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CHAPTER I 

INTRODUCTION 

Pain is a subject of extreme importance to all practitioners in 

the health-care field. Dentists have to deal with all of its aspects 

on a daily basis. In this respect dentists need to become "pain 

experts" in the sense that the more information they gain concerning 

this entity, the better service they can render their patients. 

The subject of pain can be approached in many different ways. 

The objective of this study is to extend basic knowledge in the area 

of the use of axonal transport for studies of neuronal connectivity. 

Since the pulp cavity is of particular interest to the dentist, 

it has been selected as the model system for this study. Because 

horseradish peroxidase can be taken up at the periphery of an axon 

and be transported in a retrograde manner to its nerve cell body, 

this protein tracer technique permits one to somatotopically locate 

the neuronal cell bodies within the trigeminal ganglion as they re

late to individual teeth in the rat. 

Two incubation techniques for horseradish peroxidase will be 

used and compared, i.e., the DAB technique of Graham and Karnovsky 

(1) and the Hanker and Yates (2) method. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Review of Trigeminal Ganglion Literature 

Study of the trigeminal ganglion has been of interest to anatomists 

in general and to neuroanatomists and dentists in particular. Somato

topic and functional representations of the trigeminal ganglion have been 

described for various species. 

In 1924 Allen (3) mapped out the somatotopic organization of the 

cat trigeminal ganglion by studying chromatolytic cell groups following 

transection of the various divisions of the trigeminal nerve. Kruger 

and Michel (4) studied the receptive fields of 788 neurons in the cat 

in order to reconstruct the relation of the spatial projection of the 

integument of the face onto different portions of the sensory trigeminal 

nuclear complex. Eisenman, Landgren, and Novin (5) reported on mechan

oreceptor modalities by recording responses to physiologic mechanical 

stimuli from the main sensory and spinal nuclei of the trigeminal in 

the brain stem of the cat. The response of trigeminal ganglion neurons 

to physiologic stimuli has been studied by a single unit recording 

method in the cat by Kerr and Lysak (6). Darian-Smith, Mutton, and 

Proctor (7) evaluated the functional organization of tactile cutaneous 

afferents within the semilunar ganglion and trigeminal spinal tract of 

the cat. Beaudreau and Jerge (8) reported on a physiological study on 

the question of the somatotopic organization of the cat trigeminal 
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ganglion in 1968. In 1975 Arvidsson (9) evaluated the location of cat 

trigeminal ganglion cells innervating the dental pulp of upper and 

lower canines as revealed by retrograde axonal transport of horseradish 

peroxidase. All of these studies indicate that the cell bodies of the 

mandibular nerve are located posterolaterally, those of the ophthalmic 

nerve anteromedially, and those of the maxillary nerve in an area be

tween these two locations. 

Strassburg (10) studied ~the morphologic reaction of the trigeminal 

ganglion of the rabbit following experimental surgery on the maxilla

dental region. He found that mandibular fractures should not normally 

result in permanent damage to the trigeminal ganglion cells. 

Carmel and Stein (11) evaluated cell changes in the trigeminal 

ganglion of the monkey following proximal and distal nerve section. Kerr 

and Lysak (6) studied the response of trigeminal ganglion neurons to 

physiological mechanical stimuli as revealed by a single-unit recording 

method in this same animal. They noted a mild degree of contralateral 

innervation at the midline with this technique. In 1977 Cox, Chiego, 

Avery, and Bradley (12) reported on horseradish peroxidase transport from 

primate dental pulps. Their results will be detailed at a later time. 

The trigeminal ganglion of the rat has also been rather extensively 

studied from various aspects. In 1963 Dixon (13) did an electron micro

scopic study of the features of normal neurons and their satellite cells 

in the trigeminal ganglion as part of a wider investigation into the 

nervous pathways associated with . nerve terminations and plexuses in the 
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oral mucosa. During the same year he published an article (14) des

cribing the principal features of the ultrastructure of the normal tri

geminal ganglion of the rat, with special reference to its content of 

myelinated and unmyelinated nerve fibers. In 1966, he studied nerve 

cell reactions to lesions of branches of the trigeminal nerve (15). 

Burnette and Dixon (16) investigated stereotaxically-induced lesions in 

the root of the trigeminal nerve of the albino rat. They attempted to 

devise a technique for the production of precise lesions in this area 

and to determine subsequent histological changes in the trigeminal 

ganglion. 

Zucker and Welker (17), 1969 used electrophysiological methods to 

localize the cell bodies of neurons associated with vibrissae in rats. 

They noted that the more dorsal vibrissae projected to medial ganglion 

areas while the ventral vibrissae projected to lateral areas. 

Tewari and Bourne (18) investigated the distribution of simple 

esterase, as well as specific and non-specific cholinesterase in the 

trigeminal ganglion cells of the rat. In 1969 Matsuura, Mori, and 

Kawakatsu (19) did a histochemical and electron-microscopic study in the 

same animal. They found three cell types, i.e., clear cells, dark cells, 

and transitional cells. The diameter of the cells varied from 30-60 ~. 

They feel that there is a transformation of the nerve cell types in 

various biological states from dark cell to clear cell. 

In 1972 Mazza and Dixon (20) published a detailed description of 

chromatolytic cell group locations in the trigeminal ganglion of young 

adult Wistar rats following surgical division of the inferior alveolar, 
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mental, infraorbital, external nasal, and superior labial nerves. The 

animals were sacrificed 10 days post-operatively, the heads fixed in 

Bouin's fluid, and histologic sections prepared. They then made tracings 

of the trigeminal ganglia from photomicrographic enlargements of alter

nate sections in each slide series selected ·for study and plotted the 

location of the chromatolytic cells. It was noted that the external 

nasal and superior labial cells were located respectively at the medial 

and lateral sides of the ophthalmic~axillary part of the ganglion with 

some overlap ventrally. Inferior alveolar nerve cell bodies were close

ly arranged in a posterolateral protuberance at the side of the ganglion, 

with the mental nerve cells concentrated in the dorsal part of this group. 

It should be noted that the trigeminal ganglion of the rodent is 

different from other species in that the ophthalmic and maxillary nerve 

cells and fibers are combined to form a single division rather than two 

separate divisions. 

Furstman, Saporta, and Kruger (21) used the technique of retrograde 

axonal transport of horseradish peroxidase to study the trigeminal gan

glion in rats. They injected horseradish peroxidase into the pulp cavity 

of one or more teeth in 12 rats on one side of the mouth in various com

binations ranging from a single tooth to all the upper and lower teeth 

that could successfully be opened with a fine dental drill. A 5 ~1 vol

ume of 0.9N NaCl containing 1 mg Sigma type VI horseradish peroxidase 

was injected into each tooth and the rats were sacrificed after 1 or 2 

days by cardiac perfusion with a solution of 1% glutaraldehyde-!% para

formaldehyde buffered with sodium cacodylate (pH 7.5). Both trigeminal 
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ganglia were dissected free and immersed in the same perfusate for 24 

hours. The tissue was then immersed for an equal period of time in 5% 

sucrose buffered with O.lM sodium cacodylate (pH7.5). Serial frozen 

sections were cut at 60 ~ m and incubated in 3, 3'-diaminobenzidine 

tetrahydrochloride and H2o2 for HRP. The contralateral ganglia served 

as a control. 

Two experimental and two control ganglia were processed as whole 

tissue blocks to reveal the presence of HRP. The tissue was treated in 

the same manner as the frozen section material with the exception that 

it was incubated en bloc for 3 hours at room temperature. The tissue 

was then washed through 3 changes of distilled water, dehydrated, and 

embedded in paraffin for serial sectioning, and Nissl stained. 

The peroxidase reaction product was present in a limited number 

of ganglion cells in the ipsilateral trigeminal ganglion. No labeled 

(HRP-containing) cells were found in the contralateral trigeminal gan

glion. The distribution of labeled neurons for a single incisor injec

tion was limited to a compact zone containing a maximum of five labeled 

neurons on the periphery of the ganglion. Neurons labeled by multiple 

tooth injections, however, were not distributed in separate discrete 

zones and determination of topographical relationships were difficult to 

reconstruct. 

The HRP reaction product for the two incubation procedures was 

slightly different. Free-floating frozen section incubation revealed 

large dark granules of HRP. Incubation en bloc produced a fine granular 

reaction product which made recognition of HRP- containing cells more 
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difficult than recognition of the large granule reaction product present 

in cells following incubation of sections. However, the reaction prod

uct in both procedures is essentially similar and ganglion cells contain

ing HRP are easily recognized, This study demonstrated the feasibility 

of tracing first order afferents via the retrograde axonal transport of 

horseradish peroxidase. 

Aldskogius and Arvidsson (22) published an article in 1978 in 

which they studied the trigeminal ganglia of normal rats which had been 

subjected to unilateral transection of the infraorbital nerve. Both 

light and electron microscopy were used in this study. Counts of gan

glion cells in ganglia on the operated and unoperated sides were made 

following long postoperative survival times. The ultrastructural 

changes in ganglia of the operated sides were studied from 3 to 70 days 

postoperatively. Their quantitative observations revealed that a con

siderable loss of ganglion cells takes place on the operated side. They 

noted no signs of ganglion cell degeneration or death in normal tri

geminal ganglia or trigeminal ganglia from the unoperated side. 

Development of Neuroanatomical Research Techniques 

Studies of neuronal architecture and connectivity have had a 

varied history. Camillo Golgi introduced the metallic impregnation 

technique in the late 19th century (23). In the early 1950's Nauta 

and Gygax (24) introduced the method for the selective impregnation 

of degenerating fibers, now commonly referred to as the "Nauta method". 

Fink and Heimer (25), 1967 demonstrated variants of this technique to 
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neuroanatomy. 

As research in these areas increased, new methods were developed. 

One important technique, which allowed for the direct visualization of 

physiologically identified neurons, was the method of intracellular 

staining with certain fluorescent dyes, such as Procion yellow. 

In 1850 Waller (26) discovered that if an axon is interrupted, 

the portion distal to the lesion degenerates. Inherent in this study 

is the concept that the soma of a neuron constitutes the "trophic 

center" for the maintenance of its various processes. In 1948 Weiss 

and Hiscoe (27) showed that if a peripheral nerve was constricted at 

some point along its length, there was a progressive distention of 

the nerve proximal to the constricted region and a marked narrowing 

just distal to it. When the constriction was subsequently removed, 

a "bolus" of material, could be followed down the nerve at a rate of 

about 1-2 mm/day. Weiss introduced the term axonal flow to this 

phenomenon. Taylor and Weiss (28) 1965 completed one of the first 

definitive experiments using axonal transport for tracing connections 

in the nervous system by injecting a tritium-labeled amino acid ([ 3H] 

leucine) into the vitreous body of mice and subsequently following 

the movement of the labeled proteins autoradiographically. 

Work was done indicating that injection of 3H-labeled amino 

acids into a discrete population of neurons, such as a dorsal root 

ganglion, could result in the selective transport of labeled protein 

into the central nervous system along the processes of the cells, and 

that this could be followed as clearly, and with the same degree of 
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precision, as the degeneration that follows the interruption of a 

dorsal root. Advantages of the autoradiographic method over degenera

tion techniques include; (1) since it does not involve the placement 

of destructive (and generally unselective) lesions, it can be used in 

conjunction with physiological studies that require the preservation 

of the tissue; (2) as the label is preferentially incorporated by the 

neuronal somata, the involvement of fibers passing through the area 

under study should not present a complicating factor; (3) the dis

crete quality of silver grains enables precise estimates to be made 

of the grain densities in different regions of the autoradiographs, 

and to this degree the presence or absence of a projection can be ob

jectively assessed. Important developments during the u::;e of this 

method included demonstration that radioactively labeled proteins 

transported down axons could be readily demonstrated in the electron 

microscope and the application of this method to the study of the 

more rapidly transported axoplasmic proteins. There are numerous dis

advantages to the autoradiographic technique. At the light microscop

ical level the method tells one little about the actual morphology of 

the fibers and terminals being studied, since all one actually observes 

is the d.istribution of silver grains in the emulsion over-lying the 

section due to the radioactivity in the most superficial 2-3~ m of the 

section. A second disadvantage is the fact that it is generally diffi

cult, if not impossible, to label an entire population of neurons in a 

large structure, or if the origin of a pathway is very spread out. It 

is also not very well suited for studying short axonal connections since 
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the isotope spreads by diffusion over a distance of 100 ~ m or more. 

Another problem inherent in the autoradiographic method is the diffi

culty of tracing lightly labelled-pathways over long distances. A 

further difficulty is that it is not known how heavily labelled a cell 

has to be before a significant amount of radioactivity can be detected 

in its axon and axon terminals. Lastly, there is an extremely long ex

posure time required for electron microscope autoradiography (3-6 

months), and this can be an extremely frustrating wait, especially if 

something goes wrong with the technique. 

Development of HRP Techniques Based on Axonal Transport 

A short time after Weiss and Hiscoe's (27) 1948. discovery that a 

large amount of material is continuously being produced in the perikarya 

of neurons for transport down their axons, the question was raised as 

to what happens to the transported materials. It seems plausible that 

some might be utilized and subsequently broken down either in the axon 

or in its terminals, and that some might be selectively transported 

from the terminals of the axons to the cells with which they are in 

contact. The third possibility suggested was that some fraction of 

the materials might be returned to the cell soma by a process of retro

grade axonal flow. At that time there was no direct evidence for this 

third possibility. Some indirect evidence put forth included the point 

that the spread of certain neurotopic viruses could more readily be ex

plained on the grounds that at some point they gained access to peri

pheral nerves and then moved to the neuronal perikarya where they grew 

and multiplied (Good Pasture, (29) 1925). 
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The first direct evidence for retrograde movement in axonal pro

cesses came from the observation of neurites in tissue culture. It was 

observed that mitochondria and various vesicular organelles appeared 

subject to rapid bidirectional movements, often with a net displacement 

towards the cell body (Hughes (31), 1953 Pomerat (30), 1967). In 1971 

Kristensson and Olson (32) reported the discovery that certain large 

macromolecules, such as Evans blue-labelled albumin were readily taken 

up by the terminals of an axon and were rapidly transported back to the 

neuronal soma where they appeared to accumulate. 

LaVail and LaVail (33) 1972 were among the first to take advan

tage of the retrograde axonal transport of an exogenous marker as a 

potential neuroanatomical method. Using the enzyme horseradish perox

idase (HRP), they were able to show that the enzyme was preferentially 

transported in the retrograde direction in the visual system of young 

chicks. This study was of particular interest since it indicated that 

this approach could be used to study the origin of neuronal pathways 

in the central nervous system. This initial report has been subsequently 

followed by two studies describing in more detail the electron micro

scopic appearance of the transported marker, and the optimal conditions 

for using it in neuroanatomical studies (LaVail et al., (34) 1973; 

LaVail and LaVail (35) 1974). 

Studies have also shown that HRP has great promise in the marking 

of peripheral axons. Kristensson and Olsson (36) in 1971 reported a 

study on the subcellular localization of horseradish peroxidase in hypo

glossal neurons following injection of HRP into the tongue muscles of 
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mice. They reported that the protein presumably entered the nerve 

trunks at the myoneural junctions, was taken up by the axons, and then 

in a retrograde fashion was transported to the perikaryon. They noted 

that the accumulation of exogenous peroxidase was most probably the 

result of pinocytotic uptake and retrograde axonal transport of protein. 

In 1975 Furstman et al., (21) reported that HRP could be demon

strated in the trigeminal ganglion of the rat after deposition in the 

dental pulp. This investigation appears to be the first in which the 

tracing method based upon uptake and retrograde transport of HRP has 

been applied to dental structures. They used a small number of ani

mals (12) and did not chart the location of the HRP-labelled nerve 

cells in the ganglion. They did note that the peroxidase reaction 

product was present in a limited number o£ ganglion cells in the ip

silateral trigeminal ganglion, but that no labelled cells were present 

in the contralateral trigeminal ganglion. 

In that same year Arvidsson (9) reported on an investigation con

cerning the location of cat trigeminal ganglion cells innervating den

tal pulps of upper and lower canines studied by retrograde transport 

of horseradish peroxidase. Nerve cell bodies innervating the lower 

canine were found exclusively in the posterolateral part of the gan

glion, while those innervating the upper canine were found exclusively 

in the middle part of the ganglion. He noted that all labelled neurons 

in this study were found ipsilateral to the HRP injections, but he did 

not rule out the possibility of contralateral innervation of the dental 

pulp since only one section out of three was examined on the non-operated 
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side. 

Anderson and Rosing (37) 1977 used horseradish peroxidase to de

termine the location of cat trigeminal ganglion cells innervating max

illary canine teeth. They routinely found HRP-labelled cells in both 

ipsilateral and contralateral ganglia. In an abstract by Cox et al., 

(12) in 1977, these researchers reported on an investigation of retro

grade axonal transport of HRP from primate dental pulps. Localization 

of HRP in this study was found by light and electron microscopy in both 

ipsilateral and contralateral trigeminal ganglia. They also noted that 

a group of four to ten cells in the ipsilateral pons were found to be 

HRP positive at the level of entry of the root of the trigeminal nerve. 

They feel that in primate dentitions there may be a sensory overlap via 

the mental, or other nerves. The pontine localization indicates primary 

afferent innervation from cell bodies that are located within the cen

tral nervous system, since no evidence of trans-synaptic migration of 

HRP is known. 

In a recent article by Fuller, Wilson, and Winfrey (38) 1979, they 

indicated that they were unable to show peripheral transmedian innerva

tion of feline mandibular canine teeth as determined by horseradish 

peroxidase. It can be noted from this article as well as the previous 

ones cited, that more research in the area of transmedian innervation 

of tooth pulps is necessary for a thorough understanding of the subject. 

Horseradish Peroxidase Histochemistry 

A major step is the use of HRP as a neuroanatomical tracer involves 
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the demonstration of the marker by histochemical means. Graham and 

Karnovsky (1) 1965 introduced 3,3'-Diaminobenzidine (DAB) as a histo

chemical substrate for peroxidase activity. It allows for localization 

of activity when observed by either light or electron microscopy . It 

is especially good for ultrastructural cytochemistry due to the great 

electron opacity of its reaction product. It should be noted that DAB, 

is a borderline carcinogen. Some of the benzidine derivatives which 

can be used as a substrate and which have been tested for carcinogenic 

potency include DAB, dimethoxybenzidine (o-dianisidine), and dimethyl

benzidine (o-tolidine). Of those three, DAB may be the least hazardous 

(Griswold, Casey, Weisburger and Weisburger (39) 1968; Hadidian, Fred

rickson, Weisburger, Weisburger, Glass and Mantel, (40) 1968). Despite 

the lack of proof that DAB is carcinogenic, discretion demands that it 

be treated as such (Federal Register (41), 1974). DAB is denatured by 

sodium hypochlorite which is a principal ingredient in laundry bleach. 

Before disposal, all DAB solutions should be denatured by adding 5.25% 

sodium hypochlorite. All utensils and areas exposed to DAB should be 

cleaned with the same solution. 

Recent studies (Hanker, Anderson, and Bloom (42), 1972; Hanker 

and Rabin (43), 1975) have suggested that oxidative coupling reactions 

of aromatic amines in the presence of phenols might provide a suitable 

substitute for DAB. These reactions yield deeply-colored synthetic 

melanin-like compounds which are osmiophilic and sufficiently unsol

uble to be suitable end products for histochemistry. To utilize such 
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a reaction for a substitute for DAB in the demonstration of exogenous 

HRP, the reaction must be sufficiently rapid to deposit the end product 

at the cell or tissue sites of the plant hydroperoxidase alone. This 

was realized by Ranker, Yates, Metz, and Rustioni (2} 1977 when they 

found that the peroxidation of P-phenylenediamine cPPD) was greatly 

accelerated by the presence of pyrocatechol (PC). The copolymer formed 

as a result of the oxidative coupling reaction was osmiophilic and bluer 

than oxidized DAB. It was insoluble and conformed well to biological 

ultrastructure. Incubation times for this medium are generally much 

shorter than those required for adequate staining with DAB. It was 

also noted that erythrocyte staining, which is intense with DAB medium 

due to hemoglobin, peroxidase, or catalase, was much less prominent 

with the PPD-PC medium. The reagent as described has so far been shown 

to be non-carcinogenic. 

Hardy and Heimer (44) 1977 introduced a procedure in which tetra

methyl benzidine (TMB) was used as a substrate for the detection of 

intra-axonal transport of HRP. TMB is supposedly safer in regards to 

carcinogenicity than the previously mentioned benzidine derivatives. 

The two main problems with this medium is that it is prone to crystal 

formation and it does not seem to give optimal histological definition. 

Use of this medium would require trial procedures in order to obtain 

maximum sensitivity without disturbing crystal formation. 

Various articles and authors have reported on some of the tech

nical considerations on the use of horseradish peroxidase as a neuronal 
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marker. Different types of commercially prepared HRP are available, 

with almost all authors using Sigma Type VI (Sigma Chemical Company, 

St. Louis, Mo.). The fixative is also of extreme importance. To min

imize the inactivation of HRP between the death of the animal and the 

incubation of sections, fixation should be done in glutaraldehyde 

alone, (Kim and Strick (45) 1976, Malmgren and Olsson (46) 1977), be

cause glutaraldehyde stabilizes HRP, whereas at room temperature formal

dehyde reduces HRP activity. 

Many histologists infiltrate the brain in a sucrose solution to 

reduce ice crystallization when the tissue is frozen for sectioning 

(Adams (47), 1977). This treatment should be as brief as possible to 

prevent inactivation of the enzyme. The procedure affords cryo-pro

tection and helps to remove residual fixative from the tissue, the need 

for which has been stressed by LaVail (48) 1975. 

Techniques for increased visualization of the reaction end-prod

ucts have been proposed by various authors. Adams (47) 1977 feels 

that localization of faint granules of reaction product in both stained 

and unstained sections is facilitated by the use of phase contrast mi

croscopy, which, at low magnification, shows the granules as intense 

black dots. Malmgren and Olsson (49) 1978 state that one can markedly 

increase the contrast in DAB containing procedures by using appropriate 

filters for light-field microscopy. They feel that inexpensive gelatin 

filters such as the Kodak Wratten No. 46 considerably improve the visi

bility of labelled neurons in a DAB procedure. V~sualization may also 
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be increased by lightly counterstaining the neurons themselves. Another 

method of changing the brown DAB reaction product to one that is dark 

blue or black is to process the tissue in cobalt chloride (CoC12) prior 

to incubation in DAB. The darker reaction product gives the added ad

vantage of extending the sensitivity of the HRP method and it obviates 

the need for dark-field illumination or phase microscopy. 

The rate at which the protein tracers are taken up and transported 

by axons to become histochemically visible in the nerve cell bodies 

appears to be relatively rapid. The rate of retrograde axonal move

ment of HRP in the chick visual system has been estimated to be at 

least 72 mm per day in retinal ganglion cells (LaVail and LaVail (33), 

1972) and at least 84 mm per day in isthmo-optic nucleus neurons 

(LaVail and LaVail (35), 1974). In the mammalian nervous system, Kris

tensson (23) 1975 has estimated a rate of approximately 48-72 mm/day. 

This is in good agreement with an estimated rate of 2.4 mm/hr for the 

neural spread of poliomyelits virus in monkey sciatic nerve (Bodian 

and Howe (50), 1941). Hansson (51) 1973 found a faster rate of about 

120 mm/day in retinal ganglion cells of rats and Edstrom and Hanson 

(52) 1973 found HRP transported at 60 mm/day by frog sciatic nerves 

maintained at l8°C in vitro. In his study on cats Arvidsson (9) 1975 

noted that the shortest postoperative survival time that gave labelling 

of cells in the trigeminal ganglion was 24 hours. With an approximate 

distance of 70 mm between a lower canine and the trigeminal ganglion 

this would indicate a rate of transport of at least 70 mm/day. In any 
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case, these approximate rates serve to indicate that, in general, sur

vival times of 1-3 days should be sufficient to mark cell bodies of 

origin of fibers in the central nervous system. 

Bunt et al., (53) 1974 and LaVail and LaVail (35) 1974 noted that 

post-injection times longer than 3-4 days may frustrate the interpre

tation of results of some experiments because disappearance of HRP 

from retinal ganglion cells appears to be fairly complete 3-4 days 

following tectal injection. Kristensson and Olsson (54) 1973 noticed 

the disappearance of HRP from hypoglossal neurons by 6 days following 

injection into the tongue of suckling mice. Therefore, the shortest 

survival time which gives maximum accumulation of tracer should be de

termined for each experimental system. 
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CHAPTER III 

MATERIALS AND METHODS 

Thirty Sprague-Dawley albino rats were used in this study. They 

were equally divided according to sex and each weighed between 220-250 

grams. Throughout the experiment they were housed two to a cage at 

the Loyola University College of Dentistry. The animals were under 

continuous supervision and maintained on a diet of standard laboratory 

meal and water ad libitum. 

SEDATION AND ANESTHESIA 

Each animal was anesthetized with an intraperitoneal injection 

of sodium pentobarbttal (Nembutal) 50 mg/ml. A dose of 4 mg per 100 

grams of body weight was adequate for light surgical anesthesia. 

Six animals, three male and three female, were utilized per ses

sion with a total of four sessions. A session is defined as all the 

procedures accomplished during a specific time frame. The experi

mental techniques performed each session were the same, the only ex

ception being that two of the sessions utilized the DAB processing 

technique as proposed by Graham and Karnovsky (1), while the other 

two sessions utilized the processing technique proposed by Hanker and 

Yates (2). Each session was accomplished in three successive days. 

On day one, three male and three female animals were selected. 
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They were coded according to the tooth being treated in the following 

manner. 

maxillary right central a single front foot red 
maxillary right 1st molar a single back foot red 
maxillary right 2nd molar both back feet red 

mandibular right central a single front foot black 
mandibular right lst molar a single back foot black 
mandibular right 2nd molar both back feet black 

Throughout the four sessions the animals were divided according 

to sex so that two males and two females were utilized per each tooth 

treated. The experimentally treated teeth were always on the right 

side. 

The animals were weighed and anesthetized according to the method 

noted previously. A fresh solution of horseradish peroxidase (HRP) 

(Sigma type VI, Sigma Chemical Co., St. Louis, Mo.) was prepared. Five 

mg of HRP was combined with 10 microliters of distilled water to make 

a 50% solution of HRP. 

The tooth to be treated was prepared as aseptically as possible 

with a 1/2 round bur mounted in a dental handpiece until the pulp 

chamber (figures 1 & 2) was reached. The maxillary and mandibular cen-

tral incisors were entered from the buccal aspect while the molars 

were all entered from the occlusal aspect. Entry into the pulp chamber 

was indicated by the presence of slight hemorrhage. A sterile paper 

point (Johnson and Johnson, East Windsor, New Jersey) w·as then inserted 

into the chamber to slightly reduce the blood volume to allow for the 



placement of the HRP solution. Following removal of the paper point 

1 ~1 (one microliter) of a 50% solution of HRP was carefully injected 

into the pulp chamber with a microsyringe (Hamilton, Reno, Nevada) 

(figures 3 & 4). The access opening was then sealed off by the use of 

a dental temporary cement (Cavit, Premier Dental) (figure 5). This 

sequence was repeated on each of the five remaining teeth in the group. 

Following the experimental procedure the animals were placed 

back in their cages to recuperate. They were only allowed water post

operatively so that they would not dislodge the temporary filling 

placed in their tooth. 

On the morning of the second day of each session a fresh fixa

tive solution of 1% glutaraldehyde in O.lM sodium cacodylate buffered 

to pH 7.4 was- prepared. The animals were sacrificed one at a time by 

an intraperitoneal overdose of sodium pentobarbital 24 hours following 

the placement of the HRP solution in the tooth. 

Following decerebration of the animal, the mandible was removed, 

the neurocranium opened, and the trigeminalganglia exposed. This pro

cedure took less than sixty-seconds. The specimens were then immersed 

in the buffered 1% glutaraldehyde solution for 1 1/2 - 2 hours at room 

temperature. 

Following the initial fixation the ipsilateral and contralateral 

trigeminal ganglia were dissected free using 3x binocular loops. During 

this procedure the specimens were kept continually wet with fixative 

solution. The trigeminal ganglion was located in a bony depression in 

the base of the skull, roofed by the dura mater. The cavernous sinus 
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and the basi-sphenoid bone lay on the medial aspect of the ganglion, 

while laterally a spur of the petrous temporal bone separated the gan

glion from the internal carotid artery and the mandibular division of 

the trigeminal nerve. 

Following isolation the trigeminal ganglia were immersed overnight 

at room temperature in buffered 1% glutaraldehyde. During the entire 

fixation and dissection procedures the specimens were handled with ex

treme care so as not to injure the delicate tissues. 

On the 3rd day all specimens, both ipsi and contralateral ganglia, 

were removed from fixative solution and mounted for the preparation of 

frozen sections. The proper orientation of the sections of the isolated 

ganglia was determined by reference to the anatomical relationships of 

the ganglia in the in situ preparations. The frozen specimens were sec

tioned at a thickness of 60 microns. 

The sections were collected in O.lM sodium cacodylate buffer, 7.4. 

The sections were collected in sequential order and were placed in num

bered compartments in a special holder which could then be transferred 

to the various solutions required by the incubation technique of choice. 

It is at this point that the sessions altered slightly. Two 

sessions used the incubation procedure proposed by Graham and Karnovsky 

(1) while the other two sessions used the procedure proposed by Hanker 

and Yates (2). Sessions 1 and 3 utilized the Hanker/Yates (2) tech

nique while sessions 2 and 4 utilized the method proposed by Graham and 

Karnovsky (1). 

The Hanker-Yates technique included the collection of frozen 
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sections in buffered sodium cacodylate; these sections were then in-

cubated in Hanker-Yates solution for 15 minutes. The Hanker/Yates sol-

ution was prepared by mixing Hanker/Yates reagent, 75 mg. (Polysciences, 

Inc. Warrington, Fa.) with 50 ml of 0.1 M tris- HCl at pH 7.4 and 0.5 

ml of 1% hydrogen peroxide, This was adjusted so that an adequate final 

volume was present for the tissue sections. 

The sections were then passed through two, five minute rinses in 

buffered 0.1 M sodium cacodylate. The sections were mounted on gelled 

slides and allowed to air dry. The sections were then dehydrated in the 

following manner. 

5 minutes 95% alcohol 
5 minutes 100% alcohol 
5 minutes 100% alcohol 
5 minutes Xylene 

15 minutes Xylene 

The sections were then coverslipped. Great care was exercised to 

orient the sections properly and also to keep them in sequential order. 

As noted previously, sessions 2 and 4 utilized the incubation pro-

cedure proposed by Graham and Karnovsky (1). The basic procedure was 

modified slightly by the addition of cobalt chloride for enhancement as 

noted by Adams (47) 1977. The sections were again collected in buffered 

0.1 M sodium cacodylate, pH 7.4. The sections were then transferred for 

five minutes to 0.1 M tris-HCl buffer at pH 7.5. From here the sections 

were soaked in 0. 5% cobalt chloride for five minutes. Following the 

cobalt chloride enhancement the sections were rinsed twice at five minute 

intervals in 0.1 M tris- HCl buffer at pH 7.5. 
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The sections were then incubated in a solution of 100 mg DAB (Poly

science, Inc., Warrington, Pa.), 200 ml of buffered 0.2 M sodium cacody

late, 2 ml of 3% H2o2 , and 4 ml of distilled water for 15 minutes. Be

cause of its possible carcinogenicity, the DAB solution was prepared and 

used under a hood. Following the incubation procedure, the sections were 

again rinsed for two five minute intervals in buffered 0.1 M sodium ca

codylate, pH 7.4. The sections were collected and mounted in sequence 

on gel slides, dehydrated to 100% as noted previously, xylened, and 

cover slipped. 

Two animals which did not receive HRP were also sacrificed. The 

ganglia were fixed in the same manner noted above. One set of ganglia 

was prepared by the Graham and Karnovsky (1) incubation technique with 

cobalt chloride enhancement. Frozen sections were then prepared and 

mounted. The second set of ganglia was embedded in paraffin, sectioned 

at seven microns, and stained with hematoxylin and eosin to observe 

normal histological architecture. 

Light microscopic sections were evaluated and the somatotopic or

ganization of the trigeminal ganglia observed and plotted. The sections 

were first observed under 40x power to locate areas of HRP reaction 

product. These areas were then observed under lOOx and 250x to be sure 

that HRP granules were actually present within neuronal cell bodies. 

To enhance the visualization of HRP granules a continuous running 

filter monochromator (Carl Zeiss) was utilized. The main feature of 

the continuous running filter monochromator is a special type of inter

ference filter. This filter is a longitudinally banded filter which 



transmits light in spectral selectivity from violet (approximately 400 

m~) to infrared (approximately 70 m~). 

In each session, six teeth on the right side were treated. Both 

ipsilateral and contralateral ganglia were observed for the presence of 

HRP granules. Composite pictures showing labeled neurons were assembled 

~or both experimental and control ganglia. These composite pictures not 

only showed the position of the neuronal cell bodies innervating the dif

ferent teeth, they also gave a quantitative evaluation as to the number 

of neuronal cell bodies tagged by a single intra-pulpal injection of HRP. 

During the study 3 animals died from what appeared to be respira

tory arrest. They all had seemed to tolerate the procedure well, but 

quit breathing approximately 15-20 minutes post-operatively. Each of 

the animals was on the lower limit of the weight range utilized during 

the experiment. Each of the animals was replaced by a new animal of the 

same sex and the experimental procedure repeated. The results of the 

study were not altered by this complication. 
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CHAPTER IV 

RESULTS 

The results of this study confirm those of Furstman (21), who 

revealed that in the rat there is an uptake and retrograde axonal trans

port of HRP to trigeminal sensory neurons after deposition of this pro

tein into the dental pulpal tissues. 

The normal gross architecture of the rodent trigeminal ganglion 

was first observed. The trigeminal ganglion in many other animals is 

composed of three separate divisions, ophthalmic, maxillary~ and man

dibular; the rodent ganglion is composed of only two divisions, a com

bined ophthalmic maxillary division and a mandibular division. The 

rodent ganglion is basically a flat structure. 

The normal histologic morphology of the rodent trigeminal ganglion 

was observed. For this the trigeminal ganglia which had been embedded 

in paraffin, sectioned at seven microns, and stained with hematoxylin 

and eosin were utilized. Normal trigeminal ganglionic neurons in the 

rat, when stained with H & E, typically present large~ centrally-placed 

nuclei and a coarsely granular cytoplasm (fig. 6). The neurons tended 

to be grouped in long linear arrays in the ophthalmic-maxillary division 

while the mandibular division neurons appeared to form contiguous groups. 

(fig. 7 & 8). 

Although each section of each ganglion, both ipsilateral and 
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contralateral, was examined separately, it was found that for final re

porting purposes it would be desirable to make composite drawings. A 

composite drawing was completed for each of the six teeth treated, i.e., 

maxillary central, maxillary first molar, maxillary second molar, man

dibular central, mandibular first molar, and mandibular second molar. 

The results from each of the four experimental sessions were combined. 

HRP-positive neurons looked like those in figures 9 & 10. 

MANDIBULAR CENTRAL INCISOR (fig 11) 

The HRP-positive neurons for the mandibular central incisor were 

located in a fairly linear arrangement beginning from the postero

lateral protuberance and heading to the bifurcation of the ophthalmic

maxillary and mandibular divisions. In the experimental ganglion four

teen HRP labelled cells were noted fairly well dispersed throughout the 

area described above. In the control ganglia four HRP labelled cells 

were observed closer to the postero-lateral protuberance. 

MANDIBULAR FIRST MOLAR (fig 12) 
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The HRP positive neurons for the mandibular first molar were found 

in three areas. They were noted in the postero-lateral protuberance area, 

in the bifurcation area of ophthalmic-maxillary and mandibular divisions, 

and antero-laterally in the mandibular division itself. There were six

teen HRP labelled cells in the experimental ganglia and eight HRP labelled 

cells in the control ganglia. The HRP labelled cells in the control gan

glia were again closer to the postero-lateral protuberance of the ganglia 



while the expertmental HRP labelled cells were fairly well dispersed 

in the area described. 

MANDIBULAR SECOND MOLAR (fig 13) 

The mandibular second molar HRP positive neurons were fairly 

e~ually distributed around the bifurcation area of the ophthalmic~ax

illary and mandibular divisions. There were sixteen HRP-positive cells 

in the experimental ganglia and five HRP-positive cells in the control 

ganglia. Almost all of the experimental HRP-positive cells were loca

ted right around the bifurcation area or antero-laterally in the ophthal

mic-maxillary division. The HRP-positive cells in the control ganglia 

were more widely dispersed. 

MANDIBULAR CENTRAL, FIRST MOLAR, SECOND MOLAR (fig 14) 

As the experimental procedure advanced from anterior (central) to 

posterior (second molar) in the mandibular teeth, the HRP labelled cells 

appeared to move antero~edially as a group. 

MAXILLARY CENTRAL INCISOR (fig 15) 
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The HRP-positive labelled cells for the maxillary central incisor 

were distributed in a fairly linear arrangement from anterior to posterior 

in the middle of the ophthalmic-maxillary division. A few cells were 

found at the lateral border of this division above the bifurcation area. 

Sixteen HRP labelled cells were observed in the experimental ganglia and 

fourteen cells in the control ganglia. The labelled cells from the con

trol ganglia were found in closer proximity to one another than those 

labelled cells from the experimental ganglia. 



MAXILLARY FIRST MOLAR (fig 16) 

The HRP labelled cells in the maxillary first molar were arranged 

in a more diagonal linear arrangement from the central anterior portion 

of the ophthalmic-maxillary division postero-laterally to below the bi

furcation area. There were sixteen HRP-positive cells in the experi

mental ganglia and seven such cells in the control ganglia. The labelled 

cells in the control ganglia were in a more linear arrangement than those 

found in the experimental ganglia. 

MAXILLARY SECOND MOLAR (fig 17) 

The maxillary second molar injection labelled the greatest number 

of cells seen in the experiment. The HRP labelled cells were found in 

a very diagonal linear arrangement from the central anterior portion of 

the ophthalmic-maxillary division postero-laterally to well-below the 

bifurcation area. Twenty-seven labelled cells were observed in the ex

perimental ganglia and six were noted in the control ganglia. 

MAXILLARY CENTRAL, FIRST MOLAR, SECOND MOLAR (fig 18) 
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For the most part, the labelled cells from all three of these teeth 

remained linearly arranged in the central portion of the ophthalmic-max

illary division of the trigeminal ganglion. Slight deviations were observed 

in the maxillary central incisor, where four labelled cells were noted in 

an area on the lateral side of the ophthalmic-maxillary division. In 

the maxillary first molar four labelled cells were seen surrounding the 

bifurcation area. 



COMPARISON OF HRP INCUBATION PROCEDURES 

The second portion of the study compared two HRP processing tech

niques, the Hanker-Yates (2) method and the Graham and Karnovsky (1) 

method with the addition of cobalt chloride for enhancement. 

Positive results were obtained irrespective of the incubation 

technique utilized. What was noted was that the technique proposed by 

Hanker and Yates (2) yielded a much fainter reaction product than that 

produced by the Graham and Karnovsky (1) method. The Hanker/Yates (2) 

technique was much less time consuming and required fewer transfers of 

the specimens. Probably the most important factor favorable to the 

Hanker/Yates (2) technique is that it utilizes a chromogen that is non

carcinogenic in nature. 

The major problem with the Graham and Karnovsky (1) method is 

that it does utilize a borderline carcinogen, namely 3,3'-di aminobenzi

dine or DAB. With this in mind, greater care must be exercised when 

utilizing this procedure. The DAB solution must be prepared and used 

under a hood and all equipment that it comes in contact with must be 

denatured by sodium hypochlorite. The incubation procedure also takes 

a longer time to accomplish with this technique. The major point in 

favor of this technique was the superior reaction product which resulted. 

A much darker reaction product resulted which greatly aided visualiz

tion within the cells. 

Following utilization of both incubation procedures in this study, 

it was observed that the superior reaction product resu l ting from the 

Graham and Karnovsky (1) incubation procedure is well worth the extra 
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time and care required in its use. 



CHAPTER V 

DISCUSSION 

The retrograde axonal transport of horseradish peroxidase has be

come an important neuroanatomical research tool. This study indicates 

that it is possible to somatotopically map out the organization of the 

trigeminal ganglion by that method. Further research is necessary, not 

only to confirm the results found here, but to expand current knowledge 

in the area. 

As noted previously there are relatively few articles pertaining 

to the somatotopic organization of the rat trigeminal ganglion, although 

extensive literature is available concerning this area in other animal 

species. Although Furstman (21) studied the trigeminal ganglion follow

ing deposition of horseradish peroxidase into dental pulps, he did not 

chart the location of the HRP-labelled nerve cells in the ganglion. 

His only notation as to somatotopic organization was that the area of 

distribution of labelled neurons for single incisor injections was lim

ited to a compact zone containing a maximum of five labelled neurons on 

the periphery of the ganglion. He did not report on the distribution 

of multiple tooth injections. He reported finding no HRP-labelled cells 

in the contralateral (control) trigeminal ganglion. 

Zucker and Welker (17) recorded the responses of ophthalmic

maxillary division neurons to stimulation of vibrissae in the rat. 
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Using single neuron recordings they found that the more dorsal vibrissae 

(those closer to the midline) projected to the medial ganglion area, and 

that the ventral vibrissae projected to the lateral area. 

The most extensive study of the rat trigeminal ganglion organiza

tion was undertaken by Mazza and Dixon (20). They made surgical divi

sions of the inferior alveolar, mental, infraorbital, external nasal, 

or superior labial nerves, and studied the resulting chromatolytic 

cell groups in the ganglion. 

The results of this study closely resemble those noted by Mazza 

and Dixon (20). In horizontal sections of the ganglion they noted "A 

dense mass of nerve cell bodies on the lateral aspect of the base of 

the mandibular division extended antero-medially and contrasted sharply 

with the more distally placed columns of cells associated with the 

ophthalmic-maxillary division." Hutchens, White, and Dix on 1966 (15) 

in a preliminary study of chromatolytic cell changes in the trigeminal 

ganglion following various types of nerve lesions found that cell bodies 

of the superior labial and external nasal neurons seemed to constitute 

parallel columns of cells in the ophthalmic-maxillary part of the gan

glion, while inferior alveolar and mental nerve cells appeared to form 

contiguous groups at the commencement of the mandibular div ision. In 

their present study Mazza and Dixon (20) found that external nasal and 

superior labial chromatolytic cells were located respectivel y at the 

medial and lateral sides of the ophthalmic-maxillary part of the gan

glion, with some overlap noted ventrally. The i.nf;er:i,or alveolar 
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chromatolytic nerve cell bodi,es were closely arranged in a postero

lateral protuberance at the side of the ganglion, with the mental 

nerve cells concentrated in the dorsal part of this grouv. 

Since this study evaluated the somatotopic organi,zation of the 

trigeminal ganglion by observing the neuronal cell bodies from six 

separate teeth, 3 maxillary and 3 mandibular, the results may be more 

specific than those obtained by chromatolytic studies. Thi,s technique, 

utilized on an animal model such as the monkey, may result in a more 

accurate representation of the somatotopic organization of the trigeminal 

ganglion in humans. 

A very interesting findi.ng in the study was the constant presence 

of HRP-positive neurons in the control, unoperated side~ ganglia. Con

tralateral presence of HRP was observed in each tooth treated and follow

ing either incubation technique. HRP-positive neurons were always pre

sent in the contralateral ganglia although usually in a greatly reduced 

number. This observation has received considerable attention in the 

li.terature and has led to quite a bit of controversy. 

In Furstman's (21) study of the retrograde axonal transport of 

HRP from rodent pulps, he noted that no HRP-labelled ce l ls were found 

in the contalateral trigeminal ganglion. In this article he does not 

state if he examined the contralateral ganglion as carefully as he did 

the experimental ganglion. He also utilized a less concentrated solu

tion of HRP for injecting than in our study. These may be important fac

tors to consider. Aldskogius and Arvidsson (22) did a study in which 

the trigeminal ganglia of normal rats and of adult rats subj ected to 
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unilateral transection of the infraorbital nerve were studied by light 

and electron microscopy. The unoperated side did not show any signs of 

nerve cell or nerve fiber degeneration. Fuller, Wilson, and Winfrey 

(38} injected HRP into the mandibular canine teeth of nine cats. There 

were no ~-positive cells in the contralateral ganglia. A possible 

problem in their study was that they left the HRP solution in the open 

cavity for 30-45 minutes before sealing the tooth. This could result 

in possible inactivation of the HRP, especially since they only used a 

15% solution to begin with. Matthews and Lisney (55) recorded compound 

action potentials from the pulps of canine teeth in cats during stimu

lation of the inferior dental nerve, trigeminal ganglion or brain stem 

on one side. Recordings were also made from the inferior dental nerve 

while stimulating the canine pulps. Evidence was lacking for pulpal fi

bers crossing the midline. 

There have been numerous articles in favor of transrnedian inner

vation. Using electrophysiological studies Kerr and Lysak (6), Darian

Smith et al., (7), and Anderson and Pearl (56) have all reported trans

median innervation in the trigeminal system of the cat. 

In Mazza and Dixon's (20) 1972 study of the chromatolytic cell 

groups in the trigeminal ganglion of the rat following unilateral nerve 

division of various branches, they indicated that some chromatolytic 

cells were found in the trigeminal ganglia on the unoperated side, but 

that this was probably a normal occurence and not related to the exper

imental procedure performed. They noted "Small neurons that demonstrated 
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some o£ the characteristic features of chromatolytic cells were observed 

in both the mandibular and superior labial areas. This type of cell, 

reminiscent of autonomic ganglion cells, was seen ubiquitously in both 

experimental and control ganglia and was not recorded as chromatolytic 

on the tracings.'' More recent studies usi.,ng HRP indicate that these 

neuronal findings may actually be present due to transmedian innervation 

of dental pulps. 

In 1977 Anderson and Rosing (37) published a study on the location 

of feline trigeminal ganglion cells innervating maxillary canine teeth 

using HRP. Following exposure of 8 maxillary canine tooth pulps to HRP 

solution by two different methods, they observed HRP granules in both 

ipsilateral and contralateral trigeminal ganglia. They noted that since 

there are approximately 44,000 cells in a feline trigeminal ganglion, 

their study indicated that about 0.37% of the cells in the trigeminal 

ganglion send peripheral processes to an ipsilateral canine tooth and 

about 0.22% of the cells supply a contralateral canine tooth. 

Cox et al., (12) published an abstract in 1977 concerning a study 

of HRP transport from primate dental pulps. Five monkeys were used in 

the study. Localization of HRP was observed with both light and electron 

microscopy in the ipsilateral and contralateral trigeminal ganglia. He 

also noted that a group of 4 to 10 cells in the ipsilateral pons were 

also found to be HRP positive at the level of entr y of the root of the 

trigeminal nerve in all the monkeys. This pontine localization seems 

to indicate a primary afferent innervation from cell bodies that are 
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located within the central neurons system, since no evidence of trans

synaptic migration of HRP has been proven. 

The localization of HRP in the contralateral trigeminal ganglion 

as noted above as well as in the present study seems to indicate that 

there is a sensory overlap via various nerves supplying the dentition. 

from a clinical standpoint in the practice of dentistry these findings 

would seem to give some reason for those cases in which clinical signs 

of profound anesthesia are present, yet the patient still feels pain. 

The studies indicate that HRP has great potential as a neuroana

tomical research tool. They also indicate that we have only scratched 

the surface in our understanding of the organization and function of 

the trigeminal ganglion. Further research is necessary in this area. 

As a final note concerning incubation procedures, Mesulam and 

Rosene (57) did an intensive study of the nine most popular methods for 

HRP neurohistochemistry and suggested that HRP sensitivity is determined 

by multiple factors which include the method of fixation, post-fixation 

storage, the choice of chromogen, the incubation parameters, the type 

of HRP enzyme that is administered, and the postreaction treatment. It 

is very important that preliminary tests be run to determine these fac

tors for the animal model as well as the neural tissues to be studied 

before a full investigation is begun. 

37 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In an effort to map out the somatotopic organization of t he tri

geminal ganglion of the rat, a protein tracer (horseradish peroxidase) 

was injected into the dental pulps of twenty-four albino Sprague

Dawley rats. The protein tracer was allowed sufficient time to travel 

in a retrograde manner to the neuronal cell bodies of origin in the 

trigeminal ganglia. Following sacrifice of the animals, frozen sec

tions were prepared of the experimental (injected side) and control 

(unoperated side} trigeminal ganglia. The frozen sections were then 

run through two separate incubation procedures for the visualization of 

HRP granules. Following the incubation procedure, the sections were 

observed under light microscopy and the somatotopic organization of the 

trigeminal ganglion of the rat described as accurately as possible. 

Under the conditions of this experiment, the following conclu

sions could be drawn: 

a.) The feasibility of tracing first order afferents via 

the retrograde axonal transport of HRP was reconfirmed. 

b.) The U:se of the dental pulp as an injection site for 

HRP was excellent for determining neuronal cell bodies 

of origin for the various teeth. 
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c,} The neuronal cell bodies of origin of the fibers in

nervating the various mandibular teeth are distributed 

throughout the entire mandibular division of the 

trigeminal ganglion. 

d. J The neuronal cell bodies of origin of the fibers 

innervating the various maxillary teeth are distributed in 

a linear array throughout the length of the ophthalmic

maxillary division of the trigeminal ganglion. 

e.) The presence of HRP-positive neurons in both the ex

pertmental (injected side) and control (unoperated 

side) trigeminal ganglia was a consistent occurrence, 

indicating a possible transmedian innervation in the 

rodent dentition. 

f.) The use of 3,3'-diaminobenzidine along with the addition 

of cobalt chloride for enhancement allowed for excellent 

visualization of the HRP granules. 

g.) The Hanker/Yates technique for the incubation of HRP gave 

pos·itive results, but not of the intensit y obtained with 

DAB. 
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Figure I 
Maxillary Right First Molar ~ Pre-operatively 



Figure II 
Maxillary Right First Molar -+ Pulpal Access 

Note occlusal access used and the 
presence of hemorrhage indicating 
that the pulp has been reached 
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Figure III 
Maxillary Right First Molar + Microsyringe in place 



so 

Figure IV 
Maxillary Right First Molar + HRP in pulp chamber 
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Figure V 
Maxillary Right First Molar + Temporary filling in place 



Figure VI 
Rat Trigeminal Ganglionic Neurons 

Hematoxylin and Eosin Stain (126x) 
Note large centrally placed nuclei and 
coarsely granular cytoplasm 
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Figure VII 
Linear Arrangement of Trigeminal 
ganglionic neurons found in the 
ophthalmic-Maxillary division. 
Hematoxylin and eosin stain (56x) 
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Figure VIII 
Aggregation of trigeminal ganglionic 
neurons found in the lateral 
protuberance area of the mandibular 
division. Hematoxylin and eosin 
stain (56x) 
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Figure I X 
Isolated neuron with positive 
HRP granules present in cytoplasm. 
Graham and Karnovsky incubation 
procedure (126x). 
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Figure X 
Isolated neuron with positive HRP 
granules present in cytoplasm. Graham 
and Karnovsky incubation procedure 
(126x). 
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Figure XI 
Mandibular central incisor ~ composite 
HRP diagram. 
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Figure XII 
Mandibular first molar + composite HRP 
diagram. 
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Figure XIII 
Mandibular second molar 7 composite 
HRP diagram. 
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Figure XIV 
Composite diagrams of HRP 
positive neurons found in 
each of the mandibular teeth 
examined in the study. 
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Figure XV 
Maxillary central incisor ~ composite 
HRP diagram. 
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Figure XVI 
Max illary first molar + composite 
HRP diagram. 
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Figure XVII 
Maxillary second molar ~ composite 
HRP diagram. 
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Figure XVIII 
Composite diagrams of HRP 
positive neurons found in 
each of the maxillary teeth 
examined in the study. 
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