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ABSTRACT 
 

Host cell proteins, termed restriction factors, which inhibit viral replication 

at various stages of the viral life cycle, determine the species-specific tropism of 

numerous retroviruses. Many members of the TRIM family of proteins act as viral 

restriction factors. One well-characterized example is the ability of TRIM5α from 

rhesus macaques (rhTRIM5α) to inhibit human immunodeficiency virus type-1 

(HIV-1) soon after viral entry but prior to reverse transcription (RT).  It is well 

established that the restriction requires an interaction between the viral capsid 

lattice and the B30.2/SPRY domain of TRIM5α.  Following the binding of the viral 

core, TRIM5α mediates an event or series of events that result in the abortive 

disassembly of the viral core in a manner that prevents the accumulation of reverse 

transcription (RT) products.  When the proteasome was inhibited using 

pharmacological drugs, TRIM5α-mediated inhibition of RT products and abortive 

disassembly of the viral core were relieved without affecting the ability of TRIM5α 

to inhibit retroviral infection.  Even though parts of the mechanism of TRIM5α-

mediated restriction of HIV-1 were identified, the specific roles of individual 

molecules have yet to be examined.  In AIM 1 I identify a direct interaction between 

TRIM5α and the proteasome complex. Furthermore, this interaction occurs during 

restriction of HIV-1.  Additionally, in AIM 2 I demonstrate that SUMO-1 and SUMO  
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interacting motifs (SIMs) are important for TRIM5α restriction of HIV-1 and 

TRIM5α stability.  

As mentioned before, the viral capsid is the determinant of TRIM5-mediated 

restriction.  The capsid houses the viral RNA and other necessary proteins for a 

productive infection.  However, the precise process of HIV-1 uncoating is still 

unknown.  Studies suggest that the process of uncoating is modulated by viral and 

cellular factors.  Previously, HIV-1 was shown to traffic on microtubules, in a dynein 

and kinesin dependent mechanism.  However, key host proteins that mediate 

uncoating of the core are unknown.  In AIM 3 I show that HIV-1 utilizes 

microtubules, and in particular dynein to facilitate uncoating of the core.     

This dissertation further establishes that HIV-1 core interacts with various 

proteins in the host during early events of the viral life cycle.   
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CHAPTER I 
 

INTRODUCTION 
 
HIV-1 Epidemic/Statistics 
 

Human Immunodeficiency Virus type 1 (HIV-1) is a lentivirus that primarily 

infects CD4+ T cells and the gradual loss of these cells ultimately leads to Acquired 

Immunodeficiency Syndrome (AIDS) in the absence of antiretroviral therapy.  

Currently, 1.2 million people in the United States and 30 million people worldwide 

are living with HIV-1.  Nearly 30 million people with AIDS have died since the 

epidemic began. While huge strides were made in the development of drug 

therapies to help patients living with HIV-1/AIDS, new therapies are needed due to 

drug resistance.  Since HIV-1 mutates at a relatively fast rate the emergence of drug 

resistant viruses prompted the treatment regimen to consist of three antiretrovirals 

that target various steps in the viral life cycle.  Therefore, there is a requirement for 

the development of additional therapeutic intervention strategies.  Understanding 

the molecular interactions between HIV-1 and host proteins will be critical in the 

development of future therapies. 
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Stages of HIV-1 Infection 

Acute Infection 

In most cases HIV-1 is transmitted through the genital tract or rectal mucosa. 

While barriers exist in the genital tract and rectum, such as columnar and stratified 

squamous epithelium, the virus penetrates these barriers to gain access to target 

cells.  The target cells are predominately CD4+ T cells, monocytes and macrophages.  

While the translocation across the epithelial and mucosal barriers is inefficient, a 

productive infection in the body arises from a single infecting virus (founder virus).  

During this phase the person experiences influenza-like symptoms that include 

fever, swelling of the lymph nodes, and inflammation, which is common to many 

diseases.  Therefore, in most cases initial HIV-1 infection goes unrecognized.  

Following transmission of the virus, there is a period of about 10 days that is known 

as the eclipse phase (Figure 1).  During this phase the viral RNA cannot be detected 

in plasma.  Following this phase, the virus reaches the draining lymph nodes where 

it infects activated T cells, and further disseminates throughout the body to other 

lymphoid tissues.  Within 21-28 days after initial infection, the plasma viremia 

reaches a peak that is usually more than a million RNA copies per ml of blood 

(Figure 1).  During the peak of viremia, CD4+ T cells are reduced but return to near 

normal levels in the blood (remain low in the gut associated lymphoid tissue (GALT) 

(1).    

Chronic Infection 
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Following the acute infection, a person can be asymptomatic for 8 to 10 years 

without any clinical signs of an infection.  However, this period can vary between 

individuals. During this time, there is a standoff between the immune system and 

HIV-1.  CD4+ T cells continue to die because of cytotoxic T lymphocyte (CTL) 

responses, active viral replication, virus induced cytotoxic effects, and immune 

activation (Figure 1).  

AIDS Progression  

In the absence of antiretroviral therapy, CD4+ T cell levels become insufficient to 

control opportunistic infections and tumors, which leads to progression of AIDS (2, 

3) (Figure 1).  Therefore, AIDS patients succumb to complications associated with 

opportunistic infections and cancers.  
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Figure 1. Stages of HIV-1 infection.  Following initial infection, at 6 weeks the viral 
RNA levels are high and the CD4+ T cell levels decline.  After this primary infection, 
the patient will enter clinical latency (or chronic infection), during which they 
remain asymptomatic for up to 10 years.  During this phase, the viral RNA levels are 
relatively constant and CD4+ T cell levels continue to decline.  In absence of 
antiretroviral intervention, this phase eventually leads to the progression of AIDS 
which occurs when opportunistic infections and cancer arise, ultimately leading to 
death.  Open access-image dedicated to public use.   
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HIV-1 Structure and Genome 

HIV-1 9.7 kb genome like all retroviruses encodes Group specific antigen (Gag), 

Polymerase (Pol), and Envelope (Env) genes.  Env is translated and cleaved to 

generate gp120 (SU), a surface protein and gp41 (TM), a transmembrane protein 

that are within the viral membrane to mediate fusion events.  Pol is cleaved into 

reverse transcriptase (RT), integrase (IN), and protease (PR).  Shortly after virus 

budding, Gag is further processed by the HIV-1 PR into mature Gag proteins p17 

matrix (MA), p24 capsid (CA), p7 nucleocapsid (NC), and p6.  This maturation causes 

a morphological shift in virion structure from a spherical core to a conical one due 

to the condensation of CA to form a shell around the viral RNA/NC complex.  The 

virus has two strands of RNA coding for the viral genome that are encased in a 

capsid core, which is surrounded by a membrane derived from the host plasma 

membrane (Figure 2A). Within the RNA primary transcript there are sequences that 

are important for replication such as Primer binding site (PBS), encapsidation signal 

(), Rev response element (RRE), and a polypurine tract (PPT). The RNA is reverse 

transcribed into DNA by RT, which is subsequently be integrated into the host 

genome.  The long terminal repeats (LTRs) are composed of U3, R, and U5 elements 

that flank the genome on the 5’ and 3’ that contain sequences that are important for 

transcription.  Additionally, the genome encodes for two regulatory proteins known 

as Tat and Rev, and accessory proteins Vpu, Vpr, Vif, and Nef (Figure 2B).  These 
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proteins participate in various points of the viral life cycle to facilitate successful 

infection.   
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Figure 2. Structure and organization of the HIV-1 genome.  A.  Following 
budding from the cell or concomitantly during budding, the viral PR cleaves gag to 
generate a mature infectious particle as depicted here.  A lipid membrane that is 
derived from the host during the budding process surrounds the virus.  Within the 
membrane is the fullerene cone that is composed of p24 protein (black cone).  It 
houses the viral RNA (two strands covered in nucleocapsid (yellow)) along with 
viral and host proteins.  Various viral proteins are identified in the diagram.  
Adapted and Modified from 
http://web.archive.org/web/20050531012945/http://www.niaid.nih.gov/factshee
ts/howhiv.htm).  B. HIV-1 RNA contains sequences that are important for 
replication such as the Primer binding site (PBS), encapsidation signal (), Rev 
response element (RRE), and the polypurine tract (PPT). The RNA is reverse 
transcribed into DNA by reverse transcriptase enzyme.  The long terminal repeats 
(LTRs) are composed of U3, R, and U5 elements that flank the genome that are 
important for transcription.  The gag, pol, and env are further processed to create 
individual structural and non-structural proteins.  Additionally, there are accessory 
proteins that are generated from alternative splice sites, such as Tat and Rev.  
Adapted and Modified from (4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://web.archive.org/web/20050531012945/http:/www.niaid.nih.gov/factsheets/howhiv.htm
http://web.archive.org/web/20050531012945/http:/www.niaid.nih.gov/factsheets/howhiv.htm
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HIV-1 Life Cycle 
 

The viral life cycle in the target cell is divided into early and late events.  Early 

events characterized from the fusion of the virus to integration into the genome and 

late events occur from transcription to budding (Figure 3).   

Fusion and Infection of Target Cells 

Primary targets of HIV-1 infection are cells of the immune system.  It infects 

cells expressing high levels of CD4 on their surface such as T cells because it is the 

receptor for entry.  In addition to infecting T cells, it also infects macrophages since 

they express CD4 as well.  While dendritic cells are not directly infected, they can 

capture virus with their surface receptors and subsequently migrate to CD4+ T-cell-

enriched lymphoid tissue, where HIV-1 trans-infection of CD4+ T cells occurs.  In 

order for the viral core to enter the cytoplasm of a target cell, the viral and cellular 

membranes have to fuse.  The viral env proteins mediate the fusion process 

between the two membranes.  The envelope proteins are expressed as a 160kDa 

(gp160) polyprotein that is cleaved by a cellular protease into the gp41 

transmembrane subunit and gp120 surface subunit, which are associated with one 

another.  The fusogenic activity of gp41 is activated once gp120 surface subunit 

binds to CD4 receptor and CXCR4 or CCR5 co-receptor on the target cell (5, 6).   

C-X-C chemokine receptor type 4 (CXCR4) and C-C chemokine receptor type 

5 (CCR5) are chemokine receptors that belong to the superfamily of the seven-

transmembrane G-protein coupled receptors (GPCRs) (6-8).  HIV-1 strains are 

characterized as R5 or X4 strains depeneding on which co-receptor they utilize 



10 
 

 

during entry.  Initially, CXCR4 was shown to mediate entry of T cell line-tropic (T-

tropic) HIV-1 strains (9), while CCR5 mediates entry of macrophage-tropic (M-

tropic) viral strains (10-13).  However, it was subsequently determined that all 

primary isolates replicate in activated, primary CD4+ T-cells (14).  Therefore, a new 

nomenclature was developed.  Isolates that use CCR5 but not CXCR4 are R5 viruses, 

isolates that use CXCR4 but not CCR5 are designated X4, and isolates that utilize 

both are called R5X4 (15).  R5 viruses are strains that are most commonly 

transmitted, whereas X4 strains appear late in the infection.  Whether HIV-1 fusion 

happens at the cell surface or in endosomes is still a point of debate.  HIV has long 

been thought to fuse directly with the cell plasma membrane. However, other data 

suggests that endocytic entry of HIV can lead to infection as well.  Following 

successful fusion, the viral core is released into the cytoplasm.   
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Figure 3.  HIV-1 Life Cycle.  Following attachment to the target cell, utilizing CD4 as 
the receptor and CCR5 or CXCR4 as co-receptors, HIV-1 goes through envelope-
mediated fusion to release the viral core into the cytoplasm.  The core traffics 
towards the nucleus during which it uncoats and reverse transcribes the genome to 
generate a pre-integration complex (PIC).  The PIC translocates into the nucleus by 
interacting with the nuclear pore proteins (NUPs) where it integrates into the host 
genome.  The viral genome is transcribed and exported out of the nucleus where it is 
translated into structural and non-structural proteins.  These proteins will traffic to 
the plasma membrane and assemble.  Following assembly the virus buds from the 
cell by utilizing the endosomal-sorting complex required for transport (ESCRT) 
proteins.  During budding or right after the budding process, the protease cleaves 
gag to convert the immature virus into a mature and infectious particle.  Rights and 
Permission granted from (16).  
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Capsid and Uncoating 

The viral core is generated from approximately 1,500 CA molecules.  CA 

consists of two independently folded domains, the N-terminal and the C-terminal, 

separated by a flexible linker.  The N-terminal domain (NTD) is composed of seven 

-helices, an amino-terminal -hairpin and a partially ordered cyclophilin A (CypA) 

binding loop.  The C-terminal domain (CTD) is globular with a single turn 310-helix 

and four short -helices.  CA is expressed as part of a 55-kDA Gag polyprotein or 

160-kDA Gag-Pol polyprotein.  During proteolytic cleavage and maturation, the viral 

core adopts a conical shape, which consists of 216 CA hexons (Figure 4A) and 12 CA 

pentons (Figure 4A) (seven at the top and five at the bottom) to generate a fullerene 

cone (also known as a core) (Figure 4C).  While an immature HIV-1 particle contains 

approximately 5000 Gag molecules, only 1000-1500 CA molecules assemble into the 

mature capsid (17).  CA hexamers are stabilized by an inner ring of six NTDs, and an 

outer “girdle” of CTDs that also form intersubunit contacts with adjacent NTDs (18).  

The core houses the viral RNA genome and both viral and cellular proteins (17).  A 

core with an optimal stability is crucial for viral fitness.  This was demonstrated by 

introducing various mutations in the viral capsid.  CA mutations that rendered the 

core hyperstable as compared to wild type generated viruses that were severely 

attenuated. On the other hand, viruses that were less stable than wild type exhibited 

decreased infectivity as well (19).  
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  Following fusion, the core is released into the cytoplasm.  At this point the 

viral core goes through a poorly understood process of disassembly, termed 

uncoating, to release the viral RNP (vRNP).  Analysis of isolated reverse 

transcription complexes (RTCs) at various time-points post infection demonstrated 

that most of CA, MA, and RT dissociated soon after infection, as compared to Vpr, 

that remained associated with the RTC for at least seven hours.  This suggests that 

CA is lost relatively quickly following entry into the cells.  However, not detecting CA 

in isolated RTCs may be attributed to the poor behavior of HIV-1 cores in 

biochemical assays (20).  On the other hand, when Moloney murine leukemia virus 

(MoMLV) cores were isolated and characterized, differences were observed when 

compared to HIV-1 RTCs.  The viral CA remained associated with the RTC for at least 

7 hours following infection (21).  Having an extremely stable core in the cytoplasm 

of cells is one defining feature of retroviruses that separates them from lentiviruses. 

Since lentiviruses actively translocate into the nucleus, a nuclear factor for 

translocation was demonstrated to be the HIV-1 CA (more details below) (22).  

While some CA may be lost after entry, some has to remain associated with the RTC 

as it traffics towards the nucleus in order to import the PIC.  This would suggest that 

uncoating is a controlled process that begins after the core enters the cell and 

continues through reverse transcription and trafficking towards the nucleus.  

However, other data suggests that the intact core traffics to the nuclear pore where 

it docs and uncoats (23-25).  Recently, the timing of uncoating and the connection 

with reverse transcription were demonstrated.  The half-life of uncoating was 
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calculated to be around 39.12 minutes +/- 4.14 minutes.  Additionally, when reverse 

transcription was inhibited uncoating was significantly delayed, suggesting a 

relationship between uncoating and reverse transcription (26).  There are multiple 

host factors that interact with CA, but whether host factors participate in core 

uncoating remains to be determined.  For other viruses such as HSV-1, Adenovirus 

and Hepatitis C, the mechanism of uncoating and host protein involvement in the 

process is well defined (27, 28).  Since CA is crucial for virus integrity and infectivity, 

it is a good candidate for new antiretroviral therapy.  Currently, antiretrovirals 

target many different aspects of the viral life cycle (described further below) but 

antiretrovirals that target the core do not exist.   
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A. 

 

    B.                                                          
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Figure 4. Capsid Structure.  A. Top panel: First image is the CA hexamer, with the 
NTD in orange and CTD in blue.  Second image and third image are the top view and 
side view of the hexamer with helices as ribbons.  Each subunit is a different color.  
An inner ring of six NTDs, and an outer “girdle” of CTDs that also form intersubunit 
contacts with adjacent NTDs stabilize CA hexamers.  Bottom panel: Same 
representation of the CA pentamer.  B. CA can assemble into hexamers and 
pentamers to generate the fullerene cone that was simulated here by utilizing Cryo-
electron tomography analysis of isolated native cores.  Rights and Permission 
granted from (29).    
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Trafficking 
 
Following entry into the cell, the virus has to traverse the vast cytoplasm to 

reach the nucleus.  McDonald et al. demonstrated that GFP-Vpr labeled HIV-1 traffics 

on microtubules and incorporates labeled dNTPs in the RTC (30) suggesting that the 

virus reverse transcribes as it traffics on microtubules.  Some of these RTCs 

contained detectable levels of CA while others did not demonstrating that they 

probably uncoated.  Depending on the cell type, the journey to the nucleus can be 

extremely long or in some cases shorter.  However, it was demonstrated that the 

cytoplasm is viscous and crowded due to cellular organelles and cytoskeleton 

imposing barriers and limiting free diffusion.  Studies using fluorescence recovery 

after photobleaching (FRAP) with fluorescently labeled dextran particles 

demonstrated that particles larger than 20nm have an extremely difficult time 

moving through the cytoplasm (31, 32).  Therefore, an HIV-1 PIC that is predicted to 

be at least 50 nm in diameter (33) is not efficient at trafficking to the nuclear pore 

by freely diffusing through the cytoplasm.   

One efficient way to navigate through the cytoplasm is to utilize microtubules 

and motor proteins (34, 35).  Microtubules are a component of the cellular 

cytoskeleton that are hollow rods that are approximately 25nm in diameter.  They 

are dynamic structures that undergo continuous disassembly and assembly.  They 

are generated from tubulin, which is a dimer consisting of α and β-tubulin (Figure 

5A).  They serve as scaffolds for microtubule associated proteins (MAPs) and motor 

proteins such as dyneins and kinesins.  Dyneins transports cargo to the minus end of 



18 
 

 

microtubules (retrograde), while kinesins transports cargo to the plus end of 

microtubules (anterograde), which are often located at the cell periphery (36, 37). 

Cytoplasmic dynein 1 is a large protein complex that contains six different subunits.  

There are two heavy chains (DYNC1H1), each containing a globular motor domain 

and an N-terminal stalk.  The N-terminal stalk interacts with dimers of intermediate 

chains and light intermediate chains (DYNC1LI and DYNC1I).   Three light chain 

families (LC7, LC8, and Tctex) bind the intermediate chains, and collectively act as 

the cargo-binding domain (32) (Figure 5B).  Kinesins are a large family of proteins 

that are either expressed ubiquitously or in specific tissues.  Kinesin-1 is the most 

conventional in the family and it is composed of three structural domains: a large 

globular N-terminal domain that is responsible for the motor activity of kinesin, a 

central alpha-helical coiled coil domain that mediates the heavy chain dimerization; 

and a small globular C-terminal domain which interacts with other proteins (such as 

the kinesin light chains) (38) (Figure 5B).  To mediate trafficking and uncoating of 

their cores, viruses sometimes exploit these motor proteins.   

 For example, herpes simplex virus type 1 (HSV-1) and adenovirus use 

dynein and kinesin motors to traffic on microtubules and disassemble the cores to 

deliver the genome to the nucleus.  For HIV-1 the mechanism of microtubule 

trafficking was not defined well.  However, it was demonstrated that GFP-Vpr 

labeled HIV-1 associates with and traffics on microtubules in a dynein and kinesin 

dependent manner.  Additionally, RTCs were shown to associate with microtubules 

and these RTCs contained matrix and capsid protein.  This suggests that HIV-1 
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utilizes microtubules to traffic the RTC/PIC to the nucleus and possibly mediate 

uncoating.   
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Figure 5. Microtubules and Motor Proteins.  A. Microtubules are dynamic tubes 
that are composed of α and β tubulin.  During polymerization, both the α- and β-
subunits of the tubulin dimer are bound to a molecule of GTP.  The GTP bound to α-
tubulin is stable and it plays a structural function in this bound state. However, the 
GTP bound to β-tubulin can be hydrolyzed to GDP.  A GDP-bound tubulin subunit at 
the tip of a microtubule is prone to depolymerization.  Motor proteins and MAPs 
associate with microtubules to transport cargo throughout the cell.  Adapted and 
Modified from (39).  B. Dynein is composed of two heavy chains (DYNC1H1), each 
containing a globular motor domain and an N-terminal stalk.  The N-terminal stalk 
interacts with dimers of intermediate chains and light intermediate chains 
(DYNC1LI and DYNC1I).  Three light chain families bind the intermediate chains, 
and collectively act as the cargo-binding domain.  Kinesin-1 consists of two heavy 
chains that have a large motor domain at the N-terminus, an alpha-helical coiled coil 
domain and a small C-terminal domain that interacts with light chains.  Rights and 
Permissions granted from (40). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

 

Reverse Transcription   
 
Following uncoating or concomitantly during uncoating, the viral RNA is 

converted into DNA by the RT enzyme. The ability to reverse transcribe the genome 

from RNA to DNA is one of the hallmarks of retroviruses (Figure 6).  RT contains 

two enzymatic activities that are sufficient and necessary to carry out reverse 

transcription.  These are a RNA-dependent DNA polymerase that copies the RNA 

into DNA, and an RNase H that degrades RNA when it is part of an RNA-DNA duplex.  

Reverse transcription is initiated soon after virus entry and viral DNA can be 

detected within hours of infection.  The rate of DNA synthesis varies depending on 

the target cell.  For example, the rate of synthesis is slow in quiescent cells where 

the dNTP levels are low.  While reverse transcription can successfully happen in 

vitro, in vivo it is connected to other early events and viral proteins in the life cycle.  

Previous data demonstrated that mutations in CA have extreme effects on reverse 

transcription (19).  Additionally, NC has nucleic acid chaperone activity that helps 

RT through regions of secondary structure and it facilitates strand transfer during 

reverse transcription process.  While the structure of the RTC is not known, changes 

in the conical core were observed in the early events of the viral life cycle (30).  One 

hypothesis is that RTC changes as DNA synthesis proceeds and aids the uncoating 

process, which eventually transforms the RTC into a pre-integration complex (PIC).  

Another hypothesis is that the RTCs form a structure that is similar to the intact 

viral core, allowing the DNA synthesis to occur within the cone.  This structure is 
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trafficked to the nuclear pore where it interacts with the nuclear pore components 

to translocate into the nucleus.    
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Figure 6. Reverse Transcription Process.  HIV-1 genome is a positive strand RNA 
that is reverse transcribed into DNA by the viral RT enzyme.  This process can be 
quantified by utilizing primers that target early reverse transcription, and late 
reverse transcription.  Also, following reverse transcription, the viral DNA is 
translocated into the nucleus where it integrates into the host genome.  However, 
some of the proviruses ligate back on themselves and create aberrant products 
known as 2-LTR circles.  Primers are also designed to measure the quantity of these 
2-LTR circles, which is used a measure of nuclear import of the viral genome.  
Adapted and Modified from (41). 
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Nuclear Import  

Once the PIC traffics towards the nucleus, it is actively translocated into the 

nucleus through the nuclear pore because it is too large for passive diffusion.  Unlike 

MLV, which is a retrovirus, HIV-1 can gain access into the nucleus whether the cell is 

actively diving or not, due to its ability to utilize host proteins for the translocation 

process.  On the other hand, MLV waits for the nuclear membrane to break down, as 

it lacks the capability to infect non-dividing cells.  While many HIV-1 proteins such 

as MA, Vpr, IN, and the DNA flap were implicated to be the determinants for nuclear 

import, CA was identified as the primary determinant for nuclear import (22).  

 In order for the HIV-1 PIC to actively translocate itself into the nucleus and 

subsequently integrate, the CA has to interact with various proteins of the nuclear 

pore complex and soluble transport receptors.  Once again, this suggests that a 

substantial amount of CA remains associated with the PIC following reverse 

transcription (23, 42).  For example, one CA mutant Q63A/Q67A is impaired for 

nuclear entry as measured by the formation of 2-LTR circles (aberrant products of 

the viral DNA ligating to itself instead of the host genome, which is thought to only 

occur in the nucleus) but retains higher than normal levels of CA in the PIC, 

suggesting there is an optimal amount of PIC-associated CA that is necessary for 

nuclear import (22).  Recently, many nuclear pore residing proteins were 

demonstrated to participate in HIV-1 translocation into the nucleus.  Nucleoporin 

358 (Nup358) depletion, which is also known as RanBP2, was shown to inhibit 

nuclear import of HIV-1 PIC and not nuclear export of viral mRNA species (43).  
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Further, the requirement for Nup358 is CA dependent, and CA mutations that 

render the virus less sensitive to Nup358 depletion results in the virus integrating 

in regions that are devoid of transcriptional units (24).  Other factors were shown to 

participate in this part of the viral life cycle as well.  mCPSF6-358, a truncated 

version of cleavage and polyadenylation factor 6 (CPSF6) inhibits nuclear entry of 

HIV-1 and a single amino acid substitution within CA bypasses the restriction (44).  

Additionally, transportin-3 (TNPO3), a karyopherin is known to promote HIV-1 

infectivity by opposing cytoplasmic CPSF6 from stabilizing CA too much (Figure 7) 

(45, 46). This suggests that interaction at the nuclear pore with host proteins 

dictates whether the PIC successfully translocates into the nucleus and 

subsequently integrate into an area of high or low transcriptional density.          
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Figure 7.  Pre-integration complex (PIC) Nuclear Import.  Following reverse 
transcription, the PIC is actively translocated into the nucleus and integrates into 
gene dense regions of the chromatin.  This process is known to be assisted by lens 
epithelium-derived growth factor (LEDGF).  CA was identified as the determinant 
that is necessary for successful nuclear import.  The PIC and the CA interact with 
NUP358 (a nuclear pore complex protein) in order to successfully translocate into 
the nucleus. Additionally, a host protein known as Transportin-3 (TNPO3), which a 
karyopherin was demonstrated, to be important for the translocation process as 
well.  It has the ability to interact with the HIV-1 CA and knockdown of TNPO3 
decreases HIV-1 infectivity at the nuclear import level.  Also, cleavage and 
polyadenylation specific factor 6 (CPSF6) is known to inhibit HIV-1 nuclear import 
when TNPO3 is knocked down or when CPSF6 is manipulated to reside in the 
cytoplasm as opposed to its predominant location in the nucleus.  Adapted and 
modified from (47) 
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Integration and Transcription/Translation 

Following successful nuclear import of the PIC, the viral genome integrates 

into the host genome, which is one of the reasons why it is difficult to eradicate the 

virus.  The integration process is carried out by the viral IN enzyme and the host 

protein lens epithelium-derived growth factor (LEDGF)/p75, which promotes 

infection and tethers IN to preferred integration target sites.  For HIV-1, it favors 

integration within transcription units while gammaretroviruses favor integration at 

transcription start sites (48).  As mentioned above, the PIC’s interaction at the 

nuclear pore with host proteins somehow dictates whether the HIV-1 DNA is 

integrated into rich areas of rich transcription on the outer surface of DNA wrapped 

on nucleosomes (49).  The mechanism by which these sites are selected is not well 

known but it seems to be IN dependent, as a swap between HIV-1 IN and MLV IN 

causes HIV-1 PICs to integrate at transcriptional start sites as an MLV PIC does (50).  

After integration, the viral DNA is transcribed with the help of the viral 

transactivator protein Tat that recruits host transcription factors to facilitate 

successful transcriptional elongation.  These mRNAs undergo splicing, leading to the 

production of early genes, including Tat, Rev and Nef.  The smaller processed 

mRNAs are exported in a CRM1-dependent mechanism while large mRNAs are 

exported via the viral protein Rev. Viral mRNAS are then translated to produce the 

structural and non-structural proteins.  The genomic RNA serves as the mRNA for 

Gag and Gag-Pro-Pol, but singly and multiply spliced RNAs are translated to produce 

Env and accessory proteins.  Gag-Pro-Pol is generated when translating ribosomes 



29 
 

 

shift into the -1 reading frame at a site near the 3’ end of the gag open reading 

frame, and then continue to translate the pol gene.   Gag, Gag-Pro-Pol and most 

accessory proteins are translated on cytosolic polysomes.  However, Env and Vpu 

are translated on the rough ER because they are encoded on the same mRNA (51).  

 

Assembly, Budding, and Maturation 

Following translation of viral proteins in the cytosol, these proteins and the 

RNA traffic to the plasma membrane in order to assemble and subsequently bud.  

Gag and Gag-Pro-Pol have a myristate at their amino termini that is required for 

their plasma membrane localization (52).  Binding of the Gag domain MA to PI (4,5) 

P2 exposes the amino-terminal myristoyl group and provides a mechanism for 

anchoring Gag in the inner leaflet of the plasma membrane (53, 54).  The viral Env 

glycoproteins reach the plasma membrane independently of Gag (55).  In addition to 

Gag and Env, the virus packages two copies of the capped and polyadenylated full-

length RNA (56-58).  The two RNA strands are noncovalently dimerized in their 5’ 

UTR (58).  Removal of the RNA packaging sigma (ψ) causes the virus particles to 

assemble but contain high levels of nonspecific cellular mRNAs (59).  Additionally, it 

the RNA packaging requires recognition of the noncovalently bound and unspliced 

RNA (60).  Gag assembly leads to the formation of the immature particles (61).  The 

Gag molecules in the immature virion are extended and are oriented radially, with 

the amino-terminal MA domain bound to the plasma membrane (62).  The cellular 

Endosomal Sorting Complex Required for Transport (ESCRT) pathway mediates 
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budding from the plasma membrane.  The viral protein p6 contains two “late 

domain” motifs that bind and recruit ESCRT proteins to mediate scission of the virus 

from the plasma membrane (63-66).  The virus maturation is thought to occur 

during or right after the scission process.  Maturation is mediated by the viral PR 

cleavage of Gag and Gag-Pro-Pol to produce the individual MA, CA, NC, p6, PR, RT, 

and IN proteins (67-69).  Significant remodeling occurs when the virus transitions 

from an immature to a mature virion such as the formation of the conical core that 

contains approximately 1200 copies of CA (70, 71).  Following maturation, the virus 

is considered fully infectious and ready to infect a new target cell (Figure 8).   
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Figure 8. Assembly and Egress of HIV-1.  Binding of the MA Gag domain to PI (4,5) 
P2 exposes the amino-terminal myristoyl group and provides a mechanism for Gag 
to anchor in the inner leaflet of the plasma membrane. The viral Env glycoproteins 
reach the plasma membrane independently of Gag. The cellular Endosomal Sorting 
Complex Required for Transport (ESCRT) pathway mediates budding from the 
plasma membrane.  PR cleaves Gag to generate a mature infectious particle.  Rights 
and Permissions granted from (72). 
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Antiretroviral Therapy 

Following the discovery of HIV-1 as a causative agent of AIDS, there was a 

dire need for a mode of treatment.  While the hope for a cure proved to be more 

difficult than anticipated, the Food and Drug Administration approved the first 

antiretroviral drug for HIV-1 in 1987.  The drug, 3’-azido-3’deoxythymidine (AZT) is 

a chain terminating nucleoside analog reverse-transcriptase inhibitor (NRTI) that 

binds to the RT and prevents the RNA from converting into DNA.  It has a greater 

affinity for reverse transcriptase than thymidine triphosphate.  Therefore, RT 

incorporates AZT into the growing strands of HIV-1 DNA, and DNA synthesis and 

replication are terminated.  Subsequently, antiretrovirals were designed to target 

various pathways/enzymes of the virus such as fusion/entry, reverse transcription, 

integration and protease cleavage (Figure 9) (Reviewed in (73)).  Originally 

antiretrovirals were given as a monotherapy until it was demonstrated to be 

inefficient due to the high mutation rate and resistance of HIV-1.  Therefore, a new 

concept was devised where patients receive a combination of a non-nucleoside 

reverse transcriptase inhibitor (NNRTI), an NRTI, and protease inhibitor (PI).  This 

regimen is known as Highly Active Antiretroviral Therapy (HAART).  Targeting the 

virus at multiple points in the viral life cycle at once significantly reduces the chance 

that resistant HIV-1 strains will arise (Reviewed in (73)).  HAART does not cure the 

infection but rather keeps it under control.  If a patient ceases HAART, the viremia 

rebounds due to latent reservoirs (74).  The requirement for lifelong drug 

treatment, failure of therapeutics, and the cost of these therapeutics, especially in 



33 
 

 

third world countries that are most affected by HIV-1 is driving scientists to look for 

new avenues of treatment such as stem cell therapies.   
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Figure 9. Antiretroviral drugs and their targets.  Therapeutic drugs were 
developed to target HIV-1 at various steps in the life cycle.  Currently, there are 
antiretrovirals that target fusion (CCR5 and gp41 agonists), reverse transcription 
inhibitors (non-nucleoside reverse transcriptase inhibitors (NNRTI), nucleoside 
reverse transcriptase inhibitors (NRTIs)), integrase inhibitors (INSTIs), and 
protease inhibitors (PRIs).  Rights and Permissions granted from (16).   
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Autologous and Allogeneic Stem Cell Transplants 

In the hope of finding a cure for HIV-1, an interesting observation was made 

in an HIV-1 positive patient suffering from acute myeloid lymphoma.  To treat his 

lymphoma he received an allogeneic hematopoietic stem cell transplantation from a 

donor.  This donor was homozygous for a specific CCR5 mutation which prevents 

the expression of the full-length protein (CCR5 32).  Subsequently, it was 

demonstrated that this patient Timothy Brown, also known as the Berlin Patient 

was functionally cured of HIV-1.  Analysis demonstrated that there wasn’t 

detectable viral replication in any lymphoid tissue four years following 

transplantation and disruption of HAART (75).  These findings opened a whole new 

door to HIV-1 research that was aimed at recapitulating this effect (76). This is 

currently being explored by utilizing HSC-derived cells resistant to HIV-1 infection 

(allogeneic) or patient’s own stem cells (autologous).  While in theory the idea is 

simple, in practice it has proven to be much more complex.  In addition to HSC 

transplants, other avenues are currently being explored to develop novel treatment 

strategies.  

 

Cellular Restriction Factors of HIV-1 

During an infection, HIV-1 antagonizes the host by impairing the 

immune system, and hijacking cellular proteins to successfully replicate in the host. 

However, the host has defenses against incoming viruses as well.  One example of 
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the host defense is the expression of host proteins, known as restriction factors that 

inhibit viral infection.  In the case of HIV-1, there are restriction factors that target 

various steps of the viral life cycle.  The first restriction factor Fv1 was identified in 

mice and it prompted the search for other restriction factors.  This protein dictates 

whether a mouse is resistant to a strain of murine leukemia virus MLV.  Similarly to 

mice, in humans a restriction factor of N-tropic MLV (N-MLV) but not B-tropic MLV 

(B-MLV) was identified (more below) (77, 78).  Afterwards, additional restriction 

factors were identified in humans and other mammalian species, demonstrating 

that these restriction factors are not unique to mice but are rather expressed in a 

variety of species.  Following these initial discoveries, many studies identified 

restriction factors that restrict HIV-1 throughout its life cycle.  These restriction 

factors are APOBEC3G, SAMHD1, TRIM5, and Tetherin/BST2.  They target early and 

late events of the retroviral life cycle (Figure 10).  For example, Tetherin/BST2 

inhibits HIV-1 budding from the infected cell, while TRIM5 restricts the virus soon 

after entry into the target cell (16, 79). 
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Figure 10. Restriction Factors.  Many restriction factors exist in producer cells and 
target cells of HIV-1.  In producer cells APOBEC3G and 3F are packaged into the 
virus.  When the virus infects the target cell and begins to reverse transcribe, 
APOBEC3G and 3F induce numerous deoxycytidine to deoxyuridine mutations in 
the negative strand of the HIV DNA.  If APOBEC3G and 3F are not present in those 
cells, other restriction factors such as TRIM5 and SAMHD1 act on early events on the 
viral life cycle by binding to the incoming viral core and depleting the pool of 
nucleotides, respectively.  Another restriction factor, Tetherin prevents HIV-1 
budding from the producer cell.  Rights and Permissions granted from (80). 
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The TRIpartite Motif (TRIM) Family of Proteins 

TRIpartite Motif (TRIM) family of proteins is a large family consisting of over 

70 currently identified TRIMs.  These proteins are expressed in a wide variety of 

species and participate in many cellular functions such as cell proliferation, 

differentiation, development, oncogenesis, innate immune signaling and viral 

restriction (81).  Due to the large number of TRIM genes and their sequence 

homology, it suggests a rapid evolution of these genes by gene duplication (82, 83).  

In recent years extensive research has been done to further understand the 

mechanism by which these proteins perform their functions.   

Domain Structure of TRIM Proteins 

TRIM proteins are characterized by the presence of the RBCC motif that is 

composed of a really interesting new gene (RING) domain, one or two B-Boxes (B-

Box1 and B-Box2), and a Coiled-Coil domain.  These domains are conserved 

amongst the family of proteins.  The RING domain is present at the N-terminus, 

which is usually found within 10-20 amino acids from the first methionine (84).  

Within the RING domain are conserved cysteine and histidine residues that are 

buried within the core.  They help maintain the domain structure by binding two 

zinc atoms (85, 86).  Most RING domains function as ubiquitin-protein isopeptide 

(E3) ligases (87), however some do not possess E3 activity themselves.  Therefore, 

the RING domains that do not have intrinsic E3 activity interact with a second RING 

domain partner (88, 89).  The B-box domains have a similarity in tertiary structure 

to the RING domain, suggesting that they arose from gene duplication from a 
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common ancestor (90).  Like the RING domain, B-Box domains bind and coordinate 

zinc atoms and they are present in one or two copies (84, 91).  B-Box domains were 

demonstrated to contain hydrophobic surfaces that are important for protein 

turnover, self-association and retroviral restriction (92-95).  The coiled-coil domain 

is required for homo-interactions and hetero-interactions (96, 97).  The ability of 

TRIM proteins to form higher molecular weight species and exist in discrete 

subcellular compartments within cells is mediated by self-association of the coiled-

coil domain (84).  One or more C-terminal domains that generally account for the 

unique function of each TRIM protein follow the RBCC motif.  Roughly, two-thirds of 

TRIM proteins contain a B30.2/SPRY domain at the C-terminus (84).  Within this 

domain there are four regions that contain extensive amino acid differences among 

TRIM proteins.  These regions within B30.2/SPRY domain have been termed 

variable regions v1, v2, v3 and v4 (98).  In the case of many TRIMs, the B30.2/SPRY 

domain mediates the recognition of many retroviruses as an antiviral response (99, 

100) (Figure 11A).   

 

TRIM5 Proteins 

In 2004, Stremlau et al. identified TRIM5 as the protein responsible for 

restriction of HIV-1 infection in rhesus macaques (101).  Owl monkeys (New World 

monkey species) express a restriction factor that is similar to rhesusTRIM5 that 

also restricts HIV-1.  CyclophilinA (CypA) retrotransposition into the TRIM5 locus 
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occurred as a result of two independent events in the primate lineage to generate 

TRIMCypA (102-104) (Figure 11B).  Additionally, TRIM5 proteins were shown to 

restrict other retroviruses in a wide-variety of species, including humans.  In other 

species such as mice, a homolog of TRIM5 exists that restricts MLV.  TRIM5 proteins 

(huTRIM5, rhTRIM5, and TRIMCyp) are interferon inducible and have been 

under strong positive selection as restriction factors against many retroviruses (84, 

105).  

       TRIM5 is characterized by the presence of the RING domain, B-Box2, and Coiled-

Coil domains that are conserved amongst the TRIM family of proteins (84).  Each 

domain was demonstrated to participate in HIV-1 restriction.  The RING domain is 

required for TRIM5 auto-ubiquitination, and it classifies TRIM5 as an E3-ubiquitin 

ligase (94, 106).  Mutations in the RING domain reduce TRIM5 restriction of HIV-1 

(94), suggesting a role for the ubiquitin-proteasome system (UPS) during 

restriction.  The B-Box2 and Coiled-Coil mediate higher order self-association and 

dimerization of TRIM5, respectively those are necessary for restriction (93-95, 107, 

108).  At the C-terminus, TRIM5 has a B30.2/SPRY domain, which recognizes and 

directly binds to the retroviral core (Figure 11A).  This domain determines the 

species-specificity of retroviral restriction that is mediated by TRIM5.  

 Like TRIM5, TRIMCyp restricts retroviral infection by recognizing and 

binding to CA with CypA and disrupting the retroviral capsid after it enters into the 

target cell before reverse transcription (102, 104, 109, 110).  In the case of human 
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TRIM5, it restricts N-MLV and Equine Infectious Anemia Virus (EIAV) but it does 

not restrict B-MLV and HIV-1 (Figure 12).  However, rhTRIM5 and TRIMCyp 

restrict HIV-1 and also N-MLV (Figure 12) (77, 111).  
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Figure 11. Domain Organization of TRIM5 Proteins.  Tripartite motif containing 
family of proteins consist of an RBCC motif (RING, B-Box and Coiled-Coil) followed 
by a variable C-terminal domain.  A. TRIM5 contains a B30.2/SPRY domain at the 
C-terminus that recognizes the incoming viral capsid to mediate species-specific 
restriction.  B. TRIMCyp contains a CyclophilinA domain at the C-terminus that 
recognizes the incoming viral capsid as well.  Adapted and Modified from (112). 
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A. 

 

B. 

 

Figure 12. Restriction of retroviruses by TRIM5.  A. rhTRIM5α and TRIMCypA 
potently restrict HIV-1 by binding to the intact viral core, while huTRIM5α does not 
bind well to the HIV-1 capsid and it does not restrict infection.  CyclosporinA (CsA), 
a drug, can be used to block TRIMCyp from functioning in experiments.  B. huTRIM5, 
rhTRIM5 and TRIMCypA block N-MLV but they do not block B-MLV.  Once again, this 
restriction is carried out by binding to the incoming intact core.  Adapted and 
modified from (112).    
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Cytoplasmic Body (Cytoplasmic Assembly) Formation of TRIM5 during 
Restriction 

 
To elucidate the mechanism by which TRIM5 proteins restrict retroviruses, 

many mutagenesis and biochemical studies were performed on the proteins.  It was 

quickly determined that TRIM5 proteins were difficult to purify and work with in 

biochemical studies due to their propensity to self-associate.  In the TRIM5 

literature, self-association is used to describe the higher order association of 

TRIM5 dimers.  To remain clear and consistent with literature, I will use self-

association this way and explicitly state dimerization where appropriate.  TRIM5 

proteins and most members of the TRIM family of proteins have conserved domains 

and regions that are responsible for this self-association capability.  The coiled coil 

domain is required for hetero and homodimerization (107, 113), B-Box2, and Linker 

2 are responsible for higher-order multimerization (93-95, 114, 115), that will 

eventually assemble into what we refer to as cytoplasmic bodies (cytoplasmic 

assemblies), primarily facilitated by Linker 2 (115).  

The biological significance of cytoplasmic bodies in TRIM5-mediated 

retroviral restriction was controversial due to two studies demonstrating that pre-

existing cytoplasmic bodies are not required for HIV-1 restriction (116, 117). Song 

et al. demonstrated that treatment with geldanamycin, a heat shock protein 90 

(Hsp90) inhibitor prevented the formation of TRIM5 cytoplasmic bodies without 

having an effect on the ability of these cells to restrict HIV-1 infection (117).  In the 

second study, treatment of cells with sodium butyrate resulted in a 10-fold increase 
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in TRIM-Cyp levels and an increase in TRIM-Cyp localization to cytoplasmic bodies.  

However, the localization of TRIM-Cyp to cytoplasmic bodies in these cells did not 

dramatically increase HIV-1 restriction (116).  Critically, these experiments 

examined cytoplasmic body formation prior to infection, they did not determine if 

cytoplasmic bodies formed during restriction.  Therefore, these studies 

demonstrated that pre-existing cytoplasmic bodies are not relevant for HIV-1 

restriction.  However, it was demonstrated that TRIM5α cytoplasmic bodies are 

dynamic structures that turn over rapidly and traffic on microtubules (118).  When 

cells that express TRIM5 were treated with the proteasome inhibitor MG132, it 

resulted in accumulation of virions within large rhTRIM5α cytoplasmic bodies. 

Additionally, live cell imaging demonstrated de novo formation of rhTRIM5α 

cytoplasmic bodies around individual virions, which was followed by the loss of the 

fluorescent signal within 3-5 minutes (119).  This data suggests that TRIM5α 

cytoplasmic bodies that are formed in the presence of restriction sensitive virus are 

important and relevant for restriction.  It was further demonstrated that certain 

residues within the Linker 2 region mediate the formation of cytoplasmic bodies.  

RhTRIM5 Linker 2 mutants that were unable to form cytoplasmic bodies also lost 

the ability to restrict HIV-1 (115).  This suggests that the ability of TRIM5α to form 

these bodies during infection is required for the restriction process.   
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Capsid Recognition and Retroviral Restriction  

It is well known that TRIM5α binds to the intact retroviral core soon after it 

enters the cytoplasm by recognizing specific determinants in the capsid.  Pornillos et 

al. proposed a model of this binding in which TRIM5 assembles into a large 

hexameric lattice over the smaller HIV-1 hexameric capsid lattice (Figure 13).  As 

mentioned above, the B30.2/SPRY domain of rhTRIM5α/huTRIM5α and the 

Cyclophilin A domain of TRIMCypA mediate the recognition of the retroviral capsid.  

Within B30.2/SPRY domain there are variable regions/loops that evolved to 

recognize the capsid in a species-specific manner (120).  It was demonstrated that 

the major determinant of restriction in TRIM5 is the amino terminal segment of 

B30.2 V1 region.  Specifically, huTRIM5 H (R328-332) and H (R323-332) mutants 

inhibit HIV-1 to levels comparable to rhTRIM5.  In addition, huTRIM5 R332P 

potently restricts HIV-1 as well, unlike the wt huTRIM5.  These data demonstrate 

that the B30.2 domain is the major determinant for the ability to restrict HIV-1 

between human and rhesus macaque TRIM5 and that specific amino acids within 

the B30.2 domain mediate this specificity (99).    

Following recognition of the CA, a poorly understood mechanism occurs to 

mediate restriction of infection.  One reason for the difficulty in defining the precise 

mechanism of action is that TRIM5alpha binds the capsid in a context of an 

assembled core and not free capsid monomers.  While TRIM5alpha can interact with 

capsid monomers, the interaction is extremely weak (121).  The ability to purify 
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recombinant/modified HIV-1 CA and assemble it into tubes CA tubes (to serve as a 

model system for the HIV-1 core) is providing some insight into TRIM5 mechanism 

of restriction.  To further elucidate the mechanism of TRIM5-mediated restriction a 

few models have been proposed.   
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Figure 13. Model of TRIM5 Assembly around HIV-1 Core.   In A the top image 
are the capsid-nucleocapsid (CA-NC) hexameric lattice crystals alone and the 
bottom image is TRIM5-21R (RING domain of TRIM5 was replaced by RING domain 
of TRIM21 for purification) hexameric lattice crystals alone.  The TRIM5-21R 
hexameric lattice forms in absence of virus but it forms more efficiently when the 
capsid hexameric lattice is present.  On the left is the proposed model of TRIM5α 
hexagonal assembly around the HIV-1 assembled core.  Rights and Permissions 
granted from PNAS (122). 
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Two-Step Model of Restriction 

The Hope lab proposed this particular model where TRIM5-medated 

restriction occurs in two steps.  Following proteasome inhibition, in cells expressing 

rhTRIMα, reverse transcription products were alleviated but infection was still 

restricted.  Further, proteasome inhibition did not prevent the formation of a 

functional PIC (as measured by the ability to integrate into DNA in in vitro 

experiments), but it was defective for nuclear import (123).  This suggests that the 

pre-integration complexes generated in presence of TRIM5 and proteasome 

inhibition are functional but are inhibited from translocating into the nucleus due to 

TRIM5.  Additionally, it was demonstrated by the Aiken lab that TRIM5 is degraded 

in a proteasome-dependent mechanism in presence of restriction sensitive virus 

(124).  Finally, when TRIM5 expressing cells were treated with a proteasome 

inhibitor and infected with fluorescently labeled viruses, it was demonstrated that 

these viruses were sequestered in large TRIM5 cytoplasmic bodies (119).  These 

data generated the two-step model of restriction.  Following entry into the target 

cell, TRIM5 will bind to the assembled core via the CypA or SPRY domain and 

prevent reverse transcript products from being synthesized.  This recognition and 

binding is sufficient to restrict the virus.  However, if proteasome function is 

inhibited (utilizing MG132 drug) in presence of TRIM5, the virus reverse transcribes 

the genome but remains restricted (123, 125) (Figure 14).  All these data suggest 

that there is a proteasome component to TRIM5 restriction of retroviruses, but the 

precise mechanism and the interaction with the proteasome components and other 
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host proteins are not known.   
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Figure 14. Two-Step Model of TRIM5-mediated Restriction.  Following entry 
into the target cell, rhTRIM5 binds to the HIV-1 core, which prevents accumulation 
of late RT products and further infection of the cell.  However, in the presence of a 
proteasome inhibitor in rhTRIM5 expressing cells, late RT products are relieved 
and a functional PIC is generated but the infection is still restricted.  This suggests 
that there is a proteasome-dependent step in rhTRIM5α restriction of HIV-1.  
Adapted and Modified from (125). 
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Accelerated Uncoating 

         Another mechanism by which TRIM5alpha is hypothesized to restrict 

HIV-1 is by binding to the assembled core and prematurely uncoating it 

(accelerating uncoating).  The Sodroski lab utilized the fate of capsid assay to 

measure the disassembly of the assembled viral capsid.  In this assay they measured 

the amount of pelletable capsid (intact cores) at the bottom of the sucrose cushion 

following an infection in presence of TRIM5 and compared it to capsid in the top 

fractions (uncoated or free capsid) of the sucrose cushion. These studies showed 

that TRIM5 lead to a decrease in the amount of pelletable capsid and an increase in 

free capsid, without affecting the total amount of capsid present in the cells. This 

data suggests that TRIM5 mediates an accelerated uncoating of the incoming 

assembled capsid (126).  Recently, the Bieniasz lab used a biochemical assay to 

determine the fate of various components of the retroviral core when the infection 

was carried out in the presence and absence of TRIM5 proteins (127).  Following 

synchronized infection of cells lacking glycosaminoglycans (for efficient and specific 

virus fusion) with VSV-g-pseudotyped retroviruses (MLV and HIV-1), the cytosolic 

proteins were fractionated on linear gradients.  The state of viral core components 

including capsid, integrase, viral RNA and RT were monitored.  They demonstrated 

that in absence of TRIM5 proteins the retroviral core components formed large 

subviral complexes because they sediment to the lower fractions of the sucrose 

gradient. However, in the presence of huTRIM5α, N-MLV infection was restricted 
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and the IN and RT products could not be detected while the capsid and the viral 

genomic RNA were both in soluble fractions (top fractions), suggesting disassembly. 

Similarly, loss of IN, RT and the viral RNA was observed upon restriction of HIV-1 by 

rhTRIM5α and TRIM-Cyp.  However, even though CA was lost from the bottom 

fractions, additional soluble CA was not observed due to the already large amount of 

soluble CA present in non-restricting (without TRIM5) and restricting conditions, 

possibly due to the instability of HIV-1 cores in sucrose gradients.  As previously 

demonstrated, the inhibition of the proteasome blocked these consequences of 

TRIM5-mediated restriction without affecting viral restriction.  These data do not 

support the model proposed by the Gallay laboratory suggesting that capsid 

degradation occurs rapidly in a proteasome-independent manner (128) but it does 

support the Two-Step model of restriction proposed by the Hope laboratory (125) 

and the accelerated uncoating model (126). 

 

Role of TRIM Proteins in Innate Immune Signaling and Viral Restriction  

In evolutionary studies, the time frame of TRIM gene expansion coincided 

with the emergence of traits specific to the adaptive immune system, suggesting a 

role for TRIM proteins in the function of the immune system.  Many organisms that 

have a complex immune system also have a large number of TRIM genes (129).  The 

short arm of chromosome 11 contains many TRIMs that were demonstrated to 

restrict either a single virus or multiple viruses (TRIM3/5/6/21/22/34/66/68).  

Also, a screen for antiretroviral activity involving over 50 TRIMs revealed 20 of 
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them with the ability to inhibit entry or release of retroviruses (130).  Additionally, 

it was shown that many of these TRIMs are under great positive selective pressure, 

demonstrating their importance in the organisms.  Many of these TRIM proteins 

were shown to restrict a wide-variety of viruses, either by directly inhibiting them 

at a particular step in the viral life cycle or indirectly by regulating the antiviral cell 

signaling (82, 83, 130-134). They can stimulate cytokine-signaling pathways that 

result in induction of many interferon-stimulated genes (ISGs) or target proteins for 

proteasome-mediated degradation.  One well-known TRIM that promotes immune 

signaling is TRIM25.  It was shown that it interacts with RIG-I and acts as an 

ubiquitin E3 ligase, which promotes RIG-I K63 linked polyubiquitination.  In cells 

deficient of TRIM25, they fail to induce cytokines in response to viruses that are 

normally sensed by RIG-I.  On the other hand, a virus like influenza A has a non-

structural protein 1 (NS1) that interacts with TRIM25 to prevent it from 

ubiquitinating RIG-I and initiating an antiviral response (135).  Like TRIM25, many 

TRIMs positively and negatively regulate many signaling pathways.     

       Additionally, TRIM5 was shown to act as a pattern recognition receptor (PRR) 

during a viral infection.  TRIM5α activates signaling pathways that lead to the 

activation of NF-κB and AP-1.  In order to activate signaling pathways, TRIM5α 

associates with the TAK1 complex, which includes TAK1, TAB1 and TAB2.  

Additionally, it interacts with E2 ubiquitin conjugation enzymes UBC13 and UEV1a 

to promote the synthesis of unanchored K63 linked ubiquitin chains.  This results in 

the activation of TAK1 and subsequent expression of NF-κB and AP-1-dependent 
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genes (Figure 15).  TRIM5α-mediated signaling occurs in the absence of virus, but 

the binding of TRIM5α to HIV-1 capsid lattice enhances the signaling cascade.  

Therefore, not only does TRIM5α mediate quick destruction of the retroviral capsid 

soon after it enters the cytoplasm, but it also functions as a PRR to recognize the 

capsid and activate inflammatory signaling pathways (136).   
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Figure 15.  TRIM5 Innate Immune Signaling.  Following entry into the cytoplasm, 
the viral core is recognized by TRIM5, which will restrict further infection from 
occurring.  Additionally, TRIM5 along with UBC13/UEV1A generate unanchored 
K63-linked poly-Ub chains that activate TAK1 (that associates with TAB2 and TAB3) 
and initiate NF-B and AP-1 dependent innate immune responses.  While signaling 
occurs in absence of virus, these activities are enhanced in presence of restriction 
sensitive virus.  Adapted and modified from (136). 
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Host Protein Involvement during TRIM5 Retroviral Restriction  

While the basic mechanism of TRIM5-mediated restriction of retroviruses 

was determined, the precise players involved in the process have yet to be 

identified.  A few different properties of the viruses and TRIM5 have provided some 

clues as to the possible interacting proteins.  As mentioned above, the RING domain 

in TRIM5 proteins hinted at the possibility of the proteasome-ubiquitin system 

(UPS)-dependent mechanism of restriction that was demonstrated in the two-step 

model of restriction.  Additionally, other proteins have been implicated in TRIM5-

mediated restriction of retroviruses that will be discussed below.  

Proteasome-Ubiquitin System (UPS) 

26S Proteasome Complex 

         The 26S proteasome is an ATP-dependent protease that functions 

with the ubiquitin system in many different processes.  The ubiquitin system, 

amongst other things, tags proteins with polyubiquitin chains as a marker for 

protein degradation by the proteasome.  The proteasome is involved in many 

different processes, including DNA repair, cell-cycle progression, apoptosis, immune 

response, signal transduction, metabolism, developmental programs, and of course 

protein quality control.  It is a large complex that consists of two parts: the catalytic 

20S core particle (CP) and the 19S regulatory particle (RP) that are further divided 

into multiple subunits.  The 20S CP is a cylindrical structure that is formed by 

stacking of two α-rings (outer) and two β-rings (inner) that are each composed of 

seven subunits (Figure 16).  The β-rings form a proteolytic chamber of which, β1, β2 
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and β5 subunits have hydrolytic activity as Threonine proteases.  They cleave 

peptide bonds at the carboxyl-terminal side after acidic, basic, and hydrophobic 

residues, respectively.  These activities are often referred to as caspase-like activity, 

trypsin-like activity and chymotrypsin-like activity, respectively.   

The 19S RP is further subdivided into a lid and a base that recognize and 

unfold the substrate.  The base is composed of six different homologous AAA+ 

ATPase subunits, regulatory particle triple-A protein 1 (RPT1/PSMC2)-RPT6, and 

three non-ATPase subunits, regulatory particle non-ATPase 1 (RPN1), RPN2 and 

RPN13.  The ATPase subunits are required for substrate unfolding and -ring 

channel opening.  Specifically, RPN1, RPN13, RPT5, and RPN10 capture 

ubiquitinated proteins.  RPN10 sits at the interphase between the base and the lid.  

The lid is composed of nine non-ATPase subunits: RPN3, RPN5-RPN9, RPN11, 

RPN12 an RPN15 (Figure 16).  The function of most of these subunits is not known, 

but RPN11, a metalloisopeptidase is important for de-ubiquitination of captured 

substrates.  The 19S RP can attach at one or both ends of the 20S proteasome to 

generate a 26S proteasome complex (137).  

Since TRIM5 proteins contain a RING domain at the N-terminus, it was 

thought that the intrinsic E3-ubiquitin ligase activity might be important for 

restriction.  As mentioned above, when cells were treated with a pharmacological 

inhibitor of the proteasome (MG132), reverse transcription products were observed 

in presence of TRIM5, which are usually undetected during restriction (123, 125).  
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This would suggest that there is a proteasome dependent step during the restriction 

process.  However, an inhibitor such as MG132 not only inhibits the proteasome but 

also depletes the free ubiquitin pool in the cells, which is important since we know 

from the Pertel et al. study that TRIM5 generates unanchored polyubiquitin chains 

during innate immune signaling and restriction (136).  Ubiquitin is required for 

proteasome degradation because substrates that are degraded via proteasomes are 

polyubiquitinated by the ubiquitin conjugation pathway (137).   
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Figure 16. 26S Proteasome Complex.  The 26S proteasome is a large complex that 
is divided into the 19S regulatory particle (19S RP) and the 20S core particle (20S 
CP).  The 19S RP is further divided into a lid and a base.  The base contains RPT1-6 
subunits (green), while the lid contains subunits RPN3, 5-9, 11, 12, and 15 (red).  
RPN10 (purple) sits at the interphase between the base and the lid.  The lid is 
thought to capture ubiquitinated cargo while the base facilitates the threading of the 
substrate to the core particle.  The 20S CP is a barrel that consists of two -rings 
(blue) and two -rings (yellow).  The -ring is composed of 1-6 subunits and the -
ring is composed of 1-6 subunits of which 1, 2, and 5 are catalytically active.  
Modified and Adapted from (138).   
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Ubiquitin Conjugation Pathway     

Ubiquitin (Ub) is a protein that is involved in post-translational 

modification of other proteins to lead to a variety of downstream events such as 

signaling, and degradation.  It is a 76 residue long protein with seven lysines in 

positions 6, 11, 27, 29, 33, 48 and 63.  The most common ubiquitin polymer that 

targets substrates for degradation via the proteasome is a chain where the Ub 

molecules are linked to one another via an isopeptide bond between the C-terminal 

Gly76 of the distal molecule and Lys48 of the previously conjugated one. The K48-

based polyubiquitin chains on proteins are the canonical modification and signal for 

proteasomal degradation.    However, some proteins that are monoubiquitinated or 

polyubiquitinated with chains linked in Lys48-independent manner are also 

degraded via the proteasome (Figure 17B).  The conjugation of Ub on substrates is 

ATP dependent and it involves activating enzymes (E1), conjugating enzymes (E2) 

and ligases (E3) (Figure 17A).  To achieve high specificity for a variety of proteins 

and processes, cells express many different E2 enzymes and an even greater 

number of E3s of which the RING and HECT families are the most common (139).    

TRIM5 is an E3-ubiquitin ligase and this activity lies in the RING domain of 

the protein.  With the E2 conjugating enzyme UbcH5b, it can autoubiqitinate its’ self.  

Basally, TRIM5 itself is not degraded in a proteasome-dependent manner (106); 

however, in presence of virus it becomes sensitive to proteasome degradation by an 

unknown mechanism.  This suggests that the virus is also degraded by the 
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proteasome during restriction; however, the data cannot discern the fate of the viral 

core degradation (124).  Mutagenesis studies of the RING domain demonstrated that 

mutants that lost the ability to self-ubiquitinate also lost the ability to restrict HIV-1.  

The mutations were located in the E2-binding region of the RING domain (140).  

This suggests that the ability to self-ubiquitinate is important for retroviral 

restriction.  Also, another study also looked at mutations in the RING domain.  In 

their experiments, mutations in the RING domain of TRIM5 E3 ubiquitin ligase 

activity correlated with the potency of restriction of HIV-1 infection by 

TRIM5αrh RING mutants, consistent with previously reported results.  However, all 

the mutants tested were able to restrict HIV-1 infection with at least moderate 

potency.  Therefore, RING-mediated E3 ubiquitin ligase activity may not be 

absolutely essential for the early restriction of HIV-1 infection (141).  However, the 

results are difficult to interpret due to the nature of the experiments being 

performed in vitro in absence of any other host proteins.  Moreover, as mentioned 

above, Pertel et al. demonstrated that TRIM5 with the help of the ubiquitin-

conjugating enzyme UBC13-UEV1A catalyzes the formation of unanchored K63-

linked polyubiquitin chains that activate the TAK1 kinase complex and consequently 

stimulate AP-1 and NF-B (136).  
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Figure 17.  The ubiquitin conjugation pathway and modifications.  A. 
Conjugation of substrates requires three groups of enzymes: an activating enzyme 
(E1), a conjugating enzyme (E2), and a ligase (E3).  This ATP-dependent mechanism 
conjugates mono and poly ubiquitins onto substrates.  B. Diagram demonstrating 
different forms of ubiquitin modifications and the functional roles of these 
modifications.  Modified and Adapted from (142). 
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SUMO Conjugation Pathway 

  Similar to ubiquitin, another post-translational modification that was 

shown to function in TRIM5-mediated restriction of viruses is a small ubiquitin-like 

modifier 1 (SUMO-1).  SUMOylation, like ubiquitination acts on a large variety of 

substrates as a post-translational modification to regulate processes such as 

intracellular trafficking, cell cycle progression, transcription, and DNA repair.  It has 

a much simpler conjugation pathway that involves an E1 (AOS1-UBA2), a single E2 

(Ubc9) and a few E3 ligases (Figure 18A).  SUMOylation machinery usually targets a 

lysine residue within a consensus sequence (KxE, where  is a hydrophobic 

residue and x is any amino acid), but other lysines outside of this sequence can be 

modified too.  Vertebrates have three SUMO variants (SUMO-1, 2 and 3).  SUMO is 

produced as a precursor protein that is processed to the mature form by SUMO-

specific proteases.  During this process, some amino acids are removed from the C 

terminus of SUMO to reveal a di-glycine motif that is required for the attachment to 

target proteins.  Predominantly, SUMO is present in the nucleus and most 

SUMOylation events occur within the nucleus as well (143).  Additionally, there are 

specific motifs that mediate non-covalent interactions with SUMO modified proteins.  

These SUMO-interacting motifs (SIMs) have the consensus sequence V/I/L-x-V/I/L-

V/I/L or V/I/L-V/I/L-x-V/I/L (where x is any amino acid)  (Song et al. J Biol Cem 

2005, Hecker et al. J Bio Chem 2006).  Therefore, a protein does not need to be 

directly SUMOylated, but rather it can non-covalently interact with a SUMO 
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molecule that is attached to another protein (Figure 18B).  SUMO is known to be 

involved in virus replication by modifying either viral or host proteins to impair 

infection.  Conversely, viruses have mechanisms to counteract the pathway as well 

(144, 145).  In the case of Mazon-Pfizer monkey virus, Moloney murine leukemia 

virus (MoMLV) and HIV-1, Gag proteins are known to interact with the SUMO-

conjugation pathway (106, 146, 147).  The E2 and E3 SUMO-conjugating enzymes, 

UBC9 and PIAS4/y interact with the capsid (CA) protein of MLV to conjugate SUMO 

on it.  Mutagenesis of lysine residues eliminated CA SUMO conjugation and impaired 

virus replication after reverse transcription before nuclear entry (148), suggesting 

SUMO involvement in successful MLV infection.  

 Furthermore, huTRIM5α restriction of N-MLV is enhanced when SUMO levels 

are increased.  This restriction is dependent on SUMOylation of CA.  Additionally, 

three SIMs were identified in the B30.2 domain of huTRIM5α of which two SIMs are 

required for the enhanced N-MLV restriction (149).  This data suggests that binding 

to SUMO-modified CA via the two SIMs enhances huTRIM5α restriction of CA. 

 Overall there is significant evidence that host proteins interact with TRIM5 

and the viral core to restrict and facilitate infection.  While the mechanism of 

TRIM5 restriction of HIV-1 has been determined, the precise proteins that aid in 

the process have yet to be identified.  Additionally, if other proteins interact with the 

HIV-1 core to facilitate uncoating is not known.  This dissertation provides evidence 

that the proteins in the ubiquitin-proteasome system and SUMO-conjugation 
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pathway play a role in TRIM5-mediated restriction of HIV-1.  Furthermore, it 

demonstrates that not only does HIV-1 traffic on microtubules, but also utilizes the 

microtubule network to facilitate uncoating of the viral core.    
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Figure 18. SUMO Conjugation Pathway and SUMO Interacting Motifs (SIMs). A. 
The conjugation pathway that involves an E1 (AOS1-UBA2), a single E2 (Ubc9) and a 
few E3 ligases. Just like ubiquitin conjugation, the SUMO conjugation is an ATP-
dependent process.  B. It was demonstrated that SUMO-interacting motifs mediate 
non-covalent interactions with SUMO modified proteins.  A protein does not need to 
be directly SUMOylated, but rather it can non-covalently interact with a SUMO 
molecule that is attached to another protein.  Adapted and Modified from (150). 
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CHAPTER II 
 

MATERIALS AND EXPERIMENTAL METHODS 
 
 

Cell Lines and Viruses 
  
 Tissue culture reagents were obtained from Hyclone and Fisher Scientific.  

HeLa, TE671, CRFK and 293T cells were kindly provided by Dr. Tom Hope, Ph.D. 

(Northwestern University).  OMK cells were a kind gift from Dr. Theodora 

Hatziioannou, Ph.D. (ADARC).  All cells were maintained in Dulbecco modified Eagle 

medium (DMEM, Hyclone) supplemented with 10% Fetile Bovine Serum (FBS, 

Fisher Scientific), 100 IU/ml penicillin, 1 mg/ml streptomycin, and 0.01 mg/ml 

ciprofloxacin hydrochloride.    

 HeLa cells stably expressing HA-rhTRIM5α were previously described (Wu, 

PNAS 2008, Stremlau Nature 2004) or YFP-rhTRIM5α (119).  To generate HeLa cells 

to measure cytoplasmic body formation during viral infection, cells were transduced 

with YFP-rhTRIM5α retroviral vector and then selected in G418 (400 μg/mL) 

containing media. Single colony clones were screened by immunofluorescence to 

identify a cell line that expressed YFP-rhTRIM5α containing reduced pre-existing 

cytoplasmic bodies in the absence of restriction sensitive virus (diffuse phenotype).   

In order to study aspects of a viral infection in laboratory settings, HIV-1 

reporter viruses were generated to harbor GFP or Luciferase cassettes usually in 
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place of the viral accessory protein Nef.  They are single cycle replication defective 

viruses.  In most proviruses, envelope was deleted to allow for pseudotyping with 

envelopes from other viruses (ex: VSVg, AMLV) (Figure 19A).  Pseudotyping is 

useful for safety measures and for infection of variety of cell types since the tropism 

of the virus depends on the envelope’s interaction with a receptor on the cell 

surface.  

 VSVg and AMLV pseudotyped viruses were produced by transfecting 293T 

cells in a 15cm plate using 45ul of Polyethylenimine (PEI, Polysciences), 7.85 ug of 

pCMV-VSVg and 14.60 ug of the proviral construct R7ΔEnvGFP in which the Nef 

open reading frame was replaced by a GFP cassette. Virus was harvested 48 hours 

post transfection by filtering the culture medium from the transfected cells through 

a 0.45um filter (Millipore).  Virus infectivity was titrated by spinoculating virus on 

cells at 1200 x g for 2 hours at 13° Celsius.  Following spinoculation, the supernatant 

was aspirated and replaced with 37° Celsius fresh and warm medium.  48 hours 

later, cells were harvested and analyzed by FACS Canto II flow cytometer (Becton 

Dickinson) for GFP expression.      

 Vector expressing HA-TRIMCyp or YFP-rhTRIM5 WT or mutant proteins was 

made in a similar way by transfecting 293T cells in a 60 mm dish using PEI along 

with 1 μg of the plasmid of interest, 1 μg of VSV-g and 1 μg of pCig-B or ΔNRF.  

Vector was harvested 48 hours post transfection, filtered through the 0.45 μm filter 

and either frozen at -80° C or used to transduce HeLa cells.  To make stable cell lines, 
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HeLa cells were plated at 50% confluency and transduced with the respective 

vectors for 14 hours, after which the vector was replaced with regular DMEM.  48 

hours post transduction media containing G418 drug at a concentration of 400 

μg/mL or Puromycin at 5ug/mL of DMEM was added to the cells. The expression of 

polyclonal or single colony clones was screened by immunofluorescence to ensure 

all cells expressed the transduced protein.  Furthermore, cell lines were then 

analyzed by western blot analysis, immunofluorescence staining and infectivity 

assays. 
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Figure 19. HIV-1 Reporter Virus.  HIV-1 proviruses like R7Env GFP are 
generated to express a reporter cassette such as GFP in the place of the Nef gene.  
The env is deleted to allow for pseudotyping with other glycoproteins like VSVg and 
amphotropic MLV (AMLV) to generate single-cycle replication defective 
pseudoviruses with wide tropisms.  Adapted and modified from (151). 
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Recombinant DNA Constructs 

 The pcDNA3.1 Flag-tagged proteasome subunits were a kind gift from Dr.  

Shigeo Murata, Ph.D. (University of Tokyo).  To generate the retroviral HA-tagged wt 

rhTRIM5α construct, SmaI and EcoRI restriction sites were inserted flanking 

rhTRIM5α using the primers GCCTGGCATTATGCCCAG and AGCTTGCCAAACCTAC. 

Polymerase chain reaction (PCR) was performed and the PCR product was digested 

with SmaI (New England BioLabs) and EcoRI (New England BioLabs) and inserted 

into the EXN retroviral vector (also digested with SmaI and EcoRI).  The EXN 

plasmid was generously provided by Dr. Greg Towers, Ph.D. (University College 

London).  This EXN vector was used to derive the YXN retroviral vector, which was 

generated by PCR amplification of the Yellow fluorescent protein (YFP) coding 

region of the YFP-N1 (Clontech) plasmid, using the primers 

TGGATGAACTATACAAGTGGATCCGGCCG and 

CGGCCGGATCCACTTGTATAGTTCATCCA.  The PCR amplified YFP fragment was 

then digested with AgeI (New England BioLabs) and BsrGI (New England BioLabs) 

and inserted into the similarly digested EXN plasmid.  To facilitate easier 

subsequent cloning, the BamHI site of wt rhTRIM5α was disrupted by SOEing PCR 

using the interior primers CCCCAGTATCCAAGCACTTTT and 

AGTGCTTGGATACTGGGGGTATGT and exterior primers 

GCGGCGGGATCCATGGCTTCTGGAATCCT and 

GGCCGGCTCGAGTCAAGAGCTTGGTGAGC.  These primers introduced a silent 
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mutation in the wt rhTRIM5α open reading frame that eliminated the BamHI. This 

PCR product was then digested with BamHI and XhoI and inserted into the similarly 

digested YXN plasmid.  The same cloning strategy was used to clone rhTRIM5α SIM 

mutants into YXN.  To clone the lentiviral pLVX-HA-TRIMCyp, EXN-TRIMCyp was 

digested with  

 NF-kB-responsive firefly luciferase construct was a kind gift from Dr. Susan 

Baker, Ph.D. (Loyola University Chicago) and pRL-CMV was purchased from 

Promega.   

 

Infectivity assay 

Equivalent numbers (0.75×105) of cells were plated in a 24-well plate, infected with 

VSVg or AMLV pseudotyped GFP reporter HIV-1 (R7ΔEnvGFP) by spinoculation 

(1200xg, 2 hours, 13°C) in a tabletop centrifuge (Beckman Coulter), after which the 

DMEM was removed and warm DMEM was added to the cells.  For TRIM-Cyp 

expressing cells, the infection was performed in the presence or absence of the drug 

cyclosporine A for the first 16 hours.  48 hours following the infection, cells were 

harvested and percentage of GFP positive cells was determined using a FACS Canto 

II flow cytometer (Becton Dickinson). 

 

Immunofluorescence and Imaging 

 Cells were plated on fibronectin-treated coverslips (Sigma-Aldrich).  After 

they adhered to the glass, they were subjected to drug treatments and/or virus 
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infection.  Following the treatment, cells were fixed for 5 minutes with 3.7% 

formaldehyde (Polysciences) in 0.1 M PIPES, pH 6.8 [piperazine-N, N’-bis (2-

ethanesulfonic acid)] (Sigma-Aldrich).  Cells were stained for proteins of interest 

utilizing primary anti-mouse, rabbit, and rat antibodies (Table 1) followed by 

secondary antibodies conjugated to FITC, TRITC, and CY5 (Jackson 

Immunoresearch) in 1X Phosphate Buffered Saline (Hyclone) containing 0.1% 

Saponin or TritonX-100 (Sigma-Aldrich), 0.01% NaN3 and 10% Normal Donkey 

Serum.  Images were collected on a widefield deconvolution DeltaVision microscope 

(Applied Precision) equipped with EMCCD and CCD cameras (Photometrics), using a 

1.4-numerical aperture 100X objective lens.  Images were deconvolved with 

SoftWoRx software (Applied Precision).   

 

Image Analysis  

20 Z-stack images were acquired using identical acquisition parameters. 

Surfaces for cytoplasmic bodies in all samples analyzed were defined by using a 

fluorescence threshold (600 relative fluorescence units) for YFP-rhTRIM5α, and all 

YFP-rhTRIM5α bodies over a volume of 0.011 μm3were used in the analysis. 

Deconvolved images were analyzed for SUMO-1, PSMC2, RPT5, Alpha 4, Alpha 6, and 

20S mean fluorescence intensity (MFI) in cytoplasmic bodies using the Surface 

Finder function of the Imaris software package (Bitplane) and the data was plotted 

in Prism (Graphpad Software Inc) for statistical analysis. 
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Western Blotting 

 Whole cell lysates were prepared by lysing cells with NP-40 lysis buffer 

(100mM Tris pH 8.0, 1% NP-40, 150 mM NaCl) containing protease inhibitor 

cocktail (Roche) for 10 minutes on ice.  Following the incubation on ice, 2x Laemmli 

sample buffer was added to the lysed cells and incubated at 100°C for 10 minutes.  

Samples were loaded into a 10% polyacrylamide gel for SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE).  After separation, the proteins were transferred to 

nitrocellulose membrane (Bio-Rad) and detected by incubation with anti-HA 

conjugated to Horseradish Peroxidase (HRP) (Roche), anti-FLAG (Sigma) and anti-

Myc.  Secondary antibodies conjugated to HRP (Thermo Scientific) were used where 

necessary and antibody complexes were detected using SuperSignal™ West Femto 

Chemilluminescent Substrate (Thermo Scientific).  Chemiluminescence was 

detected using the UVP EC3™ Imaging System (UVP LLC). 

 

Co-Immunoprecipitation 

Rhesus TRIM5α Co-immunoprecipitation 

Sub-confluent 293T cells grown in 10-cm dishes were transfected with 10 ug 

of total plasmid DNA using PEI.  48-hours post transfection cells were washed with 

1 ml ice-cold phosphate buffered saline (PBS) and lysed with 1 ml ice-cold lysis 

buffer (50 mM Tris, pH 7.4, 125 mM NaCl, 1% NP-40) supplemented with 

phosphatase inhibitor cocktail (Roche).  Crude cell lysates were collected, 

transferred to a pre-chilled 2 ml microcentrifuge tube, and agitated at 4° for one 
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hour. Following agitation, cells were sonicated for 10 seconds continuously, and 

centrifuged at 13,000 × g for 20 minutes at 4°C.  50 uL of supernatant were 

aliquoted for total cell lysate, and an equal volume of 2X Laemmli sample buffer was 

added; samples were then boiled for five minutes at 100°C. To pull down HA-

rhTRIM5α, anti-HA antibody (Sigma) was added to the remaining supernatant at a 

1:200 dilution and incubated at 4°C for two hours. 50 ul of protein A beads (Miltenyi 

Biotec) were added to the supernatant and incubated at 4°C for an additional hour. 

Samples were loaded on MACS separation columns (Miltenyi Biotec), followed by 

three washes with wash buffer (150 mM Tris, pH 7.4, 125 mM NaCl, and 1% NP-40).   

Protein complexes were eluted in 30 uL of pre-warmed 1X sample buffer. 

Human TRIM5α co-immunoprecipitation 

Sub-confluent HEK293 cells grown in 10-cm dishes were transfected with 24 

μg total plasmid DNA using Lipofectamine 2000 (Invitrogen), following the 

manufacturer's protocol.  Forty-two hours post-transfection, cells were washed with 

5 ml ice-cold PBS and lysed with 800 μl ice-cold lysis buffer ((50 mM Tris, pH 7.5, 

150 mM NaCl, 1% Triton X-100, 1 mM EDTA 10% glycerol), supplemented with 

protease inhibitor cocktail (Roche).  Crude cell lysates were collected, transferred to 

pre-chilled 2 ml microcentrifuge tubes, and centrifuged at 10,000 × g for 10 minutes.  

The clarified lysate was transferred to pre-chilled microcentrifuge tubes. To prepare 

antibody conjugated beads, 2 μg of antibody (mouse anti-flag M2; Sigma F1804) was 

conjugated to 50 μL of Protein G Dynabeads® (Invitrogen) following the 

manufacturer's protocol.  The beads were washed three times with 1 ml ice-cold 
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lysis buffer, resuspended in 50 μL lysis buffer, and added to the clarified cell lysates. 

After two hours rotating at 4°C, the bead-immune complexes were washed five 

times with 1 ml ice-cold lysis buffer, resuspended in 100 μL of 1 × Laemmli sample 

buffer, incubated at 100°C for five min. 

 

Forster Resonance Energy Transfer (FRET) 

Immunofluorescent Acceptor Photobleaching in Fixed Cells 

Cells stably expressing HA-rhTRIM5α (152) were plated on coverslips at a 

sub confluent density.  Coverslips were fixed with 3.7% formaldehyde 

(Polysciences) in 0.1 M PIPES [piperazine-N, N'-bis(2-ethanesulfonic acid)], pH 6.8.  

Cells were immunostained with a rabbit anti-HA primary antibody (Sigma) and 

mouse anti-PSMC2 or rabbit anti-20S primary antibodies (Enzo Life Sciences).  

Primary anti-HA antibody was labeled with a secondary Cy5-conjugated anti-rabbit 

antibody (Jackson ImmunoResearch), and proteasomal subunits were labeled with a 

secondary anti-mouse or anti-rabbit Alexa546 (Invitrogen).  Cy5 fluorophore was 

bleached for total of two minutes every five seconds while fluorescence intensities 

were detected in the Alexa546 and Cy5 channels.  Using SoftWoRx software, 

maximum intensities were analyzed over the course of the experiment for Alexa546 

and Cy5 and graphed in Microsoft Excel.   

Fluorescent Protein Acceptor Photobleaching in Live Cells 

FRET by acceptor photobleaching was performed as previously described 

(153).  Briefly, progressive acceptor photobleaching was performed as following: 50 
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images were obtained at 10-second intervals for both donor (CFP: excitation 

427/10, emission 473/30, 100 ms exposure) and acceptor (YFP: excitation 504/12, 

emission 542/27, 40 ms exposure), with a period of acceptor photobleaching 

(excitation 504/12) between each acquisition.  The CFP/YFP fluorescence intensity 

of each cell in the field was quantified in Meta-Morph, and FRET efficiency was 

calculated from the CFP initial and final fluorescence values, according to E = 1-

(Fprebleach/Fpostbleach). 

Fluorescence imaging was performed with an inverted microscope equipped 

with a 1.49 numerical aperture objective, and a back-thinned CCD camera (iXon 

887; Andor Technology, Belfast, Northern Ireland).  Image acquisition and acceptor 

photobleaching was automated with custom software macros in Meta-Morph 

(Molecular Devices Corp., Downingtown, PA) that controlled motorized 

excitation/emission filter wheels (Sutter Instrument Co., Novato, CA) with filters for 

CFP/YFP/mCherry (Semrock, Rochester NY).  The progressive photobleaching 

protocol was as following: 100-ms acquisition of CFP image and 40-ms acquisition 

of YFP image, followed by 10-s exposure to YFP-selective photobleaching (504/12-

nm excitation). 

E-FRET in Live Cells 

E-FRET was performed as previously described (154). 

E-FRET was calculated according to: 

E=IDA−a(IAA)−d(IDD)IDA−a(IAA)+(G−d)(IDD) 
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where IDD is the intensity of fluorescence emission detected in the donor channel 

(472/30 nm) with 427/10 nm excitation; IAA is the intensity of fluorescence 

emission detected in the acceptor channel with 542/27 nm emission and 504/12 

nm excitation; IDA is the intensity of fluorescence emission detected in the "FRET" 

channel with 542/27 nm emission and 427/10 nm excitation; and a and d are cross-

talk coefficients determined from acceptor-only or donor-only samples, 

respectively. We obtained a d value of 0.894 for CFP and a value of 0.108 for YFP. G 

is the ratio of the sensitized emission to the corresponding amount of donor 

recovery, which was 3.2. 

 

Dual-luciferase Reporter Assay 

SIMs 

293T cells seeded in a 96-well plate were transfected with empty vector, 

ΔRING/SPRY rhTRIM5α (ΔRS, negative control), wild type rhTRIM5α, SIM1 mut, 

SIM2 mut, SIM3 mut or RIG-1 (positive control) in triplicate.  Transfection was 

carried out using polyethylenimine (PEI) protocol in which the constructs were 

added at a 9 (EV/rhTRIM5α/RIG-I): 3 (NF-kB-responsive firefly luciferase construct, 

a kind gift from Dr. Susan Baker, Loyola University Chicago): 1 (Renilla luciferase 

construct for transfection efficiencies, pRL-CMV (Promega)) ratio. Cells were lysed 

48-hours post transfection with Passive lysis buffer (Promega) and the luciferase 

activity was measured using a Dual-Glo luciferase assay system (Promega) in a 

Veritas Microplate luminometer.  Firefly luciferase data were normalized to Renilla 
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luciferase readings in each well.  Data were plotted by determining the fold increase 

over empty vector. 

SUMO-1 overexpression 

293T cells seeded in a 96-well plate were transfected with empty vector, and 

rhTRIM5α constructs in presence or absence of SUMO-1 in triplicate.  Transfection 

was carried out using PEI protocol in which the constructs were added at a 5 

(rhTRIM5α): 4 (SUMO-1 or EV): 3 (NF-κB-responsive firefly luciferase construct): 1 

(Renilla luciferase construct for normalization of transfection efficiencies) ratio. 

Cells were lysed 48-hours post transfection with Passive lysis buffer (Promega) and 

the luciferase activity was measured using a Dual-Glo luciferase assay system 

(Promega) in a Veritas Microplate luminometer.  Firefly luciferase data were 

normalized to Renilla luciferase readings in each well.  Data were plotted by 

dividing SUMO-1 siRNA NF-κB activation by Control siRNA NF-κB activation x 100. 

SUMO-1 knockdown 

293T cells seeded in a 12-well plate were transfected with Control siRNA or 

SUMO-1 siRNA (Santa Cruz Biotechnology, Inc) following a Lipofectamine2000 

(Invitrogen) protocol for two days.  On the third day the cells were seeded in a 96-

well plate in triplicate and transfected with empty vector or wild type rhTRIM5α 

using PEI in which constructs were added at a 9 (EV/rhTRIM5α): 3 (NF-kB-

responsive firefly luciferase construct): 1 (Renilla luciferase construct for 

transfection efficiencies) ratio.  Cells were lysed 48-hours post transfection with 
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Passive lysis buffer (Promega) and the luciferase activity was measured using a 

Dual-Glo luciferase assay system (Promega) in a Veritas Microplate luminometer. 

Firefly luciferase data were normalized to Renilla luciferase readings in each well. 

Data were plotted by dividing SUMO-1 siRNA NF-κB activation by Control siRNA NF-

κB activation x 100. 

In Situ Uncoating Assay 

Fluorescently labeled viral proteins and host proteins are incorporated into 

the virus to generate fluorescently labeled HIV-1.  For example, viral protein R (Vpr) 

is tagged to a green fluorescent protein (GFP), which is incorporated into the virus 

during production to track the virus in cells with microscopy (30).  To generate 

fluorescently labeled HIV-1, 293T cells seeded in a 25cm dish at a 60% confluency 

were transfected with 8.45 ug S15-mCherry, 2.8 ug GFP-Vpr, 6.75 ug R7ΔEnvGFP, 

and 4.5 ug pCMV-VSVg  using PEI.  S15-mCherry is a fluorescent fusion protein that 

contains the 15 N-terminal amino acids of the cellular Src protein. This 15–amino 

acid sequence contains a myristoylation sequence that is sufficient to cause 

membrane association and incorporation of S15-mCherry into the virion.  Following 

fusion, the S15-mCherry labeled viral membrane is lost which allows for effective 

discrimination between virions that have been non-productively endocytosed by the 

target cells (S15-mCherry+, GPF-Vpr+) from those that have productively entered 

the cell cytoplasm (S15-mCherry−, GFP-Vpr+) (Figure 20 and Figure 21).  Two days 

following the transfections, virus was collected, centrifuged at 2000 rpmi for 5 
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minutes, and filtered through a 0.45 um filter (Milipore).  Harvested viruses were 

spinoculated on coverslips, stained for p24 using anti-p24 mAb AG3.0 (NIH AIDS 

Research and Reference Reagent Program) in blocking solution (10% normal 

donkey serum [Jackson ImmunoResearch Laboratories], 0.1% Saponin, 0.01% NaN3 

in PBS) for 1 hour at room temperature, followed by a secondary antibody 

conjugated to Cy5 (Jackson ImmunoResearch Laboratories) for 30 minutes at room 

temperature in the same blocking solution.  Determining the percent of virions in a 

field that were positive for S15-mCherry, GFP-Vpr and p24 assessed labeling 

efficiency.  For infections, OMK, HeLa and THP-1 (PMA differentiated) cells were 

seeded on fibronectin treated coverslips and spinoculated in presence or absence of 

drugs of interest.  Following spinoculation, media was aspirated and changed to 

warm media containing drugs and cells were incubated at 37°C.  At various time 

points post infection, coverslips were fixed with 3.75% Formaldehyde in 0.159 M 

PIPES buffer (pH 6.8) for 5 minutes and washed with 1xPBS.  Coverslips were 

stained with anti-p24 mAb AG3.0 as described above and mounted on glass slides 

with Gel Mount (Biomedia).  Z-stack images were collected using identical 

acquisition parameters with a DeltaVision microscope (Applied Precision) equipped 

with a digital camera (CoolSNAP HQ; Photometrics), using a 1.4-numerical aperture 

100× objective lens, and were deconvolved with SoftWoRx deconvolution software 

(Applied Precision).  Following deconvolution, images were quantified by Imaris 

(Bitplane) software using the Surfaces feature and generating surfaces around GFP-
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Vpr puncta. These surfaces were then quantified for their S15-mCherry and p24 

maximum fluorescence intensity.    
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Figure 20. Double-labeled HIV-1.  In addition to reporter viruses, during virus 
production, S15-mCherry and GFP-Vpr are transfected along with the proviruses 
and env to generate double-labeled HIV-1.  These viruses are used in 
immunofluorescence assays to discern between viruses that have productively 
fused (S15-mCherry negative, GFP-Vpr positive) and those that haven’t (S15-
mCherry positive, GFP-Vpr positive).  Image on the right was a courtesy of the Hope 
Lab-Northwestern University. 
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Figure 21.  Imaris quantification of fluorescently labeled HIV-1.  The cell 
nucleus is in grey and the particles are individual viruses.  Based on the intensity of 
GFP-Vpr that is labeling the virus artificial surfaces are created (green) around the 
virus.  Subsequently within that surface, S15-mCherry and p24 intensities are 
obtained.  From these numbers, we determine which viruses are S15-mCherry 
negative (background levels of mCherry intensity fused) and then plot the p24 
intensity values (blue) within those viruses to determine their uncoating status 
since p24 intensity decreases as the virus uncoats.   
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Statistical Analysis  

Statistical significance was assessed using the Student's t test or Multiple 

comparisons whenever two groups were compared.  Data is represented as mean 

+/- SEM or SD depending on the graph.  When more than two groups were 

compared, one-way ANOVA was used.  Calculations were performed in GraphPad 

Prism software (GraphPad Software, Inc.). 

 

CsA Washout Assays 

OMK, HeLa HA-TRIMCyp and THP-1 HA-TRIMCyp cells were plated in 24-

well plates.  Cells were spinoculated with GFP reporter virus in the presence of 

CsA/DMSO or CsA/Nocodazole, CsA/Taxol and CsA/CiliobrevinD for 2 hours at 13°C 

1200 x g (temperature arrested-fusion).  Following spinoculation, media was 

aspirated and changed to warm media containing drugs and cells were incubated at 

37°C.  Washout of CsA continued for throughout the entire time-course.  After 2 or 4 

hours, Nocodazole, Taxol and Ciliobrevin D were removed by washing the cells 

generously with PBS and adding back warm media containing CsA to be washed out 

in subsequent time points.  Controls included Nocodazole, Taxol and CiliobrevinD 

without CsA, and continuous DMSO treatment.  Two days following the time course, 

cells were harvested and fixed in 2% Formaldehyde (Polysciences) (Diluted in 

1xPBS (Cellgro)).  The percentage of GFP positive cells was determined using BD 

FACSCanto II flow cytometer (BD Biosciences).  
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Real Time-PCR 

 In conjunction with CsA Washout assays, samples were collected for RT-PCR 

at various hours post infection with and without drugs.  Genomic DNA from cells 

was extracted following the DNeasy Blood and Tissue Kit protocol (Qiagen).  The 

concentration of genomic DNA was determined using a NanoDrop 1000 (Thermo 

Scientific) and digested with DpnI (New England BioLabs) for 5 hours.  RT-PCR was 

performed as previously described with primers for late reverse transcription, 2-

LTR circles and β-actin (125, 155).  
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CHAPTER III 
 

HYPOTHESIS AND SPECIFIC AIMS 
 

Host cell proteins, termed restriction factors, which inhibit viral replication 

at various stages of the viral life cycle, determine the species-specific tropism of 

numerous retroviruses. Many members of the TRIM family of proteins act as viral 

restriction factors. One well-characterized example is the ability of TRIM5α from 

rhesus macaques (rhTRIM5α) to inhibit human immunodeficiency virus type-1 

(HIV-1) soon after viral entry but prior to reverse transcription (RT) (101, 140).  It 

is well established that the restriction requires an interaction between the viral 

capsid lattice and the B30.2/SPRY domain of TRIM5α.  Following the binding of the 

viral core, TRIM5α mediates an event or series of events that result in the abortive 

disassembly of the viral core in a manner that prevents the accumulation of reverse 

transcription RT products (102, 121, 156).   The RING domain of TRIM5α has E3-

ubiquitin ligase activity, which is important for restriction and autoubiquitination 

(140). Incubation of TRIM5 with ubiquitin, E1 enzyme, UBC13 and UEV1A in vitro 

led to the production of unanchored K63-linked ubiquitin chains (136).  

Additionally, proteasome inhibitors prevent TRIM5α mediated inhibition of RT 

products and abortive disassembly of the viral core without affecting the ability of 

TRIM5α to inhibit retroviral infection (125).   Furthermore, other proteins such as 
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p62, and SUMO-1 have been identified as interacting partners with TRIM5 that act 

as co-factors during restriction (149, 152).  Recently, Pertel et al. identified TRIM5 

as a pattern recognition receptor (PRR) that stimulates NF-κB and AP1 leading to 

downstream gene expression creating an antiviral state in the host (136).  Even 

though parts of the mechanism have been identified, the specific roles of individual 

proteins in TRIM5-mediated restriction have not been determined.   

Additionally, as mentioned before, the viral capsid is the determinant of 

TRIM5-mediated restriction, and the precise process of HIV-1 uncoating is still 

unknown.  Uncoating is defined as the disassembly of the capsid structure from the 

viral complex (157).  Studies suggest that the process of uncoating is modulated by 

viral and cellular factors (157, 158).  Cytoskeletal network has been implicated in 

the trafficking of virions to the nucleus following fusion.  Particularly, retrograde 

trafficking through the cytoplasm of HIV is accomplished on microtubules by dynein 

(30).  Recently, a study investigated the timing of uncoating after viral fusion and 

the relationship between uncoating and reverse transcription utilizing a newly 

developed assay (26). However, key host proteins that mediate uncoating of the 

core are unknown.  Also, since TRIM5 acts on the viral capsid, it is possible that the 

relationship between the viral core and microtubules is exploited by TRIM5 during 

restriction.   

Therefore, we hypothesize that host proteins interact with the HIV-1 core 

to facilitate and restrict HIV-1 infection after entry and before integration.   
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To study the interaction between host proteins and HIV-1, I propose the 

following three specific aims:   

  
Aim 1: I will test the hypothesis that proteins of the ubiquitin-proteasome pathway 

associate with rhTRIM5α while in complex with HIV-1 virions.  

a) Determine the association between proteasome subunits and TRIM5α 

b) Determine if there is a direct interaction between PSMC2 and TRIM5α  

c) Determine if the proteasome associates with TRIM5α cytoplasmic bodies 

during restriction of HIV-1.   

d) Determine the effect of Ubc13 knockdown on rhTRIM5-mediated 

restriction. 

   

 Aim 2: I will test the hypothesis that post-translational modification protein SUMO-

1 is necessary for rhTRIM5α-mediated restriction.   

a) Quantify the subcellular localization and protein levels of rhTRIM5α 

following SUMO-1 knockdown, and mutation of SUMO-1 interacting 

motifs in TRIM5α. 

b) Determine the role of SUMO-1 and SIMs in TRIM5-mediated restriction of 

HIV-1. 

c) Determine if SUMO-1 modulates the innate immune signaling mediated by 

rhTRIM5  
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Aim 3: I will test the hypothesis that initiation of HIV-1 uncoating occurs via 

microtubules  

a) Determine the effects of disrupting microtubules on HIV-1 uncoating. 

b) Determine the effects of disrupting microtubules on replication of HIV-1.  

c) Determine if dynein or other MAPs facilitate HIV-1 uncoating.  
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CHAPTER IV 
 

RESULTS: 26S PROTEASOME INTERACTS WITH TRIM5α DURING HIV-1 
RESTROCTION.  

 
 
TRIM5α associates with the 26S proteasome subunits 
  
 To examine the association between TRIM5α proteins and proteasome 

subunits in human cells, 293T cells were transfected with HA-rhTRIM5α and FLAG-

PSMC2.  Following rhTRIM5 pull down with an anti-HA antibody, FLAG-PSMC2 

was detected on a Western blot utilizing an anti-FLAG antibody.  This interaction 

with TRIM5α was not detected when pcDNA3.1 vector control was pulled down 

(Figure 22A-D), demonstrating a specific association between PSMC2 and 

rhTRIM5α.  To determine if this association was specific to PSMC2 or other subunits 

of the proteasome, HA-rhTRIM5α was transfected with FLAG-tagged versions of the 

19S RP subunits RPT3, RPT6, and RPN8.  All three subunits were specifically pulled 

down with HA-rhTRIM5α, indicating that rhTRIM5α associates with numerous 

subunits of the 19S RP.   To ensure the specificity of this pull-down, the same 

experiment was performed with FLAG-tagged Mixed Lineage Kinase 3 (MLK3) (159) 

that is not known to associate with TRIM5α.  FLAG-MLK3 did not co-

immunoprecipitated with HA-rhTRIM5α (Figure 22E).  This demonstrates that 

TRIM5α specifically associate with the proteasome subunits.  Additionally, 
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huTRIM5α-Myc was co-immunoprecipitated with FLAG-PSMC2 following 

transfection in HEK293 cells (Figure 22F).  This established that the association of 

proteasome subunits with TRIM5α is conserved across species (160).   
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Figure 22.  TRIM5 co-immunoprecipitates with 19S RP subunits.  293T or 
HEK293 cells were transfected with HA-rhTRIM5 or Myc-huTRIM5 with FLAG-
tagged subunits of the 19S RP or control plasmid FLAG-MLK3 utilizing 
polyethylenimine (PEI).  A-D.  Following a pull down with an anti-HA antibody, 
FLAG-tagged PSMC2 (Rpt1), Rpn8, Rpt3, and Rpt6 were detected by Western blot 
when probed by an anti-FLAG antibody.  E.  Utilizing the same protocol, FLAG-MLK3 
was not detected in a complex with rhTRIM5 when a Western blot was probed 
with an anti-FLAG antibody.  F.  FLAG-PSMC2 was pulled down using an anti-FLAG 
antibody and huTRIM5α was detected by Western blot using an anti-Myc antibody. 
(Data is representative of three independent experiments)    
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Subunits of the 26S proteasome localize to TRIM5α cytoplasmic bodies  

 The localization of proteasome subunits in HeLa cells stably expressing YFP-

rhTRIM5α (118) was examined.   Previously, we were unable to detect the 

localization of rhTRIM5α and the 20S CP of the proteasome using a polyclonal 

antibody (119).  However, the results described above prompted us to speculate 

that this antibody did not accurately represent the localization of proteasomal 

subunits by immunofluorescence.  Therefore, a more comprehensive study of 

proteasome localization was initiated using a large panel of antibodies to subunits of 

the proteasome.  As shown in Table 1 and Figure 23 these antibodies typically fell 

into two categories when utilized for immunofluorescence: those in which a 

pronounced nuclear localization of the specified subunit was observed and those in 

which a pronounced nuclear localization was not observed. Numerous reports have 

shown that proteasome subunits, in addition to maintaining a noticeable and 

biologically relevant cytoplasmic fraction, exhibit a pronounced nuclear localization 

(161).  Some antibodies in the panel examined (as well as the antibody used in the 

previous study) did not exhibit pronounced nuclear staining (Table 1), casting doubt 

on the utility of these antibodies for detecting proteasomal subunits by 

immunofluorescence. In contrast, the majority of antibodies did reveal a 

pronounced nuclear staining by immunofluorescence. Therefore, we used these 

antibodies to determine if proteasomal subunits localize to rhTRIM5α assemblies in 

HeLa stable cell lines expressing YFP-rhTRIM5α (118).  Antibodies to numerous 

subunits demonstrated pronounced accumulation of proteasomal subunits in these 
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assemblies (Figure 24A).  Specifically, PSMC2 could be detected in these assemblies 

(Figure 24A).  Antibodies to the proteasomal subunits α2, α4, α6, and RPT5 also 

detected a pronounced accumulation of these proteins in YFP-rhTRIM5α 

assemblies. Also, we detected proteasome subunits associated with YFP-rhTRIM5α 

cytoplasmic assemblies using a rabbit polyclonal antibody to the 20S core particle of 

the proteasome (Figure 24A).  To determine if proteasomal subunit localization was 

ubiquitous or if localization was specific to a subset of rhTRIM5α cytoplasmic 

assemblies, we quantified the proteasome specific immunofluorescent signal 

associated with individual cytoplasmic assemblies identified by automated image 

analysis. This analysis revealed that the vast majority of YFP-rhTRIM5α assemblies 

contained proteasomal subunits. Using an antibody to the 20S core, 99.6% of 

subunits had staining levels above background, which was defined as the staining 

observed using secondary antibodies in the absence of primary antibodies (Figure 

24B).  Similar results were also observed using mouse monoclonal antibodies to 

PSMC2 and another base subunit RPT5 as well as α4 and α6 subunits (Figure 24B) 

(160).  Because of the strong degree of 20S core staining observed in YFP-rhTRIM5α 

assemblies using a rabbit polyclonal antibody, this suggests that virtually all 

TRIM5α assemblies associate with proteasomes. Therefore, we believe that 

alterations in the percentage of cytoplasmic bodies containing individual 

proteasomal subunits we observed using antibodies represent the ability of these 

antibodies to reliably detect subunits that are likely present in these assemblies. 

However, we cannot exclude the possibility that individual subunits are present in 
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more or less abundance, as proteasomal subunit populations may conditionally vary 

(162, 163).    
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Table 1. Antibodies to proteasome subunits that were analyzed for 
immunofluorescence staining.  Antibodies to various subunits of the 19S RP and 
20S RP (Enzo Life Sciences).  
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Figure 23.  Endogenous subcellular localization of proteasome subunits in 
cells.   HeLa cells were fixed with 3.7% formaldehyde in PIPES buffer and 
subsequently stained with the antibodies.  Images were acquired on a DeltaVision 
widefield deconvolution microscope using a 100X objective.  (Representative 
Images) 
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Figure 24.  Proteasome subunits localize to YFP-rhTRIM5 assemblies.   A. 
HeLa cells expressing YFP-rhTRIM5 were stained for various subunits of the 
proteasome (Cy5) with the antibodies mentioned in Table 1.   Individual channel 
images were superimposed to create the merged image.  Arrows point to examples 
of co-localization between rhTRIM5 and proteasome subunits.  B.  Deconvolved 
images were analyzed for subunit mean fluorescence intensity (MFI) in YFP-
rhTRIM5 by the use of the Surface Finder function in the Imaris software 
(Bitplane).  For each YFP-rhTRIM5 cytoplasmic body, the MFI of the subunit or 
secondary antibody alone (Cy5 control) were determined and the data was plotted 
in GraphPad Prism 5 software. (Representative Images and Quantification) 
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TRIM5α directly associates with subunits of the 26S Proteasome 

 To better understand the association between rhTRIM5α and proteasome 

subunits, we performed immunofluorescence based Forster Resonance Energy 

Transfer (FRET) analysis on immunofluorescently labeled rhTRIM5α assemblies 

and proteasome subunits. For these studies, we utilized a well-characterized HeLa 

cell line stably expressing HA-rhTRIM5α (101).  As previously observed with our 

YFP-rhTRIM5α cell line, proteasomal subunits localize to rhTRIM5α assemblies in 

these cells (Figure 25C).  We labeled HA-rhTRIM5α and proteasomal subunits using 

secondary antibody combinations that have been previously used to measure FRET 

interactions in cells (164).  To measure FRET, we utilized the acceptor 

photobleaching approach, in which the acceptor of a FRET pair is serially 

photobleached, and the fluorescence of the donor fluorophore is measured over 

time (152, 153, 165).  In this system, if FRET occurs between two fluorophores, then 

bleaching of the acceptor will result in an increase in the fluorescence of the donor 

fluorophore as the acceptor fluorophore becomes unable to absorb the energy 

released from the donor. When PSMC2 was labeled using Alexa546 (donor) and HA-

rhTRIM5α was labeled using Cy5 (acceptor), serial photobleaching of Cy5 resulted 

in an increase in the fluorescence detected for PSMC2 (Alexa546). Control bleaching 

of Cy5 in cells stained with Cy5 secondary antibody alone, in the absence of αHA 

primary antibody, did not exhibit this pattern (Figure 25A) (160).  Similar results 

were obtained when a rabbit polyclonal antibody to the 20s proteasome was used 

(Figure 25B).  FRET measurement is generally accepted to indicate a direct (< 5 nm) 
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association between two proteins. In this case, because both primary and secondary 

antibodies were used in this assay, we cannot definitively state this to be true 

because the addition of a secondary antibody, which has a hydrodynamic radius of 

5.5 nm (166) results in a two-fold decrease in the resolution of this assay (> 10 nm). 

However, these experiments provide evidence that TRIM5α and proteasomal 

subunits exist in very close proximity in rhTRIM5α assemblies, well below what can 

be observed using colocalization analysis (Figure 24), which is limited by the 

resolution limit of light microscopy (~200 nm). 

 To determine if these proteins were within proximity (typically less than 5 

nm) and therefore directly interacting, we performed FRET analysis using fusion 

proteins in which rhTRIM5α and PSMC2 were fused to the commonly used FRET 

pair of CFP and YFP, respectively. In live cells transfected with both CFP-rhTRIM5α 

and YFP-PSMC2, colocalization of rhTRIM5α and PSMC2 could be readily observed 

(Figure 26A and B left panels).  We then utilized acceptor photobleaching to 

determine if FRET occurred between these two proteins in areas of notable 

colocalization. In this method, the acceptor (YFP-PSMC2) is serially photobleached.  

FRET is subsequently measured as an increase in donor fluorescence (CFP-

rhTRIM5α) which occurs as the acceptor is bleached and therefore no longer 

absorbs the resonant energy from the donor (167).  In these experiments, notable 

increases in the CFP-rhTRIM5α fluorescence were observed following YFP-PSMC2 

photobleaching but an increase was not detected when YFP empty vector was 

photobleached (Figure 26 A and B right panels, Figure 27A) (160).  While the FRET 
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difference between YFP-PSMC2 and YFP empty vector samples was statistically 

significant (p < 0.0001), there were also numerous CFP-rhTRIM5α assemblies in 

which photobleaching of YFP-PSMC2 did not induce an apparent increase in CFP-

rhTRIM5α fluorescence. This suggests that these two proteins do not directly 

interact in some assemblies. Although we attempted to focus our analysis only on 

assemblies that did not enter or leave the plane of focus during the course of the 

experiment, we were concerned that the disparate results obtained were a result of 

the movement of some assemblies relative to the focal plane during the analysis 

period. To address this concern, we also performed E-FRET analysis on these 

assemblies by measuring the amount of YFP fluorescence induced following CFP 

excitation. Because this method allows a calculation of FRET efficiency derived from 

three individual images taken in rapid succession, movement of TRIM5α assemblies 

during the acquisition period was not a concern. When this method of analysis was 

utilized, we again observed that the FRET efficiencies of individual assemblies 

varied considerably (Figure 27B).   
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Figure 25. rhTRIM5 interacts with PSMC2 and 20S CP via an 
immunofluorescence based FRET assay.  A. Cells stably expressing HA-rhTRIM5 
were immunostained for HA using a primary anti-HA antibody and a secondary 
antibody conjugated to Cy5.  Endogenous PSMC2 and 20S CP were stained with 
primary antibodies followed by secondary antibodies conjugated to Alexa546 
(Al546).  Cy5 fluorescence was progressively bleached and Cy5 and Al546 
fluorescence intensity was detected over time.  B. Same experiment was performed 
except an antibody was used to stain endogenous 20S CP.  Representative images of 
co-localization between HA-rhTRIM5 and endogenous PSMC2 and 20S CP are 
shown. (Data is representative of three independent experiments)     
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Figure 26.  HeLa cells expressing CFP-rhTRIM5α and YFP-PSMC2 used for 
FRET analysis co-localize with each other.  HeLa cells were transfected with CFP-
rhTRIM5α and YFP-PSMC2 for 16 hours to allow for protein expression.  
Subsequently, cells underwent FRET analysis.  YFP was progressively bleached.  In 
image A there is significant co-localization between CFP-rhTRIM5α and YFP-PSMC2 
(left side of the panel) that is not observed in image B where YFP empty vector was 
used (left side of the panel).  Further, an increase in CFP-rhTRIM5α intensity is 
present when YFP-PSMC2 (Image A, right panel) was bleached as compared to the 
YFP empty vector, where the CFP-rhTRIMα remains the same (Image B, right panel).  
(Representative Images) 
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Figure 27.  PSMC2 directly interacts with rhTRIM5.  A. HeLa cells were 
transfected with YFP-PSMC2 or YFP empty vector and CFP-rhTRIM5 at a 1:1 ratio.  
Over the course of 10 minutes, 50 images were acquired for YFP and CFP channels.  
Progressive acceptor photobleaching of YFP-PSMC2 resulted in an increase in CFP-
rhTRIM5 fluorescence intensity.  (Error bars represent the standard error of the 
mean between co-localization events that were analyzed in cells.  Data is 
representative of three independent experiments) B.  Fluorescence intensity of YFP 
and CFP were recorded and E-FRET was calculated as a relative increase in YFP 
intensity following CFP photobleaching.  (Data is representative of three 
independent experiments) 
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Subunits of the 26S proteasome are present in TRIM5α assemblies that 

contain HIV-1 

 These studies examined the localization of proteasomal subunits to 

rhTRIM5α assemblies that exist in cells in the absence of virus.  The degree to which 

pre-existing rhTRIM5α cytoplasmic bodies resemble assemblies that form around 

individual virions (118)is unclear.  One recent study found that TRIM5α forms 

hexagonal protein assemblies in the presence or absence of in vitro assembled 

hexameric capsid structures (122), suggesting that TRIM5α forms structurally 

similar assemblies in the presence or absence of restriction sensitive virus.  The 

tendency to form such assemblies is enhanced by the presence of these hexameric 

capsid assemblies (122).  However, there may be biologically important differences 

between cytoplasmic assemblies of TRIM5α that form around a restriction sensitive 

virus and those that form in the absence of virus.  We, therefore, sought to 

determine if TRIM5α assemblies that form around restriction sensitive virus also 

contain proteasomal subunits.  To this end, we infected a HeLa cell line stably 

expressing YFP-rhTRIM5α with low levels of pre-existing cytoplasmic bodies with 

VSV-g pseudotyped HIV-1 virions fluorescently labeled with a mCherry-Vpr fusion 

protein (30, 118).  Following infection for 30 minutes, cells were fixed, stained for 

proteasomal subunits and quantified for any colocalization between rhTRIM5α 

formed cytoplasmic bodies, restriction sensitive virus, and proteasomal subunits 

(Figure 28).  As the engagement of the viral capsid by rhTRIM5α rapidly leads to the 

loss of virally associated fluorescent signal (119), only a small percentage of viral 
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particles could be observed associating with TRIM5α in fixed cell images in the 

absence of proteasome inhibitor, as we have previously reported (119).  However, 

when we did detect such complexes, both proteasomal subunit PSMC2 and the 20S 

core localized to cytoplasmic assemblies of TRIM5α that formed around a restriction 

sensitive virus (160).  This demonstrates that proteasome subunits are recruited to 

TRIM5α assemblies that are associated with HIV-1 viral complexes. 
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Figure 28.  Proteasome subunits associate with rhTRIM5 assemblies 
containing HIV-1.   HeLa cells stably expressing YFP-rhTRIM5 at low levels 
(diffuse localization of TRIM5) were infected with VSVg-HIV-1 containing 
mCherry-Vpr for 30 minutes at 37C.  Cells were fixed and stained for the 
endogenous A. PSMC2 or B. 20S CP. (Representative Images) 
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Ubc13 (E2) effects on TRIM5α-mediated restriction 
 
 Since Pertel et al. demonstrated that TRIM5 utilizes Ubc13 to synthesize 

unanchored K63-linked polyubiquitin chains, we wanted to determine if it 

recapitulates the observations made with proteasome inhibition.  A cell line that 

stably expresses YFP-rhTRIM5α was transfected with siRNA that targets Ubc13.  

Following the knockdown of Ubc13, individual cells were imaged and analyzed.  

When the proteasome is inhibited with MG132, TRIM5α cytoplasmic bodies are 

much larger in size, fewer in number, and are brighter in intensity.  Therfore, we 

analyzed TRIM5α cytoplasmic bodies following Ubc13 knockdown with our analysis 

software.  When Ubc13 was knocked down, TRIM5α cytoplasmic bodies were larger 

in size.  The bodies increased from 0.37 um3 to 0.78 um3 in volume which was 

statistically significant (p<0.0001, Student T test).  Furthemore, the bodies were 

brighter in fluorescence intensity, 4613 fluorescence units vs. 2440 fluorescence 

units for the control siRNA treated cells (p<0.0001, Student T Test).  Also, as it was 

observed for proteasome inhibition, a decrease in number of cytoplasmic bodies.  

The average number of bodies decreased from 88.52 per cell to 46.31 (p<0.0001, 

Student T test) (Figure 29A).  These data suggest that knockdown of Ubc13 

recapitulates the phenotype observed when these cells are treated with MG132.  

However, the main question was whether Ubc13 knockdown relieves the inhibition 

of reverse transcription products in cells expressing TRIM5α, as MG132 does.  

Therefore, cells were knocked down for Ubc13 and infected with VSVg-HIV-1.  RT-

PCR data demonstrated that knockdown of Ubc13 did not relieve reverse 
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transcription products, as compared to MG132 treatment (Figure 29B).  While 

Ubc13 knockdown recapitulates the observations made with TRIM5α cytoplasmic 

bodies, it does not alter the restriction phenotype.  This suggests that Ubc13 alone is 

not capable of exerting the same effects that MG132 treatment has.   
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A. 

 

B. 

 

Figure 29. Ubc13 knockdown in rhTRIM5α cells A. HeLa cells stably expressing 
YFP-rhTRIM5α were transfected with Ubc13 siRNA.  Following the treatment, cells 
were imaged and analyzed in the Imaris software utilizing the Surface finder 
feature.  Surfaces were generated around YFP cytoplasmic bodies and analyzed.  
(Statistical significance calculated by using a student t-test, p< 0.0001)  B. HeLa cells 
stably expressing HA-rhTRIM5α were transfected with control or UBC13 siRNA for 
48 hours.  Following the transfection, cells were infected with VSVg-HIV-1 for 16 
hours before the cells were collected and analyzed for late reverse transcription 
products by RT-PCR.  Cells that received MG132 treatment were treated for the 
entire 16 hours.   Β-actin was used to normalize the samples (Error bars show the 
standard deviation between the triplicates.  Data is representative of three 
independent experiments).    
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CHAPTER V 
 

RESULTS: SUMO-1 AND SUMO INTERACTING MOTIFS (SIMs) MEDIATE TRIM5α 
RESTRICTION OF RETROVIRUSES.  

 

Mutations in rhTRIM5α SIM1 and SIM2 motifs abolish HIV-1 restriction 

Previously, SIMs in huTRIM5α was demonstrated to be required for the 

restriction of N-MLV.  To determine if the need for SIMs is conserved amongst 

TRIM5 proteins, we generated CRFK, HeLa, and TE671 cell lines stably expressing 

comparable levels of FLAG-tagged wild type rhTRIM5α or the rhTRIM5α variants 

with mutations in SIM1 (376–379), SIM2 (405–408) or SIM3 (430–433) 

(Figure 30A).  These cell lines were infected with VSV-G pseudotyped HIV-1 carrying 

a firefly luciferase reporter gene to assess retroviral restriction.  The wild type and 

SIM3 rhTRIM5α efficiently restricted HIV-1 infection when compared to the empty 

vector (EV) in CRKF (Figure 30B) and HeLa cells (Figure 29C).  Conversely, mutation 

of SIM1 and SIM2 of rhTRIM5α completely abolished the restriction activity in these 

cell lines (Figure 30C).  Similar results were observed in TE671 cells (Figure 30D), 

although the expression of the SIM1 and SIM2 mutants was noticeably reduced 

compared to the expression of wild type rhTRIM5α (Figure 30D).  In all cell lines, 

mutation of rhTRIM5α lysine 10 to arginine (K10R), a predicted SUMOylation site 

had minimal effect on restriction (168), consistent with our previous observations 
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of huTRIM5α and rhTRIM5α N-MLV restriction (149).  Similarly, in CRFK cells, 

which do not express a functional TRIM5 gene (169), the restriction of N-MLV by 

rhTRIM5α required a functional SIM1 and SIM2, recapitulating the restriction 

profile observed for HIV-1 (Figure 30E).  Therefore, SIM1 and SIM2 present in 

rhTRIM5α are important for its antiviral activity against both N-MLV and HIV-1 and 

this is conserved amongst species.  Consistent with this observation, another group 

has recently reported that the SIM1 and SIM2 mutations disrupt the binding of 

rhTRIM5α to the HIV-1 capsid (170), which would obviously reduce restriction.   
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Figure 30.  SIMs are important for rhTRIM5-mediated retroviral restriction.  
CRFK, TE671 and HeLa cells were generated to stably express wt FLAG-rhTRIM5, 
SIM1mut, SIM2mut or SIM3mut.  A. Western blot was performed to determine the 
expression of these proteins in different cell lines.  B. CRFK C. HeLa D. TE671 were 
infected with firefly luciferase reporter VSVg-HIV-1 for 48 hours and firefly 
luciferase levels were measured (Error bars show standard deviations between 
triplicates.  Data is representative of three independent experiments).  E.  CRFK cells 
expressing wt FLAG-rhTRIM5, SIM1mut, SIM2mut or SIM3mut were infected with 
firefly luciferase reporter VSVg-N-MLV for 48 hours and firefly luciferase levels 
were measured (Error bars show standard deviations between triplicates.  Data is 
representative of three independent experiments).  Experiment by: Dr. Gloria 
Arriagada, Ph.D. 
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Restriction of HIV-1 by rhTRIM5α is reduced following SUMO-1 knockdown 
 

To determine if the ability of rhTRIM5α to restrict HIV-1 infection was 

dependent on interactions with SUMO-1, we stably knocked down SUMO-1 (SUMO-1 

KD) using a SUMO-1 specific shRNA in TE671 cells expressing FLAG-rhTRIM5α or 

empty vector.  A non-silencing shRNA was used as a control.  To confirm SUMO-1 

KD, we performed quantitative PCR (qPCR) and found that these cells had ~70% 

SUMO-1 KD (Figure 31B).  Control cells transduced with empty vector did not show 

appreciable differences in HIV-1 infection following SUMO-1 KD (Figure 31A).  Cells 

transduced to express FLAG-rhTRIM5α showed considerable restriction of HIV-1. 

Notably, following SUMO-1 KD the restriction activity of cells expressing FLAG-

rhTRIM5α was reduced to levels similar to cells expressing empty vector 

(Figure 31A).  This demonstrates that rhTRIM5α restriction of HIV-1 is sensitive to 

SUMO-1 depletion. 
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Figure 31.  rhTRIM5-mediated restriction of HIV-1 is reduced following 
SUMO-1 knockdown.  Empty TE671 cells or cells expressing FLAG-rhTRIM5 were 
transduced with a vectors encoding a non-silencing (white bars) or SUMO-1 shRNA 
(black bars).  A. Cell lines were infected with a firefly luciferase reporter VSVg-HIV-
1.  48 hours post infection luciferase was measured.  (Representative experiment of 
three independent experiments. Error bars show standard deviation between 
triplicates).  B. mRNA levels of SUMO-1 were determined by quantitative PCR.  
Values were normalized by GAPDH mRNA and expressed as fold over the non-
silencing controls.  (Error bars show standard deviation between three different 
experiments).  Experiment by: Dr. Gloria Arriagada, Ph.D.  
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SUMO-1 enhances rhTRIM5α stability in cells 
 

As noted earlier, TE671 cells expressing rhTRIM5α SIM mutants showed 

reduced expression compared to TE671 cell lines expressing wild type or K10R 

forms of rhTRIM5α (Figure 30A).  This suggests that disrupting interactions with 

SUMO-1 may increase the turnover of rhTRIM5α.  It was previously reported that 

knockdown of host cellular protein p62 that interact with rhTRIM5α increased 

rhTRIM5α turnover (152), suggesting that p62 is required for rhTRIM5α stability.  

Therefore, we examined rhTRIM5α protein expression levels by Western blot 

following SUMO-1 siRNA treatment in a HeLa cell line stably expressing HA-

rhTRIM5α (101).  In these cells, SUMO-1 knockdown reduced HA-rhTRIM5α 

expression (Figure 32), although this reduction did not correlate with the degree of 

restriction observed (Figure 31A).  Other studies have noted that small alterations 

in TRIM5α expression do not dramatically affect restriction activity at non-

saturating amounts of virus (121, 171).  However, these observations make it 

difficult to separate the contribution of reduced protein expression and the relief of 

restriction observed in these studies. Therefore, it remains possible that the effects 

of SUMO-1 knockdown on restriction are not entirely due to reduced expression of 

rhTRIM5α. 
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Figure 32.  SUMO-1 stabilizes rhTRIM5 in cells.  A.  HeLa cells stably expressing 
HA-rhTRIM5 were transfected with SUMO-1 or non-targeting siRNA.  Cells were 
collected 24 and 48 hours post transfection and analyzed by Western blot for HA, 
SUMO-1 and -actin.  B.  Densitometry analysis using ImageJ on SUMO-1 protein 
levels.  SUMO-1 siRNA treated cells were normalized to control siRNA cells.  C.  
Densitometry analysis of HA-rhTRIM5 (Representative of three independent 
experiments),  
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NF-κB activation by rhTRIM5α is sensitive to SUMO-1 expression 
 

Recent studies have shown that TRIM5 proteins can activate intracellular 

signaling pathways that culminate in AP-1 and NF-κB activation (136, 172).  In 

order to understand the role of SUMO-1 and SIMs in rhTRIM5α-mediated signaling, 

we transiently expressed wild type and rhTRIM5α mutants along with an NF-κB 

luciferase reporter.  Both the wild type and SIM3 mutant form of rhTRIM5α were 

able to activate NF-κB.  On the other hand, the SIM1 and SIM2 mutants did not 

induce significant signaling above background in this context (Figure 33A, top 

panel). However, following transient transfection, the protein expression levels of 

the SIM1 and SIM2 mutants were reduced compared to wild type and SIM3 mutants, 

possibly explaining the loss of NF-κB activation (Figure 33A, bottom panel).  To 

assess NF-κB signaling by rhTRIM5α SIM mutants at comparable protein levels, we 

generated 293A cell lines stably expressing wild type rhTRIM5α and the SIM 

mutants and measured NF-κB activation in these cells.  Under these conditions, 

when the SIM mutants were expressed at comparable levels to wild type rhTRIM5α, 

they elicited similar levels of NF-κB activation (Figure 33B).  Consistent with a 

previous report that showed normal oligomerization of these mutants (170), and 

the data here that demonstrate the ability of these mutants to activate NF-κB, we 

conclude that the defect in restriction by rhTRIM5α SIM mutants is not due to gross 

misfolding of the protein. 

We next asked how SUMO-1 depletion affected the ability of wild type 

rhTRIM5α to induce NF-κB activation.  We co-transfected 293T cells with wild type 
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HA-rhTRIM5α, SUMO-1 or control siRNA and an NF-κB driven luciferase reporter. 

We measured NF-κB activation by rhTRIM5α in SUMO-1 siRNA treated cells 

compared to rhTRIM5α cells treated with control siRNA.  As shown in Figure 28C 

knocking down SUMO-1 had little effect on NF-κB activation when transfected with 

EV (~10%, black bar).  However, depletion of SUMO-1 significantly reduced (~60%, 

p<0.004, Student’s T-test) NF-κB activation by wild type rhTRIM5α (Figure 31C, 

grey bar). The reduction of NF-κB activation in the presence of SUMO-1 siRNA was 

not due to reduced rhTRIM5α protein levels (Figure 33C inset).  In this case SUMO-1 

knockdown did not affect TRIM5α protein levels because it was transfected (much 

more protein is present) as opposed to cells that stably express rhTRIM5α (less 

protein in cells) (Figure 32). Conversely, overexpression of SUMO-1 increased NF-

κB activation following transfection with empty vector or vector expressing wild 

type rhTRIM5α (Figure 33D).  This increase was more pronounced when rhTRIM5α 

was present, although this result was not statistically significant (p=0.187, Student 

T-test).  These experiments demonstrate that the ability to associate with SUMO-1 

or SUMOylated proteins is relevant to rhTRIM5α-mediated NF-κB signaling. 
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Figure 33.  SIMs and SUMO-1 role in rhTRIM5 activation of NF-B.   A. 293T or 
B.  293A cells were transfected with empty vector (EV), ΔRING/SPRY rhTRIM5α 
(ΔRS), wild typer hTRIM5α, SIM mutants or RIG-I along with NF-κB-responsive 
firefly luciferase construct.  48-hours post transfection, luciferase activity was 
measured.  NF-κB luciferase readings were normalized to renilla luciferase, and 
plotted as an average fold increase over empty vector.  Upper panel-representative 
NF-B activity in presence of wt rhTRIM5 and SIM mutants.  (Error bars represent 
the standard error of the mean between the triplicates.  Lower panel-Western blot 
of samples in the upper panel.  Data is representative of 4 independent 
experiments.)  C. 293T cells were transfected with Control siRNA or SUMO-1siRNA 
for 48 hours. Cells were then seeded in a 96-well plate in triplicate and transfected 
with empty vector or wild type rhTRIM5α. NF-κB activity was measured as in A. 
Data were plotted by dividing SUMO-1 siRNA activation by control siRNA activation 
x 100. Inset, representative Western blot. (Statistical significance was calculated by 
using a Student’s t-test, p<0.004. Error bars represent the standard error of the 
mean between the triplicates).   D. 293T cells were transfected with empty vector, 
and wild type rhTRIM5α constructs in presence and absence of SUMO-1.  NF-κB 
activity was measured as in A. Data were plotted as in C. (Statistical significance was 
calculated by using a Student’s t-test, no significant difference.  Error bars represent 
the standard error of the mean between triplicates. Representative of 3 independent 
experiments. 
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The SIM1 and SIM2 mutations disrupt rhTRIM5α trafficking to nuclear bodies 
containing PML and SUMO-1 

 

We next analyzed the association of rhTRIM5α and SUMO-1 by 

immunofluorescence to determine if SIM1 and SIM2 interact with SUMO-1 or SUMO-

1 modified proteins.  In HeLa cells stably expressing YFP-rhTRIM5α, we examined 

the co-localization of rhTRIM5α and endogenous SUMO-1.  We used two antibodies 

to SUMO-1 to examine both the cytoplasmic and nuclear fractions of SUMO-1.  The 

first antibody (GMP1, clone 21C7) recognized nuclear SUMO-1 as well as numerous 

cytoplasmic puncta.  However, the cytoplasmic SUMO-1 did not co-localize with 

YFP-rhTRIM5α (Figure 34).   SUMO-1 positive structures in the nucleus are well 

characterized and known to contain PML (173, 174), we used a second antibody 

(clone Y299) that recognized most of the larger nuclear structures that were PML 

positive (Figure 35).  This antibody detected primarily punctate nuclear SUMO-1.  

We used this antibody in subsequent experiments to examine SIM1 and SIM2 

localization with SUMO-1.  A recent study demonstrated that while steady state 

rhTRIM5α is excluded from the nucleus, it can transiently enter and exit the nucleus, 

where it associates with PML bodies.  This nuclear localization of rhTRIM5α to PML 

bodies is observed when the nuclear export of rhTRIM5α is inhibited with 

Leptomycin B (LMB), which is an inhibitor of CRM1 mediated nuclear export (175).  

Inhibiting the nuclear export of rhTRIM5α using LMB revealed that wt and all three 

SIM mutants localized to the nucleus (Figure 36A), contrary to a recent report by 

another group which found that the SIM1 and SIM2 mutants did not localize to the 
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nucleus under these conditions (170).  However, when we quantified the 

localization of these mutants to nuclear SUMO-1 bodies, SIM1 and SIM2 mutants of 

rhTRIM5α failed to localize to SUMO-1 positive bodies when nuclear export is 

inhibited, while the SIM3 mutant associated with these bodies to an intermediate 

degree (Figure 36B).  This data suggests that rhTRIM5 SIM1 and SIM2 cannot 

interact with a SUMOylated protein in the nucleus, presumably PML or other 

unidentified proteins in those bodies, while wt rhTRIM5 and SIM3 can.  The ability 

to interact with SUMOylated proteins somehow dictates the ability to which HIV-1 is 

restricted by TRIM5α.   
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Figure 34.  SUMO-1 antibody that recognizes cytoplasmic SUMO-1 does not 
localize to rhTRIM5 cytoplasmic bodies.  HeLa cells stably expressing YFP-
rhTRIM5 were immunostained with an antibody to cytoplasmic SUMO-1 (21C7 
clone).  The white box in the top panel represents the area that was zoomed in to 
create the bottom panel.  White arrows point to representative rhTRIM5 
cytoplasmic bodies that do not contain cytoplasmic SUMO-1.  (Representative 
Images) 
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Figure 35. SUMO-1 in the nucleus localizes to PML (TRIM19).  HeLa cells were 
fixed with 3.7% formaldehyde in PIPES buffer.  Following the fixing protocol, cells 
were stained with an antibody to PML and an antibody to SUMO-1 (clone Y299).  
(Representative Image) 
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A. 
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Figure 36.  SIM1 and SIM2 mutations disrupt rhTRIM5 localization to nuclear 
bodies containing PML/TRIM19 and SUMO-1.  A.  HeLa cells stably expressing wt 
YFP-rhTRIM5 or SIM mutants were treated with leptomycinB (LMB) for 4 hours.  
Cells were fixed, stained for SUMO-1 and DAPI (nucleus) and imaged.  B.  Images 
were analyzed for YFP-rhTRIM5 maximum fluorescence intensity (MFI) in SUMO-1 
nuclear bodies by the use of the Surface Finder function in the Imaris software 
(Bitplane).  (Representative Images and Quantification from three independent 
experiments) 
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CHAPTER VI 
 

RESULTS: MICROTUBULES AND DYNEIN FACILITATE HIV-1 UNCOATING.   
 

 

Effect of Microtubule Disruption on Uncoating Kinetics of HIV-1 Utilizing CsA 

Withdrawal Assay 

 Until recently, the kinetics of uncoating have been hard to determine 

due to the lack of assays and the instability of the HIV-1 core in experimental 

systems.  However, utilizing TRIMCyp, a restriction factor of HIV-1, Perez-Caballero 

et al. designed an assay to determine the kinetics of virus sensitivity to TRIMCyp 

(116).  Utilizing this assay, the percent of cores that have or have not uncoated can 

be calculated based on their sensitivity to TRIMCyp after Cyclosporin A is 

withdrawn (26, 116).  Since TRIMCyp only recognizes HIV-1 capsid in a context of 

an assembled core, any cores that have shed their p24 will be insensitive to 

TRIMCyp following release from CsA.  Therefore, this assay allows us to infer the 

status of the cores within living cells.  Utilizing this approach, it was determined that 

half-life of uncoating occurs in about 40 minutes (26).  This supports the model that 

majority uncoating occurs in the cytoplasm after entry before nuclear import.  

Within this same time frame, HIV-1 was shown to traffic on microtubules.  

Therefore, we wanted to determine whether microtubule disruption delays 
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uncoating.  CsA withdrawal assay was employed with the addition of 2 Hours of 

Nocodazole treatment following a synchronized infection with VSVg and AMLV 

pseudotyped HIV-1 carrying a GFP reporter.  With 2 hours of Nocodazole treatment, 

TRIMCyp restriction of incoming HIV-1 with two different pseudotypes that enter 

cells by different mechanisms was not inhibited.  This demonstrates that TRIMCyp’s 

ability to restrict virus is not dependent on the microtubule network allowing us to 

utilize it in this assay with drug treatments.  Following microtubule disruption, HIV-

1 uncoating was delayed with VSVg or AMLV envelope (Figure 37A and B).  The 

delay was observed in the early time-points of the time-course, once again 

suggesting that uncoating occurs relatively early following infection and that this 

process is further delayed when microtubules are disrupted.  Interestingly, when 

Nocodazole was washed out 2 hours following an infection and the assay was 

allowed to proceed, there was a significant increase in uncoating within the next 

hour in OMK cells.  This prompted us to examine the microtubules following 

Nocodazole removal.  Within 1 hour of Nocodazole removal, acetylated (stable) and 

tyrosinated (dynamic) microtubules were rebuilt (Figure 37B).  In HeLa cells, 

Nocodazole treatment lead to the fragmentation of microtubules as opposed to the 

microtubules in OMK cells that were mostly depolymerized.  However, within 1 

hour of Nocodazole removal in both cell types the microtubule integrity was 

completely restored (Figure 37B).  This demonstrates that HIV-1 uncoating is 
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delayed when microtubules are disrupted, however, when they are allowed to 

polymerize upon drug removal, uncoating continues.   

Since microtubules are dynamic structures, it is possible that further 

stabilization of microtubules leads to an increase in uncoating.  In OMK cells, 

microtubules were stabilized with a drug known as Taxol.  These cells were treated 

with 2 Hrs. of 0.1 µM Taxol during the CsA withdrawal assay.  Figure 38 shows that 

stabilizing microtubules slightly increased uncoating, which was not significant.  

These data demonstrate that the virus utilizes microtubules to facilitate uncoating of 

the core.   
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Figure 37.  HIV-1 uncoating is delayed when microtubules are disrupted as 
measured by the CsA withdrawal assay.  A.  CsA withdrawal assay was performed 
where OMK cells were infected with VSVg or AMLV pseudotyped HIV-1 by 
spinoculation to synchronize the infection in presence of Nocodazole (10 µM )/CsA 
or DMSO/CsA.  Following spinoculation the media on cells was changed to contain 
Nocodazole/CsA or DMSO/CsA.  At each time point indicated on the axis, the CsA 
was removed and replaced with DMSO or Nocodazole containing media for the first 
two hours.  Following 2 hours, Nocodazole/DMSO was removed from the cells and 
changed to media containing CsA for the remaining time points.  Red line indicates 
the extent of the Nocodazole treatment. 48 hours post infection, cells were collected 
and analyzed by flow cytometry for GFP expression.  (Significance determined by 
Multiple Comparisons t-test, *p<0.05, **p<0.01)  B.  Cells were treated with 2 hours 
of Nocodazole followed by removal of the drug for 1 hour.  Cells were fixed and 
stained with antibodies to acetylated tubulin (red-dynamic microtubules) and 
tyrosinated tubulin (green-stable microtubules).  Random fields on the coverslip 
were imaged and the phenotype was quantified as either normal (all microtubules 
intact), depolymerized (diffuse staining in the cells) or fragmented (shorter 
microtubules with diffuse staining as well).   
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Figure 38.  Taxol slightly increases HIV-1 Uncoating.  CsA withdrawal assay was 
performed where OMK cells were infected with VSVg or AMLV pseudotyped HIV-1 
by spinoculation to synchronize the infection in presence of Taxol (0.1 µM)/CsA or 
DMSO/CsA.  Following spinoculation the media on cells was changed to contain 
Taxol/CsA or DMSO/CsA.  At each time point indicated on the axis, the CsA was 
removed and replaced with DMSO or Nocodazole containing media for the first two 
hours.  Following 2 hours, Taxol/DMSO was removed from the cells and changed to 
media containing CsA for the remaining time points.  Red line indicates the extent of 
the Taxol treatment.  48 hours post infection, cells were collected and analyzed by 
flow cytometry for GFP expression.  (No significance detected as determined by 
Multiple Comparisons t-test, Data is represented as the average of three 
independent experiments).    
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Effect of Microtubule Disruption on Uncoating Kinetics Utilizing In Situ 

Fluorescence Assay 

 To analyze individual viruses in cells in presence or absence of microtubules 

we utilized fluorescently labeled and stained HIV-1 as previously described (176).  

VSVg-pseudotyped HIV-1 is labeled with two fluorescent proteins to discern viruses 

that have productively fused from those that remain in endosomes.  GFP-Vpr is 

incorporate within the viral core during virus production (30) and S15-mCherry is 

embedded in the host cell membrane and incorporated into the viral envelope 

during budding.  Following successful fusion, the S15-mCherry labeled envelope is 

lost and GFPV-Vpr that is associated with the viral core is released into the 

cytoplasm (176-178).  In the assays, infection with the double labeled HIV-1 is 

synchronized using spinoculation in presence or absence of drugs.  Following 

spinoculation, the media is exchanged for warm media and the cells are shifted to a 

37°C incubator to initiate fusion (BafilomycinA, an inhibitor of fusion is used as a 

negative control).  At various time-points post spinoculation in presence or absence 

of nocodazole, cells were fixed and stained for p24 (CA).  Cells were imaged utilizing 

a deconvolution wide-field microscope and analyzed for p24 fluorescence intensity.  

Images were analyzed by Imaris software where surfaces were generated around 

GFP-Vpr viruses and intensity of p24 and S15-mCherry were detected.    Viruses that 

were S15-mCherry negative (fused) were plotted for their p24 content in presence 

or absence of nocodazole over the course of 4 hours.  When microtubules were 
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disrupted, viruses contained higher levels of p24 at every time point post infection 

suggesting that the absence of microtubules delays the loss of p24 from viruses 

(Figure 39A and B).  These data demonstrate that microtubules facilitate uncoating 

(loss of p24) of HIV-1 because in absence of microtubules GFP-Vpr viruses are not 

shedding p24 as fast as the DMSO treated group.    
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Figure 39.  HIV-1 utilizes microtubules to uncoat as measured by the in situ 
uncoating assay.  HeLa cells were infected with fluorescently labeled HIV-1 (s15-
mCherry and GFP-Vpr) by spinoculating the virus on the cells with Nocodazole (10 
µM)/CsA or DMSO/CsA.  Following spinoculation the media on cells was changed to 
contain Nocodazole/CsA or DMSO/CsA.  Cells were fixed at every indicated time-
point.  Red arrow indicates the extent of the Nocodazole/CsA or DMSO/CsA 
treatment.    Subsequently, the cells were stained for p24 utilizing a monoclonal 
antibody (Ag3.0).   Images were quantified by using the Imaris software.  Fused 
viruses (S15-mCherry negative, GFP-Vpr positive) were analyzed for their p24 
maximum fluorescence intensity.  A. Graph depicting viruses that were analyzed.  
Each dot represents a single virus.  The red bars from A. were plotted to 
demonstrate the average intensity (mean) of p24 at indicated time-points with or 
without Nocodazole treatment.  (One-way ANOVA, ***p<0.001, ****p<0.0001).  B. 
Data analyzed as in A. Red bars represent the median, which is graphed in the image 
on the right.   
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Dynein Facilitates HIV-1 Uncoating 
 
               Since disruption of microtubules delayed uncoating, we wanted to 

determine if knockdown of dynein recapitulated the phenotype that was observed.  

We transfected HeLa cells with dynein heavy chain siRNA (DYNC1H1) cells for 48 

hours, which substantially decreased dynein levels (Figure 40A).  These cells were 

infected with fluorescently labeled HIV-1 and fixed at various time-points post 

infection.  The CA levels were analyzed by Imaris in viruses that successfully fused.  

When dynein was knocked down, viruses retained higher levels of CA as compared 

to control siRNA treated cells (Figure 40B).  Furthermore, when an inhibitor of 

dynein’s ATPase functinon (CiliobrevinD) was used, HIV-1 uncoating was also 

delayed as measured by the CsA withdrawal assay (Figure 41A).  We assessed the 

efficacy of the dynein inhibition by staining the cells for golgi which is known to 

disperse throughout the cells when dynein is inhibited (Figure 41B).  Alltogether, 

these data suggest that HIV-1 utilizes dynein that is on microtubules to mediate 

uncoating of the core.  When dynein is knocked down, there is a delay in uncoating.  

Whether an opposing protein acts on the viral core to control the rate of uncoating 

remains to be determined.  It is exciting to hypothesize that members of the kinesin 

family participate in the uncoating process as well.  Other viruses utilize dynein and 

kinesin simultaneously to exert opposing forces on the capsid that eventually lead to 

uncoating (179) which remains to be fully explored in the case of HIV-1. 
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Figure 40. DYNC1H1 knockdown delays HIV-1 uncoating.  HeLa cells were 
transfected with siRNA against DYNC1H1 for 48 hours. A. Western blot depicting 
DYNC1H1 knockdown.  B.  Following the transfection protocol, HeLa cells were 
infected with fluorescently labeled HIV-1 (s15-mCherry and GFP-Vpr) by 
spinoculating the virus on the cells.  Following spinoculation, a time-course was 
performed where cells were fixed at every indicated time-point.  Subsequently, the 
cells were stained for p24 utilizing a monoclonal antibody (Ag3.0).   Images were 
quantified by using the Imaris software.  Fused viruses (S15-mCherry negative, GFP-
Vpr positive) were analyzed for their p24 maximum fluorescence intensity.  Each 
dot represents a single virus.  Red bars were plotted in the subsequent graph to 
display the median or the mean of the p24 fluorescence intensity.  (DYNC1H1 data 
was normalized to the control data from four independent experiments.  Statistical 
significance of the mean was calculated using a One-way ANOVA, *p<0.05, **p<0.01, 
***p<0.001).  
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Figure 41.  Inhibition of dynein function by CiliobrevinD delays HIV-1 
uncoating.  A.  CsA withdrawal assay was performed where OMK cells were 
infected with VSVg or AMLV pseudotyped HIV-1 by spinoculation to synchronize the 
infection in presence of CiliobrevinD (100 µM)/CsA or DMSO/CsA.  Following 
spinoculation the media on cells was changed to contain CiliobrevinD/CsA or 
DMSO/CsA.  At each time point indicated on the axis, the CsA was removed and 
replaced with DMSO or CiliobrevinD containing media for the first two hours.  
Following 2 hours, CiliobrevinD/DMSO was removed from the cells and changed to 
media containing CsA for the remaining time points.  Red line indicates the extent of 
the CiliobrebinD treatment.  48 hours post infection, cells were collected and 
analyzed by flow cytometry for GFP expression.  (No significance detected as 
determined by Multiple Comparisons t-test, Data is represented as the average of 
three independent experiments).  B.  Cells were also stained for golgi following 
DMSO or 100uM CiliobrevinD treatment to quantify the extent of golgi dispersal as a 
measure of dynein inhibition. 
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Microtubule disruption and the effects on HIV-1 fusion and infectivity  
 
 To access the effect of microtubule disruption on HIV-1 infection, 

microtubules were disrupted and infectivity was monitored 48 hours post 

synchronized infection utilizing a GFP reporter virus.  With 2 hour Nocodazole 

treatment following the infection, there was a slight decrease in infectivity.  In HeLa 

cells the decrease in infection was more drastic than in OMK cells, but the decrease 

in infectivity was not significantly different.  This suggests that disrupting 

microtubules for 2 hours does not drastically affect HIV-1 infectivity as measured 46 

hours after the removal of drug (Figure 42A).  We did not prolong the inhibition of 

microtubules further as it affects cell viability, which would impair proper analysis 

of the results.  Additionally, since microtubule network is known to be important for 

vesicular trafficking, we wanted to determine whether microtubule disruption 

affects the virus’ ability to fuse with target cells since we pseudotyped with VSVg 

(pH Dependent) and AMLV (pH Independent).  Utilizing a β-lactamase tagged Vpr 

(BLaM-Vpr) containing VSVg-HIV-1 or AMLV-HIV-1, we determined that 2 Hr. 

Nocodazole treatment did not decrease VSVg pseudotyped HIV-1 fusion in target 

cells, which suggests that we are looking at downstream event of fusion such as 

uncoating in our CsA withdrawal assay.  In fact 2 Hrs. of Nocodazole treatment 

slightly increased fusion, demonstrating that our phenotype is even larger than 

observed because more viruses are fusing in Nocodazole treated cells as compared 

to DMSO treatment (Figure 42B).  Also, we used fluorescently labeled HIV-1 to 

measure fusion (S15-mCherry negative viruses) and determined that the percent of 
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S15-mCherry negative viruses did not change whether Nocodazole was present or 

not.     
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Figure 42.  Microtubule disruption effects on infectivity, TRIM5 restriction and 
virus fusion.  A.  Cells were infected with VSVg or AMLV pseudotyped HIV-1 with 2 
Hr. Nocodazole alone or in combination with CsA.  Following the treatment, media 
was exchanged for fresh media and infection was allowed to proceed for 46 hours.  
%GFP positive cells were quantified by flow cytometry.  B. To measure fusion two 
assays were employed.  Left image: Cells were spinoculated with VSVg- HIV-1 virus 
containing BLaM-Vpr in presence of DMSO or Nocodazole, and the infection was 
allowed to proceed for 3 hours at 37°C.  Subsequently, cells were loaded with CCF2-
AM for 1 hour.  The reaction was allowed to proceed overnight.  Cells were collected 
and analyzed by flow cytometry for the percent of CCF2 cleavage as a measure of 
HIV-1 fusion.  C. Fluorescently labeled HIV-1 (S15-mCherry and GFP-Vpr) was 
spinoculated on cells and a time-course was performed in presence of DMSO or 
nocodazole.  Images were analyzed for the percent of fused (S15-mCherry negative, 
GFP-Vpr positive) and unfused (S15-mCherry positive, GFP-Vpr positive) viruses.   
(All data is representative of three independent experiments) 
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Microtubule disruption does not delay HIV-1 replication 

 Previously, it was demonstrated that inhibition of reverse transcription of 

HIV-1 delays uncoating, suggesting a relationship between the two processes.  

Therefore, we wanted to determine whether reverse transcription and nuclear 

import of the viral genome were delayed when uncoating was delayed with 

microtubule inhibition.  Since uncoating is delayed when microtubules are 

disrupted, the expectation is that late reverse transcription and nuclear import are 

delayed as well.  Following a 4 Hr. Nocodazole treatment, late reverse transcription 

(Late RT) (Figure 43A) and nuclear import (as measured by 2-LTR circles) (Figure 

43B) were not significantly decreased at any of the time points.  Within 1 to 2 hours 

following infection, we observe no difference in the generation of Late RT products 

in the presence of Nocodazole in OMK cells (Figure 43A), and a slight reduction in 

the number of 2-circles generated in these cells (Figure 43B), consistent with the 

infectivity observed in these cells following Nocodazole treatment. This 

demonstrates that Noc treatment is not directly influencing RT in these infections, 

and that initiation of RT does not require intact microtubules.   
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Figure 43.  Microtubule disruptions does not delay late reverse transcription 
and nuclear import of the HIV-1 genome.  OMK cells were spinoculated with VSVg 
pseudotyped HIV-1 and a CsA withdrawal assay was performed in presence or 
absence of 2 or 4 hours of Nocodazole treatment.  At various time-points cells were 
collected and analyzed by RT-PCR for A. Late reverse transcription products that 
were normalized to actin in the samples and B. Nuclear import, as measured by the 
production of 2-LTR circles that were normalized to actin in the samples.  
(Representative of three independent experiments.  Error bars represent the 
standard deviation between the triplicates)  
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Summary 
 
 This study examined the interaction of host proteins with HIV-1 capsid that 

lead to facilitation or restriction of infection.  We show that rhTRIM5 interacts 

with components of the ubiquitin-proteasome system.  Moreover, the proteasome 

complex localizes to TRIM5 cytoplasmic bodies that contain restriction sensitive 

HIV-1, further confirming that the proteasome is involved in rhTRIM5-mediated 

restriction of retroviruses.  This study also provides evidence that SIMs in TRIM5 

are conserved and important for restriction because mutation of these SIMs 

decreases restriction.  Also, SUMO-1 is required for TRIM5 protein stability because 

depletion of SUMO-1 reduced TRIM5 levels and consequently reduced TRIM5 

restriction.    

Finally, we demonstrate that HIV-1 uncoating is mediated by microtubules.  

When microtubules are disrupted more CA remains associated with viruses and 

they are sensitive to TRIMCyp restriction for a longer period of time.  Depleting 

dynein recapitulated the phenotype that was observed when microtubules were 

disrupted, suggesting that motor proteins play a role in the uncoating process 

(Figure 44).   
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Figure 44.  Summary of the aims.  Aim 1. TRIM5 directly interacts with 
components of the proteasome during HIV-1 restriction.  We observed that TRIM5 
cytoplasmic bodies that form around incoming HIV-1 core are positive for 
proteasome subunits.  TRIM5 recognition of the incoming core causes TRIM5 to be 
degraded in a proteasome-dependent manner as demonstrated by the Aiken lab.  
However, whether the capsid is degraded by the proteasome during this restriction 
process is currently unknown (?).  Aim 2. TRIM5 traffics in and out of the nucleus. 
When it is in the nucleus, it localizes to SUMO-1 positive nuclear bodies (blue and 
black circles).  However, if certain SIMs in TRIM5 are mutated or SUMO-1 is 
depleted from the cell, TRIM5 protein levels are decreased (gray circles) and so is 
the restriction.  Aim 3. Following entry into the target cell, HIV-1 utilizes 
microtubules to traffic throughout the cell. It also utilizes microtubules to mediate 
uncoating of the viral core.  Specifically, it utilizes dynein and probably other MAPs 
to mediate uncoating.   
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CHAPTER VII 
 
DISCUSSION 

 
 

Proteasome involvement in TRIM5  restriction of retroviruses 
  
 Since TRIM5 was identified as a restriction factor of retroviruses a decade 

ago, researches have been trying to identify the mechanism by which this restriction 

factor works.  One host process that was identified to play a role is the ubiquitin-

proteasome system (UPS).  Proteasome inhibition alleviates TRIM5 restriction of 

HIV-1 reverse transcription even though infection and nuclear import remain 

impaired.  This suggests a role for the ubiquitin-proteasome system (UPS) in 

TRIM5-mediated restriction (123, 125).  To this, additional data suggests that 

TRIM5 not only ubiquitinates itself but also generates unanchored K63-linked 

polyubiquitin chains.  These polyubiquitin chains play a role in innate immune 

signaling during TRIM5 restriction of retroviruses.  Therefore, these data 

prompted us to determine if there is an interaction between the proteasome 

complex and TRIM5.  Our studies demonstrate a direct interaction between the 

proteasome complex and TRIM5 (Figure 22, 25, 27).  This complex of proteasome 

and TRIM5 forms around incoming virions, which further demonstrates the role of 

the UPS in restriction (Figure 28).  In a study by Rold et al. they demonstrate that 

upon engagement of 
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restriction sensitive virus, TRIM5 itself is degraded in a proteasome-dependent 

manner (124).   

Whether the UPS degrades viral components during restriction remains an 

unanswered question.  Engagement of the viral capsid by TRIM5α may lead to 

proteasome-mediated degradation of the TRIM5/CA complex, resulting in 

premature uncoating.  Currently, data does not exist that demonstrates that lysines 

in CA are ubiquitinated.  Therefore, it is possible that TRIM5 that is in complex 

with CA is ubiquitinated and degraded by the proteasome, which leads to the 

release of CA into the cytoplasm that isn’t functional for further infection.  In turn CA 

is not degraded by the proteasome but rather TRIM5 alone is.  However, which 

particular ubiquitin linked chains and E1/E2s are involved remains to be 

determined.  While we do know that Ubc13 aids TRIM5 in the synthesis of 

unanchored K63-linked polyubiquitin chains for innate immune signaling (136), it is 

not known whether they are important for degradation of TRIM5.  Ubc13 

knockdown recapitulates the earlier observations made about TRIM5 cytoplasmic 

bodies with MG132 treatment (Figure 29) but specific interactions between this 

particular E2 and TRIM5 remain to be determined.  It is possible that many E2s 

interact with TRIM5 to carryout diverse functions and conjugations.    

To further address the importance of proteasome in TRIM5-mediated 

restriction, Kutluay et al. utilized a different approach that relies on sucrose 

gradients to examine viral components during rhTRIM5 restriction of HIV-1 in 
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presence of a proteasome inhibitor (127).  When rhTRIM5α expressing cells were 

infected in the absence of MG132, large complexes containing CA and viral RNA 

were lost and there was a concomitant increase in the levels of CA and viral RNA in 

soluble fractions.  However, HIV-1 CA did not increase in soluble fractions 

concurrent with the loss from large complexes like N-MLV CA did following 

huTRIM5 restriction.  Subsequently, MG132 treatment restored large subviral 

complexes containing CA and viral RNA and reverse transcription was restored 

(127).  Once again these data leave us to wonder what happens to CA during 

rhTRIM5 restriction.  This is an important question to pursue because 

understanding the fate of CA will allow us to target CA more efficiently.    

In live cell imaging movies, TRIM5 forms de novo bodies around HIV-1 and 

within minutes both signals are gone (119).  This suggests that both TRIM5 and 

the virus are degraded following the interaction.  Nevertheless, it is possible that the 

limit of detection of the microscope prevented them from observing components of 

TRIM5 and/or CA that are present in the cell that were not degraded.   

While the precise mechanism of TRIM5 restriction and UPS involvement has 

yet to be completely determined, our data on the interaction of the proteasome 

complex with TRIM5 adds to the knowledge that the proteasome is an important 

component of retroviral restriction.  Other members of the TRIM family are known 

to utilize the proteasome complex for immune evasion and viral restriction.  For 

example TRIM21 is known to target adenovirus for degradation via the proteasome 
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complex.  Therefore, understanding the proteasome function in TRIM5 restriction 

may be utilized to study other members of the TRIM family of proteins that function 

in a proteasome-dependent pathway (180).  Additionally, demonstrating that the 

proteasome complex directly interacts with TRIM5 could aid in the development of 

a drug that can more specifically and efficiently target TRIM5 bound to the virus to 

the proteasome complex for degradation/disassembly.  Furthermore, a drug may be 

designed where the interaction between TRIM5 (bound to the capsid) and the 

proteasome complex is further strengthened to facilitate degradation and 

restriction.   

 

SUMO-1 and SIMs role in TRIM5 restriction and cross talk with UPS 

Our studies identified that SUMO-1 and SIM requirements for protein 

stability and restriction are conserved amongst TRIM5 species (168).  Two SIMs in 

the B30.2 domain of rhTRIM5 are required for retroviral restriction, which is also 

conserved in huTRIM5-mediated restriction (Figure 30).  This suggests that TRIM5α 

interacts with a SUMOylated protein via SIMs for stability in cells and restriction.  

For N-MLV restriction, it was demonstrated that SIMs in huTRIM5α interact with 

SUMOylated MLV CA.  However, due to the difficulties associated with the fragile 

HIV-1 CA, it remains to be determined whether HIV-1 CA is SUMOylated.  

Additionally, knockdown of SUMO-1 decreased rhTRIM5 protein levels (Figure 

32), which also lead to reduced restriction of HIV-1 (Figure 31).  These data suggest 
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that SUMO-1 or a SUMOylated protein are important for the stability of rhTRIM5 

(168).  A similar phenotype was described for p62 interaction with rhTRIM5 

(152).  Therefore, it is possible to imagine that TRIM5α exists in a complex with a 

wide variety of proteins that are important for its stability.  Understanding how 

TRIM5 stability is controlled will be crucial.   Even though huTRIM5 is as stable as 

rhTRIM5, it is not enough to restrict HIV-1 (118).  Therefore, identifying proteins 

that control the stability of TRIM5 can be exploited to further stabilize it and 

increase restriction of HIV-1 in human cells.  HuTRIM5α does have the ability to 

restrict HIV-1 but it is just not enough; therefore, designing drugs that can stabilize 

huTRIM5α would be ideal since gene therapy is not a feasible option just yet.     

Usually, several processes work together to carefully regulate proteins in 

cells.  Few studies suggest that there is cross talk between ubiquitinated and 

SUMOylated proteins in coordination with the proteasome (181-183).  It is possible 

that TRIM5 engages both processes during restriction.  Another tripartite motif 

family member, TRIM19/PML (promyelocytic leukemia gene) is degraded in a 

proteasome-dependent mechanism following SUMOylation during an 

Encepahlomyocarditis virus (EMCV) infection (184).  PML associates with TRIM5 in 

the nucleus and these structures are also positive for SUMO-1.  Furthermore, HSV-1 

ubiquitin ligase ICP0 acts as a SUMO-Targeted Ubiquitin ligase (STUbl) that induces 

the loss of SUMO-modified PML.  ICP0 also leads to global proteasome-dependent 

degradation of SUMO-conjugates during infection in a RING finger-dependent 



162 
 

 

mechanism (185).  If TRIM5 is ubiquitinated, and it interacts with a SUMOylated 

protein via SIMs in the B30.2 domain, these simultaneous processes may lead to 

proteasome degradation.  Additionally, in absence of ubiquitination, TRIM5 

interaction with a SUMOylated protein may lead to ubiquitin independent but 

proteasome-dependent degradation of TRIM5 and/or SUMOylated protein.  

However, in certain cells rhTRIM5 with mutations in SIM1 and SIM2 have an 

increased protein turnover rate compared to wild type.  If SUMOylation played a 

role in TRIM5 degradation, mutating SIMs would increase protein levels and not 

increase protein turnover rate.  Moreover, knocking down SUMO-1 would lead to an 

increase in TRIM5 protein levels and not decrease them as we observed (168) 

(Figure 32).  

 It is known that MLV capsid is SUMOylated, which may help huTRIM5 

recognize it via its’ SIMs during restriction (149) however, SUMOylated HIV-1 CA 

has not been detected.  When SUMO-1 is knocked down TRIM5 restriction is 

reduced but since protein levels of TRIM5 are decreased, the requirement for 

SUMO-1 in restriction is difficult to interpret (168).  If SUMO-1 is important in 

restriction, it is possible that a SUMOylated protein interacts with CA that makes it 

more susceptible to TRIM5 restriction.  In recent years, a few proteins were shown 

to interact with HIV-1 CA such as CPSF6, TNPO3 and Nup358 to mediate nuclear 

entry of the PIC (44).  While there isn’t any data to support that CPSF6, or TNPO3 

are SUMOylated, it remains a possibility that in complex with CA they could be 
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modified.  Nup358, a nuclear complex protein has a domain that contains SUMO E3 

ligase activity, however, a study demonstrated that the SUMO E3 ligase activity is 

not important in engaging CA (186).  However, most of these proteins act slightly 

downstream from TRIM5 restriction, which occurs quickly following virus entry 

into cells; therefore, it is unlikely that these identified CA interacting proteins are 

engaging CA during TRIM5 restriction.      

 

Uncoating and evasion of the host immune system  

 HIV-1 uncoating is one of the remaining steps in the viral life cycle that is not 

well understood.  We hypothesized that microtubules may play a role in uncoating 

of the core since the virus was demonstrated to traffic on microtubules soon after 

entry into the target cell (30).  Utilizing the CsA withdrawal assay, when 

microtubules were disrupted with Nocodazole HIV-1 CA was sensitive to TRIMCyp 

longer suggesting slower uncoating (Figure 37).  Also, higher levels of p24 were 

detected in GFP-Vpr labeled viruses when microtubule integrity was disrupted 

(Figure 39).  This suggests that HIV-1 utilizes microtubules to facilitate uncoating.  

Additionally, depleting dynein heavy chain delayed HIV-1 uncoating, which suggests 

that motor proteins engage the core to mediate uncoating (Figure 40 and 41).  How 

this interaction happens is not known.  We hypothesize that the assembled capsid 

lattice is the platform that is recognized by motor proteins rather than smaller units 

of CA since the viral core is released into the cytoplasm as an intact cone.  Whether 

multiple motor proteins simultaneously engage the core is not known either.  HSV-1 
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utilizes dynein and kinesin motors at the same time to engage in a tug-of-war to 

disassemble the core (179).  It is possible that a similar scenario occurs with the 

HIV-1 core to control the uncoating process.  Therefore, when kinesin/MAP is 

depleted then uncoating should be increased as compared to dynein depletion.   

While in our assays we did not utilize primary cells or cells of the immune 

system, these assays provide a great framework for future studies that are more 

difficult to perform in primary cells.  Microtubules are a necessary component of cell 

viability; therefore, it is easy to imagine that viruses in most cell types would utilize 

these molecular highways for transport.   

Furthermore, some labs suggest that HIV-1 uncoating does not occur in the 

cytoplasm but rather at the nuclear pore.  Data demonstrating that CA interacts with 

members of the nuclear pore complex to translocate the PIC into the nucleus may 

support this model.  Additionally, recent data suggests that the viral core and its’ 

interaction with CypA cloak the viral DNA in the cytoplasm from innate immune 

sensors.  While this model is possible, we do not observe a substantial number of 

viruses that are positive for CA accumulating at the nuclear rim, even 6 hours post 

infection.  Rather, we observe a gradual loss of CA within the first few hours.  A 

substantial amount of CA remains associated with the PIC even after a couple hours 

post infection (Figure 39), which correlates well with the understanding that some 

CA is associated with the PIC to mediate downstream events such as nuclear import.  

While our data would disagree with the model that the intact core docks at the 

nuclear pore, it suggests that enough CA remains associated with the PIC to interact 



165 
 

 

at the nuclear pore and mediate subsequent events.   An alternative model is that 

the CA is remodeled following entry and that our antibody loses the ability to detect 

the epitope during the infection, which gives a decrease in intensity of CA over time.     

Since microtubule-mediated transport is relatively fast, it is a good method 

for viruses to traffic to the nucleus before the cytoplasmic innate immune sensors 

are alerted.  Since it was recently reported that HIV-2 cDNA is sensed in the 

cytoplasm in dendritic cells by cGAS.  However, HIV-1 CA prevents cDNA sensing in 

the cytoplasm (187).  Therefore, it is possible that HIV-1 utilizes microtubules for 

capsid uncoating/remodeling to escape sensing in the cytoplasm by the innate 

immune system.      

Further, motor proteins and adaptor proteins are located on microtubules; 

therefore viruses can utilize them to disassemble their cores to successfully deliver 

their genomes to the nucleus.  Understanding this interaction between the viral CA 

and microtubules/motor proteins could lead to new therapeutics that target the 

core.  Specifically, inhibitors that disrupt the interaction between the viral core and 

microtubules/dynein would be beneficial because this would possibly prevent the 

virus from trafficking and uncoating efficiently to escape cellular detection and 

successfully infect the host.   Despite having a wide variety of antiretrovirals that 

target multiple steps of the viral life, a therapeutic that targets the viral core does 

not exist.  However, CA is a good target because it participates in multiple steps of 

the life cycle and CA cannot afford too many mutations without sacrificing viral 

fitness (19). 
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This body of work has contributed to various aspects of the HIV-1 life cycle.  

Particularly, this dissertation addresses how HIV-1 interacts with a range of host 

proteins to mediate successful infection.  TRIM5 interactions with the proteasome 

complex and SUMO-1 contribute to the understanding of the molecular mechanisms 

that TRIM5 utilizes to restrict HIV-1.  Furthermore, our studies on HIV-1 core 

uncoating and how microtubules/dynein facilitate the process was previously 

unknown.  Understanding the molecular mechanisms behind HIV-1 infection will be 

crucial in developing novel therapies and eradicating the virus.    
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