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INTRODUCTION 

Major advances in our understanding of sensory and perceptual 

processing in infancy have been made within the last 15 years. The 

number of studies dealing with infant hearing has skyrocketed since 

1960. In fact, in 1974 alone more papers on infant audition were pub­

lished than from 1910 to 1960. Naturally occurring as well as con­

ditioned responses to noise, pure tones, square wave stimuli, clicks, 

music and speech have been examined. Attempts have been made to deter­

mine the absolute sensitivity, the intensity response and the frequency 

selectivity of the auditory system in early life (Eisenberg, 1976). 

Nevertheless, a consistent body of behavioral observations of the in­

fant's auditory capacity has yet to emerge. 

Our restricted knowledge in this area stems to a large extent 

from the infant's limited response repertoire. Since infants are pre­

verbal organisms, most of the techniques used to assess hearing in 

older children and adults cannot be applied to them. Moreover, con­

ditioning techniques such as those commonly used with other nonverbal 

subjects often cannot be used with human infants for et~ical reasons. 

Even when such a technique can be used ethically, it is often diffi­

cult to establish a conditioned response in young infants. 

It is this interaction of sensory and response factors which 

poses a particular problem for studies of infant perception. The prob­

lem is further compounded by the continual expansion of both sensory 

and response capacities during the early months, as well as the con-

1 
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tinuing maturation of systems which integrate sensory and response 

systems. As a result, inconsistencies in observations are often 

found depending upon the response measure employed (Kessen, Haith 

& Salapatek, 1970), the behavioral state of the infant at the time 

measurements are made (Ashton, 1971), and the specific parameters of 

the stimulus used (Eisenberg, 1976). 

To further complicate matters, stimulus control has not been a 

major concern in infant auditory research. Infants are not very re-

sponsive to stimuli such as pure tones (Hutt, Hutt, Lenard, Bernuth 

& Muntjewerff, 1968). Consequently, more complex stimuli such as 

( 
square wave sounds, noise, clicks or voices are frequently used to 

assess the infant's auditory capacity. Unfortunately, it is more 

difficult to quantify the effective loudness of this type of stimulus. 

It is not uncommon, moreover, to find no mention of the actual spec-

tral composition of a stimulus in a paper. This failure to completely 

describe and control the characteristics of the stimulus is particu-

larly crucial in infant studies in which sounds are usually presented 

through a loudspeaker rather than headphones: sound waves may inter-

act with the environment in such a way as to produ~e la~ge variations 

in amplitude and spectrum across different stimuli and over presen-

tations of the same stimulus. As a result, if the infant is found to 

be differentially responsive to a particular sound, it is often not 

clear which dimension of the stimulus is producing the effect. And, 

therefore, only very imprecise or global statements can be made about 

the infant's auditory capacity. 

At the present time, then, we have very little specific infor-



mation regarding hearing in infancy. This research examines the in­

fant's ability to discriminate sounds on the basis of frequency, with 
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the goal of contributing to a systematic description of infant hearing. 

As a point of departure, the existing information on this topic will 

be summarized, beginning with an examination of the anatomy and elec­

tro physiology of the developing auditory system, then proceeding 

with a review of the literature dealing with the stimulus parameters 

which affect the infant's response and ending with a summary of stu­

dies of infant speech perception. It is thought that basic psycho­

acoustic research with infants is needed to provide information about 

the relationship of specific structures in the nervous system to 

sound perception and about the infant's perception of complex sounds 

such as speech. 

Histological Studies of the Infant Auditory System 

Among the various sensory sytems, the auditory system seems to 

develop quite early. The fetal ear begins differentiation at 5 wk ges­

tational age (GA) (Ballinger, 1969) and the auditory nerve emerges by 

the fourth week. Fetal responses (movement and heart rate acceleration) 

to sound have been observed as early as the 26th week (Wedenberg, 1965, 

Murphy & Smith, 1962, Johansson, Wedenberg & Weston, 1964). At birth, 

however, some immaturity is still evident, increasing as the auditory 

pathway ascends toward the cortex. 

At the peripheral level, the external auditory meatus and the 

tympanic membrane are found to continue growing until 12 months post­

partum (Ballinger, 1969), and impedance audiometry (Keith, 1973) shows 
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that the compliance of the tympanic membrane is high compared to that 

of adults. The greater compliance of the tympanic membrane will re­

sult in the selective attenuation of some frequencies, but the amount 

of attenuation and the frequencies affected are unknown. The middle 

ear ossicles attain adult size and transmission properties by birth 

(Kirikae, 1960), however, and Robertson, Peterson and Lamb (1968) re­

port only a 5- to 10 -dB elevation of the acoustic reflex threshold in 

newborns, arguing against a major conductive impairment. So while 

changes in the dimensions and characteristics of the outer ear and in 

impedance matching properties of the middle ear must affect the ear's 

response, direct measurements suggest that these changes account for 

no more than a 10 dB loss in sensitivity. 

Data on inner ear development are available only with respect 

to the hair cells and their innervation, and Bredberg's 1968 mono­

graph summarizes most of that information. The gross structural fea­

tures of the inner ear were found to be attained by the sixth fetal 

month. Bredberg reports, however, that at birth, inner hair cells are 

more mature than outer hair cells, and that while the number of hair 

cells is nearly equal to that of adults, a small segment of the most 

basal region of the cochlea and the apical segment of the outer hair 

cells continues to differentiate postnatally. The only gross features 

which might account for postnatal changes in sensitivity, then, are 

the development of the basal region of the cochlea and the outermost 

row of hair cells. However, since no data are available with respect 

to the response characteristics of other inner ear structures such as 

the tectorial and basilar membranes, a complete evaluation of the con-



tribution of inner ear maturation to the development of auditory re­

sponsivity is not possible at this time. 

5 

Still less is known about the maturation of neural structures 

in the auditory system. While the auditory nerve emerges by the 

fourth week GA and appears to be well myelinated by birth, the age at 

which it attains adult status is not known. At a higher level in the 

auditory pathway, a report by Rorke and Riggs (1969) suggests, the 

auditory brain stem nuclei are not completely myelinated at birth. 

This might cause slower conduction speed, and therefore, prolonged 

response latencies. FUrther, should a gradation of myelination across 

fibers exist, activity across fibers may be desynchronized, contrib­

uting to a diminished overall response amplitude. Finally, Conel's 

(1963) exhaustive studies of human cerebral cortex indicate that 

while the number of fibers projecting to the auditory cortex does not 

increase postnatally, axonal and dendritic lengths and diameters, as 

well as myelination of projection fibers continues for several years 

postnatally. Myelination of intracortical fibers was found to con­

tinue into adolescence. It appears, then, that the auditory cortex is 

quite immature at birth. 

In sum, maturation of the auditory system is found to proceed 

in a caudocephalad direction, with more immature patterns appearing 

at and beyond the level of the inferior colliculus in the newborn. 

However, at this point it is not clear how the infant's behavioral re­

sponse to sound is affected by this lack of maturity. 



Electrophysiological Studies of the Auditory System in Infancy 

Studies of auditory evoked potentials in infancy show that 

such responses exhibit elevated thresholds, prolonged latencies and 

diminished amplitudes in comparison to adult responses. These find­

ings are consistent with those of the anatomical data described 

earlier, especially with regard to the lack of myelination at higher 

levels in the auditory system. 

6 

Beginning at the level of the eighth nerve, whole nerve action 

potentials recorded with surface electrodes in response to click stim­

uli demonstrate a 10 -dB difference in threshold between infants and 

adults which disappears sometime during the first year of life (Lieber­

man, Sohmer & Szabo, 1973). Portmann, Aran and LaGorque (1973) find 

normal thresholds in infants as young as 10 months. 

Infant brain stem evoked responses (BSERs) have also been exam­

ined. Hecox and Galambos (1974a) report that the BSER in infancy is 

distinguished from adult responses by a longer latency and lower am­

plitude. These characteristics remain until about 18 months. In ad­

dition, Hecox and Galambos (1974b) examined the effect of a masker on 

the BSER to clicks. These investigators systematically decreased the 

cut-off frequency of a high-pass masker noise and found that the mas­

ker cut-off had to be much lower to produce a change in the latency 

and amplitude of the infant response to the click as compared to adults. 

They conclude that infant responses are produced in a more apical re­

gion of the cochlea than are adult responses. The infant response 

pattern, however, approached adult status by the tenth week of life. 

This pattern of results is consistent with Bredberg's (1968) report of 



the immaturity of the most basalward portion of the cochlea, and 

argues for the existence of a reduced high-frequency response in 

early infancy. 
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Cortical evoked responses (CERs) in newborns have been found to 

exhibit thresholds of 46-76 dB ISO (International Organization for 

Standardization) to tone bursts of 500-2000 Hz in frequency (Taguchi, 

Picton, Orpin & Goodman, 1969). Threshold for adults is estimated at 

12.5 dB ISO (Davis, 1965). While Suzuki and Taguchi (1968) describe 

developmental changes in CER threshold up to 3 or 4 years of age, the 

exact age at which adult CER thresholds are attained has not been es­

tablished. 

To summarize, infant whole nerve potentials, BSERs and CERs all 

differ in several respects from adult responses. These differences 

seem to reflect some immaturity of the inner ear as well as defi­

ciencies in arborization and myelination of the auditory system. In­

fant responses tend to approach adult status by 18 months, with some 

components maturing in the second half of the first year. Interest­

ingly, these electrophysiciological studies find the infant to be more 

sensitive to sounds than do the behavioral studies of auditory respon­

sivity to be examined next. 

Behavioral Studies of Infant Response to Sound 

As Hecox (1975) points out, it is possible to estimate a series 

of neural thresholds for response to auditory stimuli depending upon 

the level in the nervous system at which the response is recorded. In 

infancy, differences in response thresholds at different levels may be 
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amplified by differential maturity, as has just been described. Simi­

larly, systems responsible for the behavioral responses studied may 

differ in their maturity as well as in the extent to which they are 

integrated with sensory mechanisms. Thus, another series of behavioral 

thresholds may be generated. It is best to keep in mind, then, that 

there is no one estimate of the infant's threshold or auditory capac­

ity; the values obtained are ultimately dependent upon the measures be­

ing employed. 

In this section, two areas of research will be reviewed. First, 

the data pertaining to the basic parameters affecting the infant's re­

sponse to sound will be summarized. Second, a brief review of what is 

known about the infant's response to speech sounds will be given. 

Psychoacoustic Studies of Infants 

Sensitivity. Spears and Hohle (1967), reflecting the then cur­

rent view, estimated the newborn's behavioral threshold to sound to be 

60-90 dB higher than that of adults, with eyeblink the response meas­

ure. These authors suggest that this diminished sensitivity results 

from the presence of unabsorbed connective tissue within the middle ear 

cavity which would restrict movement of the ossicles. However, given 

the histological and electrophysiological data described above, such 

an explanation seems untenable. 

The absolute thresholds obtained from infants seem to depend to 

a great extent on the response measure chosen. Northern and Downs 

(1974), for example, report a 90 dB threshold when testing newborns 

in a "noisy" room, with arousal from sleep taken as the criterion for 

response. Simmons (1973) obtained somewhat lower estimates of newborn 



sensitivity using the Crib-0-Gram, an automated device developed for 

detecting hearing loss. Each baby's motor and respiratory activity 

are automatically recorded while 30 test sounds (narrow-band noise) 

are presented. After testing 4,000 babies, Simmons reports that the 

average newborn will respond to 44% of signals presented at levels 

below 60 dB SPL. Whether newborns might be trained to respond to 

lower level sounds remains for future research to determine. 

9 

By 4-7 months, Northern and Downs (1974) report, an infant can 

localize a stimulus at 40-50 dB sounded to one side of the head. More 

recent research indicates greater sensitivity in this age range. Tre­

hub, Scheider and Endman (Note 1) trained 6 month old infants to turn 

toward the source of a noise burst presented from loudspeakers located 

on either side of the infant. The infant is reinforced for a correct 

response by the activation of a mechanical toy. Using this technique, 

Trehub et al. report that the infant thresholds average about 20 dB 

over adult levels. In addition, these researchers find an elevation 

of infant thresholds at low frequencies. However, it is difficult to 

evaluate the latter finding given that the localizability of stimuli 

may vary with frequency (Green, 1976). 

Perhaps the most sensitive paradigm developed for testing thresh­

olds of infants 6-12 months old is the visually reinforced audiometry 

(VRA) technique (Wilson, Lee, Owen & Morre, Note 2). In this paradigm, 

the infant is trained to turn his head toward a visual reinforcer when­

ever he hears an acoustic stimulus. He is reinforced for doing so by 

the activation of the reinforcer, a mechanical toy, for a brief period. 

The stimulus can be presented via loudspeaker or through headphones 
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which have been specially fitted to the infant's head to prevent slip­

page. The results of testing using this paradigm indicate two things. 

First, infant thresholds at 6 months are within 5-10 dB of adult lev­

els. This finding is consistent with those of electrophysiological 

studies of low level neural responses. Second, the shape of the in­

fant audiogram (threshold as function of frequency) parallels that of 

adults. This finding runs counter to those of Trehub et al. de­

scribed earlier; the sources of this difference bear further investi­

gation. It seems clear, however, that at least by 6 months of age, 

infant absolute sensitivity approaches adult levels. 

A number of conclusions can be drawn from these studies. On 

the basis of the experiments with 6 month olds, it seems that obser­

vation of spontaneous responses to sound, such as localization, is not 

as sensitive to the infant's absolute threshold as some conditioning 

techniques. Thresholds determined using the VRA paridigm, for example, 

are consistent with electrophysiological measures. Unfortunately, com­

parable conditioning techniques have not been developed for use with 

younger infants. However, given the difference between spontaneous 

and conditioned performance in 6 month olds, we might e~pect that such 

techniques would show newborn behavioral thresholds to be close to the 

electrophsiological response thresholds, only 10-20 dB higher than that 

of adults. 

Intensity Discrimination. The effect of increasing sound in­

tensity on newborn behavior has been examined primarily in very gen­

eral terms. Kessen et al. (1970) review the literature dealing with 

development in infancy and conclude, not too surprisingly, that more 
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intense stimuli produce an increase in motor, cardiac and respira­

tory response among infants. Some more specific information is 

available, however. Stratton and Connolly (1770a), for example, re­

port that louder stimuli evoked larger initial cardiac acceleration 

and more rapid habituation to repeated presentations in newborns. In 

addition, Turkewitz, Birch, Moreau, Levy and Cornwall (1966) found 

that 2 day old infants tended to turn their eyes away from an intense 

stimulus, but toward a less intense one. This response was found to 

depend on the infant's state of arousal, with high intensity stimuli 

presented just prior to feeding eliciting the greatest number of 

"avoidance" responses. Interestingly, Turkewitz et al. report that 

this pattern of results held only for stimuli presented to the right 

ear. Infants tended to turn toward the more intense stimulus when it 

occurred at the left ear, indicating a possible difference in sensi­

tivity between the two ears. 

It would appear, then, that newborns do respond differentially 

to sounds of different intensities. Moffitt (1973) demonstrated a com­

parable effect in older infants, 20-24 weeks of age. Moffitt found 

that dishabituation of cardiac deceleration in response.to a 500Hz 

tone burst occurred when the stimulus intensity changed from 15 to 25 

dB above an ambient noise level of 60 dB SPL. 

It is not known just how small a change in intensity can be de­

tected by infants, though trained adult ovservers can easily discrimi­

nate changes as small as 1 dB. In addition, though Bartoshuk (1964) 

reported that the amplitude of cardiac response to sounds over 40 dB 

in intensity follows a power function similar to the loudness function 
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for adults (Stevens, 1961), recent attempts to replicate these findings 

have been unsuccessful (Morse, 1973). Thus it is not clear how the in­

fant's perception of loudness increases with stimulus intensity. It 

would be interesting to determine whether infants can use intensity in­

formation to guide their behavior. It might be possible, for example, 

to test intensity discrimination among older infants by using an adap­

tation of the VRA paradigm described earlier (Wilson et al, Note 2). 

In summary, it does appear that the infant modulates his re­

sponse according to sound intensity. It remains for future research, 

however, to establish the limit of intensity discrimination as well 

as the manner in which loudness grows with intensity in infancy. 

Frequency Discrimination. Green (1976) describes the fre­

quency analytic ability of the auditory system as its "single most 

salient characteristic" (p. 134). Von Bekesy's (1960) experiments 

demonstrated that the ear performs a spectrum analysis of sounds, and 

the limits of this analytic ability have been studied in classical 

psycho-physical (e.g., Wegel & Lane, 1924; Egan & Hake, 1950) and 

more recent temporal masking experiments (e.g., Houtgast, 1972) as 

well as in frequency discrimination tasks (e.g., Shower & Biddulp, 

1931; Wier, Jesteadt & Green, 1977). 

Early attempts to demonstrate frequency discrimination in in­

fancy were not terribly successful. Leventhal and Lipsitt (1964), 

for example, examined motor and respiratory response to 200 and 1000 

Hz tones. After habituation to the 200 Hz tone, an increase in re­

sponse to the 1000 Hz tone was found not to be significant. More re­

cent attempts to demonstrate dishabituation to a change in frequency 
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have met with mixed success. Trehub (1973) employed what is known 

as the high amplitude sucking (HAS) paradigm, a technique frequently 

used to study speech discrimination in infancy. In this paradigm, 

infants are trained to produce high amplitude sucks on a blind nipple 

by reinforcing such sucks with the presentation of a sound. Over re­

peated presentations, the infant's sucking response habituates and 

discrimination is demonstrated by an increase in sucking rate, dis­

habituation, following a change in the sound. Trehub failed to dem­

onstrate dishabituation in infants 4-17 weeks old when square wave 

stimuli changed from 100 to 200 or from 1000 to 2000Hz in fundamental 

frequency. Wormith, Pankhurst and Moffit (1975), however, did find 

dishabituation to a 500 Hz sinusoid following habituation to a 200 Hz 

tone using the same paradigm. 

Other studies purported to show that infants are differentially 

responsive to certain frequencies. Eisenberg (1976), for example, 

reports that infants find signals over 4000 Hz in frequency "dis­

turbing." Hutt et al. (1968) examined EMG responses of newborns to 

low frequency (70-2000 Hz) swuare wave stimuli and find that higher 

amplitude responses occur in the 125-250 Hz range. As Bench (1973) 

points out, however, the stimuli in this study were inadequately 

specified and it is possible that infants were responding to large 

high frequency components of the "low" frequency signals. 

A recent study (Kessen, Levine & Wendrich, 1979) seems to in­

dicate that 3 and 6 month old infants can not only discriminate 

among different frequency stimuli but can also reproduce them vo­

cally. Infants in this study heard three tones, D, F and A above 
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middle C, which were sung by their mothers or produced by pitch 

pipe. All babies responded by vocalizing on the presented pitch 

significantly often. 

The latter study, along with Wormith et al. 's paper de-

scribed earlier, indicate that at least by three months of age, 

infants are capable of frequency discrimination. However, the 

situation here parallels that in the area of intensity discrimi-

nation: while it is possible to conclude that infants can respond 

on the basis of frequency, the limits of this ability have not been 

established. Moreover, just as it is not known how loudness grows 

with intensity in infants, it is not known how the infant's per-

ception of pitch is related to stimulus parameters. 

To conclude this discussion of infant psychoacoustics, we can 

summarize 
~-

briefly.,! Infant absolute threshold for sounds appears to 
I 
'-

approach adult levels by about 6 months of age. Furthermore, in-

fants appear to be sensitive to changes in sound frequency and in­
~ 

tensity. !Detailed information regarding the infant's discriminative 
,,J 

capacities, however, is sorely lacking. 

This gap in our knowledge has a particular impact on the study 

of infant speech perception. Much evidence is available to support 

the contention that infants discriminate the basic sounds of speech 

in a manner which parallels adult perception. Speech sounds, how-

ever, differ along many dimensions, including frequency, intensity, 

duration and rate of change over time. The infant might use any of 

these as a basis for discrimination. Unfortunately, we have no way 

of knowing which of these the infant might actually use, since we 



know so little about the infant's ability to analyze sounds along 

any dimension. The possibility that the infant might distinguish 

between speech sounds on the basis of some relatively simple cue 

should be considered as we examine the date on infant speech dis­

crimination. 

Infant Speech Perception 

A variety of studies have shown that infants are particu­

larly responsive to speech (e.g., Friedlander, 1970; Hutt et al., 

1968). Moreover, it has been demonstrated that an infant as young 

as three weeks of age distinguishes his mother's voice from a dis­

torted version or from that of a stranger (Mills & Me1huish, 1974; 

Turnure, 1971; Jones-Molfese, 1977). 
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Two studies in particular have provoked_a great deal of con­

troversy about the infant's perception of speech. The first (Moffit, 

1971) showed that 5-6 month old infants could discriminate the syl­

lable [ba] from the syllable [pa], as indicated by dishabituation of 

cardiac response. Eimas, Siqueland, Jusczyk & Vigorito (1971) ex­

tended this finding with 1- to 4-month old subjects. Other studies 

(e.g., Mattingly, Lieberman, Syrdal & Halwes, 1971) had presented t~ 

adults synthetic speech syllables which differed in voice onset time 

(VOT), the time between the onset of voicing and the release of the 

initial consonant. They found that adults label all stimuli with 

VOTs below +25 msec as [ba] and all those with VOTs greater than +25 

msec as the syllable [pa]. In addition, they demonstrated that adults 

cannot discriminate between syllables which fall within phonemic cate-



gories. This phenomenon, called categorical perception, has been 

found to characterize the adult's perception of consonant sounds. 

Using the HAS paradigm described above, Eimas et al. demonstrated 

that recovery from habituation in infants was greater for a given 

acoustic difference when two syllables were from different adult 

phonemic categories than when they were from the same category. 

They concluded that infants as young as 1 month of age also exhibit 

categorical perception of speech sounds, and that infants possess, 

probably from birth, a mechanism which allows them to process such 

sounds in a linguistically relevant manner. This mechanism was hy­

pothesized to be based on neural feature detectors, units which re­

spond to the critical differences between syllables. Since the dif­

ferences between syllables were believed to be intimately related to 

articulation, moreover, the feature detectors were viewed as being 

exclusively linguistic in nature. 
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Subsequent research demonstrated categorical perception by in­

fants of syllables varying along other dimensions (e.g., Eimas, 1974, 

1975; Juszcyk & Thompson, Note 3). In addition, Trehub (1976) re­

ported that infants exposed only to English could discriminate speech 

contrasts which occur in Czech, but which don't occur in English. 

Trehub and Rabinovitch (1972) found that discrimination of VOT oc­

curred whether the syllables used were synthetically or naturally pro­

duced. Finally, it was shown that infants discriminate vowel sounds 

in a continuous, as opposed to categorical manner (Trehub, 1973; 

Swoboda, Morse & Leavitt, 1976), just as adults do (Mattingly et al., 

1971). 



All of these habituatin-HAS studies demonstrate that infants 

discriminate between members of different adult phonemic categories. 

However, arguing that the infant "labels" all within-category con­

trasts as equivalent amounts to arguing for the null hypothesis. 

Thus, in order to demonstrate categorical perception by infants, it 
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is also necessary to show that they categorize syllables in the same 

way as adults do. Evidence for the infant's ability to categorize 

speech sounds by initial consonant has been obtained in another para­

digm, sometimes called the visually reinforced infant speech discrim­

ination (VRISD) paradigm. This technique involves some modifications 

of the VRA method described earlier. Recall that in VRA, a sound 

serves as a discriminative cue, indicating that reinforcement is avail­

able contingent upon the infant's turning his head toward the rein­

forcer. In VRISD, the cue for response is a change in a syllable 

which is presented repeatedly from the loudspeaker. Thus the infant 

can receive reinforcement whenever the syllable changes, even if the 

changed stimulus is within the same phonemic category. Using this 

paradigm, Eilers, Wilson and Moore (1977b) found that 6-8 month old 

infants place their phonemic boundary between +40 and +10 msec--in the 

same area as adults do. Thus it would appear that infants categorize 

phonemes in the same way as adults do. Researchers using the VRISD 

paradigm have also been able to train 6-8 month olds to ignore irrel­

evant variation in syllables such as speaker and pitch contour, while 

responding to phonemic contrasts (Kuhl and Miller, Note 4; Kuhn, Notes 

5, 6, 7). 

However, some of the data from VRISD studies argues against the 
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notion that all phonemic boundaries are innately determined. Eilers, 

Wilson and Moore (1977a), for example, found that 6 month olds did 

not discriminate certain fricative contrasts, such as [fa] vs. [tha]. 

Holmberg, Morgan and Kuhl (Note 8) found that the [fa]-[tha] contrast 

could be learned by 6 month olds, but that many more training trials 

were required to reach criterion for that contrast in comparison to 

a [sa]-[sha] contrast. At any rate, it is clear that phonemic dis­

crimination in infancy is not as automatic as initial findings indi­

cated. 

Other recent studies have forced a reappraisal of the view 

that linguistic feature detectors underlie phoneme perception in hu­

mans. First, categorical perception of several nonspeech sounds has 

been demonstrated in human adults (e.g., Cutting & Rosner, 1974; 

Pisoni, 1977) and in human infants (Jusczyk, Rosner, Cutting, Foard 

& Smith, 1977). Even more damaging to the linguistic feature detec­

tor hypothesis, however, were demonstrations of categorical phonemic 

discrimination in chinchillas (Kuhl & Miller, 1978) and in Rhesus 

monkeys (Morse, 1976). The location of "phonemic" boundaries in 

these species, moreover, are quite close to those observed in humans. 

Thus a more tenable hypothesis regarding categorical perception of 

speech sounds is that human language has evolved to take advantage of 

certain areas of heightened sensitivity characteristic of the mamal­

ian auditory system (Kuhl, Note 9). In view of this hypothesis, it 

becomes important to describe the characteristics of the developing 

auditory system. In doing so, we may not only explain how infants 

process the sounds of speech, but may also shed light on adult speech 



perception by showing how the perception of speech sounds matures 

concurrently with other psychoacoustic processes. 
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RATIONALE OF THE PRESENT STUDY 

The evidence against the linguistic nature of speech has led to 

renewed interest in describing the infant's psychoacoustic behavior. 

However, as has been made apparent here, almost no basic information is 

available on which to build. This study is intended as a first step in 

laying that foundation. 

It was decided to try to establish the limits of frequency dis-

crimination in infants 5-8 months old. Frequency discrimination was 

chosen for a number of reasons. First, it seemed likely that infants 

could be using frequency differences in discriminating certain speech 

sounds (e.g., vowels). Second, given the emphasis that has been placed 

on the frequency analytic characteristics of the auditory system, in-

formation regarding the development of such characteristics might have 

theoretical import for theories of hearing generally. Finally, the 

VRA/VRISD methodology, which is becoming widely used and has proven 

sensitive to infant capabilities, seemed particularly suitable for 

testing discrimination. Using the VRA/VRISD in combination with an 

adaptation of the one-up, two-down psychophysical staircase technique, . 
Aslin and his colleagues have been able to determine VOT difference 

thresholds for infants in this age range (e.g., Aslin, Perey, Hennesy 

& Pisani, Note 10). Tone bursts could readily be substituted for syl-

lables within that paradigm. Given the growing use of the paradigm, 

furthermore, it seemed important to characterize it in terms of its 

ability to allow subjects to demonstrate their sensitivity to changes 
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in a basic parameter of sound. 

The purpose of this study, then, was to determine frequency 

difference thresholds, or difference limens (DLs) for infants 5-8 

months of age. Prior to 5 months, infants are difficult to train; 

after about 8 months, they seem to lose interest quickly (Pisani, 

Note 11). An adaptation of the VRA/VRISD paradigm was used to ob­

tain thresholds. It was anticipated that this method would prove 

infants to be far better frequency analyzers than had previously 

been shown, especially since infants had discriminated speech syl­

lables in· VRISD which differ by fewer than 300 Hz in frequency. 

Information about frequency discrimination should add to our un­

derstanding of infant speech perception and of the development 

of the auditory system generally in infancy. 
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METHOD 

Subjects 

All 27 infants tested were Caucasian, from middle class homes 

and ranged in age from 4 mo 10 da to 8 mo 1 da (X= 6 mo 10 da). The 

names of potential subjects were obtained through the records of a 

Chicago hospital. Subjects were recruited by letter and telephone and 

were paid $5 for each session. Twenty-five percent of the parents con-

tacted agreed to participate. Of these, data were obtained from 14 

infants. The remaining subjects were not included either because they 

became fussy during training and testing (10 subjects) or because they 

did not learn the task (3 subjects). No differences in age, birth 

weight, current weight, health or performance on a screening test were 

found between the final subject population and subjects who did not 

complete the experiment (Appendix A). 

Five adult subjects, unpaid volunteer graduate and undergraduate 

students served as a comparison group. One of these subjects had par-

ticipated in other auditory experiments. 

Stimuli 

Sinusoids of 1000, 2000 and 3000 Hz in frequency served as stan-

dard stimuli. Tone bursts 500 msec in duration were presented monaur-
. . 

ally to the right ear. The stimuli had a 50% duty cycle and bursts had 

a 20 msec rise-fall time. Stimulus level was 70 dB over thresholds of 
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three adult subjects tested in the same laboratory. The maximum 

frequency difference generated was 96 Hz. 

Apparatus 

Waveforms were generated by a Wavetek (Model no. 136) voltage­

controlled oscillator and lead through a rise-fall gate (Coulborn In­

struments, S84-04) to an attenuator (Hewlett Packard, 350D), then 

through a matching transformer to a TDH-39 earphone. Stimulus fre­

quency was monitored at the output of the oscillator on a Hewlett 

Packard (5381A) frequency counter. Two earphones were coupled to the 

ears by rubber pads and held in place by two elastic head bands. 

The visual reinforcers used were a mechanical toy bear (Mambo 

the Bear Drummer, Son Ai Toys) and a mechanical toy dog (Plushy, 

Spaniel Series, Iwaya Toys). One of the two toys was chosen at ran­

corn for each session, although the other toy was often substituted 

when the subject seemed to be losing interest. The reinforcer was 

enclosed in a smoked plexiglas box (Gray 2730), 3/16'' in thickness 

and 12" on each side. A 40 W incandescent bulb was also located in 

the plexiglas box and was switched on with the toy to make it vis­

ible during the reinforcement period. The reinforcer was mounted on 

a small stand at the infant's eye level and placed 45c from midline 

4 ft from the infant. 

Procedure 

Frequency changes were presented in a series of trials. The 

structure of a trial is illustrated in Figure 1. The infant hears 

the standard frequency tone bursts continuously. At trial onset, the 
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frequency of the tone changes to the comparison level for 6 sec. If 

the infant turns toward the reinforcer (45° head turn) during the 

first 4 sec of this interval, he receives reinforcement for 2 sec. 

On blank trials, which occur interspersed with target trials during 

one stage of the experiment, no frequency change occurs and an in­

fant is not reinforced. 
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The layout of the laboratory is illustrated in Figure 2. The 

infant sat in his parent's lap at one end of a rectangular table, 
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facing a one-way glass. One experimenter (T) sat to the infant's left 

and moved toys in from of the infant attempting to keep the infant's 

attention toward midline. The visual reinforcer stood to the infant's 

right. The infant's head turn was observed through the one-way glass 

by two observers (01 and Q2) in the next room. 01 started a trial when 

she judged the infant to be in a "ready" state, attending to the toys 

and not fussing or crying. 01 also controlled the frequency and inten­

sity of the comparison stimulus and recorded the infant's performance. 

01 only recorded responses during a trial. 02 could record a head turn 

at any time; responses noted by Q2 between trials were automatically re­

corded as false alarms. The two observers were separated by a barrier 

so that 02 had no knowledge of when a trial was beginning. One experi­

menter was Ql throughout the experiment (the author); six different as­

sistants acted as 02. Percent agreements on responses ranged from 91% 

to 100%. 

On arrival at the laboratory, infants were made comfortable while 

the experimenter obtained information from the parent on the infant's 

age, mood, health, birth weight and current weight. A hearing screening 

test was then administered which consisted of ringing a bell on either 

side of the infant's head while he was seated in his mother's lap. Care 

was taken to keep the bell out of the infant's visual periphery. An 

observer scored the infant's response on the other side of the one-way 

glass. A 45° head turn toward the beli was scored as a positive re­

sponse. Two trials on each side were given with presentation order 

random. 



27 

p 

ce~ 

D 
T 

Table 

Reinforcer 

One-way Glass 

~ 
~~~~------~-----,~----~--~~~~ 

Control 
System 

1 o o 1 o 

Figure 2. Laboratory layout. (P = Parent, I Infant, T = Toy Waver, 
01 = Observer 1, 02 = Observer 2) 



28 

Parent and infant were then settled in the subject room and the 

earphones fitted to the infant's head. The infant remained in his 

parent's lap throughout the training and testing. Although neither 

the parent nor the experimenter who remained with the parent and the 

child could hear the stimulus, the parent was asked to refrain from 

trying to influence the child's behavior with respect to the rein­

forcer. 

The experiment consisted of two training phases and one testing 

phase (Table 1). During Stage 1, a frequency change of 96Hz occurred 

on all trials, and the reinforcer was presented following each frequency 

change whether the infant turned toward the reinforcer or not. On ini­

tial trials, the comparison stimulus was also 2 dB more intense than 

the standard. Once the infant had anticipated the reinforcer by making 

a 45° head turn toward it during the 4 sec response interval immedi­

ately preceeding reinforcer onset on three consecutive trials, this 

intensity difference was eliminated. Stage 1 continued until the in­

fant had anticipated reinforcer onset following the frequency change 

on another three consecutive trials. 

During Stage 2, reinforcer onset was made ontingent upon the in­

fant's turning during the response interval following a frequency 

change of 96 Hz. The infant was required to make 4 correct responses 

on 5 consecutive trials. In addition, during this stage, blank trials 

were interspersed with target or frequency change trials and the in­

fant was required to refrain from turning on 4 or 5 consecutive blank 

trials in order to continue with testing. Target and blank trials oc­

curred in random order; the observers were not aware of the type of 



trial occurring at any given time. However, after each trial, Ql 

could check the infant's progress on a series of counters which 

automatically recorded the number of trials of each type and the 

number of correct responses on each type of trial. A trial coun­

ter was reset to zero after two consecutive incorrect responses on 

trials of that type. 
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The third stage of the experiment was the actual testing phase, 

during which thresholds were determined in an adaptation of the one-

up, two-down staircase technique. During Stage 3, the comparison fre­

quency was presented on all trials and reinforcer onset was contingent 

upon the infant's head turn. The initial frequency difference (AF) was 

96 Hz. Following two consecutive correct responses at one comparison 

frequency. ~F on the next trial was decreased by one step. Initial 

step size was 48 Hz and was halved for each succeeding 6 F reduction 

until a step size of 3 Hz was attained. The step size was then main­

tianed at that 3 Hz level. If the infant missed one trial, then J1F 

was increased by one step. Following two misses, a probe trial (~F 

= 96 Hz) was inserted. If the infant turned on the probe trial, ~F 

returned to the last level tested. If the infant missed the probe 

trial, testing was contined at 96 Hz until the infant again responded 

or until it was judged that the infant's state precluded further testing. 

Testing was continued until five reversals had been obtained or until 

the infant had ceased to respond. A typical response protocol is shown 

in Figure 3. Thresholds were calculated as the average of all rever­

sals except the first two. 

Two sessions (range 1-5 sessions) were typically required to ob­

tain three thresholds from an infant. Each session lasted about 20 

min and a single threshold determination required 30-60 trials. Fre­

quencies were tested in the order 1000, 2000, 3000 Hz, since pilot 

work indicated that the subjects rarely provided stable thresholds 

when tested in the order 1000, 2000, 3000 Hz, since pilot work indi­

cated that the subjects rarely provided stable thresholds when tested 



first on one of the higher frequencies. Subjects were retrained be­

fore testing at each frequency. The number of training trials re­

quired for each subject at each standard frequency are shown in Ap­

pendix B. 

Adult comparison. Five adult subjects provided thresholds un­

der essentially the same conditions as the infants. Adults sat in 
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the same testing room and used the same headphones. They turned to­

ward the reinforcer whenever they detected a change in frequency and 

the reinforcer was activated for 2 sec as feedback. Two observers re­

corded the adults's response, subject to the same rules as applied to 

the infants. The same training and testing procedure were also em­

ployed for the adults. Approcimately 10 min were required to obtain 

a stable threshold (30-40 trials). 



\ 

' ' 
f " 

l .. .!' 

·' 
.· ~. 

+ + 
96--

.t:..F 48 · 
(Hz) 

24· 

12· 
6· . 
O· 

+ + 

+ 

+ 

++ + ..J.. + 
,......_ ·•-.,+ +,+ + 

10 20 
Tria Is 

Figure 3. Typical infant response protocol. Standard frequency 3000 Hz. 

Threshold in this case was 58.2 Hz. 

+ + -

30 

w 
w 



RESULTS 

It was important to show, first of all, that subjects were 

actually responding to the sound stimulus. Spurious thresholds 

might be obtained if infant false alarm rates were quite high: if 

the infant were turning toward the reinforcer repeatedly even when 

the frequency had not changed, it would be hard to conclude that he 

was actually responding to the frequency change when it did occur. 

We had attampted to control false alarm rates by employing a training 

procedure which included blank trials and requiring the infant to in-

hibit head turns on those trials before proceeding with testing. In 

addition, the presence of the experimenter playing with toys at the 

infant's midline was intended to control the number of false alarms. 

Because of the nature of the method employed to obtain thresholds, 

however, there is no way of estimating the number of opportunities for 

false alarms to occur during testing and traditional false alarm rates 

could not be computed. Simply presenting the numbers of hits and 

false alarms would be misleading since the time between trials when 

false alarms were counted was much greater than the duration of trials. 

Consequently, hit and false alarm "rates" were calculated as responses 

. f f . 1 per m1nute or purposes o compar1son. These rates for each subject 

1 Hit rate # responses on trials 

II trials x 4 sec 

False alarm rate = # responses between trials 
time in testing--# trials x 4 sec 
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at each standard frequency are listed in Table 2. Note that in 

each case, hits/min considerably exceeds false alarms/min. This 

finding argues against the hypothesis that thresholds are in fact 

spurious. In addition, with the exception of two infant subjects 

(DG & JC), false alarm "rates" are quite low, and no systematic 

differences as a function of age appear. Thus, we felt safe in 

concluding that our procedure had effectively controlled false 

alarms. 

Once assured that our data did in fact reflect responses to 

the frequency changes, difference thresholds for each subject at 

each standard frequency were calculated. At least one threshold was 

available on 14 infants, but thresholds for all three frequencies 

were obtained for only 7 of these. For two subjects, thresholds at 

1000 and 3000 Hz were obtained; the other five subjects provided 

data at 1000 Hz only. Thresholds for all subjects are shown in 

Figure 4. 
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As can be seen in Figure 4, infant thresholds at 1000 Hz ranged 

from 6 to 56 Hz, considerably better than had been found in earlier ex­

periments. Moreover, while infant thresholds were found to be some­

what higher than those of adults, it is not uncommon to find differ­

ences of as much as 100% in adult DLs obtained from different subjects 

or different laboratories (Green, 1976). The age difference in thresh­

old obtained, then, is within that range of variability. 

Average thresholds for infants and adults clarify another aspect 

of these findings: the expected increase in DL with frequency occurs 

in the same manner for infants and adults (Figure 5). Moreover, these 
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Table 2 

Hits and false alarms per minute 

1000 Hz 2000 Hz 3000 Hz 

Subject Hits/min FAs/min Hits/min FAs/min Hits/min FAs/min 

DG 4.5 3.6 8.5 1.9 6.4 2.6 
JC 5.7 2.2 6.7 1.2 5.2 2.2 
LL 1.8 1.6 5.6 0.6 4.8 0.6 
AO 6.4 1.4 6.2 0.8 7.0 0.6 
JZ 7.8 1.6 7.5 1.0 7.6 1.0 
MS 6.7 0.5 8.2 0.0 7.7 0.0 

Infants KM 10.0 0.0 8.8 0.2 7.0 0.0 
SH 6.9 0.8 8.1 0.7 

SeH 8.4 0.9 8.2 1.4 
MSa 8.6 0.6 

GH 8.3 0.4 
RH 7.2 1.0 
HS 7.2 0.6 
AC 7.4 0.6 

MP 8.5 0.0 7.4 0.2 7.4 0.0 
vs 8.3 0.4 7.5 0.0 8.0 0.5 

Adults RS 8.2 0.0 6.8 0.0 7.0 0.2 
RT 7.6 0.3 6.8 0.4 8.0 1.6 
cs 7.8 0.0 6.7 0.8 8.5 0.0 
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curves are parallel to those obtained in a recent study of adult 

frequency discrimination (Wier et al., 1977) (Table 3). There-

sults of this experiment, then, argue for at least a qualitative 

equivalence in the mechanisms controlling frequency discrimi-

nation in infants and adults. 

It should be mentioned that no predictors of DL were iden­

tified in this study. 2 The infant's age, birth weight, current 

weight, stability of growth, health status and performance on the 

screening test were all found to be unrelated to the size of his 
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difference threshold (Appendix B). Neither was the number of trials 

required for training related to the infant's performance during 

testing. The fact that the screening procedure did not predict sue-

cess in the task would suggest that the procedure is not very ef-

fective. It can be noted, however, that this is the type of initial 

hearing screening device typically used in the newborn nursery and 

pediatrician's office. Our findings may indicate that this procedure 

actually gives little information about the infant's hearing capacity. 

On the other hand, it is unlikely that a major hearing impairment in 

in a middle class child who visits a doctor monthly would have gone 

unnoticed for 6 months. Therefore, it was improbable that we would-re-

cruit severely hearing impaired subjects, and we have no way of know-

ing how such infants might behave in the procedure. 

2one significantcorrelation emerged in this analysis, that be­
tween age and DL at 200Hz (r- .62, p (.05). Recomputing the age­
threshold correlations at 1000 and 3000 Hz for the seven subjects who 
were included in the 2000 Hz analysis yielded a signifcant correlation 
at 1000Hz (r = .85 (.01) but not at 3000Hz (r = .31, p) .05). A 
plausible explanation for this positive relationship between age and DL 
is not immediately apparent. Since the relationship does not persist 
when all 14 subjects are considered, it is possible that the significant 
correlation is a chance occurrence. 
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Table 3 

Weber Fractions from this Experiment 

and from Wier et a1., 1977 

Frequency 
1000 2000 3000 4000 

Infants .025 .018 .018 

Adults .0074 .0084 .0106 

Wier et al. .0013 .0012 . 0028 



DISCUSSION 

Our findings demonstrate that infants are much better at de­

tecting changes in frequency than has previously been shown. Their 

DLs, while slightly exceeding those of adult subjects in this study, 

are within the range of variability typically observed in tests of 

frequency discrimination. Moreover, infant and adult DLs increase 

with frequency in the same way. It can be argued, therefore, that 

frequency analyzing mechanisms in the auditory system are well­

developed by the age of five months. 

An examination of the adult psychoacoustics literature re­

vealed that our subjects' thresholds were quite a bit higher than is 

typically observed. Our adult subjects were detecting approximately a 

1% change in frequency while trained observers in standard psycho­

physical paradigms had been shown to detect changes of as little as 

.1% at this sensation level (e.g., Wier et al., 1977). 

A number of factors might contribute to this difference. For 

example, our observers, with one exception, had not participated in 

other auditory experiments, and none of them were highly trained in 

frequency discrimination. More importantly, during testing, subjects 

in this experiment had no knowledge of when a frequency change might 

occur. Typical psychophysical experiments provide a signal to ob­

servers that a trial is about to begin. Our procedure, then, amounts 

to a vigilance task in which subjects must attend to each tone burst 

to decide whether or not a frequency change has occurred. Moray (1971) 
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examined performance in a vigilance task in which observers de­

tected frequency increments in a train of pulses 3000 Hz in fre­

quency. For purposes of comparison, psychometric functions (per­

cent correct as a function of frequency increment size) for his two 

observers are plotted in Figure 6 along with the adult psychometric 

function at 3000 Hz from this study, averaged over subjects. The 

performance of subjects in this experiment falls within the same 

range as that of Moray's subjects. 
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We were interested, however, in determining just how much of 

the difference between our results and those of Wier et al. (1977) 

was due to methodological differences. In order to estimate the 

size of that effect, it was decided to obtain DLs from our adult 

subjects under conditions comparable to shoe in Wier et al.'s study. 
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Figure 6. Average adult psychometric function (A) with functions 

for two subjects (G, N) in vigilance task, frequency = 

3000Hz (Moray, 1971). 



EXPERIMENT II 

Method 

Four of the five subjects who had participated in the first 

experiment returned to the laboratory for Experiment II. Subjects 

were tested in a sound-attenuated room, and stimuli were presented 

via headphones. The procedure employed was a one-up, two-down two 

alternative forced choice (2AFC) procedure. A warning light 500 msec 

in duration occurred at the start of each trial. Each observation 

interval lasted 500 msec with a 10 msec rise-fall time. The two ob­

servation intervals were separated by a 500 msec pause. The observer 

had 1~ sec after the second observation interval to choose the inter­

val which had contained the higher frequency signal. The correct re­

sponse was then displayed for 500 msec. Stimulus presentation, re­

sponse recording and feedback were all computer controlled. 

Thresholds were obtained for standard frequencies of 1000, 2000 

and 3000 Hz. Step sizes were 3 Hz at 1000 Hz, 5 Hz at 2000 Hz and 8 Hz 

at 3000 Hz. The stimulus level was 80 dB SPL. Each run continued until 

7 reversals were obtained, averaging 35-50 trials. Two runs were ob­

tained at each frequency. If the thresholds on these two runs dif­

fered by more than 1 step, a third run was obtained and the first dis­

carded. 

Results 

Threshold was determined from each run as the average of the 

last five reversals. For each subject, the average of the thresholds 
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from two runs at each frequency was used as the final estimate. 

These estimates are plotted in Figure 7, along with the average 

thresholds for these four subjects in the baby procedure and the 

average thresholds published by Wier et al. (1977). 

The most striking aspect of these data is the decrease in 

threshold in the 2AFC procedure as compared with the vigilance-type 

baby procedure. The difference is on the order of 5-15 Hz, in­

creasing with standard frequency. The theoretical limit of infant 

frequency discrimination, then, might be at least 10 Hz lower than 

the baby procedure estimates (Figure 8). It might be suggested, 

furthermore, that the effect of procedure would be greater for in­

fants than adults. 

45 

Note also that the thresholds of subjects in this experiment 

are quite close to the values obtained by Wier et al. In fact, the 

one subject in this study (RS) who had had previous experience as an 

observer in auditory experiments performs at a level approximately 

equal to that reported by Wier et al. Therefore, at least some of 

the difference remaining between our observer's performance and that 

of Wier et al. 's subjects may be accounted for by general training 

effects. 

Another aspect of these data which should be mentioned is the 

apparent frequency x procedure interaction: the effect of placing ad­

ditional attentional demands on the subjects is greater as frequency 

is increased. No explanation for this effect is immediately apparent. 
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Figure 7. Individual threshold curves for adult subjects in 2AFC 

paradigm. (Baby proc. curve = average thresholds for 

these 4 subjects in head turn procedure. Lower curve 

represents average thresholds for 4 subjects reported 

by Wier et al., 1977.) 
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GENERAL DISCUSSION 

Infants in the age range tested here discriminate frequency 

at near-adult levels. Moreover, the increase in infant thresholds 

with frequency parallels that obtained with adults. A number of 

findings support the hypothesis that age differences in threshold 

result more from differences in performance criteria than from dif­

ferences in the frequency selectivity or sensitivity of the audi­

tory system. First, if the age difference in DL stems solely from 

a diminished sensation level among infants, we would expect that age 

difference to be even smaller than it actually is, since infant ab­

solute thresholds are probably only 10 dB higher than those of adults 

(Wilson, Note 12). Wier et al. (1977) find a decrease in DL at 1000 

Hz from 1.9 to 1.3 Hz when SL is increased from 40 to 80 dB. Further­

more, it might be noted that no systematic differences between in­

fants and adults were found in the patterns of hits/min and false 

alarms/min. If these had been traditional hit and false alarm rates, 

this would argue against any differences in sensitivity. However, 

given the unorthodox nature of these response 11rates" and the differ­

ent methods used to control false alarm rates in the two age groups, 

any conclusions based on this finding must be tentative at best. It 

should be noted, though, that even if the age difference observed here 

reflects a relative lack of frequency selectivity in the infant audi­

tory system, a difference on the order of 10 Hz is really quite small, 

given the variability in adult performance typically observed. 
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Since the threshold curves for infants and adults are parallel 

and assuming that the observed age difference results from a perform­

ance deficit among the infants, we can make a number of statements 

about the development of the auditory system. First, insofar as the 

response characteristics of the inner ear, and the basilar membrane 

in particular, determine the frequency analyzing capacity of the 

aucitory system, we would predict that these structures attain mature 

status within the first half year of life. Furthermore, immaturity 

of middle ear structures (e.g., greater compliance of the tympanic 

membrane discussed earlier) does not seem to have much effect on selec­

tive frequency response in the frequency range tested in this study. 

Finally, the increased latency and diminished amplitude of response 

noted at higher levels in the auditory system in infants within the 

first year do not appear to have a correlate in behavioral frequency 

discrimination. One might conclude, then, either that frequency dis­

crimination is accomplished at a relatively low level in the auditory 

system or that it depends on neither the latency nor amplitude of the 

neural response. Given that the amplitude of the evoked response in­

creases with signal level and that frequency discrimination worsens as 

signal level is decreased, the former explanation seems more plausible. 

One implication of our finding of relatively fine frequency 

discrimination among infants is that information regarding frequency 

differences between speech sounds is available to infants in speech 

discrimination tasks. Frequency analysis could certainly account for 

the continuous (as opposed to categorical) discrimination of vowel 

sounds by infants reported by Trehub (1973) and by Swoboda et al. 
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(1976). The fundamental frequency of the voice has also been re­

ported as one of several cues which distinguish voiced from voice­

less stops (Agnello, 1975). While no single cue in a naturally oc­

curring phoneme may be adequate to distinguish it from all other pos­

sibilities, our research forces the conclusion that frequency is 

available as a cue to infant listeners. An interesting possibility 

is that in consonants which may be distinguished by the frequency 

region of certain components (e.g., voiceless plosives/p,t,k/) in­

fants might exhibit continuous discrimination, assuming they haven't 

yet learned the cut-off points of the frequency regions specifying 

different consonants for adults. Infant discrimination of such 

phonemes has not yet been examined. 

At any rate, the variation of the VRA/VRISD paradigm which 

was employed in this study shows great promise as a method for in­

vestigating infant psychoacoustics. Instrumentation is relatively 

simple, experimenters can be trained quickly and a significant pro­

portion of infants adapt readily to the procedure. Moreover, minor 

variations in the training procedure and in the type of stimulus used 

might prove effective in reducing the infant subject attrition rate. 

A further advantage of this technique is that older subjects can be 

run with essentially the same procedure, thus eliminating many pro­

cedural confounds in age comparisons. And most importantly, the head 

turn procedure has been shown to be far more sensitive than techniques 

such as the HAS paradigm in describing the infant's auditory capacity. 

It lends itself to the study of infant discrimination along a variety 

of dimensions including intensity, frequency, and frequency and ampli-



tude modulation rates. Further research might turn to an exami­

nation of these and other dimensions. 

In sum, this study represents an important first step in 

describing the development of one of the most salient character­

istics of the human auditory system. As such, it reflects on the 

structural and physiological maturity of the auditory system in 

infancy and reveals one cue which may underlie the discrimination 

of speech sounds in early life. Future research should examine 

higher neural processes and uncover additional cues for infant 

speech discrimination. 
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S~RY 

This study used an operant discrimination learning paradigm 

to determine frequency difference thresholds in 5- to 8-month old 

infants and in adults. Subjects were trained to turn their heads 

toward a mechanical toy and were reinforced for a head turn by the 

activation of the toy for 2 sec. Reinforcement was only available 

during the 4 sec period following a change in the frequency of a 

repeatedly presented tone burst. Thresholds were determined using 

a modified staircase technique in which the frequency difference was 

systematically decreased over trials until the subject no longer re­

sponded to the frequency change. The stimuli employed were sinusoids 

with standard frequencies of 1000, 2000, and 3000 Hz. The results of 

the experiment show infants to be much better frequency analyzers 

than had previously been demonstrated. Infants were able to discrim­

inate changes in frequency of about 2-3%; adults in this paradigm 

could detect about 1% changes. The difference between adults and in­

fants in thresholds is small in view of the variability typically ob­

served in adult frequency discrimination tasks, and is discussed in 

terms of possible infant performance deficits. Much of the increase 

in threshold in this study relative to other adult psychophysical 

studies is shown to result from procedural effects. The results of 

this experiment are found to be consistent with other studies of the 

infant auditory system and may clarify some issues with regard to the 

processing of speech sounds in infancy. 
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Mean 

Mean 

Mean 

Mean 

Mean 
in 

APPENDIX A 

Comparison of Infant Subjects Participating in 

the Experiment with Those not Completing the Procedure 

Age 

Sex 

Birth 
Weight 
%ile 

Change in 
%ile, 
current -
birth 

Performance 
Screening 

Colds? 

Subjects 
Completing 
Procedure 

6 mo 10 da 

7 M, 7 F 

7 lb 6 oz 
45 

-9.29 

.77 correct 

1 yes 
6 sniffles 
7 no 

61 

Subjects Not 
Completing 
Procedure 

6 mo 11 da 

7 M, 5 F 

7 lb 12 oz 
4.7 

-9.25 

.76 correct 

1 yes 
1 sniffles 

10 no 
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APPENDIX B 

Infant Subject Characteristics 

I. Infant characteristics 

Weight (lb-oz) Screening 
Age Birth Current Current - (#responses/#trials) 

Subject Sex (mo-da) weight %ile Birth %ile Birth %ile Cold? Left ____!!.ght 

DG M 7-16 7-12 75 19-06 50 -25 sniffles 2/2 2/3 
JC M 4-26 6-13 25 12-13 10 -15 sniffles 0/2 2/2 

0'\ LL F 8-1 8-0 75 21-07 90 +15 no 2/2 2/2 w 
KM F 6-6 8-12 90 17-15 75 -15 sniffles 1/2 2/2 
JZ M 4-21 7-8 50 16-00 50 0 sniffles 2/2 2/2 
MS M 5-18 7-15 75 15-06 75 0 no 2/3 1/3 
AO F 8-1 8-01 75 15-13 75 0 yes 3/3 2/3 
SH F 5-23 4-10 10 12-00 10 +10 no 0/2 1/2 
SeH M 5-23 4-10 25 12-15 25 +25 sniffles 2/2 2/2 
GH M 5-2- 7-11 25 14-15 25 -50 no 1/2 0/2 
MSa M 7-22 7-10 25 17-00 .25 -25 sniffles 1/2 0/2 
HS F 5-27 6-01 25 12-06 25 +15 no 1/2 2/2 
AC F 5-20 9-01 90 18-01 90 0 no 2/2 2/2 
RH F 6-3 8-05 50 14-08 50 -25 no 2/2 2/2 



# Training Trials fl Testing Trials 
Subject 1 kHz 2 kHz 3 kHz 1 kHz 2 kHz 3 kHz 

DG 22 16 14 26 25 48 
JC 17 14 15 17 26 25 
LL 15 14 14 16 16 21 
KM 18 14 15 18 15 28 
JZ 30 16 15 18 15 28 
MS 30 17 14 16 13 17 
AO 20 15 14 26 25 23 
SH 20 - 15 21 - 16 
SeH 20 - 15 11 - 21 
GH 20 - - 18 - -
MSa 25 - - 14 - -
HS 35 - - 19 - -
AC 27 - - 30 - -
RH 41 - - 26 - -

Freguency Difference Threshold (Hz) 
1 kHz 2 kHz 3 kHz 

X SD X SD X SD 

29.5 .41 37.5 3.24 53.0 8.15 
7.3 .43 27.5 57.0 3.24 

37.7 3.32 65.0 5.79 75.0 9.00 
18.5 1.41 30.0 3.13 58.2 1.47 

6.8 .75 30.8 1.22 51.6 8.19 
14.3 1.67 31.5 .75 40.1 4.16 
18.0 1.84 32.1 1.50 57.6 1.80 
17.0 2.83 - 1.53 43.3 3.34 
45.5 6.75 - - 58.0 5.82 
40.2 1.84 
33.8 .75 
57.0 2.12 
9.0 4.42 
7.0 1.87 

0\ .,.. 



II. Correlations between Subject Variables and Thresholds 

Correlation 
Variable 1 kHz 2 kHz 3 kHz 

Age .03 .62* .30 

Change in 
Weight %tile .11 .so .18 

Weight %tile .40 .54 .37 

II training 
trials .11 .21 .19 

N 14 7 9 

*P <.os 

65 



III. Adult Thresholds 

Freguency Difference Threshold (Hz) 
1 kHz 2 kHz 3 kHz 

Subject X SD X SD X SD 

RS 5.0 .71 17.5 2.23 21.5 2.55 

vs 5.0 .71 13.5 10.45 28.9 6.48 

MP 5.8 2.83 16.5 1.06 32.3 5.62 

RT 12.3 1.82 14.5 .71 30.9 .73 

cs 9.0 1.22 21.4 3.25 48.0 7.22 
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