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ABSTRACT 

 

 Carbohydrates have been most notable as energy sources for mammals, bacteria 

(glycogen) and plants (starch) – and in many other species. As such the biosynthesis of 

carbohydrates is essential to the sustainability of many forms of life, on earth. Adenosine-

‘5-diphosphate glucose pyrophosphate (ADP-Glc pyrophosphorylase; ADP-Glc PPase) is 

the allosterically controlled “first committed step” in both the biosynthetic pathways of 

starch (~25% amylose and ~75% amylopectin, in plants and algae) and glycogen (in 

bacteria), preceding the starch/glycogen synthase reaction. By catalyzing the following 

reaction, ATP + α –D-Glc-1P  ADP-Glc + PPi , ADP-Glc PPase functions as the 

primary enzyme in the reaction that provides the glycosyl precursor for the elongation of 

α-1,4-polyglucans. ADP-Glc PPase is a tetrameric allosterically regulated enzyme. The 

structure of this enzyme is homotetrameric in enteric bacteria (Escherichia coli) – α4, and 

heterotetrameric in plants and other photosynthetic eukaryotes – consisting of two small 

subunits (50-52 kDa) and two large subunits (~60kDa): (α2β2). The plant ADP-Glc 

PPases are allosterically regulated: mainly by 3-phosphoglycerate (3PGA) as an activator 

and inhibited in the presence of inorganic phosphate (Pi). There is an allosteric disparity 

in the bacterial enzyme’s counterpart. For instance, the E. coli ADP-Glc PPases enzyme 

is activated by  fructose-1,6-bisphosphate (FBP) and inhibited by adenosine-‘5-
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monophosphate (AMP). All ADP-Glc PPases, to date, are noted to have a divalent metal 

ion cofactor (Mg
+2

). 

 Comparative modeling of the E. coli ADP-Glc PPase with ATP bound in the active 

site predicted critical interactions for Lys42. In the model, this residue interacts with the 

catalytic Asp142 and the β-phosphate of the ATP substrate, which comprises the reaction 

“leaving group”. Lys42 is highly conserved in the ADP-Glc PPases known to be catalytic, 

but absent in plant subunits that are catalytically deficient. It is also conserved in other 

homologues of the sugar-nucleotide pyrophosphorylase superfamily. To investigate the role 

of Lys42 in E. coli ADP-Glc PPase, we performed site-directed mutagenesis. As a result, we 

observed a markedly decreased kcat (>3 orders of magnitude lower than the wild type (WT)).  

We analyzed another conserved residue that interacts with the phosphates of ATP (Arg32). In 

mutating the Arg32 residue, we observed the S0.5 of the ATP substrate for the mutants was 

only two to three times higher than that of the WT. But more significant was the marked 

decrease in specific activity (and kcat) for the Arg32 mutants (1 -3 orders of magnitude). 

Our results indicate that the interaction of Arg32 guanidinium moeity and structural 

length of the Arg32 side chain is critical for overall catalysis. Modeling of the E. coli 

enzyme WT and Arg32 mutants suggest that two nitrogen atoms of the Arg32 

guanidinium side chain may interact with the γ-phosphate of the ATP substrate making 

the PPi product a more stable leaving group. These results show that both residues in the  

E. coli ADP-Glc PPase are catalytic (Lys42), important for orientation and positioning of the 

ATP substrate (Arg32) and overall essential for the production of ADP-glucose. 
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CHAPTER ONE                                                                                                       

INTRODUCTION 

The biosynthesis of carbohydrates is essential to the sustainability of many forms 

of life on earth. The role of starch grains (as a food source; rhizhomes of Typha) was 

identified from grinding stones in Europe and dated over 30,000 years ago (Revedin, 

Aranguren et al. 2010). Continued scientific studies of genetics in starch producing plants 

and starch biosynthesis can be dated back to the early 1900s (Hanes 1940a, Hanes 1940b, 

Mangelsdorf, Jones 1926, Wentz 1925). Another essential carbohydrate is glycogen. As 

an α-1,4-polyglucan, glycogen provides an essential “energy-storage” for  mammals, 

fungi and bacteria when carbon nutrients are lacking. The biosynthesis of glycogen is 

also advantageous to the bacterial, fungi and mammalian cells in that it’s high molecular 

weight (and various properties as a polysaccharide) yield little to no effect in altering any 

osmotic pressure of the cell . 

 Glycogen is the energy store of choice in a number of bacterial species: gram 

negative, gram-positive, cyano-bacterial and archaebacterial (genera Sulfolobus, 

Thermoproteus, Desulfurococcus and Thermococcus) (Konig, Skorko et al. 1982) cells – 

to note a few. The branched polyglucan consists of monomers in which 90% are α-1,4 

linkages and the remaining α-1,6 linkages. Most bacteria synthesize glycogen during the 

“stationary” stage – with a few exceptions Rhodopseudomonus capsulata, Streptococcus 

mitis and Sulfolobus solfataricus. In most cases the level of glycogen increases with the 
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availability of carbon in the “growth media” or when bacterial growth is hindered by the 

lack of other nutritional elements (sulfur, phosphates, nitrogen, etc.). It has been noted 

that given optimal conditions a bacterial cell can store up to 50% in its dry weight of the 

polyglucan, as an energy source (Ballicora, Iglesias et al. 2003). Another α-1,4-

polyglucan, starch,  is an unparalleled source of energy, and often termed the 

“storehouse” of energy for a number of organisms (Leloir, Cardini 1957). Over fifty 

percent (50%) of carbohydrates consumed by humans is from starch. Although, starch 

appears as granules in plants, when processed (or manufactured) for human consumption, 

it is in a white powder form.  Starch can be used as a stiffening agent (which corresponds 

with the root of the word “starch”, derived from “sterchen” which is defined as stiffen).  

There are a variety of uses for starch, such as: starch employed in the printing industry, 

moldings, laundry starch, glue and biofuel (via fermentation glucose units of starch can 

be converted to ethanol).  

             Biosynthesis of Starch and Sucrose: ADP-Glc vs. UDP-Glc 

Preceding the works of the Argentine Physician and Biochemist Luis Leloir, it 

was believed that the synthesis of the α,1-4 a glucosidic linkage in plants was catalyzed 

by phosphorylases (reaction 1) (Hanes 1940a, Hanes 1940b, Preiss 1980): 

Glucose-1-P + (glucosyl)n   ⇌  Pi + (glucosyl)n+1  (1) 

In contrast, it was discovered that the starch synthase reaction was responsible for the 

production and polymerization of the starch molecule, in the following proposed reaction 
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(Reaction 2) (Hanes 1940a, Hanes 1940b, Preiss 1980, RECONDO, LELOIR 1961, 

RECONDO, DANKERT et al. 1963): 

ADP(UDP)glucose + (glucosyl)n  ⇌  ADP(UDP) + (glucosyl)n+1  (2) 

Both UDP-glucose (UDP-Glc) and ADP-glucose (ADP-Glc) are described in the 

aforementioned reaction; however, ADP-Glc has been noted to be a more viable glucose 

donor (substrate), during starch synthesis reaction. ADP-Glc has exemplified a higher 

maximum velocity as well as substrate affinity – versus that of UDP-Glc. Moreover, 

UDP-Glc comparatively lacked a functional role in both bacterial glycogen synthases and 

leaf starch synthases. In comparison to ADP-Glc activity, the UDP-Glc activity was 1% 

or less (Preiss 1980). 

Both UDP-Glc and ADP-Glc (glucose donors) are products of pyrophosphorylase 

reactions (by ADP-Glc PPase and UDP-Glc PPase). Additionally, both nucleotide 

phosphate sugars can also be synthesized via reverse sucrose synthase reaction (reactions 

3a, 3b, 4a and 4b) (Hanes 1940a, Hanes 1940b, Preiss 1980, Recondo, Leloir 1961, 

Recondo, Dankert et al. 1963, Delmer, Albersheim 1970, Baroja-Fernandez, Munoz et al. 

2004): 

NTP + glucose-1-P  ⇌ NDP-glucose + PPi   (3a) 

ATP(UTP) + glucose-1-P ⇌ ADP(UDP)glucose + PPi      (3b) 

NDP-glucose + fructose  ⇌  sucrose + NDP   (4a) 

sucrose + ADP(UDP)  ⇌ fructose + ADP(UDP)glucose   (4b) 
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These pyrophosphorylase enzymes are both found throughout the plants and bacteria 

(Figure 1) and are allosterically controlled by carbon metabolites of glycolytic pathways 

(Figure 2) (Preiss 1980, Recondo, Leloir 1961, Recondo, Dankert et al. 1963, Baroja-

Fernandez, Munoz et al. 2004, Ventriglia, Ballicora et al. 2007, Yep, Ballicora et al. 

2006, Ballicora, Dubay et al. 2005, Ballicora, Iglesias et al. 2004).  

The previous notes two mechanisms for the production of α,1-4 glucosidic 

linkages in plants: UDP-Glc and ADP-Glc reactions – with ADP-Glc being the principal 

mechanism. The dominant presence, specificity and activity of the ADP-Glc substrate in 

plant leaves (for starch bound or soluble starch synthases) and bacteria has been noted in 

previous studies. The UDP-Glc substrate has been found to exhibit a glucosyl transfer 

rate in biosynthesis of starch equivalent to 10% to 33% of that of the ADP-Glc glucosyl 

donor, in plant leaves. Further, bacterial glycogen synthases have appeared to be inactive 

in the presence of UDP-Glc substrate (Preiss 1980, Recondo, Leloir 1961).  

Intermediates from the Calvin-Benson Pathway lead into the starch synthesis and ADP-

Glc production pathways in the chloroplast of plant leaves. Following the aforementioned 

glucosyl donor, products of the Calvin-Benson cycle (triose-phosphate) also feed into the 

sucrose synthesis pathway (another critical biosynthetic carbohydrate pathway) in the 

cytoplasm of plant leaves (Preiss 1980, Recondo, Leloir 1961, Baroja-Fernandez, Munoz 

et al. 2004, Ballicora, Iglesias et al. 2004, Preiss 1984) (Figure 3). In regard to both starch 

and glycogen polyglucans, synthesis of the α-1,6 linkages in the amylopectin  
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Figure 1. Synthesis of Polysaccharides: Comparison of ADP-Glc (Plant/Bacteria) and 

UDP-Glc (Mammalian) Pyrophosphorylases. 
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Figure 2. Glycolysis Cycle/Entner-Doudoroff. Depiction of the Entner-Doudoroff and 

Glycolysis Pathways. ADP-Glc PPase allosteric effectors (for both starch and glycogen 

synthesis; plant and bacterial species) synthesized in the Entner-Doudoroff in E. coli 

(Conway 1992) and Glycolysis pathways are noted in blue. 
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Figure 3. Starch/Sucrose Synthesis. Starch synthesis in the chloroplast and sucrose 

synthesis in the cytosol of plant leaves (modified depiction of Baroja-Fernández et al.) 

(Baroja-Fernandez, Munoz et al. 2004)). 
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(of starch) and glycogen (Figure 4) (Berg, Tymoczko et al. 2012) is incorporated via the 

branching enzyme (glgB gene) (Figure 5). 

The biosynthesis of sucrose was found to be the product of UDP-Glc and 

Fructose-6-P (Reactions 5 and 6) (Preiss 1980, Recondo, Leloir 1961, Cardini, Leloir et 

al. 1955, Leloir, Cardini 1955): 

UDP-Glc + fructose ⇌  sucrose + UDP (5) 

UDP-Glc + fructose-6-Phosphate ⇌ sucrose-6-Phosphate + UDP (6) 

The sucrose synthase reaction was found to be pH dependent, as seen with starch 

synthesis. Oddly, the sucrose synthase reaction also utilizes ADP-Glc, TDP-Glc, dTDP- 

Glc, CDP- Glc and GDP- Glc as glucosyl donors. Nevertheless, the affinity for the UDP-

Glc substrate is much higher, for sucrose synthase. Significantly, for the reverse sucrose 

synthase reaction UDP functions as an inhibitor by preventing the production of ADP-

Glc. Thus, outlining the significance of one glucosyl donor (UDP-Glc) over another 

(ADP-Glc) in a sucrose synthase reaction (Preiss 1980). Another relationship (as seen 

with pH dependence) between starch and sucrose synthesis is the conversion of  “starch-

sucrose” postulated to occur in plant tissues via a reaction mechanism where sucrose and 

ADP(UDP) are the substrates for sucrose synthase yielding a ADP(UDP)-Glc produce to 

be utilized as a substrate for starch synthesis, as a glucosyl donor (Preiss 1980). To sum, 

it has been previously noted   sucrose synthase has a much greater affinity for UDP than 

ADP; alternatively, starch synthase prefers ADP-Glc moreso than UDP-Glc.  As such we 

begin to see the roles of both UDP-Glc and ADP-Glc in sucrose (and starch) synthesis. 
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Figure 4. Starch and Glycogen. The α-glycosidic linkages of starch and glycogen. (A) 

Starch and glycogen are polymers of α,1-4-glycosidic linked units with 

amylopection/glycogen α,1-6-glycosidic branching (Devillers, Piper et al. 2003). 

Glycogen has a higher number of branching than starch. Starch is made of Amylose (B) 

an Amylopectin. 
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Figure 5. ADP-Glc PPase Reaction Scheme. 
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The production of sucrose is pertinent for plants, as sucrose is a key source of 

carbohydrates produced as well as essential for the production of plant cell walls. As 

such, we see the crucial role of the NDP-sugar phosphorylases in organisms, regarding 

the biosynthesis of carbohydrates. 

Biosynthesis of Bacterial Glycogen: ADP-Glc 

 Glycogen, a α-1,4-polyglucan, provides an essential “energy-storage” for  

mammals, fungi and bacteria utilized  when carbon nutrients are lacking. This is 

advantageous in that its high molecular weight yields little to no effect in altering any 

osmotic pressure of the cell. The synthesis of polyglucans is dependent upon the 

synthesis of ADP-Glc. The primary regulatory step of the glycogen synthesis pathway is 

driven by ADP-glucose pyrophosphorylase (ATP: α-D-glucose-1-phosphate 

adenylyltransferase, E.C:2.7.7.27; ADP-Glc PPase) (Ballicora, Iglesias et al. 2003). The 

biosynthesis of glycogen is dependent upon the construction of the α1,4 glucosidic 

linkages, and the synthesis of these linkages rely upon the production of the glucosyl 

donor α-ADP-Glc (via ATP), in bacteria (Reaction 7). Following production, a transfer of 

the glucose monomer to a pre-existing polyglucan occurs and is succeeded by α1,6 

branching via the glgB gene expressed branching enzyme (Devillers, Piper et al. 2003). 

Approximately 10% of the glucosidic linkages in bacterial glycogen are α1,6 (Preiss 

1984). The production of the α-ADP-Glc (glucosyl donor) is mediated by the ADP-Glc 

PPase enzyme (expressed from the glgC gene) in the presence of a divalent magnesium 

cation (Figure 5). For bacteria, glycogen is postulated to be employed as a source of both 
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energy and carbon, when carbon is lacking in media or surrounding environment – as 

well as RNA and protein production, mobility, regulation of pH within the bacterial cell 

and osmotic regulation (Yep, Ballicora et al. 2006, Preiss 1984, Machtey, Kuhn et al. 

2012, Yep, Ballicora et al. 2004b, Furlong, Preiss 1969). Furthermore, in some species of 

Clostridia glycogen makes up 60% of the dry weight in these bacterial cells. Moreover, a 

substantial degradation in cellular glycogen, of these bacteria, has been observed during 

periods of sporulation. This implies that glycogen is useful for the sporulation process of 

the Clostridia cells, and as such, is necessary for bacterial cell survival - as sporulation is 

a process used by bacterial cells for conservation in environments lacking necessary 

nutrients for proliferation. Finally, it has been stated that glycogen serves as both a 

“reserve” and a source of energy and carbon during non-prolific periods, for bacterial 

cells (Preiss 1984).                                     

Biosynthesis of Mammalian Glycogen: UDP-Glc 

 The synthesis of the α1,4 glucosidic linkages of mammalian glycogen is produced 

via a different precursor: UDP-Glc. However, plant starch synthesis and bacterial 

glycogen synthesis both involve a glucosyl donor, such as ADP- Glc. Additionally, in 

mammalian cells glycogen synthase (expressed from the glgA gene) is involved in the 

regulatory step of glycogen synthesis. During gluconeogenesis, the rate limiting step is 

catalyzed via glycogen synthase. Glycogen synthase is inhibited when phosphorylated, 

but active in its dephosphorylated stage (which can occur in the presence of a number of 

intracellular phosphatases). Glycogen synthase, in the absence of glucose-6-phosphate, is 
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active in skeletal muscle cells - in its dephosphorylated form - but high levels of glycogen 

obviously inhibit the glycogen synthase enzyme – as synthesis of glycogen is not needed 

during times of increased intracellular glycogen concentrations (Preiss 1984). One of the 

major differences in mammalian glycogen synthesis is that one of the roles of the 

glycogen synthase enzyme is to catalyze reaction where covalent modification and 

allosteric control is needed. As UDP-Glc has not only been observed as a precursor for 

the synthesis of glycogen, but also functions in a number of different roles, crucial to 

mammalian cell proliferation. UDP-Glc has also been noted to be employed by 

mammalian cells in the synthesis of a number of other sugar nucleotides, such as UDP-

galactose, UDP-glucuronate, UDP-xylose, and functioning in the transference of other 

glucose to various intermediates for the production of glycoproteins (Preiss 1984, 

Degeest, de Vuyst 2000). Whereas, it has been observed that the major purpose of the 

ADP-Glc in bacteria is to provide a glucosyl donor for the elongation of a α1,4 

polyglucan. As such, the role of UDP-Glc in mammalian cells is inherently different and 

serves a more diverse role of pertinence than the ADP-Glc glucosyl donor in bacteria and 

plant carbohydrate biosynthesis. Still, both are crucial sugar nucleotides. 

ADP-glucose Pyrophosphorylase 

(ATP: α-D-glucose-1-phosphate adenylyltransferase; ADP-Glc PPase) 

The ADP-glucose pyrophosphorylase (E.C:2.7.7.27; ADP-Glc PPase) mechanism 

is the allosterically controlled “1st committed step” in both the biosynthetic pathways of 

starch (~25% amylose and ~75% amylopectin) in plants, photosynthetic bacteria and 
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green algae and glycogen in animals, bacteria, fungi, cyanobacteria and archaebacteria, 

preceding the starch/glycogen synthase reaction (Preiss 1973). By catalyzing the reaction: 

ATP + α –D-Glc-1P ⇌ ADP-Glc + PPi (7) 

ADP-glucose pyrophosphorylase functions as the primary enzyme in the irreversible in 

vivo (reversible in vitro) reaction that provides the glycosyl precursor for the elongation 

of α-1,4-polyglucans (Leloir, Cardini 1957, Preiss 1980, RECONDO, LELOIR 1961, 

Dhalla, Li et al. 1994, Gomez-Casati, Iglesias 2002, Fox, Kapust et al. 2001, Smidansky, 

Clancy et al. 2002, Charng, Sheng et al. 1995). 

The synthesis of ADP-Glc is important as revealed by the fact that (in vivo) the 

rate of glucose transfer from ADP-Glc occurs ten times faster than the UDP-Glc transfer 

to the α-1,4-glucan, in plants (Fox, Routzahn et al. 2003). ADP-Glc PPase is a tetrameric 

allosterically regulated enzyme. The structure of ADP-Glc PPase is homotetrameric in 

enteric bacteria (E. coli) – α4 (200kDa), and heterotetrameric (α2β2) in plants and 

photosynthetic organisms – consisting of two small subunits (50-52 kDa) and two large 

subunits (51-60kDa) deriving from a common ancestor (Figures 6 and 7). In firmicutes, it 

has also been observed in heterotetrameric form (Asencion Diez, Demonte et al. 2013, 

Takata, Takaha et al. 1997). ADP-Glc PPase is regulated by “small effector molecules” 

that indicate elevated (activator) or decreased (inhibitor) carbon and energy levels in the 

cells.  Numerous bacterial enzymes can be activated or inhibited by various intermediates 

of the glycolysis pathway. In the E. coli glycogen synthesis pathway a key activator for 

the E. coli ADP-Glc PPase is fructose 1,6-bisphosphate (FBP).  
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Figure 6. Plants and E. coli ADP-glucose Pyrophosphorylase Tetramers. (A) Enteric 

Bacteria; homotetramer (α4) and (B) Plant species; heterotetrameric with two large (β) 

subunits (60kDa) and two small (α) subunits (50-52kDa): α2β2. 
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Figure 7.  Phylogenetic relationship of ADP-Glc PPases from photosynthetic eukaryotes. 

Brackets indicate residues conserved in each group. Residues of interest circled in red. 

Image courtesy of Ballicora et al. (Ballicora, Dubay et al. 2005)  
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In contrast, the glycogen accumulation process via ADP-Glc PPase in the bacteria cells is 

inhibited by the presence of high levels of AMP (Preiss 1984). Sugar nucleotide PPases 

allosterically controlled by Fru6P and FBP, are affected by metabolites from the Entner-

Doudoroff or glycolysis cycle (Figure 2), which is a major carbon assimilation pathway, 

for the bacterial cell (Preiss 1980). On the other hand, the plant ADP-Glc PPases are 

predominantly allosterically activated by 3-phosphoglycerate (3PGA) and inhibited by 

inorganic phosphate (Pi) (Preiss 1982). This inhibition of the plant ADP-Glc PPase has 

been observed in both leaf and green algae species (Preiss 1980). They consist of           

L-subunit and S-subunits that may have differentiated roles. In certain cases, one is a 

catalytic subunit and the other is not - the regulatory role has been observed in the non-

catalytic subunit (Ballicora, Dubay et al. 2005, Crevillen, Ballicora et al. 2003, Kuhn, 

Falaschetti et al. 2009). Both subunits are nearly fifty percent identical which implies 

common ancestry.   

The effect of the concentration dependence on Pi in spinach leaves was noted in 

1966, by Ghosh et al. It was observed that in the presence of 22μM of inorganic 

phosphate, and absence of activator (3PGA), 50% of the function for the Spinach Leaf 

ADP-Glc PPase was inhibited. However, in the presence of 1mM 3PGA 1.3mM Pi was 

necessary to acquire 50% inhibition of the enzyme, in spinach leaves. Here we see a 450-

fold decrease in inhibition, when the 3PGA activator is present for a plant-form ADP-Glc 

PPase. Experimental procedures were performed at pH 7.5 (Preiss 1980, Furlong, Preiss 

1969, Ghosh, Preiss 1966, Ozbun, Hawker et al. 1972).                                                                                      
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 High concentrations of 3PGA observed during the starch synthesis cycle of plant 

leaves (periods of photosynthesis; daytime) illustrate optimal conditions for activation of 

the ADP-Glc PPase, as well as production of ADP-Glc. In contrast, lower levels of Pi is 

observed during photosynthetic (starch production) cycles. At night, however, higher 

levels of Pi in plant leaves have been observed, which is not conducive to the production 

of the glycosyl donor (ADP-Glc). The aforementioned lends credence to the notion that 

ADP-Glc PPase plays a major role in the production of starch in plant leaves, considering 

the presence of the enzyme’s allosteric effectors and reaction product during the diurnal 

starch production cycle (Preiss 1980, Ballicora, Iglesias et al. 2004, Ventriglia, Kuhn et 

al. 2008, Iglesias, Ballicora et al. 2006, Dawar, Jain et al. 2013, Figueroa, Kuhn et al. 

2013, Kuhn, Figueroa et al. 2013).     

UDP-glucose Pyrophosphorylase                                                                                        

(UTP: α-D-glucose-1-phosphate uridylyltransferase; UDP-Glc PPase) 

UDP-Glc PPase, as it has been noted previously, is pertinent for sucrose synthesis 

(a carbon transport source in plants). UDP-Glc PPase plays a major role, in young and 

developed plant leaves as a glucosyl donor for the sucrose synthesis pathway, by 

producing the glucosyl donor (UDP-Glc) for the sucrose phosphate synthetase (reaction 

8).  

UTP + α-D-glucose-1-phosphate ⇌ UDP-Glc + PPi (8) 

UDP-Glc PPase is seemingly ubiquitous enzyme located within animals, bacteria 

and plants. UDP-Glc PPase of plants are soluble proteins located in the cytosol and can 
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also be found as a membrane bound enzyme (Martz, Wilczynska et al. 2002). In humans 

and calf liver UDP-Glc PPase is octameric unlike ADP-Glc, in plants and bacteria 

(Führing, Cramer et al. 2015, Levine, Illett et al. 1969). In tissues of plants, UDP-Glc 

PPase plays a role in the degradation of the sucrose, via production of the UDP-Glc 

moiety. Due to UDP-Glc PPase playing a more active role in the sucrose synthesis 

pathway, it has not been touted as often as the other NDP-sugar phosphorylases as being 

largely influential in the biosynthesis of carbohydrates.  

UDP-Glc PPase is also necessary for polysaccharide synthesis of cellulose and 

callose sugars via production of UDP-Glc. Since the UDP-Glc PPase performs a 

reversible reaction it can be classified as involved in both anabolic and catabolic 

reactions in cells. Various plant species UDP-Glc PPase have been characterized to date, 

as well as cDNA sequences; thus, highlighting the importance of investigating this 

prominent enzyme. Although, unlike ADP-Glc PPase, UDP-Glc PPase is not strictly 

allosterically regulated by metabolic effectors, post-translational modification and 

oligomerization have been hypothesized as intracellular control mechanisms for UDP-

Glc PPase. Phosphorylation of the enzyme is utilized in yeast cells, as a regulatory 

method. Also, O-glycosylation of UDP-Glc PPase for human and N-glycosylation for rice 

UDP-Glc PPase (Meng, Geisler et al. 2009). Presently, a degree of similarity has been 

noted among the family of plant UDP-Glc PPases, with 59% to 96% identity among 

amino acid sequences. Furthermore, a 55% degree of similarity is seen among slime 

UDP-Glc PPases for amino acids (Kleczkowski, Geisler et al. 2004). In animal tissues, 
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the presence of UDP-Glc PPase has been observed in response to hypoxia (lack of 

oxygen reaching tissues), as well as the presence of glucose – as an apparent scarcity of 

UDP-Glc was seen in “insulin-dependent” tissues of diabetic organisms (Martz, 

Wilczynska et al. 2002, Robinson, Weinstein et al. 1995, Aw, Jones 1984). The results of 

further investigation into the role of UDP-Glc PPase – and presence of UDP-Glc - in 

diabetic tissues can be seen in rat research models, as well (Spiro 1984). As such, we see 

another example of both the ubiquitous nature and importance of UDP-Glc PPase, in 

mammals. 

TDP-glucose Pyrophosphorylase 

(TTP: α-D-glucose-1-phosphate thymidylyltransferase; TDP-Glc PPase) 

TDP-Glc PPase is an enzyme that catalyzes the reaction of dTTP and glucose-1-

phosphate to dTDP-glucose (reaction 9) (Blankenfeldt, Asuncion et al. 2000b, Zuccotti, 

Zanardi et al. 2001, Barman 1969): 

dTTP + α-D-glucose-1-phosphate ⇌ dTDP-glucose + PPi  (9) 

TDP-Glc PPase (found in Escherichia coli) is a 32 kDa enzyme (Zuccotti, Zanardi et al. 

2001). TDP-Glc PPase consists of 431 amino acids and has a genetic similarity to other 

members of sugar nucleotide phosphorylases. In comparison to the homotetrameric (α2β2) 

ADP-Glc PPase enzyme, in plants, the Escherichia coli TDP-Glc PPase has a 29.5% 

amino acid similarity. Compared to the N-terminus of the Escherichia coli ADP-Glc 

PPase amino acid sequence, the TDP-Glc PPase has a 27% similarity. The previous is the 

resulting investigation of TDP-Glc PPase when compared to enzymes from 46 bacterial 
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backgrounds via protein sequence database, only a 12% conservation of amino acids was 

observed. Further similarity of TDP-Glc PPase, among the family of glucosyltransferases 

is seen in 26% amino acid sequence in comparison to E. coli UDP-Glc PPase. When 

compared to the amino acid sequence of the CDP-Glc PPase (α-D-glucose-1-phosphate 

cytidyltransferase) of Salmonella enterica there was an apparent similarity of 27% for 

both CDP-Glc PPase and TDP-Glc PPase (Blankenfeldt, Asuncion et al. 2000b, Zuccotti, 

Zanardi et al. 2001). 

As the enzyme responsible for catalysis of the dTDP-α-D-glucose synthesis, it 

produces an important molecule (of the metabolic system) of prokaryotes. The dTDP 

metabolite serves as a “precursor” for a variety of saccharides synthesized to construct 

prokaryotic cell surfaces. Markedly, TDP-Glc PPase is the initial enzyme responsible for 

the production of the precursor dTDP (deoxyTDP)-L-rhamnose, in the biosynthesis of L-

rhamnose, which is an important component of gram-positive and gram-negative 

prokaryote bacterial cell walls, the surface antigens (O-lipopolysaccharides) and the 

ability of microbes to adhere to host tissues. TDP-L-rhamnose has been isolated from 

various species, such as Lactobacillus acidophilus, E. coli and Streptomyces griseus, and 

has been examined since preceeding the 1960s. The production of the dTDP-α-D-glucose 

molecule, as the eventual precursor of L-rhamnose following the conversion of  dTDP-α-

D-glucose to dTDP-α-D-rhamnose, is not the only favorable aspect of the TDP-Glc 

PPase, as dTDP-α-D-glucose may serve as a precursor for a number of mono saccharides, 

such as 6-deoxy-L-talose, D-fucose, 2,6-dideoxyhexoses, 3-amino-6-deoxyhexoses and 
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3-C-branched 6-deoxyhexoses (Zuccotti, Zanardi et al. 2001, Kornfeld, Glaser 

1961).Although the exact mechanisms of TDP-Glc PPase enzymes have not been 

completely characterized, the critical role of the enzyme is apparent. In microbes, 

mutants lacking the TDP-Glc PPase enzymes displayed insufficient synthesis of bacterial 

cell wall, a decline in integrity of bacterial cells (displayed lower degree of viability) and 

lack of metabolites (in bacterial cell). As such, inhibitors of the TDP-Glc PPase enzyme 

have been noted as viable candidates as antimicrobial drugs (Zuccotti, Zanardi et al. 

2001). 

          CDP-glucose Pyrophosphorylase 

(CTP: α-D-glucose-1-phosphate cytidylyltransferase; CDP-Glc PPase) 

 CDP-Glc PPase displays an extraordinary degree of specificity for substrate 

(CDP- Glc), as such other sugar nucleotides (such as ADP-Glc, UDP-Glc, TDP-Glc and 

GDP-Glc) did not promote any noteworthy chemical response in for CDP-Glc PPase 

reaction, for microbes such as Salmonella paratyphi A (Preiss 1980). Thus, illustrating 

how CDP-Glc PPase could only use CDP- Glc as a substrate. Furthermore, in Azobacter 

vinelandii the enzyme was unable to use ATP, GTP, UTP, TTP, dATP, dGTP and dCTP 

for the synthesis reaction, in the presence of D-glucose-1-phosphate However, this 

enzyme is comparable to ADP-Glc PPase, as both require the presence of the divalent 

cation (Mg
2+

) to function (Barman 1969). 

 CDP-Glc PPase has also been found useful for the synthesis of saccharides in a 

number of other organisms: Salmonella paratyphi, Pasteurella pseudotuberculosis Type 
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V and Salmonella typhimurium. Additionally, it has been observed that the production of 

CDP- Glc (reaction 10) by this enzymes leads to the synthesis of CDP-paratose in 

Salmonella paratyphi, CDP-ascarylose in Pasteurella pseudotuberculosis Type V and 

CDP-tyvelose in Salmonella typhimurium. Furthermore, the production of CDP-2-o-

methyldeoxyaldose in A.vinelandii has implications that the CDP-Glc PPase is necessary 

for its production (Kimata, Suzuki 1966). 

CTP + α-D-glucose-1-phosphate → CDP-glucose + PPi (10) 

A CDP-Glc PPase inhibitor, deoxythymidine, has been found to be semi-competitive 

with CTP substrate, which is implicit that dTTP may binding to a site alternative to that 

of the CTP substrate-binding site. Lastly, cytidine nucleotides like 2-O-

methyldeoxyalsode – and the carboxylic acid ester of this structure – has been found to 

inhibit the Fraction II CDP-Glc PPase. It is indeed quite interesting that there are two 

defining Fractions of activity for this NDP-sugar phosphorylase (Barman 1969, Kimata, 

Suzuki 1966). 

GlmU: N-acetylglucosamine 1-Phosphate Uridyltransferase 

 The 49 kDa enzyme, GlmU, is located in the cytoplasm of E. coli and plays a key 

role on the biosynthesis of UDP-N-acetylglucosamine (UDP-GlcNAc). The enzyme 

consists of two domains: pyrophosphorylase (which is homologous throughout residues 

Met1 to Ala120 with a number of other pyrophosphorylases, including ADP-Glc PPase) 

and an acetyltransferase domain. This is important because the UDP-GlcNAc molecule is 

a precursor for peptidoglycan and lipopolysaccharide biosynthesis in gram-positive and 
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gram-negative bacteria. The UDP-GlcNAc precursor can be found in some O antigens, 

enterobacterial common antigens. The UDP-GlcNAc precursor has also been observed in 

the teichoic acids of gram-positive bacteria. As teichoic acids are generally synthesized to 

fortify the cell walls of gram-positive bacteria, the production of the UDP-GlcNAc  

precursor serves as an important function of the GlmU enzyme. Furthermore, the 

biosynthetic process for UDP-GlcNAc production creates a platform for antimicrobial 

drug development. Mutants lacking the ability to synthesize UDP-GlcNAc exhibited cell 

lysis under specific growth properties. The production of UDP-GlcNAc from Fructose-6-

P utilizes three enzymes (in addition to the GlmU enzyme): GlcN-6-P synthase (GlmS), 

GlcN-1-P acetyltransferase and a phosphoglucosamine mutase enzyme (G1mM). As with 

ADP-Glc PPase, the two-step process of the previous enzymes (reaction 11 and 12) must 

be performed in the presence of Mg
2+

, for the enzymes to function (Brown, Pompeo et al. 

1999): 

GlcN-1-P + acetylCoA → GlcNAc-1-P + CoA (11) 

GlcNAc-1-P + UTP → UDP-GlcNAc + PPi (12) 

The acetyltransferase function of the GlmU enzyme is inhibited by “thiol-specific” 

reagents (Brown, Pompeo et al. 1999). Another use of the GlmU protein has been to 

generate “azido-substituted nucleotide sugar analogues” to help characterize and identify 

other glycosyltransferases. Also, GlmU has be utilized to develop a sizeable quantity of 

N-acetyl-labelled UDP-GlcNAc for use in industrial projects (Brown, Pompeo et al. 

1999). 
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Biofuels, Glycogen Production and Cyanobacteria ADP-Glc PPase                                             

Synechococcus PCC 7002   

Investigation into the production of biofuels has increased over the past few 

decades, as oil reserves dwindle. As such biorefineries have taken interest in oxygenic 

photosynthetic microorganisms and microalgae as carbon sources (Lopez, Descles et al. 

2005, Ducat, Way et al. 2011, Rosenberg, Oyler et al. 2008). Saccharification is the 

hydrolysis of polymeric sugars to monosaccharides. Saccharification and fermentation of 

glycogen produced from cyanobateria (an oxygenic photosynthetic bacteria) and 

microalgae organisms have been explored for biofuel production.  A particular study was 

performed on the oceanic euryhaline (adaptive to various salinized environments) 

cyanobacteria Synechococcus PCC 7002 carbon source: glycogen (Aikawa, Nishida et al. 

2014).  Cyanobacteria was further observed to be a prime candidate for biofuel 

production as this microorganism has the ability of (1) changing solar energy to biomass 

more effectively than switchgrass (an “energy crop”) and (2) the cyanobacteria 

polyglucans (glycogen) can be fermented into ethanol for biofuel use via yeast 

fermentation (Melis 2009, Aikawa, Joseph et al. 2013, Choi, Nguyen et al. 2010, Harun, 

Jason et al. 2011, Ho, Li et al. 2013, Miranda, Passarinho et al. 2012). Aikawa et al. noted 

that cyanobacteria Synechococcus PCC 7002 continued to have glycogen production in 

the presence of high concentrations of carbon dioxide and light intensity (Ducat, Way et 

al. 2011, Aikawa, Nishida et al. 2014). Kinetic experimentation was performed on the 

oceanic microorganism and Goméz-Casati et al found that cyanobacteria glycogen 
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production is regulated by ADP-Glc PPase in the presence of 3PGA and inhibited during 

higher concentrations of Pi (Gomez-Casati, Cortassa et al. 2003). As such, Aikawa 

postulated that 3PGA production was increased due to light intensity and the presence of 

higher concentrations of carbon dioxide, which would explain the favorable glycogen 

production during such periods. Notably, we see the crucial role study of the ADP-Glc 

PPase enzyme and α-polyglucans synthesis play in production of biofuels and “bio-

based” chemicals, for biorefineries (Gomez-Casati, Cortassa et al. 2003, Xu, Guerra et al. 

2013, Guerra, Xu et al. 2013, Hasunuma, Kikuyama et al. 2013, Aikawa, Izumi et al. 

2012, Aoyama, Uemura et al. 1997, De Philippis, Sili et al. 1992, Ernst, Boger 1985, 

Lehmann, Wober 1976, Erdrich, Knoop et al. 2014, Quintana, Van der Kooy et al. 2011). 

E. coli has multiple metabolic pathways, some of which result in the production of 

alcohols (ethanol, n-butanol and isopropyl alcohol) (Alper, Stephanopoulos 2009, 

Atsumi, Higashide et al. 2009, Atsumi, Hanai et al. 2008, Atsumi, Cann et al. 2008, 

Brynildsen, Liao 2009, Hanai, Atsumi et al. 2007, Yomano, York et al. 2008, Zhang, 

Sawaya et al. 2008, Liu, Vora et al. 2010, Lu, Vora et al. 2008, Ingram, Conway et al. 

1987, Steen, Kang et al. 2010, Stephanopoulos 2007). Studies similar to the 

cyanobacteria Synechococcus PCC 7002 and biofuels have been performed in E. coli 

investigating the heterofermentative pathway naturally occurring in the microorganism. 

Via this pathway E. coli has the ability of converting sugars to ethanol (Zhao, Xu et al. 

2013, Mazumdar, Clomburg et al. 2010, Liu, Khosla 2010). The hydrolysis of polymeric 

sugars precede the fermentation step for the production of biofuels. Therefore, synthesis 
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of starch and glycogen in cyanobateria and E. coli are essential to biofuel production – 

which is the key role of ADP-Glc PPase, the first committed step in synthesis of α-

polyglucans (Ventriglia, Ballicora et al. 2007, Yep, Ballicora et al. 2006, Ballicora, 

Dubay et al. 2005, Kuhn, Falaschetti et al. 2009, Bejar, Ballicora et al. 2006, Jin, 

Ballicora et al. 2005b) (Figure 8). 

Blue-Green Bacterium ADP-glucose Pyrophosphorylase                                                     

Synechococcus PCC 6301 

Upon investigation of glycogen synthesis in Synechococcus 6301, ADP-Glc was 

found to be the principal sugar nucleotide involved – glucose donor. As such, we see yet 

another role for the ADP-Glc pyrophosphorylase enzyme (Levi, Preiss 1976). ADP-Glc 

PPase Synechococcus 6301 is activated by 3PGA (8- to 25-fold) (Fredrick 1968). Very 

much like the green algae species and ADP-Glc PPases in higher plants, we see the blue-

green bacterium species is activated by 3PGA (Preiss 1973).  More allosteric activators 

were noted with lower activation fold: fructose-6-phosphate (Fru6P) and FBP. Further 

characterization of Synechococcus 6301 ADP-Glc PPase noted inhibition by inorganic 

phosphate – and of course, functions in the presence of divalent magnesium cation. 

Numerous photosynthetic bacterial ADP-Glc PPases are activated by similar effectors 

(Fru6P, FBP and pyruvate) (Furlong, Preiss 1969, Fredrick 1968, Shen, Preiss 1964). 

Remarkably, Synechococcus 6301 ADP-Glc PPase activation is quite similar to the 

process observed in ADP-Glc PPase found in higher plants and green algae; however, not 

similar to the allosteric regulation seen in photosynthetic bacteria. 
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Figure 8. Microbes ADP-Glc PPase and Biofuels. The role of ADP-Glc PPase in Biofuel 

production. 
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Furthermore, it has been postulated and observed that the activator/inhibition regulation 

by 3PGA/Pi is found in green algae, leaf and blue-green bacteria ADP-Glc PPase 

enzymes (Ghosh, Preiss 1966, Sanwal, Preiss 1967, Sanwal, Greenberg et al. 1968). 

Consequentially, as the concentration of 3PGA activator increases, the amounts of 

inorganic phosphate inhibitor has a lower efficacy as an inhibitor. Also, the concentration 

of 3PGA activator steadies or increases during light to dark transition periods (Hind, 

Nakatani et al. 1974). Similar observations were noted for concentrations of inorganic 

phosphate, which are altered during periods of light to dark in green bacteria and green 

plant leaves (Furlong, Preiss 1969, Fredrick 1968, Shen, Preiss 1964). 

E. coli ADP-Glc PPase Substrate (Glc-1P) Binding Site Residues -                                                 

Glu
194

, Ser
212

 Tyr
216

, Asp
239

, Phe
240

, Trp
274

 and Asp
276

 

As previously stated, the ADP-Glc PPase enzyme interacts with two substrates, 

ATP and Glc-1P, which are crucial to the synthesis of the glucosyl donor, ADP-Glc. It is 

important to note that there is a sequential binding process that occurs for the ADP-Glc 

PPase enzyme, as it interacts with both the ATP and Glc-1P substrates. In 1979, Haugen 

et al. published a paper outlining their discovery for this process and was able to observe 

via radioactive binding (equilibrium dialysis) assay that in fact the ATP substrate binds 

first and then there is a secondary substrate binding of Glc-1P (Haugen, Preiss 1979). In 

2006, Bejar and associates identified critical residues in the Glc-1P substrate binding site 

that are essential for the ADP-Glc synthesis reaction in E. coli. She identified seven 

residues of interest: Glu194, Ser212 Tyr216, Asp239, Phe240, Trp274 and Asp276. The 
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residues were selected for investigation, as they were conserved throughout the family of 

ADP-Glc PPases. Alanine scanning was performed via site directed mutagenesis at the 

residue sites noted, and 1 to 2 order of magnitude decrease in apparent affinity for the 

Glc-1P substrate was observed for these alanine mutants. Further investigation was 

performed exploring the “architecture” of the ADP-Glc PPase Glc-1P binding site. 

Utilizing the homology modelling approach (MODELLER6 v.1) with PPases from 

Pseudomonas aeruginosa (dTDP-Glc PPase) and Salmonella typhi (CDP-Glc PPase) they 

were able to build a model outlining the “architecture” of the Glc-1P substrate binding 

site, and by doing this they also outlined structural implications of the Glc-1P substrate 

binding site other NDP-glucose PPases. Bejar found that when superimposing the 

structures of the Glc-1P substrate binding sites from PPases such as E. coli ADP-Glc 

PPase, S. typhi CDP-Glc PPase and P. aeruginosa RmlA, a conservation in positioning of 

side chains was apparent. For example, all three PPases, in comparison to Tyr216 (E. coli 

ADP-Glc PPase), such as the Tyr176 of RmlA (P. aeruginosa) and the Phe192 of CDP-

Glc PPase (S. typhi) overlapped structurally. Additionally, homology modelling revealed 

that Ser212 residue is involved in a hydrogen bonding network (via the serine side chain 

and backbone) that may function in the proper positioning of other residues, Glu194 and 

Lys195, pertinent to the Glc-1P binding site, as the Ser212 residue was spatially close to 

the Glu194 and Lys195 residues(Bejar, Jin et al. 2006). 

 Upon examination of mutant kinetics, Bejar noted that the Trp274 alanine 

mutant (W274A) displayed a 22-fold decrease in apparent affinity for Glc-1P. The 
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alanine mutant of Ser212 (S212A) displayed a 14-fold decrease in Glc-1P substrate 

affinity, which was explained by the absence of the serine side chain, and was noted to 

interact with the O-3 of the ADP-Glc molecule (a substrate for pyrophosphorolysis 

direction). Any mutagenesis of the Ser212 side chain was accompanied by a decline in 

enzyme affinity for the Glc-1P substrate. Asp276 was noted as being in close proximity 

to Glc-1P substrate and that this residue may interact with the ligand via hydrogen 

bonding. Mutagenesis of the Asp276 residue displayed an approximate decline in 

substrate binding with Glc-1P of approximately 25- to 100-fold decrease. However, it 

was also noted that this residue may have other important interactions – not solely Glc-1P 

binding site (Bejar, Jin et al. 2006).  

Tyr216 appeared to be conserved in both ADP-Glc PPases and RmlA transferase 

(P. aeruginosa). Mutating Tyr216, which was examined due to its proximity to the Glc-

1P binding site, did result in a 10-fold decrease in Vmax of the E. coli ADP-Glc PPase and 

a 46-fold decrease in Glc-1P substrate affinity (for the Y216F mutant). This model did 

not illustrate any interaction of the Tyr216 with the ADP-Glc bound ligand, but 

biochemical analysis noted that the -OH side chain of the Tyr216 residue may aide in the 

positioning of the Glc-1P in the substrate “pocket”. This was observed in mutating the 

tyrosine side chain phenylalanine (Y216F), which also resulted in a 1-2-fold decrease in 

apparent affinity of ATP, Mg
2+

 and FBP for this mutant. Asp239 and Phe 240 were near, 

but not in direct contact to the ADP-Glc ligand in the models employed, but there were 

very interesting kinetic analysis resulting from the Asp239 mutant. In investigating the 



32 
 

 
 

 

role of the Asp239 side chain (via alanine mutagenesis) D239A displayed a 31-fold 

decrease in apparent affinity for Glc-1P and an 11-fold decrease in Vmax. Likewise, 

mutating the aspartate side chain to asparagine (D239N) and glutamate (D239E) resulted 

in a decrease of apparent affinity for the Glc-1P substrate by 16- and 10-fold, 

respectively. However, the D239N Vmax decreased 2-fold, but the D239E Vmax did not 

display a significant decrease. For the Phe240 residue, mutation at this site for alanine 

(F240A) and methionine (F240M) resulted in a 12- and 7-fold decrease in apparent 

affinity for Glc-1P, but no significant change in the Vmax values compared to that of the 

wild-type enzyme. Overall, the significant roles of these seven residues were defined, 

either by homology modelling (structural interactions with ADP-Glc ligand and Glc-1P 

substrate) or kinetic analysis (illustrating side chain importance and interactions with the 

Glc-P substrate), which demonstrated the critical functions of these conserved residues 

for ADP-Glc PPase and in some cases RmlA (Ty216; Tyr176 in RmlA) – plus 

uncovering a hydrogen bonding network in place to secure the Glc-1P molecule in the 

substrate pocket (Bejar, Jin et al. 2006) 

Important Residue in E. coli ADP-Glc PPase for Cofactor (Mg
2+)

 Binding –                 

Asp
142

 

 All ADP-Glc PPases studied to date, function in the presence of a necessary 

divalent magnesium cation (Mg
2+

). This cofactor is required for both the synthesis and 

pyrophosphorolysis (reverse) reactions of the ADP-Glc PPase enzymes (Ballicora, 

Iglesias et al. 2003, Preiss 1980, Yep, Ballicora et al. 2006, Ballicora, Dubay et al. 2005, 
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Ballicora, Iglesias et al. 2004, Preiss 1984, Asencion Diez, Demonte et al. 2013, Iglesias, 

Ballicora et al. 2006, Diez, Ebrecht et al. 2013, Jin, Ballicora et al. 2005a, Jin, Ballicora 

et al. 2005a, Yep, Ballicora et al. 2004a, Bejar, Ballicora et al. 2004, Yep, Bejar et al. 

2004).  In 2001, Frueauf and Ballicora noted an aspartate residue (Asp142) that may 

demonstrate a pertinent role in positioning of the Mg
2+

 ion of ADP-Glc PPase (Figure 9). 

During this process, Frueauf performed a comparative review of the RmlA and GmlU 

phosphorylase crystal structures (Brown, Pompeo et al. 1999, Blankenfeldt, Asuncion et 

al. 2000a), in conjunction with sequence analysis of ADP-Glc PPases, and found that a 

number of conserved residues existed among these families of pyrophosphorylases. Of 

these conserved residues, Asp142 (of E. coli ADP-Glc PPase) was analyzed. To fully 

examine the role of this residue three mutants were designed via site-directed 

mutagenesis: D142A (alanine), D142N (asparagine) and D142E (glutamate). Kinetic 

analysis of both the wild-type and mutant enzymes, in both the synthesis and reverse 

(pyrophosphorolysis) direction was analyzed. A significant decrease of specific activity 

in mutants was observed at 4 orders of magnitude. For the alanine (D142A) and 

asparagine (D142N) – in the synthesis direction of the ADP-Glc PPase reaction – mutants  

there was no effect on the apparent affinities for substrates (ATP; Glc-1P) or activator 

(FBP). Also, the D142A and D142N mutants exhibited no change in affinity for the 

cofactor (Mg
2+

). However, a significant decrease in substrate affinity was observed for 

D142E. A nearly 12-fold decrease in apparent affinity for ATP and a 46-fold decrease in 

apparent affinity for the Glc-1P substrate were observed for the D142E mutant.  
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Figure 9. Alignment of ADP-Glc PPases with RmlA and GlmU for comparative analysis 

of conserved residues and structures. α-helix residues were noted in red and pink. β-

sheets were predicted for residues in both blue and light blue. Residues classified as 

neither a-helix or b-sheets are indicated in green. PHD program was unable to predict 

structural character of residues in black. Trypsin (grey triangles; black triangles for 

cutting Anabaena ADP-Glc PPase) and protein kinase K (white triangles) were indicated 

as cutting E. coli ADP-Glc PPase at those locations. Finally, (*) indicates a consensus of 

residues among ADP-Glc PPases, RmlA and GlmU. Image courtesy of Frueauf and 

Ballicora, 2001 (Frueauf, Ballicora et al. 2001). 
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Activation by FBP required a 17-fold higher concentration (A0.5). Markedly, the effects 

of altering the Asp142 side chain became apparent with the D142E mutant for cofactor 

binding, with a 2.5-fold decrease in affinity for Mg
2+

. All mutants displayed a lower Vmax 

than the wild type (D142E, 77-fold decrease; D142A, 5500-fold decrease; D142N, 7200-

fold decrease) (Frueauf, Ballicora et al. 2001). 

E. coli ADP-Glc PPase Activator (FBP) Binding Site Residue -                                                    

Lys
39 

 Fructose-1,6-bisphosphate functions as the allosteric activator of bacterial ADP-

Glc PPase. An analog, PLP (pyridoxal-phosphate), has been noted to also bind at the 

allosteric activator site. The presence of a Rossmann-type fold structure with three loops 

facing the ATP substrate binding site were noted within the N-terminus domain of the 

bacterial ADP-Glc PPase (for glycogen synthesis) (Ballicora, Iglesias et al. 2003, Yep, 

Ballicora et al. 2006, Bejar, Jin et al. 2006, Figueroa, Esper et al. 2011a, Ballicora, Erben 

et al. 2007a, Ballicora, Erben et al. 2007b). Previous kinetic assays have demonstrated the 

important role of a number of residues that are responsible for binding the FBP allosteric 

effector in the active site of E. coli ADP-Glc PPase. In 1989, Gardiol and Preiss 

identified one such residue: Lys39 (Gardiol, Preiss 1990). One of the N-terminus domain 

loops actual face the Lys39 residue which has been found to bind both the FBP activator 

and the PLP analog (Figueroa, Esper et al. 2011a). Other kinetic analysis studies note 

specific structural characteristic of an effector are needed for activation of bacterial ADP-

Glc PPase. Gardiol describes these potential allosteric activators (analogous to FBP) as 
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having “satisfied” these requirements by having two phosphate moieties (“residues”) 

within the effector molecule. These particular activators (analogous in function to FBP) 

are sedoheptulose-1,7-P2, 1,6-hexanediol-P2 and NADPH (which has a ribose-2,5-P2 

complex analogous to FBP). There are a number of other bacterial ADP-Glc PPase 

activators that have only phosphorous group that is accompanied by a carboxyl or 

aldehyde moiety: PLP, erythrose-4-P, 4-pyridoxic acid-5-P, 2-P-glycerate, and 

phospoenolpyruvate (PEP). The previous effectors indeed had been kinetically observed 

as binding at the activation site, of the bacterial ADP-Glc PPases. PLP was also noted as 

binding the Lys39 residue for E. coli ADP-Glc PPase (Gardiol, Preiss 1990).  

 To examine the effects of altering the Lys39 residue, Gardiol and Preiss 

performed site-directed mutagenesis to obtain the K39E (glutamate-39) mutant. Kinetic 

analysis of the K39E mutant was performed. Notably, the NADPH molecule noted 

previously as being able to bind the active site of the wild-type E. coli ADP-Glc PPase 

was unable to bind the glutamate mutant. Selection of the glutamate mutant was to 

examine the role of the lysine (-amino) side chain and its effect on binding the FBP 

activator. By substituting the lysine (basic) for a glutamate (carboxylate) side chain, 

Gardiol alternates the conditions at the activator binding site-39 for the ADP-Glc PPase 

enzyme. As such, kinetic analysis demonstrates the critical role Lys39 plays structurally 

and electrostatically. Activation of the K39E mutant was examined and resulted in only a 

2-fold activation for 2-P-glycerate, PLP and FBP, in comparison with the wild-type (15- 

to 28-fold activation, respectively). The apparent affinity of the K39E mutant for the 2-P-
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glycerate, PLP and FBP activators decreased by 5-, 9- and 23-fold in comparison to the 

wild type. Interestingly, ATP substrate kinetics for the mutant enzyme (K39E) was the 

same for both with and without the FBP activator – the presence of the activator made 

little difference here. The K39E mutant exhibited no activation by the wild type activator, 

NADPH. Moreover, the effect of the AMP inhibitor (for E. coli ADP-Glc PPase) did not 

change (I0.5) in the presence of FBP. A 23-fold decrease in affinity for the FBP activator 

was also observed for the K39E mutant enzyme (Gardiol, Preiss 1990). Gardiol’s 

findings indicate the prominent role of the Lys39 residue and if substituted a hindrance of 

the activation effect of FBP, substrate binding and inhibition process becomes apparent 

for E. coli ADP-Glc PPase. 

Conserved “Gly-X-Gly-(Thr/Ser)-Arg” Motif 

 Sequence alignment reveals a conserved glycine rich region in the N-terminus of 

the sugar nucleotidyl transferases superfamily (Charng, Sheng et al. 1995, Okita, 

Rodriguez et al. 1981, Charng, Kakefuda et al. 1992, Ugalde, Lepek et al. 1998, Uttaro, 

Ugalde et al. 1998, Igarashi, Meyer 2000), along with other important residues in the 

active site of bacterial ADP-Glc PPases (including A. tumefaciens and E. coli), such as 

Tyr114, Asp142 and Lys195 (Kumar, Ghosh et al. 1989, Kumar, Tanaka et al. 1988, 

Frueauf, Ballicora et al. 2003, Hill, Kaufmann et al. 1991). A common amino acid motif 

of this glycine rich region has been found to be GXG(T/S)R (Cupp-Vickery, Igarashi et 

al. 2008, Cupp-Vickery, Igarashi et al. 2005). A similar review of the domains found in 

the active sites of E. coli N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) and 
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the Pseudomonas aeruginosa and E. coli glucose-1-phosphate thymidylyltransferases 

appear to parallel the characteristics found in this motif, in regard to nucleotide phosphate 

binding (Blankenfeldt, Asuncion et al. 2000b, Brown, Pompeo et al. 1999, Sivaraman, 

Sauve et al. 2002, Olsen, Roderick 2001). In 2005, Jin et al. solved the crystal structure of 

the potato tuber ADP-Glc PPase which also revealed a similar motif, thereby verifying 

the importance of these aligned residues (Jin, Ballicora et al. 2005a). Similarly, it has 

been noted that the nucleotide binding may occur in the GXG(T/S)R  motif, which is 

characteristic of substrate binding for the sugar nucleotidyl transferases superfamily 

(Ballicora, Dubay et al. 2005, Figueroa, Kuhn et al. 2013, Jin, Ballicora et al. 2005a, 

Figueroa, Esper et al. 2011a, Ballicora, Erben et al. 2007a, Ballicora, Laughlin et al. 

1995, Figueroa, Esper et al. 2011b). To illustrate the important role of the aforementioned 

residues, Gomez-Casati found that the alanine mutation of the “X” (Arg22) and “R” 

(Arg25) residues of A. tumefaciens resulted in a decrease in activity and ATP substrate 

affinity (Gomez-Casati, Iglesias 2002).  As modelling and previous mutagenesis and 

kinetic analysis in A. tumefaciens ADP-Glc PPase suggests, investigation of the 

GXG(T/S)R motif in the N-terminus of E. coli ADP-Glc PPase would be interesting to 

further define the characteristic of this motif for the bacterial enzymes (Figure 10). 
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Figure 10.  Sequence Alignment of conserved Nterminus Residues of E. coli ADP-Glc 

PPase and comparative enzymes. BioEdit® sequence alignment (Hall 1999) of the E. coli 

ADP-Glc PPase with homologs and consensus alignment. Species and corresponding GI 

Accession No. available in corresponding chart. A consensus of the residues shared with 

the wild-type E. coli ADP-Glc PPase (“Ec_residue#”) are outlined in the alignment and 

in color coordinated text boxes above and below alignment (“Ec_Lys42”;red, 

“Ec_Gly27”, “Ec_Gly28”, “Ec_Gly30”; grey, “Ec_Arg32”; olive, “Ec_Leu33”; teal and 

“Ec_Thr37”; blue). 
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E. coli: ADP-Glc PPase Conserved Arg
32

 and Lys
42

 Residues 

E. coli is a gram-negative, rod-shaped bacteria. Many strains of E. coli are quite 

harmless. However, some can lead to food poisoning and other diseases. The most 

common beneficial strain is that which resides in the gut of its host and provides vitamin 

K (vitamin K2).  Moreover, it creates a balance of bacterial flora, inhibiting extreme 

growth of foreign bacteria. A common method of pathogenesis occurs via transmission of 

E. coli thru fecal matter to the oral cavity. Being a gram-negative bacterium, glycogen 

biosynthesis is the optimal carbon energy source storage method for E. coli. As such, 

experimental review of the E. coli ADP-Glc PPase offers a platform for understanding 

bacterial glycogen biosynthesis and the ADP-Glc PPase. A select number of amino acid 

residues of the E. coli ADP-Glc PPase are possibly important to the catalysis of other 

ADP- Glc PPases. Also, it was noted that the Arginine-32 and the Lysine-42 may 

possibly play a role in the catalytic funtion of the enzyme. These residues lie within the 

catalytic pocket of the E. coli ADP-Glc PPase enzyme and possibly near the phosphoryl 

groups of the ATP. With the use of computational homology modeling programs (such as 

Modeller 9, Swiss PDB Viewer: DeepView®) it is noted that the Arginine-32 and 

Lysine-42 are conserved residues in the active site of many bacterial ADP-Glc PPase 

enzymes. Experimentally, genetic mutations of the Arginine-32 and Lysine-42 sites, 

mutated DNA-vector ligation, cellular sub-cloning of newly synthesized mutated DNA-

vector, protein expression and kinetic characterization – as well as Molecular Dynamic 

Simulations - will clarify its full catalytic function. Ultimately, our goal is to better 
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understand the overall functions of the individual groups of subunits (whether catalytic or 

non-catalytic) of the ADP-glucose Pyrophosphorylase Phylogenetic Tree, in intracellular 

carbohydrate biosynthesis for both photosynthetic (starch or glycogen) and non-

photosynthetic organisms (glycogen). We have found that the Arg
32

 and Lys
42

 residues 

are not only highly conserved, but very important for the whole family of 

nucleotidyltransferases (Figure 10 and Table S1). 
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CHAPTER TWO                                                                                                                         

THE CATALYTIC LYS42 RESIDUE                                                                                         

OF ESCHERICHIA COLI ADP-GLUCOSE PYROPHOSPHORYLASE 

  Comparative modeling of the Escherichia coli ADP-glucose pyrophosphorylase with 

ligands bound in the active site predicted critical interactions for Lys42. In the model, this 

residue interacts with the catalytic Asp142 and the β-phosphorous of the nucleotide 

triphosphate substrate, which constitutes the leaving group in the reaction. Lys42 is highly 

conserved in ADP-glucose pyrophosphorylases known to be catalytic, but absent in plant 

subunits that are catalytically deficient. It is also conserved in other homologues of the sugar-

nucleotide pyrophosphorylase superfamily. To explore its role, we replaced Lys42 in the E. coli 

ADP-glucose pyrophosphorylase by other residues with different physicochemical properties. 

Kinetic analysis of the purified mutants showed kcat decreased more than three orders of 

magnitude compared to the wild type. Other changes in kinetic parameters, such as apparent 

affinities for substrates and allosteric effectors, were less significant. These results show that the 

main role of Lys42 in the ADP-glucose pyrophosphorylase from E. coli is catalytic and 

essential for the enzyme function. 

  To date, it has been discovered  in some plant species and tissues one of the ADP-Glc 

PPase subunits maintain a catalytic role whereas the other has a regulatory function, but a 

defective catalysis (Kuhn, Falaschetti et al. 2009, Yep, Bejar et al. 2004, Ventriglia, Kuhn et al. 

2008, Crevillen, Ballicora et al. 2003). As a consequence of this functional divergence, there 



43 
 

 
 

 

are conserved and possibly important residues in bacterial ADP-Glc PPases that are lacking in 

some plant subgroups. One of these is Lys42 (E. coli), which is not present in the β subunits 

from some non-photosynthetic plant tissues, such as tubers and seeds. At this particular site, 

rather than a Lys there is a Thr residue (Ballicora, Dubay et al. 2005). On the other hand, a 

homologous Lys in the similar position is well conserved in other NDP-sugar 

pyrophosphorylases  (Blankenfeldt, Asuncion et al. 2000, Brown, Pompeo et al. 1999, 

Machtey, Kuhn et al. 2012b). This Lys is only few amino acids upstream from the motif 

GXG(T/S)R proposed to be involved in nucleotide binding (Jin, Ballicora et al. 2005a), and 

conserved in the whole superfamily (Blankenfeldt, Asuncion et al. 2000, Brown, Pompeo et al. 

1999, Jin, Ballicora et al. 2005b, Steiner, Lamerz et al. 2007, Sivaraman, Sauve et al. 2002, 

Koropatkin, Cleland et al. 2005, Pelissier, Lesley et al. 2010, Maruyama, Nishitani et al. 2007) 

(Figure 10, Table S1).  

  In the enzyme family, there is some experimental evidence supporting the importance 

of Lys at this site. However, there has been no thorough experimental analysis to determine the 

role of this residue. Mutation of a Thr to a Lys partially resurrected the activity of a catalytically 

defective β (large) subunit from potato tuber ADP-Glc PPase (Ballicora, Dubay et al. 2005). 

On the other hand, some data from homologous enzymes make the relevance of this residue 

less clear. A single Ala mutant of GlmU (UDP-GlcNAc pyrophosphorylase) in the 

homologous Lys had negligible activity (Mochalkin, Lightle et al. 2007), but another similar 

experiment in another GlmU only reduced the activity 8-fold (Brown, Pompeo et al. 1999). 

Some variants of RmlA (dTDP-glucose pyrophosphorylase) from Salmonella enterica, which 
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have this Lys replaced by Gln (Gln26 according to the deposited structures, PDB accession 

codes 1MP3, 1MP4, 1MP5, 1IIiN, 1IIM), was active enough to be used for synthesis of sugar 

nucleotides (Barton, Biggins et al. 2002, Barton, Lesniak et al. 2001). However, their kcat values 

have not been reported to evaluate the degree of catalytic competency of those variants. 

  Knowing whether Lys42 is important in ADP-Glc PPase and its specific role (catalysis, 

binding, or regulation) is critical to understand the mechanism of the enzyme. Several studies 

have been performed, particularly in the E. coli enzyme, to characterize the role of various 

residues (Hill, Wong et al. 2015, Bejar, Jin et al. 2006, Frueauf, Ballicora et al. 2001). 

However, only Asp142 and Asp276 have been assigned critical roles in catalysis, most likely 

by their ability to chelate the metal cofactor (Frueauf, Ballicora et al. 2001, Bejar, Ballicora et 

al. 2006, Gardiol, Preiss 1990). 

Here, we built a model of the E. coli ADP-Glc PPase with substrates in the active site to survey 

the possible interactions of Lys42 within the active site. We mutated Lys42 to several residues 

with different properties to avoid the dangers of assigning roles based on a single alanine 

mutation as it was previously emphasized (Yep, Kenyon et al. 2008). Based on the models and 

kinetic characterization of the purified mutants, we propose that the major role for Lys42 is 

catalytic.  

To explore the role of the Lys42 residue we utilized a series of methods and 

materials ranging from site-directed mutagenesis, protein expression and purification to 

enzyme kinetics: 
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Materials 

  Strataclone
TM 

Blunt PCR cloning kit was purchased from Agilent Technologies, Inc. 

(Clara, CA). BL21 (DE3) cells were obtained from Novagen. Biochemical reagents were from 

Sigma-Aldrich Co. New England BioLabs Inc. NEB Turbo® Cells, Restriction enzymes, 

Phusion® DNA polymerase, and protein markers were purchased from New England Bio 

Labs.  

Site-Directed Mutagenesis 

  We utilized the pETEC plasmid, a derivative of pET24b (Novagen), for expression 

of the wild-type and mutant ADP-Glc PPases as described before (Ballicora, Sesma et al. 

2002). Using pETEC as a template, site-directed mutagenesis was performed by PCR 

overlap extension with Phusion DNA polymerase as described before (Kuhn, Figueroa et 

al. 2010). Oligonucleotides (Table S2) utilized in PCR site-directed mutagenesis were 

designed using BioEdit® (Hall 1999) and acquired from Integrated DNA Technologies 

(IDT, San Diego). DNA Sequencing to confirm mutations were performed at the University of 

Chicago Cancer Research Center (CRC-DNA Sequencing, Chicago). 

                Expression and Purification of Wild Type and Lys42 Mutant Enzymes                                                      

  Wild type and pETEC mutants were transformed into BL21(DE3) competent cells. 

Cells were induced with 0.5 mM isopropyl-β-D-thiogalactoside (IPTG) and incubated for 16 

hrs at 25ºC. Cultures were harvested, centrifuged at 10,000 g for 20 min at 4 °C and cell pellet 

resuspended in Buffer A (50 mM Hepes, pH 8.0, 5 mM MgCl2, 0.1 mM EDTA, 10% 

Sucrose). The re-suspended samples were placed on ice and sonicated for three 30-s interval. 
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The sonicated samples were then centrifuged at 10,000 g for two 15-min intervals at 4ºC, and 

the supernatants were collected as crude extracts. Purification using DEAE-Sepharose and 

Source15 Q 4.6/100 PE (GE Healthcare Life Sciences) columns were performed via FPLC as 

described (Kuhn, Falaschetti et al. 2009). Wild-type and mutant proteins were purified to 

apparent homogeneity as verified via SDS-PAGE (Figure 11) (Kuhn, Falaschetti et al. 2009). 

Following protein expression and purification 1L of the BL21 (DE3) mutant cell culture 

yielded 2–12 mg of purified protein. Protein concentrations were calculated as described before 

(Asencion Diez, Aleanzi et al. 2014).  

Lys42 Mutants Enzyme Assay - Synthesis (Forward) Direction 

  The assay was performed as described before with minor modifications (Fusari, 

Demonte et al. 2006). Additionally, the Malachite-Green-Ammonium Molybdate solution was 

sterile-filtered via a 12 ml NORM-JECT® Luer-Lock syringe and 32 mm syringe filter with 

0.2 µm Supor® Membrane from PALL® Life Sciences before the addition of Tween20 to 

prevent precipitation. Unless stated otherwise, each reaction tube contained 50 mM Hepes 

buffer (pH 8.0), 7 mM MgCl2, 1 mM Glc-1P, 1.5 mM ATP, 1 mM FBP, 0.5 U/ml 

pyrophosphatase, 0.2 mg/ml of bovine serum albumin, and water.  The reactions were started 

with addition of 10 µl enzyme to reach a final volume of 50 µl.  In a saturation curve for a 

given effector, the concentration was varied while keeping the rest of the mixture constant. 

After 10 min at 37ºC, the addition of 0.4 ml Malachite Green-Ammonium Molybdate-Tween 

20 solution stopped the reaction and the Mg-phosphate complex was stabilized with 25 µl of a 

solution 34% sodium citrate.  
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Figure 11. SDS PAGE Verification: WT vs. Lys42 mutants. FPLC chromatography 

(DEAE and Source15Q - quaternary ammonium; strong anion exchange column) was 

employed for homogenous purification of the WT and mutant E.coli ADP-Glc PPase. All 

protein samples were eluted from column using Buffer B (running a 1M NaCl elution 

gradient to 50%). Additionally, Malachite-Green colorimetric assay screening verified 

collected protein fractions, which were collected, pooled and concentration. SDS-PAGE 

was loaded with 10μL of 1mg/mL for WT and Lys42 mutants, respectively, to verify 

protein purification and samples we utilized the New England Biolabs® protein marker 

#7708S. E.coli ADP-Glc PPase SDS bands show at 50-52 kDa.                                                                       
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An aliquot of 0.25 ml was withdrawn and the A595 was measured with a BioTek EL808 

microplate reader (Winooski, VT). One unit of ADP-Glc PPase activity  

was the production of 1 µmol PPi min
-1

. 

Enzyme Assay – Pyrophosphorolysis (Reverse) Direction 

  The assays in the pyrophosphorolysis direction were performed using a continuous 

enzyme-coupled spectrophotometric assay, with minor differences, as described before 

(Hylton, Smith 1992). The reaction mixture contained 80 mM 4-(2-hydroxyethyl)-1-

piperazinepropanesulfonic acid (Hepps) buffer (pH 8.0), 5 mM MgCl2, 1 mM FBP, 1 mM 

ADP-Glc, 0.6 mM NAD, 10 mM NaF, 0.01 mM glucose 1,6-bisphosphate, 2 units/ml 

phosphoglucomutase rabbit muscle 2 units/ml glucose-6-phosphate dehydrogenase from 

Leuconostoc mesenteroides, 0.2 mg/ml bovine serum albumin and the stated amount of wild-

type or mutant E. coli ADP-Glc PPase. Assays were initiated by adding 10 µl of sodium PPi to 

reach a final volume of 0.150 ml. The final PPi concentration was held constant at 1.4 mM 

NaPPi for ADP-Glc saturation curves. Assays were performed at 37ºC in a 96-well plate and 

the absorbance was measured at 340 nm using a BioTek EL808 microplate reader (Winooski, 

VT). In each reaction, A340 was recorded every 15 s intervals for a total of 20 min. NADH was 

used as an external standard to calibrate the relationship between absorbance and concentration 

of product formation. One unit of enzyme activity was the production of                                               

1 µmol of Glc-1P min
-1
.  
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Calculation of Kinetic Parameters 

  Turnover numbers were calculated per monomer (50 kDa) of enzyme. Therefore, a 

specific activity of 1.2 U/mg was equivalent to 1 s
-1

. The S0.5, A0.5, I0.5 values, and their 

respective standard errors, were calculated by non-linear regression fitting of the data as 

described before (Hill, Wong et al. 2015). Saturation curves were performed at least twice to 

verify reproducibility. All data points were quadruplicates.  

Homology Modeling 

  Homology modeling of the E. coli ADP-Glc PPase monomer bound to substrates was 

performed with the program Modeller 9.11 (Sali, Blundell 1993). The procedure used several 

simultaneous templates, which were the known atomic coordinates of i) E. coli dTDP-Glc 

PPase (RffH) complexed with dTTP and Mg
2+

 (Protein Data Bank code 1MC3) (Sivaraman, 

Sauve et al. 2002), ii) Pseudomonas aeruginosa glucose-1-phosphate thymidylyltransferase 

(RmlA) complexed with thymidine and Glc-1P (Protein Data Bank code 1G0R) (Blankenfeldt, 

Asuncion et al. 2000), iii) S. Enterica RmlA Q83S variant complexed with dATP (Protein Data 

Bank code 3PKP) (Moretti, Chang et al. 2011), iv) S. tuberosum small subunit ADP-Glc PPase 

with both subunit A complexed with ADP and B complexed with ADP-glucose (Protein Data 

Bank code 1YP4) (Jin, Ballicora et al. 2005a), and v) A. tumefaciens ADP-Glc PPase (Protein 

Data Bank code 3BRK) (Cupp-Vickery, Igarashi et al. 2008). Alignment of the target was 

trivial, since the sequence of the E. coli enzyme has no gaps or insertions compared to the A. 

tumefaciens enzyme (56% sequence identity). Afterwards, the alignment of the A. tumefaciens 

enzyme with the other templates served as a guide. In loops in which there is no obvious 
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structural match between the templates, a gap was introduced so the structural information was 

inherited only from the A. tumefaciens and potato tuber enzymes. The only two exceptions 

were in loops 103-115 and 232-243 in which the structure of the A. tumefaciens enzyme was 

not resolved. In these two regions, the target was only aligned to the potato tuber ADP-Glc 

PPase. The ligands Mg
2+

 and dATP were inherited from the 3PKP and glucose-1-P was 

inherited from the phospo-glucose moiety of the ADP-Glc bound to the subunit B of the potato 

tuber ADP-Glc PPase. The final model was validated with the DOPE score of Modeller (Shen, 

Sali 2006) and the program Verify3D (Luthy, Bowie et al. 1992).   

Conservation of Lys42 

  An amino acid sequence alignment of  E.coli ADP-Glc PPase and twenty 

representative species of bacterial ADP-Glc PPases taken from diverse branches of the 

phylogenetic tree (Machtey, Kuhn et al. 2012a), along with S. tuberosum (potato tuber, small 

subunit) (Jin, Ballicora et al. 2005a), E. coli GlmU (N-acetylglucosamine 1-phosphate 

uridylyltransferase)  (Brown, Pompeo et al. 1999) and E. coli RmlA (glucose-1-phosphate 

thymidylyltransferase) (Sivaraman, Sauve et al. 2002) was created to highlight the conserved 

residues in the N-terminal region (Table S1). The first 80 residues of the E. coli ADP-Glc 

PPase were aligned with the twenty-three homologues and the consensus was outlined in black. 

It has been previously noted that residues located in the N-terminus of the ADP-Glc PPases 

have pertinent structural implications in the matters of allosteric regulation and substrate 

binding, and this structure-function characteristic has been studied in E. coli  and A. 

tumefaciens ADP-Glc PPase (Bejar, Ballicora et al. 2006, Gomez-Casati, Igarashi et al. 2001). 
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Lys42 with an additional consensus of Gly28, Gly30, and Arg32 is conserved in bacteria, 

plants, and other members of the superfamily (RmlA and GlmU) (Figure 10).  

Modeling of Lys42 Interactions 

  The structure of a bacterial ADP-Glc PPase and a plant subunit are available, but 

unfortunately, one is in absence of substrates (Cupp-Vickery, Igarashi et al. 2008) and the other 

has ATP bound in a non-productive conformation (Jin, Ballicora et al. 2005a). For that reason, 

we built models using information available from others enzymes of the superfamily as 

described in Materials and Methods. Modeling of the E. coli ADP-Glc PPase with a nucleotide 

triphosphate (dATP), Glc-1P, and Mg
2+

 ligands revealed the possible interactions of Lys42. 

After running 100 different models with Modeller 9.11 we obtained an “ensemble” of 

conformations that surveyed the mobility the side chain provides. The clearest pattern extracted 

from the analysis was that Lys42 is in direct contact with Asp142. In 70% of the models, the 

distance between the ε-amino group of Lys and one of the oxygen atoms from the carboxylate 

was less than 3.5 Å. This is of significant importance because Asp142 is a catalytic residue 

proposed to chelate Mg
2+

. In 45% of the models one oxygen atom of Asp142 is less than 3.5 Å 

from the Mg
2+

 cation. The only other possible interaction that Lys42 has is with the nucleotide 

triphosphate substrate. In 10% of the models the ε-amino group is less 3.5 Å from the oxygen 

bridging the α- and β-phosphorous groups, which is the leaving atom in the reaction. Figure 12 

depicts the residues that may participate in a network of with Lys42. The importance of these 

interactions raises the hypothesis that Lys42 is critical for catalysis. 
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Figure 12. Homology model of the E. coli ADP-Glc PPase with substrates bound. Model was 

built as described in Materials and Methods. Side chains of Lys42 and previously described 

catalytic residues are shown. The network of interactions (Lys42/Asp142/Mg
2+

/Asp276) is 

depicted above. 
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                                                     Effect of Lys42 Mutations on kcat 

  To explore the role of Lys42 we mutated it to several other amino acids with different 

characteristics. The most striking effects on the kinetic properties were on the kcat values. 

Replacing Lys42 by any other residue decreased kcat at least three orders of magnitude 

compared to the wild type (Figure 13 and Table 4). The mutants K42E and K42T had the 

lowest turnover with a dramatic ~3300- and ~4000-fold decrease, respectively (Figure 13). 

Interestingly, replacing Lys42 to another positively charged side chain (K42R) did not preserve 

the activity and also had a dramatic decrease in turnover number. This indicated that charge, at 

this position, is not the only factor needed for an effective catalysis. All the other residues, 

whether polar, hydrophobic, small, or bulky had an even lower activity (Figures 11 and Table 

4).  Some of the other kinetic parameters were affected by the mutations, but they were not as 

dramatic as the effects observed on kcat.  

    Effect of Lys42 Mutations on Apparent Affinity of Substrates 

  Apparent affinities for the E. coli ADP Glc PPase substrates were determined from 

saturation curves. Four mutants (K42Q, K42R, K42C and K42E) appeared to have similar 

affinities for the ATP substrate as the wild type (Table 1). On the other hand, K42T and K42L 

mutants exhibited a 2-fold decrease in S0.5 for ATP. The alanine mutant displayed a nearly 2.5-

fold decrease. Hill values for all mutants were within range of the wild type (n = 1.5), which 

indicates that the mutations did not significantly affect the homotropic cooperativity in ATP 

binding. Glc-1P apparent binding affinity was only slightly affected by different side chains at 

position 42.  There was a nearly 2-3 fold increase in S0.5 for Glc-1P for all mutants, with the 
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exception of K42T which displayed the highest increase (~4-fold) of S0.5 for Glc-1P (Table 1, 

Figures 14 and 15). 

Effect of Lys42 Mutations on Mg
2+

 Cofactor Kinetics 

  ADP-Glc PPase enzymes need the presence of the divalent magnesium cation as a 

cofactor. Saturation curves of this metal are generally sigmoidal implying a strong 

cooperativity. Here, we observed that the cooperativity of cofactor binding decreased in all 

mutants, which was evident from a decreased in the Hill coefficients (Table 1 and Figure 16). 

All mutations produced enzymes with a similar S0.5 for Mg
2+

, except K42A (0.30 mM) and 

K42T (0.90 mM) (Table 1). The affected cooperativity could be an indirect response to the 

Lys42 mutation, as it has been noted above that Lys42 interacts with Asp142, a residue that has 

been proposed to chelate the cofactor in ADP-Glc PPase enzymes (Figure 12) (Frueauf, 

Ballicora et al. 2001) .  

Effect of Lys42 Mutations on Fructose-1,6-bisphosphate Activation 

Kinetic analysis revealed that the Lys42 mutants have a lower apparent affinity for FBP 

activator in comparison with the wild type (A0.5 = 0.049 mM) (Table 2 and Figure 16). The 

apparent affinities for the Lys42 mutants decreased 1.6 to 8-fold, with the exception of K42A 

(S0.5 = 0.037 mM). Almost one order of magnitude decrease in activator affinity was noted for 

the K42E mutant (S0.5 = 0.397 mM). There was a certain degree of variability on the activation 

fold (Vm/Vo), which is the activity in presence of saturating concentrations of activator 

compared to the activity in its absence. This may reflect an effect on the ratio of activated/non-

activated forms, or R/T forms according to the MWC model of allosterism (Fersht 1999)
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Figure 13. Specific activity and kcat of E.coli ADP-Glc PPase variants in the synthesis direction. 

Specific Activity (U/mg) and kcat (s
-1

) values were determined in the presence of saturated 

conditions of substrates (ATP and Glc-1P) and activator (FBP) as described in Materials and 

Methods. A mean value calculated from three independent experiments. 
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Figure 14. ATP Saturation Curves for Lys42 mutants of E. coli ADP-Glc PPase in the 

synthesis direction. Specific Activity (U/mg) and ATP substrate concentration (mM). All 

enzymes were assayed at varying dilutions for optimal kinetic analysis. 
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Figure 15. Glc-1P Saturation Curves for Lys42 mutants of E. coli ADP-Glc PPase in the 

synthesis direction. Specific Activity (U/mg) and Glc-1P substrate concentration (mM). All 

enzymes were assayed at varying dilutions for optimal kinetic analysis. 
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Figure 16. Mg
2+

 Saturation Curves for WT and Lys42 mutants of E. coli ADP-Glc PPase in the 

synthesis direction.  Specific Activity (U/mg) and Mg
2+

 (cofactor) concentration (mM); (A) 

WT and (B) Lys42 Mutants. All enzymes were assayed at varying dilutions for optimal kinetic 

analysis. 
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A lower activation fold means a lower maximum response to the activator, which could be 

caused by a higher proportion of active forms in solution or that the activated form is less 

effective.  K42R mutant have a similar activation fold (Vm/Vo) than the wild type (18-fold), with 

Leu having the lowest (2-fold) (Figure 17 and Table 2). In all cases, the ability of the enzymes 

to respond to FBP was preserved. But clearly, if a positive charge was no present at this site, the 

overall effect was altered, at least in part. 

  Effect of Lys42 Mutations on Adenosine Monophosphate Inhibition 

  All mutants preserved the sensitivity to AMP inhibition with the only exception of 

K42T. K42R exhibited a slightly higher apparent affinity to AMP inhibition (I0.5 = 0.026 mM), 

but within the range of the wild type (I0.5 = 0.080 mM). The rest of the mutants displayed only 

an increase in I0.5 from 3- to 5-fold. None of the Lys42 mutants were completely inhibited by 

AMP at saturating concentrations (V∞/Vo > 0), which is a well-known behavior of the wild-type 

enzyme (Bejar, Ballicora et al. 2006) (Figure 18 and Table 2). 

Effect of Lys42 Mutations on the Pyrophosphorolysis (Reverse) Direction  

As the ADP-Glc PPase reaction is reversible in vitro, we explored whether the mutations 

affected the kinetic parameters in the (non-physiological) pyrophosphorolysis direction for 

ADP-Glc and PPi (substrates in the reverse direction). As it was observed in the synthesis 

direction, the most dramatic effect was on kcat (Vm). For the wild type, the Vm was 42 or 60 s
-1
 

for the saturation with PPi or ADP-Glc, respectively. Mutations decreased Vm 3 to 4 orders of 

magnitude, but the apparent affinity for either substrate was not significantly changed. Some 

mutant enzymes displayed a slightly higher or lower Km (Table 3). Overall, mutating the Lys42
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Figure 17. FBP Activation Curves Lys42 Mutants E.coli ADP-Glc PPase. All enzymes were 

assayed at varying dilutions for optimal kinetic analysis. 
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Figure 18. AMP Inhibition Curves Lys42 Mutants E.coli ADP-Glc PPase. All enzymes were 

assayed at varying dilutions for optimal kinetic analysis. 
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residue yielded is a decrease in activity in the reverse direction, which also highlights the 

significant role of this residue in catalysis in both directions (Figures 19 and 20).
 

Characterization and Catalytic Properties of Lys42 Residue                                     

of E.coli ADP-Glc PPase 

Homology modeling predicted Lys42 interacts with the oxygen bridging the α- and 

β-phosphorous groups of the ATP substrate, as it is also observed in the crystal structure 

in other members of the superfamily (RffH and RmlA). That interaction would make PPi 

a better leaving group by stabilizing a developing negative charge in the transition state. 

This implies a critical role for Lys42 in agreement with computational studies on the 

UDP-Glc PPase from Leishmania major (Führing, Cramer et al. 2013). That distant 

eukaryotic homologue (12 % identity) catalyzes the same chemistry, has a relatively 

similar fold, and it shares few conserved residues in the active site (though some critical 

ones are different). In the simulations of that study, the interaction of Lys95 with the 

nucleotide β-phosphorous was important to direct the PPi to its exit channel (Führing, 

Cramer et al. 2013). In addition, a single K95A mutant had a remaining activity of 0.5% 

in standard conditions; but unfortunately, no other characterization was performed 

(Steiner, Lamerz et al. 2007). In the crystal structure of L. major UDP-Glc PPase bound 

to an analog of UTP, the distance between the nitrogen of the ε-amino group of Lys95 

and any atom of the β-phosphorous is longer than 6.3 Å (PDB code 4M28). However, 

during the simulations those atoms got closer.  
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Figure 19. PPi Substrate Saturation Curves Lys42 Mutants in the pyrophosphorolysis direction. 
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Figure 20. ADP-Glc Substrate Saturation Curves Lys42 Mutants in the pyrophosphorolysis 

direction. 
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The position of Lys42 in our E. coli ADP-Glc PPase models is compatible with a 

catalytic role as it was postulated for Lys95 from L. major UDP-Glc PPase.  

Site directed mutagenesis and kinetic characterization confirmed the critical role of 

Lys42. We observed a dramatic decrease of more than three orders of magnitude in kcat 

and kcat/Km (or the analogous kcat/S0.5) for all substrates in all mutants in both the 

forward (Table 4) and reverse direction (Figures 13-19, Tables 1-3). The effects on the 

apparent affinities for all substrates were relatively minor. However, there was a 

noticeable change on the cooperativity for the cofactor. This is explained by an 

interaction between Lys42 and Asp142, which would indirectly affect the chelation of 

Mg
2+

. The effects of some mutations on the allosteric regulators deserve further analysis, 

but the effects were not 16 comparable to the impact the mutations had on catalysis. With 

the exception of K42A, all mutations decreased the apparent affinity for FBP, but less 

than one order of magnitude (Table 2). Interestingly, previous studies showed that there 

were some secondary effects on FBP affinity when Asp142 and Asp276 were mutated. 

For instance, there was a 12.8- and 16-fold increase in A0.5 for the D276N and D142E 

mutants, respectively (Frueauf, Ballicora et al. 2001, Bejar, Ballicora et al. 2006). Still, 

the effect of those site-mutations were mainly on catalysis (up to three to four orders of 

magnitude) (Frueauf, Ballicora et al. 2001, Bejar, Ballicora et al. 2006). Lys42 is located 

near Lys39, which is involved in the binding of the activator FBP (Gardiol, Preiss 1990). 

It is possible that changes at Lys42 site may cause a slight perturbation in the neighboring 

Lys site, or that Lys42 is at least partially involved in the communication between the  
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Table 4.  kcat and kcat/S0.5 for ATP and Glc-1P (substrates) of WT and Lys42 mutant E.coli 

ADP-Glc PPase enzymes, in the synthesis direction. 

 

Enzyme
a
 

kcat
 b

 
 

    ATP Glc-1P 

 
-fold  

decrease
c
 

kcat/S0.5 kcat/S0.5 

 
s

-1
   s

-1
mM

-1
 s

-1
mM

-1
 

WT 103 ± 11  1  515 3814 

K42Q 0.140 ± 0.006 736  0.7 2 

K42A 0.098 ± 0.002 1051  0.2 2 

K42R 0.053 ± 0.001 1932  0.2 0.9 

K42L 0.041 ± 0.002 2512  0.5 0.6 

K42C 0.040 ± 0.002 2575  0.3 0.6 

K42E 0.032 ± 0.002 3312  0.3 0.7 

K42T 0.026 ± 0.002 3962  0.3 0.2 
a
 Enzymes were purified to homogeneity and assays were performed at 37 °C as 

described under “Experimental Procedures.”  
b
 kcat values were calculated from curves via assays performed in the presence of                                                             

saturated substrates (ATP and Glc-1P) and activator (FBP). Assays were averaged                                                               

from three independent experiments. 
c
 Fold decrease was calculated using wildtype enzyme activity  as a reference. 
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regulatory and the active site. It has been shown that a major effect of the activator is to 

affect the affinity for the nucleotide, and that residues involved in that allosteric signal 

are in the loop Pro103-Arg115. However, we cannot discard a secondary allosteric effect 

on kcat in which the network of interactions Lys42/Asp142/Mg
2+

/Asp276 participate 

(Figure 12).  

There are some alternatives about the mechanism by which Lys42 exerts its role. 

According to previous definitions of potential catalytic roles (Holliday, Mitchell et al. 

2009), Lys42 may be either 1) a “stabilizer” that electrostatically stabilizes the formation 

of negative charge in the products, 2) a “proton shuffler” donating a proton to PPi making 

it a better leaving group, 3) an “activator” by positioning Asp142 to chelate Mg
2+

, or a 

combination of those three. It is clear that the main role of Lys42 is not related to 

substrate binding, and considering the low kcat of the mutants, it seems to be a catalytic 

residue falling under any of the above categories (Holliday, Almonacid et al. 2007). 

Lys42 must be selectively stabilizing the transition state based on the fact that all 

mutations selectively decreased kcat compared to any other parameters for the substrates 

in any direction.  Comparison with nucleic acid polymerases may provide interesting 

insights into the specific role of Lys42. It seems there are certain mechanistic similarities 

between bacterial NDP-sugar PPases and 17 nucleic acid polymerases in spite of their 

structural differences. In nucleic acid polymerases, a nucleophile (-OH group from a 

ribose, rather than a phosphorous) attacks the α-phosphorous of a nucleotide triphosphate 

to release PPi as a product. In addition, NDP-sugar PPases seem to bind two metals as 
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well (Moretti, Chang et al. 2011), and at least the one that interacts with the α-

phosphorous is also surrounded by two critical Asp residues. Recently, it was postulated 

that a Lys residue in several nucleic acid polymerases serves as a general acid to stabilize 

the β-phosphorous of NTP to make the product (PPi) a better leaving group (Castro, 

Smidansky et al. 2009). In agreement, the pH curve for those enzymes shows a sharp 

decrease around pH ~10. In the E. coli ADP-Glc PPase the activity falls around ~9.5 

(Preiss, Shen et al. 1966), which is also compatible with a Lys residue with a slightly 

altered pKa. Due to the environment of Lys42, this pKa could be different from the 

expected value in solution (Isom D.G., Castañeda C.A., Cannon BR and García-Moreno 

B. 2011). Lys42 is surrounded by several non-polar side chains (Leu33, Thr37, Val45, 

Ile53, and Val277) that would lower the pKa of the ε-amino group and enhance the 

putative acid catalysis. On the other hand, the interaction with Asp142 would have the 

opposite effect; but, since Asp142 most likely chelates Mg
2+

, its influence may be 

dampened (Figure 15). More experiments are needed to confirm whether the catalytic 

role of Lys42 is a general acid. However, it may not be simple to dissect an individual 

role for Lys42 since it may be part of a network of interactions that stabilize the transition 

state. Computational simulations on the E. coli ADP-Glc PPase may provide more 

insights into the specific role of Lys42 in catalysis. 
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CHAPTER THREE                                                                                                                       

THE IMPORTANT ROLE OF THE ARG32 RESIDUE                                                                                                               

AND ANALYSIS OF THE ARG32/LYS42 DOUBLE MUTANTS                                                       

IN E.COLI ADP-GLUCOSE PYROPHOSPHORYLASE 

  ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the regulatory enzyme of the 

starch biosynthesis pathway in plants and glycogen in bacteria. It catalyzes the synthesis of the 

glucosyl donor ADP-glucose. Some of the residues are conserved in the bacterial ADP-Glc 

PPases, but are not in some plant forms. One of them is Arg32 in the Escherichia coli 

ADP-Glc PPase. To explore the overall role of this residue, we performed site-directed 

mutagenesis, kinetic, and computational analysis (Molecular Dynamic Simulations). 

There are notably two conserved residues present in the bacterial ADP-Glc PPase that are not 

located in all heterotetrameric plant ADP-Glc PPase that may have important roles (Arg32 and 

Lys42 in E. coli) (Ballicora, Iglesias et al. 2003, Ballicora, Iglesias et al. 2004, Ballicora, 

Erben et al. 2007). Several important residues for substrate binding and catalysis of the 

bacterial ADP-Glc PPase have been characterized (Ballicora, Iglesias et al. 2003, Ballicora, 

Iglesias et al. 2004, Gomez-Casati, Igarashi et al. 2001, Bejar, Jin et al. 2006, Frueauf, 

Ballicora et al. 2001). The specific role of Arg32 has not been investigated despite the 

evidence of its importance. This residue is highly conserved in the family with the exception 

of some plant L subunits (some of those may be catalytic deficient (Ballicora, Dubay et al. 

2005, Crevillen, Ballicora et al. 2003, Ventriglia, Kuhn et al. 2008)). Arg32 belongs the motif 



 

73 
 

 
 

  

GXG[T/S]R., which is conserved in the superfamily of sugar-phosphate nucleotidylyl 

transferases (Blankenfeldt, Asuncion et al. 2000, Brown, Pompeo et al. 1999, Jin, Ballicora et 

al. 2005, Sivaraman, Sauve et al. 2002, Koropatkin, Cleland et al. 2005, Pelissier, Lesley et al. 

2010). On the other hand, Arg32 is not present in the eukaryotic UDP-Glc PPase (Steiner, 

Lamerz et al. 2007). Previously, replacement of Arg25 (Arg32 in E. coli) by Ala in the 

Agrobacterium tumefaciens enzyme highlighted the importance of this residue (Gomez-

Casati, Igarashi et al. 2001). However, a systematic study about the role of this residue has not 

been performed. 

  Here, our mutagenesis and kinetic studies, modeling, and molecular dynamics explored 

the crucial role of the Arg32 in E. coli ADP-Glc PPase interactions with the ATP and Glc-1P 

substrates. Results highlight the importance, not only of the charge, but also of the 

guanidinium group of the Arg32 residue in E. coli ADP-Glc PPase. Molecular Dynamics 

further detail the role of the Arg32 side chain length and guanidinium moiety as it outlines 

substrate positioning in the WT and mutant E. coli ADP-Glc PPase. The previous illustrates 

the significance of this particular residue in the catalysis of the ADP-Glc PPase from E. coli.                                                     

Materials 

  Strataclone
TM

 Blunt PCR cloning kit was purchased from Agilent Technologies, Inc. 

(Clara, CA). BL21 (DE3) cells were obtained from Novagen. Glc-1P, ATP, AMP, FBP, 

MgCl2 and inorganic pyrophosphatase were from Sigma. NEB Turbo® Cells, Restriction 

enzymes, Phusion® DNA polymerase were purchased from New England Bio Labs (Ipswich, 

MA). The Source 15Q 4.6/100 column was acquired from GE Healthcare Life Sciences.                             
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Site-Directed Mutagenesis 

  The pETEC plasmid was the template used for site-directed mutagenesis of E. coli wild 

type and mutants. This plasmid is a derivative of pET-24a from Novagen with the coding 

region of E .coli ADP-Glc PPase. Site directed mutagenesis was performed by PCR overlap 

extension as described before (Kuhn, Figueroa et al. 2010). Oligonucleotides for both Arg32 

and Arg32/Lys42 mutants were designed using BioEdit® software (Hall 1999) and purchased 

from Integrated DNA Technologies (IDT, San Diego) (Tables S3 and S4). Verification of 

coding regions of the mutated plasmids was confirmed via automated cycle sequencing 

reactions at the University of Chicago Cancer Research Center.                                                                                    

                 Expression and Purification of WT and Arg32 Mutant Enzymes 

  Plasmids were transformed into BL21(DE3) cells for expression. Transformed 

cells were induced at an OD600 of 0.6-0.8 with 0.5 mM isopropyl-β-D-thiogalactoside, 

followed by an incubation period of 16 hrs at 25ºC. The culture was harvested, 

centrifuged at 10,000 g for 20 min at 4 °C, and the precipitate was resuspended in Buffer 

A (50 mM Hepes, pH 8.0, 5 mM MgCl2, 0.1 mM EDTA, 10% sucrose). The re-

suspended samples were sonicated on ice three times for 30 s, centrifuged at 15,000 g 

for two 15-min intervals at 4ºC, and the supernatants were collected as crude extracts. 

Proteins were purified via FPLC using DEAE-Sepharose and Source15Q 4.6/100 PE 

columns (Figure 23) to homogeneity and verified via SDS-PAGE as described before 

(Kuhn, Falaschetti et al. 2009) . Next, 1L of a transformed BL21(DE3) cell culture 

yielded 2–12 mg of desalted purified protein, respectively (Figures 21-22).          
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Figure 21. SDS PAGE Verification: WT vs. Arg32 mutants. SDS-PAGE was loaded with 

10μL of 1mg/mL for WT, R32A, R32C, R32E, R32K, R32L, and R32Q, respectively, to 

verify protein purification and samples (50kDa per subunit of the homotetrameric 

enzyme) for the E.coli ADP-Glc PPase WT and mutants with New England Biolabs® 

protein marker #7708S.  
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Figures 22. SDS PAGE Verification: WT vs. Arg
32

/Lys
42

 mutants. All proteins were 

purified as described in “Methods and Materials”.                                                                                                                                                                                                    
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Figure 23. FPLC Purification of WT enzyme via (SourceQ) column. Source15Q (quaternary 

ammonium; strong anion exchange column) FPLC chromatograph of WT E.coli ADP-Glc 

PPase. All protein samples were eluted from column with Buffer B (1M NaCl elution 

gradient). Malachite-Green colorimetric assay screening verified collected protein fractions. 
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Arg32 Mutants Enzyme Assay – Synthesis Direction 

  To measure the specific activity, as well as other enzyme kinetics, a colorimetric 

assay was utilized: Malachite Green Assay (Fusari, Demonte et al. 2006). Each kinetic 

reaction tube contained 50mM HEPES buffer (pH 8.0), 7mM MgCl2, 1mM Glucose-1-

Phosphate, 1.5mM ATP, 1mM Fructose-1,6-BisPhosphate, 0.0005 U/µl Pyrophosphatase, 

0.2 mg/ml of Bovine Serum Albumin (BSA), and millipore water to 40µl.  The reaction 

tubes (with “premix” reagents) were placed in a 37ºC water bath and reaction begin with 

the addition of 10µl diluted enzyme. After 10min, the kinetic reaction was stopped with 

the addition of 400 µl Malachite Green-Ammonium Molybdate-Tween20 solution and 

MG-Phosphate complex (in reaction tube) stabilized with 34% Sodium Citrate. 

Measurements of 250µl aliquots (in 96-well microplate) were taken at a λ of 595nm, 

using the BioTek EL808 microplate reader (Winooski, VT). Absorbance were converted 

to Activity (nmol/min) and Specific Activity (U/mg) respectively and S0.5, A0.5 and I0.5 

(substrate, activator and inhibitor at 50% of maximal velocity) values were calculated 

after fitting in the Origin versions 7.5 and 8.0 with Hill equations for Glc-1P and ATP 

(S0.5) (y=Vmax (X n /K n +X n) and FBP and AMP Activation and Inhibition curves (y = 

Start+ (End – Start) * (X n /K n +X n) (Frueauf, Ballicora et al. 2001, Fusari, Demonte et 

al. 2006). 
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Enzyme Assay – Pyrophosphorolysis Direction 

Kinetic affinity in the reverse direction for both ADP-Glc and PPi substrates was 

determined using a coupled spectrophotometric assay. The reaction was carried out in 15s 

intervals for a total of 20min. The reaction mixture consisted of 80 mM HEPPS buffer 

(pH 8.0), 5 mM MgCl2, 1mM Fructose-1,6-bisphosphate, 1 mM ADP-Glc, 0.6mM 

NAD
+
, 10mM NaF, 0.01 mM Glucose 1,6-bisphosphate, 2 units/ml Phosphoglucomutase, 

2 units/ml Glucose-6-phosphate Dehydrogenase, 0.2 mg/ml BSA (bovine serum 

albumin), and enzyme in a total volume of 0.14 ml. For both the ADP-Glc and PPi 

varying assays, the reactions were initiated with the addition of 10µL of NaPPi (at 

varying final concentrations from 0-1.4mM NaPPi in the PPi kinetics; 1.4mM NaPPi  for 

ADP-Glc kinetics), for a final volume of 0.15mL per reaction well. All 

Pyrophosphorolysis reactions were performed at 37ºC in a 96-well plate and read at 

340nm using a the BioTek EL808 microplate reader (Winooski, VT), which measured the 

nmols of NADH produced (with 1nmol NADH being the standard as the NAD
+
 reactant 

is reduced to NADH in the presence of the pyrophosphorolysis reaction that forms Glc-

1P) via the coupled assay (Frueauf, Ballicora et al. 2001, Kuhn, Falaschetti et al. 2009, 

Bejar, Ballicora et al. 2004). 

Methods for Circular Dichroism Spectra Analysis 

          Circular Dichroism analysis on wild type and mutant E. coli ADP-Glc PPases 

enzymes (0.33mg/mL) was performed using OLIS DSM 20 Hummingbird (Olis, Inc.)  to 

determine whether a disturbance of the secondary structure of the E. coli ADP-Glc PPase 
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enzyme occurred as a result of PCR site-directed mutagenesis on site-32. A solution 

containing 5mM MgCl2, 0.1mM EDTA (ethylenediaminetetraaceticacid) and water was 

utilized to store enzyme during CD analysis. Using a 1cm path length CD spectra data 

points were measured from 260nm to 200nm at 20ºC and adjusted for any buffer effect. 

The molar ellipticity (θ) of the samples were calculated using the following equation: 

                                                   θ = mdeg*MRW/ (10*L*C) 

Where mdeg is the measurement of spectra data points in millidegrees, MRW is the 

measure of 200kDa over 432 residues for the average molecular weight (g/mol) of each 

residue of the E. coli ADP-Glc PPase protein, C is the concentration of protein (mg/mL) 

in CD analysis sample measured and L is the 1cm path length of the cell. (Greenfield 

2006, Hwang, Hamada et al. 2007, Kelly, Price 2000)  

        CD Analysis of the E. coli ADP-Glc PPase WT and Arg32 Mutant Enzymes 

             Examination of CD Spectra Data Analysis revealed no marked disturbance in the 

secondary protein structure for the ADP-Glc PPase mutants (versus that of the WT) 

were noted.                                                                                         

                                                     Computational Methods 

  Using the crystal structure of the small subunit of the Solanum tuberosum ADP-Glc 

PPase complex with ATP (1YP3) (Jin, Ballicora et al. 2005) and Agrobacterium tumefaciens 

ADP-Glc PPase (3BRK) (Cupp-Vickery, Igarashi et al. 2008) as templates, the first E. coli 

homotetramer model was generated using Modeller (Figures 24a-d) (Sali, Blundell 1993) as 

described before (Figueroa, Esper et al. 2011).  Of the four subunits, only two had ATP, 
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subunit A and subunit C.  Arg32 and corresponding residues in all of the subunits was 

changed to the following residues: Lys, Ala and Glu.  Four structures were generated (WT and 

mutants) and two Mg
2+

 ions were placed in the active site for all four subunits.  The protein, 

substrates and ions were placed in a TIP3 water box that extended at least 10 Å beyond the 

protein in all directions and 0.1 M NaCl adjusted to neutralize the charge in the water box. 

Placement of the substrates, residue mutations, and the generation of the water box were all 

assembled using the molecular graphics program VMD  (Humphrey, Dalke et al. 1996).  

  Each molecule was brought to equilibrium using the molecular dynamics program 

NAMD (Phillips, Braun et al. 2005). The equilibration procedure involved energy 

minimization with and without restraints on the protein coordinates (3000 steps each), slow 

heating from 10 to 310 K (30,000 steps), pressure and temperate equilibration using a 

Langevin piston (10,000 steps) and unrestrained dynamics for 100,000 steps before data was 

acquired. Periodic boundary conditions were used. The cutoffs for non-bonding (van der 

Waals and electrostatic) interactions were 12 Å. The switch distance was 10 Å, and 1.0 1-4 

scaling factor was used. All calculations were done using CHARMM 27 parameters 

(Mackerell, Feig et al. 2004). Molecular dynamic simulations (10 ns) were created using 

NAMD for the wild type and the three mutants of each subunit.                                                                                                                                                                          

  A second model of the E. coli ADP-Glc PPase was generated by using the crystal 

structure of the small subunit of the potato tuber ADP-Glc PPase complex with ADP-glucose, 

1YP4 (Jin, Ballicora et al. 2005) and 3BRK (Cupp-Vickery, Igarashi et al. 2008)  as templates.  

In this model, one of the four subunits, B, had ADP-Glucose, which was replaced by ATP and 
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Glc-1 Phosphate.  Two other subunits, A and C, contained ADP, which remained in the MD 

simulations.  As earlier, residue 32 and corresponding residues were changed to Lys, Ala, and 

Glu.  The structure was enclosed in a water box and was brought to equilibrium and 10 ns of 

molecular dynamics were generated.  The root mean square deviation (RMSD) plots and root 

mean square fluctuations were generated using a standard script in VMD (Humphrey, Dalke et 

al. 1996) .       
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Figure 24. Homology Models of the ADP-Glucose Pyrophosphorylase homotetramer 

with ATP via VMD simulation.  A) Model 1 of the “open” conformation of the E. coli 

ADP-Glucose Pyrophosphorylase homotetramer with ATP. ATP molecules are shown in 

Subunit A (blue) and C (gray) and two Mg
2+

 ions in each subunit (green). B) Detailed 

view of the putative active site in subunit A (one of the two subunits that has ATP 

substrate placed in the predicted active site) of model 1 of ADP-Glucose 

Pyrophosphorylase with two Mg
2+

 ions (green) and the Arginine residue under 

investigation highlighted in yellow. C) Model 2 of the ADP-Glucose Pyrophosphorylase 

homotetramer in the “closed” conformation with ATP and Glc1P substrates in complex. 

ATP and Glc1P  substrates are shown placed in Subunit B (red), ATP molecules in 

Subunit A (blue) and C (gray) and two Mg
2+

 ions in each subunit (green). D) Detailed 

view of the putative active site in subunit B of model 2 of ADP-Glucose 

Pyrophosphorylase with ATP, Glc1P, and two Mg
2+

 ions (green) in complex.  The 

arginine under investigation is highlighted.                                                                                                                        
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Effect of Arg32 and Arg32/Lys42 Mutations on kcat   of E. coli ADP-Glc PPase 

  To explore the overall role of Arg32 and evaluate the importance of the guanidinium 

group, we replaced it with Lysine (R32K, -amino group), Alanine (R32A, - methyl group), 

Cysteine (R32C, -sulfide group), Glutamate (R32E, - carboxylate group), Glutamine (R32Q, -

amide group; neutral; polar) and Leucine (R32L, -hydrophobic side chain) via site directed 

mutagenesis, and the specific activity was measured. The wild type E. coli ADP-Glc PPase 

had a maximum velocity of 124 (U/mg), whereas the alanine mutant (R32A) lacking the 

electrostatic capabilities of the guanidinium group displayed a specific activity of 1.56 (U/mg) 

– an apparent 79-fold decrease in activity. The leucine mutant which contains a bulkier 3-

carbon side chain decreased the Vm to 0.65 (U/mg), which was 191-fold lower. The glutamine 

(R32Q) and glutamate (R32E) mutants provided information about the importance of polarity, 

being both of similar size but with neutral or opposite charge (negative), respectively. The 

R32Q mutant displayed a Vm of 1.58 (U/mg), a 78 fold decrease in activity where the R32E 

mutant had a Vm of 0.038 (U/mg), with the highest decrease in specific activity (3263-fold). 

The R32C mutant was at the same level of R32A exhibiting a specific activity of 2.14 (U/mg), 

a 58 fold decrease in activity. The mutant R32K had the highest of activity among the mutants 

at 10.6 (U/mg) – only a 12-fold decrease  –  illustrating the importance of the positively 

charged side chain at residue 32 of the  E. coli WT ADP-Glc PPase (Figure 25 and Table 6).  

Lower kcat values were observed for Arg32/Lys42 mutants, with the lowest as R32K/K42R 

(Figure 26 and Table 13).                       
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Figure 25. kcat and Specific Activity of E.coli WT and mutant ADP-Glc PPases in the 

synthesis direction.  
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Figure 26. Comparison: Specific Activity and kcat of Lys
42

 and Arg
32

/Lys
42

 mutant E.coli 

ADP-Glc PPase enzymes. All Arg
32

/Lys
42

 enzymes were purified to homogeneity and 

assayed as the WT and Lys
42

 mutants, as described under “Experimental Procedures.” 

Similarly, the Specific Activity (U/mg) and kcat (s
-1

) values were determined in the 

presence of saturated conditions of substrates (ATP and Glc-1P) and activator (FBP), and 

a mean value calculated from three independent experiments. The Arg
32

/Lys
42 

mutants 

were five orders of magnitude lower than the WT and 3 to 10-fold lower activity than 

their Lys
42

 counterparts (i.e. K42A; 0.118 (U/mg) and R32A/K42A; 0.014 (U/mg), 

K42R; 0.064 (U/mg) and R32K/K42R; 0.007 (U/mg), K32E; 0.038 (U/mg) and 

R32E/K42E; 0.012 (U/mg)). 
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Effect of Arg32 and Arg32/Lys42 Mutations on ATP Kinetics 

  In the crystal structure of the potato tuber S subunit ADP-Glc PPase, Arg33 

(homologous to Arg32 in the E. coli enzyme) does not contact ATP (Figure 27) (Sivaraman, 

Sauve et al. 2002) . However, in the homologous E. coli glucose-1-phosphate 

thymidylyltransferase (Sivaraman, Sauve et al. 2002), the γ-phosphorous of the nucleotide 

dTTP interacts with Arg13 (Figure 24). In the S subunit potato tuber ADP-Glc PPase, a sulfate 

ion, is in place of the γ-phosphorous. Consequently, the phosphates of ATP are pointing away 

from Arg33 and interacting with the backbone of Phe254 and Gly255 near the Glc1P binding 

site (Phe240 in the E. coli enzyme (Bejar, Jin et al. 2006) ). Thus, by comparison with 

structures of other sugar-phosphate nucleotidylyl transferase homologues, it is expected that 

the ATP γ-phosphorous interacts with Arg32 in the active form of the E. coli ADP-Glc PPase. 

For that reason, to determine the effects of the positively charged Arg32 residue and their 

interactions with ATP, we performed saturation kinetics on all Arg32 mutants. Fitting the data 

to a Hill equation we found that the wild type enzyme exhibited an S0.5 for ATP of 0.20 mM. 

We noted that the neutral side chains, R32A and R32L, displayed a S0.5 (ATP) of 0.25 mM 

and 0.23mM, respectively. Despite a slightly higher concentration of ATP substrate was 

required to reach Vm for the neutral mutants, the difference with the wild type was not 

significant. In addition, in the sulfide (R32C), the polar amino acids R32Q, and the negatively 

charged carboxylate R32E mutants, the S0.5 (ATP) was 0.38 mM, 0.23 mM and 0.32 mM, 

respectively. Interestingly, the positively charged mutant, R32K (“amino group” side chain) 

displayed a S0.5 (ATP) of 0.49 mM. Taken all this together, all mutants have only a slightly 
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lower apparent affinity for the ATP substrate. This suggests that the Arg32 may minimally 

affect the binding of the enzyme with ATP. A comparative analysis of the Arg32, Lys42 and 

Arg32/Lys42 mutants in ATP substrate binding illustrates the importance of the residues-32 

and -42 in regard to E. coli ADP-Glc PPase ATP affinity (Figures 28-30, Figure 31 and Tables 

5 and 7).    

Effect of Arg32 and Arg32/Lys42 Mutations on the Apparent Affinity for Glc-1P 

  As Glc-1P is the other substrate that binds second (Haugen, Preiss 1979) after ATP, it 

is also needed to see the effect of the mutations on this ligand. The WT S0.5 (Glc-1P) was 

0.027 mM (nH of 0.86) (Table 5), in good agreement with previous reported data (Hill, Wong 

et al. 2015). Some of the mutations did not affect significantly the apparent affinity for Glc-1P. 

For instance, R32K, R32L, and R32E had an S0.5 (Glc-1P) of 0.016, 0.051, and 0.025 mM, 

respectively. On the other hand, R32A, R32C, and R32Q had an S0.5 (Glc-1P) of 0.101, 0.292 

and 0.370 mM, respectively, which means that the apparent affinity was decreased 3- to 

14-fold for these mutants. However, the distance between this Arg32 and the putative Glc-1P 

site is too long to have a direct effect (Bejar, Jin et al. 2006) . Most likely, since Glc-1P binds 

after ATP, this is a secondary effect on the interaction with the first substrate (Haugen, Preiss 

1979). A comparative analysis (kinetics) of the Arg32 and Arg32/Lys42 mutants in Glc-1P 

substrate binding was performed. The Arg32/Lys42 mutants had lower activity in the presence 

of saturated Glc-1P compared to the wild-type enzyme (Figure 32, Tables 5 and 7). Catalytic 

efficiencies for the ATP and Glc-1P substrates for the Arg32 and Arg32/Lys42 mutants were 

much lower than that of the wild-type enzyme (Tables 6, 8 and Equation S5). 
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Figure 27. Stu and TDP Homology Models. (A) Subunit A of the potato tuber ADP-Glc PPase 

crystal structure (PDB code 1YP3). Detailed view of the Arg
33

 residue’s (and neighboring 

residues: Thr
32

 and Gly
31

) interaction with a sulfate moiety, and not ATP – as sulfate was in 

abundance during the crystallization process. (B) Subunit A of the E. coli glucose-1-phosphate 

thymidylyltransferase (RffH). View of the Arg
13

 residue (and the neighboring Thr
12

 and Gly
11

) 

as the Arg
13

 interacts with the γ-phosphorous of the ATP substrate in the E. coli glucose-1-

phosphate thymidylyltransferase. Dashed green lines indicate electrostatic interactions 

between the atoms of the residues and substrate/sulfate moiety, of both enzymes displayed. 
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Table 6.  kcat, kcat/ S0.5 for ATP and Glc-1P (substrates) of wild-type E.coli WT and 

Arg32 mutant ADP-Glc PPases in the synthesis direction.  
 

Enzyme
a
 

kcat
b
 

 
    ATP Glc-1P 

 
-fold  

decrease
c
 

kcat/ S0.5 kcat/ S0.5 
 

 s
-1

   s
-1

mM
-1

 s
-1

mM
-1

 
 

WT 103 ± 11  1  515 3814 
 

R32K 8.86 ± 0.68 12  18 554 
 

R32C 1.78 ± 0.05 58  5 6 
 

R32Q 1.32 ± 0.09 78  6 4 
 

R32A 1.30 ± 0.16 79  5 13 
 

R32L 0.54 ± 0.10 191  2 10 
 

R32E 0.032 ± 0.003 3219  0.1 1 
 

 

a
 Enzymes were purified to homogeneity and assays were performed at 37 °C as 

described under “Experimental Procedures.”  
b
 kcat values were calculated from curves via assays performed in the presence of 

saturated substrates (ATP and Glc-1P) and activator (FBP). Assays were averaged 

from three independent experiments. 
c
 Fold decrease was calculated using wildtype enzyme activity  as a reference. 
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Table 7. Kinetic parameters in the synthesis direction for E.coli WT and Arg32/Lys42 

mutant ADP-Glc PPase enzymes. 
  
          

Enzyme
a S0.5  Glc-1-P

b
 nH       S0.5  ATP

b 
nH S0.5  Mg

2+b
 nH 

 

           mM            mM            mM 

wild-type 0.027 ± 0.008 0.9 0.20 ± 0.02 1.5 1.88 ± 0.05 4.3 

R32A/K42A 0.080 ± 0.002 2.1 0.10 ± 0.01 1.3 ----- -- 

R32E/K42E 0.092 ± 0.010 1.2 0.12 ± 0.01 1.2 0.10 ± 0.02 1.0 

R32K/K42R 0.042 ± 0.002 1.5 0.12 ± 0.01 1.3 0.18 ± 0.02  2.2 

 

 a
Enzymes were purified to homogeneity and saturation kinetics for Glc-1P, ATP and 

Mg
2+

 were performed at 37°C using a Malachite Green colorimetric assay as described 

under “Experimental Procedures”.        

 
b
S0.5 and Hill coefficient numbers (nH) of Glc-1P, ATP and Mg

2+
 for the WT (wildtype) 

and Arg32/Lys42 mutant enzymes, were determined, in the presence of  activator (1mM 

FBP). 
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Table 8.  kcat, kcat/Km for ATP and Glc-1P (substrates) of WT and Arg32/Lys42 mutant  E. 

coli ADP-Glc PPase enzymes, in the synthesis direction. 

    
  

    

Enzyme
a
 

Kcat
b
 

 
    ATP Glc-1P 

 
-fold  

decrease
c
 

kcat/S0.5 kcat/S0.5 
 

 
s

-1
   s

-1
mM

-1
 s

-1
mM

-1
 

 

wild-type 103 ± 11  1 
 

515 3814 
 

R32A/K42A 0.030 ± 0.002 3433 
 

0.3 0.4 
 

R32E/K42E 0.0096 ± 0.0003 10729 
 

0.08 0.1 
 

R32K/K42R 0.0058 ± 0.0004 17759 
 

0.05 0.1 
 

 

a
 Enzymes were purified to homogeneity and assays were performed at 37 °C as 

described under “Experimental Procedures.”  
b
 Kcat values were calculated from curves via assays performed in the presence of 

saturated substrates (ATP and Glc-1P) and activator (FBP). In addition, assays were 

averaged from three independent experiments. 
c
 Fold decrease was calculated using WT (wild-type)  as a reference (with a value of 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 
 

 
 

  

 

 

Figure 28. ATP Saturation Curves WT, Arg32, Lys42 and Arg32/Lys42 alanine mutants. 

Kinetics performed in the presence of 1mM FBP. 
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Figure 29. ATP Saturation Curves WT, Arg32, Lys42 and Arg32/Lys42 glutamate mutants. 

Kinetics performed in the presence of 1mM FBP. 
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Figure 30. ATP Saturation Curves WT, Arg32, Lys42 and Arg32/Lys42 mutants. Kinetics 

performed in the presence of 1mM FBP. 
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Figure 31. ATP substrate saturated curves for Arg

32
/Lys

42
 mutant E.coli ADP-Glc PPase 

enzymes. ATP curves were determined at saturated conditions of ATP in the presence of 

1mM Glc-1P (substrate) and 1mM FBP (activator). Assays were performed at 37 °C as 

described under “Experimental Procedures.” R32A/K42A (magenta,   ), R32K/K42R 

(blue,   ) and R32E/K42E (cyan,    ). 
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Figure 32. Glc-1P substrate saturated curves for Arg

32
/Lys

42
 mutant E.coli ADP-Glc 

PPase enzymes. Glc-1P curves were determined at saturated conditions of Glc-1P in the 

presence of 1.5mM ATP (substrate) and 1mM FBP (activator). Assays were performed at 

37 °C as described under “Experimental Procedures.” R32A/K42A (magenta,   ), 

R32K/K42R (blue,   ) and R32E/K42E (cyan,    ). 
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Effect of Arg32 and Arg32/Lys42 Mutations on Mg
2+

 Curves 

  As the E. coli ADP-Glc PPase enzyme functions in presence of Mg
2+

 ions, we also 

explored the effect mutating the Arg32 on this cofactor kinetics. A very slight diversity in the 

S0.5 of the divalent Mg
2+

 was observed for the mutants versus that of the WT (S0.5 of 1.88 mM, 

nH of 4.3).  The effect of site-directed mutagenesis at residue-32 on the apparent affinity of the 

E. coli ADP-Glc PPase enzyme for the divalent ion (Mg
2+

) was noted as follows (in 

decreasing affinity, increasing S0.5) from the WT (1.88 mM) to the mutants R32C (2.49 mM), 

R32A (2.93 mM), R32K (2.94 mM), R32Q (3.16 mM),  R32L (3.37 mM) and R32E 

(5.88 mM), respectively.  Here also, we see a comparative analysis (kinetics) of the Arg32 and 

Arg32/Lys42 mutants in Mg
2+

 cofactor binding was performed.  Once again here we observe 

significant change in the Arg32/Lys42 mutants – lower cooperativity (hill coefficients) for the 

Arg32/Lys42 mutants compared to the wild-type likely due to the Lys42 mutated sites (Tables 

5 and 7).                                                                                                                                                    

Effect of Arg32 and Arg32/Lys42 Mutations on Enzyme FBP Activation 

  Considering the low kcat obtained for the mutants, it was needed to check whether the 

activation of the enzyme was disrupted (Table 6). Saturation kinetics showed that WT and 

mutant E. coli ADP-Glc PPase enzymes were all activated by FBP with a high apparent 

affinity (Table 9). WT exhibited a 27-fold activation by FBP with an A0.5 of 0.049 mM. The 

alanine (R32A), cysteine (R32C), glutamine (R32Q) and glutamate (R32E) and mutants were 

observed to have varying rates of activation with FBP at 4, 17, 25, 40-fold activation, 

respectively. Additionally, these mutants exhibited an A0.5 of 0.077 mM (R32A), 0.084 mM 
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(R32E), 0.118 mM (R32Q), and 0.125 mM (R32C), respectively, in decreasing order of 

affinity for the FBP activator. The R32K mutant exhibited a slightly higher A0.5 for FBP 

(0.074 mM) and R32L a slightly lower (0.023 mM). The similarities of FBP activation in all 

mutants compared to WT gives credence to the integrity of the structural complex of the 

mutants. In addition, this also means that Arg32 may not participate in the allosteric activation 

by FBP. Similar kinetic responses were also seen for the Arg32/Lys42 mutants for FBP 

affinity, with a lower Vmax values at saturated FBP (Figure 33 and Table10). 

Effect of Arg32 and Arg32/Lys42 Mutations on AMP Enzyme Inhibition 

  The apparent affinity for AMP of all the mutants were within range of 3-fold to 8-fold 

(R32E) higher than that of the WT (excluding the R32Q mutant). WT displayed a 15-fold 

inhibition by AMP with an I0.5 of 0.072 mM. (Table 11). To note, R32K exhibited a similar 

inhibition in the presence of AMP (I0.5 of 0.027mM) – but one of the highest rate of inhibition 

at 26-fold inhibition – with R32E exhibiting an I0.5 of 0.009 mM at 30-fold inhibition. As with 

R32K, the R32E displays a higher fold inhibition at less than 1% remaining activity in the 

presence of saturated AMP (I0.5 of 0.022 mM). Other mutants were inhibited on the same 

order of magnitude as WT – and very similarly - by AMP: R32L (I0.5 of 0.019 mM; 6-fold 

inhibition), R32A with an affinity for AMP close to that of the lysine mutant exhibited a I0.5 of 

0.025mM (with 3-fold inhibition) and R32C (I0.5 of 0.022 mM; 5-fold inhibition).  

Arg32/Lys42 mutants, although exhibiting very little to no activity, were all inhibited by AMP 

(Table 12) – residues-32 and -42 do not affect FBP and AMP binding.             

 



 

101 
 

 
 

  

 

Table 9. Kinetic parameters of E. coli WT and mutant ADP-Glc PPases Activator (A0.5).      

                        

  

   A0.5 FBP
b
   nH Vm

c
 

     

Activation* 

   (Vm/Vo) 

Enzyme
a
              mM s

-1
   -fold 

WT 0.049 ± 0.008 1.1  192 ± 8 27 

R32K 0.074 ± 0.032 0.9  10.1 ± 0.52 5 

R32C 0.125 ± 0.009 1.7  2.45 ± 0.06 17 

R32Q 0.118 ± 0.080 0.7  1.55 ± 0.23 25 

R32A 0.077 ± 0.046 0.9  1.53 ± 0.11 4 

R32L 0.023 ± 0.006 1.8  0.57 ± 0.02 > 49 

R32E 0.084 ± 0.023 1.0  0.032 ± 0.002 > 40 

 
a
Enzyme activation assays were performed as described under “Experimental 

Procedures”, for the WT (wildtype) and Arg32 mutants.”  
b
The average A0.5 values for the FBP activator were determined from quadruplicates then 

averaged with ± standard deviation  and are shown for wild-type E. coli ADP-Glc PPase 

and Arg32 mutants.  
c
Wild-type and

 
mutant E. coli ADP-Glc PPase WT and mutant enzymes Vmax (kcat) was 

determined in the presence of saturated conditions of activator (FBP). 

 

*V0 is the activity of the enzyme in absence of the activator (FBP). 
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Table 10. Apparent affinity for the FBP activator in the synthesis direction for the wild 

type and Arg32/Lys42 mutant ADP-Glc PPase enzymes – Activator (A0.5).                             

 

a
Enzyme activation assays were performed as described under “Experimental 

Procedures”, for the WT (wildtype) and Arg32/Lys42 mutants.”  
b
The average A0.5 values for the FBP activator were determined from quadruplicates then 

averaged with ± standard deviation  and are shown for wild-type E. coli ADP-Glc PPase 

and Arg32/Lys42 mutants.  
c
Wild-type and

 
mutant E. coli ADP-Glc PPase WT and mutant enzymes Vmax (kcat) was 

determined in the presence of saturated conditions of activator (FBP). 

 

*V0 is the activity of the enzyme in absence of the activator (FBP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

 
  

Enzyme
a          A0.5 FBP

b
         nH Vm

c
 

     

Activation* 

   (Vm/Vo) 

 

             mM s
-1

   -fold 

wild-type 0.049 ± 0.008 1.1  192 ± 8 27 

R32A/K42A 0.106 ± 0.044 1.2 0.0081 ± 0.0007 5 

R32E/K42E 0.069 ± 0.019 1.0 0.0085 ± 0.0003 >102 

R32K/K42R 0.110 ± 0.043 1.1 0.0062 ± 0.0004 6 
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Figure 33. FBP substrate saturated curves Lys

42
 and Arg

32
/Lys

42
 mutant E.coli ADP-Glc 

PPase enzymes. FBP curves were determined at saturated conditions of Fructose-1,6-

bisphosphate in the presence of 1.5mM ATP and 1mM Glc-1P substrates. Assays were 

performed at 37 °C as described under “Experimental Procedures.”                           

R32A/K42A (magenta,   ), R32K/K42R (blue,   ) and R32E/K42E (cyan,    ). 
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Table 11. Kinetic parameters of E.coli WT and mutant ADP-Glc PPases Inhibitor (I0.5).                             

 

  
I0.5 AMP

b
 nH Remaining activity

c 
                        

(V∞/Vo) 

Enzyme
a
            mM 

 
WT 0.072 ± 0.014 1.1  0.07 

R32K 0.027 ± 0.008 0.7  0.04 

R32C 0.022 ± 0.003 1.2  0.20 

R32Q 0.100 ± 0.009 1.8  <0.01 

R32A 0.025 ± 0.007 1.2  0.33 

R32L 0.019 ± 0.006 0.6  0.17 

R32E 0.009 ± 0.0005 1.8  0.03 

 

      
a
Enzyme inhibition assays were performed in the presence of 1mM FBP (allosteric 

activator), and as detailed in “Experimental Procedures”, for both  WT (wildtype) and 

Arg32
 
mutants.” 

 

b
The average I0.5 values for AMP were determined from a series of four independent 

experiments performed in quadruplicate trials.   
c
Remaining Activity was the ratio between the activity at saturating and zero 

concentrations of inhibition, respectively (V∞ and Vo). V∞ is deduced from the non-linear 

regression fitting of the data. 
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Table 12. Kinetic parameters of wild-type E.coli and Arg32/Lys42 mutant ADP-Glc 

PPases Inhibitor (I0.5).                             

 

 

 

 

 

 

 

 

 
 

a
Enzyme inhibition assays were performed in the presence of 1mM FBP (allosteric 

activator), and as detailed in “Experimental Procedures”, for both  WT (wildtype) and 

Arg32/Lys42
 
mutants.” 

 

b
The average I0.5 values for AMP were determined from a series of four independent 

experiments performed in quadruplicate trials.   
c
Remaining Activity was the ratio between the activity at saturating and zero concentrations of 

inhibition, respectively (V∞ and Vo). V∞ is deduced from the non-linear regression fitting of the 

data. 

 

 

                               

 

 

 

 

 

 

 

 

Enzyme
a I0.5 AMP

b
 nH Remaining activity

c 
                        

(V∞/Vo) 

 

           mM 
 

wild-type 0.072 ± 0.014 1.1  0.07 

R32A/K42A 0.301 ± 0.083 1.3  0.21 

R32E/K42E 0.339 ± 0.025 1.8  0.29 

R32K/K42R 0.045 ± 0.008 1.8  0.38 
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Pyrophosphorolysis of E. coli ADP-Glc PPase WT vs. Arg32 Mutant Enzymes 

  The ADP-Glc PPase reaction has been noted to be reversible in vitro. We measured the 

apparent affinities for the pyrophosphorolysis substrates (ADP-Glc and PPi). R32K (amine), 

R32A (methyl), and R32E (carboxylate) mutants were chosen to explore the critical role in 

Arg32 plays in catalytic efficiency and activity of the wild-type E.coli ADP-Glc PPase 

enzyme.  The calculated catalytic efficiency (kcat/Km) of the WT was 302 mM
-1
 s

-1
. We noted a 

142, 774 and 1776 fold decrease for the selected mutants (R32K, R32A and R32E) at 2.12, 

0.39, and 0.17 mM
-1

 s
-1
, respectively. There was a disparity in the apparent affinities for the 

PPi substrate for both the mutants and wild type with R32K and R32A having a 4- to 9-fold 

decrease in comparison to that of the WT (0.20 mM) (Table 13).  Similar affinities were noted 

for the ADP-Glc assay (in the presence of 1.4 mM PPi) for the R32K (0.23 mM) and R32E 

(0.19 mM) mutants to that of the wild-type enzyme (0.16 mM) (Figure 34 and Table 13).       

However, the R32A mutant displayed a 2 fold decrease in affinity for the ADP-Glc substrate 

at 0.40 mM. Overall, a 2 to 3 order of magnitude decrease in maximum velocity (s
-1

) for 

R32K, R32A and R32E mutants were observed in the ADP-Glc substrate pyrophosphorolysis 

kinetics (Figure 34 and Table 15).  Here we notice that in mutating the Arg32 residue there is a 

decrease in activity in the reverse direction, which highlights the importance of the conserved 

Arg32 residue in the pyrophosphorolysis direction of the E. coli ADP-Glc PPase enzyme. 

Investigation into the roles of Arg32 and Lys42 in the reverse direction was performed for 

R32K/K42R; and although substrate affinities did not vary markedly from that of the 

wildtype, lower Vmax and catalytic efficiency values were observed (Tables 14 and 16).  
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Table 13. Apparent Affinity of wild-type E.coli and mutant ADP-Glc PPases in 

Pyrophosphorolysis Direction, for PPi (substrate).                             
 

Enzyme
a
  

                                          PPi (substrate) 

Km kcat/ Km
  b

 

Fold Decrease 

( kcat/ Km
  b 

WT/           

kcat/ Km
  b 

mutant) 

WT 

mM s
-1

/mM
-1

 -fold 

0.20 ± 0.02 302 ± 22  1 

R32K 1.80 ± 0.72 2.12 ± 0.28 142 

R32A 0.77 ± 0.29 0.39 ± 0.07  774 

R32E 0.07 ± 0.01 0.17 ± 0.02 1776 
 

a
WT (wildtype) and Arg32 mutant enzymes were purified to homogeneity and 

pyrophosphorolysis assays were performed in the presence of 1mM ADP-Glc (substrate) 

and 1mM FBP (activator) at 37 °C and measured at 340nm (to detect NADH produce), as 

described under “Experimental Procedures.”                                                                                                                                                                                           

b 
Catalytic Efficiency was defined by calculating the kcat per Km (s

-1
/mM

-1
) values in the 

pyrophosphorolysis direction, as recorded in the “Experimental Procedures”. 
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Table 14. Affinity of wild-type E.coli and Arg32 mutant ADP-Glc PPases in 

Pyrophosphorolysis Direction, for PPi (substrate).                             
 

  a
WT (wildtype) and R32K/K42R mutant enzymes were purified to homogeneity and 

pyrophosphorolysis assays were performed in the presence of 1mM ADP-Glc (substrate) 

and 1mM FBP (activator) at 37 °C and measured at 340nm (to detect NADH produce), as 

described under “Experimental Procedures.”                                                                                                                                                                                           

b 
Catalytic Efficiency was defined by calculating the kcat per Km (s

-1
/mM

-1
) values in the 

pyrophosphorolysis direction, as recorded in the “Experimental Procedures”. 

 

 

 

 

 

 

 

 

 

 

Enzyme
a
 

 

PPi (substrate) 

S0.5 kcat/ Km
  b

 

Fold Decrease 

( kcat/ Km
  b 

WT/   

kcat/ Km
  b 

mutant) 

 
mM s

-1
/mM

-1
 -fold 

wild-type 0.20 ± 0.02 302 ± 22 1 

R32K/K42R 0.14 ± 0.01 0.097 ± 0.007 3113 
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Table 15. Apparent Affinity of wild-type E.coli and Arg32 mutant ADP-Glc PPases in 

Pyrophosphorolysis Direction for ADP-Glc (substrate).                             

 
        

 

Enzyme
 a
 

ADP-Glc (substrate) 

           S0.5                                                      Vm 
   Fold 

Decrease 
nH 

 

           mM                                   s
-1

        -fold                  

WT 0.16 ± 0.02 33 ± 2.3  1 1.6 

R32K 0.23 ± 0.05 1.40 ± 0.17 24 1.8 

R32A 0.40 ± 0.12 0.18 ± 0.03  183 1.5  

R32E 0.19 ± 0.02 0.017 ± 0.008 1941 1.4  
                                                                                                                                                                                                                                        

a
 WT (wildtype) and Arg32 mutant enzymes were purified to homogeneity and 

pyrophosphorlysis assays were performed in the presence of varying substrate (PPi) at 

37 °C using a spectrophotometric wavelength  of 340nm  (to detect NADH product 

synthesized from reduction assay), as described under “Experimental Procedures.”  

*Concentration of PPi was held constant at 1.4mM and FBP (activator) at 1mM.
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Table 16. Affinity of E.coli WT and R32K/K42R mutant ADP-Glc PPases in 

Pyrophosphorolysis Direction for ADP-Glc (substrate).                             

   
 

a
 WT (wildtype) and Arg32 mutant enzymes were purified to homogeneity and 

pyrophosphorlysis assays were performed in the presence of varying substrate (PPi) at 37 

°C using a spectrophotometric wavelength  of 340nm  (to detect NADH product 

synthesized from reduction assay), as described under “Experimental Procedures.”  

*Concentration of PPi was held constant at 1.4mM and FBP (activator) at 1mM.
 

 

 

 

         

 

Enzyme 

ADP-Glc (substrate) 

           S0.5                                               Vm 
   Fold 

Decrease 
nH 

 

           mM                             s
-1

        -fold                  

wild-type 0.16 ± 0.02 33 ± 2.3  1 1.6 

R32K/K42R 0.27 ± 0.06 0.018 ± 0.002 1833 1.3 
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Figure 34. Kinetic Analysis of Arg32 mutants in the Pyrophosphorolysis Direction.                                                                                                                                                        

(A) Comparative analysis of WT (black     ) and R32K (red    ) for ADP-Glucose 

substrate affinity. (B) Comparative analysis of WT (black    ) and R32K (red    ) for PPi 

substrate affinity. (C) Comparative analysis of R32K (red    ) mutant to R32A (blue    ) 

and R32E (cyan   ) mutants for ADP-Glucose substrate affinity. (D) Comparative analysis 

of R32K (red    ) mutant to R32A (blue    ) and R32E (cyan   ) mutants for PPi substrate 

affinity. 
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                                   Computational Results: MDS (Arg32 Mutants) 

  RMSD plots of the protein and individual substrates were generated for both models 

and all mutants after alignment of the proteins to their respective initial position (frame 0).  

RMSD measures the average distances between the atoms that are time specific; we can 

therefore visualize the level of flexibility in the molecule selected with greater values 

indicating a higher degree of variation between the structures at that time point and the initial 

structure. Figures 35a-d and Figures 36-37 show the 10ns RMSD plots for the ATP structures 

in model 1. Figure 38 shows the ATP located in subunit A of model 1 where the Arg32 was 

mutated.  The ATP in the wild type structure stayed consistent with RMSD ranges of 0.2-

0.4Å.  After 2 ns, the ATP from R32A shows a 1.0Å RMSD difference.   

  Although this drastic of a change is not seen in the R32K and R32E mutations, around 

the completion of 5ns, R32K and R32E ATP begin to deviate from the wild type ATP with an 

RMSD difference of approximately 0.4Å. Figures 33a-b and Figure 35 look at the ATP in 

subunit C where homologous mutations of the Arg32 were made.  The ATP of the wild type 

structure in subunit C also stayed uniform with RMSD ranges around 0.5Å, but the mutated 

structures showed an increase in ATP flexibility with RMSD values of 0.8 Å or higher after 

4ns. The consistency of the wild type ATP structures in subunit A (Figures 33a-b and Figure 

34) and C of model 1 shows that ATP is constrained due to the critical arginine (Figures 33c-d 

and Figure 35).  Replacement of Arg32 allows for an increase in mobility and flexibility of the 

ATP substrate. The same trend is not evidence in Model 2 that contains both ATP and Glc-1P 

in the assumed active site.   
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  RMSD plots over time showed the that wild type increased the most in movement and 

does so in shorter amount of time than the other three mutants.  As shown by Figures 33a-d 

and Table 11, by the end of the 10 ns production however, the wild type and mutant RMSD 

values of the ATP substrate converge.  There is greater mobility in the ATP from the wild type 

enzyme than the other mutants which is contrary to what was observed in model 1 (Figures 

33-35 and Table 11).  A similar trend was also observed in the RMSD plot of Glc-1P from 

model 2 (Figure 33).                                                                                                                                                                

                                             The Critical Role of the Arg32 Residue                

     To supplement these kinetic findings, we see that Molecular Dynamics illustrates the 

orientation of the ATP substrate bound to the mutants R32A, R32E and R32K (Figures 32 – 

35). Figures 39-40, shows the distribution of ATP (in binding) for WT versus mutants with 

Lys42 incorporated to display the dihedral angles of substrate movement. These interactions 

vary in accordance with kcat displayed by the WT and mutants in the ATP substrate assays 

(Figure 26). The change in the site-32 residue and corresponding side chain dictates a more 

liberal movement in the ATP substrate as it enters the substrate interaction site of the mutated 

ADP-Glc PPase; thereby, creating a difficulty for the neighboring Glc-1P substrate to interact 

with the now displaced ATP substrate to complete the ADP-Glc synthesis reaction (Figure 

32). Some Arg32 Mutants (R32A, R32C and R32Q) displayed a 3- to 14-fold lower apparent 

affinity for the Glc-1P substrate than the WT. 
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Table 17. RMSF values of ATP substrate in Models 1A and 1C and Model 2.  

a
The RMSF values, of ATP, are shown for WT and select Arg32

 
mutant enzymes (R32K, 

R32A and R32E) for all Models.  
b
An apparent increase in the average RMSF values is observed as the residue 32 is 

mutated. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RMSF Values of ATP (per MDS Model) 

Enzyme
a
  Model 1 (Subunit A) Model 1 (Subunit C) Model 2 

  Average (Å)
b
 Average (Å)

b
 Average (Å)

b
 

WT 0.741 ± 0.121 0.899 ± 0.174 1.032 ± 0.133 

R32K 0.890 ± 0.201 1.154 ± 0.268 1.102 ± 0.220 

R32A 0.991 ± 0.226 1.484 ± 0.251 0.820 ±  0.146 

R32E 1.411 ± 0.247 1.642 ± 0.497 1.048 ± 0.227 
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Figure 35. MDS Analysis of Arg32 mutants: ATP (substrate) RMSD and RMSF values.          

(A) The graph plots the RMSD values of the ATP molecule located in subunit A of the 

homotetramer of model 1 over the course of the 10ns.  The ATP substrate from the native 

ADP-Glucose Pyrophosphorylase with an arginine at residue 32 stays consistent throughout 

the simulation. Meanwhile, the mutant enzymes result in a higher root mean square deviation 

values for the ATP substrate. (B) RMSF values were calculated for the ATP substrate also in 

subunit A from Model 1.  Note the increase in the average RMSF values when residue 32 is 

mutated. Each nanosecond was condensed to produce 34 frames for a total of 340 frames of 

the 10ns simulation. (C) The graph plots the RMSD values of the ATP molecule located in 

subunit C of the homotetramer of Model 1 over the course of the 10ns.  The ATP substrate 

from the native ADP-Glc-Pyrophosphorylase with an arginine at residue 32 stays consistent 

throughout the simulation. Meanwhile, the mutant enzymes result in a higher root mean 

square deviation values for the ATP substrate. (D) RMSF values were calculated for the ATP 

substrate also in subunit C from Model 1.  Again note the increase in the average RMSF 

values when residue 32 is mutated.             
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Figure 36. MDS Analysis of Arg32 mutants: Volumetric map of ATP (substrate) in subunit A.  

After alignment of the protein, the volumetric mapping algorithm was initiated.  The blue 

figure is the total space the ATP in subunit A of the wild type fills over the 10ns.   
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Figure 37. MDS Analysis of Arg32 mutants: Volumetric map of ATP (substrate) in subunit C.  

After alignment of the protein, the volumetric mapping algorithm was initiated.  The blue 

figure is the total space the ATP in subunit C of the wild type fills over the 10ns.   
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 Figure 38. MDS Comparative Analysis of ATP and Glc-1-P substrate orientations: WT to 

Lysine (Lys), Alanine (Ala) and Glutamate (Glu) Arg32 mutants. A single representation from 

each of the WT and mutant simulations were pulled and are shown below. (a) Representatives 

from the ATP from subunit A in Model 1 (b) Representatives from the ATP from subunit C in 

Model 1. Note the shift in orientation of the γ-phosphorous group of the ATP substrates (black 

arrows) in reaction with the sidechain of the WT (Arginine-32 residue; guanidinium side 

chain) versus the mutants. (c) Conformations of the ATP and Glc1P in subunit B of model 2. 

The R32A mutation resulted in two predominant conformations of the substrates. Each 

nanosecond was condensed to produce 34 frames for a total of 340 frames of the 10ns 

simulation.   
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  To elaborate, MDS outlines the function of the Arg32 residue in as the adenosine 

nucleoside and α-phosphorous group of ATP molecule complexes with the Glc-1P and pulls 

the terminal γ-phosphorous groups of the ATP making the PPi a better leaving group. As 

suspected in kinetics, the Molecular Dynamics further elucidate the disparities in the 

orientation of the ATP substrate in the catalytic site of the R32A mutant, in the presence of 

Glc-1P versus that of the WT (Figure 38). Moreover, we find that an intriguing interaction 

between the R32E mutant and the two Mg
2+

 ions are present, as illustrated during the MDS 

computation experiments. 

  The previous data indicates that the mutation at site-32 may indirectly affect the 

ADP-Glc PPase-Mg
2+

 complex in the presence of the ATP and Glc-1P substrates. Hence, 

adding a negative charge (R32E) to the active site may slightly disrupt binding of the Mg
2+

. 

Here, we find that the Mg
2+

 kinetics further elucidate the vital role of the nitrogen atoms of the 

guanidinium group of the conserved Arg32 residue and more importantly the critical location 

of this residue at site-32 in the E. coli ADP-Glc PPase. We suspected that the Arg32 residue 

plays a critical role in the catalysis of the E. coli ADP-Glc PPase in ADP-glucose (Ballicora, 

Iglesias et al. 2003, Ballicora, Iglesias et al. 2004, Ballicora, Erben et al. 2007, Gardiol, Preiss 

1990, Preiss 1984). There are conserved two residues present (Arg32 and Lys42, respectively) 

within the bacterial ADP-Glc PPase enzymes, but not in the Large subunits of the 

heterotetrameric plant homologues.  

  Consequently, it has been theorized that due to the presence of these conserved residues 

(Arg32 and Lys42) the homotetrameric bacterial ADP-Glc PPase enzymes exhibit a more 
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catalytic role unlike the Large subunit of the heterotetrameric plant ADP-Glc PPase 

homologues which exhibit a  non-catalytic - modulatory – role. To further elaborate, in the 

Large subunit of the Monocot (cereal) ADP-Glc PPase enzymes the respective residues -32 

and -42 are Glu32 and Thr42. In the Large subunit of the Dicot ADP-Glc PPase enzymes the 

respective residues are Lys32/ His32/Glu32 and Thr42 (Ballicora, Dubay et al. 2005).  

 To explore this idea, we found that the specific activities of the WT and six (6) E. coli 

ADP-Glc PPase mutants illustrate the key role the positively charged nitrogen atoms in the 

Arginine guanidinium group of the “slightly branched” side-chain of the EcR32WT ADP-Glc 

PPase plays in stabilizing the inorganic pyrophosphate (negatively charged) product created 

from the γ-phosphorous of the ATP substrate, as ADP-Glc is formed. Substitution of this 

Arg32 residue with negatively charge, hydrophobic, sulfide or non-polar groups significantly 

affects the activity of the E. coli ADP-Glc PPase enzyme. Our results indicate that the 

guanidinium group of the Arg32 residue may not participate solely in binding or catalysis. 

Moreover, the results indicate that a positive charge alone from a lysine mutant (kcat 8.86 s
-1

) is 

not enough for maximum activity of the enzyme - and indicates the importance of the dual 

positive charges of the guanidinium group.  

  Now, we are able to outline a scheme for Arg32 ATP substrate interaction in the 

production of α-ADP-glucose by making the inorganic pyrophosphate group (of the ATP 

substrate) a more “suitable” leaving group (Figures 24 and 40).  Additionally, disparities of the 

S0.5 (ATP) for that of the WT versus mutants are apparent, but not significant. A higher 

concentration of ATP is needed in the mutant E. coli ADP-Glc PPases. These results illustrate 
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that the orientation of the ATP and Glc-1P E. coli ADP-Glc PPase substrates is stabilized in 

the WT (arginine residue) and more flexible in the mutants (Figures 34, 35 and 38). In further 

regard to computational analysis, modeling of the E. coli ADP-Glc PPase complements the 

findings of the ATP saturation curves that two nitrogen atoms of the guanidinium group may 

interact with the γ-phosphorous of the ATP, positioning the substrate and making the PPi 

product a better leaving group (Figures 27, 30-32, 34, 38). Computational Analysis adds to 

reasoning that the overall rigidity of the molecular structure for site-32 is important in enzyme-

ATP substrate interaction for catalysis of the protein. These results also explained why certain 

subunits in plants, which mostly play a regulatory role rather than catalytic, have this arginine 

substituted.  

  In Figure 38, we see that immediately after Glc-1P enters the active site, the ATP tries 

to get in the correct conformation to react with the Glc-1P.  The increased mobility of the ATP 

in the Arg32 mutants could possibly inhibit the entrance of Glc-1P and halt the reaction.   

Such liberal movement of the ATP, as seen in the Model 1 for R32A and R32K mutants, 

illustrates the possibility for the lower activity of these mutants and the higher S0.5 (Glc-1P) 

needed versus that of the WT. As for the R32E mutants, we see in Model 1 that there is a 

slight rigidity but on the opposing side of the RMSD. The positioning of the E. coli 

ADP-Glc PPase substrates (ATP and Glc-1P) appears to have turned out of proportion to one 

another, failing to complex and form the necessary ADP-glucose moiety necessary for 

glycogen synthesis.  

  This apparent disorientation of the ATP and Glc-1P substrates is also seen in the MD 
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simulations of the R32A and R32K mutants, at varying degrees. Specific activity kinetics 

show a marked increase in activity from R32A (1% of WT activity) to nearly 9% (of WT 

activity) for Lysine (R32K) mutant, representing the crucial role of positive side chain at site-

32 in ADP-Glc PPase catalysis. There appears to be a directional “tethering” (positioning) of 

the γ-ATP-phosphorous to the substrate site by the Arg32 residue, allow the ATP to be 

properly positioned for attack by the second substrate (Glc1P) in the E. coli ADP- Glc PPase, 

which is exhibited in both the kinetic assays and molecular dynamic simulations. This 

“tethering” for proper positioning of the ATP substrate by residue-32 is absent in the R32A 

(alanine mutant) which lacks an elongated positively charged side chain (as the WT and R32K 

mutant), as such the ATP substrate in absent of a proper “tethering” residue has a more liberal 

movement - appears to roll around illustrated via MDS- in the substrate site and display a 

higher S0.5 (ATP) (Table 5 and Figures 35-37, 39-40).  However, as the lysine mutant (R32K) 

lacks an elongated side chain with two readily available terminal nitrogen groups (as in R32) 

to properly position the γ-ATP-phosphorous, there appears to be slightly more liberal 

movement of the ATP substrate versus that of the WT, and more of a “one handed tethering” 

than two (as seen with the Arg32 terminal nitrogen groups). R32K has a slightly higher S0.5 

(ATP) than the WT, but still the highest Specific Activity of the Arg32 mutants (Figure 24). 

  Furthermore, in opposition of a “tethering”, a “repelling” or “pushing” of the γ-

phosphorous of the ATP substrate is noted in the glutamate mutant (Figures 35-40). As there 

are two subunits present in the homotetrameric E.coli ADP-Glc PPase enzyme which function 

to produce the ADP-glucose donor, it is notable that both are affected when expressed with 
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this site-32 mutation. It was noted that the carboxylate (negative) side chain of the R32E 

mutant appears to “push” the ATP substrate, via repelling of the γ-ATP-phosphorous, toward 

the opposite side of the active site – both in Subunit A and Subunit C (Figures 35-38). R32E 

exhibited the lowest Specific Activity (~3300 fold decrease) and higher S0.5 (ATP) than of the 

WT (Figures 25 and Table 6). Double mutants displayed an even lower interaction with the 

ATP substrate (Figure 26), as Arg32 interacts with the γ-ATP-phosphorous and Lys42 residue 

with the β-ATP-phosphorous, and by mutating both sites (two residues) we removed the 

ability of ATP binding for the mutants compared to that of the wildtype (Figure 40).  
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Figure 39. E.coli ADP-Glc PPase Lys42 Homology Model and Dihedral Angle Determination 

(Using 4 points): Pα and Pβ (ATP), P (Glc-1P) and N (Lys42). 
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As circular dichroism illustrates, the secondary structures of the Arg32 mutants have not been 

perturbed, in comparison to the WT, so residue side chain (electrostatic interactions and 

length) play a pertinent role in ATP substrate binding. 

  Hence, we see both kinetic analyses where the affinity for the ATP substrate dictates 

the positioning of ATP and molecular dynamic simulated illustration of the importance of the 

orientation of ATP in the substrate site, as all mutants exhibit a lower specific activity and 

higher S0.5 (ATP) (Figure 26 and Tables 5 and 6). Thus, the critical role of the conserved 

Arg32 guanidinium side chain in stabilizing the ATP substrate for proper orientation in the 

substrate site, as the two positively charge nitrogen atoms of the Arg32 residue (6.22 

angstroms in length) guanidinium group interacting with the γ-phosphorous of the ATP to 

create the PPi leaving group for the production of ADP-glucose in E. coli glycogen 

biosynthesis, is observed.  

  It is important to note that all catalytic activity (Specific activity and kcat values) of the 

Arg32 and Arg32/Lys42 mutants was not entirely lost, there is a threshold. In 2007, it was 

noted that during kinetic analysis the measured misreads of mutant genetic codons by tRNA in 

the bacterial cell led to a miniscule translation of a wild-type enzyme in mutants. This has 

been noted in referenced experiments and helps to explain why E.coli ADP-Glc PPase 

mutants cannot be completely inactive - any lower than an approximate 10
3
 to 10

4
 fold 

decrease. As such this explains why we did not observe a decrease of lower than 4000-fold in 

activity for the glutamate mutants (Kramer, Farabaugh 2007).   
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CHAPTER FOUR                                                                                                              

CHEMICAL MODIFICATION APPROACH:                                                                             

ATTEMPTED CHEMICAL RESCUE OF ARG32CYS AND LYS42CYS              

MUTANTS OF E. COLI ADP-Glc PPASE 

      Previous Arginine Enzyme Residue Chemical Modification Studies                                                                                             

 Over two decades ago (1994), the research team of Dhalla et al. regenerated the 

catalytic activity of the glutamine synthetase Arg339 and Arg359 mutants via chemical 

modification. In this experiment Dhalla and colleagues used site-directed mutagenesis to 

mutate the Arg339 and Arg359 residues to cysteines, which exhibited a significant decline 

in activity. R339C and R359C mutants reacted with 2-chloroacetamidine (CA) and 2,2’-

dithiobis (acetamidine) (DTBA) to obtain arginine analogs. Lysine analogs were produced 

using bromopropylamine (BPA). Analogs were synthesized via “nucleophilic 

displacement reaction” (SN2 reaction) in the presence of DTT to reduce disulfide bonds. 

Such analogs were determined to have similar (more or less) length (in angstroms) to the 

Arg339 and Arg359 residue sidechains: Arginine 6.22Å), R339/359C-CA (5.40 Å), 

R339/359C-DTBA (6.58 Å) and R339/359C-PA (7.85 Å) – and Lysine (6.33 Å).  

Chemically modified mutants (following DTT reduction) desalted via G-25 Sepharose 

columns and incubated between 0min to24hrs (Dhalla, Li et al. 1994).  

Glutamine Synthetase (GS) kinetic analysis was performed and WT enzyme 

activity was 120 μmol min
-1

mg
-1 

, R339C as 1.3 and R359C 0.6 μmol min
-1

mg
-1

. Upon 
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examination of the ATP affinity for WT GS and mutants, there was a decline for the 

R339C (89 ± 12μM) and R359C (140 ± 6μM) in comparison to the WT GS ATP affinity 

(1.5 ± 0.3 μM). Activity was regenerated following the chemical modification process. 

This was observed via kinetic analysis: R339-CA (80 μmol min
-1

mg
-1

), R339-PA (38 

μmol min
-1

mg
-1

), R339C-DTBA (32 μmol min
-1

mg
-1

), R359C-CA (37 μmol min
-1

mg
-1

) 

and R359-DTBA (9.9 μmol min
-1

mg
-1

). An apparent increase in ATP substrate affinity 

was also noted for the chemically rescued cysteines: R339-CA (6.6 ± 0.4μM), R359-CA 

(3.2 ± 0.4μM), R339C-DTBA (28 ± 1μM), R359C-DTBA (26 ± 3μM) and R339C-BPA 

(46 ± 3μM). The chemical modification process worked well considering native cysteine 

groups were not affected by solutions in this process (Dhalla, Li et al. 1994).  This 

experimentation process illustrated one possibility for the chemical modification approach 

in our empirical analysis of the Arg32 and Lys42 residues of E. coli ADP-Glc PPase – a 

candidate for arginine or lysine analogs.  

                   Previous Lysine (γ-thia-lysine Synthesis) Chemical Rescue Studies                                       

Synthesis of a γ-thia-lysine side chain via chemical modification has been 

performed for aldolase, carboxylase and aminotransferase enzymes (Planas, Kirsch 1991, 

Smith, Hartman 1988, Hopkins, O'Connor et al. 2002). 

 Lys107 of Fructose-1,6-bisphosphate Aldolase – The role of the FBP aldolase 

enzyme is to catalyze the reaction in which FBP is converted to dihydroxyacetone 

(DHAP) and glyceraldehyde-3-P (reversibly; Fru1P is converted to glyceraldehyde). In 

2002, Hopkins and colleagues, via site-directed mutagenesis, changed the Lys107 residue 

to cysteine (K107C) to explore the possibility of “chemical rescue” of enzyme catalytic 
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activity via chemical modification (bromoethylamine; BrEA; aminoethylation) (Hopkins, 

O'Connor et al. 2002). Initially, there was a 30% decrease in native enzyme (WT) activity, 

in the presence of BrEA during aminoethylation process. As such, Hopkins et al. 

determined that “non-targeted” cysteine residues were exposed to the “solvent” and as a 

result affected during the chemical modification process, in the presence of 1mM DTT. As 

such alanine mutagenesis was performed on these “non-targeted” cysteine groups. 

Following the previous, the K107C mutant was then aminoethylated via an SN2 

modification reaction with BrEA. It was determined via electron spray ionization fourier 

transform mass spectroscopy (ESI-FTMS) that 2.5 aminoethylations occurred per aldolase 

subunit. Comparatively, the K107C kcat was much lower than the WT. However, 

following aminoethylation, the K107C-EA (noted as “tetK107C-EA” in article) mutant 

displayed a 40-fold increase in activity (10.8 ± 0.1 s
-1

), which was up to 77% of the wild-

type value (14.0 ± 0.3 s
-1

). There was also a measureable increase in FBP substrate affinity 

for the K107C-EA (10.7 ± 0.2µM) from 450 ± 10 µM (K107C), which was closer to the 

WT (14 ± 1µM). Conclusively, Hopkins et al. was able to determine that the lysine (K107) 

was replaced by a γ-thia-lysine during the catalytic mechanism for FBP aldolase, and that 

the kinetic analysis of substrate affinity for the “rescued” K107C (K107C-EA) for FBP 

and Fru1P substrates was similar to that of the native lysine residue (K107) in the WT. 

Furthermore, by utilizing ESI-FTMS they were able to closely identify the residues 

affected and degree of protein modification for this Fructose-1,6-bisphosphate aldolase 

during the K107C “chemical rescue” procedure (Hopkins, O'Connor et al. 2002).  
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 Lys258 of Aspartate Aminotransferase in E.coli – The Asp Aminotransferase 

enzyme is responsible for transferring an α-amino group from the L-aspartate and              

L-glutamate amino acids to α-ketoglutarate and oxaloacetate. An essential residue in the 

E. coli species of this enzyme is Lys258 (K258). In 1991, Planas et al. converted the K258 

residue to cysteine via site-directed mutagenesis. Less than 10
-6

 activity (compared to the 

WT), in the presence of L-aspartate, was observed for the K258C mutant. Additionally, 

the alanine mutant (K258C) was noted as being incapable of catalyzing the Aspartate 

Aminotransferase reaction. After chemical modification (aminoethylation with BrEA, 

following disulfide reduction with DTT), activity of 10
5
 times higher than the K258C 

mutant was “rescued” in the K258C-EA chemically modified mutant (with a kcat value 

nearly 7% of the WT, at 9.86 ± 0.6 s
-1

). Similar improvements for the substrate (Km) 

values was also seen for the L-aspartate substrate (K258C-EA; 3.47±0.14mM and WT; 

1.87 ± 0.7mM). Planas et al. identified an “acidic limb” of the K258 residue playing a role 

in enzyme catalysis via interaction with the Asp Aminotransferase substrate(s), and 

evaluated the γ-thia-lysine of the K258C-EA mutant. Here, they noted that the basicity of 

the K258A, K258C and K258C-EA were slightly lower than the WT K258 – with the 

chemically “rescued” mutant (K258C-EA) displaying the highest at only 1.3 pH units 

lower than that of the WT lysine. As such, they postulated that the due to mutation a lack 

of ε-NH2 presence in the WT lysine may have resulted in poor dissociation constants – 

and Vmax values - seen in the K258C and K258A mutants. Chemical modification, in the 

Planas experiments displayed the important role of pH and electrostatic ability of the 

lysine residue, in substrate binding affinity and enzyme catalysis (Planas, Kirsch 1991). 
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 Lys166 and Lys329 in Ribulosebisphosphate Carboxylase/Oxygenase of 

Rhodospirillum rubrum – The Ribulosebisphosphate Carboxylase/Oxygenase enzyme is 

responsible for the catalysis of the oxidative degradation of the ribulosebisphosphate 

molecule. In 1988, Smith et al. performed aminoethylation on the cysteine mutants of 

these to lysines observed to play a key role in the enzyme (K166C and K329C). The two 

cysteine mutants lacked catalytic activity, and thus aminoethylation (“chemical rescue”) 

was performed – via chemical modification with BrEA for 0 to 1200min. For this 

aminoethylation experiment, Smith and colleagues found that the BrEA solution was 

highly selective and only modified one cysteine – the mutated K166C or K329C – and no 

the “non-targeted” native 5 cysteines in the Ribulosebisphosphate Carboxylase enzyme – 

so no alanine mutagenesis of native cysteines was required. The sulfur groups of the 

K166C and K329C mutants created a modest perturbation in the secondary structure of the 

protein; however, chemical modification appeared to “reverse” this issue. Furthermore, a 

significant decrease in catalytic activity was observed for the cysteine mutants, which 

elucidated the importance of the native enzyme lysyl residues (sites 166 and 329). A 

“rescue” of catalytic activity was observed for the K166C-EA and K329C-EA chemically 

modified mutants, with activity and Km values increased from the K166C and K329C 

mutants, closer to the wild-type values. Conclusively, oxygenase activity was “restored” 

for the modified cysteine mutants and chemical modification appeared to result in a 

“reversal” of effects on activity by the cysteine mutations (K166C and K329C) with kcat 

values close to 20% (K166C-EA) and 60% (K329C-EA) of the WT was observed (Smith, 

Hartman 1988). 
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                       Chemical Rescue Attempts for R32C and K42C Mutants  

 Upon review of the preceding experimental approaches, we selected three 

compounds for chemical modification of the Arg32 and Lys42 cysteine mutants: 2-

chloroacetamidine (CA; arginine analogs), 2-bromopropylamine (BPA; lysine analogs) 

and bromoethylamine (BrEA; lysine analogs) (Figure 41). BioEdit (Hall 1999) genetic and  

amino acid sequence analysis software revealed that there are nine native cysteines (C61, 

C163, C167, C263, C338, C360, C377, C382 and C388) present in the WT E. coli            

ADP-Glc PPase, but which were exposed to “solvent” during the chemical modification 

process, was unable to be determined beforehand – some suggestions were noted. To 

perform this task, we designed an experiment in accordance with the protocol from Dhalla 

et al both with and without DTT. The, initially designed EcR32C-Chloroacetamidine 

mutant Specific Activity assay interfered with the Malachite Green Colorimetric assay: 

the DTT (used to reduce the sulfide group of the EcR32C mutant) prevented the yellow -

> green color shift required to determine the Malachite Green-Ammonium Molybdate-Pi 

complex. Thus, the reaction remained a bright yellow color. A second trial, removing 

DTT, using “G25” sepharose columns, yielded slightly better measureable results 

utilizing a spectrophotometrically measurable analyte; measurable at a wavelength of 

595nm).  

 Lys42Cys “Chemical Rescue” Attempt – K42C mutant underwent chemical 

modification with BrEA and BPA generating analogs of the lysine to synthesize the γ-

thia-lysine as with other lysine-to-cysteine chemically modified mutant enzymes (Planas, 

Kirsch 1991, Smith, Hartman 1988, Hopkins, O'Connor et al. 2002). Here, there was a 
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slight change from the previous R32C modified mutants, K42C-EA and PA were 

performed from 0 to 240min. Longer incubation time with solvents were utilized, as seen 

with previous experiments (Planas, Kirsch 1991, Hopkins, O'Connor et al. 2002). 

However, K42C-EA and K42C-PA displayed a similar kcat to the K42C mutant (0.04 s
-1

), 

at 0.056 s
-1

; 0.064 s
-1

 (20min; 60min) and 0.054 s
-1

; 0.052 s
-1 

(20min; 60min), 

respectively (Figure 42 and Table 18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



134 
 

 
 

 

Figure 41. Sketches of Arg32 and Lys42 sidechains and Chemical Modification 

sidechains. (A-B) WT Arg32 and Lys42 sidechain depictions. (C-E) SN2 reactions were 

performed and C-E illustrate side chain modifications with bromoethylamine, 

bromopropylamine and 2-chloroacetamidine. 
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Arg32Cys “Chemical Rescue” Attempt - As such, an attempt to rescue activity 

lost in the mutant R32C (1.78 s
-1

) comparable to the original WT kinetic analysis of 103 

s
-1

. As such, an experiment was designed (with DTT using G25 sepharose columns and 

without DTT, with a 20min solution incubation period at 30°C). For the R32C mutant 2-

chloroacetamidine and BPA were utilized. Unfortunately, both exhibited a lower – much 

lower – specific activity than the WT and R32C mutants (R32C-CA; 0.263 s
-1

 and R32C-

BPA; 0.136 s
-1

, with DTT). Similar results for R32C modifications without DTT were 

observed (Figures 43 and 44, Table 18).  

 WT in the presence of BrEA, BPA and CA - “Chemical rescue” was not observed 

for the Arg32Cys and Lys42Cys chemically modified mutants either. Investigation of the 

WT enzyme in the presence of the chemical rescue reagents was assessed, to elucidate 

whether “non-target” cysteines have been affected or exposed to “solvent” as observed in 

previous experiments. A new sample of WT was utilized to fully evaluate the effect of 

the “chemical modifier” solutions on the wild-type enzyme. This investigation displayed 

a significant decrease in activity for WT-EA, WT-PA and WT-CA, with WT-CA having 

the lowest remaining catalytic activity at 23% of the WT (Table 19). Here were discover 

the crux of the problem – at least one or more of the native nine E.coli ADP-Glc PPase 

cysteines are exposed to “solvent” and would require alanine mutagenesis, as performed 

by both Hopkins and Smith (Smith, Hartman 1988, Hopkins, O'Connor et al. 2002). 

However, to discover which “non-targeted” cysteines of the ADP-Glc PPase are modified 

in the presence of CA, BrEA and BPA is another project to be designed. Conclusively, 
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we were able to discover that a number of cysteines of the nine native E.coli ADP-Glc 

PPase cysteines are exposed to chemical modifications on the surface of the enzyme and  

that future “chemical rescue” experiments would benefit from alanine mutagenesis of 

these “non-target” cysteines prior to chemical modification. Also, we found that DTT 

may inhibit colorimetric results of the Malachite Green assay.   
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Figure 42. Lys42 Chemical Modification. Lys42Cys (K42C) with Bromopropylamine 

(orange), Bromoethylamine (red) and control (yellow; K42C and water). 
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                  Table 18. Arg32 and Lys42 Chemical Modification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
Enzyme activation assays were performed as described under “Experimental 

Procedures”. Enzymes were not reduced with DTT, as it has been found to interfere with 

the colorimetric analysis of the Malachite Green Assay 
b
Enzymes were incubated with Water, CA, BrEA or BPA for 20min and/or 60min at 

30ºC. 
c
Arg32Cys and Lys42Cys mutants were assayed under Malachite Green protocol outlined 

under “Materials and Methods” in chapters two and three. 

*Vf is calculated kcat after chemical modification and Vi for WT was a calculated from 

R32C and K42C E. coli ADP-Glc PPase samples and assayed using Malachite Green 

protocol described in “Materials and Methods”. 

 

 

 

 

 

 

 

 

Enzyme
a
 

 

Incubation
b
 

period 

Vm 

 

 

min s
-1

  

R32C
c
 --- 1.78 ± 0.05  

R32C-Water 20 0.695 ± 0.19  

R32C-CA 20 0.263 ± 0.086  

R32C-PA 20 0.136 ± 0.003  

K42C
c
 --- 0.040 ± 0.002  

K42C-EA 20 0.056 ± 0.007  

K42C-EA 60 0.064 ± 0.004  

K42C-PA 20 0.054 ± 0.002  

K42C-PA 60 0.052 ± 0.001  
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Figure 43. Arg32 Chemical Modification without DTT (dithiothreitol). Arg32Cys (R32C; grey; 

performed under standard Malachite Green assay protocol, as noted in “Methods and 

Materials” of previous chapter), Arg32Cys (R32C) with Bromopropylamine (red), 2-

chloroacetamidine (green) and control (R32C and water; blue). 
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Figure 44. Arg32 Chemical Modification with DTT. Arg32Cys (R32C) with 

Bromopropylamine (red), 2-chloroacetamidine (green) and control (R32C and water; blue). 
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Table 19. WT Chemical Modification.                                                                                                                                                     

 

 

a
Enzyme activation assays were performed as described under “Experimental 

Procedures”. Enzymes were not reduced with DTT (dithiothreitol), as it has been found 

to interfere with the colorimetric analysis of the Malachite Green Assay 
b
Enzymes were incubated with either CA, BrEA and BPA for 20min and/or60min at 

30ºC. 
c
Wild-type enzyme assay was done separately, in presence of water and no BrEA/BPA 

solution as control. 

*Vf is calculated kcat after chemical modification and Vi for WT was a calculated from a 

new sample of WT E. coli ADP-Glc PPase and assayed using Malachite Green protocol 

described in “Materials and Methods”. 

 

 

 

 

 

 

 

 

 

 

Enzyme
a
 

 

Incubation
b
 

period 

Vm 

 
Remaining Act. 

100 x (Vf/Vi) 

 

min s
-1

  (%) 

WT
c
 --- 160 ± 7  100 

WT-EA 20 112.3 ± 0.5  70.2 

WT-EA 60 119 ± 6  74.4 

WT-PA 20 70 ± 5  43.8 

WT-PA 60 75 ± 3  46.9 

WT-CA 20 37.5 ± 2.5   23.4 
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 Expected Results and Conclusions of Chemical Rescue Experiments  

Project (Arg32Cys and Lys42Cys) - Previous experimentations have noted a 

distinct disparity in the length of the mutated (R32C and K42C) and chemically modified 

mutant residues (R32C-CA, R32C-PA, K42C-CA and K42-EA). Recall, Dhalla et al. 

noted in 1994, a 0.82 Å difference between the R339/359 and R339/359C-CA modified 

mutants and a 1.63 Å difference between the R339/359 and R339/359C-PA modified 

mutants. Had the initial “R32C and K42C Chemical Modification” experimental 

approach been a success we would have been able to confirm or investigate the pertinent 

role of both the charge of the residue sidechains (Arg32 and Lys42), as well as the 

importance of the proximity of the sidechain(s) to the γ-phosphorous (Arg32 terminal 

amine; guanidium moiety) and β-phosphorous-o-linkage (Lys42 ε-amine) of the ATP 

substrate for E.coli ADP-Glc PPase. In this case, a success is define as a prominent 

rescue of wild-type activity for the chemically modified R32C and K42C mutants. As 

alanine mutagenesis and kinetic analysis of the 9 native cysteines in the wild-type 

enzyme would be exponentially costly – in both time and resources – and considering the 

possible combinations of cysteines exposed to the solvent are unknown, modelling would 

be the next logical suggestion for discovering these “solvent-exposed” cysteines. Thus, a 

key result of the present chemical modification experiment is the noted likelihood of 

cysteines “exposed” to the solvent.  
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CHAPTER FIVE                                                                                                            

CONCLUSIONS 

Experimental Approach: Success in Protein Expression and Assays 

 As previously noted, both mutant Arg32 and Lys42 ADP-Glc PPase  were 

designed using the BioEdit® software and obtained (via PCR site-directed mutagenesis) 

prior to expression. BL21(DE3) cells carrying the mutant ADP-Glc PPase gene (pet24a 

vector) were induced in LB Media (kanamycin) with 0.5mM IPTG during the Log stage 

of the E.coli growth phases (OD600 of 0.6 - 0.8) . As such we were able to take advantage 

of the intracellular mechanisms of the E.coli BL21(DE3) cell growth process and avoid 

production of endogenous (WT) ADP-Glc PPase proteins.  Therefore, a two-step FPLC 

purification was adapted (DEAE and HiPrep/SourceQ column chromatography – and 

Size Exclusion Chromatograpy, when empirically required) (Figures 45 - 46). The 

previous and analysis of the R32E and K43E mutants displaying relative “inactivity”, 

exemplified the “absence” of any residual measured background WT activity. In this 

regard, we were able to determine relatively certain values for mutant ADP-Glc PPase 

specific activities and kcat.  Kinetics: The malachite green-ammonium molybdate complex 

interacts with the PPi byproduct of the ADP-Glc reaction allowing us to measure ADP-

glucose production, in the synthesis direction (Figure 47). The reverse was accomplished 

employed a coupled assay diagramed in Figure 48. Here we quantitatively measured the 

production of Glc-1P via the reduction of NAD
+
 to NADH.  
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Figure 45. PCR Site-Directed Mutagenesis and Cell Transformation of Arg32/Lys42 

Mutants. 
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Figure 46. E.coli BL21(DE3) Cell Growth Curve (Laboratory). Wild type and E.coli 

ADP-Glc PPase_pETEC mutants were transformed into BL21(DE3) competent cells and 

induced with 0.5mM isopropyl-β-D-thiogalactoside (IPTG) then later incubated for 16hrs 

at 25ºC. Cultures were harvested after grown to OD600 between 0.6 and 0.8. 
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Figure 47. A Colorimetric Approach: Malachite Green Assay. (Fusari, Demonte et al. 

2006). 
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Figure 48. Pyrophosphorolysis (Coupled) Assay. 
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Critical Factors of the Arg32 and Lys 42 Residues in E. coli ADP-Glc PPase 

 Conclusively, this project illustrates the important role of the guanidinium group 

in the Arg32 residue and its significance in stabilizing the pyrophosphate product in the 

ADP-Glc PPase reaction. Prior exploration into the structure and orientation of the ATP 

substrate and the Potato Tuber ADP-Glc PPase – via crystallography - highlighted the 

notion that the ATP substrate can have varying degrees of orientation which can have an 

overall effect on ADP-glucose production by the ADP-Glc PPase enzyme. 

Physicochemical properties of the Arg32 residues lends two positive charges via the two 

guanidinium nitrogen atoms interacting with the ɤ-Phosphorous (ATP), to position (and 

orientate) the ATP substrate for “attack” by the secondary substrate (Glc-P) (Figure 27). 

As such, the Arg32 also functions in making the pyrophosphate product a better “leaving 

group” - as previously exemplified in review of the mutant Arg32X kinetics (variants 

missing the guanidinium side chain). Arg32 (WT vs Mutants) MDS highlights the 

disparity in the ATP substrate conformations and “freedom” of movement for ATP 

substrate in Arg32-mutant and WT E.coli ADP-Glc PPase. Here, we postulate that the 

lysyl (1º) amine of Lys42 interacts (as demonstrated via Homology modelling) with “o” 

linkage between the the α and β-Phosphorous groups (of the ATP substrate). 

Furthermore, Lys42 has the ability to donate proton to Pβ oxygen making it a better 

leaving group. Lys42 is possibly selectively stabilizing the transition state based on the 

fact that all mutations selectively decreased kcat compared to any other parameters for the 

substrates in any direction (Figure 49).  

 



149 
 

Lys42: Postulated “General Acid Catalysis” and Mg
2+

 Binding Network 

 A possible function of Lys42 is the role of “General Acid Catalysis” (as seen in 

previous DNA polymerase lysine studies) (Castro, Smidansky et al. 2009), which would 

make the residue catalytic in that it most likely donates a proton to the negatively charged 

pyrophosphate leaving group to stabilize it. Lys42 is surrounded by several non-polar 

side chains (Leu33, Thr37, Val45, Ile53, and Val277) that would lower the pKa of the ε-

amino group and enhance acid catalysis. As presently enzymologists are unable to 

estimate the pKa of residues such as Lys42 within the active site of an enzyme, we could 

not estimate the exact pKa of the Lys42 nor Lys42Arg in the catalytic pocket of the 

E.coli ADP-glc PPase enzyme. However, we are aware that the approximate pKa of the 

sidechains differ (Figure 49). Chapter two noted that due to the presence of a 

Lys42/Asp142/Asp276 network the Lys42 residue plays a critical role, in Mg
2+ 

cofactor 

binding. Altering the Lys42 side chain, also alters both Mg
2+ 

cooperativity and FBP 

affinity in mutants – evidence of perturbed Lys42/Asp142/Asp276 network and possibly 

Lys39 placement in the FBP binding site (Figure 50). Within the Lys42 model 

highlighting the magnesium (cofactor) binding network the position of a second 

magnesium ion is observed - this was seen in the TDP-Glc PPase enzyme and assumed to 

also be localized within the ADP-Glc PPase enzyme, for the purposes of modelling 

(Barton, Biggins et al. 2002, Barton, Lesniak et al. 2001).  

 

 

 



150 
 

 

Figure 49: Lys42 Analysis (1º amine and Estimated pKa). 
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Figure 50. Lys42 and Mg
2+

 Binding Network. 
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Arg32/Lys42 Project Model and the Superfamily of NDP-Glc PPases   

 In 2005, Ballicora et al. highlighted the presence of a phylogenetic relationship 

among ADP-Glc PPase enzymes from photosynthetic eukaryotes.  These enzymes consist 

of subunits often observed to be catalytic and non-catalytic (modulatory), with conserved 

residues. Both subunits are approximately fifty percent identical, giving credence to the 

notion of “common ancestry” among these two subunits (Ballicora, Iglesias et al. 2004, 

Ballicora, Erben et al. 2007, Ballicora, Iglesias et al. 2003). Here a question arose 

regarding the catalytic properties of two conserved N-terminus residues (Arg and Lys) 

within the catalytic S-subunits but not the modulatory (non-catalytic L-subunits) 

(Ballicora, Dubay et al. 2005, Crevillen, Ballicora et al. 2003, Kuhn, Falaschetti et al. 

2009). The homotetrameric E.coli ADP-Glc PPase enzyme was an optimal candidate to 

model and empirically distinguish the then “uncharacterized” roles of these two 

conserved residues in question (equivalent to Arg32 and Lys42 of the E. coli enzyme). 

Overall, with this project, we were able to further characterized residues of the E.coli 

ADP-Glc PPase which includes Glc-1P substrate binding (Glu194, Ser212, Tyr216, 

Asp239, Phe240, Trp274 and Asp276), FBP activator binding (Lys39) and Allosteric 

signaling (Loop; Pro103, Gln106m Arg107, Trp113, Tyr114 and Arg115)  (Figure 51). 

Additionally, most likely similar effects are in other NDP-Glc PPases – all residues 

conserved in the NDP-Glc PPase Family – with the exception of Large Subunits (Plant 

species). Conclusively, this project served as an advantageous model for better 

understanding all NDP-sugar PPases. NDP-sugar PPases are very common in metabolic 

pathways (Figures 1 and 52). 
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Figure 51. E.coli ADP-Glc PPase Characterized Residues.  
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Figure 52. Model of NDP-Sugar PPases. 
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SUPPLEMENTAL INFORMATION 

 

Table S1. Species and NCBI GI Accession numbers for Sequence Alignment of 

conserved Lys42  residue in E. coli ADP-Glc PPase and comparative enzymes. 

 

Species GI 

Accession 

No. 

Escherichia coli 16131304 
Agrobacterium tumefaciens sp. R. radiobacter 3241931 

Acidovorax citrulli AAC00-1 120611645 
Agrobacterium tumefaciens str. C58 (A. fabrum) 15890896 
Alteromonas sp. SN2 333892129 
Arthrospira maxima CS-328 209527099 
Desulfobacterium autotrophicum HRM2 224369989 
Desulfomonile tiedjei DSM 6799 392410016 
Hydrocarboniphaga effusa AP103 392953280 
Mahella australiensis 50-1 BON 332982541 
Mycobacterium tuberculosis T85 289757310 
Methylobacter tundripaludum SV96 344943819 
Nitrosomonas europaea ATCC 19718 30249970 
Nitrosococcus halophilus Nc4 292491590 
Proteus penneri ATCC 35198 226330079 
Rubrivivax gelatinosus IL144 383758760 
Rhodospirillum rubrum ATCC 11170 83593581 
Sorangium cellulosum  162453622 
Treponema brennaborense DSM 12168 332298391 
Thioalkalivibrio thiocyanoxidans ARh 4 350561659 
Variovorax paradoxus S110 239813432 
Solanum tuberosom  62738715 
Glucose-1-phosphate thymidylyltransferase (RmIa) from E. coli                                          671701933 

N-acetylglucosamine-1-phosphate uridyltransferase (GlmU)                             

from E. coli 
693351467 
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Table S2. Oligonucleotides
*
 for mutagenesis of E. coli ADP-Glc PPase Lys42 mutants.      

                                                                                                                                                                                               

Name Sequence
a
 

5' WT -N-term               

("T7 Promoter") 5'-TAATACGACTCACTATAGGG-3' 

5' WT -C-term              

("T7 Terminator") 5'-GCTAGTTATTGCTCAGCGG-3' 

K42A - "Forward" 5’-CAATAAGCGAGCAGCCCCGGCCGTACACTT-3' 

K42A - "Reverse" 5'-AAGTGTACGGCCGGGGCTGCTCGCTTATTG-3' 

K42C - "Forward" 5'-CAATAAGCGAGCATGCCCGGCCGTACACTT-3' 

K42C - "Reverse" 5'-AAGTGTACGGCCGGGCATGCTCGCTTATTG-3' 

K42E - "Forward" 5'-CAATAAGCGAGCAGAACCGGCCGTACACTT-3' 

K42E - "Reverse" 5'-AAGTGTACGGCCGGTTCTGCTCGCTTATTG-3' 

K42L - "Forward" 5'-CAATAAGCGAGCACTGCCGGCCGTACACTT-3' 

K42L - "Reverse" 5'-AAGTGTACGGCCGGCAGTGCTCGCTTATTG-3' 

K42Q - "Forward" 5'-CAATAAGCGAGCACAGCCGGCCGTACACTT-3' 

K42Q- "Reverse" 5'-AAGTGTACGGCCGGCTGTGCTCGCTTATTG-3' 

K42R - "Forward" 5'-CAATAAGCGAGCACGCCCGGCCGTACACTT-3' 

K42R - "Reverse" 5'-AAGTGTACGGCCGGGCGTGCTCGCTTATTG-3' 

K42T - "Forward" 5'-CAATAAGCGAGCAACCCCGGCCGTACACTT-3' 

K42T -  "Reverse" 5'-AAGTGTACGGCCGGGGTTGCTCGCTTATTG-3' 
a
 Residue-42 genetic code mutations are in bold.                                   
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Table S3. Oligonucleotides
*
 for mutagenesis of E. coli ADP-Glc PPase mutants.   

                                                                                                                                                                                                     

Name Sequence 

5' WT -N-term                            

("T7 Promoter") 5'-TAATACGACTCACTATAGGG-3' 

5' WT -C-term                                  

("T7 Terminator") 5'-GCTAGTTATTGCTCAGCGG-3' 

R32A - "Forward" 5’-GGACGTGGTACCGCGCTGAAGGATTTAACCAA-3' 

R32A - "Reverse" 5'-TTGGTTAAATCCTTCAGCGCGGTACCACGTCC-3' 

R32C - "Forward" 5'-GGACGTGGTACCTGCCTGAAGGATTTAACCAA-3' 

R32C - "Reverse" 5'-TTGGTTAAATCCTTCAGGCAGGTACCACGTCC-3' 

R32E - "Forward" 5'-GGACGTGGTACCGAACTGAAGGATTTAACCAA-3' 

R32E - "Reverse" 5'-TTGGTTAAATCCTTCAGTTCGGTACCACGTCC-3' 

R32K - "Forward" 5'-GGACGTGGCACCAAACTGAAGGATTTAACCAA-3' 

R32K - "Reverse" 5'-TTGGTTAAATCCTTCAGTTTGGTGCCACGTCC-3' 

R32L - "Forward" 5'-GGACGTGGTACCCTGCTGAAGGATTTAACCAA-3' 

R32L -  "Reverse" 5'-TTGGTTAAATCCTTCAGGACGGTACCACGTCC-3' 

R32Q - "Forward" 5'-GGACGTGGTACCCAGCTGAAGGATTTAACCAA-3' 

R32Q -  "Reverse" 5'-TTGGTTAAATCCTTCAGCTGGGTACCACGTCC-3' 

* Residue-32 genetic code mutations are in bold.                                   
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Table S4. Oligonucleotides
*
 for mutagenesis of E. coli ADP-Glc PPase Arg

32
/Lys

42
 

mutants.   

                                                                                                                                                                                                    

Name Sequence 

5' WT -N-term 

("T7 Promoter") 
5'-TAATACGACTCACTATAGGG-3' 

5' WT -C-term                 

("T7 Terminator") 
5'-GCTAGTTATTGCTCAGCGG-3' 

R32AK42A - 

"Forward" 
5’-GGACGTGGTACCGCGCTGAAGGATTTAACCAA-3' 

R32A/K42A -  

"Reverse" 
5'-AAGTGTACGGCCGGGGCTGCTCGCTTATTG-3' 

R32K/K42R - 

"Forward" 
5'-GGACGTGGCACCAAACTGAAGGATTTAACCAA-3' 

R32K/K42R -  

"Reverse" 
5'-AAGTGTACGGCCGGGCGTGCTCGCTTATTG-3' 

R32E/K42E - 

"Forward" 

5'-GGTACCGAACTGAAGGATTTAACCAATAAGC 

GAGCAGAACCGGCCGTA-3' 

R32E/K42E -  

"Reverse" 

5'-TACGGCCGGTTCTGCTCGCTTATTGGTTAA                              

ATCCTTCAGTTC GGTACC-3' 

* Residues-32 and -42 genetic code mutations are in bold.                                   
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Table S5. Supporting Equations for Arg32 Analysis. 

 

I) Derivation of a rapid equilibrium equation when the enzyme binary complex 

undergoes an isomerization process 

The model involves the following rapid equilibrium reactions 

E EA EA* E + P

A

K
a

K
iso

k
p

 
Where the initial velocity (v) is 

 
The equilibria between enzyme complexes are  

 
Mass balance of all enzyme species 

 
Then 

 
 

The concentration of the binary complex that leads to products is 

 
Dividing the previous two equations 

 
Replacing  by its equivalent  

 
Reordering 

 
 

Then, the kinetic parameters depend on Kiso in the following manner: 
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Then if the isomerization process is perturbed, the corresponding catalytic efficiency 

would be 

 
And the ratio of catalytic efficiencies between the perturbed and unperturbed reaction 

 
 

 

 

 

 

 

II) Derivation of a rapid equilibrium equation when the enzyme binary complex 

undergoes an isomerization process before binding a second substrate 

E

EA* E + P + Q
A

K
a

K
iso

k
p

EAA

K
a
*

B

B

EA*B

EAB

K
b

K
b

 
The equilibria between enzyme complexes are  

 
Mass balance of all enzyme species 

 
Then 
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The concentration of the binary complex that leads to products is 

 
Dividing by the previous equation 

 
Reordering 

 

 
Replacing  by its equivalent  

 
Then, the kinetic parameters for the substrate A depend on Kiso in the following manner: 

 

 

 
Then if the isomerization process is perturbed, the corresponding catalytic efficiency 

would be 

 
And the ratio of catalytic efficiencies between the perturbed and unperturbed reaction if 

[B] is maintained constant: 
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