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ABSTRACT 

 

Biofilms protect bacteria from environmental threats, including antibiotics; thus, biofilms 

formed during infections pose an increasing threat to human health. A natural model used 

to study biofilm formation in the context of a host is the symbiosis between Vibrio 

fischeri and its host, the squid Euprymna scolopes. Successful colonization depends on 

the formation of a biofilm and genes involved in making the polysaccharide matrix 

component, syp. In culture, biofilm phenotypes, including the formation of wrinkled 

colonies, similarly depend on syp. However, little is known about other factors that 

contribute to this phenotype. To expand the utility of currently available genetic tools, I 

developed a Tn5 transposon containing an outward facing lac promoter and a V. fischeri 

strain expressing lacI with which to control that promoter. To search for genes with 

previously uncharacterized roles in biofilm formation, I mutagenized the lacI-expressing 

biofilm-forming strain, and screened for mutants that failed to form wrinkled colonies. As 

expected, my screen for biofilm-defective smooth colonies yielded mutants of syp genes 

as well as other genes known to be required for biofilm formation. Several other mutants 

with disruptions in genes involved in central metabolism and electron transport we also 

isolated. Next, I shifted my attention to characterizing these mutant strains. Mutants 

lacking glnA, which encodes glutamine synthetase, exhibited a severe biofilm defect that 

could be rescued by the addition of glutamine, its product. A mutant defective for mdh 

(malate dehydrogenase) displayed an intermediate (diminished wrinkling) biofilm 

phenotype 



 
 

xiii 
 

which could also be rescued by the addition of glutamine. Mutants lacking pck, which 

encodes PEP carboxykinase, also exhibited a severe biofilm defect, displaying not only a 

smooth colony phenotype but also adhering to the agar surface. I was unable to identify 

conditions that fully rescued the biofilm defect, but the addition of gluconeogenic carbon 

sources such as glucose abrogated the adherence phenotype. An sdhE mutant formed 

smooth colonies with small divots after prolonged growth, and an independently isolated 

sdhC mutant was similarly biofilm-defective; both mutants have defects in production of 

the succinate dehydrogenase complex. Of note was the phenotypes of three electron 

transport system mutants with insertions within two nqr (Na+-translocating 

NADH:ubiquinone oxidoreductase) genes and the ubiG (ubiquinone biosynthesis) gene: 

these mutants exhibited an extreme ability to strongly adhere attach to each other and/or 

the agar surface under biofilm-inducing conditions. The nqr phenotype required the 

production of Syp polysaccharide. Together, my work indicates a link between the 

metabolic state of the cell and biofilm formation.  
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CHAPTER ONE 

LITERATURE REVIEW 

 

I. Introduction 

A bacterial biofilm is a community of microbes attached to a surface and encased 

within a protective extracellular matrix. This state, rather than the single-celled 

planktonic state, is thought to be the predominant form of the bacterial kingdom. One 

defining characteristic of a biofilm is the presence of an extracellular matrix consisting of 

some combination of a polysaccharide component, extracellular proteins, and 

extracellular DNA (eDNA) (Reviewed in (Flemming and Wingender, 2010)). Due, in 

part, to this matrix, bacteria within a biofilm have increased resistance to a number of 

external threats such as host defenses (Donlan and Costerton, 2002) and antimicrobials 

(Mah, 2012). Thus, understanding the regulation of this natural phenomenon has become 

an important area of research. While many model organisms are used in the laboratory to 

study biofilm formation and the role of the biofilm in animal infection, few exist in which 

in vitro phenotypes can readily predict the ability to form in vivo biofilms and 

productively colonize a host. One such model system is the symbiosis between the 

bacterium Vibrio fischeri and its host, the squid Euprymna scolopes. Research using the 

Vibrio-squid model system has uncovered many factors that promote biofilm formation 

(Visick and Skoufos, 2001, Yip, Grublesky et al., 2005, Morris, Darnell et al., 2011, Ray 
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and Visick, 2012, Norsworthy and Visick, 2015, Ray, Driks et al., 2015, Singh, Brooks et 

al., 2015). However, our current knowledge of this natural phenomenon is likely 

incomplete and it is likely that many important mediators of biofilm formation in V. 

fischeri remain to be identified. 

While the body of my work revolves around genes required for the formation of 

the biofilm, and thus colonization initiation, the state of the symbiont within the light 

organ is, as yet, unknown and may well be biofilm-like. Therefore, it is possible that 

genes that affect biofilm formation but not colonization initiation could have roles in 

persistence of V. fischeri. In the following sections, I discuss the V. fischeri-squid 

symbiosis and then summarize some of the bacterial factors known to play a role in the 

initiation and persistence of this association. I then provide background information 

necessary to provide the reader with appropriate context to fully appreciate the additional 

factors identified, investigated, and discussed in the results and discussion sections. 

II. The colonization of the squid Euprymna scolopes by the marine bacterium Vibrio 

fischeri 

The V. fischeri-squid symbiosis is an excellent model system for the study of 

symbiosis and biofilm formation because the ability of V. fischeri to form a biofilm in 

vitro correlates with its ability to form a biofilm in vivo and to colonize its host. However, 

the strength of the system can only be appreciated after first understanding the 

colonization process and the stages V. fischeri cells must successfully navigate to 

establish and maintain a mutualistic association with the squid host (Fig. 1). These steps 

will be described here.  
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When juvenile squid hatch from their eggs, they lack their symbiont and must 

acquire it from the surrounding seawater (Wei and Young, 1989). This process is known 

to be extremely efficient: in their natural habitat, the coasts of Hawaii, no uncolonized 

squid has been captured (Stabb and Visick, 2013). Thus, researchers in the laboratory can 

control colonization by incubating eggs in seawater free of the symbiont, and 

subsequently adding V. fischeri (or mutant strains) to initiate colonization in an 

experimentally controlled manner.  

Shortly after hatching, the squid begins to secrete mucus at the surface of its 

symbiotic organ, the light organ, which houses V. fischeri in colonized animals (Fig. 1) 

(Nyholm, Stabb et al., 2000, Altura, Heath-Heckman et al., 2013). This mucus, as well as 

surface-located cilia, promote the attachment of V. fischeri to the surface of the light 

organ (McFall-Ngai and Ruby, 1991). Little is known about the bacterial factors that 

mediate the initial attachment to the surface of the light organ, although the V. fischeri 

genome contains 10 pili loci that could play a role in this process. Initial studies into the 

mannose-sensitive hemagglutinin (Msh) adhesin showed that V. fischeri cells conditioned 

in mannose exhibited a squid colonization defect that the researchers suggested could be 

due to the non-productive binding of the adhesin to the soluble mannose rather than a 

host receptor based mannose (McFall-Ngai, Brennan et al., 1998). This hypothesis has 

never been confirmed, however, and a number of other pili exist that could also play a 

role in the initial attachment process. 

After attachment to the surface of the light organ, V. fischeri cells form a biofilm 

(Nyholm, Stabb et al., 2000). The formation of this biofilm requires the activation of a 

sensory protein called RscS (Visick and Skoufos, 2001), the expression of the alternative 
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Figure. 1 - Colonization of E. scolopes by V. fischeri. The light organ (black structure) 

of E. scolopes is located under the mantle of the squid and is uncolonized upon hatching. 

After hatching, the squid begins secreting mucus (orange) onto the surface of the light 

organ near the pores. A variety of microbes are present in the seawater and a subset of 

them, including V. fischeri (Black cells) will encounter the mucus and cilia and attach to 

the cilia. It is here that V. fischeri form a biofilm and increase in number. V. fischeri cells 

then disperse from the biofilm and migrate into the pores, through the antechambers, and 

into the deep crypts (finger-like extensions) of the light organ. Once in the deep crypts, 

they grow and eventually reach a cell density sufficient to trigger bioluminescence.  
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sigma factor σ54 encoded by the rpoN gene (Wolfe, Millikan et al., 2004), and the 

expression of the symbiosis polysaccharide (syp) locus (Yip, Grublesky et al., 2005) (Fig. 

2). The transcription and translation of the syp locus leads to the production of the Syp 

polysaccharide (Syp PS), a major component of the symbiotic biofilm (Yip, Geszvain et 

al., 2006, Shibata, Yip et al., 2012). V. fischeri strains unable to produce the Syp PS, due 

to mutations within the syp genes or the regulatory pathway that activates the locus, are 

unable to colonize squid, while strains that overproduce the Syp PS outcompete wild-type 

strains in competition assays (Yip, Geszvain et al., 2006). Recent work has also identified 

a requirement for the two genes dnaJ and dnaK in the formation of the Syp biofilm 

(Brooks, Gyllborg et al., 2014). The formation of a biofilm as a stage in a beneficial 

animal infection is one strength of this system in the study of biofilm formation.   More 

details on the regulation of this vital step in biofilm formation and efficient colonization 

will be provided below. 

After the biofilm forms, the bacteria must then disperse to reach the sites of 

colonization. In many microbes, the small molecule cyclic-di-GMP (c-di-GMP) is known 

to mediate the dispersal process. When the levels of c-di-GMP are high, genes with roles 

in biofilm formation are promoted and motility is inhibited while low levels of the 

molecule do the opposite and promote motility while repressing biofilm formation 

(Romling, Gomelsky et al., 2005). The regulatory process that induces bacteria to 

transition from the symbiotic biofilm is unclear in V. fischeri, but it is likely that c-di-

GMP plays a role as disruption of genes promoting the production of c-di-GMP promote 

motility (O'Shea, Klein et al., 2006). σ54 (the sigma factor required for biofilm formation) 

is also required for the transcription of many of the genes required for motility and 
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Figure 2 - The regulation of Syp polysaccharide production. The transmembrane 

sensor kinase protein RscS senses a signal, auto-phosphorylates, then donates its 

phosphoryl group to SypF. SypF then donates the phosphoryl group to either SypE or 

SypG. Phosphorylation deactivates the inhibitor (SypE) and activates transcription of the 

syp locus through SypG. Transcription of the syp locus also requires the sigma factor σ54. 

The proteins of the syp locus are predicted to assemble and export the Syp PS, which is 

required for biofilm formation and squid colonization. 
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chemotaxis, behaviors that are hallmarks of dispersed cells. Thus, a molecule that could 

quickly mediate a switch between the biofilm and planktonic states is likely required and 

c-di-GMP is an exciting candidate for this role. The specific role of c-di-GMP has not 

been greatly studied in V. fischeri but remains an area of interest.  

Once the cells have dispersed from the biofilm, they travel into the light organ 

through any of six pores (three pores are located on each side) and traverse through an 

antechamber to ultimately reach the deep crypts of the light organ. For this migration to 

occur, V. fischeri cells must be able to engage in a number of activities, including motility 

and chemotaxis. V. fischeri is motile through the use a tuft of flagella located at one of its 

poles (Ruby and Asato, 1993). Flagallar motility mutants are able to form a biofilm 

outside of the light organ, but do not efficiently colonize the host, likely because they 

lack the ability to migrate from the biofilm (Nyholm, Stabb et al., 2000). Similarly, 

chemotaxis mutants have a decreased ability to colonize the light organ of the squid 

(Hussa, O'Shea et al., 2007, Deloney-Marino and Visick, 2012).  Chemotaxis is the 

process whereby bacteria direct their motion, typically away from threats or toward 

nutrients, via chemoreceptors that recognize specific molecules and subsequently 

modulate motility. Genome sequencing has identified nearly 40 chemoreceptors in V. 

fischeri (Ruby, Urbanowski et al., 2005) and research has shown that amino acids can 

serve as chemoattractants (DeLoney-Marino, Wolfe et al., 2003) as can other molecules 

(Nyholm, Stabb et al., 2000, DeLoney-Marino, Wolfe et al., , 2003, Mandel, Schaefer et 

al., 2012). A strain with a mutant allele of cheY, a regulator that modulates the transition 

from tumbles to runs, is unable to compete with wild-type strains in co-colonization 

assays (Hussa, O'Shea et al., 2007). While a full understanding of the regulation and roles 
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of motility and chemotaxis has not been attained, the necessity for these processes in 

squid colonization is clear.  

As V. fischeri cells migrate deeper into the light organ, they encounter a number 

of host defense factors, including nitric oxide (NO), in the squid-secreted mucus 

(Davidson, Koropatnick et al., 2004) and host immune cells called hemocytes 

(Koropatnick, Engle et al., 2004). Davidson et al. showed that the addition to the 

seawater of rutin hydrate, an NO scavenging molecule, promoted the accumulation of 

non-V. fischeri cells in the squid-associated biofilm, suggesting that NO inhibits non-

symbionts (Davidson, Koropatnick et al., 2004). More recent inquiries into the 

mechanism by which V. fischeri senses and responds to NO have identified the hnoX 

gene, which encodes a well-conserved NO sensing protein (Wang, Dufour et al., 2010). 

Wang et al. showed that HnoX bound NO and down-regulated a number of genes in 

response to activation; however, the genes identified had roles in iron sequestration rather 

than NO resistance (Wang, Dufour et al., 2010), suggesting a role for NO in priming V. 

fischeri cells for entry into the iron-limiting environment of the light organ.  

E. scolopes’ rudimentary immune system consists of hemocytes, a phagocytic cell type 

similar to a macrophage. The squid hemocytes regularly come into contact with V. 

fischeri cells both during their migration and throughout the life of the adult animal. 

However, the hemocytes show reduced binding to V. fischeri cells (Nyholm and McFall-

Ngai, 1998, Nyholm, Stewart et al., 2009). Investigation into this phenomenon revealed 

that the outer membrane protein OmpU was vital to this process, as V. fischeri strains 

lacking OmpU were bound and engulfed by the hemocytes (Nyholm, Stewart et al., 
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2009). Thus, the presence of OmpU is important for the recognition and prevention of 

phagocytosis of the V. fischeri cells by the hemocytes. 

Once cells have completed their migration to the deep crypts, they begin prolific 

expansion as well as a reduction in cell size (Ruby and Asato, 1993). The enzymatic 

activity of V. fischeri isolated from colonized animals suggest that the cells are primarily 

utilizing anaerobic respiration (Proctor and Gunsalus, 2000). It was also shown by Graf 

and Ruby that the light organ of the squid is rich in amino acids (Graf and Ruby, 1998). 

These researchers hypothesized that squid-supplied amino acids serve as a major nutrient 

source for colonized V. fischeri cells. Indeed, a number of amino acid auxotrophs have 

been shown to be defective in squid colonization (Graf and Ruby, 1998). While it is clear 

that the ability to utilize an important nutrition source in the context of light organ would 

be vital to the ability of cells to grow in this niche, it is unclear what specific role these 

amino acids have in the colonization process. Further research will need to be conducted 

to identify the specific roles of these amino acids. 

As their numbers grow, V. fischeri cells release pheromones, called autoinducers, 

which are sensed by neighboring cells and induce the activation of response pathways 

once the autoinducers reach a critical concentration. This system, called quorum sensing, 

regulates the induction of bioluminescence (Waters and Bassler, 2005). Once V. fischeri 

cells reach a high concentration within the light organ, the bioluminescence genes are 

induced and the cells begin to produce light. The direction and intensity of the light 

emitted from the light organ can likely be controlled through the use of various 

mechanisms such as a reflective surface and occlusion by ink from the squid’s ink sac 

that surrounds the light organ (McFall-Ngai and Montgomery, 1990). This phenomenon 
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highlights another strength of this model system: colonization can be assessed without 

sacrificing the animal by measuring the luminescence of the squid (Ruby and Asato, 

1993).  

The predominant hypothesis as to how E. scolopes benefits from colonization by 

V. fischeri posits that the light emitted from the bacteria provides counter-illumination for 

the squid, thus preventing predation (Wei and Young, 1989, Jones and Nishiguchi, 2004, 

Stabb and Millikan, 2009). If this is so, V. fischeri cells with bioluminescence defects 

could be considered “cheaters” because they don’t benefit the squid. Indeed, while 

luminescence mutant strains can colonize the light organ of the squid in single strain 

colonization experiments, colonization levels decrease over time (Visick, Foster et al., 

2000, Whistler and Ruby, 2003) and the squid remains amenable for further colonization 

by additional V. fischeri cells (Koch, Miyashiro et al., 2014). Additionally, in competition 

experiments, bioluminescence-defective strains are quickly outcompeted and do not 

persist (Visick, Foster et al., 2000, Bose, Rosenberg et al., 2008). Researchers have 

investigated the mechanism by which the squid detects the presence of light in the light 

organ and findings such as the presence of light organ cells that express eye-specific 

genes are providing much needed insight into possible mechanisms (Peyer, Pankey et al., 

2014).  One intriguing microbe-centric explanation proposed for the increased fitness of 

bioluminescent-competent symbionts is the ability of the cells to remove oxygen (Visick, 

Foster et al., 2000). Increased oxygen concentrations within the environment or the cell 

can be detrimental to the health of the bacteria as the oxygen can be converted into H2O2 

and/or other chemicals toxic to colonizing cells. There is evidence that the squid releases 

oxygen into the light organ (Ruby and McFall-Ngai, 1999). Utilization of 
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bioluminescence as a means to convert O2 into inert molecules like H2O could provide a 

fitness advantage to luminescence-competent cells.  

Finally, once colonization has been established, the squid does not simply allow a 

high level of colonization for the remainder of its life. Rather, as it buries itself in the 

sand at dawn, it vents a large proportion of the bacteria out of its light organ (Ruby and 

Asato, 1993, Boettcher, Ruby et al., 1996), thus decreasing cell numbers below the levels 

needed for quorum-sensing and bioluminescence (Boettcher, Ruby et al., 1996), and 

decreasing the burden required to feed and maintain the culture. Furthermore, there is 

some evidence that following the venting, the host releases membrane bound “blebs” into 

the crypts of the light organ (Wier, Nyholm et al., 2010). Like many microbes that 

colonize animal hosts, V. fischeri must acquire iron within the iron-limited environment 

of its host and it has been hypothesized that these blebs could contain iron for the 

remaining V. fischeri cells (Septer, Wang et al., 2011). This hypothesis is supported by 

the observation that V. fischeri heme transport genes are also upregulated immediately 

after venting (Wier, Nyholm et al., 2010). 

By leveraging the strengths of this model system, the ability to control the 

initiation of colonization, the requirement for a biofilm, and the ability to use 

luminescence as a colonization and persistence reporter, many strides have been made in 

identifying the bacterial genes that mediate biofilm formation and the initiation and 

persistence of colonization. In the following sections, I will discuss in greater detail the 

factors currently known to be important for biofilm formation, a key early stage in the 

colonization process.  
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III. Bacterial factors mediating biofilm formation  

To colonize its squid host, V. fischeri first attaches to the surface of the light 

organ and forms a biofilm as described above. While there are a number of bacterial 

factors required or hypothesized to be required in this process, three are particularly 

important for my work: the Syp polysaccharide, the Bmp proteins, and the cysteine 

biosynthesis pathway. These factors will be described in greater detail here.  

The Syp polysaccharide 

The symbiosis polysaccharide locus (syp) is comprised of 18 genes, of which four 

encode regulatory proteins and 14 encode structural proteins responsible for the 

production and export of the Syp polysaccharide (Syp PS) (Fig. 2) (Yip, Grublesky et al., 

2005, Yip, Geszvain et al., 2006, Shibata, Yip et al., 2012). This polysaccharide is 

secreted and is a major component of the extracellular matrix in V. fischeri biofilms. 

Production and secretion of the Syp PS is required for biofilm formation in the mucus 

near the pores of the squid’s light organ and, as a consequence, syp mutant strains fail to 

colonize the squid. In addition to a defect in squid colonization, these mutants exhibit 

defects in biofilm phenotypes observed in culture, including the formation of wrinkled 

colonies on agar plates and pellicles at the air/liquid interface of static cultures (Yip, 

Geszvain et al., 2006, Darnell, Hussa et al., 2008, Hussa, Darnell et al., 2008, Shibata, 

Yip et al., 2012, Morris and Visick, 2013). The composition of the polysaccharide (the 

identity of the monosaccharides in the polysaccharide chain) is as yet unknown, but the 

presence of the polysaccharide promotes cell-cell associations: strains that overproduce 

the Syp PS exhibit a strong cohesive phenotype: when colonies formed by these strains 

are disturbed with a toothpick, the whole colony is displaced as a unit (Fig. 3) (Ray, 
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Figure 3 - Disruption of a V. fischeri biofilm. V. fischeri cells that do not produce the 

Syp PS do not wrinkle and are readily disrupted when a toothpick is drawn through a 

colony (top). In contrast, the production of the Syp PS results in a colony that forms a 

wrinkled phenotype and exhibits cell-cell cohesion when disrupted with a toothpick. 

Representative images are shown.  
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Driks et al., 2015). In contrast, non-biofilm-forming cells are not strongly cohesive, and 

their colonies are readily disrupted. 

Increased transcription of the syp locus, and therefore increased production of the 

Syp PS, is activated by the transmembrane sensor kinase (SK) protein RscS (Yip, 

Geszvain et al., 2006). SK proteins auto-phosphorylate when they sense certain 

environmental signals and then donate that phosphoryl group to response regulator (RR) 

protein(s) to elicit a cellular response to that signal. While the identity of the 

environmental signal that activates RscS remains elusive, recent work has determined 

that RscS passes its phosphoryl groups to its RRs through an intermediary SK, SypF 

(Norsworthy and Visick, 2015). After receiving the phosphoryl group from RscS, SypF 

passes it to the two RRs that are encoded by the syp locus, SypE and SypG (Hussa, 

Darnell et al., 2008, Morris, Darnell et al., 2011, Norsworthy and Visick, 2015). When 

these two RRs are phosphorylated, SypE, an inhibitor of polysaccharide production, is 

deactivated, and SypG, a transcription factor, is activated to promote transcription of the 

syp locus and production of the Syp PS (Ray, Eddy et al., 2013). In in vitro cultures of V. 

fischeri, overexpression of rscS on a multi-copy plasmid also increases the production of 

the Syp PS, allowing researchers to study biofilm formation on a petri plate outside of the 

squid (Yip, Geszvain et al., 2006). In summary, activation of RscS leads to the 

production of Syp PS through the syp locus.  

The role of the Bmp proteins in biofilm formation  

In addition to promoting transcription of the syp locus, activated SypG also 

promotes transcription of three small operons, one of which is located adjacent to the syp 

locus. Each of these operons encode an extracellular biofilm maturation protein (Bmp) 



15 
 

 

and a putative biofilm associated lipopolysaccharide (Bal). The BmpA, B, and C proteins 

appear to have overlapping function (Ray, Driks et al., 2015). The loss of the Bmp 

proteins in a bmpABC triple mutant strain results in an in vitro biofilm that fails to exhibit 

the wrinkling phenotype characteristic of V. fischeri biofilms. However, the mutant strain 

maintains the cohesive properties of a Syp PS producing strain (Ray, Driks et al., 2015). 

Although the bmpABC mutant strain retains biofilm properties, these genes clearly play a 

role in the architecture of the biofilm: when bmpABC triple mutant cells are mixed with 

cells that do make and export the Bmp proteins, the mixture of the two strains exhibits 

biofilm phenotypes. 

The role of cysteine biosynthesis in biofilm formation  

 Recently, researchers have uncovered a role for cysteine biosynthesis in biofilm 

formation and squid colonization. V. fischeri cells defective for the cysK gene, which 

encodes the protein responsible for the last step in cysteine biosynthesis, forms smooth 

colonies on agar plates unless the plates are supplemented with exogenous cysteine 

(Singh, Brooks et al., 2015). As expected of a smooth colony mutant, the cysK mutant 

strain also exhibits colonization initiation defects, although it could eventually colonize 

the light organ when given enough time. Experiments with the cysK mutant also found 

that cysteine is likely secreted by wild-type V. fischeri cells: when a cysK mutant strain 

induced to form a biofilm is mixed with a strain not induced to form a biofilm but 

possessing an intact cysteine biosynthesis pathway, a biofilm will form (Singh, Brooks et 

al., 2015). These results uncovered a new level of biofilm regulation in V. fischeri. 
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IV. Identifying additional factors required for biofilm formation 

Outside of the factors described above, relatively little is known about the genetic 

requirements for biofilm formation by V. fischeri. Therefore, my thesis work focused on 

identifying and characterizing new factors that play a role in biofilm formation and 

potentially colonization by V. fischeri. The V. fischeri biofilm matrix contains a 

polysaccharide component (Syp PS) (Yip, Geszvain et al., 2006), extracellular proteins 

(Bmp) (Ray, Driks et al., 2015), and likely other extracellular proteins as well as eDNA.  

The physical complexity and function of components within of the matrix suggest that 

the decision to form a biofilm, and thus commit cellular resources, is a costly one. Thus, 

it is likely that mechanisms are present to determine whether cells should commit to this 

transition as well as biosynthetic pathways necessary to produce the matrix components. 

This level of complexity would likely require a number of potential as-yet undescribed 

mechanisms of biofilm control. In this thesis, I will describe the work that revealed the 

involvement of central metabolism and electron transport genes in biofilm formation. 

Here, I provide an overview of the central metabolism and electron transport pathways 

that will be important for understanding my findings.  

Bacterial metabolism 

For any organism to thrive, it must be capable of replicating, and thus, producing 

additional copies of the cellular machinery and all other components within the cell.  To 

do this, its metabolic pathways must be able to synthesize the precursors and products 

that cannot be acquired directly from its environment. V. fischeri cells must be able to 

survive in two different environments, nutritionally dilute seawater, and relatively 

nutrient-rich squid light organ (Ruby and Asato, 1993, Graf and Ruby, 1998). When 
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present in either of these environments, V. fischeri likely senses its location and activates 

alternative signaling and metabolic pathways causing the cells to behave differently. 

Likewise, interruption of these processes and pathways can lead to altered behavior and 

morphology and inform us of the pathways required for key developmental events such 

as biofilm formation.  

The TCA cycle 

The Tricarboxylic Acid (TCA) cycle is a conserved metabolic pathway that 

consumes acetate and produces CO2 as a byproduct (Fig. 4). This pathway is central to 

aerobic respiration and conserved in all organisms that utilize aerobic respiration. As 

carbon is oxidized through this pathway, NAD+ is reduced to NADH and additional 

molecules, such as amino acid precursors, are generated as intermediates and can exit the 

cycle. Defects in the TCA cycle can cause changes in the behavior and fitness of a cell. 

For example, in Salmonella enterica serovar Typhi, disruption of TCA cycle genes, 

including malate dehydrogenase (mdh) and those of the succinate dehydrogenase 

complex (sdhCDAB), increases the ability of the mutant strains to survive in mouse 

macrophages (Bowden, Ramachandran et al., 2010). In contrast, deletion of sdhB in 

uropathogenic E. coli causes a 50-fold growth defect in the bladders of mice (Alteri, 

Smith et al., 2009). In addition to its role in virulence and pathogenicity, a relationship 

between the TCA cycle and biofilm formation has also been previously characterized. In 

some organisms, such as Staphylococcus epidermidis, biofilm formation is correlated 

with a decrease in TCA cycle activity (Sadykov, Hartmann et al., 2011). It is 

hypothesized that this is due to the transitioning of the biofilm forming cells from aerobic 

respiration to alternate forms of metabolism, such as fermentation, that they can utilize 
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Figure 4 - The tricarboxylic acid (TCA) cycle. The TCA cycle is pictured. As 

pictured, acetate (from acetyl CoA) enters the TCA cycle as it is condensed with 

oxaloacetate into citrate. Relevant connected biosynthetic pathways, such as glutamine 

biosynthesis, electron transport, and gluconeogenesis, are indicated.  
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within the biofilm. Based on my work, I have identified a number of genes involved in 

the TCA cycle that play a role in biofilm formation by V. fischeri. Therefore, the 

following sections describe TCA cycle genes of interest.  

The succinate dehydrogenase complex and sdhE 

Succinate dehydrogenase (SDH) is the 5 protein complex that catalyzes the 

oxidation of succinate to fumarate, thus converting a flavin adenine dinucleotide (FAD) 

co-factor to FADH2 (SDH) (Fig. 5) (Iverson, Luna-Chavez et al., 1999). In addition to its 

role in the TCA cycle, SDH also participates in the electron transport system as Complex 

II, where electrons from FADH2 are removed from FAD and added to a ubiquinone 

molecule (Yankovskaya, Horsefield et al., 2003). Its specific role in electron transport 

will be elaborated on in a later section. The genes encoding the SDH complex are 

encoded in two separate operons. The first operon consists of sdhCDAB and encodes the 

catalytically active, membrane-associated components of the complex (Cecchini, 

Schroder et al., 2002). SdhC and SdhD are transmembrane proteins that function 

primarily in complex II’s role in electron transport. SdhA is the subunit that serves as the 

primary TCA enzyme that catalyzes the oxidation of succinate to fumarate and the 

reduction of FAD to FADH2.  SdhB serves as a conduit through which electrons are 

shuttled from the FADH2 molecule associated with SdhA to the ubiquinone associated 

with SdhC through three iron sulfur clusters.  

The final component of the SDH complex is SdhE, which is encoded by a gene 

nearly 1.5 Mb away. SdhE has been shown in Serratia sp. to serve as a cytosolic activator 

of the membrane associated portion (McNeil, Clulow et al., 2012). For the Sdh complex 

to be active, SdhA must be loaded with the FAD co-factor that accepts protons as 
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Figure 5 - The succinate dehydrogenase (SDH) complex. The SDH complex 

converts succinate to fumarate and is composed of 5 subunits; SdhA-D are membrane 

associated and SdhE is cytosolic. SdhE delivers a FAD co-factor to SdhA. The co-

factor then serves as a proton acceptor as succinate is oxidized to fumarate and FAD is 

reduced to FADH2. FADH2 is then oxidized back into FAD as electrons are shuttled 

through iron-sulfur clusters in SdhB to SdhC where Q is reduced to QH2. 
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succinate is oxidized.  SdhE serves as the “flavinator” of the SDH complex. The genes 

regulating the activity of SdhE are unknown, as is the mechanism by which SdhE initially 

acquires its riboflavin molecule. SdhE is a promiscuous protein and has been shown 

recently to also activate the fumarase reductase complex (FRD), which catalyzes the 

reduction of fumarate to succinate (the reverse reaction of SDH) via the addition of the 

FAD co-factor (Fig. 6) (McNeil, Hampton et al., 2014). Deletion of sdhE in Serratia sp. 

results not only in an inability of cells to metabolize succinate and fumarate, but also 

causes additional phenotypes seemingly unrelated to these metabolic processes. These 

findings led to the hypothesis that SdhE may also provide FAD co-factors to other 

molecules (McNeil, Clulow et al., 2012). Identities of such “off target” proteins, other 

than FrdA, have not been described. 

Malate dehydrogenase and mdh 

Malate dehydrogenase (Mdh) catalyzes the oxidation of malate to oxaloacetate 

(OAA), reducing NAD to NADH in the process (Fig. 7) (van der Rest, Frank et al., 

2000). OAA produced in this reaction can continue to cycle around the TCA cycle or exit 

the cycle along the gluconeogenic pathway (Fig. 8). The NADH produced in this reaction 

can be used by the electron transport system, which will be discussed in more detail 

shortly. Unlike the membrane bound SDH complex, Mdh is a single cytosolic protein that 

can also catalyze the reverse reaction. In E. coli, the Mqo protein has also been shown to 

catalyze the reaction, but bioinformatics searches could not identify a homolog of mqo in 

V. fischeri.  
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Figure 6 - The fumarate reductase (FRD) complex. The FRD complex reduces 

fumarate into succinate and is composed of 5 subunits; FrdA-D are membrane 

associated and SdhE (also a member of the SDH complex, is cytosolic. SdhE is 

hypothesized to provide the FAD co-factor to FrdA which can serve as an acceptor as 

electrons are shuttled through the Iron sulfur cluster of FrdB from the oxidation of 

QH2. Once an FADH2 is generated, fumatate can be reduced to succinate as FADH2 is 

oxidized to FAD. 
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Figure 7 - Malate dehydrogenase (Mdh). Mdh is a cytosolic protein that catalyzes 

the oxidation of Malate to Oxaloacetate (OAA) as well as the reverse reaction. An 

FAD co-factor is reduced to FADH2 in the process, or the reverse in the case of OAA 

reduction.  
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Figure 8 - Gluconeogenesis (GNG). Gluconeogenesis is the biosynthetic process of 

anabolizing glucose from TCA intermediates. Throughout this process, intermediates 

are hydrated and reduced. The GNG intermediate glucose-6-phosphate is necessary as 

an input in polysaccharide biosynthesis. 
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Gluconeogenesis 

My work has identified a number of genes (including mdh described above) 

involved in gluconeogenesis (GNG) that also play a role in biofilm formation by V. 

fischeri. Additionally, other pathways known to be important in biofilm formation, such 

as polysaccharide production, likely also require GNG to generate precursor 

monosaccharides. Therefore, I will describe the hypothetical role of GNG in biofilm 

formation and then discuss the known functions of the GNG gene of interest.  

GNG is the pathway responsible for the anabolism of glucose from smaller chains 

of carbon, such as amino acids or TCA cycle intermediates (Fig. 8). Organisms in nature 

are unlikely to find glucose in their environment and must synthesize it as a precursor to 

other vital molecules such as UDP- and ADP-glucose for polysaccharide biosynthesis. In 

the laboratory, V. fischeri is grown on LBS, a complex medium that primarily contains 

tryptone and yeast extract; therefore, amino acids serve as a primary carbon source 

(Dunlap and Kuo, 1992, Stabb, Reich et al., 2001). Thus, due to the role for GNG in the 

production of polysaccharide precursors from amino acids, this pathway should be vital 

to in vitro biofilm formation. In the squid, as well as seawater, V. fischeri cells are also 

not likely utilizing glucose as a primary nutrient source (Graf and Ruby, 1998) and, 

therefore, must anabolize the sugars required for Syp PS production and colonization.  

Phosphoenolpyruvate carboxykinase (Pck) 

The catalysis of OAA to phosphoenolpyruvate (PEP) pulls carbon out of the TCA 

cycle and begins the GNG pathway (Figs. 4 & 8). This reaction is mediated by the 

cytosolic enzyme phosphoenolpyruvate carboxykinase (Pck), encoded by the gene pck. 

The enzymatic activity of Pck utilizes the energy released by the hydrolysis of GTP to 
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GDP to decarboxylate and phosphorylate OAA (Fig. 9). This reaction is not reversible. 

The role of pck in PS production and biofilm formation by other bacteria has been 

previously described. For example, the activity of Pck is vital to the production of 

exopolysaccharide in Myxococcus xanthus, as this organism relies on sugars produced 

through gluconeogenesis rather than those present in its environment (Kim, Ramaswamy 

et al., 1999). As M. xanthus cultures exit exponential phase and enter stationary phase, 

Pck activity increases in conjunction with increases in polysaccharide production (Kim, 

Ramaswamy et al., 1999). Similarly, Osteras et al. described a decrease in root nodule 

formation, which involves another kind of symbiotic biofilm, during symbiosis of a 

number of plant species with a pck mutant strain of Rhizobium sp. (Osteras, Finan et al., 

1991).  

Electron transport system  

I have also shown a number of genes involved in the electron transport system 

(ETS) to be important for biofilm formation by V. fischeri. In the following sections, I 

will describe the ETS and discuss the known functions of the identified ETS genes of 

interest.  

Electron transport in bacteria occurs at the inner membrane and has the dual 

function of electron fixation to a terminal electron acceptor, such as oxygen, and the 

generation of an electrochemical gradient by the removal of protons from the cell. The 

electrochemical proton gradient is then used to drive ATP generation. In bacteria, the 

electron transport system generally consists of Complex I (an NADH:quinone 

oxidioreductase), Complex II (a succinate:quinone oxidioreductase), Complex III (a 

ubiquinol:cytochrome C reductase), Cytochrome C,  Complex IV (a cytochrome C 
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Figure 9 - Phosphoenolpyruvate carboxykinase (Pck). Pck is a cytosolic protein that 

decarboxylates and phosphorylates OAA, thus converting it to Phosphoenolpyruvate 

(PEP). To perform this activity, one molecule of GTP is hydrolyzed.  
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oxidase), and Complex V (an ATP synthase) (Keseler, Collado-Vides et al., 2011) (Fig. 

10).  

In the typical system, Complex I and Complex II transfer electrons from NADH 

and FADH2, respectively, to ubiquinone (Q), resulting in ubiquinol (QH2). QH2 traffics to 

Complex III where QH2 is oxidized, and the associated electrons are placed on molecules 

of Cytochrome C. The H+ ions are pumped out of the cell, contributing to the proton 

gradient. The charged Cytochrome C molecules are then transferred to Complex IV 

where they are removed as Complex IV converts ½ O2 and 2H+ions into H2O and pumps 

out additional H+ ions, further contributing to the proton gradient. Finally, all of the 

protons pumped out of the cell pass through the ATP synthase, resulting in the 

phosphorylation of ADP to ATP. This system is conserved in organisms that undergo 

aerobic respiration.  

The role of SDH in electron transport 

As noted above, the succinate dehydrogenase complex has roles in both the TCA 

cycle and electron transport. After the FAD cofactor is reduced to FADH, FADH is 

returned to its oxidized state and the associated electrons are shuttled through iron-sulfur 

bridges where they reduce Q to QH2. QH2 then traffics to Complex III and continues 

through the ETS, as described above, contributing to the proton gradient.  

The role of ubiquinone biosynthesis in electron transport 

One essential component of the electron transport system is the coenzyme 

ubiquinone (Q). Q is responsible for the trafficking of electrons from complexes I and II 

to complex III and without which the energy-generating potential of NADH2 and FADH 

would be unrealized.  Biosynthesis of Q (Fig. 11) requires the enzyme UbiG, a 
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Figure 10 - The electron transport system (ETS). The ETS is composed of a number of 

membrane bound complexes, that generate an electrochemical gradient of protons by 

removing them from the cell. The system then uses that gradient to synthesize ATP. 

During this process, oxygen is used as an electron acceptor. Complex I of the ETS in V. 

fischeri is Na+-NQR, which reduces ubiquinone (Q) to ubiquinol (QH2) through the 

oxidation of NADH (and pumps Na+ ions out of the cell in the process). Complex II 

(SDH) also generates molecules of QH2, but does so through the oxidation of succinate. 

QH2 molecules travel through the lipid center of the inner membrane to Complex III, 

which oxidizes QH2, reduces cytochrome C (CyC), and pumps a proton out of the cell. 

Complex IV then oxidizes CyC by fixing the election onto oxygen, making water in the 

process, and removing an additional proton from the cell. Finally, the electrochemical 

gradient generated by the removal of protons from the cell is used to generate molecules 

of ATP as protons are allowed back into the cell. 
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Figure 11 -The function of UbiG. UbiG mediates the final enzymatic reaction in 

ubiquinone (Q) biosynthesis by converting 2-Proprenyl-3-methyl-5-hydroxyl- 

6-methoxyl-1,4-benzoquinone to Ubiquinol (QH2). The final step of Q biosynthesis is a 

non-enzymatic reaction that converts QH2 to Q.  
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methyltransferase, for the final enzymatic reaction in the biosynthesis of Q (Poon, 

Barkovich et al., 1999, Meganathan, 2001). While a role for this pathway is not well 

studied in biofilm formation, research has established a role for Q, or more specifically a 

role for UbiG, in resistance to stress and longevity of cells. Briefly, E. coli ubiG mutants 

have increased resistance to oxidative stress and a delay in cell death after cultures enter 

stationary phase in an ArcA-dependent manner (Gonidakis, Finkel et al., 2011). 

Interestingly, ArcA, a transcription factor, modulates bioluminescence and quorum 

sensing in V. fischeri (Bose, Kim et al., 2007). 

The role of the Na+-Nqr in electron transport 

In some marine bacteria, some of the functions of Complex I are carried out by 

Na+-translocating NADH:quinone oxidoreductase complex (Na+-Nqr) (Reyes-Prieto, 

Barquera et al., 2014) (Fig. 12). Na+-Nqr is composed of 5 proteins, NqrA-F, that are 

encoded by the nqr locus. The enzymatic action of Na+-Nqr begins as an NADH 

molecule binds to and is oxidized by NqrF and the associated electrons are transferred via 

an FAD molecule and two iron-sulfur bridges in NqrF to an FMN co-factor in NqrC. 

From there, the electrons are shuttled to an FMN, then to a riboflavin co-factor in NqrB, 

before finally reducing coenzyme Q. The free energy released by this reaction is used by 

NqrB, NqrD, and NqrE to pump Na+ ions out of the cell. NqrA does not seem to play a 

catalytic role in the redox or Na+-pumping roles of Na+-Nqr, but appears to be vital for 

the assembly of the complex (Casutt, Huber et al., 2010). 

As described above, rather than transporting H+ ions out of the cell, as is common 

for most NADH:quinone oxidioreductase complexes, Na+-Nqr transports Na+ ions, 

contributing to the sodium motive force rather than the proton motive force. The Na+ 
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Figure 12 - The sodium translocating NADH:quinoneoxidioreductase (Na+-NQR) 

complex. NADH is oxidized to NAD by NqrF and the electrons are shuttled via a FAD 

co-factor in NqrF to iron-sulfur bridges (also in NqrF). The electrons are then 

transported to a riboflavin co-factor in NqrB via FMN co-factors in NqrC and NqrB. 

They are used to reduce Q to QH2. Energy released in the process is used to export 

sodium ions out of the cell. 
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motive force is responsible for driving flagellar motility in V. cholerae (Steuber, Halang 

et al., 2014). In addition, in this organism, reduction of the Na+ motive force is correlated 

with increases in the production of virulence factors, such as Cholera Toxin (CT) and the 

Toxin Co-regulated Pilus (TCP) (Hase and Barquera, 2001). The role of Na+-Nqr has not 

been described in V. fischeri, though all genes encoding the complex are present. 

Amino acid and glutamine biosynthesis 

I have identified one gene involved in the biosynthesis of the amino acid 

glutamine that plays a role in biofilm formation by V. fischeri. In many bacteria, 

glutamine serves as a nitrogen store and an important source of nitrogen in nitrogen-

limiting conditions (Chandra, Basir et al., 2010). The synthesis of glutamine from its 

precursor, glutamate, is mediated by GlnA (Fig. 13). GlnA catalyzes the replacement of 

the hydroxyl in glutamic acid’s side-chain with an amine group. A role for glnA and 

glutamine biosynthesis in V. fischeri has not been reported. 
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Figure 13 - Glutamine biosynthesis. To synthesize glutamine, α-ketoglutarate from 

the TCA cycle is converted to glutamate by glutamate dehydrogenase. Glutamate is 

then converted by GlnA into glutamine.  
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CHAPTER TWO 

METHODS AND MATERIALS 

 

 

Bacterial Strains and Media. The V. fischeri strains and plasmids constructed and/or 

used in this study are listed in Tables 1 and 2. Primers used in this study are listed in 

Table 3. V. fischeri strains ES114 and KV6576 were used as the parental strains for these 

studies. V. fischeri strains were grown in complex LB-salt (LBS) medium (Stabb, Reich 

et al., 2001), seawater tryptone (SWT) medium (Yip, Grublesky et al., 2005), HEPES-

minimal medium (Ruby and Nealson, 1977), Tris-minimal medium (Brooks, Gyllborg et 

al., 2014), and tryptone broth-seawater (TB-SW) motility medium (DeLoney-Marino, 

Wolfe et al., 2003). We also used the E. coli strains GT115 (Invivogen, San Diego, CA), 

CC118, and π3813 (Le Roux, Binesse et al., 2007) for the purposes of cloning and 

conjugation. E. coli strains were grown using either LB (Bertani, 1951) or Brain-heart 

infusion (BHI) (Difco) medium. The following antibiotics were added, as appropriate, at 

the indicated final concentrations: chloramphenicol (Cm) at 1 to 5 μg/ml for V. fischeri 

and 25 μg/ml for E. coli; tetracycline (Tet) at 5 μg/ml for V. fischeri and 15 μg/ml for E. 

coli; kanamycin (Kan) at 100µg/ml for V. fischeri and 50 μg/ml for E. coli; erythromycin 

(Erm) at 5 μg/ml for V. fischeri and 150 μg/ml for E. coli; and ampicillin (Ap) at 100 

μg/ml. Thymidine was added to a final concentration of 300 μM for the growth of π3813 
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Table 1: Strains used in this study. 

Strains Genotype 

Reference or 

Source 

E. coli 

  

GT115 

F- mcrA Δ(mrr-hsdRMS-mcrBC) ɸ80lacZΔM15 

ΔlacX74 recA1 endA1 Δdcm uidA(ΔMluI)::pir-116 

ΔsbcC-sbcD Invivogen 

CC118 

∆(ara-leu) araD ∆lac74 galE galK phoA20 thi-1 

rpsE rpsB argE(am) recA l pir 

(Herrero, de 

Lorenzo et al., 

1990) 

π3813 

lacIq thi-1 supE44 endA1 recA1 hsdR17 gyrA462 

zei-298::Tn10 ∆thyA::(erm-pir) (KanR ErmR TetR) 

(Le Roux, Binesse 

et al., 2007) 

Tam1 

mcrA ∆(mrr-hsdRMS-mcrBC) ɸ80lacZ∆M15 

∆lacX74 recA1 araD139 ∆(ara-leu)7697 galU galK 

rpsL endA1 nupG Active Motif 

DH5α 

endA1 hsdR17 (rK- mK+) supE44 thi-1 recA1 relA 

∆(lacIZYA-argF)U169 phoA [ɸ80dlac∆(lacZ)M15] Fermentas 

   

V. fischeri 

  ES114 Wild Type 

 

KV6576 IG (yeiR-glmS)::lacIq 

(Ondrey and 

Visick, 2014) 

KV6873 IG (yeiR-glmS)::lacIq sdhE::Tn5P ErmR This Study 

KV6939 IG (sypH-sypI)::erm ErmR This Study 

KV6940 IG (sypH-sypI)::cm CmR This Study 

KV6979 IG (yeiR-glmS)::lacIq nqrA::Tn5P ErmR This Study 

KV6983 IG (yeiR-glmS)::lacIq pck::Tn5P ErmR This Study 

KV6984 IG (yeiR-glmS)::lacIq glnA::Tn5P ErmR This Study 

KV6986 IG (yeiR-glmS)::lacIq pck::Tn5P (2) ErmR This Study 

KV6988 IG (yeiR-glmS)::lacIq ubiG::Tn5P ErmR This Study 

KV6990 IG (yeiR-glmS)::lacIq mdh::Tn5P ErmR This Study 

KV7029 IG (yeiR-glmS)::lacIq ∆sdhE This Study 

KV7108 ∆VF_2095 This Study 

KV7125 ∆sdhE This Study 

KV7138 ∆sdhE attTn7::sdhE ErmR This Study 

KV7143 ∆sdhE attTn7::erm ErmR This Study 

KV7422 IG (yeiR-glmS)::lacIq nqr::Tn5P ErmR This Study 

KV7432 

IG (yeiR-glmS)::lacIq IG (VF_A0340-

VF_A0341)::Tn5P ErmR 

(Ondrey and 

Visick, 2014) 

KV7433 IG (yeiR-glmS)::lacIq cheZ::Tn5P ErmR 

(Ondrey and 

Visick, 2014) 
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KV7438 ∆nqrA This Study 

KV7439 IG (yeiR-glmS)::lacIq ∆nqrA  This Study 

KV7448 ∆sypC nqrA::Tn5P ErmR This Study 

KV7449 ∆sypE nqrA::Tn5P ErmR This Study 

KV7450 ∆sypK nqrA::Tn5P ErmR This Study 

KV7451 ∆sypQ nqrA::Tn5P ErmR This Study 

KV7452 

∆VF_A1019 ∆VF_A0120 ∆VF_A0550 nqrA::Tn5P 

ErmR This Study 

KV7466 ∆nqrA pck::Tn5P ErmR This Study 

KV7467 ∆nqrA mdh::Tn5P ErmR This Study 

KV7468 ∆nqrA sdhE::Tn5P ErmR This Study 

KV7469 ∆sdhE pck::Tn5P ErmR This Study 

KV7470 ∆sdhE mdh::Tn5P ErmR This Study 

KV7471 ∆sdhE nqrA::Tn5P ErmR This Study 

KV7541 IG (yeiR-glmS)::lacIq Tn7::erm ErmR This Study 

KV7700 nqrA::Tn5P ErmR This Study 

KV7701 pck::Tn5P ErmR This Study 

KV7702 mdh::Tn5P ErmR This Study 

KV7703 glnA::Tn5P ErmR This Study 

KV7704 ubiG::Tn5P ErmR This Study 

KV7705 sdhE::Tn5P ErmR This Study 

KV7706 ∆sdhE sdhC::erm ErmR This Study 

Temp ∆nqrA csgD::erm ErmR This Study 

KV5948 mshA::Tn5 ErmR 

(Visick, Quirke et 

al., 2013) 

KV4147 csgD::erm ErmR This Study 

Temp ∆nqrA mshA::Tn5 ErmR This Study 
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Table 2: Plasmids used in this study 

Name Description Reference 

pARM7 rscS overexpression vector (TetR) 

(Morris, Darnell 

et al., 2011) 

pCA24n lacIq expression vector (CmR) 

(Kitagawa, Ara et 

al., 2005) 

pCLD46 rscS overexpression vector (CmR) 

(Hussa, Darnell et 

al., 2008) 

pCLD56 sypG overexpression vector (TetR) 

(Morris and 

Visick, 2013) 

pEVS107 Tn7 delivery vector  (ErmR KanR) 

(McCann, Stabb 

et al., 2003) 

pEVS170 Tn5 delivery plasmid (KanR ErmR) 

(Lyell, Dunn et 

al., 2008) 

pJet1.2 PCR cloning vector (AmpR) Fisher 

pJFB9 Vector carrying tfoX (KanR) 

(Brooks, Gyllborg 

et al., 2014) 

pJMO10 

Tn5 delivery plasmid containing an outward facing 

lac promoter near the mosaic end (KanR) 

(Ondrey and 

Visick, 2014) 

pJMO14 pJMO8 containing lacIq at its NotI site (CmR) 

(Ondrey and 

Visick, 2014) 

pJMO22 

pSW8197 containing sypH, a CmR cassette, and sypI 

(KanR CmR) This Study 

pJMO23 

pKV363 containing VF_2095 deletion construct 

(CmR) This Study 

pJMO27 pKV363 containing sdhE deletion construct (CmR) This Study 

pJMO32 pKV363 containing nqrA deletion construct (CmR) This Study 

pJMO33 V. fischeri expression vector (TetR CmR) This Study 

pJMO34 

pJMO33 derived rscS overexpression vector (EcoRI) 

(TetR) This Study 

pJMO8 

pKV363 containing the V. fischeri Tn7 site and 

upstream NotI site (CmR) 

(Ondrey and 

Visick, 2014) 

pJMO9 pJMO8 containing lacI at its NotI site (CmR) This Study 

pKG11 

pKV69 derived rscS overexpression vector (CmR 

TetR) 

(Yip, Geszvain et 

al., 2006) 

pKV282 pKV69 derived empty vector (TetR) 

(Morris, Darnell 

et al., 2011) 

pKV363 suicide plasmid (CmR) 

(Shibata, Yip et 

al., 2012) 

pKV37 expression vector (AmpR CmR) 

(DeLoney, 

Bartley et al., 

2002) 

pKV69 expression vector  (CmR TetR) (Visick and 
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Skoufos, 2001) 

pLosTfoX Vector carrying tfoX (CmR) 

(Pollack-Berti, 

Wollenberg et al., 

2010) 

pLS1 V. fischeri expression vector  (CmR) 

(Visick and Ruby, 

1997) 

pSS18 sypI expression vector (CmR) 

(Shibata, Yip et 

al., 2012) 

pSS23 sypH expression vector (CmR) 

(Shibata, Yip et 

al., 2012) 

pSW8197 suicide plasmid (KanR) 

(Le Roux, 

Binesse et al., 

2007) 
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Table 3: Primers used in this study 

Primer  Gene  Sequence (5’ -3’)  

1484 VF_2371 F CTT GAT TTA TAC AGC GAA GG 

1485 VF_2371 NotI R 

TAG GCG GCC GCA CTT AGT ATG GTT TTG AAG 

AGT AAT TAA TGT TTA TTG 

1486 VF_2372 NotI F 

CAT ACT AAG TGC GGC CGC CTA TAT TGT CTC 

TCT TAG AAC AAT TAT TC 

1487 VF_2372 R GGT CGT GGG GAG TTT TAT CC 

1488 lacI NotI F GCG GCC GCG GGA TCA GGA GGA GAA GAT C 

1489 lacI NotI R GCG GCC GCC GCT CAC TGC CCG CTT TCC 

1544 lacIq NotI F 

GCG GCC GCG ACA CCA TCG AAT GGT GCA AAA 

C 

1700 sdhE Kpn F GGTACC CAT CTT ATG ACT TTA GAT CAT GG 

1701 sdhE Spe R ACTAGT  GT TCA GCG TTA TTT TAA CGT AAC 

1702 sdhE SOE P1 GCC CAC CGA AGG TGA TCT C 

1703 sdhE SOE P2 

TAG GCG GCC GCA CTT AGT ATG    ACT GTA 

CAT ACT GTC CCC TAG 

1704 sdhE SOE P3 

CAT ACT AAG TGC GGC CGC CTA   GAT AAA 

ATC GTT GAG CAC AAC CTC 

1705 VF_2095 Spe R ACTAGT  CAA CAC GAC TAC TTT AAG AGC 

1707 VF_2095 SOE P2 

TAG GCG GCC GCA CTT AGT ATG   GTT CAG 

CGT TAT TTT AAC GTA AC 

1708 VF_2095 SOE P3 

CAT ACT AAG TGC GGC CGC CTA   CTC TTA 

AAG TAG TCG TGT TGT C 

1709 VF_2095 SOE P4 GCG GTG TAA TGG TTG ATA AAC 

1805 P1 nqrA del Gib 

GCG AGG CTG GCC GGC GTC GAC TAT GCA TAA 

CGT ACC TGA AGG 

1806 P2 nqrA del Gib 

GCT CAT CAA TTA CCC TTC CTT CTG CAT GTG 

TCC AGT ATT GAC 

1807 P3 nqrA del Gib 

GTC AAT ACT GGA CAC ATG CAG AAG GAA 

GGG TAA TTG ATG AGC 

1808 P4 nqrA del Gib 

CAG ACA ATT GAC GGC TCT AGA CTT TCG CTA 

CAA CAA CAC CG 
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E. coli cells. Isopropyl β-D-thiogalactopyranoside (IPTG) was generally added at 1.75 

mM or at a range between 1.75 mM and 3.5 µM to induce promoter activity. Agar was 

added at a final concentration of 1.5% for solid media and 0.225% for the motility 

medium. For experiments utilizing LBS plates supplemented with an additional carbon 

source, a 20% stock solution of the indicated carbon source was prepared and filter 

sterilized. Plates were then prepared with a final concentration of 0.2% indicated carbon 

source.  

Insertion of lacIq into the ES114 chromosome. Plasmid pJMO14 was used to insert the 

lacIq gene into the chromosome between yeiR and glmS, adjacent to the attTn7 site (Fig. 

15). To generate pJMO14, upstream and downstream sequences (~500 bp) flanking the 

target insertion site were first amplified from the ES114 chromosome by PCR using 

primers 1484 and 1485 and primers 1486 and 1487, then joined using overlap extension 

PCR (Ho, Hunt et al., 1989, Shibata and Visick, 2012). The resulting DNA fragment, 

which consisted of the flanking sequences joined by non-native sequences including a 

NotI site, was ligated into suicide vector pKV363 to generate pJMO8. Finally, the lacIq 

gene, which was amplified using PCR with pCA24N as a template and primers 1544 

and1489, was cloned into the PCR cloning vector pJET1.2, then sub-cloned into NotI-

digested pJMO8 to generate pJMO14. To insert lacIq into the chromosome, the method of 

Le Roux et al. (Le Roux, Binesse et al., 2007) was used as described previously (Shibata 

and Visick, 2012). The insertion of lacIq into ES114, generating KV6576, was confirmed 

using PCR with primers 974 and 975. 

Construction of Tn5P. Plasmid pJMO10, which was used to deliver the Tn5 + promoter 

(Tn5P) for transposon mutagenesis, was constructed as follows. Oligonucleotides 1439 
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and 1440, which contained sequences for the LacI-repressible PA1/34 promoter (Lanzer 

and Bujard, 1988, Bose, Rosenberg et al., 2008), were annealed and ligated into the 

ApaI/SpeI-digested Tn5 delivery plasmid pEVS170 (Lyell, Dunn et al., 2008). The 

insertion of the promoter into Tn5 was confirmed by sequencing. 

Deletion of sdhE from the chromosome. Plasmid pJMO27 was used to delete the sdhE 

gene from the chromosome. To generate pJMO27, upstream and downstream sequences 

(~500 bp) flanking the gene but including the first 9 and last 39 bases of the sdhE reading 

frame were first amplified from the ES114 chromosome by PCR using primers 1702 and 

1703 and primers 1704 and 1709, then joined using overlap extension PCR (Ho, Hunt et 

al., 1989). The resulting DNA fragment consisted of an allele of sdhE encoding only the 

first 3 and last 12 amino acids; downstream gene VF_2095 overlaps the end of sdhE so 

making a larger deletion that would not also disrupt VF_2095 was not possible. This 

fragment was ligated into the PCR cloning vector pJET1.2, then sub-cloned into 

ClaI/XhoI-digested suicide vector pKV363 to generate pJMO27. To delete sdhE from the 

chromosome, the method of Le Roux et al. (Le Roux, Binesse et al., 2007) was used as 

described previously (Shibata and Visick, 2012). The deletion of sdhE from ES114, 

generating KV7125, was confirmed using PCR with primers 1702 and 1709. 

Deletion of VF_2095 from the chromosome. Plasmid pJMO23 was used to delete the 

VF_2095 gene from the chromosome. To generate pJMO23, upstream and downstream 

sequences (~500 bp) flanking the gene, as well as the first 42 and last 6 bases of the 

VF_2095 reading frame, were first amplified from the ES114 chromosome by PCR using 

primers 1702 and 1707 and primers 1708 and 1709, then joined using overlap extension 

PCR (Ho, Hunt et al., 1989, Shibata and Visick, 2012). The resulting DNA fragment 
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consisted of an allele of VF_2095 encoding only the first 14 and last 3 amino acids; 

upstream gene sdhE overlaps the end of VF_2095 so a larger deletion that would not also 

disrupt sdhE was not possible. This fragment was ligated into the PCR cloning vector 

pJET1.2, then sub-cloned into ClaI/XhoI-digested suicide vector pKV363 to generate 

pJMO23. To delete VF_2095 from the chromosome, the method of Le Roux et al. (Le 

Roux, Binesse et al., 2007) was used as described previously (Shibata and Visick, 2012). 

The deletion of VF_2095 from ES114, generating KV7108, was confirmed using PCR 

with primers 1702 and 1709. 

Deletion of nqrA from the chromosome. Plasmid pJMO32 was used to delete the nqrA 

gene from the chromosome. To generate pJMO32, upstream and downstream sequences 

(~500 bp) flanking the gene, as well as the first 6 and last 12 bases of the nqrA reading 

frame were first amplified from the ES114 chromosome by PCR using primers 1805 and 

1806 and primers 1807 and 1808. The two fragments were joined together and inserted 

into XbaI/SalI cut suicide vector pKV363 using Gibson Assembly (New England 

Biolabs). The resulting plasmid, pJMO32, consisted of an allele of nqrA encoding only 

the first 2 and last 3 amino acids. To delete nqrA from the chromosome, the method of Le 

Roux et al. (Le Roux, Binesse et al., 2007) was used as described previously (Shibata and 

Visick, 2012). The deletion of nqrA from ES114, generating KV7438, was confirmed 

using PCR with primers 1805 and 1809. 

Insertion of a Cm resistance cassette into syp locus. Plasmid pJMO22 was used to 

insert the Cm resistance cassette gene into the chromosome between sypH and sypI (Fig. 

20). To generate pJMO22, sypH was amplified from pSS23 using primers 1720 and 1721, 

sypI was amplified from pSS18 using primers 1724 and 1725, and the Cm resistance 
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cassette was amplified from pKV37 using primers 1722 and 1723. The three fragments 

were joined together and inserted into XbaI/SalI cut suicide vector pSW8197 using 

Gibson Assembly (New England Biolabs). The resulting plasmid, pJMO22 contained the 

Cm resistance cassette flanked by sypH and sypI. To insert the Cm resistance cassette 

into the chromosome, the method of Le Roux et al. (Le Roux, Binesse et al., 2007) was 

used as described previously (Shibata and Visick, 2012). The insertion of the 

chloramphenicol resistance cassette into ES114, generating KV6940, was confirmed 

using PCR with primers 1720 and 1725. 

Transposon Mutagenesis. Parental strain KV6577 (KV6576 containing pRscS plasmid 

pARM7) was mutagenized with Tn5P by performing a tri-parental conjugation (Stabb 

and Ruby, 2002) with two E. coli strains, one carrying pJMO10 (Ondrey and Visick, 

2014) and other carrying pEVS104 (Stabb and Ruby, 2002) and selecting for the insertion 

of the transposon using Erm-, Tet-, and IPTG-containing LBS (LBS-Erm/Tet/IPTG) 

plates. After 72 h, the morphology of the colonies was evaluated. Smooth colonies were 

re-streaked two additional times on LBS-Erm/Tet/IPTG plates and allowed to grow for an 

additional 72 h to verify their phenotype.   

Identification of pRscS Mutants. Smooth mutants were grown non-selectively on LBS 

until they were cured of the TetR plasmid pARM7. TetS strains were then placed on LBS-

Erm and LBS plates not containing antibiotic to assess whether the strain maintained the 

ErmR marker contained within Tn5P.  

Gene Mapping. KV6940 cells containing pJFB9 were made competent by growing them 

in TMM supplemented with 0.2% NAG as described by Brooks et al. (Brooks, Gyllborg 

et al., 2014). Chromosomal DNA samples harvested from putative biofilm mutant strains 
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were then used to transform competent cells (Brooks, Gyllborg et al., 2014). Linkage 

between the CmR cassette in KV6940 and the ErmR cassette within Tn5P was then 

assessed by the loss or maintenance of the CmR cassette. 

Identification of Tn5P Insertion Site. Chromosomal DNA was isolated from 

transposon-insertion mutants and digested using the HhaI restriction enzyme as 

previously described (Lyell, Dunn et al., 2008). Digested DNA was then self-ligated and 

used to transform CC118 E. coli cells, and clones were selected on Erm-containing BHI 

agar. The resulting plasmids were sequenced using primer 908 or 549. 

Wrinkled Colony Assays. Strains were grown overnight in LBS containing an 

appropriate antibiotic at 28°C with agitation, then subcultured into fresh medium and 

grown until they reached exponential phase. Cultures were then diluted to an optical 

density at 600 nm (OD600) of 0.2, concentrated by centrifugation, and re-suspended in 

fresh medium. 10 μl aliquots of each culture were spotted onto an agar plate and 

incubated at room temperature and wrinkled colony development was monitored. 

Pellicle Assays. Strains were grown overnight at 28°C with agitation in a liquid medium 

of LBS, SWT, or Hepes minimal medium. The OD600 of each strain was then measured 

and used to standardize the cell concentration for subsequent sub-culturing into 2 ml of 

LBS or Minimal medium in 24-well microtiter plates at the final OD of 0.1-0.4, 

depending on the experiment. Plates were then placed at 24°C to allow pellicles to form. 

Pellicles were disrupted with a pipette tip at the time indicated to more readily visualize 

the pellicle.   

Motility Assays. Strains were grown overnight in LBS and the cultures were diluted to 

an OD600 of 0.4. Cells were pelleted, washed, and re-suspended in LBS and 5 μl aliquots 
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were inoculated on the surface of TB-SW motility plates lacking or containing IPTG (in 

the range of 1.75 mM to 3.5 µM). Representative images were captured and the diameters 

of the outer ring of the swimming cells were measured using a ruler. 

Squid Colonization Assays. Strains used for squid colonization were grown statically in 

SWT at 28°C for at least 3 hours prior to use in the assay. The OD600 of each sample was 

assessed and bacterial samples at a concentration of 1,000 – 32,000 per ml were 

inoculated into 50 ml of ASW. The inoculum was then added to glass bowls and freshly 

hatched squid were introduced to the bowls. At 3 h or 18 h post inoculation, squid were 

removed from the inoculum and washed in fresh ASW. Animals in the 3 h inoculation 

condition were maintained in fresh ASW until the 18 h time point. Animals were then 

moved to glass scintillation vials and luminescence was assessed using a scintillation 

counter. Once animals exposed to WT V. fischeri exhibited luminescence, all animals 

were homogenized. Homogenates were then diluted and spread onto SWT plates, and the 

plates were then incubated at 28°C. The following day, colonies were counted and total 

CFU/squid were calculated.  

Growth assays. Strains were grown overnight with agitation at 28°C in LBS. Then, the 

OD600 of each strain was measured and 25 ml of fresh LBS was inoculated to a final 

OD600 of 0.01 in a 250 ml beveled flask.  Flasks were then incubated at 28°C with 

agitation.  Growth of the cultures was monitored by assessing OD600 over time.  

Cohesion and adherence assays. To assess cohesion and adherence, a flat ended 

toothpick was drawn through the center of a developed colony (Ray, Driks et al., 2015). 

Cohesion is a qualitative measure of cell-cell associations and was characterized by the 

ability of the colony to self-associate via the production of a matrix and be moved as a 



47 
 

 
 

single unit when disrupted. Adherence is a qualitative measure of cell-surface association 

and was characterized by the colony being resistant to disassociation from the agar 

surface when disrupted, i.e., a portion of the colony sticks to the agar surface. Special 

care was taken to use consistent pressure and speed as spots were disrupted.  

Natural transformation. The method of Brooks et al. (Brooks, Gyllborg et al., 2014) 

was used to transform V. fischeri cells, with the following alterations. 1) V. fischeri cells 

containing a tfoX  over-expression plasmid were grown overnight in LBS at 28°C prior to 

being subcultured into LBS and grown at 25°C during the day. Late in the afternoon, 

strains were subcultured into TMM and grown at 25°C; 2) V. fischeri cells containing a 

TfoX plasmid were taken from frozen glycerol stocks and inoculated into 1 ml LBS in 

the morning and grown with shaking under selection at 28°C. Late in the afternoon, 

strains were subcultured into TMM and grown at 25°C; 3) Chromosomal DNA was 

prepped as described by Singh et al. (Singh, Brooks et al., 2015); 4) In some cases, such 

as transformation of strains exhibiting growth defects, more of the transformation mixture 

was plated after the recovery phase; and 5) Verification of successful natural 

transformation in back-crossed strains was achieved by using a PCR reaction with 

primers on both sides of the insertion site and observing a shift in the size of the Tn5P 

insertion compared to a wild-type control. 
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CHAPTER THREE 

RESULTS 

 

I. Missing regulatory and structural determinants of biofilm formation in V. fischeri 

Biofilm formation in V. fischeri depends upon an intricate regulatory process that 

involves the interplay of positive and negative regulators such as SypG and SypE, and 

has as its end result a complex macromolecular structure, such as a wrinkled colony. As 

described in the literature review, a number of genes are required for the production of 

the polysaccharide and protein components, but it is unlikely that our current knowledge 

of the structural and regulatory genes required for wrinkled colony formation is complete. 

Thus, the goal of this project was to identify additional determinants of biofilm formation 

of V. fischeri, and increase our understanding of this important phenomenon.  

Nearly all of the genetic determinants of biofilm formation identified in V. 

fischeri are positive regulators of biofilm formation, i.e., the presence and activity of their 

gene products are required for the formation of the biofilm. There are methods currently 

used in V. fischeri to identify negative regulators of phenotypes, but they have certain 

caveats that reduce their effectiveness. For example, plasmid libraries containing 

fragments of digested V. fischeri DNA could be used with the goal of identifying a 

negative determinant present within one of the plasmids, but this approach is severely 

limited by the completeness of the existing libraries. Thus, to be able to conduct a 
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saturating screen for negative, as well as positive, determinants of biofilm formation in V. 

fischeri, I first developed a better genetic tool by combining the power of the transposon 

mutagenesis, a method normally used to disrupt genes and identify positive regulators, 

with the addition of an outward facing promoter just within the transposon end, to 

promote the expression of negative regulators. I then generated a strain in which I could 

control promoter activity, and demonstrated that this new tool worked to obtain specific 

classes of mutants. Finally, I used it to search for positive and negative regulators of 

biofilm formation. 

II. Tn5P, a mutagenesis tool for the combined identification of positive and negative 

regulators 

To develop a genetic tool for identifying positive and negative regulators of 

biofilm formation, I chose to introduce an inducible promoter into a transposon that could 

function in V. fischeri. For the inducible promoter, I used the LacI-repressible promoter 

A1/34 (Bose, Rosenberg et al., 2008). This promoter contains two LacI binding sites, one 

between the -35 and -10 sites and another that overlaps the transcriptional start site (Fig. 

14), and has been shown previously to function as a strong promoter in V. fischeri when it 

was inserted directly upstream of an operon (Bose, Rosenberg et al., 2008). I then 

engineered the mini-Tn5 delivery vector pEVS170 (Lyell, Dunn et al., 2008) to contain 

this promoter within the transposable element in an outward-facing position (Fig. 15); the 

insertion of the promoter was confirmed by sequencing. This transposon will be referred 

to as Tn5P, for Tn5 plus Promoter.  
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Figure 14 - Construction of pJMO10 and the Tn5P transposon. (A) The PA1/34 

promoter region (italics) contains two LacI binding sites (bold). The binding of LacI to 

these sites hinders access to the -35 and -10 sites (green), thus repressing transcription. 

The Tn5 end (red) contains a start codon (underlined). B) The PA1/34 promoter region 

described above was introduced to the Tn5 from pEVS170 which contains an 

erythromycin resistance gene and an origin of replication (blue arrow and box) within the 

Tn5 ends (red rectangles). Thus, pJMO10, the modified pEVS170, contains an outward-

facing, LacI-repressible/IPTG-inducible promoter, PA1/34 (green arrow). 
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Figure 15 - Construction of a lacI-expressing V. fischeri strain. ES114 contains a 

Tn7 site (yellow rectangle) between yeiR and glmS. KV6576 was engineered to contain 

the lacI overexpression allele (lacIq, purple arrow) near, but not disrupting, the Tn7 

site. 
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III. Insertion of the lacI gene into V. fischeri and phenotypic assessment 

V. fischeri does not contain the lacI repressor gene. Therefore, to control 

expression from the promoter within Tn5P, it was necessary to introduce the lacI gene 

into V. fischeri. One location traditionally used to insert genes within the V. fischeri 

genome is the Tn7 site, which is positioned between yeiR and glmS (Fig. 15) 

(Lichtenstein and Brenner, 1982, McCann, Stabb et al., 2003). However, because this site 

is heavily utilized for single copy complementation (e.g., (Morris, Darnell et al., 2011)), I 

chose to leave this site intact for future manipulations. Instead, I targeted the insertion of 

lacIq, a more highly transcribed allele of the lacI gene, to a region immediately adjacent 

to the Tn7 site (between yeiR and the Tn7 site) (Fig. 15). The result was a strain, 

KV6576, which contains lacIq, retains an intact Tn7 site, and remains unmarked, 

allowing for the use of an antibiotic resistance marker in future manipulations. I also 

generated an identically constructed lacI containing strain, KV6056, for use in future 

experiments in which less LacI is required for promoter repression (Table 1). 

With the generation of the lacIq-containing V. fischeri, two questions arose: (i) Is 

the lacIq allele functional (e.g., does it control gene expression in V. fischeri?); and (ii) is 

the Tn7 site, which is adjacent to the site of insertion of the lacIq gene, still permissive for 

insertion events? To assess whether the lacIq allele in KV6576 was functional, I 

investigated the ability of this strain to impact expression of a lac promoter-controlled 

gene. Specifically, we introduced into KV6576 a plasmid, pCLD46, which contains the 

rscS gene driven by the lac promoter, or pVSV105, the empty vector from which 

pCLD46 was derived. When pCLD46 is introduced into wild-type V. fischeri, RscS 

protein is made and induces biofilm formation (Hussa, Darnell et al., 2008). One biofilm 
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phenotype that can be readily assessed is the formation of wrinkled colonies. I anticipated 

that, if the lacIq allele in KV6576 were functional, then LacI would repress expression of 

rscS, resulting in a strain that either fails to form wrinkled colonies or does so after a 

delay. Indeed, I found that this strain failed to wrinkle after 24 hours of growth in the 

absence of IPTG (Fig. 16). Moreover, when I grew the strain in the presence of IPTG, 

which should inactivate LacI, wrinkled colonies developed with a timing 

indistinguishable from the control (Fig. 16 and data not shown). These data indicate that 

functional LacI was made and was responsive to IPTG. I note, however, that the 

repression of rscS expression from pCLD46 was not complete: at later times, the strain 

exhibited a modest wrinkling phenotype in the absence of IPTG (Fig. 16). I attribute this 

result to the inability of LacI expressed from the chromosome to fully repress a promoter 

present on a multi-copy plasmid. I further note that this should not be a factor in the event 

of a mutagenesis with Tn5P, as this promoter will be in single copy as it inserts within the 

chromosome. 

To verify that the Tn7 site near the site of lacIq insertion in KV6576 remained 

amenable to manipulation, I used pEVS107, a Tn7 delivery vector that targets the Tn7 

site (McCann, Stabb et al., 2003), to introduce an Erm resistance cassette at that location. 

pEVS107 contains an Erm resistance cassette within the Tn7 ends and a kanamycin 

resistance cassette outside. Erythromycin-resistant strains were readily isolated and 

exhibited sensitivity to kanamycin, as expected when the Tn7 cassette inserts at the Tn7 

site (data not shown).  
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Figure 16 - lac promoter-driven biofilm formation by WT and lacI expressing 

strains. Cultures of wild-type (ES114) and lacIq (KV6576) strains containing either the 

empty vector pVSV105 or RscS expression plasmid pCLD46 were grown in LBS 

containing Cm. Aliquots were diluted to an OD600 of 0.2, spotted onto LBS-Cm 

medium containing or lacking 1.75 mM IPTG, and incubated at room temperature. 

Wrinkled colony formation was assessed at 20 and 50 h post inoculation. 
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IV. Identification of motility mutants 

My data above indicate that the lacI gene inserted into the chromosome is 

functional to repress transcription of a lac promoter-controlled gene. However, the 

question remained, does the lacIq allele control transcription from the PA1/34 promoter 

contained within Tn5P? Specifically, I wondered whether I could induce or repress native 

V. fischeri genes in KV6576 containing insertions of Tn5P. To address this question, I 

chose to evaluate a readily assessable phenotype, motility, prior to performing a larger 

study of biofilm formation. V. fischeri contains a number of genes known (Millikan and 

Ruby, 2003, Millikan and Ruby, 2004, Wolfe, Millikan et al., 2004, Brennan, Mandel et 

al., 2013) or predicted (Wolfe and Visick, 2010) to impact motility. I hypothesized that 

Tn5P insertions upstream of such genes could result in strains with inducible or 

repressible motility. I thus introduced Tn5P into KV6576 and assessed mutant motility on 

soft agar plates that contained or lacked IPTG. From a screen of about 2000 mutants, we 

identified about 20 strains with potential IPTG-dependent motility phenotypes and 

confirmed the phenotypes of a subset of these mutants. Of these, my focus was drawn to 

two strains with opposing phenotypes (Fig. 17). One strain, KV7432, had IPTG-

repressible motility: it exhibited near wild-type motility in the absence of IPTG but 

greatly diminished motility in the presence of IPTG (Fig. 17B). In contrast, IPTG did not 

impact motility of the control strain (Fig. 17A). The second strain of interest, KV7433, 

had IPTG-inducible motility: it was non-motile in the absence of IPTG but regained a 

wild-type motility phenotype in the presence of IPTG (Fig. 17C). Because of their strong 

yet opposite phenotypes, I chose these two strains for additional characterization.  
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Figure 17 - Migration of mutant strains on soft agar. KV6576 (A), KV7432 (B), 

and KV7433 (C) were grown overnight in LBS. Cultures were diluted to an OD600 of 

0.4 prior to inoculation on TB-SW motility medium containing or lacking 1.75 mM 

IPTG. The images depict migration after 5.5 h of incubation at 28°C. 
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I first identified the sites of insertion of Tn5P as described in Materials and 

Methods. The mutant with IPTG-repressible motility, KV7432, contained an insert within 

the intergenic region between VF_A0340 and VF_A0341, with the promoter of Tn5P 

oriented toward VF_A0341 (Fig. 18A). In this orientation, the promoter appears 

positioned to drive expression of the nearby three-gene operon consisting of VF_A0342, 

VF_A0343, and VF_A0344. These three genes are predicted to encode proteins with 

GGDEF or EAL domains. These domains are found in diguanylate cyclase and 

phosphodiesterase proteins, which synthesize and degrade, respectively, the second 

messenger cyclic-di-GMP (c-di-GMP) (Wolfe and Visick, 2010). High levels of cellular 

c-di-GMP inhibit motility in a variety of bacteria (Romling, Gomelsky et al., 2005). 

Therefore, I hypothesize that IPTG-mediated expression from the transposon promoter 

increases the levels of c-di-GMP in the cell and thus, inhibits motility. It also remains 

possible that expression from the Tn5P promoter decreases the expression of VF_A0341, 

which encodes a hypothetical protein with no conserved domains.  

The mutant with IPTG-inducible motility, KV7433, carried the Tn5P insertion 

within the cheZ gene, with the transposon’s promoter oriented with the che operon (Fig. 

18B). In the absence of IPTG, the transposon insertion should interrupt transcription of 

cheZ as well as the downstream che genes, which coordinate chemotaxis and are required 

for motility in V. fischeri (Brennan, Mandel et al., 2013). Thus, it was not surprising that, 

in the absence of IPTG, this mutant exhibited a motility defect. Given that the Tn 

insertion was within the cheZ gene, however, it was unexpected that the addition of IPTG 

would restore near wild-type motility (Fig. 17). Upon closer investigation of the insertion 

site, I noted that (1) the Tn is inserted near the beginning of cheZ, and (2) an ATG start 
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Figure 18 - The location and orientation of the Tn5P insertions in two motility 

mutants. The insertion in KV7432 is located in the intergenic region between 

VF_A0340 and VF_A0341 with the A1/34 promoter oriented toward VF_A0341 (A). 

The insertion in KV7433 is located within the 5’ end of cheZ with the A1/34 promoter 

oriented toward cheA (B). 
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codon within the Tn5P transposon end is in frame with the cheZ open reading frame (Fig. 

14A and data not shown). Based on these observations, I hypothesize that expression 

from the transposon’s promoter and translation from the ATG within the transposon end 

results in the production of a hybrid CheZ protein with an altered N-terminus that is 

functional to promote motility.  

Assessment of IPTG induction 

My previous experiments used a single concentration of IPTG, 1.75 mM, to 

induce transcription from the Tn5P promoter. However, it was unclear whether this high 

amount of IPTG was necessary to obtain full repression/induction of motility by our 

strains. Thus, to determine the sensitivity of the Tn5P promoter to IPTG, I assessed the 

mutants’ motility phenotypes in the presence of a range of IPTG concentrations. KV7433 

exhibited a dose-dependent increase in motility within a wide range of IPTG 

concentrations between 3.5 μM and 175 μM IPTG that was not further increased with 

additional IPTG (Fig. 19). The other mutant, KV7432, similarly exhibited a dose-

dependent change. In this case, the impact on motility required higher IPTG 

concentrations, above 35 μM; at the highest amount tested, 1.75 mM, motility was not 

fully repressed (Fig. 19). These data further support my conclusion that expression from 

the Tn5P promoter is induced by the addition of IPTG. Additionally, because I obtained 

different ranges of IPTG addition required for a transition from the motile to non-motile 

phenotype in the two strains, I conclude that it may be necessary to experimentally 

determine the optimal expression of a particular gene obtained using this experimental 

set-up (lacIq/Tn5P) by titrating the concentration of IPTG in the medium against the 

phenotype being tested.
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Figure 19 - Dependence of mutant motility phenotypes on IPTG. Motility mutants 

KV7432 and KV7433 were grown at 28°C in TB-SW motility medium containing the 

indicated concentrations of IPTG. The average diameter of migration of triplicate 

samples after 5 hours is shown. Standard deviation is indicated by error bars. Error bars 

smaller than the plotted points are occluded by the points and not visible. 
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V. Identification of Biofilm Mutants  

Having demonstrated that the lacIq/Tn5P mutagenesis system was capable of 

identifying regulators of phenotypes through induction with the promoter, I applied this 

technique to the identification of genetic determinants of biofilm formation in V. fischeri. 

I hypothesized that I would be able to identify genes whose increased expression driven 

by the Tn5P promoter caused a decrease in biofilm formation in addition to Tn5P 

disrupted genes required for biofilm formation. Therefore I introduced the Tn5P to a lacIq 

expressing biofilm forming strain (KV6576 containing rscS-overexpression plasmid 

pARM7), selected for insertional mutants and screened for smooth colonies on plates 

containing IPTG. Over the course of 15 independent mutagenesis experiments, I screened 

approximately 47,000 mutants, and identified approximately 270 mutants displaying a 

smooth phenotype in the presence of IPTG. 

VI. Elimination of Characterized Mutants 

As I noted in the literature review, there are many known and characterized 

genetic determinants of biofilm formation in V. fischeri, including syp, rscS and rpoN. 

Indeed, due to the large size of the syp locus, it was likely that many of my smooth 

mutant strains would have insertions within this locus. Because my goal was to identify 

new factors involved in biofilm formation, I first sought to rule out strains with insertions 

within the plasmid borne rscS gene, the chromosomally encoded rpoN gene, and the 

chromosomally encoded syp locus.  

Identification and elimination of insertions within pRscS  

Insertions within chromosomal rscS would be unlikely to cause a defect in biofilm 

formation due to the multiple copies of the rscS plasmid pARM7 also present within 
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these strains. However, an insertion of Tn5P into the pARM7-borne rscS allele could 

result in a smooth phenotype. If a mutant strain contains the Tn5P insertion within the 

pARM7 plasmid, then the same strain cured of its plasmid would lose the Tn5P 

associated ErmR cassette and be ErmS. To identify mutants with insertions within the 

plasmid borne rscS allele, I cured all of the mutant strains of the pARM7 plasmid and 

then assessed the plasmid-less strains for their ability to grow on medium containing 

Erm. 143 TetS strains that remained ErmR were determined to contain insertions 

elsewhere (NOT within the plasmid borne rscS allele); those strains were maintained and 

others were set aside. Nearly half of the mutant strains contained Tn5P insertions within 

the rscS plasmid (Table 4).  

Identification and elimination of insertions within rpoN  

Next, I sought to identify mutant strains with insertions within the rpoN gene, 

which encodes the sigma factor required for biofilm formation and motility (Wolfe, 

Millikan et al., 2004). I leveraged rpoN’s dual role by utilizing a motility assay to identify 

insertions likely within this gene. If the strain is both non-motile and has a biofilm defect, 

there is likely an insertion within rpoN. To do this, I grew each of the mutant strains in 

TB-SW motility medium and assessed the ability of the mutants to migrate through the 

agar. 13 mutant strains were non-motile and were set aside as putative rpoN mutant 

strains (Table 4). Motile strains were considered to have the Tn5P insertion not within 

rpoN and were further analyzed. While additional uncharacterized genes could perform 

dual roles in both motility and biofilm formation, it was deemed more likely that such 

mutants would have insertions within rpoN. Indeed, a number of putative rpoN mutants 

were later confirmed as such.
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Table 4: Mutants  

 

Mutant Type Number of mutants (remaining) 

Total smooth mutants 270 

Putative Tn5P insertions within pRscS 127 (143) 

Putative Tn5P insertions within rpoN 13 (130) 

Putative Tn5P inserts within syp 103 (27) 

Mutants with severe growth defects 5 (22) 

Identified novel Tn5P insertions 8 (14) 

Unidentified Tn5P insertions 14 
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Identification and elimination of insertions within the syp locus 

Lastly, I sought to identify and eliminate mutants with insertions within the genes 

of the syp locus. Insertions within almost any of these genes will result in an inability to 

form biofilms (Yip, 2005; Shibata, 2012). To identify putative syp mutants, I developed a 

linkage assay described in Methods and Materials (Fig. 20). Briefly, by transforming 

chromosomal DNA from my mutant strains containing the ErmR Tn5P into a syp-Cm 

strain, I could assess for linkage between the Tn5P and syp (between the Erm and Cm 

antibiotic markers). 103 of the remaining mutant strains exhibited Cm sensitivity (thus 

linkage) (Table 4) and were eliminated from further consideration. The remaining 

mutants were retained for further study. While I was able to utilize this method to quickly 

identify Tn5P insertion sites within the syp locus, it is also possible that some of the 

mutants were not within but rather near the syp locus. This is of relatively little concern, 

however, as many of the genes adjacent to the syp locus have already been assessed and 

do not cause a smooth colony phenotype when disrupted (Yip, Grublesky et al., 2005, 

Ray, Driks et al., 2015). 

Ruling out a role for second site mutations in the smooth mutant strains 

Of the remaining smooth mutants, 8 were selected for further characterization 

(Table 4). However, there remained a possibility that the smooth phenotype was due to a 

mutation at a site secondary to the Tn5P insertion site. To confirm that the Tn5P insertion 

could be responsible for the smooth phenotype, I used natural transformation to 

backcross the Tn5P and surrounding DNA into the parent strain. Once a backcrossed 

strain was obtained, pJMO34, a plasmid containing rscS driven by the cat 

(chloramphenicol acetyltransferase) promoter (thus not LacI-repressible) was introduced 
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Figure 20 - Establishing linkage between the syp locus and Tn5P insertion sites. A 

recipient strain was generated by introducing a CmR cassette to the center of the syp 

locus between sypH and sypI. DNA from the biofilm defective mutant strains was 

transformed into the recipient strain and recombinant cells were selected by growth on 

Erm containing medium. Linkage between the Tn5P insertion site and the center of the 

syp locus was then determined by assessing ErmR strains for sensitivity to Cm. Strains 

that exhibited sensitivity to Cm in more than 1 out of 10 transformants was considered 

to contain a Tn5P insertion within the syp locus by virtue of the linkage between the 

Tn5P and the Cm cassette within the syp locus.  



66 
 

 
 

to the mutant and the strain was reassessed for wrinkled colony formation. Mutants that 

maintained a smooth or severely delayed wrinkling phenotype were retained and further 

analyzed to identify the site of insertion as described in Materials and Methods. 

VII. Characterization of the biofilm mutants 

In the following sections, I will describe the individual biofilm-defective mutant 

strains I obtained and my approaches to test specific hypotheses that could explain why 

the loss of a given gene could inhibit or impair the ability of the strain to form a biofilm. 

This work provides a broad overview of the roles of central metabolism and the electron 

transport system in wrinkled colony formation in V. fischeri and possible mechanisms by 

which central metabolism and electron transport may modulate the process. 

The role of glnA on wrinkled colony formation by V. fischeri 

Introduction 

The biosynthesis of amino acids is vital to the health and growth of the cell. In V. 

fischeri, a number of amino acid auxotrophs either fail to form wrinkled colonies (Singh, 

Brooks et al., 2015), fail to colonize (Graf and Ruby, 1998), or both (Singh, Brooks et al., 

2015). Cysteine auxotrophs, specifically mutants of the cysK gene, are unable to form 

wrinkled colonies unless the growth medium is supplemented with cysteine or the 

mutants are grown together with a different strain that is able to synthesize cysteine 

(Singh, Brooks et al., 2015). While the mechanism for the role of cysteine in V. fischeri 

biofilm formation has not been uncovered, the requirement for the amino acid is certain.  

One of the smooth mutants I collected from my screen contained an insertion 

within the glnA gene.  As described in the literature review, the GlnA protein encoded by 

this gene is responsible for replacing the hydroxyl in glutamic acid’s side-chain with an 
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amine group, thus generating glutamine. In the following section, I will describe the 

phenotype of the glnA mutant and test a number of hypotheses that could explain why the 

loss of glutamine synthesis inhibits biofilm formation in V. fischeri. 

The glnA Tn5P mutant strain 

From my screen of wrinkled colony defective mutants, I isolated one mutant with 

an insertion in glnA (VF_0098). The Tn5P insertion was positioned on chromosome I 

between bases 115,019 and 115,020, and the Tn5P promoter was oriented upstream, in 

the orientation opposite to glnA transcription (Fig. 21). Whereas the parent strain formed 

wrinkled colonies within 18 h, the glnA mutant strain exhibited a severe defect in 

wrinkled colony formation: the mutant colonies remained smooth even after 77 h of 

growth (Fig. 22). These results suggest a role for glnA and glutamine biosynthesis in 

biofilm formation by V. fischeri. 

The role of Tn5P promoter and polar effects on biofilm formation in the 

glnA::Tn5P mutant strain 

Based solely on the position and orientation of the Tn5P insertion (Fig. 21), it is 

possible the Tn could cause dysregulation of a number of genes other than glnA that 

could mediate the observed phenotype. For example, it is possible that the defect in 

biofilm formation is caused by the Tn5P promoter driving expression of typA, a putative 

GTP binding protein. If this were the case, I would expect that the smooth colony 

phenotype would depend on the presence of IPTG in the medium. However, this was not 

the case as many experiments, including those in Figure 22, were conducted in the 

absence of IPTG, and therefore the absence of expression from the Tn5P promoter.  
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Figure 21 - The location and orientation of the Tn5P insertion in the glnA mutant 

strain. The insertion in glnA::Tn5P is located in glnA on chromosome I between bases 

115,019 and 115,020 with the A1/34 promoter oriented opposite of glnA transcription. 
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Figure 22 - The biofilm phenotype of the glnA::Tn5P mutant strain. The ability of 

the glnA::Tn5P mutant strain to wrinkle was assessed using the wrinkled colony assay. 

A parental strain carrying an empty vector (pJMO33) does not exhibit wrinkling or any 

colony architecture even after 77 h when grown on LBS. Parental strains carrying an 

rscS overexpression vector (pJMO34) have begun to wrinkle by 18 h and maintain a 

wrinkled morphology. The glnA::Tn5P mutant strain carrying pJMO34 does not 

wrinkle even after 77 h of growth. This figure is representative of at least 3 

independent experiments. 
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It is also possible that the Tn5P insertion exerts polar effects on these downstream 

genes. However, it is unlikely based on the relatively large gap (250 bp) between the end 

of glnA and the beginning of the next gene on the chromosome, VF_0097 (which encodes 

a hypothetical protein). Additionally, based on the role of glnA in glutamine biosynthesis, 

my investigations into this mutant described below, it is unlikely that polar effects 

account for the disruption in biofilm formation of this mutant. 

The role of GlnA substrate accumulation in biofilm formation 

One potential reason for the defect in biofilm formation of the glnA mutant strain 

is the accumulation of the GlnA substrates, glutamate or NH3 (Fig. 13). If the glnA 

smooth phenotype is mediated by the accumulation of glutamate, then the addition of 

glutamate should delay or inhibit wrinkling by the parental strain. To test this possibility, 

I inoculated the parental strain onto a medium containing 0.2% glutamic acid and 

assessed wrinkled colony formation. No differences in wrinkling were observed at the 

times assessed (Fig. 23), though the start of wrinkling was not captured. Given the 

extreme nature of the glnA mutant defect, these results suggest that the accumulation of 

glutamate in the glnA mutant is not responsible for the defect in biofilm formation.  

One of the functions of glutamine is to store nitrogen in the form of the amine group on 

its side-chain (Chandra, Basir et al., 2010). Therefore, the activity of GlnA removes NH3 

from its soluble form in the cell and stores it for times of nitrogen limitation. I thus 

hypothesized that the glnA mutant may have increased levels of NH3 that could cause its 

biofilm defect. If increased levels of NH3 are responsible for the inability of the glnA 

mutant to form wrinkled colonies, then the addition of ammonia should delay or inhibit 

the ability of the parental strain to form a wrinkled colony. To test this possibility, I 



71 
 

 
 

 
Figure 23 - The phenotype of a parental strain grown in the presence of 

supplemented glutamic acid. The role of GlnA substrate accumulation on biofilm 

formation was assessed by growing the parental strain in LBS medium supplemented 

with 0.2% glutamic acid. Compared to the parental strain grown on LBS with no extra 

nutrient added, the parental strain grown in LBS + glutamic acid does not appear to 

exhibit a biofilm defect that would be expected if glutamate accumulation contributed 

to the inability of the glnA::Tn5P mutant to form a biofilm. The empty vector, pEV, is 

pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure is representative of at least 

2 independent experiments. 
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inoculated the parental strain onto LBS medium supplemented with 0.2% ammonium 

chloride and assessed wrinkled colony formation. No differences in wrinkled colony 

formation were observed at the times assessed (Fig. 24). These results suggest that any 

accumulation of NH3 that may occur in the glnA mutant is not responsible for the defect 

in biofilm formation.  

The role of GlnA product loss in biofilm formation 

The function of GlnA is the synthesis of glutamine from glutamate and ammonia. 

The decrease in availability of glutamine in the glnA mutant strain may contribute to the 

inability of the strain to form a wrinkled colony. If the glnA smooth phenotype is 

mediated by the loss of the GlnA product, then the addition of glutamine, the product of 

GlnA, should restore the wrinkling phenotype. To test this possibility, I inoculated the 

glnA mutant onto medium supplemented with 0.2% glutamine and assessed wrinkled 

colony formation. Even at the earliest time points assessed, the exogenous addition of 

glutamine to the glnA mutant strain restored the ability of the mutant to form wrinkled 

colonies (Fig. 25). While the phenotype of the parental strain was altered when grown in 

the presence of 0.2% glutamine compared to LBS, the ability of the glnA mutant to form 

wrinkled colonies was clearly restored. This demonstrates that glutamine is required for 

biofilm formation by V. fischeri. Further, it suggests that even if there are polar effects of 

the Tn insertion, they do not significantly impact biofilm formation. Additionally, this 

result rules out a role for second site mutations in the phenotype of the glnA mutant. 

V. fischeri amino acid auxotrophs are capable of being complemented by growth 

in close proximity to non-auxotrophic cells. An investigation into the role of cysteine in 

V. fischeri biofilm formation by Singh et al. demonstrated that co-inoculating cysteine 
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Figure 24 - The phenotype of a parental strain grown in the presence of 

supplemented ammonia. The role of GlnA substrate accumulation on biofilm 

formation was assessed by growing the parental strain in LBS medium supplemented 

with 0.2% ammonium chloride. Compared to the parental strain grown on LBS with no 

extra nutrient added, the parental strain grown in LBS + ammonia does not appear to 

exhibit a biofilm defect that would be expected if ammonia accumulation contributed 

to the inability of the glnA::Tn5P mutant to form a biofilm. The empty vector, pEV, is 

pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure is representative of at least 

2 independent experiments. 
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Figure 25 - The phenotype of a parental and glnA mutant strains grown in the 

presence of supplemented glutamine. The role of GlnA product loss on biofilm 

formation was assessed by growing the glnA::Tn5P mutant strain in LBS medium 

supplemented with 0.2% glutamine. No change in phenotype was noted between the 

parental strain containing the control vector grown in with LBS or LBS supplemented 

with glutamine. The empty vector, pEV, is pJMO33. The RscS plasmid, pRscS, is 

pJMO34. This figure is representative of at least 3 independent experiments. 
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biosynthesis-competent but non-biofilm forming V. fischeri strains with a cysK mutant 

strain restores the ability of the cysK mutant to form wrinkled colonies (Singh, Brooks et 

al., 2015). Presumably, this is because the strain competent in cysteine biosynthesis 

exports enough of the amino acid to complement the defect of the cysK mutant strain. 

Thus, I next asked whether the defect of the glnA mutant strain could be restored by co-

incubation with non-biofilm forming, but glutamine-synthesizing strain. However, the 

mixture of the glnA mutant strain with a sypL mutant strain was not sufficient to restore 

wrinkling to the glnA mutant (Fig. 26). One possibility for this is that glutamine may not 

be exported like cysteine (Dassler, Maier et al., 2000, Franke, Resch et al., 2003). 

The role of GlnA in Syp PS production 

While a role for glutamine in biofilm formation has now been established, there 

remains the question of what that role is and whether it impacts pathways known to be 

involved in wrinkled colony formation, such as Syp PS production. V. fischeri strains that 

produce the Syp PS exhibit increased cell-cell associations and, as a consequence, the 

disruption of a colony with a toothpick results in the entire colony being moved as a unit 

(Ray, 2015). I will refer to this phenotype as “cohesion” (Fig. 27A). V. fischeri cells not 

induced to produce Syp PS do not show cohesion: the toothpick readily penetrates the 

spot without disrupting the entire colony (Fig. 27B). To assess the ability of the glnA 

mutant strain to produce the Syp PS, the glnA mutant strain was inoculated onto LBS 

medium and the resulting spot was disrupted after 77 h of growth. Unlike the parental 

strain, colonies of the glnA mutant strain could not be moved as a single unit (Fig. 27). 

These results suggest that the glnA mutant strain does not produce Syp PS at all, or does 



76 
 

 
 

 
Figure 26 - The biofilm phenotype of the glnA mutant strain mixed with a 

glutamine biosynthesis competent strain. Some biofilm defects can be restored by 

mixing the defective strain with a second strain possessing an intact pathway for which 

the first strain is defective. To test whether the glnA mutant strain’s biofilm defect can 

be restored in this manner, the mutant was mixed with a glutamine biosynthesis+ strain 

(∆sypL) and assessed using a wrinkled colony assay. In both the presence and absence 

of IPTG, mixture with the ∆sypL strain was unable to restore the biofilm defect of the 

glnA mutant strain. This experiment was conducted once.  
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Figure 27 - The agar adherence phenotype of the glnA::Tn5P mutant strain. 

Strains were spotted and allowed to develop a biofilm for 77 h and then disrupted with 

a wooden toothpick by dragging the toothpick across the colony. When the parental 

strain carrying rscS overespression plasmid pJMO34 is disrupted, the wrinkled colony 

maintains cell-cell cohesion and gathers into a bunch A). The parental strain carrying 

an empty vector is easily disrupted and exhibits no cohesion due to a lack of Syp 

polysaccharide production B). The glnA::Tn5P mutant strain, like the parent strain 

carrying the control vector, exhibited no cell-cell cohesion. The empty vector, pEV, is 

pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure is representative of at least 

2 independent experiments. 
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not produce the PS in sufficient quantities to promote wrinkled colony formation. The 

role that glutamine has in PS production is unclear.  

The biofilm phenotype of the glnA mutant strain grown on LBS containing 

glucose 

As part of work performed with other mutants described below, I tested the 

impact of a number of other carbon sources on the glnA mutant phenotype (Methods and 

Materials). The wrinkled colony and Syp PS defects of the glnA mutant strain remained 

unaltered, with one exception: the addition of 0.2% glucose resulted in increased 

cohesion of the strain (Fig. 28). This result suggests that glucose causes increased 

production of the Syp PS in the glnA mutant. However, the addition of glucose also 

caused a delay in wrinkling of the parent strain (Fig. 28). My current data do not permit 

me to determine if the delayed wrinkling stems from delayed PS production or from a 

defect in the production of Bmp or another matrix protein required for wrinkled colony 

formation. The impact of glucose on the ability of both the glnA mutant and the wild-type 

strain to form a biofilm merits further investigation.  

Summary 

In summary, my screen for mutants unable to form wrinkled colonies yielded a 

mutant with a Tn5P insertion within the glnA gene. Investigations into the role of glnA in 

wrinkled colony formation showed that the defect in biofilm formation was not due to 

either activity of the Tn5P promoter or polar effects of the insertion. Instead, my data 

indicate that the glnA mutant strain is unable to form a wrinkled colony due, at least in 

part, to its inability to produce sufficient levels of Syp PS. However, there remains 

another underlying defect, as Syp PS production, but not wrinkled colony development, 
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Figure 28 - The biofilm phenotype of the glnA::Tn5P mutant in response to 

glucose. The addition of glucose promoted an increase in colony size of the parental 

strain carrying pJMO34 but delayed wrinkled colony formation (18 h timepoint). The 

glnA mutant strain transitioned from a non-cohesive phenotype in LBS to a cohesive 

phenotype in the presence of glucose. The empty vector, pEV, is pJMO33. The RscS 

plasmid, pRscS, is pJMO34. This figure is representative of at least 2 independent 

experiments. 
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was restored when glnA mutants were exposed to glucose. These data demonstrate a 

specific requirement for glutamine in the formation of a wrinkled colony by V. fischeri.  

The role of mdh on wrinkled colony formation by V. fischeri 

Introduction 

One of the smooth mutants I collected in my screen was a strain with an insertion 

within the TCA cycle gene, mdh. Mdh catalyzes the oxidation of malate into oxaloacetate 

(OAA) with the coincident reduction of NAD to NADH (Fig. 7), as well as the reverse 

reaction. In the following section, I describe the phenotype of the mdh mutant and test a 

number of hypotheses that could explain why the loss of Mdh function contributes to a 

defect in biofilm formation by V. fischeri. 

The mdh::Tn5P mutant strain 

From my screen of wrinkled colony defective mutants, I isolated one mutant with 

an insertion in mdh (VF_0276).  The Tn5P insertion was positioned on chromosome I 

between bases 283,689 and 283,690 with the Tn5P promoter oriented upstream, in the 

opposite orientation to mdh transcription (Fig. 29). The mdh gene does not appear to be a 

part of a larger operon, suggesting that the wrinkled colony defect is not due to polar 

effects. Using the spotted colony time course assay, I found that the mdh mutant 

exhibited a severe defect in wrinkled colony formation: whereas the parent strain formed 

wrinkled colonies within 18 h, the mdh::Tn5P mutant strain exhibited a severe delay in 

biofilm formation: the mutant colonies began to show signs of wrinkling only after 

around 42 h of growth (Fig. 30). Moreover, it never developed a normal wrinkled colony 

morphology, but instead exhibited a divoting phenotype (Fig. 30). When I disrupted the 

mdh mutant spot with a toothpick after 77 h, I found that the center adhered strongly to 
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Figure 29 - The location and orientation of the Tn5P insertion in the mdh mutant 

strain. The insertion in mdh::Tn5P is located in mdh on chromosome I between bases 

283,689 and 283,690 with the A1/34 promoter oriented opposite of mdh transcription. 
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Figure 30 - The biofilm phenotype of the mdh::Tn5P mutant strain. The ability of 

the mdh::Tn5P mutant strain to wrinkle was assessed using the wrinkled colony assay. 

A parental strain carrying an empty vector (pJMO33) does not exhibit wrinkling or any 

colony architecture even after 77 h when grown on LBS. Parental strains carrying an 

rscS overexpression vector (pJMO34) have begun to wrinkle by 18 h and maintain a 

wrinkled morphology. The mdh::Tn5P mutant strain carrying pJMO34 begins to 

exhibit a divoting colony morphology at 44 h but never exhibits a WT wrinkling 

phenotype. When disrupted at 77 h, the mdh::Tn5P mutant strain exhibits colony 

cohesion at its edges, but adheres to the plate at its divoted center. The empty vector, 

pEV, is pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure is representative 

of at least 3 independent experiments. 
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the agar surface, rather than being moved as a single unit, as has been observed for the 

parent. I will describe this novel phenotype in more detail below. Finally, to determine if 

the promoter within Tn5P contributed to the observed phenotype, I performed the same 

experiment in the presence of IPTG, but was unable to distinguish phenotypic differences 

between mutants grown in the presence or absence of IPTG (data not shown). I conclude 

that neither polar nor Tn5P promoter effects are contributing to the smooth phenotype of 

the mdh::Tn5P mutant strain.  

The role of Mdh substrate accumulation in biofilm formation 

One potential cause for the delay in biofilm formation by the mdh::Tn5P mutant 

strain is an accumulation of the Mdh substrate, malate, as carbon is cycling around the 

TCA cycle. If the mdh::Tn5P mutant strain’s delay in wrinkling is mediated by the 

accumulation of this Mdh substrate, the addition of malate should also delay wrinkling by 

the parental strain. To test this possibility, I inoculated the parental strain onto LBS 

medium supplemented with 0.2% malic acid and assessed the formation of wrinkled 

colonies. Unfortunately, the addition of malic acid to the medium resulted in V. fischeri 

strains that failed to grow (data not shown). This effect was not caused by an acidic pH, 

as the medium used, LBS, was a Tris-buffered medium and the pH of the agar plates 

remained near 7.5, the pH of the buffer.  Thus, a role for malate accumulation in the 

inhibition of biofilm formation cannot be ruled out.   

The role of OAA, the Mdh product, in biofilm formation and Syp PS production 

Another potential cause for the delay in biofilm formation by the mdh::Tn5P 

mutant strain is that there may be a lack of the Mdh product, OAA. If a lack of OAA 

contributes to the delay and/or defect in biofilm formation by the mutant, then the 
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addition of OAA to the growth medium of an mdh mutant should restore a more normal 

timing or pattern of wrinkling. To test this possibility, I inoculated the mdh::Tn5P mutant 

strain and its parent onto LBS medium supplemented with 0.2% OAA and assessed 

wrinkled colony formation. When grown in the presence of OAA, the parent strain 

exhibited a modest delay (~10 h) in wrinkled colony formation compared to its growth in 

LBS (Fig. 31). After the delay, the parental strain developed normally and the colony 

displayed the typical cohesive properties when disrupted (Fig. 31). In contrast to the 

expectation that OAA addition might restore the ability of the mdh mutant to wrinkle, the 

mdh::Tn5P mutant failed to wrinkle in the presence of OAA, even after 77 hours of 

growth (Fig. 31). Given the delayed biofilm results obtained for the parent, it would not 

have been surprising had the mdh mutant exhibited a further delay compared to the no 

addition control, but a complete lack of wrinkling was unexpected. Lastly, I disrupted the 

colony formed by the mdh mutant with a toothpick at 77 h. I found that the adherence to 

the plate that I observed in the no addition control was fully abolished in the presence of 

OAA (Fig. 31). Together, these data first suggest that, at the amount I used, OAA does 

not make a positive contribution to biofilm formation, but rather caused increased delays 

and decreased biofilm formation. Second, these data suggests that, if adhesion, like 

cohesion (Ray, Driks et al., 2015), depends on Syp PS, then exposure to OAA causes a 

decrease in Syp PS production. 

The impact of other carbon sources on wrinkled colony formation by the 

mdh::Tn5P mutant strain  

 It was somewhat surprising that we would see evidence of a decrease in PS 

production in the mdh::Tn5P mutant strain with the addition of OAA, a TCA intermediate 
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Figure 31 - The biofilm phenotypes of the parental and mdh mutant strains in the 

presence of OAA. The ability of the Mdh product, OAA, to rescue the biofilm defect 

of the mdh::Tn5P mutant strain was assessed using the wrinkled colony assay. 

Compared to growth in LBS, the parental strains carrying pJMO34 were delayed in 

wrinkled colony formation (18 h and 26 h). When exposed to OAA the mdh::Tn5P 

mutant strain was completely inhibited in both the development of colony morphology 

(divoting) and agar adherence. The empty vector, pEV, is pJMO33. The RscS plasmid, 

pRscS, is pJMO34. This figure is representative of at least 2 independent experiments. 
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that can serve as an input to the gluconeogenic (GNG) pathway and, thus, polysaccharide 

production.  Therefore, I asked whether the addition of GNG end-products more proximal 

to PS biosynthesis, i.e., further along the GNG pathway, would cause a similar decrease 

in cell-surface adhesion in the mdh mutant strain. Specifically, I inoculated the mdh 

mutant strain onto medium supplemented with 0.2% glucose or glucose-6-phosphate 

(G6P) and assessed colony morphology and adhesion. When grown in the presence of 

these two carbon sources, the parent strain exhibited phenotypes similar to those 

observed when grown in OAA: a moderate delay in wrinkling yet a normal wrinkling 

pattern and strong cell-cell cohesion when disrupted at 77 h (Figs. 31 & 32). The 

response of the mdh::Tn5P mutant to glucose and G6P was also similar to its response to 

OAA: these carbon sources fully disrupted both the divoting and, more strikingly, colony 

adhesion observed in their absence (Figs. 31 & 32). These data suggest that the addition 

of gluconeogenic carbon sources inhibits biofilm formation in general. Furthermore, 

these data suggest that the addition of these carbon sources can result in a decrease in Syp 

PS production. Quantification of Syp PS production will need to be conducted in these 

strains under these conditions to verify this hypothesis.  

 Finally, to determine if the responses I observed were specific to GNG carbon 

sources, I tested whether other available nutrients (Methods and Materials), when 

supplemented at 0.2%, modulated biofilm formation of the mdh::Tn5P mutant strain. The 

addition of the nitrogen source ammonium chloride accelerated the onset of colony edge 

wrinkling in the mutant strain, which was best observed at the 44 h time point (Fig. 33). 

Two of the other nutrients tested, glutamine and glutamic acid, resulted in an increased 

amount of wrinkling (Fig. 33). The addition of glutamic acid increased the intensity of 
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Figure 32 - The biofilm phenotypes of the parental and mdh mutant strains in the 

presence of Glucose and G6P. The ability of additional gluconeogenic end products, 

glucose and G6P, to inhibit the divoting and adhesion phenotypes of the mdh::Tn5P 

mutant strain was assessed using the wrinkled colony and toothpick assays. Compared 

to growth in LBS (Fig. 31), the parental strain was delayed in wrinkled colony 

formation when grown in both glucose and G6P. When exposed to glucose and G6P 

the mdh::Tn5P mutant strain was completely inhibited in both the development of 

colony morphology (divoting) and agar adherence. The RscS plasmid, pRscS, is 

pJMO34. This figure is representative of at least 2 independent experiments. 
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Figure 33 - The biofilm phenotypes of the mdh mutant strain in the presence of 

ammonia, glutamic acid, and glutamine. To assess whether the response of the 

mdh::Tn5P mutant strain to GNG end products (Figs. 31 & 32) was specific to the 

GNG end products, the mdh::Tn5P mutant was grown on additional nutrient sources 

and the biofilm phenotypes were assessed using the wrinkled colony and toothpick 

assays. Compared to growth in LBS, the mdh::Tn5P mutant strain exhibited an increase 

in edge wrinkling and center divoting when grown in ammonia and glutamic acid 

respectively. When grown in the presence of glutamine, the mdh::Tn5P mutant strain 

exhibited a restoration of WT biofilm phenotypes after a delay. The RscS plasmid, 

pRscS, is pJMO34. This figure is representative of at least 2 independent experiments. 
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the divoting at the center of the colony, which can be best seen at the 44 h time point 

(Fig. 33). Finally, the addition of glutamine resulted in a transition from a divoting center 

to a wrinkling center. Furthermore, glutamine addition caused a loss of cell-surface 

adhesion (Fig. 33). These data suggest that mdh::Tn5P mutant strain is somehow 

defective in glutamine or nitrogen regulation, though this has not been tested directly. 

Additionally, these data seem to show a correlation between the divoting phenotype and 

the agar adhesion phenotype. The connection between the two remains an area of interest. 

Finally, these data support my finding that the loss of adhesion when grown in the 

presence of GNG end-products is, in fact, specific to those carbon sources and not a 

general defect in biofilm formation caused by the supplementation of any additional 

nutrients in the medium. 

Summary 

In my screen for mutants with defects in wrinkled colony formation, I identified a 

mutant with a Tn5P insertion within the mdh gene. Investigations into the role of mdh in 

wrinkled colony formation could not rule out a role for malate accumulation, but did not 

support a role for OAA depletion as a cause of the defects. Further investigation 

suggested that increases in the concentrations of certain GNG substrates, intermediates, 

and end-products (OAA, G6P , and glucose) decreased the production of the Syp PS in 

the mdh mutant strain, while the addition of some GlnA products and byproducts 

(especially glutamine) promoted normal wrinkled colony formation. Of special interest 

was the ability of glutamine addition to restore both near-normal wrinkling and cell-cell 

cohesion.  
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The role of pck on wrinkled colony formation by V. ficsheri 

Introduction 

Two of the smooth mutants I collected in my screen contained insertions within 

the GNG pathway gene, pck. Pck removes carbon from the TCA cycle by catalyzing the 

decarboxylation and phosphorylation of OAA into PEP linked to the hydrolysis of GTP 

to GDP (Fig. 9). In the following section, I describe the phenotype of the pck mutant and 

test a number of hypotheses that could explain why the loss of Pck function could 

contribute to a loss of biofilm formation by V. fischeri. 

The pck::Tn5P mutant strains 

From my screen of wrinkled colony defective mutants, I isolated two independent 

mutants with insertions in pck (VF_2478). One mutant strain contained the Tn5P 

insertion between bases 2,775,405 and 2,775,406 on chromosome I with the Tn5P 

promoter oriented in the same direction as pck transcription (pck::Tn5P-forward) (Fig. 

34A). The second pck mutant strain had the Tn5P insertion positioned between bases 

2,775,455 and 2,775,456 with the Tn5P promoter oriented opposite to pck transcription 

(pck::Tn5P-reverse) (Fig. 34B). While the parent strain formed wrinkled colonies within 

18 h, the pck mutant strains failed to form wrinkled colonies: the mutant colonies 

remained smooth even after 77 h of growth (Fig. 35, data not shown).  

Based on the different orientations of Tn5P insertion, it seemed highly unlikely 

that the smooth phenotypes of the two pck mutant strains were caused by expression of 

neighboring genes from the Tn5P promoter. Indeed, I found no differences in wrinkled 

colony formation when the two strains were grown in the absence or presence of IPTG 

(Fig. 36). Based on these findings, I conclude that the two mutant strains are unable to 
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Figure 34 - The location and orientation of the Tn5P insertions in the pck mutant 

strains. The insertion in pck::Tn5P-forward is located in pck on chromosome I 

between bases 2,775,405 and 2,775,406 with the A1/34 promoter oriented in the 

direction of pck transcription. The insertion in pck::Tn5P-reverse is located in pck on 

chromosome I between bases 2,775,455 and 2,775,456 with the A1/34 promoter 

oriented opposite of pck transcription. 



92 
 

 
 

 
Figure 35 - The biofilm phenotype of the pck::Tn5P-forward mutant strain. The 

ability of the pck::Tn5P-forward mutant strain to wrinkle was assessed using the 

wrinkled colony and toothpick assays. A parental strain carrying an empty vector 

(pJMO33) does not exhibit wrinkling or any colony architecture even after 77 h when 

grown on LBS. Parental strains carrying an rscS overexpression vector (pJMO34) have 

begun to wrinkle by 18 h and maintain a wrinkled morphology. The pck::Tn5P mutant 

strain carrying pJMO34 does not develop colony morphology at advanced timepoints 

but does exhibit a agar adherence phenotype at the center of the colony when disrupted 

at 77 h. When the pck::Tn5P-forward mutant is grown in the presence of the Pck 

substrate, OAA, the mutant strain loses its adherence phenotype. The empty vector, 

pEV, is pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure is representative 

of at least 2 independent experiments. 
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Figure 36 - The biofilm phenotypes of the pck mutant strains in the presence and 

absence of IPTG. To assess the role of the Tn5P promoter in the phenotype of the pck 

mutant strains, each strain was grown in the absence or presence of IPTG and assessed 

for the ability to form a biofilm. Both pck::Tn5P-forward and pck::Tn5P-reverse strains 

failed to form a biofilm and exhibited the same phenotype under both conditions. The 

RscS plasmid, pRscS, is pJMO34. This experiment has been conducted one time.  
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form wrinkled colonies due to the disruption of the pck gene and, thus, I conducted 

addition experiments primarily with the pck::Tn5P-forward mutant strain (henceforth 

referred to as simply pck::Tn5P).  

 The GNG pathway, and therefore Pck, is likely required for the biosynthesis of 

polysaccharide precursors utilized in Syp PS production. Thus, I first sought to identify 

whether there was a defect in Syp PS production. To assess the production of Syp PS, I 

applied the toothpick assay to colonies just after the 77 h time point. Reminiscent of the 

mdh mutant, the pck mutant colony also adhered to the agar surface (Fig. 35, arrow), 

although it didn’t exhibit the divoting pattern observed with the mdh mutant. These 

results suggest that there is some Syp PS production in the pck mutant strain.  

The role of pck substrate accumulation in biofilm formation 

In the cell, Pck is responsible for facilitating the removal of carbon out of the 

TCA cycle toward gluconeogenesis.  It does this by coupling the hydrolysis of GTP to the 

decarboxylation and subsequent phosphorylation of OAA into phosphoenolpyruvate 

(PEP) (Fig. 9). Therefore, in the pck mutant strain, there is likely either an accumulation 

of OAA, or OAA continues around the TCA cycle. If an accumulation of OAA plays a 

role in the inability of the mutant to form a wrinkled colony, the addition of OAA to a 

wild-type strain should have a similar effect. I performed this work as part of my 

investigation of the mdh mutant strain, and found that OAA caused only a moderate delay 

in wrinkled colony formation of the parent (Fig. 31). When I assessed the pck mutant, I 

found that it lost the agar adherence phenotype when exposed to OAA, like the mdh 

mutant (Fig. 35). Together, these data suggest that the accumulation of OAA may inhibit 
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adhesion and cohesion by the pck::Tn5P mutant strain, an effect that is amplified by the 

addition of OAA to the growth medium.  

The effect of GNG end-products on the ability of the pck mutant to form wrinkled 

colonies 

 Based on the nature of Pck’s role in GNG and potentially polysaccharide 

production, I next asked whether a hypothetical decrease in PS production could be 

complemented by the addition of carbon sources more proximal to PS precursors. If the 

pck mutant strain is unable to effectively perform GNG due to an inability to feed that 

pathway with carbon from the TCA cycle, then the addition of carbon sources that do not 

have to be processed by Pck to be converted into PS precursors, namely glucose and 

G6P, should compensate for this defect and promote the formation of wrinkled colonies. 

To test this hypothesis, I inoculated the pck::Tn5P mutant strain on medium 

supplemented with 0.2% glucose or G6P and assessed the wrinkled colony formation. 

The parent strain, as I observed previously (Fig. 32), exhibited a slight delay in wrinkled 

colony formation upon the addition of glucose and G6P, then continued to develop 

normal colony morphology. When exposed to either glucose or G6P, the pck::Tn5P 

mutant no longer adhered to the agar surface (Fig. 37, center of spots)—likely indicating 

a reduction in Syp PS—and did not exhibit any notable increase in cohesion. Growth 

with the other carbon sources tested, including succinate (Fig. 37), citrate, and glutamine, 

resulted in in no significant phenotype changes. I conclude that a simple decrease in 

availability of PS precursors in the pck mutant cannot account for its smooth colony 

phenotype.  

 



96 
 

 
 

 
Figure 37 - The biofilm phenotypes of the pck mutant strain in the presence of 

glucose, G6P, and succinate. To assess whether the pck mutant strain’s GNG defect 

was restricting the strain’s ability to produce polysaccharide, the pck::Tn5P mutant was 

grown in the presence of carbon sources that do not have to be processed by Pck, and 

biofilm phenotypes were assessed. Similar to when it was grown in the presence of 

OAA (Fig. 35), when grown in both glucose and G6P, the pck::Tn5P mutant lost its 

adherence phenotype and did not wrinkle at advanced timepoints. The response of the 

pck mutant is specific to the addition to these carbon sources as the addition of other 

nutrients, such as succinate, did not result in a phenotypic change compared to growth 

on LBS. The RscS plasmid, pRscS, is pJMO34.This figure is representative of at least 

2 independent experiments 
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Summary 

In my screen for mutant with defects in wrinkled colony formation, I identified a 

mutant with a Tn5P insertion within the pck gene. Investigations into the role of pck in 

wrinkled colony formation supported a potential role for OAA accumulation but could 

not rule out a role for PEP depletion as PEP addition was not tested.  Investigations into 

the role of Syp PS production and GNG in the pck mutant’s smooth phenotype uncovered 

a minor agar attachment phenotype that could be inhibited by the addition of GNG 

substrates, intermediates, and products but not others. These experiments thus support the 

hypothesis that these carbon sources play an inhibitory role in biofilm formation by V. 

fischeri. 

The role of sdhE in wrinkled colony formation by V. fischeri 

Introduction 

 One of the smooth mutants I collected contained an insertion within VF_2096, 

which was annotated as a hypothetical protein. My subsequent bioinformatic analysis of 

this gene suggested that it encodes a homolog of the E. coli protein succinate 

dehydrogenase subunit E (SdhE), a member of the TCA and ETS complex succinate 

dehydrogenase (SDH) (Fig. 5). In E. coli, SdhE serves as a cytosolic protein that delivers 

the FAD co-factor to the membrane associated SdhCDAB complex, thereby activating its 

enzymatic activity (McNeil, Clulow et al., 2012, McNeil and Fineran, 2013). In addition, 

SdhE has been shown to activate the reverse reaction, fumarate to succinate, via FAD 

delivery to the fumarate reductase (FRD) complex (McNeil, Hampton et al., 2014). In the 

following section, I describe the phenotype of the sdhE mutant and test a number of 
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hypotheses that could explain why the loss of function of the SDH complex (or FRD 

complex) could contribute to the defect in biofilm formation by V. fischeri. 

VF_2096::Tn5P mutant strains are defective for wrinkled colony formation 

From my screen of wrinkled colony defective mutants, I isolated one mutant with 

an insertion in VF_2096. The Tn5P insertion was positioned on chromosome I between 

bases 2,333,206 and 2,333,207 with the Tn5P promoter oriented in the same direction as 

VF_2096 transcription (Fig. 38). Downstream and overlapping is a second gene, 

VF_2095, that encodes a hypothetical protein. In a time course assay of wrinkled colony 

formation, I found that, while the parent formed wrinkled colonies after 18 h, the 

VF_2096::Tn5P mutant strain exhibited a severe defect in wrinkled colony formation, 

with mutant colonies just beginning to show structure at 77 h (Fig. 39). However, rather 

than wrinkling like the wild-type, the colonies formed divots similar to those of the mdh 

mutant strain (Fig. 30). Also, like the mdh and pck mutant strains, the VF_2096::Tn5P 

mutant strain adhered to the agar at the center of the colony (Fig. 39). These results 

suggest a role for VF_2096 in biofilm formation by V. fischeri. 

VF_2096 is sdhE 

My bioinformatic analysis of the VF_2096 amino acid sequence identified 

significant identity with E. coli SdhE,  including all catalytic, stabilizing, and conserved 

as described by McNeil and Fineran (Fig. 40) (McNeil and Fineran, 2013). I thus sought 

to confirm that the identity of VF_2096 as sdhE. If VF_2096 were sdhE, the sdhE mutant 

strain should grow poorly when succinate is provided as the sole carbon source. To test 

this hypothesis, I grew both the parent and the VF_2096::Tn5P mutant strain in minimal 

medium broth containing succinate and observed growth. After growth overnight in 
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Figure 38 - The location and orientation of the Tn5P insertion in the sdhE mutant 

strain. The insertion in sdhE::Tn5P is located in sdhE on chromosome I between bases 

2,333,206 and 2,333,207 with the A1/34 promoter oriented in the direction of sdhE 

transcription. 
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Figure 39 - The biofilm phenotype of the sdhE::Tn5P mutant strain. The ability of 

the sdhE::Tn5P mutant strain to wrinkle was assessed using the wrinkled colony and 

toothpick assays. A parental strain carrying an empty vector (pJMO33) does not exhibit 

wrinkling or any colony architecture even after 77 h when grown on LBS. Parental 

strains carrying an rscS overexpression vector (pJMO34) have begun to wrinkle by 18 

h and maintain a wrinkled morphology. The sdhE::Tn5P mutant strain carrying 

pJMO34 develops a slight divoting colony morphology at advanced timepoints and 

adheres to the agar when disrupted at 77 h. The empty vector, pEV, is pJMO33. The 

RscS plasmid, pRscS, is pJMO34. This figure is representative of at least 3 

independent experiments. 
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Figure 40 - Amino acid alignment of V. fischeri and E. coli SdhE proteins. Previous 

study of the E. coli SdhE protein identified a number of catalytic (Red) and stabilizing 

residues (Yellow) for the function of the protein, as well as a number of other residues 

conserved various SdhE proteins found in other species of bacteria (Green) (McNeil, 

2013). Alignment of the V. fischeri SdhE polypeptide chain next to the E. coli SdhE 

reveals that all catalytic, stabilizing, and conserved residues are present in the V. 

fischeri SdhE.  
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either rich medium (LBS) or minimal medium + succinate, the parental strain was turbid 

in both, signifying growth. The VF_2096::Tn5P mutant strain, however, grew only in the 

rich medium (data not shown). This confirms that VF_2096 has a role in succinate 

metabolism, and further supports its identity as sdhE in V. fischeri, and will henceforth be 

referred to as such. 

sdhE is required for wrinkled colony formation 

Based on the position and orientation of the Tn5P insertion (Fig. 38), it was 

possible that the Tn could be exhibiting polar effects on the downstream gene VF_2095. 

Indeed, analysis by McNeil and Fineran (McNeil and Fineran, 2013) demonstrated that 

both sdhE and its overlapping gene (VF_2095) are conserved in many organisms, 

suggesting that the downstream gene may have a linked function. Because disruption of 

VF_2095, sdhE, or both genes together could be the cause of the biofilm phenotype, I 

first investigated which of the two genes was required for wrinkled colony formation. If 

the loss of sdhE mediates the loss of wrinkled colony formation in the sdhE::Tn5P mutant 

strain, an in-frame deletion mutant of sdhE would also result in the smooth phenotype. To 

test this hypothesis, I generated an in-frame unmarked deletion of sdhE and assessed that 

strain for its ability to form a biofilm. The ∆sdhE strain exhibited a severe biofilm defect 

similar to the Tn mutant (Fig. 41). These data confirm a role for sdhE in biofilm 

formation by V. fischeri. 

While I have shown a role for sdhE in the process of wrinkled colony formation, 

my experiments thus far don’t rule out a role for the linked VF_2095. If VF_2095 does 

have a role in biofilm formation, deletion or disruption of this gene alone would also 

result in a defect in biofilm formation. To test this hypothesis, I generated an in-frame 
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Figure 41 - The biofilm phenotype of a ∆sdhE mutant strain. A mutant carrying an 

unmarked in-frame deletion of sdhE exhibits the biofilm defect of the transposon 

mutant. The empty vector, pEV, is pKV282. The RscS plasmid, pRscS, is pARM7. 

This experiment has been conducted one time. 
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unmarked deletion of the VF_2095 gene and assessed wrinkled colony formation. At the 

times assessed, the intensity of wrinkling in the ∆VF_2095 strain was indistinguishable 

from that of the parent strain (Fig. 42). While the onset of wrinkling was not captured in 

the strains, it appears that the role of VF_2095 in wrinkled colony formation is minimal if 

at all. 

Mutants of sdhE have a similar phenotype to mutants of sdhC 

As noted previously, SdhE is a promiscuous protein with known roles in the 

activation of SDH as well as FRD. I thus wondered if the requirement for SdhE depended 

on its role in the SDH complex or was due to one of its other functions. I hypothesized 

that, if the wrinkled colony phenotype of the sdhE mutant were due to its role in the SDH 

complex, then its mutant phenotype should be comparable to that of a mutant defective 

specifically for the SDH complex (e.g.,  sdhC). If, instead, the defect of the sdhE mutant 

were greater than that of the sdhC mutant strain, then SdhE may be impacting multiple 

enzymes or complexes such as FRD. I thus compared the biofilm phenotypes of the 

sdhE::Tn5P mutant to an sdhC::Tn5 mutant that the Visick lab possesses. I found that, 

while the sdhC and sdhE mutants both exhibited biofilm defects compared to a parent 

strain, the phenotypes of the two mutants differed somewhat: the sdhE mutant had a 

greater defect in the development of the divoting colony morphology (Fig. 43). Clearly, 

these data demonstrate that a functioning SDH complex is required for the development 

of normal biofilms, but the greater defect of the sdhE mutant suggests that SdhE may 

provide an FAD co-factor to another protein required to promote biofilm formation. 

Experiments testing this hypothesis have not been conducted.   
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Figure 42 - The biofilm phenotype of a ∆VF_2095 mutant strain. To rule out a role 

for VF_2095, the gene directly downstream of sdhE, in the biofilm defect, an 

unmarked in-frame deletion mutant of VF_2095 was assessed for biofilm formation 

using the wrinkled colony assay. V. fischeri strains lacking VF_2095 appear identical 

to the parental strain. The empty vector, pEV, is pKV282. The RscS plasmid, pRscS, is 

pARM7.This experiment has been conducted one time. 
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Figure 43 - A comparison of the biofilm phenotypes of the sdhE::Tn5P and 

sdhC::Tn5 mutant strains. To gain insight on the potential promiscuity of the SdhE 

protein, the biofilm phenotype of the sdhE::Tn5P mutant strain was compared to that of 

an sdhC::Tn5 mutant strain using a wrinkled colony assay. Both sdh mutant strains 

exhibit a severe defect in wrinkled colony formation with the sdhC::Tn5 mutant strain 

also exhibiting divoting at the center of its colonies. However, the sdhC::Tn5 mutant 

strain begins to develop divoting earlier than the sdhE::Tn5P mutant strain (49 h and 

77 h respectively). The empty vector, pEV, is pJMO33. The RscS plasmid, pRscS, is 

pJMO34.This figure is representative of at least 2 independent experiments. 
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The role of SDH substrate accumulation in biofilm formation 

One reason for the defect in biofilm formation by the sdhE (and sdhC::Tn5) 

mutant strain could be the accumulation of the SDH substrate, succinate. If the sdh 

phenotype is mediated by the accumulation of succinate, the addition of succinate to the 

parent strain should delay or inhibit wrinkled colony formation. To test this possibility, I 

inoculated the parent strain on medium containing 0.2% succinic acid and assessed 

wrinkled colony formation. No significant changes were observed in wrinkling by the 

parent strain at the time points captured. However, there appeared to be a slight increase 

in the divoting of the sdhE mutant strain when grown in the presence of succinate; 

divoting occurred at 49 h in presence of succinate instead of at 77 h in its absence (Fig. 

44). The rationale for this experiment is predicated on the assumption that the TCA cycle 

is cycling “clockwise” and SdhE is primarily functioning to activate SDH. However, the 

TCA cycle could also be cycling counterclockwise, with SdhE activating the FRD 

complex. In such a situation, succinate, the product of FRD, would be depleted and these 

data could be interpreted to mean that the addition of succinate suppresses the defect. To 

further test this possibility, I repeated the experiment with the sdhC::Tn5 mutant strain, 

which should be deficient only for SDH activity. If the sdhC::Tn5 mutant strain is “blind” 

to succinate, then it is likely that the primarily role of SdhE is to activate FRD. However, 

when grown with succinate, the sdhC::Tn5 mutant strain also exhibited an earlier 

appearance of divoting, with this architecture appearing at 44 h rather than 49 h (Fig. 44).  

These data suggest that the defect of the sdhE mutant is not caused by an accumulation of 

the SDH substrate succinate and could indicate that the presence of succinate promotes 

the formation of biofilms in V. fischeri. 
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Figure 44 - A comparison of the biofilm phenotypes of the sdhE::Tn5P and 

sdhC::Tn5 mutant strains in the presence of succinate. To gain insight on the 

potential promiscuity of the SdhE protein, the biofilm phenotype of the sdhE::Tn5P 

mutant strain was compared to that of an sdhC::Tn5 mutant strain using a wrinkled 

colony assay. Both sdh mutant strains exhibit a severe defect in wrinkled colony 

formation with the sdhC::Tn5 mutant strain also exhibiting divoting at the center of its 

colonies. However, the sdhC::Tn5 mutant strain begins to develop divoting earlier than 

the sdhE::Tn5P mutant strain (49 h and 77 h respectively). The empty vector, pEV, is 

pJMO33. The RscS plasmid, pRscS, is pJMO34.This figure is representative of at least 

2 independent experiments. 
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The role of SDH product loss in biofilm formation 

 An alternative reason for the defect in biofilm formation by the sdhE mutant 

strain could be a loss of the SDH product, fumarate. If the sdhE mutant phenotype is 

mediated by the loss of fumarate, the addition of fumarate to the mutant strain would 

partially or fully restore wrinkled colony formation. To test this possibility, I examined 

wrinkled colony formation by the sdhE mutant and its parent in the presence and absence 

of 0.2% fumaric acid. Unfortunately, the addition of fumarate to the medium inhibited 

growth of V. fischeri (data not shown). It thus remains possible that the loss of the 

fumarate product could contribute to the biofilm defect observed for the sdhE mutant 

strain or that the addition of fumatate at that concentration is toxic to the cells, similar to 

the effect of malate.  

The effect of a variety of carbon sources on sdhE mutant strain wrinkling 

 I next assessed the impact of a variety of other nutrients (Materials and Methods) 

on the phenotype of the sdhE mutant.  Succinate, glutamic acid, and ammonia had no 

noticeable effect on the biofilm phenotypes of the sdhE mutant strain. Similar to what I 

have observed with other mutant strains, the addition of glucose, G-6-P, and OAA 

abrogated the formation of secondary structures, i.e., divots (Fig. 45A). Interestingly, 

there was a reproducible difference when comparing the agar adhesion phenotypes of the 

sdhC and sdhE mutant strains: colonies of the sdhE mutant strain could be dislodged as a 

single unit when grown in OAA while colonies of the sdhC mutant could be similarly 

dislodged when grown in glucose and G6P (Fig. 45B). There were also differences in the 

response of the sdhE and sdhC mutant strains to serine: the addition of 0.2% serine 

promoted wrinkling, especially along the outside edge of the spots, of the sdhC mutant 
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Figure 45 - The biofilm phenotypes of the sdh mutant strains in the presence of 

GNG carbons and serine. To assess whether the addition of other nutrient sources 

would alter the phenotypes of the sdh mutant strains the sdhE::Tn5P and sdhC::Tn5 

mutant strains were grown on LBS supplemented with a variety of nutrient sources and 

assessed for biofilm formation using a wrinkled colony assay. The addition of GNG 

carbon sources generally inhibited both the divoting and adherence phenotypes of the 

sdhE and sdhC mutant strains, however, a consistently different phenotype of weak 

adherence occurred: when the sdhE::Tn5P mutant was grown in glucose and G6P or the 

sdhC::Tn5 mutant was grown in OAA, a greater portion of the spot adhered to the plate. 

Growth of the two mutants in serine promoted wrinkling of the colony edges. The RscS 

plasmid, pRscS, is pJMO34. This figure is representative of at least 2 representative 

images. 
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but not the sdhE mutant (Fig. 45). The reasons for these different responses and the 

mechanisms that drive them are unclear, but these phenotypes lend support to the 

hypothesis that the SDH complex plays a role in biofilm formation and suggests that 

SdhE may play a role in biofilm formation beyond activation SDH.  

The role of sdhE in growth  

Disruption of SDH, a complex that functions in both the TCA cycle and ETS, is 

likely to have effects on the growth rate of mutant strains. Indeed, when examining liquid 

sub-cultures, I noted that the turbidity of the ∆sdhE strain was consistently lower than 

that of its parent. To quantify this possible growth defect, I inoculated ∆sdhE mutant and 

its parent in LBS and monitored growth as described in Methods and Materials. Growth 

data showed that the two strains remained at relatively similar optical densities at 600 nm 

(OD600) until they reached an OD600 of about 1.5. Then, the growth rate of the parent 

strain continued in exponential growth while growth of the ∆sdhE strain seemed to 

plateau early at an OD600 of around 1.75 (Fig. 46A). However, after prolonged 

(overnight) growth, the ∆sdhE strain reached almost the same OD600 as its parent (Fig. 

46B). I hypothesize that the ∆sdhE strain is inefficient in generating ATP through the 

ETS and the TCA cycle, but remains able to use non-aerobic means for growth.  

Squid colonization by the sdhE mutant strain 

A majority of V. fischeri biofilm mutants are defective in initiating colonization of 

the squid host. One exception, the bmpABC mutant, failed to form wrinkled colonies, but 

still produced Syp PS and was competent to colonize the squid (Ray, 2015). While the 

∆sdhE strain has severe defects in wild-type biofilm formation, the cells appear, based on 

the agar adherence and divoting patterns, able to produce Syp PS. However, it is 
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Figure 46 - Growth curve of the sdhE mutant strain. The growth rate of the sdhE 

mutant strain was assessed by assessing the OD throughout one day, and then once the 

following morning after growth overnight. This experiment has been conducted one 

time. 
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unknown whether the strain produces enough PS to colonize the squid, and/or whether it 

is defective in additional unknown processes required to initiate colonization. To assess 

whether the biofilm defect of the sdhE mutant strain correlated with defects in the ability 

of the strain to colonize its host, I exposed freshly hatched squid to wild-type and ∆sdhE 

strains and evaluated colonization as described in Materials & Methods. My data showed 

that there was 10-fold decrease in the number of ∆sdhE cells present in the squid 

compared to the parent (Fig. 47). This moderate 10-fold decrease may be meaningful, as 

a 10-fold colonization defect would likely be much more exaggerated in a competitive 

environment. Alternatively, the defect could also be due to the known growth defect of 

the sdhE mutant. Additional experimentation will need to be conducted to gain more 

insight. 

The role of sdhE in bioluminescence 

 During the colonization experiments, I noted that when I evaluated luminescence, 

an indirect measure of colonization, squid exposed to the ∆sdhE strain emitted no 

detectable light, a result that suggested that they were uncolonized. However, as 

described above, these squid were clearly colonized. This observation thus seemed to 

indicate that the ∆sdhE strain was defective for bioluminescence. Indeed, it has been a 

reported that E. coli sdhE mutants have a defect in the production of quorum sensing 

molecules, though luminescence was, naturally, never tested (McNeil, Clulow et al., 

2012). To assess a possible bioluminescence defect more directly, I measured 

luminescence of the ∆sdhE mutant and its parent in culture. The level of luminescence 

exhibited by the parent strain indicated that luminescence was activated by an OD600 of 

about 0.9. While the sdhE mutant strain reached that OD600, it never reached that level of 
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Figure 47 - Colonization phenotype of the ∆sdhE mutant strain. Juvenile squid 

were exposed to either wild-type or ∆sdhE V. fischeri overnight or placed in sterile 

seawater. After 18 h animals were sacrificed, homogenated. Squid homogenates were 

inoculated onto SWT medium and incubated at 28°C. V. fischeri colonies were counted 

the following day and CFU/squid was calculated. The limit of detection (14 

CFU/squid) is indicated by a red line. This experiment has been conducted one time. 
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luminescence (Fig. 48). Additionally, while the sdhC mutant strain was able to grow to 

an OD of 1.2, its light output was only 15% of its WT counterpart at the same OD. These 

preliminary data suggest that the luminescence defect of the sdhE mutant strain is likely 

caused by a loss of function of the SDH complex, and that an intact SDH is required for 

bioluminescence. These results may also indicate that while the ∆sdhE is able to colonize 

juvenile animals, it will exhibit a persistence defect commensurate with other 

luminescence mutants.  

Summary 

In my screen for mutant with defects in wrinkled colony formation, I identified a 

mutant with a Tn5P insertion within the sdhE gene. Investigations into the role of sdhE in 

wrinkled colony formation confirmed a role for SDH and suggested a role for another 

target of SdhE activation. Additional experiments demonstrated that an intact SDH is 

required for wild-type growth, bioluminescence, and probably colonization as the sdhE 

mutant strain exhibits a defect in both growth and luminescence, as well as a 10-fold 

defect in squid colonization. Further work will be needed to determine whether the defect 

in colonization is due to its growth phenotype or to a genuine defect in colonization 

initiation. 

The role of Na+-NQR and electron transport in wrinkled colony formation by V. 

fischeri 

Introduction 

 Two of the smooth mutants I collected contained insertions within the nqrA gene 

and an undetermined nqr gene (nqr). These genes encode proteins that make up the Na+-

translocating NADH:quinone Reductase (Na+-NQR) complex. Na+-NQR is predicted to 



116 
 

 
 

 
Figure 48 - Bioluminescence of the sdhE and sdhC mutant strains. The ∆sdhE 

mutant strain exhibited an apparent bioluminescence defect during squid colonization 

experiments. To assess whether there was a defect of bioluminescence in culture, and 

whether this defect was due to either a defect in SDH or an alternate target of SdhE, the 

bioluminescence of both the ∆sdhE and sdhC::Tn5 mutant strains were assessed. This 

figure is representative of at least 2 independent experiments. 
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serve as Complex I of the Electron Transport System (ETS) in V. fischeri where it utilizes 

the energy released in the redox reaction of NADH to QH2 to pump Na+ ions out of the 

cell. In the following section, I describe the phenotype of the nqr mutants and test a 

number of hypotheses that could explain why a loss of function in Na+-NQR could 

contribute to a defect in biofilm formation by V. fischeri. 

The nqrA::Tn5P and nqr::Tn5P mutant strains 

From my screen of wrinkled colony-defective mutants, I isolated two independent 

mutants with insertions within the genes of the nqr locus, a 6 gene locus positioned on 

chromosome I that encodes the structural proteins of Na+-NQR. The Tn5P insertion 

disrupting nqrA was positioned between bases 792,504 and 792,505 with the Tn5P 

promoter oriented in the orientation opposite to nqrA transcription (Fig. 49A). Identifying 

the location of the Tn5P insertion disrupting the second nqr gene was complicated by 

multiple poor sequencing results. However, sequencing data suggest that the Tn5P was 

inserted within nqrB with the Tn5P promoter oriented in the opposite direction to nqrB 

transcription (Fig. 49B). Due to this ambiguity, this mutant will be referred to as 

nqr::Tn5P. A time course evaluation of wrinkled colony formation revealed that the 

nqrA::Tn5P mutant strain was both severely delayed and defective: while the parent 

formed wrinkled colonies within 18 h, the mutant colony began to show signs of divoting 

only after 44 h of growth (Fig. 50A). In addition to these phenotypes, the nqrA::Tn5P 

mutant strain exhibited a very tight adherence to the agar surface (Fig. 50A). The 

adherence phenotype exhibited by the nqr mutant strains is far greater than the adherence 

displayed by the previous mutant strains, as even the edges could not be moved from the 

agar surface. Indeed, this adherence phenotype occurred at very early times (e.g., 10 h) 
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Figure 49 - The location and orientation of the Tn5P insertions in the nqr mutant 

strains. The insertion in nqrA::Tn5P is located in nqrA on chromosome I between 

bases 792,504 and 792,505 with the A1/34 promoter oriented opposite of nqrA 

transcription. The insertion in nqr::Tn5P is located within nqr, possibly nqrB as 

depicted, on chromosome I with the A1/34 promoter oriented opposite of nqr 

transcription. 
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Figure 50 - The biofilm phenotype of the nqrA::Tn5P mutant strain. The ability of 

the nqrA::Tn5P mutant strain to wrinkle was assessed using the wrinkled colony and 

toothpick assays. A) A parental strain carrying an empty vector (pJMO33) does not 

exhibit wrinkling or any colony architecture even after 77 h when grown on LBS. 

Parental strains carrying an rscS overexpression vector (pJMO34) have begun to 

wrinkle by 18 h and maintain a wrinkled morphology. The nqrA::Tn5P mutant strain 

carrying pJMO34 first develops regular wrinkling around its edge (not captured in this 

timecourse, see Fig. 51 26h) then develops a severe divoting colony morphology. The 

nqrA::Tn5P tightly adheres to the agar when disrupted at 77 h: not even the edge is 

disrupted by the toothpick. B) To assess the onset of agar adherence the nqrA mutant 

was assessed at earlier timepoints. At 10.5 h the nqrA mutant has adhered to the agar 

surface. At this same time, the parental strain has begun to exhibit some cohesion. The 

empty vector, pEV, is pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure is 

representative of at least 2 independent experiments. 
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(Fig. 50B). Therefore, I will refer to this extreme phenotype as the nqr attachment 

phenotype. In the following sections, I will further describe the phenotype of the 

nqrA::Tn5P and nqr::Tn5P mutant strains and investigate specific hypotheses as to how 

disruption of these genes cause a defect in biofilm formation. 

The role of nqr in biofilm formation and nqr attachment 

 Though the phenotypes of the nqrA::Tn5P and nqr::Tn5P mutant strains are 

similar (Fig. 51), it was still unclear whether the phenotype is driven by the disruption of 

the nqr genes, or by the Tn5P promoter or polar effects on downstream genes. If there is 

a role of either of those mechanisms in the failure of the mutants to form a wild-type 

biofilm or the exhibition of the nqr attachment phenotype, then these phenotypes should 

be lost in a strain containing an unmarked in-frame deletion of nqrA. To test this, I 

generated an in-frame, unmarked deletion of nqrA and assessed biofilm formation of the 

resulting mutant. Whereas the colony formed by the parent began wrinkling at 18 h and 

was easily disrupted at 77 h, the ∆nqrA mutant phenocopied the nqrA::Tn5P mutant: the 

colonies exhibited the delayed divoting and attachment phenotypes (Fig. 52) and looked 

exactly like the nqrA::Tn5P mutant strain.  I attempted to complement the nqrA deletion, 

however, I was unable to clone the nqrA gene. In spite of my failure to complement the 

defect, these results suggest that the mutant phenotypes are due to the disruption of nqrA 

(and nqr) and not to the Tn5P promoter or polar effects.  

The role of Syp PS production in the nqr mutant phenotype 

 Disruption of the nqr locus should have an effect on the electron transport system 

and sodium transport and, thus, should alter the membrane potential of the cell. Because 

of this possibility, the question arose as to whether the nqr attachment phenotype was a 
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Figure 51 - A comparison of the nqrA::Tn5P and nqr::Tn5P biofilm phenotypes. 

The similarity of the nqrA and nqr mutant strains was assessed using the wrinkled 

colony and toothpick assays. Both mutants exhibit similar phenotypes with the 

development of regular wrinkling at the edges of the colony and the formation of 

divots at the center of the colony. The development of these phenotypes appears to 

happen slightly faster in the nqr mutant strain. Both mutants adhere to the agar surface 

when disrupted with a toothpick. The RscS plasmid, pRscS, is pJMO34. This figure is 

representative of at least 2 independent experiments. 
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Figure 52 - A comparison of the nqrA::Tn5P and ∆nqrA biofilm phenotypes. To 

rule out a role for promoter and polar effects, the nqrA gene was deleted from the 

chromosome and assessed for the ability to form a biofilm using the wrinkled colony 

and toothpick assays. Both the nqrA::Tn5P and ∆nqrA mutants exhibit similar 

phenotypes with the development of regular wrinkling at the edges of the colony and 

the formation of divots at the center of the colony. The development of these 

phenotypes appears to be slightly delayed in the ∆nqrA mutant strain but is 

indistinguishable by 47 h. Both mutants adhere to the agar surface when disrupted with 

a toothpick. The RscS plasmid, pRscS, is pJMO34. This figure is representative of at 

least 2 independent experiments. 
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biofilm phenotype at all, i.e., would the cells exhibit some or all of the nqr associated 

phenotypes in the absence of rscS overexpression and biofilm induction? If any of the 

associated phenotypes were independent of the induction of biofilm formation, then the 

absence of the rscS plasmid would not result in a loss of the phenotype. To address this 

question, I evaluated the biofilm and attachment phenotypes of the ∆nqrA mutant strain 

carrying an empty vector. I found that this strain exhibited no phenotypes (Fig. 53), save 

a growth defect which is likely the result of a dysfunctional ETS. These results suggest 

that some rscS-dependent factor is required for the nqr associated phenotypes and 

confirms that the phenotypes are biofilm associated.  

 RscS controls both Syp PS production and the production of the Bmp matrix 

proteins (Yip, Geszvain et al., 2006, Ray, Eddy et al., 2013). Thus, I next asked if 

disruption of either the syp locus or of the three bmp genes abrogated the nqr-associated 

phenotypes. To do so, I generated rscS-overexpressing strains that were defective for 

both nqr and either syp (∆sypC, ∆sypK, or ∆sypQ) or bmp (∆bmpA ∆bmpB ∆bmpC) and 

evaluated development of the nqr-associated phenotypes. While the single nqrA::Tn5P 

mutant strain exhibited the nqr-associated phenotypes, each of the nqrA::Tn5P ∆syp 

double mutants failed to exhibit any of the phenotypes save poor growth on agar (Fig. 

54). The nqrA::Tn5P ∆bmpABC quadruple mutant failed to form the divoting phenotype 

but maintained the agar attachment phenotype (Fig. 54). These results suggest that the 

Syp PS is required for both nqr-associated colony phenotypes and the Bmp proteins are 

required for the divoting phenotype (Ray, 2015). However, it remains unclear, at this 

time, what specific role the Syp PS has in the nqr-associated phenotypes. 
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Figure 53 - The role of rscS overexpression in the development of the nqr 

adherence phenotype. To assess the role of rscS overexpression in the development of 

the agar attachment phenotype, adherence was assessed in a ∆nqrA mutant strain 

carrying either an empty vector (pJMO33) or the rscS overexpression plasmid 

(pJMO34) using the toothpick assay. When disrupted at 40 h, the strain carrying the 

empty vector does not exhibit the adherence phenotype of the rscS expressing strain. 

The empty vector, pEV, is pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure 

is representative of at least 2 independent experiments.  
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Figure 54 - The role of the rscS regulon in the adherence phenotype of the nqrA 

mutant strain. To assess the role of the known members of the RscS regulon in the 

development of the agar attachment phenotype of the nqrA mutant strain, adherence 

was assessed in nqrA::Tn5P double mutant strains also carrying deletion alleles in a 

number of syp genes (sypC, sypK, or sypQ) or a quadruple nqrA::Tn5P  ∆bmpABC 

mutant using the toothpick assay. When the mutant strains were disrupted at 40 h 

mutant strains lacking the syp genes did not adhere to the agar surface, while the strain 

deleted for the bmpABC did adhere. The RscS plasmid, pRscS, is pJMO34. This 

experiment has been completed one time.  
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The role of Na+-NQR substrate accumulation and product deficiency in biofilm 

formation  

Aside from the export of Na+ ions, Na+-NQR consumes NADH and generates 

QH2. Though these molecules are not easily supplemented in LBS medium, I 

hypothesized that the addition of certain carbon sources would modulate concentrations 

of NADH or QH2 in the cell and could therefore be used to test the impact of these 

molecules on biofilm formation. For example, pyruvate generates a molecule of NADH 

as it is metabolized to AcCoA. Therefore, if a delay in wrinkling by the nqrA::Tn5P 

mutant strain is caused, in part, by an excess of NADH due to its loss of Na+-NQR 

activity, the addition of pyruvate could exacerbate that defect. To test this I assessed the 

ability of the nqrA::Tn5P strain to form a biofilm on medium supplemented with 

pyruvate. While the addition of pyruvate had no effect on the development of biofilm 

phenotypes by the parental strain, pyruvate did have a detrimental effect on the divoting 

of the nqrA mutant: while the nqrA::Tn5P mutant strain began to exhibit wrinkling at 25 

h and had developed significant divoting at 41when grown in LBS, when grown in the 

presence of pyruvate, the nqrA mutant strains did not show any divoting and only slight 

wrinkling through 74 h of incubation (Fig. 55A). The addition of pyruvate only had a 

slight negative effect on the adherence phenotype of the nqrA mutant strain. These data 

suggest that excess NADH may contribute to the delay in the formation of morphology 

by the nqr mutant strains. 

 As described above, loss of Na+-NQR function should lead to a decrease in QH2 

available in the cell. I hypothesized that the generation of additional QH2 through the 

metabolism of succinate by the SDH complex would promote wrinkling in the 
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Figure 55 - The biofilm phenotype of the nqrA single and nqrA sdhE double 

mutant strains in the presence of carbon sources hypothesized to alter NA+-NQR 

substrates and products. A) To assess the role of increased levels of NADH and QH2 

on the phenotype of the nqrA mutant strain, the nqrA::Tn5P mutant strain was grown in 

medium supplemented with 0.2% of either pyruvate or succinate and the biofilm 

phenotype was assessed using the wrinkled colony and toothpick assays. The addition 

of pyruvate to the growth medium inhibits the formation of colony morphology by the 

nqrA mutant strain. The addition of succinate to the growth medium of the nqrA mutant 

strain appears to result in a slight decrease in the time taken to form wrinkles along the 

edge of the colony at 25 h and an increase in the concentration of divots at 41 h. B) To 

decrease the hypothetical increase of QH2 resulting from the addition of succinate to 

the nqrA mutant strain, the sdhE gene was deleted and the double mutant was grown in 

both the presence and absence of succinate and the biofilm phenotypes were assessed 

using the wrinkled colony and toothpick assays. The deletion of the sdhE gene results 

in a delay in the development of nqrA biofilm phenotypes compared to the nqrA single 

mutant with the double mutant showing edge wrinkling at 47 h. The addition of 

succinate to the growth medium results no promotion of biofilm formation and 

potentially a slight delay: not wrinkles have formed on the double mutant by 47 h. The 

RscS plasmid, pRscS, is pJMO34. This experiment has been completed one time. 
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nqrA::Tn5P mutant strain. Indeed, the addition of succinate resulted in a modest 

promotion of wrinkling: while the nqrA::Tn5P mutant strain began to exhibit some 

wrinkling at 25 h and significant divoting by 41 h when grown in LBS, in the presence of 

succinate the nqrA::Tn5P mutant strains developed more wrinkles along the edges by 25 

h and a more fully developed divoting phenotype by 41 h (Fig. 55B).  These data, along 

with the phenotype upon the addition of pyruvate, support a hypothesis that states 

wrinkling is, in part, mediated by levels of NADH and QH2 and thus, are not necessarily 

caused by Na+-NQR specifically, but rather a defect in electron transport generally.  

 It is unclear if the addition of succinate to the growth medium of an nqrA::Tn5P 

mutant strain does, in fact, cause an increase in the levels of QH2. If it does, then the 

succinate-induced increase in QH2 should be lost in an nqrA sdhE double mutant strain. 

Thus, I generated a ∆sdhE nqrA::Tn5P double mutant, inoculated it in medium 

supplemented with succinate, and assessed wrinkled colony formation. Consistent with 

the hypothesis that the addition of succinate increases the levels of QH2 via SDH activity 

in the nqrA::Tn5P mutant strain, the addition of succinate in the double mutant did not 

promote biofilm formation (Fig. 55B). At 47 h, the double mutant strain began to show 

edge wrinkling when grown in LBS but showed no development at that time when 

inoculated in LBS + succinate. These data suggest that a defect in QH2 generation in the 

nqrA::Tn5P mutant strain could be a cause for the biofilm defect. Further 

experimentation will need to be conducted to validate its significance. 

The role of assorted carbon sources in the nqr-associated phenotype 

 Although no strong rationale existed, I included the nqr mutant in the nutrient 

addition experiments described in other sections above and report here that some 
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additions impacted the nqr phenotypes. The addition to the medium of G6P, glucose, 

OAA, pyruvate, and citrate all caused an inhibition or delay in the development of the 

central divoting and regular edge wrinkling phenotypes (Fig. 56A). The phenotypes 

resulting from the GNG carbon sources is not surprising as the addition of these carbon 

sources to the parental strain and all mutants tested has resulted in a general delay or 

inhibition of wrinkling and biofilm formation. Of note, however, is that the addition of 

these carbon sources did not completely inhibit the ability of the nqrA mutant strain to 

adhere to the agar surface. While it is currently unknown what mediates the adherence of 

some V. fischeri mutant strains, and especially nqr mutant strains, to the agar surface, the 

addition of the GNG substrates, intermediates, and products seems to suppress the 

attachment phenotype.  

 In addition to the general inhibition of adherence and divoting of the GNG 

substrates and products, the addition of citrate to the nqrA mutant strain resulted in a 

complete inhibition of divoting: while the nqr mutant strain had begun to exhibit 

wrinkling around its edge and divoting at its center by 44 h, the mutant strain never 

developed colony morphology by 77 h when grown in the presence of citrate (Fig. 56B). 

The addition of citrate to the parental strain also resulted in a slight delay in biofilm 

formation as well as a surprising increase in adherence to the plate. In my studies, this is 

the only condition I observed increased adherence by the parental strain and the first 

evidence of an increase in adherence by a wild-type strain overexpressing rscS. These 

results suggest that citrate may both inhibit the development of colony morphology while 

promoting the adherence phenotype. 
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Figure 56 - The effect of GNG carbon and citrate addition to the biofilm 

phenotype of the nqrA mutant strain.  The response of the nqrA mutant to a number 

of additional nutrients was assessed using the wrinkled colony and toothpick assays. A) 

The addition of GNG carbon sources, glucose, G6P, and OAA resulted in a delay in the 

development of morphology typical of those carbon sources. The addition of these 

carbons did not fully inhibit the adherence phenotype, with the addition of OAA 

having very little effect on the phenotype. B) The addition of citrate promoted 

increased adherence of the parental strain while completely inhibiting the formation of 

colony morphology by the nqrA mutant strain. The RscS plasmid, pRscS, is pJMO34. 

This figure is representative of at least 2 independent experiments. 
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The role of Na+-NQR in growth  

 Disruption of Na+-NQR, a key component of V. fischeri ATP generation, is likely 

to have effects on the growth rate of V. fischeri. Indeed, when subjectively examining 

liquid cultures and colonies, the turbidity and colony size of the ∆nqrA strain appeared to 

lag behind that of the parent strain. To quantitate this possible growth defect, I inoculated 

the ∆nqrA mutant and its parent in LBS and monitored growth as described in Methods 

and Materials. The two strains remained at the same OD600 during the first 60 min of 

growth, then the growth of the parent became exponential while growth of the ∆nqrA 

strain seemed to plateau early, around an OD600 of 1 (Fig. 57A). After prolonged 

(overnight) growth, the OD600 of ∆nqrA strain increased over two orders of magnitude, 

although it didn’t reach that of the parent strain (Fig. 57B). These data are similar to that 

of the ∆sdhE mutant strain (Fig. 46). I hypothesize that the ∆nqrA mutant cells are 

inefficient in generating ATP through the ETS, but are able utilize non-aerobic means for 

growth. Cultures growing in this manner would likely exhibit a slow but steady increase 

in OD600. 

The role of nqr in pellicle formation 

 Another kind of biofilm that forms at the air/liquid interface of a static culture is 

called a pellicle. Wild-type V. fischeri strains induced to form a biofilm can form pellicles 

in a number of liquid media (Yip, Geszvain et al.). Based on the increased adherence 

phenotype of the ∆nqrA strain grown on agar, I next asked whether a similarly strong 

pellicle could form when the strain was grown in liquid. To test this possibility, I 

inoculated the ∆nqrA strain and its parent in various media in microtiter plates, and 

monitored pellicle formation. Specifically, I investigated pellicle formation in Hepes- and 
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Figure 57 - Growth curve of the ∆nqrA mutant strain. The growth rate of the nqrA 

mutant strain was assessed by assessing the OD throughout one day, and then once the 

following morning after growth overnight. This experiment has been conducted one 

time. 
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Tris-buffered minimal media, and LBS and SWT complex media as well as with 

inoculum concentrations at an OD600 between 0.1 and 0.4. Unfortunately, I was not able 

to consistently obtain pellicles for the positive control strain, making it difficult to draw a 

conclusion regarding the relative strength of the nqr mutant pellicle. This inconsistency 

may be due to the use of the pJMO34 plasmid, though experiments testing this have not 

been conducted. However, because the nqrA mutant was able to form pellicles in some 

instances, I conclude that the ∆nqrA strain is not unable to form a pellicle. 

The role of nqr in glass attachment 

 Another method of evaluating biofilm formation is to assess the ability of a 

bacterial strain to adhere to glass. While the ability of V. fischeri to adhere to glass is not 

strongly correlated with its ability to colonize squid (Shibata, Yip et al., 2012), the strong 

agar adherence phenotype of the ∆nqrA strain made it compelling to examine this 

phenotype. I expected that, if the ∆nqrA strain was simply better at adhering to all 

surfaces, it would exhibit an increased ability to attach to the glass tube, and thus I would 

observe more crystal violet staining of nqr mutant samples. To examine the ability of the 

nqr mutant to adhere to glass, I inoculated it and its parent into HMM-glucose, incubated 

the test tubes statically for 48 h, then stained them with crystal violet.  

My preliminary experiment was hindered somewhat due to the strength of the 

pellicle that was formed by the ∆nqrA strain: whereas the simple addition of crystal violet 

to the parent cultures broke the pellicles, permitting the stain to reach the liquid below, 

the addition of the dye to the ∆nqrA cultures did not initially penetrate the pellicle. Only 

after repeated attempts to puncture the pellicle of the ∆nqrA mutant with a pipet tip was I 

successful in delivering the dye to the liquid below (Fig. 58A). After I added the stain, I 
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Figure 58 - Glass attachment of the nqrA mutant strain. Crystal violet (CV) was 

added to 48 h old pellicles formed in HMM by either the parent or nqrA::Tn5P strains.  

A) The addition of CV to the parent culture broke the pellicle allowing the dye to stain 

the liquid below the pellicle that had formed at the air-liquid interface. Unlike the 

parent, the addition of CV to the nqrA culture did not penetrate the pellicle, which was 

initially resistant to puncture by a pipette tip. B) The amount of CV recovered upon 

completion of the CV assay suggests that the parent strain had greater glass attachment, 

however, cohesion of the nqrA::Tn5P mutant was so strong (see panel A) that portions 

of the pellicle that were attached to the glass peeled off during the course of the wash 

steps. 2 technical replicates were used in this experiment. The experiment has been 

conducted one time.  
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then rinsed the test tube to remove stain that wasn’t surface-associated. During these 

manipulations, I found that the pellicle material of the parent strain easily separated from 

the glass and those tubes maintained only the material positioned very close to the glass. 

However, the strong cell-cell interactions of the ∆nqrA strain caused a great deal of intact 

pellicle material to maintain its attachment to the glass wall such that a majority of the 

pellicle was not initially washed away.  

As the wash steps continued, the ∆nqrA strain’s pellicle material peeled entirely 

off of the glass in many places, potentially due to increased drag. This greatly decreased 

the amount of dyed material attached to the glass and also likely introduced high 

variability in amount of crystal violet ultimately recovered. Finally, I quantified the stain 

that remained associated with the test tube, and found that the amount of crystal violet 

recovered from test tube of the parent strain was greater than that of the ∆nqrA strain 

(Fig. 58B). However, given the properties of the ∆nqrA pellicle in this experiment, I 

suspect that these results don’t accurately represent the phenotype of the nqr mutant 

strain. I hypothesize that the inability of the dye to penetrate the pellicle and the pellicle 

to resist separation from the glass walls was due to the stronger cell-cell and cell-surface 

associations, respectively. If the dye did not penetrate the biofilm effectively, it is 

unlikely that all of the glass associated-cells had an opportunity to take up the dye, which 

would result in a lower reading.  While these preliminary results are not a good 

quantitative measure of the ability of the ∆nqrA strain to attach to glass, these data do 

suggest an increase in both cell-cell and cell-surface associations. Further work is needed 

to confirm and build upon this hypothesis. 
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Colonization Experiments 

 Based on the previous experiments, the ∆nqrA strain clearly has a delay in biofilm 

formation and an altered phenotype when it does form a biofilm. Thus, it seemed likely 

that the ∆nqrA strain would be competent to form a biofilm in the context of squid 

colonization. What was less obvious, however, was whether the ∆nqrA strain would be 

able to leave the biofilm and colonize the light organ of the squid due to the strong cell-

cell and cell-surface associations observed in previous experiments. I hypothesized that 

the ∆nqrA strain would be unable to disperse from the biofilm and enter the light organ 

and, therefore, the animals would not become colonized. To test this hypothesis, I 

exposed juvenile squid to V. fischeri strains and assessed the resulting colonization. My 

results showed that the ∆nqrA strain could colonize juvenile E. scolopes, though at 

slightly lower levels compared to the parent strain (Fig. 59). However, due to the growth 

phenotype of the ∆nqrA strain, I was unable to determine whether the colonization defect 

is due to a defect in a particular stage of the colonization process, or a result of the 

growth defect.  

Interestingly, while the inoculum was standardized to OD600 in order to expose 

each animal to similar concentrations of V. fischeri cells, a plating of a portion of the 

inoculum on SWT plates revealed approximately twice as many ∆nqrA cells in the 

inoculum compared to the control. nqrA strains when at the same OD600 could indicate a 

difference in cell size or shape; i.e., the ∆nqrA cells could be smaller or rounder. Careful 

microscopic examinations and comparisons of OD600 and colony counts will be necessary 

to verify a difference in the shape and size of ∆nqrA cells as well as whether the growth 

environment, i.e., static/agitated/rich/minimal, affects any noted changes.  
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Figure 59 - Colonization phenotype of the nqrA mutant strain. Juvenile squid were 

exposed to either wild-type or ∆nqrA V. fischeri overnight or placed in sterile seawater. 

After 18 h animals were sacrificed, homoginated. Squid homogenates were inoculated 

onto SWT medium and incubated at 28°C. V. fischeri colonies were counted the 

following day and CFU/squid was calculated. The limit of detection (14 CFU/squid) is 

indicated by a red line. This experiment has been conducted one time. 
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The role of Na+-NQR in bioluminescence 

 During colonization experiments I noted that while squid were colonized to a 

level that should have induced bioluminescence of the symbiont, as occurred with the 

∆sdhE strain, no bioluminescence was detected (data not shown). This observation 

suggested that the ∆nqrA mutant strain was also defective for bioluminescence. To test 

this hypothesis, I inoculated the ∆nqrA mutant and its parent in liquid medium and 

monitored the strains for growth and luminescence. While the nqrA mutant strain 

exhibited a severe growth defect when grown in SWTO, consistent with what I had 

observed in LBS (Fig. 57), it retained the ability to activate luminescence and did so at a 

low cell density (Fig. 60). These preliminary data suggest that the nqrA mutant is capable 

of producing light. However, it is unclear, based on the level of light emitted from the 

squid, whether this strain would confer a fitness benefit to its host or whether it would 

even be able to persist in the light organ.  

The role of the Msh and Csg pili in the nqr mutant phenotype 

 The nqr mutant exhibits a striking ability to adhere to the surface of the agar 

medium. One hypothesis that could explain this phenotype is that pilus production is 

upregulated in this mutant and these pili mediate attachment to the agar surface. The V. 

fischeri genome encodes 10 pili loci, most of which have not been studied in this 

organism (Ruby, Urbanowski et al., 2005). One, the Msh (mannose-sensitive 

hemagglutin) pilus, may be important for colonization by V. fischeri as the addition of 

mannose to the V. fischeri inoculum inhibits colonization (McFall-Ngai, Brennan et al., 

1998). Of note, the Msh pilus is involved in electron transport in Shewanella 

oneidensis MR-1 (McLean, Pinchuk et al., 2008). In E. coli, the Csg pilus (also encoded 
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Figure 60 - Bioluminescence of the nqrA mutant strain. The ∆nqrA mutant strain 

exhibited an apparent bioluminescence defect during squid colonization experiments. To 

assess whether there was a defect of bioluminescence in culture the bioluminescence of 

the nqrA mutant strain was assessed. This experiment has been conducted one time. 
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by V. fischeri) is required for biofilm formation (Prigent-Combaret, Prensier et al., 2000, 

Chapman, Robinson et al., 2002). These two pili thus have potential to be involved in the 

nqr mutant phenotype. If these pili mediate the attachment phenotype of the nqr mutant 

phenotype, then the disruption of these loci in an nqrA mutant would abrogate the 

attachment of the nqrA mutant to the agar surface. To test this hypothesis, I generated 

double mutant strains possessing a ∆nqrA allele and either an mshA::Tn5 or csgA::Tn5 

allele, inoculated the strains onto plates and assessed their ability to attach to agar. I 

found that the double mutants attached to the agar surface in a manner similar to the 

∆nqrA mutant strain (Fig. 61). This result suggests that the agar attachment phenotype of 

the nqr mutant does not require the Msh or Csh pili. There remain a number of other pili 

that could be tested for a role in the nqr associated phenotype in a similar manner. 

Summary 

Investigations into the role of nqrA/B and Na+-NQR revealed a novel attachment 

phenotype and a role for electron transport in the ability of V. fischeri to form a wrinkled 

colony. Biofilms formed by the ∆nqrA strain exhibit a severe delay as well as an altered 

phenotype including a surprisingly robust attachment phenotype. Growth and 

luminescence experiments suggested that, while the ∆nqrA mutant strain exhibited a 

growth defect, it remained capable of reaching sufficiently high cell densities to induce 

bioluminescence (though issues of cell size and shape may complicate those data). 

Finally, the ∆nqrA strain is capable of squid colonization, suggesting that a lack of Na+-

NQR does not significantly impact biofilm formation, dispersal, and colonization in the 

context of the squid host. 
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Figure 61 - The role of select pili on the adherence phenotype of the nqrA mutant 

strain. To assess the requirement of the Csg and Msh pili in the adherence phenotype, 

the wrinkled colony and toothpick assays were conducted on double mutants carrying 

either an empty vector or an rscS overexpressing plasmid and lacking nqrA and either 

the csgA or mshA gene. At 20 h the wild-type strain exhibits wrinkling and cohesion 

but not adherence, a phenotype typical of the strain. The nqrA mutant strain is smooth 

but adherent, also typical. Both the csg and msh double mutant strains mimic the 

phenotype of the nqrA mutant strain suggesting no role for the pili. The RscS plasmid, 

pRscS, is pJMO34. This experiment has been conducted one time. 
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The role of ubiG in wrinkled colony formation by V. fischeri 

Introduction 

One of the smooth mutants I collected contained an insertion within the 

ubiquinone (Q) biosynthesis pathway gene ubiG. As described in the literature review, 

the methyltransferase activity of UbiG is the final enzymatic step in the biosynthesis of Q 

(Fig. 11). The biosynthesis of Q is important for the cell due to the role the molecule 

plays in the carriage of electrons in the electron transport system (ETS). Thus, it is 

reasonable to assume that disruption of the Q biosynthetic pathway would also impact the 

ability of the cell to conduct electron transport and cause the cell to be deficient in 

associated activities such as ATP generation, maintenance of electrochemical gradients, 

and O2 fixation. In the following section, I will describe the phenotype of the ubiG::Tn5P 

mutant strain and test a number of hypotheses that could explain why a loss of Q 

biosynthesis could impact biofilm formation.  

The ubiG::Tn5P mutant strain 

 From my screen of wrinkled colony defective mutants, I isolated one mutant with 

an insertion in ubiG (VF_1203). The Tn5P insertion was positioned on chromosome I 

between bases 1,339,109 and 1,339,110, and the Tn5P was oriented opposite to ubiG 

transcription (Fig. 62). A time course assay of wrinkled colony formation revealed that 

the ubiG::Tn5P mutant strain exhibited a severe defect in wrinkled colony formation: 

whereas colonies of the parent strain began wrinkling within 18 h, the mutant colonies 

did not begin to show architecture until between 26 and 44 h (Fig. 63). Furthermore, 

rather than developing wrinkles in the center of the colony, the ubiG::Tn5P mutant strain 

developed the divoting pattern exhibited by a number of the other mutant strains (Fig. 
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Figure 62 - The location and orientation of the Tn5P insertion in the ubiG mutant 

strain. The insertion in ubiG::Tn5P is located in ubiG on chromosome I between bases 

1,339,109 and 1,339,110 with the A1/34 promoter oriented opposite of ubiG 

transcription.  
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Figure 63 - The biofilm phenotype of the ubiG::Tn5P mutant strain. The ability of 

the ubiG::Tn5P mutant strain to wrinkle was assessed using the wrinkled colony and 

toothpick assays. A parental strain carrying an empty vector (pJMO33) does not exhibit 

wrinkling or any colony architecture even after 77 h when grown on LBS. Parental 

strains carrying an rscS overexpression vector (pJMO34) had begun to wrinkle by 18 h 

and maintained a wrinkled morphology. The ubiG::Tn5P mutant strain carrying 

pJMO34 developed a divoting colony morphology around 44 h. When disrupted at 77 

h the strain adhered to the agar at its center while the edges (arrow) could be disrupted. 

The empty vector, pEV, is pJMO33. The RscS plasmid, pRscS, is pJMO34. This figure 

is representative of at least 3 independent experiments. 
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63). The ubiG::Tn5P mutant strain also exhibited an agar adhesion phenotype very 

similar to that of the nqr mutant strains (Fig. 63). This is, perhaps, not surprising because 

of connected roles of Na+-NQR and Q. Unlike the nqr mutant strains which exhibited 

regular and adherent wrinkles (Fig. 63), the ubiG::Tn5P mutant strain exhibited a smooth 

edge that could be disrupted (Fig. 63, arrow). Based on the location of the Tn5P insertion 

and the gap between ubiG and the downstream genes, nrdA and nrdB, (Fig. 62), it is 

unlikely that the insertion within ubiG is exerting polar effects on the nrd operon. 

Additionally, the phenotype of the ubiG::Tn5P strain is unchanged in the presence and 

absence of IPTG (data not shown), ruling out a role for the upstream gene gyrA in the 

phenotype. These data suggest that the insertion within ubiG is the main, and likely only, 

driver of the biofilm phenotype of the ubiG::Tn5P mutant strain.   

The ubiG::Tn5P mutant strains ETS defect is the primary driver of its biofilm 

defect 

The phenotype of the ubiG::Tn5P mutant strain is most similar to that of the nqr 

mutant strains. As such, I next asked what responses the ubiG::Tn5P mutant strain would 

have when exposed to a number of carbon sources, and then, whether the phenotypic 

changes would be similar to those of the ∆nqrA mutant strain. Many nutrient sources 

such as ammonia, arginine, glutamine, glutamic acid, pyruvate and succinate induced no 

changes in the biofilm phenotype of the ubiG::Tn5P mutant strain. However, the addition 

of glucose, G6P, OAA, citrate, and serine  did cause notable changes in the phenotype of 

the ubiG mutant. Similar to what I observed when exposing other mutant strains to these 

carbon sources, the addition of the GNG carbon sources, glucose, G6P, and OAA 

resulted in an abrogation of colony architecture formation (Fig. 64). In addition, these 
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Figure 64 - The effect of various carbon sources on the biofilm phenotype of the 

ubiG::Tn5P mutant. The response of the ubiG::Th5P mutant to a number of different 

carbon sources was assessed using the wrinkled colony and toothpick assays. The 

addition of the GNG carbons glucose, G6P, and OAA resulted in an inhibition of 

morphology development as well as a decrease in adherence (with a complete 

inhibition of adherence with the addition of glucose). The addition of both citrate and 

serine to the medium resulted in the development of edge wrinkling by the ubiG 

mutant strain but did not alter the adherence phenotype. The addition of citrate delayed 

the formation of central divoting while the addition of serine promoted the same. The 

RscS plasmid, pRscS, is pJMO34. This figure is representative of at least 2 

independent experiments. 
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carbon sources diminished the cell-surface adherence phenotype and, in the case of 

glucose, caused a complete disruption of adhesion. Previous research has shown that the 

production of the Syp PS is required for the cohesion phenotype (Ray, Driks et al., 2015). 

When examining the nqr mutant strains, I found that the production of Syp PS is also 

required for the adherence phenotype (Fig. 54). Therefore, the maintenance of the 

cohesion phenotype suggests that the decrease or loss of adhesion is not due to a loss of 

Syp PS production in the ubiG::Tn5P mutant strain under these conditions.  

 The addition of citrate and serine to the growth medium also had an effect on the 

wrinkling phenotype of the ubiG::Tn5P mutant strain: when grown in LBS, the 

ubiG::Tn5P mutant strain exhibited a smooth edge but in the presence of citrate and 

serine, the ubiG::Tn5P mutant strain developed a wrinkled edge (Fig. 64). These results 

were somewhat surprising because they diverge from what was seen when the nqrA 

mutant was grown in these conditions: the nqrA mutant was unchanged when grown in 

serine (data not shown) and the addition of citrate delayed wrinkled colony formation by 

the parent strain and completely inhibited the formation of architecture by the nqrA 

mutant (Fig. 56). These results demonstrate that the role of ubiG and Q biosynthesis in 

biofilm formation and further suggest a role for the ETS in biofilm formation. The 

differences between the responses of ubiG and nqrA mutants also suggests that Q has a 

role in an additional pathway or protein outside its role in Na+-NQR activity. 

Because the ubiG mutant strain is, presumably, unable to make Q for the carriage 

of electrons, a process vital for the function of Na+-NQR and SDH, I hypothesized that 

the ubiG::Tn5P mutant phenotype would be similar to that of an nqrA sdhE double 

mutant. The addition of succinate and citrate had notable effects on the phenotypes of the 
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sdhE and nqrA mutant strains (Figs. 44 & 56); therefore, I asked whether the ubiG::Tn5P 

single mutant and the ∆sdhE nqrA::Tn5P double mutant behaved similarly when grown 

in these carbon sources. To test this, I grew the mutant strains in LBS supplemented with 

citrate and succinate and assessed colony morphology. When grown in citrate, the two 

strains exhibited very different phenotypes: the ∆sdhE nqrA::Tn5P double mutant strain 

failed to wrinkle at advanced times (Fig. 65), similar to the phenotype of the nqrA::Tn5P 

mutant strain (Fig. 56), but maintained its adherence to the agar surface instead of 

exhibiting the increase in edge wrinkling observed with the ubiG::Tn5P mutant strain 

(Fig. 63). However, when grown in serine, the two mutant strains exhibited similar 

responses: both strains began to show the development of biofilm morphology at earlier 

times. These results suggest that Q has a role in biofilm formation outside of its role in 

the ETS. 

Summary 

 Investigations into the role of ubiG and Q biosynthesis supported a role for 

electron transport in blocking or inhibiting the development of a number of biofilm 

phenotypes, including the divoting phenotype as well as the agar adherence phenotype. 

Biofilms formed by the ubiG mutant strain exhibited both phenotypes. While the ubiG 

mutant strain shares a number of phenotypes with the nqrA mutant strain, it responds 

differently when exposed to citrate than the nqrA mutant strain, suggesting the mutant has 

defects in additional pathways. Finally, comparisons of the ubiG mutant strain with the 

nqrA sdhE double mutant strain suggested that the requirement for Q in the cell extend 

beyond its roles in electron carriage in the electron transport system.
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Figure 65 - The biofilm phenotype of the sdhE nqrA double mutant in response to 

citrate and serine. The response of an nqrA sdhE double mutant (which should 

presumably have a similar ETS defect as an ubiG mutant) to citrate and serine was 

assessed using the wrinkled colony and toothpick assays. The response of the nqrA 

sdhE double mutant to citrate mimics that of the nqrA single mutant (Fig. 56) rather 

than the ubiG mutant strain (Fig. 64) but with increased adherence. The response of the 

double mutant to serine mimics that of the ubiG mutant strain with the promotion of 

edge wrinkling and central divoting (Fig 64). The RscS plasmid, pRscS, is pJMO34. 

This experiment has been conducted one time. 
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CHAPTER FOUR 

DISCUSSION 

 

In this thesis, I generated new genetic tools for the random disruption and 

induction of genes and used them to identify a number of central metabolism genes with 

roles in biofilm formation by Vibrio fischeri. While it is logical that defects in the central 

metabolic pathways of an organism would exert broad effects on its physiology, the 

genes I have identified and the phenotypes I have described appear to have specific roles 

in biofilm formation rather than general roles in homeostasis. In the following section, I 

discuss my work and the implications it has on expanding our understanding of biofilm 

formation in V. fischeri. I make a number of conclusions regarding the role of central 

metabolism (CM) and the electron transport system (ETS) in biofilm formation as well as 

pose a number of questions that remain unanswered and a possible roadmap to obtaining 

the answers.  

Tn5P, a multi-purpose transposon for use in mutagenesis experiments 

To expand the reach of currently available tools for the identification of mutants 

with novel phenotypes, I adapted a system of transposon mutagenesis for use in V. 

fischeri. Specifically, I generated a transposon with an outward facing IPTG inducible 

promoter as well as a lacI-expressing background strain as a recipient for mutagenesis. 

This system combines the beneficial traits of different mutagenesis and overexpression 



151 
 

 
 

approaches in a single assay. For example, I showed that it can be used to identify genes 

whose increased OR decreased expression can result in a specific phenotype (Ondrey and 

Visick, 2014).  

Further, I presented evidence that the Tn5P can insert within a gene yet express a 

truncated protein due to the putative RBS and start codon located within the Tn end. This 

tool could, therefore, help identify what parts of a disrupted protein are needed for 

specific functions. If desired, the Tn5P transposon could be engineered further to add a 

ribosome binding site upstream from a start codon. This would allow for better protein 

expression. Additional sequence could also be added to place an epitope tag at either the 

C- or N- terminus of a disrupted gene. The development of genetic tools for identifying 

genes of interest in V. fischeri is far from complete, but the Tn5P transposon represents 

an important step in V. fischeri genetics. 

I then utilized the Tn5P to mutagenize a biofilm-forming strain of V. fischeri in 

order to identify genes that modulate the process of biofilm formation. While I screened 

approximately 47,000 mutant strains and identified independent insertions in a number of 

genes, it is apparent from the mutants that I have characterized that my mutagenesis was 

not saturating. For example, while I isolated mutants with independent Tn5P insertions 

within the pck gene, I did not isolate an insertion within the sdhC gene (or in the genes 

that encode the remaining members of the SDH and NQR complexes). In addition, I did 

not identify a number of other genes with previously reported defects in biofilm 

formation, such as dnaJ (Brooks, Gyllborg et al., 2014). Aside from simply being non-

saturating, an explanation for this could be the differences in strain backgrounds or 

conditions used in my experiments relative to the experiments that yielded other mutant 
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strains. For example, a different method of rscS overexpression was used in the 

experiments that identified a role for dnaJ in biofilm formation. In addition, the amount 

of time I allowed for the formation of wrinkled colonies could have limited the genes that 

I could identify, essentially eliminating the identification of mutants that merely exhibit a 

delay in biofilm formation.  

It was unsurprising that I identified a high proportion of genes already known to 

play a role in biofilm formation by V. fischeri, such as rscS, rpoN, and the genes of the 

syp locus. However, it was surprising that I primarily identified metabolic genes. With 

the knowledge that my mutagenesis was not saturating, it does seem meaningful that the 

genes that I did identify as having a role in biofilm formation encode proteins with 

closely related roles in central metabolism. However, it is unclear why I did not obtain 

other, seemingly equally connected, genes such as the gene for fumarase (which connects 

SDH and Mdh in the TCA cycle). Potentially, loss of these “missing” genes could result 

in growth defects that are severe enough to prevent isolation under my conditions, or 

whose function is redundant in some way or can be complemented in trans by other 

colonies.  

Glutamine biosynthesis is required for biofilm formation by V. fischeri 

 Prior to this work, a role for glutamine biosynthesis in biofilm formation had not 

been described. Within this thesis, I described the phenotype of the glnA mutant strain 

and complemented the biofilm defect of the mutant strain by adding glutamine to the 

growth medium (Fig. 23). One question that remains regarding this mutant strain is why 

an inability to synthesize glutamine leads to a failure of the strain to form a wrinkled 

colony. Due to the inability of the glnA mutant strain to exhibit cell-cell cohesion, it is 
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likely that the biofilm defect is due to an inability to produce the Syp PS. What remains 

unknown is how glutamine intersects with the process of Syp PS production. Is the 

biosynthesis of glutamine required for the activation of RscS or the transcription of the 

syp locus? Or could glutamine be an important residue in a protein that links 

polysaccharide together within the matrix? To begin to address the question of a 

connection between Syp PS and glutamine, transcriptional and translational reporters 

could be utilized in a glnA mutant strain to identify where, or if, Syp PS production is 

inhibited. Previous work in E. coli has shown that glutamine residues are important for 

the function of amyloid fibers, and thus biofilm formation (Wang and Chapman, 2008). 

While a role for amyloid fibers in biofilm formation by V. fischeri has not been 

identified, it is an interesting possibility. The first step would be to identify whether V. 

fischeri produces an amyloid as part of its biofilm. 

 One surprising finding was that the addition of glutamine to an mdh mutant 

almost completely restored the wild-type biofilm phenotypes: growth of the mdh::Tn5P 

strain on medium supplemented with 0.2% glutamine greatly restored wrinkling and 

inhibited agar attachment (Fig. 33). These data suggested that perhaps the one of the roles 

of the TCA cycle in biofilm formation is to generate glutamine. Disruption in the TCA 

cycle will disrupt the supply of the TCA intermediate α-ketogluterate, which is the 

precursor to glutamine (Figs. 4 & 13). One potential reason that glutamine did not rescue 

other mutant strains may be that the other mutations exert additional effects on pathways 

adjacent to the TCA cycle, i.e., in addition to their TCA defects, the sdh mutants also 

have defects in the ETS and the pck mutants have defects in GNG. Thus, glutamine or 

glucose added to a pck mutant strain may bypass the TCA and GNG defects respectively, 
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but not the additional defects, and thus biofilm formation remains blocked. Indeed, the 

phenotype of a pck mutant strain grown in the presence of glucose (Fig. 37) looks very 

similar to that of a glnA mutant in LBS (Fig. 27C). Further experiments, such as assessing 

the phenotype of the pck mutant grown in the presence of both glutamine and glucose, 

would provide greater insight into the validity of this hypothesis. 

An additional question is whether the failure to generate glutamine impacts the 

ability of this strain to colonize juvenile squid. As the production of Syp PS is required 

for the formation of the biofilm outside of the light organ, the apparent failure of this 

strain to produce Syp PS (Fig. 27) suggests that the strain would unlikely be capable of 

initiating the colonization process. If future colonization experiments show that a glnA 

mutant strain can colonize squid, it might suggest the presence of glutamine in the squid 

mucus. 

The role of SdhE in biofilm formation by V. fischeri 

Previous research first identified SdhE as an activator of the SDH complex, and 

then as a promiscuous protein with roles in the activation of the FRD complex (McNeil, 

Clulow et al., 2012, McNeil, Hampton et al., 2014). My work has supported the 

hypotheses that SdhE has a role in SDH function as both sdhE and sdhC mutants exhibit 

similar phenotypes. My work has also supported the hypothesis that SdhE may have roles 

outside of SDH activation. First, when examining the phenotypes of the sdhE and sdhC 

mutant strains, I found that they had different phenotypes when exposed to different 

carbon sources (Figs. 44 & 45) and had different timing of biofilm structure development 

when grown in LBS (Fig. 43). These data suggest that, in V. fischeri, there is a target of 

SdhE outside of SDH, likely FRD. To confirm this possibility, it would be relatively 
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simple to generate an frd sdhC double mutant strain and compare the phenotype of this 

mutant strain to that of the sdhE mutant strain. If the two exhibit the same phenotypes in 

LBS and when exposed to different carbon sources, it would confirm that FRD activation 

in V. fischeri is mediated by SdhE.  

The sdhE and, to a slightly lesser extent, sdhC mutant strains exhibited decreased 

bioluminescence when grown in SWTO medium (Fig. 48), a phenotype that the other 

ETS mutant strain (nqrA) did not exhibit (Fig. 60). This result suggests that the role of 

SDH activity in bioluminescence is outside of its role as a member of the ETS. Could 

decreases in TCA cycle activity (or glutamine synthesis) impact quorum sensing and 

bioluminescence? Previous work in Serrtatia sp. showed that there was a decrease in 

production of N-acyl homoserine lactone quorum sensing molecules by sdhE mutant 

strains (McNeil, Clulow et al., 2012), suggesting that alterations in quorum sensing could 

be an important area of focus for future study. Investigations into the bioluminescence 

phenotypes of the other central metabolism mutants (especially mdh and glnA) would be 

informative.  

Colonization experiments with the sdhE mutant strain showed that the mutant was 

able to colonize juvenile squid, but the growth defect by the strain hindered my ability to 

conclude that the 10-fold colonization defect was a de facto defect (Fig. 47). However, it 

has been suggested that the primary means of growth by V. fischeri cells within the light 

organ is anaerobic. This calls in to question whether an sdhE mutant strain would actually 

have a growth disadvantage in the light organ. Perhaps an examination of the ability of 

the sdhE mutant to grow under anaerobic conditions would shed light as to whether this 

mutant strain would have a comparative growth defect in the light organ.  
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The role of Na+-NQR in biofilm formation by V. fischeri 

The biofilm mutants with the most unique phenotype were undoubtedly the nqrA 

and nqr mutant strains. Their agar attachment phenotype is unlike anything we have 

observed in the lab to date (Fig. 50). The factor that mediates this attachment remains 

unknown. The phenotype is independent of Msh or Csg pili (Fig. 61) but requires the 

production of the Syp PS (Fig. 54). Could the Syp PS of the Na+-NQR strains be 

modified in some way that promotes increased cell-cell cohesion as well as cell-surface 

adherence? Additional research into the composition and structure of both wild-type and 

nqr Syp PS will need to be conducted to pursue this exciting area of inquiry.  

The adherence phenotype of the other central metabolism mutant strains is less 

extreme, but the observation that they, too, exhibited a version of this phenotype suggests 

that the attachment phenotype could be a response to an inability to use the ETS. The 

severity of the adherence phenotypes correlates well to the proximity of the mutated 

gene’s function to the ETS system with the nqr and ubiG mutants being the most severe 

(Figs. 50 & 63), followed by sdh (Fig. 39), mdh (Fig. 30), and pck (Fig. 35) mutants in 

order from most to least severe. The glnA mutant has very little connection to the ETS 

and, perhaps as a consequence, has no adherence phenotype (Fig. 27). These analyses are 

complicated by the additional phenotypes present in these mutant strains. While it is clear 

that the production of the Syp PS is required for adherence (at least of the nqr mutant), 

the phenotype is made stronger by the formation of colony architecture.  

Previous research by Ray et al. showed that the development of 3-dimensional 

colony architecture (wrinkling) in V. fischeri biofilms, or “maturation” as they termed it, 

required the BmpA, BmpB, or BmpC proteins (Ray, Driks et al., 2015). My research 
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supports that conclusion and has shown that the adherence phenotype is not dependent on 

the Bmp proteins, but is made stronger by the presence of them (Fig. 54). I propose that a 

decrease in the Bmp proteins plays a role in the decrease of adherence in mutants that 

lose architecture (wrinkling or divoting) upon exposure to certain carbon sources (eg. 

Figs. 32 & 56). Previous research into syp and bmp has shown that expression of these 

loci are controlled by the same regulators (Ray, Eddy et al., 2013). My data, however, 

suggest that the addition of certain carbon sources may inhibit Bmp production while 

allowing Syp PS production.  Future investigations into syp and bmp expression in the 

presence of various nutrient sources could identify conditions that promote or inhibit 

Bmp activity. 

There is also a question as to whether the agar adherence phenotype has relevance 

in the context of squid colonization and symbiosis. I had originally hypothesized that an 

nqr mutant strain would be able to form a biofilm outside the light organ, but be unable to 

escape it due to the tendency of the mutant strain to have such strong cell-cell and cell-

surface interactions. This, however, proved not to be the case since the nqr mutant strain 

was able to colonize juvenile E. scolopes (Fig. 59). There are a number of possible 

explanations for these findings. One reason for this apparent discrepancy could be that 

the in vitro experiments used an rscS overexpression plasmid, while no plasmid was used 

in colonization experiments. Perhaps, without overexpression of rscS, there not enough 

Syp PS produced to mediate the severe attachment phenotype in the course of squid 

colonization. Thus, it could be informative to assess the ability of an rscS-overexpressing 

nqr mutant to colonize squid.  
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 Another reason why the nqr mutant could be able to colonize the squid could be 

that the amount of time that V. fischeri cells are present in a biofilm outside the light 

organ is relatively brief. It is highly possible that it takes more time for the nqr mutant 

strains to develop this strong phenotype and there simply is not enough time between 

biofilm formation and dispersal of cells into the light organ to cause the cells to become 

stuck outside the light organ. Additionally, it is possible that the mechanism that the V. 

fischeri cells use to disperse from the biofilm, which are apparently not activated in in 

vitro cultures, are sufficient to override even the strong nqr biofilm phenotype in the 

context of animal colonization. An examination of the biofilms formed by nqr mutant 

cells on the surface of the light organ could be informative as to whether these cell-cell 

and cell-surface associations are tighter than wild-type biofilms, as well as whether the 

timing of dispersal is altered. 

Regardless of the role of Na+-NQR in the initial stages of colonization, it may 

also play a role in later stages inside the light organ. An examination of the phenotype of 

nqr mutant cells once they are within the deep crypts of the light organ could be 

informative. Do animals colonized by nqr mutant strains exhibit a decrease in the amount 

of V. fischeri cells vented at dawn? If so, does the squid host eventually fail to thrive due 

to over-colonization? Such questions could shed light on certain aspects of this host 

microbe symbiosis. While we know a great deal about the biofilm that forms outside the 

light organ, we know relatively little about whether the bacteria also form a biofilm 

within the light organ of the squid. As mentioned above, the nqrA mutant strain could be 

a used as a tool to assess whether the RscS Syp biofilm is made within the confines of the 

light organ. The presence of the Syp PS is needed for the formation of the attachment 
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phenotype and an observation that there is decreased venting of an nqrA mutant strain 

could suggest that the strong biofilm of the nqrA mutant strain is being formed, and with 

it the production of the Syp PS.  

One final intriguing factor of the Na+-NQR mutant strain is that while it is 

generally dim in culture and below the threshold of bioluminescence detection when in 

the light organ it has an apparent increase in bioluminescence per cell (Fig. 60). It has 

been previously hypothesized that the ability to burn O2 via bioluminescence is beneficial 

to colonized V. fischeri cells (Visick, Foster et al., 2000). Potentially, if colonized cells 

are undergoing anaerobic respiration (perhaps in response to a squid signal), 

bioluminescence is the only way that squid-derived O2 can be safely reduced. This model 

could explain why bioluminescence mutants are quickly outcompeted by bioluminescent 

competent strains. If this model is accurate, the phenotypes of the nqrA mutant, i.e. 

increased luminescence per cell, anaerobic respiration, and increased surface adherence, 

could be similar to how colonized V. fischeri cells behave. 

The role of gluconeogenic carbon sources on biofilm formation by V. fischeri 

Throughout my investigations of my biofilm-defective mutants, I have shown that 

the addition of a number of gluconeogenic carbon sources (glucose, G6P, and OAA) to 

the growth medium results in a delay in wrinkled colony formation by the parent strain or 

a defect in the development of biofilm structure by many mutant strains (eg. Figs. 32 & 

45). This was, at first, surprising as the Syp PS appears to be one of the most important 

requirements for the formation of wrinkled colonies, and the production of PS 

presumably requires the cell to generate these intermediates if it is grown on a medium 

comprised mainly of amino acids. The reason for this response to these carbon sources by 
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V. fischeri is, as yet, unknown, but there are a number of hypothesis which could be 

readily tested to bring us closer to an answer.  

  One such hypothesis is that there is a “sweet spot” of polysaccharide production 

required to produce what we consider the wild-type wrinkled colony. The addition of 

G6P to the medium may simply result in too much Syp PS. However, because my data 

show that parent strain wrinkles in the presence of these carbon sources (Fig. 28), there is 

clearly something else at play; the parent strain grown in the presence of G6P would 

likely make more PS precursors than the pck mutant grown in G6P.  

Another possibility is that a ratio of polysaccharide to protein is required for the 

generation of both cohesion and the development of architecture. As shown by Ray et al., 

the Syp polysaccharide is not the only component in the V. fischeri biofilm matrix. The 

BmpA protein is also found in the matrix and BmpA, along with BmpB and BmpC, are 

required for the development of V. fischeri’s characteristic wrinkled colony (Ray, Driks 

et al., 2015). It is possible that disrupting the ratio of these components, the PS and the 

protein, beyond a certain point results in a wrinkled colony defect. The addition of the 

GNG carbons could do just that. To test this possibility, we could assess whether an 

increase in the expression of the bmp genes fully or partially diminishes the delay caused 

by the addition of the carbon sources. In addition to the Bmp proteins, there are likely 

other proteins (perhaps one that requires glutamine biosynthesis) that need to be present 

in an appropriate ratio.  

Conclusion 

My research has identified roles for central metabolism and the ETS in biofilm 

formation and uncovered a novel adherence phenotype. This work illustrates the level of 
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complexity involved in the regulation of biofilm formation by V. fischeri as many 

environmental changes result in a modulation of biofilm development. This work has also 

opened the door to numerous additional areas of focus for those seeking to learn more 

about how biofilm formation is regulated by V. fischeri. 
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