could 

better focus antibody responses to transmission blocking antigens so that transmission 

blocking antibody titers would be higher. Second, I wanted to determine whether 

enhancing the immunogenicity of adenovirus vaccine vectors could further increase 

transmission blocking antibody titers to Pfs25. 

Refolding of Pfs25 D3 
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 Using ID2, I did not detect significantly elevated titers to domain 3 by ELISA. 

This indicates that the epitope for ID2 is not folded correctly but other portions of the 

domain could be folded correctly. In previous work, ID2 was used to monitor success in 

refolding whole Pfs25 before proceeding to more accurate methods (Kumar et al. 2014). 

In addition to assessment using ID2, I could use circular dichroism spectropolarimetry to 

assess secondary structure and eventually I would use NMR to assess the complete 

structure, which would provide more information than only assessing one epitope. 

 Protein refolding is a complicated process and ideal conditions vary even for 

similar proteins. This is particularly true for cysteine rich proteins with disulfide bonds 

that are essential to their structure, such as EGF proteins. Despite many successful 

purifications of recombinant proteins from E. coli, we are unable to accurately predict the 

best refolding protocol for a given protein and refolding attempts usually involve trials 

with many different protocols and reagents. The refolding conditions that worked for 

whole Pfs25 may not be effective for refolding individual domains. Future attempts to 

refold D3 should use varying concentrations of denaturing agent because overly 

aggressive denaturation of peptide could reduce the success of refolding. Additionally, I 

could vary the time protein is allowed to refold to allow more time for shuffling of 

disulfide bonds until they assume the proper arrangement. If I removed urea too rapidly 

at a stage where disulfide bonds were beginning to correctly form then I might have 

missed a critical point in refolding. I could also try different redox couples or change the 

GSH:GSSG ratio, which is important because these reagents stabilize intermediate forms 

of cysteine during formation of disulfide bonds.  
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Domain specific ELISA 

 I only assessed the refolding of domain 3 but I purified all four domains using the 

most efficient protocol I tried. Although I used these domains for ELISA, I do not know 

how efficiently my protocol refolded them. ID2 is one of two purified monoclonal 

antibodies to Pfs25 available and is the only conformation dependent one. Due to the 

variability in refolding conditions for different proteins, any of the other domains could 

have been refolded more or less efficiently than the others using the same protocol. I 

could assess the refolding of the other domains using NMR. However, even with this 

variability, domain specific titers to partially correct peptides can provide information 

about the differences between immunizations. 

 Despite uncertainty in the proper folding of the individual Pfs25 EGF domains, 

antibodies to Pfs25 and Pfs25exo bind domain 3 equally.  These similar titers to D3 are 

not surprising because D3 contains the two most likely predicted B cell epitopes in Pfs25. 

The major difference in domain specificities between antisera from Ad5Pfs25 and 

Ad5Pfs25exo immunized mice were in binding to domain 1. I did not assess transmission 

blocking activity of Ad5Pfs25exo serum and therefore I cannot say whether increased 

titers to domain 1 in mice immunized with Ad5Pfs25 are related to transmission 

blocking. According to Stowers et al. 2000, high titers of antibodies to domain 1 correlate 

with transmission blocking activity but only domain 2 immunized serum blocked 

transmission at low antibody titers. Based on this, the higher response to domain 1 could 

be relevant for transmission blocking. 
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 When I assessed the targeting of domain 2 or domain 3 using capsid displayed 

epitopes from each domain, I found that Ad5HVR5D3 increased antibody titers to 

domain 3 but Ad5HVR5D2 did not increase antibody titers to domain 2 and the overall 

titers for each domain were lower for Ad5HVR5D2. This is unexpected because ELISA 

using plates coated with correctly folded Pfs25 shows that Ad5HVR5D2 elicits similar 

antibody titers to the whole protein as Ad5HVR5D3. This could be indicative of the 

limitations of my most likely misfolded proteins, which might not be recognized by 

serum antibodies. Alternatively, if the D2 epitope is not displayed in a native 

conformation in hexon, this could affect the effectiveness of targeting the antibody 

response to that epitope in the context of native protein. Based on B cell epitope 

prediction, the D2 epitope is the most likely surface accessible B cell epitope in Pfs25 but 

this could be incorrect. Immunization with Ad5HVR5D3 increases antibody titers to 

domain 3 relative to Pfs25-alum immunization, which suggests that this vector 

successfully shifts the antibody response to the D3 epitope. If domain 3 was correctly 

folded, I expect that titers would be even higher. 

Creating new AdCD vectors 

 Although I successfully purified a vector displaying a new epitope from domain 

3, Ad5HVR5D3C, I also unsuccessfully tried to propagate a virus displaying another 

epitope from domain 2, Ad5HVR5D2B, and a virus displaying a modified version of the 

D3 epitope, Ad5HVR5D3B, based on B cell epitope prediction. This shows the 

limitations of displaying certain sequences on the capsid surface. The unsuccessful 

viruses could not be efficiently propagated, which suggests that the inserted sequences 
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interfere with proper capsid assembly. The best solution to this problem would be to 

identify predictors of success when inserting epitopes into the capsid and this would be a 

major advancement in our knowledge of manipulating Ad vectors. If I could identify 

parameters that predict success for insertion into hexon, then I could more effectively 

design epitopes for AdCD that do not interfere with virus propagation. 

 I designed new AdCD using SwissProt modeling software to measure the distance 

between the first and last residues of the Pfs25 loop to replace a loop of similar width in 

HVR5. Additionally, I lined up cysteines that form disulfide bonds. I expected that 

preserving disulfide bonds would add support to the structure and help with correct 

display. Only one vector out of three grew, which suggests that predicting size by 

modeling is not sufficient to predict success. Leaving disulfide bonds also did not 

improve success at generating virus. This could be due to unfavorable constraints 

imposed by having a disulfide bond that might interfere with capsid assembly in some 

AdCD. In this case the D3C loop might allow a conformation that is more favorable for 

capsid assembly compared to D3B and D2B. This could be resolved by omitting the 

cysteines in those loops, which could increase flexibility at the point of contact with 

HVR5. 

Focusing the antibody response to transmission blocking epitopes 

 Domain specific ELISA did not support the ability of Ad5HVR5D2 to target 

transmission blocking epitopes but SMFA data and anti-Pfs25 ELISA data suggest that 

this vector, as well as Ad5HVR5D3 improves the quality of the transmission blocking 

response. Although AdCD boost immunization generates several-fold lower ELISA titers 
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than boost immunization with Pfs25-alum, serum from mice immunized with 

Ad5Pfs25/Ad5CD blocks P. falciparum transmission as well as serum from mice 

immunized with Ad5Pfs25/Pfs25-alum. This indicates that AdCD generate a more potent, 

but less abundant transmission blocking antibody response. For a more accurate 

comparison of the most effective immunizations, I would need to dilute serum used for 

SMFA until transmission is no longer blocked, since at a 1:20 dilution, all sera 

completely blocked transmission. 

 Future experiments should test the efficacy of immunizing with a combination of 

AdCD to target several surface exposed epitopes. I expect that using multiple AdCD would 

improve the transmission blocking activity of serum from immunized mice by focusing 

the response to multiple epitopes. This approach would also reduce the likelihood of 

vaccine resistant strains developing by not putting selective pressure on a single epitope. 

Additionally, I would assess whether using certain epitopes produces more long lived 

plasma cells. This is an important predictor of vaccine success because a TBV targeting 

Pfs25 cannot be successful without persistent antibody secretion long after immunization. 

Heterologous prime boost immunization with different Ad serotypes could improve the 

antibody response by reducing competition between activation of Pfs25 and capsid 

reactive memory cells. 

Effect of capsid displayed FliC on antibody response to AdCD vectors 

 FliC has been used as an adjuvant to increase antibody titers to antigen. In 

previous studies, researchers have administered FliC fused to antigen and as a mixture of 

antigen and FliC (Girard et al. 2011, Taylor et al. 2011). Both strategies result in higher 
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antibody titers, increased activation of a TH2 helper T cell response and increased 

retention of antigen in draining lymph nodes. I expected that by attaching a domain of 

FliC to Ad5 capsid to selectively activate the inflammasome and not TLR5, I would also 

increase antibody titers to capsid displayed antigen. However, I did not see a difference in 

antibody response to the Pfs25 epitope displayed on the capsid (Figure 13).  I did, 

however, observe a tremendous increase in the antibody response to the rest of the Ad5 

capsid (Figure 14).  

 Since Ad proteins outnumber the single Pfs25 epitopes, I expect that after priming 

immunization has generated a response to capsid and Pfs25, boost immunization with an 

Ad vector of the same serotype would expand mostly cells reactive against capsid. This 

could deplete extra resources and reduce the expansion of memory B cells reactive to the 

Pfs25 epitope. In this case the effect of FliC is evident when I look at anti capsid titers. I 

could overcome this by using a different serotype Ad that would not contain many 

overlapping epitopes with Ad5. Priming with this vector and boosting with Ad5CD might 

favor expansion of B cells reactive to capsid displayed Pfs25 epitopes over anti-capsid 

cells. 

Concluding remarks 

 Although I was unable to purify and refold EGF like domains from Pfs25, I tested 

protocols that could be modified in the future to properly refold the peptides by changing 

the reaction conditions. Using these peptides I saw some differences in domain specific 

responses to Pfs25 but could only draw limited conclusions for this, especially using 

Ad5Pfs25exo. Ad5HVR5D3 appears to focus the antibody response to domain 3 using 
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my assay, unlike Ad5HVR5D2 and domain 2. Although our PF vectors did not enhance 

the antibody response to Pfs25, this does not mean that FliC is not effective in 

conjunction with Ad vectors and I would investigate other methods of delivering FliC 

with Ad vectors. SMFA data provides the strongest support for using AdCD vectors to 

focus the antibody response to certain Pfs25 epitopes and new epitopes should be 

identified that are compatible with insertion into hexon. 

 An effective TBV for P. falciparum would improve our ability to eradicate 

malaria and would be useful in conjunction with vaccines that target other lifecycle 

stages but are not 100% effective, such as RTS,S. This combination would protect 

individuals but in cases where gametocytes develop the TBV component would provide a 

major public health benefit by breaking the transmission cycle.
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