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ABSTRACT 

 Mixed lineage leukemias have a relatively poor prognosis and arise as a result of 

translocations between the MLL gene and one of multiple partner genes.  Downstream 

targets of MLL are aberrantly upregulated and include the developmentally important 

HOX genes and MEIS1, as well as multiple miRNAs, including the miR-17-92 cluster and 

miR-196b.  Here I utilize custom anti-miRNA oligonucleotides to examine the 

contribution of specific miRNAs to MLL leukemias both as individual miRNAs and in 

cooperation with other miRNAs.  Combinatorial treatment with antagomirs against miR-

17 and miR-19a of the miR-17-92 cluster dramatically reduces colony forming ability of 

MLL-fusion containing cell lines but not non-MLL AML controls.   

 Further, I validated PKNOX1 as a target of both miR-17 and miR-19a. MEIS1 and 

PKNOX1 are TALE domain proteins that participate in ternary complexes with HOX and 

PBX proteins. Here I examine the competitive relationship between PKNOX1 and 

MEIS1 in PBX-containing complex formation and determine the antagonistic role of 

PKNOX1 to leukemia in a murine MLL-AF9 model. Collectively, these data implicate the 

miR-17-92 cluster as part of a regulatory mechanism necessary to maintain 

MEIS1/HOXA9 -mediated transformation in MLL leukemia. This approach represents a 

paradigm where targeting multiple non-homologous miRNAs may be utilized as a novel 

therapeutic regimen.  
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CHAPTER 1 

INTRODUCTION 

 MLL leukemias develop as the result of a balanced translocation involving the 

MLL gene located at the 11q23 locus and one of over 70 fusion partners [1].  The 

resulting leukemias develop as either acute myeloid leukemia, acute lymphocytic 

leukemia, or a mixed lineage leukemia and have a poorer prognosis than many non-MLL 

leukemias [2, 3]. MLL leukemias possess a chimeric fusion protein which aberrantly 

upregulates expression of target genes, including HOXA9 and MEIS1 [4, 5]. HOXA9 and 

MEIS1 are essential for MLL leukemia [5-7].  The poorer prognosis associated with  

MLL leukemia gives reason to better understand it, and undertake studies to clarify the 

mechanisms by which it operates. 

 MiRNAs are small noncoding RNAs of approximately 22 nucleotides which 

function through repression of target mRNAs [8, 9]. Currently, over 2500 miRNAs have 

been identified in humans and are thought to contribute to the regulation of up to half of 

all transcribed genes [10]. Previous studies by our lab and others found that multiple 

miRNAs, including miR-196b, and the miRNAs of the  miR-17-92 cluster, are 

overexpressed in MLL leukemias relative to other acute myeloid leukemias [11, 12].  

These miRNAs present an attractive target for therapeutic intervention in MLL leukemias 

due to their critical roles in regulation of important target genes. Recent work has been 
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undertaken to develop modified nucleic acids for the inhibition of miRNAs [8, 13, 14].  

Antagomirs and other anti-miRNA technologies have been tested in vitro and in vivo to 

this effect [8, 13, 14]. 

 This dissertation examines the role of miRNAs disregulated in MLL leukemias 

through two aims. My first aim is to determine the necessity of miRNAs to the 

development of leukemia, both individually and in combination. I hypothesized that one 

or more miRNA upregulated in MLL leukemia are essential to leukemia function. To 

examine the contribution of miRNAs to leukemia, I have inhibited miRNA function 

using custom oligonucleotides termed ‘antagomirs.’  I examined the changes in colony 

forming ability as a surrogate for leukemogenesis in human cell lines with MLL 

translocations and in MLL-AF9 transduced murine bone marrow utilizing individual 

antagomir treatments.  Further, I have performed colony assays in human cell lines 

(MOLM-13 MV4-11, RS4;11) accompanied by analysis of cell cycle and cell growth in 

liquid culture.  

 My second aim is to determine the potential downstream targets of miRNAs 

disregulated in MLL leukemia. I have hypothesized that miRNAs contribute to MLL 

leukemia through downregulation of PKNOX1 (a.k.a. PREP1), a TALE domain protein 

closely related to the essential MLL target gene MEIS1.  I have additionally hypothesized 

that miRNA mediated disruption of the balance between PKNOX1 and MEIS1 

contributes to MLL leukemia.  To examine the  relationship between miRNA levels and 

PKNOX1, I have performed luciferase assays and have further examined the change in 

PKNOX1 protein levels upon antagomir treatment in human cell lines. To determine the 
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competitive role between PKNOX1 and MEIS1, I have further examined the role of 

PKNOX1 in MLL leukemia through both colony assays and liquid culture experiments.  
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CHAPTER 2 

LITERATURE REVIEW 

MLL leukemia background 

The Mixed Lineage Leukemia (MLL, a.k.a. ALL-1, HRX, KMT2A) gene is located 

at the chromosomal position of 11q23 and has been identified as recurrent site of 

chromosomal translocations in leukemia [15].  Leukemias arising from MLL 

translocations may result in either Acute Lymphoid Leukemia (ALL) or Acute Myeloid 

Leukemia (AML) (reviewed in [2, 3]).  These leukemias may additionally be bi-

phenotypic or mixed lineage leukemias, as defined by the presence of mixed surface 

markers (reviewed in [2, 3]). 

Both ALL and AML are relatively heterogeneous as characterized by cytogenetic 

abnormalities, and possess numerous cytogenetic abnormalities of which MLL related 

leukemias represent a significant fraction. ALLs possess cytogenetic abnormalities, 

including t(12;21) encoding TEL-AML1; t(8;14), t(2;8) and t(8;22)  encoding MYC-

related translocations; t(1;19) encoding E2A-PBX; t(9;22) translocations encoding BCR-

ABL; and 11q23 translocations encoding MLL rearrangements [16].  AMLs also display 

numerous cytogenetic abnormalities, as well as cytogenetically normal karyotypes, which 

account for half of all AMLs.  Several commonly occurring cytogenetic abnormalities 

within AML produce fusion genes involving members of the core binding factor 

heterodimeric transcription factor complex which is comprised of AML1 (RUNX1) and 
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CBFB [17].  The balanced translocation t(8;21)(q22;q22) generates a chimeric protein 

AML1-ETO (RUNX1-RUNX1T1), while abnormalities of chromosome 16, including 

inv(16) (p13;q22) and t(16;16)(p13;q22) affect the core binding factor beta subunit 

(CBFB) [17]. The balanced translocation of t(15;17)(q22;q12) is another commonly 

observed cytogenetic abnormality associated with AML, encoding a fusion proteins 

known as PML-RARα and resulting specifically in Acute Promyelocytic Leukemia 

(APL) [17].  

AMLs are classified according to the French-American-British (FAB) 

classification system, with MLL translocation leukemias predominantly resulting in M5a 

(Monoblastic, poorly differentiated) and M5b (Monoblastic, differentiated) leukemias, 

with 38.5% and 21.2%, respectively [18].   MLL leukemias further result in M4 

(Myelomonocytic) leukemias (21.2%) [18].  ALL leukemias may be classified by FAB 

classification system (L1-L3), but are more commonly classified by immunophenotype 

under the World Health Organization guidelines. Within these guidelines, MLL 

rearrangements are present in both T-cell ALLs and B-cell ALLs [19].  

MLL leukemias are responsible for 7-10% of all ALLs and 5-8% of all AMLs [2]. 

Within infant leukemias, affecting children <1 year old, MLL leukemias account for 70% 

of infant ALLs and 35-50% of infant AMLs [3]. Additionally, MLL translocations are 

often observed in therapy associated leukemia, which presents almost exclusively as 

AML, representing approximately 10% of all leukemias, often developing after treatment 

with Topoisomerase 2 inhibitors [3].  MLL rearrangements also represent approximately 

3% of de novo leukemias [18]. Prognosis for MLL rearranged leukemias is poor, with 5 
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year overall survival rates of ~10 %, and a median survival of 9 months after diagnosis 

[18]. 

Wild-type MLL 

Human MLL is an ortholog the Drosophila gene Trithorax (Trx) which acts in 

opposition the polycomb group by maintaining the expression of target genes  (reviewed 

in [20]). The MLL gene encodes a 3969 amino acid (~430 kDa) multi-domain regulator 

of transcription encoded on chromosome band 11q23 (reviewed in [20]).  Located toward 

the N-terminus of MLL, between amino acids 170-310, the AT-Hooks of MLL recognize 

cruciform DNA and facilitate the binding of the MLL complex to DNA [21]. MLL 

possesses a repression domain located between amino acids 1101-1400 [21]. The MLL 

repression domain recruits factors associated with repression of target genes, including: 

BMI-1 and HPC2 of the Polycomb group, the histone deacetylases HDAC1 and HDAC2, 

and CtBP [22].  Within the repression domain, the MLL CXXC domain is defined by 

eight cysteine residues which coordinate 2 zinc ions to mediate interaction with 

unmethylated cytosine-containing CG dinucleotides within CpG islands [23]. Previous 

studies by our lab have shown that the MLL CXXC domain protects unmethylated CpG 

islands from DNA methylation through direct binding to DNA in the promoter regions of 

target genes and subsequently maintains the target gene expression [24].  The MLL 

CXXC-DNA relationship is essential to the leukemogenic capacity of MLL fusions.  

Disruption of this relationship by mutations in the CXXC domain decreases colony 

forming ability of an MLL-AF9 construct when transduced into murine bone marrow 

progenitor cells [23]. MLL additionally possesses 4 PHD (plant homeodomain) fingers 
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that mediate protein-protein interactions, as well as an atypical bromodomain, located 

between PHD fingers 3 and 4.  Of the 4 PHD fingers, PHD finger 3 has been shown to 

bind to bind to H3K4 modified by di- and tri- methylation [25] and also the cyclophylin 

Cyp33 [26].  However, PHD finger 3 binding of methylated H3K4 and Cyp33 are 

mutually exclusive, suggesting that PHD finger 3 may function as a key regulatory 

domain of MLL [27].  MLL possesses an H3K4 histone methyltransferase SET 

(Su(var)3-9,ehanancer of zeste, trithorax) domain located at the C-terminal end [4, 28].  

H3K4 methylation is associated with transcriptional activation [29].  The MLL protein 

domain schematic is illustrated in Figure 1.  

 Upon transcription and translation, the full length MLL protein is cleaved in two 

places by TASPASE1, a threonine aspartase protease; at amino acids 2719 and 2730, to 

excise a 12 amino acid polypeptide and form a 320 kDa N-terminal fragment (MLL-N) 

and 180 kDa C-terminal fragment (MLL-C) [30, 31].  The cleaved MLL proteins 

associate together in MLL-containing complexes involved in the regulation of 

transcription [31].  Association between MLL-N and MLL-C occurs through noncovalent 

binding between the FYRN and FYRC domains (FY-Rich C-terminal) and (FY-Rich N-

terminal) of MLL-N and MLL-C, respectively [31].  

 In addition to self-association between the N- and C-terminal proteins, MLL 

recruits >29 additional complex components [28]. Menin (Multiple endocrine neoplasia 

type 1) is a DNA binding protein, originally characterized as a tumor suppressor [32]. 

Menin associates with the N-terminus of MLL-N, where an RXRFP interaction domain 

located at the amino-terminal end of MLL binds to Menin (MEN1) [33, 34]. LEDGF 
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(lens epithelium derived growth factor), in turn, associates with Menin [35].  C-Myb has 

also been shown to associate with MLL through interaction with Menin [36]. 

Collectively, these proteins interact with DNA in cooperation with the AT-Hooks and 

CXXC domain of MLL [2]. Interaction with both Menin and LEDGF are required for 

MLL regulation of target genes [33, 35] and loss of the N-terminal domain of MLL 

abrogates the leukemogenic activity of the MLL fusion protein [34].  

 MLL-C facilitates numerous protein-protein interactions with several additional 

factors to the complex, including: WDR5 [37], ASH2L [38], RBBP5 [39], and CBP [40].  

ASH2L and RBBP5 dimerize and bind to the C-terminus of MLL, stabilizing the active 

conformation of the MLL SET domain [39]. CBP is a histone acetyltransferase that 

acetylates histones, among other substrates [41]. WDR5 recognizes H3K4 without 

discriminating between unmethylated, mono-, di-, or tri- methylation and  positions the 

H3K4 residue for methylation by the MLL SET domain [37, 42].  WDR5 has additionally 

been implicated in the binding of non-coding RNA HOTTIP [43] in the regulation of the 

HOXA cluster (schematic of MLL complex illustrated in Figure 1). 

Previous studies have characterized Mll function through the development of a 

murine hypomorphic model, which is commonly referred to as an Mll knockout model.  

Mll (-/-)  mice are embryonic lethal and embryos display developmental defects including 

brachial arch dysplasia and aberrations in segmental boundaries [44, 45].  Examination of 

the expression of known target genes, including Hoxa7 and Hoxc9, in Mll (-/-) embryos, 

implicate MLL in the maintenance, but not initiation of expression of genes.  Mll (-/-) 

embryos were able to initiate expression of these target genes, but were unable to 
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maintain expression past 8.5-9 dpc [44].  Knockout studies additionally showed a 

hematopoietic phenotype, with Mll (-/-) embryos displaying a defect in yolk sac 

hematopoiesis [46]. 

MLL fusions 

 MLL fusions arise as the result of chromosome translocations which result in an 

in-frame joining of the MLL gene to a partner gene.  MLL fusions most often occur as a 

result of incorrect non-homologous end joining from double stranded DNA break repair 

[47]. Chromosomal breakage occurs within a defined 8.3 kb region of the MLL gene 

called the Breakpoint Cluster Region (BCR). Currently, 79 partner genes have been 

identified as fusion partners in MLL translocations [1]. Despite the myriad of MLL 

fusion partners, >85 % of MLL fusions occur with only 6 partners [1]. These most 

common fusion partners are AF4 (38%), AF9 (18%), ENL (13%), AF10 (8%), ELL 

(4%), AF6 (4%) [1].  The occurrence of fusion partners is distinctly different between 

MLL AMLs and MLL ALLs, with AF4 being the most common fusion partner in MLL 

ALL (60%) and AF9 being the most common fusion within MLL AML (29%)[1].  

 MLL fusion proteins are functionally distinct from wild type MLL. In MLL-

fusions proteins, the AT-Hooks and the MLL CXXC domain is retained within the fusion 

protein.  However, while wild type MLL-C recruits additional factors involved in the 

maintenance of expression of target genes, loss of the MLL-C and replacement with a 

fusion partner alters the recruitment of cofactors.  Many of the resulting fusions enable 

the recruitment of factors including DOT1L and the super elongation complex (SEC). 

DOT1L  is a histone methyltransferase that targets H3K79 for methylation as an 
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activating chromatin mark occurring along transcriptionally active genes (reviewed in 

[48]). H3K79 methylation usually corresponds to transcription of associated genes [49]. 

MLL leukemias display aberrant H3K79 methylation along known MLL-targeted genetic 

regions, including the HOXA loci [50, 51].  DOT1L has been shown to be necessary for 

transformation of murine bone marrow by MLL fusions, with Dot1l deletion resulting in 

a loss of colony forming ability and an increase in apoptosis [52]. Subsequent studies 

have shown that selective inhibition of DOT1L catalytic function effectively blocks 

H3K79 methylation and inhibits proliferation and promotes apoptosis and differentiation 

of MLL rearranged cell lines [53]. 

 Both MLL and MLL fusions recruit the RNA Polymerase 2- interacting 

Polymerase Associated Factor complex (PAFc) through interaction between MLL 

repression domain and the PAFc subunit PAF1 [54].  Interaction with the PAF complex 

is required for proper recruitment of MLL to the Hoxa9 locus and the transformation by 

MLL fusions [54].  Several common fusion partners are components the super elongating 

complex (SEC) that enables transcriptional elongation by releasing RNA Polymerase 2 

from transcriptional pausing at the transcriptional elongation control checkpoint (TECC). 

(Function of SEC extensively reviewed in [55-57]). The SEC is comprised of several 

subunits, including: AF9 (ALL1 fused gene from chromosome 9) or its homolog ENL 

(eleven nineteen leukemia),  ELL  (eleven nineteen Lys-rich leukemia) family protein, 

AFF1/4, EAF1/2, and the kinase P-TEFb (Pol 2 transcription elongation factor comprised 

of cyclin T1 or T2 and Cdk9) [57]. Of these complex components, several are MLL 

fusion partners, including: AF4, AF9, AF10, ENL, and ELL [1, 3].  Functionally, P-TEFb  
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Figure 1. MLL domains and complexes 

 

 
 

 

A) Schematic depiction of MLL protein domains for both wild-type MLL (top) and MLL 

fusion (bottom) proteins.  Adapted from Krivstov et al. [58].  B) Cartoon depiction of 

MLL interaction with proteins and chromatin for wild-type MLL (top) and MLL fusion 

(bottom).  Adapted from Krivstov et al.[58] and Slany et al. [3].  
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phosphorylates RNA Polymerase 2 at serine 2, which allows release of RNA Pol 2 from a  

pause site [55] (schematic illustrated in Figure 1). 

 Additional, but less frequent fusions have been documented which include fusion 

partners that facilitate dimerization of MLL fusion proteins, including AF1p and GAS7 

[59].  These fusion partners are cytoplasmic proteins that possess homo-oligomerizing 

coiled-coiled domains which are sufficient to allow for leukemic transformation by these 

MLL fusion proteins [59].  Examination of a pharmacologically dimerizable MLL, MLL-

FKBP, indicates that MLL amino-terminal dimers bind to the CpG islands of the Hoxa9 

locus and upregulate critical MLL target genes including Hoxa7, Hoxa9, and Mies1 [60].  

In addition to chromosomal translocations, MLL also undergoes partial tandem 

duplications (MLL PTD) accounting for 4% of MLL leukemias [1]. MLL PTDs contain 

duplication of exons 5-11, allowing for MLL to dimerize and subsequently misregulate 

target genes [58].   

MLL target genes 

Several studies have sought to define the genes targeted by MLL and MLL 

fusions by examining the global disregulation of genes in MLL fusion leukemias [61-65].  

Examination of MLL occupancy sites indicates that MLL associates with RNA 

Polymerase 2 across the entire gene for a subset of transcriptionally active target genes, 

and dissociates upon downregulation, consistent with MLL's function in transcriptional 

maintenance [61].  Armstrong et al. examined the gene expression signature of MLL 

leukemia patients compared to non-MLL ALL and AML leukemias [62].  They found 

that MLL leukemias regulated a gene set distinct from either ALL or AML that was rich 
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with highly expressed HOX genes [62]. Examination of the binding of MLL-ENL and 

comparison of MLL-ENL binding with MLL wild-type binding, indicates that MLL 

fusions bind to a subset genes regulated by wild type MLL [63].  MLL-ENL bound to 

223 genes with significant increase in mRNA expression of 12 genes, including Hoxa9 

and Meis1 [63]. A separate study performed by Li et al. examined the deregulation of 

genes in leukemias possessing MLL-ENL and MLL-ELL translocation [64]. 88 genes were 

found to be disregulated in both human and murine leukemia models, including Hox 

genes and the miR-17-92 cluster [64]. Critically, changes in gene expression were 

conserved between human and mouse [64]. Collectively, these studies corroborate earlier 

findings that MLL functions to maintain gene expression, particularly at Hox genes.  

However, they also implicate MLL in the maintenance of expression of other target genes 

including the miR-17-92 cluster.  

HOX genes 

HOX genes are the most well studied downstream targets of MLL. MLL and MLL 

fusions directly regulate posterior HOX genes, as well as the HOX partner MEIS1, 

resulting in an aberrant maintenance of the expression in MLL leukemias [4, 5]. Both 

HOXA9 and MEIS1 and direct downstream targets of MLL [4, 5].  Previous studies have 

shown that HOXA9 is essential to the development of MLL leukemias [5-7].  Hoxa9 

deficient murine bone marrow cells cannot be transformed with MLL fusions in vitro [6], 

while depletion of HOXA9 in human cell lines harboring MLL translocations blocks 

proliferation and induces apoptosis [7].  

 HOX genes encode transcription factors critical to body patterning, development, 
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and hematopoiesis [66].  Mammals possess 39 HOX genes organized in 4 paralogous 

clusters (HOXA – HOXD) at 4 different genetic loci, with HOXA, HOXB, HOXC, and 

HOXD located on 7p15, 12q21, 12q13, and 2q31, respectively (reviewed in [67]). Each 

cluster is similarly organized with the lower numbered HOX  genes located towards the 3' 

end of the cluster and higher numbered HOX genes located at the 5' end. HOX genes are 

illustrated in Figure 2.  HOX gene expression is  important for determining the spatial 

identity and segmentation in development, with HOX genes expressed collinearly from 

lower to higher number along the anterior-posterior axis, with the lower numbered HOX 

genes expressed toward the anterior and the higher numbered HOX genes expressed 

towards the  posterior (reviewed in [67, 68]).  Temporal control of HOX gene expression 

is also controlled collinearly with lower numbered HOX genes being expressed earlier in 

development than their higher numbered counterparts (reviewed in [67, 68]).  

Disregulation and mutation of HOX genes results in limb malformations and 

developmental diseases, including cancers (reviewed in [67]). Critical to understanding 

the development of AML, the NUP98-HOXA9 fusion drives AML development [69].  

Further, a study of 6817 genes in acute leukemia identified HOXA9 expression as a 

negative prognostic indicator for AML [70].  

 HOX proteins contain a 60 amino acid homeodomain consisting of 3 alpha 

helices, with DNA helix 3 contacting DNA  [67]. The homeodomain interacts with target 

DNA sequences through the DNA helix 3. HOX proteins additionally possess a short 

amino acid sequence (YPWM)  which interacts with the homeodomain of a PBX partner 

gene [71]. 
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Figure 2. HOX gene clusters 

 

 
 

 

Schematic depiction of HOX gene clusters in human.  HOX genes are organized into 4 

paralogous clusters lettered A-D. HOX gene expression occurs in a co-linear fashion with 

Anterior expression occurring from HOX genes located towards the 3' end of the HOX 

clusters and posterior expression occurring from HOX genes located towards the 5' end of 

the HOX clusters.  Adapted from Argiropoulos and Humphries [66].  
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HOX-TALE complexes 

HOX proteins function in complexes formed with TALE domain containing partner 

proteins, primarily MEIS proteins, PBX proteins, PKNOX (PREP) proteins.  The TALE 

(Three Amino acid Loop Extension) family of proteins were identified and characterized 

as having an atypical homeodomain with 3 amino acids positioned between the first and 

second helices of the homeodomain [72, 73].  This TALE possessing homeodomain is 

highly conserved and present in all family members and subfamilies of the larger TALE 

family [72, 73].  The TALE family is subdivided into the several families, including: 

PBC, MEINOX, IRO, TGIF, and MKX families [72, 73].  MEINOX and PBC family 

members are critical cofactors of HOX genes in leukemia. 

The PBC family consists of the 4 PBX homologs (PBX1, PBX2, PBX3, PBX4) in 

both mouse and human [72]. Additional functional forms of PBX are formed by splice 

variants of PBX1 (PBX1A, PBX1B) and PBX3 (PBX3A, PBX3B) (reviewed in [74]). 

Common to all members of the TALE family of proteins, the PBC family possesses and 

homeodomain with a three amino acid loop extension.  PBC family members additionally 

possess a "bipartite" PBC domain divided into PBC-A and PBC-B, N-terminal to the 

homeodomain, which function in protein-protein interactions (reviewed in [74]).  High 

conservation is observed in both the homeodomain and the PBC domains. 

The MEINOX family (originally categorized as the  MEIS family) consists of 3 

MEIS proteins (MEIS1, MEIS2, MEIS3) and 2 PKNOX proteins (PKNOX1, PKNOX2) 

in both human and mouse [72, 73]. Members of the MEINOX family possess the TALE 

domain containing homeodomain which is highly conserved between MEIS and PKNOX 
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subfamilies [72, 73].  Additionally, both MEIS and PKNOX families share high 

homology in the bipartite MEIS domain, consisting of a MEIS-A and MEIS-B and 

utilized for protein-protein interactions (reviewed in [74]).  However, there is divergence 

in the presence or absence of nuclear localization signals, as well as the C-terminal region 

[74]. 

 While HOXA9 and MEIS1 are often discussed as the critical downstream effectors 

of MLL leukemias and are used to generate AML independently of MLL involvement, 

these proteins are able to participate in a diverse combination of protein complexes. 

MEINOX proteins are capable of forming binary MEINOX-PBX complexes through 

interaction of the MEIS-A and MEIS-B domains of MEIS1/PKNOX1 with the PBC-A 

and PBC-B of PBX partners [75, 76]. MEINOX-PBX complexes form in the presence or 

absence of DNA, indicating that interaction is not DNA dependent [75]. This interaction 

does not occlude or otherwise interfere with the PBX component's homeodomain. In 

addition to interactions with MEINOX family proteins, PBX proteins are capable of 

forming stable HOX-PBX dimers with HOX protein partners (reviewed in [71]). HOX-

PBX interactions are mediated by the Tryptophan of the HOX protein's YPWM motif 

binding to the homeodomain of the PBX partner (reviewed in [71]).  Notably, HOX-PBX 

interactions do not utilized the PBC-A or PBC-B domains required in PBX-MEINOX 

interactions. 

Numerous studies document the formation of ternary complexes containing a 

HOX component, a MEINOX component, and a PBC component [77-81].  HOX-PBX-

MEIS protein complexes may contain PKNOX1 (also known as PREP1) as an alternative 



18 
 

 
 

to MEIS1 as protein-protein interactions within the ternary complexes are mediated 

through MEINOX-PBX interaction [82].  PKNOX1 and MEIS1 are highly homologous 

in the domains required for both PBX interaction and DNA binding and interact with the 

same surface on PBX1 [76].   

AbdB-like HOX proteins, encoding HOX9-13, are uniquely capable of directly 

interacting with MEIS1 [83-85].  This interaction is not conserved across the MEINOX 

family as it requires residues located within the C-terminal domain of MEIS1 that are not 

conserved in PKONX1 [84]. Thus, only MEIS1, and not PKNOX proteins, directly bind 

to with HOX partners. TALE domain complexes are illustrated in Figure 3. 

Functional roles of TALE proteins 

While numerous studies have utilized PBX1 to study the protein-protein 

interactions of the PBX family of proteins, an increasing body of evidence has implicated 

PBX3 as the critical PBX protein in MLL leukemia.  Recently, PBX3 upregulation has 

been identified as part of a 4 gene signature associated with poorer prognosis in MLL 

leukemias [86].  Though PBX3 is highly upregulated, its homologs, PBX1 and PBX2, are 

down regulated [87].  Functionally, inhibition of the PBX-HOX interaction through an 

18-mer peptide in cell lines harboring MLL-related translocations results in decreased 

proliferation and apoptosis [87].  

Meis1 was initially identified as a viral insertion site in BHX2 mice in the 

development of leukemia [88].  The gene for human MEIS1 was cloned and identified as 

a homoebox-containing gene located at chromosome 2p13-p14 [89]. Along with HOXA7 

and HOXA9, MEIS1 overexpression was implicated in the development of AML [90].   
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Figure 3. TALE domain proteins and complexes 

 

 
 

 
A) Schematic depiction of HOX protein families. HOX family members are depicted in green.  PBX 
family members are depicted in purple. MEIS1 is depicted in blue. PKNOX1 is depicted in orange.  
Homeodomains are shown in black, while TALE domains are shown with a red stripe located 
within the Homeodomain.  PBC domains are shown in dark purple, while MEIS domains are 
shown in gray. Adapted from Ladam, et al. [71] Longobardi, et al. [74] B) Cartoon depiction of 
different HOX-TALE complexes and their DNA interactions. Coloring of proteins and protein 
domains are matched to schematics in panel A.   
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Numerous studies have indicated that Meis1 is essential to the development of 

MLL leukemia. In fetal liver cells, Meis1 (-/-) cells are incapable of serial replating 

ability after transformation with MLL fusion-expressing retrovirus [91]. Moreover, the 

level of Meis1 expression correlates to the latency of leukemia development in murine 

models [91].  Knockdown of Meis1 using a lentiviral shRNA results in a decrease in 

proliferation and an increase in survival in vivo [92].   

The leukemogenic capacity of Meis1 requires several domains to generate 

leukemia when infected into murine bone marrow along with Hoxa9.  Meis1 oncogenic 

activity requires both the Pbx interacting motif and the C-terminal region [93].  Specific 

deletion of the C-terminal domain in Meis1 ablates transforming capacity of Meis1, while 

replacement with a strongly activating VP16 activation domain allows Meis1 to retain 

leukemogenic capabilities [94].  The retention of leukemogenic capability in a chimeric 

Meis1-VP16 mutant indicates that Meis1 generates leukemia through activation of target 

genes.  The oncogenic activity of Meis1 is located in the C-terminal domain which differs 

from that of Pknox1 [93-95]. Meis1 cooperates with Hoxa9 in transformation; whereas 

co-expression of Pknox1 with Hoxa9 lacks this effect [94].  However, chimeric Pknox1 

proteins which replace the Pknox1 C-terminal domain with the Meis1 C-terminus can 

restore acceleration of leukemia development [94].   

The MEIS1 C-terminal domain is responsible for numerous protein-protein 

interactions including interaction with HOX proteins in binary complexes.  Several lines 

of evidence, however, implicate ternary complexes as the critical leukemogenic 

complexes. Deletion of the Pbx-interacting domains of Meis1 abrogated its leukemogenic 
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potential when co-infected with a Hoxa9-expressing virus [93]. PBX3 is upregulated in 

MLL leukemia and disruption of the HOX-PBX interaction through a small peptide 

inhibitor promoted apoptosis and decreased expression of known HOX-MEIS targets in 

an MLL leukemia cell line [87]. Collectively, these findings suggest that HOX-MEIS 

activity requires PBX participation in a ternary complex.   

Numerous HOXA9-MEIS1 target genes have been identified.  Most prominently, 

MEIS1 regulates FMS-like tyrosine kinase 3 (FLT3) in AML [93].  FLT3 encodes a 

receptor tyrosine kinase expressed in hematopoietic stem and progenitor cells whose 

signaling pathway regulates proliferation, apoptosis, and differentiation (FLT3 function 

reviewed in [96]. Activating mutations, such as FLT3 internal tandem duplications have 

been identified as a causative genetic lesion in cytogenetically normal AML.  Within 

infant MLL leukemias FLT3 expression is often elevated and corresponds to a worse 

prognosis.  However, transduction of murine bone marrow with Meis1 and Hoxa9 

generates leukemia in both Flt3 (+/+) and Flt3 (-/-) cells, indicating that Flt3 is 

dispensable for the Meis1-Hoxa9 viral overexpression-generated leukemia [97].  

c-Myb was additionally identified as a target for upregulation by Hoxa9-Meis 

leukemogenesis after being identified in an array analyzing genetic disregulation of 

Hoxa9-Meis1 transformed murine bone marrow [98].  Inhibition of c-Myb through either 

a dominant negative mutant or siRNA ablated the leukemogenic capability of MLL-ENL, 

indicating that c-Myb function is essential for MLL transformation [98]. Subsequent 

studies showed c-Myb directly interacts with MLL complexes through binding to Menin, 

suggesting a regulatory feedback mechanism whereby Hoxa9-Meis1 activity influences 
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MLL complex composition. 

Additional documented HoxA9-Meis1 targets include: gata1 [99], Trib2 [100], 

Ccl [100], and cyclin D3 [101].  An Illumina-based ChIP-Seq examination of Hoxa9 and 

Meis1 binding sites indicated that Hoxa9 and/or Meis1 bind to 825 genomic regions, with 

approximately 200 genomic regions bound by both [102].  Hoxa9 binding is enriched at 

enhancers, and coincides with binding by additional lineage restricted transcription 

factors including PU.1, C/EBP, CREB, STAT, and RUNX1 [102].   

PKNOX1 (also known as PREP1) was identified as a homeodomain containing 

protein and the gene subsequently localized to the human chromosome 21q22.3 and 

mouse chromosome 17B/C [103, 104].  Pknox1 was initially characterized as a Pbx 

binding partner [105].  Functional characterization of Pknox1 indicated that it is a binding 

partner of Pbx1 in both the presence and absence of DNA [106, 107].  Upon binding to 

DNA, Pknox1 contributes to the specificity of complex binding through recognition of a 

TGACAG motif [107]. Pknox1 expression correlates inversely with Meis1 expression 

during mouse hematopoiesis, as indicated in publicly available datasets (Figure 4). 

Pknox1 is expressed at low levels in more immature cells and increases in expression 

during differentiation, while Meis1 expression is highest in immature cells and decreases 

during differentiation.  

Deletion of Pknox1 in a mouse is embryonic lethal early in development (day 7.5) 

(Blasi lab, unpublished, discussed in [108]).  A hypomorphic Pknox1 mutation, generated 

by an insertion into the 5’ UTR of the Pknox1 transcript results in decreases in Pknox1 

mRNA and protein levels, with Pknox1 (i/i) mutants expressing  <10% relative to wt.  
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Hypomorphic Pknox1 mutants display high rates of embryonic lethality with deaths 

occurring between 17.5 dpc and birth.  Embryos exhibited multiple developmental 

defects, including reduced angiogenesis, eye development abnormalities, and severe 

anemia [108].   Mice which survive to birth exhibit T-cell developmental defects and 

develop lymphomas [109].  Further, a decrease in Pbx1 and Meis1 levels were observed 

in a Pknox1 hypomorph, attributed to a loss of stabilizing effect that derived from 

interaction with Pknox1 [108]. The stabilization effect of Pknox1 on partner proteins may 

be governed with the nuclear import [110] .  

Further characterization of Pknox1 hypomorphic mutants in an Eµ-myc model of 

lymphomagenesis implicate Pknox1 as a tumor suppressor [109]. Loss of Pknox1 in cells 

homozygous for a hypomorphic mutation Pknox1 (i/i) or heterozygous for a knockout 

Pknox1(+/-) result in an increase in tumor volume, an acceleration of lymphoma 

development, and decreased survival [109].   

Pknox1 and Meis1 are highly homologous in their homeodomains and their Pbx 

interacting motifs, but do not share much homology in the C-terminus [94].  Chimeric 

Pknox1 proteins with the Meis1 C-terminus appended to the C-terminus of Pknox1 are 

able to generate leukemia when transfected into murine bone marrow, along with Hoxa9 

[94].  Further, chimeric Pknox1-VP16 mutants are similarly able to generate leukemia 

[94].  These studies suggest that the C-terminus of Pknox1 lacks the gene activating 

capabilities of Meis1.  Recent ChIP-seq analysis of Meis1, Pknox1, and Pbx1/2/3 

occupancies performed during murine embryo development in conjunction with analysis 

of gene expression have further suggested that Pknox1- and Meis1-containing complexes  
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Figure 4. Pknox1 and Meis1 expression during hematopoiesis 

 

 
 

A) mRNA expression patterns from compiled microarray studies in mouse hematopoiesis 

for Pknox1 (left) and Meis1 (right) as depicted by GEXC database indicating mRNA 

upregulation (red) or downregulation (blue).  B) Normalized values for Pknox1 and 

Meis1 expression levels from panel A in mouse hematopoiesis.  All stages in 

differentiation indicated with blue dots. Arrows indicate HSC (red), GMP (purple), 

Granulocyte (black), and Monocyte (green).  
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often have antagonistic roles in the regulation of common target genes [111].  Both 

Pknox1 and Meis1 are capable of interacting with Pbx proteins or in Hox-Meinox-Pbx 

ternary complexes.  ChIP-seq data characterizing the occupancies of Meis, Pbx1/2/3, and 

Pknox1 in murine embryonic development indicate the diversity of co-occupancies of 

TALE domain proteins in vitro [111].   Intriguingly, these studies have found that while 

both Meis1 and Pknox1 can participate in ternary complexes in vitro, co-occupancies of 

Meis1 and Pknox1 do not equally coincide with other complex components (e.g. Hoxc9 

and/or Pbx1/2/3).  Meis1 peaks often coincide with Hox peaks in the absence of Pbx1, 

while Pknox1 peaks coincide with Pbx1 in the absence of Meis1 [111].  Consistent with 

previous biochemical studies, this indicates that Meis1 may interact directly with Hox 

partners. However, Meinox-Pbx dimers were primarily comprised of Pknox1 bound to a 

Pbx component.   

Recently, additional studies performed by the Blasi group published 2 papers 

clarifying the competitive role of Pknox1 and Meis1 in Hox-Meinox-Pbx complexes in a 

mouse model.  In examining the colony forming ability of mouse embryonic fibroblasts 

(MEFs), they found that Meis1 transforms in a Pknox1 (i/i) background, while exogenous 

expression of Pknox1 ablates Meis1-mediated transformation [112]. Further, Pknox1 

indirectly regulates the stability of Meis1 through binding to Pbx1, as unbound Meis1 is 

degraded [112]. Examination of the Pknox1 - Meis1 relationship in bone marrow cells 

indicates that Pknox1 functions as a tumor suppressor in hematopoietic cells [113].  

Exogenous over expression of Pknox1 inhibits the capability of Hoxa9 and Meis1 to 

transform hematopoietic stem cells; Hoxa9 and Meis1 transformation is accelerated in a 
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Pknox1 (i/i) background [113].  These studies, however, do not address the competitive 

relationship of PKNOX1 and MEIS1 in an MLL leukemia model. 

miRNA Biogenesis and function 

MiRNAs are small non-coding RNAs (~22 nt) that post-transcriptionally 

downregulate the expression of mRNA targets and are among the many genes regulated 

by MLL (reviewed in [8, 9]).  miRNAs were initially identified  and characterized in C. 

elegans with the discovery of lin-4 [114].  While lin-4 has no homologs in human or 

mouse, subsequent studies identified let-7, a gene regulating the developmental timing of 

the C.elegans L4/Adult  switch by down-regulating the developmental timing switch lin-

41 [115]. Let-7 is conserved in human and mouse [116]. According to the most recent 

catalog of miRNAs,  miRBase 21, as predicted by deep sequencing,  2588 miRNAs are 

known to exist in human and 1915 are known in mouse [10].   

miRNAs are located in genomically fragile hot-spots that are often subject to 

DNA damage [117]. More than 50% of miRNAs are located in polycistronic clusters 

where a single transcript gives rise to more than one mature miRNA [117].  miRNAs 

arise from a diverse array of primary-miRNA transcripts.  Most miRNAs arise from 

capped and poly-adenylated primary-miRNA transcripts transcribed by RNA Polymerase 

2 [118].  However, several studies have shown the production of miRNAs from 

transcripts transcribed by RNA Polymerase 3 [119].  MiRNAs may arise from either 

exonic or intronic sequences of both coding and non-coding RNAs, as well as 3' UTRs 

[120, 121]. 

Mature miRNAs are generated through sequential processing events. Within the 
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primary-miRNA transcript, the miRNAs form thermodynamically stable hairpins of ~70 

nt that are cleaved within the nucleus by DROSHA, a type III RNAse, with assistance 

from the RNA binding protein DGCR8/PASHA, which guides the positioning of the 

RNAse onto the pri-miRNA [122-124].  The resulting hairpin, designated as a pre-

miRNA, is subsequently exported to the cytoplasm by Exportin-5, a RAN-GTPase 

nuclear exporting protein [125].  The pre-miRNA is loaded onto Dicer, which cleaves the 

hairpin into 2 strands of ~22 nt, leaving 2 nucleotide overhangs at the ends of each strand 

to produce a mature miRNA duplex [126].   

The mature miRNA duplex is loaded into an Argonaute containing complex, 

consisting of Dicer, TRBP, and an Argonaute component [127]. Humans possess four 

argonaute genes (AGO1/2/3/4), which are defined by common domains including a PAZ 

and PIWI domains  [128].  Together, these domains form a "bilobal" structure engaged in 

binding to both the miRNA and the target mRNA. For each mature miRNA duplex, only 

one strand is incorporated as a miRNA into the RISC complex while the opposite strand 

is rapidly degraded, with strand selection being determined by the stability of the cleaved 

5' end of each strand of the miRNA duplex [129, 130].  The Argonaute component 

additionally associates with GW182 to form the core of the RISC complex.  

The most critical nucleotides of the mature miRNA are nucleotides 2-7, which are 

termed the "seed region" of the miRNA [131].  These nucleotides must be 

complementary to the target mRNA, with some exceptions allowing for G:U wobble, in 

order for the RISC-miRNA complex to effectively downregulate the target mRNA  [132, 

133]. Within the RISC complex, the miRNA is situated within the complex so that the 
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miRNA seed region is projected outward toward the targeted mRNA [134].  The RISC 

complex then scans target mRNAs for complementarity, with miRNA targeting focused 

on the 3’ UTR of the target mRNA.  Perfectly matched miRNA:mRNA pairing results in 

a cleavage event in Argonaute 2-containing complexes whereby the target mRNA is 

cleaved opposite the  miRNA by the "slicer" activity present in Ago2 [135].  In both 

perfectly matched and  imperfectly matched pairings, the RISC complex recruits 

additional factors to the mRNA to de-cap and degrade the mRNA transcript [136].  In this 

manner, all targeted mRNAs are reduced upon recognition and binding by miRNA 

containing RISC complexes. miRNA mediated degradation of target mRNAs occurs in 

the cytoplasm within subcellular structures known as P-Bodies (aka GW bodies) which 

consist of miRISC complexes and decapping and deadenylation factors [137]. 

Recognition of the target mRNA is primarily mediated by the 'seed' region of the 

miRNA  [131], and may be predicted using computer matching algorithms that seek to 

identify complementarities between the miRNA and target mRNA (review of target 

prediction algorithms in [132, 133, 138]).  Numerous publicly available algorithms have 

been developed, including (but not limited to): TargetScan [131], MiRanda [139], Diana-

microT [140], RNA22 [141], and miRWalk [142]. While most miRNA target prediction 

algorithms require a match between the seed region and the putative target mRNA [138], 

targeting models require different spans of matching complementarity within the seed 

region and several allow for a less stringent matching with a G:U wobble in the seed 

region [132].  miRNA biogenesis is illustrated in Figure 5. 
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Figure 5. miRNA biogenesis 

 

 
 

Canonical miRNA biogenesis pathway. miRNAs are generated as a result of transcription 

by RNA Polymerase and sequential cleavage steps. Mature miRNAs are incorporated 

into a RISC complex. Adapted from Mian and Zeleznik-Le [8].  
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Further advances in the understanding of miRNA will likely change the targeting 

prediction for miRNAs, and our understanding of miRNA function. It has been accepted 

that miRNAs may target the 5'UTR of mRNA target transcripts as well as the 3'UTR for 

downregulation by the RISC complex [143].  Meanwhile several groups have explored 

alternate novel mechanisms of miRNA activity such as miRNA upregulation of target 

transcripts, whereby miRNA binding to the target mRNA may occlude a binding site 

targeted by a repressive factor and thereby protect the transcript from downregulation.  

The primary example of this form of regulation is the relationship between miR-10 and 

TOP motifs [144]. Additionally, a bioinformatic analysis of miRNA binding has 

suggested that miRNA may simultaneously bind to both the 5'UTR and 3'UTR of a target 

mRNA [145]. However, this phenomenon has yet to be functionally demonstrated, and 

may be impeded by steric hindrance. Examination of miRNA:mRNA  through RISC-

complex pulldowns, coupled with target mRNA sequencing (HITS-CLIP) has been used 

to document the interactions of miRNAs in neuronal cells. Strikingly, this study found 

many instances of miRNA:mRNA interaction in the absence of matched seed 

region[146]. Further study is required to fully examine the functional interaction of 

miRNAs with targeted transcripts.  

In addition to dysregulation of specific miRNAs, the miRNA biogenesis pathway 

has been implicated as a potential target of dysregulation in various cancer models.  

Schmittgen et al. found that downregulation of Dicer occurred in a several cancer 

models, resulting in global miRNA downregulation [147].   
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miRNA disregulation in leukemia 

 MiRNA dysregulation has been implicated in numerous forms of cancer, 

including leukemia.  Considerable effort has been applied toward discerning the 

disregulation of miRNAs within leukemias to determine how miRNA disregulation 

corresponds to lineage, cytogenetic abnormality, and clinical prognosis (reviewed in [8]). 

Further effort has been applied to discerning the signature of miRNA disregulation within 

leukemias (illustrated Table 1). 

 Acute leukemias are divided into lymphoid and myeloid lineages, with different 

gene expression patterns.  To examine the potential difference in miRNA expression 

between lineages, a study by the Chen group examined the miRNA expression between 

ALL and AML leukemias with common cytogenetic abnormalities including MLL 

related translocations in both the AML and ALL subsets, and identified 27 miRNAs 

differentially expressed between AML and ALL [148]. The 4 most discriminatory were: 

miR-128a and miR-128b upregulated in ALL and let-7 and miR-223 downregulated in 

ALL. Interestingly, MLL related leukemias clustered with their lymphoid or myeloid 

counterparts, and not together. Several AMLs and ALLs with the same MLL-ENL 

translocation clustered with their lymphoid and myeloid counterparts, suggesting that 

these miRNAs are regulated by factors other than MLL.  

 Further examination of the miRNA expression differences between ALL and 

AML, were performed using 85 leukemia patient samples with either ALL or AML and 

identified a signature of 16 miRNAs differentially expressed between ALL and AML 

[149]. This signature identified 9 miRNAs upregulated (miR-128a, miR-128b, miR-155, 
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miR-146a, miR-150, miR-17, miR-20a, miR-29a/c, and miR-29b) and 7 miRNAs 

downregulated (miR-223, miR-196b, miR-221, miR-222, miR-23a, miR-27a/b, and let-7) 

in ALL relative to AML. This study also identified miRNAs whose expression positively 

or negatively correlated with overall survival for ALL (miR-221 was associated with 

improved survival, while miR-146a, miR-181a/c were associated with poorer survival) 

and AML patients (miR-25 was associated with improved survival, while miR-26, miR-

29b, miR-146a, and miR-196b were associated with poorer survival). 

 Numerous studies have examined the expression of miRNAs in both ALL and 

AML, looking for patterns of miRNA dysregulation corresponding to molecular subtype 

and prognosis.  Studies of miRNA dysregulation in ALL have examined the differential 

expression of miRNAs within ALL, including those harboring MLL translocations.  One 

study performed by Zanette et al. examined the miRNA expression profiles of 

lymphocytic leukemias utilizing a Taqman system designed to asses miRNA levels for 

164 commonly expressed miRNAs [150].  ALL samples were pooled and compared to 

both B-CLL and CD19+ B-Cells.  Pooled ALL samples identified a  miRNA signature 

differentiating ALL from CD19+ B-Cells.  The 5 most highly upregulated miRNAs were 

miR-128b, miR-204, miR-218, miR-331, and miR-181; while the 5 most downregulated 

miRNAs were miR-135b, miR-132, miR-199, miR-139, and miR-150 [150].  In addition to 

the most highly upregulated miRNAs, the authors also detected elevated expression of 

miRNAs of the miR-17-92 cluster, as well as the miR-17 family member miR-106a [150].  

Schotte et al. examined miRNA expression in MLL and non-MLL precursor B-ALLs 

(including TEL-AML1, BCR-ABL, E2A-PBX1, hyperdiploid leukemias, and B-ALLs 
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lacking known genetic abnormalities) [151].  ALLs had a genetic signature or 19 

miRNAs differentially expressed between ALL and CD34+ cells, with 14 upregulated 

miRNAs (miR-128a, -142-3p, 142-5p, -150, -151-5p, -181a, -181b, -181c, -193, -30e-5p, 

-34b, -365, -582, -708) and 5 downregulated miRNAs (miR-100, -125b, -99a, -196b, let-

7e). MLL ALLs had a miRNA expression pattern that was distinct from non-MLL 

precursor B-ALLs with 1 miRNA upregulated (miR-196b) and 7 miRNAs downregulated 

(miR-193, -151-5p, -30e-5p, -34b, -582, -708, let-7e) (Table 1). Strikingly, miR-196b was 

expressed 560-fold higher than in B-ALLs lacking known genetic abnormalities [151]. 

 Numerous studies have examined miRNA dysregulation of AML through high 

throughput methodologies, attempting to characterize differential miRNA expression 

between different cytogenetic abnormalities [152-156] and among cytogenetically normal 

AML [155, 157-159].  Jongen-Lavrencic et al. utilized a multiplex qRT-PCR assay 

system to characterize miRNA dysregulation of AMLs with common cytogenetic 

abnormalities and molecular abnormalities [153]. Unsupervised clustering analysis 

indicated 22 clusters of similar miRNA expression, which in turn corresponded to 

cytogentic subgroups (i.e. cytogenetic abnormalities) and molecular subgroups (i.e. 

commonly observed mutations observed within cytogenetically normal AMLs).  MLL 

leukemias showed upregulation of miR-9 and miR-429 and downregulation of miR-213 

and miR-146a relative to all non-MLL AMLs.  Dixon-McIver, et al. analyzed 157 

miRNAs from 100 AML patients via a multiplex qRT-PCR platform [154].  Normal bone 

marrow vs. AML showed a signature of 17 upregulated miRNAs (miR-27a, miR-30d, 

miR-142-5p, miR-155, miR-181a/b/c, miR-195, miR-221, miR-222, miR-324-5p, miR-326, 
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miR-328, miR-331, miR-340, miR-374, and let-7) and 16 downregulated miRNAs (miR-

9*, miR-15b, miR-26a, miR-30a-3p, miR-34c, miR-103, miR-147, miR-151, miR-182, 

miR-184, miR-199a, miR-302b*, miR-302d, miR-325, miR-367, miR-372).   MLL 

leukemias clustered together with monocytic leukemias.  Garzon et al. examined the 

differential miRNA expression patterns by microarray and qPCR validation with respect 

to both cytogenetic abnormality and prognosis [155]. Examination of miRNA levels in 

AML samples revealed a signature of 26 miRNAs downregulated and none upregulated 

relative to miRNA expression in CD34+ cells from normal bone marrow donors. Further, 

elevated miR-191 or miR-199 expression were negatively correlated to event-free and 

overall survival.  Within AML samples, MLL leukemias were identified by a signature of 

8 upregulated miRNAs and 14 downregulated miRNAs relative to non-MLL patients. 

Variance within the MLL translocated samples was further present with 16 miRNAs 

upregulated in MLL-AF6 relative to MLL-AF9, indicating an increased level of 

complexity governing MLL miRNA regulation.  A high throughput bead based study by 

Jianjun Chen's group examined the differential miRNA expression between several 

common cytogentically abnormal AMLs, including Core Binding Factor translocations, 

PML-RARα translocations, and MLL translocations [152]. The miR-17-92 cluster was 

strongly upregulated in MLL leukemias relative to non-MLL AMLs.  Several miRNAs 

from within the HOX cluster, miR-196b, miR-10a, and miR-10b are upregulated in MLL 

leukemias. MiR-124a and j-miR-2 were also upregulated. Several miRNAs were down 

regulated in MLL leukemias relative to non MLL leukemias including the miR-181 

family (miR-181a/b/c/d), miR-126/miR-126*, miR-130a, miR-146a, miR-224, miR-368,  
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TABLE 1. miRNAs differentially expressed in acute leukemias 

     

Subject Compared Upregulated Downregulated Reference 

t(11q23) ALL AML 
miR-128a, - 128b,-130, -151, -

210, j-miR-1 

miR-223, -125a, -221, -222, -23a, 

-23b, -24, -27a, -27b, -199b, -26a, 

-335, -21, -22, -424, -451, let-7a, 
let-7b, let-7c, let-7e 

Mi, et 

al.[148] 

ALL AML 
miR-128a, miR-128b, miR-155, 
miR-146a, miR-150, miR-17, miR-

20a, miR-29a/c, and miR-29b 

miR-223, miR-196b, miR-221, 
miR-222, miR-23a, miR-27a/b, 

and let-7 

Wang, et al. 

[149] 

inv(16) other AMLs 
miR-424, -199b, -365, -335, -511, 

-193a 

miR-192, -296, -155, -148a, -218, 

-135b, -196b, -196a, -432, -135a, 
-10a, -10b, -127, -let-7b 

Jongen-

Lavrencic, et 
al. [153] 

t(8;21) AML other AMLs miR-126* 

miR -19a, -221, -107, -188, -338, -
342, -20b, -187, -501, -339, -210, 

-502, -182, -500, -152, -135a, -

148a, -125b, -100, -99a, -1, -133a, 
-133b, -224, -9, -10a, - 10b, -

196a, -196b, let-7b, let-7c 

Jongen-
Lavrencic, et 

al. [153] 

t(15;17) 

AML 
other AMLs 

miR-130a, -130b, -335, -148a, -

222, -146a, -181d, -193a, -450, -

213, -199, -409-5p, -181b, -496, -
181a, -424, -497, -154, -125b, -

365, -369-5p, -99a, -203, -433, -

323, -494, -100, -370, -432, -224, 
-127, -452, -299-5p, -376a, -134, -

485-5p, -382, -379, -193b 

miR-196a, -196b, -151,-10b, let-

7c 

Jongen-

Lavrencic, et 
al. [153] 

t(11q23) 

AML 
other AMLs miR-9, -429 miR-213, -146a 

Jongen-
Lavrencic, et 

al. [153] 

NPM1 

mutated AML 
other AMLs 

miR-10a, -10b, -135a, -196b, -

196a, -152, let-7b 

miR-99b, 323, -143, -146a, -497, -
320 -511, -450, -151, -494, -193b, 

-365, -203, -335, -130a, -485-5p, -

126*, -299-5p, -433, -451, -134, -

370, -379, -432, -224, -382, -376a, 

-424, -127 

Jongen-
Lavrencic, et 

al. [153] 

FLT3 
mutated AML 

other AMLs miR-511, -155, -10b, -135a 
miR-30a-3p, -203, -130a, -214, -
338, -143, -145, -182 

Jongen-

Lavrencic, et 

al. [153] 

ALL 
CD19+ 

normal 

miR-128b, -204, -218, -331, -

181b, -204, -148, -210, -218, -

296, -381, 17-3p, -17-5p, -19a, -
20, -92 

miR-135b, -132, -199, -139, -150 
Zanette, et 

al. [150] 
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ALL 
normal 
CD34+ 

miR-128a, -142-3p, 142-5p, -150, 

-151-5p, -181a, -181b, -181c, -
193, -30e-5p, -34b, -365, -582, -

708 

miR-100, -125b, -99a, -196b, let-
7e 

Schotte, et 
al. [151] 

t(11q23) ALL other ALL miR-196b 
miR-193, -151-5p, -30e-5p, -34b, -

582, -708, let-7e 

Schotte, et 

al. [151] 

AML 
normal 

CD34+ 
NA 

miR-126, -130a, -135, -93, -146, -

106b, -224, 125a, -92, -106a, -95, 

-155, -25, -96, -124a, -18, -20, -
7d, -26a, -222, -101, -338, -371, -

199b, -29b, -301 

Garzon, et 

al.[155] 

t(11q23) 

AML 
other AMLs 

miR-326, -219, -194, -301, -324, -

339, -99b, 328 

miR-34b, -15a, -29c, -372, -30a, -

29b, -30e, -196a, let-7f, -102, -
331, -229, -193 

Garzon, et 

al.[155] 

FLT3 

mutated AML 
FLT3 wt miR-155, -10a, -10b NA 

Garzon, et 

al.[155] 

NPM1 

mutated AML 

NPM1 
unmutated 

AML 

miR-10a, -10b, -100, -21, -16a, -

16b, -19b, -18a, -29c, -29a, -16-1, 

-29b, -24, -20, -17, -369, - 19a, -
106, -16-2, -195, -102, -152, -9, -

142, -378, -98, -374, -15a, 155, 

let-7a-3, let-7f, let-7c, let-7a-2, 
let-7a-1, let-7g, let-7d 

miR-22, -192, -128a, -383, -373, -

324, -127, -373, -324, -127, -373*, 
-139, -193b, -145, -498, -135a, -

299, -429, -493, -326, -204, -198, 

486 

Garzon, et 

al. [159] 

FLT3 

mutated AML 
FLT3 wt miR-155, -302a, -133a NA 

Garzon, et 

al. [159] 

t(11q23) 

AML 
Other AMLs 

miR-27a, miR-30d, miR-142-5p, 

miR-155, miR-181a/b/c, miR-195, 

miR-221, miR-222, miR-324-5p, 
miR-326, miR-328, miR-331, miR-

340, miR-374, and let-7 

miR-9*, miR-15b, miR-26a, miR-

30a-3p, miR-34c, miR-103, miR-

147, miR-151, miR-182, miR-184, 
miR-199a, miR-302b*, miR-302d, 

miR-325, miR-367, miR-372 

Dixon-

McIver, et 
al. [154] 

t(8;21), 

inv(16), 

t(16;16) 
AML 

other AMLs miR-126/126*, -130a 
miR-196b, -17-5p, -17-3p, -18a, -

19a, 19b, 20a, 92 

Li, et al. 

[152] 

t(15;17) 

AML 
other AMLs 

miR-181a, -181b, -181c, -181d, -

100, -125b, -224, -368, -382, -424 

miR-126/126*, -422b, -10a, -150, 

-124a, -17-5p, -20a, j-miR-2 

Li, et al. 

[152] 

t(11q23) 

AML 
other AMLs 

miR-10a, -10b, -124a, -196b, -17-
5p, -17-3p, -18a, -19a, -19b, -20a, 

-92, j-miR-2 

miR-126/126*, -130a, -146a, -
181a, -181b, -181c, -181d, -224, -

368, -382, -424 

Li, et al. 

[152] 

t(11q23) 

AML 
Other AMLs miR-21 

miR-26a, miR-30c, miR-30d, miR-

100, miR-125b, miR-126-3p, miR-
143, miR-146a, miR-146b-5p, 

miR-181a, miR-181b, miR-181d, 

miR-221, miR-222, and let-7 

Dashkey, et 

al. [156] 

 

miRNA dysregulation was cataloged for miRNAs dysregulated in acute 

leukemias. Adapted from Mian and Zeleznik-Le [8]. 
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miR-424.  Dashkey et al. examined 102 samples from childhood and adolescent AMLs 

by microarray across multiple cytogenetic abnormalities, including: CBF translocations, 

PML-RARα translocations, and MLL rearrangements [156]. MLL leukemias showed a 

unique signature relative to non MLL leukemias of 15 downregulated miRNAs (miR-26a, 

miR-30c, miR-30d, miR-100, miR-125b, miR-126-3p, miR-143, miR-146a, miR-146b-5p, 

miR-181a, miR-181b, miR-181d, miR-221, miR-222, and let-7) and a single upregulated 

miRNA (miR-21).  

 Collectively, these studies of miRNA signatures of AMLs with different 

cytogenetic abnormalities present very different pictures, with some overlap in results. 

These differences can be attributed to different comparison groups and different 

platforms.  However, the role of several miRNAs were verified by detailed functional 

studies verifying dysregulation of miRNAs.   

HOX associated miRNAs 

5 miRNAs are located within the HOX clusters in mammals, including miR-10a, 

miR-10b, and miR-196a-1, miR-196a-2, and miR-196b [160]. Several of these miRNAs 

have been shown to be upregulated in MLL AML relative to non-MLL AMLs [152].  

miR-196b has several homologs located at other loci within the HOX clusters.  Mir-196a-

1 and miR-196a-2 are located upstream from HOXB9 and HOXC9, respectively (Figure 

6).  Within the miR-196 family, miR-196a and miR-196b differ only at nucleotide 12 with 

miR-196a encoding an adenine and miR-196b encoding a uracil [161].  Both miR-196a-1 

and miR-196a-2 are identical in their mature miRNA sequence (Figure 6).  

MiR-196b is located within the HOXA9 locus and is evolutionarily conserved 
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throughout mammals [11]. The pri-miR-196 transcript is a non-coding transcript that is 

expressed from an alternate AB exon of HOXA9 that is directly regulated by MLL and is 

highly upregulated in MLL AMLs relative to other non-MLL AMLs [11, 152].  Previous 

work from our lab has shown that inhibition of miR-196b through 'antagomir' inhibitors 

abrogates the leukemogenic capacity of MLL-AF9 transduced bone marrow, while 

transduction of miR-196b enhances colony forming ability of murine bone marrow 

progenitor cells [11]. Studies of miR-196b in ALL have revealed that miR-196 expression 

levels correlate with HOXA9 expression and miR-196b is upregulated in ALLs where the 

HOXA cluster is often highly expressed [162]. miR-196b was implicated in the 

downregulation of HOXA9 and MEIS1 in MLL leukemia  [163].  Overexpression of miR-

196b in a murine model transformed with MLL-AF9 results in a delay in onset of AML, 

implicating miR-196b can function as a tumor suppressor.  Secondary transplantation, 

however, result in an accelerated onset of leukemia, indicating the dualistic role of miR-

196b in targeting both oncogenes and tumor suppressors [163].    

 miR-196 was initially characterized as regulator of HOXB8 despite a G:U wobble 

mismatch located within the seed region matching site of the HOXB8 MRE [161]. In 

addition to regulating HOXB8, miR-196a and miR-196b are predicted to regulate several 

additional HOX genes, including HOXC8, HOXD8, and HOXA7 (Figure 6). 

Numerous studies have implicated miR-196 in development and hematopoiesis.  

During embryonic development, miR-196 downregulates Hoxb8, which induces 

expression of Sonic hedgehog (Shh) to promote the development of nascent limb buds 

[164].  In embryonic chicken development, miR-196b regulation of Hoxb8 governs  
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Figure 6. HOX associated miRNAs 

 

 

 
 

 

A) Schematic depiction of HOX associated miRNAs in human. miRNAs are indicated by 

stem loop structures drawn onto HOX clusters.  miRNA regulatory relationships with 

HOX genes are indicated on chart. Adapted from Yekta et. al. [160]. B) miRNA sequences 

from the miR-10 and miR-196 families grouped by family and color  coded with the miR-

196 family indicated in green and the miR-10 family in orange. Seed region indicated in 

red. Underlined sequences indicate non conserved bases. 
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vertebrate segmental identity, with specific knockdown of miR-196 resulting in skeletal 

abnormalities in the last cervical vertebra [165]. 

miR-196b is dysregulated in a number of additional cancer models, as both an 

oncogene and tumor suppressor; including glioblastoma multiforme [166], cervical 

cancer [167], and chronic myeloid leukemias [168].  In glioblastoma, high miR-196b 

expression levels are correlated to lower overall survival  with increased cellular 

proliferation, implicating miR-196b as a potential oncogene [166].  However, in cervical 

cancer and chronic myeloid leukemia, miR-196b has been shown to function as a tumor 

suppressor, regulating HOXB7 in cervical cancer [167], and BCR-ABL and HOXA9 in 

CML [168]. 

 In addition to miR-196b, miR-10a also arises from within the HOX gene clusters 

and has been found to be upregulated in MLL leukemias [152].  The miR-10 family is 

comprised of two HOX cluster located miRNAs. miR-10a is located downstream of 

HOXB4, while miR-10b is located downstream of HOXD4 [169].  miR-10a and miR-10b 

differ only in nucleotide 12, with miR-10a encoding a uracil and miR-10b encoding an 

adenine [169].  miR-10 family members have been implicated in both canonical miRNA 

function through RISC-mediated mRNA downregulation as well as non-canonical 

function.  For example, miR-10b downregulates HOXD10 in breast cancer through the 

canonical miRNA:RISC mechanism, leading to a decrease in HOXD10 mRNA stability 

and an increase in tumor metastasis [170].  However,  miR-10a has been shown to bind to 

TOP motif containing mRNA transcripts, immediately downstream of the TOP motif, 

resulting in increased expression of these target mRNAs [144]. TOP (terminal 
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oligopyrimidine tract) sequences consist of a short tract of 4-15 pyrimidine residues 

located adjacent to the 5' cap within the 5'UTR of an mRNA, and have a regulatory 

function as a binding site for translational repressors [171].  The role of miR-10a in 

regulating the translation of these mRNAs is unusual in that: 1) it does not entail perfect 

seed matching between miR-10a and the target, and 2) binding of miR-10a results in an 

increase in translation rather than a decrease [144]. 

miR-17-92 cluster 

 The miR-17-92 cluster (also known as oncomir-1) consists of 6 miRNAs co-

expressed from a single transcript (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and 

miR-92 located on band q31 of chromosome 13 in humans [172, 173] .  The miR-17-92 

cluster has several homologous miRNA clusters including the miR-106a cluster and the 

miR-106b cluster located on chromosome X band q26 and chromosome 7 band q22, 

respectively (Figure 7). The miR-17-92 cluster arises from an intron of a pri-miRNA 

transcript that is non-coding. However, the homologous miR-106a primary miRNA 

transcript has not been identified  [174].  The miR-106b cluster arises from an intron of 

the MCM7 mRNA transcript, which encodes a protein, mini chromosome maintenance 7, 

and includes only 3 different miRNA encoding hairpins [174]. 

Numerous studies have implicated the miR-17-92 cluster in cancers, cell cycle 

control, and development (extensively reviewed in [173, 175]).  Knockout of the miR-17-

92 cluster and its homologous clusters in mouse models produced several distinct 

phenotypes.  miR-17-92 (-/-) embryos are smaller than their wild type counterparts, and  

miR-17-92 knockout mice die shortly after birth, with lung hypoplasia [176]. In these 
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studies, bone marrow transplantation experiments implicated the miR-17-92 cluster in B 

cell development [176].  

 The miR-17-92 cluster was initially identified as a target of Myc regulation [177].  

However, recent studies have indicated that additional regulatory factors also control 

miR-17-92 expression. Examination of endogenous E2F binding indicates that E2F1, 

E2F2, and E2F3 bind to the miR-17-92 promoter and increase  transcription of the miR-

17-92 host gene [178]. Further studies, indicate that p53 suppresses miR-17-92 

expression through direct transcriptional regulation under hypoxic conditions [179]. 

Examination of the miR-17-92 cluster in MLL leukemia has identified a direct regulatory 

relationship by both wild-type MLL and MLL fusion proteins [12].  Both wild type and 

fusion MLL proteins localize to the promoter of the miR-17-92 host gene, as indicated by 

chromatin immunoprecipitation assays [12].  Cell lines with MLL translocations showed 

an increase in MLL binding to the miR-17-92 promoter, increased H3 acetylation, and 

H3K4 trimethylation as compared to those without MLL translocations [12]. Further, 

examination of miRNA expression profiles in AML with common translocations indicate 

that the miR-17-92 cluster is upregulated in MLL AMLs relative to non-MLL AMLs  

[152].  The miR-17-92 cluster and its homologous miRNA clusters, encode four families 

of miRNA categorized by homology in the seed region (miRNA sequences are reviewed 

in [172, 173]).  Homologous miRNAs are generally accepted to have overlapping 

functions and target sequences, as a result of commonalities within the seed region. For 

example,  miR-17 and -20a share the same seed sequence which is critical for target 

recognition (reviewed in [174]).  
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Figure 7. miR-17-92 cluster and related miRNAs 

 
 

A) Organization of the miRNAs within the miR-17-92 cluster (top), miR-106a-363 cluster 

(middle), and miR-106b-25 cluster (bottom). Light colored box indicates the arm (5p or 

3p) which produces the predominant mature miRNA.  miRNA families are grouped by 

color with the miR-17 family indicated in blue, miR-19 family in orange, miR-18a family 

in red, and the miR-92 family in green.  B) miRNA sequences from the miR-17-92 cluster 

and paralogous clusters.  miRNAs organized by family. Seed region indicated in red. 

Underlined sequences indicate non conserved bases.  

  



44 
 

 
 

The miR-17 family is comprised of miR-17 and miR-20a of the miR-17-92 cluster; 

miR-106a and miR-20b of the miR-106a-363 cluster, and miR-106b and miR-93 of the 

miR-106b-25 cluster. MiRNAs of the miR-17 family have a common seed sequence of 

AAAGUG, and share a great deal of homology throughout non-seed nucleotides as well, 

often differing at only one or two nucleotides (Figure 7). Within the miR-17-92 cluster, 

miR-17 and miR-20a differ at nucleotides 1 and 12, with miR-17 possessing cytosines in 

these positions, and miR-20a possessing uracils.  The miR-17 family, which is comprised 

of miR-17 and miR-20a, is one of the most studied miRNA families, with numerous 

defined targets, including (but not limited to): AIB1 [180], HSP27 [181], and TGFβ 

[182]. Critically, the miR-17 family has been implicated in cell cycle progression, 

through regulation of several components the G1/S checkpoint.  MiR-17 downregulates 

the negative checkpoint regulator CDKN1A (p21) [183].  Further examination of the miR-

17 homolog miR-106a, indicated that miR-106 also directly targets CDKN1A (p21) 

[184].Conversely, miR-17 also downregulates the expression of E2F1, and in doing so 

prevents the cell from dying due to double strand breaks that would otherwise occur as a 

result of unrestricted growth [177, 185].  In addition to E2F1, miR-20a regulates several 

other E2F family members, including E2F2 and E2F3 [178].  Recent work has identified 

a feedback loop whereby the miR-17-92 cluster downregulates E2Fs which regulate the 

miR-17-92 cluster. Within hematopoiesis, miR-17, 20a, and106a have been implicated as 

regulators of monocytopoiesis through downregulation of AML1, which functions to 

positively regulate the M-CSF receptor and negatively regulate the miR-17-92 and miR-

106a-363 clusters [186]. Introduction of  exogenous miRNAs from the miR-17 family 
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into cord blood CD34+ progenitor cells cultured under a monocytic differentiation 

protocol resulted in an increase in blast cells and inhibition of monocytic differentiation 

while inhibition of miRNAs from the miR-17 family results in decreased proliferation and 

increased differentiation [186].  

The miR-19 family is comprised of 2 separate 23 nucleotide miRNAs, miR-19a 

and miR-19b-1, and have a common seed sequence of GUGCAA (Figure 7).  MiR-19a 

and miR- 19b differ in only a single nucleotide at position 11; miR-19a has an uracil, 

while miR-19b has a cytosine. Located outside of the seed region, these nucleotides are 

involved in stabilization of the miRNA:mRNA interaction, but are not essential for 

targeting the miRNA to the transcript.  Numerous miR-19 targets have been identified, 

including (but not limited to): TNFα [187, 188], BCL2L11 [189], and PTEN [190]. Of 

these targets, PTEN is often cited as a critical downstream target of the miR-19 family.  

The regulatory relationship between miR-19 and PTEN was initially described using an 

Eµ-myc model of lymphoma, where overexpression of miR-19b resulted in decreased 

PTEN levels and increased cell survival [190]. 

miR-18a is additionally located within the miR-17-92 cluster, while its homolog 

miR-18b is within the miR-106a-363 cluster. MiR-18a differs from miR-18b at a single 

nucleotide with a uracil instead of a cytosine, and both share a common seed sequence of 

AAGGUG (Figure 7).  MiR-18a is one of the least well studied miRNAs of the miR-17-

92 cluster.  However, several mRNAs have been identified as miR-18a targets, including 

(but not limited to): PIAS3 [191],  CTGF [192], and SMAD4 [182]..  Intriguingly, miR-

18a was found to inhibit the global function of miRNAs through targeting of the Dicer 
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mRNA [193].  In a cardiovascular model, miR-18, along with miR-19, has been 

implicated in the regulation of angiogenesis via downregulation of the pro-angiogenic 

factors CTGF and Tsp1 [192].  MiR-18a regulates function of the TGF-β signaling 

pathway through downregulation of the downstream effector  SMAD4 [182].  

The miR-92 family is represented by miR-92a-1 within the miR-17-92 cluster; 

miR-92a-2 and miR-363 within the miR-106a-363 cluster; and miR-25 within the miR-

106b-25 cluster (Figure 7). Numerous miR-92 targets have been identified including (but 

not limited to): Integrin-5a [194], VHL [195], and PHLPP2 [196].  Critically, miR-92 has 

been implicated in regulating apoptosis through regulation of BCL2L11 (Bim) [197]. 

Several mRNAs have been validated as targets of multiple non-family miRNAs 

from the miR-17-92 cluster, suggesting that miRNAs may act cooperatively to regulate 

targets.  For example, PTEN is downregulated by miR-17, miR-19, and miR-18a through 

miRNA binding to unrelated MREs within the 3'UTR [190, 198, 199].  The pro-apoptotic 

BCL2 family member BCL2L11 (Bim) is an additional target of cooperation for miRNAs 

of the miR-17-92 cluster, regulated by both miR-19 [189] and miR-92 [197]. Despite the 

extensive work published on validating targets of the miR-17-92 cluster, few studies have 

examined the contributions of this cluster to MLL leukemia or validated the potential 

mechanism by which the miR-17-92 cluster acts in MLL leukemia. Enforced 

overexpression of miR-17-19b increases the colony forming ability of MLL-ELL 

transformed bone marrow [12]. Further, overexpression of the miR-17-92 cluster results 

in downregulation of 363 potential target genes, indicating that dysregulation of the miR-

17-92 cluster has broad implications in target mRNA regulation [12].  Within MLL 
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leukemia, miR-17 regulates CDKN1A (p21) expression [183]. Overexpression of miR-17-

19b accelerated the onset of MLL-AF10 leukemia in a murine model, which was 

phenocopied by shRNA knockdown of CDKN1A (p21).  The growing number of 

validated targets for each miRNA suggests that miRNAs are not limited to single targets, 

and that other, as yet non-validated targets, likely contribute to the disease process. 

Antisense oligonucleotide technologies 

Findings highlighting the importance of miRNAs in cancer, as well as other 

diseases, have drawn attention to the potential therapeutic value of modulating miRNA 

function, either by replacing lost/downregulated miRNAs or inhibiting 

amplified/overexpressed miRNAs.  To this end, multiple different technologies have 

emerged to modulate miRNA levels utilizing synthetically manufactured oligos (history 

of oligonucleotide therapeutics reviewed in [8, 13, 14]).   

As miRNAs function to post-transcriptionally regulate transcription, replacement 

of lost miRNA function may be achieved using anti-sense oligonucleotides (ASOs) 

complementary to sequences found in target mRNAs and function in both RISC-

dependent and RISC-independent functions.  RISC-independent mechanisms of ASO 

function target specific mRNAs with perfectly matched complementary oligonucleotides 

(oligos), and recruit the endogenously expressed RNAse H to cleave the mRNA:ASO 

duplex (reviewed in [8, 200]).  Alternatively, RISC-dependent replacements of miRNA 

function can be attained through introducing either a shRNA, siRNA, or miRNA 

analogue (reviewed in [201]). 

 Numerous chemical modifications have been developed for use in oligos (Figure 
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8). The chemical modifications utilized for anti-miRNA oligonucleotides (AMOs) were 

developed from those used for synthetic siRNAs and mRNA targeting ASOs, and utilize 

the same modifications. AMOs directed against miRNAs function through stable binding 

to miRNAs. AMO downregulation of miRNAs occurs through irreversible binding and 

sequestration of target miRNAs [202]. Thus their most valuable attributes are a high 

thermodynamic stability, compatibility with binding to RISC associated miRNAs, and 

resistance to nuclease degradation (discussed in [13, 203]).  Inhibition of miRNA 

function is dependent on chemically modified anti-sense oligonucleotides (ASOs) that are 

complementary to the target miRNAs and inhibit miRNA activity through 

thermodynamically stable Watson-Crick base pairing to target miRNAs (reviewed in 

[13]).  The simplest ASOs may employ either unmodified RNA or DNA nucleotides 

complementary to the target miRNA.  However, unmodified oligos are poor candidates 

for therapeutic use due to immune response activation, rapid oligo degradation, poor 

cellular uptake, and limited bioavailability of ASOs (reviewed in [13, 200, 203]). To 

improve bioavailability, nuclease resistance, and miRNA:AMO duplex stability; 

numerous chemical modifications have been developed for ASOs, including modification 

of the phosphodiester backbone and modification of the ribose sugars. 

Modifications of the non-bridging oxygen of the phosphate group linking the 

ribose sugars of the backbone, include methylphosphonates, phosphorothioates, and 

boranophosphonates (reviewed in [14, 201, 203]). Modification of the non-bridging 

oxygen introduces chirality to the phosphate, and each modification results in a racemic 

mixture of both stereoisoforms of the of the phosphodiester linkage [203], increasing 
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levels of nuclease incorporation result in increasing nuclease resistance. 

Phosphorothioate modifications consist of the addition of a sulfur in place of one 

of the non-bridging oxygen molecules of a phosphate within the oligo backbone.  A 

phosphorothioate modification confers resistance against RNAse degradation, at a slight 

cost of binding affinity (~0.25° C/modification)[13], and thus may require additional 

modifications to offset decrease in binding affinity.  Further, in vivo examination of 

siRNAs indicates that inclusion of phosphorothioate modifications modestly improved 

serum stability of siRNAs, and produces similar biodistribution of siRNAs among organs 

[204].  Phosphorothioate modifications are nuclease resistant, thus conferring a level of 

resistance to degradation [205], but  are compatible with RNAse H, and thus suitable for 

use in ASO designs [14, 205]. 

Numerous modifications alter the ribose sugar at the 2' position, directly binding 

either the 2' carbon or modifying the attached hydroxyl group, including: 2'- O-Methyl 

(2'-O-Me), 2'-O-methoxyethyl (2'-O-MOE), 2'-Flouro (2'-F), 2'-Deoxy-2'-fluoro-β-D-

arabino (FANA), N3'-P5' phosphoramidates (NPs), and locked nucleic acids (LNA) 

(reviewed in [13, 200, 201]).  The sugars of nucleotides exist in multiple different 

"pucker" conformations, which are described by the angles of the C2 and C3 tetrahedral 

bonds of the furanose ring [203].  The principle stable sugar conformations employ either 

a C3-endo, C2-exo conformation (a.k.a. North conformation, N-type conformation) or a 

C3-exo, C2'-endo conformation (a.k.a. South conformation, S-type conformation) [206].  

Pucker conformation, in turn,  alters the bond lengths of the sugar and phosphate bonds 

of nucleic acids, altering the thermodynamic stability of base pairing [207]. 
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2'- O-Methyl (2'-O-Me) modifications have been widely utilized in ASO 

development. As with other modifications to the 2' position of the ribose sugars, 2'-O-Me 

modifications improve the binding affinity of the oligo by forcing the ribose sugars into a 

C3-endo conformation, resulting in an increase in thermodynamic binding stability of 2-3 

°C/nucleotide [203].  Examination of chemically modified siRNAs has indicated that 

incorporation of 2'-O-Me modifications confers resistance to immune activation [208].  

2'-O-Me modified oligos were applied to AMOs targeting miRNAs incorporated in a 

RISC complex in 2004. Two independent studies examined the use of uniformly 

modified 2'-O-Me oligonucleotides to block the function of siRNAs associated with the 

RISC complex in C. elegans [209] and human cell lines [210], and found the modified 

oligonucleotides to be capable of inhibiting the function of siRNAs and miRNAs within 

RNA-protein complexes. The 2'-O-methoxyethyl (2'-O-MOE) modification is another 

commonly used 2'-alkyl ribose modification, altering ribose sugar conformation to result 

in an increase in thermodynamic binding stability of 2 °C/nucleotide [203].  

 Locked Nucleic Acids (LNAs) are a 2'-O, 4'-C-methylene-β-D-ribofuranosyl 

modified version of a ribose (consisting of a methylene bridge between the 2'-hydroxyl 

group and 4' carbon  of the ribose sugar), and were initially synthesized in 1998 [211, 

212].  As with other 2' ribose modifications, LNA modifications lock the ribose sugar 

into a C3 endo conformation and thermodynamically stabilizes binding to target 

nucleotides [213, 214].  Incorporation of locked nucleic acids additionally affects the 

pucker conformation of adjacent nucleotides [215]. LNAs increase the binding affinity of 

nucleotides in a sequence dependent manner with an increase in thermodynamic stability 
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that is partially dependent on adjacent nucleotides [216, 217], and results in a change in 

binding affinity of 1.5-6 °C/nucleotide [13].  In addition to improving the thermodynamic 

stability of binding with a target, incorporation of LNA modifications increase resistance 

to nuclease mediated degradation [218].  Further, LNAs are incompatible with RNAse H 

function but compatible with RISC activity function [219].  However, LNA 

simultaneously increase hepatic toxicity [220].  Several additional modifications are 

currently under development based on this chemistry, including amino-LNAs, thio-

LNAs, α-L-ribo-LNAs, and β-D-xylo-LNAs [213].    

 Chemical modifications appended to the ends of the oligo have been used to alter 

the distribution and serum half-life of antisense oligos.  Addition of a cholesterol to the 3' 

end of an oligonucleotide was initially described in the context of a siRNA targeting the 

ApoB mRNA transcript [221]. Cholesterol transport within the serum is mediated by 

binding to albumin, high density lipoprotein (HDL), and low density lipoprotein (LDL) 

[222, 223].  In addition to the cholesterol tag, several modified lipids (of varying lengths) 

have been employed as tags conjugated to the 3' end of siRNAs, including: myristoyl, 

lithocolic-oleyl, docosanyl, lauroyl, stearoyl, palmitoyl, oleoyl, and linoleoyl tags [224]. 

Modification of siRNAs by different lipophilic conjugates altered the biodistribution of 

siRNAs in vivo [224].  Uptake method in vivo relies on the human homolog to the C 

elegans transmembrane receptor Sid1 as well as the SR-B1 receptor [224].  

Oligonucleotide chemical modifications are modular and may be applied across 

the oligo or only at specific residues, resulting in 'mixmers," consisting of combinations 

of multiple different chemical modifications and variation in the length of antisense 
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oligonucleotides suited to different functions.  Numerous chimeric mixtures of 

oligonucleotide modifications have been employed for specifically targeting miRNAs, 

including: 2'-O-MOE/PS [225], 2'-O-MOE/LNA/PS [226], 2'-O-Me/LNA/PS [227], 

LNA/2'-O-Me [228], 2'-O-MOE/2'-F [229]. While numerous studies have utilized AMOs 

of the same length as the target miRNA, additional studies have utilized AMOs shorter 

than the target, focusing on developing the minimally required oligos so as to minimize 

toxicity and non-specific binding while maintaining target affinity. For example, an 8-

mer oligonucleotide, comprised of LNAs with a complete phosphorothioate backbone, 

targeting the seed region of miR-33, provided efficient knockdown of both miR-33a and 

miR-33b in vivo in mouse and primate [230, 231].  

Among the different ASO patterns of modifications, ‘antagomirs’ were 

empirically developed as a specific pattern of multiple modifications consisting of:  2'-O-

Me modifications across all ribose sugars of the oligo, phosphorothioate bonds at the first 

two and the last four phosphodiester linkages, and a cholesterol tag at the 3' end of the 

oligo [232, 233].  These ASOs were initially characterized as a potential therapeutic 

intervention to inhibit miRNAs in vivo [232, 233].  Krutzfeldt, et al. tested several 

potential antagomir designs with different modification patterns.  They observed a 

decrease in knockdown efficiency for oligos containing phosphorothioate modifications 

of all phosphodiester bonds, relative to oligos with phosphorothioate modifications at the 

first 2 and last 4 phosphodiester bonds [232], and thus limited use to these specific 

residues to block RNAse function while minimizing negative effects.  
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Figure 8. Antisense oligonucleotide modifications and patterns 

 

 
 

Canonical miRNA biogenesis pathway. A) Selected modifications for anti-sense 

oligonucleotides. Adapted from DeLeavey, et al. [203]. B) Depiction of an unaltered 

oligo nucleotide (top) and a modified oligonucleotide with ‘antagomir’ modifications 

(bottom).  Phosphorothioate modifications depicted with red circles, 2’-O-Me 

modifications depicted in green, and cholesterol in yellow.  
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Further, in examining the specificity of antagomirs and the potential effects of 

single or multiple mismatches between the antagomir and the targeted miRNA, 

Krutzfeldt, et. al. observed that a single mismatch at key residues abrogated miRNA 

knockdown [232]. Examination of the subcellular location of fluorescently labeled 

antagomirs indicated that antagomir modified oligonucleotides localized within punctate 

structures located in the cytoplasm, but did not co-localize alongside the P-body marker 

GW182 [232].  Examination of target miRNAs upon antagomir treatment indicate 

consistent knockdown of target miRNAs throughout examined tissues [233].   

 Several groups have utilized the antagomir pattern of modifications to inhibit 

miRNA function in vitro and in vivo.  Previous work from our group, performed in 

collaboration with the Grimes lab, utilized an anti-miR-196b antagomir in vitro colony 

assay, to test the necessity of miR-196b to the clonogenic capacity of MLL-AF9 

transduced bone marrow progenitor cells [11]. Studies by the Grimes lab have utilized 

antagomir oligonucleotides against miR-21 and miR-196b to examine the contribution of 

miRNAs in AML in vivo [234, 235].  

In my dissertation research, I examine targeting miRNAs upregulated in MLL 

leukemia both individually and in combinations as a potential therapeutic approach.  I 

find that combinatorial antagomirs function as a potent anti-leukemia treatment in vitro.  I 

further examine the regulatory role of miRNAs in modulating the expression of PKNOX1 

and its availability for inclusion in HOX-PBX complexes. This establishes one potential 

mechanism by which miRNA inhibition disrupts the leukemogenic potential of MLL 

fusion proteins in leukemia.  
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CHAPTER 3 

MATERIALS AND METHODS 

Cell lines and culture conditions 

Human leukemia cell lines were obtained from DSMZ and cultured according to 

manufacturer’s instructions. MOLM-13 was derived from the peripheral blood of  a 

patient undergoing a relapse of M5 AML leukemia and harbors t(9;11) translocation 

resulting in an MLL-AF9 fusion [236].  The THP1 cell line also harbors an t(9;11) 

translocation, and is derived from a patient with a monocytic AML [237]. In addition to 

cell lines with MLL-AF9 gene fusions, I also examined several cell lines with t(4;11) 

translocations resulting in MLL-AF4 gene fusions.  RS4;11 is an MLL-AF4 expressing 

cell line derived from the bone marrow of a patient with a biphenotypic leukemia, 

expressing characteristics of both B-cells and monocytes [238].  The MV4-11 cell line 

also possesses an MLL-AF4 gene fusion, and was derived from the bone marrow of a 

patient with a childhood leukemia [239].  I additionally utilized U937 and HL60 as  non-

MLL cell line controls. U937 cells were derived from a patient with histiocytic 

lymphoma [240], while HL60 cells were derived from a patient with Acute myeloid 

leukemia and harbors a c-Myc amplification [241]. Experiments performed in adherent 

cell lines utilized HEK293T cells, originally derived from human embryonic kidney and 

transformed with the SV40 T antigen [242].  

MOLM-13 (MLL-AF9), and RS4;11 (MLL-AF4) were maintained at 
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concentrations between 1X10
5
 cells/mL and 1X10

6
 cells/mL in RPMI with 10% Fetal 

Bovine Serum and 1% Penicillin/Streptomycin (Pen/Strep).  MV4-11 (MLL-AF9) and 

K562 (BCR-ABL) was maintained at concentrations between 1X10
5
 cells/mL and 1X10

6
 

cells/mL in IMDM with 10% FBS and 1% Pen/Strep.  Adherent cell lines were cultured 

HEK293T, Rat1A, NIH-3T3 cells were cultured in DMEM with 10% FBS and 1% 

Pen/Strep. MLL-AF9 transformed bone marrow was cultured in liquid culture at 

concentrations between 3X10
5
 cells/mL and 1X10

6
 cells/mLin RPMI with 10% fetal 

bovine serum and 1% Pen/Strep.  Cells were supplemented with IL-3 (10 ng/mL), IL-6 

(10 ng/mL), and SCF (100 ng/mL) cytokines. All cells were kept at 37˚ C with 5% CO2. 

HEK293T cells were transfected using CalPhos Mammalian transfection system 

(ClonTech, Mountain View, CA, Cat #631312) per manufacturer’s instructions.   

Constructs  

MSCV-MLL-AF9 [23] MIGR1 [23], MSCV-Meis1-pgk-EGFP [94], and pKOF2-

Prep1-GFP [94] retroviral constructs were described previously.  Briefly, the MSCV-

MLL-AF9 retroviral construct contains a human MLL-AF9 fusion gene within the Murine 

Stem Cell Virus system and can be utilized to introduce and express genes of interest in 

hematopoietic stem cells.  The MSCV-Meis1-pgk-EGFP expresses a murine Meis1 within 

the MSCV retrovirus with a gene encoding a fluorescent protein, EGFP, expressed from a 

separate promoter [94].  The pKOF2-Prep1-GFP encodes the full length of Pknox1 (also 

known as Prep1) cloned into a modified MSCV vector, with GFP expressed from a 

separate promoter [94, 243]. 

Bone marrow isolation, enrichment, and infection for generation of MLL-AF9 
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transformed bone marrow was performed as previously described [244].  Additional 

infection with MIGR1 or pKOF2-Prep1-GFP was performed on MLL-AF9 bone marrow 

cell that had been cultured in methylcellulose for 4 weeks. 

pRL-TK (Promega, Madison, WI, Cat# E2241), MSCV-PIG [190], and MSCV-

PIG- miR-17-19b [190] have been described previously. The pRL-TK construct encodes  

Renilla luciferase  driven by the HSV-1 Thymodine Kinase promoter, and serves as a 

commonly used experimental control in luciferase due to: 1) the ability to readily 

distinguish between Renilla and Firefly luminescence, and 2) the constancy of expression 

of the luciferase enzyme under the TK promoter. Exogenous miRNA expression was 

attained through transfection with the MSCV-PIG- miR-17-19b  plasmid (received as a 

generous gift from Dr. Jianjun Chen, University of Cincinnati). MSCV-PIG- miR-17-19b 

was constructed by cloning a fragment of the miR-17-92 cluster containing the miRNA 

hairpins from miR-17 to miR-19b-1, within the MSCV (Mouse Stem Cell Virus) retroviral 

backbone [190].  The construct additionally contains a PIG cassette, encoding Puro- 

IRES-GFP for use in selection [190].  MSCV-PIG, which lacks any fragment o the miR-

17-92 cluster was used as a control. 

Luciferase constructs were generated by cloning the 3’ UTR from Pknox1 in the 

pmiR-Report system (ThermoFisher Scientific, Cat#AM5795).  The pmiR-Report system 

encodes a firefly luciferase gene driven by CMV promoter within the pmiR backbone. A 

multiple cloning site is located downstream of the luciferase to allow cloning of a 3'UTR.  

Mutations to the miRNA binding sites were generated using the Stratagene Multi-site 

directed mutagenesis kit (Stratagene, La Jolla, Cat# 200514).  Details of cloning 
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techniques and strategies described elsewhere in the Materials and Methods section. 

Antagomir modifications and treatment 

Antagomirs were synthesized by the Dharmacon division of Thermo (Lafayette, 

CO) following the pattern of modifications outlined previously [232, 233].  Antagomirs 

were designed as small oligonucleotides (oligos) complementary to the targeted miRNA. 

All nucleotides contained 2’-O-methyl modifications on the ribose sugar. For all oligos, 

the first 2 and last 4 phosphodiester linkages were replaced with a phosphorothioate 

linkage. The 3’ ends of all oligos possess a cholesterol group.  Fluorescent antagomirs 

possess an additional DY547 fluorescent label at the 5’ end.   

Antagomir treatments were performed according to 3 different protocols 

(specified in text).  For superficial treatment with antagomirs, cells were counted and 

resuspended in fresh culture medium at 2X treatment concentrations (100k cells/mL).  

Cells were then added to an equal volume containing antagomirs and 10X PBS in media 

at 2X the concentration of the final solution. Superficial antagomir treatment with pre-

incubation has been previously utilized by our lab and others [11, 234, 235].  For pre-

incubation, cells were incubated in 100 µL of culture media, with antagomir at 10X the 

final treatment concentration, along with 10X PBS to compensate for antagomir volume, 

on ice for 30 mins and followed by at room temperature for 5 mins.  The cell-antagomir 

mixture was then diluted tenfold with culture media (for liquid culture experiments) or 

with . Herein, I refer to this treatment as the "superficial treatment with pre-incubation" to 

distinguish it from simple superficial treatments that do not require any pre-incubations. 
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Table 2. Sequences and modifications of antagomirs 

  
antagomir antagomir sequence (5'→3') 

anti-Ce-mir-67 
mU*mC*mUmAmCmUmCmUmUmUmCmUmAmGmGmAmGm

GmUmU*mG*mU*mG*mA-Chl 

anti-Ce-mir-67-

DY547 

DY547*mU*mCmUmAmCmUmCmUmUmUmCmUmAmGmGm

AmGmGmUmU*mG*mU*mG*mA-Chl 

anti-mir-196b 
mC*mC*mCmAmAmCmAmAmCmAmGmGmAmAmAmCmUm

A*mC*mC*mU*mA-Chl 

anti-mir-10a 
mC*mA*mCmAmAmAmUmUmCmGmGmAmUmCmUmAmCm

AmG*mG*mG*mU*mA-Chl 

anti-mir-191 
mC*mA*mGmCmUmGmCmUmUmUmUmGmGmGmAmUmUm

CmC*mG*mU*mU*mG-Chl 

anti-mir-93* 
mC*mG*mGmGmAmAmGmUmGmCmUmAmGmCmUmCmAm

G*mC*mA*mG*mU-Chl 

anti-mir-17 
mC*mU*mAmCmCmUmGmCmAmCmUmGmUmAmAmGmCm

AmC*mU*mU*mU*mG-Chl 

anti-mir-18a 
mC*mU*mAmUmCmUmGmCmAmCmUmAmGmAmUmGmCm

AmC*mC*mU*mU*mA-Chl 

anti-mir-19a 
mU*mC*mAmGmUmUmUmUmGmCmAmUmAmGmAmUmUm

UmG*mC*mA*mC*mA-Chl 

anti-mir-19b-1 
mU*mC*mAmGmUmUmUmUmGmCmAmUmGmGmAmUmUm

UmG*mC*mA*mC*mA-Chl 

anti-mir-20a 
mC*mU*mAmCmCmUmGmCmAmCmUmAmUmAmAmGmCm

AmC*mU*mU*mU*mA-Chl 

anti-mir-92a-1 
mA*mC*mAmGmGmCmCmGmGmGmAmCmAmAmGmUmGm

C*mA*mA*mU*mA-Chl 

  

Antagomir sequences are depicted above. Stars (*) indicate phosphorothioate 

modifications to phosphodiester linkages. Lower-case m preceding nucleotide letter 

indicates 2'-O-Me  modifications to the furanose ring. 

 

For Lipofectamine 2000
TM

 treatment with antagomirs, cells were counted and 

resuspended in serum-free media.  Lipofectamine complexes were generated under sterile 

conditions according to the manufacturer's protocol maximal dosage for RNAi/RNA 

delivery (20 pmol or antagomiR).  Cells were subsequently treated for 48 hrs with 
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lipofectamine-antagomir complexes per the manufacturer's instructions.  

Preparation of retrovirus 

 Virus was generated from relevant retroviral constructs using Phoenix Eco 

packaging cells supplemented with packaging vector.  Plasmids were generated by 

maxiprep according to manufacturer’s instructions.  DNA was quantified with a 

Nanodrop 2000™  and transfected into Phoenix Eco cells by Calcium Phosphate 

transfection (ClonTech, Mountain View, CA, Cat# 631312) according to manufacturer’s 

protocol. Briefly, five 10 cm dishes were plated at 3x10
6
 cells/ plate.  Twenty four hours 

later, media was changed. Transfection mix was prepared by adding DNA to H20 to 

CaPO4.  DNA was added in the following amounts: 22.5 µg of ecotropic viral plasmid 

(MSCV-MLL-AF9, MIGR1, or pKOF2-Prep1-GFP )/plate and 2.5 µg packaging vector 

(pCL-Eco)/plate.  The mixture was briefly vortexed to mix and added dropwise to 2X 

HBS while gently vortexing the HBS. Complexes were left to form for 20 minutes in the 

sterile hood, after which the DNA complex solution was added dropwise to PhoenixEco 

cells across the plates.  Cells were incubated at 32˚C for 2 days.  Supernatant was 

collected each day and fresh media was added.  Supernatant was stored at 4 degrees until 

viral concentration.  

 To improve infection efficiency, MSCV-MLL-AF9 virus was concentrated using 

Centricon Plus-70 Centrifugal Filters (Millipore, Billerica, MA, Cat# UFC710008).  

Briefly, concentration columns were primed by centrifugation of sterile H2O at 3000 rpm.  

70 mL of viral supernatant was added to the filter unit and centrifuged at 1645 rpm for 3 

hours.  To elute viral particles, filter units were inverted and spun at 1645 rpm for an 
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additional 10 minutes. Eluant was collected and total volume was adjusted to 7 mL using 

RPMI.  Virus was aliquoted to 750 µl/tube and snap frozen on dry ice.  Aliquots of virus 

were stored at -80˚ C for later use.  

 Efficacy of MLL-AF9 virus generation was tested by infection in Rat1A cells.  

Infectivity of viral aliquots was confirmed through infection titer of Rat1A cells.  8.5x10
4
 

Rat1A cells were plated in 6-well plates and cultured overnight at 37C in DMEM + 10% 

FBS + 1% P/S. The following day, cells were infected with virus diluted at multiple 

concentrations between 1:10
3
 to 1:10

6
 in DMEM+10% FBS + 16 µg/mL Polybrene. 

Media was aspirated from cells and virus dilutions were added to plates for 4 hours at 

37°C. After 4 hours of treatment, 1 mL of additional media was added to each well and 

plates were reincubated for an additional 20 hrs.  Cells were cultured in fresh media for 

48 hrs and then continuously cultured in the presence of G418 for 12days.  Colony 

formation was visualized by removing media and briefly staining plates with methylene 

blue.  Colonies were counted and multiplied by dilution factor to determine the cfu/mL 

virus.  

 pKOF2-Prep1-GFP and MIGR1 do not have a G418 resistance cassette and are 

thus unable to be subjected to viral titrations by this methodology.  To measure quality 

viral particle generation, I infected Rat1A cells with 1:10 and 1:100 dilutions of virus and 

tested for GFP positivity using FACS analysis on a LSR-FORTESSA (BD BioSciences, 

Franklin Lakes, NJ). 

Isolation and purification of bone marrow stem/progenitor cells 

Analysis of MLL-AF9 in a murine model was performed using murine bone 
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marrow stem and progenitor cells transformed with MLL-AF9-expressing retrovirus. 

Murine bone marrow was collected and transformed consistent with previous 

experiments performed by our lab. Briefly, C57BL/6 mice were euthanized with gaseous 

CO2 and immediately dissected under sterile conditions to remove legs.  Tibia and Femur 

bones from both hind legs were isolated and epiphyses were removed.  Bone marrow was 

collected in 2% FBS supplemented media by flushing diaphyses with 1 mL media 

through a 25G needle.  Cell aggregates were dispersed and a single cell suspension was 

generated by additional passing through a 1 mL syringe and 25G needle.  Collected cells 

were washed in chilled PBS supplemented with 2% FBS.  To obtain a population of 

white blood cells, red blood cells were lysed by incubating in red blood cell lysis buffer 

(155 mM NH4Cl, 11.9 mM NaHCO3, 100 nM EDTA) for 5 mins on ice.   

Bone marrow was enriched for c-Kit+ (CD117) stem and progenitor cells using 

EasySep Positive selection kit (Stemcell Technologies, Vancouver, BC, Cat# 18056) 

according to the manufacturer’s protocol. EasySep purification utilizes antibodies 

directed against surface markers used to characterize sub-populations of cells.   

Briefly, bone marrow was suspended in PBS+2%FBS at a concentration of (1x10
7
 

cells/mL). 70 µL of CD117-PE labeling reagent was added and incubated in the hood for 

15 mins.  70 µL of PE selection cocktail was added and solution was incubated for an 

additional 10 mins.  50 µL of magnetic nanoparticles were added and mixture was 

incubated for 10 mins. Cells were purified by washing 3 times in PBS+5%FBS.  To wash 

cells, tubes containing magnetically labeled cells were placed into magnet for 5 mins.  

After 5 mins, tubes were gently inverted to decant supernatant. Tubes were then removed 
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from magnet and an additional 500 µL of PBS was added to each tube.  After c-kit 

positive selection, cells were counted and were activated overnight in RPMI+10%FBS 

supplemented with cytokines.   

Infection of bone marrow cells 

 Retroviral infection was performed to introduce a human MLL-AF9 fusion to 

murine c-kit+ progenitor cells for AML transformation.  After c-kit+ selection, cells were 

activated overnight in a 96 well plate in RPMI+10%FBS supplemented with cytokines 

(10 ng/mL each of IL-6, IL-3, and 100 ng/mL SCF).   

 Spinoculations were prepared in 1 mL volumes as follows: one 750 µL aliquot of 

virus, 7.5 µL HEPES, 1 µL polybrene (4 µg/ul), 30 µL cells (at 1x10
6 
cells/mL). For viral 

infection, cells were centrifuged at 3000 rpm for 4 hrs at 33° C on 2 successive days. 

Between spinoculations, each sample was rested overnight in 100 µL of RPMI + 10% 

FBS supplemented with cytokines (10 ng/mL each of IL-6, IL-3, and 100 ng/mL SCF) in 

96 well plates. Cells were put into methylcellulose colony assays immediately after the 

second day of infection.   

Murine methylcellulose colony assay 

Murine cells were plated in H3234 Methocult supplemented with IL-3 (10 

ng/mL), IL-6 (10 ng/mL), and SCF (100 ng/mL) cytokines.  Murine cells were plated at 

concentrations between 10k cells/plate and 500 cells/plate, depending on growth the 

previous week and on anticipated colony number.  

Cells were put into methylcellulose colony assays immediately after the second 

day of infection.  For antagomir treatments, appropriate cell volumes were added to a 5 
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mL FACS tube containing a antagomirs, 10X PBS to compensate for antagomir volume, 

and RPMI+10% FBS totaling 100 µL.  Cells were incubated on ice for 30 mins and at 

room temperature for 5 mins as specified by the Grimes lab protocol.  After incubation, 

cells were immediately transferred to a 1.5 mL microcentrifuge tube containing 

antagomirs (2.3 µL for 100 nM treatment and 4.6 µL for 200 nM treatments), cytokines 

(IL-3, IL-6, and SCF totaling 9.9 µL), G418 (82.5 µL for the first week) and media to 

600 µL.  This mixture was added to thawed methylcellulose aliquots (2.7 µL each), and 

mixed via vortexing.  1.1 mL of the resulting mixture was added to culture dishes using a 

3 mL syringe with a blunt end needle. 

 The initial round of plating for colony assay additionally included G418 at 10 

ng/mL to select for successfully infected cells. All platings were set up in duplicate. 

Colonies were counted at day 7 on a Leica DMIL inverted microscope and photographed 

using a Cannon PowerShot SD1000, at 7.1 MP.  Cells were collected under sterile 

conditions by washing each plate with 2 mL PBS 3 times and collecting into a 50 mL 

Falcon tube containing 30 mL of PBS.  Cells were centrifuged for 10 minutes at 1500 

rpm in a floor centrifuge.  PBS was aspirated, and cells were resuspended in 0 .5 – 5 mL 

of fresh PBS. Cells were counted by hemocytometer and total cell number was calculated 

for each colony assay.  For weeks 1-3, cells were re-treated with antagomir according to 

the protocol described above.  At week 4, all remaining cells were collected for RNA.  

Slides were prepared for inspection of cellular morphology.  2.5x10
4
 cells were 

centrifuged onto positively charged slides at 1000 rpm for 4 minutes on a Thermo 

Cytospin 4 (Thermo Scientific, Cat# 3120110).  Slides were air dried and stained with 
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Hema 3 Wright Giemsa stain (Fisher Scientific, Waltham, MA, Cat#  23-122-929, 23-

122-937, 23-122-952) for 15 seconds with each stain.  Slides were visualized on an Evos 

imagecore microscope (Life Technologies, Carlsbad, CA). 

Cloning and screening strategy 

 Luciferase reporter constructs were generated by cloning the 3’UTR of PKNOX1 

into the pmiR-Report system (obtained from Dr. Jianjun Chen, University of Cincinnati).  

Wild-type reporter construct was cloned from human genomic DNA as described below. 

 PKNOX1 3’UTR was amplified using forward and reverse primers (Integrated 

DNA Technologies, Skokie, IL) indicated in Table 3.  The 3’UTR for PKNOX1 is 

transcribed from within a single exon of PKNOX1.  Thus, PCR amplification could be 

performed on genomic DNA without potential inclusion of intronic sequence. PCR was 

performed utilizing a high-fidelity recombinant polymerase, Phusion Taq (NEB, Ipswich, 

MA, Cat# M0530) according to manufacturer’s guidelines.  Amplification reactions were 

set up as follows: 1 µL (100 ng) human genomic DNA template, 2.5 µL (0.25 µM) 

Forward Primer, 2.5 µL (0.25 µM) Reverse primer, 5 µL 10X PCR Buffer, 1 µL dNTPs, 

0.5 µL Taq, and 32.5 µL water to volume. Amplification reactions were performed in a 

ThermoHybaid PCRExpress PCR block.  Cycling parameters were set as follows: 5 mins 

at 95˚ C, and 35 cycles at 95˚C for 30 sec, 65˚C for 30 sec, and 68˚C for 5 mins, and 

68˚C for 5 mins. 

 The amplification product was electrophoresed on 1 % agarose gels and the 

appropriately sized band (3.5 kb) was excised and purified by Qiaex II gel extraction kit 

(Qiagen, Hilden, Germany, Cat# 20021).  The resulting PCR amplicon was sequentially 
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digested with MluI and SpeI in parallel with the pmiR-Report vector. Ligations were set 

up at a 1:3 vector:insert ratio using the NEB ligation kit (NEB, Ipswich, MA, Cat# 

M0202).  Ligation was set up as follows: 1 µL vector ( 25 ng), 12.1 µL insert (75 ng), 1 

µL T4 DNA Ligase, 2 µL ligation buffer, water to 20 ul.  Ligations were incubated 

overnight at 16˚C. 

 Ligation mix was transformed into chemically competent DH5a E. coli. Briefly, 

chemically competent bacterial cells were thawed on ice for 10 mins and added to a pre-

chilled 14 mL round bottom polypropylene tube with 1 µL of ligation mix.  Mixture was 

sequentially incubated on ice for 30 mins, at 42˚C for 45 seconds, and ice for 5 mins. 900 

µL of pre-warmed SOC media was added and cultures were incubated with rotation (225 

rpm) at 37˚C for 1 hour.  Bacterial cells were plated on Ampicillin-LB plates.  Potential 

positive transformants were picked and grown in 2 mL LB-AMP.  1.5 mL was used for a 

column free miniprep.  Plasmid was digested with cloning enzymes (MluI and SpeI) to 

test for the presence of insert.  If insert is present, it will be apparent on a gel after 

digestion. 

 

Table 3. Primers for cloning luciferase constructs 

   Amplicon Primer sequence (5'→3') 

PKNOX1 
Forward: GGACTAGTCCTGGTCTTGGAGAACAGTGACT 

Reverse: CGACGCGTCGCTTTGATAAATCAATTGCTTCAC 

   Primers for cloning the 3'UTR of PKNOX1 
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Site directed mutagenesis and screening strategy 

 Specific mutations were generated to remove the individual miRNA binding sites 

from the PKNOX1 3’UTR.  To make multiple mutations simultaneously, I used the 

Stratagene Multi-Site Directed mutagenesis kit (Stratagene, La Jolla, CA, Cat #200514).  

Multiple primers directed against the same strand of DNA may be added to the reaction 

simultaneously.  As the extended strand meets the next downstream primer, a ligase 

present in the enzyme mix seals the nick in the DNA, allowing for multiple primer-

mediated mutations to be incorporated simultaneously.  The resulting single stranded 

product is suitable for transformation.  The PKNOX1 3’UTR possesses 6 putative binding 

sites for miRNAs from the miR-17-92 cluster.  Because of proximity of the sites to be 

mutated and the decreased efficiency of introducing too many mutations simultaneously, 

site directed mutagenesis was pursued in two separate multi-site directed mutagenesis 

rounds.  pmiR-Report-Pknox1 3’UTR (wt) was used as a template for initial mutagenesis, 

with primers designed to mutate either MRE1, MRE5, MRE6 or MRE2, MRE3, MRE4. 

Compound mutation of the miR-17 family MREs was generated by subjecting a plasmid 

with only MRE1 to additional mutagenesis using the primer for MRE4.  Compound 

mutation of all putative MREs was achieved by subjecting a compound mutant (MRE1, 

MRE5, and MRE6) to additional mutagenesis (for MRE2, MRE3, and MRE4).  Primers 

and mutations are depicted in Table 4. 

 Mutations to ablate miRNA binding were made by changing multiple nucleotides 

within the seed match of the mRNA.  To facilitate a screening strategy of restriction 

mapping, seed match sites were converted to restriction enzyme sites recognized by 
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enzymes that would only cut once in the wild type plasmid.   

 Site directed mutagenesis reactions were set up according to the manufacturer’s 

instructions.  Both rounds of mutations utilized the same reaction mix proportions.  

Reactions were set as follows: 1 µL template (100 ng), 1 µL of primer 1 (100 ng), 1 µL 

of primer 1 (100 ng), X µL of primer 3 (100 ng), 1 µL of enzyme, 2.5 µL of 10X reaction 

mix, 1 µL dNTPs mix, 1 µL multi-enzyme mix, and ddH20 to 25 µl.  Amplification 

reactions were performed in a ThermoHybaid PCRExpress PCR block.  Cycling 

parameters were set as follows: 5 mins at 95˚ C, and 40 cycles at 95˚C for 30 sec, 55˚C 

for 30 sec, and 65˚C for 10 mins. Resulting PCR products were cleared of template 

plasmid by DpnI digestion. DpnI only digests methylated DNA.  DNA methylation 

occurs in bacteria, but not in PCR amplification.  Restriction digestion of DNA with DpnI 

would eliminate only the template bacteria, but not the resulting mutants, which were 

generated via PCR. 1 µL of DpnI was added to each reaction mix and incubated for 15 

minutes at 37˚C. 1 µL of resulting mix was transformed into XL-10 Gold competent 

cells, per manufacturer's instructions (Competent cells provided with kit). 

 To screen for positive mutants, transformant colonies were picked and grown in 2 

mL LB with ampicillin. 1.5 mL was subsequently purified by column-less miniprep.  

Plasmids were digested using HindIII or MluI.  Incorporation of any mutations by site 

directed mutagenesis would result in an increasingly fragmented digestion pattern, with 

compound mutants incorporating all mutations producing a very fragmented product.   
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Table 4. Primers for mutagenesis of PKNOX1 3'UTR 

  Target Primer sequence (5'→3') 

PKNOX1 

MRE1 

(∆19ab) 

GCAGGAGCAGAACCGCACCTGACTTTTTGGAGAAGCTTCAGCA

AACATTTTACACAGTTTTATTTCTAA 

PKNOX1 

MRE2 

(∆17,20) 

TTTCTAATATGTTTTATATGTAGATATAGAAGAGTGACGCGTTG

TATTTCATAGTAAGCTTAAAGCGCGTCTTTGCC 

PKNOX1 

MRE3 

(∆18) 

CAGCATGTTTGAGGTCAGTTGGACGCGTAAAACACCTGTTCTCC

AGCCC 

PKNOX1 

MRE4 

(∆17,20) 

GCCTGTGTGAGGTAGCAGTGGGACGCGTTCATTGAGACAAACT

CCAGGG ' 

PKNOX1 

MRE5 

(∆92) 

CCCAGGCTGGAGGGCAATGGAAGCTTCTCAGCTCACTGCAACC

TC 

PKNOX1 

MRE6 

(∆92) 

CCCAGGCTGGAGGGCAATGGAAGCTTCTCAGCTCACTGCAACC

TC 

vector 

internal 
GCACCCCAGGCTTTACACTTTATGCTTCCGGCT 

  The above table depicts the primers utilized for mutagenesis.  All primers from the same 

strand. miRNA Response element in red.  Unaltered nucleotides within the seed region 

in blue.  Restriction sites in Orange  or Green.  Purine to pyrimidine changes (and vise 

versa in bold.  Nucleotide changes italicized. 

 

Putative positives were regrown and plasmids were prepared with miniprep kit to provide 

a cleaner plasmid prep suitable for sequencing.  Plasmids were then sent to ATCC for 

sequencing using both pmiR Forward and pmiR Reverse plasmids.  Internal sequence of 

the PKNOX1 3'UTR was out of range of end primers and was sequenced utilizing internal 

primers specific to the PKNOX1 3'UTR: PKNOX1 seq1 and PKNOX1 seq2 (Table 5).   
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Table 5. Primers for sequencing PKNOX1 luciferase construct 

  Target Primer sequence (5'→3') 

pmiR Forward CCCTTGAACCTCCTCGTTCGACC 

pmiR Reverse GAGACGTGCTACTTCCATTTGTC 

PKNOX1 seq1 TGAAATGGTAGCCAGTGACCCGTT 

PKNOX1 seq2 AATGGTGCAATCTCAGCTCACTGC 

  The above table indicates the primers utilized for sequencing of pmiR-Report constructs 

 

RNA isolation and cDNA synthesis 

RNA was extracted from cells treated with antagomirs for 72 hrs in liquid culture 

using Sigma TRI Reagent (Sigma Aldrich, St. Louis, Cat# T9424) according to 

manufacturer’s instructions.  Briefly, cell pellets were collected in a 1.5 mL 

microcentrifuge tube and spun down at 3000 rpm.  Cells were resuspended in .5 mL - 1 

mL of TRI reagent under a fume hood (according to cell number) Once mixture was 

homogenous, cells were frozen and stored at -80˚ C for later use.  

 RNA collection was performed under RNAse free conditions using filter tips.  All 

workspaces and pipettes were cleaned with RNAse Zap (Life Technologies, Carlsbad, 

Cat# AM9782) prior to use. RNA samples were thawed and processed according to TRI 

reagent standard protocol. Briefly, 200 µL of chloroform was added per mL of TRI 

reagent used.  Mixture was inverted vigorously 15 times to mix samples. Samples were 

separated by centrifugation at 13000 rpm at 4˚C in a microcentrifuge.  The aqueous layer 

was removed and added to a microcentrifuge tube containing 560 µL Isopropanol/mL 

TRI reagent used. After a 15 minute incubation, RNA was precipitated by centrifugation.  

Pellet was washed once in 70% ethanol and air dried. Pellets were resuspended in 
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nuclease free H20 and dissolved at 65˚C for 1 hour.  Resulting RNA mix was 

subsequently handled on ice in an RNAse free environment. 

cDNA synthesis was performed using 10 ng of total RNA using Applied 

Biosystems miRNA Reverse Transcription kit (Life Technologies, Carlsbad Cat# 

4366596) according to manufacturer’s protocol.  RNA was quantified and quality was 

assessed using a Nanodrop 2000.  RNA was normalized to a concentration of 100 ng/µL 

and subsequently diluted to a working concentration.  10 ng of RNA was used per reverse 

transcription (RT) reaction. For each sample, separate RT reactions were performed for 

each RNA or control to be quantified.  To control for potential discrepancies in RNA 

level/quality between tubes, a master mix was made for each sample with all components 

except the RT primers.  The appropriate master mix was then added to the RT tube with 

the appropriate RT primer.  Reverse transcription reactions were performed in a Thermo 

Hybaid PCR Express Cycler using the following cycling parameters: 16° C for 30 mins, 

42° C for 30 mins, 85° C for 5 mins, 4° C hold.  

Quantitative real-time polymerase chain reaction 

 To determine relative miRNA levels, quantitative real-time PCR was performed 

on an Applied Biosystems 7300 cycler using Applied Biosystems Taqman assays for hsa-

miR-17-5p, hsa-miR-19a, hsa-miR-196b, or RNU6.  

 Quantitative real-time PCR was performed in technical triplicates. Master mixes 

were prepared for each reaction in excess of 3 fold the amount required for complete 

reaction. TaqMan small RNA assay kits were utilized for hsa-miR-17, hsa-miR-19a, hsa-

miR-196b, and RNU6. Each reaction consisted of 1 µL TaqMan Small RNA Assay 
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(20X), 10 µL TaqMan Universal PCR Master Mix II, 7.67 µL RNAse free H20, and 1.33 

µL of cDNA product.  PCR reactions were prepared in the dark. Plates were spun down 

for 2 mins at 1000 rpm to collect sample at bottom of plate. 

 Cycling parameters for qPCR were defined by the kit manufacturer.  Briefly, 

cycling condition were as follows:  50˚C for 2 minutes, 95˚C for 10 mins, and 40 cycles 

of 95˚C for 15 seconds, 60˚C for 1 minute.  “No template” controls were run to verify 

that contamination was not present. Data was analyzed using the Delta Delta Ct (2
-∆∆Ct

) 

method with RNU6 serving as a control [245].  

Human methylcellulose colony assays 

Methylcellulose colony assays for human cell lines were performed using H4100 

Methocult methylcellulose (Stemcell, Vancouver, Cat# 04100) supplemented with a final 

serum concentration of 10% FBS. Methylcellulose colony assays were performed in 12-

well plates.  

To ensure consistent results, human cell lines were maintained at >90% viability 

for at least 3 days prior to use in any methylcellulose assay.  Immediately prior to 

treatment, cells were counted and resuspended at a concentration of 1X10
5
 cells/mL.  

Because each cell line has a different clonogenic potential, each cell line was plated in 

methylcellulose at different concentrations (numbers given for treatment in 12-well 

plate): MOLM-13 (100 cells/well), MV4-11 (1000 cells/well), RS4;11 (250 cells/well), 

HL-60 (250 cells/well), U937 (250 cells/well). Antagomir treatment concentrations were 

empirically determined for the MLL fusion-containing cell lines and were set to 1-2 µM).  
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Non-MLL cell lines were treated at 2 µM to be equivalent to highest treatment 

concentrations. 

Appropriate cell numbers were then added to a 1.5 mL microcentrifuge tube 

containing antagomirs (1.65 µL for 1 µM treatment, and 3.3 µL for 2 µM treatment)., 

10X PBS to compensate for antagomiR volumes, and media +10% FBS to a final volume 

of 550 µL . The resulting solution was then gently pipetted into a FACS tube containing 

(1.1 mL) methylcellulose and mixed by briefly by vortexing.  550 µL of the final 

cell/antagomir/methylcellulose mixture was added to each well in a 12-well plate in 

duplicates. Individual colonies were counted on Leica DMIL inverted microscope and 

photographed using a Cannon PowerShot SD1000, at 7.1 MP after 7-8 days in culture for 

MV4-11, MOLM-13, RS4;11 and K562. THP1 colonies were cultured for 14-15 days.  

Combinatorial treatments were counted on a Leica DMIL inverted microscope and 

photographed using a Nikon camera. 

To collect cells, 1 mL of PBS was added to each well to diluted methylcellulose.  

Methylcellulose was gently rinsed from the plate and subsequently washed 2 times with 

PBS. Each duplicate experiment was resuspended in a total of 12 mL PBS. Cells were 

spun down and resuspended in PBS (.1-2mL) for counting, collecting for slides, 

collecting for FACS, etc.  Colonies were viewed under a Nikon microscope and imaged 

with Olympus DP21 imaging system at 100X.  

Cell proliferation Assay 

To asses cell proliferation I used the Cell-Titer-Glo assay (Promega, Madison, 

Cat# G7570).  This assay measures cell number indirectly by measuring the ATP content 
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in a luminescent assay.  Because ATP content remains constant across live cells, 

quantification of ATP may be used to indirectly quantify the total number of live cells. 

Cells were counted and resuspended at 100k cells/mL in culture medium under sterile 

culture conditions.  Cells were added to a mixture of antagomirs, 10X PBS, and culture 

media to yield a final concentration of 50k cells/mL, 1-2 µM antagomirs (specified in 

figure legends), and 10X PBS to compensate for antagomir volumes. Cells were plated in 

96-well plates in triplicate with 100 µL of cell/antagomiR mixture per well in 3 

independent experiments.  Cell viability was assessed after 4 days of antagomir treatment 

using Promega Cell-Titer-Glo kit (Promega, Madison, Cat# G7570) according to 

manufacturer’s instructions.  Briefly, cells in 96 well plates were gently resuspended by 

pipetting up and down. 15 µL of cells were subsequently added to 85 µL of media in a 

white opaque plate, 100 µL of Cell Titer Glo reagent was thawed at room temperature in 

the dark and subsequently added to the cell –media mixture.   

Luminescence was measured on a Glomax 96 microplate luminometer using the 

default program setting. Integration time was set at 0.5 seconds/well for all samples. 

Averages of 3 triplicates were averaged for each sample tested. Remaining cells were 

collected for cell cycle analysis.  

Murine MLL-AF9 transformed bone marrow cells were examined for cell viability 

in culture after infection with either MIGR1, MSCV-Meis1-pgk-EGFP, or MSCV-pKOF2-

Prep1-GFP. Similarly to human cell lines, viability was assessed using Cell-Titer-Glo 

assay (Promega, Madison, G7570).  GFP+ cells were plated at 50k cells/mL in 100 µL in 

96 well plates.  At given time points, 15 µL of cells were removed from media and 



75 
 

 
 

subsequently added to 85 µL of media in a white opaque plate, 100 µL of Cell Titer Glo 

reagent was thawed at room temperature in the dark and added to cell–media mixture. 

Luminescence was measured on Glomax 96 microplate luminometer using the protocol 

utilized for human cell lines. 

Cell cycle analysis  

 To determine cell cycle distribution, cells were fixed and stained with propidium 

iodide (PI) and analyzed via FACS.  Propidium iodide (PI) is a fluorescent DNA 

intercalating agent that readily enters fixed cells and can subsequently be used to quantify 

the amount of DNA in a particular cell. Because DNA is synthesized during replication, 

the quantity of DNA can be used to indicate whether a cell is actively cycling. 

 To determine cell cycle distribution upon antagomir treatment, all three replicates 

from each sample of the previous cell viability were collected and pooled in a 5 mL 

FACS tube.  Cells were washed once with 3 mLs of PBS+5%FBS and fixed in ice-cold 

70% Ethanol.  Cell suspension was stored at -20˚C overnight for fixation.  Cells were 

then washed in PBS + 5% FBS and resuspended in 250 µL PBS solution containing 

RNAse A (10 µg/mL) to eliminate free RNA that would potentially confound results.  

250 µL PBS with propidium iodide (100 µg/mL) was then added to the mixture to yield a 

final concentration of 5 µg/mL RNAse A and 50 µg/mL propidium iodide.  Cells were 

incubated on ice for 1 hour prior to FACS analysis. Samples were analyzed on a FACS-

CANTO II and data was processed analyzed using Flowjo Software Package (Version 

9.03). Cell cycle distribution was determined using the Watson Pragmatic function within 

FlowJo.  Total live cell number was counted and percentages were calculated with MS 
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Excel.  

Luciferase reporter assays 

 Luciferase reporter assays were performed in HEK293T cells using the pmiR-

Report system. pmiR-Report constructs possess a luciferase gene driven by a CMV 

promoter.  A multiple cloning site downstream of the luciferase cassette allows cloning of 

a valid 3-UTR into the plasmid. Co-transfection with wither miRNA expressing 

plasmids, synthetic miRNAs, or miRNA inhibitors, provide a platform with which to test 

miRNA:mRNA relationships.  HEK293T cells were plated at 6.0x10
5
 cells/well in 24 

well plates.  After 24 hours, cells were co-transfected with a reporter construct containing 

either the 120 ng of pmiR-Report reporter construct (wild-type or mutant 3’UTR for 

PKNOX1, 10 ng of a control Renilla luciferase construct, and 600 ng of either MSCV-PIG 

or MSCV-PIG-miR-17-19b.  Cells were cultured for 48 hrs and collected for luciferase 

analysis with the Promega Dual-Luciferase Reporter Assay System (Promega, Madison, 

#E1910) according to manufacturer’s instructions. Due to the relatively loose attachment 

of HEK293T cells to a plate, chilled washing PBS was added directly to the well.  Plates 

were swirled and PBS was used to rinse cells loose from plate.  Cells were collected into 

1.5 mL microcentrifuge tubes and centrifuged at 3000 rpm to pellet cells.  PBS was 

removed by aspiration and cells were resuspended in 1X Passive Lysis buffer and kept at 

-20° C for future analysis.  For experimental analysis, lysate was diluted 1:20 fold to 

bring luciferase concentration into the linear range of the luminometer immediately prior 

to luminometer measurements. 

Luciferase activity was measured on a Femto manual luminometer using default 
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machine settings.  10 µL of each sample was added to the bottom of a 1.5 mL 

microcentrifuge tube. 50 µL of LARII buffer was added to each tube and gently pipette 

up and down to mix solution. Sample was immediately read in the machine to obtain 

level of Firefly luciferase activity.  50 µL of freshly prepared Stop and Glo reagent was 

added to each tube and briefly vortexed.  Samples were immediately read to obtain 

Renilla Luciferase activity level.  To ensure fidelity of experimental reads, dilution levels 

of samples was kept low enough to ensure that sample reading were below 10 million and 

remained steady during the course of the integration time. Experiments were performed 

in triplicate and measured in duplicates. 

Protein isolation and western blotting 

To collect proteins, cells were collected into a 1.5 mL microcentrifuge tube and 

washed once in chilled PBS.  Cell pellets were snap frozen on dry ice and stored at -80˚C 

for future use. Cell pellets were handled in a manner determined by cell line. Pellets from 

human leukemia cell lines were thawed on ice in 1X SDS loading buffer.  Cells from 

HEK293T cells were resuspended in IPH buffer (50 mM Tris-HCl, 150 mM NaCl, 5mM 

EDTA, .5% NP-40)  supplemented with 1:100 freshly added Protease inhibitor cocktail 

(Sigma Aldrich, St. Louis, Cat# P8340). Cells were resuspended in IPH at a 

concentration of 1x10
7
 cells/mL.  If cells were not used for a co-IP experiment, they were 

sonicated for 4 pulses at 20% power. 

 Cell pellets were thawed on ice in IPH buffer.  Appropriate quantities were 

mixed with 5X SDS loading buffer (250 mM Tris pH6.8, 500 mM DTT, 10% SDS, 0.5% 

Bromophenol Blue, 50% Glycerol).  Lysate solution was boiled for 5 minutes and 
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subsequently centrifuged at 13000 rpm for 5 mins at 4° C to clear lysate of any cellular 

debris.    

Lysates were separated by Sodium Dodecyl Sulfate –Poly Acrylamide Gel 

Electrophooresis (SDS-PAGE).  Gels were cast using the BioRad Mini-PROTEAN 

system.  Gels were comprised of a 10% resolving gel (40% Acrylamide 2.5 mL, 1.5M 

Tris pH8.8 = 2.5 mL, 10% SDS = 100 ul, 10% APS = 50 ul, TEMED = 10 ul), and a 4% 

stacking gel (40% Bis-Acrylamide .5 mL, 1M Tris pH=6.8 = .625 mL, 10%SDS 50ul, 

10% Ammonium Persulfate = 25 ul, TEMED = 5 ul, ddH2O 3.8 mL, TOTAL 5mL).  

Samples were loaded into the gel and run in parallel with 5 µL of Kaleidescope 

ladder (BioRad, Hercules, Ca, Cat# 1610324).  Gels were run in 1X Tris-Running buffer 

(15.1g Tris pH8.8, 94g Glycine, 5g SDS, H20 1L) at 50V for 15mins to condense protein 

into stacking gel, and 150V until dye front reached the bottom of the gel. Protein was 

transferred to Nitrocellulose membranes (BioRad, Hercules, Ca, Cat# 170-4158, 170-

4159) using Trans BlotTurbo transfer system (BioRad, Hercules, Ca, Cat# 170-4155).  

BioRad, Hercules, Ca 1.5 mm gel program was used (2.5A, 25V, 10 mins). Transfer was 

verified by staining membrane briefly in .5% (w/v) Ponceau S solution (Sigma Aldrich, 

St. Louis, Cat # P7170), and subsequently washing in PBS-T until Ponceau stain was 

fully removed. Membranes were blocked overnight at 4˚C in blocking solution (PBS, .5% 

Tween, 5% dry milk).   

Membranes were probed with anti-PKNOX1 (N15) (Santa Cruz Biotechnology, 

Santa Cruz, Cat# SC-6245) at 1:1000 in blocking buffer, anti-PBX1/2/3 (C-20) (Santa 

Cruz Biotechnology, Santa Cruz, Cat# SC-888) at 1:1000 in blocking buffer, anti-MEIS1 
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(Milipore, Billerica, MA, Cat# 05-779) ) at 1:1000 in blocking buffer, anti-HOXA9 

(Milipore, Billerica, MA, Cat#07-178) at 1:1000 in blocking buffer, or anti-Actin (Sigma 

Aldrich, St. Louis, A5441) at 1:8000 in blocking buffer. Secondary antibody probing was 

performed with TrueBlot anti-rabbit (eBioscience, San Diego, Cat# 18-8816-31) at 

1:1000 in blocking buffer, anti-mouse-HRP (GE Life Sciences, Piscataway, NJ, Cat# 

NA931VS) at 1:8000 in blocking buffer, or anti-Rabbit-HRP (GE Life Sciences, 

Piscataway, NJ, Cat# NA934VS) at 1:8000 in blocking buffer.  Western blots were 

imaged using a Fuji LAS-3000 lightbox system.  Images processed using MultiGauge 

v3.0. 

Co-immunoprecipitation assays 

Cells for co-immunoprecipitation were collected and washed once in PBS.  Cell 

pellet was resuspended in IPH buffer (50 mM Tris-HCl, 150 mM NaCl, 5mM EDTA, 

.5% NP-40) with 1:100 freshly added Protease inhibitor cocktail (Sigma Aldrich, St. 

Louis, Cat# P8340).  Co-Immunoprecipitation was performed in IPH buffer using 

Agarose A beads (Santa Cruz Biotechnology, Santa Cruz, Cat# SC-2001) incubated 

overnight at 4° C with 1.5X10
6
 cells. Equilibration and washes were performed with IPH 

buffer  with 1:1000 freshly added Protease inhibitor cocktail (Sigma Aldrich, St. Louis, 

Cat# P8340).   

20 µL of beads were used per reaction. Beads were equilibrated to IPH buffer by 

washing beads IPH buffer with 1:1000 Protease inhibitor cocktail (Sigma Aldrich, St. 

Louis, Cat# P8340) 3 times.  For each wash, beads were pooled into a 1.5 mL 

microcentrifuge tube and 500 µL of buffer was added.  Mixture was vortexed briefly and 
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spun down at 6000 rpm for 30 seconds. Supernatant was removed, careful not to disrupt 

bead pellet. For the final round of equilibration, bead/buffer mixture was aliquoted to 

separate microcentrifuge tubes to the equivalent of 20 µL of beads per tube. After final 

round of equilibration, cell lysates from 150k cells was added to each tube in a volume of 

150 ul. 5 µL of PBX1/2/3 antibody (Santa Cruz Biotechnology, Santa Cruz, Cat# SC-

888) was added to each tube and gently mixed by flicking the tube several times.  The 

lysate solution was incubated with beads and antibody at 4° C overnight on a rocker to 

allow complex-bead interactions to form. After incubation, beads were washed 3 times 

with 500 µL of IPH buffer (plus 1:1000 protease inhibitor cocktail), and resuspended in 

30 µL of 2X SDS lysis buffer and boiled for 10 mins at 95° C.  Lysate was cleared of 

Protein A beads by 10 mins of centrifugation at 13000 rpm at 4° C.  30 µL of each 

mixture was used for each well. 

Colony assays for cells infected with Pknox1 expressing retrovirus 

 For the examination of Pknox1 contribution to MLL-AF9 transformed murine 

bone marrow subject to additional infections with either MIGR1, MSCV-Meis1-pgk-

EGFP, or MSCV-pKOF2-Prep1-GFP were generated and checked for quality as 

described. After passing cells through methylcellulose for 4 weeks, cells were acclimated 

to liquid culture for 1 week and treated with additional spinoculations. I selected for 

successfully infected cells by FACS sorting for GFP positivity 48 hours after infection. 

Colony assays were performed over the course of 1 week, and were imaged. 

FACS analysis of surface markers  

Cell surface marker staining was performed on live cells to examine the 
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differentiation of cells after antagomir treatment.  After 6 days of antagomir treatments, 

cells from methylcellulose colony assays were isolated.  100k cells were suspended in a 

chilled PBS + 2%PBS. Antibody panels were mixed into a master mix and added to 

samples at a final dilution of antibodies. Cells were incubated in the dark, on ice for 20 

minutes and washed with 500 µL of PBS+2%PBS. Cells were resuspended in 250 µL 

PBS+2%FBS 

Cell surface marker staining was performed as previously described [23] using 

fluorophore conjugated antibodies against CD117-APC (eBioscience, San Diego, Cat# 

17-1171-82), CD11B-PE (eBioscience, San Diego, Cat# 12-0112-85), GR-1-PE-Cy5 

(eBioscience, San Diego, Cat# 15-5931-81).  FACS analysis was performed with initial 

gating on live cells.  Secondary gating was for GFP + cells.  Subsequent gates were 

drawn by excluding cells in a negative control.  Data was processed using FlowJo 

Software Package.  
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CHAPTER 4 

RESULTS 

Antagomir uptake occurs in a dose dependent manner 

Previous studies by our lab and others have utilized ‘antagomirs’ to examine the 

role of miRNA in MLL leukemia in a mouse model [11, 234, 235].  Characterization of 

the ‘antagomir’ pattern of modifications was initially performed in vivo, studying the 

knockdown of miR-122 in the liver [232, 233].   To characterize uptake in vitro, cells 

were treated with a fluorescently labeled antagomir, and examined by FACS analysis, 

with antagomir uptake being detectable as an increase in fluorescence (Figure 9).  As a 

negative control, cells were treated with anti-Ce-miR-67, while uptake was observed in 

treatments with anti-Ce-miR-67-DY547, an antagomir with a fluorescent label conjugated 

to the 5' end. Both anti-Ce-miR-67 and anti-Ce-miR-67-DY547 are designed to target a C. 

elegans miRNA that has no mammalian homolog.  If antagomirs are taken up by the 

cells, then fluorescence would increase, indicated by a rightward shift in the FACS plot. 

Uptake was examined in THP1 cells (described in Methods) and MLL-AF9 transduced 

murine bone marrow utilizing three different treatment regimens: 1) a superficial addition 

of antagomirs to the media at the final treatment concentration without any additional 

steps, 2) superficial addition with pre-incubation at 10X the final treatment concentration 

(as described in Materials and Methods), or 3) transfection by Lipofectamine 2000 

(Figure 9).  For THP1 cells, pre-incubation did not alter the uptake of fluorescently 
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labeled antagomir compared to superficial addition of antagomir to the media without 

pre-incubation  (Figure 9).  For both superficial antagomir treatment and superficial 

treatment with pre-incubation, anti-Ce-miR-67-DY547-treated THP1cells fluoresced at a 

narrow peak centered to the right of the negative control, indicating that antagomir uptake 

was both robust and very uniform.  Lipofectamine treatment resulted in two populations 

of cells with a very broad distribution of fluorescence indicating a lack of uniformity in 

cellular uptake of antagomirs when introduced by Lipofectamine. The majority of cells 

were positive for antagomir uptake, and the most brightly fluorescent cells were much 

brighter than those treated with either the superficial addition or superficial addition with 

pre-incubation. However, approximately 11% remained negative for fluorescence. 

Antagomir uptake for MLL-AF9-transduced bone marrow was similar to that observed 

for THP1 cells. However, antagomir uptake after treatment with the superficial addition 

with pre-incubation protocol resulted in a slightly broader peak with an increase in the 

most fluorescent cells, indicating an improved uptake for at least a small subset of cells. 

As with THP1 cells, Lipofectamine treated MLL-AF9 transformed bone marrow cells 

were distributed into two populations with a very broad distribution of antagomir uptake.  

Lipofectamine antagomir treatment resulted in a very high level of uptake compared to 

either superficial addition or superficial with pre-incubation.  However, approximately 

45% of MLL-AF9 cells remained negative.  

To determine treatment concentrations for antagomirs, I treated multiple cell lines 

with antagomir directed against either anti-Ce-miR-67 or a fluorescent labeled anti-Ce-

miR-67-DY547 at concentrations of 20 nM, 200 nM, 500 nM, 1000 nM, and 2000 nM for   



84 
 

 
 

Figure 9. Antagomir uptake upon treatment with different methodologies  

 

 

 
 

 

Antagomir treatments via different mechanisms of delivery. Antagomir uptake 

determined by FACS analysis for treatment with Grimes protocol (top), superficial 

addition (middle), and lipofectamine (bottom). Treatments were compared between a 

fluorescent labeled antagomir (anti-Ce-miR-67-DY547) and a non-fluorescent control 

(anti-Ce-miR-67).  A) THP1 cells were examined with all three treatment regimens as a 

representative of human cell lines. B) MLL-AF9 transformed bone marrow cells were 

examined with all three treatment regimens. 
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72 hrs and examined fluorescence by FACS analysis (Figure 10). As expected, treatment 

with increasing concentrations of anti-Ce-miR-67 without a fluorophore did not result in 

fluorescence for any treatment.  Treatment with anti-Ce-miR-67-DY547 resulted in a 

concomitant increase in fluorescence for MOLM-13, MV4-11, RS4;11, and MLL-AF9 

transformed bone marrow.  All treatments resulted in narrow peaks of fluorescence, 

indicating uniform uptake at all treatment concentrations. The ratio of detected 

fluorescence to treatment concentration remained linear even at the highest concentration, 

indicating that 2 µM antagomirs treatment did not saturate the capacity for cells to take 

up antagomirs. Antagomir uptake for each human leukemia cell line had roughly similar 

patterns of uptake.  MLL-AF9 transduced bone marrow took up antagomir at a lower rate 

than human leukemia cell lines. Further experiments for murine MLL-AF9 utilized the 

superficial with pre-incubation protocol, while treatment of human cell lines relied upon 

superficial addition of antagomir to the media. 

 To determine the efficacy of antagomir treatment, I examined the capability of 

antagomir treatment to reduce the levels of targeted miRNA.   Experiments examining 

uptake do not indicate subcellular localization or function of the antagomirs, necessitating 

further examination of antagomir function.  To assess antagomir function, I treated 

MOLM-13, RS4;11 and MV4-11 with antagomirs directed against miR-17-5p, 19a, or 

196b at concentrations of 1-2 µM (indicated in figure legend) and quantified target 

miRNA levels relative to a control treatment (Figure 11).  Both vehicle and anti-Ce-miR-

67 were used as controls to ensure that antagomir treatment did not result in a broad or 

non-specific effect on untargeted antagomirs. Anti-Ce-miR-67 is an antisense oligo  
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Figure 10. Antagomir uptake in human MLL leukemia cell lines 

 

 

 
 

 

Antagomir uptake was determined by FACS analysis using a fluorescently labeled 

antagomir utilizing superficial antagomir treatment (20 nM – 2000 nM). A) Antagomir 

uptake quantified relative to treatment concentration.  B) Treatments were compared 

between a fluorescent labeled antagomir (anti-Ce-miR-67-DY547) and a non-fluorescent 

control (anti-Ce-miR-67). Example plots of uptake for MOLM-13, RS4;11, and MV4-11 

at 20 nM, 200 nM, 500 nM, 1000 nM, 2000 nM.  
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designed to hybridize with a miRNA from C. elegans with no homologous miRNA found 

in mammals. In antagomir treated cells, target miRNA levels decreased in response to 

antagomir treatments.  Anti-miR-17 treatment in MOLM-13, RS4;11, and MV4-11 

resulted in a decrease to 16%, 5%, and 31%, respectively, when compared to anti-Ce-

miR-67.  When compared to vehicle, anti-miR-17 treatment resulted in decreases to 2.5%, 

7.8%, and 31% of miR-17 miRNA levels of control treated cells. For MOLM-13, a non-

specific decrease in miR-17 and miR-19a levels was observed after treatment with anti-

Ce-miR-67 (data not shown). MLL-AF9 transduced bone marrow cells were also tested 

for miRNA knockdown. Upon antagomir treatment with anti-miR-196b, relative levels of 

miR-196b decreased to 11% of levels observed in cells treated with anti-Ce-miR-67. 

Treatment concentration for all human cell line antagomir experiments was determined 

based on these standardization experiments.   

Effect of individual antagomir treatment on colony forming ability of human 

leukemia cell lines 

To examine MLL leukemia in a human model, I performed colony assays using 

human MLL leukemia cell lines (Figures 12-19). MOLM-13 was used to represent MLL-

AF9 gene fusion expressing leukemias, while MV4-11 and RS4;11 were used to 

represent MLL-AF4 gene fusion expression leukemias. Colony assays were performed 

over the course of approximately 1 week and were not subjected to serial replating.  

While murine colony assays examined the role of miRNAs in the initiation of leukemia, 

human colony assays examine the role of miRNAs in cells that have previously been 

transformed.  Similar to murine colony assays, I examined colony number, cell number,  
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Figure 11. Antagomir treatment results in a knockdown of target miRNAs.  

 

 

 
 

Antagomir mediated knockdown of target miRNAs was examined for anti-miR-17, anti-

miR-19a, and anti-miR-196b in human. A) Antagomir treatment effects were examined 

for anti-miR-17. miRNA levels compared to cells treated with anti-Ce-miR-67 (left) or 

vehicle (right). B) Antagomir treatment effects were examined for anti-miR-19a. miRNA 

levels compared to cells treated with anti-Ce-miR-67 (left) or vehicle (right).  C) 

Antagomir treatment effects were examined for anti-miR-196b. miRNA levels compared 

to cells treated with anti-Ce-miR-67 in human cell lines (left) or in MLL-AF9 transformed 

bone marrow (right). 
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colony morphology (Figures 12-19). I hypothesized that increased expression of 

individual miRNAs were essential for maintaining MLL leukemia cell proliferation and 

clonogenic capacity. MLL leukemia cell lines were treated with antagomirs directed 

against a subset of miRNAs overexpressed in MLL leukemia.  

Colony assays were examined at 7-8 days after initial plating. Colony morphology 

was dramatically different from the standard murine colonies.  While murine MLL-AF9 

transformed colonies are typically compact and consist of closer cell-cell contacts, human 

cell line colonies are widely diffuse and do not contain close cell-cell contacts.  Number 

of cells plated per colony assay varied based on cell line as each cell line possesses a 

different baseline capability to form colonies.  Colony assays were set up with a target of 

70 colonies/plate.  MOLM-13 cells were the most clonogenic with an approximate 

colony forming frequency of 1 colony per/2.04 cells (49.0%).  RS4;11 formed colonies at 

a frequency of 1 colony per/3.34  cells (29.86%), and MV4-11 formed colonies at a 

frequency of 1 colony per/13.42 cells (7.45%).   

Cells were treated with individual antagomirs using treatment methodology and 

concentrations determined in uptake and knockdown experiments (Figures 12-16).  

Antagomir treatments were directed against the individual miRNAs of the miR-17-92 

cluster (anti-miR-17-5p, anti-miR-18a, anti-miR-19a, anti-miR-20a, anti-miR-19b, and 

anti-miR-92).  Additional, treatments were directed against additional miRNAs 

upregulated in MLL leukemia miR-10a, miR-196b, miR-191 and miR-93*.  MOLM-13 

and MV4-11 were treated at 2 µM concentrations, while RS4;11 was treated at 1 µM 

concentrations.  Non-MLL cell lines were always treated at 2 µM concentrations to 
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control for both miRNA knockdown and potential non-specific toxic effects of 

antagomirs.  Antagomir treatment at 2 µM concentrations resulted in the formation of a 

precipitate for several different treatments. Antagomir precipitation occurred upon 2 µM 

treatments of anti-miR-67, anti-miR-18a, anti-miR-92, anti-miR-93*, and anti-miR-191 in 

both liquid culture and methylcellulose.  Notably, antagomir treatment with anti-miR-18a 

and anti-miR-191 resulted in a very faint precipitate formation. This precipitation appears 

to be sequence specific and has been linked to the presence of the cholesterol tag at the 

3’end of the oligo (technical support, Thermo).  The mechanism of the effects of 

precipitate formation on cell growth and colony forming ability are currently unclear. 

Moreover, while aggregation was visible at 2 µM for the indicated antagomir, it is 

possible that sub-microscopic aggregations occur for other antagomirs and at lower 

concentrations. Though the exact mechanism by which anti-Ce-miR-67 produced a toxic 

effect is unknown, it is likely that the toxicity is related to the precipitate which formed as 

a result of antagomir aggregation. Previous studies of antagomirs in vivo have indicated 

that antagomirs bind to lipoproteins as wells serum albumin, providing evidence for 

antagomir-protein interactions [224].  Thus, it is possible that the antagomir and its 

precipitates bind to the cell membrane and cellular proteins, impeding normal function.  

Several antagomir treatments showed minimal effects upon treatment. Anti-miR-

10a, anti-miR-191, and anti-miR-93* all had minimal effect on colony forming ability 

(Figures 12, 13, 16).  Treatment with anti-miR-10a or anti-miR-191 showed lesser effects 

than treatment with the control antagomir anti-Ce-miR-67 in several cell lines (Figures  

12,16).  The minor effects of these treatments (anti-miR-10a and anti-miR-191) suggests 
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that the miRNAs examined were either unnecessary to the function of MLL leukemia or 

that their functions were redundant with other miRNAs in colony forming ability.  As 

these treatments did not decrease any outcomes in cell lines under consideration, and 

either did not produce a precipitate in culture or produced a very faint precipitate, I have 

utilized anti-miR-10a and anti-miR-191 as a treatment controls in subsequent experiments 

(indicated in figure legends).  Antagomir treatment against members of the miR-17 

family showed a decrease in colony number and total cell number in human MLL 

leukemia cell lines.  Anti-miR-17 and anti-miR-20a both showed a decrease in colony 

numbers relative to both the vehicle and the control antagomir-treatment (anti-miR-10a) 

(Figure 14).  The effect was most pronounced in MOLM-13 and MV4-11.  Antagomir 

treatment in MV4-11 resulted in a complete loss of colony forming ability (Figure 14). 

Only anti-miR-20a treatment was significant in colony forming assays for RS4;11 

(Figure 14). Cell numbers decreased similarly to colony numbers, but with a greater 

decrease in percentage relative to vehicle.  The decrease of cell number relative to colony 

number is apparent in the changes in colony morphology.  For both antagomir treatments, 

colonies appeared smaller in radius and had an abnormal distribution of cells within the 

colony.   

Treatment against miR-19a or miR-19b resulted in a very limited decrease in 

colony forming ability.  Colony number decreased relative to vehicle, but was 

insignificant in comparison to control antagomir.  The only significant decrease observed 

was the decrease of anti-miR-19b in MV4-11 (Figure 15).  Cell number was decreased 

slightly for anti-miR-19b in both MOLM-13 and MV4-11 (Figure 15).  Colony  
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Figure 12. Antagomir treatment against miR-10a and miR-196b in human MLL 

leukemia cell lines 

 
Individual antagomir treatments against miR-10a and miR-196b.  A) Antagomir 

treatments were performed against individual miRNAs at a total concentration of 2 µM 

for MOLM-13 and MV4-11 and 1 µM for RS4;11.  MOLM-13 and MV4-11 were tested 

in three independent experiments. MV4-11 was tested in two independent experiments.  

Significance was tested against a control antagomir using Student’s t-test (α = .05). 

Significance against vehicle indicated in red. Significance against anti-Ce-miR-67 

indicated in green.  Significance against anti-miR-10a indicated in black.  B) Colony 

morphology from antagomir treated colony assays.  
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Figure 13. Antagomir treatment against miR-18a and miR-92 in human MLL 

leukemia cell lines  

 

 
 

Individual antagomir treatments against miR-18a and miR-92.  A) Antagomir treatments 

were performed against individual miRNAs at a total concentration of 2 µM for MOLM-

13 and MV4-11 and 1 µM for RS4;11.  MOLM-13 and MV4-11 were tested in three 

independent experiments. MV4-11 was tested in two independent experiments.  

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

Ce-miR-67 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13 and MV4-11.  B) Colony morphology from antagomir treated colony assays.  
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Figure 14 . Antagomir treatment against miR-17 and miR-20a in human MLL 

leukemia cell lines  

 

 
 

Individual antagomir treatments against miR-17-5p and miR-20a.  A) Antagomir 

treatments were performed against individual miRNAs at a total concentration of 2 µM 

for MOLM-13 and MV4-11 and 1 µM for RS4;11.  MOLM-13 and MV4-11 were tested 

in three independent experiments. MV4-11 was tested in two independent experiments.  

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

Ce-miR-67 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13 and MV4-11.  B) Colony morphology from antagomir treated colony assays.  
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Figure 15. Antagomir treatment against miR-19a and miR-19b in human MLL 

leukemia cell lines 

 
 

Individual antagomir treatments against miR-19a and miR-19b.  A) Antagomir treatments 

were performed against individual miRNAs at a total concentration of 2 µM for MOLM-

13 and MV4-11 and 1 µM for RS4;11.  MOLM-13 and MV4-11 were tested in three 

independent experiments. MV4-11 was tested in two independent experiments.  

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

Ce-miR-67 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13 and MV4-11.  B) Colony morphology from antagomir treated colony assays.  

  



96 
 

 
 

Figure 16. Antagomir treatment against miR-93* and miR-191 in human MLL 

leukemia cell lines  

 
 

Individual antagomir treatments against miR-93* and miR-191.  A) Antagomir treatments 

were performed against individual miRNAs at a total concentration of 2 µM for MOLM-

13 and MV4-11 and 1 µM for RS4;11.  MOLM-13 and MV4-11 were tested in three 

independent experiments. MV4-11 was tested in two independent experiments.  

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

Ce-miR-67 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13 and MV4-11.  B) Colony morphology from antagomir treated colony assays.  
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morphology did not change in response to antagomir treatment for anti-miR-19a or anti-

miR-19b (Figure 15). 

I additionally examined potential antagomir treatments against miR-18a, miR-92, 

and miR-196b (Figures 12, 13). For these antagomir treatments, no treatment effect were 

observed relative to control treatment for MOLM-13 or RS4;11.  Anti-miR-18a and anti-

miR-92 resulted in a minor decrease in colony forming ability for MV4-11.  Treatments 

against either anti-miR-18a or anti-miR-92 showed minor, but significant decreases in 

cell number (Figure 13).  Colony morphology reflected these treatment effects with 

minor decreases in colony size and sparseness. 

Combined inhibition of miR-17, 20a or miR-17, 19a reduces colony formation and 

increases differentiation of MLL leukemia cells 

Of the miRNAs overexpressed in MLL leukemia, several are classified into the 

same miRNA family based on miRNA seed sequence.   I examined the effects of 

combinatorial antagomir treatments on human cell lines to determine whether 

simultaneously targeting multiple miRNAs with the same seed sequence or targeting 

multiple miRNAs with different seed sequences would potentiate the effects on colony 

forming capacity or proliferation.  Combinatorial treatment resulted in a greater decrease 

in colony forming ability than treatment with either anti-miR-17 or anti-miR-20a alone 

(Figure 17). Simultaneous inhibition of both miR-19a and 19b resulted in decreased 

colony formation of RS4;11 and MV4-11 cell lines (Figure 17).   Intriguingly, treatment 

with anti-miR-17 and anti-miR-19a produced a dramatic effect beyond that observed for 

either antagomir individually.  Further, this combination produced an effect beyond an 
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additive effect on colony and cell numbers. Morphologically, cells appear more 

differentiated with a greater cytoplasmic:nuclear ratio and increased vacuolarity (Figure 

18).  For all cell lines, combinatorial treatment with antagomirs directed against miR-17, 

and miR-19a resulted in a change in cell morphology (Figure 18).   

miRNA contributions to MLL leukemia were further examined in combinatorial 

treatments against multiple miRNAs simultaneously.  To avoid the potential for non-

specific toxicity, combinatorial treatments were examined at a total concentration equal 

to that of individual treatments.  I hypothesized that miRNA contributions were 

cooperative and that simultaneous inhibition of multiple miRNAs would produce a 

greater effect than individual treatments.  In examining this hypothesis, I have tested 

against antagomirs directed against miRNAs of the same family and miRNAs of different 

families.  While miRNAs from the same family possess the same seed region and would 

likely regulate similar targets, miRNAs of different families do not possess the sequence 

homology to target the same binding sites within the 3’UTR.   

Combinatorial treatments against miR-17 and miR-20a resulted in a dramatic 

decrease in colony forming ability and cell number (Figure 17).  Effects for combinatorial  

treatment were more dramatic than for either single treatment suggesting that inhibition 

of miRNAs from the same family provides a superior model of therapeutic intervention. 

Treatment with anti-miR-17 or anti-miR-20a produced the greatest decrease in colony 

forming ability in MOLM13, RS4;11, and MV4-11 cell lines(Figure  14, 17).  Anti-miR-

20a had more pronounced activity than anti-miR-17 (Figures 14, 17)   
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Figure 17. Combinatorial antagomir treatment decreases colony forming ability and 

total cell number in colony assays.  

 

 
 

 

Combinatorial antagomir treatments result in a decrease in colony forming ability and 

total cell number. Antagomir treatments were performed against either individual 

miRNAs (anti-miR-17, anti-miR-20a, anti-miR-19a, or anti-miR-19b) or combinations of 

miRNAs (anti-miR-17, 20a; anti-miR19ab; or anti-miR-17,19a)   at a total concentration 

of 2 µM for MOLM-13, MV4-11, HL-60, and U937 and 1 µM for RS4;11.  MOLM-13, 

MV4-11, HL-60, and U937 were tested in three independent experiments. MV4-11 was 

tested in two independent experiments.  Significance was tested against a control 

antagomir using Student’s t-test (α = .05). Anti-Ce-miR-67 was used as a control for 

RS4;11, and anti-miR-10a was used as a control for MOLM-13 and MV4-11.  

 

  



100 
 

 
 

Figure 18. Combinatorial antagomir treatment results in decreased colony density 

and a change in cell morphology.  

 

 
 

 

Colony and cell morphology from combinatorial antagomir treatments in colony assays at 

1 week.  Treatment with combinations of miRNAs (anti-miR-17, 20a; anti-miR19ab; or 

anti-miR-17,19a) relative to a vehicle control were examined. MOLM-13, MV4-11, HL-

60, and U937 were treated at a total concentration of 2 µM.  RS4;11 was treated at a total 

concentration of 1 µM. Scale bars represent  200 µm. Collected cells were stained with 

Wright-Giemsa (inset).  
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Therapeutic intervention against miR-19a and miR-19b resulted in a greater defect 

in colony forming ability than intervention against either miRNA alone.  Single 

treatments did not result in significant changes for MOLM-13 or RS4;11.  However, 

combinatorial treatments resulted in a 50% decrease in colony forming ability of RS4;11.  

Treatment against miR-19a caused no significant decrease relative to treatments with a 

control antagomir (Figure 15, 17). Anti-miR-19b treatment caused a decrease relative to 

both vehicle and control antagomir treatments in MV4-11 cells (Figures  15,17). 

Colonies were smaller and contained fewer cells after treatment with either anti-

miR-17,20a, anti-miR-19a,19b, or anti-miR-17,19a (Figure 17).  Further, I observed a 

decrease in cell number that was greater than the decrease in colony number in our 

combinatorial treatments, suggesting that in addition to inhibition of colony forming 

ability, antagomir treatments either inhibited proliferation, or increased cell death and/or 

differentiation. 

Both colony number and total cell number decreased in multiple antagomir 

treatment regimens. To determine whether any decrease in cell number was independent 

of decrease in colony number, I charted the relative decrease in cell number against the 

relative decrease in colony number (Figure 19).  If a proliferative defect is present, 

independent of a colony defect, then cell number should decrease at a greater rate than 

colonies relatively to wild type control.  For MV4-11 and RS4;11, cell and colony 

number decreased proportionately.  MOLM-13 however had dramatic decreases in cell 

number without any accompanying decrease in colony number.  This suggests that 

antagomir treatments affect proliferation in addition to colony forming ability. 
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Figure 19. Cell number varies similarly to colony number in antagomir treated 

colony assays. 

 

 

 

 

Values for cell number 

relative to vehicle compared 

to colony number relative to 

vehicle for human leukemia 

cell lines after antagomir 

treatment (2 µM).  Plotted 

values indicate average of 3 

independent experiments for 

MOLM-13, MV4-11, HL-

60, and U937 and 2 

independent experiments for 

MV4-11.  
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miRNA inhibition results in a modest decrease in cell number and accumulation of 

cells at G0/G1 

To dissociate the possible proliferative effects of antagomir treatments from 

colony forming ability, antagomir treatments were performed in liquid culture (Figures 

21-23).  Decreased colony size suggests a potential deficiency in proliferation, decreases 

in cell number could potentially be attributed to a decrease in colony numbers.  Further, 

colony assays require smaller initial cell numbers and effective treatment against specific 

miRNAs results in a final cell number insufficient to examine subtle changes in cell 

cycle.  To examine the proliferation of cells upon antagomir treatment, cells were 

cultured according to standard culture conditions with antagomirs. After 4 days, cells 

were analyzed using Cell-Titer-Glo to determine the total cell number, and fixed for 

FACS analysis of cell cycle. 

As with colony assay experiments, cells were subjected to both individual and 

combinatorial treatments.  Individual antagomir treatments were performed at a 

concentration of 1 µM total concentration.  Only anti-miR-20a and anti-miR-92 resulted 

in significant decreases in cell number at 4 days (Figure 21).  These effects were 

observed in RS4;11 and Molm13.  No individual treatment resulted in significant 

decreases in MV4-11. 

Combinatorial antagomir treatments were performed at both 1 µM total 

concentration (Figure 22) and 1 µM each antagomir (Figure 23).  Treatments at higher 

concentrations included controls specific to each cell line to control for non-specific 

toxicity resulting from increased oligo concentrations.  For each cell line, I selected  
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Figure  20. Linear relationship between cell number and CTG reading 

 

 

 

 

 

 

Standard curve was a established 

for MOLM-13 (blue circles), 

RS4;11 (red square), and MV4-11 

(green triangle) cell lines using 

Promega Cell Titer Glo.  Best fit 

line and equations were 

determined using PRISM.  
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potential controls from the antagomir treatments which produced either no treatment 

effect in colony assays or very limited effects relative to vehicle (herein referred to as the 

least responding antagomir). For experiments with a total treatment concentration of 2 

µM or 3 µM, I used the least responding antagomir at 2 µM or 3 µM, respectively, as a 

control.  As an alternative, a combinatorial control treatment was performed using the 

least responding antagomir treatment in combination with the second least responding 

treatment at 1 µM each. For a 3 µM alternative control, the 3 least responsive antagomirs 

for each cell line were added at 1 µM each. Combinatorial treatments examined the 

treatment effect of antagomirs directed against miRNAs from the same family as well as 

treatments against miR-17, 19a, and 196b.  Cross family antagomir treatments were 

further divided into all 2 antagomir permutations of the miR-17, 19a, 196b combination. 

Combinatorial antagomir treatment effects were observed for anti-miR-17,20a in 

Molm13 and RS4;11 at both concentrations (Figure 22-23). Cell cycle analysis indicated 

an accumulation of cells at G0/G1.  No combinatorial antagomir treatments resulted in a 

significant decrease for MV4-11.  All combinatorial treatments resulted in a significant 

decrease in RS4;11 at 1 µM.  Due to a slight increase in toxicity, significance was less 

apparent at increased treatment concentrations RS4;11.  

To examine the effects of antagomir treatment on proliferation, I treated human 

cell lines with antagomirs in liquid culture (Figure 21-23).  Doing so allowed me to  

separate any proliferative defects from colony forming ability.  I simultaneously tested 

both individual treatments and combinatorial treatments in human MLL cell lines. In  
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Figure 21. Single antagomir treated human MLL leukemia cell lines in liquid 

culture 

 

 

 
 

 

Individual antagomir treatments in liquid culture. A) Antagomir treatments were 

performed against individual miRNAs at a total concentration of 1 µM for MOLM-13, 

MV4-11, and RS4;11 for 4 days and cell number was determined using the Cell-Titer-

Glo cell viability assay.  All cell lines were tested in three independent experiments. 

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

Ce-miR-67 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13 and MV4-11.  B) Cell Cycle distribution was analyzed in parallel with cell 

viability assays on day 4.  
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Figure 22.  Combinatorial antagomir treated human MLL leukemia cell lines at 1 

µM total concentration 

 

 
Individual antagomir treatments in liquid culture. A) Antagomir treatments were 

performed against individual miRNAs at a total concentration of 1 µM for MOLM-13, 

MV4-11, and RS4;11 for 4 days and cell number was determined using the Cell-Titer-

Glo cell viability assay.  All cell lines were tested in three independent experiments. 

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

Ce-miR-67 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13 and MV4-11.  B) Cell Cycle distribution was analyzed in parallel with cell 

viability assays on day 4.  
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Figure 23. Combinatorial antagomir treated human MLL leukemia cell lines at 1 

µM each antagomir.  

 

 
 

Combinatorial antagomir treatments in liquid culture. A) Antagomir treatments were 

performed against individual miRNAs at a total concentration of 1 µM for MOLM-13, 

MV4-11, and RS4;11 for 4 days and cell number was determined using the Cell-Titer-

Glo cell viability assay.  All cell lines were tested in three independent experiments. 

Significance was tested against a control antagomir using Student’s t-test (α = .05). Anti-

miR-191 was used as a control for RS4;11, and anti-miR-10a was used as a control for 

MOLM-13. Anti-miR-93* was used a control for MV4-11.  B) Cell cycle distribution was 

analyzed in parallel with cell viability assays on day 4.  
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individual treatments, I observed decreases that largely mirrored our colony assay data.  

Treatment with anti-miR-17 or anti-miR-20a resulted in a decrease in total cell number at 

4 days, while treatment with anti-miR-19a or anti-miR-19b were individually unaffected 

(Figure  22, 23).  Combinatorial treatment against miR-17,20a resulted in a decrease in 

total cell number for RS4;11, while anti-miR-17,20a and anti-miR-17,19a were both 

significant in MOLM-13 (Figure  22, 23).  I did not detect any decrease relative to control 

in MV4-11.  Antagomir-treatment produced a less dramatic effect in liquid culture than in 

colony assays.   

To further examine proliferation, I examined cell cycle by propidium iodide 

staining (Figures 21-23). Decreased cell numbers were accompanied by accumulation of 

cells at G1/G0 for those antagomir.  For example anti-miR-17,20a treatment in MOLM-

13 resulted in a modest decrease in cell number accompanied by an increase in cells at 

G0/G1 (Figure 22). Collectively, these data indicate that decrease in colony forming 

ability was accompanied by a mild proliferative defect.   

Effect of antagomir treatment on colony forming ability of MLL-AF9 transformed 

murine bone marrow 

To examine the contribution of miRNAs to MLL leukemia, I screened for 

individual antaogmiR treatment effects in MLL-AF9 transduced bone marrow (Figures 

24, 25).  Bone marrow was isolated, selected for c-Kit+ cells, spinoculated with MLL-

AF9 expressing retrovirus, and treated with antagomirs with superficial addition and pre-

incubation. 
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Figure 24. Anatagomir treatment against miR-19a and miR-196b result in a decrease 

in colony formation of MLL-AF9 transformed bone marrow 

 

 
 

 

Antagomir treatments against MLL-AF9 bone marrow cells that were serially treated with 

antagomir at 100 nM (n=3).  A) Colony formation, B) Cell growth in colony forming 

assays, C) Example colonies observed in colony assays. 
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 Previous studies by our lab, performed in collaboration with the Grimes lab, have 

shown that miR-196b is essential to the transformation process in MLL-AF9 transformed 

bone marrow [11].  Treatment with anti-miR-196b resulted in a decrease in colony 

forming ability consistent with that observed these studies (Figure 24).  Colony formation 

declined at 3 and 4 weeks of serial plating.  Week 4 colonies assays indicated a complete 

collapse of colony forming ability. Cell number decreased along with colony number 

over the same time frame.  Additionally, colony morphology was distinctly different 

between anti-miR-196b and control antagomir treatment. While anti-Ce-miR-67 treated 

colonies were predominantly type 1 tight colonies, anti-miR-196b treated colonies were 

primarily type 3 by weeks 3 and 4.  This change in colony morphology is indicative of 

more differentiated cell types and implies that the decrease in colony numbers is a result 

of differentiation over the course of 4 weeks.   

Anti-miR-19a treatment resulted in a decrease in colony forming ability over the 

course of 4 weeks (Figure 24).  Concurrently, cell number decreased with colony number.  

The decrease in colony number and cell number for anti-miR-19a was the most dramatic 

observed in these experiments and represented a complete loss of colony forming ability.  

In addition to the observed decrease in colony number, I observed a dramatic change in 

colony morphology.  Similar to anti-miR-196b treatment, anti-miR-19a treatment results 

in a change in colony morphology from type I colonies to type III colonies (Figure 24).     

Treatment of MLL-AF9 transduced bone marrow with anti-miR-17-5p resulted in 

no significant difference in colony forming ability or colony morphology relative to 

control treated cells.  However, total cell number was significantly decreased at 3 weeks.   
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Figure 25. Antagomir treatments in MLL-AF9 transformed bone marrow 
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Antagomir treatments performed against MLL-AF9 transformed bone marrow. Colony 

assays performed with 200 nM antagomiR treatments  All antagomir treatments arranged 

similarly. Left panel indicates colony numbers, middle panel indicated cell number, and 

right panel indicates colony morphology. A) anti-miR-18a, B) anti-miR-19b, C) anti-

miR-20a, D) anti-miR-92, E) anti-miR-93*, F) anti-miR-191, G) anti-miR-10a.  
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The reason for the recovery of cell number at week 4 is not immediately clear, but 

could be due to selection for cells that have increased expression of compensatory factors 

that make miRNA involvement dispensable to leukemia development.  Strikingly, the 

decrease in cell number did not correlate to any decrease in colony number or change in 

colony morphology, suggesting  the decrease in cell number is not due to differentiation.   

In addition to treatment against miR-196b and miR-19a, minor treatment effects 

were observed for anti-miR-10a treated cells (Figure 25).  Anti-miR-10a treatment 

showed a minor but significant decrease in colony forming ability at 4 weeks.  At weeks 

1 and 2, a small proportion of colonies displayed an abnormal morphology of abnormally 

large and disperse colonies (Figure 25).  No treatment effects were observed for 

additional colony assays performed with anti-miR-18a, anti-miR-92, anti-miR-191, anti-

miR-20a, or anti-miR-93* relative to either a control antagomir or vehicle (Figure 25). 

Similarly, neither colony morphology nor total cell number changed in response to 

treatment with these antagomirs (Figure 25).   

PKNOX1 is a valid target of the miR-17-92 cluster 

I next sought to identify potential mRNA targets, focusing on mRNA transcripts 

predicted to be targeted by multiple miRNAs upregulated in MLL leukemia.  Further, I 

focused on genes with functions potentially related to colony forming ability.  Search 

results using multiple target prediction algorithms (miRanda, TargetScan, Diana-mT) 

identified the MEINOX family gene PKNOX1 as an intriguing possibility.  Previous 

studies in mouse models have indicated that complexes including Hoxa9-Pknox1 

functions distinctly from Hoxa9-Meis1 [111-113].  
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Figure 26. The PKNOX1 3'UTR possesses multiple putative target sites for 

regulation by the miR-17-92 cluster 

 

 
 

 

 

 

 

 

 

Positioning and 

sequences of putative 
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Figure 27. PKNOX1 is a valid target of the miR-17-92 cluster. 

 

 

 
 

 

Luciferase assays were performed in HEK293T cells in 4 independent experiments.  A) 

Schematic of luciferase construct with miRNA binding to PKNOX1 3'UTR. Putative 

miRNA binding sites are indicated with gray miRNAs above 3' UTR.  Mutation of 

miRNA binding sites are indicated with red X's above 3'UTR.  B) Readouts of Luciferase 

assays. Experiments were normalized to control (wild type PKNOX13'UTR, treated with 

MSCV-PIG-miR-17-19b) in each experiment. Statistical significance was tested using 

student’s t-test against wild-type PKNOX1 3’UTR treated with MSCV-PIG-miR-17-19b.  
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PKNOX1 is predicted to be targeted by all miRNAs in the miR-17-92 cluster.  In 

total, the 3’UTR of PKNOX1 possesses 7 putative binding sites for miR-17-92 miRNAs 

(also known as miRNA Response Element or MREs) that are conserved between mouse 

and human (Figure 26).  The miR-17 family putatively targets the PKNOX1 3’UTR at 2 

distinct sites, while miR-19ab putatively targets the PKNOX1 3’ UTR at a single site.  

The Pknox1 3’UTR is putatively targeted by miR-18a at a single site and miR-92 at 2 

sites. Interestingly, I observed a single nucleotide polymorphism in the miR-18a binding 

site in the PKNOX1 3’UTR (Figure 26).  The polymorphism consists of a G to C 

mutation outside of the seed region, and should not affect mRNA recognition. 

I hypothesized that PKNOX1 was a valid target of regulation by the miR-17-92 

cluster. To examine the miRNA:mRNA relationship between the miR-17-92 cluster and 

PKNOX1, I performed a luciferase reporter assay against the PKNOX1 3’UTR (Figure 

27). I generated a construct fusing the PKNOX1 3’UTR to a luciferase reporter construct, 

as well as additional constructs with mutations in individual MREs as well as a 

compound mutant with mutations for all predicted MREs. If the relationship is valid, then 

mutations in the MREs will result in an increase in luciferase activity.  Transfection with 

MSCV-PIG-miR-17-19b resulted in decreased levels of luminescence relative to control 

for the wild type plasmid (Figure 27).  However, due to outliers, statistical significance 

was not apparent with 4 samples.  Mutation of miR-17, 20a MREs in luciferase construct 

resulted in an increase in luminescence consistent with the hypothesis that miR-17, or 

miR-20a regulate PKNOX1 at the mRNA level. Luminescence increased by 15% for the 

miR-17 mutant, which encompassed mutations in 2 miRNA response elements (Figure  
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Figure 28. Steady-state levels of PKNOX1 in human cell lines 

 

 

 
 

 

 

 

 

Steady state levels of PKNOX1were 

examined in several different human cell 

lines, including HEK293T (non-MLL 

adherent cell line), K562 (non-MLL AML 

cell line), MV4-11 (MLL-AF4), MOM-13 

(MLL-AF9), and RS4;11 (MLL-AF4). 

Extraneous lanes cropped from blot. 
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27).  Mutation of the single miR-19ab MRE resulted in an increase of approximately 15% 

(Figure 27).  Compound mutation of all miR-17-92 related MREs also resulted in a 

statistically significant increase (Figure 27).  The compound mutant had an 

approximately 25% increase in luminescence.  Though the increase is greater than that 

observed for individual miRNAs, no statistical significance was a reached when testing 

the compound mutation against either miR-17 or miR-19 mutants.   

To further examine the relationship between the miR-17-92 cluster, I examined 

the changes in Pknox1 at the protein level in HEK293T cells transfected with increasing 

concentrations of MSCV-miR-17-19b (Figure 29).  HEK293T cells express relatively high 

endogenous levels of PKNOX1 (Figure 28,29).   If PKNOX1 is a valid target of the 

miRNAs, protein level should decrease with increased concentrations of transfected 

MSCV-PIG-miR-17-19b in a dose dependent manner.  Consistent with the hypothesis, 

PKNOX1 levels decreased in response to increased concentrations of miR-17-92 

transfection (Figure 29). 

I examined the endogenous levels of PKNOX1 and PBX1/2/3 at the protein level 

between adherent cell lines and MLL fusion containing leukemia cell lines (Figure 28).  

It was important to determine the basal levels of PKNOX1 in MLL leukemia cell lines in 

order to ensure the potential validity of my model.  If PKNOX1 is highly expressed in 

MLL-AF9 leukemia cell lines, then PKNOX1 modulation by miRNA is not likely to be 

physiologically important to leukemia.  Simultaneously, PBX levels are an important 

potential limiting factor for the integrity of the model.  I hypothesized that PKNOX1 and 

PBX levels were lower in MLL fusion containing cell lines.  As expected, I observed low  
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Figure 29. PKNOX1 decreases in response to exogenous miR-17-19b expression  

 

 

 

 

 

 

HEK293T cells expressing with 

increasing concentrations of 

exogenous miR-17-19b.  Blot 

representative of 3 independent 

experiments. Numbers represent 

PKNOX1/ACTIN ratios for the 

depicted blot.  
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levels of PKNOX1 in all three cell lines (Figure 28) relative to HEK293T and K562 cells 

(representing an adherent cell line and non-MLL leukemia cell line). MOLM-13 cells 

expressed the least amount of PKNOX1 followed by MV4-11 and RS4;11.  Further, I 

observed low levels of PBX1/2/3 in all three MLL leukemia cell lines relative to 

HEK293T and K562 cell lines (Figure 28).  Use of a an anti-PBX1/2/3 antibody made it 

impossible to discern the relative levels of each PBX homolog, but allows to determine 

the overall combined levels of PBX1/2/3 containing complexes. 

While experiments testing the miRNA:mRNA relationship utilized HEK293T 

cells as a model system, these experiments do not establish that the miRNA:mRNA 

relationship is relevant in MLL leukemia cells or that the protein levels change in 

response to miRNA disregulation. To examine antagomir-mediated regulation of 

PKNOX1, I examined the change in PKNOX1 protein levels in response to combinatorial 

antagomir treatments (Figure 30). If PKNOX1 is regulated by the miR-17-92 cluster in 

MLL leukemia cell lines, inhibition of miRNAs that target the PKNOX1 mRNA will 

result in a de-repression of the mRNA transcript and subsequent increase in protein level.  

I hypothesized that PKNOX1 level would increase upon antagomir treatment relative to 

levels observed for cells treated with a control antagomir.  Cells were cultured in liquid 

culture for 3 days at 2 µM treatment concentration for MOLM-13 and 1 µM total 

concentration for RS4;11.  Consistent with my hypothesis, PKNOX1 protein levels 

increased in response to the treatment with antagomir combinations, indicating that 

antagomir treatment results in increased PKNOX1 (Figure 30).   
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Figure 30. PKNOX1 levels increase in response to combinatorial antagomir 

treatments  

 

 
 

 

Antagomir treatment results in increased PKNOX1 protein levels relative to treatment 

with a control antagomir (anti-miR-10a). Human leukemia cell lines were treated with 

antagomirs (2 μM for 72 hrs)  and analyzed for PKNOX1 levels by western blot.  

Numbers below bots indicate relative values of PKNOX1 after normalization to Actin for 

blot depicted.  
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PKNOX1 and MEIS1 compete for participation in PBX-containing complexes 

Physiologically, PKNOX1 upregulation has several potential outcomes.  PKNOX1 

and MEIS1 share high homology in their PBX interacting domains and homeodomains 

and have both been documented to form ternary complexes with PBX and HOX proteins, 

suggesting that these proteins compete for inclusion into ternary complexes. However, 

ChIP-seq analysis of co-occupancies indicate that Meis1-Hox and Pknox1-Pbx 

complexes are abundant during murine embryonic development [111]. Thus disregulation 

of MEIS1 or PKNOX1 in leukemia could alternatively drive the formation of binary 

complexes without affecting the balance of MEIS1 or PKNOX1 inclusion in ternary 

complexes. I hypothesized that increased PKNOX1 expression would result in a decrease 

in MEIS1 inclusion into these complexes. 

To test for MEINOX competition within ternary PBX-containing complexes, I 

examined the composition of PBX-containing complexes for the relative levels of 

MEIS1/2/3 and PKNOX1 upon transfection with increasing concentrations of Meis1 (0 

ug, .5 ug, 1 ug, 2 ug, 4 ug) and co-immunoprecipitation of PBX-containing complexes 

using an anti-PBX1/2/3 antibody (Figure 31).  Immunoprecipitation was performed with 

an antibody targeting PBX1/2/3 to pull down all PBX containing complexes in a non-

biased fashion.  HEK293T cells express reasonably high levels of PKNOX1 and 

PBX1/2/3 proteins and barely detectable levels of MEIS1/2/3 (Figure 31). If a 

competitive mechanism is not present, then total complex participation would not change 

in response to modulation of either MEINOX component. However, if PKNOX1 

competes for utilization of the same partner components, then exogenous expression of   
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Figure 31. PKNOX1 is a direct competitor of MEIS1 in PBX-containing complexes  

 

 

 
 

 

HEK293T cells were transfected with Meis1 expressing plasmid and subjected to co-

immunoprecipitation for PBX1/2/3. 20% input (left) was subject to western blotting for 

PKNOX1 and MEIS1.  Co-immunoprecipitation was performed using antibody against 

PBX1/2/3  
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MEIS1 should result in a decrease of PKNOX1 when immunoprecipitating PBX-

containing complexes.  Upon treatment with increasing levels of Meis1, I observed a 

decrease in PKNOX1 participation in these complexes, indicating that MEIS1 and 

PKNOX1 compete for inclusion into the same complexes (Figure 31).  Intriguingly, at 

very high concentrations of Meis1, I observed a decrease in the total levels of 

immunoprecipitated complex as indicated by blotting for PBX1/2/3 (Figure 31).   

Pknox1 overexpression decreases the colony formation, promotes differentiation, 

and results in a decrease in cell number in MLL-AF9 transformed bone marrow 

Pknox1 has previously been examined in the cooperation with Hoxa9  for 

transformation in mouse models [94]. These studies indicate that Pknox1 lacks the 

oncogenic capability of Meis1 in a Hoxa9-dependent transformation model.  Further, 

developmental studies indicate that Pknox1-containing complexes and Meis1-containing 

complexes often operate in opposition to each other [111].   Previous studies have relied 

upon co-infection of HoxA9 and Pbx1 with Meis1 or Pknox1. In these studies, Pknox1-

Meis1 complex partners are highly expressed under viral promoters and do not need to 

compete for inclusion into potentially limited complexes.  

The role of Pknox1 within an MLL-AF9 context remains to be tested.  I 

hypothesized that over-expression of Pknox1 would have an inhibitory role in an MLL-

AF9 leukemia models.  To examine this question, I infected MLL-AF9 transformed bone 

marrow with MIGR1, MSCV-Meis1-PGK-GFP, or MSCV-pKOF2-Prep1-PGK-GFP 

(Figure 32).  These viruses serve as an empty vector control (MIGR1), a Meis1-

expressing virus (MSCV-Meis1-PGK-GFP), and a Pknox1 expressing virus (MSCV- 
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Figure 32. Pknox1 overexpression reduces colony forming ability in MLL-AF9 

transformed bone marrow  

 

 
 

 

MLL-AF9 transformed bone marrow was infected with MIGR1, Meis1 expressing virus, 

or Pknox1 expressing virus.  Colony assays were performed in 4 independent 

experiments.  Statistical analysis was performed using Student’s t-test. A) Total colony 

count/10000 cells plated (left) and Colony type (right). B)  Total cell number. C) 

Representative colony pictures displayed for each treatment. Top panels in bright field 

microscopy, with lower panels utilizing fluorescent microscopy.  GFP fluorescence 

indicates successful infection with retrovirus. 
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Figure 33. Pknox1 overexpression in MLL-AF9 transformed bone marrow results in 

an increase in differentiation-associated surface markers  

 
Cells from colony assays were analyzed for surface markers was performed for 3 

independent experiments. A) Representative plots  showing  CD117, MAC-1 and GR-1 

staining. B) Mean fluorescence intensity shown from 4 independent experiments. 

Statistical significance was tested using Student's t-test.  Pknox1 infected cells showed 

statistically significant increases in mean fluorescence intensity for both Mac-1 (p<.0001) 

and GR-1 (p<.001), relative to levels in either MIGR1, or Meis1 infected cells. 
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pKOF2-Prep1-PGK-GFP).  MLL-AF9 transformed bone marrow readily forms colonies 

at a high rate.  If Pknox1 has an inhibitory role in MLL leukemia, then enforced 

overexpression of Pknox1 will result in a decrease in colony forming ability. To prevent 

unsuccessfully infected cells from confounding experimental readouts, all infections were 

sorted for GFP positivity 48 hrs post infection, prior to plating in methylcellulose (not 

shown).  Additionally, colonies were verified for GFP expression at counting.  

Intriguingly, Pknox1 infection resulted in a larger GFP negative population at 48 hrs, 

suggesting a selective pressure against Pknox1 expressing cells (data not shown).  

Infection with Pknox1 expressing virus resulted in a decrease in colony number 

relative to both control MIGR1 treated cells and Meis1 infected cells (Figure 32).  When I 

examined the composition of colonies by subtype, I observed that the decrease in colony 

number came primarily from a decrease in Type I colonies.  No significant differences 

were observed in type 2 colonies or type 3 colonies. Total cell number isolated from each 

colony assay also decreased upon Pknox1 overexpression.  Meis1 overexpression resulted 

in a modest but statistically insignificant decrease in cell number. 

 As type I colonies represent the least differentiated cells, I hypothesized that 

Pknox1 overexpression caused a loss of stemness (Figure 33). To examine this 

possibility, I isolated cells from colony assays at one week and stained with fluorophore 

conjugated antibodies against CD117, Sca-1, CD11B, and GR-1 for FACS analysis 

(Figure 33).  CD117 (a.k.a. C-kit) and Sca-1 are markers for stemness within 

hematopoiesis.  Conversely, MAC-1 and GR-1 are markers for differentiation.   
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Figure 34. Pknox1 overexpression reduces total cell number in MLL-AF9 

transformed bone marrow  

 

 
 

A) Standard curve for calculating cell number of MLL-AF9 transformed bone marrow B) 

Proliferation curve for MLL-AF9 bone marrow infected with MIGR1, Meis1, or Pknox1 

expressing virus in 3 independent experiments.   
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Figure 35. Pknox1 overexpression results in an accumulation of cells at G0/G1 in 

MLL-AF9 transformed bone marrow  

 

 
 

Cell cycle distribution was documented after 7 days in liquid culture by FACS analysis 

for 4 independent experiments.  A) Representative FACS plots with gating. B) 

distribution of live cells measured for MLL-AF9 transformed bone marrow infected with 

MIGR1, Meis1, or Pknox1.   
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Exogenous overexpression of Pknox1 resulted in both a decrease in c-kit expression and 

in increase in differentiation markers GR-1 and Mac-1 (Figure 32). 

As with human colony assays, examination of the proliferation and cell cycle in 

colony assays remains confounded by the decrease in colony forming ability and the 

limited number of cells.  To distinguish the effects of Pknox1 on proliferation from the 

decrease in total cell number in colony assays, I infected MLL-AF9 transformed bone 

marrow cells and plated cells in liquid culture.  I examined the proliferation curve of cells 

over the course of several days, measuring the cell number at days 3, 5, and 7 (Figure 

34). As with human cell lines, total cell number was calculated based on comparing Cell-

Titer-Glo assay readouts to a previously established standard curve. Enforced expression 

of Pknox1 resulted in a decrease in proliferation over the course of 7 days (Figure 34).  

Surprisingly, enforced overexpression of Meis1 also resulted in a small, though 

insignificant, decrease relative to MIGR1 infected cells (Figure 34). 

The remaining cells were analyzed by FACS for cell cycle (Figure 35). As with 

my human cell line experiments, I observed a modest accumulation of cells at G0/G1 

(Figure 35).  This observation is consistent with our model of differentiation and 

proliferative arrest observed in human cell lines.  Collectively, this data suggests that 

decrease in Pknox1 infected MLL-AF9 transformed cells is the result of either a cell cycle 

arrest at G1, senescence, or differentiation.  The lack of a significant increase in a 

<G0/G1 populations suggests that apoptosis in not likely the cause of Pknox1 mediated 

decrease in cell number.  
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CHAPTER 5 

DISCUSSION 

 This dissertation examines the contribution of miRNAs to MLL leukemia through 

knockdown of miRNAs that have increased expression in MLL AMLs relative to non-

MLL AMLs.  I have identified miRNAs critical to colony forming ability in MLL 

translocated human cell lines, through individual and combinatorial knockdown of 

miRNAs.  Additionally, I have validated PKNOX1 as a target of the miR-17 and miR-19 

families of the miR-17-92 cluster through luciferase reporter studies and examination of 

protein levels upon miRNA level manipulation.  Finally, this dissertation demonstrates 

the competitive relationship between PKNOX1 and MEIS1 in PBX complex formation 

and the inhibitory role of PKNOX1 in an MLL specific context (Figure 36).   

 I have determined the requirement of specific miRNAs in the miR-17-92 cluster to 

maintain the transformed phenotype of MLL leukemia by antagonizing miRNAs over-

expressed in this subtype of leukemia.  Treatment with antagomirs against miR-17 or 

miR-20a individually caused a decrease in MLL leukemia colony forming ability (Figure 

14).  For antagomir treatments against either miR-17 or miR-20a alone, colony forming 

ability decreased by >40% in MOLM-13, >30% in RS4;11, and >99% in MV4-11.  These 

treatment effects underscore the importance of the miR-17 family in MLL leukemia and 

suggest that inhibiting even a single family member is sufficient to disrupt the delicate 

regulatory balance they enforce.   Combinations of multiple antagomirs for treatment 
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caused a further decrease in colony forming ability (Figure 15). In particular, 

antagonizing both miR-17 and miR-20a, or both miR-17 and miR-19a resulted in a 

dramatic decreases in colony forming ability in methylcellulose colony assays (Figure 

15).  In this study, I approached combinatorial antagomir treatments by targeting either 

related miRNAs of the same miRNA family (e.g. miR-17, 20a) or targeting unrelated 

miRNAs (e.g. miR-17,19a). Antagonizing related miRNAs of the same family would 

potentially block redundant functions caused by multiple miRNA family members’ 

ability to target the same mRNA transcript. Antagonizing unrelated miRNAs would 

potentially expose areas of miRNA coordination in regulating a phenotype. Strikingly, 

antagonism of non-family miRNAs, miR-17 and miR-19a showed a more dramatic effect 

beyond that observed for targeting only the constituent individual miRNA family 

members, indicating that the miRNAs from different families function are coordinated 

(Figure 17).  This could be due to regulation of different target gene mRNAs or because 

multiple miRNAs simultaneously and more efficiently target the same critical mRNA.   

I observed that several single antagomir treatments have no effects relative to the 

control antagomir treatment (Figures 12, 16).  miR-10a is located in the HOX clusters and 

has been documented as being upregulated in MLL leukemias relative to non-MLL 

AMLs [148].  miR-191 is a negative prognostic indicator for AML, suggesting the 

possibility of a functional role in disease development [155].  However, neither inhibition 

of miR-10a nor of miR-191 resulted in a decrease in colony forming ability.  It is possible 

that these miRNAs share redundant functions with other miRNAs, and inhibition of a 

single miRNA is unable to relieve the repression of a target mRNA.  Alternatively, these 
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miRNAs may be upregulated but have no functional importance in leukemia.  

The antagomir treatment effects varied in scale between the different cell lines 

examined (Figure 12-17).  These studies utilized human cell lines with either t(4;11) or 

t(9;11) translocations, resulting in MLL-AF4 or MLL-AF9 fusions, respectively.  Despite 

their genetic similarities, the human cell lines examined in my experiments had 

somewhat different results in colony assays. MV4-11 showed the most dramatic effects 

upon antagomir treatment with massive decreases in colony forming ability and total cell 

number, while MOLM-13 and RS4;11 showed smaller, but still significant effects. For 

example, anti-miR-20a treatment results in a significant decrease in colony forming 

ability of MOLM-13 and RS4;11 with decreases of  62% and 42% relative to the control 

antagomir treatment.  However, in MV4-11, colony forming ability was completely lost 

(Figure 14).  It is possible that the differences in colony forming potential are caused by 

differences in genetic factors not related to the MLL fusion protein, including: 

cooperating mutations incurred throughout several decades of cell culture, or differences 

in gene expression for critical factors in colony formation. For example, the cell lines I 

examined showed differential basal levels of PBX1/2/3 (Figure 28).  It is also possible 

that there is variance in the basal levels of miRNAs necessary for MLL leukemia.  In this 

case, a decrease in colony forming ability may be more easily obtainable upon antagomir 

treatment, as decreasing the miRNA levels below the minimal required amount for 

colony formation may be more easily achieved.  Alternatively, another potential cause 

could be the different clonogenic potentials of the cell lines utilized.  Loss of colony 

forming ability was most severe in MV4-11, which possesses the lowest baseline 
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clonogenicity.  The decreased clonogenicity could result in a greater sensitivity to 

antagomir treatments.  It is not immediately clear what factors govern the differences in 

clonogenicity between cell lines.   

After observing decreased colony size and a decrease in cell number in 

methylcellulose, I hypothesized that loss of colony forming ability was accompanied by a 

decrease in proliferation.  I only observed a modest difference in the number of 

antagomir treated cells in liquid culture relative to control treatments that corresponded to 

the colony assays (Figure 22-23).  Nor did I observe a sizable change in cell cycle 

distribution (Figure 22-23). This could indicate that the decrease in cell number observed 

in colony assays is dependent on the colony forming ability.  However, because colony 

assays reflect the capabilities of only a small subset of cells, it is possible that the 

proliferative defect is only apparent in these cells, and any subsequent decrease on cell 

number is the result of an absence of colonies.  Alternatively, expression of target gene 

mRNAs may vary based on the difference in culture conditions between methylcellulose 

and liquid culture. However, the molecular aspects of cells in methylcellulose are of 

greater interest because methylcellulose colony forming ability has been utilized as a 

surrogate for Leukemia Stem Cell (LSC) activity in MLL and the ability to block colony 

forming ability in methylcellulose may be used to identify factors essential to MLL 

leukemia. 

In addition to examining miRNA inhibition in human cell lines, I have 

additionally utilized antagomirs for miRNA inhibition of MLL-AF9 transformed murine 

bone marrow progenitor cells in colony formation assays (Figures 24-25). Antagomir 
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treatments have previously been utilized by our lab in this type of murine system. The 

decrease in colony forming ability in anti-miR-196b treated cells was expected as it 

confirmed the role established for miR-196b by a previous member of our lab Dr. Relja 

Popovic [11]. Relja's work, in collaboration with the Grimes lab (Cincinnati Children’s 

Hospital), show that inhibition of miR-196b results in a loss of colony forming ability 

[11].  Decrease in colony number and change in colony morphology was observed and 

suggest a loss of stemness.  However, no treatment effect is observed for MLL-AF9 

transformed bone marrow treated with anti-miR-19b, despite the high homology between 

miR-19a and miR-19b (Figure 24-25).  It is possible that the non-seed region nucleotides 

involved in stabilization of the miRNA:mRNA interaction provide the critical balance in 

whether or not a functionally important target mRNA is successfully targeted.  

Numerous potential causes could explain the differences in results between the 

human and murine systems. Primarily, the human cell lines used contain a myriad of 

additional mutations accumulated over decades in culture. To address this possibility, 

further work may utilize primary patient derived samples. Additionally, there may be a 

difference in gene regulation, as each system may present different target mRNAs or may 

express common target mRNAs at different levels. Finally, the human and mouse model 

systems utilize cells at different disease stages.   

In addition to the miRNAs examined in this work, recent advancements have 

identified several miRNAs possessing critical functions in MLL leukemia.  miR-9 has 

been shown to be upregulated in MLL leukemia relative to both non-MLL AML and 

normal cells [246].  Inhibition of miR-9 through a miRNA-binding sponge results in a 
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decrease of MLL-AF9 transformation ability in vitro and in vivo, while over expression of 

miR-9 in conjunction with MLL-AF9 transformation increases the transformation ability 

of MLL-AF9 in colony forming assays and in vivo experiments [246]   Studies performed 

by our collaborator, Dr. Grimes (Cincinnati Children's Hospital), identify miR-21 and 

miR-196b as a having synergistic roles in AML development [234, 247].  Both miR-196b 

and miR-21 are negatively regulated by the transcriptional repressor GFI1, which 

functions in opposition to HOXA9 mediated transcriptional activation [247].  In HOX-

dependant transcriptional programs, including MLL-AF9 mediated transformation, 

antagomir inhibition of miR-196b, miR-21, or both, reduced colony forming ability and in 

vivo leukemogenesis through targeting leukemia initiating cells (LIC) activity [234]. 

Collectively, these studies implicate an additional miRNA, miR-21, in the development of 

MLL leukemia, and further illustrate the importance of miR-196b in MLL leukemia. 

While this study focused on several miRNAs upregulated in MLL leukemia, it does not 

address the roles of miRNAs that are downregulated or lost in MLL leukemia, which 

contribute to transformation. Several miRNAs, including miR-495, the miR-181 family 

(miR-181a/b/c/d), and miR-150 have been identified as tumor suppressors and have been 

shown to be down regulated in MLL leukemias [86, 148, 248, 249]. Several 

downregulated miRNAs function through regulation of the Hox complex components 

essential to MLL leukemogenesis. MLL leukemias show downregulation of, the miR-181 

family (miR-181a/b/c/d), relative to non-MLL AMLs [152]. Examination of miR-181 

among cytogenetically abnormal AMLs, identify loss of miR-181 as a negative 

prognostic indicator [86].  Further, a signature of 4 miR-181 targets,  HOXA7, HOXA9, 
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HOXA11, and PBX3 are upregulated, and have been functionally evaluated in vitro and in 

vivo [86].  Overexpression of miR-495 is downregulated in MLL leukemias relative to 

non-MLL AMLs.  Overexpression of miR-495 has been shown to reduce colony forming 

ability in vitro and leukemogenesis in vivo by targeting both PBX3 and MEIS1 [248].  

MiR-150 has been implicated as a tumor suppressor miRNA down regulated in most 

AMLs relative to normal controls [249]. The MLL-fusion/Myc/LIN28 axis represses 

miR-150 maturation [249].  MiR-150 regulates Myb and Flt3 resulting in a decrease in the 

Myb regulatory targets Hoxa9 and Meis1 [249]. Ectopic overexpression of miR-150 in 

MLL-AF9 transformed bone marrow reduced colony formation in vitro and in 

leukemogenesis in vivo [249, 250].  Critically, these miRNAs and their contributions to 

MLL leukemia are linked to regulation of components of the HOX-PBX-MEINOX 

complexes required for MLL leukemia.  However, my work differs from these critical 

studies, in that I examine the contribution of miRNAs in MLL leukemia through 

regulation of a MEIS1 competitor. 

 My data demonstrates that PKNOX1 is a valid downstream target of the miR-17-

92 cluster (Figure 27).  Multiple different miRNAs from this cluster simultaneously 

regulate PKNOX1 mRNA through binding to 3 separate miRNA response elements 

(Figure 27).  Four of the 6 miRNAs of the miR-17-92 cluster (miR-17, 20a, 19a, and 19b) 

regulate PKNOX1.  This redundancy of miRNAs targeting the same mRNA suggest that 

the relationship of miR-17-92 and PKNOX1 functions as an important regulatory switch 

which may respond to various cellular signals.   To determine the interactions between 

miRNAs and the PKNOX1 3' UTR, I performed a luciferase reporter experiment with a 
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luciferase construct modified to encode the PKNOX1 3'UTR downstream of the 

luciferase coding sequence. Mutation of PKNOX1 3'UTR at the miRNA response 

elements to which the miRNAs bind for either the miR-17 family or the miR-19 family 

show an increase in luciferase activity relative to a wild type PKNOX1 3' UTR (Figure 

27).  Simultaneous targeting of a single 3’UTR by multiple miRNAs has been reported to 

regulate mRNA levels in a cooperative manner utilizing AGO1, AGO3, and AGO4-

containing RISC complexes [251].  Efficient miRNA cooperativity requires relatively 

close proximity of MREs within the target 3'UTR, approximately 13-35 nts between the 

start of the seed region binding  [252].  A transcriptome-wide examination of miRNA 

binding sites (utilizing HITS-CLIP and PAR-CLIP) found an enrichment of miRNA-

binding sites located 15-26 nts apart [253].  Within the PKNOX1 mRNA, the initial miR-

17 family binding site (MRE1) and the sole miR-19 family binding site are located at 

nucleotide positions 20 and 52 of the 3'UTR, respectively.  This 32 nt difference in 

position, is close enough to suggest that miR-17 and miR-19 family miRNAs negatively 

regulate PKNOX1 through cooperative targeting of the same mRNA.  It is possible that 

combinatorial miRNA effects may additionally occur through non-cooperative targeting 

on separate mRNA transcripts where the overall ratio of miRNAs to mRNAs controls the 

final level of mRNA available for translation, through productive single miRNA 

mediated silencing of mRNA transcripts.  

I observed a polymorphism within the predicted miR-18 binding site of the 

PKNOX1 3'UTR (Figure 26).  This polymorphism, encoding a G to A mutation at 

position 2811 of the PKNOX1 3' UTR, is located outside of the sequence targeted by the 
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seed region and should not affect the core targeting of the PKNOX1 3' UTR by miR-18, 

but may affect the binding stability of the miR-18 miRNA:RISC complex to the PKNOX1 

3'UTR.  Previous studies have identified MRE single nucleotide polymorphisms as 

having functional roles in miRNA:mRNA interactions and as serving as prognostic 

indicators for cancers [254-256]. This polymorphism I observed is predicted to be 

involved in stabilization of binding with the miR-18 containing miRNA:RISC complex 

through interaction with the uracil located at position 15 of miR-18a.  In the previously 

documented mRNA transcript, the guanine base interacts with the uracil through a 

wobble base pairing.  The polymorphism, encoding an adenine in place of the guanine, 

would result in an improved binding stability between the PKNOX1 3'UTR and the miR-

18 containing RISC complex.  

The miR-17-92 cluster is one of the best studied miRNA clusters to date, with 

targets involved in processes including cell death, cell cycle, development, and a number 

of different cancers, including lymphoma, and breast cancer (reviewed in [173-175]). In 

addition to PKNOX1, miR-17 and miR-19a also target other mRNA transcripts that are 

important to MLL leukemia. PTEN has been validated as a target for both miR-17 and 

miR-19a [190, 257]  PTEN mRNA levels have been reported to inversely vary with 

miRNA overexpression for both miR-17 and miR-19b in transformed bone marrow [12].  

MiR-17 has additionally been shown to be important in regulating the G1 checkpoint by 

regulating both CDKN1A (p21) and E2F1 [177, 183]. While shRNA knockdown of 

CDKN1A (p21) in an MLL leukemia model phenocopies overexpression of the miR-17-

19b [183], it is not currently known to be targeted by miR-19a.  My data indicate only a 
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minor G0/G1 arrest, suggesting that the miR-17-92 cluster functions through other 

mechanisms (Figure 22-23).  A lack of visible G0/G1 arrest in cell cycle assays may be 

attributable to a decrease in cell cycle progression through both G1 and G2 checkpoints.  

Previous work performed by our lab has identified the G2/M checkpoint regulator WEE1 

as a bona fide target of the miR-17-92 cluster [258]. My antagomir treatment data 

indicate a more severe phenotype upon combinatorial treatment with anti-miR-17 and 

anti-miR-19a (Figure 17). As a result, I focused on a target that is regulated by both miR-

17 and miR-19a. While binding affinity to PKNOX1 transcript is predicted to be 

thermodynamically stable, it is likely that other mRNAs are targeted simultaneously 

dependent on availability of targets.   

 The nature of miRNA function suggests that a great deal of binding promiscuity is 

possible.  MiRNAs bind to target mRNAs based on Watson-Crick base pairing between 

the seed region and a target mRNA. While this study has characterized a single transcript 

that is regulated by miRNAs in MLL leukemia, PKNOX1 is not the sole target of the 

miR-17-92 cluster.  A previous study by our collaborator, Dr. Jianjun Chen, observed that 

overexpression of the miR-17-92 cluster in murine bone marrow results in 

downregulation of 363 potential target genes predicted to be regulated by the miR-17-92 

cluster by at least one miRNA target prediction algorithm, suggesting that disregulation 

of the miR-17-92 cluster has broad implications in target mRNA regulation [12].  

Currently, miRNA target prediction algorithms focus on predicting the actions of 

individual miRNAs.  MiRNA target prediction algorithms have predicted a number of 

target mRNAs that are shared between numerous miRNAs.  2 PBX family members, 
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PBX1 and PBX3, are predicted to be common targets of miR-196b and the miR-17-92 

cluster.  PBX1 is predicted to be targeted by the miR-19 family and miR-196b, while 

PBX3 is predicted to be targeted by the miR-17 family and miR-196b.  While PBX3 is a 

known oncogene with a critical role in the formation of MLL leukemia, the role of PBX1 

is less clearly defined, and may lack the ability to promote oncogenesis.  If PBX1 lacks 

the oncogenic capabilities of PBX3, miRNA regulation of the PBX1 transcript could 

potentially contribute to MLL leukemia through elimination of PBX1 competition with 

PBX3 for inclusion in HOXA9-MEIS1 complexes, similar to the effect I observed for 

miRNA regulation of PKNOX1.  

Studies to determine the role of the miR-17-92 cluster in MLL leukemia are 

complicated by presence of its 2 homologous clusters, miR-106a-363 and miR-106b-25. 

While direct regulation of the miR-17-92 cluster by MLL fusion proteins has been 

verified, the regulation of miR-106a-363 and miR-106b-25 in MLL leukemia has not yet 

been explored.   

The potential implications of upregulation of the miR-106 clusters is further 

complicated by the composition of each cluster.  The miR-17-92 cluster is composed of 2 

members of the miR-17 family, 2 members of the miR-19 family, a member of the miR-

18 family, and member of the miR-92 family (see Figure 7). However, miR106a-363 and 

miR-106b-25 clusters are composed of different proportions of constituent miRNAs 

(Figure 7).  If these miRNA clusters are simultaneously upregulated in MLL leukemia, 

then we must further consider the potential cooperative pathways between the miR-92  

and miR-18 families, as their representation among miRNA:RISC complexes would be 
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increased.  

In addition to the regulation by the miR-17-92 cluster, additional miRNAs have 

been documented as regulators of PKNOX1. A study performed by Zhuang, et al 

examined the mRNA targets of miR-223 in macrophages in adipose tissue inflammation 

[259]. They identified PKNOX1 as a valid targeted of miR-223 and determined that it 

regulates macrophage polarization, driving macrophage activation towards a classical M1 

pro-inflammatory Macrophage activation [259].  Additional studies have identified miR-

223 as a critical factor in granulopoiesis, with miR-223 deficient mice showing defects in 

differentiation [260, 261].  One study has identified miR-223 as being regulated by 

CEBPA binding and downregulated in AML [262].   However, no studies have identified 

miR-223 as being upregulated in leukemia. 

Future studies to expand on miRNA function may reveal additional mechanisms 

of action, and subsequently expand our understanding of miRNA contribution to 

diseases.  Though miRNA were originally identified through complementary binding to 

the 3' UTR of target mRNAs, there is evidence that miRNAs can also target the 5'UTRs 

to downregulate target genes [143].  Further, miRNAs such as miR-10a possess novel 

regulatory mechanisms [144]. For example, miR-10a has been shown to bind to the TOP 

motifs within 5' UTR of target genes and results in an increase in transcription [144].  

Further, recent experiments utilizing HITS-CLIP sequencing, an unbiased 

immunoprecipitation for RISC bound mRNAs, have indicated that miRNAs bind to a 

more diverse collection of mRNA targets than had previously been thought [146]. As 

future studies continue to unveil new miRNA functions, our understanding of the role 
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miRNAs in diseases will evolve to include new classes of targets.   

Western blotting indicated an additional band present in PKNOX1 western blots 

running slightly above the expected molecular weight (Figure 30).  This data suggests 

PKNOX1 may be regulated through post-transcriptional modifications (e.g. 

phosphorylation). While there have been no documented post-translational modification 

to PKNOX1 in the literature, such a mechanism could potentially add to the complexity 

of control of PKNOX1 levels. 

 I have examined the effects of exogenous overexpression of Pknox1 in MLL-AF9 

transformed murine bone marrow to determine the role of Pknox1 in MLL leukemia. 

(Figures 32, 33, 35).  PKNOX1 and MEIS1 are homologous in their PBX-interacting 

domains and homeodomains [72, 73].  However, Meis1 oncogenic activity is dependent 

on its C-terminal domain, which is not shared with Pknox1 [94]. The C-terminal domain 

of Meis1 is known to have multiple protein-protein interactions.  It is currently unclear 

whether the Pknox1 C-terminal domain has any protein-protein interactions of its own. 

Functional examination of the Pknox1 C-terminal domain is required to determine the 

mechanism of Pknox1 regulation of target genes. Previous studies found that infection 

with Pknox1-expressing virus fails to accelerate leukemia similarly to Meis1 when co-

expressed with Hoxa9 [94].  This dissertation demonstrates that altering the balance of 

PKNOX1 to MEIS1 levels affects MLL leukemia cell proliferation and colony-forming 

ability. Pknox1 overexpression in a murine MLL leukemia model decreased colony 

forming ability, primarily from a loss of less differentiated colonies. Antagomir treatment 

of human MLL leukemia cells had a similar outcome on colony forming ability, which 
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could possibly be due to increasing the PKNOX1:MEIS1 ratio within these cells. Colony 

forming capability has been used as a measure of leukemia stem cell activity in the MLL 

leukemia model system.  Thus, loss of colony forming ability in response to antagomir 

treatments suggests that MLL leukemia stem cell activity may be predominantly targeted 

by these miRNAs. Future work could determine whether specific cell contact-mediated 

pathways are particularly influenced by miR-17-92 cluster miRNAs in MLL leukemia.   

I observed a greater decrease in proliferation upon Pknox1 overexpression than 

upon antagomir treatment. This difference may be attributed to multiple factors, such as 

dosage of Pknox1, effectiveness of antagomir delivery, or inherent differences between 

mouse and human cell lines. Exogenous overexpression of Pknox1 from a viral promoter  

would result in a much higher amount of Pknox1 relative to Meis1.  While removing the 

inhibition of the miRNAs through use of antagomirs allows Pknox1 levels to increase, 

exogenous overexpression drives Pknox1 levels very high. Cell cycle analysis of Meis1 

transduced cells indicates no significant change in the cell cycle distribution relative to 

control vector-transduced cells.  The minor decrease in Meis1 transduced cells is thus not 

likely to be of similar origin as the decrease observed with Pknox1. 

 Pknox1 has additionally been characterized as a tumor suppressor in an Eµ-Myc 

lymphoma model with Pknox1 hypomorph mutants and Pknox1 heterozygotes resulting 

in increased tumor size and accelerated onset of lymphoma [109].  The Eµ-Myc 

lymphoma model is driven by the constituent activity of the c-Myc proto-oncogene 

behind an immunoglobulin promoter, designed to simulate a B-cell lymphoma [263].  

Loss of Pknox1 expression within this context leads to a shift in the B-cell population; 



146 
 

 
 

with Eµ-Myc; Pknox1(+/-) mice having more immature phenotypes, consisting of Pro- 

and Pre-B-cells, and Eµ-Myc; Pknox (+/+) mice having more mature phenotypes [264].  

It is possible that Pknox1 competition with Meis1 may regulate the development of B-

Cells, such that loss of Pknox1 may result in decreased B-Cell differentiation.  

  These findings indicate that the canonical HOXA9-MEIS1 pathway is regulated 

through the coordinated action of multiple miRNAs.  miRNAs including miR-495, miR-

181a/b, and miR-150, which would negatively regulate the expression of the HOXA9-

PBX3-MEIS1 complexes, are down regulated, relieving the  repression of HOXA9-

MEIS1 transcriptional regulation.  Opposing these effects, previous work has indicated 

that miR-196b down regulates both Hoxa9 and Meis1, resulting in an initial delay in 

leukemia onset in a murine leukemia model, but ultimately with development of a more 

aggressive leukemia [163].  miR-196b functions as both a tumor suppressor and oncogene 

through repression of HOXA and MEIS1 and FAS, respectively [163].  Because HOXA9 

and MEIS1 are essential for MLL leukemia, and miR-196b is upregulated in MLL 

leukemias, this relationship presents a unique puzzle. If HOXA9 and MEIS1 are 

downregulated, additional factors must either restore HOXA9 and MEIS1 levels or 

otherwise ameliorate the effect.  Both miR-196b and miR-17-92 are directly regulated by 

MLL, and are upregulated in MLL leukemias [12, 64, 152].  I propose that the miR-17-92 

cluster acts as a counterbalance to the tumor suppressor properties of miR-196b.  As 

miRNA regulation of HOXA9 and MEIS1 is held in a delicate balance, regulation of the 

MEIS1 competitor PKNOX1 provides a critical mechanism for regulation of HOXA9-

MEIS1 activity.  During leukemogenesis, miR-17-92 expression results in a decrease in 
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PKNOX1 expression, alleviating competition with MEIS1 for PBX-HOX complex 

inclusion. Additional work has indicated that 5' Hox transcription factors, acting in 

conjunction with a Cdx2 partner, positively regulate the expression of miR-196b in neural 

tube development [265].  As a result, a negative feedback loop would be present, limiting 

the overall expression of Meis1.   

 Meis1 overexpression in MLL-AF9 transformed bone marrow resulted in an 

intermediate phenotype with cell surface markers and Meis1 overexpression resulted in a 

decrease in cellular proliferation (Figure 33, 35). Exogenous overexpression of Meis1, in 

addition to MLL-AF9 transformation mediated overexpression of Meis1, appears to have 

its own toxicity.  Exogenous Meis1 overexpression is potentially toxic to the cells and 

may result in a decrease in exogenous Meis1 expression. The mechanism of toxicity is 

not yet apparent, but may be caused by a variety of factors, including mitotic catastrophe 

or apoptosis, among other possibilities. Overall levels of Meis1 may need to be 

maintained below a certain level.  Though Meis1 overexpression was originally utilized 

as a negative control for Pknox1 overexpression, Meis1 activity may present its own 

complications attributable to the regulation of target genes.   

 Complex regulatory circuits involving miRNAs are starting to be defined in MLL 

leukemia.  This includes those regulating the HOX-PBX-MEIS trimeric protein complex. 

Both HOXA9 and MEIS1 are directly regulated by MLL and are necessary for MLL 

leukemia development [6, 24, 91, 113].  HOXA9 and MEIS1 are negatively regulated by 

miR-196b, one of the miRNAs overexpressed in MLL leukemia, thus limiting the 

amounts of these proteins available for incorporation into HOX-PBX-MEIS complexes. 
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Although this causes an initial delay in the onset of leukemia, increased miR-196b 

expression ultimately contributes to a more aggressive leukemia [163].  HOX-PBX3 

protein-protein interaction is also essential for MLL leukemia development and inhibition 

of this interaction with a small peptide selectively kills cells dependent on HOXA and 

PBX3 overexpression [87].  MiRNAs in the miR-17-92 cluster are also overexpressed in 

MLL leukemia. I show here that miR-17-92 cluster miRNAs, including miR-17 and miR-

19a, target PKNOX1 and that antagonizing these miRNAs causes increased PKNOX1 

expression.  I also show that MEIS1 and PKNOX1 can compete for binding in HOX-

PBX-containing complexes and that manipulation of relative MEIS1/PKNOX1 levels has 

a dramatic effect on MLL leukemia. More HOX-PBX-MEIS1 complexes as compared to 

HOX-PBX-PKNOX1 complexes potentiate MLL leukemia colony forming activity.  

Together, this suggests that HOX-MEIS-PBX complexes may be a limiting factor in 

MLL leukemia which may be amenable to functional disruption via antagonizing critical 

regulatory miRNAs.   

 Recently, the Blasi group published data which support and complement my 

findings [112, 113].  They found that Prep1 (Pknox1) competes with Meis1 for binding to 

Pbx1, and Prep1 depletion enabled Meis1 to transform MEFs [112]. The authors 

transfected Prep1 hypomorphic MEFs with Meis1 and Prep1, and observed that Meis1 

transfected MEFs form colonies in soft agar colony assays.  Co-transfection with Prep1 

results in a decrease in Meis1 stability and colony capability. Further, Meis1 colony 

formation in MEFs as well as Pknox1 mediated inhibition of Meis1 requires Pbx1.  The 

authors further examined the complex formation, and identified the Ddx3 and Ddx5 as 
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critical complex components which are required for colony formation.  These findings 

support my hypothesis that PKNOX1 competes with MEIS1 for inclusion into PBX-

containing complexes. My studies utilize HEK293T cell with increasing expression of 

exogenously introduced MEIS1 to examine the competitive role between MEIS1 and 

PKNOX1, which my data supports. It is unclear whether Ddx3, and Ddx5 are 

functionally important for Meis1 activity in MLL leukemia. A subsequent study by the 

same group identified that deficiency of Pknox1 accelerated the onset of Meis1-Hoxa9-

mediated leukemogenesis in a murine model of serial transplantation [113]. Critically, the 

Blasi group examined the effects of a lack of Pknox1 as a factor involved in the 

acceleration of leukemogenesis.  I am interested in the opposite effects - in potentially 

increasing Pknox1 levels as a mechanism to block Meis1-Hoxa9 mediated transformation 

in hematopoietic cells. Further, while the Blasi group utilized exogenous overexpression 

of Meis1 and Hoxa9, my studies assessed the relationship between MEIS1 and PKNOX1 

within an MLL-AF9 context.  They hypothesized that increasing PKNOX1 levels may be 

an important area for future therapeutic development [112]. My work agrees with this 

suggestion. 

To examine the target genes regulated by Meis1 and Pknox1, the Sauvegeau lab 

examined the gene expression profiles of cells infected bone marrow progenitor cells 

with viruses expressing either: Hoxa9 + Pknox1,  Hoxa9 + Meis , or Hoxa9 + Pknox1-MC 

(a chimeric Pknox1 possessing the oncogenic Meis1 CTD appended to the C-terminus).  

Critically, cells with exogenously overexpressed Hoxa9 + Pknox1 or Hoxa9 + Meis1, 

resulted in very different gene expression profiles [94].  Hoxa9 + Meis1 infection results 
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in the upregulation of 1202 genes with a significant upregulation of genes related to 

chromosomal organization, cell cycle, DNA damage response. However, Hoxa9 + 

Pknox1 infection resulted in upregulation of 885 genes, with no significant enrichment in 

genes related to any cellular process.  Numerous target genes were of particular interest 

to the development and function of leukemia. For example, mRNA levels of the Meis1 

target Flt3 was differentially regulated between Meis1+ Hoxa9 and Pknox1+ Hoxa9 

[94]. Moreover, transformation with either Hoxa9 + Meis1or Hoxa9 +  Pknox1-MC 

results in the upregulation of Meis1, suggesting the possibility of a positive feedback 

mechanism whereby Hoxa9 and Meis1 contribute to the elevation of Meis1 levels [94].  

 My studies examine PKNOX1 as a competitor with MEIS1 for inclusion into 

HOX-PBX-MEINOX complexes.  However, changes in the binary complex composition 

may also vary in response to Pknox1 upregulation. Examination of Pknox1, Meis1, Hox 

and Pbx during murine embryonic development by Penkov and colleagues identify 

commonly occurring binary complexes that form in addition to Meinox-Pbx-Hox ternary 

complexes [111]. Pknox1 forms binary complexes with Pbx that bind throughout the 

coding sequences and have an inhibitory role in gene regulation [111].  Meis1, 

meanwhile, was observed in binary complexes with Hox associated with promoter 

regions and contributing to gene expression [111].  The interaction of Meis-Hox binary 

complexes occurs through the binding between Hox proteins and the Meis1 C-terminal 

domain [84].  PBX participation within a ternary complex is essential to HOXA9-MEIS1 

activity as disruption of the HOX-PBX interaction through a peptide, HRX9, blocks 

leukemia formation [87].  The peptide used was designed to mimic the conserved motif 
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found within HOX proteins which interacts with PBX binding partners [266].  Though 

initially utilized to block HOX-PBX dimers in melanoma [266], multiple myeloma [267], 

and ovarian cancer [266]; within MLL leukemia, this peptide implicates the ternary 

complexes as the active HOXA9-MEIS1 effectors in leukemia because disruption of the 

HOX-PBX interaction would only alter levels of HOXA9-PBX-MEIS1 ternary 

complexes and not HOXA9-MEIS1 complexes. However, if the MEIS1-HOXA9 binary 

complexes are similarly capable of upregulating target genes, this may provide an avenue 

of escape for leukemia cells treated with antagomirs.  Further, HOX protein availability 

would still be limited due to HOX incorporation into HOX-PBX-PKNOX1 complexes.  

The possibility of PKNOX1-PBX1 binary complex formation could potentially raise 

issues with this explanation.  However, the extent of binary PKNOX1-PBX complex 

formation is unclear. 

 It is additionally possible that complex formation varies between the different 

PBX components.  My Co-IP experiments utilize an anti-PBX1/2/3 antibody, and thus do 

not distinguish between any of the PBX homologs.  This was a deliberate choice in 

experimental design to avoid any bias towards any PBX homolog and to account for 

MEINOX inclusion into any PBX containing complexes.  However, additional 

experiments may be required to discern which PBX family members are bound by 

PKNOX1 in MLL leukemia.  Inclusion of different PBX components may alter binding 

specificity to DNA sequences.  Many of the initial studies to characterize the binding and 

function of PBX proteins were performed using overexpressed PBX1 – the founding 

member of the PBX family.  However, the biochemical differences between the different 
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PBX family members is an area of potential further study. 

Further studies may strengthen these finding by examining antagomir treatment 

effects in conjunction with PKNOX1 knockdown.  My studies have shown that antagomir 

treatment results in a decrease in colony formation and a change in colony and cellular 

morphology (Figure 12-18), and PKNOX1 protein levels (Figure 30).  To ensure that the 

antagomir treatment effect is attributable to changes in PKNOX1 protein levels, further 

studies may seek to rescue colony formation ability by knocking down PKNOX1 via 

siRNA or shRNA in conjunction with antagomir treatments.  If antagomir mediated 

decreases in colony forming ability is mediated by an increase in PKNOX1, then 

PKNOX1 knockdown will result in an increase in colony numbers. 

It would be of further interest to examine the effects of antagomir treatment in 

vivo.  This dissertation focuses on antagomir mediated treatment effects in vitro, utilizing 

colony forming ability as a surrogate for leukemogenesis.  Further studies utilizing in 

vivo antagomir treatments against MLL-AF9 transformed bone marrow would provide a 

more complete picture of the potential of antagomirs as a therapeutic option.  However, 

in vivo studies are potentially complicated by the delivery of antagomirs to a therapeutic 

level in leukemic cells.  Though antagomirs were originally developed for in vivo use, 

their delivery may be enhanced through the use of various nanoparticles currently under 

development, including dendrimers.  It is not clear whether in vivo therapeutic targeting 

of a limited number of miRNAs would have significant toxicity issues; however, it would 

be worthwhile to explore as an additional therapeutic approach for MLL leukemia. My 

data indicates that the antagomir treatments were particularly effective in human cell 
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lines and that exogenously added Pknox1 effectively reduced colony forming ability in a 

mouse model.  To bridge the gap between the two sets of data, future rescue experiments 

should be performed using both model systems.  

Additional studies are needed to further clarify the functional difference 

associated with PKNOX1 and MEIS1.  Publicly available datasets from the Gene 

Expression commons [268] indicate that Pknox1 RNA levels increase throughout 

hematopoiesis differentiation while Meis1 RNA levels decrease (Figure 4). This inverse 

level of expression suggests that Pknox1 may be an important factor in guiding 

differentiation.  As such, indirect upregulation of Pknox1 mediated by downregulation of 

Pknox1-regulating miRNAs could guide cells along a particular differentiation pathway.  

This is consistent with my results in the human cell antagomir treatments, where 

combinatorial antagomir treatment resulted in changes to cellular morphology that 

include increased vacuolarity and a decrease in nuclear to cytoplasmic ratio, possibly 

indicating monocytic differentiation (Figure 18).  Further, transfection of MLL-AF9 

transformed bone marrow with a Pknox1 expressing retrovirus resulted in a change in 

surface markers consistent with differentiation relative to cells infected with a MIGR1 

control virus (Figure 33).  To understand the mechanism of PKNOX1 in MLL leukemia, 

ChIP experiments could be performed in human leukemia cell lines upon antagomir 

treatment.  I would predict that  PKNOX1 would associate with HOXA9 and PBX1 at 

selected target genes. Treatment with antagomirs would result in an increase of PKNOX1 

association at target genes known to be regulated by MEIS1-HOXA9 complexes and a 

decrease of MEIS1 association, as MEIS1 would be excluded from PBX containing 
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complexes and degraded. To date, many MLL leukemia studies have operated on a sense 

of equivalency of different components of the same protein families.  Functional studies 

are needed to determine the different roles of PBX components and how these relate to 

pairing with either MEIS1 of PKNOX1.   

 My findings contribute to an increasing body of evidence illustrating the potential 

for miRNA inhibition by anti-miRNA oligo nucleotides (AMOs) as a therapeutic tool. At 

the dosages utilized in these studies, I observed some cellular toxicity upon antagomir 

treatment (Figures 12-17), including a modest decrease in colony forming ability. 

However, these modest treatment effects may be overcome by altering the dosages 

slightly, or by employing a modified delivery system that would improve efficacy at a 

lower dosage.  

Collectively, this dissertation implicates the miR-17-92 cluster as an essential 

component of MLL leukemia through the role of miR-17 and miR-19a in their repression 

of the MEIS1 competitor, PKNOX1 (Figure 36). MLL fusion proteins aberrantly maintain 

the expression of a variety of target genes including HOX genes, MEIS1, and several 

miRNAs, including miR-196b, miR-10a, and the miR-17-92 cluster.  Previous studies 

have shown HOXA9 and MEIS1 genes are essential for MLL leukemia.  HOXA9 and 

MEIS1 form ternary complexes with a PBX family member to regulate numerous 

downstream targets.  This study examined the necessity of specific miRNAs to MLL 

leukemia through the inhibition of miRNAs using highly specific anti-miRNA 

oligonucleotides. Here, I establish that miR-17 and miR-19a are essential to MLL 

leukemia and cooperate in their contribution to MLL leukemia. This effect is mediated 
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through miR-17 and miR-19a regulation of PKNOX1, which competes for inclusion into 

PBX containing complexes.  Blocking of miR-17 and miR-19a results in upregulation of 

PKNOX1 and an altered balance of HOX/PBX gene regulatory complexes, resulting in a 

skewing away from MEIS1-containing HOX/PBX complexes and a loss of leukemogenic 

ability. In summary, I conclude that expression of several miRNAs of the miR-17-92 

cluster are critical for the continued survival of MLL leukemia .  Further examination of 

the role of miRNAs and PKNOX1 would serve to both deepen our understanding of 

complex regulatory mechanisms that guide the development of leukemia, and also to aid 

in the development of targeted therapeutics which may someday provide a valuable 

clinical tool in leukemia treatment.    
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Figure 36. Model for miRNA involvement in MLL leukemia.  

 

 
 

 

Model of miRNA involvement in MLL leukemia. MLL fusion containing complexes 

maintain the expression of the components of oncogenic HOX-PBX-MEIS complexes as 

well as miRNAs including the miR-17-92 cluster.  MiRNAs regulate the complex 

composition through downregulation of the non-oncogenic component PKNOX1, which 

serves as a competitor to MEIS1 for complex inclusion and whose overexpression has an 

inhibitory effect on MLL leukemia function. 
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