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ABSTRACT 

      Photodynamic therapy (PDT) is used to treat cancer, and involves a highly 

conjugated molecule, called a photosensitizer (PS), which is excited by 

wavelengths of light from visible to infrared. Photosensitizers that are highly 

conjugated will absorb longer wavelengths (600 – 900 nm), and have the 

potential to destroy cells of deeper tissue cancers. In PDT, a PS is administered 

to the patient, and after an appropriate time delay, the tissue is then exposed to 

light of a specific wavelength necessary for excitation of the PS. A transfer of 

energy can take place between the excited PS and oxygen that is nearby. This 

process allows the PS to relax back to the ground state, while creating an excited 

singlet state oxygen molecule (1O2). 

      Buchwald-Hartwig conditions using Pd catalysts and phosphorus 

containing ligands can be utilized to synthesize the photosensitizer. The reaction 

involves a Pd-catalyzed cross coupling of an aryl halide with a nitrogen 

nucleophile to form a new carbon-nitrogen bond. The PS will be PEGylated with 

an amine–PEG–Folate complex. Since many tumors over-express folate 

receptors, the PS–PEG–FA complex will be transported to cancer cells via 

receptor mediated endocytosis, providing greater selectivity.   

      The killing efficiency of the PS will be tested using HeLa cells. Solutions  

containing PS only, PS–PEG–FA, and media only will be added to cancer 



 

xxiii 
 

with folate restricted media. After exposure to light, the cells will be counted to 

determine the percentage of cells killed by the singlet oxygen and other radical 

species. Variables that must be controlled in this study are the following: length 

of time cells have been growing; specific concentration of PS–PEG–folate 

complex; length of time for PS–PEG–folate complex uptake into the cell; length 

of time of exposure to light; length of time from light exposure to cell counting to 

determine necrosis. The goal of the research is to determine the concentration of 

PS and length of time of light exposure that is maximally effective for killing tumor 

cells. 

 

 



 
 

1 

CHAPTER ONE 

CANCER AND  PHOTODYNAMIC THERAPY 

                                                       Introduction 

      A normal cell has a specific lifespan of growth, division, and death that 

occurs in an orderly fashion. A critical balance is maintained between cell growth, 

proliferation, differentiation, and death; and, in the presence of factors that 

promote tumor formation, such as an inherited genetic defect, a chemical 

carcinogen, a viral infection, or irradiation, this balance is disrupted. Cancer 

develops when cellular growth in a part of the body becomes out of control.  

Three major changes must occur in order for a cell to become cancerous, which 

are: 

1. Immortalization – the cancer cell acquires the ability to grow and divide 

indefinitely. 

 

2. Transformation – the normal growth constraints are not observed, that is, 

growth occurs independently of cell growth factors. The transformed cells 

can form a solid tumor; however, in order for the tumor to grow, a blood 

supply is needed, and angiogenesis (growth of new blood vessels) must 

occur. 

 

3. Metastasis – cancer cells often migrate from the tissue of origin to other 

areas of the body where they begin to grow and replace normal tissue.  

This process, known as metastasis, occurs as cancer cells invade the 

bloodstream or lymph vessels and other tissues.   

Cancer is not only one disease, but a group of genetically diverse 

disorders, with each unique tumor that has its own “genetic signature.” Gene 
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mutations acquired by a tumor can subsequently become a heritable trait of all 

cells of future generations. Cancer is a disease of many steps. A tumor cell 

emerges after the cell accumulates many (estimates are between four to eight) 

genetic alterations over the course of years.   

      Gene mutations which increase a person’s risk for cancer can be inherited 

or acquired. Genetic changes that are acquired result from spontaneous or 

environmentally inflicted errors during deoxyribonucleic acid (DNA) replication. 

Genetic changes associated with tumor growth are divided into two major 

categories: those that result from a gain of function, which involves inappropriate 

activation of oncogenes; and those that result from a loss of function, which 

involves inactivation of tumor suppressor genes. Oncogenes stimulate growth, 

and can cause cancer when hyperactive; whereas, tumor suppressor genes 

inhibit cell growth, and these genes can cause cancer when not expressed (1).  

                                                Photodynamic Therapy 

Photodynamic therapy (PDT) is a treatment that destroys cells in the 

presence of oxygen and upon exposure to light which is absorbed by a 

photosensitizer (PS) (2). The PS becomes excited, and a transfer of energy 

converts triplet oxygen to the highly reactive singlet oxygen (3). Singlet oxygen 

causes destruction of vital cellular organelles, resulting in cell death, as well as 

vascular shutdown, and activation of an immune response against cellular 

targets. Some of the advantages of PDT as opposed to conventional therapies 

include the following: noninvasiveness, selectivity to target tissue, the ability for 
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repeated dosing to patients without initiating resistance or exceeding total dose 

limitations (as is associated with radiation therapy), rapid healing with little or no 

scarring, ability to treat patients in an outpatient setting, and lack of deleterious 

side effects (4). 

      Current clinical applications of PDT include: treatment of solid tumors of 

the skin (basal cell carcinomas), lung, esophagus, bladder, head and neck, brain, 

ocular melanoma, ovarian, prostate, renal cell, cervix, pancreas, and bone 

carcinomas (5, 6). Other non-cancerous conditions have also been treated with 

PDT, which include: dysplasias, papillomas, rheumatoid arthritis, actinic 

keratosis, cosmetic procedures, psoriasis, neovasculaturization in age 

associated macular degeneration, endometrial ablation, port wine stains, and 

atherosclerotic plaques (6, 7). PDT has also been used to treat bacterial and 

fungal infections for over 30 years (8). 

Mechanisms of Photodynamic Therapy 

Three elements are required for successful PDT, which involves the 

generation of singlet oxygen. These elements include a PS, light of the 

appropriate wavelength, and oxygen. When a PS in the ground state is exposed 

to light of a specific wavelength, the PS absorbs a photon and is promoted from 

its ground state (S0) to the excited singlet state (S1), which has a lifetime of 

approximately 1 µs (2, 9). The energy of the excited singlet state can be 

dissipated by thermal decay or the emission of fluorescence (2). Alternatively, by 

intersystem crossing, the excited singlet state can be converted to a lower 
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energy excited triplet state (T1), which has a lifetime of approximately 0.01 s (2, 

9). In the excited singlet state, the PS can produce reactive species via two 

mechanisms, Type I and Type II processes (3). In the Type I process, an electron 

can be transferred from the excited singlet state PS to receptor molecules, giving 

rise to free radicals, including the superoxide anion (O2
-), hydroxyl radical (OH·), 

or hydrogen peroxide (10). In addition to electron transfer, Type I processes can 

involve hydrogen abstraction, photoadditions, and various other bimolecular 

photochemical reactions (11). In the Type II process, the PS in the excited singlet 

state intersystem crosses to the excited triplet state, and interacts directly with 

molecular oxygen to produce singlet oxygen (1O2), which is very reactive (12). 

Figure 1., diagramming Type 1 and 2 mechanisms, is shown below.                                            

  

 

                   Figure 1. Type 1 and 2 Mechanisms of Forming ROS 

      The production of 1O2 occurs by inversion of the spin of one of the 

outermost electrons in an antibonding orbital. For ground state oxygen (3O2) the 

two outermost electrons occupy separate antibonding orbitals and have identical 



5 
 

 

spins {(σ2p)
2(π2py)

2(π2pz)
2(π2py*)

1(π2pz*)
1}. In the lower energy form of 1O2, the two 

highest energy electrons are found in the same antibonding orbital with opposing 

spins {(σ2p)
2(π2py)

2(π2pz)
2(π2py*)

2}, and in the higher energy form of 1O2, the two 

highest energy electrons are found in two antibonding orbitals with opposing 

spins {(σ2p)
2(π2py)

2(π2pz)
2(π2py*)

1(π2pz*)
1}.  The position of these highest energy 

electrons in 1O2 accounts for its high reactivity (9). Singlet oxygen in the first 

excited state (1Δg ) has an energy that is 22 kcal/mol (92 kJ /mol) higher than 

ground state triplet oxygen, whereas 1O2 in the second excited state (1∑g
+) has 

an energy that is 37 kcal/mol (155 kJ/mol) higher than ground state triplet 

oxygen. Type II processes are most relevant, and 1O2 that is generated is 

responsible for the destruction of the targeted tissues (12). The lifetime of 1O2 

(1Δg) is approximately 10-100 µs (13) in most organic solvents, which restricts its 

activity to a spherical volume 10 nm in diameter centered at the actual point of 

production. The lifetime of 1O2 in water is approximately 1-3 µs because the 

excited state energy of 1O2 is nearly equal to the energy of the O-H stretching in 

the water molecule; therefore, it is easy to dissipate the energy of 1O2 as heat 

due to the stretching and vibrational motions of water molecules (14). Of even 

greater importance is the lifetime of 1O2 (
1Δg) in cellular systems, which ranges 

from 100 ns in the lipid regions of membranes to 250 ns in the cytoplasm. Due to 

these short lifetimes, the diffusion range of 1O2 is predicted to be approximately 

45 nm in cellular media. The diameter of human cells ranges from approximately 

10 to 100 µm; therefore, 1O2 cannot diffuse more than a single cell length. The 
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site in the cell where the primary generation of 1O2 occurs determines which 

subcellular structures will be attacked, and 1O2 is an indiscriminate oxidant which 

can react with a variety of biological molecules (15).   

      Oxidative stress due to 1O2 interaction with cellular components such as 

lipids, amino acid residues, and nucleic acids leads to cell death (11).  Singlet 

oxygen is an electrophile and it can undergo the “ene” reaction, adding to double 

bond systems and also form endoperoxides upon insertion into ring systems via 

a 4 + 2 Diels Alder cycloaddition reaction. Addition of 1O2 to unsaturated lipids 

forms hydroperoxides (16) which can lead to further chain lipid peroxidation 

reactions. Also, the formation of protein peroxides (17) disrupts the protein 

structure and function. Nucleic acid base oxidation favors the purines, especially 

guanine, and eventually forms the mutagenic product, 8-oxo-7,8-dihydro-

guanosine (8-oxo-dG) (see structure shown below) (18).  

 

Figure 2. Structure of 8-oxo-7,8-dihydroguanosine 

There are three unique mechanisms of cell death, which are apoptosis, necrosis, 

and autophagy. The process of apoptosis is characterized by cellular shrinkage, 
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condensation of chromatin, and fragmentation of the cell into membrane-bound 

bodies that can be eliminated by phagocytosis. Apoptosis is also termed 

programmed cell death. Necrosis refers to the morphological changes which 

indicate cell death that are caused by progressive enzymatic degradation. 

Autophagy refers to the process of digestion of the cytoplasmic material of the 

cell by lysosomes (19). Whether cell death occurs by apoptosis or necrosis 

depends upon two factors, which are:  localization of the PS within the cell; and 

amount of 1O2 produced (12).  Some evidence suggests that a PS localized in the 

mitochondria or endoplasmic reticulum is better at inducing apoptosis, whereas a 

PS localized in the plasma membrane or lysosomes is more conducive to 

necrosis (4). Photodynamic therapy can also cause local inflammation, which 

produces an immune response against cancer cells (20).   

      In addition to the overall mechanism of cellular oxidation that results from 

PDT, there are secondary processes that occur after the light illumination ceases 

which must be considered. Singlet oxygen also produces secondary reactive 

oxygen species (ROS) and these species play a role in the whole photodynamic 

effect. The various pathways to generating secondary ROS can have 

postillumination effects in PDT. Products of the initial generation of 1O2 can 

initiate further oxidation reactions. For example, membrane lipid hydroperoxides, 

which are relatively unstable, can be broken down to form free radicals that 

cause further chain peroxidation. These reactions can seriously impact the cell. 

Damage to mitochondria can lead to a loss of function and an uncoupling of 
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electron transport in oxidative phosphorylation. The subsequent leakage of 

electrons can generate O2
-, and then hydrogen peroxide (H2O2) in the presence 

of the antioxidant enzyme superoxide dismutase (SOD). The primary 

photodynamic reactions often lead to increases in intracellular calcium (Ca2+), 

which acts as a signaling event. Other oxidative pathways which can be initiated 

include activation of phospholipase A2, lipoxygenase (LOX), and cyclooxygenase 

(COX) enzymes in response to oxidation of membranes and Ca2+ increases.  

These pathways can increase the level of peroxide in the cell and the overall 

oxidative stress (21). Activation of NADPH oxidase (NOX) is another enzymatic 

process that can contribute to delayed oxidative damage. The NOX enzyme 

accepts an electron from an intracellular flavin donor and transfers the electron to 

molecular oxygen to form O2
.-, which can then be converted to H2O2 by SOD 

catalysis and reaction with protons (22). These secondary processes can extend 

the spatial range of photodynamic action in cells (23). The diffusion distance of 

an ROS is inversely proportional to its lifetime in a given environment, with the 

lifetime dependent on its reactivity. The highly reactive hydroxyl radical (HO·) and 

other –oxyl radicals (RO·) will not travel far from the site where they were 

generated. However, less reactive species like lipid hydroperoxides (LOOH), 

H2O2, peroxyl radicals (ROO·) and carbon radicals (C·) can have effects at more 

distant sites and be delayed in time with respect to their shorter-lived relatives 

(21). Oxidative stress caused by secondary ROS can also lead to effects at the 

extracellular level. There is a bystander effect, which describes the generation of 
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effects in cells that were not exposed to a primary insult, but are in close 

proximity to cells that were (24). Less reactive secondary ROS such as H2O2 and 

LOOH may be candidates for mediating bystander responses in cells and tissues 

exposed to photodynamic treatment (11).   

      For Type II photochemical reactions, ground state molecular oxygen (3O2) 

is necessary. Conditions such as anoxia or hypoxia have potential to arise if 

tumors are not well oxygenated, and in these cases Type I mechanisms can 

predominate. In an anoxic situation, the excited PS singlet state transfers its 

energy to substrates by oxidation of the substrate, thereby transferring the PS to 

the triplet state. During a hypoxic condition, the triplet state PS interacts with 3O2 

to produce superoxide anions and highly reactive HO· (25, 26). 

Role of Oxygen in Photodynamic Therapy 

The generation of 1O2 (Type II reaction) is the primary mechanism 

activated in PDT (25), and PDT has been found to be inefficient in cases of 

anoxia (27-29). There are several other routes that oxygen has to influence the 

outcome of PDT. The formation of 1O2 depends on the collision of an excited 

photosensitizer (usually in the triplet state) and an oxygen molecule in the ground 

state. The quantum yield of 1O2 is dependent upon three factors: 1) quantum 

yield of triplet state PS (usually 0.2 – 0.9) (30), 2) influence of quenchers which 

can react with the PS before they collide with molecular oxygen, 3) yield of 1O2  

per collision. Factors 2 and 3 do not play a significant role, since the yield of 1O2 

is not much smaller than the yield of triplet state PS and is about 0.2 to 0.7 (31-
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35). Once 1O2 is formed in cells or extracellular fluid, it can react with quenchers 

before it reaches the biological target. The lifetime of 1O2 in cells and the diffusion 

length are critical (36). Fluorescence quenching experiments have determined 

the lifetime of 1O2 (
1Δg) in tissues to be 10 to 40 ns and the diffusion length to be 

10 – 20 nm (37). Because the singlet oxygen diffusion length and the triplet PS 

diffusion length are both so short, the PDT induced cell and tissue damage 

occurs in the place where the PS concentration is the highest (23, 38, 39). The 

following cellular targets of PDT have been identified, and include: all 

membranes, mitochondria, lysosomes (38, 40), endoplasmic reticulum (38), and 

Golgi complex (41).  Experimentation has proven that almost no photosensitizers 

localize in the nucleus; therefore, PDT causes little damage to DNA and few 

chromosomal changes, which indicates a low carcinogenic potential (41-52). 

Since the lifetime of the PS in the triplet state is longer than 10 µs (53, 54), it is 

long enough for the triplet excited state to react with oxygen to form 1O2. The 

action of the PS is very dependent on the oxygen concentration for PDT to be 

effective. Experiments were done to measure the importance of oxygen 

concentration on the formation of 1O2; and production of 1O2 was found to be 

effective at oxygen levels of 100 % to 5 %, but was halved at oxygen levels of  

1 % (25). PDT is unable to kill cells in hypoxic tumor regions. Also, pressure 

against a superficial tumor can diminish blood perfusion and oxygen 

concentration to render PDT ineffective (55, 56).   



11 
 

 

Most normal tissues contain approximately 5 % oxygen, which is supplied 

by the blood circulation, and since tumor areas are often poorly vascularized, the 

oxygen concentration can be much lower (57, 58). Hypoxic tumors can be made 

more vulnerable to PDT by increasing the oxygen tension, and several methods 

have been proposed: 1) breathing hyperbaric oxygen, 2) breathing using oxygen-

carrying fluorocarbons combined with carbogen made of 95 % O2 (carbogen is a 

mixture of CO2 and O2 gases ranging from 1.5 – 50 % CO2), 3) using 

nicotinamide injection and carbogen breathing, 4) using oxygen releasing 

substances, 5) modulating the oxygen binding capacity of hemoglobin (Hb), 6) 

decreasing the respiration rate, 7) increasing the oxygen solubility, 8) using blood 

flow modifiers, and 9) destroying hypoxic cells with bioreductive drugs or 

hypothermia (59). Tumor hypothermia can be advantageous because the oxygen 

binding by Hb will increase (the Bohr effect), and the metabolic activity will 

decrease (60-63). The Bohr effect refers to the dissociation of a proton when Hb 

binds to O2. When Hb is in the conformation known as the R state (relaxed), the 

Hb has a greater affinity for O2. In a hypothermic state, O2 does not need to be 

given off to the tissues since metabolism will be slowed; therefore, the O2 can 

stay bound to the Hb molecule (64). Since the result of PDT is photooxidation, 

one oxygen molecule is consumed for every 1O2 molecule that reacts with and 

oxidizes another molecule (65). Experiments in the clinical setting have shown 

that PDT with Photofrin at fluence rates larger than 100 mW / cm2 leads to 

oxygen depletion (66-68). Secondary reactions of PDT are due to vascular 
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damage (69-77). The time for vessel damage is dependent on tissue type (80, 

81), PS hydrophilicity (hydrophilic photosensitizers give more vascular damage 

than lipophilic ones) (79), and on the time between PS application and light 

exposure (80) (short time leads to more vascular damage because of larger PS 

concentrations in blood) (78, 81). A mild erythema, an indicator of invasion of 

inflammatory cells or release of vasoactive substances, can occur after PDT (69, 

71, 82-85). This process leads to an increase in blood flow and temperature (86-

89), which leads to higher oxygen concentrations in the treated tissue (67, 87). 

Fluence rates of light delivery will effect oxygen depletion. At high fluence rates, 

primary oxygen depletion will occur quickly and lead to a low PDT efficiency (66-

68, 90). At low fluence rates, long exposure times are required, and vessel 

damage (vasoconstriction and thrombosis) can occur which will reduce the 

effectiveness of PDT (67, 90, 91). Intermediate fluence rates (~ 30 mW / cm2) 

may give better results since they avoid primary oxygen depletion while still 

giving complete tumor destruction before the introduction of vascular effects (67, 

92-94).  Following light exposure, however, vascular effects have been shown to 

contribute greatly to tumor destruction (74).      

Importance of Light Dosimetry and Types of Light Sources for PDT 

Light dosimetry is also a critical factor to consider to determine the 

efficiency of PDT treatment. Light dosimetry involves two parameters, which are 

fluence and fluence rate. Fluence refers to the total energy of exposed light 

across a sectional area which has been irradiated (the energy per unit area of 
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exposed light, J / m2). Fluence rate refers to the radiant energy incident per 

second across a sectional area which has been irradiated (power per unit area of 

light, J /s / m2 or W / m2; 1 W = 1 J / s). As the fluence rate lowers, the time of 

exposure gets longer so that the same fluence (dose) of light is provided. High 

fluence rates are typically used to reduce treatment time. However, reports have 

demonstrated that high fluence rate may not elicit an optimal effect on the patient 

(9). It has been reported by Wilson et al. that in conditions of high fluence rates, 

oxygen depletion can occur, which results in a reduced photodynamic effect, 

since there is not an effective production of cytotoxic species. Studies are 

ongoing in several laboratories to develop oxygen diffusion models in which 

lower fluence rates generate 1O2 more efficiently so that more 1O2 is exposed to 

the tumor for longer time periods (95). 

      Lasers are most frequently used for PDT. Lasers produce coherent 

monochromatic light which can be focused and passed down through an optical 

fiber and delivered directly to the target tissue. Earlier laser systems were bulky, 

expensive, and fit only for laboratory research purposes; but modern diode lasers 

are portable, lightweight, and much less expensive (9). Light emitting diodes 

(LEDs) can also be used for PDT, and they have narrow spectral bandwidths and 

high fluence rates (96, 97). Inflatable balloons which are covered on the interior 

with a strongly scattering material and formed to fit an organ are also available 

for treatment using PDT (98). Light sources may also be implanted in solid 

organs deep in the body under image guidance (19). The efficacy of PDT 
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depends upon the depth of light penetration through tissue. The light penetration 

is also dependent upon the optical properties of the tissue and depending on the 

tissue type, light may be reflected, scattered, absorbed, or transmitted. Tissues 

rich in pigment, such as melanoma, are resistant to PDT. The depth of tissue 

penetration is also affected by the wavelength of light, as both absorption and 

scattering of light by tissue increases as the wavelength decreases. For example, 

light with wavelengths shorter than 580 nm is unsuitable due to a strong 

absorption by hemoglobin. The depth of light penetration is approximately 3 – 8 

mm for light in the wavelength range from 630 – 800 nm (99).    

Characteristics of a Good Photosensitizer 

The ideal photosensitizer should fulfill the following requirements: 1) 

Singlet oxygen is the key cytotoxic agent in tumor destruction; therefore, the PS 

must produce 1O2 efficiently. 2) The PS should have no dark toxicity and 

selectively accumulate in tumor tissue to minimize skin photosensitivity (9). 3) It 

should be amphiphilic, water soluble with a hydrophobic matrix to facilitate the 

crossing of cell membranes. 4) A limited in vivo stability is preferred so that rapid 

removal from tissues is possible. 5) The PS should absorb in the red to near IR 

region of the electromagnetic spectrum in order to increase the depth of 

penetration into tissues. 6) It should have a high extinction coefficient to increase 

the number of photons of light absorbed. 7) The absorption of the PS should not 

overlap absorption bands of other chromophores present in tissue such as Hb, 

melanin, DNA, RNA, etc (33). 8) The PS should be stable and easy to dissolve in 



15 
 

 

injectable solvents. 9) It should be pure and prepared by a relatively 

straightforward synthetic technique to give high yield in order to minimize the cost 

of production as well as cost to the patient (9). 

Historical Uses of Phototherapy 

Phototherapy involves the use of visible light or light of wavelengths near 

the visible region to treat disease. The process involves electronic transitions 

which lead to photochemical reactions, which subsequently may be followed by 

dark reactions of the initial products. There are two broad categories of 

phototherapy: direct and indirect. In direct phototherapy, no drug is administered. 

An effect will be observed if light is absorbed by molecules already present in the 

organism. In indirect phototherapy, a light sensitive chemical (a PS) is 

administered prior to irradiation. Another term to describe this reaction is 

photochemotherapy. Light is absorbed by the PS, which initiates the therapeutic 

process. The benefits of sunlight on bone growth and for treatment of other 

various human maladies was known as far back as 460 BC (100, p. 3). However, 

the introduction of phototherapy which utilized scientific methods is credited to 

Niels Rydberg Finsen, who is generally regarded as the father of the subject. 

Finsen carried out experiments on the effects of different colored light on 

animals. He advocated  the use of red light for the amelioration of scarring in 

cases of smallpox. He found that sunlight, or, even better, light generated from a 

carbon arc that was filtered to eliminate infrared light, could be used to treat and 

cure lupus vulgaris, a tubercular condition of the skin. A symptom of this 
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condition was the development of reddish brown plaques, especially on the face. 

Finsen received a Nobel Prize in Physiology-Medicine in 1903 for his work in 

phototherapy (101). Interest in phototherapy became stagnant between the two 

World Wars, however, the process has seen a revival over more recent decades. 

Four main areas of treatment are the following: Vitamin D and rickets, psoriasis, 

newborn jaundice, and tumors (100, p. 4). 

    Vitamin D is responsible for calcium and phosphate absorption and 

metabolism in the deposition of bone and in bone maintenance. A Vitamin D 

deficiency is known as rickets when used to describe the condition during 

childhood, and osteomalacia when used to describe the condition during 

adulthood (most often elderly persons) (100, p. 4). This disease could be 

prevented by incorporating fish oil into the diet or by exposing the skin to 

sunlight.  Experiments with animals fed a diet deficient in calcium and phosphate 

showed that irradiation of the food supply followed by direct irradiation with 

ultraviolet light had a curative effect. In 1978, Jung and colleagues treated adults 

with osteomalacia, who had poor absorption of Vitamin D, with short exposures 

of ultraviolet light. Whole body treatment had a marked beneficial effect, which 

led to a rapid rise in the concentration of 25-hydroxyvitamin D3 in the plasma. A 

negative effect of this treatment is that the substrates for this photochemical 

process have absorption maxima (ca. 280 – 300 nm) with wavelengths close to 

where the purine and pyrimidine bases of DNA absorb. This creates the potential 

for a carcinogenic effect of radiation in this region (UV-B and UV-C) (100, p. 6).   
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Various skin diseases have been treated with plant extracts known to 

contain furocoumarins (psoralens). In India, for example, extracts of Psoralea 

corylifolia were given orally, followed by sunlight exposure, to treat vitiligo, a 

disorder of the skin which is associated with the loss of pigmentation (100, p. 6). 

In 1974, Parrish and colleagues found that oral administration of 8-

methoxypsoralen, followed by exposure to ultraviolet light in the 320 – 400 nm 

range could be used as a treatment modality for psoriasis. Since a PS was 

required, this treatment is known as indirect sensitized phototherapy, or 

photochemotherapy.  The 320 – 400 nm region is known as the UV-A region; 

therefore, this treatment is called PUVA (psoralen + UVA) (102).    

      Bilirubin is a linear tetrapyrrole, which is formed as a product of the 

breakdown of the heme from hemoglobin. After about 3 months, the red blood 

cells are worn out and begin to leak, and are subsequently destroyed and 

replaced. The heme in the red blood cells is oxidatively opened to yield carbon 

monoxide and biliverdin (a blue green substance). The biliverdin is reduced to 

bilirubin (an orange yellow compound which is the chromophore of jaundice).  

Bilirubin is insoluble in water and must be enzymatically converted to bilirubin  

D-glucuronide so that it can be solubilized in water, secreted in the bile, and 

passed out of the body (100, p. 7). An enzyme known as uridine 

diphosphoglucuronyl transferase allows the bilirubin to be conjugated to D-

glucuronic acid to yield the product bilirubin D-glucuronide. In newborns, this 

conjugation is sometimes impaired, resulting in bilirubin remaining in circulation. 
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The skin of the infant becomes yellow (jaundiced) due to bilirubin (100, p. 8). 

Phototherapy of jaundiced infants came about rather serendipitously. In 1956, a 

charge nurse in England noticed that when the skin of a newborn was exposed to 

sunlight, it became less yellow as compared to the skin that was covered. It was 

discovered that bilirubin levels were reduced after exposure of the jaundiced skin 

to sunlight. Since sunlight was sporadic in England, a controlled source was used 

to irradiate the skin of the newborns. Again, it was found that bilirubin levels 

dropped following exposure to irradiation. These findings represented the first 

scientific demonstration of the phototherapy of neonatal hyperbilirubinemia. 

Today, the phototherapy of neonatal hyperbilirubinemia using white light or blue-

enriched white light emitted by fluorescent lamps is a standard procedure in 

pediatric units worldwide (103).  

First Generation Photosensitizers 

The phototherapy of cancer is termed PDT, because the three 

requirements of light, a PS, and oxygen must be met. In 1903, Jesionek and von 

Tappeiner from Munich reported results from experiments in which tumors had 

been treated topically with eosin, and then exposed to visible light. Two years 

later, these scientists reported an extension of their work in which various 

sensitizers and sunlight and an arc lamp were utilized. The sensitizer was 

applied at or near the surface in patients with basal cell carcinoma, and the 

results were promising. In 1924, Policard and Lyons observed a natural porphyrin 

fluorescence in experimental tumors, which is indicative of an association 
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between porphyrins and cancer tissue (100, p. 9). In 1942, Auler and Banzer 

injected tumor bearing animals with Photodyn (a hematoporphyrin), followed by 

irradiation with a powerful quartz lamp. These animals showed necrosis, 

fluorescence, and cellular softening of the tumors (104). In 1961, Lipson and 

colleagues introduced a preparation called “Haematoporphyrin Derivative” (HpD), 

which was shown to be somewhat selectively localized in tumor tissue. When 

irradiated with 366 nm light, the tumor was able to be visualized by its red 

fluorescence emission. HpD was investigated for 10 years as a diagnostic agent 

for cancer. Eventually, it was realized that by changing the irradiation conditions, 

the tumor could be identified by its red fluorescence, and then subsequently 

undergo photodegradation. In 1972, Diamond and his colleagues reported the 

photodegradation of glioma implants in the rat after administration of HpD. In 

1974, Dougherty discovered that intraperitoneal administration of fluorescein 

reduced the growth rate of mammary tumor implants in irradiated animals (100, 

p. 10). The first photodynamic experiment in humans was published by Kelly and 

Snell in London in 1976. These scientists found that HpD could be used to aid 

the diagnosis and treatment of bladder cancer (105). In 1993, Photofrin was the 

first PDT drug to be approved by Canadian authorities to treat human superficial 

papillary bladder cancer. Photofrin was originally derived from HpD. Additional 

approvals of Photofrin for limited applications have been made in other countries 

(100, p. 11). HpD and Photofrin, which was derived from HpD, are known as first 

generation photosensitizers. The advantages of first generation photosensitizers 
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include: 1) Material is synthesized from readily available starting materials by a 

simple procedure. 2) Extensive clinical activity has been demonstrated 

repeatedly. 3) This material was the first preparation known to show 

effectiveness in PDT. 4) It was the first substance to receive regulatory approval 

(initially in Canada in 1993, and subsequently in several other countries). The 

disadvantages of these photosensitizers include: 1) The compound is a very 

complex mixture, with positional and stereoisomerism, and also contains inter-

porphyrin linkages. As a result, the composition of this mixture is difficult to 

reproduce; the relationship of the clinical response to the molecular structure is 

almost impossible to predict. 2) HpD is active in PDT for treating cancer, but its 

activity is very modest. 3) Selectivity is poor, since sensitivity to light of normal 

tissue (skin, in particular) remains for weeks following treatment. 4) HpD has a 

spectrum at which the absorption band at lowest energy (λmax = 630 nm) has the 

weakest absorption (100, p. 129). Irradiation is done at this wavelength since 

transmittance through tissue is highest in the red region of the spectrum. 

Substances with low molar absorptivity in this region will require higher PS doses 

or higher doses of light (or both) in order to generate an adequate level of excited 

PS with subsequent production of 1O2 (100, p. 130).   

Second Generation Photosensitizers 

More recently, there has been development of more powerful and specific 

tumor photosensitizers known as second generation sensitizers (100, p. 129).  

Verteporfin is a PS that is a benzoporphyrin derivative (106). This PS is activated 
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at 690 nm, which allows for deeper tissue penetration. This drug is cleared 

rapidly from the body so that skin photosensitivity is minimized (107). Treatment 

occurs within 15 – 30 minutes after injection, and clinical response is based on 

vascular disruption and shutdown (108, 109). Verteporfin has been used to treat 

age related macular degeneration (AMD), which is the leading cause of 

blindness. The pathophysiology of this disease is based on the hemorrhaging of 

neovascular vessels which destroys the choroids of the eye. The drug is 

administered at doses of 6 mg / kg via I.V. injection, and light of 100 J / cm2 

illumination is applied to the leaky eye vessels within 30 minutes of infusion. In 

most cases, neovascular occlusion occurs and visual loss is curtailed in 80 % of 

patients (110). Verteporfin has also been used to treat choroidal melanoma with 

the same dosage and amount of light used for macular degeneration (111, 112). 

      Texaphyrins are synthetic expanded porphyrins, and they have been used 

for many years to enhance imaging for magnetic resonance irmaging (MRI) (113-

115). The PS Lutetium texaphyrin is sold under the trade names of Lu-tex or 

Optrin for cutaneous formulations, and Antrin for vascular formulations (cardiac, 

peripheral, and ophthalmic). This PS is water soluble, and is activated at 730 nm, 

which allows for deeper light penetration. Lutetium binds well to low density 

lipoproteins, which means that it may be useful against artherosclerotic plaque 

(116). The texaphyrin photosensitizers fluoresce at 750 nm which could allow 

their use to improve localization and dosimetry of PDT (117). 

      Foscan, a member of the chlorin family of photosensitizers, has been used 



22 
 

 

for a variety of cutaneous lesions (118-120), as well as pulmonary (121, 122-

126), esophageal (127, 128), and head and neck tumors (129-135). The drug 

dosage is 0.15 mg / kg, which is lower than with Photofrin (one of the first 

generation photosensitizers). The patient is irradiated 4 days following injection, 

and the drug activates at 660 nm, which gives it a greater depth of penetration 

(136).   

      m-Tetrahydroxyphenylchlorin (m-THPC), which is used for head and neck 

tumors, is highly efficient in converting light so that only 20 J / cm2 is needed. 

This allows for rapid treatment, lasting for a few minutes; however, the drawback 

is that significant pain can be experienced during the procedure. Also, this PS is 

so efficient, and time of treatment is so short, that patient movement (from 

breathing, for example) can move the treatment field, which can result in under 

dosage to the tumor tissue, and over dosage to normal tissue. Since significant 

reflection can occur in mucosal regions, scattering of the light can be a problem.  

Care must also be taken to cover all regions that are not intended to be 

illuminated. The potential for improper illumination as well as light scattering is 

always present, and it is easy to make a treatment mistake given the efficient 

nature of this PS and the short time needed to create a PDT reaction. Excellent 

outcomes have been achieved for cutaneous squamous cell and basal cell 

lesions, head and neck lesions, and lung and esophageal lesions, provided that 

the appropriate blocking of light to normal tissues is achieved (136).   

      Purlytin, chemically known as tin-ethyl-etiopurpurin (SnET2), is a product 
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of the degradation of chlorophyll (137). This drug is also categorized as a chlorin.  

Although the drug is synthetic and pure, it has poor stability in water, so it must 

be carefully formulated. This drug is activated at 660 nm, which will allow for 

good depth of penetration. A drawback is that the agent used as a carrier creates 

an egg based allergic reaction. Therefore, patients with egg allergies cannot be 

infused with this drug. This drug has been shown to be effective in the treatment 

of basal cell, squamous cell, chest wall metastasis, and Kaposi sarcoma (138-

141). 

    Another product of the chlorin family is NPe6, which is mono-L-aspartyl 

chlorin e6. This chlorin has been involved in Phase 1 clinical trials on cutaneous 

lesions (142-144). Tumor control was not achieved with drug doses below  

1.6 mg / kg; however, at doses between 2.5 and 3.5 mg / kg, the majority of 

tumorous lesions were resolved. Studies of this drug revealed that light doses of 

100 J / cm2 at 664 nm given 4 h after drug infusion were favorable. There was no 

tissue selectivity achieved at drug doses of 1.6 mg / kg or greater, which limits 

the use of this drug in clinical situations. A potential use for NPe6, however, 

could exist for ophthalmic lesions (145).   

      HPPH [chemically known as 2-(1-hexyloxyethyl)-2-devinyl   

pyropheophorbide-a], also known as Photochlor, is a chlorin based 

photosensitizer (146). This PS is active at 665 nm and has been used 

successfully to treat naturally occurring tumors in dogs and cats (147, 148). The 

drug is introduced intravenously and is effective at a concentration of 0.15 mg / 
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kg (6 mg / m2) and a light dose of 150 J / cm2 at 665 nm administered after 48 h 

post drug exposure. Eight of eight patients with esophageal cancer achieved an 

excellent response. Other types of cancers that were treated successfully with 

Photochlor are basal cell, Barrett’s esophageal, and endobronchial recurrence 

from lung cancer. Photosensitivity of patients to sunlight for several days after 

injection appears to be dose dependent (149).  

      Most of the activity of photosensitizers in the dye family come from 

phthalocyanines and related compounds such as naphthocyanines (150). These 

structures require activation at 100 J / cm2 at wavelengths in the 650 – 850 nm 

range. Most of the dyes are hydrophobic and require delivery agents for clinical 

use. Dyes have been linked to a variety of metals, which has increased their 

efficacy. The best PDT activity appears to be with the use of aluminum, zinc, and 

silicon (151). Although dyes are of interest in PDT, there has been limited 

published clinical literature in existence. Aluminum phthalocyanine tetrasulfate 

has had an excellent response in the treatment of naturally occurring tumors in 

cats (152). This dye and others allowed for fluorescence that could enhance 

treatment by imaging cancerous tissues (153). Photosens, which is a sulfonated 

aluminum phthalocyanine has been used for cutaneous and endobronchial 

lesions to treat malignancy and infection. This photosensitizer has been 

formulated to allow for delivery via aerosol, direct injection into lesions, and 

intravenous delivery (154). Photosens has successfully treated head and neck 

tumors, including lip, pharynx, larynx, and tongue (155, 156). Tumors that failed 
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with initial therapy often were successfully treated after two PDT sessions.  

Complete response was reported about 60 % of the time (157).    

Third Generation Photosensitizers 

Third generation photosensitizers not only have improved activity and 

selectivity, but also contain a system which allows the targeting of the PS to a 

receptor on the cancer cell (100, p. 129). When administered into the 

bloodstream, most drugs will associate with serum proteins, including high and 

low density lipoproteins (HDLs; LDLs) and albumin. The exact type of interaction 

depends upon the characteristics of the drug and the serum protein involved. 

Various methods of interaction include hydrogen bonding, van der Waals forces, 

π bond stacking, hydrophobic interactions, and ion pairing. Serum proteins are 

mainly responsible for the transport of photosensitizers throughout the body. 

Improved photodynamic action can be accomplished with the in situ generation 

of these carrier systems, as they may lead to enhanced intracellular dye 

accumulation via receptor-mediated endocytosis with improved targeting (158).   

      Albumin is the most abundant human serum protein, and is approximately 

10 times more concentrated than the total concentration of all lipoproteins (159).  

Serum albumin has a unique capability to bind a large number of endogenous 

and exogenous compounds, either covalently or reversibly, and with high affinity 

(160). Initial studies utilizing serum albumin as a targeting substance involved 

non-covalent binding of Zinc phthalocyanine (ZnPc) into bovine serum albumin 

(BSA) prior to intravenous administration (161). EMT-6 mouse mammary tumors 
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on Balb/c mice and T380 human colon carcinomas on nude mice showed tumor 

regression with no liver toxicity using the ZnPc – BSA conjugate (162). Studies 

have been undertaken to covalently bond several different photosensitizers to 

BSA. Physically altered albumin is targeted by scavenger receptors which are 

over-expressed on macrophages. The scavenger receptors are able to bind 

many different ligands and transport them to endosomal and lysosomal cellular 

compartments (163). Since over 50 % of tumor mass is of macrophage lineage in 

several cancers, photosensitizers can be targeted to tumor volume (164). It has 

been observed that higher levels of PS accumulate in tumor-associated 

macrophages as compared to neighboring tumor cells, with a 9 fold increase 

observed with porphyrin photosensitizers (165).       

      Hamblin and Newman covalently coupled hematoporphyrin (HP) to BSA to 

yield monomeric and cross-linked conjugates. Singlet oxygen quantum yields 

were comparable to those of free porphyrins. In NIH 3T3 fibroblast cells and 

HT29 tumor cells, native albumin did not compete with the uptake of HP-BSA 

conjugate. Most likely, the HP-BSA was associated with the plasma membrane 

of these cells (165). Maleylated BSA (synthesized by reaction with maleic 

anhydride) has also been investigated as a possible PS target agent (166). The 

maleylated BSA-phthalocyanine complex conjugate showed a greater affinity for 

the scavenger receptor compared to BSA-Pc. This complex exhibited increased 

uptake and higher photodynamic efficiency in the macrophage-like J774 cells 

(158). Chlorin e6 (Ce6) was also studied by covalently attaching it to BSA and 
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further modifiying the BSA by maleylation (167, 168). These photosensitizers 

displayed increased uptake and higher photodynamic activity in J774 cells. In 

vivo studies showed that the mal-BSA-Ce6 had a significant effect on tumor 

growth delay and reduction of tumor growth in scavenger receptor negative EMT-

6 tumors (158). 

      Lipoproteins have also been used as targets for photosensitizers. A 

lipoprotein is a particle with a central core of hydrophobic lipids surrounded by 

hydrophilic polar lipids and apoproteins. These particles have two functions:  

solubilization of highly hydrophobic lipids which allows transport throughout the 

body, and signaling to regulate the movement of the particular lipid into and out 

of specific tissues (158). The most important lipoprotein in terms of drug delivery 

is LDL. LDLs are the major carriers of cholesterol in the blood (169). The outer 

shell of LDLs contains a single copy of the large B-100 apolipoprotein which is 

responsible for recognition and binding by the LDL receptor and leads to 

receptor-mediated endocytosis of the LDL particle.  Cholesterol is a key 

component of all eukaryotic cell membranes and is necessary for growth of cells; 

therefore, tumor cells and tumor vascular endothelial cells overexpress the LDL 

receptor due to either increased proliferation or increased membrane turnover 

(170). LDL can then become a good target for drug delivery. Another advantage 

of using LDL during PDT, is that following irradiation, the LDLs will become highly 

oxidized. These oxidized products are cytotoxic towards endothelial cells, which 

further extends the effect of photodynamic action (171). To investigate the role of 
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the LDL receptor, the amphiphilic HP and hydrophobic ZnPc were bound to 

human LDL (172). Using human HT1080 fibroblasts, HP-LDL complex 

accumulated on the LDL receptors, but the ZnPc-LDL complex was internalized 

through non-specific endocytosis.  The complexation of the LDL with the 

phthalocyanine resulted in changes in the apolipoprotein B structure on the LDL, 

which accounts for the lack of LDL receptor affinity with the ZnPc-LDL complex 

(173). Incorporation into LDLs enhances the PDT efficiency of most 

photosensitizers (174). Conjugates of HP and LDL exhibited increased uptake in 

NIH 3T3 cells (175) and the HP-LDL complex was also taken up by J774.2 

macrophages (158). Ce6 has also been covalently bound to LDL via a 

carbodiimide and the LDL-Ce6 complexes were compared to free Ce6 and Ce6 

complexed non-covalently to LDL with a fibroblast and retinoblastoma cell line 

(176). The covalent bonding of Ce6 to LDL increased uptake significantly in both 

cell lines (158).   

      All rapidly dividing cells require a continuous influx of iron for cell division, 

and transferrin is the major circulating iron transport protein (177). Cells express 

transferrin receptors, which allows for binding and internalization of the iron 

saturated transferrin, with subsequent delivery of iron to the necessary sites in 

the cell (178, 179). Many types of cancers exhibit over-expression of transferrin 

receptors. Also, the expression of the transferrin receptor is correlated with tumor 

grade, stage, progression, and metastasis (178). Transferrin has potential for 

transporting photosensitizers to cancer cells (180). In one study, transferrin was 
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covalently coupled to HP using the N-hydroxysuccinimide (NHS) ester of HP 

(165), and the conjugate was found to have similar 1O2 quantum yields. The 

uptake of HP-transferrin in NIH 3T3 and HT29 cells was shown to be receptor-

mediated (158). Transferrin was also covalently bonded to Ce6 (181, 182), and 

the resulting complex had a 1O2 quantum yield of approximately 70 % of that of 

the free Ce6. During in vitro studies with MTLn3 rat mammary adenocarcinoma 

cells, the transferrin-Ce6 conjugate was 10 – 40 times more photocytotoxic than 

the free Ce6 (158).   

      The human skeleton is continually being built and destroyed (183), and 

the physiological balance is maintained by osteoclasts (mediate bone resorption) 

and osteoblasts (mediate new bone formation)(184, 185). Enhanced bone 

resorption is typical of many metabolic bone disorders, including malignant 

hypercalcemia and bone metastases (186). It has been proposed that PDT may 

be useful for treatment of these conditions by selectively destroying osteoclasts.  

Bisphosphonates have been proposed as the PDT targeting agents (187).  

Bisphosphonates bind to hydroxyapatite crystals in bone matrix and inhibit 

osteoclast recruitment and function (186, 188). In addition, bisphosphonates 

stimulate osteoblasts to produce inhibitors of osteoclast function, while avoiding 

degradation by cellular enzymes. The following photosensitizers have been 

proposed as potential for targeting to bisphosphonate in PDT: indocyanine green, 

methylene blue, chlorins, phthalocyanines, porphyrins, purpurins, and 

texaphyrins (187).  
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      Germanium phthalocyanine (GePc) with two cholesterol moieties bound to 

the germanium central metal atom has been synthesized. The cholesterol 

molecules are bound via a diphenylsilanediol (189). The overall amphiphilicity of 

the molecule is altered by the length of the spacer chain between the cholesterol 

and the silane. The quantum yield of 1O2 for these conjugates was quite good in 

organic solvents (190).   

      Steroids are also useful as an ancillary therapy to PDT. For example,  

2-methoxyestradiol potentiates the anti-tumor effects of PDT (191). When  

2-methoxyestradiol was incubated with five human tumor cell lines prior to PDT, 

a synergistic anti-tumor effect was seen. When this combination therapy was 

used in vivo, retardation of tumor growth and prolonged survival of tumor-bearing 

mice was observed. In another study, the photodynamic efficiency of HP 

derivatives was potentiated when glucocorticoids were administered following 

irradiation (192). Steroids and other hormones can deliver the photosensitizer to 

the nucleus, which is one of the most photosensitive sites in the cell. Estrogens, 

androgens, progesterone, mineralocorticosteroids, glucocorticosteroids, thyroid 

hormones, retinoic acid, vitamin D and ecdysone bind with high affinity to specific 

members of the nuclear hormone receptor superfamily (193). The members of 

this family of receptors have both a ligand binding domain and a DNA binding 

domain (194). Since the DNA binding domain varies for the various members of 

this family of receptors, the family is divided into two subgroups (195). The 

steroid receptor family (except the estrogen receptor) are distributed in the 
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cytoplasm in the absence of ligand (196). When the ligand diffuses through the 

plasma membrane and binds to the ligand binding site, the receptors undergo a 

conformational change and are trafficked to the nucleus where they target 

sequences of DNA. The estrogen receptor, however, is found exclusively in the 

nucleus. Nuclear receptors will attract and selectively localize their ligands into 

cells where these receptors are expressed. These ligands are important for 

targeting these cells with photosensitizers and other drugs (158). The estrogen 

receptor binds estradiol, estriol, estrone, and synthetic estrogen agonists / 

antagonists. Breast tumors are known to over-express estrogen receptors in high 

levels (197-199), which makes these receptors excellent sites for directing 

photosensitizers to both increase cellular uptake and to deliver the dye to the 

nucleus of the cell. Several attempts have been made to covalently attach 

estrogen and other hormone receptor ligands to photosensitizers (200, 201).  

The major problem, however, with the PS-steroid conjugate is the decrease or 

loss of receptor recognition, which is why it is essential to identify positions on 

the parent steroid where a PS can be attached without compromising receptor 

binding (202-205). Experiments with Ce6 to improve photocytotoxicity of 

hormone PS conjugates were completed with Ce6 attached to estradiol (206).  

Binding to the receptor was poorer than with estradiol alone; however, these 

conjugates were photoactive against estrogen receptor-positive MCF-7 breast 

cancer cells. Additional conjugates were prepared using 4-hydroxytamoxifen, an 

anti-estrogen that binds to the estrogen receptor. When the conjugate was 
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covalently bound to Ce6, estrogen receptor binding was still observed, but only in 

a small amount. The MCF-7 breast cancer cells were killed upon light irradiation, 

which demonstrates that the tamoxifen conjugates were photoactive (207). 

Folate Targeted Cancer Therapy 

The strategy behind targeting therapy involves using a ligand that binds 

specifically to a receptor that is expressed to a greater degree on tumor cells 

relative to normal cells. When the ligand (folate) is linked to a therapeutic drug, 

the drug can be carried specifically into the cancer cell (208). Some of the 

advantages and disadvantages of ligand targeted therapies will now be 

discussed. Ligand targeted therapies are remarkably flexible and adaptable.  

Most potent drugs can be targeted to tumor tissue if the drug can be linked 

reversibly to a targeting ligand that is specific for a pathologic cell type. Also, an 

imaging agent can almost always be synthesized using the identical targeting 

ligand. This imaging agent can then be used to select for patients with tumors 

that overexpress the ligand’s receptor (209, 210). Ligand targeted therapies are 

preferred for delivery of drugs which are membrane impermeable because the 

targeting ligand can deliver the drug via receptor mediated endocytosis, which 

increases the efficacy of the drug (211, 212). There are also some disadvantages 

to ligand targeted therapies, which will now be discussed. Most endocytic 

pathways transport few molecules into a cell, which requires the ligand targeted 

drugs to be effective at low concentrations. Delivery to the cancer site does not 

guarantee efficacy, since the drug must be released within the cell as well as 
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being internalized within the cell. Drugs must contain a limited number of 

chemical moieties (–SH, –COOH, –OH, or –NH2), because only a few functional 

groups allow for facile release of a covalently attached drug after targeted cell 

uptake (213, 214). Also, an efficient drug release mechanism must be part of the 

drug conjugate – one that is inert during transport to the cancer cell, but is 

activated after target cell binding and internalization to insure drug release only at 

the disease site. Finally, for some membrane impermeable drugs, following 

receptor mediated endocytosis, the drug will still need to pass through the 

endosomal membrane to reach its target within the cancer cell (211).   

                             Folate Receptor Expression Patterns 

Folic acid is a vitamin needed for the proliferation and maintenance of all 

cells. Folate is needed for the synthesis, repair, and functioning of DNA.  

Deficiencies of folate may result in DNA damage which can lead to cancer.  

Folate is especially important for cells and tissues undergoing rapid division; 

therefore, cancer cells overexpress folate receptors (FRs) to ensure that they 

obtain an adequate supply. This FR overexpression, as well as the high affinity 

recognition by the receptor ligand binding, has meant that FRs have become 

popular tumor targets by conjugating folic acid to anticancer molecules (11). Most 

mammalian cells obtain their normal folate requirement via a low affinity reduced 

folate carrier or proton-coupled folate transporter (215, 216).  Accessible folate 

receptors are normally overexpressed on cancer cells (217-219), activated 

macrophages (220-223), and the proximal tubules of the kidneys (224).  Folate 
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conjugates have no affinity for the reduced folate carrier or proton-coupled folate 

transporter; they bind to FRs with high affinity and enter FR-expressing cells by 

receptor mediated endocystosis (225, 226).  

      Cancer cells have an increased requirement for folic acid, which is 

essential for synthesis of nucleotide base pairs in cell proliferation. 

Overexpression of FRs on cancer cells may have evolved because folate is often 

a limiting nutrient in human serum, and up-regulation of a high affinity FR may 

enable malignant cells to compete more aggressively for the vitamin. Many, but 

not all, cancer cells express either the α or β FR isoform (217, 218). Cancers that 

most aggressively up-regulate the FR include ovarian, lung, kidney, endometrial, 

breast, brain, colon, and myeloid cells of hematopoietic lineage. Other tumors 

may up-regulate the reduced folate carrier or proton-coupled folate transporter to 

satisfy increased folate needs (215, 217).   

Current Uses of PDT for Non-cancerous Conditions 

Use of PDT to treat microbial infections is becoming more popular due to 

the emergence of antibiotic resistance, the rise of human immunodeficiency virus 

(HIV), cancer patients with intractable infections, and the greater likelihood of 

spread of infection among global travel between developed and developing 

countries (11). Treatment with conventional antibiotics is facing serious 

limitations due to the following: the development of resistance to many classes of 

antibiotics leading to lethal effects (an example is the methicillin-resistant 

Staphylococcus aureus – MRSA) (227); excessive or inappropriate prescription 
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of antibiotics coupled with failure of patients to complete the treatment regimen 

(11); the large variety of strategies adopted by microorganisms to potentiate a 

degree of resistance to antibiotics (228); the broad differences in structure and 

organization by microbial cells (examples are the formation of protective biofilms, 

and lifecycles which include a resistant cystic stage)(11). Research has 

suggested that a suitable choice of PS dose and irradiation conditions for treating 

infectious diseases allows one to overcome the limitations of antibiotic therapies 

(8). Approaches under consideration involve the administration of the PS in the 

infected areas through topical application, spray formulations, or instillation, 

followed by irradiation of the photosensitized area with full spectrum visible light 

or selected intervals of visible wavelengths (229). The application of PDT for 

treatment of infectious diseases is still at the experimental stages. This therapy 

has several potentially favorable properties, since it is characterized by a high 

level of safety, is efficient against a large variety of pathogens (conventional 

antibiotics show activity to one or two pathogenic varieties), and has a possibility 

for repeating treatment due to insufficient response or recurrences. Clinical 

applications of antimicrobial PDT are reinforced by promising results that have 

been obtained in studies involving animal models as well as the encouraging 

reports of initial clinical trials (230, 231).    

      Cardiovascular disease is the leading cause of death across the globe. 

One of the main manifestations of the disease is atherosclerosis, which can 

occur in coronary or peripheral arteries. The understanding of what 
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atherosclerosis is has changed, and it is no longer considered a build up of fat 

leading to progressive narrowing of the arterial wall. Instead, plaque is a 

collection of cells (mostly macrophages and smooth muscle cells) which arise 

where the endothelial layer is injured or as a response to chronic infection. The 

underlying mechanism for the majority of sudden cardiac deaths has been 

suggested to be plaque rupture followed by occlusive thrombosis. It has been 

observed that photosensitizers commonly used for PDT specifically accumulate 

in the plaques in the arterial wall that are the hallmark of atherosclerosis. This 

accumulation has lead to suggestions that PDT could be used as therapy for 

atherosclerosis. If a PS could be delivered systemically or locally to the affected 

artery, along with an intravascular catheter fitted with a diffusing tipped fiber and 

placed at the affected lesion, illumination of an appropriate wavelength may kill 

pathogenic cells within the plaque. Cells involved in cardiovascular disease are 

the following: endothelial cells that line the inside of the blood vessels (these 

cells can regrow after injury to recoat the blood vessel wall and allow smooth 

blood flow); smooth muscle cells which provide contractility in the arteries (these 

cells can grow after injury and may lead to recurrent blockages in the artery 

known as intimal hyperplasia); fibroblasts which produce collagen and are 

components of fibrous plaques; macrophages that are thought to be a major cell 

type in atherogenesis and in the inflamed plaque; lymphocytes and other 

inflammatory cell types. There have been studies in vitro on how these cell types 

behave after incubation with various photosensitizers followed by illumination 
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(11). A technology was developed to target photosensitizers to macrophages. 

The approach involves covalently attaching a PS to a macromolecule that is 

recognized by the cell surface receptors that are expressed on macrophages. 

The diseased arterial wall was the only part that was illuminated, which resulted 

in localized and specific destruction of macrophages (232). Specific ligands of 

scavenger receptors, such as maleylated albumin, were utilized. Scavenger 

receptors are expressed mainly on mature macrophages, and Class A scavenger 

receptor (SRA) is a good target for macrophage specific PDT (233). The SRA is 

a multidomain trimeric transmembrane protein and has a high capacity to 

internalize ligands. One of the molecular designs to target SRAs is BSA. Three 

molecules of the Ce6 PS were covalently attached to the BSA via amide bonds 

between the carboxyl groups of chlorin and the epsilon amino groups of lysine in 

the BSA. Further modifications included the maleylation to give BSA – Ce6 – 

mal. There was a high degree of selectivity of this SRA-targeted PS conjugate for 

macrophages. Several experiments have used various photosensitizers such as 

photofrin, Hp, Ce6, and lutetium texaphyrin to study atherosclerosis in vivo in 

animal models. Some experiments have focused on fluorescence to detect 

atherosclerosis, while others have focused on potential therapeutic effects of 

PDT. In many cases, dramatic reductions in plaque were seen as a result of PDT 

treatments. Fluorescence was also seen in areas containing plaque, which 

shows that the PS accumulates in the atherosclerotic tissue (11). PDT has also 

been used for prevention and treatment of intimal hyperplasia (IH). Intimal 
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hyperplasia is a thickening of the tunica intima of a blood vessel which occurs as 

a complication of a reconstruction procedure or angioplasty. The arterial wall 

thickens and the lumen narrows due to accumulation of vascular smooth muscle 

cells in the intima, which secrete matrix proteins. Various animal studies have 

used PDT to prevent IH from occurring (a few days after injury) or to treat 

established IH several weeks after arterial injury. There have been few 

cardiovascular studies involving human subjects (three clinical studies known up 

to 2008). The first study in 1999 by Jenkins et al. investigated aminolevulinic acid 

(ALA) PDT following femoral percutaneous transluminal angioplasty (PTA). The 

study involved eight PTAs in seven patients (median age of 70) who had 

previously undergone conventional angioplasty at the same site which resulted in 

restenosis or occlusion between 2 and 6 months. The patients were dosed with 

oral ALA (60 mg / kg) 5 to 7 hours before the procedure. After having a second 

femoral angioplasty, up to 50 J / cm2 of 635 nm light was delivered to the 

angioplasty site via a laser fiber within the angioplasty balloon. All of the patient’s 

vessels remained open and no lesion became restenosed. The second study 

used the texaphyrin PS Antrin, or motexafin lutetium (234). The patients had 

claudication (pain and cramping in the legs due to poor blood circulation) and 

peripheral arterial insufficiency. A photoangioplasty of a single atherosclerotic 

lesion was performed in the external iliac, common femoral, or superficial femoral 

artery. In the first phase, the drug doses were escalated from 1 to 5 mg / kg at a 

constant 732 nm wavelength with light fluence of 400 J / cm2. In the second 
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phase, escalating drug doses from 2 to 4 mg / kg and light fluences of 500, 625, 

and 781 J / cm2 were used.  The median change in arterial stenosis was 24 % 

less and 62 % of patients showed improvement, while 36 % showed no change, 

and 2 % showed moderate worsening (235). The third study was a phase I trial 

which studied drug and light dose-escalation of motexafin lutetium and 

intravascular illumination in patients with coronary artery disease undergoing 

percutaneous coronary intervention and stent deployment. Therapeutic changes 

were achieved without adverse vascular responses or any treatment limiting 

phototoxicity (236).    

      Treatment of cardiovascular disease in the past consisted of balloon 

angioplasty followed by application of bare-metal stents, and subsequently drug-

eluting stents (237). However, problems still remain with each of these 

treatments. Stenosis (arterial blockage or narrowing of the vessel) can be a  

problem with the bare-metal stents, and late thrombosis events are problematic 

with drug-eluting stents (238, 239).  

PDT can play a role in the treatment of heart disease. PDT can also play a 

role in the problem of vulnerable plaque. Vulnerable plaque includes various 

types of high-risk plaques which predispose patients to developing acute 

thrombotic coronary syndrome / death. The aim with vulnerable plaque is not to 

remove or ablate the plaque to allow reestablishment of blood flow, but rather to 

reduce the inflammatory elements in the plaque that allow rupture and 

thrombosis to occur.  The stabilization of these thin-cap fibroatheroma (TCFA) 
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lesions may be well suited to PDT, since photosensitizers can selectively target  

inflammatory cells such as macrophages (11).   

      Age-related macular degeneration is the main cause of a significant loss 

of vision among people who are over age 50 (240-242). AMD is most prevalent in 

the elderly population (238, 240). Blood vessels of the choroid (choroidal 

neovessels or CNV), which are poorly regulated and leaking, represent only 

about 15 % of the AMD cases (240, 244), but neovascular AMD causes nearly all 

the rapid and extensive vision loss (240, 245). Nonvascular AMD is characterized 

by lipid deposits which contain lipofuscin in and under the retinal pigment 

epithelium. These deposits are called drusen and show up as yellowish spots 

upon visual inspection of the retina (246, 247). Verteporfin (Visudyne) was the 

first approved PS for PDT treatment of AMD. PDT changed everything for both 

patients and eye care professionals, as legal blindness was no longer the main 

outcome of this disease. Since the year 2000, several hundreds of thousands of 

eyes have been treated and saved from blindness by PDT (11). SnET2 and 

Lutetium texaphyrin were tested in phase I and II clinical trials; however, these 

drugs failed to reach the market. Other compounds are being developed in order 

to achieve even higher treatment selectivity. Higher selectivity implies less 

damage induced by PDT to the surroundings of the CNV, and also less closure 

of the normal choriocapillaries. An example of this is the creation of a conjugate 

between benzoporphyrin derivative monoacid ring A (BPD-MA) and a peptide 

that selectively binds to endothelial cell receptors that are up-regulated in CNV, 
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such as the vascular endothelial growth factor (VEGF) receptor 2 (248). PDT of 

subfoveal CNV uses freshly made verteporfin solution that is injected via IV over 

a 10 minute interval. Fifteen minutes after starting perfusion of the drug, light is 

applied to the retina from a diode laser at a wavelength of 689 nm. This beam 

targets the retina so that the diseased area is able to be visualized. The 

treatment beam is coaxial and operates at a 630 nm wavelength. The target 

area, which includes the leaky CNV, is visualized by fluorescein angiography. 

The eye is irradiated via a planar-concave contact lens that is placed on the eye. 

The fluence rate at the retina is 600 mW / cm2, which is delivered over a time 

period of 83 seconds, giving a fluence rate of 50 J / cm2 (11). There are many 

aspects of selectivity in the PDT treatment of the angioocclusion of CNV in AMD. 

First of all, there is selectivity of vascular damage and the subsequent stasis of 

blood flow. This selectivity is seen in the short time interval between the drug 

injection and application of light. The 83 second irradiation takes place 15 

minutes after the start of the IV injection of Visudyne, and at that point, most of 

the drug that is in the retina is still within the blood vessels, and more specifically, 

on or in the endothelial cells lining the CNV, which will undergo the 

angioocclusion. This represents the main photodynamic effect which takes place 

in the endothelium being irradiated. During the phase I and II trials that took 

place during the development of Visudyne, the second reason for the selective 

angioocclusion of the targeted CNV became evident.  Visudyne angiography was 

done in the early clinical tests. What was observed in these experiments was that 
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the retinal vessels emptied of Visudyne fluoresced significantly faster than the 

choroidal vessels. At the time of irradiation, the retinal capillaries appeared to 

have much less drug in them compared to the CNV and choroidal vessels. This 

may have implied a significant level of protection of the retinal capillaries. 

Occlusion of retinal capillaries must be avoided due to immediate and heavy loss 

of visual acuity. A third reason for selectivity in the closure of CNV is that retinal 

capillaries are protected by the blood retinal barrier, which signifies tighter 

junctions between endothelial cells, and probably more resistance to PDT. The 

CNV are new leaky vessels with somewhat weak junctions between the 

endothelial cells, without significant reinforcement of the capillary walls by 

pericytes and connective tissue, which means that the CNV should be more 

prone to angioocclusion induced by PDT. A fourth reason for the selective 

angioocclusion of the CNV is that these rapidly growing neovessels tend to have 

a relatively high activity of LDL receptors on their endothelium.  Verteporfin, a 

fairly lipophilic drug, is transferred to a significant extent to LDL.  The rapidly 

proliferating CNV endothelium may be selectively loaded with verteporfin (this 

was effectively shown in rabbit eye neovessels) (249). Finally, another reason for 

selectivity in CNV angioocclusion by PDT may be a lower level of tissue 

molecular oxygen in the region of the retinal vessels as compared to the choroid 

(250). Angioocclusion induced by PDT begins with the light-drug interaction that 

generates reactive intemediates that damage different sites in and on the 

endothelium. It has been shown (251-253) that the cytoskeleton of the 
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endothelial cells can be damaged, leading to shrinkage and rounding of these 

cells. This can then cause rupture of the tight junctions between the CNV’s 

endothelial cells. This break up of the tight endothelial junctions is followed by 

release of von Willebrand factor (vWF). vWF is a glycoprotein that is present in 

the endothelial cells and the subendothelium. One of its functions is related to 

adhesion and aggregation of platelets. Together with fibrinogen it helps to 

develop a thrombus (that is, the release of vWF causes platelets to stick to the 

capillary wall). More platelets continue to stick to the immobilized platelets, 

forming a plug. This thrombin is then stabilized by the activation of fibrinogen to 

fibrin. PDT of subfoveal CNV does not damage photoreceptors or other 

neighboring parts of the retina so that retinal function is maintained (11).    

      The uses of PDT in dermatology include the following: nonmelanoma skin 

cancer, acne, photorejuvenation, hidradenitis supporativa (a chronic skin 

inflammation with presence of blackheads and one or more red, tender lesions – 

a severe form of acne), psoriasis, cutaneous T-cell lymphoma, disseminated 

actinic porokeratosis (DSAP; a rare inherited skin condition that causes dry, itchy 

lesions on the arms and legs), localized scleroderma, vulval lichen sclerosis, 

bacterial infections, and verruca vulgaris. The skin has easy access to light-

based therapy, and this has lead dermatologists to apply PDT to cutaneous 

disorders (254). Photofrin, which is a purified HpD, was used in conjunction with 

UV light to locate tumors, and then in combination with visible light to treat 

tumors (255). The drawbacks of using HpD as a PS is that this drug accumulates 
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in skin and clears out slowly. The result is that the patient experiences cutaneous 

photosensitivity that may last several months, and during this time, the patient is 

at risk of phototoxic reactions (256). Actinic keratosis (AK) is caused by long term 

exposure to the sun, and this condition is often the beginning stage of invasive 

squamous cell carcinoma (SCC) (257, 258). PDT has been reviewed among the 

conventional treatments of cryotherapy, curettage, and 5-fluorouracil (259-262). 

ALA has been applied to diffuse areas and is selectively uptaken by abnormally 

keratinized cells. This cellular uptake paves the way for PDT to be used for 

prevention of AK by eradicating populations of abnormal cells before they 

become confluent and manifest as visible actinic keratoses. In a clinical study, 

Szeimies et al. used 10 % ALA, and applied ALA-PDT once to 36 AK lesions on 

the hands, arms, and heads of 10 patients. They irradiated the lesions with red 

and infrared light (580 – 740 nm, 150 J / cm2), and monitored the patients for 3 

months. After twenty-eight days, complete remission had occurred in 71% of the 

head lesions. No lesions on the hands and arms showed complete remission 

(263). More recently, a phase IV trial of 110 patients were treated with 20 % 

Levulan Kerastick, and the results of the study were a clearance of 76 %, with an 

increase of 86 % with two treatments, and an overall recurrence rate of 24 % 

over a 1 year follow-up (264). In a study in 2000, Hongcharu et al. (265) applied 

ALA-PDT with filtered red light (550 – 700 nm) for the treatment of mild to 

moderate acne. This study demonstrated that Protoporphyrin IX (PpIX) 

accumulates in pilosebaceous glands. The authors reported statistically 
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significant clearance for 10 weeks after one treatment, and for 20 weeks after 

four weekly treatments. The authors also showed that after ALA-PDT, sebum 

excretion was decreased, bacterial fluorescence was decreased, and sebaceous 

glands were damaged (266, 267). In another study, Goldman and Boyce (268) 

showed that with ALA-PDT using blue light, the effectiveness against acne was 

better than with blue light alone, and also that short-contact ALA (< 1 hour) 

provided efficacy and minimal side effects. Hidradenitis supporativa (HS) is a 

chronic, inflammatory disease of the apocrine glands in the skin, particularly in 

the axilla, anogenital region, and breasts. The condition results in painful 

abscesses and sinus tract formation. HS can be progressive with marked 

morbidity related to chronic pain, draining sinuses, and scarring with restricted 

mobility. Complications of this condition can lead to fistulas of the urethra, 

bladder, and rectum if the anogenital region is affected, and limited mobility and 

lymph edema if the axilla are affected. Previous treatments included oral and 

topical antibiotics, antiandrogens, oral retinoids, immunosuppressive therapy, 

biologics, and surgery. PDT has been studied due to limitations of the 

aforementioned therapies (11). Gold et al. studied four patients with chronic HS 

that were unresponsive to previous therapies. The patients received three to four 

treatments at 1 to 2 week intervals which consisted of 15 to 30 minutes of 

incubation of Levulan followed by exposure to blue light. All subjects showed  

75 % - 100 % clearance of HS three months after the final treatment. The 

treatments were painless and patients reported no adverse events (269). DeVita 
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and Taub also supported this finding in case studies of four persons with 

moderate to severe HS who were unresponsive to previous therapies. Patients 

were treated with either blue light or intense pulsed light (IPL) after 30 to 60 

minutes incubation with Levulan. The treatments were given at 2 to 4 week 

intervals, followed by maintenance treatments every 1 to 2 months. The patients 

achieved 50 % – 75 % clearance with the initial treatment series and were either 

maintained or improved with further treatments during the maintenance phase 

(270).   

                  Vascular Targeting in Photodynamic Therapy 

After studying the process of PDT, it is now known that PDT can kill 

cancer cells directly or can indirectly induce tumor cell death as a result of 

damage to tumor stroma (73). Direct toxicity to tumor cells is often limited due to 

inadequate supplies of PS, light, and / or oxygen in tumor tissues (252). Tumor 

vasculature is an important part of PDT and is often responsible for the decrease 

in tumor burden following PDT. Vascular damage is the main PDT effect and is 

primarily responsible for the final outcome following PDT treatment (73).  

Vascular targeting has been developed to further potentiate vascular damage.  

Solid tumors are unable to grow larger than 1 mm3 without a vascular network 

(271). Like normal tissues, tumor tissues require a functioning vascular system to 

supply the tumor with nutrients and to remove metabolic wastes. In order to 

sustain growth, tumor tissues depend upon existing vessels and also develop 

new blood vessels for blood supply. Tumor blood vessels exhibit abnormalities in 
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vessel architecture (tortuousity, dilatation, irregular branching, and lack of 

pericyte and basement membrane coverage) and function (stagnant blood flow, 

increased vascular permeability), as compared to normal blood vessels (272).  

There are two categories of vascular targeting therapy, which are:  

antiangiogenic therapy that inhibits the formation of new vessels, and vascular 

disrupting therapy that targets existing blood vessels (273). The overall goal of 

vascular therapy is to disrupt tumor vascular function without affecting the 

function of normal tissues. This therapy can be used alone or in conjunction with 

traditional cellular PDT or other cancer treatments. There are several advantages 

to tumor vascular therapy as compared to the tumor cellular targeting approach 

(271, 274). First, vascular targets are readily accessible to the intravenous 

delivery of therapeutic agents, whereas the various physiological barriers make 

cellular targets difficult to reach. Second, vascular targeting is highly efficient and 

potent in killing tumor cells, because not all of the endothelial cells need to be 

targeted to disrupt tumor vascular function. Damage to a single endothelial cell or 

a portion of a blood vessel can have a catastrophic effect on the perfusion of the 

tumor. This, in turn, results in killing thousands of tumor cells dependent upon 

that vessel for blood supply. Third, since endothelial cells are considered to be 

more stable genetically than tumor cells, the risk of acquiring drug resistance is 

low (11). Photodynamic vascular targeting uses site-directed delivery of 

photosensitizing agents to the blood vessel system followed by light irradiation to 

induce photosensitizing effects in the vasculature. There are two approaches, 



48 
 

 

passive and active. The passive approach is based on the fact that the 

concentration of the PS is often high shortly after intravenous administration of a 

PS. The goal with active vascular targeting PDT is to direct the drugs to the 

vasculature and to alter the pharmacokinetic properties of the PS via drug 

structure modification or drug formulation into a targeted delivery system (73). A 

target that has a high affinity to endothelial cell markers (for example, integrins, 

VEGF receptors, tumor endothelial markers) or vessel supporting structures (for 

example, the extra domain B of fibronectin which is a marker of tissue 

angiogenesis expressed in solid human tumors) is often used to modify the PS. 

The PS conjugates are expected to selectively accumulate in the targeted blood 

vessels, and become activated upon irradiation by light. The mechanism of 

vascular targeted PDT is the same as cellular PDT in that 1O2 is produced and is 

responsible for the subsequent vessel structural and functional alterations (275). 

The ultimate goal is to obtain maximal tumor cell killing by inducing tumor 

vascular shutdown. Fluorescence studies have shown that microcirculation 

dysfunction is induced by vessel occlusion due to thrombus formation and vessel 

constriction / collapse caused by mechanical compression and vasoactive 

substances. Photosensitizing damage to either blood cells or endothelial cells 

can induce thrombus formation. It has been demonstrated that PDT can damage 

platelets and red blood cell membranes, thereby causing platelet aggregation 

and thrombus formation (276, 277). Thromboxane, a vasoactive substance, is 

stimulated by damage to the platelets.  Thromboxane has potent vessel 
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constriction and thrombus formation effects.  Damage to the endothelial cells 

occurs in addition to damage to blood cells. The endothelium serves as an 

interface between blood and tissue underneath. If the endothelial barrier is lost 

due to vascular photosensitization, this exposes the extracellular tissue matrix to 

the circulation, which activates platelets and leukocytes. This will subsequently 

induce blood cell adherence to the damaged endothelial cells (278). Endothelial 

cells also influence the balance of blood clotting by release of vWF that facilitates 

thrombus formation (279) and prostacyclin which inhibits thrombus formation and 

dilates blood vessels (280). Blood clot formation is the net effect that is most 

likely favored in the early stages of photosensitization. Blood clots will cause 

obstruction to blood flow; however, some of these clots are unstable and will be 

dissolved and dislodged by anticoagulants within the body. Only stable clots will 

occlude blood vessels and shut down vascular function (281). Thrombus 

formation is only partially responsible for PDT induced vascular damage. Vessel 

constriction is often observed after vascular photosensitization, and this also 

contributes to blood flow stasis. The release of vasoactive substances, such as 

thromboxane and leukotrienes, can cause vessel constriction (69). However, an 

increase of interstitial fluid pressure is also a strong inducer of vasoconstriction 

and collapse in tumor tissues (272). Tumor tissues have higher interstitial 

pressure than normal tissues due to leaky tumor blood vessels. Mechanical 

compression due to high tumor interstitial pressure can cause collapse of tumor 

blood vessels even without treatment. This is one of the mechanisms involved in 
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acute hypoxia development in tumor tissues (282). Since PDT is able to cause 

vascular barrier disruption and further increase tumor interstitial pressure, vessel 

compression and collapse effects are aggravated by PDT (283, 284). One of the 

challenges of PDT vascular targeting, is that in spite of extensive tumor vascular 

shutdown leading to tumor cell death, functional blood vessels are typically 

detected at tumor peripheral areas. Existence of these functional vessels can 

lead to tumor recurrence, which is often observed at the peripheral tumor area 

(285, 286). It is unclear why tumor peripheral and central blood vessels react 

differently to photosensitization. The hypothesis is that the variation in response 

is due to differences in tumor interstitial pressure and the structure of blood 

vessels in the tumor central versus peripheral areas. The central tumor vessels 

have a higher interstitial pressure than the peripheral vessels, and are therefore 

more likely to collapse because of higher mechanical compression (287, 288). 

Also, peripheral tumor vessels are usually larger and have more vessel support 

structures as compared to central tumor vessels. The current status of PDT 

vascular targeting involves the use of verteporfin for treating AMD, and other 

photosensitizers such as SnET2 (Purlytin), and lutetium texaphyrin (Lu-Tex, 

Optrin), which are under clinical trials for AMD (73). The PS Tookad is in a phase 

I / II clinical trial for locally recurrent prostate cancer after radiation therapy (289).  

These photosensitizers are being studied for the passive form of vascular 

targeted PDT. Less studies have been undertaken for the active form of vascular 

targeted PDT, but this avenue is being pursued for cancerous and noncancerous 
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diseases. Some promising results have been achieved from several studies 

using conjugated photosensitizers with blood vessel homing peptides (290-294).  

Inflammation and Immune Responses to PDT 

The therapeutic outcome after cancer treatment by PDT is the result of the 

photooxidative damage, effects on tumor vasculature and other tumor stromal 

elements, and the elicited host response (252, 295). The host response includes 

two major processes, inflammation and the acute phase response, and the two 

main parts of immunity, the innate and adaptive immune reactions. These host 

responses have a pronounced systemic impact. The inflammatory response 

occurs because of localized oxidative stress which is associated with a wide 

range of photooxidative lesions produced in the membranes and cytoplasm of 

tumor cells, stroma, and vasculature (296). The PDT-induced insult is 

experienced by the host (patient) as a local trauma. The inflammatory response 

is initiated as this is the body’s way for dealing with localized injury. The acute 

inflammation first prevents the spread of tissue damage and contains the 

disrupted homeostasis. Next, the damaged and dead tissue is removed, and then 

local healing is promoted to restore tissue function at the affected site (297). The 

inflammation resulting from PDT-treated tumor tissue is a tumor antigen 

nonspecific process orchestrated by the innate immune system which detects the 

inflicted tumor-localized insult (296, 298). The sensors of the innate immune 

system recognize the insult as a state of “altered self” (299). This alert system is 

called into action upon detection of alarm / danger signals from the injured / 
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distressed tumor tissue (300, 301). The sensors of the innate immune system 

recognize damage-associated molecular patterns (DAMPs). Basically, DAMP 

can be any molecule that is abnormally exposed, misfolded, or residing at a 

wrong location, as well as breakdown products of damaged biomolecules. There 

are three major types of DAMPs generated by tumor PDT: cell-derived 

molecules, extracellular matrix degradation products, and extravasated plasma 

proteins (299, 302). Degradation products of cellular membranes 

(lysophospholipids and arachidonic acid metabolites) are PDT-induced DAMPs 

that are massively released from PDT-treated areas (303, 304). Intracellular 

molecules originating from necrotic cells are also DAMPs. PDT can induce 

damage to extracellular matrix (305), and the degradation of this tissue-

supporting scaffold will liberate fragments of fibronectin, hyaluronan, collagen, 

and laminin that are also danger signals (301, 306-308). Tissue injury induced by 

PDT includes breakdown of blood vessels, which leads to the escape of plasma 

proteins, which leads to increased accumulation of protein such as fibrinogen 

(302). Extravascularly localized fibrinogen is also recognized as a danger signal 

and promotes the development of a host response against PDT-treated tumor 

tissue (309). DAMPs of proinflammatory danger signals following tumor PDT 

treatment are detected by specialized pattern recognition receptors (PRRs) 

(310). These PRRs can be soluble, membrane-anchored, or cytoplasmic (the 

latter two are found on macrophages, mast cells, dendritic cells, and endothelial 

cells) (311). The engagement of PRRs by tumor PDT-induced injury associated 



53 
 

 

DAMPs is what triggers the inflammatory process. The inductive phase of 

inflammation (including inflammation induced by PDT) involves the vascular 

component of the affected tissue. When using photosensitizers that do not target 

the vasculature, such as Photofrin, m-THPC, and PpIX induced by 5-ALA, the 

process of inflammation is initiated by signals originating from photooxidative 

damage. This photooxidative damage is produced in perivascular regions with 

chemotactic gradients that reach the vascular endothelium. The conversion of 

vascular endothelium from a nonthrombotic nonadhesive barrier to a proadhesive 

surface for inflammatory cells that becomes leaky to blood components 

represents the onset of inflammation (312, 313). There are several underlying 

changes that occur during the process of inflammation, which include 

vasodilatation (due to the action of arachidonic acid metabolites (314) and 

elevated production of nitric oxide from activated nitric oxide synthase) that 

increases blood flow and leukocyte delivery, appearance of leukocyte adhesion 

molecules on the endothelium, opening of junctions between endothelial cells, 

and activation of platelets (triggered by activating factor induced in endothelial 

cells by lysophosphatidylcholine) (313). Next, there is rapid and massive invasion 

by neutrophils into PDT-treated tumors, followed by mast cells and monocytes 

(315-317). These inflammatory effector cells neutralize the source of danger 

signals by destroying compromised tissue elements and eliminating dead and 

injured cells. Studies into the signaling pathways initiated by inflammation 

following PDT will lead to insights into tumor cell death by the three mechanisms 
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of apoptosis, necrosis, and autophagy. The immune response that occurs after 

successful PDT is also thought to play a critical role in the long-term outcome of 

tumor treatment. Factors that determine the strength of the immune response will 

likely be further studied (11). 

      PDT has a significant effect on the immune system (318-320), which can 

either stimulate the immune system or suppress the immune system in some 

circumstances. Administration of photosensitizers along with the appropriate light 

activation causes an unusual mixture of both apoptotic and necrotic cell death 

(14). Some reports show that apoptotic tumor cells are more effective in the 

induction of the immune response than necrotic tumor cells (321, 322), however, 

there are other reports showing the opposite findings (323, 324).  The acute 

inflammation caused by PDT-induced necrosis may stimulate immunity by 

attracting host leukocytes into the tumor, and enhancing antigen presentation. 

Antigen-presenting cells (APC) have the unique ability to induce a primary 

immune response. One of the most characteristic features of the APCs is the 

expression of the major histocompatibility complex (MHC) class II molecules and 

the ability to present exogenous antigens to T helper lymphocytes. The types of 

APCs include dendritic cells (DC), macrophages, and B lymphocytes. Dendritic 

cells can acquire the antigens, process them, and present them in the context of 

MHC class II molecules. The DCs express Toll-like receptors [TLRs; TLRs are a 

class of protein receptors on macrophages or dendritic cells that recognize 

structurally conserved molecules derived from microbes; an immune response is 
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activated after microbes have penetrated the skin or intestinal mucosa and are 

recognized by TLRs (302)] as well as costimulatory molecules needed for 

successful DC-T cell interactions. They can travel to the lymph nodes and 

interact with T cells to start the primary immune response. One of the most 

important factors induced by PDT is the release of extracellular heat shock 

protein 70 (HSP70) from necrotic tumor cells. When HSP70 remains intracellular, 

it chaperones unfolded proteins and prevents cell death by inhibiting aggregation 

of cellular proteins (325). Intracellular HSP70 can inhibit tumor cell death by 

apoptosis and also promote formation of stable complexes with cytoplasmic 

tumor antigens that can be either expressed at the cell surface or escape intact 

from dying necrotic cells to interact with antigen presenting cells to stimulate an 

antitumor immune response (326). Extracellular HSP70 binds to high affinity 

receptors on the surface of the APCs, which leads to activation of DCs. This 

process subsequently enables the cross-presentation of the antigen cargo of 

HSP70 by the APC to cytotoxic T-cells (327). PDT mediated by NPe6 and SnET2 

increased HSP70 protein levels in mouse tumor cells in vitro and in tumor cells in 

vivo (328). Agents derived from microbial stimulators of innate immunity can be 

injected into the tumor or surrounding area before, during, or after PDT in order 

to activate TLRs or similar pattern recognition molecules on macrophages and 

dendritic cells (329). Combination therapy that involves administering 

immunoadjuvants (often potential TLR ligands) and different PDT regimens has 

proven to be effective. There have been reports that macrophages can be 
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activated by low, sublethal doses of PDT (330). It has been shown that PDT-

treated macrophages secrete tumor necrosis factor alpha (TNFα) (331).  

Evidence indicates that macrophages can show preferential cytotoxicity towards 

tumor cells that have been treated with a sublethal dose of PDT (332). Another 

report showed that the tumoricidal effect of peritoneal macrophages removed 

from mice after PDT was unaltered; however, there was a reduction in natural 

killer (NK) cell function. Studies have demonstrated that the acute inflammation 

produced by PDT and a systemic and tumor-localized increase in neutrophils are 

very important in obtaining tumor cures. It is likely that these phenomena will also 

be important in developing a memory T-cell antitumor immune response 

following PDT. Studies with NK cells suggest that these cells may play a 

significant role in post-PDT activity of CD8+ T cells and control of distant 

metastases. In the absence of NK cells, SCID mice exhibited a significant 

increase in lung tumor number (11). Canti and colleagues examined the effects 

of PDT with the PS aluminum disulfonated phthalocyanine on the antitumor 

immune response in immunosuppressed and normal mice with MS-2 

fibrosarcomas. All of the mice were cured, but resistance to a new challenge with 

MS-2 tumors was evident in animals cured by PDT. Immunosuppressed animals 

and animals cured by surgery died after tumor rechallenge. These results 

suggest that PDT may induce the activation of the tumor-specific cytotoxic T 

lymphocytes (333).   
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          Photobleaching and Quenching of Singlet Oxygen in PDT 

Photobleaching refers to the loss of absorbance and / or fluorescence of 

the PS upon exposure to light. Photobleaching can lead to chemical change, 

including the total destruction of the PS. Two types of photobleaching are 

possible, which are: 1) photomodification – refers to the loss of absorbance or 

fluorescence at some wavelengths with the PS retained in a modified form.   

2) true photobleaching, in which the chemical change results in small fragments 

which no longer have significant absorption in the visible region. Ideally the PS 

should be completely selective for tumor tissue; however, some will be found in 

normal tissues, where it may cause undesirable photosensitization. If the PS 

exhibits moderate sensitivity to photobleaching, after the tumor tissue is 

destroyed, the residual PS located in normal tissue would be susceptible to 

photobleaching under ambient light conditions. This situation is a potential value 

of photobleaching, as the period of post-treatment sensitivity of the patient to 

sunlight would be reduced and the clearance of the residual PS from the body is 

hastened. Photobleaching will affect dosimetry, both of the PS and of the light. If 

the PS exhibits some photobleaching, a stronger light dose may be needed to 

compensate. Allowances may also need to be made for photobleaching in 

determining drug dosages (100, pp. 237-238).    

      Other considerations that may affect the efficacy of treatment with PDT 

involve the quenching of 1O2 before it has the opportunity to react with cellular 

organelles leading to destruction of tissues. There are two mechanisms of 
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quenching of singlet oxygen: 1) Physical quenching – 1O2  +  A   3O2  +  A   In 

this situation, interaction leads to deactivation of 1O2 with no consumption of O2 

or product formation. 2) Chemical quenching – 1O2  +  A   P   In this situation, 

the quencher reacts with 1O2 to give a new product. Early research with 1O2 

showed that 1O2 could oxidize substrates that were not affected by oxygen in its 

normal triplet energy state. Oxygen is more oxidizing in its singlet state, and is 

therefore more electrophilic, making it very reactive with unsaturated carbon-

carbon bonds, neutral nucleophiles such as sulfides and amines, as well as with 

anions (33).  Singlet oxygen can also react with double bonded compounds 

containing two or more allylic substituents, causing a shift in the double bond, 

and formation of an allylic hydroperoxide. This reaction is relevant to biological 

systems in the reaction of 1O2 with the amino acids tryptophan and histidine, as 

well as unsaturated fatty acids which are part of cellular membranes (334, 335).  

Singlet oxygen may also form dioxetanes by reacting via cycloaddition with the pi 

electrons of olefins (336, 337). Excited triplet state photosensitizers can produce 

1O2; however, in many cases, these same photosensitizers can also quench 1O2 

once formed. This situation can lead to photobleaching and photodegradation. 

Photodegradation refers to the process in which 1O2 reacts with a material and 

results in its degeneration, and photobleaching refers specifically to the 

degradation of dyes by 1O2. This process is undesirable, since it is the generation 

of 1O2 which allows PDT to be successful (33).    
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  Buchwald-Hartwig Chemistry for Pd-Catalyzed Cross Coupling Reactions     

                                              Forming C-N Bonds 

Palladium catalyzed amination using aryl, vinyl, and heteroaryl halides has 

rapidly emerged as a tool for the synthesis of many pharmaceuticals and natural 

products (338-341). This method of synthesis stems from the prevelance of 

aromatic amines in molecules that are biologically active (342). Important classes 

of these molecules include kinase inhibitors (343, 344), antibiotics (345, 346), 

and central nervous system agents (347). Major breakthroughs in this area of 

synthesis have been in the implementation of new types of ligands. Some 

specific examples include chelating diphenylphosphino ligands such as BINAP 

(348, 349), dppf (350), and Xantphos (351). In addition, more electron-rich 

chelating phosphines such as Josiphos (352), N-heterocyclic carbenes (353), 

and trialkylphosphines (354, 355) have allowed an increase in types of 

substrates utilized and have rendered the reactions more efficient (356, 357).  

Inspite of the fact that a number of systems are available for Pd-catalyzed C-N 

coupling, only a limited group of types have been applied in practice. Catalysts 

based on dialkylbiaryl phosphines compare favorably with other systems, and 

have been used extensively in the synthesis of biologically active molecules 

(341). Professor Stephen Buchwald first described the use of these systems for 

Pd-catalyzed cross-coupling in 1998 (358). Since then, further work (359-371) 

has led to the development of many structurally related ligands that can generate 

highly active catalysts for a number of reactions, such as Pd-catalyzed amination 
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(341) and etherification of aryl halides (372, 373), arylation of enolates (374), and 

Suzuki-Miyaura cross-coupling (375, 376). These ligands have an advantage 

over others in that they are able to be utilized without the need for a dry-box and 

can be used with standard laboratory glassware (377). The choice of ligand as 

well as other parameters (Pd catalyst, base, solvent, temperature) needed to 

optimize the reaction will vary for different substrate combinations. This is due in 

part to the wide variation in electronic and steric properties of the nitrogen 

nucleophiles when compared to other cross-coupling processes such as the 

Suzuki-Miyaura reaction (see next section). Due to differences in nucleophilicity 

and pKa of the amine and amide substrates, the rate determining step of the 

catalytic cycle can vary, which contributes to the difficulty in selecting the best 

reaction conditions (378). The structure of the ligand is critical to the success of a 

given amination reaction when using a dialkylbiaryl phosphine compound. Many 

ligands have been developed which are air stable, easily handled crystalline 

solids, and are commercially available (379). Improved reactivity in a variety of 

amination reactions became possible with the discovery of XPhos and RuPhos 

(380, 381). The use of an extra equivalent of ligand relative to the Pd catalyst is 

often needed to stabilize the catalyst for difficult reactions which require long 

reaction times (382, 383). This tactic is effective for dialkylbiaryl phosphine 

ligands because when an extra equivalent of ligand is used, the L1Pd complex 

can still be the main species in solution (384). An extra quantity of ligand may 

also be necessary for activation of the Pd catalyst. The efficiency of formation of 
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the catalytically active L1Pd(0) complex before entry into the catalytic cycle is a 

key factor in the selection of the reaction conditions for Pd-catalyzed amination.  

If a Pd salt is used as the catalyst, the Pd must be reduced from the +2 oxidation 

state to a 0 oxidation state before the cross coupling reaction can take place.  

The need for a reduction step from Pd(2) to Pd(0) can be avoided by using a 

stable Pd(0) complex such as Pd2(dba)3 or Pd(dba)2, which are suitable for a 

variety of conditions (380, 381, 385-391). The coordination of dba to the metal, 

however, can attenuate the activity of the Pd catalyst (392, 393). A wide variety 

of solvents can be used for Pd-catalyzed amination reactions using dialkylbiaryl 

phosphine ligands, although toluene and 1,4-dioxane are the most commonly 

used solvents. The choice of base for amination depends on the functional 

groups present in the substrate (394). Selection of the base by noting the pKa of 

the free N nucleophile is not possible since the pKa is altered significantly by 

binding to the Pd, which occurs before deprotonation. Sodium t-butoxide is the 

most versatile base for Pd-catalyzed amination reactions with dialkylbiaryl 

phosphine ligands since it often gives the highest reaction rates with the lowest 

catalyst loadings. However, because sodium t-butoxide is a fairly strong base 

(pKa = 17.0) it can participate in undesirable side reactions with electrophilic 

functional groups and some aromatic heterocycles and cause epimerization at 

acidic centers (395). Reaction conditions will depend on the structures of both 

the electrophile (aryl bromide in this research) and the nucleophile 

(phenothiazine in this research). The various aryl halides (chlorides, bromides, 
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and iodides) and aryl sulfonates have distinct properties with respect to how 

easily they undergo oxidative addition (396-398). The presence of electron 

donating or withdrawing groups on the aromatic ring or of heteroatoms within the 

ring affects the rate of all steps of the catalytic cycle. Substituents that are ortho 

to the aryl halide can facilitate some steps of the catalytic cycle (reductive 

elimination), while retarding others (oxidative addition). The N nucleophile can 

also possess differences in nucleophilicity and pKa in addition to steric properties. 

These properties can also affect the rates of various steps in the catalytic cycle 

such as amine binding (378), deprotonation, and reductive elimination (377). 

Initial studies on Pd-catalyzed aminations were carried out predominantly with 

aryl bromides as electrophiles; however, aryl chlorides are now typically more 

attractive substrates since they are more cost effective and more widely available 

(399, 400). A diagram of the Buchwald-Hartwig oxidative addition, reductive 

elimination cross coupling reaction to form C-N bonds for the protected 

phenothiazine trimer, as well as a description of the steps is  

shown in Figure 3. 
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Description of Buchwald-Hartwig Mechanism  

 Br and methyl bromo-4-N-methylenephenothiazinylbenzoate add to Pd (0) ligand 

and Pd  +2 oxidation state (oxidative addition) 

 Na t-butoxide displaces Br atom from ligand (NaBr byproduct) 

 t-butoxide anion deprotonates phenothiazine N atom (t-butyl alcohol byproduct) 

 Deprotonated phenothiazine adds to Pd ligand 

 Methyl bromo-4-N-methylenephenothiazinylbenzoate and phenothiazine released 

from catalyst (phenothiazine dimer formed); new C-N bond formed 

 Final product of methyl (3,7-diphenothiazinyl)-4-N-

methylenephenothiazinylbenzoate (benzoate protected phenothiazine trimer) 

formed after reaction cycles through mechanism twice 

 Pd catalyst reduced back to 0 oxidation state (reductive elimination) 

Figure 3. Buchwald-Hartwig Cross Coupling Reaction 
Ref: http://www.organic-chemistry.org/namedreactions/buchwald-hartwig-
reaction.shtm 
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   Pd-Catalyzed Cross Coupling Reactions Forming C-C Bonds 

The 2010 Nobel Prize in Chemistry was awarded to three scientists who 

were all working on Pd-catalyzed cross coupling reactions involving the formation 

of new C-C bonds. The three Nobel laureates were Professor Richard Heck, 

Professor Ei-ichi Negishi, and Professor Akira Suzuki. In order for a specific area 

of research to be recognized for a Nobel Prize, its real world application must be 

demonstrated within 20 to 30 years of its discovery (401). The area of metal-

catalyzed cross coupling was initiated in the early 1970s; however, there were a 

limited number of publications and patents in this area prior to the 1990s. This 

area of research has grown rapidly, especially since the year 2000. In terms of 

scientific publication, patents, and industrial applications, Suzuki coupling is the 

largest area, followed by Heck coupling, and then Negishi coupling. The 

popularity of Negishi’s work is growing due to the functional group tolerance of 

the zinc reagent compared to magnesium, its potential in sp3-sp2 coupling, 

natural product synthesis, and asymmetric carbon-carbon bond forming reactions 

(402). Between 1968 and 1972, Heck and coworkers as well as Mizoroki and 

coworkers independently discovered the use of Pd(0) catalysts for coupling aryl, 

benzyl, and styryl halides with olefinic compounds. This reaction is now known as 

the Heck coupling reaction, since Heck was the first to elucidate the mechanism 

of the reaction. This reaction combines an aryl, vinyl, or alkyl halide with an 

alkene to create a new R-R’ bond, using a Pd catalyst and base. This chemistry 

can be applied to the synthesis of hydrocarbons, conducting polymers, light-
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emitting electrodes, pharmaceuticals, and dyes. Heck reactions have a broader 

range of uses than other coupling reactions because they can make products of 

different regio (linear and branched) and stereo (cis and trans) isomers. Alkenes 

with electron-withdrawing groups favor linear products, while electron-donating 

groups give a mixture of branched and linear products. Selectivity is also 

influenced by other factors such as the nature of the ligand, halide, additives, 

solvents, and the palladium source. Chiral C-C bonds can also be made by the 

Heck coupling reaction (403-407). During the period from 1976 – 1977, Negishi 

and coworkers as well as other groups of researchers reported the use of zinc 

reagents in cross-coupling reactions (408-410). The Negishi coupling reaction 

uses organozinc reagents containing halide (organic portion can be aryl, vinyl, or 

alkyl) which react with an alkyl, vinyl, or aryl halide to create a new R-R’ bond in 

a cross-coupling reaction utilizing a Pd catalyst. This reaction has been used in 

the synthesis of natural products and fine chemicals (411-413). Suzuki 

recognized that boron was the last element of the three (Zn, Sn, B) that were 

identified by Negishi as suitable counterions for cross-coupling reactions. The 

Suzuki reaction involves Pd catalysis to cross-couple aryl or vinyl boronic acids 

or boronic esters with aryl or vinyl halides to create new R-R’ bonds (414). Heck, 

however, had already demonstrated the transmetallation of a vinyl boronic acid in 

1975 (415). Suzuki identified PdCl2(PPh3)2 as an efficient cross-coupling catalyst, 

and demonstrated the easy reduction of Pd(II) to Pd(0) during catalysis.  The 
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Suzuki reaction is used in the synthesis of pharmaceutical ingredients such as 

losartan (see structure below) (402).   

 

Figure 4. Structure of Losartan 

 

     Ullmann Conditions for Catalysis of Cross Coupling Reactions  

                                             Forming C-N Bonds 

Copper mediated C-N, C-O, and C-C bond formation reactions were first 

reported a hundred years ago in the pioneering work of Ullmann and Goldberg.  

Harsh reaction conditions and low substrate scope hampered these reactions in 

the synthesis of natural products. In the past 10 years or so, the development of 

highly efficient catalytic systems has allowed reactions to be conducted under 

milder conditions and with dramatically enhanced yields compared to the 

classical methods. Copper mediated catalysis now has applications in natural 

product synthesis. An array of copper mediated procedures have been 

successfully employed to make many complex targets with new and efficient 
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bond disconnections. Copper-catalyzed cross-coupling reactions are often not 

too sensitive to the choice of the copper source [copper (I) in most cases]; 

however, the choice of ligand, base, and solvent are often critical to the success 

of the reaction. The quality and particle size of inorganic bases can have a 

dramatic impact on the yields and kinetics of the reaction (416). In 1998, Chan 

(417) and Lam (418) independently published reports of copper-mediated 

arylation of N-nucleophiles using stoichiometric copper (II) acetate and boronic 

acids at room temperature with a wide range of nucleophiles. Over the last 10 

years this arylation of N-nucleophiles with arylboronic acid has become a 

standard (419).  More recently, the introduction of chelating ligands has led to 

dramatic improvements, and many milder Ullmann-type procedures have been 

reported, which have allowed for the use of simpler arylating agents such as aryl 

halides.  The basis for the Ullmann reaction is the use of a copper catalyst, which 

includes Cu, CuI, CuBr, CuCl, CuCN, Cu2O, as well as copper compounds in the 

+2 oxidation state. An organic ligand is also often used. Substrates can be aryl or 

alkyl halides with the halide portion being Cl, Br, or I, as well as boronic acid, 

which reacts with a primary amine, secondary amine, amino alcohol, or  

N-heterocyclic amine. The final product consists of a new C-N bond between the 

RX and the N-nucleophile amine compound, where the N of the amine is 

attached to the carbon originally bearing the halide. Various bases used for the 

reaction include potassium or sodium t-butoxide, potassium carbonate, cesium 

carbonate, potassium phosphate, and sodium hydroxide. Solvents used include 
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dioxane, toluene, DMF, acetonitrile, DMSO, methylene chloride, isopropyl 

alcohol, and methanol. In some cases, the solvent plays a dual role as ligand and 

solvent (416).    

                HeLa Cells to Test Cancer Cell Killing Potential 

      The term HeLa refers to the first two letters of the first and last name of   

Henrietta Lacks, from whom the original cells were cultured. Ms. Lacks was 30 

years old when she was diagnosed with an aggressive form of a glandular 

adenocarcinoma of the cervix in 1951. Cervical cancer is typically slow growing, 

and the survival period for most patients is five years from the time of diagnosis. 

Henrietta Lacks did not have an ordinary cancer, and according to Dr. Howard 

Jones, her gynecologist, her cancer was purple and soft, unlike any cancer he 

had ever seen before. This cancer did not respond to radiotherapy. It was a rare 

adenocarcinoma (420) and not of epidermal origin as is usually the case with 

cervical cancers. Henrietta Lacks died only eight months after her initial 

diagnosis with cervical cancer (421).     

      In February of 1951, Dr. George Gey, a respected researcher at Johns 

Hopkins hospital in Baltimore, Maryland, was given a small sample of cells from 

Henrietta Lacks. He established a tissue culture using these cells by using 

plasma obtained from a chicken heart, extract from calf embryos, and human 

placental blood from umbilical cords. These cells became an immortal line of 

cancer cells that have been used to gain knowledge of every fundamental 

process that occurs in human cells (421). Research on the Human Papilloma 
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Virus (HPV) uncovered how Henrietta’s cancer began. HPV inserted its DNA into 

her eleventh chromosome and turned off her p53 tumor suppressor gene. 

Scientists learned from studying HeLa that cancer cells could divide indefinitely. 

They also knew that there was a portion of DNA at the end of each chromosome 

called a telomere. These telomeres shortened a little bit each time a cell divided. 

When the telomeres are almost gone, the cells stop dividing and begin to die. In 

the early nineties, a scientist at Yale used HeLa cells to discover that human 

cancer cells contain an enzyme called telomerase. The purpose of this enzyme is 

to rebuild telomeres. Telomerase allows cells to regenerate their telomeres 

indefinitely. This explained the immortality of the HeLa cells – telomerase 

continued to rebuild Henrietta’s telomeres so that the cells never grew old and 

never died (422).    
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CHAPTER TWO 

PURPOSE OF THE RESEARCH 

The goal of the research is to synthesize a conjugated photosensitizer that 

will absorb light in the wavelength range of 600 – 900 nm, and produce 

significant amounts of singlet oxygen so that tumor cells are killed. Absorption of 

light in the long wavelength visible region to the near IR region will allow deeper 

tissue tumors to be treated with PDT.     

     If the PS is attached to cross-linked hemoglobin, upon the absorption of 

the light, O2, which is present in the heme pocket, could become converted to 

singlet oxygen. The PS does not have to be attached to hemoglobin to be 

effective; however, if tumor tissue is hypoxic, an available supply of oxygen is 

present in the heme. If the photosensitizer is linked to folic acid, the molecule can 

be taken in more readily by tumor cells. The reason for this is that folate 

receptors are over-expressed in cancerous tissue. This allows photodynamic 

therapy to have greater specificity for tumor cells, leaving normal cells less 

damaged. Because traditional chemotherapy targets not only the tumor, but also 

healthy cells, especially fast growing cells, such as hair follicles and the lining of 

the colon, side effects such as hair loss and diarrhea result. This weakens the 

patient (423); therefore, targeting tumor cells is less toxic to the patient. The 

photosensitizer complex, which will consist of the PS with a polyethylene  
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glycol linker, folate, and Hb, will enter the cell by a process known as 

endocytosis. During the process of endocytosis, the substance enters the cell 

without directly passing through the cell membrane. In the specific type of 

endocytosis known as receptor-mediated endocytosis, the specific molecules are 

ingested into the cell due to a receptor ligand interaction. Receptors on the 

plasma membrane of the target tissue will specifically bind to ligands on the 

outside of the cell. This process results in the formation of an intracellular vesicle 

by invagination of the plasma membrane and membrane fusion (424). See 

Figure 5. below. 

               

Figure 5. Endocytosis 
Ref: http://www.expresspharmaonline.com/20060815/research03.shtml 

 
        Since Hb will be traveling in the body outside of the red blood cell, this 

molecule must be stabilized by reacting the beta1-82 and beta2-82 lysines with 
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DBSF [Bis(3,5-dibromosalicyl)fumarate] (425). See Figure 6. Once the PS 

complex is in the cell, when light in the IR region is directed to the patient, 

reactive singlet oxygen is generated, resulting in cell destruction.      

                        

 

Figure 6. Cross-linked Hemoglobin 

Due to the large molecular weight of the PS complex, oral administration 

is not possible according to Lipinski’s rules, which state that a molecular weight 

greater than 500 will not be orally bioavailable (426). Therefore, administration 
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must be accomplished via intravenous injection in a vein near the tumor site, or 

intramuscular injection at a location near the tumor. Human serum albumin may 

be able to act as a carrier within the blood via intermolecular van der Waals 

attractions, which allows transport to the tumor site.   

      Internal organs may be treated by use of endoscopes and fiberoptic 

catheters to deliver the light to a photosensitizer. The major disadvantage of PDT 

is that the light which activates most photosensitizers is unable to penetrate 

through more than 1/3 inch (approximately 1 cm) of tissue, hence the 

development of a PS that can absorb light of longer wavelengths. Treatment by 

light which cannot penetrate deeper into the skin is limited to tumors on the skin 

or lining of some of the internal organs. PDT is also less effective for the 

treatment of large tumors and metastatic cancers due to the limitation discussed 

above (427).   
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CHAPTER THREE 

EXPERIMENTAL RESEARCH & DEVELOPMENT  

Experimental Description of Research 

      The synthesis of the photosensitizer consists of three reactions. The initial 

starting material is phenothiazine. Reaction 1 is protection of the N atom of 

phenothiazine (428). The compound used for this purpose is benzyl bromide.  

The final product is N-benzylphenothiazine. The reaction is shown below.   

 

 

 

 

Scheme 1. Synthesis of N-benzylphenothiazine 

The N atom of phenothiazine must be protected from bromination in the next 

phase of the synthesis, and also from oxidation. The purpose of the KH is to 

deprotonate the N-H, allowing N to attack the C attached to Br in benzyl bromide, 

forming a new C-N bond.   

      Reaction 2 consists of bromination of the N-benzylphenothiazine to form  

N-benzyl-3,7-dibromophenothiazine (429). The reaction is shown on the following 

page.   

+ KH  + BrCH2Ph  
DMF

S

N

+  KBr  + H2

S

N

H
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Scheme 2. Synthesis of N-benzyl-3,7-dibromophenothiazine 

The purpose of the NaHCO3 is to neutralize any HBr that is produced after 

bromine replaces the H atoms on the two phenothiazine aromatic rings.          

      Reaction 3 consists of replacing the bromine atoms with the phenothiazine 

heterocycle. Other hetercycles that could replace the bromine atoms include 

carbazole, indole, or pyrrole. Structures of each of these compounds are shown 

below in Figure 7. Bromine could be replaced in order to increase the level of  

            

N

H

     carbazole  

Figure 7. Other Heterocyclic Compounds to Replace Bromine 

conjugation of the photosensitizer so that the absorption of light can be in the 

near IR range. Light of this range is better able to penetrate deeper tissues, so 

that cancers other than surface cancers can be treated more effectively using 

PDT. Initial research, however, was focused on replacing the bromine atoms with 

N

H

pyrrole

N

H

indole
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phenothiazine to form N-benzyl-3,7-diphenothiazinylphenothiazine 

(phenothiazine trimer). Two approaches were used to synthesize the 

phenothiazine trimer. One reaction utilized Ullmann copper catalysts (Scheme 

3)(430), and the other reaction utilized Buchwald-Hartwig palladium catalysts 

(Scheme 4) (431). Each reaction scheme is shown below. 

 

Scheme 3. Ullmann Reaction Attempt to Produce Phenothiazine Trimer 

 

 Scheme 4. Buchwald-Hartwig Reaction to Produce Phenothiazine Trimer  

 

  A TLC (mobile phase – 40 % CH2Cl2 in hexane) of the Ullmann reaction 

products showed two new spots (Rf = 0.267; Rf = 0.467) that did not correspond 

to the starting materials of phenothiazine (Rf = 0.347) or N-benzyl-3,7-

dibromophenothiazine (Rf = 0.613). A silica gel column using 10 % ethyl acetate 

in petroleum ether (432) was used for chromatography of the Ullmann products. 
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A total of 36 fractions were collected and TLC was run on all fractions, including 

a 37th fraction consisting of nitrobenzene solvent. Based on TLC results, fractions 

25 – 36, 17 – 24, 13 – 16, and 11 – 12 were combined into pre-weighed 50 mL 

round bottom flasks.  Approximately 1 mL of diethyl ether was added to each of 

the four round bottom flasks and rotary evaporation was used to remove solvent, 

followed by vacuum to dry the product. Solid from fractions 25 – 36 and 17 – 24 

was combined and CDCl3 was added to run proton NMRs of these combined 

fractions. This reaction yielded 19.6 mg (13 %) of expected product. NMR results 

showed one peak at 5.0 ppm, which is the CH2 of the benzyl protection group, 

and indicates that the phenothiazine trimer was synthesized. However, the 

product was still impure, since a doublet found at 6.45 – 6.48 was indicative of 

some N-benzyl-3,7-dibromophenothiazine starting material.  

The Ullmann reaction often works more effectively with iodides; therefore, 

iodination of N-benzylphenothiazine was attempted. Iodide is usually a more 

effective leaving group than bromide, due to its larger size and polarizability. The 

reaction for iodination of N-benzylphenothiazine is shown in Scheme 5. 

 

Scheme 5. Synthetic Approach to N-benzyl-3,7-diiodophenothiazine 

 



78 
 

 

Other Iodination reactions have been attempted with CH2Cl2 as solvent, and also 

using N-benzyl-3,7-dibromophenothiazine as the starting material with an HIO3 

catalyst (433). An iodination reaction using N-benzyl-3,7-dibromophenothiazine, 

under Ullmann conditions, with KI as the iodine source, K3PO4 as base, a Cu 

powder catalyst, and CH3CN solvent was also attempted (434). These attempts 

suggested that iodination would be a low yield step, so it was decided to 

discontinue attempts to make N-benzyl-3,7-diiodophenothiazine. N-benzyl-3,7-

dibromophenothiazine worked effectively in the the Buchwald-Hartwig Pd-

catalyzed synthesis of the trimer, which was more effective than the Ullmann  

reactions.  

The weight of the crude N-benzyl-3,7-diphenothiazinylphenothiazine 

product from the Buchwald-Hartwig reaction was 2.3 mg (1.4 % yield). TLC data 

(mobile phase - 10 % ether in hexane) for this reaction showed two new spots (Rf 

= 0.022; Rf = 0.143) that did not correspond to starting materials of phenothiazine 

(Rf = 0.077) or N-benzyl-3,7-dibromophenothiazine (Rf = 0.198). According to 

NMR data, the presence of four peaks at 5.0 ppm is indicative of impure product. 

Presence of peak closest to 5.0 ppm suggests the presence of the N-benzyl-3,7-

dibromophenothiazine starting material.   

Conditions were optimized by changing the solvent, ligand, and reaction 

temperature for the B-H Pd-catalyzed cross coupling of N-benzyl-3,7-

dibromophenothiazine and phenothiazine to form the phenothiazine trimer as  

shown in Scheme 6. Structures of the ligand and catalyst are also shown in 
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Figure 8 (435). All future syntheses of the trimer utilized these conditions. 

 

Scheme 6. Buchwald-Hartwig Synthesis of Phenothiazine Trimer 

                    

             Structure of XPhos                               Structure of Pd(dba)2  

                      Figure 8. Structures of XPhos Ligand and Pd Catalyst 

      A sample of 41.4 mg of the product from the reaction using the optimized 

Buchwald-Hartwig conditions was purified via column chromatography using  

230 - 400 mesh silica gel and gradient elution with mobile phases consisting of 

10 % diethyl ether, 2 % triethylamine, 88 % hexane; 20 % diethyl ether, 2 % 

triethylamine, 78 % hexane; 30 % diethyl ether, 2 % triethylamine, 68 % hexane; 
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50 % diethyl ether, 2 % triethylamine, 48 % hexane; and 98 % diethyl ether, 2 % 

triethylamine. An NMR was taken of each set of combined fractions collected 

from the column.   

      A sample of 60.7 mg of the product from this same reaction was purified 

via column chromatography using an automated flash system with a 4 gram pre-

packed column of silica gel and gradient elution with mobile phases consisting of 

10 % diethyl ether, 1 % triethylamine, 89 % hexane; 20 % diethyl ether, 1 % 

triethylamine, 79 % hexane; and 50 % diethyl ether, 1 % triethylamine, 49 % 

hexane. An NMR was taken of each set of combined fractions collected from the 

column.   

      Subsequent reactions were purified via an automated flash system using a  

4 g pre-packed silica gel column (column ht = 6.25 cm; column diam = 1.28 cm; 

column vol = 8 mL), and the best chromatographic conditions were determined to 

be a 6 % flow rate (1.33 mL/min) using a mobile phase of 10 % ether / 90 % 

hexane for the first 24 fractions, followed by a 20 % ether / 80 % hexane mobile 

phase for the next set of 12 fractions. 

    In order to attach a polyethylene glycol (PEG) linker to increase water 

solubility of the trimer, the benzyl protection group must be removed. Several 

deprotection reactions were attempted on a model reaction utilizing N-

benzylphenothiazine (436-439). The reaction is shown in Scheme 7. 
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Scheme 7. Model Deprotection of N-benzylphenothiazine 

      The next section will describe the variations on this procedure. Variations 

to the reactants in terms of the catalytic transfer hydrogen used include the 

following: increasing the equivalents of ammonium formate from 5 to 10 to 15; 

changing to 5 eq of 1,4-cyclohexadiene; changing to 4.4 % HCOOH (88 – 90 % 

reagent strength) and 10 % HCOOH; using both HCOOH and ammonium 

formate and varying the quantity of the HCOOH and the equivalents of 

ammonium formate. Variations to the solvent include the following: using CH2Cl2, 

tetrahydrofuran (THF), or 1,4-dioxane to dissolve the N-benzylphenothiazine; 

using methanol, ethanol, butanol, 1,4-dioxane, as well as combinations of 

butanol and CH2Cl2 (1:1 and 3:1) as solvent. Variations to the catalyst include the 

following: using glacial acetic acid in 1:9 and 2:8 ratios with solvent for a total of 

10 mL; using 10 mL glacial acetic acid without solvent. Temperature variations 

included: Room Temp; 60°C; 70°C; 80°C; 100°C; 112°C; 117°C. Variations to the 

reaction time include: a minimum of 39 h 15 min to ~ 10 days with variations in 

between these time ranges. Reaction vessel variations included: 25 mL RB; 50 

mL RB; 15 mL PT; 30 mL PT.         

      Since TLC is very qualitative, NMR studies were completed to determine 
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the approximate percentages of phenothiazine (deprotected) and N-

benzylphenothiazine (protected) present in the product. The results of this NMR 

study showed that the best deprotection reaction yielded 43.2 % phenothiazine 

and 56.8 % N-benzylphenothiazine. Since less than 50 % of the sample was 

deprotected in the best case, a new direction was taken for the synthesis of the 

phenothiazine trimer, which will be discussed later in this report.   

Concurrent with the deprotection studies, studies on the acetylation of the 

phenothiazine N atom were completed in order to determine the type of PEG 

linker to be used if the deprotection studies had been successful. The next 

section will describe the two reactions used to acetylate the phenothiazine N 

atom.  

      The first reaction used acetyl chloride to acetylate phenothiazine (440). 

The reaction is shown below. 

            

Scheme 8. Model Acetylation of Phenothiazine using Acetyl Chloride 

NMR data show that the phenothiazine was successfully acetylated with this 

procedure; however, the type of PEG linker needed would be one with a 

protected amine group on one end and a COOH on the other end, which would 
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form an amide bond to the phenothiazine N as shown in Figure 9. 

                    

Figure 9. Structure of PEG linker with COOH group 

However, for the amide bond to occur, the COOH end of the PEG would either 

need to be converted to COCl, which requires an extra step using SOCl2, or the 

phenothiazine could be acetylated using an NHS ester (440), since PEG linkers 

are available with a protected amine on one end and an NHS ester on the other, 

and, like Cl, an NHS ester is a good leaving group as shown in Figure 10.   

 

Figure 10. Structure of PEG linker with NHS ester group 
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The reaction of phenothiazine with acetic acid NHS ester is shown below.

 

Scheme 9. Model Acetylation of Phenothiazine using Acetic Acid NHS Ester 

TLC and NMR data showed that most of the product was still not 

acetylated; therefore, several variations on the procedure shown in Scheme 9 

were attempted. This reaction was repeated 9 more times with some variations to 

the procedure. Variations to the reactants included the following: decrease in 

starting amount of phenothiazine to 50 mg and then 30 mg; making the acetic 

acid NHS ester the limiting reagent as opposed to phenothiazine and using 20 

mg acetic acid NHS ester; using 2 equivalents of KH as the base; using 2 and 

2.5 equivalents of NaOtBu as the base; using 2 and 4 equivalents of lithium 

diisopropyl amide (LDA) as the base. Variations to the solvent include the 

following: using toluene and 1-butanol (NHS ester and NaOtBu do not dissolve in 

toluene); using dimethylformamide (DMF); using tetrahydrofuran (THF); using a 

biphasic system of toluene and water. Variations in the temperature of the 

reaction include the following: increasing the temperature to 105°C, 110°C, 

120°C, 135°C, 140°C; decreasing the temperature to 65°C. The length of time for 

the reaction varied from 48 h to 7 days.  

           NMR analysis showed that the best acetylation reaction by acetic acid  



85 
 

 

NHS ester yielded 31.5 % acetylphenothiazine and 68.5 % phenothiazine. 

           The low yields of benzyl deprotection and acylation in the model studies 

led to the choice of a new protection group, methyl 4-(bromomethyl)benzoate. 

Since an ester is attached to the aromatic ring, it will not be necessary to remove 

this protection group, since an amide bond can be directly made with an amine 

PEG and the carbonyl of the ester group. The first step in this 3 step synthesis is 

to protect phenothiazine shown in Scheme 10 (428).  

 
Scheme 10. Phenothiazine Protection using methyl 4-(bromomethyl)benzoate 
 
      The next step in the synthesis is the bromination of methyl 4-N-methylene 
 
phenothiazinylbenzoate (429) as shown in Scheme 11.  
 

Scheme 11. Bromination of methyl 4-N-methylenephenothiazinylbenzoate  

      The third and final step in the synthesis is the replacement of the Br atoms 

by phenothiazine utilizing a Buchwald-Hartwig Pd-catalyzed cross coupling 

reaction (435) as shown in Scheme 12. 
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Scheme 12. Synthesis of methyl (3,7-diphenothiazinyl)-4-N-methylene-
phenothiazinylbenzoate 
 

      Following synthesis of the benzoate protected phenothiazine trimer, an 

amine PEG attached to folic acid will be bonded to the carbonyl group of the 

benzoate portion of the trimer. A model aminolysis was set up with ethyl 

benzoate to represent the carbonyl group of the protecting group on the trimer 

and octadecylamine to represent the amine PEG, using a TBD (1,5,7-

Triazabicyclo[4.4.0]dec-5-ene) catalyst (441). The reaction and mechanism are 

shown in Scheme 13. and Figure 11. 

 

Scheme 13. Model Reaction Synthesis of N-octadecylbenzamide  
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Figure 11. Mechanism of Aminolysis Using TBD Catalyst 

 

      Due to the lack of light absorption in the 600 – 900 nm UV-VIS region for 

both methyl (3,7-diphenothiazinyl)-4-N-methylenephenothiazinylbenzoate, and  

N-benzyl-3,7-diphenothiazinylphenothiazine (UV-VIS Spectra shown in Figures 

27 and 28 in Appendix A), an Ullmann reaction, which gave a 68 % yield of 

methyl 4-N-phenothiazinylbenzoate, was completed. This reaction is shown in  

Scheme 14 (442).   
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Scheme 14. Ullmann Synthesis of methyl 4-N-phenothiazinylbenzoate 

 

A UV spectrum taken of a 0.5405 mM sample dissolved in acetonitrile indicated 

that the product also did not absorb in the 600 – 900 nm range.  

Since this compound and the previously synthesized phenothiazine 

trimers did not absorb light in the necessary range, a chlorin e6 derivative was 

chosen as the PS for cell killing studies. Chlorin e6 is a known PS that absorbs 

light at 660 nm (144). PEGylation of chlorin e6 utilized an NH2–PEG–Folate 

compound shown in Figure 12.   

 

Figure 12. Structure of NH2–PEG–FA 
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The polyethylene glycol portion of the compound consists of ~45 PEG units with 

the γ C=O group of folic acid amide bonded to one end of the PEG and a free 

amine on the other end of the PEG. The NH2–PEG–Folate was covalently 

bonded to the C-17 carboxylic acid group of the chlorin e6 as an amide (443). A 

5:1 ratio of chlorin to NH2–PEG–FA was used to maximize product formation. 

The reaction is shown in Scheme 15, and the mechanism of the reaction is 

shown in Figure 13.      

    chlorin e6 

Chlorin e6   +   DCC      +    HOBt      +   NH2–(PEG)45–FA      

 

Scheme 15. Synthesis of Chlorin e6–PEG–Folate  
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Figure 13. Mechanism of Amide Coupling of Chlorin e6 to NH2–PEG–FA   

(Note – RCOOH indicates the carboxylic acid group at C-17 of Chlorin e6) 
 

The product was purified by using a centrifugal filter with a molecular weight 

cutoff of 2000 Daltons. The approximate molecular weight of chlorin linked to 

PEG–FA is 3042.7 mg / mmol and the molecular weight of free chlorin is  
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596.7 mg / mmol; therefore, excess chlorin e6 will be removed from the product 

into the filtrate. The purified product was removed from the centrifuge filter by 

washing with PBS solution. A UV-VIS spectrum of the product in PBS is shown in 

Figure 14. 

 

 

Figure 14. UV-VIS spectrum of Ce6–PEG–FA in PBS 
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Epsilon values were calculated for folate (283 nm) and for chlorin e6 (402 and 

660 nm) from UV-VIS absorbance data for known concentrations of folate and 

chlorin e6. Excel charts of this data are shown in Table 1 on page 93, as well as 

graphs of the UV-VIS spectra (see Appendix A). Using Beer’s Law, and the 

known epsilon values from the chlorin and folate standards, the concentrations of 

chlorin and folate were calculated using the UV data of the product. These 

calculated concentrations were then used to determine the ratio of folate to 

chlorin (see Tables 2 and 3, pp. 94 - 95).  A 1:1 ratio indicates a successful 

reaction. The volume of the collected Ce6–PEG–FA product and the calculated 

chlorin concentration determined from the absorbance at 660 nm was used to 

calculate the percent yield.   
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Table 1. UV-VIS Data of Known Concentrations of Ce6 and Folate 

UV Data of Known Concentrations

of Chlorin e6 and Folate

Abs Epsilon Abs Epsilon Abs Epsilon

283 nm 283 nm 402 nm 402 nm 660 nm 660 nm

Chlorin 0.00523 mM 0.13 24,900 0.902 172,000 0.174 33,300

Chlorin 0.00525 mM 0.094 17,900 0.693 132,000 0.139 26,500

Chlorin 0.0105 mM 0.168 16,000 1.464 139,000 0.27 25,700

Chlorin 0.0105 mM 0.19 18,100 1.75 167,000 0.324 30,900

Folate 0.0296 mM 0.837 28,300

Folate 0.0296 mM 0.809 27,300

Folate 0.0592 mM 1.412 23,900

Folate 0.0599 mM 1.516 25,300

Average Epsilon

Chlorin 283 nm 19,225

St Dev Chlorin 283 3900

Average Epsilon

Folate 283 nm 26,200

St Dev Folate 283 1977

Average Epsilon 

Chlorin 402 nm 152,500

St Dev Chlorin 402 19,942

Average Epsilon

Chlorin 660 nm 29,100

St Dev Chlorin 660 3615

Outlier Tests

Chlorin Epsilon 283 0.8269 0.2885 0.3398 1.4552 No outliers

Folate Epsilon 283 0.4553 1.1637 0.5565 1.0625 No outliers

Chlorin Epsilon 402 0.6770 0.7271 1.0280 0.9779 No outliers

Chlorin Epsilon 660 1.1619 0.7193 0.9406 0.4980 No outliers

4 values = 1.4962
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Abs. Folate / Chlorin  

283 nm 

0.654 

1:40 Dilution in PBS  

Abs. Folate ONLY 

0.481 

Epsilon Folate 

283 nm 

26,200 

Concentration Folate 

0.0184 mM x 40 = 

0.736 mM 

Abs. Chlorin  

402 nm 

1.937 

Epsilon Chlorin 

402 nm 

153,000 

Concentration Chlorin 

0.0127 mM x 40 = 

0.508 mM 

Abs. Chlorin  

660 nm 

0.503 

Epsilon Chlorin 

660 nm 

29,100 

Concentration Chlorin 

0.0173 mM x 40 = 

0.692 mM 

 
Table 2. Calculations of Concentration of Folate and Chlorin from UV-VIS Data    
and Epsilons of Known Concentrations (1:40 Dilution in PBS) 
 
Ratio to determine absorbance of folate at 283 nm if folate standard 
concentration = unknown concentration of 0.0173 mM   
  
0.823 / 0.0296 mM  =  x / 0.0173 mM     x = 0.481 
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Abs. Folate / Chlorin  

283 nm 

1.401 

1:20 Dilution in PBS  

Abs. Folate ONLY 

1.018 

 

Epsilon Folate 

283 nm 

26,200 

Concentration Folate 

0.0389 mM x 20 = 

0.778 mM 

Abs. Chlorin  

402 nm 

Peak off scale 

  

Abs. Chlorin  

660 nm 

1.066 

Epsilon Chlorin 

660 nm 

29,100 

Concentration Chlorin 

0.0366 mM x 20 = 

0.732 mM 

 
Table 3. Calculations of Concentration of Folate and Chlorin from UV-VIS Data  
and Epsilons of Known Concentrations (1:20 Dilution in PBS) 
 
Ratio to determine absorbance of folate at 283 nm if folate standard 
concentration = unknown concentration of 0.0366 mM 
 
0.823 / 0.0296 mM  =  x / 0.0366 mM     x = 1.018 

Average concentration of Chlorin at 660 nm: 

0.692 mM + 0.732 mM / 2  =  0.712 mM 

Percent Yield: 

3.0 mL  x  0.712 mmol / 1000 mL  x  3042 mg / mmol  =  6.5 mg 

6.5 mg / 6.9 mg  x  100  =  94 % 

Ratio of Folate : Chlorin           0.757 / 0.712  =  1.06 : 1 
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Experimental Materials  

Chemical Materials 

      Petroleum ether, diethyl ether, 1,4-cyclohexadiene, and acetyl chloride 

were purchased from Alfa Aesar. Methylene chloride was purchased from BDH.  

Carbazole was purchased from Eastman. Methanol was purchased from Fisher 

Scientific. Copper spheres were purchased from Flinn Scientific. Tetrahydrofuran 

was purchased from Fluka. Chlorin e6 was purchased from Frontier Scientific. 

Ethyl acetate was purchased from J. T. Baker. Silica gel (230 – 400 mesh), 4 

gram pre-packed silica gel chromabond flash columns, and thin layer 

chromatography plates were purchased from Macherey Nagel. Nitrobenzene was 

purchased from Mallinckrodt. The NH2–PEG–Folate (MW 2463) compound was 

purchased from Nanocs, Inc. Acetic acid N-hydroxysuccinimide ester was 

purchased from Research Organics. Copper powder was purchased from 

Sargent Welch. The Vivaspin 2 centrifugal concentrator filter (MWCO 2000 Da) 

was purchased from Sartorius Corporation. XPhos was purchased from Strem 

Chemicals. All other chemicals were purchased from Sigma-Aldrich. 1H and 13C 

spectra were recorded in CDCl3 solution on Varian INOVA 300 MHz and 500 

MHz spectrometers. Chemical shifts were expressed downfield from internal 

tetramethylsilane (TMS, δ 0 ppm). 1H NMR data were recorded stating the 

chemical shift, the number of protons and the multiplicity, which was noted as 

follows: (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd doublet of 

doublets; td triplet of doublets). ESI-MS spectra were obtained on an Agilent 
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6460 Triple Quad and a ThermoFinnigan LCQ Advantage Ion Trap mass 

spectrometer. MALDI-MS were obtained from Washington University, St. Louis, 

MO. IR data were obtained on a Shimadzu IRAffinity-1S FTIR 

Spectrophotometer. UV-VIS data were obtained on an Ultrospec 2100 Pro 

Spectrophotometer.  

Biological Materials 

RPMI cell culture media was purchased from Sigma Aldrich. Cell Star 

solid black 96 well tissue culture plates were purchased from VWR.  LED lamp 

was purchased from Elixa, Ltd. The CellTiter-Blue Cell Viability Assay was 

purchased from Promega.  HeLa cells were obtained from Professor Stefan 

Kanzok’s research lab at Loyola University Chicago. 

Experimental Procedures 

Synthesis of N-benzylphenothiazine 

      A 2.79 g (20.9 mmol) sample of 30% potassium hydride suspension was 

placed in a 30 mL beaker in the hood and washed three times with 20 mL 

portions of petroleum ether. The solid was then carefully transferred to an oven 

dried 50 mL round bottom flask containing 10 mL of dry DMF, a stir bar and a 

rubber septum with a syringe needle connected to a bubbler and a syringe 

needle attached to a nitrogen line. Then, 2.05 g (10.3 mmol) of phenothiazine in 

30 mL of DMF was added with a syringe while stirring. After 4 min, 4.0 mL (30 

mmol) of benzyl bromide was added over 1 min via syringe. The mixture was 

flushed with nitrogen for approximately 10 min. After 4 hr of stirring, the reaction 
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was quenched by cautiously adding 40 mL of water over 15 min. The reaction 

mixture was transferred to a separatory funnel and was extracted 3 times with 20 

mL portions of ethyl acetate. The combined organic layers were washed with 

three 20 mL volumes of water and one 20 mL volume of brine. The organic layer 

was dried over anh. sodium sulfate and then transferred to a weighed round 

bottom flask, concentrated and pumped to afford a viscous liquid which was 

analyzed by TLC.  Crude weight of N-benzylphenothiazine was 2.08 g (70 % 

yield).  Recrystallization from petroleum ether gave 1.72 g (58 % yield) of  

light pink crystalline solid N-benzylphenothiazine; mp 90–91°C [lit 90–91°C 

(425)]. 

1H NMR  (300 MHz)  δ 7.28 (m, 5 H), 7.07 (dd, 2 H, J = 9 Hz, 3 Hz), 6.96 (td, 2 H, 

J = 8 Hz, 7 Hz, 2 Hz), 6.85 (td, 2 H, J = 9 Hz, 6 Hz, 2 Hz), 6.62 (dd, 2 H, J = 9 Hz, 

3 Hz), 5.08 (s, 2 H).  13C NMR  (75 MHz)  δ 144.5, 136.6, 128.7, 127.2, 127.0, 

126.8, 126.6, 123.1, 122.5, 115.4, 52.7 

Synthesis of N-benzyl-3,7-dibromophenothiazine 

      A 300 mg (1.04 mmol) sample of N-benzylphenothiazine was added to a 

10 mL round bottom flask, along with ~ 5 mL CH2Cl2,  ~200 mg (2.38 mmol) 

NaHCO3 and a stir bar. A rubber septum with a syringe needle connected to a 

bubbler and a syringe needle attached to a nitrogen line was attached. A sample 

of 0.11 mL (2.1 mmol) Br2 was added slowly via syringe. The mixture was flushed 

with nitrogen for 10 min. The reaction was protected from light by covering the 

flask with aluminum foil. The reaction was allowed to proceed for 24 h. The 
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reaction mixture was transferred to a separatory funnel and was extracted 3 

times with 10 mL portions of methylene chloride. The combined organic layers 

were washed with three 10 mL volumes of water and one 10 mL volume of brine. 

The organic layer was transferred to a weighed round bottom flask, concentrated 

and pumped to afford a crystalline solid, which was analyzed by TLC (Rf = 

0.510). Crude weight of N-benzyl-3,7-dibromophenothiazine was 375.1 mg 

(91%). Recrystallization from petroleum ether yielded 207.8 mg (51%) of a blue 

crystalline solid N-benzyl-3,7-dibromophenothiazine; mp 130–131°C 

1H NMR  (300 MHz)  δ 7.29 (m, 5 H), 7.18 (d, 2 H, J = 3 Hz), 7.05 (dd, 2 H, J = 9 

Hz, 3 Hz), 6.46 (d, 2 H, J = 9 Hz), 5.01 (s, 2 H).  13C NMR (75 MHz)  δ 143.3, 

135.5, 130.1, 129.1, 128.9, 127.4, 126.5, 124.7, 116.7, 115.0, 52.7     

Attempted Ullmann Synthesis of N-benzyl-3,7-diphenothiazinyl-

phenothiazine  

A 100 mg (0.224 mmol) sample of N-benzyl-3,7-dibromophenothiazine, 

98.1 mg (0.492 mmol) phenothiazine, 61.8 mg (0.448 mmol) anh. K2CO3, 5.7 mg 

(0.089 mmol) Cu powder, 6.5 mL nitrobenzene, and a stir bar were added to a 

pressure tube. The solution and air space above solution were flushed with 

nitrogen, and the pressure tube was tightly capped and immersed in a 100°C oil 

bath. The reaction was run for 24 h. The cooled reaction mixture was transferred 

to a separatory funnel and extracted 2 times with 10 mL of methylene chloride. 

The combined organic layers were washed with two 10 mL volumes of water.  

The organic layer was transferred to a weighed round bottom flask, concentrated 
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and pumped to remove the solvent.                                                                             

Buchwald-Hartwig Synthesis of N-benzyl-3,7-diphenothiazinyl-

phenothiazine  

      A 10.6 mg (0.0184 mmol; 0.1 eq) sample of Pd(dba)2 catalyst was mixed 

with 82.5 mg (0.185 mmol; 1 eq) of N-benzyl-3,7-dibromophenothiazine and 17.8 

mg (0.0373 mmol; 0.2 eq) XPhos ligand in a 15 mL pressure tube with a stir bar. 

A volume of 4 mL of dry 1,4-dioxane solvent was added to the pressure tube. An 

Ar atmosphere was delivered above the solution for 20 min. Then, 76.9 mg 

(0.386 mmol; 2.0 eq) phenothiazine and 60.4 mg (0.628 mmol; 3.4 eq) 

NaOC(CH3)3 base  was added to the pressure tube and an Ar atmosphere was 

delivered into the solution for 10 min. The pressure tube was placed in an oil bath 

at 130 °C and allowed to react for 48 h. A small amount of solution was 

withdrawn at 24 h to do a TLC (mobile phase 30 % ether /70 % hexane). An Ar 

atmosphere was delivered into the solution for 20 min before replacing the 

pressure tube in the oil bath. A final TLC was performed at the end of 48 h. The 

product mixture was extracted three times with diethyl ether and washed three 

times with water. The solvent was removed and the product dried under vacuum. 

Purification by column chromatography and automated flash chromatography 

yielded 59.2 mg (94.3 %) of cream colored crystals; mp = 148.1–149.3°C.    

1H NMR (500 MHz)  δ 7.44 (dd, 2 H, J = 8 Hz, 3 Hz), 7.40 (dd, 2 H, J = 9 Hz, 3 

Hz), 7.34 (m, 1 H), 7.11 (d, 2 H, J = 3 Hz), 7.02 (dd, 2 H, J = 9 Hz, 2 Hz), 6.99 

(dd, 4 H, J = 8 Hz, 2 Hz), 6.88 (td, 4 H, J = 8 Hz, 8 Hz, 1 Hz), 6.83  (d, 2 H, J = 9 
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Hz), 6.80  (td, 4 H, J = 8 Hz, 8 Hz, 1 Hz), 6.30 (dd, 4 H, J = 8 Hz, 2 Hz), 5.21 (s, 2 

H).  13C NMR  (125 MHz)  δ 144.2, 143.9, 135.8, 135.7, 129.9, 129.0, 128.9, 

127.4, 126.8, 126.7, 126.4, 125.0, 122.5, 120.3, 117.0, 116.0, 53.4;                   

IR (KBr pellet) 3053 (C-H), 2951, 2920, 2846 (C-H), 1591 (C=C), 1303 (C-N), 

742 (monosub. Ar ring); 2D NMR: COSY – correlations: 6.30 / 6.80 ortho 

coupling; 6.30 / 6.88 meta coupling; 6.80 / 6.88 ortho coupling; 6.80 / 6.99 meta 

coupling; 6.83 / 7.02 ortho coupling; 7.02 / 7.11 meta coupling; 7.34 / 7.40 ortho 

coupling; 7.34 / 7.44 meta coupling; 7.40 / 7.44 ortho coupling; HSQC – 

correlations: C 53.4 to H 5.21; C 116.0 to H 6.30; C 117.0 to H 6.83; C 120.3 

(Quat.); C 122.5 to H 6.80; C 125.0 (Quat.); C 126.5 to H 7.40; C 126.7 to H 

6.88; C 126.8 to H 6.99; C 127.4 to H 7.34; C 128.9 to H 7.11; C 129.0 to H 

7.43; C 129.9 to H 7.02; C 135.8 (Quat.); C 135.9 (Quat.); C 143.9 (Quat.); C 

144.2 (Quat.); MS: M+. peak at 683.2 m/z (N-benzyl-3,7-diphenothiazinyl-

phenothiazine); no significant fragmentation peaks 

HRMS: M+. peak at 683.1529 m/z (N-benzyl-3,7-diphenothiazinylphenothiazine);  

HRMS calcd for C43H29N3S3, 683.1523; obsvd 683.1529. 

Procedure for Deprotection of N-benzylphenothiazine 

      A 20 mg (0.069 mmol) sample of N-benzylphenothiazine was placed in a 

15 mL pressure tube containing a stir bar to which 2.0 mL CH2Cl2 was added to 

dissolve the sample. Ar gas was added to remove any air from the system. A 

25.5 mg sample of 10 % Pd on activated charcoal was added to a beaker along 

with 65.8 mg (1.04 mmol; 15 eq.) ammonium formate (used as the catalytic 
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transfer hydrogen) and 2 mL n-butanol. This solution was added to the pressure 

tube via syringe. The pressure tube was capped, placed in a 117°C oil bath, and 

allowed to react for ~5 d. TLC and NMR data showed that most of the material 

was still protected. NMR analysis showed that the best deprotection reaction 

yielded only 43.2 % phenothiazine and 56.8 % unreacted N-benzylphenothiazine.    

Synthesis of Acetyl Phenothiazine Using Acetyl Chloride 

      To a 100 mL RB flask with a stir bar, 2.8 g (26 mmol) anh. Na2CO3, 20 mL 

1,4-dioxane, and 1.41 g (7.08 mmol) phenothiazine were added. Next,  

1.5 mL (21 mmol; 3 eq.) of acetyl chloride was slowly added via syringe over a 

period of 5 min. Ar gas was blanketed over the solution for 10 min to expel air 

within the RB. The RB was placed in a 105°C oil bath and allowed to react for 48 

h. The product was extracted with 3 – 10 mL portions of diethyl ether, and 

washed with 3 – 10 mL portions of water. Rotary evaporation and hyvac were 

used to remove the solvent.   

      Three additional reactions were run with slight variations of this procedure. 

The variations involved the mass of phenothiazine reactant, which was changed 

to 200 mg. The equivalents of acetyl chloride were changed from 3 to 2, and a 15 

mL PT was used instead of a RB flask. The temperature was changed to 101°C, 

which is the boiling point of 1,4-dioxane. Finally, for the fourth reaction, to 

determine if product forms at lower temperatures, the oil bath temperature was 

set to 60°C. Crude yields of a cream colored solid ranged from 123.1–224.6 mg 

(50–93 %) with mps of 197–208°C. Purification was not completed. 
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Synthesis of Acetyl Phenothiazine Using Acetic Acid NHS Ester 

To a 15 mL PT with a stir bar, 200. mg (1.89 mmol) anh. Na2CO3, 6 mL 

1,4-dioxane, and 100. mg (0.502 mmol) phenothiazine were added. Next, 118.2 

mg (0.753 mmol; 1.5 eq.) acetic acid NHS ester was added to the PT. Ar gas 

was blanketed over the solution for 15 min to expel air. The PT was placed in a 

102°C oil bath and allowed to react for ~ 8 days. The product was extracted with 

3 – 10 mL portions of diethyl ether, and washed with 3 – 10 mL portions of water. 

The solvent was removed, and the product dried under vacuum. TLC and NMR 

data showed that most of the product was still not acetylated. The NMR analysis 

showed that the best acetylation reaction by acetic acid NHS ester yielded 31.5 

% acetylphenothiazine and 68.5 % phenothiazine. 

Synthesis of Methyl 4-N-methylenephenothiazinylbenzoate 

      To a 50 mL RB flask, 277.6 mg (2.076 mmol) of KH mineral oil emulsion 

was added, and then washed three times with hexane. A stir bar and septum               

were added and the flask was blanketed with Ar gas. Then 203.3 mg; (1.020 

mmol) of phenothiazine dissolved in 5 mL DMF was added via syringe. After 

waiting 30 min to allow for deprotonation, 308.1 mg (1.345 mmol) methyl 4-

(bromomethyl)benzoate dissolved in 5 mL DMF was added via syringe. Ar gas 

from a balloon needle blanketed the reaction mixture. After 48 h, at room temp, 

the reaction was quenched with 1.0 mL (0.77 mmol) of a 50:50 mixture of glacial 

acetic acid and water. Approximately 10 mg of NaHCO3 was added to neutralize 

the acid. The reaction mixture was extracted with 3 – 10 mL volumes of diethyl 
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ether. The combined ether layers were washed with 3 – 10 mL volumes of brine, 

followed by 3 – 10 mL volumes of water, and then dried over MgSO4. The solvent 

was removed, and the product dried under vacuum to afford 926.3 mg (> 100 %) 

of crude methyl 4-N-methylenephenothiazinylbenzoate.   

      The crude product was purified via flash column chromatography utilizing 

a 4 g pre-packed column (column ht = 6.25 cm; column diam = 1.28 cm; column 

vol = 8 mL). The mobile phase consisted of 10 % diethyl ether / 90 % PET, and 

the flow rate was set at 3.45 mL/min. Purification yielded 253.3 mg  (71.4 %) of a 

yellow orange crystalline solid; mp = 122 – 125°C.  1H NMR  (300 MHz)  δ 8.00 

(d, 2 H, J = 8 Hz), 7.40 (d, 2 H, J = 8 Hz), 7.06 (dd, 2 H, J = 9 Hz, 2 Hz), 6.97 (td, 

2 H, J = 8 Hz, 7 Hz, 2 Hz), 6.87 (td, 2 H, J = 7 Hz, 8 Hz, 1 Hz), 6.58 (dd, 2 H, J = 

8 Hz, 2 Hz), 5.13 (s, 2 H), 3.90 (s, 3 H).  13C NMR  (75 MHz)  δ 166.8, 144.3, 

142.3, 130.1, 129.1, 127.2, 127.0, 126.7, 123.5, 122.7, 115.3, 52.5, 52.2;  HRMS  

calcd for C21H17NO2S, 347.0980; calcd. for C21H17NO2S+Na*, 370.0878, obsvd 

370.0879. NOTE: *Sample was sent to Washington University in a screw capped 

glass vial, and the presence of Na is ubiquitous in glass. 

Synthesis of Methyl (3,7-dibromo)-4-N-methylenephenothiazinylbenzoate 

      To a 15 mL PT containing a stir bar and septum, 29.8 mg (0.355 mmol) of 

NaHCO3 was added. Then, 61.4 mg (0.177 mmol) methyl 4-N-methylene-

phenothiazinylbenzoate dissolved in 2.0 mL CH2Cl2 was added. Next, a solution 

of 2.0 mL of CH2Cl2 containing 18 µL (0.35 mmol) of Br2 was added to the PT. 

Foil was placed around the PT and the reaction allowed to react for 72 h at RT. 
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The reaction mixture was extracted with 3 – 10 mL volumes of diethyl ether, then 

washed with 2 – 10 mL volumes of water, followed by 1 – 10 mL volume of brine. 

The solvent was removed, and the product dried under vacuum to yield 141.1 mg 

(78 %) of crude methyl (3,7-dibromo)-4-N-methylenephenothiazinylbenzoate.   

      The crude product was purified via flash column chromatography utilizing 

a 4 g pre-packed column (column ht = 6.25 cm; column diam = 1.28 cm; column 

vol = 8 mL). The mobile phase consisted of 10 % diethyl ether / 90 % PET, and 

the flow rate was set at 15 % (3.45 mL/min). Purification yielded 96.4 mg  

(53 %) of a blue crystalline solid; mp = 144–147°C. 1H NMR (300 MHz) δ 8.00 (d, 

2 H, J = 9 Hz), 7.35 (d, 2 H, J = 9 Hz), 7.20 (d, 2 H, J = 3 Hz), 7.07 (dd, 2 H, J = 8 

Hz, 2 Hz), 6.42 (d, 2 H, J = 9 Hz), 5.04 (s, 2 H), 3.91 (s, 3 H). 13C NMR (75 MHz)  

δ 166.6, 143.1, 141.1, 130.2, 130.2, 129.5, 129.4, 126.6, 125.1, 116.6, 115.3, 

52.5, 52.2 

Synthesis of Methyl (3,7-diphenothiazinyl)-4-N-methylenephenothiazinyl-

benzoate            

      To an oven dried 15 mL pressure tube (PT) containing a stir bar, 13.6 mg 

(0.0238 mmol; 0.2 eq) of Pd(dba)2 catalyst, 60.0 mg (0.119 mmol; 1 eq) of methyl 

(3,7-dibromo)-4-N-methylenephenothiazinylbenzoate, and 22.3 mg (0.0475 

mmol; 0.4 eq) of XPhos ligand were added. Ar gas was added for 10 min to flush 

air from the PT. Then 4 mL of dry 1,4-dioxane was added via syringe. An Ar 

atmosphere was maintained above the solution for an additional 20 min. Then, 

53.0 mg (0.261 mmol; 2.2 eq) phenothiazine and 34.8 mg (0.333 mmol; 2.8 eq) 
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NaOC(CH3)3 base were added to the PT and Ar was bubbled into the solution for 

10 min. The PT was placed in an oil bath at 130°C and reacted for 72 h. After 

cooling, 20 mL of diethyl ether was added and the organic layer washed with 4 – 

10 mL volumes of water. The solvent was removed, and the product dried under 

vacuum to yield 87.0 mg (99 %) of crude methyl (3,7-diphenothiazinyl)-4-N-

methylenephenothiazinylbenzoate as a brown solid. It was purified using a silica 

gel column to yield 14 mg (16 %) of methyl (3,7-diphenothiazinyl)-4-N-

methylenephenothiazinylbenzoate as a yellow solid, mp = 168–174°C.  

1H NMR (500 MHz)  δ 8.10 (d, 2 H, J = 8 Hz), 7.51 (d, 2 H, J = 8 Hz), 7.14 (d, 2 

H, J = 2 Hz), 7.03 (dd, 2 H, J = 9 Hz, 2 Hz), 7.00 (dd, 4 H, J = 8 Hz, 2 Hz), 6.89 

(td, 4 H, J = 8 Hz, 8 Hz, 2 Hz), 6.84  (d, 2 H, J = 10 Hz), 6.79  (td, 4 H J = 9 Hz, 9 

Hz, 2 Hz), 6.30 (dd, 4 H, J = 8 Hz, 2 Hz), 5.25 (s, 2 H), 3.93 (s, 3 H).  13C NMR  

(125 MHz)  δ 166.7, 144.1, 143.6, 141.3, 136.0, 130.4, 129.9, 129.6, 129.1, 

126.9, 126.8, 126.6, 125.3, 122.6, 120.4, 116.9, 116.0, 53.2, 52.2; IR (KBr pellet) 

3088, 3049 (C-H), 2998, 2986 (C-H), 1721 (C=O), 1654 (C=C), 1300  

(C-N), 1238, 1215 (C-O), 744 (p-disub. ring); HRMS calcd for C45H31N3S3O2, 

741.1578; obsvd 741.1558. 

Synthesis of N-Octadecylbenzamide  

      To an oven dried 15 mL pressure tube with a stir bar, a septum was 

added, and air was evacuated by adding Ar gas for 10 min. Next, 157 mg (0.583 

mmol) of octadecylamine and 2 mL DMF were added to the pressure tube. Then, 

24.3 mg (0.175 mmol) TBD catalyst and 0.1 mL (0.7 mmol) ethyl benzoate were 
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added to the pressure tube. Air was evacuated again by adding Ar gas above the 

solution for 20 min. The reaction was warmed to 130°C in an oil bath and run for 

a minimum of 24 h. The product was extracted with 3 – 10 mL portions of diethyl 

ether, and washed with 3 – 10 mL portions of water. The solvent was removed 

and the product dried under vacuum. Crude yields of an off white crystalline solid 

ranged from 201–267 mg (88–96%); mp 66–78°C. Purification was not 

completed. NMR analysis indicated that the product was formed, as evidenced 

by peaks in the aromatic region as well as the peak for the CH2 of the 

hydrocarbon chain bonded to the amide N, and the terminal CH3 of the 

hydrocarbon chain. However, ethyl benzoate starting material remains, as is 

evidenced by the peaks at 4.4 ppm and 1.4 ppm which belong to the ethoxyl 

group.  Peaks which belong to the TBD catalyst at ~2 and ~ 3 ppm were also 

present.     

Ullmann Synthesis of Methyl 4-N-phenothiazinylbenzoate   

      To a 15 mL PT with stir bar that was oven dried overnight, was added  

28.6 mg (0.447 mmol; 1.78 eq) Cu powder, 51.3 mg (0.258 mmol; 1 eq) 

phenothiazine, 44.3 mg (0.321 mmol; 1.28 eq) anh. K2CO3, and 100.8 mg (0.385 

mmol; 1.53 eq) methyl 4-iodobenzoate. A septum was placed on the PT and Ar 

gas was added above the solids for 15 min. Then 1 mL of 1,2-dichlorobenzene 

solvent was added via syringe through the septum. Ar gas was added into the 

solution for 10 min. The PT was capped and heated to reflux for 72 h in a 180°C 

oil bath. After cooling, solids were filtered out of the solution. The product was 
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purified via a 4 gram pre-packed silica gel column (column ht = 6.25 cm; column 

diam = 1.28 cm; column vol = 8 mL) using a flash chromatography system. Flow 

rate was set to 3.45 mL/min and hexane was used to remove dichlorobenzene, 

followed by 3.3 % ether / 96.7 % hexane to elute the product. Purification yielded 

58 mg (68 %) of the product as a yellow solid; mp = 130–136°C. 1H NMR (500 

MHz)  δ 8.05 (d, 2 H, J = 8 Hz), 7.26 (dd, 2 H, J = 8 Hz, 2 Hz), 7.23 (d, 2 H, J = 8 

Hz), 7.10 (td, 2 H, J = 8 Hz, 8 Hz, 2 Hz), 7.03 (td, 2 H, J = 8 Hz, 8 Hz, 2 Hz), 6.84 

(dd, 2 H, J = 8 Hz, 1 Hz), 3.91 (s, 3 H) 

Synthesis of Chlorin e6–PEG–Folate Conjugate 

      To a 10 mL rb flask that was flushed with Ar gas for 3 min was added 5.6 

mg (2.3 µmol) NH2–PEG–FA, followed by 1 mL CH2Cl2. Then, 7.1 mg  

(12 µmol) Chlorin e6 was added, followed by 2 µL of triethylamine. The solution 

was allowed to react for 5 min at RT. Then, 1.6 mg (12 µmol) of HOBt and 2.7 

mg (13 µmol) of DCC were quickly added to the solution. The flask was 

stoppered, covered with foil, and allowed to react for 96 h at RT.   

      The CH2Cl2 was removed by rotary evaporation and ~ 3 mL PBS was 

added to the flask. The contents were transferred, in increments, to a centrifuge 

filtration tube with a molecular weight cutoff of 2000 daltons to remove unreacted 

starting materials. The product was rinsed multiple times with ~1 mL of 

phosphate buffered saline (PBS) and centrifuged for 30 min until the filtrate was 

clear. The centrifuge filter with product was transferred to a 15 mL plastic conical 

tube and the centrifuge filter was soaked for 24 hr at 7oC with ~ 1 mL of PBS to 
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recover the product in 3.0 mL of solution. A UV-VIS spectrum of the solution was 

obtained and the chlorin e6 absorbance at 660 nm = 0.503 (1:40 dilution of 

product) and 1.066 (1:20 dilution of product); Epsilon = 29,100. The product yield 

was 6.5 mg (94%). 1H and 13C NMR spectra and a Mass spectrum were also 

obtained. 1H NMR clearly shows the peaks for the aminobenzoate portion of 

folate as well as the PEG [(500 MHz)  δ 7.71 (dd, 2 H, J = 9 Hz, 3.5 Hz), 7.52 

(dd, 2 H, J = 9.5 Hz, 3.5 Hz), 3.64 (s, 180 H)]; however, the concentration is too 

dilute to show peaks that are readily interpretable for both 1H and 13C NMR; UV-

Vis (PBS) λmax/nm: 283 (ε Ce6 19,200; Folate 26,200), 402 (ε Ce6 153,000), 503 

(ε Ce6 13,900), 601 (ε Ce6 6700), 660 (ε Ce6 29,100); UV-Vis (CH3OH) λmax/nm: 

282 (ε Folate 45,300), 286 (ε Ce6 35,200) 400 (ε Ce6 263,000), 503 (ε Ce6 

24,800), 530 (ε Ce6 10,400), 608 (ε Ce6 11,200), 661 (ε Ce6 79,200). Negative 

ion mass spectrometry resulted in a molecular ion m/z 595.00 for -1 charged 

Ce6, but the desired compound with a parent ion of 3042.7 MW was not 

observed, because the molecular weight limit of detection was 2000. The mass 

spectrum did not show a -2 (1521 MW) or -3 (1014 MW) charged ion. Further 

work on characterization is underway. 
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CHAPTER FOUR 
 

EVALUATION OF A CHLORIN e6–PEG–FOLATE CONJUGATE AS A  
 

PHOTODYNAMIC THERAPY AGENT   
 

Determination of the Phototoxicity of the Chlorin e6–PEG–FA Conjugate 

 In an initial study to determine if the Ce6–PEG–FA conjugate could kill 

HeLa cells, 5,000 HeLa cells deprived of folic acid for 72 h, were seeded into 88 

wells of two 96-well plates, inoculated with 2.65 µM conjugate in 200 µL of folate 

free RPMI media, and incubated at 37°C for 24 h. Eight wells were not seeded 

with cells to use as a blank for the cell viability assay. Following incubation, the 

media was removed, and cells were washed twice with HEPES buffer. Fresh 

media containing 4 µM folic acid was added. Cells were irradiated with a halogen 

lamp, equipped with a filter to allow 600 – 900 nm light to pass through, at a 

distance of 45.72 cm (18 inches). Light was delivered for 30 min at an irradiance 

power of 5.17 x 10-6 W/cm2 with a fluence of 9.3 mJ/cm2. Following irradiation, 

media was removed and cells were washed twice with complete media 

containing folate. A 100 µL volume of complete media with folate was added, and 

the plates were incubated for 24 h. Plates were kept in a 37°C incubator with 5 % 

CO2 for the duration of the experiment except when irradiated with light.   

The cell survival fraction was quantified using the CellTiter-Blue Cell 

Viability Assay by Promega. The assay is a fluorometric method for estimating 
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the number of living cells in multiwell plates by using the indicator dye 

resazurin to measure the metabolic acitivity of cells. Living cells will reduce 

resazurin to the highly fluorescent resorufin (Figure 15). Dying cells rapidly lose 

metabolic activity and will not reduce resazurin, and will not generate a 

fluorescent signal (444).  

 

Figure 15.  Reduction of Resazurin to Resorufin 
 

A volume of 20 µL of CellTiter-Blue reagent was added to all wells in the 

plate. After a 2 h incubation, cell viability was determined by reading 

fluorescence at 590 nm using a microplate reader.  
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Phototoxicity Data

Control CPF [2.65 µM]

Dark % 88 100

Light % 100 31  

Figure 16. Cytotoxicity / Phototoxicity of Ce6–PEG–FA. n = 8 (cells control),   
n = 2 (CPF 2.65 µM); incubation 24 h; light fluence 9.3 mJ/cm2 

 

The cell viability results of the cells only control and the Ce6–PEG–FA 

conjugate, shows that the HeLa cells are not killed in the dark (Figure 16). The 

phototoxicity data shows that the Ce6–PEG–FA at 2.65 µM killed 69 % of HeLa 

cells. 

     In a more extensive study, the Ce6–PEG–FA conjugate at 5 and 10 µM 

concentrations, as well as a Ce6 control at 5 and 10 µM concentrations were 

inoculated in triplicate into two 96 well plates.   
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      The cells were irradiated with an LED lamp (Elixa Ltd., Mega 120 LED) at 

660 nm, which was equipped with a diffuser to allow a more even distribution of 

light across the entire plate, at a distance of 7.62 cm (3 in). The irradiance power 

of the lamp was 9.37 x 10-2 W/cm2. Light was delivered at varying fluences 

according to Table 4.  

Irradiance 
Power 9.37 x 
10-2 W/cm2 

    

     

Well Plate 
Rows 

A/B C/D E/F G/H 

Exposure Time 
(sec) 

60  120  240 360 

Fluence (J/cm2) 5.5 11 22 33 

 
Table 4. Fluences of Irradiated Light Delivered to Various Cell Culture Plate 
Rows 
 

Results and Discussion 

      The goal of this study was to test the cell killing capacity of a  

Chlorin e6–PEG–FA conjugate using a HeLa cell line. The structure of the final 

compound is shown in Figure 17, along with a description of the interactions with 

the folate receptor. The structure of the folate receptor with bound folate is known 

(445). It shows that the hydrophobic interactions of the pterin and aminobenzoate 

groups with the protein are responsible for the binding (Figure 18). The 

carboxylate groups, particularly the γ-carboxylate, are pointed into the solution 

and should not effect the interactions of the folate with the receptor when the 

PEG chain is added. Molecular dynamics simulations of the Ce6–PEG–FA 
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conjugate with the receptor (K.W. Olsen, personal communication) indicate that 

the PEG modification will not disrupt this interaction. These computations and the 

X-ray structure suggest that the Ce6–PEG–FA conjugate should be functional in 

terms of bringing the dye into the cell.     

 

Figure 17. Chlorin e6–PEG–Folate Structure and FR Interactions 
Interactions with the folate receptor are denoted as follows:  pterin (shown in red 
box) anchors ligand in the binding pocket of FR by hydrophobic stacking between 
amino acids tyr and trp, and hydrophilic interactions between N and O atoms of 
pterin with amino acids asp, ser, arg, and his; aminobenzoate (shown in blue 
box) has hydrophobic interactions with amino acids tyr and trp located in the 
middle of the binding pocket.  Glutamate (shown in green box) conjugates drugs 
(Ce6) without adversely affecting the ligand binding at the FR (445). 

Additional diagrams showing the interaction of folate with the folate 

receptor are shown in Figure 18. 
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Figure 18. Structural Interactions of Folate with the Folate Receptor  
Folate carbon atoms in grey, nitrogen atoms in blue, and oxygen atoms in red 
(top diagram). Close up representations of folate in the binding pocket with folate 
in grey and residues lining the binding pocket shown in green. Hydrogen bonds 
are indicated by dashed lines (bottom diagram). (445) 
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Cytotoxicity / Phototoxicity Assays 

 

Cells Only Control

Dark and Light Data - 4 Expts.

Time (min) 0 1 2 4 6

Ave. Fluor. Counts 124000 140000 130000 130000 135000

Std. Dev. 20000 28000 16000 26000 15000  

Figure 19. Average Fluorescence Counts for Cells Only Control: 4 Expts.  Std. 
Dev. (population) based on n = 49 (0 min); n = 13 (1 min); n = 12 (2,4,& 6 min); 
incubation 24 h; light fluences 5.5, 11, 22, 33 J/cm2 

 

The cell viability results of the cells only control shows that the cells are 

not being killed in the dark or in the light, as the fluorescence counts are all 

above 120,000 (Figure 19). Therefore, any cell death can be attributable to the 

phototoxic effect of the compounds. 
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Dark Toxicity 

Ave. % Viability

Control 100 CPF = Ce6-PEG-FA

Ce6 [5 µM] 94

Ce6 [10 µM] 87

CPF [5 µM] 95

CPF [10 µM] 86  

Figure 20. Cytotoxicity Average % Viability for Cells Control, Ce6 Controls, and 
CPF: 4 Expts.  Cytotoxicity Std. Dev. (population) based on n = 49 (cells control), 
n = 35 (Ce6 5 µM), n = 36 (Ce6 10 µM), n = 48 (CPF 5 µM), n = 45 (CPF 10 µM); 
incubation 24 h 
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  The cell viability results for all of the compounds in the dark shows that  

the cells-only controls, Ce6 controls, and conjugates are not cytotoxic to the cells 

in the dark, as all viabilities are greater than 85% (Figure 20).  

 
 

Ave. % Viability Ce6 Control

Time (min) 0 1 2 4 6

Ce6 [5 µM] 94 105 58 29 58

Ce6 [10 µM] 87 38 2 2 7  
 
Figure 21. Average % Viability for Ce6 Control: 4 Expts. Cytotoxicity Std. Dev. 
(population) based on n = 35 (Ce6 5 µM), n = 36 (Ce6 10 µM). Phototoxicity Std. 
Dev. (population) based on n = 9 (Ce6 5 µM - 1, 2, 4, 6 min; Ce6 10 µM - 1, 6 
min), n = 8 (Ce6 10 µM - 2, 4 min); incubation 24 h; light fluences 5.5, 11, 22, 33 
J/cm2 
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At 1 min, the 5 µM Ce6 killed no cells, and the 10 µM Ce6 killed 62 % of 

the cells (Figure 21). At 2 min, the phototoxicity of the 5 µM Ce6 is 42 %, and the 

10 µM Ce6 is 98 %. Similar results were seen at 6 min. At 4 min, the 

phototoxicity of the 5 µM Ce6 is 71 %, and the 10 µM Ce6 is 98 %. Error bars are 

large for the 5 µM Ce6 at 2, 4, and 6 min, as well as for the 10 µM Ce6 at 1 min, 

indicating variability in data. The results clearly show that the 10 µM Ce6 is killing 

more cells at 1, 2, and 6 min, as the error bars do not overlap.  
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Ave. % Viability  Ce6-PEG-FA

Time (min) 0 1 2 4 6

CPF [5 µM] 95 49 11 4 8

CPF [10 µM] 86 12 4 6 4  

Figure 22. Average % Viability for Ce6–PEG–FA: 4 Expts. Cytotoxicity Std. Dev. 
(population) based on n = 48 (CPF 5 µM), n = 45 (CPF 10 µM); Phototoxicity Std. 
Dev. (population) based on n = 12 (CPF 5 µM - 1, 2 min; CPF 10 µM - 1 min),  
n = 11 (CPF 5 µM - 4, 6 min; CPF 10 µM - 2 min), n = 10 (CPF 10 µM - 4 min), n 
= 9; CPF 10 µM - 6 min); incubation 24 h; light fluences 5.5, 11, 22, 33 J/cm2 

 

   At 1 min, the phototoxicity of the 5 µM Ce6–PEG–FA is 51 %, and the  

10 µM Ce6–PEG–FA is 88 % (Figure 22). The error bars overlap, indicating no 

statistical differences; however, the errors are large, which means that the data is 
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variable. Based on the percentages only, the results show that with an increase 

in concentration, more cells are killed. At 2, 4, and 6 min, nearly all of the cells 

are killed with both concentrations of the conjugate. 

 

Ave. % Viability Ce6 / CPF [10 µM]

Time (min) 0 1 2 4 6

Ce6 [10 µM] 87 38 2 2 7

CPF [10 µM] 86 12 4 6 4  

Figure 23. Average % Viability for Ce6 / CPF 10 µM: 4 Expts. Cytotoxicity Std. 
Dev. (population) based on n = 36 (Ce6 10 µM), n = 45 (CPF 10 µM); 
Phototoxicity Std. Dev. (population) based on n = 12 (CPF 10 µM - 1 min), n = 11 
(CPF 10 µM - 2 min), n = 10 (CPF 10 µM - 4 min), n = 9 (Ce6 10 µM - 1, 6 min; 
CPF 10 µM - 6 min), n = 8 (Ce6 10 µM - 2, 4 min); incubation 24 h; light fluences 
5.5, 11, 22, 33 J/cm2 
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At 1 min, the phototoxicity of the 10 µM Ce6 is 62 %, and the 10 µM  

Ce6–PEG–FA is 88 % (Figure 23). Both error bars are large, and the bars 

overlap, indicating no statistical differences; however, according to the 

percentage data, it does appear that the Ce6–PEG–FA is killing better than the 

Ce6, but at this relatively high concentration, both are causing cellular damage. 

At 2 min and beyond, nearly all the cells are killed by both the 10 µM Ce6 and 

Ce6–PEG–FA.  
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Ave. % Viability  All Compounds 

Time (min) 0 1 2 4 6

Control 100 100 100 100 100

Ce6 [5 µM] 94 105 58 29 58

Ce6 [10 µM] 87 38 2 2 7

CPF [5 µM] 95 49 11 4 8

CPF [10 µM] 86 12 4 6 4  

Figure 24. Average % Viability for All Compounds: 4 Expts. Cytotoxicity Std. Dev. 
(population) based on n = 49 (cells control), n = 35 (Ce6 5 µM), n = 36 (Ce6  
10 µM), n = 48 (CPF 5 µM), n = 45 (CPF 10 µM); Phototoxicity Std. Dev. 
(population) based on n = 13 (cells control - 1 min), n = 12 (cells control - 2, 4, 6 
min; CPF 5 µM - 1, 2 min; CPF 10 µM - 1 min), n = 11 (CPF 5 µM - 4, 6 min; CPF 
10 µM - 2 min), n = 10 (CPF 10 µM - 4 min), n = 9 (Ce6 µM - 1, 2, 4, 6 min; Ce6 
10 µM - 1, 6 min; CPF 10 µM - 6 min), n = 8 (Ce6 10 µM - 2, 4 min); incubation 
24 h; light fluences 5.5, 11, 22, 33 J/cm2 

 

-20

0

20

40

60

80

100

120

140

0 1 2 4 6

%
 C

e
ll

 V
ia

b
il

it
y
 

Time of Light Exposure (min) 

Phototoxicity -  All Compounds 

Control

Ce6 [5 µM]

Ce6 [10 µM]

CPF [5 µM]

CPF [10 µM]



124 
 

  

      This graph is a summary of all the data for the cells control, Ce6, and  

Ce6–PEG–FA (Figure 24). At 1 min and 2 min, the phototoxicity of the 5 µM 

Ce6–PEG–FA is clearly greater than that of the 5 µM Ce6 only. At 2, 4, and  

6 min, nearly all the cells are killed with all compounds, with the exception of the  

5 µM Ce6. 

 

Ave. % Viability Ce6 / CPF [10 µM]

Time (min) 0 1 2 4 6

Ce6 [10 µM] 87 38 2 2 7

CPF [10 µM] 86 12 4 6 4  

Figure 25. Average % Viability for Ce6 / CPF 5 µM: 4 Expts. Cytotoxicity Std. 
Dev. (population) based on n = 35 (Ce6 5 µM), n = 48 (CPF 5 µM); Phototoxicity 
Std. Dev. (population) based on n = 12 (CPF 5 µM - 1, 2 min), n = 11 (CPF 5 µM 
- 4, 6 min); n = 9 (Ce6 5 µM – 1, 2, 4, 6 min); incubation 24 h; light fluences 5.5, 
11, 22, 33 J/cm2 
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At 1 min, no cells are killed with the 5 µM Ce6, and the 5 µM  

Ce6–PEG–FA is killing 51 % of the cells (Figure 25). At 2 min, the phototoxicity 

of the 5 µM Ce6 is 42 %, and the 5 µM Ce6–PEG–FA is 89 %. Although the error 

bars are large for the 5 µM Ce6–PEG–FA at 1 min, and the 5 µM Ce6 at 2 min, 

the bars do not overlap; therefore, it is clear that the Ce6–PEG–FA at 5 µM is 

killing more cells at both 1 and 2 min. At 4 and 6 min, the error bars overlap 

indicating no statistical differences, which means that most of the cells were 

killed at this light exposure with both the 5 µM Ce6 and Ce6–PEG–FA. 

Conclusions 
 
 Comparing the phototoxicity of the 5 uM Ce6 and Ce6–PEG–FA at 1 and 

2 min, clearly shows that the addition of the PEG–FA to the Ce6 increases the 

phototoxicity to the HeLa cells, and that an increase in light fluence kills more 

cells. The data also shows that an increase in concentration of the conjugate and 

Ce6 kills more cells. This data supports the hypothesis that the PEGylated Ce6 

conjugate kills more HeLa cells than the Ce6 alone. The PEGylation with folate 

most likely allows the Ce6 conjugates to enter the cell by folate receptor 

mediated endocytosis, which increases the selectivity for the HeLa cancer cells.  

The free Ce6 may be adhering to the cell membrane, causing cell death.  

Consequently, free Ce6 could kill normal cells in addition to cancer cells, which 

causes more harm to the patient, hence the need for the PEGylation of Ce6 as a 

protective effect.   
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 The data presented here (Figure 24) suggests that 5 and 10 µM 

concentrations for the Ce6–PEG–FA conjugate were probably too high. It is likely 

that lower concentrations would show less mortality due to the Ce6 by itself, 

while still allowing the Ce6–PEG–FA conjugate to kill the cancer cells by 

irradiating them for somewhat longer times than used here. Since most of the 

cells were killed after 2 min, and 10 µM concentrations, further studies can be 

done with lower light fluences, lower concentrations, and shorter incubation 

times. 

Comparison of these data to that completed by Li, et  al. (446) shows that 

the phototoxicity of this Ce6–PEG–FA conjugate is greater than the conjugate 1a 

[5, 10, 15-tris (3-hydroxyphenyl)-20-(4-carboxyphenyl) chlorin-PEG-folate] 

synthesized by Li and his coworkers. The cell viability of Li’s 1a conjugate in 

HeLa cells was 35 % at a concentration of 17.5 µM, with a light fluence of  

18 J/cm2 and an incubation time of 24 h (446). The approximate cell viability of 

the Ce6–PEG–FA conjugate in this research was 4 % and 6 % respectively for 5 

and 10 µM concentrations, with a light fluence of 22 J/cm2 and an incubation time 

of 24 h. When adjusting for a linear response to light fluence, the cell viability of 

the 5 µM Ce6–PEG–FA conjugate would be approximately 18 % at a light 

fluence of 18 J/cm2 (~3.3 min light exposure time), and the cell viability of the  

10 µM Ce6–PEG–FA conjugate would be approximately 6 % at a light fluence of 

18 J/cm2.  These numbers clearly show the increase in phototoxicity of our  

Ce6–PEG–FA as compared to their conjugate 1a. In addition, the concentrations 
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of our Ce6–PEG–FA conjugate are smaller. Also, compound 1a synthesized by 

Li et al. (446) was PEGylated with a 75 unit PEG; whereas our Ce6–PEG–FA 

conjugate was PEGylated with a 45 unit PEG. Perhaps the longer PEG 

contributes to increased cell viability and decreased cell phototoxicity. 

   Comparison of our Ce6 compound (purchased from Frontier Scientific) 

used in this research with the chlorin 4 synthesized by Li, et al. [5, 10, 15-tris (3-

hydroxyphenyl)-20-(4-carboxyphenyl) chlorin] shows that the chlorin 4 is 

phototoxic even in the dark, with a cell viability of ~ 49 % at a concentration of  

9.2 µM, and incubation time of 24 h (446). The Ce6 used in this research was not 

phototoxic in the dark, as the compound had a cell viability of 94 % (when 

compared to the cells only control) for Ce6 5 µM, and 87 % at 10 µM, with an 

incubation time of 24 h. Since the compound synthesized by Li, et al. (446) was  

structurally distinct from the Ce6 used in this research, apparently their 

compound was toxic in the dark. Comparisons cannot be made in the light, 

because Li and his coworkers did not use their chlorin 4 compound in 

phototoxicity studies.       

Since most of the cells were killed after 2 min, and 10 µM concentrations, 

further studies can be done with lower light fluences, lower concentrations, and 

shorter incubation times.   

 To fully ascertain the role of PEGylation of Ce6, further studies must be 

completed with these compounds on normal cellular tissues that do not 

overexpress folate receptors. Also, competitive assays could be completed using 
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varying concentrations of folate in the media along with inoculation with the 

conjugates. Further studies can also be completed in vivo to determine the 

optimum light exposure and dosage needed for an LD50.   

 This study allowed the experimenter to determine a good protocol for cell 

culturing and determining controls. In addition, a good technique was determined 

to irradiate the cells using an LED lamp, and subsequently to assay for cell 

viability.   

Targeting a Ce6 photosensitizer to HeLa cell folate receptors by 

PEGylation with an NH2–PEG–FA clearly increases the phototoxic potential of 

the conjugate at a 5 µM concentration.   
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CHAPTER FIVE 

CONCLUSION 

 This research involves synthesis of two photosensitizers, both of which  

contain the compound phenothiazine, and a targeted photodynamic therapy 

agent containing chlorin e6. The two phenothiazine based photosensitizers are 

N-benzyl-3,7-diphenothiazinylphenothiazine, and methyl (3,7-diphenothiazinyl)-4-

N-methylenephenothiazinylbenzoate. Both of these photosensitizers contain 

phenothiazine substituents at the 3 and 7 position on the central phenothiazine 

molecule to create a phenothiazine trimer. The difference between these two 

phenothiazine compounds is the protection group attached to the N of the 

phenothiazine base. In order to attach a PEGylated folic acid compound, needed 

to target the photosensitizer to enter the cancer cells via receptor mediated 

endocytosis, the benzyl group of N-benzyl-3,7-diphenothiazinylphenothiazine 

needed to be removed, or deprotected. The deprotection was unsuccessful after 

numerous attempts; therefore, a second phenothiazine trimer was synthesized 

with a methyl benzoate protection group. Due to the presence of the 

carbomethoxy group (COOCH3) attached to the benzyl group, there was no need 

to deprotect this newer compound, as an amine PEGylated folic acid compound 

could be directly attached via an amide bond to the carbomethoxy protection 

group. However, when both of these compounds were analyzed via UV 



130 
 

 
 

spectrophotometry, neither compound was found to have a λmax absorption in the 

be successful for deeper tissue cancers. Subsequently, the N-benzyl-3,7-

diphenothiazinylphenothiazine was oxidized with HCl catalysis using 12 M HCl. 

This reaction showed a λmax absorption at approximately 670 nm. The following 

data was recorded by UV-VIS analysis of this trimer: λmax 665 nm absorption of 

1.479 in CH3CN, λmax 679 nm absorption of 2.194 in DCM, and λmax 670 nm 

absorption of 0.867 in CH3CN. An electron paramagnetic resonance (EPR) 

spectrum exhibited a signal, which indicates that a radical species was formed. 

The EPR spectrum of the sample was completed over 6 months from the time 

that the compound was originally made; therefore, the radical formed was stable 

in PBS solvent. Subsequent analysis by UV-VIS verified the high absorbance at  

λmax 670 nm several months after the radical was made. The stability of this 

radical can be attributed to the delocalization of the lone electron around the 

conjugation of the phenothiazine aromatic ring. Also, a multiple radical species 

could have been formed on each of the three N atoms in each of the three 

phenothiazines, each with resonance delocalization, which allows further 

stabilization, as shown in Figure 26.  
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Figure 26. Diagram of N-benzyl-3,7-diphenothiazinylphenothiazine Showing 

Delocalization of a Lone Electron  

The possibility of a multiple radical could explain the large absorbance values at 

670 nm. Further work must be completed to determine if this compound could act 

as a photosensitizer in cancer cell killing studies. The oxidation of the second 

photosensitizer, methyl (3,7-diphenothiazinyl)-4-N-

methylenephenothiazinylbenzoate, was not studied. Further work must be done 

to optimize the synthesis and purification of this compound. If the oxidation is 

subsequently successful, a PEGylated folic acid molecule can be attached via an 

amide bond, and cell killing studies can be completed to test for cancer cell killing 

potential.   

 The PDT agent that was synthesized was Ce6–PEG–FA. Since Chlorin e6 

is a known photosensitizer, it was hypothesized that by attaching a PEGylated 

folic acid compound to the C-17 atom of Chlorin e6 via an amide bond, the 

cancer cell killing potential would be greater due to the ability of the folic acid 
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portion to enter the cell via receptor mediated endocytosis. Also, since cancer 

cells express more folate receptors as compared to normal cells, the compound 

could target cancer cells more effectively, minimizing the destruction of normal 

cells. To ensure that the HeLa cells were taking up folic acid attached to the Ce6 

photosensitizer, the cells were given folate free media for 3 days prior to 

exposure to the Ce6–PEG–FA compound.   

 The results of cell mortality studies with the Ce6–PEG–FA conjugates 

supported the hypothesis that PEGylation of Ce6 has more phototoxic potential 

than a Ce6 compound without PEGylation. The results also indicate that the 

conjugates are most likely entering the cell via FR mediated endocytosis, which 

increases the selectivity for HeLa cells. Increases in light fluence or the 

concentration of the conjugate and Ce6 killed more HeLa cells. Because Ce6 

may be adhering to the cell membrane and causing cell death through 

phototoxicity, this process could also happen with non-cancerous cells, 

potentially causing more harm to the patient. Decreasing the concentration of 

Ce6 should decrease this effect. Because of its specific targeting of cancer cells, 

Ce6–PEG–FA would be concentrated in the target cells. The PEGylation of Ce6 

should decrease its hydrophobicity, providing a protective effect because it may 

be less likely to stick to the membranes of normal cells. Connecting a Ce6 

photosensitizer to folate by PEGylation with an NH2–PEG–FA clearly increases 

the phototoxic potential of a Ce6 conjugate to HeLa cells.   
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 Figure 27. UV-VIS Spectrum of N-benzyl-3,7-diphenothiazinylphenothiazine  
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Figure 28. UV-VIS Spectrum of methyl (3,7-diphenothiazinyl)-4-N- 

methylenephenothiazinylbenzoate 
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Figure 29. UV-VIS Spectrum of Ullmann methyl 4-N-phenothiazinylbenzoate  
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Figure 30. UV-VIS Spectrum of Folic Acid Dihydrate Standard 
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Figure 31. UV-VIS Spectrum of Folic Acid Dihydrate Standard 
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Figure 32. UV-VIS Spectrum of Folic Acid Dihydrate Standard 
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Figure 33. UV-VIS Spectrum of Folic Acid Dihydrate Standard 
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Figure 34. UV-VIS Spectrum of Ce6 Standard 
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Figure 35. UV-VIS Spectrum of Ce6 Standard 
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Figure 36. UV-VIS Spectrum of Ce6 Standard 
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Figure 37. UV-VIS Spectrum of Ce6 Standard 
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Functional Group Frequency (cm-1) 

C-H stretch (sp2) 3053 

C-H stretch (sp3) 2951, 2920, 2846 

C=C stretch (aromatic ring) 1591 

C-N stretch 1303 

monosubstituted aromatic ring bend 742 

 

Figure 38. IR Spectrum of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Functional Group Frequency 
(cm-1) 

C-H stretch (sp2) 3088, 3049 

C-H stretch (sp3) 2998, 2986 

C=O stretch (ester) 1721 

C=C stretch (aromatic ring) 1654 

C-N stretch 1300 

C-O stretch  1238, 1215 

p-disubstituted aromatic ring bend 744 

 

Figure 39. IR Spectrum of methyl (3,7-diphenothiazinyl)-4-N-    

methylenephenothiazinylbenzoate 
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Figure 40. Mass Spectrum of N-benzyl-3,7-diphenothiazinylphenothiazine 

Interpretation of Mass Spectral Data 

     The product molecular mass is 683.2 g/mol. A high abundance is seen at this 

weight in the spectrum. This indicates a good purity in this particular fraction.  

Also, since the instrument was run in positive ion mode, the molecular ion peak is 

represented as a radical cation, since the mass remains identical to the actual 

product mass. If the sample had become protonated, as is often seen in positive 

ion mode, the mass would be represented as 684.2 g/mol.   
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Figure 41. Mass Spectrum of methyl 4-N-methylenephenothiazinylbenzoate 
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Figure 42. Mass Spectrum of methyl (3,7-diphenothiazinyl)-4-N-methylene 
phenothiazinylbenzoate 
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Figure 43. Mass Spectrum of Chlorin e6 
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Figure 44. Mass Spectrum of Ce6–PEG–FA  
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Figure 45. Mass Spectrum of Ce6–PEG–FA  
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Figure 46. 1H NMR of N-benzylphenothiazine 



154 
 

 

Figure 47. 1H NMR Expansion of N-benzylphenothiazine 
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Interpretation of 1H NMRs in Figures 46. and 47. 

• Peak at 1.54 = H from H2O 

• Peak at 4.5 = H from CH2Cl2 used in extraction 

• Peak at 5.08 = H from CH2 (benzyl group) 

• Peaks at 6.61 / 6.64 = phenothiazine ring H with ortho and meta coupling 
(doublet of doublets); J = 9 Hz, 3 Hz 

• Peaks at 6.82 / 6.84 / 6.87 = phenothiazine ring H with 2 ortho and 1 meta 
coupling (triplet of doublets); J = 9 Hz, 6 Hz, 2 Hz 

• Peaks at 6.93 / 6.94 / 6.96 / 6.98 = phenothiazine ring H with 2 ortho and 1 meta 

coupling (triplet of doublets); J = 8 Hz, 7 Hz, 2 Hz 

• Peaks at 7.06 / 7.09 = phenothiazine ring H with ortho and meta coupling 
(doublet of doublets); J = 9 Hz, 3 Hz 

• Peaks at 7.25 / 7.26 / 7.27 / 7.32 = phenyl H atoms from benzyl protection group 
on N 

• Peak at 7.29 = CHCl3 peak 
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Figure 48. 13C NMR Expansion of N-benzylphenothiazine 
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Figure 49. 1H NMR of N-benzyl-3,7-dibromophenothiazine 
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Figure 50. 1H NMR Expansion of N-benzyl-3,7-dibromophenothiazine 
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Interpretation of 1H NMRs in Figures 49. and 50. 

• Peak at 1.55 = H from H2O 

• Peak at 5.01 = H from CH2 (benzyl group) 

• Peaks at 6.45 / 6.48 = phenothiazine ring H with ortho coupling (doublet; J = 9 
Hz) 

• Peaks at 7.04 / 7.05 / 7.07 / 7.08 = phenothiazine ring H with ortho and meta 
coupling (doublet of doublets; J = 9 Hz, 3 Hz) 

• Peaks at 7.17 / 7.18 = phenothiazine ring H with meta coupling (doublet; J = 3 
Hz) 

• Peaks at 7.23 / 7.26 / 7.27 / 7.29 / 7.32 / 7.34 / 7.36  
phenyl H atoms from benzyl protection group on N  
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Figure 51. 13C NMR of N-benzyl-3,7-dibromophenothiazine 
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Figure 52. 13C NMR Expansion of N-benzyl-3,7-dibromophenothiazine 
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Figure 53. 1H NMR Expansion of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Figure 54. 1H NMR Expansion of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Interpretation of 1H NMRs in Figures 53. and 54. 

 

 

Peak at 5.21 – integrates at 2 H atoms; H on CH2 of protection group is non-aromatic 

and is farther upfield 

 

Peaks at 6.30 – 6.31 (6.30) – integrates at 4 H atoms; H on phenothiazine substituents; 

peak is a doublet of doublets due to ortho and meta coupling; it is in close proximity to 

the N atom, and since N lone pairs interact with the ring system, this provides a shielding 

effect and shifts peak farther upfield; J = 8 Hz, 2 Hz 

 

Peaks at 6.79 – 6.90 – intregrates at 10 H atoms 

 Peaks at 6.79 – 6.82 (6.80) – integrates at 4 H atoms; H on phenothiazine 

substituents; peak is a triplet of doublets due to two ortho and one meta coupling; 

it is closer to the N atom and farther upfield; J = 8 Hz, 8 Hz, 1 Hz  

 

 Peaks at 6.86 – 6.90 (6.88) – integrates at 4 H atoms; H on phenothiazine 

substituents; peak is a triplet of doublets due to two ortho and one meta coupling; 

it is closer to the S atom and farther downfield; J = 8 Hz, 8 Hz, 1 Hz  

 

 Both peaks in the 6.79 – 6.90 range show a similar pattern as the H atoms in the 

same positions on phenothiazine 

 

 Peaks at 6.82 – 6.84 (6.83) – integrates at 2 H atoms; H on phenothiazine base; 

peak is a doublet due to ortho coupling; it is in close proximity to the N atom and 

farther upfield; J = 9 Hz 



165 
 

 

 

Peaks at 6.98 – 7.03 – integrates at 6 H atoms 

 Peaks at 6.98 – 7.00 (6.99) – integrates at 4 H; H on phenothiazine substituents; 

peak is a doublet of doublets due to ortho and meta coupling; it is in close 

proximity to the S atom and farther downfield; J = 8 Hz, 2 Hz 

 

 Peaks at 7.01 – 7.03 (7.02) – integrates at 2 H atoms; H on phenothiazine base; 

peak is a doublet of doublets due to ortho and meta coupling; it is closer to the N 

atom and farther upfield; J = 9 Hz, 2 Hz 

Peaks at 7.11 – 7.12 (7.11) – integrates at 2 H atoms; H on phenothiazine base; peak is 

a doublet due to meta coupling; it is in close proximity to the S atom and farther 

downfield; J = 3 Hz 

 

Peaks at 7.33 – 7.44 – integrates at 5 H atoms; H atoms of the aromatic ring of the 

benzyl protection group 

 Peaks at 7.33 – 7.35 (7.34) – integrates at 1 H atom; ring H that is para to the 

area of the ring which is connected to the CH2 group; peak is a triplet of triplets 

(multiplet of peaks) due to two ortho and two meta couplings 

 

 Peaks at 7.40 – 7.41 (7.40) – integrates at 2 H atoms; ring H atoms closest to 

the one H atom that is described in the preceding section; peak is a triplet of 

doublets due to two ortho and one meta coupling; J = 9 Hz, 3 Hz 

 

 Peaks at 7.43 – 7.44 (7.44) – integrates at 2 H atoms, ring H atoms adjacent to 

the point of CH2 attachment; peak is a doublet of doublets due to ortho and meta 

coupling; J = 8 Hz, 3 Hz 
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Figure 55. 13C NMR of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Figure 56. 13C NMR Expansion of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Figure 57. 13C NMR Expansion of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Figure 58. 13C NMR Expansion of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Interpretation of 13C NMRs in Figures 55. to 58.  

 

 

53.4 – C of the CH2 benzyl protection group; it is non-aromatic and farther 

upfield; this C also corresponds by a factor of approximately 10 to the peak for 

the H atoms 

The smallest peaks belong to quaternary carbon atoms – since no H atoms 

are attached, the peak heights are smaller due to lack of the Nuclear 

Overhauser Effect (NOE). 

There are 6 unique quaternary carbons, which are all in aromatic rings, and 

are found in the aromatic region of 110 – 160 ppm 

 135.8 – C of protection group; correlates to the position of this C in  

N-benzylphenothiazine; smallest quaternary C peak, since it is attributed 

to only 1 C atom 

 125.0 – C in phenothiazine base; farther upfield due to its proximity to the 

S atom; correlates to the position of this C in N-benzylphenothiazine 

 143.9 – C in phenothiazine base; farther downfield due to its proximity to 

the N atom; correlates to the position of this C in N-benzylphenothiazine 

 135.7 – C in phenothiazine base; this C has a similar arrangement as 

quaternary C from the protection group, since this C is bonded to two 

carbons in the aromatic ring and 1 N atom external to the ring system; 

farther upfield than quaternary C from protection group due to its proximity 

to the N atom 
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Carbons discussed below are the largest of the quaternary C peaks, since 

they are attributed to 4 C atoms on the phenothiazine substituents 

 120.3 – farther upfield due to its proximity to the S atom 

 144.2 – farther downfield due to its proximity to the N atom 

There are 10 unique aromatic carbon atoms 

 Carbons attributed to 2 C atoms have the smaller peaks 

 Carbons attributed to 4 C atoms have the largest peaks 

 117.0 – C on phenothiazine base; farther upfield due to its close proximity 

to the N atom; correlates to the position of this C in N-benzylphenothiazine 

 129.9 –  C on phenothiazine base; farther downfield since it is farther 

away from the N atom; correlates to the position of this C in N-

benzylphenothiazine 

 128.9 – C on phenothiazine base; farther downfield due to its close 

proximity to the S atom 

 116.0 – C on phenothiazine substituents; farthest upfield due to its close 

proximity to the N atom 

 122.5 – C on phenothiazine substituents; a little farther downfield since it 

is farther away from the N atom 

 126.7 – C on phenothiazine substituents; a little farther downfield than 

previous C since it is closer to the S atom 
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 126.8 – C on phenothiazine substituents; farthest downfield since it is in 

close proximity to the S atom 

 129.0 – C of protection group adjacent to the C attached to the CH2 

group; correlates to the position of this C in N-benzylphenothiazine 

 126.4 – C of protection group adjacent to C above; correlates to the 

position of this C in N-benzylphenothiazine 

 127.4 – C of protection group para to the C attached to the CH2 group 

 

     Two dimensional spectra were also taken of the N-benzyl-3,7-

diphenothiazinylphenothiazine product.  A COSY (Correlation Spectroscopy) and 

HSQC, also known as a HetCor spectrum, were the two types of 2D NMR 

utilized. A COSY NMR spectrum correlates protons with other protons that are up 

to 4 bonds away, which allows determination of proton coupling. The HSQC 

NMR spectrum correlates 13C carbons on the x axis with 1H hydrogens on the  

y axis. The intersection of the two spectra allows the determination of which H 

atoms are attached to the specific C atoms. The spectra as well as the 

interpretation are shown in Figures 59. – 64. on the following pages. 
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Figure 59. 2D COSY Spectrum of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Interpretation of Figure 59. 

The H in the CH2 of the benzyl protection group at 5.21 is not correlated to any 

other proton, since it is next to a quaternary C atom in the protection group 

aromatic ring with no attached protons and also bonded to a N atom with no 

attached protons. 
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Figure 60. 2D COSY Spectrum Expansion of N-benzyl-3,7- 
diphenothiazinylphenothiazine 
 
The H at 6.30 has an ortho coupling to the H at 6.80, and a meta coupling to the 

H at 6.88. These protons are part of the phenothiazine subsitutents. Other 

couplings shown on this COSY will be described on more magnified COSY 

spectra.  
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Figure 61. 2D COSY Spectrum Expansion of N-benzyl-3,7- 
diphenothiazinylphenothiazine 
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Interpretation of Figure 61. 

The H at 6.80 has an ortho coupling to the H at 6.88 and a meta coupling to the 

H at 6.99. These protons are part of the phenothiazine substituents. The H at 

6.83 has an ortho coupling to the H at 7.02. These protons are on the 

phenothiazine base. The H at 7.02 has a meta coupling to the H at 7.11. These 

protons are on the phenothiazine base. 
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Figure 62. 2D COSY Spectrum Expansion of N-benzyl-3,7- 
diphenothiazinylphenothiazine 
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Interpretation of Figure 62. 

The H belonging to the chloroform is not coupled to any other H since it is 

another molecule in the spectra separate from the phenothiazine trimer and has 

only one H atom so no coupling is possible. The H at 7.34 has an ortho coupling 

to the H at 7.40, and a meta coupling to the H at 7.44. The H at 7.40 has an ortho 

coupling to the H at 7.44. These three different H atoms are part of the aromatic 

ring of the benzyl protection group.   

 

 

 

 

 

 

 

 

 

 

 



180 
 

 

Figure 63. 2D HSQC Spectrum of N-benzyl-3,7-diphenothiazinylphenothiazine 
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Interpretation of Figure 63. 

The spectra shows that the CH2 carbon and hydrogen atoms are correlated in the 

benzyl protection group. 
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Figure 64. 2D HSQC Spectrum Expansion of N-benzyl-3,7- 
diphenothiazinylphenothiazine 
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Interpretation of Figure 64. 

This enlargement of the aromatic region shows the proton and carbon 

correlations of the 10 unique aromatic carbon atoms. Note that the carbon peaks 

shown at approximately 120 ppm and 125 ppm have no hydrogen atom 

correlations because these peaks are attributed to quaternary carbon atoms. 
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Figure 65. 1H NMR of methyl 4-N-methylenephenothiazinylbenzoate 
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Figure 66. 1H NMR Expansion of methyl 4-N- 
methylenephenothiazinylbenzoate 
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Interpretation of 1H NMR in Figure 66. 

• Peak at 3.90 = H from OCH3 (benzoate group) 

• Peak at 5.12 = H from CH2 (benzoate group) 

• Peak at 6.58 = phenothiazine ring H with ortho and meta coupling (doublet 
of doublets); J = 8 Hz, 2 Hz 

• Peak at 6.87 = phenothiazine ring H with 2 ortho and 1 meta coupling 
(triplet of doublets); J = 7 Hz, 8 Hz, 1 Hz 

• Peak at 6.97 = phenothiazine ring H with 2 ortho and 1 meta coupling 
(triplet of doublets); J = 8 Hz, 7 Hz, 2 Hz 

• Peak at 7.10 = phenothiazine ring H with ortho and meta coupling (doublet 
of doublets); J = 9 Hz, 2 Hz 

• Peaks at 7.40 / 7.99 = phenyl H atoms from benzoate protection group on 
N 
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Figure 67. 13C NMR of methyl 4-N-methylenephenothiazinylbenzoate 
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Figure 68. 13C NMR Expansion of methyl 4-N-   
methylenephenothiazinylbenzoate 
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Interpretation of 13C NMR in Figure 68. 

 Peak at 52.2 – aliphatic C from methoxy group of benzoate protection 
group shifted downfield due to presence of O atom 

 

 Peak at 52.5 – aliphatic C from methenyl group of benzoate protection 
group 
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Figure 69. 13C NMR Expansion of methyl 4-N- 
methylenephenothiazinylbenzoate 
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Intrepretation of 13C NMR in Figure 69. 

 Peak at 115.3 – aromatic quaternary C atom in phenothiazine ring 
 

 Peak at 122.7 – aromatic C atom of phenothiazine ring ortho to N atom 
 

 Peak at 123.5 – aromatic C atom of phenothiazine ring para to N atom 
 

 Peak at 126.7 – aromatic C atom of phenothiazine ring meta to N atom 
 

 Peak at 127.0 – aromatic C atom of phenothiazine ring ortho to S atom 
 

 Peak at 127.2 – aromatic C atom of phenyl ring of benzoate protection 
group 
 

 Peak at 129.1 – aromatic C atom of phenyl ring of benzoate protection 
group shifted downfield due to closer proximity to carbonyl group O 
 

 Peak at 130.1 – aromatic quaternary C atom para to benzoate protection 
group 
 

 Peak at 142.3 – aromatic quaternary C atom ipso to benzoate protection 
group 
 

 Peak at 144.3 - aromatic quaternary C atom in phenothiazine ring 
 

 Peak at 166.8 – C atom of carbonyl group shifted downfield due to O 
atoms 
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Figure 70. 1H NMR of methyl (3,7-dibromo)-4-N-  
methylenephenothiazinylbenzoate   
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Figure 71. 1H NMR Expansion of methyl (3,7-dibromo)-4-N- 
methylenephenothiazinylbenzoate   
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Interpretation of 1H NMR in Figure 71. 

• Peak at 3.91 = H from OCH3 (benzoate group) 

• Peak at 5.05 = H from CH2 (methylene group) 

• Peak at 6.42 = phenothiazine ring H with ortho coupling (doublet); J = 9 
Hz 

• Peak at 7.07 = phenothiazine ring H with ortho and meta coupling (doublet 
of doublets); J = 8 Hz, 2 Hz 

• Peak at 7.21 = phenothiazine ring H with meta coupling (doublet); J = 3 Hz 

• Peaks at 7.35 / 8.00 = phenyl H atoms from benzoate protection group on 
N 
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Figure 72. 13C NMR Expansion of methyl (3,7-dibromo)-4-N- 
methylenephenothiazinylbenzoate  
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Figure 73. 13C NMR Expansion of methyl (3,7-dibromo)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 74. 1H NMR Expansion of methyl (3,7-diphenothiazinyl)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 75. 1H NMR Expansion of methyl (3,7-diphenothiazinyl)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 76. 13C NMR Expansion of methyl (3,7-diphenothiazinyl)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 77. 13C NMR Expansion of methyl (3,7-diphenothiazinyl)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 78. 13C NMR Expansion of methyl (3,7-diphenothiazinyl)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 79. 13C NMR Expansion of methyl (3,7-diphenothiazinyl)-4-N- 
methylenephenothiazinylbenzoate   
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Figure 80. 1H NMR Expansion of methyl 4-N-phenothiazinylbenzoate 
(Ullmann Synthesis) 
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Figure 81. 1H NMR of Ce6–PEG–FA  
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Figure 82. 1H NMR Expansion of Ce6–PEG–FA  
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Figure 83. 1H NMR Expansion of Ce6–PEG–FA  
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Figure 84.  1H NMR Expansion of Ce6–PEG–FA 
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Figure 85. 13C NMR of Ce6–PEG–FA      
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Figure 86. 13C NMR Expansion of Ce6–PEG–FA  
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Figure 87. 13C NMR Expansion of Ce6–PEG–FA  
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Row Column Content Blank Corrected Raw Data 
544 nm; 590 nm 

Average 

E 4 Control C1 71018 142906 

E 5 Control C2 128270  

E 6 Control C3 157541  

     
F 4 Control C4 137407 130374 

F 5 Control C5 130933  

F 6 Control C6 129815  

     
G 4 Control C7 134570 133775 

G 5 Control C8 140067  

G 6 Control C9 132979  

     
H 4 Control C10 135777 138038 

H 5 Control C11 140299  

H 6 Control C12 129893  

     
D 4 Sample X34 152281 154166 

D 5 Sample X35 197096  

D 6 Sample X36 156051  

     

  Control Average 136000 

 

         Table 5. Cytotoxicity Data: August 1, 2014 
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Row      Column Content Blank Corrected Raw Data 
544 nm; 590 nm 

Average 

E 4 Control C1 151020 150561 

E 5 Control C2 150101  

E 6 Control C3 162601  

     

F 4 Control C4 176618 177729 

F 5 Control C5 146999  

F 6 Control C6 178839  

     

G 4 Control C7 158791 170431 

G 5 Control C8 230336  

G 6 Control C9 182071  

     

H 4 Control C10 159270 155778 

H 5 Control C11 176942  

H 6 Control C12 152285  

     
D 4 Sample X34 62939 50262 

D 5 Sample X35 52669  

D 6 Sample X36 47855  

     

  Control  Average 164000 

 

       Table 6. Phototoxicity Data: August 1, 2014 
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Cytotoxicity Data - November 21, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

A 5 Control C9 1 136351 117891

B 5 Control C10 1 127255

A 12 Control C1 1 159421

B 12 Control C2 1 97687

C 5 Control C11 2 111965

D 5 Control C12 2 138811

C 12 Control C3 2 119594

D 12 Control C4 2 116229

E 5 Control C13 4 105970

F 5 Control C14 4 105364

E 12 Control C5 4 123758

F 12 Control C6 4 109619

G 5 Control C15 6 120397

H 5 Control C16 6 107507

G 12 Control C7 6 93159

H 12 Control C8 6 113174

A 2 Ce6-PEG-FA [5 µM] 1 157255 119508

A 3 Ce6-PEG-FA [5 µM] 1 147507

A 4 Ce6-PEG-FA [5 µM] 1 155367

C 2 Ce6-PEG-FA [5 µM] 2 110504

C 3 Ce6-PEG-FA [5 µM] 2 129372

C 4 Ce6-PEG-FA [5 µM] 2 95058

E 2 Ce6-PEG-FA [5 µM] 4 123549

E 3 Ce6-PEG-FA [5 µM] 4 86738

E 4 Ce6-PEG-FA [5 µM] 4 90585

G 2 Ce6-PEG-FA [5 µM] 6 121739

G 3 Ce6-PEG-FA [5 µM] 6 106476

G 4 Ce6-PEG-FA [5 µM] 6 109951  

Table 7. Cytotoxicity Data: November 21, 2014 
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Cytotoxicity Data - November 21, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

B 2 Ce6-PEG-FA [10 µM] 1 100573 105440

B 3 Ce6-PEG-FA [10 µM] 1 91668

B 4 Ce6-PEG-FA [10 µM] 1 107277

D 2 Ce6-PEG-FA [10 µM] 2 103967

D 3 Ce6-PEG-FA [10 µM] 2 94803

D 4 Ce6-PEG-FA [10 µM] 2 104514

F 2 Ce6-PEG-FA [10 µM] 4 120801

F 3 Ce6-PEG-FA [10 µM] 4 117852

F 4 Ce6-PEG-FA [10 µM] 4 96317

H 2 Ce6-PEG-FA [10 µM] 6 108747

H 3 Ce6-PEG-FA [10 µM] 6 100614

H 4 Ce6-PEG-FA [10 µM] 6 118144

% Viability

Control 100

Ce6-PEG-FA [5 µM] 101

Ce6-PEG-FA [10 µM] 89  

Table 8. Cytotoxicity Data (cont.): November 21, 2014 
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Phototoxicity Data - November 21, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

A 5 Control C9 1 173966 138725

B 5 Control C10 1 123266

A 12 Control C1 1 171042

B 12 Control C2 1 169747

C 5 Control C11 2 129123

D 5 Control C12 2 122504

C 12 Control C3 2 143087

D 12 Control C4 2 137829

E 5 Control C13 4 100799

F 5 Control C14 4 101039

E 12 Control C5 4 147236

F 12 Control C6 4 154285

G 5 Control C15 6 117320

H 5 Control C16 6 145846

G 12 Control C7 6 143326

H 12 Control C8 6 139182

A 2 Ce6-PEG-FA [5 µM] 1 108990 110246

A 3 Ce6-PEG-FA [5 µM] 1 111502

A 4 Ce6-PEG-FA [5 µM] 1 93112

B 2 Ce6-PEG-FA [10 µM] 1 597 356

B 3 Ce6-PEG-FA [10 µM] 1 15

B 4 Ce6-PEG-FA [10 µM] 1 114

C 2 Ce6-PEG-FA [5 µM] 2 17573 16300

C 3 Ce6-PEG-FA [5 µM] 2 15027

C 4 Ce6-PEG-FA [5 µM] 2 11798

D 2 Ce6-PEG-FA [10 µM] 2 3611 3553

D 3 Ce6-PEG-FA [10 µM] 2 3494

D 4 Ce6-PEG-FA [10 µM] 2 11603  

Table 9. Phototoxicity Data: November 21, 2014 
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Phototoxicity Data - November 21, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

E 2 Ce6-PEG-FA [5 µM] 4 18833 13604

E 3 Ce6-PEG-FA [5 µM] 4 8375

E 4 Ce6-PEG-FA [5 µM] 4 30129

F 2 Ce6-PEG-FA [10 µM] 4 23468 12824

F 3 Ce6-PEG-FA [10 µM] 4 11330

F 4 Ce6-PEG-FA [10 µM] 4 14317

G 2 Ce6-PEG-FA [5 µM] 6 22137 39382

G 3 Ce6-PEG-FA [5 µM] 6 38265

G 4 Ce6-PEG-FA [5 µM] 6 40498

H 2 Ce6-PEG-FA [10 µM] 6 10080 16861

H 3 Ce6-PEG-FA [10 µM] 6 23642

H 4 Ce6-PEG-FA [10 µM] 6 60321

Time (min) % Viability

Control 100.0

1 Ce6-PEG-FA [5 µM] 79.5

1 Ce6-PEG-FA [10 µM] 0.3

2 Ce6-PEG-FA [5 µM] 11.7

2 Ce6-PEG-FA [10 µM] 2.6

4 Ce6-PEG-FA [5 µM] 9.8

4 Ce6-PEG-FA [10 µM] 9.2

6 Ce6-PEG-FA [5 µM] 28.4

6 Ce6-PEG-FA [10 µM] 12.2  

Table 10. Phototoxicity Data (cont.): November 21, 2014 
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Cytotoxicity Data - December 5, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

A 5 Control C9 1 139319 144222

B 5 Control C10 1 127024

A 12 Control C1 1 160185

B 12 Control C2 1 168356

C 5 Control C11 2 122778

D 5 Control C12 2 127415

C 12 Control C3 2 149766

D 12 Control C4 2 159358

E 5 Control C13 4 124038

F 5 Control C14 4 137134

E 12 Control C5 4 150768

F 12 Control C6 4 156226

G 5 Control C15 6 137002

H 5 Control C16 6 130937

G 12 Control C7 6 158977

H 12 Control C8 6 158272

A 2 Ce6-PEG-FA [5 µM] 1 143367 133377

A 3 Ce6-PEG-FA [5 µM] 1 134162

A 4 Ce6-PEG-FA [5 µM] 1 137930

C 2 Ce6-PEG-FA [5 µM] 2 124733

C 3 Ce6-PEG-FA [5 µM] 2 128739

C 4 Ce6-PEG-FA [5 µM] 2 119926

E 2 Ce6-PEG-FA [5 µM] 4 131401

E 3 Ce6-PEG-FA [5 µM] 4 124251

E 4 Ce6-PEG-FA [5 µM] 4 145814

G 2 Ce6-PEG-FA [5 µM] 6 142974

G 3 Ce6-PEG-FA [5 µM] 6 143643

G 4 Ce6-PEG-FA [5 µM] 6 123588  

Table 11.  Cytotoxicity Data: December 5, 2014 
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Cytotoxicity Data - December 5, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

B 2 Ce6-PEG-FA [10 µM] 1 112553 121905

B 3 Ce6-PEG-FA [10 µM] 1 125934

B 4 Ce6-PEG-FA [10 µM] 1 130164

D 2 Ce6-PEG-FA [10 µM] 2 127190

D 3 Ce6-PEG-FA [10 µM] 2 122069

D 4 Ce6-PEG-FA [10 µM] 2 114706

F 2 Ce6-PEG-FA [10 µM] 4 117201

F 3 Ce6-PEG-FA [10 µM] 4 114327

F 4 Ce6-PEG-FA [10 µM] 4 113438

H 2 Ce6-PEG-FA [10 µM] 6 130009

H 3 Ce6-PEG-FA [10 µM] 6 131269

H 4 Ce6-PEG-FA [10 µM] 6 124002

% Viability

Control 100

Ce6-PEG-FA [5 µM] 92

Ce6-PEG-FA [10 µM] 85  

Table 12.  Cytotoxicity Data (cont.): December 5, 2014 
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Phototoxicity Data - December 5, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

A 5 Control C9 1 161914 150582

B 5 Control C10 1 133921

A 12 Control C1 1 176624

B 12 Control C2 1 159597

C 5 Control C11 2 121245

D 5 Control C12 2 137578

C 12 Control C3 2 164381

D 12 Control C4 2 145108

E 5 Control C13 4 134025

F 5 Control C14 4 140855

E 12 Control C5 4 168871

F 12 Control C6 4 176068

G 5 Control C15 6 145444

H 5 Control C16 6 158572

G 12 Control C7 6 146726

H 12 Control C8 6 138384

A 2 Ce6-PEG-FA [5 µM] 1 112180 109571

A 3 Ce6-PEG-FA [5 µM] 1 106962

A 4 Ce6-PEG-FA [5 µM] 1 93028

B 2 Ce6-PEG-FA [10 µM] 1 50708 8916

B 3 Ce6-PEG-FA [10 µM] 1 10156

B 4 Ce6-PEG-FA [10 µM] 1 7676

C 2 Ce6-PEG-FA [5 µM] 2 100316 9552

C 3 Ce6-PEG-FA [5 µM] 2 3158

C 4 Ce6-PEG-FA [5 µM] 2 15945

D 2 Ce6-PEG-FA [10 µM] 2 3863 3985

D 3 Ce6-PEG-FA [10 µM] 2 4106

D 4 Ce6-PEG-FA [10 µM] 2 12942  

Table 13. Phototoxicity Data: December 5, 2014 
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Phototoxicity Data - December 5, 2014

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data

(λex 544/λem 590)

E 2 Ce6-PEG-FA [5 µM] 4 3308 2405

E 3 Ce6-PEG-FA [5 µM] 4 1501

E 4 Ce6-PEG-FA [5 µM] 4 14073

F 2 Ce6-PEG-FA [10 µM] 4 1196 2622

F 3 Ce6-PEG-FA [10 µM] 4 15768

F 4 Ce6-PEG-FA [10 µM] 4 4047

G 2 Ce6-PEG-FA [5 µM] 6 574 591

G 3 Ce6-PEG-FA [5 µM] 6 179

G 4 Ce6-PEG-FA [5 µM] 6 607

H 2 Ce6-PEG-FA [10 µM] 6 1675 512

H 3 Ce6-PEG-FA [10 µM] 6 33

H 4 Ce6-PEG-FA [10 µM] 6 990

Time (min) % Viability

Control 100

1 Ce6-PEG-FA [5 µM] 72.8

1 Ce6-PEG-FA [10 µM] 5.9

2 Ce6-PEG-FA [5 µM] 6.3

2 Ce6-PEG-FA [10 µM] 2.6

4 Ce6-PEG-FA [5 µM] 1.6

4 Ce6-PEG-FA [10 µM] 1.7

6 Ce6-PEG-FA [5 µM] 0.4

6 Ce6-PEG-FA [10 µM] 0.3  

Table 14. Phototoxicity Data (cont.): December 5, 2014 
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Cytotoxicity Data - Feb. 6, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

B 2 Control 1 1 119907 114447

B 3 Control 2 1 107483

B 4 Control 3 1 125396

B 5 Control 4 1 96506

D 2 Control 1 2 112866

D 3 Control 2 2 102257

D 4 Control 3 2 117746

F 2 Control 1 4 110414

F 3 Control 2 4 107281

F 4 Control 3 4 119238

H 2 Control 1 6 115677

H 3 Control 2 6 126056

H 4 Control 3 6 126978

A 2 Ce6 [5 µM] 1 136755 117956

A 3 Ce6 [5 µM] 1 149673

A 4 Ce6 [5 µM] 1 127840

C 2 Ce6 [5 µM] 2 109498

C 3 Ce6 [5 µM] 2 108286

C 4 Ce6 [5 µM] 2 99426

E 2 Ce6 [5 µM] 4 121713

E 3 Ce6 [5 µM] 4 105892

E 4 Ce6 [5 µM] 4 103633

G 2 Ce6 [5 µM] 6 122196

G 3 Ce6 [5 µM] 6 116855

G 4 Ce6 [5 µM] 6 113699  

Table 15. Cytotoxicity Data: February 6, 2015 
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Cytotoxicity Data - Feb. 6, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

A 8 Ce6-PEG-FA [5 µM] 1 127927 122779

A 9 Ce6-PEG-FA [5 µM] 1 163266

B 9 Ce6-PEG-FA [5 µM] 1 119169

C 8 Ce6-PEG-FA [5 µM] 2 98270

D 7 Ce6-PEG-FA [5 µM] 2 136417

D 8 Ce6-PEG-FA [5 µM] 2 132261

E 8 Ce6-PEG-FA [5 µM] 4 112768

F 7 Ce6-PEG-FA [5 µM] 4 104037

F 8 Ce6-PEG-FA [5 µM] 4 122687

G 8 Ce6-PEG-FA [5 µM] 6 114376

H 7 Ce6-PEG-FA [5 µM] 6 112751

H 8 Ce6-PEG-FA [5 µM] 6 129415

B 6 Ce6-PEG-FA [10 µM] 1 90060 96524

B 7 Ce6-PEG-FA [10 µM] 1 95312

B 8 Ce6-PEG-FA [10 µM] 1 91770

D 5 Ce6-PEG-FA [10 µM] 2 99118

D 6 Ce6-PEG-FA [10 µM] 2 84259

F 5 Ce6-PEG-FA [10 µM] 4 92547

F 6 Ce6-PEG-FA [10 µM] 4 108382

H 5 Ce6-PEG-FA [10 µM] 6 104715

H 6 Ce6-PEG-FA [10 µM] 6 102554

% Viability

Control 100

Ce6 [5 µM] 103

PEG-FA [5 µM] 105

Ce6-PEG-FA [5 µM] 104

Ce6-PEG-FA [10 µM] 84  

Table 16. Cytotoxicity Data (cont.): February 6, 2015 
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Cytotoxicity Data - Feb. 6, 2015

Content St. Dev. Outliers New Ave. Std. Dev.

Ce6-PEG-FA [5 µM] 16386 0.3142 119098 11417 0.7733

Ce6-PEG-FA [5 µM] 2.4708

Ce6-PEG-FA [5 µM] -0.2203 0.0062

Ce6-PEG-FA [5 µM] -1.4957 -1.8243

Ce6-PEG-FA [5 µM] 0.8323 1.5170

Ce6-PEG-FA [5 µM] 0.5787 1.1529

Ce6-PEG-FA [5 µM] -0.6109 -0.5544

Ce6-PEG-FA [5 µM] -1.1438 -1.3192

Ce6-PEG-FA [5 µM] -0.0056 0.3144

Ce6-PEG-FA [5 µM] -0.5128 -0.4136

Ce6-PEG-FA [5 µM] -0.6120 -0.5559

Ce6-PEG-FA [5 µM] 0.4050 0.9037

Ce6-PEG-FA [10 µM] 7325 -0.8825 G for 9

Ce6-PEG-FA [10 µM] -0.1655 2.2150

Ce6-PEG-FA [10 µM] -0.6490

Ce6-PEG-FA [10 µM] 0.3541

Ce6-PEG-FA [10 µM] -1.6744

Ce6-PEG-FA [10 µM] -0.5430

Ce6-PEG-FA [10 µM] 1.6188

Ce6-PEG-FA [10 µM] 1.1182

Ce6-PEG-FA [10 µM] 0.8232  

Table 17. Cytotoxicity Data (cont.): February 6, 2015 
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Phototoxicity Data - Feb. 6, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

B 2 Control 1 1 119723 117476

B 3 Control 2 1 111350

B 4 Control 3 1 107133

B 5 Control 4 1 97819

D 2 Control 1 2 123864

D 3 Control 2 2 122045

D 4 Control 3 2 112034

F 2 Control 1 4 118449

F 3 Control 2 4 114336

F 4 Control 3 4 114057

H 2 Control 1 6 136083

H 3 Control 2 6 128654

H 4 Control 3 6 121645

A 2 Ce6 [5 µM] 1 137861 121457

A 3 Ce6 [5 µM] 1 120811

A 4 Ce6 [5 µM] 1 122103

A 5 PEG-FA [5 µM] 1 125288 114890

A 6 PEG-FA [5 µM] 1 104492

A 7 PEG-FA [5 µM] 1 99049

A 8 Ce6-PEG-FA [5 µM] 1 7821 19682

A 9 Ce6-PEG-FA [5 µM] 1 15853

B 9 Ce6-PEG-FA [5 µM] 1 23510

B 6 Ce6-PEG-FA [10 µM] 1 2734 12653

B 7 Ce6-PEG-FA [10 µM] 1 14523

B 8 Ce6-PEG-FA [10 µM] 1 10783  

Table 18. Phototoxicity Data: February 6, 2015 
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Phototoxicity Data - Feb. 6, 2015 Exposure 

Time (min)

Row Column Content Blank Corrected Average

Raw Data (544/590)

C 2 Ce6 [5 µM] 2 110189 94972

C 3 Ce6 [5 µM] 2 94754

C 4 Ce6 [5 µM] 2 95189

C 5 PEG-FA [5 µM] 2 93959 97060

C 6 PEG-FA [5 µM] 2 100160

C 7 PEG-FA [5 µM] 2 1500

C 8 Ce6-PEG-FA [5 µM] 2 99309 7546

D 7 Ce6-PEG-FA [5 µM] 2 4431

D 8 Ce6-PEG-FA [5 µM] 2 10661

D 5 Ce6-PEG-FA [10 µM] 2 97435 6746

D 6 Ce6-PEG-FA [10 µM] 2 6746

E 2 Ce6 [5 µM] 4 82769 93779

E 3 Ce6 [5 µM] 4 59360

E 4 Ce6 [5 µM] 4 104788

E 5 PEG-FA [5 µM] 4 32962 75324

E 6 PEG-FA [5 µM] 4 117685

E 7 PEG-FA [5 µM] 4 1765

E 8 Ce6-PEG-FA [5 µM] 4 110125 2168

F 7 Ce6-PEG-FA [5 µM] 4 1669

F 8 Ce6-PEG-FA [5 µM] 4 2667

F 5 Ce6-PEG-FA [10 µM] 4 112778 3129

F 6 Ce6-PEG-FA [10 µM] 4 3129  

Table 19. Phototoxicity Data (cont.): February 6, 2015 
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Phototoxicity Data - Feb. 6, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

G 2 Ce6 [5 µM] 6 114332 115099

G 3 Ce6 [5 µM] 6 94727

G 4 Ce6 [5 µM] 6 115865

G 5 PEG-FA [5 µM] 6 75565 88623

G 6 PEG-FA [5 µM] 6 101680

G 7 PEG-FA [5 µM] 6 1945

G 8 Ce6-PEG-FA [5 µM] 6 129355 2637

H 7 Ce6-PEG-FA [5 µM] 6 2376

H 8 Ce6-PEG-FA [5 µM] 6 2897

H 5 Ce6-PEG-FA [10 µM] 6 1232 1119

H 6 Ce6-PEG-FA [10 µM] 6 1006

Time (min) % Viability

Control 100.0

1 Ce6 [5 µM] 103.4

1 PEG-FA [5 µM] 97.8

1 Ce6-PEG-FA [5 µM] 16.8

1 Ce6-PEG-FA [10 µM] 10.8

2 Ce6 [5 µM] 80.8

2 PEG-FA [5 µM] 82.6

2 Ce6-PEG-FA [5 µM] 6.4

2 Ce6-PEG-FA [10 µM] 5.7

4 Ce6 [5 µM] 79.8

4 PEG-FA [5 µM] 64.1

4 Ce6-PEG-FA [5 µM] 1.8

4 Ce6-PEG-FA [10 µM] 2.7

6 Ce6 [5 µM] 98.0

6 PEG-FA [5 µM] 75.4

6 Ce6-PEG-FA [5 µM] 2.2

6 Ce6-PEG-FA [10 µM] 1.0  

Table 20. Phototoxicity Data (cont.): February 6, 2015 
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Cytotoxicity Data - Apr. 3, 2015

Row Column Content Exposure Blank Corrected Average St. Dev. 

Time (min) Raw Data (544/590)

B 12 Control 1 1 110647 102633

D 12 Control 2 2 106823

F 12 Control 3 4 107848

H 12 Control 4 6 85212

A 2 Ce6 [5 µM] 1 102968 97246 32417

A 3 Ce6 [5 µM] 1 90220

A 4 Ce6 [5 µM] 1 88788

A 5 Ce6 [5 µM] 1 140733

A 6 Ce6 [5 µM] 1 227458

A 7 Ce6 [5 µM] 1 168527

C 2 Ce6 [5 µM] 2 111222

C 3 Ce6 [5 µM] 2 93031

C 4 Ce6 [5 µM] 2 95093 87682

C 5 Ce6 [5 µM] 2 87111

C 6 Ce6 [5 µM] 2 80816

C 7 Ce6 [5 µM] 2 83810

E 2 Ce6 [5 µM] 4 84566

E 3 Ce6 [5 µM] 4 96824

E 4 Ce6 [5 µM] 4 100708

E 5 Ce6 [5 µM] 4 72528

E 6 Ce6 [5 µM] 4 91620 95777

E 7 Ce6 [5 µM] 4 86761

G 2 Ce6 [5 µM] 6 98517

G 3 Ce6 [5 µM] 6 105140

G 4 Ce6 [5 µM] 6 98705

G 5 Ce6 [5 µM] 6 89776

G 6 Ce6 [5 µM] 6 110952

G 7 Ce6 [5 µM] 6 84745  

Table 21. Cytototoxicity Data: April 3, 2015 
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Cytotoxicity Data - Apr. 3, 2015

Content Outliers G for 24

Between

2.7082

and 

2.8217

New Ave. Std. Dev. Outliers Outliers Outliers

Ce6 [5 µM] 0.1765 98398 20063 0.2278 0.5671 1.0313

Ce6 [5 µM] -0.2167 -0.4076 -0.3649 -0.2933

Ce6 [5 µM] -0.2609 -0.4790 -0.4696 -0.4421

Ce6 [5 µM] 1.3415 G for 23,22,21 2.1101 3.3281

Ce6 [5 µM] 4.0168 outlier Between

Ce6 [5 µM] 2.1989 2.7082 3.4955

Ce6 [5 µM] 0.4311 and 0.6392 1.1706 1.8889

Ce6 [5 µM] -0.1300 2.8217 -0.2675 -0.1594 -0.0012

Ce6 [5 µM] -0.0664 -0.1648 -0.0086 0.2130

Ce6 [5 µM] -0.3126 2nd New Ave. St. Dev. -0.5626 -0.5922 -0.6164

Ce6 [5 µM] -0.5068 95211 13678 -0.8764 -1.0524 -1.2704

Ce6 [5 µM] -0.4145 -0.7271 -0.8335 -0.9594

Ce6 [5 µM] -0.3912 3rd New Ave. St. Dev. -0.6895 -0.7782 -0.8808

Ce6 [5 µM] -0.0130 93043 9624 -0.0785 0.1180 0.3929

Ce6 [5 µM] 0.1068 0.1151 0.4019 0.7965

Ce6 [5 µM] -0.7625 -1.2895 -1.6583 -2.1316

Ce6 [5 µM] -0.1735 -0.3379 -0.2625 -0.1478

Ce6 [5 µM] -0.3234 -0.5801 -0.6177 -0.6527

Ce6 [5 µM] 0.0392 0.0059 0.2417 0.5688

Ce6 [5 µM] 0.2435 0.3360 0.7259 1.2570

Ce6 [5 µM] 0.0450 0.0153 0.2555 0.5883

Ce6 [5 µM] -0.2304 -0.4298 -0.3973 -0.3395

Ce6 [5 µM] 0.4228 0.6257 1.1508 1.8609

Ce6 [5 µM] -0.3856 -0.6805 -0.7651 -0.8622  

Table 22. Cytotoxicity Data (cont.): April 3, 2015 
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Cytotoxicity Data - Apr. 3, 2015

Row Column Content Light Blank Corrected Average

Exp. (min) Raw Data (544/590)

B 2 Ce6 [10 µM] 1 98929 88444

B 3 Ce6 [10 µM] 1 106479

B 4 Ce6 [10 µM] 1 95980

B 5 Ce6 [10 µM] 1 94244

B 6 Ce6 [10 µM] 1 78368

B 7 Ce6 [10 µM] 1 82069

B 8 Ce6 [10 µM] 1 82950

B 9 Ce6 [10 µM] 1 83201

B 10 Ce6 [10 µM] 1 73777

D 2 Ce6 [10 µM] 2 86274 83210

D 3 Ce6 [10 µM] 2 91578

D 4 Ce6 [10 µM] 2 91000

D 5 Ce6 [10 µM] 2 77420

D 6 Ce6 [10 µM] 2 76392

D 7 Ce6 [10 µM] 2 77744

D 8 Ce6 [10 µM] 2 81584

D 9 Ce6 [10 µM] 2 83212

D 10 Ce6 [10 µM] 2 83689

F 2 Ce6 [10 µM] 4 85213 90214

F 3 Ce6 [10 µM] 4 93083

F 4 Ce6 [10 µM] 4 90240

F 5 Ce6 [10 µM] 4 81368

F 6 Ce6 [10 µM] 4 102578

F 7 Ce6 [10 µM] 4 90426

F 8 Ce6 [10 µM] 4 97268

F 9 Ce6 [10 µM] 4 88108

F 10 Ce6 [10 µM] 4 83642

H 2 Ce6 [10 µM] 6 99825 96608

H 3 Ce6 [10 µM] 6 103928

H 4 Ce6 [10 µM] 6 99176

H 5 Ce6 [10 µM] 6 92867

H 6 Ce6 [10 µM] 6 103785

H 7 Ce6 [10 µM] 6 98532

H 8 Ce6 [10 µM] 6 95921

H 9 Ce6 [10 µM] 6 100532

H 10 Ce6 [10 µM] 6 74906  

Table 23. Cytotoxicity Data (cont.): April 3, 2015 
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Cytotoxicity Data - Apr. 3, 2015

Row Column Content Exposure Blank Corrected Average St. Dev. 

Time (min) Raw Data (544/590)

A 8 Ce6-PEG-FA [5 µM] 1 59937 83005 12571

A 9 Ce6-PEG-FA [5 µM] 1 63545

A 10 Ce6-PEG-FA [5 µM] 1 74219

C 8 Ce6-PEG-FA [5 µM] 2 97032

C 9 Ce6-PEG-FA [5 µM] 2 86360

C 10 Ce6-PEG-FA [5 µM] 2 86859

E 8 Ce6-PEG-FA [5 µM] 4 83963

E 9 Ce6-PEG-FA [5 µM] 4 70217

E 10 Ce6-PEG-FA [5 µM] 4 89572

G 8 Ce6-PEG-FA [5 µM] 6 94628

G 9 Ce6-PEG-FA [5 µM] 6 89327

G 10 Ce6-PEG-FA [5 µM] 6 100406

A 11 Ce6-PEG-FA [10 µM] 1 66804 67279 6360

A 12 Ce6-PEG-FA [10 µM] 1 68765

B 11 Ce6-PEG-FA [10 µM] 1 72962

C 11 Ce6-PEG-FA [10 µM] 2 82916

C 12 Ce6-PEG-FA [10 µM] 2 67132

D 11 Ce6-PEG-FA [10 µM] 2 61909

E 11 Ce6-PEG-FA [10 µM] 4 60079

E 12 Ce6-PEG-FA [10 µM] 4 65496

F 11 Ce6-PEG-FA [10 µM] 4 68156

G 11 Ce6-PEG-FA [10 µM] 6 59939

G 12 Ce6-PEG-FA [10 µM] 6 72368

H 11 Ce6-PEG-FA [10 µM] 6 60820

% Viability

Control 100

Ce6 [5 µM] 91

Ce6 [10 µM] 86

Ce6-PEG-FA [5 µM] 81

Ce6-PEG-FA [10 µM] 64  

Table 24. Cytotoxicity Data (cont.): April 3, 2015 
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Cytotoxicity Data - Apr. 3, 2015

Content Outliers

New Ave. Std. Dev. Outliers

Ce6-PEG-FA [10 µM] -0.0747 G for 12 65857 4458 0.2124

Ce6-PEG-FA [10 µM] 0.2337 2.4116 0.6522

Ce6-PEG-FA [10 µM] 0.8936 G for 11 1.5936

Ce6-PEG-FA [10 µM] 2.4587 2.3547

Ce6-PEG-FA [10 µM] -0.0231 0.2859

Ce6-PEG-FA [10 µM] -0.8443 -0.8856

Ce6-PEG-FA [10 µM] -1.1321 -1.2961

Ce6-PEG-FA [10 µM] -0.2803 -0.0810

Ce6-PEG-FA [10 µM] 0.1379 0.5156

Ce6-PEG-FA [10 µM] -1.1541 -1.3275

Ce6-PEG-FA [10 µM] 0.8002 1.4604

Ce6-PEG-FA [10 µM] -1.0156 -1.1299  

Table 25. Cytotoxicity Data (cont.): April 3, 2015 
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Phototoxicity Data - April 3, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

B 12 Control 1 115617 99159

D 12 Control 2 100660

F 12 Control 4 95428

H 12 Control 6 101390

A 2 Ce6 [5 µM] 1 121575 107689

A 3 Ce6 [5 µM] 1 106913

A 4 Ce6 [5 µM] 1 108464

A 5 Ce6 [5 µM] 1 101548 101742

A 6 Ce6 [5 µM] 1 100347

A 7 Ce6 [5 µM] 1 103331

B 2 Ce6 [10 µM] 1 100689 82691

B 3 Ce6 [10 µM] 1 64692

B 4 Ce6 [10 µM] 1 24404

B 5 Ce6 [10 µM] 1 13554 14305

B 6 Ce6 [10 µM] 1 17178

B 7 Ce6 [10 µM] 1 12182

B 8 Ce6 [10 µM] 1 11813 16996

B 9 Ce6 [10 µM] 1 16777

B 10 Ce6 [10 µM] 1 22397

A 8 Ce6-PEG-FA [5 µM] 1 34251 26931

A 9 Ce6-PEG-FA [5 µM] 1 107573

A 10 Ce6-PEG-FA [5 µM] 1 19610

A 11 Ce6-PEG-FA [10 µM] 1 40292 31661

A 12 Ce6-PEG-FA [10 µM] 1 23029

B 11 Ce6-PEG-FA [10 µM] 1 2779  

Table 26. Phototoxicity Data: April 3, 2015 
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Phototoxicity Data - April 3, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

C 2 Ce6 [5 µM] 2 103686 80805

C 3 Ce6 [5 µM] 2 57923

C 4 Ce6 [5 µM] 2 11016

C 5 Ce6 [5 µM] 2 10525 11523

C 6 Ce6 [5 µM] 2 47039

C 7 Ce6 [5 µM] 2 12521

D 2 Ce6 [10 µM] 2 98008 2063

D 3 Ce6 [10 µM] 2 2720

D 4 Ce6 [10 µM] 2 1406

D 5 Ce6 [10 µM] 2 2725 2223

D 6 Ce6 [10 µM] 2 4238

D 7 Ce6 [10 µM] 2 1720

D 8 Ce6 [10 µM] 2 1342 1159

D 9 Ce6 [10 µM] 2 976

D 10 Ce6 [10 µM] 2 3127

C 8 Ce6-PEG-FA [5 µM] 2 12218 21237

C 9 Ce6-PEG-FA [5 µM] 2 5173

C 10 Ce6-PEG-FA [5 µM] 2 9019

C 11 Ce6-PEG-FA [10 µM] 2 6338 4508

C 12 Ce6-PEG-FA [10 µM] 2 11612

D 11 Ce6-PEG-FA [10 µM] 2 2677  

Table 27. Phototoxicity Data (cont.): April 3, 2015 
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Phototoxicity Data - April 3, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

E 2 Ce6 [5 µM] 4 97368 6372

E 3 Ce6 [5 µM] 4 9655

E 4 Ce6 [5 µM] 4 3088

E 5 Ce6 [5 µM] 4 1491 1052

E 6 Ce6 [5 µM] 4 2422

E 7 Ce6 [5 µM] 4 613

F 2 Ce6 [10 µM] 4 57572 3417

F 3 Ce6 [10 µM] 4 6247

F 4 Ce6 [10 µM] 4 587

F 5 Ce6 [10 µM] 4 636 790

F 6 Ce6 [10 µM] 4 1739

F 7 Ce6 [10 µM] 4 943

F 8 Ce6 [10 µM] 4 467 1074

F 9 Ce6 [10 µM] 4 1680

F 10 Ce6 [10 µM] 4 3421

E 8 Ce6-PEG-FA [5 µM] 4 1823 1817

E 9 Ce6-PEG-FA [5 µM] 4 15184

E 10 Ce6-PEG-FA [5 µM] 4 1810

E 11 Ce6-PEG-FA [10 µM] 4 5006 9386

E 12 Ce6-PEG-FA [10 µM] 4 9950

F 11 Ce6-PEG-FA [10 µM] 4 8821  
 

Table 28. Phototoxicity Data (cont.): April 3, 2015 
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Phototoxicity Data - April 3, 2015

Row Column Content Exposure Blank Corrected Average

Time (min) Raw Data (544/590)

G 2 Ce6 [5 µM] 6 75760 70766

G 3 Ce6 [5 µM] 6 65771

G 4 Ce6 [5 µM] 6 3747

G 5 Ce6 [5 µM] 6 4970 4201

G 6 Ce6 [5 µM] 6 7664

G 7 Ce6 [5 µM] 6 3432

H 2 Ce6 [10 µM] 6 60694 7905

H 3 Ce6 [10 µM] 6 11843

H 4 Ce6 [10 µM] 6 3967

H 5 Ce6 [10 µM] 6 5513 5124

H 6 Ce6 [10 µM] 6 7658

H 7 Ce6 [10 µM] 6 4735

H 8 Ce6 [10 µM] 6 7517 9260

H 9 Ce6 [10 µM] 6 11002

H 10 Ce6 [10 µM] 6 42476

G 8 Ce6-PEG-FA [5 µM] 6 1327 1484

G 9 Ce6-PEG-FA [5 µM] 6 676

G 10 Ce6-PEG-FA [5 µM] 6 1640

G 11 Ce6-PEG-FA [10 µM] 6 3075 2256

G 12 Ce6-PEG-FA [10 µM] 6 4905

H 11 Ce6-PEG-FA [10 µM] 6 1436  

Table 29. Phototoxicity Data (cont.): April 3, 2015 
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Phototoxicity Data - April 3, 2015

Time (min) % Viability

Control 100

1 Ce6 [5 µM] 109

1 Ce6 [5 µM] 103

1 Ce6 [10 µM] 83

1 Ce6 [10 µM] 14

1 Ce6 [10 µM] 17

1 Ce6-PEG-FA [5 µM] 27

1 Ce6-PEG-FA [10 µM] 32

2 Ce6 [5 µM] 81

2 Ce6 [5 µM] 12

2 Ce6 [10 µM] 2

2 Ce6 [10 µM] 2

2 Ce6 [10 µM] 1

2 Ce6-PEG-FA [5 µM] 21

2 Ce6-PEG-FA [10 µM] 5  

Table 30. Phototoxicity Data (cont.): April 3, 2015 
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Phototoxicity Data - April 3, 2015

Time (min) % Viability

4 Ce6 [5 µM] 6

4 Ce6 [5 µM] 1

4 Ce6 [10 µM] 3

4 Ce6 [10 µM] 0.8

4 Ce6 [10 µM] 1

4 Ce6-PEG-FA [5 µM] 2

4 Ce6-PEG-FA [10 µM] 9

6 Ce6 [5 µM] 71

6 Ce6 [5 µM] 4

6 Ce6 [10 µM] 8

6 Ce6 [10 µM] 5

6 Ce6 [10 µM] 9

6 Ce6-PEG-FA [5 µM] 1

6 Ce6-PEG-FA [10 µM] 2  
 

Table 31. Phototoxicity Data (cont.): April 3, 2015 
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Compiled  

Dark Data

Ave % Viab. Ave % Viab. Ave % Viab. Ave % Viab. Compiled Std. Dev.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Ave

Control 100 100 100 100 100

Ce6 [5 µM] 103 95 85 93 94 6

Ce6 [10 µM] 86 81 88 94 87 5

CPF [5 µM] 101 92 104 81 95 9

CPF [10 µM] 89 85 84 64 81 10

Outliers

Dark New Ave Std. Dev.

Ave % Viab.

Control 100 G for 4 86 2

Ce6 [5 µM] 94 1.4812

Ce6 [10 µM] 87

CPF [5 µM] 95 0.8755 0.4635 0.3605 -1.6996

CPF [10 µM] 86  

Table 32.  Compiled Cytotoxicity Data: 4 Experiments 
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Compiled

Light Data

Ave % Viab. Ave % Viab. Ave % Viab. Ave % Viab. Compiled Std. Dev.

Time Exp. 1 Exp. 2 Exp. 3 Exp. 4 Average

Control 100 100 100 100

1 Ce6 [5 µM] 103 109 103 105 3

1 Ce6 [10 µM] 83 14 17 38 32

1 CPF [5 µM] 80 73 17 27 49 28

1 CPF [10 µM] 0.3 6 11 32 12 12

2 Ce6 [5 µM] 81 81 12 58 33

2 Ce6 [10 µM] 2 2 1 2 0.5

2 CPF [5 µM] 12 6 6 21 11 6

2 CPF [10 µM] 3 3 6 5 4 1

4 Ce6 [5 µM] 80 6 1 29 36

4 Ce6 [10 µM] 3 1 1 2 1

4 CPF [5 µM] 9 2 2 2 4 3

4 CPF [10 µM] 9 2 3 9 6 3

6 Ce6 [5 µM] 98 71 4 58 40

6 Ce6 [10 µM] 8 5 9 7 2

6 CPF [5 µM] 28 0.4 2 1 8 12

6 CPF [10 µM] 12 0.3 1 2 4 5  

Table 33.  Compiled Phototoxicity Data: 4 Experiments 
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