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CHAPTER ONE 

INTRODUCTION 

The two leading causes of increased morbidity and mortality after burn injury are 

sepsis and multiple organ dysfunction syndrome (MODs).  Over 75% of all burn related 

deaths occur as a result of sepsis or infectious complications1.  Immediately following 

injury patients experience a systemic inflammatory response, which presents as a surge of 

pro-inflammatory cytokine release2.  This shift toward a pro-inflammatory environment 

from one of a healthy balance of pro- and anti-inflammatory cytokines manifests not only 

at the site of burn injury, but in extraneous sites of the lung, liver, and intestinal tract3.  

Coupled with the suppression of the immune system seen after serious burn injury, this 

inflammation increases patient susceptibility to sepsis and subsequent multiple organ 

failure2-4.  Intestinal bacteria are the main source of bacterial infection following burn 

injury3,5-7.  

 The intestinal tract contains over 100 trillion microbes, and under normal 

conditions maintains a symbiotic relationship benefiting the host by aiding in metabolism 

and nutrients, protection from invading pathogens, and immune system development and 

function8-11.  In a healthy individual, intestinal epithelial cells maintain a physiological 

and immunological barrier sequestering both commensal and pathogenic bacteria to the 

luminal space9,12,13.  After burn trauma intestinal epithelial cells undergo intense cellular  
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stress, which contributes to the barrier breakdown following injury14,15. This 

perturbation in gut barrier integrity could result in bacterial translocation out of the 

luminal space into extraintestinal sites ending in SIRS, sepsis, and multiple organ 

dysfunction3-5,7,14-16.  However, the exact mechanism of gut barrier breakdown and 

subsequent burn related pathophysiologies remain largely unknown.  

The intestinal barrier can be understood as both an immune barrier and a physical 

barrier.  With T and B cells, macrophages, and dendritic cells of the Payer’s patches (PP), 

mesenteric lymph nodes (MLN), and lamina propria (LP) of the gut associated lymphoid 

tissue (GALT) making up the intestinal immune barrier, and then tight junctional 

complexes, adherens junctions, and desmosomes between intestinal epithelial cells 

(IECs), contributing to the physical intestinal barrier.  In particular tight junctional 

complexes of the small and large intestine are made up of the proteins: claudin, occludin, 

and zonal-occludin.  These proteins are imperative to the maintenance of the physical 

intestinal barrier prohibiting translocation of bacteria out of the lumen while allowing the 

selective absorption of critical nutrients required by the host.  Tight junctional complexes 

are not limited to the make-up of intestinal barrier, but exist in many other natural 

barriers of the body such as the lungs, kidney, and blood brain barrier, etc.  Many studies 

on tight junction proteins at other barrier sites have implicated the role of heat shock 

proteins (HSPs) as support for tight junction protein integrity.   

HSPs are classified as small cytoprotective proteins, which are induced after 

stresses such as heat, cytotoxic drugs, and bacterial endotoxins.  Cell stress is alleviated 

by HSPs, which function to chaperone denatured proteins back to the endoplasmic 
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reticulum allowing for correct re-folding17,18.  Burn injury can result in intense cellular 

stresses, which can consequently lead to an accumulation of denatured proteins.  

However, there exists a gap in the knowledge of the potential role HSPs could play in 

upholding the integrity of tight junction proteins in intestinal epithelial cells and, 

therefore, proper maintenance of the physical barrier of intestine following burn injury.   

Understanding the interplay between burn related intestinal inflammation and the 

consequential intestinal barrier breakdown opens the doors for novel therapies in the 

treatment of burn patients.  As Inflammatory Bowel Disease (IBD) mimics many of the 

inflammatory symptoms seen in the intestine after burn injury, applying common 

therapeutics currently used in IBD treatment and prevention, such as mesalamine, for the 

treatment of burn injury could yield promising results.  Mesalamine inhibits inflammation 

through the inhibition of NF-κB and is theorized to upregulate the HSP response, 

resulting in alleviation of stress induced inflammation19-21.  Although it’s benefits in the 

treatment of ulcerative colitis and Crohn’s disease have been extensively studied, 

mesalamine’s potential for therapeutic intervention has yet to be applied in the context of 

burn injury.  The studies performed herein profile the alterations in the heat shock 

response following burn trauma, which could contribute to changes tight junction 

proteins and gut barrier integrity.  Additionally, studies were also carried out to examine 

whether treatment with mesalamine modulate HSPs and protect the barrier integrity after 

bun injury.  

 

 



 4 

Hypothesis 

Burn injury suppresses the heat shock protein response of intestinal epithelial 

cells altering tight junction proteins, which results in increased intestinal permeability.    

Specific Aim 1 

Characterize the expression of HSPs in the intestine and correlate with barrier 

integrity after burn injury. 

Rationale 

 Our recent findings suggest that burn results in gut barrier disruption including 

increases in intestinal permeability and bacterial translocation to the mesenteric lymph 

nodes (MLNs).  We now propose to study the effect of burn injury on HSP25, HSP72, 

and HSP90.  These HSPs are implicated in the maintenance of gut homeostasis in 

response to cellular stresses such as changes in the intestinal microbiome or microbial 

products, hypoxia, and ischemia, all of which have been implicated as symptoms of burn 

injury17,18,22-25.  Proper response to cell stressors, such as burn injury, by HSPs is essential 

due to their role in cell survival by facilitating the proper folding of denatured proteins. 

Thus, changes in expression of these cyto-protective HSPs post burn injury could 

adversely affect gut homeostasis resulting in barrier breakdown and increased leakiness 

and bacterial translocation.  Therefore, it is imperative to assess the expression of HSPs 

in the intestine and correlate with barrier integrity after burn injury. 
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Specific Aim 2 

 Determine whether treatment with anti-inflammatory therapeutic, Mesalamine, 

restores gut barrier integrity via upregulation of HSPs after burn injury.  

Rationale 

 Mesalamine or 5-ASA is currently used as treatment for patients with 

Inflammatory Bowel Disease (IBD) 11,21.  IBD is a chronic inflammatory disease 

characterized by gross elevations in pro-inflammatory cytokines and an over-active Th1 

response in the intestinal tract.  This pro-inflammatory environment results in severe 

intestinal epithelial stress resulting in intestinal tissue damage and severe pain in patients 

with the disease26.  As of yet, there is no cure for IBD, but one therapeutic option is 

treatment with 5-ASA.  The mechanism by which 5-ASA reduces symptoms of 

inflammation in IBD patients remains a matter of debate in the scientific community, but 

it is proposed to act through an inhibition of NF-B and/or inhibition in the release of 

TNF-21.  However, recent studies in vitro have shown 5-ASA to up-regulate the heat 

shock protein response in intestinal epithelial cells in reaction to cellular stress.  As burn 

injury induces intense intestinal epithelial cellular stresses as a result of increased 

inflammation and leakiness in the gastrointestinal tract.  These downstream consequences 

of burn injury can mimic intestinal epithelial cellular stresses seen in IBD13,26-28.  

Experiments in this aim will determine whether treatment with 5-ASA after burn injury 

successfully up-regulates HSPs in IECs and consequently restores proper tight junctional 

complex integrity and intestinal barrier function.  
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CHAPTER TWO 

REVIEW OF LITERATURE 

Burn Injury 

 As estimated by the American Burn Association 450,00 individuals succumb to 

burn injuries every year, with approximately 4,000 of those individuals requiring 

subsequent hospitalization29.  Burn injury remains a prominent medical issue to be 

resolved, not only due to the sheer number of injuries each year, but also due to the fact 

that burn trauma results in patients with increased risk of sepsis, progressing to septic 

shock, and ending in multiple organ dysfunction5.  Sepsis and multiple organ dysfunction 

syndrome (MODS) continue to be the leading causes of burn related mortality30.   

 The spiral towards increased mortality as a result of sepsis and MODS in burn 

patients begins with the onset of a global immune dysregulation31.  Immediately 

following burn trauma patients suffer from an overwhelming inflammatory response.  

This initial injury response phase, termed systemic inflammatory response syndrome 

(SIRS), is dependent on cells of the innate immune system such as macrophages, 

dendritic cells, and neutrophils producing vast amount of pro-inflammatory cytokines of 

Il-1, IL-6, IL-10, and TNF4,5,31-35.  Additionally, SIRS produces chemo-attractant proteins 

needed for recruitment of pro-inflammatory cells 31.  Conversely, the adaptive arm of the 

immune system generates a compensatory anti-inflammatory response syndrome  
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(CARS).  CARS is defined by a host of immuno-suppressive actions.  The disruption to 

the normally tightly controlled immune homeostasis after burn injury ultimately increases 

the patient’s susceptibility to whole body bacterial infection31.  The source of infection 

can be a consequence of externally acquired pathogens, or through internal commensal 

bacteria acquiring pathogenicity as a result of changes in their microenvironment post 

burn injury.  However, it is hypothesized that the source of post burn infection is the 

gastrointestinal tract36.   

Burn Injury and Gut Barrier Maintenance 

 The lumen of the gastrointestinal tract is the major reservoir of bacteria in the 

human body harboring upwards of 100 trillion organisms10.  This highlights the 

importance of the integrity of the gut barrier, which functions to sequester those high 

numbers of bacteria to the intraluminal space preventing bacterial translocation to 

extraintestinal sites.  As septic shock is a major clinical problem after burn injury, any 

breakdown in gut barrier after burn trauma remains of particular interest4,5,32.  Increases 

in burn related pro-inflammatory cytokines and inflammatory mediators in the gut after 

injury give rise to gut barrier dysfunction resulting in bacteria or bacterial endotoxins 

translocation across the intestinal barrier.  Translocating bacteria after burn injury have 

been detected not only in the MLNs, but also in the bloodstream and other more distant 

organs to the intestines including the lungs, liver, and spleen1,6,16,36.  The invasion of 

bacteria or their products to systemic organs post burn injury gives evidence to the 

hypothesis for the gastrointestinal tract as the origin of the major burn related 

complication: multiple organ dysfunction syndrome (MODS) 36.  



 8 

Intestinal Epithelial Cell Barrier 

 As the largest mucosal surface in the human body, the gastrointestinal tract comes 

into contact with the most dietary antigens and largest diversity of microbial organisms9.  

However, it is the barrier created by the GI tract between the diverse community of 

microorganisms residing in a healthy gut and extraintestinal sites that is of critical 

importance.  The intestinal barrier can be understood in two main parts: the immune 

barrier and the physical barrier.   

The immune barrier consists of cells such as dendritic cells (DCs), macrophages, 

T cells, and B cells.  DCs will constantly sample the intestinal lumen and present antigen 

to cells of both the adaptive and innate immune system37.  This, in turn, prompts the 

proper immune responses of restricting commensal microbes to the lumen and effectively 

eliminating potential pathogenic bacteria via secretion of cytokines by activated epithelial 

cells or T cells and/or release of opsonizing antibodies such as IgA37-39.  

The physical barrier of the gastrointestinal tract mainly consists of intestinal 

columnar epithelial cells, which adjacently associate creating an epithelial cell lining of 

the intestinal lumen.  Covering the epithelial cell lining is layer of mucus secreted by 

specialized epithelial cells called goblet cells40.  The mucus layer prevents most bacteria 

residing in the lumen of the intestine from direct contact with the epithelial cells, and 

therefore, restricting improper immune responses to resident intestinal bacteria9.  

Critical to the maintenance of intestinal homeostasis and the integrity of the 

physical intestinal barrier are a class of proteins known as tight junction (TJ) proteins.   

Even in an intact intestinal epithelial cell layer, there still exits a paracellular pathway 
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allowing for transepithelial transport between adjacent cells, but, however, needs to be 

sealed against bacterial transport outside of the intestinal lumen41,42.  Tight junctional 

proteins create tight junctional complexes, which aid in adjacent intestinal epithelial cell 

sealing.  The claudins and occludins are two types of transmembrane TJ proteins, which 

associate with zonal-occludin-1,2 (ZO1, ZO2) proteins.  ZO1 and ZO2 anchor the 

claudins and occludins into the intestinal epithelial cells cytoskeletal component F-

actin43,44.  Proper formation and integrity of tight junction complexes is required for a 

healthy gut. 

Any breakdown in gut barrier integrity, such as after injury or inflammation, 

could allow for the invasion of resident bacteria into the epithelium or to extraintestinal 

sites.  Bacteria translocating out of the intestinal lumen can exploit their newfound 

environments turning into opportunistic pathogens leading to infection and disease3,7,45.   

Heat Shock Proteins (HSPs) 

 Heat shock proteins or HSPs are a family of highly conserved stress proteins 

expressed ubiquitously across all organisms from humans to bacteria to yeast17,24,25,46-50. 

First discovered in 1962, HSPs are characterized by and subsequently named by their 

molecular weights, which range from approximately 15 to 110 kDa47,51.  The distribution 

of HSPs in different cellular compartments is widespread as it includes the cytoplasm, 

endoplasmic reticulum, and nucleus52.  Yet, the precise mechanistic function of HSPs has 

yet to be determined, but it is well known they are essential for survival at normal or 

elevated temperatures and in response to ischemia, cytokines, and energy depletion38-42.  

Although exact mechanisms are still not understood, researchers have determined that 
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HSPs have strong cytoprotective effects, are critical to many regulatory pathways, and 

act as molecular chaperones for other proteins23,24,46,47,50,53,54.   

Three of the most extensively studied HSPs are HSP72, HSP25, and HSP90, or 

HSP70, 27, and 90 in humans respectively.  HSP70 has at least two regulatory sequences 

that interact with the major heat shock protein transcription factor, HSF1.  The two 

sequences of HSP70, HSPA1A and HSPA1B, will code for almost identical amino acid 

sequences generating nearly indistinguishable proteins, which results in some 

redundancy55,56.  In particular, HSP72 was shown to be the most temperature sensitive 

and highly conserved out of all the HSPs.  In contrast to others in the HSP family, HSP72 

is highly inducible in response to a variety of stressors, such as hypoxia, ischemia with 

over-expression of HSP70 protecting from ischemic heart injury by enhancing post-

ischemic contractile function57 , reactive oxygen species, and pro-inflammatory cytokines 

like TNF-.   

Unlike the ATP-dependent HSP72, HSP25 acts completely independently of 

ATP, as do many of the other small molecular weight HSPs.  Mammalian HSP25 

proteins have the ability to dimerize under conditions of stress.  It theorized that a unique 

cysteine residue on HSP25 gives it its ability to act as an anti-apoptotic protein under 

threats of apoptosis due to injury58,59.  Lastly, HSP90 comprises approximately 1-2% of 

all cellular proteins in a cell, as it is so ubiquitously expressed.  Like HSP25, HSP90 

requires dimerization to properly function, but it differs in its dependency on ATP, 

similar to that of HSP72.  Unique to HSP90 is its ability to bind more than one naïve or 

stress-induced mis-folded protein in order to aid its proper folding/re-folding60-62.   



 11 

In the context of the gastrointestinal tract, there exists a fine-tuned relationship 

between the resident microflora, intestinal epithelial cells, and HSP induction17,26,45,63-65.  

It is of interest to note that HSP25 and 72 are present only at low basal amounts in the 

healthy distal small intestine and large intestine66,67.  Kojima et. al found that this 

distribution of HSP25 and 72 was due to the differential amounts of bacteria as one 

descends down the GI tract, with greater number and diversity of bacteria from small to 

large intestine66.  A healthy human gut requires the presence of the resident microflora, 

but under normal physiologic conditions microbial overgrowth is restricted, in part, by 

innate immune responses from intestinal epithelial cells.  Their study, and others, have 

provided evidence for the fact that potential pathogenic bacteria or bacterial products 

upregulate the HSP25 and 72 response65-68.  As both HSPs are known to be 

cytoprotective, their induction would allow for intestinal epithelial cell protection of 

critical cellular functions and viability.  Compromised expression of either HSP25 or 72 

in the small or large intestine could potentially increase susceptibility to invading 

pathogens and subsequent systemic complications.  

HSPs and Disease 

As HSPs are renowned for their cytoprotective roles, it follows that they have 

been implicated in the protection from various diseases, including Amyotrophic lateral 

sclerosis (ALS), cardiovascular disease, and Inflammatory Bowel Disease (IBD).  ALS is 

a progressive paralysis disease characterized by the death of motoneurons in spinal cord 

and motor cortex.  Researchers found that treatment with a broad-spectrum inducer of 

HSPs could drastically slow the progression of ALS69. 
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In the context of cardiovascular disease, induction of HSPs by thermal stress 

can significantly improve the outcome of ischemic heart disease.  Ischemic heart disease 

results in an accumulation of circulating leukocytes, leading to increased T cell and 

macrophage presence in the arterial way releasing pro-inflammatory cytokines of TNF, 

IL-6, and IFN-70.  As a consequence of increased inflammation, endothelial cells 

undergo severe cellular stresses, which lead to tissue damage and necrosis.  Currie et. al 

found that hearts with HSP over-expression had improved contractile functioning in 

response to ischemic conditions.  Additionally, the reperfusion damage was significantly 

lower than in hearts with basal levels of HSPs71.   

IBD is described as a chronic inflammatory state of the gastrointestinal tract26-

28,72.  This pro-inflammatory state in IBD can be characterized not only by elevated 

production of the pro-inflammatory cytokines TNF-, IL-6, and IL-1, but also by 

elevated levels of cell adhesion molecules (CAMs) are crucial to the infiltration of 

leukocytes into the bowel.  Leukocyte infiltration and chronic intestinal inflammation 

results in severe intestinal epithelial cell damage, which can proceed to colonic bleeding 

and intense discomfort in patients26,27.  However, recently, Tanaka et. al have shown that 

the presence of HSPs can significantly reduce IBD symptoms of intestinal epithelial cell 

damage and leukocyte infiltration compared to that of an HSF1 null mouse.  However, 

transgenic mice expressing the human HSP70 were found to have lower clinical scores of 

IBD symptoms, less intestinal epithelial damage, and reduced levels of the pro-

inflammatory cytokines TNF-, IL-6, and Il-1. From this they concluded that HSP70 

was essential in protection from symptoms of IBD73,74.     
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The above studies show strong evidence for HSPs as targets for protection from 

various diseases.  Therefore, it is of upmost importance to understand how 

pharmacological upregulation of HSPs could be a new, viable, therapeutic option is 

disease treatment.  

 

Mesalamine Treatment 

 Crohn’s disease (CD) and Ulcerative Colitis (UC) are two diseases encompassed 

by the classification of IBD. While CD can affect the entirety of the gastrointestinal tract, 

UC is restricted to the colon.  Under normal homeostatic conditions, tolerance exists 

between the resident microbes of the intestinal tract14,38-40.  However, in diseases states 

such as CD and UC that tolerance is broken leading to a hyper-active immune response 

characterized by dramatic increases in pro-inflammatory cells such as CD8+ T cells, pro-

inflammatory cytokines of INF-, TNF, IL-12, and IL-13, and other pro-inflammatory 

chemokines75,76.  No cure currently exists for patients with IBD, but several promising 

treatment options are available.  One such option is treatment with drug mesalamine.   

 Mesalamine, or 5- aminosalysylic acid (5-ASA), is presently being used as first-line 

therapy for patients with either CD or UC77,78.  The mechanism by which 5-ASA acts as an 

anti-inflammatory agent remains a matter of debate, but it is theorized to act in several ways.  

The first of which is a PPAR agonist.  In other studies, PPAR agonists have been shown to 

inhibit the production of the pro-inflammatory cytokines of TNF-, IL-6, and IL-1, which 

are commonly elevated in IBD20,79,80.  The second way in 5-ASA has been shown to act is 

through the inhibition of NF-B, which would halt the transcriptional messages required for 
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the increased inflammation in IBD19,20,77-79.  Lastly, 5-ASA has been shown to up-regulate 

HSPs, particularly HSP72, in vitro in rat intestinal epithelial cells81.  Induction of HSPs in a 

pro-inflammatory environment, such as after injury, could potentially assuage the detrimental 

effects of the inflammation, i.e. intestinal barrier breakdown, by aiding in the re-folding of 

denatured or damaged proteins as a consequence of inflammatory cell stress7,9,82.  

Additionally, increases in HSPs could function to more efficiently fold naïve anti-

inflammatory proteins required for alleviating inflammation17,18,22,24,50,83-85 
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CHAPTER THREE 

MATERIALS AND METHODS 

Animals  

Male C57BL/6 mice, 8-9 week old, weighing 22-25g, were obtained from Charles  

River Laboratories are used in all experiments. Animals were allowed to acclimate to the 

facility for 7-10 days before being used for the experiments. All experiments were 

conducted in accordance with the guidelines set forth by the Animal Welfare Act and 

were approved by the Institution Animal Care and Use Committee at the Loyola 

University Chicago Health Sciences Division. 

Burn Injury Procedure  

 Mice were anesthetized with xylazine and ketamine, their dorsal surface shaved, 

and placed in a template exposing ~20% total body surface area (TBSA) as calculated by 

the Meeh formula as describes by Walker and Mason86. The mice divided into two 

treatment groups, those receiving burn injuries or sham injuries.  The burn group was 

then submerged in a water bath set to 85-95°C for 7-9 seconds while the sham group 

were submerged in a water bath set to 37°C.  Following burn or sham burn, all animals 

were resuscitated with 1ml of normal saline.  This procedure models a severe ~20% 

TBSA full thickness third degree burn.  The animals were sacrificed 4 hours, day 1 and 

day 3 following injury.  Small and large intestine were harvested and processed for the 

isolation of intestinal epithelial cells for downstream experiments.   
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Intestinal Epithelial Cell Isolation  

Four hours, 1 or 3 days following the injury procedure, mice were humanley 

euthanized by isoflurane asphyxiation.  Isolation of intestinal epithelial cell was 

performed as described previously by Weigmann et al87.  Small and large intestines were 

removed from the peritoneal cavity.  For small intestine ileum studies, the distal 10cm of 

the small intestine was separated from the remainder of the small intestine for analysis. 

The entirety of the colon was harvested for analysis.  The tissues were cut longitudinally 

and placed in ice cold PBS + 1% penicillin/streptomycin (pen/strep) cocktail. Following 

two washes in PBS + pen/strep, tissues were placed in a digestion solution containing 5% 

heat-inactivated fetal bovine serum (FBS), 1% HEPES, 1% pen/strep, 0.5% gentamicin, 

5mM EDTA, and 1mM dithiothreitol (D.T.T.) in Hank’s Balanced Salt Solution (HBSS) 

at 37°C.  Tissues were placed in a 37°C incubator and shaken on a rotator at 250rpm for 

20 minutes.  Tissues were vortexed to separate the epithelial cells from the tissue and 

passed through a 100μm filter.  Cells were counted on a hemocytometer to determine 

epithelial cell purity (≥90%).  Intestinal epithelial cells were then processed for 

downstream applications. 

RNA Isolation and cDNA synthesis 

RNA isolation was performed using a RNeasy Mini Kit (Qiagen, Valencia, CA) 

as described by the manufacturer. Genomic DNA was removed by DNase digestion using 

an RNase-free-DNase Set (Qiagen). Isolated RNA concentration was determined using a 

NanoDrop 2000 spectrophotometer (Thermo Scientific, Bannockburn, IL). Only samples 

with a 260/280 ratio of ≥2.0 were used for cDNA synthesis. cDNA synthesis was 
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performed using a High Capacity cDNA Reverse Transcription Kit (Life Technologies, 

Carlsbad, CA) and reactions were run on a Veriti 96-well Fast Thermocycler (Life 

Technologies) per the manufacturer’s instructions. 

Real-Time PCR 

Expression of claudin-4, claudin-8, occludin, HSP25, HSP72, HSP90, and HSF1 

mRNA levels were analyzed by qPCR using TaqMan primer probes and TaqMan Fast 

Advanced Master Mix (Life Technologies). Target gene Ct cycle values were normalized 

to housekeeping control GAPDH or -actin Ct values. Data were calculated using the 

ΔΔCt method, and all groups were expressed relative to the sham group.  

Cytokine quantification  

IECs were isolated either from the distal 10cm of the small intestine or the colon, 

allowed to incubate in 500uL of 1X cell lysis buffer (Cell Signaling Technology) 

containing 1mM PMSF, 1X Protease inhibitor, 1X Phosphatase Inhibitor added (Cell 

Signaling Technology). The homogenates were centrifuged at 10,000 RPM for 5min and 

the supernatant was removed, aliquoted, and stored in -80°C for HSP25 (Enzo Life 

Sciences), HSP72 (R&D), IL-18 (eBioscience), IL-6 (BD), KC (R&D), or MCP-1 (R&D) 

ELISAs. Protein measurements of the same samples were done from Bio-rad protein 

assay kit. Data were normalized as amount of cytokine/mg protein.  

Immunofluorescence  

Sections of the distal ileum (1cm) and proximal colon (1cm) were fixed in the 

cryoprotective embedding medium, OCT, and frozen on dry ice.  Tissue sections were 
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prepared by the Loyola University Health and Sciences Division Processing Core.  

Briefly, tissues were semi-permeabilized with 100% ice cold ethanol for 30 min, fixed in 

100% ice cold acetone for 3 min, allowed to rehydrate in PBS for 1 min, and blocked 

with Superblock (Scytek Laboratories) in humidity chamber for 5 min.  Sections were 

washed in appropriate amount of primary antibody to either claudin-4 (abcam) or 

claudin-8 (Invitrogen) diluted at a concentration of 1:100 in 1%BSA in PBS, allowed to 

incubate for 2 hours in humidity chamber, and washed 3X with PBS.  Appropriate 

amounts of secondary antibody conjugated to Alexa 488 diluted to a concentration of 

1:1000 in 1% BSA in PBS were added and allowed to incubate in humidity chamber for 1 

hour.  Sections were washed in 3X PBS and phalliodin dye (Life Technologies) was 

added to stain F-actin for 30 min in humidity chamber.  Tissues were washed 3X PBS, 

mounted with Prolong Gold antifade reagent with DAPI (Life Technologies), and sealed 

after 24 hours.  The sections were imaged using a Zeiss Axiovert 200m fluorescent 

microscope and images were processed using Axiovision software.  

FITC-dextran assay  

One day after the aforementioned burn or sham injury procedure the mice were  

gavaged with .4ml of 22mg/ml FITC-dextran in PBS.  

After 3 hours blood was drawn, and the mice were sacrificed.  Stomach content, 

small intestine luminal content divided into three equal parts (with section #1 being 

proximal and section #3 being distal), and large intestine feces were collected.  The blood 

was centrifuged at 8000rpm for 10min at 4°C, plasma isolated, and read 

spectrophotometrically at 480nm excitation and 520nm emission wavelengths for 
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intestinal permeability.  Stomach content, small intestinal luminal contents #1, #2, and 

#3, and large intestine feces were weighed, normalized by amount of PBS added, 

sonicated (XL-2000 Misonix) until the solution was homogenous.  Homogenates were 

centrifuged at 8000rpm for 10min at 4°C, supernatants were collected, and read 

spectrophotometrically at 480nm excitation and 520nm emission wavelengths for 

intestinal transit.    

Statistics 

The data, wherever applicable, are presented as means + SEM and were analyzed 

using analysis of variance (ANOVA) with Tukey’s post-hoc test or Student t test 

(GraphPad Prism6). Unless otherwise noted, significance is reported as follows:      

* p < 0.05, ** p < 0.01, *** p < 0.001 
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CHAPTER FOUR 

RESULTS 

Expression of Tight Junction Proteins Following Injury 

 As we had previously observed an increase in intestinal permeability and 

subsequent bacterial translocation to extraintestinal sites following burn injury, we first 

examined whether burn injury altered the expression of tight junction proteins.  Tight 

junction proteins uphold the physical intestinal barrier by joining two adjacent intestinal 

epithelial cells allowing for the passive flux of nutrients from the lumen, but restricting 

the large number of bacteria our GI tract harbors to the luminal space6,13,26,36,88.  Any 

change in expression of tight junction (TJ) proteins after burn injury could potentially 

break this selective barrier allowing an increase in bacterial translocation7,82.  Therefore, 

we profiled the mRNA expression of several key TJ proteins, claudin-4, claudin-8, and 

occludin, in both small and large IECS one and three days following either burn or sham 

injury.  In small intestine IECS, we observed a 54% decrease in claudin-4 expression and 

49% decrease in claudin-8 expression relative to sham levels one day post burn on the 

same day.  The expression of these proteins was normalized to that of sham levels three 

days after injury (Fig. 1).  This is likely due to the extremely fast turnover rate of 

intestinal epithelial cells, which is about 2-3 days.  However, the downstream effect of 

this early breakdown in tight junction complex integrity one day post burn injury could  
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allow for the consequential translocation of bacteria out of the intestinal lumen ending 

in one of the most common burn related complications: septic shock.  There were no 

significant changes in occludin expression in small intestine IECS one or three days post 

burn injury (Fig. 1).   

 Next, we examined the same tight junction proteins in large intestine IECs one 

and three days following burn injury.  Similar to small intestine, IECs from large intestine 

trend toward the same decreases in claudin-4 and claudin-8 but this was not found to be 

significantly different from sham animals. Furthermore, this trend remained visible on 

day three after burn (Fig. 2).   
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SMALL INTESTINE IECs 

 

 

Figure 1: Burn injury results in decreased expression of tight junction proteins in small 

intestine IECs one day following injury.  q-RTPCR Claudin-4, claudin-8, and occludin 

mRNA expression relative to GAPDH.  Values are mean ± SEM of 6-8 animals per group 

expressed relative to sham.  *, p<0.05 burn day one compared to sham by ANOVA and 

Tukey post hoc test. 
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LARGE INTESTINE IECs 

 

 

Figure 2: Burn injury results in no significant changes in claudin4, claudin-8, or 

occludin in large intestine IECs.  q-RTPCR of Claudin-4, claudin-8, and occludin mRNA 

expression relative to GAPDH.  Values are mean ± SEM of 6-8 animals per group 

expressed relative to sham.  *, p<0.05 burn day one compared to sham by ANOVA and 

Tukey post hoc test. 
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Immunofluorescent Staining of Tight Junction Proteins 

Additionally, we used immunofluorescence to visualize the distribution of the 

tight junction proteins claudin-4 and claudin-8 in small intestine tissue sections.  It is 

imperative to understand how burn injury affects not only mRNA expression of tight 

junction proteins, but also how tight junctional complexes at the protein level are altered 

after burn injury.  Using specific antibodies to claudin-4 or claudin-8, we observed 

decreases in claudin-4 protein levels one day after burn injury compared to sham.  No 

significant changes in claudin-8 were observed in the small intestine.   
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Sham 

 

 

Burn Day 1      

 

Figure 3: Burn injury leads to a decrease in claudin-4 protein levels in small intestine 

tissue one day after burn injury.  Green color represents ALEXA 488 conjugated 

secondary antibody to that of primary antibody towards claudin-4.  Blue is a DAPI stain 

for nuclei.  The above image is 20X magnification.   
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Sham 

 

 

Burn Day 1 

 

Figure 4: No significant difference in claudin-8 protein levels one day after burn injury. 

Green color represents ALEXA 488 conjugated secondary antibody to that of primary 

antibody towards claudin-8.  Blue is a DAPI stain for nuclei.  The above image is 20X 

magnification.   
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Burn Injury and Heat Shock Proteins (HSPs) 

 

 We next examined whether burn injury alters expression of HSPs in intestinal 

epithelial cells (IECs).  Burn related decreases in tight junction proteins, as we observed 

in our studies, could result from alterations in HSPs.  Other studies have implicated HSPs 

as a source of stabilization of tight junction proteins in other barriers of the body, 

including the blood brain barrier (BBB).  The BBB is made up primarily of endothelial 

cells, while the intestinal physical barrier is made of epithelial cells81.  Yet, the way in 

which both endothelial cells in the BBB and epithelial cells of intestinal tract structure 

their tight junctional complexes is almost identical89.  They are both made up of the class 

of tight junction proteins, the claudins and occludins, and both allow for selective 

permeability42,43,82,89.  If HSPs are stabilizing the tight junction proteins of the intestinal 

epithelial barrier in a manner similar to that of the BBB, then we would expect a decrease 

in HSPs correlating with the decrease in TJ proteins we observe one day after burn injury 

resulting in gut barrier breakdown.  Therefore, we examined the HSPs 25, 72, and 90 in 

both small and large IECs four hours, one, and three days after burn injury as they all 

have been found to play a role in the maintenance of intestinal homeostasis17,18,24,31,83.  

More specifically, HSP72 was found to be critical in the stabilization of tight junction 

proteins in the BBB after injury24,83.  At the mRNA level, we found significant decreases 

in HSP25, 72, and 90 expression (25%, 85%, and 51% respectively) in IECs harvested 

from the small intestine one day post burn injury compared to sham controls (Fig. 5).  

Understanding how the mRNA message for HSPs can be disrupted after burn is 

important, but it is critical to determine whether burn injury alters levels of the HSP 
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protein response.  Hence, at the protein level, burn injury resulted in a decrease of 85% 

in HSP25 four hours after burn injury and significant decreases in HSP72 four (51%) and 

three days (46%) in small intestine IECs compared to sham controls (Fig 6). 

 Upon examination of the HSPs 25, 72, and 90 in large intestine IECs four hours, 

one day, and three days following burn injury, we observed a significant decrease, in all 

three HSPs, 4 hours after injury of 44%, 79%, and 33% respectively compared to sham. 

This significant decrease in HSP72 expression (81%) persisted to one day post burn 

injury (Fig. 7).  Protein levels of HSP25 mimicked mRNA expression with significant 

decreases in HSP25 (71%) in large intestine IECs four hours after burn injury.  Yet, 

HSP72 levels post burn injury were significantly down in large intestine IECs on both 

one (63%) and three days (46%) compared to sham controls (Fig. 8).   

 The suppression in HSPs in both small and large intestine post burn injury are 

correlating with the significant decreases we observe in the tight junction proteins.  This 

gives evidence to our hypothesis that decreased expression of HSPs alters tight junction 

proteins, which could drive the breakdown in gut barrier integrity after burn injury 

potentiating the risk of sepsis and subsequent MODs in burn patients.    
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SMALL INTESTINE IECs 

 

 

Figure 5: Burn injury results in decreased expression of HSP25, 72, and 90 in small 

intestine IECs one day after burn injury. q-RTPCR of HSP25, HSP72, and HSP90 

mRNA expression relative to GAPDH.  Values are mean ± SEM of 6-8 animals per group 

expressed relative to sham.  *, p<0.05 burn day one compared to sham by ANOVA and 

Tukey post hoc test.  
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Figure 6: Burn injury results in a suppressed HSP response in small intestine IECs in HSP25 

four hours after injury and HSP72 four hours and three days after injury.  IECs of the small 

intestine were harvested and cells were lysed for protein extraction.  ELISAs on HSP25 and 

HSP72 were performed on the protein homogenate four hours, one day, or three days after 

injury and expressed as pgHSP/mg protein.  **, p<0.001, ***, p<0.0001 burn four hour or 

one day compared to sham, ANOVA and Tukey multiple comparison tests. Values are mean 

± SEM of 6-8 animals per group.   
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LARGE INTESTINE IECs 

 

 

Figure 7: Burn injury results in decreased expression of HSP25 four hours after injury, 

HSP72 four hours and one day after injury, and HSP90 four hours after injury in large 

intestine IECs. q-RTPCR of HSP25, HSP72, and HSP90 mRNA expression relative to 

GAPDH.  Values are mean ± SEM of 6-8 animals per group expressed relative to sham.  *, 

p<0.05, **, p<0.01, ***, p<0.001 all burn time points relative to sham by ANOVA and Tukey 

post hoc test. 
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Figure 8: Burn injury results in a suppressed HSP response in large intestine IECs in HSP25 

four hours after injury and HSP72 one and three days after injury.  IECs of the large intestine 

were harvested and cells were lysed for protein extraction.  ELISAs on HSP25 and HSP72 

were performed on the protein homogenate four hours, one day, or three days after injury and 

expressed as pgHSP/mg protein.  *, p<0.05, **, p<0.001, ***, p<0.0001 burn four hour or 

one day compared to sham, ANOVA and Tukey multiple comparison tests. Values are mean 

± SEM of 6-8 animals per group. 
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Mesalamine Treatment 

Mesalamine, or 5-aminosalysylic acid (5-ASA), is currently used as an anti-

inflammatory treatment for patients with Inflammatory Bowel Disease (IBD), a disease 

characterized by severe elevations of pro-inflammatory cytokines in the gastrointestinal tract 

causing severe discomfort in affected patients21,81.  Most commonly, 5-ASA is used in the 

treatment of ulcerative colitis or Crohn’s disease where it is theorized to work through an 

inhibition of the major transcription factor of inflammatory mediators, NF-kB, or by 

inhibiting the synthesis of TNF-21,32,81.   However, another study looking at the mechanism 

by which 5-ASA acts as an anti-inflammatory agent found that 5-ASA up-regulates the heat 

shock protein HSP72 in rat intestinal epithelial cells81.  Induction of HSP72 would allow for 

an alleviation of inflammation and stress to the cell via proper folding of naïve proteins 

needed to combat increased inflammation and proper re-folding of damaged proteins as a 

result of cell stress24.  

We attempted to induce HSPs in our murine model of burn injury with the 

hypothesis that if HSPs stabilize TJ proteins, up-regulating HSPs after burn injury could 

potentially restore the decrease in TJ proteins we observe and bring back normal barrier 

function.  To perform this experiment, mice were divided into four groups: sham plus saline, 

sham plus 5-ASA, burn plus saline, and burn plus 5-ASA.  Immediately after burn injury, 

mice were given an intraperitoneal (i.p.) injection of 100mg/kg of 5-ASA dissolved in 1 mL 

of saline used for the normal resuscitation.   The mice were then sacrificed one day after burn 

injury, as it is the time point where we see the most significant changes.  We found that mice 

treated with 100mg/kg 5-ASA at time of resuscitation, did not up-regulate HSP25 or 72 

in either small or large intestine IECs as seen by mRNA expression in Figure 9.  
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Examination of HSP72 at the protein level confirmed that 5-ASA did not increase the 

HSP72 response after burn injury (Fig. 10).  To further elucidate whether 5-ASA could 

upregulate HSPs in response to burn injury, we looked further upstream at the master 

transcriptional regulator of HSPs, HSF118.  Quantification of mRNA expression of HSF1 

after treatment with 5-ASA in the context of burn injury showed no significant changes in 

either small or large intestine IECs compared to the burn injury alone group (Fig. 11a and 

11b).  It is of interest to note, that burn injury alone does produce a significant decrease in 

HSF1 in both small and large intestine IECs one day after burn compared to sham 

controls, which gives evidence to our observations of decreased levels of HSPs following 

burn injury.  

However, 5-ASA treatment did significantly restore claudin-4 and trends toward 

restoration of occludin expression in small intestine IECs one day after burn injury (Fig. 

12).  No changes in claudin-8 expression were observed in small intestine IECs following 

5-ASA treatment after burn injury as seen in Figure 12.  There was no restoration of the 

large intestine IEC tight junction proteins, claudin-4, claudin-8, or occludin, one day after 

burn injury with 5-ASA treatment (Fig. 13).     

Burn injury is associated with high levels of inflammation in the gastrointestinal 

tract, which can potentiate increases in intestinal permeability82,90.  We broadened our 

analysis of 5-ASA treatment to determine whether 5-ASA could be deemed beneficial in 

reducing the high levels of pro-inflammatory cytokines and chemokines.  We, and others, 

have previously seen elevated post burn injury, such as IL-18, IL-6, KC, and MCP-

17,82,91.  5-ASA significantly reduced the small intestine IEC pro-inflammatory cytokines 

IL-18 (62% increase one day after burn and back to sham levels with 5-ASA) and IL-6 



 35 

(34% increase back to sham levels one day post burn) in IECs after burn injury (Fig. 

14).  No significant changes were observed in the pro-inflammatory chemokine MCP-1 

in small intestine IECs with 5-ASA treatment (Fig. 14).   

In large intestine IECs there was a trend towards a reduction in IL-6 and the pro-

inflammatory cytokine KC with 5-ASA treatment one day following burn injury.  

Interestingly, there was a significant decrease (63%) in the pro-inflammatory chemokine 

MCP-1 following 5-ASA treatment one day after burn injury in large intestine IECs (Fig. 

15).   

 Increases in intestinal inflammation have been shown to potentiate increases in 

intestinal permeability82, both of which have been theorized to inhibit intestinal 

peristalsis11,92.  The inability to effectively move luminal content down the GI tract could 

dramatically change the luminal microenvironment creating more favorable environments for 

opportunistic pathogens11,36,42,45,92,93.  Our lab has previously reported drastic alterations in 

microbial communities of the intestinal tract after burn injury94 (submitted manuscript).  This 

compounded with stalled intestinal peristalsis and increases in intestinal permeability could 

give evidence to our reports of bacterial translocation to extraintestinal sites resulting in some 

of the most common burn related complications of sepsis and MODs95.  Therefore, it is 

critical to determine whether burn injury not only results in increased intestinal permeability, 

but also whether burn inhibits intestinal peristalsis.  Hence, we performed a FITC-dextran 

permeability and transit assay.  Mice were gavaged with FITC-dextran one day after burn 

injury.  Three hours later plasma, stomach content, small intestine luminal content divided 

into three equal sections, and large intestine feces were collected and analyzed for the 

presence of FITC spectrophotometrically.  
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 We have previously reported increases in intestinal permeability one day following 

burn injury using the aforementioned FITC-dextran assay94  (submitted manuscript).  After 

applying the FITC-dextran assay to assess intestinal transit, we found that burn injury 

significantly inhibits normal intestinal transit in burn injured animals as evidenced by an 

accumulation of FITC-dextran in the stomach content and small intestine #1 (Fig. 16).  To 

our knowledge, however, there has been no attempt to reduce intestinal permeability and 

restore intestinal peristalsis following burn injury via treatment with 5-ASA.  Therefore, we 

performed the FITC-dextran assay with the addition of 5-ASA treatment to determine 

whether 5-ASA following burn injury would decrease intestinal permeability and restore 

intestinal peristalsis.   

As we’ve seen previously, the concentration of FITC-dextran in the plasma was 

significantly increased in burn injury alone relative to sham control giving evidence to 

increased gut leakiness post burn injury.  With 5-ASA treatment following burn, the increase 

in intestinal permeability was completely restored to that of sham levels as there is no 

statistically significant difference in FITC-dextran concentrations in the plasma between 

sham controls and 5-ASA treated burn animals (Fig. 17).  Additionally, treatment with 5-ASA 

following burn injury helps restore normal functioning intestinal peristalsis.  This can be seen 

in Figure 18 with sham animals having the largest concentration of FITC-dextran transiting 

all the way to the colon.  On the other hand, the FITC-dextran transit is halted in burned 

animals evidenced by zero to very little FITC-dextran in the colon with the vast majority 

residing in the stomach and small intestinal content #1.  Treatment with 5-ASA post burn 
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allows for more efficient transit of FITC-dextran as more FITC-dextran can be detected in 

large feces with treatment (Fig. 18).  It is not, however, back to sham control levels. 
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Figure 9: 5-ASA treatment after burn injury does not significantly induce mRNA 

expression of HSP25 or HSP72 following injury. q-RTPCR of HSP25 and HSP72 mRNA 

expression in large and small intestine IECs relative to -actin.  Values are mean ± SEM 
of 6-8 animals per group expressed relative to sham.  *, p<0.05, **, p<0.01, ***, p<0.001, 

****, p,0.0001 all groups relative to sham by ANOVA and Tukey post hoc test. 
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Figure 10: 5-ASA treatment after burn injury does not significantly induce protein levels 

of HSP72 in either small or large intestine IECs. IECs of the small and large intestine were 

harvested and cells were lysed for protein extraction.  ELISA on HSP72 was performed on 

the protein homogenate one day after injury and expressed as pg HSP/mg protein.  *, p<0.05, 

**, p<0.001, ****, p<0.0001 all groups compared to sham, ANOVA and Tukey multiple 

comparison tests. Values are mean ± SEM of 6-8 animals per group. 
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Figure 11: 5-ASA treatment after burn injury does not significantly induce mRNA 

expression of HSF1 in either small or large intestine IECs. q-RTPCR of HSF1 mRNA 

expression in large and small intestine IECs relative to -actin.  Values are mean ± SEM 
of 6-8 animals per group expressed relative to sham.  *, p<0.001, **, p<0.0001 all groups 

relative to sham by ANOVA and Tukey post hoc test. 
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SMALL INTESTINE IECs 

 

 

Figure 12: Treatment with 5-ASA at time of burn injury significantly restores small intestine 

IEC claudin-4 expression to that of sham levels one day after injury, while a trend toward 

restoration exists of occludin expression in small intestine IECs one day post injury. q-

RTPCR of claudin-4, claudin-8, and occludin mRNA expression relative to -actin.  

Values are mean ± SEM of 6-8 animals per group expressed relative to sham.  *, p<0.05, **, 

p<0.01, ***, p<0.001 burn day one compared to sham by ANOVA and Tukey post hoc test. 
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LARGE INTESTINE IECs 

 

 

 

Figure 13: Treatment with 5-ASA at time of burn injury does not affect expression of 

claudin4, claudin-8, or occludin in large intestine IECs after injury. q-RTPCR of claudin-4, 

claudin-8, and occludin mRNA expression relative to -actin.  Values are mean ± SEM of 

6-8 animals per group expressed relative to sham.  *, p<0.05, **, p<0.01, ****, p<0.001 burn 

day one compared to sham by ANOVA and Tukey post hoc test. 
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SMALL INTESTINE IECs 

    

 

 

              

Figure 14: Treatment with 5-ASA after burn injury significantly reduces the observed 

increase in the pro-inflammatory cytokines IL-18 and IL-6 back to that of sham levels one 

day after injury in small intestine IECs, with a trend toward reduction in the pro-

inflammatory chemokine, KC, one day after injury. IECs of the small intestine were 

harvested and cells were lysed for protein extraction.  ELISAs on IL-18, IL-6, KC, and MCP-

1 were performed on the protein homogenate one day after injury and expressed as pg/mg 

protein.  *, p<0.05, **, p<0.001, all groups compared to sham, ANOVA and Tukey multiple 

comparison tests. Values are mean ± SEM of 6-8 animals per group. 

 

 



 44 

LARGE INTESTINE IECs 

 

       

 

  

 

Figure 15: Treatment with 5-ASA after burn injury significantly reduced the pro-

inflammatory chemokine, MCP-1, back to that of sham levels in large intestine IECs one 

day after injury.  5-ASA treatment produced a trend towards a reduction in the pro-

inflammatory cytokine/chemokines of IL-6 and KC one day after injury in large intestine 

IECs. IECs of the large intestine were harvested and cells were lysed for protein extraction.  

ELISAs on IL-6, KC, and MCP-1 were performed on the protein homogenate one day after 

injury and expressed as pg/mg protein.  *, p<0.05, all groups compared to sham, ANOVA and 

Tukey multiple comparison tests. Values are mean ± SEM of 6-8 animals per group. 
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Figure 16: Decreases in intestinal transit one day after burn injury. .  Mice were gavaged 

with FITC-dextran one day after burn or sham injury.  Three hours after FITC-dextran 

gavage stomach content, small intestine luminal content divided into three equal lengths (#1 

being proximal to stomach and #3 being distal), and large intestine feces were collected and 

visualized spectrophotometrically for presence of FITC-dextran. Values are mean ± SEM of 

6-8 animals per group. 
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Figure 17: Treatment with 5-ASA following burn injury significantly reduces intestinal 

permeability and restores intestinal peristalsis to that of sham levels one day after injury.  

Mice were gavaged with one day after either burn or sham injury.  Three hours later FITC-

dextran was measured in plasma spectrophotometrically. Values are mean ± SEM of 4-6 

animals per group. ***, p<0.0001 burn saline compared to sham control , ANOVA and Tukey 

multiple comparison tests. 
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INTESTINAL TRANSIT AFTER 5-ASA 

 

Figure 18: 5-ASA treatment partially restores normal intestinal transit one day after burn 

injury.  Mice were gavaged with FITC-dextran one day after burn or sham injury.  Three 

hours after FITC-dextran gavage stomach content, small intestine luminal content divided 

into three equal lengths (#1 being proximal to stomach and #3 being distal), and large 

intestine feces were collected and visualized spectrophotometrically for presence of FITC-

dextran. Values are mean ± SEM of 4-6 animals per group.  
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CHAPTER FIVE 

SUMMARY AND DISSCUSSION 

 

 Sepsis and Multiple Organ Dysfunction syndrome remain the leading causes of 

post-burn morbidity and mortality 3-5,29.  Understanding the contributing factors and 

mechanisms behind the dysregulated immune response after burn trauma, which 

significantly predisposes patient’s risk for secondary infections, is necessary for 

development of novel therapeutic intervention.  As the gastrointestinal tract harbors 

trillions of resident bacteria, any breakdown in the intestinal epithelial barrier 

sequestering those bacteria to the luminal space can result in bacterial translocation to 

extraintestinal sites giving rise to patient’s risk of sepsis 10,88.  IECs are sealed together 

via tight junctional complexes 43.  HSPs are known stabilizers of TJ proteins 24,89.  

Therefore, it is critical to not only understand the role of TJ proteins in gut barrier 

integrity following burn, but also the role of HSPs.  We hypothesized that decreased 

expression in the HSP response in IECs following burn injury potentiates decreases in TJ 

protein expression increasing intestinal permeability.  The studies performed herein 

identify post burn changes in TJ proteins in IECs correlating with suppression of the HSP 

response, which suggests a potential role for HSPs in the maintenance of gut barrier 

integrity.  This breakdown in HSPs and TJ proteins in IECs following burn injury could 

allow for bacterial translocation out of the lumen and into circulation, which could drive 
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the systemic inflammatory response and subsequent septicemia common in burn 

related trauma. 

 Under normal homeostatic conditions, IECs maintain the physical barrier of the 

intestinal tract by joining adjacent epithelial cells via formation of tight junctional 

complexes.  This interaction is imperative to the integrity of a healthy gut, and any 

perturbation in tight junction protein expression of IECs could increase gut leakiness and 

bacterial translocation 7,15,16,43,82,95,96.  Therefore, we measured the expression of the tight 

junction proteins claudin-4, claudin-8, and occludin following burn injury.  Using q-

RTPCR we observed decreases in claudin-4 and claudin-8 expression one day after burn 

injury in small intestine IECs and a trend towards the same decreases on day one in large 

intestine IECs in both claudin-4 and claudin-8.  Upon immunofluorescent staining of 

claudin-4 and claudin-8 in small intestinal tissue, we saw decreases in claudin-4 levels 

one day after injury.  These alterations in TJ protein expression give evidence to our 

previously observed increases in intestinal permeability and bacterial translocation to 

extraintestinal sites, such as the MLNs, one day after burn injury 94. As tight junctional 

complexes are comprised of many tight junction proteins such as claudin-1, claudin-2, 

claudin-3, zonal-occludin-3 and many others, expanding our analysis to include these 

other tight junction proteins would allow for better understanding of the breakdown in 

structure of tight junctional complexes following burn trauma.  Understanding the 

contributing factors leading to TJ protein alterations after burn injury would allow for the 

intervention of new therapies directed at their specific upregulation or their upregulation 

via secondary targets.    
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 We hypothesized that decreases in TJ protein levels following burn trauma was 

the result of a suppressed HSP response.  At the cellular level, the host responds to acute 

environmental stress, such as disruptions in gut homeostasis after burn injury, by 

inducing the heat shock protein response.  As cyto-protective proteins, the presence of 

HSPs would allow for alleviation of aforementioned stress by correctly re-folding 

denatured proteins as a consequence of stress and also aiding in the folding of naïve 

proteins needed to combat cellular stress 17,18,46,49,54,55,61,68.  Since it is not known how the 

HSP response is affected after burn injury, we measured the expression of the three most 

studied HSPs, HSP25, HSP72, and HSP90, in small and large intestine IECs four hours, 

one day, and three days post burn injury 47,56,57.  We found that burn injury decreased 

mRNA expression of HSP25, 72, and 90 in small intestine IECs one day after injury.  In 

large intestine IECs, burn decreases expression of HSP25 four hours after injury, HSP72 

four hours and one day after injury, and HSP90 four hours after injury.  It is imperative to 

understand how burn injuries affect not only mRNA expression of HSPs, but also how 

HSPs at the protein level are altered after burn injury.  Hence, at the proteins level, we 

found a suppressed HSP response in small intestine IECs in HSP25 four hours after injury 

and HSP72 four hours and three days after injury.  In large intestine IECs, burn injury 

resulted in decreases in HSP25 four hours after injury and HSP72 one and three days after 

injury.   

 Although the exact mechanisms behind the cyto-protective functions of HSPs are yet 

to be fully understood, their expression has been linked to protection in various diseases such 

as ALS, ischemic heart disease, and IBD 14,50,54,57,61,68,70,74.  Transgenic mice have been 

created to overexpress the human isoform of HSP72, HSP70, and it would be interesting to 
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assess whether HSP70 overexpressing mice allow for protection from burn induced 

complications of intestinal permeability, inflammation, and bacterial translocation compared 

to wild type mice 57,74.   

Mesalamine (5-ASA) has been shown to significantly reduce symptoms of intestinal 

inflammation in patients with two forms of IBD: Crohn’s disease and ulcerative colitis 

20,21,27,77,78.  5-ASA has been shown to induce HSP72 in vitro in rat intestinal epithelial cells 

in response to cellular stress, providing a mechanism of protection to rat IECs 81.  As the 

intestinal inflammation and subsequent damage to intestinal epithelial cells in IBD mimics 

what we observe in burn intestines, we attempted to induce the HSP response in vivo with 5-

ASA after burn injury.  Measurement of HSP25, HSP72, and HSP90 after 5-ASA treatment 

yielded no significant induction in any of the three HSPs in both small and large intestine 

IECs.  However, 5-ASA treatment did significantly restore claudin-4 and trends toward 

restoration of occludin expression in small intestine IECs one day after burn injury.  As 

burn injury results in high levels of inflammation in the gastrointestinal tract, which can 

potentiate increases in intestinal permeability, we measured levels of IL-18, IL-6, KC, 

and MCP-1 in small and large IECs one day after burn with 5-ASA treatment 82,90.   

We’ve previously reported increase in all four pro-inflammatory cytokines/chemokines in 

intestinal tissues, and found that 5-ASA significantly reduced the small intestine IEC pro-

inflammatory cytokines IL-18 and IL-6 in IECs after burn injury 7,82,91.  In large intestine 

IECs there was a trend towards a reduction in IL-6 and the pro-inflammatory cytokine 

KC with 5-ASA treatment one day following burn injury.  Interestingly, a drastic decrease 

in the pro-inflammatory chemokine MCP-1 was observed following 5-ASA treatment one 

day after burn injury in large intestine IECs.   
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 Intestinal inflammation can significantly increase intestinal permeability, both of 

which can halt normal intestinal peristalsis 11,82,94.  Without the ability to move luminal 

content down the GI tract, drastic changes in the microenvironment of the gut can ensue, 

producing environments more suited to opportunistic pathogens 11,16,36,44,92,94,95.   We have 

previously reported severe dysbiosis of the intestinal tract after burn injury, and compounded 

with inhibition of intestinal peristalsis and increases in intestinal permeability, would give rise 

to our reports of bacterial translocation to extraintestinal sites 15,94,95.  Treatment with 5-ASA 

reduced intestinal permeability to that of sham levels and partially restored the intestinal 

peristalsis we observe one day following burn injury.  

5-ASA treatment after burn injury has its limitations as the highest dosage able to be 

dissolved in normal saline is 100mg/kg.  Future studies will be critical to determine dosages 

and delivery systems for optimal efficacy.  

Treatment with 5-ASA does not act as an agonist of HSPs after burn.  Yet, it could 

potentially be used as treatment to decrease intestinal permeability by restoring tight 

junctional complexes and decreasing the inflammation associated with burn injury.  

 



 [53] 

 

 

 

 

 

 

 

APPENDIX  

SPECIFIC METHODS 

 



 [54] 

Mouse Model of Thermal Injury 

Adult C57BL/6 mall mice (7-8 weeks old, 22-25g body weight, Charles River  

Laboratories) were chosen randomly for all experiments. Animals received sham or burn 

injury yielding two groups.  For the 5-ASA treatment, animals were divided into four groups 

sham + saline , sham + 5-ASA, burn + saline, and burn + 5-ASA.  The mice were 

anesthetized with a intraperitoneal injection of ketamine hydrochloride/ xylazine cocktail 

(~80mg/kg and 1.2 mg/kg, respectively). The dorsal surface was shaved and the mice were 

transferred to a template calculated to expose ~20% TBSA as calculated by the Meeh 

formula, A=kW2/3, given k=10, and weight in grams86. The mice were submerged in a water 

bath set to 85°C for 7-9 seconds to emulate burn injury or a water bath set to 37°C to emulate 

sham injury.  Following the burn the mice were resuscitated with an intraperitoneal injection 

of 1ml of saline.  For the 5-ASA treatment, 5-ASA treatment groups received 100mg/kg 5-

ASA (Santa Cruz) dissolved in normal saline.  Animals were allowed food and water ad 

libitum. Mice were sacrificed and organs or tissue were collected four hours, one, or three 

days after injury.  
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qPCR 

For quantification of gene expression, RT-qPCR 

RNA Purification  

1. RNA was purified using RNeasy mini kit by Qiagen.  

2. Tissue stored in RNA later was excised, 20 mg, and homogenized in lysis buffer  

     with a rotor fixed tissue shredder for 30 seconds.  

3. Sample was added to Qiagen spin columns and DNA was digested using the  

Qiagen DNase digest to remove any contaminating genomic DNA following the  

manufacturers.  

4. Inhibitors were washed off the columns using buffers AW1 and AW2  

5. Sample was eluted using 50.l of TE  

 

Reverse Transcription  

1. Reverse transcription reaction was performed using Applied Biosystems high capacity     

cDNA reverse transcription kit and following the manufacturers instructions.  

2. Each sample was diluted to 33.75ng/.l and 10.l of each sample was added to a 96 well plate  

3. 10.l of RT master mix was added to each sample which contained, the reverse transcription 

enzyme, dNTPs, random primers, and H20 at a 1X concentration. 

4. The reaction was run using Applied Biosystems Veriti thermal cycler using the 

manufacturers recommendations.  

5. The cDNA was diluted down to 30/8 ng/.l for qPCR  

 

qPCR  

1. The qPCR master mix was created using 10.l/rxn TaqMan Fast Advanced qPCR  

     supermix, 1.l/rxn TaqMan primer and probe (FAM), and 1.l/rxn TaqMan GAPDH or -

actin  endogenous control (VIC).  

2. 12.l was pipetted into each well of a 96 well plate  

3. 8.l of cDNA sample at 30/8 .l was pipetted into the corresponding well  

4. The reaction was run using the FAST Applied Biosystems protocol on Step One Plus 

     qPCR machine, Applied Biosystems  
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ELISA 

Tissue Homogenization:  

Supplies:  

•Lysis buffer, Cell Signaling Technologies  

•Protease Inhibitor Cocktail  

• PMSF  

•Homogenizer Qiagen  

• Sonicator  

 

Procedure:  

1. Prepare lysis buffer: Cell signaling technologies, protease inhibitor cocktail, phosphatase 

inhibitor, and PMSF to manufacturers instructions  

2. Add 500.l lysis buffer per sample (small intestine IECs or entire large intestine IECs from 

cecum)  

3. Keep samples on ice 45 min.  

4. Centrifuge for 5 min at 10000rpm at 4°C. 

5. Collect and aliquot.  

6. Store homogenates at -80°C.  

 

ELISA Supplies:  

• HSP25 ELISA kit (Enzo Life Sciences) 

• HSP72 ELISA kit (R&D)  

• IL-18 ELISA kit (eBioscience) 

• IL-6 ELISA kit (BD)  

• KC ELISA kit (R&D) 

• MCP-1 ELISA kit (R&D)  

 

Procedure:  

1. Samples were diluted depending on the specific ELISA kit used so that the unknowns were 

within the standard curve  

2. ELISA procedure was performed exactly as according to the manufacturer’s protocol, and 

suggested antibody dilutions  

3. Read plate with a spectrophotometer at wavelengths suggested by manufacturer.  
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Immunofluorescence 

Supplies 

 Humidity Chamber 

 Pap Pen 

 100% ice cold acetone 

 100% ice cold ethanol 

 1X PBS 

 1% BSA in 1X PBS 

 Primary antibody to protein of interest 

 Secondary antibody conjugated to fluorophore 

 Prolong Gold antifade reagent with DAPI  

 

Procedure 

1. Mark area with pap pen 

2. Immerse slides in 100% ice cold ethanol for 30 min in freezer. 

3. Remove slide from ethanol and immerse in 100% ice cold acetone for 3 min in freezer.  

4. Remove from acetone and allow to air dry for 3 min 

5. Immerse in 1X PBS for 1 min 

6. Put slide in humidity chamber. Add 200L Superblock over tissue area. Incubate for 5        

min. 

7. Rinse 3X in PBS for 2 min 

8. Add appropriate amount of primary antibody ~200L in 1% BSA in PBS over tissue area 

in humidity chamber.  Incubate for 2 hours. 

9. Rinse 3X in PBS for 2 min. 

10. Turn lights off. 

11. Add appropriate amount of secondary antibody ~200L in 1% BSA in PBS over tissue 

area in humidity chamber.  Incubate for 1 hour.  

12. Rinse 3X in PBS for 2 min. 

13. Add ~200L phalloidin dye to tissue area in humidity chamber.  Incubate for 30 min.  

14. Rinse 3X in PBS for 2 min.  

15. Dry slides. 

16. Mount with Prolong Gold antifade reagent with DAPI.  

17. Allow to dry overnight. 

18. Image with Zeiss Axiovert 200m fluorescent microscope  
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FITC-dextran Permeability and Transit Assay 

 

1. On the day of sacrifice, gavage mice with .4ml of 22mg/ml FITC-dextran (Sigma- 

Aldrich) in PBS.  

2. After 3 hours draw blood and sacrifice the mice. 

3. Collect:  

-stomach content 

-small intestine luminal content divided into 3 equal parts: #1, #2, #3 

 -#1 being proximal to stomach and #3 being most distal 

4. The blood was centrifuged for 8000rpm for 5min at 4°C, plasma isolated.  

5. Each animals stomach and luminal contents from each section were weighed and 

normalized to 5X PBS addition. 

6. Sonicate for 30 seconds using XL-2000 Misonix. 

7. Centrifuge samples for 10 min at 8000rpm at 4°C.  

8. Remove supernatant.  

9. Standards of FITC-dextran was prepared using 2 fold dilutions of pure FITC- 

    dextran in PBS, the high standard being 3 mg/ml for luminal content and 100g/ml for 

    plasma.  

10. Equal volumes of standard, plasma, and luminal content were pipetted into the 

      corresponding well, 96 well plate.   

11. The plate was read spectrophotometrically at 480nm excitation and 520nm.  
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