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YOUNG TABLEAUX, MULTISEGMENTS, AND PBW BASES

JOHN CLAXTON AND PETER TINGLEY∗

Abstract. The crystals for finite dimensional representations of sln+1 can be realized
using Young tableaux. The infinity crystal on the other hand is naturally realized using
multisegments, and there is a simple description of each embedding B(λ) ↪→ B(∞) in
terms of these realizations. The infinity crystal is also parameterized by Lusztig’s PBW
basis with respect to any reduced expression for w0. We give an explicit description of
the unique crystal isomorphism from PBW bases to multisegments in the case where
w0 = s1s2s3 · · · sns1 · · · s1s2s1, thus obtaining simple formulas for the actions of all crys-
tal operators on this PBW basis. Our proofs use the fact that the twists of the crystal
operators by Kashiwara’s involution also have simple descriptions in terms of multiseg-
ments, and a characterization of B(∞) due to Kashiwara and Saito. These results are to
varying extents known to experts, but we do not think there is a self-contained exposition
of this material in the literature, and our proof of the relationship between multisegments
and PBW bases seems to be new.
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1. Introduction

Kashiwara’s crystalsB(λ) are combinatorial objects corresponding to the highest weight
representations of a symmetrizable Kac–Moody algebra. Here we will only consider the
case when that algebra is sln+1. Then the crystal B(λ) can be realized as the set of semi-
standard Young tableaux of a fixed shape along with some combinatorial operations.

We also consider the crystal B(∞) for U−(sln+1), which is a direct limit of the B(λ) as
λ → ∞. There is a combinatorial realization of B(∞) where the underlying set consists
of multisegments (i.e., collections of “segments” [i, j] for various 1 ≤ i ≤ j ≤ n, allow-
ing multiplicity). Importantly for us, the twists of the crystal operators by Kashiwara’s
∗-involution are also easy to describe in this realization. Furthermore, the weak crystal
embeddings B(λ) ↪→ B(∞) are easily understood in terms of Young tableaux and multi-
segments: Each box corresponds to a segment, and the tableau is sent to the collection
of the segment corresponding to each box (see Theorem 3.11).

There is another realization of B(∞) which has as its underlying set Lusztig’s PBW
monomials. Combinatorially, these are recorded by lists of exponents, called Lusztig data,
which consist of an integer for each positive root. The construction depends on a choice of
reduced expression for the longest word. The crystal operators are defined algebraically,
and are somewhat difficult to work with in general.

The positive roots for sln+1 are naturally in bijection with segments: αi+αi+1+ · · ·+αj
corresponds to [i, j]. In this way Lusztig data and multisegments are in bijection. In most
cases this bijection does not seem to have nice properties but, if we work with the reduced
expression

(1.1) w0 = s1s2 · · · sns1s2 · · · sn−1 · · · s1s2s1,

we show that it is a crystal isomorphism (see Theorem 4.2).
Much of the current work is to some extent understood by experts. The reduced

expression (1.1) has been observed to have nice properties many times (see e.g. [Kam,
§3.4.3], [BBF], [Lit, §5]), and the connection with Young tableaux has been made (see
e.g. [BZ], [M, Prop. 2.3.13]). The map from tableaux to multisegments has been studied in
e.g. [BZ, §8] and [Zel3, §7], although there it is not discussed in terms of crystals. Various
relationships between the infinity crystal and multisegments have also been observed (see
e.g. [LTV]). Kashiwara’s ∗ involution is well known in the context of multisegments: it is
precisely the famous Zelevinsky multisegment duality first introduced in [Zel1, Zel2] (see
also [Zel3]). Finally, in the affine sln+1 case, the embeddings B(Λ) ↪→ B(∞) are described
by Jacon and Lecouvey [JL]; our results from §3.3 can be derived from their results. In
fact, much of the literature considers the affine case, partly because it is related to the
such important topics as the p-adic representations theory of gln and of certain Hecke
algebras (see e.g. [BZ2, Vaz]), but this can obscure the simpler finite type case.

Ringel’s Hall algebra approach to quantum groups [Rin1] can also be used to see some
of our results: By Gabriel’s theorem [Gab], in any finite type, U−(g) can be identified (as
a vector space) with the split Grothendieck group of the category of representations of the
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quiver obtained by choosing an orientation of the Dynkin diagram. Ringel introduced a
product in terms of the representation theory of the quiver that strengthens this relation-
ship, and it was shown in [Lus1, Rin2] that the natural basis of the Grothendieck group
consisting of isomorphism classes of representations coincides with Lusztig’s PBW basis
for a reduced word adapted to the orientation. Reineke [Rei] gave an explicit description
of the crystal operators acting on the PBW basis in terms of representations of quivers.
In the sln+1 case, isomorphism classes of representation are naturally indexed by multi-
segments. Choosing the appropriate orientation of the quiver, Reineke’s work implies our
results from §4.

In any case, we do not know a self-contained exposition of these results. Our methods
are considerably more elementary and combinatorial than most of the references discussed
above, and some of our proofs are new.

1.1. Acknowledgements. We thank Ben Salisbury, Monica Vazirani and Arun Ram for
interesting discussions and for comments on an early draft. We also thank Tynan Greene
who did some preliminary work with us in summer 2013. Finally, we thank the anonymous
referee for providing some important references. Both authors received partial support
from the NSF grant DMS-1265555.

2. Background

2.1. The quantized universal enveloping algebra. Uq(sln+1) is the quantized uni-
versal enveloping algebra for sln+1. It is an algebra over C(q) generated by {Ei, Fi, K±1i },
for 1 ≤ i ≤ n. Details can be found in e.g. [CP]. We will mainly work with U−q (sln+1),
the subalgebra generated by the Fi. We first fix some notation

• W is the Weyl group, and w0 is the longest element in W .
• P is the weight lattice, and Q ⊂ P is the root lattice. P∨ and Q∨ are the co-weight

and co-root lattices.
• {αi}i=1,...,n, {ωi}i=1,...,n are the simple roots and fundamental weights respectively;
{α∨i }i=1,...,n are the simple co-roots.
• 〈·, ·〉 is the pairing between the root lattice and the co-root lattice defined by

〈αi, α∨j 〉 =


2 if i− j
−1 if |i− j| = 1

0 otherwise.

• N =

(
n
2

)
is the number of positive roots sln+1.

• Ti is the algebra automorphism of Uq(sln+1) introduced by Lusztig (see [Lus2,
37.1.3]):

Ti(Fj) =


Fj i not adjacent to j

FjFi − qFiFj i adjacent to j

−K−1j Ej i = j.
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Ti(Ej) =


Ej i not adjacent to j

EjEi − q−1EiEj i adjacent to j

−FjKj i = j.

Ti(Kj) =


Kj i not adjacent to j

KiKj i adjacent to j

K−1j i = j.

These Ti define an action of the n-strand braid group on Uq(sln+1), which means

TiTjTi = TjTiTj if |i− j| = 1, and TiTj = TiTi otherwise.

There are embeddings of Uq(sln) ↪→ Uq(sln+1) for all n, which just takes the generators
of Uq(sln) to the generators with the same names in Uq(sln+1), and these are compatible
with the braid group actions.

2.2. Crystals. Here we very briefly introduce Kashiwara’s crystals. The following def-
inition is essentially from [Kas2, §7.2], although here we do not allow ϕi, εi to take the
value −∞.

Definition 2.1. An abstract crystal is a set B along with functions wt: B → P (where
P is the weight lattice), and, for each i ∈ I, εi, ϕi : B → Z and ei, fi : B → B t {0}, such
that

(i) ϕi(b) = εi(b) + 〈wt(b), α∨i 〉.
(ii) If ei(b) 6= 0, ei increases ϕi by 1, decreases εi by 1 and increases wt by αi.

(iii) fib = b′ if and only if eib
′ = b.

We often denote an abstract crystal simply by B, suppressing the other data.

Definition 2.2. A strict morphism of crystals is a map between two crystals that
commutes with wt, ei, fi, εi, and ϕi for all i. A weak morphism is a map which commutes
with all ei, but not necessarily the other structure. An isomorphism of crystals is a strict
morphism that has an inverse which is also a strict morphism.

Remark 2.3. In fact, a weak morphism φ : B1 → B2 must also have good properties with
respect to the other structures. For instance, Definition 2.1 (iii) implies that, as long
as b ∈ B1 satisfies fi(b) 6= 0, we have fi(φ(b)) = φ(fi(b)). It can however happen that
fi(b) = 0 but fi(φ(b)) 6= 0.

Definition 2.4. A highest weight abstract crystal is an abstract crystal which has a
distinguished element b+ (the highest weight element) such that

(i) The highest weight element b+ can be reached from any b ∈ B by applying a
sequence of ei for various i ∈ I.

(ii) For all b ∈ B and all i ∈ I, εi(b) = max{n : eni (b) 6= 0}.



YOUNG TABLEAUX, MULTISEGMENTS, AND PBW BASES 5

Notice that, since a highest weight abstract crystal is necessarily connected, it can have
no non-trivial automorphisms.

The crystals we are interested in here are B(∞), which is related to U−(sln+1), and
B(λ), which is related to a highest weight representation of sln+1. These are all highest
weight abstract crystals. We don’t need details of how they are defined; instead we just
use the characterization of B(∞) below, and the explicit description of B(λ) in terms of
Young tableaux from §3.2.

The following notion is very convenient for us. It is a bit non-standard, but can be
found in [TW].

Definition 2.5. A bicrystal is a set B with two crystal structures whose weight functions
agree. We use the convention of placing a star superscript on all data for the second crystal
structure, so e∗i , f

∗
i , ϕ

∗
i , etc. An element of a bicrystal is called highest weight if it is

killed by both ei and e∗i for all i.

The following is a rewording of [KS, Proposition 3.2.3] designed to make the roles of
the usual crystal operators and the ∗-crystal operators more symmetric. See [TW] for
this exact statement.

Proposition 2.6. Fix a bicrystal B. Assume (B, ei, fi) and (B, e∗i , f
∗
i ) are both highest

weight abstract crystals with the same highest weight element b+, where the other data is
determined by setting wt(b+) = 0. Assume further that, for all i 6= j ∈ I and all b ∈ B,

(i) fi(b), f
∗
i (b) 6= 0.

(ii) f ∗i fj(b) = fjf
∗
i (b).

(iii) εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 ≥ 0
(iv) If εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 = 0 then fi(b) = f ∗i (b),
(v) If εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 ≥ 1 then ε∗i (fi(b)) = ε∗i (b) and εi(f

∗
i (b)) = εi(b).

(vi) If εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 ≥ 2 then fif
∗
i (b) = f ∗i fi(b).

Then (B, ei, fi) ' (B, e∗i , f
∗
i ) ' B(∞), and e∗i = ∗ei∗, f ∗i = ∗fi∗, where ∗ is Kashiwara’s

involution from [Kas1, 2.1.1].

The following is immediate from conditions (iv), (v) and (vi) of Proposition 2.6.

Remark 2.7. The quantities in Proposition 2.6 have also been studied by Lauda and
Vazirani [LV] for related reasons. For instance, there εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 is called
jumpi(b).

Corollary 2.8. For any i ∈ I and any b ∈ B(∞) the subset of B(∞) that can be reached
from b by applying sequences of the operators ei, fi, e

∗
i , f

∗
i is of the following form, where

the solid and dashed arrows show the action of fi, the dotted and dashed arrows show the
action of f ∗i , and the width of the diagram at the bottom is 〈wt(btop), α

∨
i 〉 for the top vertex

btop (in this example the width is 4).
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•
• •

• • •
• • • •

• • • • •

• • • • •

Furthermore, for any element b, the quantity εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 counts how many
times one must apply fi (or equivalently f ∗i ) to reach a dashed line. �

2.3. PBW bases and crystal bases. Fix a reduced expression w0 = si1 · · · siN , and let
i denote the sequence of indices i1, . . . , iN . It is well known that this gives an ordering of
the positive roots of sln+1: β1 = αi1 and βj = si1 · · · sij−1

αij for 2 ≤ j ≤ N . Define

(2.1) Fβ1 = Fi1 , Fβ2 = Ti1Fi2 , . . . , Fβj = Ti1 · · ·Tij−1
Fij , . . .

where the Tij are the braid group operators defined in §2.1. As shown by Lusztig [Lus2,

Corollary 40.2.2], Bi = {F (an)
βN
· · ·F (a1)

β1
} is a basis for U−q (g) (called the PBW basis). Here

F
(a)
β means the quantum divided power

F
(a)
β = F a

β /[a]!

where [a] = q−a+1 + q−a+3 + · · ·+ qa−3 + qa−1 and [a]! = [a][a− 1] · · · [2].
Let A = C[q]0, the algebra of rational function in q that do not have a pole at q = 0. By

[Lus2, §42.1], L = spanABi does not depend on the reduced expression i. This A-module
is called the crystal lattice. Furthermore, Bi + qL is a basis for L/qL which does not
depend on i. We denote this basis of L/qL by B, and call it the crystal basis.

Definition 2.9. For each reduced expression i and each collection of non-negative integers

a1, . . . , aN , let bia1,...,aN denote the element F
(an)
βN
· · ·F (a1)

β1
+ qL of the crystal basis B.

Definition 2.9 gives a parameterization of B by NN for each reduced expression i of w0.
We now define the crystal operators:

Definition 2.10. Fix i. Choose i so that i1 = i and i′ so that i′N = n + 1 − i (so that
βN = αi). For any a1, . . . , aN , define

fi(b
i
a1,...,aN

) = bia1+1,...,aN
, f ∗i (bi

′

a1,...,aN
) = bia1,...,aN+1,

ei(b
i
a1,...,aN

) =

{
bia1−1,...,aN if a1 ≥ 1

∅ otherwise,
e∗i (b

i
a1,...,aN

) =

{
bi
′
a1,...,aN−1 if aN ≥ 1

∅ otherwise,

εi(b
i
a1,...,aN

) = a1, ε∗i (b
i′

a1,...,aN
) = aN .
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Theorem 2.11 ([Sai, Theorem 4.1.2 and its proof]). B is the crystal basis for U−q (sln+1),
as defined by Kashiwara [Kas2], and the ei, e

∗
i , fi, f

∗
i defined above are the crystal operators.

In particular, B along with the operations from Definition 2.10 is a realization of the
crystal B(∞) from §2.2.

Fix i and a reduced expression for w0 of the form i = (i, i2, · · · , iN). Then i′ =
(i2, i3, . . . iN , n + 1 − i) is also a reduced expression. It is clear from the definitions that
T−1i gives the bijection {b0,a2,...aN −→ b′a2,...aN ,0} between the subset of those b ∈ B(∞)
where εi(b) = 0, and those b ∈ B(∞) where ε∗i (b) = 0. Define τ : B → {b ∈ B : εi(b) = 0}
by τ : bia1,a2,...aN 7→ bi0,a2,...aN and let σi = T−1i ◦ τ .

Proposition 2.12. For any b ∈ B(∞),

(2.2) σi(b) = (e∗i )
maxfLi b for any L ≥ εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉.

Proof. It is immediate from the definitions that it suffices to consider the case εi(b) = 0.
Then by [Sai, Corollary 3.4.8],

(2.3) σi(b) = f
ϕ∗i (b)
i (e∗i )

ε∗i (b)(b).

First assume L = εi(b)+ε∗i (b)+〈wt(b), α∨i 〉, and refer to the diagram from Corollary 2.8
showing the part of the crystal reachable from b by applying ei, fi, e

∗
i , f

∗
i . By definition,

ϕ∗i (b) = 〈wt(b), α∨i 〉+ ε∗i (b) which is equal to 〈wt(b), α∨i 〉+ εi(b) + ε∗i (b) since εi(b) = 0. By
Corollary 2.8 we see that ϕ∗i (b) is the number of times one must apply f ∗i to b to reach
the dashed line. Thus (2.3) takes b, applies e∗i until it gets to the vertex, then applies fi
exactly ϕ∗i times. On the other hand, (2.2) takes b, applies fi exactly ϕ∗i times to just
reach the dashed lines, then applies e∗i the maximal number of times, thus reaching the
top right boundary of the picture. Tracing this through, they agree.

If L > εi(b) + ε∗i (b) + 〈wt(b), α∨i 〉 then (2.2) just applies some extra fi which move
along dashed lines, then some extra e∗i , which undoes this, and so the result does not
change. �

The following key lemma will allow us to perform induction on rank.

Lemma 2.13. When w0 = s1s2 · · · sns1 · · · sn−1 · · · s1s2s1, the corresponding order on
positive roots is

β1 = α1, β2 = α1 + α2, . . . , βn = α1 + · · ·+ αn, βn+1 = α2, . . . , βN = αn.

Furthermore,

σn · · ·σ2σ1
(
F (a1)
α1
· · ·F (an)

(α1+···+αn)
F (an+1)
α2

· · ·F (a2n−1)
(α2+···+αn)

· · ·F (aN )
αn

)
= F (an+1)

α1
· · ·F (a2n−1)

(α1+···+αn−1)
F (a2n)
α2

· · ·F (aN )
αn−1

.

Proof. This is a simple calculation using (2.1). �
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3. Multisegment and Young tableau realizations

3.1. Multisegment realization of B(∞). We now define multisegments and their crys-
tal structure, and prove that they realize B(∞). This is essentially the same as the
realization discussed in [Sav, §4.1], although our proof is quite different, and there the
term multisegment is not used. We have changed terminology to match [JL], where they
consider the affine case. The term multisegment has also been used as we use it in e.g.
[Zel3]. Our realization is also very similar to the one constructed in terms of marginally
large tableaux in [HL] (see also [LS]), although we note that the ∗ operators are a bit
easier to describe using the setup here.

Definition 3.1. (i) A segment is an interval [i, j] with i, j ∈ Z, 1 ≤ i ≤ j.
(ii) A multisegment is a finite set of segments, allowing multiplicity.

(iii) Given a multisegment M , Mi,j is the multiplicity of [i, j] in M .
(iv) MSn is the set of all multisegments where all segments [i, j] have j ≤ n.
(v) The height of a segment, [i, j] is j − i+ 1.

(vi) The size |M | of a multisegment M is the sum over all segments of their heights.

We will represent a segment [i, j] with a columns of boxes containing the integers i to
j. For example, [3, 5] will be drawn as

5
4
3 .

The size of a multisegment is the total number of boxes if you draw all the segments.

Definition 3.2. Given M ∈ MSn, Si(M) is the string formed as follows (see §4.4 for
examples):

1. Order the segments of M from left to right, first in increasing order of height,
then by largest to smallest bottom entry.

2. Place a “)” above each [h, i− 1] segment, and a “(” above each [h, i] segment.

S∗i (M) is the string formed as follows:

1. Order the segments of M from left to right, first by shortest to tallest, then by
smallest to largest bottom entry.

2. Place a “)” below each [i+ 1, j] segment, and a “(” below each [i, j] segment.

In these strings, we say brackets “(” and “)” are canceled if the “(” is directly to the left
of “)”, or if the only brackets between them are canceled. uci(M) and uc∗i (M) are the
strings formed from Si(M) and S∗i (M) by deleting canceled brackets.
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For M ∈MSn and 1 ≤ i ≤ n, define

fi(M):=

{
(M\{[h, i− 1]}) ∪ {[h, i]} if the right-most “)” in uci(M) is above an [h, i− 1]

M ∪ {[i, i]} if there are no “)” in uci(M),

ei(M):=


(M\{[h, i]}) ∪ {[h, i− 1]} if the left-most “(” in uci(M) is above an [h, i], h 6= i

M\{[i, i]} if the left-most “(” in uci(M) is above a [i, i]

0 if there are no “(” in uci(M),

f ∗i (M):=

{
(M\{[i+ 1, j]}) ∪ {[i, j]} if the right-most “)” in uc∗i (M) is below a [i+ 1, j]

M ∪ {[i, i]} if there are no “)” in uc∗i (M),

e∗i (M):=


(M\{[i, j]}) ∪ {[i+ 1, j]} if the left-most “(” in uc∗i (M) is below a [i, j], i 6= j

M\{[i, i]} if the left-most “(” in uc∗i (M) is above a [i, i]

0 if there are no “(” in uc∗i (M).

Remark 3.3. There is clearly symmetry between the unstarred and starred operators
above. To make this precise, consider the map Flip : MSn → MSn which flips every
segment over and re-indexes by 1 ↔ n, 2 ↔ n − 1, and so on. This sends Si(M) to
S∗n−i+1(M), and so interchanges the action of each fi with the action of f ∗n+1−i; in fact, this
is the composition of Kashiwara’s ∗ involution with the Dynkin diagram automorphism.
We will appeal to this symmetry often later on.

For any multisegment M , define

wt(M) := −
n∑
i=1

(# of i boxes)αi,

and notice that, and all i,

〈wt(M), α∨i 〉 = (# of i− 1 boxes) + (# of i+ 1 boxes) − 2(# of i boxes).

Proposition 3.4. (MSn, ei, fi, e
∗
i , f

∗
i ), with the weight function defined above and addi-

tional data determined as in Definition 2.4, is a highest weight bicrystal with the highest
weight element the empty multisegment ∅.

Proof. We need to check that both structures satisfy the axioms in Definitions 2.1 and 2.4;
we present the proof only for (MSn, ei, fi), since the arguments for the other structure
are the same. 2.1(i) and 2.4(ii) are true by definition, and 2.1(ii) easily follows from the
definitions of εi, ϕi, and wt. For 2.1(iii) consider how applying fi affects Si: it either
changes [h, i− 1]→ [h, i] and a “)” to a “(” immediately to the right, or adds an [i, i] and
a “(” as far left as possible. Removing canceled brackets, we have:

uci(M) : . . . )))) (((. . .
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uci(fi(M)) : . . . ))) ((((. . .

where the red “(” has become the green “).” So ei will act on the green bracket of
uci(fi(M)), reversing the effect of fi.

Since multisegments are finite, to establish 2.4(i) it suffices to show that, for all non-
empty M ∈ MSn, there is some ek such that ek(M) 6= 0. The segments are ordered the
same way in all of the strings Si(M), so they all have the same right-most segment, call
it [j, k]. Clearly uck has an uncanceled “(”, and hence ek(M) 6= 0. �

The next few lemmas are needed to prove that this bicrystal satisfies the conditions
in Proposition 2.6. The first one explains what εi(M) + ε∗i (M) + 〈wt(M), α∨i 〉 means in
terms of brackets.

Lemma 3.5. Given a multisegment M ∈MSn, for 1 ≤ i ≤ n let

uri(M) := the number of uncanceled “)” in Si(M)

ur∗i (M) := the number of uncanceled “)” in S∗i (M)

Then

(3.1) εi(M) + ε∗i (M) + 〈wt(M), α∨i 〉 = uri(M) + ur∗i (M).

Proof. We proceed by induction on |M |, the base case M = ∅ being obvious. So, fix M 6= ∅
and assume the result holds for all smaller multisegments. MSn is a highest weight crystal
by Proposition 3.4, so M = fj(M

′) for some j and some M ′ with |M ′| = |M | − 1, and by
the inductive hypothesis the result holds for M ′. We consider several cases.

Case 1: |i − j| > 1. Then 〈wt(M), α∨i 〉 = 〈wt(M ′), α∨i 〉 and Si(M) = Si(M
′), so εi

and uri are unchanged. If fj changes [i, j − 1] → [i, j] or [i + 1, j − 1] → [i + 1, j], these
segments and their brackets will shift to the right in S∗i . This shift will either leave ur∗i
unchanged, or change it by 1. We will use the notation ↑ 1 or ↓ 1 to record this change,
so for example uri ↑ 1 means uri(M) = uri(M

′) + 1.

• If ur∗i is unchanged, so is ε∗i .
• If ur∗i ↑ 1, then a “(” changed from canceled to uncanceled, so ε∗i ↑ 1.
• If ur∗i ↓ 1, then ε∗i ↓ 1.

Case 2: j = i − 1. Then 〈wt(), α∨i 〉 ↑ 1. The string S∗i is not affected, so ε∗i and ur∗i
are unchanged. One new “)” is created in Si, which either increases uri by 1 or leaves it
unchanged.

• If uri is unchanged, then a “(” that was previously uncanceled must be canceled.
So εi ↓ 1.
• If uri ↑ 1, then no new “(” are canceled, so εi is unchanged.

Case 3: j = i+ 1. Then 〈wt(), α∨i 〉 ↑ 1.

• If fi+1 adds a [i+ 1, i+ 1], this has no affect on Si, so εi and uri are unchanged.
The fact that fi+1 acted this way implies that all “)” in Si+1(M

′) are canceled. In
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particular, M ′
i+1,i+1 ≥ M ′

i,i, so adding an [i + 1, i + 1] must create an uncanceled
“)” in S∗i . Hence ε∗i is unchanged and ur∗i ↑ 1.
• If fi+1 changes [i, i]→ [i, i+ 1], this shifts a “(” to the right in S∗i . As in the case
|i− j| > 1, ur∗i and ε∗i are affected in the same way. In Si, a “(” is removed. This
can either increase uri or leave it fixed.

– If uri is fixed, there is one less uncanceled “(”, so εi ↑ 1. Also, 〈wt(), α∨i 〉 ↑ 1.
– If uri ↑ 1, then εi is fixed. So uri ↑ 1 and 〈wt(), α∨i 〉 ↑ 1.

• If fi+1 changes [h, i]→ [h, i+ 1] for h 6= i this has no effect on S∗i , and the same
effect on Si as in the previous case.

Case 4: j = i. Then 〈wt(), α∨i 〉 ↓ 2 and εi ↑ 1.

• If fi adds an [i, i], the uri(M
′) = uri(M) = 0 so uri is unchanged. In S∗i , a “(” is

added, this either decreases ur∗i or leaves it unchanged.
– If ur∗i is unchanged then there is a new uncanceled “(” so ε∗i ↑ 1.
– If ur∗i ↓ 1, then ε∗i is unchanged.

• If fi changes [h, i − 1] → [h, i], this has no affect on S∗i , so ε∗i and ur∗i are
unchanged. In Si, an uncanceled “)” is changed to a “(”, so uri ↓ 1.

In all cases the two sides of (3.1) change by the same amount. �

Lemma 3.6. Let M ∈ MSn and i 6= j. For each h let uri;h(M) be the number of “)” in
uci(M) corresponding to segments of height h.

(i) If f ∗i applied to M acts on an [i+ 1, j − 1] segment and urj;j−i−1(M) 6= 0, then

urj;j−i−1(f
∗
i (M)) = urj;j−i−1(M)− 1(3.2)

urj;j−i(f
∗
i (M)) = urj;j−i(M) + 1(3.3)

(ii) If f ∗i applied to M adds an [i, i], then uri+1;1(f
∗
i (M)) = uri+1;1(M) + 1.

(iii) In all other cases, urj;h(f
∗
i (M)) = urj;h(M).

Proof. (i): f ∗i acts on a segment of height j − i − 1, and since urj;j−i−1(M) 6= 0, this
moves an uncanceled “)” in Sj(M) to the right, and (3.2) is clear. For (3.3), we need to
show that the new [i, j − 1] is uncanceled in Sj(f

∗
i (M)). Since the bracket was originally

uncanceled, it can only be canceled by a segment of height j − i. But urj,j−i−1(M) 6= 0
implies that this cannot happen, so (3.3) holds.

(ii): Since f ∗i adds an [i, i], all “)”in S∗i (M) are canceled. In particular, since [i+1, i+1]
segments can only be canceled by [i, i] segments, Mi+1,i+1 ≤Mi,i. So in Si+1(f

∗
i (M)), the

new [i, i] corresponds to an uncanceled “).”
(iii): This breaks up into four cases

• If f ∗i acts on a segment [i+ 1, h] for h 6= i− 1, i this clearly has no effect on Si or
uci.
• If f ∗i acts on an [i+ 1, j − 1] segment and urj;j−i−1(M) = 0, then a canceled “)”

is moved to the right in Sj, and since it doesn’t move past any other “)”, it’s not
hard to see that it remains canceled, so this has no effect on urj.
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• If f ∗i acts on an [i + 1, j] segment, this shifts a “(” to the right. The only way
this can change urj is if an [i, j − 1] changes from canceled to uncanceled. But
the fact that f ∗i acts on an [i + 1, j] implies that Mi,j−1 < Mi+1,j; so even after
the shift, all [i, j − 1] segments in Sj are canceled.
• If f ∗i adds an [i, i], this has no effect on Sj (so certainly it has no effect on urj),

unless j = i+ 1. Clearly uri;h cannot be affected for h > 1, and h = 1 is case (ii).

�

Lemma 3.7. fjf
∗
i (M) = f ∗i fj(M) when i 6= j.

Proof. For this equality to break, f ∗i must change the length of the segment that fj acts
on, or vice-versa. By symmetry (see Remark 3.3), we can assume we are in the first case.
By Lemma 3.6, there is only one way for this to happen: f ∗i must act on M by changing a
[i+1, j−1] to [i, j−1] (if j = i+1, this is interpreted as adding a new [i]), fj must act on
f ∗i (M) by changing that [i, j−1] to an [i, j], and fj must act on M by changing a different
segment, which looking at the brackets in f ∗i (M) must necessarily be a shorter segment.
In fact, fj must act on M by changing a [i + 1, j − 1], since if there are no uncanceled
brackets corresponding to segments of that length in Si(M), moving one of them to the
right past some “(” cannot create an uncanceled bracket. From this one can quickly see
that fjf

∗
i (M) and f ∗i fj(M) both change an [i+ 1, j − 1] to [i, j], so they agree. �

Proposition 3.8. MSn along with the operators ei, fi, e
∗
i , f

∗
i is a realization of B(∞)

as a bicrystal, where the second crystal structure is the twist of the first by Kashiwara’s
involution.

Proof. We need to check that MSn satisfies the conditions in Proposition 2.6.
(i): This is clear from the definitions of fi and f ∗i .
(ii): This is Lemma 3.7
(iii): This is clear from Lemma 3.5.
(iv): By Lemma 3.5, if εi(M) + ε∗i (M) + 〈wt(M), α∨i 〉 = 0, there are no uncanceled “)”

in either Si(M) or Si(M), so both fi and f ∗i add an [i, i].
(v): By Lemma 3.5, if εi(M) + ε∗i (M) + 〈wt(M), α∨i 〉 ≥ 1, there is an uncanceled “)” in

either Si(M) or S∗i (M). Without loss of generality, assume it is in Si(M). So fi applied
to M must change [h, i − 1] → [h, i] for some h ≤ i − 1. This has no affect on S∗i , so
ε∗i (fi(M)) = ε∗i (M). If there is also an uncanceled “)” in S∗i (M), the same argument
shows that εi(f

∗
i (M)) = ε∗i (M). If there are no uncanceled “)” in S∗i , then f ∗i adds an

[i, i]. This creates a “(” all the way to the left in Si(f
∗
i (M)). Since we assumed there was

some uncanceled “)” in Si(M), it must cancel the new “(”, and so εi(f
∗
i (M)) = εi(M).

(vi): By Lemma 3.5, if εi(M)+ε∗i (M)+〈wt(M), α∨i 〉 ≥ 2, there are at least 2 uncanceled
“)” between Si(M) and S∗i (M). If there is at least one in each string, fi and f ∗i add to the
tops and bottoms of segments respectively, so neither operator affects the other string,
from which it is clear that fif

∗
i (M) = f ∗i fi(M).

Otherwise, one string has no uncanceled “)” and the other has at least 2. Assume
without loss of generality that uri(M) = 0 and ur∗i (M) ≥ 2. As in (v), Si(f

∗
i (M)) =
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0 0 0 1 1 2 2 3 4
1 1 2 2 3 3 4
2 3 4
4

) ( ) ( (

Figure 1. A Young tableau b of shape (9, 7, 3, 1). The string of brackets
S2(b) is shown. f2(b) is obtained by changing the right-most “1” on the
second row to a “2”.

Si(M), so fi acts on segments of the same length in M and f ∗i (M). Since uri(M) = 0 we
see that fi(M) = M ∪ {[i, i]}, so this creates a “(” all the way to the left in S∗i (fi(M)),
which cancels a “)”. But since there are at least 2 uncanceled “)” in S∗i (M), the right-
most one is still uncanceled in S∗i (fi(M)). Therefore f ∗i acts on segments of the same
length in M and fi(M). It follows that fif

∗
i (M) = f ∗i fi(M). �

3.2. Young tableau realization of B(λ). Recall that a partition λ = (λ1, λ2, · · · , λk)
is a non-increasing sequence of positive integers. The size of λ is |λ| = λ1 + · · ·+ λk. To
each partition λ and n ≥ k − 1, we associate a weight for sln+1 by

λ→ (λ1 − λ2)ω1 + · · ·+ (λk−1 − λk)ωk−1 + λkωk,

where in the case n = k− 1 we drop the last term. As usual we will often simply write λ
to mean this associated weight when the meaning is clear from context.

We associate to a partition its Young diagram, which consists of the |λ| boxes, ar-
ranged as a row of length λ1 above a row of length λ2, etc. A semi-standard Young tableau
of shape λ for sln+1 is a filling of the Young diagram of λ with the numbers {0, . . . , n},
which is weakly increasing along rows and strictly increasing down columns. See Figure 1.
Denote the set of all such tableaux of a fixed shape by SSYTn(λ).

Define operators fi on SSYTn(λ) for 1 ≤ i ≤ n as follows: fi will change a i − 1 to
a i, or else send the tableau to 0. To determine which i − 1 changes, place a ”)” above
each column that contains a i− 1 but no i, and a “(” above each column that contains a
i but no i − 1. Cancel the brackets as usual. fi changes the i − 1 corresponding to the
right-most uncanceled “)” to a i, or, if there is no uncanceled “),” then fi(b) = 0. As
with multisegments, ei is calculated with the same string of brackets, and changes the
left-most uncanceled i to an i− 1.

The following is well known. It can be found in a slightly different form in e.g. [Kas2,
§5].

Theorem 3.9. SSYTn(λ) with the operators defined above is a realization of the sln+1-
crystal B(λ). �
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1 2 3
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3 2 1
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2
1

2
1

ψ

ψ

e3 e3

Figure 2. Moving from Young tableaux to multisegments and applying e3.

3.3. Embeddings B(λ) ↪→ B(∞). The following map is essentially the map from
tableaux to Kostant partitions from [LS], although presented a bit differently (and, as
a warning, the term “segment” is used differently there). The same map is also studied
in [Zel3, §7], although the fact that it is a crystal morphism is not explicitly discussed
there.

Definition 3.10. For a Young tableau b ∈ SSYTn(λ) define the corresponding multiseg-
ment Mb to be the collection containing the segment [i, j] for each j ≥ i in the ith row of
b. See Figure 2.

Theorem 3.11. The map ψ : b 7→ Mb from SSYTn(λ) to MSn is a weak embedding of
crystals.

Proof. We must show that, for all b ∈ SSYTn(λ) and all i, Mei(b) = eiMb, where on the
left ei is calculated as in §3.2, and on the right as in §3.1. Let SY Ti (b) denote the string of
brackets from §3.2 and SMS

i (Mb) denote the string of brackets from §3.1. It is immediate
from the definitions that these differ only in the following ways:

• SY Ti (b) may have some “)” corresponding to “i− 1” in row i, which are all at the
left end of the string. These are not present in SMS

i (Mb).
• SMS

i (Mb) may have canceling pairs of brackets corresponding to pairs of segments
of the same length, say [h, i] canceling [h − 1, i − 1]. It can happen that these
correspond to an i directly above an i − 1 in b, in which case this pair is not
present in SY Ti (b).

Neither of these changes affect the uncanceled “).” �

4. Crystal isomorphism from the PBW basis to multisegments

For this section, all PBW bases are with respect to the reduced expression

(4.1) i = (1, 2, · · · , n, 1, 2 · · · (n− 1) · · · 1, 2, 3, 1, 2, 1).

Recall that the corresponding order on positive roots is

β1 = α1, β2 = α1 + α2, . . . , βn = α1 + · · ·+ αn, βn+1 = α2, . . . , βN = αn.
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To each positive root β = αi + · · ·+ αj associate the segment [β] = [i, j].

4.1. The isomorphism.

Definition 4.1. Let Φ be the map from PBW bases to multisegments that takes

F
(a1)
β1
· · ·F (aN )

βN
to the multisegment with aj copies of each [βj].

Theorem 4.2. Φ is an isomorphism of sln+1 crystals.

The proof of Theorem 4.2 will occupy the rest of this section. The idea is to use
Proposition 2.12, which says T−1i ◦ τ acts on B(∞) as realized using PBW bases in the
same way as (e∗i )

maxfNi for large N (here τ means set the first exponent to 0). We consider
T−1n τ · · ·T−11 τ acting on PBW monomials and the corresponding crystal operators acting
on multisegments, and show that these agree as they must if Φ is to be an isomorphism
(see Proposition 4.6 below). The image of this map is PBW monomials/multisegments
for sln ⊂ sln+1, and we can then use induction on rank.

The next section is fairly technical. We encourage the reader to look at Proposition 4.6
and the example in Section §4.4 before continuing.

4.2. Some technical lemmas.

Definition 4.3. Given M ∈ MSn, define a multisegment M (k) and integer ak for each
1 ≤ k ≤ n inductively by

• a1 = ε1(M) + ε∗1(M) + 〈wt(M), α∨1 〉,
• M (1) = fa11 (M),
• a2 = ε2(M

(1)) + ε∗2(M
(1)) + 〈wt(M (1)), α∨2 〉,

• M (2) = fa22 f
a1
1 (M),

and so on.

Lemma 4.4. Fix M ∈MSn and i ≤ k ≤ n.

(i) M
(k)
i−1,k−1 = Mi,k (for i ≥ 2) and

(ii) M
(k)
i,k ≥ max1≤s≤n−k

{
s∑
r=1

Mi+1,k+r −
s−1∑
r=1

Mi,k+r

}
. That is, M

(k)
i,k is at least the

number of uncanceled “)” in the substring of S∗i (M) consisting of those brackets
that correspond to segments of length at least the length of [i, k].

Proof. We proceed by induction on k. By Lemma 3.5, a1 = ur1(M) + ur∗1(M). So f1
is applied to M until there are no uncanceled “)” in S1, and then applied ur∗1(M) more

times, creating 1 s and “(”s all the way to the left. This proves (ii) for k = 1, and (i) is
vacuous in this case.

Now assume the result holds for some k and all i ≤ k. Look at Sk+1(M
(k)):
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. . .

...

i

k

)

. . .

. . .
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(

. . .

. . .
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(
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1

k

)
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. . .
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1

k

)

...

1

k+1

(

. . .

. . .

...

1

k+1

(

.

By the induction hypothesis, M
(k)
i,k ≥ Mi+1,k+1 for all i. Therefore all the “(” over [i +

1, k + 1] segments cancel “)” over [i, k] segments, and no other “)” are canceled. Again
using Lemma 3.5, ak+1 = urk+1(M

(k)) + ur∗k+1(M
(k)), so applying f

ak+1

k+1 changes all but

M
(k)
i+1,k+1 of the [i, k] segments to [i, k+1] segments, establishing (i) for k+1. Furthermore,

assuming i ≤ k, this creates exactly M
(k)
i,k −M

(k)
i+1,k+1 many [i, k+1]’s. Adding the original

number of these segments,

M
(k+1)
i,k+1 = Mi,k+1 +M

(k)
i,k −Mi+1,k+1

≥ max
1≤s≤n−k

{
s∑
r=1

Mi+1,k+r −
s−1∑
r=1

Mi,k+r

}
−Mi+1,k+1 +Mi,k+1(4.2)

= max
1≤s≤n−k

{
s∑
r=2

Mi+1,k+r −
s−1∑
r=2

Mi,k+r

}
,

where (4.2) holds by the induction hypothesis. After shifting indices this gives (ii) for

k + 1. Statement (ii) for M
(k+1)
k+1,k+1 holds as in the case k = 1. �

Corollary 4.5. M (n) is the multisegment obtained from M by

(i) removing all [1, i] segments for each i,
(ii) replacing each segment of the form [i+ 1, k + 1] for i ≥ 1 by [i, k], and

(iii) adding some number of [i, n] segments for each i.

Proof. By Lemma 4.4(i) the number of segments [i, k] for each i ≤ k < n is given by
(i) and (ii), since applying f` for ` > k does not change the number of [i, k] segments.
Certainly [i, n] segments can only be created, not destroyed, so (iii) holds as well. �

Proposition 4.6. Fix a multisegment M . Then σn . . . σ2σ1(M) is the multisegment ob-
tained by

(i) Removing all [1, i] segments
(ii) Shifting all remaining segments down by 1; i.e., for every [i, j] in M , there is a

[i− 1, j − 1] in σn . . . σ2σ1(M).
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Proof. By Proposition 2.6(ii) and Definition 2.1(iii), for i 6= j we have (e∗i )
maxfj(M) =

fj(e
∗
i )
max(M). Thus

σn . . . σ2σ1(M) = (e∗n)max . . . (e∗2)
max(e∗1)

maxfann . . . fa22 f
a1
1 (M),

where ai is as in Definition 4.3. By Corollary 4.5, fann . . . fa22 f
a1
1 (M) is correct except that

there may be extra segments [i, n] for each i. It remains to show that

(e∗n)max . . . (e∗2)
max(e∗1)

max

just deletes all the [i, n].
We proceed by induction on i, proving that each (e∗i )

max changes all [i, n] segments into
[i+ 1, n] segments and does nothing else. For i = 1, we have

S∗1(M (n)) : 1

(

. . .

. . .

1

(

2

)

. . .

. . .

2

)

. . .

. . .

...

1

j

(

. . .

. . .

...

1

j

(

...

2

j+1

)

. . .

. . .

...

2

j+1

)

. . .

. . .

...

1

n

(

. . .

. . .

...

1

n

(

By Corollary 4.5, the number of [1, j]’s in M (n) is equal to the number of [2, j+ 1]’s in M .
Thus the “)” in S∗1(M) would be enough to cancel all the [1, j] in S∗1(M (n)). Application
of the various fakk can only have made these [2, j + 1] segments longer, and hence moved
these “)” to the right, but not past the “(” coming from any [1, n] segment. It follows that
the “(” corresponding to intervals [1, j] for j < n are in fact all canceled in S∗1(M (n)), so
these segments are not affected by (e∗1)

max. Certainly the [1, n] intervals are all changed
to [2, n] by (e∗1)

max, so the i = 1 case has been established.
Now fix k ≥ 2 and assume that the claim holds for all i < k. By the induction

hypothesis, the difference between S∗k((e
∗
k−1)

max . . . (e∗1)
maxM (n)) and S∗k(M

(n)) is only
that the first string has some extra “(” corresponding to [k, n] segments. By the same
argument as the base case, the uncanceled “(” in S∗k(M

(n)) are precisely those below
[k, n] segments, so this remains true for S∗k((e

∗
k−1)

max . . . (e∗1)
maxM (n)). Hence (e∗k)

max just
changes all [k, n] segments to [k + 1, n]’s.

At the final step, e∗n clearly deletes all the [n, n] segments. �

4.3. Proof of Theorem 4.2. For each n let PBWn denote the crystal of PBW monomials
corresponding to the reduced expression (4.1). PBWn ' B(∞) ' MSn and B(∞) is
connected, so there is a unique crystal isomorphism φn : PBWn → MSn for each n. We
need to show that φn = Φn. We proceed by induction on rank, the sl2 case being trivial.
So, fix n ≥ 2 and assume φn−1 = Φn−1.
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Let φn(F
(a1)
1 F

(a2)
α1+α2

· · ·F (aN )
n ) =

{
1

c1 · · · n cN

}
. We need to show that ci = ai for all

i. By Proposition 2.12,

(4.3) φn(T−1n τ · · ·T−11 τ(F
(a1)
1 · · ·F (aN )

n )) = (σn . . . σ1 ◦ φn)(F
(a1)
1 · · ·F (aN )

n ),

where on the right side σi is calculated as (e∗i )
maxfNi for large N .

There is a natural copy of PBWn−1 ⊂ PBWn; the monomials where the exponent of
Fαj+···+αn is zero for all j. The image of φn|PBWn−1 consists of exactly those multisegments
with no segments of the form [i, n] for any i, which is naturally identified with MSn−1.
Certainly φn|PBWn−1 is still a crystal isomorphism, so by induction is equal to φn−1. Thus
the left side of (4.3) is:

φn(T−1n τ · · ·T−11 τ(F
(a1)
1 · · ·F (aN )

n )) = φn(F
(an+1)

1 · · ·F (aN )
n−1 ) by Lemma 2.13

= φn−1(F
(an+1)
1 · · ·F (aN )

n−1 )

=

{
1

an+1 · · · n−1
aN

}
by the induction hypothesis.

On the right side we have:

σn . . . σ1(φ(F
(a1)
1 · · ·F (aN )

n )) = σn . . . σ1

({
1

c1 · · · n cN

})
=

{
1

cn+1 · · · n−1
cN

}
by Proposition 4.6.

Hence ci = ai for i > n. Also

wt(F
(a1)
1 · · ·F (aN )

n ) = wt(φ(F
(a1)
1 · · ·F (aN )

n ))

implies

−(a1β1 + · · ·+ aNβN) = −(c1β1 + · · ·+ cnβn + an+1βn+1 + · · ·+ aNβN),

from which it follows that

a1β1 + · · ·+ anβn = c1β1 + · · ·+ cnβn,

since ai = ci for all other i. But β1 = α1, β2 = α1 +α2, . . . , βn = α1 + · · ·+αn are linearly
independent, so it follows that ci = ai for i ≤ n as well. �

4.4. An example. The main difficulty in proving Theorem 4.2 is establishing Proposi-
tion 4.6. As discussed in the proof of that proposition,

(4.4) σn · · ·σ1M = (e∗n)max . . . (e∗2)
max(e∗1)

maxfann . . . fa22 f
a1
1 (M).

Here we go through the reasons why the right hand side of (4.4) has the desired effect on

M = 1 2 2 3
2
1

2
1

3
2

4
3

4
3

4
3
2

5
4
3
2 .
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The strings of brackets for i = 1 are:

S1(M) :

3 2 2 1

(

4
3

4
3

3
2

2
1

2
1

4
3
2

5
4
3
2 S∗1(M) :

1

(

2

)

2

)

3
2
1

(

2
1

(

3
2

)

4
3

4
3

4
3
2

)

5
4
3
2

) .

By counting uncanceled “(” we see that ε1(M) = 1 and ε∗1(M) = 0. We can also calculate
〈wt(M), α∨1 〉 = 1, giving a1 = 2. As in Lemma 3.5, this is the number of uncanceled “)”

in S1(M) plus the number of uncanceled “)” in S∗1(M). Applying f 2
1 creates two new 1 .

So at the next step we get:

S2(M
(1)):

3 2

(

2

(

1

)

1

)

1

)

4
3

4
3

3
2

2
1

(

2
1

(

4
3
2

5
4
3
2 S∗2(M (1)):

1 1 1 2

(

2

(

3

)

2
1

2
1

3
2

(

4
3

)

4
3

)

4
3
2

(

5
4
3
2

( .

We see that a2 = 1, and fa22 just changes the uncanceled 1 to a

2
1 . Continuing we find

a3 = 3, a4 = 2, and a5 = 4. Application of the operators gives

M (5) = 2 1 1
3
2

3
2

2
1

5
4
3

5
4
3

5
4
3

3
2
1

4
3
2
1

5
4
3
2

5
4
3
2 .

Notice that the segments in M (5) that do not contain 5 correspond exactly to the segments
of M that do not contain 1, but shifted down by one. This is the content of Corollary 4.5.

Next we must apply the (e∗i )
max. At the first step we have:

S∗1(M (5)):

1

(

1

(

2

)

2
1

(

3
2

)

3
2

)

3
2
1

(

5
4
3

5
4
3

5
4
3

4
3
2
1

(

5
4
3
2

)

5
4
3
2

) .
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There are no uncanceled “(” so ε∗1 = 0 and (e∗1)
max does nothing. Next,

S∗2((e∗1)
0M (5)):

1 1 2

(

2
1

3
2

(

3
2

(

3
2
1

5
4
3

)

5
4
3

)

5
4
3

)

4
3
2
1

5
4
3
2

(

5
4
3
2

( .

So e∗2 is applied twice, deleting the 2s at the bottom of the right-most segments. Notice
that all “(” corresponding to segments that do not contain a 5 are canceled; as discussed
in the proof of Proposition 4.6 this will always be the case, so no segments are changed
except those containing 5s. Certainly segments containing 5s always do change, and at
the final step are deleted. We end up with

(e∗5)
max(e∗4)

max(e∗3)
max(e∗2)

max(e∗1)
maxfa55 f

a4
4 f

a3
3 f

a2
2 f

a1
1 (M) = 1 1 2

2
1

3
2

3
2

3
2
1

4
3
2
1 ,

as predicted by Proposition 4.6.
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