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Abstract 
 

Protein kinase C delta (PKCδ) is an essential component of the intrinsic apoptotic 

program. Following DNA damage, such as exposure to UV radiation, PKCδ is 

cleaved in a caspase-dependent manner, generating a constitutively active catalytic 

fragment (PKCδ-cat) which is necessary and sufficient for keratinocyte (KC) 

apoptosis. We found that in addition to inducing apoptosis, expression of PKC-cat 

caused a pronounced G2/M cell cycle arrest in both primary human KCs and 

immortalized HaCaT cells. Consistent with a G2/M arrest, PKC-cat induced 

phosphorylation of Cdk1 (Tyr15), a critical event in the G2/M checkpoint. 

Treatment with the ATM/ATR inhibitor caffeine was unable to prevent PKCδ-cat 

induced G2/M arrest, suggesting that PKCδ-cat is functioning downstream of 

ATM/ATR in the G2/M checkpoint. To better understand the role of PKC and 

PKCδ-cat in the cell cycle response to DNA damage, we exposed wild type and 

PKC null MEFs to UV radiation. Wild type MEFs underwent a pronounced G2/M 

arrest, Cdk1 phosphorylation, and induction of apoptosis following UV exposure, 

while PKC null MEFs were resistant to these effects. Expression of PKCδ-GFP, but 

not caspase-resistant or kinase inactive PKCδ, was able to restore G2/M checkpoint 

integrity in PKCδ null MEFs.  The function of PKC in the DNA damage-induced 

G2/M cell cycle checkpoint may be a critical component of its tumor suppressor 

function. 



 xvii 

 
In light of recent reports suggesting the importance of nuclear localized PKCδ in the 

apoptotic response, we examined changes in PKCδ sub-cellular localization 

following exposure to UV radiation.  Using a PKCδ-GFP fusion protein we 

determined that nuclear PKCδ was present after UV exposure, and that it formed 

foci coinciding with regions of intense DAPI staining, suggesting localization to 

condensed chromatin.  We have previously shown that expression of the PKCδ 

catalytic fragment induced phosphorylation of Histone H3 (Ser10), an important 

event for mitotic chromatin condensation.  Interestingly, PKCδ-cat induction of 

P~H3(S10) was not prevented by inhibition of the mitotic H3 kinase Aurora B, and 

was induced throughout all phases of the cell cycle, supporting the idea that this 

event is distinct from the P~H3(S10) induction during mitosis.  In vitro 

phosphorylation studies using recombinant proteins demonstrated that PKCδ-cat is 

capable of directly phosphorylating H3 on Ser10 raising the possibility that PKCδ 

may function as a Histone H3 kinase in the cell.  Using confocal microscopy we 

found that UV-induced PKCδ-GFP foci co-localized with regions of positive 

P~H3(S10) staining.  To avoid any artifacts associated with over-expression of the 

PKCδ-GFP fusion protein, we confirmed the formation of endogenous PKCδ foci 

after UV radiation in normal keratinocytes. This novel chromatin modifying activity 

of PKCδ may be an important component of its tumor suppressor function for UV-

induced skin cancers in the human epidermis. 
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  Chapter One 

I. Introduction 

 

1.1 Epidermal Biology and Cancer 

1.1.1 Epidermal Structure and Function 

 

The epidermis is the outermost layer of the skin and the largest organ by weight in the 

human body. The skin performs many critical functions including providing a protective 

barrier against infection and the environment as well as maintaining a waterproof layer 

that prevents loss of water from the human body. The skin is composed of two major 

layers, the dermis and the epidermis. The dermis is a largely acellular region, consisting 

primarily of extra-cellular matrix (ECM) proteins, dermal fibroblasts, blood vessels, hair 

follicles, and sebaceous glands. Dermal fibroblasts secrete the ECM components and 

other factors that nourish and support the epidermis. The epidermis represents the 

outermost layer of the skin, and largely consists of the structural cell of the skin, the 

keratinocyte. Also residing within the epidermis are pigment producing melanocytes and 

antigen-presenting Langerhaan cells.  

 

Separating the epidermis and dermis and providing a critical anchoring site for basal 

keratinocytes is the basement membrane. This membrane is composed of ECM proteins 

and cell membrane receptors including α6β4 integrins and laminin-5 and prevents 

invasion of keratinocytes and melanocytes into the dermis (Niessen et al., 1994). 

Importantly, during carcinogenesis, matrix-metalloproteinases secreted by neoplastic 
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keratinocytes or melanocytes can degrade the basement membrane, allowing invasion of 

the transformed cells into the dermis and eventually the bloodstream. 

 

The epidermis is a self-renewing tissue, ensuring efficient wound healing post-injury and 

constant replenishment of the tissue during normal homeostasis. Residing in the basal 

layer of the epidermis, proliferating keratinocytes detach from the basement membrane, 

undergo irreversible growth arrest, and begin a sequential differentiation program that 

ultimately results in cell death and cornification. The epidermis consists of several 

distinct layers of keratinocytes at various stages of differentiation. These layers include 

the basal layer, which contains self-renewing undifferentiated keratinocytes, the 

intermediate spinous and granular layers, and finally the outermost cornified layer which 

contains dead keratinocytes and the barrier proteins of the skin, including loricrin, 

involucrin, and filaggrin (Dale and Holbrook, 1987; Presland and Dale, 2000). In direct 

relation to the increasing level of differentiation during progression from basal to apical 

regions of the epidermis is a calcium gradient (Menon et al., 1985). The increasing levels 

of calcium in the suprabasal layer are critical for epidermal barrier function and 

keratinocyte differentiation through the activation of the classical protein kinase C 

isoform, PKCα (Elias et al., 1998; Jaken and Yuspa, 1988; Jerome-Morais et al., 2009). 

Evidence for the critical role of calcium in keratinocyte differentiation is further bolstered 

by the common use of elevated Ca²+ to induce the differentiation of cultured 

keratinocytes (Hennings et al., 1980). 
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During the keratinocyte differentiation process there is a progressive downregulation of 

cell cycle and proliferation genes such as cyclin D1 and upregulation of differentiation 

genes such as keratin 1 and 10, desmoglein 1 and ultimately, barrier proteins such as 

loricrin and profilaggrin. It is believed that the coordinated array of gene activation and 

repression during differentiation is controlled by epigenetic regulators such as DNMT1, 

DNMT3a, and DNMT3b as well as the histone demethylase, JMJD3 (Sen et al., 2010; 

Sen et al., 2008). In addition, the classical protein kinase C isoform, PKCα, is critical for 

activating the initial growth arrest following detachment of the differentiating 

keratinocyte from the basement membrane (Jerome-Morais et al., 2009). PKCδ and η 

have also been implicated in the keratinocyte differentiation program (Adhikary et al., 

2010; Kamioka et al., 2010; Szegedi et al., 2009; Cabodi et al., 2000). PKCδ, for 

example, is critical for the proper epidermal differentiation associated upregulation of 

involucrin in human keratinocytes (Deucher et al., 2002). 

 

1.1.2 Epidermal Tumorigenesis and Cancer 

 

According to the National Cancer Institute (NCI), epidermal tumors are by far the most 

commonly diagnosed malignancies in the United States of America with over one million 

new cases diagnosed each year. There are several types of skin cancer that vary in clinical 

prognosis depending on the type of cell giving rise to the tumor, as well as the stage of 

cancer progression at the time of diagnosis. It has been understood for some time that 

there was a relationship between sun exposure and skin cancers in humans, early work 

proved the direct link between ultraviolet radiation and skin carcinogenesis in mice in the 
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1960’s (Epstein and Epstein, 1963; Fisher and Kripke, 2002; Cleaver and Crowley, 

2002). 

 
1.1.3 Ultraviolet Radiation and Carcinogenesis 
 

The sun emits a wide range of radiation on the electromagnetic spectrum. This includes 

high-energy wavelengths such as ionizing radiation as well as lower energy wavelengths 

including the visual spectrum and infrared radiation. Included in the spectrum of light 

emitted by the sun is ultraviolet (UV) radiation. UV radiation encompasses 100-400 nm 

wavelengths and is further divided into UV A, B, and C wavelengths. UVC is the highest 

energy, lowest wavelength form of UV radiation and is commonly used in germicidal 

lights for sterilization. UVC is emitted from the sun, but does not reach the surface of the 

Earth because it is absorbed by the outer atmosphere. In contrast, UVA and B are also 

emitted from the sun, but are less efficiently absorbed by the atmosphere and reach the 

Earth’s surface at appreciable levels. Notably, the thinning of the ozone layer correlates 

with increased levels of UVA and UVB radiation reaching the surface of the Earth. This 

has lead to a significant increase in skin cancer incidence in areas such as Australia where 

the thinning of the ozone layer is more pronounced than other regions (de Gruijl, 1999).  

 

UVB, and possibly to a lesser extent UVA radiation, is highly carcinogenic in humans 

(de Gruijl et al., 1993). Exposure of DNA to UVB radiation generates bulky DNA 

adducts, including thymine dimers and 6-4 photoproducts, as well as oxidative damage to 

the DNA represented by formation of 8-oxo-2'-deoxyguanosine (Hemminki, 1993). The 

presence of these adducts on a DNA molecule distorts the double helix and can cause 
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errors in DNA replication and thus result in potentially carcinogenic mutations being 

incorporated into the genome of damaged keratinocytes or melanocytes (Sinha and 

Hader, 2002). Because the damage caused by UV radiation is sequence specific, specific 

UV signature mutations have been characterized, the most common being CC to TT and 

C to T mutations, with GC to AT mutations also commonly detected (Miller, 1985; Brash 

et al., 1987). Mutations that follow these patterns have been detected throughout critical 

cancer related genes such p53, indicating why p53 function is altered in many cases of 

NMSC (Brash et al., 1991).  

 

UVA has long been considered to be less harmful than the higher energy forms of UV 

radiation, however recent evidence has revealed that UVA can also have a carcinogenic 

effect on the skin, although the mechanism is less understood. The direct mutagenic 

effect of UV radiation exposure on DNA molecules underscores the vital role of cell 

cycle checkpoints in recognizing damage, preserving genomic integrity. These 

checkpoints will be discussed in depth later in this document. 

 

1.1.4 The Epidermal Keratinocyte 

 

Keratinocytes are the structural cell of the epidermis and are the most common cell type 

in the skin. In the basal layer of the epidermis, self-renewing keratinocytes divide 

asymmetrically, allowing for maintenance of the proliferative compartment while giving 

rise to post-mitotic keratinocytes that make up the supra-basal layers (Lechler and Fuchs, 

2005). Supra-basal keratinocytes undergo a sustained growth arrest and differentiation 
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program that ultimately results in cell death and cornification. This differentiation process 

results in expression of key proteins such as loricrin, filaggrin, and involucrin, which 

provide the skin with its barrier function. 

 

Disruption of this growth arrest and differentiation process can results in keratinocyte 

neoplasias and non-melanoma skin cancers (NMSC). NMSCs includes both basal and 

squamous cell carcinomas, which together account for over 1 million new cases 

diagnosed within the United States each year. This makes non-melanoma skin cancer the 

most common form of cancer by far. Generally, these cancers are associated with a 

relatively low rate lethality with approximately 1000 deaths each year being attributed to 

metastatic growth of NMSCs. Despite this, preventing their formation using prophylactic 

treatments with sunscreens or lotions would decrease the significant morbidity associated 

with the treatment and removal of these tumors. 

 

1.1.5 The Epidermal Melanocyte 

 

Melanocytes originate from the neural crest during development. In the epidermis, 

melanocytes are responsible for producing skin pigmentation through generation of 

melanins. Once produced, these pigmented compounds are passed to keratinocytes where 

they absorb UV radiation, thus protecting epidermal cells from the carcinogenic effects of 

UV radiation exposure. 
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The most deadly skin cancer, malignant melanoma, arises from epidermal melanocytes. 

According to the NCI, approximately 70,000 new cases of cutaneous melanoma are 

diagnosed within the United States each year. While melanoma patients diagnosed with 

pre-metastatic disease have a favorable 5 year survival rate, those diagnosed with 

advanced metastatic disease have a 5 year survival rate of only 15.8% (Altekruse SF et 

al., 2009). This is because melanomas often display significant resistance to standard 

treatments such as chemotherapy and radiation. They also present with a high rate of 

metastasis to vital organs such as the brain and liver, making this form of skin cancer 

highly lethal.  
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1.2 Cell Cycle and Proliferation 

1.2.1 Cell Cycle Overview 

 

Multi-cellular eukaryotes, such as humans and mice, undergo a tightly controlled cell 

cycle in which the entire genome and cellular contents are replicated and equal halves are 

divided into two daughter cells (Figure 1). While it has been understood for decades that 

cells undergo a mitotic cell division process, the idea of a cell cycle in which the cells 

commit to DNA replication and division is more recent (Smith and Martin, 1973). Proper 

control of the cell cycle is critical in preventing aberrant proliferation, as well as ensuring 

that genomic mutations are not propagated to daughter cells. The majority of 

differentiated cells in the body are in a state of senescence or quiescence, depending on 

the tissue and cell type. These cells have for the large part, permanently exited the cell 

cycle and undergone terminal differentiation, allowing them to support the organ and 

tissue architecture in which they exist.  

 

Despite the predominance of post-mitotic cells in the human body, proliferating cell 

populations make up a significant component of self-renewing tissues. For example, 

proliferating basal layer keratinocytes are critical for the replenishment of the suprabasal 

layers of the epidermis and are absolutely required for epidermal integrity (Regnier et al., 

1986). Similarly, crypt cells in the small intestine migrate away from the basal region of 

the crypt and undergo terminal differentiation to become one of a number of cell types 

critical for barrier function and nutrient absorption in the colon (Humphries and Wright,  
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Figure 1 – Overview of the Eukaryotic Cell Cycle. The eukaryotic cell cycle is 
tightly controlled. Progression through several “checkpoints” at key 
transitions in the cell cycle requires the coordinated 
activation/inhibition of various cyclin-dependent kinase activity. These 
kinases are tightly controlled, and can only be activated upon binding 
of cyclin proteins, whose expression is strictly limited to specific cell 
cycle phases, ensuring that Cdk activity is only activated in the proper 
cell cycle compartment. 
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2008). The signal responsible for driving this growth arrest and differentiation program is 

likely unique to each individual tissue and cell type. 

 
The eukaryotic cell cycle can be broken down into several stages. These stages are 

known as G1, S, G2, and finally mitosis (M). There is an additional cell cycle stage G0, 

in which the cell has permanently (senescence), or reversibly (quiescence) exited the cell 

cycle. The G1, or gap 1 phase of the cell cycle is tightly regulated by factors such as 

nutrient availability, cell-cell contact, and other extrinsic and intrinsic criterion that must 

be  satisfied before the cell commits to undergoing a cell cycle. Once a cell has proceeded 

through the restriction checkpoint in early G1 phase, it has committed to division and 

now contains only intrinsic barriers to checkpoint progression. Importantly, the presence 

of mitogenic factors is critical for passage through the restriction point and the 

commitment to cell division. When a cell has determined that there are sufficient bio-

materials available, the cell passes through the G1/S boundary and begins S phase.  

 

The cell cycle stage known as S phase encompasses the period of genomic replication 

that occurs before a cell can undergo division. During S phase, the cell precisely 

replicates each and every one of its chromosomes. In this way the cell exits S phase 

having completely replicated the genome only once and is prepared to pass through the 

G2 phase into mitosis. 

 

During G2 phase, a gap phase significantly shorter than G1, the cell prepares to enter 

mitosis. Once all required mitotic proteins are synthesized, the cell passes through G2 

into mitosis where it undergoes chromatin condensation, metaphase alignment and 
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segregation of the chromatin into two equal halves. Once proper chromosome segregation 

has taken place, the cell completes the division process separating the two daughter cells 

which are now in a G0/G1 cell cycle stage. At this stage, one full cell cycle is completed.  

 

1.2.2 Cell Cycle Checkpoints: Critical Guardians of the Genome 

 

As previously mentioned, cell cycle progression is a tightly regulated process. 

Throughout the cell cycle, specific Cyclin-dependent kinases (Cdks) are required for cell 

cycle progression (Figure 1). These Cdks are dependent upon binding of cyclin proteins 

for their kinase activity and are tightly regulated by phosphorylation and cytoplasmic 

sequestration by 14-3-3 chaperone proteins. Thus, while the Cdk proteins are expressed 

fairly evenly across all phases of the cell cycle, their activity is constrained to specific 

stages by the regulation of cyclin expression and binding. The first cyclin was identified 

as a protein which was rapidly degraded upon the onset of cell division (Evans et al., 

1983). The importance of cyclins for cell cycle progression was realized when it was 

described that their injection into Xenopus oocytes induced meosis or mitosis (Swenson 

et al., 1986).  

 

The critical importance of proper Cdk/cyclin complex regulation is revealed in the fact 

that many cancers overexpress one or multiple Cdks and cyclins. For example, cyclin D 

and Cdk4 are two commonly overexpressed oncogenes in many cancer types (Kim and 

Diehl, 2009; An et al., 1999). The balance between cell cycle arrest and progression is 

struck by the degree to which Cdk/cyclin complexes are activated or inhibited and this 
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balance is governed by cell cycle checkpoints.  Cell cycle checkpoints are coordinated 

signal transduction cascades that respond to a wide variety of stimuli and exert a negative 

force on cell cycle progression.  Checkpoint activation halts the cell cycle, allowing time 

for the cell to resolve the checkpoint stimuli before checkpoint activation is alleviated, 

and cell cycle progression can resume. 

 

The misregulation of cellular proliferation can give rise to hyperproliferative disorders 

and ultimately, malignant cancers. It is therefore critical that mechanisms are in place to 

prevent cell cycle misregulation from occurring. As a result, higher eukaryotes have 

developed multiple cell cycle checkpoints that are able to halt cell cycle progression in 

response to a wide range of stimuli, including but not limited to nutrient deprivation, 

DNA damage, or unattached mitotic spindles. Loss of checkpoint function is known to be 

a causative effect in many types of cancer. For example, over 50% of all tumors have 

mutated p53 function (Gasco et al., 2002). Similarly, many cancers have mutations in 

some component of the Rb signaling pathway resulting in premature G1/S phase 

transition (Nevins, 2001). Finally, many familial cancer syndromes involve mutations to 

critical cell cycle and DNA repair genes, including Li-Fraumeni Syndrome (p53), 

Fanconi’s anemia (FANC genes), ataxia telangiectasia (ATM), xerodermum pigmentosa 

(XP genes), Nijmegan Breakage Syndrome (Nbs1), Cockayne (ERCC) syndrome and 

many others (Li and Fraumeni, Jr., 1969; Strathdee et al., 1992; Savitsky et al., 1995b; 

Savitsky et al., 1995a; Cleaver et al., 2009; Weemaes et al., 1981; Tauchi et al., 1999; 

Weeda et al., 1990). Many of the genes involved in these disorders will be discussed 

more extensively in later sections. 
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1.2.3 Intrinsic Versus Extrinsic Checkpoints 

 

Cell cycle checkpoints can be sorted into two encompassing categories, namely intrinsic 

and extrinsic checkpoints. Extrinsic checkpoints can only be satisfied by external stimuli. 

For example, mitogenic growth factors must be present and bound to their corresponding 

receptors to initiate a signal transduction cascade that drives a cell through said 

checkpoint. An example of an extrinsic checkpoint in eukaryotic cells is the restriction 

point in G1, in which growth factor stimulation drives a cell to commit to the cell cycle 

(Pardee, 1974). In contrast, intrinsic cell cycle checkpoints are satisfied by meeting 

requirements that arise within the cell itself. These checkpoints include the G1/S and 

G2/M phase cell cycle checkpoints. 

 

1.2.4 The G1/S Phase Checkpoint 

 

The G1/S checkpoint is a critical guardian of the genome and prevents premature 

initiation of genomic replication. The main effectors of the G1/S phase checkpoint 

include such vital tumor suppressors as p53 and the retinoblastoma pocket protein family. 

The critical effector step in the G1/S checkpoint is the binding of Rb family proteins to 

the transcription factor E2F1. This binding prevents the transcriptional activation of E2F1 

target genes that are critical for initiating S phase and DNA replication. The mechanism 

by which Rb inhibits E2F1 dependent transcription likely involves the recruitment of co-

repressor complexes containing among other things histone methyltransferases and de-

acetylases (Nielsen et al., 2001; Petrie et al., 2008; Wang et al., 2002).  
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The Rb protein was first identified as the gene mutated in familial retinoblastoma, and the 

genetic studies of these cancers led to the two-hit paradigm of carcinogenesis (Knudson, 

Jr., 1971). The Rb protein exists in several phosphorylation states within a cell depending 

on the cell cycle status (Buchkovich et al., 1989; Chen et al., 1989). Interestingly, 

senescent and quiescent G0 cells contain a completely unphosphorylated Rb, suggesting 

complete inactivation of Cdk4/6 and Cdk2 activity (Futreal and Barrett, 1991). Cells in 

early- to mid-G1 contain primarily hypo-phosphorylated Rb. This hypo-phosphorylation 

of Rb is catalyzed by Cdk4/cyclin D although whether this enhances or inhibits Rb 

activity remains controversial. As cells progress through late G1 phase, gradual activation 

of Cdk2/cyclin E complexes leads to the hyperphosphorylation of Rb. This 

hyperphosphorylation of Rb inhibits Rb activity, and leads to dissociation of the 

RB/E2F1 complex (Harbour et al., 1999). The release of E2F1 from Rb results in the 

E2F1 dependent transcription of critical S phase genes like DNA polymerase and PCNA 

(DeGregori et al., 1995). 

 

In addition to regulation of cell cycle progression by inhibiting transcription of E2F target 

genes, the Cdk/cyclin complexes are themselves subjected to tight regulation by the 

binding of Cdk inhibitor proteins (CKI). These proteins include p21, p16INK4A, and 

p27. CKIs are inhibitors of Cdk/cyclin complexes and suppress kinase activity to these 

complexes upon binding. Following DNA damage, p21 is transcribed in a largely p53-

dependent manner and induces G1/S phase arrest by inhibiting the activity of both Cdk4 

and Cdk2 (El Deiry et al., 1993; Harper et al., 1993; He et al., 2005a).  Similarly to p21, 
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the CKI p16 was first identified as a 16 kDa protein that bound to and inhibited Cdk4 in 

response to SV40 or oncogenic Ras transformation in fibroblasts (Serrano et al., 1993; 

Serrano et al., 1997). Interestingly, the p16INK4a gene locus overlaps with another tumor 

suppressor, p19ARF, which stabilizes p53 by limiting the ability of MDM2 to induce p53 

degradation (Quelle et al., 1997; Serrano et al., 1996; Kamijo et al., 1997; Pomerantz et 

al., 1998). p27kip1 is an additional Cdk inhibitor that appears to have specificity for the 

inhibition of Cdk2/cyclin E complexes (Polyak et al., 1994). 

 

Adding a further layer of complexity to the regulation of G1/S cell cycle progression is 

the presence of Cdk activating kinases (CAKs) which phosphorylate the T-loop of Cdk1 

and 2 (Kamijo et al., 1997; Fesquet et al., 1993). The precise identity of the CAK acting 

at various cell cycle stages remains controversial, however it is believed that Cdk7/cyclin 

H may function as a CAK during both G1/S and G2/M cell cycle progression (Jeffrey et 

al., 1995; Matsuoka et al., 1994; Fisher and Morgan, 1994). 

 

1.2.5 Intra-S-Phase Checkpoints and the Regulation of DNA Replication 

 

It is well known that the treatment of cells actively replicating DNA in S phase with 

hydroxyurea or DNA damage causes a decrease in the rate of nascent DNA synthesis 

(Harper and Elledge, 1998). This suggests that a system is in place to monitor the genome 

for damage, even following commitment to the cell cycle and DNA replication. Indeed, 

much work has been done to characterize the so-called intra-S phase checkpoints. This 

work has revealed the critical importance of Mec1 and Rad53 in decreasing late-origin 
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firing during DNA replication after damage is detected (Grallert and Boye, 2008; Tercero 

and Diffley, 2001). This results in an overall decreased rate of DNA synthesis, allowing 

time for the repair of DNA damage. 

 

1.2.6 G2/M Cell Cycle Regulation 

 

Similar to the series of checkpoints in place at the G1/S phase boundary, progression into 

mitosis from the G2 phase is a tightly regulated process. The G2/M checkpoint has 

evolved to prevent cells from prematurely entering mitosis, or from entering mitosis in 

the presence of DNA damage. Prior to mitotic entry cells must first satisfy a series of 

requirements before entry into mitosis is permitted, the ultimate requirement being the 

activation of the cyclin dependent kinase, Cdk1. 

 

1.2.7 Cdk1 Activity and Inhibition during G2 and Mitosis 

 

Cdk1 was first identified as the protein cdc2, which was identified as a critical factor for 

mitotic entry in Schizosaccharomyces pombe (Nurse and Thuriaux, 1980). Cdc2 was 

subsequently identified in higher eukaryotes as a component of the mitosis promoting 

factor in Xenopus laevis (Dunphy et al., 1988). Additional studies identified cdc2 as a 

cyclin dependent kinase, capable of binding both cyclin A and B (Dunphy et al., 1988; 

Draetta et al., 1989). Several conditions must be met for Cdk1 activation to occur. The 

first is the synthesis and binding of cyclin B to Cdk1. As cyclin B protein levels are 

regulated by cell cycle stage, this ensures that Cdk1 activation can only occur in late S 
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and G2 phases of the cell cycle. In addition to cyclin B binding, Cdk1 is also 

phosphorylated on its T-loop by Cdk7, an event that is important for cyclin binding and 

subsequent Cdk1 activation (Draetta and Beach, 1989). 

 

1.2.8 The G2/M DNA Damage Checkpoint 

 

Opposing the activation of Cdk1/cyclin B and entry into mitosis is a signal transduction 

cascade that prevents the premature or inappropriate entry into mitosis (Figure 2). This 

pathway culminates with the inhibitory phosphorylation of Cdk1 on Thr 14 and Tyr 15 

and is known as the G2/M checkpoint. The G2/M checkpoint ensures that cells do not 

enter mitosis in the presence of DNA damage, and thus preserves genomic integrity. 

Conversely, the G2/M DNA damage checkpoint is a target of cancer therapy, as the 

inhibition of this checkpoint in the presence of DNA damage is known to induce cancer 

cell death.  
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Figure 2–The G2/M DNA Damage Checkpoint. DNA damage in G2 activates a 
signal transduction cascade that culminates in the inhibition of 
Cdk1/cyclin B complex, which is required for cells to enter into the 
prophase of mitosis. Some of the key components of the G2/M 
checkpoint are displayed above. Proteins and events that promote 
G2/M checkpoint activation are displayed in red. Proteins that promote 
mitotic entry are displayed in green. 
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1.2.9 The Cdk1 Kinases, Wee1 and Myt1 

 

During progression through the G2-phase, and during conditions in which the G2/M 

checkpoint is active, Cdk1 is phosphorylated on Tyr15 and Thr14. These phosphorylation 

events are catalyzed by the kinases Wee1 and Myt1 (Parker et al., 1995; Parker and 

Piwnica-Worms, 1992; Piwnica-Worms et al., 1991; Mueller et al., 1995; Booher et al., 

1997). This phosphorylation event is critical for the inhibition of Cdk1 activity that 

prevents cells from inappropriately entering mitosis (Rhind et al., 1997). The expression 

and activity of Wee1 and Myt1 increase as cells pass through S and into the G2 phase 

until entry into mitosis, when Wee1 is degraded as a result of Plk1 mediated 

hyperphosphorylation (Watanabe et al., 1995; van Vugt et al., 2004). As the inhibitory 

phosphorylation of Cdk1 is the ultimate outcome of G2/M checkpoint signaling, it is not 

surprising that the checkpoint kinase, Chk1, can phosphorylate and activate Wee1 

directly (Raleigh and O'Connell, 2000).  

 

1.2.10 Cdc25 Family Phosphatases 

 

During the entry into prophase, Cdk1 becomes sequentially dephosphorylated on Thr 14 

and Tyr 15 (Borgne and Meijer, 1996). Cdc25 phosphatases are absolutely required for 

this dephosphorylation event to take place. The Cdc25 phosphatase family contains three 

isoforms, A, B, and C that differ in pattern of expression across the cell cycle, as well as 

their mode of regulation. These phosphatases are responsible for removing inhibitory 

phosphorylation marks on Cdk kinases, and thus are positive regulators of the cell cycle 
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(Gautier et al., 1991; Lee et al., 1992; Dunphy and Kumagai, 1991). Due to their positive 

regulation of Cdk activity, Cdc25 family phosphatases can be classified as putative 

oncogenes (Galaktionov et al., 1995). Indeed, Cdc25 A and B are commonly 

overexpressed and associated with poor prognosis in many cancer types, including 

colorectal, gastric, head and neck, and non-small cell lung cancers  (Gasparotto et al., 

1997; Kudo et al., 1997; Wu et al., 1998; Takemasa et al., 2000; Kristjansdottir and 

Rudolph, 2004). 

 

As described in section 1.2.13, Cdc25 phosphatases are negatively regulated by Chk1/2 

phosphorylation. Chk1/2 phosphorylation of Cdc25 leads to cytoplasmic sequestration 

and inhibition of phosphatase activity via binding to 14-3-3 chaperone proteins (Conklin 

et al., 1995; Peng et al., 1997; Dalal et al., 1999). Cdc25A is rapidly degraded during 

checkpoint activation in response to phosphorylation by Chk1 (Mailand et al., 2000; 

Molinari, 2000). It is now understood that the ubiquitin ligase, SCF binds to 

phosphorylated Cdc25A following DNA damage, and promotes ubiquitination 

degradation of Cdc25A (Donzelli et al., 2002). In contrast, Cdc25C is primarily regulated 

by hyperphosphorylation, and is not detectably degraded following checkpoint activation. 

 

Complex genetic studies in mice have demonstrated that the three Cdc25 isoforms are at 

least somewhat redundant in their function. The loss of Cdc25 B or C individually, or 

Cdc25B and C together demonstrated no detectable phenotype, suggesting that Cdc25A 

is able to compensate for loss of B and C (Chen et al., 2001). In contrast, the Cdc25A-/- 

mutation was embryonic lethal. Furthermore, conditional knockout of Cdc25A in adult 
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mice lacking Cdc25B and C resulted in severe intestinal hypoplasia, and rapid death due 

to loss of intestinal crypts (Lee et al., 2009). This indicates that Cdc25A can complement 

loss of Cdc25B or C, but that Cdc25A has important and necessary roles during early 

embryogenesis and normal tissue homeostasis. It is therefore likely that the aberrant 

expression of even one Cdc25 isoform would be sufficient to override cell cycle 

checkpoint activation in response to DNA damage. 

 

 

1.2.11 The ATM and ATR Checkpoint Kinases 

 

Several kinases are activated downstream of the recognition of DNA damage. Ataxia 

telangiectasia mutated kinase (ATM) was discovered based on its mutation in the 

congenital ataxia telangiectasia (A-T) disease (Savitsky et al., 1995b; Savitsky et al., 

1995a). A-T is a rare, congenital disorder that is associated with severe hypersensitivity 

to ionizing radiation. This sensitivity occurs due to defects in the ATM protein which 

result in impaired checkpoint signaling following ionizing radiation exposure. This 

defective signaling results in genomic instability and increased cancer incidence. Ataxia 

telangiectasia and Rad3 related kinase (ATR) is another DNA damage-activated kinase 

that is critical for proper checkpoint signaling following UV-radiation exposure (Hall-

Jackson et al., 1999; Cimprich et al., 1996). ATR binds to sites of UV-damaged DNA via 

interaction with ATR-interacting protein ATRIP (Cortez et al., 2001). ATR binding to 

ATRIP results in ATR activation and propagation of a signal transduction cascade that 

promotes cell cycle arrest, and DNA repair.  
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1.2.12 Differential Activation of ATM and ATR 

 

Depending on the type of DNA present in the cell, the response towards that damage can 

vary greatly. This includes the activation of different repair mechanisms, as well as the 

coordination of different cell cycle regulators. This can be seen by the differential 

activation of ATM and the related kinase, ATR (Helt et al., 2005). Following double 

stranded break formation, such as occurs during ionizing radiation exposure, ATM is 

activated, and exerts a negative force on the cell cycle by phosphorylating Chk2 on Thr 

68 and p53 on Ser 15 (Matsuoka et al., 2000; Canman et al., 1998). In contrast, ATR 

responds to UV-induced DNA adducts and replication fork collapse by phosphorylating 

and activating Chk1 on Ser 345 and p53 on Ser 15 (Zhao and Piwnica-Worms, 2001; 

Tibbetts et al., 1999). While activation of both Chk 1 and 2 have the effect of halting the 

cell cycle, the differential activation of ATM and ATR allows the cell to detect a wide 

array of genotoxic events, and respond accordingly. Interestingly, caffeine, a 

radiosensitizing agent with known anti-cancer properties is an inhibitor of both ATM and 

ATR kinase activity (Sarkaria et al., 1999) For example, treatment with caffeine 

sensitizes keratinocytes to apoptosis following UV exposure by inhibiting the ATR-Chk1 

signaling axis (Heffernan et al., 2009; Lu et al., 2008; Lu et al., 2004; Lu et al., 2002; 

Conney et al., 2008; Conney et al., 2007). 

 

1.2.13 The Checkpoint Kinases, Chk1 and Chk2 
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Immediately downstream of ATM and ATR kinases in the DNA damage cell cycle 

checkpoints are the checkpoint kinases Chk1 and Chk2. Upon activation, both kinases 

phosphorylate and inactivate the Cdc25 family of phosphatases and thus indirectly inhibit 

Cdk/cyclin complex activity. Which Chk kinase is activated depends on the upstream 

checkpoint kinases activated, as well as the cell cycle stage in which the damage was 

detected. Chk2 is primarily activated by ATM phosphorylation on Thr68, and is primarily 

activated during G1 and S phase checkpoint responses. Once activated by ATM, Chk2 

inhibits Cdc25C by direct phosphorylation on Ser 216, resulting in cell cycle arrest 

(Matsuoka et al., 1998). In addition to inhibiting Cdc25 activity, Chk2 also 

phosphorylates and activates p53 during the DNA damage response (Hirao et al., 2000).  

 

Chk1 is activated primarily by phosphorylation on Ser345, and is critically important for 

the G2/M cell cycle checkpoint. Chk1 is a critical downstream mediator of ATM 

checkpoint signaling, as the ectopic expression of Chk1 can restore G2/M checkpoint 

integrity in ataxia-telangiectasia cells, which are known to have impaired ATM function 

(Chen et al., 1999b). The critical importance of these genes is revealed by the finding that 

Chk1 null mice die at E2.5 from p53-independent apoptosis. Furthermore, it was 

demonstrated that Chk1 was essential for G2/M checkpoint activation following ionizing 

radiation in murine ES cell lines. Chk1 is a bona fide tumor suppressor, as Chk1 

heterozygous null mice have an increased incidence of mammary tumor formation in the 

presence of WNT-1 ligand expression (Liu et al., 2000). 



24 

1.2.14 Mitosis and Regulation of Mitotic Progression 

 

It is now well established that Cdk1/cyclin B activity is critical for mitotic entry.  The cell 

cycle phase known as mitosis consists of at least 6 distinct stages, prophase, 

prometaphase, metaphase, anaphase, telophase, and finally cytokinesis. In addition to the 

extensive regulation of mitotic entry, there are highly complex regulatory pathways 

within mitosis that ensure the equal distribution of chromosomes to each newly forming 

daughter cell.  

 

The first stage of mitosis is the prophase. During prophase, Aurora B kinase becomes 

active and phosphorylates histone H3 on Ser10 and Ser28 (Giet and Glover, 2001; Goto 

et al., 2002). This phosphorylation is thought to promote mitotic chromatin condensation 

through the recruitment of condensin proteins (Schmiesing et al., 2000). Notably, 

however, yeast possessing an H3(S10A) mutation still efficiently condense chromatin 

during prophase, and are able to complete mitosis comparably to their wild type 

counterparts (Hsu et al., 2000; Prigent and Dimitrov, 2003). While this may call into 

question the direct requirement for H3(S10) phosphorylation during mitotic chromatin 

condensation, this discrepancy may reflect differences in mitotic regulation between 

yeast and higher eukaryotes. Simultaneous to the condensation of chromatin during 

prophase, is the reversible breakdown of the nuclear envelope which is associated with 

depolymerization of the nuclear lamina (Gerace and Blobel, 1980). Dissociation of the 

nuclear lamina occurs following phosphorylation of lamin B envelope proteins by 
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Cdk1/cyclin B (Peter et al., 1990; Courvalin et al., 1992). Notably, this reversible 

depolymerization differs from the irreversible dissociation that occurs during apoptosis. 

 

The process of chromatin condensation and nuclear envelope breakdown occurs 

throughout prophase and prometaphase. Another key process that begins during 

prometaphase is the generation of bipolar mitotic spindles from the centrosomes. 

Centrosomes contain γ-tubulin and provide the seeding site for α- and β-tubulin 

polymerization in the formation of the mitotic spindle apparatus.  As spindle formation 

occurs, the leading edge of the spindle connects to the kinetochore of one of a pair of 

sister chromatids. It is critically important that during spindle attachment, each pair of 

sister chromatids are attached to a spindle associated with opposing centrosomes. This 

ensures equal chromosomal segregation during the later stages of mitosis. The correct 

bipolar attachment of spindles to each kinetochore is a key factor monitored by the 

spindle-attachment checkpoint during the next stage of mitosis, metaphase. The 

importance of spindle assembly and attachment to the successful completion of mitosis is 

evident in the success of microtubule poisons such as paclitaxel and docetaxel as anti-

cancer agents. These compounds disrupt microtubule dynamics by preventing αβ-tubulin 

depolymerization and thus prevent proper kinetochore attachment and chromosomal 

segregation (Schiff and Horwitz, 1980). 
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1.2.15 Metaphase and the Spindle Assembly Checkpoint 

 

As nuclear envelope breakdown and chromatin condensation completes, the kinetochores 

of each chromosome associate in a bipolar manner with the mitotic spindle apparatus. As 

this association occurs, the chromatin migrates to the metaphase plate, which is 

perpendicular to the axis between the two centrosomes. Cells maintain a metaphase arrest 

until each kinetochore is attached to a mitotic spindle in what is known as the spindle 

assembly checkpoint (Wells and Murray, 1996; Wells, 1996). Amazingly, the presence of 

even one unattached kinetochore is sufficient to maintain activation of the spindle 

assembly checkpoint and prevent the cell from progressing into anaphase. The signal 

emanated from unattached kinetochores is thought to arise from binding to Mad2 protein 

(Chen et al., 1996). This binding efficiently prevents activation of the Anaphase 

Promoting Complex, whose activity is critical for anaphase progression. 

 

In order for the cell to overcome a metaphase arrest, and proceed into anaphase, the 

activity of Cdk1/cyclin B must first be inhibited (Lorca et al., 1992). Once conditions for 

satisfying the spindle assembly checkpoint have been met, Cdc20 accumulates, binds to 

and activates the Anaphase Promoting Complex/Cyclosome (APC) (Fang et al., 1998b; 

Fang et al., 1998a). The APC/C is a ubiquitin ligase, that targets many mitotic regulators, 

including cyclin B for proteasomal degradation (King et al., 1995).  

 

Another key substrate of APC/C is securin protein. While unattached kinetochores are 

present in the mitotic cell, securin binds to and inactivates separase proteins 
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(Waizenegger et al., 2002). This inactivation prevents separase from cleaving the cohesin 

protein complexes that maintain sister chromatid attachment. Thus APC/C promotes 

anaphase entry through promoting degradation of multiple proteins, including cyclin B 

and securin (Leismann and Lehner, 2003).  

 

1.2.16 Chromatin Segregation and Cytokinesis 

 

Once all kinetochores are properly attached to the bipolar mitotic spindle, the spindle 

assembly checkpoint is satisfied, and the cell enters anaphase. The onset of anaphase 

occurs following degradation of the cohesin complexes that connect sister chromosomes 

and prevent their separation (Michaelis et al., 1997). Cohesin removal allows the 

centrosomes to pull the sister chromosomes in opposite directions, ensuring equal copies 

of each chromosome will be present in both daughter cells. As the chromatin is drawn 

towards the centrosomes, the cell progresses through anaphase and telophase into the 

final phase of mitosis, cytokinesis, during which the process of cell division is completed. 

 

Cytokinesis is the physical process of cell division, and can occur only upon completion 

of chromosomal segregation. Once segregation is completed, a contractile ring containing 

actin and myosin filaments forms between the two newly forming daughter cells and 

begins to form what is known as the cleavage furrow (Sanger, 1975). This contractile ring 

then pinches off the membrane between the two daughter cells, resulting in the 

completion of mitosis and formation of two independent daughter cells. A complex signal 

transduction pathway dubbed the mitotic exit network tightly regulates the cytoskeletal 
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reorganization necessary for cytokinesis to occur (Bardin and Amon, 2001). While the 

mitotic exit network has been well described in S. cerevisae and S. pombe (where it is 

known as the septation initiation network), the regulatory pathway in higher eukaryotes 

remain unclear. Some components that have been identified in higher eukaryotes include 

the large tumor suppressor 1 (LATS1), Mob1, and the Rab family of GTPases (Bothos et 

al., 2005; Kouranti et al., 2006; Chow et al., 2010). 

 

Factors that can interfere with successful completion of cytokinesis include chromosome 

bridging between the newly forming daughter cells. This bridging prevents the 

completion of cytokinesis, and if it cannot be resolved, will lead to cleavage furrow 

regression and cytokinesis failure. The result of cytokinesis failure is the generation of a 

binucleated tetraploid cell. It is thought that following cytokinesis failure, the resulting 

tetraploid cell then exits the cell cycle due to a p53-dependent checkpoint in early-G1 

phase. 

 

1.2.17 Do Mammalian Cells Possess a Tetraploidy Checkpoint? 

 

There remains a great deal of controversy over whether there is a checkpoint in place 

within the G0/G1 phase of the cell cycle to protect against further cycling of tetraploid 

cells (Uetake and Sluder, 2004). This checkpoint, located in early-G1, is thought to 

prevent further risk for genomic instability caused by altered chromosomal numbers in 

the tetraploid cell. p53 deficient cells exhibit increased levels of genomic instability and 

polyploidy following mitotic defects, leading some to postulate that the tetraploidy 
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checkpoint is p53 dependent (Sphyris and Harrison, 2005; Vitale et al., 2007). Non-

transformed cells were demonstrated to arrest in G1 following induction of tetraploidy 

dependent on their p53 status, suggesting such a checkpoint does indeed exist 

(Andreassen et al., 2001). However, other groups question whether such a checkpoint 

exists at all in mammalian cells (Wong and Stearns, 2005).  
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1.2 Programmed Cell Death 

1.3.1 Programmed Cell Death Overview 

 

Multi-cellular organisms require additional safeguards compared to unicellular organisms 

since the health and fitness of the organism as a whole must take precedence over the 

survival of an individual cell. As a result, higher eukaryotic organisms have evolved 

complex programmed cell death pathways that ensure the death of cells in order to 

preserve the organism as a whole. Programmed cell death pathways are involved in 

processes as diverse as development to the response to DNA damage from ultraviolet 

radiation. The earliest form of cell death to be discovered, necrosis, was described to 

occur following tissue injury. For many years, however, it was recognized that a non-

necrotic cell death pathway must exist to account for homeostasis in tissues containing 

proliferating cell populations. The earliest forms of this type of cell death were described 

as shrinking necrosis and later became known by the current term of apoptosis (Kerr et 

al., 1972). 

 

1.3.2 Apoptotic Cell Death 

 

Apoptosis is characterized morphologically by decreased cell size, nuclear envelope 

breakdown, chromatin condensation and fragmentation, and membrane blebbing 

(Earnshaw, 1995).  A primary attribute of apoptosis is that it allows for cell death with 

minimal effects on the surrounding tissue. This is because the highly coordinated process 

that induces cell death during apoptosis packages intra-cellular contents in such a way 
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that they are not released into the extracellular space. This is in contrast to necrosis, a 

process in which the cell membrane ruptures, spilling intra-cellular contents in the 

extracellular space. The release of intracellular contents induces a massive inflammatory 

response and can damage the surrounding tissue. 

 

A critical step in the apoptotic process is permeabilization of the outer mitochondrial 

membrane. This permeabilization releases mitochondrial contents into the cytosol 

including cytochrome C (Adachi et al., 1997). Cytochrome C, which participates in the 

electron transport chain during oxidative metabolism, binds to APAF-1 to form the 

apoptosome complex responsible for promoting processing and activation of procaspase 

9 (Zou et al., 1997; Cain et al., 2000). Caspase 9 then activates the major effector 

caspase, caspase 3, which cleaves a number of proteins to set in place a series of events 

that will result in nuclear envelope breakdown, chromatin condensation and degradation 

and ultimately, cell death (Li et al., 1997a). For some time, it has been understood that a 

network of caspase activation is critical to the apoptotic process (Yuan et al., 1993; Miura 

et al., 1993). 

 

1.3.3 Caspases: The Harbingers of Programmed Cell Death 

 

Ced-3, a homolog of Interleuken 1 converting enzyme (ICE), now known as caspase 1, 

was the first protease identified as a player in the apoptotic process (Yuan et al., 1993). 

Since this discovery, 11 additional caspases have been identified in mammals. These 
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caspases play important roles in processes as diverse as apoptosis and cellular 

differentiation.  

 

The caspase cleavage network is a complex and highly controlled pathway that involves a 

number of distinct caspases that are activated at different stages in the cell death pathway 

(Danial and Korsmeyer, 2004). In addition, the specific caspases that are activated 

depends on the cell death stimulus. The apoptotic caspases can be loosely grouped into 

the initiator caspases (those which cleave/activate of other caspases), and the effector 

caspases (those which cleave other proteins to promote apoptosis). The initiator caspases 

are caspase 2, 8, 9, and 10. The effector caspases are caspases 3, 6, and 7. While caspase 

1 was the first identified pro-apoptotic caspase, it is now thought to be primarily involved 

in promoting inflammation (Miller et al., 1995). Caspase 14 is not involved in apoptosis, 

but instead promotes keratinocyte differentiation (Eckhart et al., 2000). The functions of 

caspases 4 and 5 have not been completely described at this point.  

 

Many substrates of the effector caspases have been described in the literature. For 

example, it is well known that caspase 3 binds and cleaves PKCδ to generate a 

constitutively active catalytic fragment that will be discussed in depth in section 1.5.9. 

Other caspase substrates important for the execution of apoptosis include DNAse 

enzymes, PARP, the nuclear lamins and many others (Enari et al., 1998; Lazebnik et al., 

1994; Orth et al., 1996; Zhivotovsky et al., 1997).  
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Regulation of apoptosis also occurs at the level of the caspases. The IAP proteins were 

identified as anti-apoptotic proteins that function by directly or indirectly inhibiting the 

activity of caspases (Clem et al., 1991; Deveraux et al., 1997). For example, XIAP binds 

directly to, and inhibits, caspase 9 (Srinivasula et al., 2001). Adding further complexity to 

caspase regulation, is the fact that the IAP proteins themselves are regulated by binding 

of the SMAC and DIABLO proteins. Binding of SMAC or DIABLO to XIAP prevents 

XIAP from inhibiting caspase activity, and thus promotes apoptosis (Du et al., 2000; 

Verhagen et al., 2000). In addition to cytochrome C, caspase-independent inducers of 

apoptosis are also released from the mitchondria. These include endonuclease G and AIF, 

both of which travel to the nucleus and induce chromatin condensation and degradation 

(Li et al., 2001; Susin et al., 1999). 

 

1.3.4 Caspases and Cell Cycle Checkpoint Activation 

 

Interestingly, caspases may be important for cellular processes outside of apoptosis. For 

example, there is evidence that caspase 2 has an important function in regulating the 

G2/M transition following exposure to γ-irradiation. In this study, it was demonstrated 

that the loss of caspase 2 activity compromised G2/M checkpoint activation (Shi et al., 

2009). Furthermore, it was demonstrated that after IR exposure, caspase 2 is incorporated 

into a complex with DNA-PK and PIDD (which has been previously shown to activate 

caspase 2). This complex, dubbed the DNA-PK-PIDDosome, promotes caspase 2 

autoprocessing and activation. Interestingly, no substrates for caspase 2 have yet been 

identified to explain how it would have influence over cell cycle progression. Caspase 2 
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may also be unique amongst caspases in that it is the only caspase with at least partial 

constitutive nuclear localization, making it primed to participate in a nuclear DNA 

damage response (Zhivotovsky et al., 1999). Supporting a role for caspase 2 in cell cycle 

control, it has been demonstrated that the loss of caspase 2 causes an increase in 

proliferation and tumorigenicity in Ras/E1A transformed MEFs (Ho et al., 2009).  

 

1.3.5 BCL-2 Family Members 

 

The Bcl-2 family of proteins includes a number of proteins that play both pro- and anti-

apoptotic roles in the cell. The first family member, Bcl-2, was identified as an oncogene 

located at a chromosomal breakpoint in B cell lymphoma (Pegoraro et al., 1984). 

Although this putative oncogene had no discernible effect on proliferation, it was soon 

discovered that the expression of Bcl-2 conferred resistance to various apoptotic stimuli 

(Vaux et al., 1988). Since the discovery of Bcl-2, other pro-survival family members, 

including but not limited to Bcl-XL and Mcl-1 have been identified (Boise et al., 1993; 

Kozopas et al., 1993). The primary antiapoptotic activity of anti-apoptotic Bcl-2 family 

members comes from their ability to bind to Bax and Bak, and prevent the 

oligomerization of these pro-apoptotic proteins.  By preventing Bax/Bak oligomerization, 

the anti-apoptotic  Bcl-2 proteins prevent inappropriate permeabilization of the outer 

mitochondrial membrane, and thus execution of the apoptotic cascade. 

 

In addition to the pro-survival Bcl-2 family members, a number of pro-apoptotic proteins, 

including Bax and Bak have been described (Oltvai et al., 1993). These proteins contain 
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oligomerization domains that upon activation can form pores on the outer mitochondrial 

membrane, allowing the release of cytochrome C and activation of the apoptosome. The 

oligomerization of Bax and Bak is prevented by binding of the pro-survival Bcl-2 

proteins, with this interaction representing a key component of their anti-apoptotic 

function. The pro-survival family members contain domains BH1-4 which form a pocket 

capable of binding the BH3 domains of Bax and Bak, thus preventing their 

oligomerization (Muchmore et al., 1996). 

 

1.3.6 Pro-Apoptotic BH3 Only Bcl-2 Family Members 

 

Another class of proteins in Bcl-2 family are the pro-apoptotic BH3-only proteins. The 

first BH3 only family member, Bid, was identified as a pro-apoptotic protein that upon 

expression could bind to Bax and promote mitochondrial membrane permeabilization 

(Wang et al., 1996). Two other important BH3-only proteins are the p53-dependent Noxa 

and Puma (Oda et al., 2000; Nakano and Vousden, 2001). Upon activation, p53 binds to 

the promoters of these genes and activates their transcription. Other BH3-only proteins 

include both BIM and BAD. BH3-only proteins promote apoptosis by disrupting the 

interaction between Bcl-2, Bcl-XL, and Mcl-1 with Bax and Bak.  

 

1.3.7 Intrinsic versus Extrinsic Apoptosis 

 

Apoptosis can be classified into at least two general classes depending on the initiating 

death stimulus. Extrinsic apoptosis occurs in response to autocrine or paracrine signaling 
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via death receptor activation. Death receptors are transmembrane proteins and include 

Fas and FADD. Death receptors are activated upon binding of death ligands such as Fas 

Ligand, and transmit an intracellular apoptotic signal by stimulating the processing of 

pro-caspase 8 zymogen into the cleaved and activated caspase 8 (Kischkel et al., 1995). 

 

In contrast, intrinsic apoptosis occurs in response to intracellular stimuli such as high 

levels of DNA damage or oxidative stress. The intrinsic apoptotic pathway involves the 

permeabilization of the mitochondria and activation of the apoptosome that was 

described in sections 1.2.3 and 1.2.4. 

 

The boundaries between intrinsic and extrinsic apoptosis are not completely clear. For 

example, while death receptor induction of caspase 8 is sufficient to induce caspase 3 and 

7 activation independent of mitochondrial permeabilization in some cell types, others 

require cleavage of Bid to an active truncated form (t-Bid). Cleavage of Bid allows the t-

Bid protein to travel to the mitochondria where it promotes permeabilization by inducing 

Bax/Bak oligomerization (Li et al., 1998). 

 

1.3.8 Chromatin Condensation During Apoptosis 

 

During the late stages of apoptosis, the nuclear envelope is broken down via the 

phosphorylation and cleavage of lamin B and the chromatin becomes condensed and is 

cut into oligo-nucleosomal fragments (Neamati et al., 1995; Enari et al., 1998). The 

molecular events behind this condensation are not clearly understood, but warrant further 
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investigation. Whether there is a role for histone H3 phosphorylation in apoptotic 

chromatin condensation in an analogous manner to that which occurs during prophase of 

mitosis is unclear.  

 

The protein Acinus is cleaved by caspases during apoptosis and promotes condensation 

of chromatin in the absence of DNA fragmentation, suggesting that chromatin 

condensation and degradation are independent during apoptosis (Sahara et al., 1999). 

Furthermore, AKT protects against chromatin condensation and apoptosis by 

phosphorylating acinus on Ser 422 and 573, thereby preventing caspase cleavage of 

acinus during apoptosis (Hu et al., 2005). One group has reported that PKCδ-mediated 

phosphorylation of histone H2B on Thr 14 is a critical downstream mediator following 

acinus cleavage and activation (Hu et al., 2007). However, the molecular mechanism 

behind the importance of H2B phosphorylation and chromatin condensation remains 

elusive. Whether other histone phosphorylation events (such as H3 S10 and S28) are 

important for chromatin condensation during apoptosis remains unclear. 

 

1.3.9 Mitotic Catastrophe 

 

Mitotic Catastrophe was first characterized in S. pombe as gross abnormalities in 

chromosomal segregation that occurred in Cdc2/wee1 mutant strains. This study 

demonstrated that mutations in positive regulators of the G2/M checkpoint, such as 

cdc25, could suppress this phenotype, implicating inappropriate mitotic entry as a 

causative factor (Molz et al., 1989). The hallmark of mitotic catastrophe is the formation 
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of polyploid multi-micronucleated cells that arise after several cycles of mitotic failure 

and endo-reduplication (Castedo et al., 2002; Castedo et al., 2004a; Erenpreisa et al., 

2005). Whether multi-micronucleated cells are the intended consequence of mitotic 

catastrophe, or are a byproduct of an escape from mitotic cell death remains the subject of 

much controversy (Castedo et al., 2004b). Cancer cells are often sensitized to cell death 

by mitotic catastrophe since they often lack intact cell cycle checkpoints that are 

necessary to protect against inappropriate mitotic entry in response to DNA damage (Park 

et al., 2005; Eom et al., 2005; Chan et al., 1999; Castedo et al., 2004c). As a consequence 

of this sensitivity, the induction of mitotic catastrophe in tumors is an attractive 

therapeutic target. 
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Chapter 1.4 DNA Damage Responses and Repair 

1.4.1 Sources of DNA Damage 

 

Throughout the lifetime of an organism, frequent exposure to DNA damage in various 

forms is inevitable. DNA damage can be caused by many different factors including 

endogenous factors arising from within the cell and exogenous sources of DNA damage 

in the environment. The importance of DNA damage repair is evident in the findings that 

many components of DNA repair pathways are mutated in disorders that cause cancer 

predisposition. For example, the ATM mutation results in the disorder ataxia 

telangiectasia which, among other symptoms causes a sever hypersensitivity to ionizing 

radiation exposure (Savitsky et al., 1995a). Furthermore, mutations to the base excision 

repair machinery results in a disorder known as xeroderma pigmentosum which is 

associated with UV hypersensitivity and increased incidence of skin malignancy (Cleaver 

et al., 2009).  

 

All types of DNA damage, however, are not equal in terms of the response elicited by the 

cell. In fact, the response and detection of DNA damage within a cell varies depending on 

the type and source of DNA damage. For example, exposure to γ-radiation induces 

double stranded breaks in the DNA backbone which are recognized differently than the 

bulky DNA adducts that occur following exposure to UVB radiation. 

 

1.4.2 The 9-1-1 Complex is Critical for DNA Damage Detection and Repair 
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The DNA repair proteins Rad9, Rad1, and Hus1 make up the so called 9-1-1 complex 

that is essential for both DNA repair and cell cycle checkpoint integrity (St Onge et al., 

1999; Hopkins et al., 2004). The complex of Rad9, Rad1, and Hus1 forms a 

heterotrimeric ring-like complex which acts similarly to PCNA as a clamp. An additional 

protein, Rad17, acts as the clamp loading complex for 9-1-1, and is essential for 9-1-1 

function (Venclovas and Thelen, 2000). The 9-1-1 complex is multifunctional, in that it is 

critical both in activating cell cycle checkpoints by recruiting ATM/ATR to sites of 

damage as well as participating directly in DNA repair. Rad9 is also thought to have a 

direct role in DNA repair, as it is known to interact with components of the nucleotide 

excision repair pathway, such as FLAP endonuclease, and DNA polymerase (Friedrich-

Heineken et al., 2005; Toueille et al., 2004). Interestingly, the activation of Rad9 

following treatment with 5-azacytidine required activation of PKCδ and ATM (Yoshida 

et al., 2003). 

 

1.4.3 Nucleotide Excision Repair 

 

The nucleotide excision repair (NER) pathway is critical in the repair of UVB-induced 

DNA damage. UVB radiation exposure induces the formation of bulky DNA adducts 

within the nucleus. These adducts include pyrimidine dimers and 6,4-photoproducts. If 

these adducts are not adequately repaired, they can cause stalling of DNA polymerase 

during S-phase resulting in erroneous DNA replication. This can result in hotspot 

mutations in tumor suppressor genes like p53 at sites of adjacent pyrimidine nucleotides 

(de Gruijl and Rebel, 2008). Mutations in components of the base excision repair 
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machinery cause increased skin cancer incidence as a direct result of the inability to 

remove UV-induced DNA adducts (Berg et al., 2000). 

 

NER can be divided into two processes, global NER, and transcription-coupled NER. 

During global NER, the XPC-Rad23 complex recognizes and binds to distortions in the 

DNA double helix caused by bulky DNA adducts (Masutani et al., 1994). Once bound, 

XPC recruits XPB and D, components of the TFIIH transcription factor, which unwind 

the double helix surrounding the lesion (Drapkin et al., 1994). The endonucleases XPF 

and XPG then make incisions in the backbone on either side of the lesion, allowing for 

removal of the damaged DNA (Bessho et al., 1997). DNA polymerase then fills in the 

excised region using the other strand as a template.  

 

Transcription coupled NER differs in the mechanism by which the damage is recognized. 

Rather than relying on the recognition of lesions by XPC, transcription coupled repair 

likely begins with stalling of RNA polymerase at the site of the DNA adduct (Mu and 

Sancar, 1997). The subsequent steps after recognition are conserved between the two 

types of NER. Notably, patients suffering from Cockayne Syndrome have defects in 

transcription coupled NER (Schmickel et al., 1977; Venema et al., 1990). 

 

1.4.4 Repair of DNA Double Stranded Breaks: HR Versus NHEJ Pathways 

 

While DNA adducts pose a significant mutagenic risk to a cell, DNA double stranded 

breaks are potentially much more deleterious. The presence of DNA double stranded 
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breaks can induce genomic instability by leading to chromosomal translocations. Indeed 

many cancers, including leukemias, are associated with distinct patterns of chromosomal 

translocations. These translocations, in which two chromosomes are fused together at the 

site of the double stranded break, can be highly mutagenic depending on their locations 

within the chromosomes. For example, in chronic myelogenous leukemia, the reciprocal 

translocation of chromosomes 9 and 22 results in the expression of the fusion protein 

BCR-ABL, the expression of which is potently oncogenic (Rowley, 1973). Due to the 

risk posed to a cell by double stranded breaks, cells have evolved multiple mechanisms 

for their detection and repair.  

 

Two repair pathways are critical for the repair of double stranded breaks. These pathways 

are non-homologous end joining (NHEJ) and homologous recombination (HR). HR 

utilizes homologous DNA sequences to properly align the DNA sequences prior to 

ligation. Since this process requires the presence of sister chromosomes, it is thought to 

occur only in cells which are in the S, G2, and M phases of the cell cycle. In contrast to 

HR, NHEJ is slightly more error prone, but does not require homologous chromosomes 

and can therefore function prior to DNA replication. 

 

1.4.5 DNA Dependent Protein Kinase (DNA-PK) is Critical for NHEJ 

 

The recognition of DNA DSBs involves the assembly of the Ku70/80 proteins into a 

heterodimeric complex at the sites of the break. The Ku proteins have a high affinity for 

exposed DNA ends, and following assembly at the site of damage, act as a scaffold for 
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the recruitment of the NHEJ repair machinery (Walker et al., 2001).  The presence of Ku 

heterodimers at break sites is sufficient to recruit DNA-PK, a kinase related to the ATM 

and ATR checkpoint kinases, which is critical for completion of NHEJ (Spagnolo et al., 

2006).  Recruitment and activation of DNA-PK is critical for assembly and activation of 

enzymes such as Artemis, XRCC4, and DNA ligase IV, all of which are critical for end 

processing and ligation (Ahnesorg et al., 2006; Hentges et al., 2006; Goodarzi et al., 

2006; Meek et al., 2007). 

 

1.4.6 BRCA1/2, the MRN Complex and Homologous Recombination 

 

The second mode of DSB repair is homologous recombination. This process utilizes 

homologous sister chromosomes to accurately identify and ligate the appropriate DNA 

ends, and involves distinct protein complexes from those involved in NHEJ. The MRN 

complex consists of Mre11, Rad50, and Nbs1 (Xiao and Weaver, 1997). The importance 

of this complex to DNA repair is evident in patients suffering from Nijmegen Break 

Syndrome, a genetic disease associated with Nbs1 mutations that results in massive 

genetic instability. Following DNA DSB formation the MRN complex is recruited to the 

break site via direct interaction of Mre11 with the exposed DNA end (de Jager et al., 

2001b; de Jager et al., 2001a). Following assembly at the break site, The MRN complex 

then process the DNA ends to expose RPA coated stretches of single stranded DNA for 

use in subsequent steps of HR-mediated repair (Trujillo and Sung, 2001). 
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Also critical to the HR repair process are the tumor suppressor Brca proteins. The Brca1 

and 2 genes have been identified in hereditary breast cancers, in which individuals 

carrying Brca mutations have an elevated risk for developing breast cancer (Castilla et 

al., 1994; Thorlacius et al., 1998). Brca1 and 2 are clearly important for homologous 

recombination, as cells with impaired Brca1 or Brca2 function have depleted levels of 

HR following DNA damage (Moynahan et al., 2001b; Moynahan et al., 2001a; Chen et 

al., 1999a).   
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Chapter 1.5 Protein Kinase C Signaling and Biology 

1.5.1 Protein Kinase C Family of Serine/Threonine Kinases 

 

Protein kinase C was first discovered in bovine brain extracts as a proteolytically 

activatable kinase (Inoue et al., 1977). The protein kinase C (PKC) family consists of at 

least 9 isoforms which differ in pattern of tissue expression and overall signaling biology. 

The 9 isoforms can be further separated into the classical isoforms, novel isoforms, and 

atypical PKC isoforms. PKC isoforms play diverse roles in processes including cellular 

differentiation, proliferation, apoptosis, and migration.   The human epidermis expresses 

5 distinct PKC isoforms, α, δ, , η, and  (Denning, 2004).  

 

1.5.2 The Classical PKC Isoforms 

 

The classical PKC isoforms were the first PKC isoforms to be identified, and include 

PKCα, PKCβ, and PKCγ. Classical PKC isoforms are activated by intracellular Ca2+ 

release from the endoplasmic reticulum in response to binding of inositol triphosphate to 

the inositol triphosphate receptor. In addition to activation by Ca2+, classical PKC 

isoforms are activated by binding to diacylglycerol. Inositol triphosphate and 

diacylglycerol are generated when phospholipase C cleaves phosphatidyl inositol 

bisphosphate following phosphorylation of phosphatidyl inositol by phosphatidyl inosito-

3 kinase (PI3K) (Berridge and Irvine, 1984). 
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Interestingly, the lone classical PKC isoform expressed in the human epidermis is PKCα. 

As there is a positive Ca2+ gradient in the epidermis, it is interesting to note that PKCα 

has been demonstrated to play a critical role in the induction of differentiation induced 

cell cycle withdrawal (Jerome-Morais et al., 2009).  

 

1.5.3 The Novel PKC Isoforms 

 

The novel PKC isoforms include PKCδ, PKCε, PKCη, and PKCθ (Ono et al., 1987). 

Unlike the cPKC isoforms, nPKCs do not respond to Ca2+ stimulus as they contain a C2-

like domain that varies significantly from the Ca2+ responsive C2 domain of the classical 

PKC isoforms (Pappa et al., 1998). nPKC isoforms do, however, retain responsiveness to 

diacylglycerol stimulation. The precise function of the C2-like domain of PKCδ remains 

unclear, but it has been purported to bind to and enable actin redistribution in neutrophils 

(Lopez-Lluch et al., 2001). In addition, the C2-like domain of PKCδ has been 

demonstrated to bind to phospho-tyrosine residues, enabling phosphorylation specific 

interactions with other proteins (Benes et al., 2005). In contrast to the anti-proliferative 

effects of PKCδ, PKCε promotes proliferation (Cacace et al., 1996). The positive role for 

PKCε in proliferation is bolstered by the finding that PKCε transgenic mice are more 

susceptible to formation of squamous cell carcinoma when treated with the DMBA/TPA 

carcinogenesis regimen (Reddig et al., 2000; Jansen et al., 2001). While PKCε is a 

potential oncogene, another novel PKC isoform, η, localizes to the granular layer of the 

epidermis and is important for normal epidermal differentiation (Koizumi et al., 1993; 

Osada et al., 1993; Cabodi et al., 2000). 
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1.5.4 The Atypical PKC Isoforms  

 

The third class of PKC isoforms, the atypical PKCs include PKCζ and PKCι/λ (Ono et 

al., 1987; Ono et al., 1989; Selbie et al., 1993). These isoforms are perhaps the least well 

understood of the three classes and lack responsiveness to either Ca2+ or diacylglycerol. 

In the epidermis, PKCζ has been implicated in establishing cell polarity and in the 

formation of intercellular tight junctions (Helfrich et al., 2007; Izumi et al., 1998). 

 

1.5.5 Structural Domains of Protein Kinase C 

 

PKCs are multi-domain proteins, and the domain makeup of each PKC class differs 

(Figure 3). Generally, the structure of PKC proteins can be broken down into the 

regulatory and catalytic domains, each of which constitutes roughly half of the protein. 

The PKC catalytic domain contains the C3 and C4 domains (Newton, 1997). The C4 

domain of PKC provides the protein with its catalytic activity and substrate binding 

domain. The C3 domain of PKC binds to ATP, bringing it in proximity to the catalytic 

site in the C4 domain allowing for transfer of the γ-phosphate of ATP to PKC substrates.  

 

There is a great deal of variation between PKC isoforms in the makeup of the regulatory 

domain of the protein. Classical PKC isoforms contain a calcium binding C2 domain in 

the regulatory domain of the protein. The C2-like domain of the novel PKC isoforms 

lacks Ca2+ responsiveness, but likely confers unique substrate binding properties for these 

isoforms.  Both classical and novel, but not atypical PKC isoforms contain phorbol ester 
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binding C1b domains (Hunn and Quest, 1997). These allow the protein to localize to the 

membrane upon activation where it can interact with and phosphorylate a variety of 

downstream effectors.  

 

Another key structural component of protein kinase C is the pseudosubstrate domain. 

Thus far, every PKC isoform, with the possible expception of PKCμ contains a 

pseudosubstrate domain in within the regulatory domain of the protein (House and Kemp, 

1987).  Under conditions in which PKC is inactive, the pseudosubstrate binds to the 

substrate binding catalytic site of PKC, and inhibits PKC activity.  Mutation to the 

psudosubstrate domain, or disruption of pseudosubstrate domain binding using blockin 

antibodies is sufficient to induce PKC activity, indicating the importance of this 

intramolecular interaction in preventing inappropriate PKC activation (Pears et al., 1990; 

Makowske and Rosen, 1989). Upon activation of PKC, the interaction of the 

pseudosubstrate domain and the catalytic domain is disrupted, thus freeing the catalytic 

site to phosphorylate PKC targets. 
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Caspase Cleavage

Figure 3 – Structural Domains of the Protein Kinase C Family. Shown above 
is the basic domain makeup of the classical, novel, and atypical PKCs. 
The C1A and B domains provide binding to diacylglycerol and phorbol 
esters and are present on novel and classical isoforms. The C2 domain 
binds Ca2+ and is incomplete in the novel isoforms. The PB1 domain of 
the atypical PKCs is thought to mediate protein-protein interactions. 
Also labeled is the caspase cleavage site that is unique to PKCδ among 
all PKC isoforms. 
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1.5.6 The Novel PKC isoform, δ 

 

Protein Kinase C δ was first cloned from a rat brain cDNA library using probes designed 

to recognize classical PKC isoforms (Olivier and Parker, 1991). Further characterization 

led to the classification of PKCδ as being unresponsive to Ca2+ stimulation and 

predominantly expressed in the murine epidermis and other epithelial tissues, as well as 

the brain (Leibersperger et al., 1991). The characterization of human PKCδ followed 

shortly after the discovery of this isoform in rats and mice (Aris et al., 1993). PKCδ 

protein has a molecular weight of approximately 78 kDa. PKCδ tends to phosphorylate 

substrates on the following consensus sequence: 

 

S/TXXR/K  (X represents any amino acid residue) 

 

PKCδ is unique among PKC isoforms in several ways. First, PKCδ contains a conserved 

nuclear localization sequence (NLS) within the C4 domain (DeVries et al., 2002). Several 

groups have reported the importance of nuclear translocation of PKCδ during apoptosis 

(Scheel-Toellner et al., 1999; Yoshida et al., 2003; Eitel et al., 2003). In addition, it has 

been demonstrated that mutation of this nuclear localization sequence abrogates the 

ability of PKCδ to induce apoptosis (DeVries et al., 2002; DeVries-Seimon et al., 2007). 

The importance of the NLS for PKCδ pro-apoptotic activity suggests that there are key 

substrates for PKCδ within the nucleus. Interestingly, the V5 region of PKCδ has also 

been reported to regulate PKCδ sub-cellular localization, suggesting that other factors 

than the putative NLS may control nuclear translocation of PKCδ (Wang et al., 2004). 
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Another unique aspect of PKCδ is that it is capable of undergoing activation 

independently of membrane localization (Steinberg, 2004). This may be, at least in part, 

due to activation of PKCδ by caspase cleavage. 

 

PKCδ contains a conserved caspase cleavage site within the hinge region that separates 

the regulatory and catalytic domains of the protein. This cleavage event generates a 

constitutively activated catalytic fragment of approximately 40 kDa in molecular weight 

(Emoto et al., 1995). The fate of the regulatory domain of PKCδ following caspase 

cleavage is not well understood. This caspase cleavage site and the associated biological 

functions of PKCδ cleavage will be discussed below. 

 

PKCδ protein function varies significantly depending on the tissue and cellular context. 

For example, PKCδ expression is lost in many squamous cell carcinomas and PKCδ has a 

well characterized role in promoting apoptosis (Reyland et al., 1999; Reyland et al., 

2000; Matassa et al., 2001; Carpenter et al., 2002; Denning et al., 2002; Lasfer et al., 

2006). In contrast, PKCδ expression has been associated with poor prognosis in breast 

cancers (McKiernan et al., 2008). Additionally, PKCδ activity was demonstrated to be a 

pro-survival protein in some breast cancer cell lines (McCracken et al., 2003). 
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1.5.7 Post-Translational Mechanisms of PKCδ Regulation 

 

Full length PKCδ activity is extensively modulated by a number of phosphorylation 

events that occur on serine, threonine, and tyrosine residues located throughout the 

protein. PDK1 phosphorylates PKCδ on Thr505 of the activation loop to prime the 

protein for activation (Le Good et al., 1998; Balendran et al., 2000; Flynn et al., 2000). 

This PDK1-mediated phosphorylation promotes the autophosphorylation of Ser 643 and 

662, generating a catalytically competent “mature” PKCδ protein (Li et al., 1997b; 

Stempka et al., 1999). It is important to note that while these phosphorylation events are 

critical for the maturation of PKCδ to a catalytically competent protein, they do not 

activate the full length protein in the absence of other stimuli/phosphorylation events. 

 

In addition to serine and threonine phosphorylation, PKCδ can also be extensively 

phosphorylated on key tyrosine residues located throughout the protein (Denning et al., 

1993; Li et al., 1994). Tyrosine phosphorylation of PKCδ can be catalyzed by the Src 

family of tyrosine kinases (Gschwendt et al., 1994; Zang et al., 1997). In addition, 

tyrosine phosphorylation is stimulated by activation of the epidermal growth factor 

receptor (EGFR) (Denning et al., 1996; Denning et al., 2000; Bossi et al., 2008a). 

Tyrosine phosphorylation sites on PKCδ that have been identified include Tyr 187, 311, 

332 (Szallasi et al., 1995; Li et al., 1996; Blake et al., 1999; Lu et al., 2007b; Lu et al., 

2007a). Whether the tyrosine phosphorylation of PKCδ activates or inhibits the kinase 

activity of PKCδ remains the subject of controversy (Denning et al., 1993; Fukunaga et 

al., 2001; Blass et al., 2002). In keratinocytes, the expression of oncogenic ras induces 
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tyrosine phosphorylation and inhibition of PKCδ activity (Denning et al., 1993). 

Interestingly, phosphorylation at Tyr311 and 332 may modulate caspase cleavage due to 

the proximity to the caspase cleavage site in the hinge region. 

 

1.5.8 Alternative Splicing of PKCδ 

 

In addition to being regulated at the transcriptional and post-translational levels, PKCδ 

can also be regulated by alternative splicing. To date, eight different PKCδ splice variants 

have been identified in different species. Although the function of the various isoforms 

has yet to be clearly described, at least some of the variants may display resistance to 

caspase cleavage. For example, the PKCδ II and VIII isoform cannot be cleaved by 

caspase 3, and appear to be anti-apoptotic in function (Sakurai et al., 2001; Jiang et al., 

2008). PKCδVIII expression, for example, is capable of rescuing NT2 cells from 

etoposide-induced apoptosis.  

 

1.5.9 Caspase Cleavage of PKCδ 

 

PKCδ is unique among PKC isoforms in that is proteolytically activated by caspase 

cleavage during apoptosis in many cell types (Emoto et al., 1995; Ghayur et al., 1996; 

Denning et al., 1998). Occuring on highly conserved aspartic acid residues (see below), 

this cleavage generates a constitutively active catalytic fragment, PKCδ-cat, by 

separating the regulatory and catalytic domains of PKCδ. This catalytic fragment has 

been convincingly demonstrated to be both necessary and sufficient for UV-induced 
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apoptosis. For example, the ectopic expression of the PKCδ-cat is sufficient to induce 

apoptosis in human keratinocytes (Denning et al., 2002). Conversely, expression of a 

cleavage resistant PKCδ mutant protects cells against UV-induced apoptosis, suggesting 

that the cleavage of PKCδ is a critically important step in the apoptotic cascade (D'Costa 

and Denning, 2005).  

 

PKCδ Conserved Caspase Cleavage SequenceDMQD330N 

 

The primary caspase responsible for cleaving PKCδ has been reported to be caspase 3, 

although it has also been reported that caspase 2 can also cleave PKCδ at this region 

(Panaretakis et al., 2005).  

 

It is likely that in addition to conferring constitutive catalytic activity to the PKCδ 

catalytic domain, caspase cleavage also allows access to a host of new substrates as 

PKCδ activity no longer requires phorbol ester binding following cleavage. This cleavage 

therefore generates a soluble pool of activated PKCδ-cat that may phosphorylate proteins 

that are not phosphorylated by the membrane bound full length PKCδ (Denning et al., 

1998).  

 

1.5.10 PKCδ is a Critical Mediator of Apoptosis 

 

Protein Kinase Cδ is critically important for a diverse range of functions within the 

human body. In the epidermis, and many other tissues, PKCδ is necessary and sufficient 
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for the induction of apoptosis in response to a wide variety of stimuli and therefore has 

important tumor suppressive function. This work, largely using cell culture, has been 

extended into PKCδ null mice, where it was demonstrated that the loss of PKCδ confers a 

resistance to etoposide or γ-irradiation induced apoptosis (Humphries et al., 2006).  

 

A great deal of effort has been exerted toward understanding the downstream substrates 

of PKCδ that make this protein so important for the apoptotic cascade. This work has 

yielded insight into many interesting targets of PKCδ signaling that may explain why this 

protein is so potently pro-apoptotic. For example, the PKCδ has been shown to 

phosphorylate and activate p53 on Ser 15 and 46 (Lee et al., 2006; Yoshida et al., 2006a). 

In addition to regulating p53 activation at the post-translational level, PKCδ has also been 

implicated in the transcriptional activation of p53 via induction of the apoptotic protein 

Btf (Liu et al., 2007). PKCδ has also been implicated in the regulation of the p53 family 

member, p73 during apoptosis (Ren et al., 2002). In addition, PKCδ also phosphorylates 

Mcl-1, to promote Mcl-1 degradation and Bax activation during UV-induced apoptosis 

(Sitailo et al., 2004; Sitailo et al., 2006). PKCδ activity is also important for nuclear 

envelope breakdown during apoptosis, since PKCδ functions as an apoptotic lamin kinase 

(Cross et al., 2000). The pro-apoptotic role of PKCδ also likely reflects PKCδ-mediated 

induction of p38 signaling (Tanaka et al., 2003).  

 

It has also been postulated that PKCδ activity stimulates an pro-apoptotic autocrine 

signaling loop via the induction of TRAIL and TNFα signaling (Gonzalez-Guerrico and 
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Kazanietz, 2005). Interestingly, at least in LNCaP prostate cancer cells, this pro-apoptotic 

function appears to be independent of PKCδ cleavage (Fujii et al., 2000). 

 

1.5.11 PKCδ and Regulation of the Cell Cycle 

 

In addition to regulating apoptosis, PKCδ also has a role in regulating cell cycle 

progression following DNA damage. Over-expression studies have demonstrated that 

PKCδ can induce cell cycle arrest at multiple stages in the cell cycle. For example, PKCδ 

overexpressing Chinese hamster ovary cells underwent a cell division arrest in mitosis 

following phorbol ester stimulation (Watanabe et al., 1992). Subsequent work 

demonstrated that the inhibition of cytokinesis by PKCδ likely involves the inhibition of 

Lats1, an integral component of the mitotic exit network (Takahashi et al., 2006). In 

addition, the treatment of metastatic melanoma cells with TPA results in inhibition of 

Cdk1 and a G2/M arrest, although the specific PKC isoforms involved in this arrest were 

not identified (Arita et al., 1998).  

 

Besides regulating progression through the G2 and M phases of the cell cycle, PKCδ has 

also been implicated in regulating the G1/S phase of the cell cycle. PKCδ was shown to 

induce p27 and delay cyclin D expression following serum stimulation of quiescent rat 

microvascular endothelial cells (Ashton et al., 1999). Treatment of anaplastic human 

thyroid cancer cells with TPA induced a G1 arrest associated with upregulation of p21 

and p27, and this effect could be blocked by siRNA mediated depletion of PKCδ 

(Afrasiabi et al., 2008). Similar work in lung adenocarcinoma cells demonstrated TPA 
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induced G1 arrest was dependent on PKCδ but not PKCα, and was associated with 

upregulation of p21 (Nakagawa et al., 2005). Conversely, in Wistar rat thyroid cells, 

PKCδ has been demonstrated to induce apoptosis by first inducing G1 progression 

followed by S phase arrest (Santiago-Walker et al., 2005). 

 

1.5.12 PKCδ and the DNA Damage Response 

 

PKCδ has recently been implicated in the DNA damage response where it was 

phosphorylated and activated by ATM following treatment with 5-azacytidine and 

subsequently phosphorylated and activated Rad9 to promote DNA repair (Yoshida et al., 

2003). Interestingly, PKCδ was also discovered downstream of ATM in the activation of 

NF-κB transcription following UV-irradiation, making PKCδ a bona-fide target of ATM 

following DNA damage (Ravi et al., 2007). Specific ATM phosphorylation sites in PKCδ 

remain to be indentified.  

 

In contrast to the positive role in DNA repair, PKCδ may also act as a signal to shut down 

DNA repair pathways. It was reported that PKCδ-cat phosphorylates and inactivates 

DNA-PK during apoptosis (Bharti et al., 1998). Since shutdown of repair mechanisms is 

known to occur during apoptosis, DNA-PK may be an additional substrate important for 

PKCδ apoptotic activity. 
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1.5.13 PKCδ as a Tumor Suppressor 

 

Given the importance of PKCδ to apoptosis, cell cycle regulation, and DNA repair, it is 

not entirely surprising that PKCδ has been identified as a putative tumor suppressor. In 

human squamous cell carcinomas, the expression of PKCδ is lost, and the re-expression 

of PKCδ in SCC cell lines suppresses their tumorigenicity (D'Costa et al., 2006). 

Furthermore, PKCδ transgenic mice are resistant to both skin papilloma and squamous 

cell carcinoma formation in response to treatment with the DMBA-TPA carcinogenesis 

regimen (Reddig et al., 1999). Interestingly, while PKCδ transgenic mice were resistant 

to the chemical carcinogenesis regimen, they showed no resistance to a UV 

carcinogenesis regimen (Aziz et al., 2006). This surprising finding could illustrate a true 

discrepancy between the requirement for PKCδ as a tumor suppressor in chemical versus 

UV carcinogenesis, or it may be an indication that the endogenous levels of PKCδ are 

sufficient for UV tumor suppression. If the latter is true, then increasing PKCδ levels 

would not be expected to have an additional protective effect over that provided by the 

endogenous protein. In addition, PKCδ levels were reduced in the SCCs generated by UV 

radiation, suggesting that even in the transgenic mice, PKCδ expression was lost during 

tumorigenesis. In order to address this question further, the use of PKCδ knockout mice 

should be utilized with the UV carcinogenesis regimen to determine whether the loss of 

PKCδ function confers susceptibility to SCC formation.  

 

The loss of PKCδ in squamous cell carcinomas likely occurs at the transcriptional level 

(Yadav et al., 2010). PKCδ expression is also lost or decreased in a number of other 
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cancer types, including endometrial, and colon cancer (Reno et al., 2008; Kahl-Rainer et 

al., 1994; Craven and DeRubertis, 1994). In contrast, PKCδ is overexpressed in 

mammary tumors and is associated with metastatic progression (Kiley et al., 1999a; Kiley 

et al., 1999b). How PKCδ can be both oncogenic and tumor suppressive remains to be 

determined.
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1.6 Significance 

 

While PKCδ clearly functions as a tumor suppressor in the skin, the mechanism of tumor 

suppression by PKCδ is not completely understood. Here, we seek to investigate and 

characterize additional tumor suppressor mechanisms of PKCδ in relation to G2/M cell 

cycle regulation and apoptosis. By gaining a better understanding of PKCδ function in 

the epidermis, we may be able to identify new therapies in the treatment of squamous cell 

carcinomas of the skin. Further characterization of the PKCδ signaling network will aid 

in the development of treatments that could restore PKCδ expression, or activation of 

important downstream effectors whose regulation may be altered in the absence of PKCδ 

signaling. 
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Chapter 2 

Materials and Methods 

 

2.1 Retroviral Constructs, Packaging, and Infection 

 

PKCδ-GFP, PKCδ(D327A)-GFP, and PKCδ(K376R)-GFP constructs were graciously 

provided by Dr. Mary E. Reyland (University of Colorado Health Sciences Center) and 

were previously described (DeVries et al., 2002). These constructs were sub-cloned in 

XhoI/NotI sites of the LZRS-Linker retroviral expression vector for infection of cultured 

KCs and mouse embryonic fibroblasts (MEFs). LZRS-PKCδ-cat-FLAG, and the 4-

hydroxytamoxifen-activatable LZRS-PKCδ-cat-ER were previously described (Sitailo et 

al., 2004). A diagram of the LZRS-Linker retroviral plasmid is displayed in Figure 4. 

Please note that the multiple cloning site used for subcloning of PKCδ constructs into the 

LZRS-Linker plasmid is located between the 5’ and 3’ long terminal repeat sequences 

(LTR).  Upon infection with the LZRS retrovirus the LTR sequences, along with any 

intervening sequences, are incorporated randomly into the genome of the infected cell.  

The 5’ LTR then drives transcription of the target gene of interest.  

 

Retroviral supernatant was generated by calcium phosphate-mediated transfection of 

Phoenix-Ampho packaging cells as described previously (Sitailo et al., 2002). Following 

transfection, Phoenix-Ampho cells were positively selected for plasmid incorporation by 

treatment with 10 ng/mL puromycin until the culture dishes reached approximately 75% 

confluency. Phoenix-Ampho cells were then refed with DMEM minus puromycin and 
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incubated at 32 °C overnight to generate retrovirus. Retroviral infection of target cells 

using Phoenix-Ampho retroviral supernatant was done for 1 hr at 1200 rpm and 32°C. 

Schematic diagrams of the PKCδ full length and catalytic fragment constructs used in this 

study are displayed in Figure 5. 

 

2.2 Cell Culture and UV Treatment 

 

Primary human KCs were isolated from neonatal foreskins with Loyola Institutional 

Review Board approval as described previously (Mitra and Nickoloff, 1994; Tibudan et 

al., 2002). KCs and HaCaT cells were cultured in Medium 154CF with 0.07 mM calcium 

and HKGS (Cascade Biologics). Spontaneously immortalized MEFs from wild type or 

PKCδ null mice were cultured in DMEM (Invitrogen) containing 10% fetal bovine 

serum, and were kindly provided by Dr. Anning Lin (University of Chicago). PKCδ-cat-

ER was activated by treatment with 10 µM 4-hydroxytamoxifen (Alexis Biochemicals) 

(Sitailo et al., 2004). In all experiments using PKCδ-cat-ER, control (Linker) transduced 

cells were also treated with 4-hydroxytamoxifen. ATM/ATR inhibition was achieved by 

the addition of 2 mM caffeine in water to the culture medium (Sarkaria et al., 1999). The 

inhibition of Aurora kinases was achieved by the addition of 10 μM Aurora Kinase 

Inhibitor II (189404, Calbiochem) in the culture medium. UV irradiation was done using 

a UV Panelite Unit with approximately 65% emission in the UVB spectrum as previously 

described (D'Costa et al., 2006). 
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11475 bp

3' LTR

5'LTR DUC
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criP
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PGP
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EBNA

BamHI (11424)

BglII (11055)

ClaI (3246)
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HindIII (11436) Not I (1)

Xho I (11460)

NheI (96)

NheI (9574)

Sal I (18)

SalI (2522)
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Figure 4 – LZRS-Linker Plasmid Map. Shown above is a schematic of the 
LZRS-Linker plasmid used in the subcloning and retrovirus generation 
of all PKCδ constructs used within this document.  Please note the 
mltiple cloning site (MCS) is located between the 5’ and 3’ LTR 
sequences, resulting in the incorporation of the target sequence upon 
retroviral recombination into the genome of infected cells.  The puroR
construct allows for selection of transfected Phoenix-Ampho cells 
using puromycin.
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Figure 5–Retroviral PKCδ Constructs. Schematic diagrams of the PKCδ 
constructs used throughout this document.  PKCδ-cat indicates the PKCδ 
catalytic fragment.  ER is the estrogen receptor ligand binding domain. 
GFP is green fluorescent protein. 
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2.3 Cell Cycle Synchronization 

 

For mitotic synchronization experiments, HaCaT cells were treated with 10 ng/mL 

nocodazole for 18 hours to induce metaphase arrest (Chou and Omary, 1994). Cells were 

released from nocodazole arrest by removal of media, washing in PBS, and refeeding 

with nocodazole-free 154CF containing 10 μM 4-hydroxytamoxifen. Exit from mitosis 

was monitored using propidium iodide staining and FACS analysis as described in the 

flow cytometry section of this Chapter. An increased percentage of cells with 2N DNA 

content was interpreted to mean that successful completion of mitosis had occurred.  

 

For G1/S synchronization, cells were treated for 18 hrs with the DNA polymerase 

inhibitor aphidicolin at a concentration of 10 μM (Berger et al., 1979; Pedrali-Noy et al., 

1980). Following incubation, cells were released by removing the media, washing with 

PBS, and refeeding with aphidicolin-free 154CF plus 10 μM 4-hydroxytamoxifen. 

Progression through S phase was measured by propidium iodide staining and FACS 

analysis.  

 

2.4 siRNA Transfection of HaCaT Cells 

 

HaCaT cells were transfected with control (SC-37007, Santa Cruz) or PKCδ siRNA (SC-

44229, Santa Cruz) using the Lipofectamine 2000 transfection reagent (11668, 

Invitrogen) in antibiotics-free 154CF. HaCaT cells were plated at a density of 100,000 

cells per well in a 6-well plate the day prior to transfection. The next day, 100 pmol of 



66 

siRNA per well was combined with 250 μL of Opti-MEM serum free medium and mixed 

gently. Meanwhile, 5 μL per well of Lipofectamine 2000 was diluted in 250 μL Opti-

MEM and incubated at room temperature for 5 min. After incubation, the diluted 

Lipofectamine 2000 solution was mixed with the diluted siRNA solution, and incubated 

at room temperature for 20 min. 500 μL of the Lipofectamine/siRNA solution was added 

to each well containing 1.5 mL of Opti-MEM and the HaCaT cells. After overnight 

incubation, cells were washed and refed with normal 154CF media. 48 hrs after 

transfection, cells were collected for flow cytometry to measure apoptosis, and Western 

blot analysis to verify successful knockdown of PKCδ. 

 

2.5 Antibodies and Western Blotting 

 

Cell lysates were collected by scraping cells in RIPA buffer (50 mM Tris, pH 7.5, 150 

mM NaCl, 1% Triton X-100, 0.1% SDS, 1% Sodium Deoxycholate). Lysates were 

briefly sonicated and centrifuged at 14,000 rpm for 5 min to remove cellular debris. 

Protein concentrations were determined using standard Bradford Reagent methodology. 

Antibodies used for Western blotting include:  Actin (69100, MP Biomedical), Cdc25A 

(SC-97, Santa Cruz) Cdk1 (SC-747, Santa Cruz), Phosphorylated Cdk1(Y15) (SC-

7989R, Santa Cruz), γH2A.X (UBI 05-636, Upstate), Histone H3 (ab1791, Abcam), 

Phosphorylated histone H3(S10) (UBI 06-570, Upstate), P~p53(S15) (9284S, Cell 

Signaling), PKCδ (SC-937, Santa Cruz) (610397, BD),  Rad9 (SC-74464, Santa Cruz), α-

tubulin (UBI 05-829, Upstate), and Vinculin (V4505, Sigma). Secondary antibodies used 

for Western blotting were goat anti-rabbit IgG-Alexa Fluor 680 (A21076, Invitrogen), 
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donkey anti-rabbit IgG-IRDye 800 (611-732-127, Rockland) and goat anti-mouse IgG 

conjugated to AlexaFluor-680 (A21057, Molecular Probes) and donkey anti-mouse IgG 

IRDye 800 (610-732-124, Rockland) for detection using the LI-COR infrared scanning 

system (LI-COR Biosciences).  

 

2.6 Recombinant PKCδ-cat Kinase Reaction 

 

To generate recombinant PKCδ-cat, 400 ng of active caspase 3 (201-038-C005; Alexis 

Biochemicals) was incubated with 200 ng of recombinant full length PKCδ (Panvera 

Corp) in caspase assay buffer (25 mM HEPES pH 7.4, 0.25 M sucrose, 2 mM EDTA, 2.5 

M DTT) for 30 min at 37 ºC. 25 ng of full length or cleaved PKCδ was then incubated 

with 1 μg of recombinant histone H3 (New England Bio) in PKC kinase buffer (50 mM 

Tris-HCl, pH 7.4, 250 mg/mL BSA, 1 mM EDTA, 1.5 mM MgCl2, 25 mM ATP, 1 

mg/mL 4:1 phosphatidyl choline:phosphatidyl serine, 10 nM 12-O-tetradecanoylphorbol-

13-acetate) then incubated at 30 ºC for 30 min. To measure histone H3 Ser 10 

phosphorylation, reactions were subjected to SDS-PAGE Western blot analysis using 

anti-P~H3(S10) primary antibody. 

 

2.7 Flow Cytometry 

 

Cells were collected by trypsinization, pelleted and washed in FACS buffer (phosphate 

buffered saline, 5% fetal bovine serum). Cells were then pelleted and resuspended in 100 

µL of FBS. Cells were fixed by addition of ice-cold 100% ethanol for at least 30 minutes. 
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RNA was digested by treatment with 10 µg/mL RNAse for 15 minutes at 37°C. 

Propidium iodide was added to a final concentration of 50 µg/mL and samples were 

incubated on ice for at least 1 hr. Cell cycle profiles were analyzed using a Beckman 

Coulter EPICS XL-MCL flow cytometer. Histogram overlays were generated using 

FlowJo software. 

 

2.8 Phospho~H3(S10)/DNA PI Staining and Mitotic Index 

 

For mitotic index measurements in MEFs, the cells were treated with or without UV 

followed by 10 ng/mL nocodazole to trap any cells that had overcome UV-induced G2/M 

arrest and entered mitosis. Mitotic index measurements in HaCaT cells were performed 3 

days after PKCδ-cat-ER transduction, and thus were not treated with nocodazole. Cells 

were collected and washed in FACS buffer before being fixed in 3.7% formaldehyde for 

10 minutes. After fixation, cells were permeabilized in 70% EtOH at 4 °C for 30 min. 

After washing in FACS buffer, cells were incubated for 2 hrs in 100 μL of P~H3(S10) 

antibody. Cells were washed and incubated on ice in 100 μL of diluted Alexa Fluor-488 

anti-rabbit secondary for 30 min. Following secondary antibody incubation, cells were 

washed twice and incubated in 500 μL of solution containing 10 µg/mL RNAse and 50 

µg/mL PI for 30 minutes prior to FACS analysis.  
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2.9 Immunofluorescent Staining and Confocal Microscopy 

 

Cells were cultured on glass coverslips, fixed in 3.7% formaldehyde, and permeabilized 

with 0.1% Triton X-100. Alternatively, for staining with certain antibodies, cells grown 

on coverslips were fixed and permeabilized using ice-cold acetone/methanol (1:1). 

Following fixation, coverslips were washed in FA buffer then incubated with primary 

antibody diluted in goat serum to block non-specific binding for 1 hr. Following primary 

antibody incubation, coverslips were washed in FA buffer and incubated in secondary-

fluorophore conjugated secondary antibody diluted 1:400 in goat serum for 1 hr. After 

staining with primary and secondary antibodies, coverslips were washed in FA then 

incubated in 100 ng/mL DAPI for 5 min to stain chromatin. Coverslips were mounted 

onto slides using Gelvatol. Images were generated using a Carl Zeiss LSM-510 confocal 

microscope with 1 µm optical slice at 40x magnification or an Olympus AX80 

epifluorescent microscope, equipped with a QImaging Retiga 4000R digital camera. 

Secondary antibodies used for immunfluorescent microscopy were goat anti-rabbit IgG-

Alexa Fluor 488 (A11008, Molecular Probes) and 568 (A11036, Molecular Probes) and 

goat anti-mouse IgG-Alexa Fluor 488 (A11001, Molecular Probes) and 568 (A21144, 

Molecular Probes). 

 

2.10 Chromosomal Spreads 

 

Primary keratinocytes were plated into 6-well dishes for retroviral infection with LZRS-

Linker or LZRS-PKCδ-cat-ER retrovirus. Cells were infected the day after plating, and 
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treated with 10 μM 4-hydroxytamoxifen the day following infection. 3 days post-

infection, cells were collected by trypsinization, pelleted, and resuspended in 5 mL 

hypotonic buffer (75 mM KCl) to induce cell swelling. Cells were incubated in hypotonic 

buffer at room temperature for 30 minutes, and then pelleted. Cells were resuspended and 

fixed in 3.7% formaldehyde for 10 minutes. Following fixation, cells were pelleted and 

permeabilized in 1% Triton X detergent for 10 minutes. Cells were pelleted and 

resuspended in 300 μL PBS and pelleted onto microscope slides using a cytospin. After 

allowing slides to dry, cells were stained with α-P~H3(S10) antibody for 1 hr at room 

temp, followed by staining of the chromatin with 100 ng/mL DAPI.  

 

2.11 Nuclear/Cytoplasmic Fractionation 

 

Cells were collected in PBS and incubated in hypotonic buffer (10 mM KCl, 50 mM 

HEPES pH 7.9, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, Complete Protease Inhibitor 

(Roche) and 40 mM glycerophosphate, 2 mM sodium fluoride, and 1 mM sodium 

orthovanadate) for 15 min on ice. Triton-X 100 was added to a final concentration of 

0.5% to complete lysis. Samples were centrifuged and the resulting supernatant contained 

enriched cytoplasmic proteins. The pellet (containing nuclei) was washed in hypotonic 

buffer plus 1 M sucrose and lysed in high-salt buffer (400 mM KCl, 50 mM HEPES pH 

7.0, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 1 mM DTT, Complete Protease Inhibitor 

and phosphatase inhibitors). Samples were centrifuged, and the resulting supernatant 

contained enriched nuclear proteins.  
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2.12 Thymine Dimer Southwestern Blot 

 

WT and PKCδ null MEFs were plated into p100 tissue culture dishes. Cells were then 

exposed to 75 mJ/cm² UV radiation. At the indicated times, DNA was harvested from 

cells by scraping the cells into 500 μL of DNA lysis buffer (10 mM Tris-HCl pH = 7.8, 5 

mM EDTA, 0.3 M NaOAC, 1% SDS, 20  μg/mL proteinase K). Protein digestion was 

performed by incubating lysates overnight at 55 ºC. Following overnight incubation, 500 

μL of phenol/chloroform/isoamyl alcohol (25:24:1) was added to each tube with shaking 

for 2 minutes. Tubes were spun in eppendorf centrifuge at 13,000 rpm for 10 minutes. 

The aqueous layer (containing DNA) was transferred to a fresh tube, and 1 mL of ice-

cold 100% EtOH was added to precipitate DNA. Tubes were spun at 13,000 rpm for 2 

min to pellet DNA, and EtOH was carefully decanted following centrifugation. DNA 

pellets were then resuspended in 300 μL of TE buffer.  

 

After resuspension, DNA concentrations were measured using a UV spectrophotometer. 

In preparation for sample loading, 200 ng of DNA were added to a final volume of 500 

μL of TE. DNA was denatured by incubation at 100 ºC for 10 min. Using a slot blot 

apparatus, samples were applied to Hybond-N+ membrane (Amersham) using vacuum 

pressure to pull TE through the membrane. After loading, membrane was allowed to dry. 

DNA was then crosslinked to the membrane using 70,000 J of UVC in a UV stratalinker. 

After crosslinking, the membrane was blocked overnight using Odyssey blocking buffer 

(LI-COR Biosciences). Membranes were then incubated in α-thymine dimer primary 

antibody overnight,washed for 15 min in TBS, followed by goat anti-rabbit IgG-Alexa 
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Fluor 680 (A21076, Invitrogen) for 1hr. Following secondary antibody incubation, the 

membrane was washed in TBST for 1hr then scanned using Licor infrared scanner. 

Densitometry was done using Licor software, and intensities were corrected by removing 

the background membrane intensity. 

 

2.13 Crystal Violet Staining 

 

For focus forming assays, WT and PKCδ null MEFs were plated in p100 tissue culture 

dishes at low density. Cells were cultured to confluent conditions, and maintained at 

confluency for 7 days. To visualize confluency-induced colony formation, cells were 

fixed in 3.7% formaldehyde for 5 minutes at room temperature, and then stained with 

0.05% crystal violet stain for 5 minutes. Plates were then washed extensively in water to 

decrease background staining. After allowing plates to airdry, images were generated 

using a flatbed scanner. 

 

2.14 Soft Agar Colony Formation Assay 

 

PKCδ null MEFs were plated into 6-well dishes for infection with LZRS-PKCδ-GFP 

retrovirus. Three days post-infection, media/soft agar mixture was prepared by combining 

40 mL of 2x DMEM with antibiotics, 10 mL FBS, and 40 mL of melted 44 °C, 1.25% 

Difco agar for a final concentration of 0.5% agar medium. 1 mL of prepared DMEM-agar 

medium was poured into each well of a 6-well plate and allowed to solidify at room 

temperature for 30 min. Meanwhile, PKCδ null control MEFs, and PKCδ null MEFs 
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expressing PKCδ-GFP were resuspended to a final concentration of 100,000 cells per mL 

of DMEM-agar medium, and 1 mL of this suspension was added on top of each well. 

Cells were then grown in soft agar over 10 days then stained using a 1 mg/mL solution of 

p-iodonitrotetrazolium violet (INT) staining to label metabolically active colonies. 500 

μL of INT solution was added on top of each well, and plates were incubated at 37 °C 

overnight. Labelled colonies were counted using a bright field microscope. 
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 Chapter Three 

The PKCδ catalytic fragment induces multiple cell cycle checkpoints 

 

3.1 Ectopic Expression of PKCδ-cat Induces G2/M Cell Cycle Arrest 

 

Many tumor suppressors have critical roles in both the regulation of apoptosis and cell 

cycle regulation (ie. p53, ATM and ATR). This tight link between cell cycle regulation is 

not entirely suprising considering that there are common stimuli between the two 

responses.  For example, DNA damage can potently induce both cell cycle checkpoint 

activation and apoptosis. Furthermore, the onset of apoptosis is often preceded by a 

period of cell cycle arrest while the cell attempts to repair the damaged DNA. Since the 

two processes are so tightly intertwined, there should be proteins which share regulation 

over both pathways.  These proteins are expected to play important roles in tumor 

suppression, as the misregulation of either cell cycle checkpoints or apoptosis promote 

genomic instability and tumor development. 

 

 As discussed in Chapter 1.5.13, PKCδ is a known tumor suppressor in many cancer 

types, including squamous cell carcinoma.  The importance of PKCδ for squamous cell 

carcinoma tumor suppression likely reflects, at least in part, the key role for PKCδ in the 

apoptotic cascade of keratinocytes.  However, like p53 and many other tumor 

suppressors, PKCδ has also been reported to regulate cell cycle progression in many cell 

types, but whether the ability of PKCδ to regulate cell cycle progression is important for 
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PKCδ-mediated tumor suppression is unclear (Watanabe et al., 1992; Takahashi et al., 

2006; Arita et al., 1998). 

 

 While the role of the PKCδ in apoptosis has been extensively studied little is understood 

about the role of PKCδ in regulating cell cycle progression, particularly with regards to 

G2/M checkpoint activation (Watanabe et al., 1992; Takahashi et al., 2006; Arita et al., 

1998). To determine the effect, if any, of the PKCδ catalytic fragment (PKCδ-cat) on the 

cell cycle, we retrovirally expressed PKCδ-cat or an inducible PKCδ-cat/estrogen 

receptor fusion protein (PKCδ-cat-ER) in cultured primary human KCs, HaCaT cells 

(Figure 4), and MEFs (Figure 7A). Propidium iodide staining revealed that PKCδ-cat 

expression increased G2/M KCs approximately 2-fold (p<0.005) compared to the control 

Linker virus population (Figure 5A and B). PKCδ-cat expression had a similar effect on 

the immortalized HaCaT cell line, which harbors mutant p53, although the effect was 

slightly diminished (Lehman et al., 1993). A similar but diminished effect was also 

detected in WT and PKCδ null MEFs, suggesting that the effect of PKCδ-cat on the cell 

cycle is present in multiple species (Figure 7B). Surprisingly, in these experiments, we 

did not detect a significant induction of apoptosis (ie. cells with sub-G1 DNA content) 

following PKCδ-cat induction. 

 

To distinguish between arrest in G2 or M, mitotic index measurements were performed 

on PKCδ-cat-ER transduced HaCaT cells by measuring P~H3(S10) levels and DNA 

content. Using this procedure, cells in mitosis should stain positively for P~H3(S10) and 

have 4N DNA content. In this experiment, a decrease in mitotic index would indicate that 
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PKCδ-cat is inducing G2/M arrest outside of mitosis, while an increase in mitotic index 

would indicate a mitotic arrest. Figure 6A and 6B show that PKCδ-cat-ER causes a 

significant (p<0.001) reduction in mitotic cells, indicating that PKCδ-cat-ER induces a 

G2/M rather than mitotic arrest.  

 
 
 
 
 
 
  
 

Figure 4–Ectopic Expression of PKCδ-cat-FLAG and PKCδ-cat-ER Proteins. 
Western blots displaying relative levels of full length (PKCδ-FL) and catalytic 
fragment (PKCδ-cat) of PKCδ protein are shown in control Linker, PKCδ-cat-
FLAG, and PKCδ-cat-ER transduced KCs. PKCδ-cat-ER transduced cells 
display a strong estrogen receptor, ER, positive band at the same position as the 
PKCδ protein, indicating successful expression of the ER fusion protein. 
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Figure 7–PKCδ-cat Induces G2/M Cell Cycle Arrest in Primary 
Keratinocytes and HaCaT Cells. A) Representative DNA content 
histograms of primary KCs and HaCaT cells transduced with either Linker 
(gray) or PKCδ-cat-ER (white) retrovirus are shown. Propidium iodide staining 
was performed 2-3 days following infection. Similar results were obtained in at 
least 3 independent experiments. B) Quantitation of the percentage of cells 
containing G2/M DNA content in KCs and HaCaT cells 2-3 days after infection 
with either Linker control or PKCδ-cat-ER retrovirus. Graphs represent 
experiments done in triplicate. * Student’s t-test value of p<0.005. 
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Figure 8–PKCδ-cat Induces a Decrease in Mitotic Index in HaCaT Cells 
A) HaCaT cells transduced with either Linker or PKCδ-cat-ER retrovirus 
were harvested and stained for P~H3(S10) and propidium iodide after 3 
days, and analyzed by flow cytometry. B) Quantitation of mitotic indices 
from HaCaT cells treated as in A. ** Student’s t-test value of p<0.001. 
Error bars denote the standard deviation. 
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Figure 9 –PKCδ-cat-ER induces G2/M Cell Cycle Arrest in WT and PKCδ 
Null MEFs. A)Western Blot showing retrovirally transduced 
expression of PKCδ-cat-ER in wild type and PKCδ null MEFs. B) 
Wild type and PKCδ null MEFS were transduced with either Linker or 
PKCδ-cat-ER retrovirus, and after 3 days stained with PI and DNA 
content was measured using flow cytometry. The percentage of cells in 
the G2/M phase of the cell cycle is shown. * Student’s t-test value of 
p<0.01 
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3.2 PKCδ-cat Expression Induces G2/M Checkpoint Signaling 

 

Since many of the components that positively and negatively regulate G2/M cell cycle 

progression are localized to the nucleus, it is likely that PKCδ-cat would need to have at 

least some nuclear localization to participate in the G2/M checkpoint. In addition, it has 

been reported by several groups that upon exposure to various apoptotic stimuli, PKCδ 

translocates to the nucleus, and this nuclear translocation is critical for the apoptotic 

function of PKCδ (Scheel-Toellner et al., 1999; Yoshida et al., 2003; Eitel et al., 2003).  

 

To examine PKCδ sub-cellular localization, we performed nuclear/cytoplasmic 

fractionation on HaCaT cells before and 18 hours after exposure to 30 mJ/cm² UV 

radiation. Fractionation results revealed that both the full length PKCδ and PKCδ-cat 

were present in the nucleus, with PKCδ-cat detected only after UV exposure (Figure 8A). 

The decrease in levels of the full length PKCδ after UV exposure are likely a 

consequence of UV-induced cleavage of PKCδ. UV radiation caused a significant 

fraction of histone H3 to be detected in the cytoplasmic extract, suggesting apoptotic 

degradation of the nuclear membrane occurred in the cells exposed to UV radiation. 

Confocal microscopy using a carboxyl-terminal GFP fusion of PKCδ (PKCδ-GFP) and 

DAPI staining was used to confirm the sub-cellular fractionation data. PKCδ-GFP was 

localized to both the cytoplasm and nucleus before and after UV irradiation (Figure 8B). 

This localization provides a means by which PKCδ may interact with important 

components of the G2/M cell cycle checkpoint pathway.  
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We next tested whether PKCδ-cat induced molecular changes consistent with G2/M 

checkpoint activation. One key aspect of this checkpoint involves the phosphorylation of 

Cdk1 on tyrosine 15 by Wee1 and Myt1 kinases, an event which has been shown to 

inhibit Cdk1 activity and prevent entry into mitosis (Parker et al., 1995; Parker and 

Piwnica-Worms, 1992; Piwnica-Worms et al., 1991; Mueller et al., 1995; Booher et al., 

1997). We measured relative levels of P~Cdk1(Y15) in PKCδ-cat expressing KCs and 

found that PKCδ-cat expression induced elevated levels of P~Cdk1(Y15) compared to 

the control Linker-transduced cells. The PKCδ-cat kinase dead (K378A) mutant did not 

induce P~Cdk1(Y15) (Figure 9). As a positive control, UV radiation also induced 

P~Cdk1(Y15).  

 

PKCδ signaling is known to promote the production of reactive oxygen species (ROS), 

and elevated intracellular levels of ROS can induce oxidative DNA damagne (Bossi et 

al., 2008b). The induction ROS following PKCδ-cat expression might then induce 

indirect checkpoint activation by causing oxidate damage to DNA. If this were true, and 

PKCδ-cat-induced G2/M checkpoint activation occured by stimulating DNA damage, 

then inhibition of ATM and ATR, two genes critical for recognizing DNA damage and 

activating cell cycle checkpoints, should block PKCδ-cat induced cell cycle arrest. To 

examine this, we treated primary human KCs and HaCaT cells ectopically expressing the 

PKCδ-cat-ER with 2 mM caffeine, a known inhibitor of ATM and ATR (Figure 10) 

(Sarkaria et al., 1999). Interestingly, we found that inhibition of ATM/ATR activity by 

caffeine treatment did not block PKCδ-cat induced G2/M arrest in primary KCs or 
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HaCaT cells. This finding provides substantial evidence that PKCδ-cat induced G2/M 

checkpoint activation occurs independently of ATM/ATR signaling. 
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Figure 10–PKCδ Protein Levels are Present in both Cytoplasm and Nucleus 
Before and After UV irradiation. A) Western blot showing levels of 
PKCδ protein in cytoplasmic and nuclear extracts of untreated or 30 
mJ/cm² UV exposed KCs after 18 hrs. The full length (FL) and catalytic 
fragment (CF) of PKCδ are indicated by arrows. Vinculin and histone H3 
are presented as cytoplasmic and nuclear markers, respectively. B) 
Confocal microscope images were taken showing cytoplasmic and nuclear 
staining of PKCδ-GFP fusion protein both before and 18 hrs after exposure 
to 30 mJ/cm² UV radiation. DAPI staining is displayed to demonstrate 
nuclear localization. Images were taken using 40x objective and 1 µm 
optical slice. Scale bar denotes 25µm. 
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Figure 11–UV and PKCδ-cat Expression Cdk1 Induce Tyrosine 
Phosphorylation. Western blot showing levels of P~Cdk1(Y15), 
total Cdk1, and PKCδ after retroviral transduction of either PKCδ-
cat-ER, PKCδ-cat, or the kinase dead PKCδ(K378A)-cat-ER. The 
PKCδ-cat-ER fusion proteins run to the same position in the gel as 
the full length PKCδ. KC lysate harvested 18 hrs after exposure to 
30 mJ/cm² UV radiation is shown as a positive control for 
P~Cdk1(Y15) induction. Actin protein levels are displayed as a 
loading control. n.s. indicates the detection of a non-specific band 
on the Western Blot.
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Figure 12–PKCδ-cat Induced G2/M Arrest Occurs Independently of 
ATM/ATR.PI cell cycle analysis of LZRS-Linker or LZRS-PKCδ-
cat-ER transduced primary KCs and HaCaT cells incubated with 2 
mM caffeine and 10 μM 4 OH-Tamoxifen for 48 hours. The 
percentage of cells in G2/M phase of the cell cycle is displayed from 
experiments performed in triplicate. * Student’s t-test value of p<10-

5;  # Student’s t-test value of p<10-4. 
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3.3 PKCδ Controls Multiple Cell Cycle Checkpoints 

 

To further investigate the role for PKCδ in controlling overall cell cycle progression, we 

utilized the cell cycle synchronizing agents nocodazole, and aphidicolin. The 

combination of these agents with our PKCδ-cat-ER tamoxifen-inducible constructs 

allowed us to specifically activate PKCδ-cat-ER activity at various cell cycle stages, and 

determine whether PKCδ-cat could influence cell cycle progression in cell cycle stages 

other than G2/M. 

 

Nocodazole, a microtubule depolymerizing agent causes cells to arrest in mitosis by 

activating the spindle assembly checkpoint (Chou and Omary, 1994). The subsequent 

removal of nocodazole from the culture medium allows cells to form mitotic spindles and 

complete chromosomal segregation and mitosis. It has been reported by several groups 

that PKCδ is a negative regulator of cytokinesis (Watanabe et al., 1992; Takahashi et al., 

2006). To investigate whether PKCδ-cat expression can induce late-stage mitotic arrest, 

we treated Linker and PKCδ-cat-ER expressing HaCaT cells with nocodazole overnight 

to arrest cells at metaphase. The next day, between 70-85% of cells had arrested within 

mitosis based on DNA content and observed cell morphology. Next, we simultaneously 

released the cells from metaphase arrest and treated with 4-hydroxytamoxifen to activate 

the PKCδ-cat-ER fusion protein. Cells were harvested at various time points post-release 

to measure the return of both cell populations to 2N DNA content, indicative of the 

successful completion of mitosis.  
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Strikingly, while Linker infected control HaCaT cells were able to largely recover from 

nocodazole arrest, complete mitosis, and return to G1 phase, PKCδ-cat-ER activation 

significantly prevented HaCaT cells from completing mitosis (Figure 11). This was 

evidenced by the maintenance of 4N DNA content in the PKCδ-cat-ER experimental 

group. This suggests that in addition to regulating the G2/M checkpoint, and in 

agreement with previously published work, PKCδ also plays a role in regulating 

progression through the late stages of mitosis.  

 

In addition to nocodazole-mediated mitotic synchronization, we utilized the DNA 

polymerase inhibitor aphidicolin to arrest cells in the G1/S phase of the cell cycle (Berger 

et al., 1979; Pedrali-Noy et al., 1980). Upon overnight incubation of both Linker and 

PKCδ-cat-ER infected HaCaT cells with 10 μM aphidicolin, approximately 70-75% of 

cells were arrested in G1 or early S phase (Figure 12). The removal of aphidicolin from 

the culture medium allowed cells to resume DNA replication, progress through S phase 

and enter into G2 and mitosis. As in our nocodazole release experiments, we 

simultaneously removed aphidicolin and treated with 4-hydroxytamoxifen to activate 

PKCδ-cat-ER. We then measured the progression of cells through S phase and into G2/M 

by collecting at various timepoints, and staining with propidium iodide.  

 

Strikingly, while Linker cells successfully completed S phase, entered mitosis, and began 

to return to G1 over the time, PKCδ-cat-ER cells entered S phase, but never progressed 

through S phase into G2 (Figure 12). This can conclusion can be observed by the 

diminished increase in the percentage of PKCδ-cat-ER trancduced cells with G2/M DNA 
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content after aphidicolin release (Linker: 15% after arrest increased to 40% 9 hours after 

release; PKCδ-cat-ER: 10% after arrest increased to less than 20% after release). 

Similarly, following the initial entry into S-phase following aphidicolin release, PKCδ-

cat-ER cells appear unable to accumulate, as only approximately 2-3% exit S-phase and 

enter G2/M phase based on DNA content analysis. These results indicate that PKCδ-cat 

can impede progression through S-phase, and are consistent with the recent finding that 

PKCδ could stimulate premature G1 phase cell cycle progression followed by S phase 

arrest and apoptosis (Santiago-Walker et al., 2005). 
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Figure 13–PKCδ-cat-ER Activation Delays Mitotic Exit After Release from 
Nocodazole Induced Metaphase Arrest. Linker (solid) and PKCδ-
cat-ER (dashed) transduced HaCaT cells were incubated with 10 
ng/mL nocodazole overnight to induce metaphase arrest. Cells were 
then washed and refed with nocodazole-free media + 10 μM 4-
hydroxytamoxifen to activate PKCδ-cat-ER. Cells were collected at 
indicated timepoints, fixed and stained with propidium iodide to 
measure DNA content. 
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Figure 14–PKCδ-cat-ER Activation Delays Progression Through S-phase 
After Release from Aphidicolin Arrest. Linker and PKCδ-cat-ER 
transduced HaCaT cells were incubated with 10 μM aphidicolin 
overnight to induce G1/S phase arrest. Cells were then washed and 
refed with aphidicolin-free media + 10 μM 4-hydroxytamoxifen to 
activate PKCδ-cat-ER. Cells were then collected at indicated 
timepoints, fixed and stained with propidium iodide to measure DNA 
content. Error bars represent the standard deviation from the mean of 
the experiment done in triplicate. 
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 Chapter 4 

PKCδ is Required for UV-Induced G2/M Checkpoint Activation 

 

4.1 UV-Induced G2/M Cell Cycle Arrest Requires PKCδ  

 

Since expression of PKCδ-cat was capable of inducing a pronounced G2/M arrest and 

checkpoint activation in KCs and HaCaT cells, we next determined the requirement for 

PKCδ in DNA damage-induced cell cycle arrest. To address this issue, wild type and 

PKCδ null MEFs were exposed to UV radiation (Figure 13 and 14). We found that 

exposure of the wild type MEFs to 30 mJ/cm² UV radiation induced a pronounced G2/M 

arrest which persisted up to 24 hours after exposure (Figure Figure 14 and 15). Strikingly, 

UV exposure failed to induce G2/M arrest in PKCδ null MEFs although there was a 

slight increase in the percentage of cells in S phase. The slight increase in the percentage 

of cells in the G2/M phase of the cell cycle 12 hours following UV-irradiation may be a 

reflection of an initial PKCδ-independent G2/M arrest (Figure 15 and 17). Importantly, 

PKCδ null MEFs did undergo a G2/M arrest when transduced with PKCδ-cat-ER virus, 

indicating that they were competent to arrest in G2/M (Figure 7).  

 

Mitotic indices were measured by staining for P~H3(S10) levels (a known marker of 

mitosis) and DNA content. Measurement of mitotic indices revealed that UV caused a 

significant (p<0.05) decrease in mitotic wild type MEFs, but not PKCδ null MEFs, at 6 

hours, indicating that the UV-induced arrest was in G2 (Figure 16).  In contrast, when 

mitotic indices were gathered 1 hr after UV exposure, both WT and PKCδ null MEFs 
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displayed a comparable decrease in mitotic index (Figure 17). This suggests that PKCδ is 

not required for early UV-induced G2/M arrest, but that maintenance of the G2/M arrest 

over time requires PKCδ. G2/M checkpoint activation compared to maintenance in the 

response to DNA damage has been described for other proteins, including p53, and will 

be elaborated upon in the discussion. 

 

Interestingly, G2/M checkpoint override by the ATM/ATR inhibitor caffeine drove UV-

irradiated wild type MEFs into apoptosis (as measured by sub-G1 DNA content), but did 

not induce apoptosis in PKCδ null MEFs (Figure 18). The lack of apoptosis after 

caffeine-mediated inhibition of checkpoint activation in PKCδ null MEFs is likely a 

reflection of the crucial pro-apoptotic functions of PKCδ. Interestingly, PKCδ null cells 

treated with UV plus caffeine accumulated in S-phase (p<10-4), indicating a possible S-

phase checkpoint independent of PKCδ and ATM/ATR function. 

 

We were also interested in the requirement of PKCδ in the cell cycle response to other 

forms of DNA damage. Ionizing radiation exposure induces both double and single 

stranded DNA breaks, and is well known to be a potent inducer of G2/M cell cycle arrest. 

We decided to use ionizing radiation as a source of DNA damage in our MEF system to 

determine the effect of PKCδ loss on G2/M checkpoint response. As occurred following 

exposure to UV radiation, WT MEFs underwent a pronounced G2/M cell cycle arrest 

following exposure to low (4 Gy) and high (20 Gy) doses of γ-radiation (Figure 19). 

Similar to the response to UV radiation, PKCδ null MEFs exposed to 4 Gy of γ-radiation 

had a dimished G2/M cell cycle arrest compared to WT MEFs. Strikingly, even after 
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exposure to high doses of γ-radiation (20 Gy), PKCδ null MEFs demonstrated a 

diminished ability to undergo G2/M arrest.  This finding suggests that PKCδ is important 

for the G2/M checkpoint response to both UV and ionizing radiation.  It will be 

interesting to determine the universiality of PKCδ in the G2/M checkpoint response to 

other types of DNA damage (ie. ROS, inter-strand crosslinks, etc...). 

 

 

 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 15–PKCδ Protein Levels in WT and PKCδ Null MEFs. Western blot 

displaying PKCδ protein levels in wild type (WT) and PKCδ null MEF 
whole cell lysates. α-Tubulin levels are shown as a loading control.  
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Figure 16–WT, but not PKCδ Null MEFs Undergo a G2/M Cell Cycle Arrest 
Following Exposure to UV Radiation. A) Representative DNA content 
histograms of WT and PKCδ null MEFs before and 18 hrs after exposure 
to 30 mJ/cm². B) The percentage of WT and PKCδ null MEFs in the 
G2/M phase of the cell cycle before and after exposure to 30 mJ/cm² UV 
radiation is displayed. Error bars denote the standard deviation of the 
mean from experiments performed in triplicate. * Student’s t-test value 
of p<0.005. 
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Figure 17–PKCδ Null MEFs Fail to Arrest in G2/M Over 24 Hours 
Following UV-Radiation Exposure. The percentage of WT and PKCδ 
null MEFs with G2/M DNA content at various times following 
exposure to 30 mJ/cm² UV radiation is displayed. Error bars denote the 
standard deviation of the mean from experiments performed in 
triplicate. # Student’s t-test value of p<0.005. 
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Figure 18–UV Induces a Decrease in Mitotic Index in WT but not PKCδ Null 
MEFs A) WT and PKCδ null MEFs were exposed to 10 mJ/cm2 UV and 
treated with 100 ng/mL nocodazole and stained for P~H3(S10) and 
propidium iodide 6 hrs after UV exposure. Flow cytometry analysis is 
shown, with the P~H3(S10) positive, G2/M DNA content cells circled as 
the mitotic cells. B) Quantitation of mitotic indices from HaCaT cells 
treated as in A. ** Student’s t-test value of p<0.05. 
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Figure 19–UV Induced Decrease in Mitotic Index 1 Hour After UV-
Irradiation Occurs in Both Wild Type and PKCδ Null MEFs. 1 hr 
after exposure to 30 mJ/cm² UV radiation, cells were collected, and 
mitotic index was determined by flow cytometry. Note the apparent 
decrease in mitotic index occurred in both WT and PKCδ Null MEFs, in 
contrast to what is observed at later timepoints. 
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Figure 20–Caffeine sensitizes WT but not PKCδ null MEFs to UV-induced 
apoptosis. WT and PKCδ null MEFs were exposed to 30 mJ/cm² UV 
radiation in the presence or absence of 2 mM caffeine. The Percentage 
of cells in each phase of the cell cycle is displayed. Error bars denote 
the standard deviation of the mean from experiments performed in 
triplicate. * Student’s t-test value of p<0.05; # Student’s t-test value of 
p<0.05; ** Student’s t-test value of p<10-4. 
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Figure 21 – γ - Radiation Induces a G2/M Arrest in WT and PKC δ Null  MEFs
WT and  PKC δ null MEFs were exposed to 4 or 20 Gy γ - radiation. 
Cells were collected 18 hrs after irradiation, and DNA content w as 
analyzed. The percentage of cells in the G2/M phase is displayed . 
Error bars denote the standard deviation of the mean from experi ments 
performed in triplicate. * Student’s t-test value of p<10 - 4; ** Student’s 
t - test value of p<0.0005, # Student’s t-test value of p<0.001; @  
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4.2 UV-Induced G2/M Arrest Requires PKCδ Cleavage and Kinase Activity 

 

We next attempted to rescue G2/M checkpoint integrity in PKCδ null MEFs by 

retrovirally transducing them with the catalytically competent full-length PKCδ-GFP 

(Figure 20). To address whether PKCδ kinase activity or caspase cleavage are required to 

restore the G2/M checkpoint response, we also transduced a kinase dead mutant, 

PKCδ(K376R)-GFP, or a kinase competent mutant that possesses a mutated caspase 

cleavage site, PKCδ(D327A)-GFP. All PKCδ-GFP constructs were expressed at similar 

levels (Figure 20). Expression of PKCδ-GFP in PKCδ null MEFs had little effect on the 

cell cycle distribution of non-damaged cells (Figure 21). As expected, expression of 

PKCδ-GFP in PKCδ null MEFs restored the G2/M checkpoint response to UV radiation 

suggesting the altered cell cycle response of PKCδ null MEFs was a direct consequence 

of PKCδ loss of function (Figure 21). In contrast, the kinase dead PKCδ(K376R)-GFP 

mutant was not able to restore the G2/M checkpoint in the PKCδ null MEF background, 

indicating that kinase activity is necessary for this PKCδ checkpoint function. Strikingly, 

expression of the cleavage site mutant PKCδ was also unable to restore UV-induced 

G2/M arrest in the PKCδ null MEFs (Figure 21). This suggests that PKCδ cleavage is a 

critically important event in the enforcement of the G2/M checkpoint after exposure to 

UV radiation. The dose of UV radiation (30 mJ/cm²) used in these experiments was 

sufficient to induce caspase 2 and 3 activity, both of which are capable of cleaving PKCδ 

(unpublished results from Dr. Leonid Sitailo). 
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4.3 UV-induced G2/M checkpoint activation requires PKCδ 

 

We next examined components of the G2/M checkpoint pathway before and after UV 

exposure in wild type and PKCδ null MEFs. In agreement with the cell cycle analysis in 

Figures 14-16, we found that UV exposure induced G2/M checkpoint activation as 

assessed by increased levels of P~Cdk1(Y15) in wild type but not PKCδ null MEFs 

(Figure 22). In agreement with the cell cycle data presented in Figure 21, re-expression of 

PKCδ-GFP, but not either the PKCδ kinase dead or caspase cleavage mutant PKCδ, 

restored phosphorylation of P~Cdk1(Y15) after UV exposure (Figure 22). This supports 

the idea that both kinase activity and caspases cleavage of PKCδ are important events in 

the activation of the G2/M checkpoint after DNA damage.  

 

Despite lacking an intact G2/M checkpoint response, PKCδ null MEFs exhibited UV-

induced γH2A.X and P~p53(S15), both of which are direct substrates of ATM and ATR 

kinases (Figures 22 and 23). This indicates that ATM/ATR are activated successfully in 

PKCδ null MEFs, but that there is a disruption in downstream signaling when PKCδ is 

lost. Successful activation of ATM/ATR in PKCδ null MEFs reinforces the findings in 

Figure 10, that PKCδ-cat affects the G2/M checkpoint downstream, or independently of 

ATM and ATR. Furthermore, the treatment of MEFs with caffeine partially repressed the 

UV-induced phosphorylation of p53(S15), supporting the direct role of ATM and ATR in 

this phosphorylation event (Figure 23). Please note that the slightly repressed levels of 

γH2AX induction after UV in the PKCδ null MEFs were not reproducible between 

multiple experiments. 
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In an attempt to identify a known cell cycle regulator that was misregulated in PKCδ null 

MEFs, we performed immunofluorescent staining for Cdc25A in WT and PKCδ null 

MEFs (Figure 24). Misregulation of Cdc25A after UV exposure could be one explanation 

for the inability of PKCδ null MEFs to phosphorylate Cdk1(Y15) in response to DNA 

damage. However, despite the fact that PKCδ null MEFs lack an intact G2/M DNA 

damage checkpoint they appeared to regulate Cdc25A in the same way as WT MEFs. In 

both WT and PKCδ null MEFs, Cdc25A was sequestered in the cytoplasm after UV 

radiation exposure (Figure 24). The possibility remains that PKCδ may be responsible for 

regulating a different Cdc25 isoform, as the misregulation of one isoform would be 

sufficient to block elevated levels of P~Cdk1(Y15) (Varmeh and Manfredi, 2009). 
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Figure 22–Expression of PKCδ-GFP Fusion Proteins in PKCδ Null MEFs. 
WT and PKCδ null MEFs were untransduced, or transduced with either 
WT PKCδ-GFP, the cleavage resistant PKCδ(D327A)-GFP, or the 
kinase inactive PKCδ(K376R)-GFP and exposed to 30 mJ/cm² UV. 
Protein lysates were analyzed for expression of PKCδ and Actin. 
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Figure 23–WT PKCδ, but not Caspase Resistant or Kinase Dead PKCδ 
Rescues G2/M Checkpoint Function in PKCδ Null MEFs. A) 
Representative DNA content histograms of WT and PKCδ null MEFs 
before and 18 hrs after exposure to 30 mJ/cm² UV radiation. B) The 
percentage of WT and PKCδ null MEFs in G2/M after transduction 
with the indicated PKCδ-GFP fusion protein before and after exposure 
to 30 mJ/cm² UV radiation is displayed. Error bars denote the standard 
deviation of the mean from experiments performed in triplicate. * 
Student’s t-test value of p<0.005. 
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Figure 24–WT PKCδ but not Caspase Resistant or Kinase Dead PKCδ 
Mutants restores Cdk1(Y15) Phosphorylation After UV. WT and 
PKCδ null MEFs expressing PKCδ-GFP, PKCδ(D327A)-GFP, or 
PKCδ(K376R)-GFP were exposed to 10 mJ/cm² UV radiation. Protein 
lysates were collected 18 hrs after irradiation and analyzed for levels of 
P~Cdk1(Y15), total Cdk1, γH2A.X, and Actin. P~Cdk1(Y15)/Cdk1 
densitometry ratios are displayed, and were similar in multiple 
experiments. 
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Figure 25–Phosphorylation of Checkpoint Proteins 6hrs after UV Irradiation 
in WT vs. PKCδ-/- MEFs. WT and PKCδ null MEFs were exposed to 
10 mJ/cm² UV radiation and protein lysates were collected after 6 
hours for detection of the phosphorylation status of p53, γH2AX, and 
Cdk1. Note the suppression of P~p53(S15) and γH2AX levels by 
caffeine, indicating successful inhibition of ATM/ATR activity. 
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Figure 26 Both Wild Type and PKCδ Null MEFs. A)WT and B) PKCδ null 
MEFs were exposed to 30 mJ/cm² UV radiation. Cells were fixed and 
stained for Cdc25A protein 18 hours post UV exposure. Images are 
taken at 40x magnification using an epifluorescent microscope. 
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 Chapter 5 

The PKCδ Catalytic Fragment Induces Phosphorylation of Histone 

H3(S10) 

 

5.1 PKCδ-cat Induces Histone H3(S10) Phosphorylation in Interphase Cells 

 

While investigating PKCδ-cat-induced G2/M arrest within G2 and mitosis we discovered 

that while PKCδ-cat expression blocks mitotic entry by stimulating activation of the 

G2/M checkpoint, it also results in the induction of histone H3(S10) phosphorylation 

(Figure 25). Massive phosphorylation of Histone H3 Ser 10 and 28 occurs during 

prophase and is tightly linked with mitotic chromatin condensation, so an increase in 

P~H3(S10) levels would seem to indicate a mitotic rather than G2 arrest. While this 

result at first seemed contradictory to our work showing PKCδ-cat induced G2 arrest, it 

became clear upon further investigation that PKCδ-cat-induced phosphorylation occurred 

in cells that lacked the characteristic morphological features of mitotic cells (Figure 26). 

That is, they did not present with mitotic chromatin, they lacked any semblance of a bi-

polar mitotic spindle apparatus, and they maintained intact nuclear lamina (Figures 26 

and 27).  
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To confirm that PKCδ-cat induced histone H3 phosphorylation outside of mitosis, we 

utilized a pharmacologic approach to inhibit Aurora B, the kinase responsible for 

phosphorylating histone H3(S10) during the prophase of mitosis (Giet and Glover, 2001; 

Goto et al., 2002). Strikingly, while inhibition of Aurora B almost completely abrogated 

P~H3(S10) levels in the Linker control cells, it caused no significant change in the 

PKCδ-cat induced P~H3(S10) (Figure 28). To directly determine the cell cycle status of 

PKCδ-cat-induced P~H3(S10) positive cells, we simultaneously measured P~H3(S10) 

levels and DNA content using propidium iodide. While P~H3(S10) positive cells were 

almost completely restricted to the G2/M phase in Linker cells, we discovered that 

PKCδ-cat expression induced a significant percentage of P~H3(S10) positive cells with 

both interphase and mitotic DNA content (ie. 2N, 4N and intermittent content) (Figure 

29). Together, these findings demonstrate that PKCδ-cat induces P~H3(S10) outside of 

mitosis, and independently of the mitotic H3 kinase, Aurora B. 

 

In addition to mitotic H3 phosphorylation by Aurora B, several other kinases, including 

IKKα, MSK3 and 6, and Fyn have been implicated as Histone H3 kinases in interphase 

cells (Duncan et al., 2006; Yamamoto et al., 2003). To investigate whether PKCδ-cat 

may be directly phosphorylating Histone H3(S10) we decided to test the ability of 

recombinant PKCδ-cat to phosphorylate histone H3 on Ser10 in vitro. We utilized 

recombinant PKCδ and recombinant active caspase 3 to generate constitutively activated, 

recombinant PKCδ-cat. We next incubated this reaction with recombinant histone H3 and 

non-radiolabelled ATP and subsequently analyzed histone H3(S10) phosphorylation by 

Western blot. Strikingly, PKCδ-cat, and to a lesser extent, full length PKCδ were able to 



110 

phosphorylate histone H3 on Ser 10 in vitro, raising the possibility that PKCδ may be a 

histone H3 kinase in the cell (Figure 30). It remains possible that the PKCδ 

phosphorylation in vitro may be an artifact of the reaction conditions and further 

experiments are needed to verify that PKCδ is a true H3 kinase.   
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Figure 27– Expression of PKCδ-cat-ER induces phosphorylation of histone 
H3 on Ser10. Primary keratinocytes were retrovirally transduced with 
either Linker, PKCδ-cat-FLAG or the kinase dead PKCδ-catKD-
FLAG. 1 day post-infection, all cells were treated with 10μM 4-
hydroxytamoxifen to induce activation of ER fusion proteins. Protein 
lysates were collected 3 days post-infection and subjected to Western 
blot analysis of protein levels with the indicated antibodies. 
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Figure 28– PKCδ-cat-Induced P~H3(S10) Positive Cells Lack Mitotic 
Morphology. Primary keratinocytes were retrovirally transduced with 
either Linker, or PKCδ-cat-ER. 1 day post-infection, all cells were 
treated with 10μM 4-OH tamoxifen to induce activation of ER fusion 
proteins. 3 days post-infection, cells were fixed and stained with the 
indicated antibodies. Arrows indicate P~H3(S10) positive cells. 
Pictures taken at 40x magnification. Inlayed images are displayed at 
160x. 
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Figure 29– PKCδ-cat Induced P~H3(S10) Positive Cells Have Intact Nuclear 
Envelopes. Linker and PKCδ-cat-ER infected keratinocytes were 
treated with 10μM 4-hydroxytamoxifen. Cells were fixed 3 days after 
infection and stained with anti-P~H3(S10) and anti-Lamin B2. Arrows 
indicate P~H3(S10) positive nuclei. Note the intact nuclear envelope in 
PKCδ-cat-ER induced P~H3(S10) positive cells. * represents a 
P~H3(S10) positive Linker infected cell with an intact nuclear 
envelope that is likely in prophase, prior to nuclear envelope 
breakdown. Images were taken at 40x magnification. 
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Figure 30– Inhibition of Aurora Kinase does not Block PKCδ-cat Induction 
of P~H3(S10). Linker and PKCδ-cat-ER infected keratinocytes were 
treated with 10μM 4-hydroxytamoxifen with or without 10μM Aurora 
Kinase inhibitor. Cells were fixed 3 days after infection and stained 
with anti-P~H3(S10) and anti-α-tubulin. Pictures displayed at 20x 
magnification. A) Representative images showing the failure of AKI 
treatment to prevent PKCδ-cat induced P~H3(S10). B). Percentage of 
P~H3(S10) positive cells per 20x field. 3 fields per experimental group 
were counted in blinded manner. * Student’s t-test value of p<0.05. ** 
Student’s t-test value of p<0.01
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Figure 31– PKCδ-cat-Induced P~H3(S10) Positive Cells Have Variable DNA 
Content. Primary keratinocytes were retrovirally transduced with 
either Linker, or PKCδ-cat-ER. Cells were treated with 10μM 4-
hydroxytamoxifen on day 1 and collected for staining on day 3. Cells 
were stained with anti-P~H3(S10) and propidium iodide for flow 
cytometry analysis. A) representative histograms from 3 separate 
experiments. B) Error bars denote the standard deviation of the mean 
from experiments performed in triplicate. * Student’s t-test value of 
p<0.005. 
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Figure 32– PKCδ-cat Phosphorylates Histone H3 (S10) in vitro. Recombinant 
PKCδ-cat was generated by incubation with recombinant activated 
caspase 3. Reactions were then incubated with recombinant histone H3 
and ATP. Proteins from the reactions were subjected to Western 
blotting to measure the cleavage of PKCδ and phosphorylation of 
Histone H3 on Ser10 using anti-P~H3(S10) monoclonal antibody.  
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5.2 PKCδ is Required for UV Radiation-Induced Phosphorylation of Histone H3 

 

Since we had determined that PKCδ-cat induced P~H3(S10) in interphase cells, and that 

PKCδ could directly phosphorylate histone H3 in vitro, we next addressed the question of 

whether PKCδ was required for the phosphorylation of histone H3. Since it has been 

previously reported that UV radiation can induce the phosphorylation of histone H3, and 

UV radiation is known to activate PKCδ, we decided on a model of UV-induced histone 

H3 phosphorylation to test the requirement for PKCδ (He et al., 2005b). As in our cell 

cycle studies described in Chapter 4, we utilized WT and PKCδ null MEFs for our PKCδ 

loss of function studies with regards to histone H3 phosphorylation. 

 

As expected, UV-irradiation of WT MEFs resulted in elevated levels of P~H3(S10) as 

measured both by Western blot, and P~H3(S10) FACS analysis (Figure 31 and 32). 

Furthermore, the UV induced phosphorylation occurred in cells across the cell cycle. 

Strikingly, PKCδ null MEFs did not demonstrate an increase in phosphorylated histone 

H3 after exposure to UV radiation, suggesting that PKCδ is required for this event 

(Figure 31 and 32).  

 

Similarly, treatment of HaCaT cells with PKCδ siRNA not only protected the cells from 

UV-induced apoptosis, but also resulted in decreased levels of P~H3(S10) before and 

after UV radiation, suggesting that the findings in the MEF system can be applied to 

human cells (Figure 33). Please note that in this experiment, the cells were not subjected 

to growth factor withdrawal, resulting in an elevated level of baseline P~H3(S10) prior to 
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UV due to the high percentage of cells within mitosis at the time of the assay.  This 

results in an apparent decrease in P~H3(S10) levels after UV radiation exposure, and this 

decrease can likely be explained by a UV-induced decrease in mitotic index. 

 
5.3 UV Radiation Exposure Induces Nuclear Foci Containing PKCδ/P~H3(S10) 

 

The discovery that, at least in vitro, PKCδ-cat was capable of directly phosphorylating 

histone H3(S10) led us to investigate whether any co-localization between PKCδ and 

phosphorylated H3 could be detected after exposure of HaCaT cells to UV radiation. To 

visualize PKCδ protein, we retrovirally transduced PKCδ-GFP into HaCaT cells. In 

control HaCaT cells, PKCδ-GFP was detected in both the cytoplasm and the nucleus, 

however, the localization pattern was diffuse in both compartments (Figure 34). 

Following exposure to UV, nuclear PKCδ-GFP localization shifted to a much more 

punctate pattern. Furthermore, the PKCδ-GFP foci that formed following UV exposure 

appeared to co-localize with regions of intense DAPI staining, suggesting that PKCδ-

GFP was recruited to condensed chromatin following UV-irradiation. 

 

We also investigated P~H3(S10) staining patterns before and after cells were exposed to 

30 mJ/cm² UV radiation. In control HaCaT cells, significant histone H3 phosphorylation 

was only detected in mitotic cell populations, and no noticeable co-localization between 

P~H3(S10) and PKCδ-GFP was observed (Figure 35). In contrast, HaCaT cells exposed 

to UV radiation had an overall higher level of P~H3(S10). Furthermore, the P~H3(S10) 

staining indicated that the phosphorylation of histone H3 was occurring on distinct sub-

nuclear foci, and these foci co-localized with regions that also had elevated levels of 
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PKCδ-GFP (Figure 35B). This finding demonstrates that following UV radiation 

exposure, PKCδ is in the proper location to phosphorylate histone H3(S10). 

 

We considered the possibility that following UV-irradiation, PKCδ might co-localize 

with proteins that have more clearly defined roles in the DNA damage response. By 

establishing additional patterns of co-localization, we may be able to develop a better 

understanding for the role of histone H3 phosphorylation in the response to UV radiation. 

With this in mind, we decided to investigate two well characterized markers of the DNA 

repair, Rad9 and γH2AX. Strikingly, both were induced by UV-radiation exposure, 

however, in contrast to the P~H3(S10) staining after UV, there appeared to be no obvious 

co-localization with PKCδ nuclear foci (Figures 36 and 37). 

 

5.4 Are There Structural Changes to P~H3(S10) Associated Chromatin? 

 

Histone H3 phosphorylation on Ser 10 and 28 is tightly linked to chromatin condensation 

during mitosis. It is also well known that many nuclear changes, including chromatin 

condensation, occur during mitosis, but the mechanism of apoptotic chromatin 

condensation is not well understood. Given the role of histone H3 phosphorylation during 

mitosis, we questioned whether there may be an analogous role for this phosphorylation 

event during apoptotic chromatin condensation. To study this hypothesis, we generated 

chromosome spreads from Linker and PKCδ-cat-ER expressing primary keratinocytes. 

We stained these spreads with DAPI and anti-P~H3(S10) to visualize the chromatin 

architecture of PKCδ-cat induced P~H3(S10) positive cells. However, despite the fact 
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that PKCδ-cat induced P~H3(S10) positive cells lacked mitotic chromosomes, they could 

not be distinguished from normal interphase nuclei, suggesting that there were no 

detectable gross changes to chromatin structure in these cells (Figure 38). This finding 

does not rule out the possibility PKCδ induced P~H3(S10) causes structural changes to 

the chromatin, and may simply be a reflection of the limitations of this assay to detect 

changes to chromatin architecture. 
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Figure 33– PKCδ is Required for the UV-Induced Phosphorylation of Histone 
H3(S10). WT and PKCδ Null MEFs were treated with or without 
30mJ/cm² UV radiation. Cells were collected 18hrs post-irradiation, 
fixed, and stained with anti-P~H3(S10) and propidium iodide. A) 
Representative histograms showing UV-induced P~H3(S10) in WT but 
not PKCδ null MEFs. B) Error bars denote the standard deviation of 
the mean from experiments performed in triplicate. * Student’s t-test 
value of p<0.005. 



122 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UV:
CTRL 0.1% FBS

—— 10 30 75

CTRL 0.1% FBS

—— 10 30 75

Wild Type MEF PKCδ Null MEF

P~H3(S10)

Actin

UV:
CTRL 0.1% FBS

—— 10 30 75

CTRL 0.1% FBS

—— 10 30 75

Wild Type MEF PKCδ Null MEF

P~H3(S10)

Actin

Figure 34– PKCδ is Required for the UV-Induced Phosphorylation of Histone 
H3(S10). WT and PKCδ Null MEFs were grown in DMEM plus 0.1% 
FBS to induce G1 growth arrest for 48hrs. Cells were then treated with 
or without 30mJ/cm² UV radiation. Protein lysates were collected 
18hrs post-irradiation and subjected to Western blot analysis to 
measure levels of P~H3(S10)  
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Figure 35–Knockdown of PKCδ Suppresses Apoptosis and UV-Induced 
Phosphorylation of Histone H3(S10) in HaCaT Cells. HaCaT cells 
were transfected with CTRL or PKCδ siRNA. 48 hrs post-transfection, 
cells were treated with or without UV. 18 hrs post-UV-irradiation A) 
cells were collected for FACS analysis of apoptosis, and B) protein 
lysates were gathered and subjected to Western blot analysis of PKCδ 
and P~H3(S10) levels.  
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Figure 36–UV Induces PKCδ Recruitment to Nuclear Foci. HaCaT cells were 
retrovirally transduced to express PKCδ-GFP. Following infection cells 
were treated with or without 30 mJ/cm² UV radiation. Cells were fixed 
18hrs post irradiation, stained with DAPI to visualize chromatin, and 
photographed using a confocal microscope. Images were taken at 40x 
magnification. 
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Figure 37–UV-Induced Co-localization of PKCδ with P~H3(S10). HaCaT cells 
were retrovirally transduced to express PKCδ-GFP. Following 
infection cells were treated with or without 30 mJ/cm² UV radiation. 
Cells were fixed 18hrs post irradiation, stained with anti-P~H3(S10) 
and DAPI and photographed using a confocal microscope. A) 40x 
magnification. B) 160x magnification.
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Figure 38A–Control HaCaT-PKCδ-GFP cells display diffuse PKCδ-GFP 
nuclear localization, and weak Rad9 staining. HaCaT cells 
expressing PKCδ-GFP were plated on coverslips, fixed and stained for 
Rad9 and DAPI. Images are displayed at 80x magnification. 
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Figure 38B–UV-Induced Rad9 foci do not colocalize with PKCδ-GFP HaCaT 
cells expressing PKCδ-GFP were plated on coverslips, exposed to 30 
mJ/cm² UV radiation, fixed 18 hrs post UV, and stained for Rad9 and 
DAPI. Images are displayed at 80x magnification. 
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Figure 39A–Control HaCaT-PKCδ-GFP cells display diffuse PKCδ-GFP 

nuclear localization, and weak γH2AX staining. HaCaT cells 
expressing PKCδ-GFP were plated on coverslips, fixed and stained for 
γH2AX and DAPI. Images are displayed at 80x magnification. 
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Figure 39B–UV-induced γH2AX foci do not colocalize with PKCδ-GFP. 
HaCaT cells expressing PKCδ-GFP were plated on coverslips, exposed 
to 30 mJ/cm² UV radiation, fixed 18 hrs post UV, and stained for 
γH2AX and DAPI. Images are displayed at 80x magnification. 
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Figure 40–PKCδ-cat-ER Induced P~H3(S10) Positive Nuclei do not show 
Obvious Alterations to Chromatin Morphology. Primary 
Keratinocytes expressing either Linker or PKCδ-cat-ER were treated 
with 4-hydroxytamoxifen, fixed and chromosomal morphology was 
analyzed using chromosome spreading technique. 
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  Chapter 6 
 

Other Findings of Note 

 

6.1 PKCδ is Required for Efficient Repair of UV-Induced Thymine Dimers 

 
 

It has been previously reported that PKCδ is important for the DNA damage-induced 

activation of the DNA repair/cell cycle checkpoint protein Rad9 (Yoshida et al., 2003). 

We postulated that if PKCδ is important for the activation of critical components of the 

DNA repair machinery, then PKCδ loss may impair the cells ability to repair damaged 

DNA. This would be particularly deleterious in the case of the epidermis, since the 

exposure to UV radiation from the sun is known to be highly mutagenic. To investigate 

the role, if any, of PKCδ in the repair of UV damaged DNA, we exposed WT and PKCδ 

null MEFs to 75 mJ/cm² UV radiation. We then used a Southwestern blotting technique 

to directly measure thymine dimer levels over time, since thymine dimer formation is a 

key step in the mutagenic effects of UV. The successful repair of UV damaged DNA 

should correlate with decreased thymine dimer levels. We found that compared to the 

WT MEFs, PKCδ null MEFs were impaired in their ability to remove thymine dimers 

following UV exposure (Figure 39). This suggests that PKCδ has an important function 

in promoting the repair of UV damaged DNA, although whether this role is connected to 

the ability of PKCδ to promote cell cycle arrest remains to be determined. 
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Figure 41–Delayed Removal of Thymine Dimers in PKCδ Null MEFs. WT and 
PKCδ null MEFs were exposed to 75 mJ/cm² UV radiation and DNA 
was collected at the indicated timepoints and subjected to Southwestern 
blot analysis of thymine dimer levels. A) Thymine dimer southwestern 
blot showing thymine dimer levels at indicated time points post-UV 
irradiation. B) Densitometric analysis of bands in A shows delayed 
removal of thymine dimers in PKCδ null MEFs. 
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6.2 PKCδ Suppresses Colony Formation and Anchorage Independent Growth 

 

A common in vitro measure of tumorigenicity is the ability of cells to evade contact 

inhibition and form foci after growth to confluency, and the ability of cells to grow in an 

anchorage-independent manner (ie. in soft agar or methylcellulose). Since PKCδ can 

suppress proliferation by inducing cell cycle arrest, and apoptosis, we sought to 

determine whether the loss of PKCδ would enhance these characteristics in PKCδ null 

MEFs compared to their WT counterparts. Strikingly, while WT MEFs underwent a 

sustained confluency induced growth arrest, PKCδ null MEFs formed numerous foci that 

were clearly visible after crystal violet staining (Figure 40). This suggests that the loss of 

PKCδ allows MEFs to escape from contact inhibition, allowing them to continue to 

proliferate, even when grown under confluent conditions. 

 

When grown in soft agar, WT MEFs formed no detectable colonies. In contrast, PKCδ 

null MEFs formed numerous colonies detectable by MTT staining, and the ability to 

grow in soft agar could be re-expressed by ectopically expressing PKCδ-GFP (Figure 

41). The ability of PKCδ-GFP expression to suppress growth suggests that the ability to 

grow in soft agar was a direct consequence of PKCδ loss, and not an artifact of the MEF 

immortalization process.  
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Wild Type 
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PKCδ-/-
MEF

Figure 42–PKCδ loss allows escape from contact inhibition. WT and PKCδ 
null MEFs were maintained under confluent culture conditions for 7 
days, fixed, and stained with crystal violet to visualize confluency 
induced foci. Note that while WT MEFs appear to have arrested upon 
reaching confluency, PKCδ null MEFs have formed numerous colonies 
across the plates. 
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Figure 43–PKCδ-GFP Suppresses the Growth of PKCδ Null MEFs in Soft 
Agar. Control and PKCδ-GFP transduced PKCδ null MEFs were 
suspended in soft agar and cultured for 7 days prior to addition of DTT 
to label metabolically active cells. A) Representative image of DTT 
labeled colonies in Control and PKCδ-GFP transduced PKCδ null 
MEFs. B) Colonies in Control and PKCδ-GFP transduced PKCδ null 
MEFs per 35mm culture dish were counted.  
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 Chapter 7 

Discussion 

 

7.1 The PKCδ Catalytic Fragment is a Critical Regulator of the G2/M Checkpoint. 

 

The majority of studies on PKCδ function have focused on the pro-apoptotic role that the 

kinase plays both in vivo and in vitro. We have now demonstrated that in addition to 

these pro-apoptotic effects, PKCδ also regulates cell cycle progression by participating in 

the G2/M DNA damage checkpoint. We have shown that retroviral expression of PKCδ-

cat in primary KCs, immortalized KCs with mutant p53, and MEFs is sufficient to induce 

G2/M checkpoint activation and cell cycle arrest. PKCδ-cat induced G2/M checkpoint 

activation requires kinase competent PKCδ since a kinase dead PKCδ mutant failed to 

activate the G2/M checkpoint (Figure 21 and 22). 

 

Based on our studies, PKCδ appears to also play an important role in the response to γ-

radiation (Figure 19). Although PKCδ null MEFs underwent a significant G2/M arrest 

following high dose γ-radiation (20 Gy), the arrest was significantly diminished when 

compared to the arrest which occurred in the WT MEFs.  Furthermore, no detectable 

G2/M arrest occurred in the PKCδ null MEFs following exposure to low dose γ-radiation 

(4 Gy).  

 

It is well known that the type of DNA damage caused by the ultraviolet and ionizing 

radiation are very different, and as a result, different DNA repair pathways are activated 
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in response to each. Ionizing radiation induces both single and double stranded breaks in 

the DNA, and activates NHEJ or HR DNA repair responses (See Chapter 1.4.4-1.4.6). In 

contrast, UV radiation causes the formation of bulky DNA adducts (ie. pyrimidine 

dimers), and the nucleotide excision repair pathway is required for the proper removal of 

these adducts (1.4.3). Similarly, UV and ionizing radiation activate different upstream 

components of cell cycle checkpoint pathways, although many of the mediators of these 

pathways are shared. Ionizing radiation activates cell cycle checkpoints through ATM, 

and a lesser extent ATR activation. In contrast, UV radiation induces a checkpoint 

response primarily through ATR. The use of multiple upstream kinases to respond to 

different types of DNA damage likely allows the cell to respond to a wide variety of 

genotoxic stresses with the same outcome, that is cell cycle arrest, DNA repair, and if the 

damage is of a high enough severity, apoptosis.  

 

The relative requirement for PKCδ to elicit proper checkpoint signaling in response to 

UV as compared to γ-radiation, indicates that PKCδ activation likely occurs downstream 

of both ATM and ATR mediated checkpoint responses. Interestingly, ATM has been 

reported to phosphorylate and activate PKCδ in response to 5-azacytidine treatment 

(Yoshida et al., 2003). Whether ATR can similarly activate PKCδ in response to UV 

exposure remains to be determined. Regardless of the activation of PKCδ downstream of 

ATM or ATR, the diminished G2/M cell cycle arrest after both UV and γ-radiation in 

PKCδ null MEFs suggests that PKCδ may be required for the response to a wide variety 

of DNA damaging agents, and may even be universally required for maintenance of the 

G2/M checkpoint over time. The role for PKCδ in checkpoint maintenance may be 
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critical for providing the cell with enough time to properly repair all DNA damage before 

resuming cell cycle progression, indicating that PKCδ is critical for preserving genomic 

integrity. 

 

7.2 Caspase Cleavage is Critical for PKCδ Induced Checkpoint Function 

 

In addition to kinase activity, the cleavage of PKCδ appears to be critical to checkpoint 

integrity since the expression of a caspase-resistant PKCδ(D327A)-GFP mutant was 

unable to restore the G2/M checkpoint in PKCδ null MEFs (Figures 21 and 22). PKCδ is 

cleavable by numerous proteases including caspases 2 and 3, but the protease responsible 

for cleaving PKCδ in this circumstance remains unclear (Denning et al., 1998; Emoto et 

al., 1995; Panaretakis et al., 2005). It is possible that PKCδ may be a substrate for the 

caspase 2 containing DNA-PKcs-PIDDosome complex which was recently demonstrated 

to be integral to proper G2/M checkpoint maintenance after ionizing radiation exposure 

(Shi et al., 2009). Indeed, previous work in our lab has demonstrated that both caspase 2 

and 3 can cleave PKCδ in vitro (unpublished results from Dr. L. Sitailo). Caspase 2 

appears to be unique among the caspases in that it is the only caspase with constitutive 

nuclear localization, and appears to play an important role not only in the apoptotic 

cascade, but also in regulating cell cycle progression (Shi et al., 2009; Zhivotovsky et al., 

1999; Ho et al., 2009). Further studies will need to be done to verify whether caspase 2 

mediates the cleavage of PKCδ in vivo, during UV-induced activation of the G2/M 

checkpoint. 
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Interestingly, PKCδ appears to be required for G2/M checkpoint maintenance rather than 

induction, since a decrease in mitotic index was observed in both wild type and PKCδ 

null MEFs 1 hour after UV exposure (Figure 17), but not after 6 hours (Figure 16). 

Proteins such as p53, p21 and even the DNA-PKcs-PIDDosome complex have been 

similarly implicated in G2/M checkpoint maintenance rather than initial checkpoint 

activation (Shi et al., 2009; Bunz et al., 1998). This discrepancy in early compared to late 

time points of checkpoint activation likely correlates with the appearance of the PKCδ 

catalytic fragment, which will only appear once caspases have become activated. The role 

for PKCδ in maintenance may reflect a bimodal activation of the G2/M checkpoint 

following UV radiation exposure. Initially, checkpoint activation likely occurs through 

PKCδ-independent activation of an ATR/Chk1 signaling axis which results in the 

phosphorylation and inhibition of Cdk1. This early PKCδ-independent arrest appears tobe 

transient, as the loss of PKCδ allows cells to escape UV-induced G2/M arrest at later 

timepoints. Because caspase cleavage of PKCδ is important for G2/M checkpoint 

function, it is likely that at these later timepoints, PKCδ is cleaved and can participate in 

checkpoint maintenance.  

 

7.3 Potential Interactions of PKCδ with DNA Repair and Cell Cycle Machinery 

 

Several PKCδ substrates involved in the DNA damage response have been identified. 

These include both p53 and the p53 family member, p73β (Yoshida et al., 2006a; Liu et 

al., 2007; Ren et al., 2002). PKCδ has been demonstrated to phosphorylate and activate 

the DNA repair protein Rad9 after exposure to the DNA damaging agent 5-azacytidine in 
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an ATM-dependent manner (Yoshida et al., 2003). It is possible ATR, a major kinase 

activated by UV radiation, is also capable of activating PKCδ in a similar fashion. Other 

components of the DNA damage response that have been identified as PKCδ substrates 

include DNA-PKcs and topoisomerase IIα (Bharti et al., 1998; Yoshida et al., 2006b). 

Together, these studies reveal the importance of PKCδ in the DNA damage repair 

pathway and indicate it may be functioning at several levels. Nuclear localization of 

PKCδ is important for DNA damage-induced apoptosis, and may be required during 

multiple processes following DNA damage, including checkpoint activation (DeVries et 

al., 2002; DeVries-Seimon et al., 2007).  

 

The novel cell cycle regulatory role for PKCδ described in Chapters 3 and 4 has 

important implications for the role of this protein as a tumor suppressor. Based on these 

results, the loss of PKCδ during tumor development would allow for the cell to progress 

through the cell cycle, even in the presence of DNA damage, while at the same time 

evading apoptosis. This is illustrated by wild type MEFs being driven into apoptosis by 

caffeine-induced G2/M checkpoint override after UV irradiation, while PKCδ null MEFs 

do not arrest, nor undergo apoptosis even after treatment with caffeine (Figure 18). 

Similar to wild type MEFs, KCs are highly sensitive to caffeine treatment after UV 

irradiation (Lu et al., 2008; Heffernan et al., 2009). Thus, KCs lacking PKCδ, such as in 

squamous papillomas and carcinomas, are also likely to have this dual defect in the 

response to DNA damage, resulting in both reduced cell cycle arrest and reduced 

apoptosis (D'Costa and Denning, 2005; Reddig et al., 1999; Aziz et al., 2006). 
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Furthermore, concomitant treatment of LZRS-PKCδ-cat-ER transduced cells with the 

ATM/ATR inhibitor caffeine was unable to prevent PKCδ-cat-ER induced G2/M arrest. 

This suggests that PKCδ-cat is inducing G2/M checkpoint activation independent of the 

ATM/ATR kinases, and may actually function internally to the G2/M checkpoint signal 

cascade (Figure 41). Consistent with this, UV induced γH2A.X and P~p53(S15) in PKCδ 

null MEFs but did not induce P~Cdk1(Y15) (Figure 22).  

 

It will be important in the future to identify substrates for PKCδ within the G2/M 

checkpoint signaling hierarchy. We demonstrated that the misregulation of UV-induced 

G2/M checkpoint activation that occurs in the absence of PKCδ cannot be explained by 

misregulation of Cdc25A (Figure 24). Possible alternatives to Cdc25A include, but are 

not limited to, the other Cdc25 phosphatases, the checkpoint kinases Chk1 and Chk2, and 

the Cdk1 kinase Wee1 (Russell and Nurse, 1987; Sancar et al., 2004). The importance of 

cell cycle checkpoint function to cancer cells has prompted intensive study of small 

molecule inhibitors targeted towards components of the G2/M checkpoint such as 

ATM/ATR, Chk1 and 2, as well as the Aurora family for potential use as cancer 

therapeutics (Schmidt and Bastians, 2007; Bucher and Britten, 2008; Hose et al., 2009). 

Better understanding of how PKCδ participates in this cell cycle checkpoint is important 

for developing better cancer treatments in the future. 
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Figure 44–PKCδ-cat is Important for G2/M Checkpoint Signaling 
Downstream or Independent of ATR Signaling. UV-induced 
activation of the G2/M DNA damage checkpoint requires PKCδ 
cleavage. The substrates of PKCδ within the checkpoint pathway 
remain unclear, but it is likely that they function downstream of ATR 
signaling since caffeine could not block PKCδ-cat induced G2/M 
arrest. 
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7.4 PKCδ-cat Induces Histone H3(S10) Phosphorylation Outside of Mitosis 

 

The discovery that PKCδ-cat expression induced the phosphorylation of histone H3 on 

Ser10 outside of mitosis, and independently of Aurora B activity was very surprising 

(Figures 25-29). Our findings suggest that this phosphorylation event occurred on a 

global scale in an analogous manner to that which occurs during mitosis; however, we 

did not detect any obvious changes to the chromatin architecture after PKCδ-cat-ER 

induced H3 phosphoryation. In addition to its role in mitotic chromatin condensation, 

there is increasing evidence for histone H3 phosphorylation during interphase, where it is 

important for the transcription of certain genes (Paulson and Taylor, 1982).  

 

Early evidence of histone H3 phosphorylation outside of mitosis came from the discovery 

that phosphorylation of the N-terminal tail of histone H3 rapidly occurred in response to a 

number of stimuli, including growth factors, phorbol esters, okadaic acid, and protein 

synthesis inhibitors (Mahadevan et al., 1991). Histone H3 phosphorylation was then 

identified at transcriptionally active heat shock-induced puffs on polytene chromosomes 

of D. melanogaster (Nowak and Corces, 2000). Now, specific H3 kinases have been 

identified within various pathways of transcriptional activation. For example, TNFα 

stimulation of NF-κB target genes involved the phosphorylation of Ser 10 by IKKα 

(Yamamoto et al., 2003). Furthermore, EGFR induced gene transcription of c-jun and c-

fos was accompanied by MSK1 and 2 dependent phosphorylation of histone H3(S10) at 

the promoters of these genes (Duncan et al., 2006; Cheung et al., 2000). Histone H3 

phosphorylation has now been implicated in a host of additional transcriptional activation 
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pathways and at specific gene promoters, including some signaling pathways that are 

dependent upon PKC signaling (Lefebvre et al., 2002; DeManno et al., 1999; Huang et 

al., 2004; Karrasch et al., 2006). 

 

It remains unclear whether H3 phosphorylation is directly important for transcriptional 

activation, or whether it functions as a precursor to other post-translational modifications. 

For example, there is a correlation between histone H3 phosphorylation and acetylation 

status on the promoters of some genes (Clayton et al., 2000). Indeed the phosphorylation 

of histone H3 has been implicated in the recruitment of the histone acetyltransferase 

GCN5 (Lo et al., 2000; Espinos et al., 1999; Clements et al., 2003). Other findings, 

however, implicate H3(S10) phosphorylation as preventing H3(K9) acetylation 

(Edmondson et al., 2002). It should be noted that this finding may be an artifact of the 

S10 phosphate shielding the lysine 9 acetylation mark from detection using the lysine 9 

acetylated antibody. 

 

How histone H3 phosphorylation can lead to opposing chromatin states, that is open 

during trans-activation, and condensed during mitosis, remains a matter of debate. It is 

possible that the mark itself does not confer a certain status upon chromatin, but recruits 

other proteins and co-factors that mediate the outcome. These mediators may be 

regulated in a cell cycle dependent manner, explaining why condensation is the outcome 

of H3 phosphorylation during mitosis. It is also possible that the difference arises from 

the pattern of phosphorylation. During mitosis, histone H3 is phosphorylated across 
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entire chromosomes. In contrast, during gene activation, H3 phosphorylation is present 

on specific gene promoters.  

 

UV exposure is known to induce the phosphorylation of histone H3 on Ser10, but the 

biological consequence of this phosphorylation event in the context of the response to 

UV is not well understood (Allison and Milner, 2003; Zhong et al., 2000). Of note, one 

group has described the phosphorylation of histone H3 on Ser 10 during gleotoxin 

induced apoptosis, and a correlation between P~H3(S10) and enhanced sensitivity to 

nuclease digestion of the chromatin was reported (Waring et al., 1997). Indeed, we found 

that UV induced the phosphorylation in WT but not PKCδ null MEFs, suggesting a 

requirement for PKCδ in this event (Figures 31-32). Furthermore, PKCδ co-localizes 

with P~H3(S10) in the nuclei of UV-irradiated HaCaT cells, raising the possibility that 

PKCδ may be the kinase responsible for H3 phosphorylation in response to UV radiation 

(Figure 35). 

 

Other histone phosphorylation events have also been implicated in apoptosis. Apoptotic 

stimuli induce the phosphorylation of histone H2B on T14, and this phosphorylation has 

been implicated in apoptotic chromatin condensation and fragmentation (Ajiro, 2000; Ura 

et al., 2007). Since the phosphorylation of H2B and H3 occur during biologically similar 

circumstances, it is appealing to speculate that histone H3(S10) phosphorylation may also 

be involved in apoptotic chromatin condensation. The kinases implicated in H2B(T14) 

phosphorylation during mitosis include Mst1 and particularly interesting in light of these 

studies, PKCδ (Cheung et al., 2003; Hu et al., 2007). Interestingly, phosphorylated 
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histone H2B co-localizes with γH2AX and components of the DNA damage machinery 

during death receptor induced apoptosis, putting it in the proper context to interact with 

components of the cell cycle and DNA repair apparatus (Solier and Pommier, 2009; 

Solier et al., 2009). PKCδ has also been implicated in the phosphorylation of histone H3 

on Thr45 during differentiation induced apoptosis in neutrophils, although it was not 

formally proven that this phosphorylation event played a causative role in the cell death 

(Hurd et al., 2009). 

 

Additional studies are clearly needed to better understand the biological context of UV-

induced phosphorylation of histone H3. That is, when histone H3 becomes 

phosphorylated in the response to UV radiation, what is the status of the cell?  We are 

currently undertaking studies using inhibitors of DNA repair (caffeine), and late stage 

apoptosis (z-VAD.fmk) to attempt to block the UV-induced phosphorylation of histone 

H3 in WT MEFs. In doing so, we hope to gain a better understanding of when histone H3 

becomes phosphorylated in the UV response, as well as what role it may be playing in 

said response. Unfortunately, the abundant nature of histone proteins in the cell does not 

lend itself to genetic manipulation, and so we are limited to correlations at this point, 

barring the extension of these studies into budding yeast, which only have one histone H3 

genetic locus.  
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Figure 45–UV-Induced Apoptosis Requires PKCδ Cleavage. Apoptotic doses 
of UV radiation initiate a cascade of events that converge upon the  
cleavage of PKCδ by caspases. Cleaved PKCδ then phosphorylates a 
number of targets, which we now believe includes histone H3 to 
promote apoptosis. The requirement and consequence of histone H3 
phosphorylation remains unclear. 
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7.5 Tumor Suppressor Mechanisms of PKCδ 

 

Given the well characterized role of PKCδ in promoting apoptosis, it is not entirely 

surprising that most attention on PKCδ as a tumor suppressor has focused on its role in 

the apoptotic cascade (Reyland et al., 1999; Reyland et al., 2000; Matassa et al., 2001; 

Carpenter et al., 2002; Denning et al., 2002; Lasfer et al., 2006). While the ability to 

induce apoptosis is a common characteristic of tumor suppressors, many tumor 

suppressors also function by limiting cell cycle progression. PKCδ has been previously 

implicated in regulating the progression through multiple stages of the cell cycle, 

including G1/S, and mitosis (Lagory et al., 2009; Watanabe et al., 1992; Takahashi et al., 

2006; Ashton et al., 1999; Afrasiabi et al., 2008; Nakagawa et al., 2005).  

 

We believe that in addition to promoting apoptosis, the expanding role of PKCδ in 

promoting cell cycle arrest, particularly through the G2/M phase of the cell cycle, may 

represent an additional mechanism of PKCδ mediated tumor suppression. The dual 

function of PKCδ in both the promotion of apoptosis and cell cycle arrest implies that the 

loss of PKCδ expression during tumorigenesis would be especially deleterious.  Many, if 

not all cancers demonstrate elevated levels of genomic instability.  Despite the increased 

risk of cancer progression associated with genomic instability, it is inherently toxic to the 

cell and can promote both apoptosis and cell cycle arrest.  A cell that has lost PKCδ 

expression, however, would be naturally resistant to both apoptosis and cell cycle arrest, 

allowing the cell to continue to proliferate, accumulating more mutations, and ultimately 

allowing the cancer to become more aggressive.  The loss of PKCδ would also have 
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important implications early during tumorigenesis, as the inability to execute cell cycle 

arrest or apoptosis may increase the likelihood that initiating mutations to genes like p53 

would be allowed to escape repair. 

 

It will be critical to determine how PKCδ-cat influences G2/M checkpoint activation in 

the future, as a better understanding of this checkpoint may uncover novel targets for 

cancer therapy. By better understanding the downstream targets of PKCδ-cat, it may be 

possible to devise therapeutic strategies to activate important downstream components 

even in the absence of PKCδ, a possibility that may be particularly effective in those 

tumors which have lost PKCδ expression.  
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