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ABSTRACT 

CXCR4 is a G protein-coupled receptor (GPCR) that binds to the chemokine, 

stromal cell-derived factor-1α (SDF-1α; a.k.a. CXCL12). The SDF-1α/CXCR4 

signaling axis plays an essential role during embryogenesis in the development of the 

heart, brain and vasculature and in the adult mediating immune cell trafficking and stem 

cell homing to the bone marrow. Dysregulation of SDF-1α/CXCR4 signaling is linked 

to several pathological conditions, including cardiovascular disease, immunological 

disorders as well as cancer growth and metastasis. However, the mechanisms that govern 

CXCR4 signaling remain poorly understood. In this dissertation project, we attempt to 

further our understanding of the molecular mechanisms that regulate CXCR4 signaling. 

CXCR4 signaling is tightly controlled by a complex series of events that rapidly 

terminates its signaling. Activated CXCR4 is rapidly phosphorylated and ubiquitinated 

by the E3 ubiquitin ligase AIP4 at the plasma membrane. Ubiquitinated CXCR4 is 

rapidly internalized onto early endosomes and targeted for lysosomal degradation, giving 

rise to long-term attenuation of signaling. The ubiquitin moiety on CXCR4 serves as a 

sorting signal for entry into the endosomal sorting complex required for transport 

(ESCRT) pathway. This pathway consists of four different protein complexes (ESCRT-

0, I, II and III), plus several accessory factors, that act in a sequential and coordinated 

manner to target proteins for lysosomal degradation. Although CXCR4 is targeted into 

the ESCRT pathway, mechanistic insight by which this occurs remains poorly defined. 
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In previous work from our laboratory, it was shown that adaptor protein arrestin-2 

interacts with AIP4 to regulate endosomal sorting of CXCR4 into the degradative 

pathway. However, the precise mechanism by which arrestin-2 performs this function 

remains unknown.  

We set out to determine how arrestin-2 integrates with the sorting machinery on 

endosomes to control the amount of CXCR4 that is degraded. We show that arrestin-2 

interacts with ESCRT-0 protein STAM-1. ESCRT-0 consists of two proteins: signal-

transducing adaptor molecule (STAM) and hepatocyte growth factor-regulated tyrosine 

kinase substrate (HRS). It is the first complex that recognizes ubiquitinated CXCR4 and 

targets it for lysosomal degradation. We show that depletion of STAM-1 by siRNA and 

selective disruption of the STAM-1/arrestin-2 interaction accelerates agonist promoted 

degradation of CXCR4, suggesting that STAM-1 via its interaction with arrestin-2 

negatively regulates CXCR4 endosomal sorting. Interestingly, disruption of this 

interaction also blocks agonist promoted ubiquitination of HRS, the other ESCRT-0 

protein, but not ubiquitination of CXCR4 and STAM-1, suggesting that arrestin-2 via 

its interaction with STAM-1 mediates ubiquitination of HRS. We propose a model, 

whereby arrestin-2 initially recruits CXCR4 to the ESCRT machinery and subsequently 

interacts with ESCRT-0 to regulate its sorting function, thereby ultimately controlling 

the amount of CXCR4 that is degraded. 

Here, we also report novel roles for AIP4 and STAM-1 in CXCR4 signaling, 

which are different from their roles in CXCR4 trafficking. Treatment of cells with 

siRNA against AIP4 and STAM-1 attenuates CXCR4-induced activation of 



 XXIV 

extracellular regulated kinase 1 and 2 (ERK-1/2). We show that STAM-1 via its SH3 

domain interacts with the proline–rich region (PRR) in AIP4. AIP4 mediates STAM-1 

ubiquitination and expression of AIP4-C830A, a catalytically inactive mutant that fails to 

ubiquitinate STAM-1, and an AIP4 mutant (AIP4-ΔPRR) that shows poor binding to 

STAM-1 fail to enhance CXCR4-induced ERK-1/2 activation, suggesting that 

interaction with STAM-1 as well as ubiquitination activity of AIP4 are important for 

CXCR4-induced ERK-1/2 activation. Remarkably, a discrete subpopulation of AIP4 

and STAM-1 co-localize with CXCR4 at the plasma membrane and with caveolin-1, a 

protein that is enriched in caveolae (a specialized lipid raft). Disrupting caveolae using 

caveolin-1 siRNA or nystatin, a cholesterol-depleting agent, significantly attenuated 

CXCR4-induced ERK-1/2 activation. Based upon our data, we propose that AIP4-

mediated ubiquitination of STAM-1 in caveolae coordinates CXCR4 activation of ERK-

1/2 signaling.  

Taken together, our study has provided novel insight into the regulation of 

CXCR4 both at the levels of signaling as well as trafficking. We provide novel 

mechanistic insight into the role of arrestin-2 in targeting CXCR4 into the degradative 

pathway and we have also identified a novel function for AIP4 and STAM-1 in CXCR4 

signaling. 
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CHAPTER 1 

INTRODUCTION 

G PROTEIN-COUPLED RECEPTORS (GPCR) 

G protein-coupled receptors (GPCRs) are the largest family of cell surface proteins 

encoded by the human genome. There are approximately 900 members in the family, 

although 50% of these are the odorant receptors (reviewed in Pierce et al., 2002). GPCRs 

share a common core structure that is composed of seven-transmembrane-alpha-helices 

(TM-1 to TM-7) connected by three intracellular loops and three extracellular loops 

(Figure 1.1) (reviewed in Pierce et al., 2002). GPCRs are involved in a large variety of 

physiological processes such as vision, smell, pain, regulation of immune system, nervous 

system, neurotransmission, hormone and enzyme release, cardiac- and smooth-muscle 

contraction and blood pressure regulation. GPCRs are important pathophysiologically as 

evident by the fact that more than 50% of all drugs currently on the market target GPCRs 

for their action (reviewed in Fredholm et al., 2007; Hislop and von Zastrow, 2011; Jacoby 

et al., 2006; Overington et al., 2006).  

On the basis of sequence similarity the International Union of Pharmacology 

(IUPHAR) has classified GPCRs into four groups (http://www.iuphar-

db.org/list/index.htm, (Foord et al., 2005; Fredholm et al., 2007): 

 

Class-1 or family A: This group of GPCRs contains 272 members of rhodopsin-like and 



 2 
olfactory receptors. Some of the important GPCR family members in this class include; 

5-Hydroxytryptamine, acetylcholine (muscarinic), adenosine, chemokine, dopamine, 

opioid, protease-activated, vasopressin and oxytocin receptors among many more. Family 

A also contain 85 orphan receptors. Orphan receptors are receptors whose natural ligands 

are not known at present.  Receptors in family A contain a conserved arginine in the 

Asp-Arg-Tyr (DRY) motif at the cytoplasmic side of the transmembrane helix 

(Kolakowski, 1994; Probst et al., 1992). 

 

Class-2 or family B: This group contains 49 members of secretin receptor-like receptors. 

Some of the important members in this class include; calcitonin, corticotropin-releasing 

factor, glucagon and parathyroid hormone receptors. This group also contains around 34 

orphan receptors. The DRY motif is absent in family B receptors, instead receptors in 

this group contain a long N-teminal domain with several cysteine residues that form a 

network of disulfide bridges. 

 

Class-3 or family C: This group contains 19 members of the metabotropic GABAB and 

glutamate receptors as well as 7 orphan receptors. Receptors in this group have a long 

amino terminus (500-600 amino acids). 

 

Frizzled family receptors: This group contains 11 members that serve as receptors in the 

Wnt signaling pathway.  

 



 3 
GPCR ACTIVATION AND G PROTEIN DEPENDENT SIGNALING 

GPCRs transduce information from the extracellular environment to the interior 

of the cell via GTP-binding proteins (G protein), which are heterotrimers of α, β, and γ 

subunits. Under an inactive or ligand-free basal state, the receptor is in an inactive 

conformation. Under this condition the G protein is inactive and is reversibly bound to 

guanosine  

 

Figure 1.1: Overview of GPCR activation and signaling. GPCRs are activated by a wide variety of ligands. 

Agonist binding to the receptor triggers a conformational change that mediates the exchange of GDP for 

GDP on the α-subunit. Gs subunit stimulates adenylyl cyclase that leads to an increase in the level of cyclic 

AMP (cAMP) in cells. In contrast, Gi inhibits adenylyl cyclase, Gq activates phospholipase C (PLC), 

which is responsible for the cleavage of phosphatidylinositol bisphosphate (PIP2) into second messengers 

diacylglycerol (DAG) and inositol trisphosphate (IP3). G12/13 regulates the actin cytoskeleton via activation 



 4 
of Rho family proteins. The βγ-subunits also control a variety of intracellular signaling pathways, such as 

mitogen-activated protein kinase (MAPK), small GTP-binding proteins of the Ras and Rho families, c-jun 

N-terminal kinase (JNK) and p38. GPCRs may also signal in a G protein- independent fashion to activate 

these signaling pathways. Together these signaling pathways control various biological processes such as 

transcription, cell migration, survival, proliferation and differentiation. Abbreviations; PI3K, 

phosphatidylinositol 3-kinase; PKA and PKC, protein kinase A and C. Modified from Dorsam and 

Gutkind et al., 2007 

 

diphosphate (GDP). Agonist binding induces conformational changes in the receptor 

allowing it to function as a guanine nucleotide exchange factor (GEF) by promoting the  

exchange of GDP for GTP on the α-subunit. Antagonist binding stabilizes different 

conformational states but does not promote G protein activation and hence signaling. 

Structural basis of ligand induced GPCR activation has been characterized for various 

GPCRs such as β2 adrenergic receptor, rhodopsin and CXCR4 (Altenbach et al., 2008; 

Farrens et al., 1996; Scheerer et al., 2008; Wu et al., 2010; Yao et al., 2006). Irrespective 

of the type of GPCR, ligand binding induces conformational change, especially in the 

TM3 and TM6 region of the transmembrane domains, which then activates the 

associated G protein that further activates highly versatile signal transduction system.  

Gα subunit can be divided into four families with several members in each family 

(Gαs, Gαi/Gαo, Gαq/Gα11, and Gα12/Gα13). On the other hand, the βγ heterodiamer is 

made of a repertoire of 5β and 12 γ-subunits. As shown in Figure 1.1, depending upon 

the specific type of G protein subunit associated with the GPCR, specific signal 

transduction pathways will be activated (reviewed in Wettschureck and Offermanns, 
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2005). 

G PROTEIN-INDEPENDENT SIGNALING 

The first report that GPCRs can activate signaling in the absence of G protein 

coupling came from the studies on the adenosine 3',5'-monophosphate (cAMP) receptor 

(cAR) in the amoeba Dictyostelium discoideum (Milne and Devreotes, 1993). Since then, 

many GPCRs have been shown to activate cellular signaling pathways independent of G 

protein involvement. One of the most studied GPCRs is the β2-adrenergic receptor 

(β2AR). It has been shown that at higher doses of ligand, activation of mitogen-activated 

protein kinase (MAPK) pathway is independent of G protein coupling (Sun et al., 2007). 

Similarly, β2AR dependent regulation of cellular pH by modulation of Na+/H+ 

exchanger (NHE) function is independent of G protein activation, instead it is mediated 

via direct binding of Na+/H+ exchanger regulatory factor (NHERF) protein via a PDZ 

motif present in the receptor (Hall et al., 1998).  

Other GPCRs such as muscarinic, parathyroid hormone (PTH), angiotensin II 

type 1A, neurokinin 1 (NKR1) and type 1 metabotropic glutamate receptors have also 

been shown to regulate cellular functions in a G protein-independent fashion (Gesty-

Palmer et al., 2006; Heuss et al., 1999; Jafri et al., 2006; Rolland et al., 2002; Seta et al., 

2002; Zhai et al., 2005). However, the mechanisms of G protein-independent GPCR 

signaling remain largely unknown. 

 

Role of arrestins in G protein independent signaling 

The mammalian genome encodes four family members of arrestin that can be 
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sub-divided into two groups of visual and non-visual arrestins family (Lohse et al., 1990).  

Visual arrestins are composed of arrestin-1, that is found in both rod and cone cells of the 

visual system, and arrestin-4 (a.k.a. X-arrestin) found in cone cells. Non-visual arrestins 

are arrestin-2 (beta-arrestin-1) and arrestin-3 (beta-arrestin-3) and both of these proteins 

are ubiquitously expressed (reviewed in Gurevich and Gurevich, 2006). Arrestins have 

classically been shown to be involved in the termination of G protein-mediated signaling 

events giving rise to a process called desensitization. Arrestins were initially identified in 

the visual system as 48 KDa molecule that can block light induced signaling of the 

rhodpsin receptor, a GPCR (Wilden et al., 1986). Non visual arrestins were later 

discovered and shown to inhibit agonist promoted signaling of  β2AR (Lohse et al., 

1990). However, in recent years there has been increasing evidence suggesting a role for 

non-visual arrestins in G protein-independent signal transduction mediated by seven 

transmembrame receptors (7TMRs) (reviewed in Krupnick and Benovic, 1998). Luttrell 

et al., in 1999 discovered that arrestins can directly bind to and scaffold Src family 

tyrosine kinases to agonist occupied activated β2AR (Luttrell et al., 1999). The binding is 

mediated by the SH3 domain of Src and proline-rich PXXP region in arrestin-2. In 

addition, the SH2 domain of Src also interacts with N-terminal residues of arrestin-2 

(Miller et al., 2000). Similar mode of binding between Src and arrestin has been reported 

for neurokinin-1 recepor (Barlic et al., 2000). Arrestin-mediated recruitment of Src leads 

to phosphorylation of  ERK-1/2, phosphorylation of dynamin and stimulation of 

neutrophil degranulation (Barlic et al., 2000; DeFea et al., 2000a; Miller et al., 2000). 

Since then many more GPCRs have been shown to utilize arrestins as adaptors to 
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regulate signaling (Lefkowitz and Shenoy, 2005).  

One of the best characterized role for arrestin in 7TMR signaling is the activation 

of the MAP kinase cascade. Mammalian cells contain three major classes of MAP kinase: 

Extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases/ stress-activated 

protein kinase (JNK/SAPK) and p38. Both arrestin-2 and 3 have been shown to bind to 

the components of the ERK cascade such as Raf-1, MEK, and ERK, subsequently 

leading to the activation of ERK (Lefkowitz and Shenoy, 2005). Unlike G protein-

dependent ERK-1/2 activation, arrestin-dependent ERK activation is more prolonged 

(Ahn et al., 2004). Agonist promoted internalization of protease activated receptor 

(PAR)-2 in KNRK cells induces the assembly of multiprotein complex composed of 

arrestin-2, Raf-1, activated ERK and the receptor. A receptor mutant deficient in 

binding to arrestin, as well as an arrestin mutant deficient in promoting endocytosis, does 

not activate ERK, suggesting that the assembly of this complex is necessary for receptor 

mediated activation of ERK (DeFea et al., 2000b). The complex also retains activated 

ERK in the cytoplasm. Similarly, in case of angiotensin II type 1a receptors (AT1aR) 

ligand stimulation leads to redistribution of ERK cascade proteins such as Raf-1, MEK1 

and ERK2 into endosomal vesicles containing AT1aR-arrestin complex (Luttrell et al., 

2001). In case of the NK1 neurokinin receptor, activation by substance P leads to the 

formation of complexes comprising of internalized receptor, arrestin, Src and ERK1/2 

(DeFea et al., 2000a).  

Arrestin-mediated signaling is more diverse and is involved in scaffolding other 

signaling components. Arrestins also interact with members of Src family kinases such as 
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Hck, Frg, Yes (Imamura et al., 2001). Arrestins can also scaffold phosphodiesterase 4 

(PDE4), AKT and PI3 kinases (Beaulieu et al., 2005; Schmid and Bohn, 2010). 

Arrestins are also known to bind and activate other MAPK proteins such as p38 and c-

Jun N-terminal kinase (JNK3) (Miller et al., 2001; Song et al., 2009).  

 

REGULATION OF GPCR SIGNALING 

In order to avoid prolonged receptor activation and to maintain the signaling with in the 

physiological limit, three important processes regulate GPCR signaling:  

1. Desensitization: a rapid (within seconds) but transient inactivation of signaling 

via uncoupling of G proteins. 

2. Internalization: a slow (minutes) but long-term inhibition of signaling via 

sequestration of receptor from the plasma membrane. 

3. Downregulation: a reduction in the total cellular pool of receptor via 

endosomal sorting and degradation via lysosomes. Downregulation can take from 

several hours to days.  

Desensitization 

Upon activation of GPCRs, the G protein  α-subunit is activated through an exchange of 

GDP to GTP. Activated α-subunit have their own intrinsic GTP hydrolysis ability that 

can terminate signaling. Several accessory proteins such as regulators of G protein 

signaling (RGS) can bind to G proteins and accelerate the rate of GTP hydrolysis. (Ross 

and Wilkie, 2000). Signal termination can also take place at the level of receptor. This 

process requires phosphorylation of the receptor by serine-threonine protein kinases 
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known as G protein-coupled receptor kinases (GRKs) and second messenger-dependent 

kinases such as protein kinase A (PKA) and protein kinase C (PKC).   

There are two main types of desensitization observed following the activation of 

receptors: homologous and heterologous desensitization. Homologous desensitization is 

a process whereby there is a loss of agonist responsiveness specifically in the GPCR that 

is activated by ligand. This type of desensitization is mediated by GRK phosphorylation 

and subsequent binding of arrestins that sterically hinder G protein coupling to the 

receptor. In contrast, heterologous desensitization leads to a generalized effect; involving 

loss in agonist responsiveness to multiple GPCR subtypes. It is caused by the 

phosphorylation of receptors upon activation of different receptor and is mediated by the 

activation of second messenger protein kinases such as PKC and PKA. 

Ligand binding induces conformational changes in the receptor that facilitates the 

binding of GRKs. GRKs phosphorylate serine/threonine residues present in the carboxyl 

terminal tail (C-tail) as well as third intracellular loop of activated receptors (reviewed in 

Krupnick and Benovic, 1998). Phosphorylation of GPCRs by GRKs is insufficient to 

produce complete desensitization (reviewed in Pitcher et al., 1998), but requires 

recruitment of protein called arrestins. Arrestins bind to GRK phosphorylated receptor 

and upcouple G proteins by steric hindrance to prevent further signaling (Lohse et al., 

1990). The ability of GRKs to specifically phosphorylate agonist-occupied GPCRs is an 

important hallmark of homologous desensitization. 

Heterologous desensitization of GPCRs is mediated via second messenger 

dependent protein kinsases such as PKC and PKA.  Certain GPCRs primarily undergo 
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second-messenger mediated desensitization and do not require GRKs. For example the 

Gq-coupled purinergic receptor P2Y(1) (Hardy et al., 2005) and D(3) dopamine receptor 

(D(3)R) (Cho et al., 2007), desensitization following activation is independent of 

GRK/arrestin recruitment and is mainly mediated by PKC-dependent phosphorylation. 

For Gαi-coupled metabotropic glutamate receptor 4 (mGluR4), desensitization and 

internalization solely depends on the activation of PKC or by coexpression of neurokinin 

3 receptor (NK3R) (a PKC activating Gαi-coupled GPCR) (Mathiesen and Ramirez, 

2006). Since PKA/PKC mediated phosphorylation does not recruit arrestins, the 

mechanism of desensitization remains unclear. However, in case of certain GPCRs such 

as the D2 dopamine receptors and the delta-opioid receptor (DOR), PKC mediated 

phosphorylation leads to recruitment of arrestins (Namkung and Sibley, 2004).   

 

Role of arrestins in GPCR desensitization 

The process of arrestin recruitment to activated and phosphorylated receptor was 

first identified in the visual system (Gurevich and Benovic, 1993). Recruitment of 

arrestins to the phosphorylated receptor leads to uncoupling of G protiens, thereby 

leading to desensitization. Activation of arrestins and recruitment to activated receptor 

has been extensively charaterized. Arrestins are made of two distinct domains (N and C 

terminal) linked by a polar core. Under basal/inactive state, arrestins are in a compact 

state with the negatively charged residues in the C domain anchored to the positively 

charged residues in the N domain. Under this state, arrestins have weak binding affinity 

for the receptor. The polar core contains charged residues (Asp26, Argl69, Asp290, 
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Asp297 and Arg393 in arrestin-2, and Asp29, Argl70, Asp291, Asp298 and Arg394 in 

arrestin-3) that further helps to stabilize the basal state of arrestins (Han et al., 2001; 

Hirsch et al., 1999). Upon activation by ligand, GPCRs are rapidly phosphorylated by 

GRKs increasing the negative charge on the receptor. Once phosphorylated, arrestins are 

recruited to the receptor through their charged residues. Phosphate recognition has been 

narrowed down to amino acid residues Arg-18, Lys-20, Lys-55, Arg-55 in the N-

terminal domain and Lys-300 in the C-terminal domain of arrestin (Han et al., 2001). 

Rearrangement of the N and C domains of arrestin following the binding to 

phosphorylated receptor exposes the C-tail that further bind to proteins such as clathrin 

and AP-2 and initiates the process of internalization (reviewed in (Moore et al., 2007) 

(Figure 1.2).   

 

 

Figure 1.2 GPCR desensitization and internalization 

1) Under basal condition the heterotrimeric GTP binding protein (G protein), which is comprised of an α-

subunit (Gα) and a tightly associated dimer of β and γ-subunits (Gβγ), is bound to GDP and is in an 

inactive conformation. 2) Upon binding to its cognate ligand (yellow oval), conformational changes in the 

GPCR induce the exchange of GDP for GTP on the α-subunit (Gα) leading to its activation and 
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dissociation from the βγ subunits. The activated α-subunit (Gα-GTP) and βγ subunits activate 

downstream effector molecules contributing to GPCR signaling. 3) Signaling is rapidly terminated in part 

by GPCR kinase (GRK) recruitment to the activated receptor, which phosphorylates the receptor on serine 

and/or threonine residues that are located within the carboxy-terminal tail and/or on the intracellular loops. 

4) Arrestins are rapidly recruited to the phosphorylated receptor, which upon binding uncouple the 

receptor from the associated Gα subunit via steric hindrance, contributing to signal termination and to the 

phenomenon known as desensitization. 5) Arrestins subsequently interact with clathrin and AP2, two 

important components of the internalization machinery. 6) This results in the internalization of activated 

and phosphorylated receptors via clathrin coated pits.  

 

Internalization 

Apart from rapid attenuation of signaling via desensitization, agonist-induced 

internalization of GPCRs is an important mediator of receptor regulation. Arrestins play 

an important role in promoting GPCR internalization through clathrin-coated pits based 

on their ability to bind to components of the internalization machinery (Goodman et al., 

1996; Laporte et al., 1999). 

 

Role of arrestins in GPCR internalization 

In addition to their role in the uncoupling of G protein from activated GPCRs, 

arrestins also facilitate endocytosis of many receptors through their interaction with 

proteins of the internalization machinery such as clathrin and AP2 (Goodman et al., 

1996). Upon binding to the activated receptor, arrestins undergoe a conformational 

change exposing their carboxy-terminal clathrin-binding box motif (376-LIELD-380) 
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and an AP2 binding site. Other clathrin binding proteins involved in the endocytosis of 

GPCRs such as AP2 (Shih et al., 1995), AP180 (Morris et al., 1993), amphiphysin 

(Ramjaun et al., 1997), and epsin (Drake et al., 2000) also contain similar consensus 

motif LϕXϕ(D/E) (where ϕ is a bulky hydrophobic residue, and X represents any polar 

amino acid) (Laporte et al., 1999). Mutating the consensus binding site disrupts 

interaction between arrestins and calthrin and hence the endocytosis of receptors (Kim 

and Benovic, 2002; Krupnick et al., 1997).  

Several post-translational modifications of arrestins also regulate their ability to 

modulate internalization of GPCRs. S-nitrosylation of arrestin-3 has been linked to its 

ability to regulate the internalization of β2AR. It has been shown that S-nitrosylation of 

cysteine residue 409 in arrestin-3 increases its ability to interact with clathrin and hence 

promote the internalization of β2AR (Ozawa et al., 2008). Recently, SUMOylation of 

arrestin-3 on lysine residue 400 has also been shown to have role in β2AR internalization, 

likely by facilitating the interaction with AP2.  Although the mechanism remains unclear, 

overexpression of SUMO deficient mutant of arrestin-3 inhibits agonist promoted 

internalization of β2AR (Wyatt et al., 2011). Ubiquitination of arrestin-2 by mdm2 can 

indirectly regulate the endocytosis of β2AR. Depletion of mdm2 or expression of 

ubiquitin deficient arrestin-3 mutant inhibits endocytosis of both β2AR and vasopressin 2 

receptor (Shenoy et al., 2007; Shenoy et al., 2001). 

Role of ubiquitin in receptor trafficking  

The role of ubiquitin in the endocytosis of GPCRs was initially demonstrated in 

the budding yeast Saccharomyces cereviciae. A ubiquitination-deficient α-factor receptor 
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Ste2P mutant that lacks a critical lysine residue in the C-tail is defective in endocytosis 

upon addition of α-mating factor (Hicke and Riezman, 1996). It was later shown that 

endocytosis is mediated by the interaction of ubiquitinated receptor with the ubiquitin 

interaction motif (UIM) domain of adaptor proteins such as Epsin and Eps15 (Shih et 

al., 2002). A similar role of ubiquitin was also observed in the case of another yeast α-

factor receptor Ste3. However, in this case, only constitutive endocytosis was dependent 

on ubiquitination (Chen and Davis, 2002; Roth and Davis, 2000). A recent study has 

demonstrated that Ste3 does not require ubiquitination for its internalization, however, in 

the absence of the ubiquitin moiety the receptor recycles back to the plasma membrane 

and does not degrade efficiently (Stringer and Piper, 2011). Unlike yeast, ubiquitination 

of GPCRs in mammalian cells has little or no role in endocytosis. Many mammalian 

GPCRs are endocytosed via a clathrin-dependent pathway and some are endocytosed via 

lipid rafts (Chen and Davis, 2002). GPCRs such as β2AR, DOR, CXCR4 as well as 

NK1R do not require ubiquitination for their internalization, however, ubiquitination is 

critical for their lysosomal degradation (Cottrell et al., 2006; Marchese and Benovic, 

2001; Shenoy et al., 2001; Tanowitz and Von Zastrow, 2002). In the case of protease 

activated receptor-1 (PAR-1), a ubiquitination-deficient receptor shows increased 

constitutive endocytosis, suggesting a negative  role of ubiquitination on internalization 

(Wolfe et al., 2007).  

Clathrin-mediated endocytosis is one of the most characterized pathway for 

GPCR internalization.  The key components of this pathway is the AP2 complex. This 

protein complex binds directly to clathrin as well as to the cargo to initiate the formation 



 15 
of clathrin-coated pits (CCPs). The AP2 complex, which is composed of four subunits α, 

β2, µ2, and σ2, can bind to cargo proteins that contain tyrosine (TYR) or di-leucine (di-

Leu) based motifs.  PAR1 receptor contains a tyrosine-based motif (Y420KKL423) in the 

C-tail that can directly bind to µ2 subunit of the AP2 complex resulting in CCP 

mediated constitutive internalization (Paing et al., 2006). β2AR also contains a di-leucine 

motif (Leu 339, 340) that plays a critical role in the internalization of receptor 

(Gabilondo et al., 1997). For the chemokine receptor CXCR4 and CXCR2, the amino 

acid sequence LLKIL in the carboxyl terminus is required for its internalization (Orsini 

et. al., 1999; Fan et al., 2001).  

Non-classical/clathrin-independent endocytosis 

Several receptors follow non-classical/clathrin-independent pathway for 

internalization. One of the most distinguishing features of this pathway is the sensitivity 

towards cholesterol depleting agents, suggesting a role of lipid rafts (Parton and Richards, 

2003). Caveolae, a specialized lipid raft enriched in the protein caveolin-1, are shown to 

be important in the internalization of many GPCRs. In the case of the D1 dopamine 

receptor, mutation of the caveolin binding motif in the receptor significantly attenuates 

caveolae-mediated endocytosis (Kong et al., 2007). Section 1.9 discusses lipid rafts, 

caveolae and their role in trafficking as well as signaling in greater details. 

 

GPCR RECYCLING 

The β2AR is known to efficiently recycle back to the plasma membrane after it 

has internalized onto endosomes (Hanyaloglu et al., 2005). One such recycling 
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determinant is the PDZ [post synaptic density protein (PSD95), Drosophila disc large 

tumor suppressor (DLG), and zonula occludens-1 protein (zo-1)] ligands/motifs 

(Marchese et al., 2008). PDZ motifs are present at the C-terminal end of the receptor 

tail and are recognized by the PDZ domains. For β2AR, PDZ motif present in the C-tail 

is important for its binding to phosphoprotein EBP50 (for ezrin–radixin–moesin 

(ERM)-binding phosphoprotein-50), which interacts with the actin cytoskeleton to 

promote active recycling (Cao et al., 1999). A large number of GPCRs have been 

predicted to contain PDZ ligands, but whether these GPCRs undergo recycling similar 

to β2AR remain to be determined (Marchese et al., 2008).  The ESCRT-0 protein 

hepatocyte growth factor regulated tyrosine kinase substrate (HRS) has also been shown 

to play an important role in recycling of certain GPCRs. Although the mechanism is 

unclear, it has been shown that overexpression or siRNA-mediated knockdown of HRS, 

which leads to enlarged endosomes, inhibits recycling of β2AR, MOR, PAR2 and 

calcitonin receptor like receptors (Hanyaloglu et al., 2005; Hasdemir et al., 2007). 

Interestingly, neither the UIM domain of HRS, nor the ubiquitination status of the 

receptor, is required for efficient recycling. As discussed later, HRS is also a key protein 

of the transport machinery involved in the degradation of GPCRs. Suggesting that HRS-

mediated recycling of certain GPCRs may occur at an early stage of ESCRT-mediated 

sorting. 

Role of arrestins in GPCR recycling 

Arrestins may also mediate receptor recycling at a post-internalization step by 

playing a direct role on endosomes. For a subset of GPCRs, arrestins may co-internalize 
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with the receptor into an endocytic compartment (Oakley et al., 1999; Oakley et al., 

2001). The ability of arrestins to co-internalize with GPCRs is due to their ability to 

form stable complexes with the GPCR. For many GPCRs, once arrestins bind and 

desensitization and receptor internalization have initiated, the two proteins disassociate 

while the receptor internalizes onto endosomes. However, for a subset of GPCRs, not 

only does arrestin binding promote desensitization and internalization, arrestins may co-

internalize with the receptor onto endosomes (Oakley et al., 2000). These receptors tend 

to have multiple serine/threonine residue clusters near the end of their C-tail. 

Phosphorylation of these clusters promote high affinity arrestin binding that stabilizes its 

binding to the receptor, thereby allowing it to remain bound to the receptor while 

internalization onto endosomes occurs. Ubiquitination of arrestins have also been shown 

to regulate their affinity to bind to activated receptor. A constitutively ubiquitinated 

arrestin mutant can alter the kinetics of β2AR internalization and make it behave like a 

class B receptor (Shenoy and Lefkowitz, 2003; Shenoy et al., 2001). For these receptors, 

arrestins can be found to co-localize with the receptor on endosomes. This stable 

interaction affects receptor recycling because it slows down the recycling of the receptor, 

likely by preventing the receptor from efficiently entering into the recycling pathway.  

Arrestins may also play a role in GPCR recycling independent of its role in 

promoting GPCR internalization. Although arrestins are not required for internalization 

of the N-formyl peptide receptor (FPR), they are required for promoting FPR recycling. 

Agonist-induced internalization of FPR occurs in an arrestin-independent fashion, as 

FPR internalization was not altered in mouse embryonic fibroblast cells isolated from 
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arrestin-2 and arrestin-3 knockout out mice (Vines et al., 2003). However, recycling of 

the receptor was impaired in the knock-out MEFs and restored in cells in which arrestin-

2 and arrestin-3 were re-expressed. Although not required for internalization, agonist 

activation promotes arrestin binding to FPR and its co-internalization with the receptor 

onto endosomes. Once on endosomes, arrestins promote recycling through a mechanism 

that remains to be determined. In case of the bradykinin (BK) type 2 receptor (B2R), 

dissociation of arrestin following internalization is critical for efficient recycling of 

receptor. Receptor mutants that show increased affinity for arrestin fail to recycle back to 

the plasma membrane (Simaan et al., 2005). It has been shown that the recycling of A2B 

adenosine receptor (A2BAR) depends on the presence of endogenous arrestins. HEK293 

cells with stable knockdown for arrestin-2 and arrestin-3 show impaired A2BAR 

recycling, which can be rescued upon reconstitution of either arrestin-2 or arrestin-3 

(Mundell et al., 2000).  

 

GPCR DOWNREGULATION 

Following endocytosis, activated GPCRs may be degraded in lysosomes giving 

rise to a process termed downregulation (Figure 1.3). Ubiquitination plays an important 

role in the trafficking of receptors after their endocytosis by regulating the sorting of 

cargo from the early endosomes to late endosomes. Ubiquitination is important for cargo 

entry into multivesicular bodies (MVBs), which also requires conserved machinery called 

the Endosomal Sorting Complex Required for Transport (ESCRT) machinery.  
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Ubiquitination as a signal for degradation 

A role for ubiquitin in the downregulation of mammalian GPCRs was initially revealed 

in studies examining downregulation of β2AR (Shenoy et al., 2001) and the chemokine 

receptor CXCR4 (Marchese and Benovic, 2001). Agonist stimulation promotes 

ubiquitination of the β2AR, which is important for its downregulation, however, the 

pathway was undefined (Shenoy et al., 2001). Downregulation of CXCR4 also depends 

on ubiquitination and ubiquitin moiety present on lysine residues in the C-tail are 

important for endosomal sorting to the lysosomes (Marchese et al., 2003). Several other 

GPCRs such as V2 vasopressin receptor (V2R), PAR2, NK1R and kappa-opioid 

receptor (KOR) have been shown to depend on ubiquitination for their degradation. 

(Cottrell et al., 2006; Jacob et al., 2005; Li et al., 2008; Martin et al., 2003) 
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Figure 1.3. Trafficking of GPCRs. Upon activation by its cognate ligand (oval), GPCRs are typically 

sequestered into specialized microdomains of the plasma membrane that are responsible for endocytosis. 

These areas of the plasma membrane pinch off, forming vesicle that eventually fuse with early endosomes 

to where the receptors are delivered. Some receptors may be modified with ubiquitin moieties at the plasma 

membrane, although the ubiquitin moiety is not required to promote receptor internalization. Once on 

early endosomes, GPCRs are sorted for either entering the recycling or degradative pathway. GPCRs that 

enter the degradative pathway are typically modified by ubiquitin, which serves as a signal for sorting into 

multivesicular bodies (MVBs). MVBs fuse with lysosomes where degradation of the receptor occurs. 

GPCRs that are not ubiquitinated may enter the recycling pathway and are returned to the plasma 

membrane via recycling endosomes, giving rise to functional resensitization of signaling. The ubiquitin 

moieties on some receptors may be removed by the action of deubiquitinating enzymes (DUBs), which may 

occur on endosomes, and redirect receptors targeted for the degradative pathway into the recycling 

pathway. 

Endosomal Sorting Complex Required for Transport (ESCRT) machinery 

Sorting of ubiquitinated cargo proteins into the MVBs is executed by protein 

complex composed of class E (vaculor protein sorting) VPS proteins called ESCRT 

(Endosomal sorting complex required for transport (Figure 1.4) . Genetic and 

biochemical approaches have revealed that the ESCRT machinery can be subdivided into 

four complexes, ESCRT-0, -I, -II and -III, and several accessory components (Babst et 

al., 2002a; Babst et al., 2002b; Bache et al., 2003; Katzmann et al., 2001; Katzmann et 

al., 2003). The four ESCRT complexes are thought to act in a coordinated fashion to 

sort the ubiquitinated cargo into the intraluminal compartment of the MVBs (reviewed 

in Williams and Urbe, 2007). Table 1.1 lists the proteins that form the ESCRT 

complexes plus additional associated proteins.  
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Table 1.1 ESCRT pathway proteins. Names of all the ESCRT pathway proteins identified in yeast 

Saccharomyces cerevisiae and their human orthologues.  

Complex Yeast Proteins Human Proteins Important Domains 
    
ESCRT-0 Vps 27 HRS FYVE, UIM, VHS 
 Hse1 STAM-1, STAM-2 UIM, SH3, VHS 
ESCRT-I  Vps 23 Tsg101 UEV 
 Vps28  Vps28  
 Vps37 Vps37A, B, C, D Coiled-coil 
 Mvb12 MVB12A, B  
    
ESCRT-II Vps22 EAP30 Coiled-coil, WH 
 Vps25 EAP25 PPXY, WH 
 Vps36 EAP45 GLUE, NZF, WH 
    
ESCRT-III Vps2 CHMP2A, B Coiled-coil 
 Vsp20 CHMP6 Coiled-coil 
 Vps24 CHMP3 Coiled-coil, MIR 
 Snf7/Vps32 CHMP4A, B, C Coiled-coil 
 Vps60 CHMP5 Coiled-coil 
 Did2 CHMP1A, B Coiled-coil 
    
Other  Vps4 VPS4A, B  
 Vta1 LIP5  
 Ist1 IST1  
 Bro1 ALIX Bro1 
 
 

ESCRT-0 is composed of HRS and signal transduction adaptor molecule (STAM).  This 

complex is essential for the initial recognition of the ubiquitinated cargo. HRS contains 

several important domains that are required for its function. FYVE (Fab1, YOTB, Vac1 

and early endosome antigen-1 (EEA1)) domain of HRS interacts with 

phosphatidylinositol-3-phosphate (PtdIns3P), a phospholipid that is enriched on the 

endosomal membrane (Burd and Emr, 1998). HRS also interacts with ubiquitinated 

cargo via its UIM to recruit ubiquitinated cargo to the endosomal membrane. HRS also 

binds to clathrin via a clathrin binding box motif (Leu-Ile-Ser-Phe-Asp) present at its C 

terminus. Another important function of ESCRT-0 is to recruit the downstream 
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ESCRT machinery to the ubiquitinated cargo. A PSAP motif present in HRS can 

directly interact with the ubiquitin E2 varient (UEV) domain found in ESCRT-1 protein 

Tsg-101. A similar motif is also present in Vps27, the yeast ortholog of Hrs  (Pornillos et 

al., 2002; Ren and Hurley, 2011). 

 

      Adapted from William and Urbe, 2007 

Figure 1.4. Schematic representation of ESCRT complex required for sorting of ubiquitinated cargo.  

Ubiquitinated cargo is recognized by ESCRT-0 protein complex protein HRS that binds to 

phosphatidylinositol-3-phophate (PtdIns3P) via the FYVE domain. Other domains such as GLUE 

domain of Vps36 and ability of Vps24 to bind to PtdIns(3,5)P2 can also contribute to the assembly of the 

complex to the endosomes. ESCRT-0, I and II also bind to ubiquitin via UIM, UEV or GLUE domains 

to facilitate cargo sorting. ESCRT-III complex, which is recruited by ESCRT-II, is required for final 

sorting process whereby, the receptor is deubiquitinated and concentrated into invaginations that lead to 

the formation of multivesicular bodies (MVB). Finally, AAA ATPase Vps4 is recruited which disassembles 

the complex and releases the proteins for another round of sorting. (Williams and Urbe, 2007) 

The other member of ESCRT-0  is STAM.  The STAM protein possesses a UIM 

domain that is found in number of proteins involved in endocytosis and protein 

trafficking such as HRS, Eps15 and Epsin. These domains are known to bind to both 

monoubiquitin, as well as polyubiquitin chains, and are shown to cooperate in the 
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recognition of ubiquitinated proteins (Bilodeau et al., 2002). Yeast Hse1 (mammalian 

orthologue of STAM) interacts with Vps27p (mammalian orthologue of HRS) to form a 

complex that binds to ubiquitin and regulates the endosomal sorting of cargo proteins 

(Asao et al., 1997; Endo et al., 2000; Pandey et al., 2000; Takeshita et al., 1996). 

The STAM family is composed of two members STAM-1 and STAM-2 that 

share approximately 53% amino acid sequence homology (Endo et al., 2000). As shown 

in Figure 1.5, both STAMs are structurally identical and show 89% amino acid identity 

in each of the respektive domains (Prag et al., 2007; Ren et al., 2009). STAM contains an 

N-terminal VHS (Vps27, HRS and STAM homology) domain, UIM, SH3 domain, 

immunoreceptor-based tyrosine activation motif (ITAM) and coiled-coil region (Yamada 

et al., 2002; Yamada et al., 2001). Studies done on STAM knockout mice indicates that a 

double knockout of STAM-1 and STAM-2 is embryonic lethal (Takeshita et al., 1997). 

However,  STAM-1 knockout alone shows growth retardation and defects in 

hippocampal CA3 pyramidal neurons compared to wild type littermates (Yamada et al., 

2001). 

 

Figure 1.5 Schematic representation of the domain organization of STAM-1, STAM-2 and yeast 

ortholog Hse1. Both STAM-1 and STAM-2,  as well as Hse1 are structurally identical and they contain 

VHS, UIM, SH3 and CC domains. Abbreviations; VHS: Vps27, HRS and STAM homology, UIM: 
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ubiquitin interacting motif, SH3: SRC homology 3, CC: coiled-coil, ITAM: immunoreceptor-based 

tyrosine activation motif. 

 

Role of STAM in signal transduction: STAMs were initially characterized as signaling 

molecules due to their ability to be phosphorylated upon stimulation with a variety of 

interleukins and growth factors (Isakov, 1997; Pandey et al., 2000). Both STAM-1 and 2 

have been shown to associate with tyrosine kinases Jak2 and Jak3 to regulate IL-2 and 

granulocyte macrophage colony-stimulating factor (GM-CSF) mediated signaling. 

Association with Jak2 and 3 is mediated by the SH3 and ITAM motifs (Endo et al., 

2000; Takeshita et al., 1997).  

STAMs have also been shown to interact with AMSH (associated molecule with 

the SH3 domain of STAM).  Although AMSH is a deubiquitinating enzyme and has 

been linked to trafficking, it has also been shown to play role in IL-2 and GM-CSF 

mediated c-myc induction and DNA synthesis (Tanaka et al., 1999). AMSH is also 

involved in bone morphogenesis protein (BMP) signaling. AMSH binds to Smad6 which 

is an antagonist of BMP-Smad signaling thereby, promotes signaling  (Itoh et al., 2001; 

Tanaka et al., 1999). 

STAM as an endosomal sorting molecule: Both STAM-1 and STAM-2 are tightly 

associated with ESCRT-0 protein HRS (Hepatocyte growth factor regulated tyrosine 

kinase substrate) via their coiled coil region (Asao et. al., 1997; Bache et. al., 2003). One 

of the key domains present in STAM is the VHS domain. It is an evolutionarily 

conserved domain found in several proteins involved in endocytosis and vesicular 
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trafficking such as HRS, GGA  (Golgi-localized ear–containing, ADP ribosylation 

factor–binding proteins) and Tom1 (Target of Myb 1) proteins (Puertollano et al., 2001). 

The VHS domain of GGAs has also been implicated in the trafficking of the Manose-6-

phosphate receptor from golgi to endosomes (Puertollano et. al., 2001). STAM also 

binds to other proteins that are involved in the endosomal sorting machinery such as 

AMSH and USP8.  STAMs have also been implicated in ER-to-Golgi trafficking 

through their interaction with the COPII (coat protein II) protein on the endoplasmic 

reticulum (Rismanchi et. al., 2009). STAMs have also been shown to bind to ubiquitin 

via its VHS and UIM domains (Ren and Hurley 2010) 

ESCRT-I: In mammalian cells, ESCRT-I consists of Tsg101 (Vps23p in yeast), VPS28, 

one of four isotypes of VPS37 (VPS37A–D) and MVB12A/B (Chu et al., 2006). The 

central component of ESCRT-I complex is Tsg101, which is recruited to the endosomal 

membrane by ESCRT-0 (Katzmann et al., 2001). Tsg101 plays an important role in 

MVB sorting via recognition of ubiquitinated cargo by its UEV domain (Sundquist et al., 

2004). Depletion of Tsg101 as well as mutations in the UEV domain that disrupts its 

binding to ubiquitin, inhibit MVB sorting (Babst et al., 2000; Sundquist et al., 2004). 

Both Tsg101, as well as Vps28, are also required to link ESCRT-I with the downstream 

ESCRT-II complex (Babst et al., 2002b).  

ESCRT-II: The ESCRT-II complex, which is composed of Vps22, Vps25 and Vps36, is 

mainly involved in the recruitment of ESCRT-III complex proteins to the endosomal 

membranes. Proteins in this complex contain a winged-helix domain (WH), which is a 

protein–protein and protein–DNA interaction domain. The WH domain of Vps25 can 
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directly interact with ESCRT-III protein Vps20 and hence plays an important role in the 

assembly of ESCRT-III complex. (Babst et al., 2002a; Teo et al., 2004). Vps36 also 

contains a GLUE domain (GRAM-like ubiquitin-binding in EAP45) that can bind to 

ubiquitin as well as subset of 3-phosphoinositides present on the endosomal membranes 

(Slagsvold et al., 2005).  

ESCRT-III and related proteins: ESCRT-III and related proteins such as Vps4 are 

directly responsible for membrane scission and formation of intraluminal vesicles (ILVs). 

The ESCRT-III complex is composed of Vps20, Snf7, Vps24 and Vps2. Several other 

proteins such as Vps60, Did2 and Ist1 are also known to be in ESCRT-III complex (Rue 

et al., 2008). All these subunits are retained in the cytosol as soluble monomers. Upon 

activation/membrane binding, the C-termini of ESCRT-III subunits are exposed, 

allowing them to bind to the microtubule-interacting and transport (MIT) domains of 

downstream effector proteins that lead to the formation of a detergent-insoluble complex 

on the endosomal membrane (Babst et al., 2002a). Vps24 contains a MIT-interacting 

region (MIR) that can interact with and recruit proteins required for disassembly of 

ESCRT machinery from endosomal membrane, such as deubiquitinating enzyme 

AMSH (Agromayor and Martin-Serrano, 2006) and the AAA ATPase Vps4 (Scott et 

al., 2005). The disassembly of the ESCRT machinery  and formation of MVBs depends 

on protein Vps4. A Vps4 mutant that cannot hydrolyze ATP acts as a dominant negative 

and blocks the formation of ILV and hence leads to accumulation of cargo proteins on 

endosomes (Fujita et al., 2003; Sachse et al., 2004). Vps4 also hydrolyzes ATP to drive 

the recycling of ESCRT-III subunits back to their soluble monomeric form. 
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Role of arrestins as mediators of endosomal sorting 

Arrestins may serve as an adaptor to recruit E3 ubiquitin ligases directly to 

activated receptors to mediate their ubiquitination. The ubiquitin moiety serves as a 

sorting signal on endosomes for targeting the receptor into the degradative pathway. A 

role for arrestins as an E3 ubiquitin ligase adaptor was first suggested in studies 

examining the regulation of β2AR. Agonist-promoted ubiquitination of β2AR is impaired 

in MEF cells isolated from arrestin-3 knock-out mice, suggesting that arrestin-3 

mediates ubiquitination of β2AR. In contrast, arrestin-2 is not involved in β2AR 

ubiquitination. Arrestin-3 also interacts with the HECT-domain E3 ubiquitin ligase 

Nedd4 (Shenoy et al., 2008). Depletion of Nedd4 by siRNA attenuates β2AR 

ubiquitination and lysosomal targeting. The interaction between β2AR and Nedd4 is 

dependent upon the presence of arrestin-3. This is consistent for a role of arrestin-3 

serving as an adaptor to recruit Nedd4 to β2AR.  

Interestingly, Nedd4 may be recruited to β2AR in an arrestin-3 independent 

manner involving the arrestin domain-containing protein ARRDC3. ARRDs are a 

family of 6 mammalian proteins related to yeast proteins called arrestin-related trafficking 

(ART) adaptor proteins that were first characterized in the yeast Saccharomyces cerevisiae 

(Lin et al., 2008). Collectively, these proteins have been referred to as alpha-arrestins to 

distinguish them from arrestins (Alvarez, 2008). Although sharing very little amino acid 

sequence identity with mammalian arrestins, bioinformatics modeling revealed that 

alpha-arrestins have an arrestin-fold consisting of N and C domains. One key 

distinguishing feature present in ARRDs but not found in non-visual arrestins or visual 
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arrestins is that ARRDs have a long carboxy-terminal domain harboring two PY motifs. 

PY motifs are short stretches of amino acids typically found in the context of PPxY and 

PPPY, where P is a proline residue, x is any amino acid and Y is a tyrosine residue. PY 

motifs are typically recognized by WW domains, which are domains of approximately 30 

amino acids containing two highly conserved tryptophan residues. The Nedd4-like family 

of HECT-domain E3 ubiquitin ligases, comprised of 9 members in the human genome, 

is characterized by the presence of 3-4 tandemly linked WW domains. Substrates that 

have PY motifs interact directly with their cognate E3s via the WW domains, however, 

many substrates do not have PY motifs and are believed to interact indirectly with these 

E3s through an adaptor protein that harbors a PY motif (Shearwin-Whyatt et al., 2006). 

Recently, it was reported that ARRDC3 interacts with the β2AR and serves as an adaptor 

for Nedd4-dependent ubiquitination of the receptor. Depletion of ARRDC3 attenuates 

agonist-induced degradation and ubiquitination of β2AR (Nabhan et al., 2010). Co-

immunoprecipitation studies reveal that ARRDC3 interacts with the β2AR in an agonist-

dependent manner, suggesting that it may serve as an adaptor for Nedd4 mediated 

ubiquitination of β2AR (Nabhan et al., 2010). Although ARRDC3 is predicted to bind 

directly to Nedd4 via its PY motif, it is not known how it interacts with β2AR. 

Mammalian arrestins do not contain PY motifs, therefore it remains unclear how Nedd4 

interacts with arrestin-3. In addition, it remains to be determined how the actions of 

arrestin-3 and ARRDC3 are coordinated to mediate β2AR ubiquitination. 

Interestingly, arrestin-2 interacts with another member of the Nedd4-like family 

of E3 ubiquitin ligases known as AIP4 (Bhandari et al., 2007). The interaction between 
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arrestin-2 and AIP4 is direct and it is mediated by AIP4 WW domains I and II. In 

addition to interacting with PY motifs, WW domains are also known to interact with 

phosphorylated serine or threonine residues in the presence of an adjacent proline residue 

(pS/TP) (Verdecia et al., 2000). Presently, it remains to be determined how the AIP4 

WW-domains interact with arrestin-2. Interestingly, non-canonical WW-mediated 

interactions involving AIP4 have been recently reported. For example, the WW domains 

of AIP4 have been shown to interact with phosphorylated serine residues in the absence 

of nearby proline residues. Phosphorylation of serine residues within the C-tail of the 

CXCR4 mediate a direct interaction with AIP4 via WW domains I and II (Bhandari et 

al., 2009). A receptor mutant in which C-tail serine residues 324 and 325 were changed 

to alanine residues (S324/5A) attenuate binding to AIP4 (Bhandari et al., 2009; 

Marchese and Benovic, 2001). Accordingly the S324/5A mutant showed defective 

ubiquitination and degradation. Agonist-promoted phosphorylation of these residues 

occurred at the plasma membrane leading to AIP4 recruitment to the plasma membrane 

where the receptor is ubiquitinated. Therefore for CXCR4 ubiquitination, an adaptor is 

not required because the Nedd4-like E3 AIP4 can interact directly with the receptor. 

Similar to the mechanism of the interaction between AIP4 and CXCR4, the WW 

domains of Nedd4 may also interact with its substrates via phosphorylated serine residues 

in the absence of nearby proline residues (Edwin et al., 2010). Therefore, phosphorylated 

serine residues in the absence of proline residues may represent a general recognition 

motif for WW domains.  
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CHEMOKINE RECEPTORS  

Chemokine (Chemoattractant cytokine) receptors belong to the class A subfamily 

of GPCRs. There are 19 distinct chemokine receptors identified in mammals. 

Chemokine receptors are activated by 8-10 kDa small protein ligands known as 

chemokines (Zlotnik et al., 2006). Based upon the organization of the first two amino 

terminal cysteine residues, chemokines are divided into four classes- CXC (seven 

members), CC (ten members), XC (one member, XCR1) and CX3C chemokine (one 

member, CX3CR1) (Zlotnik and Yoshie, 2000). The receptors are also named according 

to the type of chemokine that they bind. For example, receptors that bind to CXC type 

of chemokine are called CXC receptors (CXCR) 

 

CHEMOKINE RECEPTOR 4 (CXCR4)  

One of the most studied chemokine receptor is CXCR4, also known as fusin or 

CD184 (cluster of differentiation 184) (Moriuchi et al., 1997; Wegner et al., 1998). It is 

one of  the 7 known CXC-receptors and is activated by the chemokine ligand CXCL12 

(a.k.a. stromal cell–derived factor 1alpha, SDF-1α).  

Until recently, CXCL12 was the only known ligand for CXCR4, however, recent 

evidence demonstrates that ubiquitin, a small (76 amino acid) protein highly conserved 

among eukaryotic cells, and the cytokine MIF (macrophage migrating inhibitory factor) 

can also serve as ligands for CXCR4 (Bernhagen et al., 2007; Saini et al., 2010). MIF has 

been shown to function as a non-cognate ligand for both CXCR2 and CXCR4 

chemokine receptors and trigger Gαi and integrin-dependent chemotaxis of monocytes 
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and T cells (Bernhagen et al., 2007). The chemokine receptor CXCR7 (a.k.a RDC1) has 

been shown to bind to both CXCL12 and CXCL11. However, unlike CXCR4, CXCR7 

fails to induce classical chemokine responses, such as cell migration and intracellular 

signaling. CXCR7 has been shown to act as a scavenger for CXCL12, thereby regulating 

CXCL12 mediated CXCR4 activation and function (Dambly-Chaudiere et al., 2007; 

Naumann et al., 2010).  

 

CXCR4 oligomerization 

CXCR4 forms both homo as well as heterodimers. Homodimerization of 

CXCR4 has been shown to play role in activation of JAK/STAT pathway as well as 

enhanced response to the ligand CXCL12 (Vila-Coro et al., 1999). Crystal structure of 

CXCR4 bound to antagonist IT1t also indicates that receptor is present as a homodimer 

(Wu et. al. 2010). Heterodimerization with CCR2 and CD4 has been shown to be 

important for HIV infection (Rodriguez-Frade et al., 2004; Toth et al., 2004). CXCR4 

also dimerizes with T Cell Receptor (TCR) to activate the ERK pathway via the ZAP-

70 tyrosine kinase (Kumar et al., 2006). CXCR4 is also present in a hetero-oligomeric 

complex with CCR2 and CCR5 (Sohy et al., 2007; Sohy et al., 2009). Recently, CXCR4 

has also been shown to heterooligomerize with CXCR7. This heterodimer constitutively 

recruits arrestin and hence, preferentially activates arrestin-mediated signaling pathways 

such as ERK1/2, p38 MAPK, and SAPK over G protein-dependent pathways. As a 

result, the CXCR4/CXCR7 heterodimer has a more potent ability to promote cell 

migration (Decaillot et al., 2011). Taken together, the ability of CXCR4 to 
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homo/heterodimerize diversifies its ability to activate signaling by alternate and non-

classical pathways.  

 

Biological role of CXCR4 

CXCR4/CXCL12 chemokine axis plays an important role in hematopoiesis, 

where CXCL12 acts as a critical chemokine attractant for immature and mature 

hematopoietic cells. This is important for the homing of hematopoietic stem cells to the 

bone marrow as well as their survival and proliferation (Broxmeyer et al., 2003; Lataillade 

et al., 2000). The following section will discuss some of the most important conditions 

that arise due to abnormal expression or regulation of CXCR4.  

 

CXCR4 and Immunodeficiency Diseases 

Dysregulation of CXCR4/CXCL12 signaling axis has been shown to be 

associated with two rare human immunodeficiencies, WHIM syndrome, which is 

associated with a gain of CXCR4 function and the Idiopathic CD4(+) T-cell 

lymphocytopenia, which is associated with a loss of CXCR4 function. 

WHIM Syndrome: WHIM (Warts, Hypogammaglobulinemia, infection and 

Myelokathexis) syndrome is a rare immunodeficiency disorder characterized by chronic 

neutropenia (abnormally low number of neutrophils) (Gorlin et al., 2000; Kawai and 

Malech, 2009). It is linked to a gain of function mutation in CXCR4 that causes 

retention and apoptosis of the neutrophils in the bone marrow, leading to neutropenia. 

Mutations identified include one frame shift (S339fs342X) and several non-sense 
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(R334X, G336X, S338X, E343X) mutations. Irrespective of the type, all the mutations 

lead to the truncation of CXCR4 C-tail, which causes improper regulation of CXCR4 

signaling and hence lack of desensitization, enhanced chemotaxis, increase in calcium 

mobilization, increase in F-actin polymerization and decreased internalization (Alapi et 

al., 2007; Diaz, 2005; Hernandez et al., 2003). In one WHIM patient, no mutations 

were found in CXCR4, suggesting that the downstream regulators of CXCR4 signaling 

such as GRKs and arrestins may also be involved. This is interesting because GRK6 and 

arrestin-3 knockout mice also show defects in neutrophil migration as seen in WHIM 

patients (Fong et al., 2002a; Vroon et al., 2004) 

Idiopathic CD4(+) T-cell Lymphocytopenia (ICL): ICL is characterized by a  defect in 

the CD4(+) T-cell population predisposing a patient to opportunistic infections (Luo and 

Li, 2008). Although the pathogenesis of ICL is unclear, alteration in CXCR4 surface 

expression has been shown to be involved. CD4(+)T lymphocytes from ICL patients 

display low membrane expression of CXCR4 as well as abnormal intracellular CXCR4 

and CXCL12 expression that lead to impaired chemotaxis of CD4(+)T lymphocytes 

towards a gradient of CXCL12 (Scott-Algara et al., 2009). 

 

CXCR4 and cancer 

CXCR4 is typically over-expressed by cancer cells. Dysregulation of CXCR4 

signaling and trafficking has been shown in more than 23 types of cancers ranging from 

epithelial, mesenchymal to hematopoietic origin (Balkwill, 2004; Busillo and Benovic, 

2007). CXCR4 activates a variety of cellular pathways leading to chemotaxis, invasion, 
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and adhesion, all of which correlate with metastatic behavior of cancers such as breast 

cancers, thyroid cancers, hepatocellular carcinomas and small cell lung cancers. Metastasis 

to organs that express the ligand CXCL12 at high concentrations such as lymph node, 

liver, bone marrow and lung have been shown in the case of breast cancer (Muller et al., 

2001).  Consistent with this observation, overexpression of CXCR4 alone is sufficient to 

significantly increase the metastasis of parental MDA-MB-231 cells to bone marrow 

(Kang et al., 2003). Activation of CXCR4 also stimulates the production of matrix 

metalloproteinases (MMP). CXCR4-mediated expression of MMP2 and MMP9 is 

required for proper homing of human hematopoietic progenitor cells (Janowska-

Wieczorek et al., 2000). MMP secretion has also been linked to the property of tumor 

cells to metastasize from the site of origin to distant organs. Yu et. al., recently showed 

that in oral squamous cell carcinoma, CXCR4 activation upregulates the production of 

MMP9 and MMP13 via activation of the ERK signaling pathway that in turn increases 

the migration and invasion potential of these cells (Yu et al., 2011). Similar observations 

were also seen in head and neck squamous cell carcinomas (HNSCC) (Samara et al., 

2004). 

Other factors can also regulate the expression of CXCR4 in tumor cells at the 

level of transcription. For example, in HER2 positive breast cancers, the receptor tyrosine 

kinase HER2 upregulates the expression of CXCR4 through inhibition of ubiquitination 

as well as an increase in translation (Li et al., 2004). Hypoxia also regulates the expression 

of CXCR4, it has been shown that hypoxia inducible factor 1 (HIF1) can directly 

regulate the expression of CXCR4 mRNA (Schioppa et al., 2003; Staller et al., 2003). 
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Other factors such as vascular endothelial growth factor (VEGF), nuclear factor kappa B 

(NF-κB), oncoproteins like PAX3-FKHR and RET/PTC can also regulate the 

expression of CXCR4 during cancer progression (Busillo and Benovic, 2007; Helbig et 

al., 2003).  

Although the specific role of the CXCR4/CXCL12 chemokine axis in cancers 

remain to be fully defined, several CXCR4 antagonists are being used to inhibit CXCR4-

mediated metastasis of cancer cells. A CXCR4 peptide antagonist that mimics the 

CXCL12 binding site has been shown to inhibit the migration of breast cancer cells in a 

mouse model (Liang et al., 2004). Compound MDX-1338 (BMS 936564), a specific 

CXCR4 antagonist from Bristol-Myers Squibb is currently in Phase I clinical trials to 

treat patients of Acute Myelogenous Leukemia (AML) 

(http://clinicaltrials.gov/ct2/show/NCT01120457). Another selective CXCR4 

antagonist, (Substance BKT-140 from Biokine Therapeutics Ltd) is currently under 

phase II clinical trials to treat patients with Multiple Myeloma 

(http://clinicaltrials.gov/ct2/show/NCT01010880).   

 

CXCR4 and Cardiovascular Disease 

CXCR4 and its cognate ligand CXCL12 play an important role in the 

development of the heart and vasculature (Tachibana et al., 1998; Nagasawa et al., 1996). 

CXCR4 knock-out mice show high embryonic mortality due to cardiac ventricular 

septum defects and poor development of the vasculature in the gastrointestinal tract 

(Tachibana et al., 1998).  Similar findings were also observed in mice lacking CXCL12 
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(Tachibana et al., 1998; Zhang et al., 2008). Enhanced expression of CXCR4 has been 

demonstrated in the failing myocardium (Damas et al., 2000). Recently, it has been 

shown that functional CXCR4 present on cardiac myocytes can modulate L-type Ca2+ 

channel activity which may lead to heart failure (Pyo et al., 2006). Impaired CXCR4 

signaling can lead to alteration in angiogenic activity and homing capacity of endothelial 

progenitor cells (EPC) leading to aberrant neovascularization in coronary artery disease 

(Krapp, 1992). Using a nude mice hind limb animal model, it has been shown that 

mononuclear cells derived from bone marrow of patients with chronic ischemic heart 

disease showed impaired capacity for neovascularization compared to cells isolated from 

healthy control subjects, possible due in part to CXCR4 dysregulation (Heeschen et al., 

2004).  

Despite the importance of CXCR4 in normal physiological processes, as well as in 

a variety of pathological conditions, the mechanisms by which it is regulated remain 

poorly understood. Understanding the molecular mechanisms that regulate CXCR4 

signaling as well as trafficking will help us better understand various pathological 

conditions associated with CXCR4 dysregulation. 

 

CXCR4 activation and signal transduction 

The first step in the activation of CXCR4 is the binding of CXCL12.  The 

extracellular N-terminal domain of CXCR4 (amino acid residue 1-36) is important for 

binding to CXCL12. Ligand binding to the amino-terminus promotes a conformational 

change in the receptor that further facilitates additional binding between ligand and 
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receptor. Post-translational modification by sulfation at three tyrosine residues (Tyr7, 

Tyr12, and Tyr21) in the N-terminal domain of CXCR4 is necessary for high affinity 

binding to CXCL12 (Doranz et al., 1999; Farzan et al., 2002; Veldkamp et al., 2006). 

Similar to CXCR4 other chemokine receptors such as CCR5, CCR2B, and CX3CR1, 

are also modified by sulfation at one or more tyrosine residues (Farzan et al., 1999; Fong 

et al., 2002a; Preobrazhensky et al., 2000).  Consistent with this observation, cleaving the 

N-terminal tail of CXCR4 abrogates its binding with CXCL12 and renders it non-

functional. Several biological molecules such as neutrophil cathepsin, neutrophil elastase 

and cell surface protease dipeptidase 26 (CD26) can cleave CXCR4 N-terminal tail and 

hence can modulate CXCR4 signaling response (Christopherson et al., 2002; Delgado et 

al., 2001; Valenzuela-Fernandez et al., 2002).  

 

G protein-dependent CXCR4 signaling. Ligand binding to CXCR4 can activate a 

variety of signaling pathways (Figure 1.6). Most of the signaling pathways activated by 

CXCR4 depend on the coupling with Gαi G proteins. Treatment with pertussis toxin 

(PTX), which ADP-ribosylate Gαi and prevents its interaction with the receptor, can 

block the majority of CXCR4 promoted signaling events (Busillo and Benovic, 2007; 

Thelen, 2001). Coupling to G13 have also been reported in the literature. Tan et al. 

showed that coupling to Gα13 is important for Rho-dependent cell migration of Jurkat 

T-cells (Tan et al., 2006). Recently, Gα13 has also been linked to the ability of CXCR4 to 

recycle back to the cell surface. Gα13 and Rho-mediated actin polymerization is necessary 

for the trafficking of CXCR4 into a Rab11 compartment (Kumar et al., 2006).  
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As shown in Figure-1.6, activated CXCR4 mediates the dissociation of Gαi from 

the heterotrimeric G protein by facilitating the exchange of GTP for GDP. Once 

released, Gαi inhibit adenylyl cyclase (AC) resulting in the reduction of cAMP levels 

(Yang et al., 2007). Gαi can directly stimulate Src family kinase that in turn activates H-

Ras-Raf-1-MEK1/2-ERK1/2 pathway (Ganju et al., 1998; Ma et al., 2000). Gαi can 

also stimulate various focal adhesion proteins such as FAK, paxillin, p130 and Crk (Dutt 

et al., 1998; Wang et al., 2000). Liberated βγ activates phospholipase C-β (PLC-β) 

which results in the formation of inositol-1,4,5-trisphosphate (IP3) via the cleavage of 

inositol-4,5-bisphosphate (PIP2). IP3 is important for increase in intracellular calcium. 

Diacylglycerol (DAG) generated in this process can subsequently activate protein kinase 

C (PKC). Together these downstream messengers regulate a variety of cellular processes 

such as migraton and transcription.  

 

G protein-independent CXCR4 signaling. Activation of CXCR4 also activates Janus 

Kinase (JAK) and Signal transducer and activator of transcription (STAT) signaling 

pathway. Pretreatment with PTX does not inhibit JAK/STAT signaling, suggesting that 

it is independent of G protein activation. (Vila-Coro et al., 1999).  

Non-visual arrestins are also involved in CXCR4 signaling. Lymphocytes isolated 

from arrestin-3 knockout mice showed impaired chemotaxis towards the ligand in a 

transwell migration assay (Fong et al., 2002b). Consistent with the role of arrestins in 

CXCR4 signaling, it has also been shown that arrestins can sequester a number of 

MAPK components such as ERK and p38. siRNA mediated knockdown of arrestin-3, 
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block CXCL12 promoted cell migration and chemotaxis that has been previously linked 

to p38 MAPK signaling (Cheng et al., 2000; Sun et al., 2002)  

 

 

 

 

 

 

Figure 1.6. Signaling pathways activated by CXCR4. SDF binding to CXCR4 activates a wide variety of 

G protein dependent and G protein independent (arrestin dependent) signaling pathways. These signaling 

events regulate various biological processes such as migration, proliferation and transcription. 
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Regulation of CXCR4 signaling 

To limit the activation of CXCR4 signaling, it is tightly regulated. Similar to 

other GPCRs (as described before), CXCR4 is also regulated by three main processes; 

desensitization, internalization and downregulation. The following section describes 

these regulatory mechanisms in detail. 

 

Desensitization of CXCR4 signaling 

CXCR4 contains 15 serine and 3 threonine residues in its 45-amino acid C-tail. 

Upon activation by CXCL12, CXCR4 is rapidly phosphorylated on multiple serine and 

threonine residues in the C-tail by GRKs and PKC. Several GRKs, such as GRK2 

(Jimenez-Sainz et al., 2006), GRK3 (Balabanian et al., 2008) and GRK6 (Busillo et al., 

2010) have been shown to phosphorylate CXCR4. Bone marrow-derived neutrophils 

from GRK6-deficient mice show impaired desensitization of the calcium response as well 

as significantly enhanced chemotaxis to CXCL12, suggesting that GRK6 is involved in 

CXCR4 desensitization (Fong et al., 2002b; Vroon et al., 2004). Residues that are  

phosphorylated have been identified by mass-spectrometry and phospho-specific 

antibodies. Upon CXCL12 treatment, serine resides 324 and 325 are rapidly 

phosphorylated by protein kinase C and GRK6, whereas Ser-339 is specifically and 

rapidly phosphorylated by GRK6 only. Other residue like Ser-330 is also phosphorylated 

by GRK6 (Busillo et al., 2010).  

 

CXCR4 also undergoes heterologous desensitization upon phosphorylation of 
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serine residues by PKC. Treatment with PMA, a phorbol ester that can directly activate 

PKC, leads to desensitization and internalization of activated receptor (Signoret et al., 

1997). Other physiological stimuli that can activate PKC such as activation of TCR 

(Peacock and Jirik, 1999), formyl-peptide receptor (Li et al., 2001), CXCR1 activation as 

well as CXCR2 activation can also induce cross desensitization and internalization of 

CXCR4 (Suratt et al., 2004). 

 

Internalization of CXCR4 

CXCR4 undergoes dynamin-1 dependent internalization in response to 

stimulation with both CXCL12 as well as PMA (through activation of protein kinase C) 

(Haribabu et al., 1997; Signoret et al., 1997). The serine/threonine rich C-tail of 

CXCR4 plays a critical role in internalization of CXCR4. Individual mutation of a 

stretch of residues in the C-tail (S324, S325, I328, L329, S338, S339)  impairs the ability 

of CXCR4 to be internalized in response to both CXCL12 and PMA (Marchese and 

Benovic, 2001; Orsini et al., 2000).  In recent studies done by Barker and Benovic, it has 

been shown that GRK5 can regulate the internalization of CXCR4 by phosphorylating 

Hsp70 interacting protein (Hip) at serine residue 346 (Barker and Benovic, 2011). 
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Figure 1.7 Regulation of CXCR4 signaling. CXCR4 is rapidly phosphorylated by GRKs upon agonist 

stimulation. Arrestin recruitment leads to uncoupling of G protein and hence desensitization of receptor 

signaling. Phosphorylation also recruits AIP4 that ubiquitinates the receptor. The receptor is recruited into 

clathrin-coated pits and internalized in a dynamin dependent and ubiquitination independent fashion. 

Receptor appears on early endosomes where it undergoes sorting into the multivesicular bodies (MVB) via 

the help of ESCRT complex protein HRS.  MVB fuses with lysosomes to complete the degradation 

process. Receptor can get deubiquitinated and recycle back to the plasma membrane.  

 

Ubiquitination and downregulation of CXCR4 

Upon activation by CXCL12, CXCR4 is rapidly phosphorylated on two serine 

residues 324 and 325 in the C-tail  which serve as a docking site for Ned4-like E3 
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ubiquitin ligase AIP4 (Bhandari et al., 2009; Busillo et al., 2010). AIP  directly interacts 

with these serine residues via its WW domains and monoubiquitinates on one of the 

three-lysine residues K327, K331 and K333 (Figure 1.4) in the C-tail (Bhandari et al., 

2009; Benovic and Marchese 2001). Ubiquitinated receptor is endocytosed in an arrestin-

independent fashion and appears on early endosomes where it is recognized by ESCRT-

0. A lysine mutant of CXCR4 (CXCR4-3K/R), that cannot be ubiquitinated can still 

internalize upon agonist stimulation, suggesting that internalization of CXCR4 is 

independent of its ubiquitination. Nevertheless, ubiquitination of CXCR4 is critical for 

its recruitment into the ESCRT pathway. AIP4 is also present on the endosomes where 

it colocalize with HRS. AIP4 ubiquitinates HRS in an agonist-dependent fashion and 

this ubiquitination event is important for sorting and degradation of CXCR4, however, 

the molecular mechanism remains to be determined (Marchese et al., 2003). The AAA 

ATPase Vps4 also plays role in the sorting of CXCR4 into the MVBs. Overexpression of 

dominant negative Vps4-E228Q (defective in ATP hydrolysis) blocks CXCR4 

degradation (Marchese et al., 2003). Although CXCR4 is poorly recycled to the plasma 

membrane, it has been shown to be deubiquitinated by ubiquitin specific protease 14 

(USP14).  USP14 plays an important role in the CXCR4 degradation, as RNAi induced 

knockdown blocks agonist promoted degradation of CXCR4 (Mines et al., 2009). Taken 

together, CXCR4 ubiquitination, as well as the downstream sorting machinery play a 

crucial role in the downregulation of CXCR4. However, molecular details of this process 

are still unclear.  
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LIPID RAFTS AND CAVEOLAE 

Lipid rafts are specialized membrane domains that are enriched in cholesterol and 

glycosphingolipids (reviewed in Simons and Ikonen, 1997). Several cytoplasmic and 

membrane proteins have been shown to be associated with these lipid rafts. Proteins such 

as glycosylphosphatidylinositol (GPI)-anchored proteins 1,7, doubly acylated (N-

myristoylation and palmitoylation) proteins such as Src-family kinases and α-subunits of 

heterotrimeric G proteins (Resh, 1999), and cholesterol linked proteins such as 

Hedgehog show preferential association with lipid rafts (Rietveld et al., 1999). 

Palmitoylation of proteins serves as one of the most important mechanisms for 

association with the lipid rafts. In the case of Ras family proteins, palmitoylation of the 

C-terminal hypervariable region targets Ras to caveolin-1 rich lipid rafts (Hancock et. al. 

1990).  

Modification with lipid is not the only mechanism by which protein are targeted 

to the lipid-rafts. Interaction with proteins associated with lipid-rafts such as caveolin, 

flotillin and annexin, also serve as an important mechanism to recruit proteins to lipid 

rafts (Le Roy and Wrana, 2005). Although why proteins are recruited to these domain is 

not clear, increasing evidence in the literature suggests that recruitment is crucial for the 

activation of many signal transduction pathways (Le Roy and Wrana, 2005). 

Caveolae 

Caveolae are a specialized subset of the lipid rafts that form a flask shape 

invagination of the plasma membrane (Patel et al., 2008). Caveolae are composed of three 

major components caveolin, cavin and cholesterol. Caveolin is a 21-kDa membrane 
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protein that forms a hairpin structure in the membrane with both N- and C-termini 

facing the cytoplasm. There are three types of caveolin present in cells. Caveolin-1 

(CAV1) and CAV2 are abundant in non-muscle cells, whereas CAV3 expression is 

restricted to skeletal and some smooth-muscle cells (Tang et al., 1996). CAV1 is the 

major constituent of caveolae in non-muscle cells. CAV2 is also present in caveolae but to 

a ratio of less than half that of CAV1. Another important component of the caveolar 

structure is the cavin protein. Cavin is composed of polymerase I and transcript release 

factor (PTRF or cavin-1), serum deprivation protein response (SDPR, SDR or cavin-2), 

sdr related gene product that binds to C-kinase (SRBC or cavin-3) and muscle restricted 

coiled-coil protein (MURC or cavin-4) (Hayer et al., 2010; Hill et al., 2008) 

 

Role of lipid rafts in GPCR signaling  

Lipid rafts and caveolae have been shown to regulate a wide variety of GPCR 

signaling cascades. GPCRs, heterotrimeric G proteins, and their various effectors can 

differentially partition into caveolae (reviewed in Patel et al., 2008). The preserved 

caveolin scaffolding domain (CSD, amino acids 82–101 of CAV1) found in caveolins can 

interact with a wide variety of signaling molecules (Li et al., 1996). G proteins, 

specifically Gα, have been shown to interact with caveolae (Li et al., 1996). Small GTP-

binding protein of the Ras superfamily, H-Ras, also associates with caveolae. 

Palmitoylation of H-Ras increases its association with caveolae and hence keeps it in an 

inactive state. Exchange of GTP for GDP releases H-Ras from the lipid rafts and leads 

to activation of downstream Raf that leads to activation of MEK and ERK (Prior et al., 
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2001; Song et al., 1996). Consistent with this observation, mutation of Ras (G12V) that 

prevents its association with caveolae makes it constitutively active.  

Caveolae and CXCR4 

Although, there are no palmitoylation sites in CXCR4, various reports in the 

literature suggest that CXCR4 associate with lipid rafts. In MDA-MB-231 breast cancer 

cell line, CXCR4 has been shown to be associated with the lipid raft compartment 

(Altenburg and Siddiqui, 2009). Treatment with Omega-3 unsaturated fatty acid 

(docosahexaenoic acid and eicosapentaenoic acid) disrupts lipid rafts resulting in 

decreased expression of CXCR4 on the cell membrane and hence the ability of these cells 

to migrate. CXCR4 has been shown to be present in the GM3 positive lipid rafts that are 

associated with the leading edge of a migrating/polarized T lymphocytes (Gomez-

Mouton et al., 2001). It has been shown that the initial interaction of HIV protein  

gp120 with CD4 activates clustering of lipid rafts resulting in an increased association of 

CXCR4, which in turn facilitates viral entry. Consistent with this observation, disruption 

of lipid rafts result in inhibition of viral infection (Manes et al., 2000). 

UBIQUITIN CONJUGATION 

Ubiquitination reactions are carried out by the sequential activity of three distinct 

enzymes. The first enzyme is called a ubiquitin activating enzyme (E1) that activates 

ubiquitin in a two step process using ATP as an energy source. In the first step, ubiquitin 

is activated by ATP forming a ubiquitin-adenylate intermediate. In the second step, 

ubiquitin is transferred to an active cysteine residue on the E1 by formation of thio ester 

linkage between the terminal glycine residue carboxyl group in ubiquitin and sulfhydryl 
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group of the active site cysteine residue. Ubiquitin is then transferred to a cysteine  

residue in the second enzyme called a ubiquitin conjugating (UBC) enzyme (E2). Finally, 

ubiquitin is transferred to the epsilon amine group of a  lysine  residue in the substrate 

with the help of a third class of enzyme called the ubiquitin ligase enzyme (E3) (reviewed 

in Pickart, 2001). A description of the process of ubiquitination is described in Figure 

1.8.  The human genome is estimated to encode ~2 E1s, ~30 E2s and ~600-1000 E3s 

(Rotin and Kumar, 2009; Ye and Rape, 2009).  

E3 ubiquitin ligases play an important role in the process of ubiquitination as they 

provide the specificity to the reaction by recognizing the substrate. Based upon the 

mechanism of transfer of ubiquitin to the substrate, these enzymes can be divided into 

two classes;  1) Homologous to E6-AP carboxy terminus (HECT) E3 ligases; 2) Really 

interesting new gene (RING) family E3 ligases. HECT domain containing E3 ligases 

such as AIP4 accept the ubiquitin from the E2 and directly transfer it to the substrate. In 

contrast, RING domain-containing ligases such as Cbl, SCF (SKP1-CUL1-F-box 

protein) act as scaffolds to mediate the interaction between E2 and the substrate (Figure 

1.8).  
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Figure 1.8. Schematic representation of  the ubiquitination machinery. Ubiquitination of a substrate 

requires three enzymatic steps. In first step, an activating enzyme (E1) hydrolyzes ATP to activate 

ubiquitin by forming a thiolester linkage between its active site cysteine and the carboxyl-terminal glycine 

residue of ubiquitin. In second step, the activated Ub is passed from the E1 to a Cys residue of an E2-

conjugating enzyme. Finally, the Ub-charged E2 is recruited by an E3 ligase, which also binds to the 

substrate. There are two main types of E3 ligases called HECT and RING E3s. HECT E3s form a thiol 

ester intermediate with Ub before transfering it to the target. RING E3 ligases act as an adaptor to bring 

the substrate and the Ub-charged E2-conjugating enzyme into close proximity, promoting Ub transfer 

directly from the E2 to the target. (Modified from Bowerman and Kurz, 2006) 

 

Ubiquitination is a reversible process; proteins called deubiquitinating enzymes (DUBs) 

are proteases that mediate the removal of ubiquitin. There are approximately 100 DUBs 

encoded by the human genome. These enzymes can be further divided into five families; 

the ubiquitin specific proteinase (USP), the ovarian tumor domain (OUT), the ubiquitin 

C-terminal hydrolase (UCH), the machado-josephin domain (MJD) and the 

JAB1/MPN/Mov34 (JAMM) domain (Amerik and Hochstrasser, 2004).  

 

Atrophin-interacting protein 4 (AIP4) 

AIP is an E3 ubiquitin ligase that was initially identified in a yeast-two hybrid 

screen as a protein that interacts with Atrophin-1. Mutation in atrophin-1 is a major 

cause of a autosomal dominant spinocerebellar degeneration disease called dentotobular-

pallidoluysian atrophy (DRPLA) also known as Haw River Syndrome and Naito-

Oyanagi disease (Yang et al., 2006). AIP4 is a HECT domain containing E3 ubiquitin 
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ligase that belongs to the Nedd4 family E3 ligases. Other ligases in this family include 

Nedd4 (a.k.a. Nedd4.1), Nedd4.3, Smurf1, Smurf2, BUl1, NEDl2, WWP1 (a.k.a. 

AIP5) and WWP2 (a.k.a. AIP2). AIP4 has a modular structure and contain an N-

terminal C2 domain, which can bind to membrane phospholipids and is known to play a 

role in membrane targeting (Gao et al., 2004), a proline rich region that binds to SH3 

domain containing proteins such as Endophilin-A and β-PIX (Angers et al., 2004; Janz 

et al., 2007), four tandem WW-domains, that recognize and binds to proline rich PY 

(PPXY, PPPY) motifs as well as phospho-serine/threonine based motifs (Ingham et al., 

2005), and a large C-terminal catalytic HECT domain that associates with the E2 

enzyme of ubiquitination cascade (Figure 1.9). 

 

 

Figure 1.9. Schematic representation of AIP4 structure. AIP4 contains N-terminal C2 domain, proline-

rich region (PRR), four tandemly linked WW domains (I, II, III and IV) and a C-terminal catalytic 

HECT domain. Numbers indicate the start and end position of domains. Serine residues phosphorylated 

by JNK1 are shown in red (199, 222 and 232). 

 

AIP4 substrates: A large number of substrates have been identified for AIP4. For 

example, ubiquitination and degradation of cFLIP, p73, p63 by AIP4 regulate apoptosis 

(Chang et al., 2006; Rossi et al., 2005; Rossi et al., 2006). Adaptor proteins such as E3 

ligase Deltex (DTX), Endophilin and HRS are ubiquitinated by AIP4 (Angers et al., 
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2004; Chastagner et al., 2006; Marchese et al., 2003). Other protein such as c-Jun, JunB 

(Qiu et al., 2000), Notch (Qiu et al., 2000), Viral infectivity factor (VIF) (Dussart et al., 

2004) and Gli1(Di Marcotullio et al., 2006; Di Marcotullio et al., 2011) are also 

regulated by AIP4.  Mostly AIP4 targets its substrates to degradation, however, in case of 

TRP channels, AIP4 mediated ubiquitination regulates the cell surface expression 

(Gallagher et al., 2006). Similar to other E3 ubiquitin ligases, AIP4 is also auto-

ubiquitinated. Both mono as well as polyubiquitination (both K29 as well as K63) is 

found. AIP4 also associates with the deubiquitinating enzyme FAM(USP9X) that 

protects it from degradation following auto-ubiquitination (Dupont et. al., 2009).  

 

Regulation of AIP4 activity: AIP is subjected to regulation by a number of mechanisms 

including phosphorylation and ubiquitination. JNK1 kinase dependent phosphorylation 

of S199, T222 and S232 in the proline rich region of AIP is important for its activation. 

This phosphorylation event disrupts an auto-inhibitory conformation formed by 

interaction between the HECT domain and the PRR and WW domains of AIP4 

increasing its enzymatic activity (Mund and Pelham, 2009). Similarly, binding of Nedd4 

family-interacting proteins (Ndfip)-1 and 2, also relieve the intra-molecular self-

inhibitory interaction (Yang et al., 2006).  AIP is also a target of Src family kinase Fyn. 

Fyn leads to phosphorylation of AIP4 on tyrosine residue 371 which reduces the 

interaction of AIP4 with its substrate JunB (Gao et al., 2004). In contrast, 

phosphorylation by MEKK1-JNK1 kinases on Ser/Thr residues enhances AIP4 activity 

on junB (Lallemand et al., 2005). Recently, binding of Numb via PTB domain to WW1-
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2 of AIP4 has also been shown to relieve the auto-inhibitory intra-molecular interaction 

and activate AIP4 (Di Marcotullio et al., 2011).   

 

Role of AIP4 in Signaling: AIP4 has been shown to inhibit transforming growth factor-

α signaling. Although the catalytic activity of AIP4 is not required for this function, its 

ability to act as an adaptor to link Smad7 to activated receptor is critical (Takeshita et al., 

1996; Takeshita et al., 1997). AIP4 has also been shown to interact with another RING 

finger type ubiquitin ligase, CBLC. This interaction regulates both down-regulation and 

signaling of EGFR (Courbard et al., 2002). 

 

RATIONALE AND RESEARCH OBJECTIVES 

The receptor/chemokine signaling axis formed by the chemokine receptor CXCR4 and 

its cognate ligand CXCL12 play a major role in normal mammalian physiology and 

dysregulation of CXCR4 signaling and trafficking has been linked to several pathological 

conditions. However, the molecular and cellular mechanisms that regulate CXCR4 

signaling and trafficking remain poorly understood.  

Our laboratory has previously shown that arrestin-2 mediates endosomal sorting 

of CXCR4 by interacting with the E3 ubiquitin ligase AIP4, to direct CXCR4 into the 

degradative pathway. However, the precise mechanism by which arrestin-2 function on 

the endosomes remain unknown. CXCR4 has been shown to be targeted to lysosomes via 

the ESCRT pathway. HRS and STAM form the ESCRT-0 complex that can directly 

bind to the endosomal membrane and recruit ubiquitinated cargo to regulate its sorting 
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into MVBs. STAM is a unique protein that contains domains important for signal 

transduction (such as SH3 domains and ITAM motifs) as well as for endosomal sorting 

(UIM domain), suggesting their role in both signaling as well as endosomal sorting of 

proteins. Our data show that both arrestin-2 and AIP4 can interact with STAM and 

siRNA mediated knockdown of STAMs had effect on both CXCR4 signaling and 

downregulation. Since, both arrestin-2 and AIP4 are important for trafficking of CXCR4 

to lysosomes, we hypothesize that STAM interacts with AIP4 and arrestin-2 to play a 

critical role in CXCR4 regulation. With an objective to further our understanding of the 

molecular mechanisms that regulate CXCR4 signaling and trafficking the following aims 

were proposed. 

1. To determine the role of arrestin-2 in endosomal sorting and downregulation of the 

chemokine receptor CXCR4.  

2. To determine the role of AIP4 and STAM-1 in CXCR4 signaling. 

 

The results from this study would help us understand additional mechanisms that 

regulate CXCR4 signaling and trafficking and explain how CXCR4 dysregulation 

contributes to various biological disorders.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Cell lines, Transfections, Reagents  

Human embryonic kidney (HEK) 293 cells (Microbix, Toronto, ON, Canada), HEK293-

WT#2 (stably expressing HA-CXCR4) cells, human cervical cancer cell line, HeLa 

(American Type Culture Collection, Manassas, VA), human breast cancer cell lines BT474 

(kindly provided by Dr. Bruce Quevas, Loyola University Chicago) and SKBR3  (kindly 

provided by Dr. Clodia Osipo, Loyola University Chicago) were maintained in Dulbecco's 

Modified Eagle Medium (DMEM) (HyClone Laboratories, Logan, UT) supplemented 

with 10% fetal bovine serum (FBS; HyClone Laboratories), hereafter called DMEM-

complete, at 37˚C in a humidified atmosphere containing 5% CO2.   

Plasmid DNA and siRNA transfections were performed using TransIT®-LT1 

(Mirus, Madison, WI) and LipofectamineTM2000 (Invitrogen) transfection reagents 

respectively, following manufacturers instruction as described below.  

 

2.1.1 Transfection of plasmid DNA using TransIT®-LT1 transfection reagent 

DNA transfections were performed on cells cultured in 10-cm, 6-cm, 6-well and 24-well 

culture dishes using TransIT®-LT1 transfection reagent as described below. For DNA 

transfections in a 10-cm dish, 10 µg of total plasmid DNA was aliquoted into a  
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microcentrifuge tube and diluted by adding 1 ml of Opti-MEM (Reduced Serum 

Minimum Essential Media, Gibco). Thirty microliter (µl) (1:3 ration i.e. 3 µl of LT1 for 

every microgram of DNA) of warm TransIT®-LT1 transfection reagent was added to the 

DNA/Opti-MEM mixture. For DNA transfections in a 6-cm dish, 5 µg of total plasmid 

DNA was aliquoted into a microcentrifuge tube and diluted by adding 500 µl of Opti-

MEM. Fifteen µl of TransIT®-LT1 transfection reagent was added to the DNA/Opti-

MEM mixture. For DNA transfections in each well of a 6-well culture dish, 2.5 µg of 

total plasmid DNA was aliquoted into a microcentrifuge tube and diluted by adding 250 

µl of Opti-MEM. Seven and half µl of warm TransIT®-LT1 transfection reagent was 

added to the DNA/Opti-MEM mixture. For DNA transfections in each well of a 24-

well dish, 0.5 µg of total plasmid DNA was aliquoted into a microcentrifuge tube and 

diluted by adding 50 µl of Opti-MEM. One and half µl of warm TransIT®-LT1 

transfection reagent was added to the DNA/Opti-MEM mixture. TransIT®-

LT1/DNA/Opti-MEM mixture was vortexed briefly (2-3 sec at low speed) and 

incubated for 20 min at room temperature (RT). Media from dishes/wells to be 

transfected was removed by aspiration and replaced with warm DMEM-complete media 

(9, 4, 2, 0.5 ml for 10-cm, 6-cm, 6-well and 24 well dishes, respectively). Following 

incubation, DNA/transfection reagent complexes were added drop wise to different areas 

of the plate/well and gently rocked back-and-forth and from side-to-side to evenly 

distribute the complexes. The plates were incubated at 37˚C for 24-48 hr depending on 

the experiment and plasmid DNA transfected. 
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Transfection of siRNA with LipofectamineTM2000 transfection reagent 

Transfections with siRNA were performed on cells cultured in 10-cm or 6-cm 

dishes as described below. For transfections in a 10-cm dish, 600 picomoles (pmol) of 

siRNA (30 µl siRNA from a working stock of 20 µM) were aliquoted into a 

microcentrifuge tube and diluted by adding 1 ml Opti-MEM. In a 15 ml conical tube, 30 

µl LipofectamineTM2000 reagent was diluted in 1 ml Opti-MEM. For transfections in a 

6-cm dish, 200 pmol of siRNA (10 µl siRNA from a stock of 20 µM) was aliquoted into 

a microcentrifuge tube and diluted in 250 µl Opti-MEM. In a separate microcentrifuge 

tube, 10 µl LipofectamineTM2000 was diluted in 250 µl Opti-MEM. Both tubes were 

incubated for 5 min at RT and then solutions were mixed together carefully, vortexed 

briefly (2-3 sec at low speed) and incubated for another 20 min at RT to allow formation 

of complexes between siRNA and transfection reagent. Media from dishes containing 

cells to be transfected was replaced with 8 ml (for 10-cm dish) or 3.5 ml (for 6 cm dish) 

warm DMEM-complete media. siRNA/transfection reagent complexes were added drop 

wise to different areas of the plate and gently rocked back-and-forth and from side-to-

side to evenly distribute the complexes. The plates were incubated at 37˚C for 48-72 hr 

depending on the experiment and siRNA transfected.  

 

Antibodies, Reagents and DNA constructs  

List of all antibodies, reagents, kits, DNA constructs, siRNA and primers used in 

this study are compiled in Table 2.1-2.6. 
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Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

Blotting 

Samples to be analyzed by western blotting were mixed with 2x sample buffer 

(0.75 M Tris-HCl pH-6.5, 10% SDS, 10% glycerol, 5% beta-Mercaptoethanol, 0.005 % 

(wt/vol) bromophenol blue) and loaded onto 7.5%, 10% or 12%, SDS-polyacrylamide gel 

along with a molecular weight marker (prestained SDS-PAGE low range standards, Bio-

Rad, Cat. No. 161-0305). Samples were electrophoresed at 160 volts for 1 hr at RT using 

Mini-PROTEAN 3 system (Bio-Rad). Separated proteins were electrophoretically 

transferred onto 0.45 µm nitrocellulose membrane (Bio-Rad) using transfer buffer (0.25 

mM Tris-HCl pH 7.5, 0.192 M glycine and 20% (vol/vol) methanol) at 100 volts for 1 

hr at RT.  After the transfer, membranes were incubated with 10 ml Ponceau S stain to 

estimate the efficiency of transfer. Membranes were rinsed once with TBST (Tris-

buffered saline containing Tween®20; 20 mM Tris pH 7.5, 150 mM NaCl, 0.05% 

(vol/vol) Tween®20) to remove excess Ponceau S stain and incubated with 10 ml 5% 

(wt/vol) non-fat milk made in TBS-T for 30 min at RT while rocking. Membranes were 

then incubated with appropriate primary antibody diluted in 7.5 ml 5% milk-TBST for 1 

hr at RT or overnight at 4˚C while rocking. Following incubation, the membranes were 

washed 3 times (5 min each) with 10 ml TBST and then incubated with 10 ml 

appropriate secondary antibody conjugated with horse radish peroxidase (HRP) made in 

5% milk-TBST for 30 min at RT. Finally blots were washed 5 times (10 min each) with 

10 ml TBST at RT and developed by incubating with enhanced chemiluminescence 

(ECL) reagent on autoradiography films (Phenix Research) using automated film 
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processor. Depending upon the sensitivity of primary antibody, ECL of different 

sensitivity were used i.e. Pico, Dura and Femto (Pierce)  

 

Treatment with ligand 

To stimulate the cells with ligand, appropriate concentration of ligands 

(CXCL12, carbachol, EGF) was prepared in DMEM incomplete media supplemented 

with 20 mM HEPES (e.g. to achieve final concentration of 30 nM CXCL12, 3µl from a 

stock solution of 10 µM was added to 1 ml DMEM incomplete media). To stimulate 

cells, media from the plates were removed by aspiration and slowly replaced with media 

containing appropriate dilution of ligand. Plates were gently rocked back-and-forth and 

from side-to-side to evenly distribute the media and incubated at 37˚C for different time 

points depending on experiment. 

 

GST-fusion protein purification and quantification 

Five ml of Luria Broth containing 100 µg/ml ampicillin (LB-amp) was inoculated 

from a glycerol stock of Escherichia coli (E.coli) BL21 cells transformed with GST-fusion 

protein constructs or empty vector (pGEX-4T2) and grown overnight at 37˚C in an 

orbital shaker (model 4518, Forma Scientific) at 250 rpm.  The next day, 30 ml LB-amp 

in a 50 ml conical tube was inoculated with 750 µl of the overnight culture and incubated 

at 37˚C until an OD600 of 0.35–0.40 was reached (~2 hr). To induce protein production, 

30 µl of 1 M isopropyl-1-thio-β-D-galactopyranoside (IPTG) (final concentration 0.1 

mM) was added and tubes were incubated for 2 hr at 18˚C in an orbital shaker. After 
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induction, cells were pelleted by centrifugation at 4500 rpm for 15 min at 4˚C in a 

Beckman Coulter J6-HC centrifuge. The supernatant was discarded by pouring and the 

pellet was resuspended in 1 ml binding buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 

0.1% Triton X-100 (vol/vol), 1 mM dithiothreitol, 10 µg/ml leupeptin, 10 µg/ml 

aprotinin, and 10 µg/ml pepstatin-A). Samples were subjected to sonication using a 

Branson Digital Sonifier® (Model 450, Branson Ultrasonic corp.) once at amplitude of 

11% for 10 sec on ice, followed by centrifugation at 14,000 rpm for 20 min at 4˚C 

(Eppendorf Centrifuge; 5417R). To equilibrate glutathione-sepharose 4B resin with 

binding buffer, 100 µl resin was aliquoted in a microcentrifuge tube and 750 µl binding 

buffer was added. Tubes were inverted 5-6 times and then centrifuged at 4500 rpm for 5-

7 sec to pellet resin. Buffer was discarded by aspiration and this step was repeated two 

times. After final centrifugation step, buffer was aspirated and the beads were 

resuspended in 100 µl binding buffer.  

Fusion proteins were immobilized by incubating cleared lysate with 100 µl 

equilibrated glutathione-sepharose 4B resin overnight (15-17 hr) at 4˚C while rocking. 

After incubation, samples were centrifuged at 4000 rpm for 5-10 sec and the supernatant 

was discarded by aspiration. Samples were washed by adding 750 µl binding buffer, 

incubated while rocking for 10 min at 4˚C followed by centrifugation at 4000 rpm for 5-

10 sec.  Supernatant was discarded by aspiration and samples were washed second time by 

adding 750 µl binding buffer and gently inverting the tube 5-6 times followed by 

centrifugation at 4000 rpm for 5-10 sec. A third wash was done in similar fashion to the 

second wash and finally the beads were resuspended in 100 µl binding buffer.  
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To determine the protein amount, 15 µl sepharose beads were collected in a 

microcentrifuge tube, centrifuged at 4000 rpm for 5-10 sec, and buffer was discarded by 

aspiration. Ten µl 2x sample buffer was added to the beads and the bound protein was 

eluted by incubating at 100˚C for 10 min. Samples were analyzed by 10% SDS-PAGE 

with known amounts (0.5, 1.0, 2.0 and 3.0µg) of purified bovine serum albumin (Fraction 

V; Roche Diagnostics, Indianapolis, IN). Gel was washed three times (5 min each) with 

20-30 ml distilled water and incubated with 15 ml GelCode®Blue stain at RT on a rotary 

shaker for 30 to 60 min. After staining, gel was washed 3-5 times (5 min each) with 20-

30 ml distilled water to de-stain. To estimate the concentration of fusion protein, band 

intensities between know BSA amounts and fusion protein were compared (Figure 2.1). 

Various GST-fusion proteins purified using this protocol are summarized in table 1.7. 

 

Figure 2.1 Quantification of amounts of GST-fusion proteins purified by immobilizing to glutathione-

sepharose beads. Show is an example of typical GST-fusion protein purification. Fifteen µl of sepharose 

beads bound to fusion protein were taken in microcentrifuge tubes. Fusion proteins were eluted in 15 µl 2x 

sample bluffer by incubating at 100˚C for 10 min and loaded onto 10% SDS-PAGE gel with known 



 60 
amounts of BSA. Following electrophoresis, gel was washed with water and stained with GelCode®Blue. 

Shown is a representative gel stained with GelCode®Blue to estimate the amount of protein purified by 

comparing it with know amounts of BSA (0.5-3.0 µg). In this example, GST was estimated to be around 

1.5 µg/15µl of beads and GST-STAM-1-SH3 was estimated to be 2 µg/15µl of beads.  

 

Table 2.7 List of all the GST-fusion proteins purified for this study 

 

S. No. Fusion Protein 

1. GST 
2. GST-STAM-1 
3. GST-STAM-2 
4. GST-STAM-1 
5. GST-STAM-1-CC 
6. GST-STAM-1-SH3 
7. GST-arrestin-2 
8. GST-arrestin-2-(25-161) 
9. GST-AIP4 

10. GST-AIP4-ΔWW-I-IV 
11. GST-AIP4-HECT 
12. GST-AIP4-WW-I-IV 

 

Purification of HIS-tagged STAM-1 

Thirty ml of LB-amp was inoculated from a glycerol stock of Escherichia coli 

(E.coli) BL21 cells transformed with HIS-STAM-1 and grown overnight at 37˚C in an 

orbital shaker (model 4518, Forma Scientific) at 250 rpm.  The next day, 500 ml LB-amp 

in a 1 L Erlenmeyer flask was inoculated with 30 ml of the overnight culture and 
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incubated at 37˚C until an OD600 of 0.43 was reached. Protein induction was initiated by 

adding 500 µl of 1 M IPTG (final concentration 0.1 mM) and incubating for 2 hr at 

18˚C in an orbital shaker at 250 rpm. After induction, cells were pelleted by 

centrifugation at 4500 rpm in Beckman Coulter J6-HC centrifuge for 15 min at 4˚C. 

The supernatant was discarded and the pellet was resuspended in 10 ml binding buffer 

(20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% Triton X-100 (vol/vol), 1 mM 

dithiothreitol, 10 µg/ml leupeptin, 10 µg/ml aprotinin, 10 µg/ml pepstatin-A and 10 mM 

Imidazole). Samples were subjected to sonication three times using a Branson Digital 

Sonifier® at amplitude of 11% for 10 sec on ice. Sample was sub-divided into 10 

microcentrifuge tubes and centrifuged at 14000 rpm for 20 min at 4˚C (Eppendorf 

Centrifuge; 5417R). The supernatant from all the tubes was pooled in a 15 ml conical 

tube and passed through a 0.25 µm syringe filter to remove any cellular debris.  A 0.8 x 4 

cm Poly-Prep Chromatography columns (Bio-Rad, cat. no. 731-1550) was loaded with 1 

ml of His-Select Nickel Affinity Gel (Sigma, cat. no. P6611) and left undisturbed at 4˚C 

for 30-45 min. The column was washed with 5 bed volumes (5 ml) of cold binding buffer 

before loading filtered cell lysate. A flow rate of 10-20 µl/sec was achieved by adjusting 

the pressure on the column cap. The flow-through was collected in a 15 ml conical tube 

and loaded again on the same column. The column was washed with 10 bed volumes (10 

ml) of cold binding buffer to remove unbound proteins. To elute bound proteins, 10 ml 

elution buffer (binding buffer with 150 mM Imidazole) was added and 7 fractions of 500 

µl each were collected in microcentrifuge tubes on ice. A 20 µl aliquot from each fraction 

was collected in a microcentrifuge tube and diluted by adding 20 µl sample buffer. 



 62 
Remaining fractions were snap frozen and stored at -80˚C. Samples (10 µl) were analyzed 

by 10% SDS-PAGE and GelCode®Blue staining. Figure 2.2 shows the purity of 

different fractions.  

 

 

Figure 2.2. GelCode®Blue staining of different fractions of HIS-STAM-1 eluted from His-Select Nickel 

Affinity Gel column using 150 mM Imidiazole. An aliquot of 10 µl from each eluted fraction was mixed 

with 10 µl 2x sample buffer and incubated at 100˚C for 10 min. Ten µl from each aliquot (5 µl sample) was 

analyzed by 10% SDS-PAGE. Gel washed with water and stained with GelCode®Blue. 

 

Binding assay with GST-fusion proteins 

Cell lysates were prepared from HEK293 and HeLa cells expressing the desired 

DNA constructs cultured in 6-well plates as described below. Cells were transfected with 

desired DNA constructs using TransIT®-LT1 transfection reagent as described in section 

2.1.1. After 48 hr, plates were placed on ice and media was removed by aspiration. Cells 

were washed once with 2.5 ml cold PBS and 500 µl binding buffer was added to each 

plate. Cells were collected in a microcentrifuge tube by scraping and then sonicated once 

at amplitude of 11% for 10 sec on ice using a Branson Digital Sonifier®. Cleared cell 
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lysate (CCL) was prepared by centrifugation at 14000 rpm for 20 min at 4˚C. For binding 

assays, equimolar amounts of purified GST and GST-fusion proteins were incubated 

with 100 µl of CCL and then incubated for 2–18 hr at 4˚C while rocking. For binding 

experiments using purified arrestin-2, GST fusion proteins were incubated with 500 ng 

purified arrestin-2 in 100 µl of binding buffer for 1 hr at 4˚C. After incubation, samples 

were washed three times with 750 µl binding buffer and then eluted in 20 µl 2x sample 

buffer by incubating at 100˚C for 10 min. Bound proteins were detected by 10% SDS-

PAGE followed by immunoblotting against desired protein. After the protein transfer, 

nitrocellulose membrane was stained with Ponceau S stain to determine the presence of 

fusion proteins.  

For GST pulldown experiment between STAM-1-SH3 and AIP4, GST-

STAM-1-SH3 and GST were purified from bacterial cells exactly as described above. 

GST and GST-STAM-1-SH3 were eluted from glutathione sepharose beads by 

incubating with 100 µl elution buffer (binding buffer+20 mM glutathione) for 1 hr at 

RT. Beads were spun down at 4000 rpm for 1 min and supernatant was collected in a 

fresh tube and labeled as elution1. Hundred microliters of elution buffer was added again 

to the remaining beads and incubated at RT for 1 hr and elution 2 was collected as 

described above. Ten µl of remaining beads and 10 µl of each elution was analyzed by 

SDS-PAGE and amount of protein eluted was determined by staining with Gel-code 

blue (Figure 2.2). For binding reaction, equimolar amounts of GST and GST-STAM-1-

SH3 were added to lysates prepared from HeLa cells expressing FLAG-AIP4 and 

incubated overnight at 4˚C. Next day 20 µl equilibrated glutathione beads were added to 
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the tubes and incubated for another 1 hr. Beads were washed and bound protein was 

eluted and analyzed as described above.  

 

Figure 2.3. Elution of GST-STAM-1-SH3. GST-STAM-1-SH3 bound to glutathione beads was eluted 

twice with binding buffer containing 20 mM glutathione. Ten microliters of remaining beads and 10 µl of 

each fraction were analyzed by 10% SDS-PAGE and stained with Gel-code blue.   

 

CXCR4 degradation assay 

CXCR4 degradation assay was performed using either HEK293 cells stable 

expressing HA-CXCR4 (HEK293-WT#2) or HeLa cells that express detectable levels 

of endogenous CXCR4. HEK293-WT#2 and HeLa cells cultured in 10-cm dishes to a 

confluency of 70-80% were transfected with 600 pmol STAM-1, AMSH and GAPDH 

siRNA using LipofectamineTM2000 transfection reagent as described in section 2.1.2. To 

assess the role of disrupting STAM-1/arrestin-2 interaction by expressing STAM-1 and 

arrestin-2 minigene constructs on CXCR4 degradation, HEK293 cells cultured in 10-cm 

dishes were co-transfected with 1 µg HA-CXCR4 and 9 µg FLAG-STAM-1-CC-(296-
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380), FLAG-arrestin-2-(25-161) and empty vector (pCMV-10) using TransIT®-LT1 

transfection reagent as described in section 2.1.1. Twenty-four hours later, cells were 

passaged onto Poly-L-Lysine (PLL) coated 24-well plates (HEK293 cells) or six-well 

plates (HeLa cells) and grown for an additional 18–24 hr. To coat plates with PLL, 5 mg 

PLL (Sigma-Aldrich) was diluted in 50 ml distilled water to achieve a final concentration 

of 0.1 mg/ml. Working solution of PLL (0.1 mg/ml) was pipetted to the bottom of the 

plate and incubated for 5 min at RT. PLL was removed and plates were allowed to air 

dry at RT (~30-45 min). Cells were washed once with DMEM containing 10% FBS and 

then incubated with 50 µg/ml cyclohexamide (made in DMEM containing 10% FBS) to 

stop protein synthesis for 15 min at 37˚C. Cells were then incubated with the same 

medium containing 30 nM CXCL12 or vehicle (PBS+0.1% bovine serum albumin 

[BSA]) for 1, 2, and 3 hr. Cells were washed once with PBS and collected in 300 µl of 2x 

sample buffer and then sonicated once at amplitude of 11% for 10 sec using a Branson 

Digital Sonifier®. Receptor amounts were determined by 7.5% SDS-PAGE followed by 

immunoblotting using an anti-HA antibody to detect HA-CXCR4 in HEK293-WT#2 

cells and anti-CXCR4 antibody (2B11) to detect endogenous CXCR4 in HeLa cells.  

To assess the effect of inhibiting the STAM-1/arrestin-2 interaction on EGFR 

degradation, HeLa cells cultured in 6-well plates were transfected with 3 µg of FLAG-

STAM-1-CC, FLAG-arrestin-2-(25-161) and empty vector (pCMV-10) using 

TransIT®-LT1 transfection reagent as describe in section 2.1.1. Forty-eight hours later, 

cells were washed once with DMEM containing 10% FBS and then incubated with 50 

µg/ml cyclohexamide for 15 min at 37˚C. Cells were then incubated with the same 
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medium containing 100 ng/ml epidermal growth factor (EGF) or vehicle (PBS+0.1% 

BSA) for 1 hr. Cells were processed exactly as described above for CXCR4 degradation. 

Receptor amounts were determined by 10% SDS-PAGE followed by immunoblotting 

using an anti-EGFR antibody. 

 

Co-immunoprecipitation   

HeLa cells cultured in 10-cm dishes were transiently transfected with HA-

arrestin-2, HA-arrestin-3 and empty vector (pcDNA3) using TransIT®-LT1 transfection 

reagent as described in section 2.1.1. Forty-eight hours later, cells were washed with 10 

ml cold PBS, scraped and collected in 1.0 ml immunoprecipitation buffer [20 mM 

Na2PO4 pH 6.5, 150 mM NaCl, 1% (vol/vol) Triton-X 100, 10 µg/ml leupeptin, 10 

µg/ml aprotinin, and 10 µg/ml pepstatin A] and incubated at 4˚C for 30 min while 

rocking. CCLs were prepared by sonicating the samples once at amplitude of 11% for 10 

sec using a Branson Digital Sonifier® followed by centrifugation at 14000 rpm for 20 

min at 4˚C. CCLs were then incubated with an anti-HA mouse monoclonal antibody 

(101R) or isotype control antibody (mouse IgG1) at 1:150 dilution (1µl antibody for 150 

µl CCL) for overnight at 4˚C while rocking. After incubation, 25 µl of protein-G agarose 

beads, equilibrated with IP buffer were added to each tube and incubated for additional 1 

hr. After incubation, agarose beads were pelleted down by centrifugation at 4000 rpm for 

1 min and supernatant was discarded by aspiration. Samples were washed 3 times by 

inverting 5-6 times with 750 µl IP buffer and after final wash 20 µl 2x sample buffer was 

added. Immunoprecipitates (IPs) were incubated at 100˚C for 10 min and aliquotes of 10 
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µl were analyzed by 7-10 % SDS-PAGE followed by western blotting to detect bound 

endogenous STAM-1 and HRS. 

To assess the effect of the STAM-1-CC minigene on the interaction between 

STAM-1 and arrestin-2, HeLa cells were transfected with plasmid DNA encoding HA-

arrestin-2 and FLAG-STAM-1-CC or pCMV. CCLs were prepared as described above 

and were incubated with an anti-HA (101R) or isotype control antibody. IPs were 

subjected to immunobloting to detect endogenous STAM-1. To assess the effect of the 

arrestin-2-(25-161) minigene on the interaction between STAM-1 and arrestin-2, HeLa 

cells were transfected with T7-STAM-1, HA-arrestin-2, and FLAG-arrestin-2-(25-

161) or pCMV. CCLs were prepared as described above and were incubated with an 

anti-T7 polyclonal or isotype control antibody. IPs were subjected to immunobloting to 

detect HA-arrestin-2 and endogenous HRS. 

To detect interaction between endogenous arrestin, STAM-1 and HRS, CCLs 

were made from HeLa cells cultured in 10-cm dishes. Five hundred µl CCLs were 

incubated with 2.5 µl (1:200 dilution) anti-arrestin-2/3 mouse monoclonal (BD 

Biosciences) or isotype control antibody (mouse IgG). Immunoprecipitation was 

performed exactly as described above and aliquotes of 10 µl were analyzed by 10 % SDS-

PAGE followed by western blotting to detect bound endogenous STAM-1 and HRS. 

To detect binding between endogenous STAM-1, AIP4 and caveolin-1, 500 µl 

CCLs made from HeLa cells, HEK293 cells stably expressing HA-CXCR4 and BT474 

cells were subjected to immunoprecipitation using 10 µl (1:50 dilution) anti-AIP4 (G11) 

mouse monoclonal or isotype control antibody (mouse IgG). Immunoprecipitation was 
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performed exactly as described above and aliquotes of 10 µl were analyzed for the 

presence of STAM-1 and caveolin-1 as described above.  

Confocal immunofluorescence microscopy  

Protein co-localization studies were done in HEK293 cells transiently transfected 

with HA-CXCR4-YFP and HeLa cells expressing endogenous CXCR4 by confocal 

immunofluroscence microscopy. HEK293 cells cultured in 6-well dishes were transiently 

transfected with 1 µg HA-CXCR4-YFP using TransIT®-LT1 transfection reagent as 

described in section 2.1.1. Transfected HEK293  and HeLa cells were passaged onto 

PLL coated glass coverslips and were allowed to grow to a confluency of 70-80 %. To 

coat, glass coverslips were placed in 24 well plate using forceps and incubated with 500 µl 

0.1 mg/ml PLL for 5-10 min. PLL was removed by aspiration and the coverslips were 

allowed to air dry by incubating at RT for 30-45 min. Next day, cells were washed once 

with 500 µl warm DMEM containing 20 mM HEPES pH 7.5 and incubated in the 

same medium for 3–4 hr at 37˚C. Serum starved cells were treated with 500 µl DMEM 

containing 30 nM CXCL12 or vehicle (PBS+0.1% BSA) for 30 min at 37˚C. After the 

treatment, cells were placed on ice and washed twice with 500 µl cold PBS and then fixed 

by incubating with 500 µl 3.7% paraformaldehyde made in PBS for 10 min at RT. Cells 

were then incubated with 500 µl 0.05% (wt/vol) saponin for 10 min at RT to 

permeabilize cell membrane. Cells were blocked by incubating with 500 µl blocking 

buffer (PBS containing 0.05% saponin and 5% normal goat serum) for 30 min at 37˚C. 

Immunostaining was performed by incubating cells with desired concentration of primary 

antibody made in blocking buffer at 37˚C for 1 hr in a moist chamber. Coverslips 
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containing cells were flipped over so that the side containing cells were placed on top of a 

50 µl drop of antibody on a parafilm. After incubation, coverslip containing  cells were 

placed back into 24 well plates and washed five times with 500 µl 0.05% saponin made in 

PBS (Saponin-PBS). For the last wash, coverslips were incubated with 500 µl Saponin-

PBS for 15 min at 37˚C. After washing, cells were incubated with appropriate Alexa-

Fluor–conjugated secondary antibodies made in blocking buffer for 30 min at 37˚C in a 

moist chamber, similar to primary antibody. Finally, cells were washed again 5 times with 

500 µl Saponin-PBS as described before and coverslips were mounted onto glass slides 

using mounting media containing 4,6-diamidino-2-phenylindole (DAPI). Sides of the 

coverslips were sealed using nail polish and slides were allowed to air dry at 4˚C in dark. 

Samples were analyzed using an LSM 510 laser scanning confocal microscope (Carl 

Zeiss, Thornwood, NY) equipped with a Plan-Apo 63x/1.4 oil lens objective. Images 

were acquired using a 1.4-megapixel cooled extended spectra range RGB digital camera 

set at 512 x 512 resolution (Carl Zeiss, Thornwood, NY). Acquired images were analyzed 

using ImageJ, version 1.41o (National Institutes of Health, Bethesda, MD) and Adobe 

Photoshop (CS4). Amount of colocalization between proteins were determined by 

calculating the Pearson coefficient using MetaMorph 7.6 (Molecular Devices, 

Downingtown, PA) or ImageJ. 

To examine colocalization between CXCR4, arrestins and EEA1, HEK293 cells 

transfected with HA-CXCR4-YFP and arrestin-2-CFP or HeLa cells expressing 

endogenous levels of CXCR4 were processed as exactly as described above and stained 

with anti-EEA1 and arrestin-2/3 antibodies (HEK293) or anti-CXCR4, EEA1 and 



 70 
arrestin-2/3 antibodies (HeLa). To examine colocalization between CXCR4, STAM1 

and EEA1 and STAM-1, arrestins and EEA1, HEK293 cells expressing HA-CXCR4-

YFP or HeLa cells were processed and stained with STAM-1 and EEA1 (HEK293) and 

CXCR4, STAM-1, EEA1 antibodies. To examine colocalization between CXCR4, 

STAM1 and α-adaptin and CXCR4, Caveolin-1 and α-adaptin, HeLa cells were co-

incubated with primary antibodies against α-adaptin, CXCR4, caveolin-1, and STAM-1 

for 1 hr at 37°C, followed by incubation with appropriate Alexa-Fluor conjugated 

secondary antibodies for 30 min at 37°C.  To examine colocalization between STAM-1, 

caveolin-1 and α-adaptin or AIP4, caveolin-1 and α-adaptin, HeLa cells were transiently 

transfected with YFP-STAM-1 or YFP-AIP4, respectively and processed as described 

above. To examine the role of caveolin-1 in CXCR4-induced ERK-1/2 phosphorylation 

we employed quantitative confocal immunflouresence microscopy. HeLa cells cultured in 

10-cm dish were transfected with 600 pmol caveolin-1 and GAPDH siRNA. Twenty-

four hours later, cells were passaged onto PLL coated coverslips and grown to a 

confluency of 70-80%. Cells were serum starved as described before and were treated 

with 500 µl DMEM containing 10 nM CXCL12 or vehicle (PBS+0.1% BSA) for 5 min 

at 37˚C. Following treatment, cells were processed as described above and co-stained 

with anti-pERK-1/2 mouse monoclonal and anti-caveolin-1 rabbit polyclonal antibodies 

overnight (15-17 hr) at 4˚C in a moist chamber. Cells were washed and stained with 

Alexa-fluor-conjugated secondary antibodies for 1 hr at RT. Coverslips were mounted on 

glass slides and images were acquired as described above. The mean pixel intensity of 

pERK-1/2 and caveolin-1 staining per cell was calculated using LSM 510 image analysis 
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software. The average of the mean pixel intensity from 45 cells from 3 independent 

experiments was determined. 

Antibody Dilution: Primary antibodies for STAM-1, EEA1, caveolin-1 and α-adaptin 

were used at 1:100 dilution (1 µl antibody in 100 µl blocking buffer) and against CXCR4, 

arrestin-2/3 and pERK-1/2 at a 1:50 dilution. All the Alexa-fluor-conjugated secondary 

antibodies were used at 1:200 dilutions.  

 

Ubiquitination assays  

CXCR4 ubiquitination assay: To examine the effect of inhibiting the STAM-1/arrestin-

2 interaction on CXCR4 ubiquitination, HEK293 cells stably expressing HA-CXCR4 

were cultured in 10-cm dishes to a confluency of 70-80% and transfected with 3 µg of 

FLAG-ubiquitin. Eight hours later, cells were transfected with 10 µg of FLAG-STAM-

1-CC, FLAG-Arr2-(25-161), or empty vector (pCMV-10). The next day, cells were 

passaged onto 6-cm dishes and allowed to grow for an additional 24 hr. The next day, 

cells were washed with 5 ml DMEM containing 20 mM HEPES and serum starved by 

incubating in the same media for 3 hr. Cells were treated with vehicle (PBS+0.1% BSA) 

and 30 nM CXCL12 for 30 min. After stimulation, plates were kept on ice and cells were 

washed once with 5 ml cold PBS. Cells were scraped in 1 ml of lysis buffer [50 mM Tris-

HCl pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.5% (wt/vol) sodium deoxycholate, 1% 

(vol/vol) NP-40, 0.1% (wt/vol) SDS, 20 mM N-ethylmaleimide (NEM), and 10 µg/ml 

each of leupeptin, aprotinin, and pepstatin A], transferred to microcentrifuge tubes and 

incubated at 4˚C for 30 min while rocking. CCLs were prepared by sonicating the 
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samples once at amplitude of 11% for 10 sec on ice using Branson Digital Sonifier® 

followed by centrifugation at 14000 rpm for 20 min. CCLs were then incubated with an 

anti-HA polyclonal antibody (101C) to immunoprecipitate CXCR4. 

Immunoprecipitates were analyzed by subjecting to 7.5% SDS-PAGE followed by 

western blotting using an anti-FLAG antibody conjugated to HRP to detect 

incorporated ubiquitin. Blots were stripped and reprobed using anti-HA monoclonal 

antibody (101R) to detect the amount of CXCR4 immunoprecipitated. Lysates were 

analyzed by western blotting to detect expression level of HA-CXCR4, FLAG-STAM-

1-CC and FLAG-Ub.  

 
HRS ubiquitination assay. To examine the effect of inhibiting STAM-1/arrestin-2 

interaction on HRS ubiquitination, HEK293 cells stably expressing HA-CXCR4 culture 

in 10-cm dishes were transfected with 3 µg of FLAG-ubiquitin. Eight hours later, cells 

were co-transfected with 8 µg of FLAG-STAM-1-CC or empty vector (pCMV-10) and 

2 µg of T7-tagged HRS. Twenty-four hours later, cells were passaged onto PLL coated 

6-cm dishes.  The next day, cells were serum starved by incubating in DMEM containing 

20 mM HEPES for 4–5 hr and then treated with 30 nM CXCL12 or vehicle 

(PBS+0.1%BSA) for 30 and 60 min. Cells were washed with 5 ml cold PBS and collected 

in 1 ml ubiquitination buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton-X 

100, 5 mM EDTA, 20 mM NEM, 10 µg/ml leupeptin, 10 µg/ml aprotinin, and 10 

µg/ml pepstatin-A). Samples were transferred into microcentrifuge tubes and incubated at 

4˚C for 30 min while rocking, followed by sonicating once at amplitude of 11% for 10 sec 
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on ice using Branson Digital Sonifier®. CCLs were prepared by centrifugation at 14000 

rpm for 20 min. CCLs were incubated with an anti-HRS polyclonal antibody to 

immunoprecipitate HRS. Immunoprecipitates were analyzed by subjecting to a 7.5% 

SDS-PAGE followed by western blotting using an anti-FLAG antibody conjugated to 

HRP to detect incorporated ubiquitin. Blots were stripped and reprobed using anti-HRS 

polyclonal antibody to detect the amount of HRS immunoprecipitated. Lysates were 

analyzed by SDS-PAGE and western blotting to detect expression levels of T7-HRS and 

FLAG-STAM-1-CC. 

 
STAM-1 ubiquitination assay. For STAM-1 ubiquitination experiments, HeLa cells 

cultured in 6-well dishes were co-transfected with 3 µg of T7-STAM-1 and 40 ng of 

HA-ubiquitin. Eight hours later, cells were transfected with 3 µg of FLAG-STAM-1-

CC or empty vector (pCMV-10). Twenty-four hours later, cells were passaged onto PLL 

coated 6-cm dishes and grown to 100% confluency (~24 hr). Cells were serum starved and 

treated with ligand and processed as described above for HRS ubiquitination using a 

modified ubiquitination buffer (20 mM NaPO4, pH 6.5, 150 mM NaCl, 1% Triton-X 

100, 20 mM NEM, and protease inhibitor cocktail). T7-STAM-1 was 

immunoprecipitated by incubating CCLs with anti-T7 goat polyclonal antibody and 

immunoprecipitates were analyzed by 7.5% SDS-PAGE followed by immunoblotting 

using an anti-HA mAb to detect ubiquitinated STAM-1. Blots were stripped and 

reprobed using an anti-STAM-1 polyclonal antibody to detect the amount of STAM-1 
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immunoprecipitated. Lysates were analyzed by SDS-PAGE and western blotting to 

detect expression levels of T7-STAM-1 and FLAG-STAM-1-CC. 

 
To analyze the effect of AIP4 on STAM-1 ubiquitination, HeLa cells were 

transfected with FLAG-STAM-1 or empty vector (pCMV-10), Myc-AIP4 or Myc-

AIP4-C830A and HA-ubiquitin or empty vector (pcDNA3). Forty-eight hours later, 

FLAG-STAM-1 was immunoprecipitated by incubating the CCLs with anti-FLAG 

polyclonal antibody and immunoprecipitates were analyzed by SDS-PAGE followed by 

immunoblotting using an anti-HA monoclonal Ab to detect ubiquitinated STAM-1. 

Blots were stripped and reprobed using an anti-FLAG monoclonal antibody to detect the 

amount of STAM-1 immunoprecipitated. Lysates were analyzed by SDS-PAGE and 

western blotting to detect expression levels of Myc-AIP4/C830A and FLAG-STAM-1. 

 

CXCR4 internalization and recycling assay by ELISA 

To measure CXCR4 internalization and recycling, HEK293 cells were cultured in 

10-cm dishes to a confluency of 70-80%. Cells were co-transfected with 1 µg FLAG-

CXCR4 and 600 pmol STAM-1 and GAPDH siRNA using LipofectamineTM2000 

transfection reagent as described in section 2.1.2. Twenty-four hours later, cells were 

passaged onto PLL coated 24-well plates and grown for an additional 24 hr to a 

confluency of 100%. A sets of 5, 24-well dishes were made i.e. total surface receptor, % 

internalization, t=0 (total internalization), t=30 (recovery), and t=60 (recovery). The total 

surface receptor dish contains extra well for secondary antibody only control. Cells were 



 75 
washed once with 500 µl DMEM containing 20 mM HEPES and serum starved by 

incubating in same media for 3–4 hr. Plates were placed on ice, media was removed by 

aspiration and cells were washed once with cold 500 µl DMEM containing 0.1% BSA, 

20 mM HEPES, and 1 mM Ca2+ and then incubated on ice in the same media for 15 

min. Cell surface receptor was labeled with antibody by incubating the cells with 250 µl 

DMEM containing 0.1% BSA, 20 mM HEPES, 1 mM Ca2+ and 1:100 dilution of 

calcium-dependent M1 anti-FLAG antibody for 1 hr on ice. M1 anti-FLAG antibody 

labels all cell surface FLAG-CXCR4 receptors in a calcium dependent fashion. After 

incubation, media from total surface receptor plate was removed by aspiration and cells 

were washed once with 500 µl DMEM containing 0.1% BSA, 20 mM HEPES, and 1 

mM Ca2+ and left in same media on ice. Media from % internalization, t=0, t=30, and 

t=60 plates were removed by aspiration and cells were washed once with 500 µl DMEM 

containing 0.1% BSA, 20 mM HEPES, and 1 mM Ca2+. Cell were then treated with 30 

nM CXCL12 or vehicle (PBS+0.1% BSA) made in same media for 45 min at 37˚C. 

Treatment with agonist promotes the internalization of receptor/antibody complex. After 

the treatment, media from % internalization plate was removed by aspiration and cells 

were washed once with 500 µl DMEM containing 0.1% BSA, 20 mM HEPES, and 1 

mM Ca2+ and left in same media on ice.  Surface bound antibody from t=0, t=30, and t=60 

plates, that represent un-internalized receptor, was removed by washing the cells three 

times with 500 µl Ca2+ and Mg2+ free PBS containing 0.04% EDTA. EDTA chelates 

calcium that in turn leads to uncoupling of calcium dependent M1 antibody from the 

receptor. Media from total surface receptor plate, % internalization plate and t=0 was 
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removed by aspiration and replaced with 500 µl PBS containing 3.7% paraformaldehyde 

(PFA) and incubated for 5 minutes at RT. After fixation, cells were washed once with 

500 µl PBS with Ca2+ and left in the same solution on ice. To monitor receptor recycling, 

cells in t=30 and t=60 plates were incubated with 500 µl DMEM containing 1 mM Ca2+ 

and 10 µM AMD3100 and incubated for 30 (t=30 plate) and 60 min (t=60 plate) at 

37˚C. AMD3100 is a CXCR4 antagonist and is used to block the binding of any residual 

CXCL12 that may be present in the media in the event that it was not completely 

removed during the washing step. After incubation, cells were washed once with PBS 

containing 1 mM Ca2+ and then fixed with 3.7% PFA for 5 min on ice. After fixation, 

cells were washed three times with 500 µl PBS containing 1 mM Ca2+ and all the plates 

were incubated with 300 µl alkaline phosphatase-conjugated goat anti-mouse antibody 

diluted 1:1000 in PBS containing 1% BSA for 1 hr at RT. Cells were washed with 500 µl 

PBS-Ca2+ and incubated with 250 µl developing solution (p-nitrophenyl phosphate) 

diluted in diethanolamine buffer (Bio-Rad Laboratories) for 5–15 min. Reactions were 

stopped by adding 100 µl 0.4 N NaOH and an aliquot of 100 µl was used to measure the 

absorbance at 405 nm. Percentage of receptor recycled was calculated by dividing the 

amount of receptor internalized by the amount of receptors recovered after incubation at 

different time intervals. To calculate the percentage of receptor internalization, the 

amount of receptor remaining on the cell surface was divided by the total number of 

receptors present on the cell surface before treatment with agonist. 

 
CXCR4 internalization by FACS 
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CXCR4 internalization was determined by analyzing the surface receptor levels 

before and after ligand stimulation for 20 min using FACS. To determine the effect of 

Nystatin treatment on CXCR4 internalization, HeLa cells cultured in 10-cm dishes were 

washed once with 10 ml DMEM containing 20 mM HEPES and then treated with 50 

µg/ml nystatin and vehicle (DMSO) in DMEM containing 20 mM HEPES for 30 min 

at 37˚C. After treatment, cells were washed twice with 10 ml PBS and detached from the 

surface of the dish by incubating the cell monolayer with 2 ml CellstripperTM cell 

dissociation solution for 10 min at 37˚C. Cells were then collected in 8 ml PBS 

containing 0.1% BSA (Media Tech, VA), centrifuged and re-suspended in 2 ml PBS-

0.1% BSA. Cells were counted in a Countess® Automated cell counter using trypan blue 

stain  (Invitrogen). Five hundred thousand cells were transferred to a fresh 5 ml 

polystyrene round bottom tube (BD falcon) and washed once with PBS containing 0.1% 

BSA and resuspended in 250 µl PBS+0.1%BSA. Cells were incubated at 37˚C for 15 min 

and then treated with 50 nM CXCL12 for 2, 5, 10 and 20 min and with vehicle 

(PBS+0.1% BSA) for 20 min at 37˚C (this was accomplished by directly adding 1.25 µl 

of 10 µM stock of SDF to appropriate tube for a final concentration of 50 nM). After 20 

min, 4 ml cold PBS was added to each tube, cells were collected by centrifugation at 1000 

rpm at 4˚C (JOUAN GR412 centrigufe) and then fixed by resuspending the pellet in 500 

µl 4% paraformaldehyde (made in PBS) and incubating for 15 min at 37˚C. Cells were 

collected by centrifugation and washed once with 4 mL PBS and then twice with 

PBS+0.1%BSA. CXCR4 present on the surface was labeled by incubating the cells with 

PE-conjugated anti-CXCR4 or isotype control antibodies. Cell pellet was re-suspended 
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in 100 µl PBS+0.1%BSA (supplemented with 5% normal goat serum) containing 

antibody (1:100 dilution) and incubated for 1 hr at RT in dark. Following labelling, cells 

were washed twice with 4 ml PBS+0.1%BSA and finally resuspended in 300 µl 

PBS+0.1%BSA and kept in dark until analysis was done. CXCR4 surface expression was 

determined by flow cytometry (FACS-CANTO; Becton Dickinson) and raw data were 

analyzed by FlowJo v.9.3 software. Geometrical mean of the PE fluorescence intensity 

was calculated to quantify percent CXCR4 internalization. 

 
ERK-1/2 phosphorylation assay 

HeLa or HEK293 cells cultured in 10-cm dishes were transfected with 600 pmol 

siRNA against arrestin-2/3, AIP4, STAM-1, µ2 and control siRNA (GAPDH) or 

plasmid DNA encoding dynamin-K44A, FLAG-STAM-1-CC, FLAG-arrestin-2-(25-

161). Twenty-four hours later, cells were passaged onto 24-well plates and grown to 

100% confluency (~24 hr). Cells were washed with 500 µl of DMEM containing 20 mM 

HEPES and incubated in the same media for 3-4 hr at 37˚C. Following serum starvation, 

cells were treated with 10 nM CXCL12, 100 ng/ml EGF or 1 mM carbachol and vehicle 

(PBS+0.1% BSA) for various time points. Following incubation, media from each well 

was removed by aspiration and cells were lysed by directly adding 300 µl 2x sample 

buffer. Cells were collected in microcentrifuge tubes and lysed by sonicating for 10 sec at 

amplitude of 11% using Branson Digital Sonifier®. Samples were analyzed by 10% SDS-

PAGE followed by immunoblotting using mouse monoclonal phosphophorylation 

specific ERK-1/2 antibody. Blots were striped and re-probed for total ERK-1/2 and 
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actin. Phosphorylation of ERK-1/2 was quantified by densitometry and normalized to 

total-ERK levels. 

To examine the effect of nystatin on ERK-1/2 phosphorylation, HeLa cells 

cultured in 24 well plates were washed once with 500 µl DMEM containing 20 mM 

HEPES and then treated with 50 µg/ml nystatin and vehicle (DMSO) made in DMEM 

containing 20 mM HEPES for 30 min. After treatment, cells were washed twice with 

DMEM containing 20 mM HEPES and treated with 10 nM CXCL12 or 100 ng/ml 

EGF and vehicle (PBS+0.1% BSA) for 5 min and processed exactly as described above.  

To examine the effect of STAM-1 and AIP4 interaction on ERK-1/2 

phosphorylation, HeLa cells cultured in 24-well plates were grown to 80-90% confluency 

and transfected with 0.15 µg FLAG-STAM-1 and 0.35 µg FLAG-AIP4 or FLAG-

AIP4-ΔPRR and pCMV-10 alone using TransIT®-LT1 transfection reagent as 

described in section 2.1.1. To examine the effect of AIP4 ubiquitination activity on 

ERK-1/2 phosphorylation, HeLa cells cultured in 24-well plates were grown to 80-90% 

confluency and transfected with 0.15 µg Myc-STAM-1 and 0.35 µg Myc-AIP4 or Myc-

AIP4-C830A and pcDNA-3 alone. Forty-eight hours later, cells were washed once with 

500 µl DMEM containing 20 mM HEPES and then incubated in same media for 5 hr 

at 37˚C. Cells were treated with 10 nM CXCL12 and vehicle (PBS+0.1% BSA) for 5 

min at 37˚C and processed exactly as described above.  

 
Cell fractionation experiment by sucrose gradient centrifugation 

HeLa cells cultured in 10-cm dishes were transfected with 1 µg FLAG-AIP4 
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using TransIT®-LT1 transfection reagent as described in section 2.1.1. Twenty-four 

hours later, each 10-cm dish was passaged into two 10-cm dishes and grown to 100% 

confluency (~24 hr). Media from the dishes was removed and cells were washed once 

with DMEM containing 20 mM HEPES and then serum starved in the same media for 

3-4 hr at 37˚C. Cells were then treated with vehicle (PBS+0.1% BSA) or 10 nM 

CXCL12 for 5 min. Caveolin-1 enriched fractions were isolated using a detergent-free 

procedure (Song et al., 1996). Following incubation, plates were kept on ice and washed 

with 10 ml ice cold PBS.  Cells were collected in 600 µl carbonate buffer (150 mM 

sodium carbonate, pH 11, 1 mM EDTA, 10 µg/ml each of leupeptin, aprotinin and 

pepstatin A) by scrapping and transferred to a pre-chilled 2 ml microcentrifuge tube (cells 

from 2, 10-cm dishes were pooled together). Cells were lysed by passing 10 times 

through a cold 2 ml dounce homogenizer, followed by passing through an 18-gauge 

needle 10 times and finally sonicating 5 times at 20% while on ice using Branson Digital 

Sonifier®. Eight hundred µl lysed cells were mixed with 800 µl MBS buffer (25 mM 

MES, pH 6.5, 150 mM NaCl, 2 mM EDTA) containing 80% sucrose and 300 mM 

sodium carbonate and pipetted to the bottom of a 12 ml prechilled ultracentrifuge tube 

(Ultra-Clear tubes, Beckman). Carefully, 6 ml of 35% sucrose made in MBS buffer 

containing 150 mM sodium carbonate was layered on top, which was subsequently 

layered with 4 ml of 5% sucrose made in MBS buffer. Tubes were carefully placed in a 

prechilled tube adaptor and attached to a prechilled SW41 swinging bucket rotor (Note: 

all tubes placed in tube adaptors were weighed to an accuracy of 0.001 gm to ensure 

proper balancing while centrifugation). Tubes were centrifuged at 221,000 g for 18 hr at 
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4˚C. After centrifugation, tubes were carefully removed from the adapter using forceps 

and nine sequential fractions of 1.33 ml each were removed from the top of each tube. 

An aliquot of 250 µl from each fraction was mixed with 50 µl of 6x sample buffer and 

heated at 50˚C for 10 min to dissolve all the sucrose. Aliquot of 35 µl from each fractions 

was analyzed by 10% SDS-PAGE followed by immunoblotting to detect CXCR4, α2- 

adaptin, caveolin-1, STAM-1, AIP4 and Gαi. 

 

To examine the effect of STAM-1 and AIP4 knockdown on distribution of 

CXCR4, HeLa cells cultured in 10-cm dishes to 70-80% confluency were transfected 

with 600 pmoles siRNA against GAPDH, AIP4 and STAM-1. Twenty-four hours later, 

each 10-cm dish were passaged into two 10-cm dishes and grown to 100% confluency. 

Cells were treated with 10 nM CXCL12 and processed exactly as described above.  

 
Fluorescent vector based transwell migration assay  

HeLa cells cultured in 10-cm dishes to 70-80% confluency were co-transfected 

with 600 pmol siRNA against GAPDH, AIP4, STAM-1 or arrestin-2/3 and 2 µg 

pEYFP-C1 vector. Cells were grown for 48 hr to reach a confluency of 100 % and were 

washed once with DMEM containing 1% BSA, 0.5% FBS and 20 mM HEPES and 

then serum starved in same media for 16 hr at 37˚C. FluoroBlok™  transwell inserts with 

8 µm pores were coated on the underneath with rat-tail type I collagen by placing inserts 

in single well of a compatible 24 well plate (BD Biosciences Cat. No. 353504) containing 

500 µl rat-tail type I collagen (50 µg/ml) made in RPMI containing 20 mM acetic acid 
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and incubating at 4˚C for 16 hr. The following day, plates were washed once with warm 

10 ml PBS and cells were detached from the plate by incubating the monolayer with 2 ml 

CellstripperTM cell dissociation solution for 10 min at 37˚C. Eight ml DMEM+1% BSA 

was added to each plate, pipetted up and down and collected in a 15 ml conical tube. 

Cells were pelleted down by centrifugation at 1000 rpm for 5 min at RT and re-

suspended in 2 ml PBS-0.1% BSA. Cells were counted using a Countess® Automated 

cell counter using trypan blue stain  (Invitrogen). A suspension of 500,000 cells/ml was 

made in DMEM containing 20 mM HEPES. Coated FluoroBlok™ transwell inserts 

were washed once with DMEM containing 1% BSA and then placed in 24 well plate 

containing 500 µl of 30 nM CXCL12 or vehicle (PBS+0.1% BSA) made in DMEM+20 

mM HEPES. Two hundred µl cell suspension (i.e. 100,000 cells) was added on the top 

of each insert and incubated for 12 hr at 37˚C. After incubation, inserts were removed 

and placed in single well of a 24-well dish containing 500 µl PBS. Media containing cells 

from the top of inserts was aspirated and cells were scraped from the top of the 

membrane using a cotton swab. Top of each insert was washed with 500 µl PBS to 

remove detached cells. Inserts were then removed and placed in wells containing 500 µl 

of 3.7% formaldehyde and incubated for 15 min at RT to fix cells present on the bottom 

of the insert. After incubation, inserts were washed again with 500 µl PBS and the 

membrane was removed using a scalpel blade and mounted on a slide using permount-

mounting media (bottom of insert facing up). Samples were analyzed by Olympus IX81 

fluorescent microscopy equipped with UPLanFI 20X objective using QCapture software 

(v 2.90.1). Images were acquired using a QIMAGING RETIGA EXi cooled Mono 12 
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bit digital camera (QCamDriver v. 1.90.1). Number of cells migrated to the bottom of 

the insert were quantified manually using eraser tool of Adobe Photoshop (CS4). 

  

Propidium iodide based cell cycle analysis 

HeLa cells cultured in 10-cm dishes were transfected with 600 pmol siRNA 

against GAPDH, AIP4, STAM-1 and arrestin-2+3. Twenty four hours later, each 10-

cm plate was passaged 1:3 onto 6-cm dishes and grown for additional 24 hr to achieve a 

confluency of 100%. The next day, cells were washed once with DMEM+20mM 

HEPES and incubated in the same media for 12 hr at 37˚C to serum starve the cells. 

Cells were treated with 100 nM CXCL12, 10% FBS and vehicle (PBS+0.1% BSA) made 

in DMEM+20mM HEPES for 12 hr. After the treatment, cells were trypsonized by 

incubating with 350 µl trypsin at 37˚C for 5 min. Cells were collected in 4 ml PBS 

containing 5% Bovine Calf Serum (BCS), centrifuged at 1000 rpm for 5 min and re-

suspended in 2 ml PBS+0.1% BSA. Cells were counted in a Countess® Automated cell 

counter using trypan blue stain. One million cells were transferred to a fresh 5 ml 

polystyrene round bottom tube (BD falcon) and washed once with 3 ml PBS+5% BCS. 

Cells were then fixed by adding 600 µl 100% ethanol to the cell pellet while constantly 

vortexing at low speed. Tubes were left on ice for 10-15 min and then washed with 3 ml 

PBS+5% BCS. Cell pellet was then resuspended in 250 µl of 10 µg/ml RNase A and 

incubated at 37˚C for 15 min. Following incubation, cells were stained with propidium 

iodide (PI) by adding 250 µl 100 µg/ml PI to all tubes and incubated at RT for 1 hr 

before analyzing by FACS (FACS-CANTO; Becton Dickinson). Raw data were further 



 84 
analyzed by FlowJo v.9.3 using the Watson pragmatic model for cell cycle analysis 

(Watson et al., 1987). Percent cell present in S, G1 and G2 phase were plotted separately 

by using GraphPad prism.  

CXCR4 surface expression analysis by FACS 

HeLa cells were passaged onto 6-cm dishes and grown until a confluency of 70-80% was 

reached (~24 hr). Cells were transfected with 200 pmol siRNA against GAPDH, 

STAM-1, AIP4 and arrestin-2+3 or were mock transfected (no siRNA) using 

LipofectamineTM2000 transfection reagent as described in section 2.1.2. Forty-eight 

hours later, media from the dishes was removed by aspiration and cells were washed once 

with 4 ml PBS. Cells were detached from the plate by incubating cell monolayer with 

350 µl CellstripperTM solution for 10 min at 37˚C. Cells were collected in 4 ml PBS 

containing 0.1% BSA, centrifuged at 1000 rpm for 5 min and re-suspended in 2 ml 

PBS+0.1% BSA. Cells were counted in automatic Countess cell counter using trypan 

blue stain  (Invitrogen). Five hundred thousand cells were transferred to a fresh 5 ml 

polystyrene round bottom tube (BD falcon) and washed once with PBS+0.1% BSA. Cells 

were then fixed by resuspending the pellet in 500 µl 4% paraformaldehyde (made in PBS) 

and incubating for 15 min at 37°C. Cells were collected by centrifugation at 1000 rpm for 

5 min and washed once with 4 ml PBS and then twice with PBS-0.1%BSA. Cells were 

stained by re-suspending the cell pellet in 100 µl antibody dilution buffer 

(PBS+0.1%BSA+5% normal goat serum) containing PE-conjugated anti-CXCR4 or 

isotype control antibody (1:100 dilution) and incubating for 1 hr at RT in dark. Cells 

were mixed with antibody by agitating the tubes 5-6 times every 15 min during the 
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incubation. Following staining, cells were washed twice with 4 mL PBS+0.1% BSA and 

finally the cell pellet was resuspended in 300 µl PBS+0.1%BSA and kept in the dark until 

the analysis. CXCR4 surface expression was analyzed by flow cytometry (FACS-

CANTO; Becton Dickinson) and all the raw data were analyzed by FlowJo v.9.3. 

Geometrical mean of the PE fluorescence intensity was plotted to quantify the surface 

expression of CXCR4.  

PARP cleavage/apoptosis assay 

To investigate the effect of AIP4, STAM-1 and arrestin-2/3 knockdown on PARP 

cleavage, HeLa cells cultured in 6-cm dishes were transfected with 200 pmol siRNA 

against GAPDH, STAM-1, AIP4 and arrestin-2+3 or were mock transfected (no 

siRNA) using LipofectamineTM2000 transfection reagent as described in section 2.1.2. 

Forty-eight hours later, cells were washed once with 5 ml PBS and 300 µl of 2x sample 

buffer was added. Cells were scraped, collected in fresh microcentrifuge tube and 

sonicated once for 10 sec at amplitude of 11% using Branson Digital Sonifier®. Equal 

volume of samples were analyzed by 10% SDS-PAGE followed by immunoblotting to 

detect full-length and cleaved PARP. Blots were stripped and reprobed for actin.  

Statistical analysis and final figures 

Data were analyzed by Student’s t-test, One-way or Two-way analysis of variance 

(ANOVA) using GraphPad Prism 4.0 for Macintosh (GraphPad Software, San Diego, 

CA; www.graphpad.com). Graphs were generated by using GraphPad Prism and Adobe 

Illustrator CS4. All western blots and immunofluorescence figures were made using 

Adobe Photoshop and Adobe illustrator (Adobe Creative Suite CS4 for Macintosh).  
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Table 2.1: List of all antibodies used in this dissertation work 

 
Antibody Name Clone Type Catalogue no. and Source 
Anti-HA 16B12 Mouse MMS-101R, Covance (Berkeley, CA) 
Anti-HA - Rabbit PRB-101C, Covance (Berkeley, CA) 
Anti-c-Myc 9E10 Mouse AFC-150P, Covance (Berkeley, CA) 
Anti-STAM-1 - Rabbit 12434-1-AP, ProteinTech (Chicago, IL) 
Anti-STAM-2 - Rabbit 13009-1-AP, ProteinTech (Chicago, IL) 
Anti-AMSH - Rabbit 11346-1-AP, ProteinTech (Chicago, IL) 
Anti-FLAG M1 Mouse F3040, Sigma-Aldrich (St. Louis, MO) 
Anti-FLAG M2 Mouse F1804, Sigma-Aldrich (St. Louis, MO) 
Anti-FLAG-HRP M2 Mouse A8592, Sigma-Aldrich (St. Louis, MO) 
Anti-FLAG M2 Rabbit F7425, Sigma-Aldrich (St. Louis, MO) 
Anti-ERK1/2 - Rabbit M5670, Sigma-Aldrich (St. Louis, MO) 
Anti-P-ERK1/2 MAPK

-YT 
Mouse M8159, Sigma-Aldrich (St. Louis, MO) 

Anti-T7 - Mouse T8823, Sigma-Aldrich (St. Louis, MO) 
Anti-AIP4 D20 Goat sc-11890, Santa Cruz (CA) 
Anti-AIP4 G11 Mouse sc-28367, Santa Cruz (CA) 
Anti-Gαi T-19 Rabbit Santa Cruz (CA) 
Anti-Dynamin-1 D5 Mouse sc-12724, Santa Cruz (CA) 
Anti-c-Myc A-14 Rabbit sc-789, Santa Cruz (CA) 
Anti-HRS M-79 Rabbit sc-30221, Santa Cruz (CA) 
Anti-Caveolin N-20 Rabbit sc-894, Santa Cruz (CA) 
Anti-β-arrestin-1/2/3 H-290 Rabbit sc-28869, Santa Cruz (CA) 
Anti-β-arrestin-1/2 21-B1 Mouse sc-53781, Santa Cruz (CA) 
Anti-Clathrin-HC TD1 Mouse sc-12734, Santa Cruz (CA) 
Anti-Clathrin-HC - Mouse 610499, BD Biosciences (San Jose, CA) 
Anti-ITCH (AIP4) - Rabbit 3612-1, Epitomics (Burlingame, CA) 
Anti-CXCR4 (CD184) 2B11 Rat 551852, BD Biosciences (San Jose, CA) 
Anti-arrestin-2 - Mouse 610550, BD Biosciences (San Jose, CA) 
Anti-EEA1 - Mouse 610456, BD Biosciences (San Jose, CA) 
PE Anti-Human 
CD184 

- Mouse 555974, BD Biosciences (San Jose, CA) 

PE Mouse IgG1a - Mouse 555574, BD Biosciences (San Jose, CA) 
Anti-T7 - Goat Ab9138, Abcam (Cambridge, MA) 
Anti-Actin - Mouse 691001, MP Biomedical (Aurora, OH) 
Anti-β-tubulin - Mouse Accurate Chemical (Westbury, NY) 
Anti-β-tubulin E7 Mouse  Iowa University  
Anti-GST - Mouse Sigma-Aldrich (St. Louis, MO) 
Anti-EGFR - Mouse Assay Designs (Ann Arbor, MI) 
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Anti-α-Adaptin AP6 Mouse Fisher Scientific (Pittsburg, PA) 
Anti-arrestin-2/3 178 Rabbit Dr. Jeffrey L. Benovic  
Anti-PARP - Rabbit 9542, Cell Signaling 
 
 
Table 2.2: List of HRP conjugated and fluorescent tagged secondary antibodies used in 
this dissertation work 
 
Antibody Name Species Catalogus No. and Source 
Anti-Mouse-HRP Goat PI-2000, Vector Labs (Burlingame, CA) 
Anti-Rabbit-HRP Goat PI-1000, Vector Labs (Burlingame, CA) 
Anti-Goat-HRP Horse PI-95000, Vector Labs (Burlingame, CA) 
Anti-Rat-HRP Goat DC01L, Calbiochem 
Fluorescent Tagged Secondary Antibodies 
Alexa-Fluor 488 Mouse A11029, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 555 Mouse A21424, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 594 Mouse A11020, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 635 Mouse A31575, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 488 Rabbit A11070, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 568 Rabbit A11036, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 594 Rabbit A11072, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 633 Rabbit A21071, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 594 Rat A11007, Invitrogen (Carlsbad, CA) 
Alexa-Fluor 633 Rat A21094, Invitrogen (Carlsbad, CA) 
 
 
Table 2.3: List of reagents, chemicals and kits used in this dissertation work 
 
Reagent/Kit Name Catalogue no. and Source 
Glutathione-Sepharose 4B resin 17-0756-01, GE Healthcare 
L Glutathione reduced G4251, Sigma-Aldrich (St. Louis, MO) 
Nystatin N6261, Sigma-Aldrich (St. Louis, MO) 
Stromal cell-derived factor-1 (CXCL12) 300-28A, PeproTech (Rocky Hill, NJ) 
Epidermal growth factor (EGF) PeproTech (Rocky Hill, NJ) 
Rat tail Collagen, Type 1 354236, BD Biosciences (San Jose, CA) 
HTS-FLuoroBlok Insert (8µm) 351152, BD labware (Franklin Lakes NJ) 
AMD3100 A5602, Sigma-Aldrich (St. Louis, MO) 
Alkaline phosphatase substrate kit Bio-Rad Laboratories (Hercules, CA) 
VECTASHIELD Mounting media 
(DAPI) 

H-1200, Vector laboratories (CA) 

Permount mounting media SP15-100, Fisher Chemicals (NJ) 
Cellstripper Cell Dissociation solution  25-056-CI, Mediatech (Manassas, VA) 
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Trypsin EDTA, 1X 25-052-CI, Mediatech (Herndon, VA) 
Trypan Blue T10282, Invitrogen (Carlsbad, CA) 
Goat Serum G6767, Sigma-Aldrich (St. Louis, MO) 
Protein A Agarose 11134515001, Roche (Manhein, Germany) 
Protein G Agarose 11243233001, Roche (Manhein, Germany) 
Phosphatase Inhibitors (Cocktail 1+2) Sigma-Aldrich (St. Louis, MO) 
NEM (N-Ethylmaleimide) E3876, Sigma-Aldrich (St. Louis, MO)  
Saponin Detergent S7900, Sigma-Aldrich (St. Louis, MO) 
HEPES SH30237.01, Hyclone 
Tween-20 P9416, Sigma-Aldrich (St. Louis, MO) 
Triton X-100 T8787, Sigma-Aldrich (St. Louis, MO) 
Non Fat Dry Milk Distributed by ALDI 
Blue X-ray films Phenix Research 
Leupeptin 11017101001, Roche 
Aprotinin 10236624001, Roche 
Pepstatine 1359053001, Roche 
Sodium Chloride (NaCl) S9888, Sigma-Aldrich (St. Louis, MO) 
Glycine 03117251001, Roche 
Methanol A412.20, Fisher Scientific 
2-Propanol I9516, Sigma-Aldrich (St. Louis, MO) 
Tris Base 11814273001, Roche 
Coverglass circular cover slips 12-545-81, Fisher Scientific 
Imidazole 10125, Sigma Aldrich (St. Louis, MO) 
Dimethyl Sulfoxide (DMSO) D2650, Sigma Aldrich (St. Louis, MO) 
Acrylamide/Bisacrylamide, liquid (37.5:1) 11685821001, Roche 
Ammonium persulfate (APS) A3678, Sigma Aldrich (St. Louis, MO) 
TEMED 161-08-01, Bio-Rad 
Ponceau S P7180, Sigma Aldrich (St. Louis, MO) 
GelCode Blue 24590, Thermo Scientific 
NP-40 13344700, Roche 
MES M3671, Sigma-Aldrich (St. Louis, MO) 
Sucrose S0389, Sigma-Aldrich (St. Louis, MO) 
Propidium iodide (PI) P3566, Invitrogen 
Bovine Serum Albumin Fraction V 03117057001, Roche 
Isopropyl-β-D-1-thiogalactopyranoside  I5502, Sigma Aldrich (St. Louis, MO) 
DL-Dithiothreitol (DTT) 43815, Sigma Aldrich (St. Louis, MO) 
His-Select Nickel Affinity Gel P6611, Sigma-Aldrich (St. Louis, MO) 
Poly-Prep Chromatography columns 731-1550, Bio-Rad 
 
Table 2.4: List of siRNA used in this dissertation work 
 
siRNA Name Sequence Source 
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STAM-1 GAACGAAGAUCCGAUGUAU D-001423-01  

Thermo Scientific 
STAM-2 CAAAGAGGAUGAAGACAUA D-017361-02  

Thermo Scientific 
AIP4 GGUGACAAAGAGCCAACAGAG  
AMSH  GAGAAGCCCUCCUUAGAUG 

UCACUGCUCUUACCAGAUG 
GCAAGGAUCCACCUCUGUU 
AGACCUUCGAUGAGCGUUU 

SMARTpool M-012202-01 
Thermo Scientific 

Arrestin-2+3 ACCUGCGCCUUCCGCUAUG Dharmacon  
RNA technologies 

Arrestin-3(1) CAACCUCAUUGAAUUUGAU M-007292-00-0005  
Thermo Scientific 

Arrestin-3(2) CGGCGUAGACUUUGAGAUU M-007292-00-0005  
Thermo Scientific 

Arrestin-3(3) GAUGAAGGAUGACGACUAU M-007292-00-0005  
Thermo Scientific 

Arrestin-3(4) CGAACAAGAUGACCAGGUA M-007292-00-0005  
Thermo Scientific 

Caveolin-1  UCAAGCGCAUGGCAGGCAU Dr. Joann Trejo (UCSD, 
San Deigo, CA) 

Caveolin-1 GCAAAUACGUAGACUCGGA 
AUUAAGAGCUUCCUGAUUG 
GCAGUUGUACCAUGCAUUA 
CUAAACACCUCAACGAUGA 

SMARTPOOL M-
003467-01 
Thermo Scientific 

µ2 UCAAGCGCAUGGCAGGCAU Dharmacon  
RNA Technologies 

 
 
Table 2.5: List of DNA constructs used in this dissertation work 
 
Construct Name Vector Reference 
 
CXCR4 constructs 
HA-CXCR4 pcDNA3.0 Marchese and Benovic, 2001 
HA-CXCR4-S330A pcDNA3.0 Marchese and Benovic, 2001 
HA-CXCR4-S324-5A pcDNA3.0 Marchese and Benovic, 2001 
HA-CXCR4-YFP-WT pEYFP-N1 Bhandari et. al., 2009 
HA-CXCR4-ΔC-tail pcDNA3.0  
 
STAM constructs 
GST-STAM-1 pGEX-4T2 Malik and Marchese, 2010 
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GST-STAM-2 pGEX-4T2 Malik and Marchese, 2010 
FLAG-STAM-1 pCMV-10 Malik and Marchese, 2010 
Myc-STAM-1 N.A. Malik et. al., 2011 (submitted) 
HIS-STAM-1 pQE30-Xa Malik and Marchese, 2010 
T7-STAM-1 N.A. Malik and Marchese, 2010 
YFP-STAM-1 pEYFP-C1 Malik and Marchese, 2010 
FLAG-STAM-1-CC 296-380 pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-1-144 pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(1-195) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(1-269) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(1-390) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(391-540) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(337-540) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(270-540) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(221-540) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-(144-540) pCMV-10 Malik and Marchese, 2010 
FLAG-STAM-1-SH3-(209-269) pCMV-10 Malik et. al., 2011 (submitted) 
GST-STAM-1-SH3-(209-269) pGEX-4T2 Malik et. al., 2011 (submitted) 
 
AIP4 constructs 
FLAG-AIP4 pCMV-10 Marchese and Benovic, 2001 
Myc-AIP4 pRK5 Marchese et. al., 2003 
Myc-AIP4-C830A pRK5 Marchese et. al., 2003 
YFP-AIP4 pEYFP-C1 Bhandari et. al., 2007 
GST-AIP4 pGEX-4T2 Bhandari et. al., 2007 
GST-AIP4-ΔWWI-IV pGEX-4T2 Bhandari et. al., 2007 
GST-AIP4-WW-I-IV pGEX-4T2 Bhandari et. al., 2007 
GST-AIP4-HECT pGEX-4T2 Bhandari et. al., 2007 
GST-AIP4-ΔPRR pGEX-4T2 Malik et. al., 2011 (submitted) 
FLAG-AIP4-ΔPRR pCMV-10 Malik et. al., 2011 (submitted) 
 
Arrestin-2/3 constructs 
HA-arrestin-2 pcDNA3.0 Bhandari et. al., 2007 
HA-arrestin-3 pcDNA3.0 Bhandari et. al., 2007 
HA-arrestin-2 1-260 pcDNA3.0 Bhandari et. al., 2007 
HA-arrestin-2 261-418 pcDNA3.0 Bhandari et. al., 2007 
HA-arrestin-2 1-161 pcDNA3.0 Bhandari et. al., 2007 
HA-arrestin-2 1-179 pcDNA3.0 Bhandari et. al., 2007 
HA-arrestin-2(25-161) pcDNA3.0 Malik and Marchese, 2010 
GST-arrestin-2 pGEX-4T2 Bhandari et. al., 2007 
YFP-arrestin-2 pEYFP-C1 Bhandari et. al., 2007 
HIS-arrestin-2 pQE-30 Xa Malik and Marchese, 2010 



 91 
 
 
Ubiquitin and other protein constructs 
HA-Ubiquitin pcDNA3.0 Bhandari et. al., 2007 
FLAG-Ubiquitin pCMV-10 Marchese and Benovic, 2001 
FLAG-HRS pCMV-10 Malik and Marchese, 2010 
FLAG-AMSH pCMV-10 Malik and Marchese, 2010 
Dynamine-K44A N/A Marchese et. al., 2003 
 

• The integrity of all constructs was verified by sequencing 
 

 
Table 2.6: List of the primers used to make constructs described in this dissertation work 
 
Name Primers (5’→3’) 
FLAG-
STAM-1 (1-
195) 

Forward: GGAGGTCTATATAAGCAGAGC 
Reverse: 
ATATTCTAGATTAGGAAAGGGTGGTTGACTGCTG 

FLAG-
STAM-1 (1-
269) 

Forward: GGAGGTCTATATAAGCAGAGC 
Reverse: 
ATATTCTAGATTAAGTGAGATCTGCAGTCACAAA 

FLAG-
STAM-1 (1-
390) 

Forward: GGAGGTCTATATAAGCAGAGC 
Reverse: ATATTCTAGATTACTGATTCTGTAACTTTGCATA 

FLAG-
STAM1 (391-
540) 

Forward: ATATAAGCTTCCATATTATATGCAG 
Reverse: GGGCCAGGAGAGGCACTG 

FLAG-
STAM-1 (144-
540/ ΔVHS) 

Forward: ATATAAGCTTGCTATTGGCTCTCAGGCT 
Reverse: GGGCCAGGAGAGGCACTG 

FLAG-
STAM-1 (337-
540) 

Forward: ATATAAGCTTCACCAGATGGGACCTCTC 
Reverse: GGGCCAGGAGAGGCACTG 

FLAG-
STAM-1 (212-
540) 

Forward: ATATAAGCTTGGCCGAAAAGTTCGTGC 
Reverse: GGGCCAGGAGAGGCACTG 

FLAG-
STAM-1 (270-
540) 

Forward: ATATAAGCTTGCTGAACCAGAAATGATT 
Reverse: GGGCCAGGAGAGGCACTG 

FLAG-
STAM-1- 
Delta GAT 

Forward 1: 
TGTCACCAGATGGGACCTCTCGATCCGATGTAT 
TCCATGTATGC 



 92 
(Δ343-377) Reverse 1: GAGAGGTCCCATCTGGTGACA  

Forward 2: GGAGGTCTATATAAGCAGAGC 
Reverse 2: GGGCCAGGAGAGGCACTG 

GST-STAM-
1-Delta GAT 
(Δ343-377) 

Forward: ATATGAATTCTGCCTCTTTTTGCCACCAATCCC 
Reverse: ATATCTCGAGCTATAGCAGAGCCTTCTG  

GST-STAM-
1-GAT (296-
380) 

Forward: ATATGAATTC TGGAGCCGGAACCAGCC 
Reverse: 
ATATCTCGAGCTACATCGGATCTTCGTTCATTAAC 

FLAG-
STAM-1-GAT 
(296-380) 

Forward: ATAT AAG CTT GAG CCG GAA CCA GCC 
Reverse: 
ATATTCTAGACTACATCGGATCTTCGTTCATTAAC 

YFP-STAM-1 Forward: 
ATATAAGCTTTGCCTCTTTTTGCCACCAATCCCTTC 
Reverse: 
ATATGGTACCCTACATCGGATCTTCGTTCATTAAC 

FLAG-Arr-2-
(25-161) 

Forward: ATATAAGCTTCGGGACTTTGTGGACCAC 
Reverse: CAAACAACAGATGGCTGGCAAC 

GST-Arr-2-
(25-161) 

Forward: ATATCCCGGGCGGGACTTTGTGGACCAC 
Reverse: 
ATATCTCGAGCTACCGCTTGTGGATCTTCTCCTCC 
A 

FLAG-
STAM-1-
Delta-SH3 
(209-269) 

Forward:  
TCCAGTCTCTTAACTAACCACGCTGAACCAGAAAT 
GATTAAAAC 
Reverse: GTGGTTAGTTAAGAGAC GG 

FLAG-
STAM1-SH3 
(209-269) 

Forward: ATATAAGCTTCAACATGAAGGCCGAAAAG 
Reverse: ATATTCTAGATTAAGTGAGATCTGCAGTCAC 

FLAG-AIP4- 
Delta-PRR 

Forward: TCA AAT GGT GGT TTT AAA GCA TCT GTC AAT 
GG    
Reverse: TTT AAA ACC ACC ATT TGA  

FLAG-AIP4-
PRR 

Forward: ATAT GCG GCC GC A CCT TCT AGA CCT CCA 
AGA CC 
Reverse: ATAT GGA TCC TTA TGG TCT ACG TGG GGT 
GGG 
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CHAPTER 3 

RESULTS 

ROLE OF ARRESTIN-2 IN ENDOSOMAL SORTING AND DEGRADATION 

OF CXCR4  

Previous work from our laboratory indicates that arrestin-2 through an interaction 

with AIP4 has a role in endosomal sorting of activated CXCR4 from early endosomes to 

lysosomes (Bhandari et al., 2007). It was shown that siRNA-mediated knockdown of 

arrestin-2, but not arrestin-3, blocks agonist promoted degradation of CXCR4. Confocal 

microscopy revealed that arrestin-2 is important for the trafficking of CXCR4 from early 

endosomes to lysosomes, as in cells that lack arrestin-2, CXCR4 was trapped onto early 

endosomes. Arrestin-2 has also been shown to directly interact with the carboxy-terminal 

tail  (C-tail) of CXCR4. However, the molecular mechanism behind the role of arrestin-2 

in endosomal sorting of CXCR4 remains unclear.  

 

Serine residue 330 in the C-tail of CXCR4 is important for the interaction with arrestin-

2  

In order to understand the role of arrestin-2 in endosomal sorting of CXCR4, we 

initially set out to characterize the interaction between CXCR4 and arrestin-2. To 

determine if the arrestin-2 binding site on CXCR4 is limited to the C-tail, we performed 
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GST-pulldown experiments by incubating HEK293 cell lysates expressing HA-CXCR4-

full length and HA-CXCR4-ΔC-tail with bacterially purified GST-tagged arrestin-2. As 

shown in Figure 3.1A, GST-arrestin-2 was able to pull down full length CXCR4 from 

the lysates, however, no binding was seen in case of CXCR4 truncation mutant lacking 

the C-tail, suggesting that the binding site for arrestin-2 on CXCR4 is present in the C-

tail. To further characterize this interaction we next sought to identify the receptor 

determinants responsible for mediating the interaction between CXCR4 and arrestin-2.  

It has been shown previously that a stretch of 10 amino acids in the C-tail of CXCR4 is 

important for targeting CXCR4 into the degradative pathway (Marchese and Benovic, 

2001). As shown in Figure 3.1B, this stretch of 10 amino acid contains three serine 

residues (324, 325 and 330), which are potential phosphorylation sites and 

phosphorylated serines/threonines within GPCRs are known to mediate arrestin binding 

(Defea, 2008; Marchese et al., 2008). Serine residues 324/5 have been recently shown to 

be important for the binding to AIP4. Phosphorylation of S324/5 leads to direct binding 

of E3 ubiquitin ligase AIP4 to CXCR4 (Bhandari et al., 2009). To assess the importance 

of serine residues 324, 325 and 330 in the C tail of CXCR4 for binding with arrestin-2, 

we mutated them to alanine residues and assessed their ability to bind arrestin-2 by 

GST-pulldown experiment.  As shown in figure 3.1 B and C, serine residue 330, when 

mutated to alanine, leads to loss of binding with GST-arrestin-2 as compared to wild-

type receptor binding. No effect on binding to arrestin-2 was seen with CXCR4 

S324/325A mutant (Figure 3.1C). It has been recently shown in the literature that serine 

residue 330 is phosphorylated in response to agonist stimulation by GRK6 suggesting 
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that phosphorylation of S330 might regulate CXCR4-arrestin-2 interaction (Busillo et 

al., 2010). Although the role of S330 phosphorylation in arrestin-2 binding remains to be 

determined, nevertheless, our data suggest that arrestin-2 directly interacts with CXCR4 

C-tail and serine residue 330 is important for this interaction. 

 

Figure 3.1: Serine residue 330 in the C-tail of CXCR4 plays an important role in CXCR4/arrestin-2 

interaction. A. Schematic representation of the amino acid sequence of CXCR4 C-tail. The degradation 

motif and serine mutants are also shown B. Cleared cell lysates (CCL) from HEK293 cells transiently 

expressing HA-CXCR4 WT and HA-CXCR4-ΔC-tail  (B) or HA-CXCR4 WT, HA-CXCR4 

S324/325A and HA-CXCR4 S330A mutants (C) were incubated with equimolar amounts of GST alone 

or GST-tagged arrestin-2 bound to glutathione-Sepharose resin. Receptor binding was assessed by western 

blot with an anti-HA antibody. Blots were stripped and reporbed with anti-GST antibody D. Percent 
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receptor bound was quantified by densitometric analysis. Data were analyzed by a one-way ANOVA, 

followed by Bonferroni’s multiple comparison test. Binding to S330A receptor was significantly reduced as 

compared to WT receptor, p<0.05. Shown are a representative blot from 2 (A) and 3 (C) independent 

experiments. 

 

Arrestin-2 co-localizes with CXCR4 on early endosomes 

Previously published results from our laboratory have shown that arrestin-2 co-

localizes with AIP4 on endocytic vesicles in cells treated with CXCL12 for 30 min 

(Bhandari et al., 2007). Whether CXCR4 is associated with this complex remains 

unknown.  Based upon our interaction data, we hypothesize that CXCR4 recruits 

arrestin-2 to endosomes where it then interacts with AIP4.  To examine whether 

arrestin-2 co-localizes with CXCR4 on endosomes upon CXCL12 treatment we 

employed fixed cell confocal immunofluorescence microscopy.  HEK293 cells transiently 

transfected with HA-CXCR4 tagged at the C-terminus with yellow fluorescent protein 

(YFP), a construct that we have described previously (Bhandari et al., 2009), and CFP-

tagged arrestin-2 were treated with CXCL12 for 30 minutes.  In vehicle treated cells, 

CXCR4 was primarily localized on the plasma membrane, while arrestin-2 was diffuse 

within the cytoplasm and did not co-localize with CXCR4 (Figure 3.2A).  Upon 

treatment with agonist, CXCR4 staining was punctate and showed strong co-localization 

with the early endosomal marker EEA1 suggesting that agonist promotes CXCR4 

internalization onto endosomes (Figure 3.2A).  In CXCL12 treated cells, arrestin-2 also 

became punctate and co-localized with CXCR4 on early endosomes, suggesting that 

agonist activation of CXCR4 promotes arrestin-2 recruitment to CXCR4 on endosomes. 
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We also examined the distribution of endogenous CXCR4 and arrestin-2 in HeLa cells 

treated with CXCL12 for 30 min, again revealing that CXCR4 co-localizes with 

endogenous arrestin-2/3 on EEA1 positive early endosomes (Figure 3.2B). 

 

Figure 3.2: Arrestin-2 co-localizes with CXCR4 on EEA1 positive early endosomes. A. Serum starved 

HEK293 cells co-expressing HA-CXCR4-YFP and CFP-arrestin-2 were treated with 30nM CXCL12 or 

vehicle alone for 30 min. Cells were permeabilized, fixed and stained for EEA1 and analyzed by confocal 

microscopy.  CXCR4 is shown in green, arrestin-2 is shown in blue and EEA1 is shown in red. White 

puncta in the merged image represent co-localization between CXCR4, EEA1 and arrestin-2. Some of the 

receptors only co-localizes with EEA1 (yellow). B. Serum-starved HeLa cells were treated with 30 nM 

CXCL12 for 30 min. Cells were fixed, permeabilized, and triple stained with anti-CXCR4 (red), anti-
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arrestin-2/3 (green), and anti-EEA1 (blue) antibodies. White puncta in the merged images represent 

colocalization between all three proteins. Co-localization between CXCR4 and arrestin was quantified as 

described in Materials and Methods and was found to be 30.7%. Inset represents 4–8x the size of the boxed 

region. Shown are representative micrographs from three independent experiments. Bars, 20 µm. 

 

Arrestin-2 interacts with ESCRT-0  

Although we have shown previously that HRS and arrestin-2 mediate endosomal 

sorting of CXCR4 into the degradative pathway (Bhandari et al., 2007; Marchese et al., 

2003), the molecular mechanism by which this occurs remains poorly understood. To 

gain mechanistic insight into this process we initially examined whether arrestin-2 

interacts with the ESCRT-0 complex that contains HRS and STAM (STAM has two 

isoforms STAM-1 and 2). Lysate prepared from HEK293 cells expressing FLAG-tagged 

STAM-1, STAM-2 and  HRS were incubated with bacterially purified GST-arrestin-2 

and GST immobilized on glutathione-Sepharose 4A resin. As shown in Figure 3.3A, 

arrestin-2 bound to STAM-1 and HRS but only weakly to STAM-2. To rule out the 

possibility of an intermediate protein mediating the interaction with STAM-1, similar 

experiments were performed using purified arrestin-2. As shown in Figure 3.3B, GST-

STAM-1, but not GST-STAM-2 and GST, bound to purified arrestin-2, indicating that 

the interaction between arrestin-2 and STAM-1 is direct and that arrestin-2 binds poorly 

to STAM-2. To determine whether arrestin-2 associates with ESCRT-0 in cells, HA-

arrestin-2, HA-arrestin-3 and empty vector (pcDNA3) were transfected into HeLa cells 

followed by immunoprecipitation and immunoblotting to detect the presence of 

endogenous STAM-1 and HRS. Both STAM-1 and HRS were detected in the 
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immunoprecipitates from cells expressing HA-arrestin-2, suggesting that arrestin-2 

associates with HRS and STAM-1 in cells (Figure 3.3C), whereas HRS, but not STAM-

1, was detected in the HA-arrestin-3 immunoprecipitates. Similarly, endogenous arrestins 

also co-immunoprecipitated with endogenous STAM-1 and HRS in HeLa cells (Figure 

3.3D). Together, these data show that the interaction between STAM-1 and non-visual 

arrestins is limited to arrestin-2 and that HRS interacts with both arrestin-2 and arrestin-

3. In addition, our data suggest that arrestin-2 exists in complex with a subpopulation of 

ESCRT-0 that includes STAM-1 and HRS but not STAM-2. 
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Figure 3.3. Arrestin-2 interacts with ESCRT-0 proteins STAM-1 and HRS. A. Equimolar amounts (134 

nM) of GST-arrestin-2 and GST immobilized on glutathione-Sepharose resin were incubated with lysates 

from HEK293 cells transiently transfected with FLAG-STAM-1, FLAG-STAM-2, and FLAG-HRS. 

Bound proteins were detected by immunoblotting using the M2 anti-FLAG antibody. B. Equimolar 

amounts (117 nM) of GST-STAM-1, GST-STAM-2, and GST immobilized on glutathione-Sepharose 

resin were incubated with purified arrestin-2 (212 nM). Bound arrestin-2 was detected using an anti-

arrestin-2 mouse monoclonal antibody (mAB). Blots were stripped and re-probed using an anti-GST 

antibody to determine the levels of the GST fusion proteins used in the binding assays. C-D. Lysates from 

HeLa cells either transiently transfected with HA-arrestin-2, HA-arrestin-3 and empty vector (pcDNA3) 

(C) or untransfected (D) were incubated with antibodies to immunoprecipitate transfected (C) or 

endogenous arrestins (D), as described in Materials and Methods. Immunoprecipitates (IP) and lysates were 

analyzed by SDS-PAGE and immunoblotting as indicated. Shown are representative blots from one of 

three (A–C) and four (D) independent experiment. 

 

CXCR4 activation enhances the interaction between arrestin-2 and STAM-1 

Next, we examined whether the interaction between STAM-1 and arrestin-2 was 

regulated by activation of CXCR4. HeLa cells, which endogenously express CXCR4 and 

STAM-1 were transfected with HA-arrestin-2. Cells were serum-starved and then 

treated with CXCL12 (30 nM) or vehicle (0.05% BSA-PBS) for 30 and 60 min followed 

by immunoprecipitation of tagged arrestin-2 and immunoblotting to detect bound 

endogenous STAM-1. As shown in Figure 3.4A, activation of CXCR4 enhanced the 

interaction between STAM-1 and arrestin-2 30-60 min after agonist treatment, 

suggesting that receptor activation may promote the interaction between STAM-1 and 

arrestin-2. Because STAM-1 and STAM-2 have been shown to be ubiquitinated 
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(McCullough et al., 2004), we next assessed whether CXCR4 activation promotes 

ubiquitination of STAM-1 and STAM-2. HEK293 cells transfected with FLAG-tagged 

STAM-1 or STAM-2 and HA-tagged ubiquitin were treated with CXCL12 (100 nM) 

or vehicle (0.05% BSA-PBS) for 30 min followed by immunoprecipitation of tagged 

STAM proteins and immunoblotting to detect incorporation of tagged ubiquitin. As 

shown in Figure 3.4B, STAM-1 was ubiquitinated by agonist activation of CXCR4. 

Consistent with the previous data that STAM-2 does not interact with arrestin-2, we 

found out that receptor activation does not promote STAM-2 ubiquitination. 

 

 

Figure 3.4. CXCR4 regulates the STAM-1/arrestin-2 interaction and STAM-1 ubiquitination. A. HeLa 

cells transiently transfected with HA-arrestin-2 were serum starved as described in Materials and Methods, 

followed by treatment with 30 nM CXCL12 for 30 and 60 min. Cell lysates were subject to 

immunoprecipitation using monoclonal anti-HA and isotype control antibodies. Immunoprecipitates and 

lysates were analyzed by SDS-PAGE and immunoblotting to detect endogenous STAM-1 and HA-

arrestin-2. Immunoblots were subject to densitometric analysis, and the bar graph represents the average 

STAM-1 binding ± SEM normalized to the level of HA-arrestin-2 in the immunoprecipitates. STAM-1 
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binding to arrestin-2 was significantly increased upon agonist treatment as compared with vehicle. Data 

were analyzed by one-way ANOVA followed by a Bonferroni's post hoc test (*p < 0.05). B. STAM-1 is 

ubiquitinated upon CXCR4 activation. HEK293 cells co-transfected with HA-CXCR4, FLAG-STAM-

1, and FLAG-STAM-2 and HA-ubiquitin were treated with 100 nM CXCL12 for 30 min. FLAG-

STAM-1/2 were immunoprecipitated using an anti-FLAG rabbit polyclonal antibody (pAB), followed by 

7.5% SDS-PAGE and immunoblotting to detect incorporated HA-ubiquitin. Blots were stripped and 

reprobed for FLAG-STAM-1/2 to assess loading. Cell lysates were analyzed for the presence of HA-

CXCR4. Shown are representative blots from one of three independent experiments. 

 

CXCR4 co-localizes with STAM-1 and arrestin-2 on early endosomes 

To confirm that arrestin-2 and STAM-1 were found within the same intracellular 

compartment, we examined their distribution in cells by confocal immunofluorescence 

microscopy. As shown in Figure 3.5A, in HEK293 cells transfected with yellow 

fluorescent protein (YFP)-tagged CXCR4, CXCR4 was mainly localized to the plasma 

membrane in vehicle treated cells, whereas endogenous STAM-1 was mainly localized to 

punctate vesicles distributed throughout the cytoplasm, many of which also co-localized 

with EEA1, used here as a marker for early endosomes. In contrast, upon agonist 

treatment, CXCR4 distributed into an intracellular punctate pattern, indicating that it 

had internalized into vesicles and these vesicles also contained STAM-1 and EEA1 

(Figure 3.5A, bottom). We also examined the distribution of endogenous CXCR4 in 

HeLa cells treated with CXCL12 for 30 min, revealing that CXCR4 co-localized with 

endogenous STAM-1 (Figure 3.5B) on EEA1-positive early endosomes. CXCR4 

activation also promoted co-localization of arrestin-2/3 and YFP-tagged STAM-1 on 
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early endosomes in HeLa cells (Figure 3.5C). Together, our data indicate that upon 

internalization CXCR4 appears on early endosomes with arrestin-2 and STAM-1.  
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Figure 3.5. Arrestin-2, STAM-1 and CXCR4 co-localize on early endosomes. A. Serum-starved HEK293 

cells expressing HA-CXCR4-YFP were treated with 30 nM CXCL12 or vehicle for 30 min. Cells were 

fixed, permeabilized and double stained with anti-STAM-1 pAb (red) and anti-EEA1 mAb (blue). White 

puncta in the merged images represents co-localization between all three proteins. The percentage of 

colocalization between CXCR4-YFP and STAM-1 was quantified as described in Materials and Methods. 

Bar graph represents the percent co-localization between CXCR4-YFP and STAM-1 in vehicle and SDF-

treated cells ± SEM from 10 cells. Data were analyzed by Student's t test *p < 0.0001. (B–C) Serum-starved 

HeLa cells were treated with 30 nM CXCL12 or vehicle for 30 min. Cells were fixed, permeabilized, and 

triple stained with anti-STAM-1 rabbit pAB (green), anti-EEA1 mouse  mAb (blue), and anti-CXCR4 

(red) rat mAb (2B11) (B); and HeLa cells expressing YFP-STAM-1 were double stained with arrestin-2/3 

rabbit pAB (red) and mouse  mAb EEA1 (blue) C. White puncta in the merged images represent co-

localization between all three proteins. Co-localization between CXCR4 and STAM-1 (B; 20%) and YFP-

STAM-1 and arrestin-2 (D; 26%) were quantified as described in Materials and Methods. Inset represents 

4–8x the size of the boxed region. Differential interference contrast (DIC) images are shown. Shown are 

representative micrographs from three independent experiments. Bars, 20 µm. 

 

STAM-1 negatively regulates degradation of CXCR4 

Since arrestin-2 interacts with STAM-1, and our data suggest that STAM-1 has 

a role in endosoma sorting of CXCR4, we examined agonist promoted degradation of 

CXCR4 in cells that were depeleted of STAM-1 by RNA interference. HEK293 cells 

stably expressing HA-CXCR4 were transfected with control and STAM-1 siRNA, 

followed by treatment with CXCL12 (30 nM) for 3 hr, and receptor degradation was 

assessed by immunoblot analysis, as described previously (Marchese et al., 2003). As 

shown in Figure 3.6A, siRNA-mediated depletion of STAM-1 lead to a statistically 
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significant increase in CXCR4 degradation (90±3.2%), compared with control siRNA-

treated cells (68±5.9%), suggesting that STAM-1 negatively regulates agonist promoted 

degradation of CXCR4. As the amount of receptor that is degraded is in part a function 

of the rate of receptor internalization and recycling, we also examined the effect of 

depleting STAM-1 on CXCR4 internalization and recycling. Cell surface FLAG-tagged 

CXCR4 was labeled with the M1 anti-FLAG antibody on ice in the presence of 1 mM 

Ca2+. The M1 antibody binds to the FLAG epitope in a calcium-dependent manner. 

Cells were washed to remove unbound antibody, and the media were replaced with 

DMEM containing CXCL12 (30 nM) in the continued presence of 1 mM Ca2+ and 

placed at 37°C for 45 min to allow for internalization of the M1 antibody/CXCR4 

complexes. Antibody remaining on the surface, mostly representing un-internalized 

receptor, was removed by incubating cells with PBS containing EDTA (0.04%), a 

calcium-chelating agent. The amount of receptor-antibody complex that recycled back to 

the cell surface after 30 and 60 min was quantified by cell surface enzyme-linked 

immunosorbent assay (ELISA). In control siRNA treated cells, 20% of internalized 

CXCR4 recycled back to the cell surface after 30 and 60 min, similar to what we observed 

in STAM-1–depleted cells, suggesting that STAM-1 depletion had no effect on 

recycling of CXCR4 (Figure 3.6B). In addition, agonist-promoted internalization of 

CXCR4 was similar in STAM-1–depleted cells, compared with control siRNA-treated 

cells, suggesting that STAM-1 is not involved in CXCR4 internalization (Figure 3.6C). 

We also examined the role of AMSH on agonist promoted degradation of CXCR4. 

AMSH is a deubiquitinating enzyme that interacts with STAM-1 and negatively 
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regulates endosomal sorting of the EGFR (McCullough et al., 2004). As shown in Figure 

3.6D, siRNA-mediated depletion of AMSH did not effect agonist promoted degradation 

of CXCR4 in HeLa cells, suggesting that AMSH does not regulate endosomal sorting of 

activated CXCR4. However, CXCR4 levels were elevated in vehicle treated cells 

transfected with AMSH siRNA (Figure 3.6D), suggesting that AMSH may regulate 

degradation of constitutively internalized CXCR4, similar to what has been reported 

recently (Sierra et al., 2010). Together, our data suggest that STAM-1 negatively 

regulates CXCR4 degradation likely through a mechanism that directly attenuates 

endosomal sorting. 
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Figure 3.6. STAM-1 negatively regulates CXCR4 degradation. A. HEK293 cells stably expressing HA-

CXCR4 were transfected with control (GAPDH) and STAM-1 siRNA as described in Materials and 

Methods. Cells were treated with vehicle (PBS containing 0.01% BSA) or 30 nM CXCL12 for 3 h and 

receptor levels were determined by immunoblotting followed by densitometric analysis. Bars represent the 

percentage amounts of CXCR4 degraded ± SEM from three independent experiments. *p < 0.05, unpaired 

t test. B-C. Effect of STAM-1 knockdown on CXCR4 internalization and recycling. CXCR4 recycling 

was measured in HEK293 cells transfected with FLAG-CXCR4 and siRNA as described in A. Surface 

receptors were labeled with the M1 anti-FLAG antibody followed by treatment with 30 nM CXCL12 for 

45 min in DMEM containing 0.1% BSA, 20 mM HEPES, pH 7.4, and 1 mM Ca2+. Antibody remaining 

on the cell surface was stripped by two rapid washes with Ca2+/Mg2+ free PBS containing 0.04% EDTA. 

Cells were then incubated in DMEM containing 1 mM Ca2+ and 10 µM AMD3100 (CXCR4 antagonist) 

and incubated at 37°C for 30 and 60 min. The amount of antibody reappearing on the cell surface was 

quantified by ELISA, as described in Materials and Methods, and used as an indicator of receptor recycling. 

Bars represent the percentage of internalized receptor that recycled ± SEM from three independent 

experiments. C. Bars represent the percentage of cell surface receptors internalized in cells treated with 

CXCL12 compared with vehicle treated cells. The error bars represent SEM from three independent 

experiments. D. Effect of AMSH knockdown on CXCR4 degradation. HeLa cells were transfected with 
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GAPDH and AMSH siRNA and treated and analyzed as described in A. Bars represent the percentage 

amounts of CXCR4 degraded ± SEM from three independent experiments. 
 

Mapping the arrestin-2 binding site on STAM-1 

We recently reported that arrestin-2 positively regulates CXCR4 sorting into the 

degradative pathway. To gain insight into the function of the arrestin-2/STAM-1 

interaction on CXCR4 trafficking, we initially set out to determine the mechanism of the 

interaction. To accomplish this we mapped the arrestin-2 binding region on STAM-1 by 

truncation mutagenesis. As shown in figure 3.7A, STAM contains multiple domains; an 

amino-terminal Vps27, HRS, STAM homology (VHS) domain, ubiquitin interaction 

motif (UIM), Src homology domain (SH3), immunoreceptor based tyrosine activation 

motif (ITAM), and a GGA and TOM1 homologous (GAT) domain that partially 

overlaps with the ITAM (Prag et al., 2007; Ren et al., 2009). We created several STAM-

1 N-terminal and C-terminal truncation mutants, according to its domain organization, 

tagged with the FLAG epitope on the amino-terminal end (Figure 3.7). GST-arrestin-2 

and GST immobilized on glutathione-Sepharose-4B resin were incubated with HeLa cell 

lysates expressing the various STAM-1 truncation mutants, and bound proteins were 

detected by immunoblotting. The results from these experiments are summarized in 

Figure 3.7A and the data are shown in Figure 3.7 B-F. The arrestin-2 binding region was 

determined to reside between amino acid residues 296-380 on STAM-1. This region has 

been shown to form two tandem coiled-coil (CC) domains (amino-acid residues 301–

377) (Prag et al., 2007; Ren et al., 2009). To further confirm that the CC domain 
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mediates binding to arrestin-2, we made a STAM-1 mutant lacking the CC region using 

truncation mutagenesis. As shown in Figure 3.7G, GST-arrestin-2 was unable to pull-

down FLAG-STAM-1-ΔCC from CCL. Consistent with this, we also show that 

purified GST-tagged STAM-1-CC domain was able to pull-down FLAG-arrestin-2 

from CCL (Figure 3.7H). Taken together our data suggest that STAM-1-CC is both 

necessary and sufficient to bind to arrestin-2. 
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Figure 3.7: The STAM-1 coiled-coil domain is both necessary and sufficient for arrestin-2 binding. A. 

STAM-1 truncation mutants are represented schematically. Binding or no binding to GST-arrestin-2 is 

represented by + and – symbols, respectively, on the right as assessed by data shown in Figures 3.7 B-H. B-

G. Binding reactions were performed by incubating equimolar amounts (600 nM) of GST-arrestin-2 and 

GST immobilized on glutathione-Sepharose resin with lysates from HEK293 cells transiently transfected 

with various STAM-1 constructs H. Equimolar amounts (117 nM) of (GST-STAM-1,) GST-STAM-1-

GAT and GST were incubated with lysates from HEK293 cells transiently transfected with FLAG-tagged 

arrestin-2. In B-H, bound proteins were detected by immunoblotting using the anti-FLAG M2 mAb, 

followed by staining with Ponceau-S (C-H) or immunoblotting for GST (B) to assess the amount of GST 

fusion proteins used in the binding assays. Shown are representative blots from one of three independent 

experiments. 

 

STAM-1/arrestin-2 interaction negatively regulates CXCR4 degradation 

To determine whether the interaction between STAM-1 and arrestin-2 is 

important for CXCR4 trafficking, we initially expressed the STAM-1-CC domain as a 

minigene in cells and assessed whether it disrupted the STAM-1/arrestin-2 interaction. 

HeLa cells transfected with FLAG-S1-CC and HA-arrestin-2 were subjected to 

immunoprecipitation using an anti-HA mAb followed by immunoblotting to detect the 

presence of endogenous STAM-1 in the immunoprecipitates. As shown in Figure 3.8A, 

expression of the CC domain disrupted the STAM-1/arrestin-2 interaction. To 

determine the function of the STAM-1/arrestin-2 interaction on lysosomal targeting of 

CXCR4, we examined the effect of expressing the CC domain on CXCR4 degradation. 

Remarkably, expression of the CC domain significantly accelerated CXCR4 degradation 

after agonist treatment as compared with empty vector (Figure 3.8 B and C). Together, 
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these data suggest that the STAM-1/arrestin-2 interaction negatively regulates CXCR4 

sorting to lysosomes.  

 

 

 

 

Figure 3.8. Expression of the STAM-1 coiled-coil domain disrupts the STAM-1/arrestin-2  interaction 

and accelerates CXCR4 degradation. A. Lysates from HeLa cells co-transfected with HA-arrestin-2 and 

FLAG-STAM-1-CC (S1-CC) or empty vector (pCMV) were incubated with anti-HA mAb and isotype 

control antibody. Immunoprecipitates were analyzed by immunoblotting to detect bound endogenous 

STAM-1, and lysates were analyzed to assess expression of the various constructs. Shown are representative 

blots from one of three independent experiments. B. HA-CXCR4 degradation was assessed in HEK293 

cells stably expressing HA-CXCR4 and transiently expressing FLAG-STAM-1-CC or empty vector 
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(pCMV) as described in Materials and Methods. C. Graphical representation of average percentage of 

receptor degraded three independent experiments. Data were analyzed by two-way ANOVA and followed 

by a Bonferroni's post hoc test. (*p < 0.0001). Shown are representative blots from one of three 

independent experiments. 

 

Mapping the STAM-1 binding site on arrestin-2 

To gain greater insight into this process of STAM1-arrestin-2 mediated CXCR4 

sorting, we next set out to identify the STAM-1 binding region on arrestin-2 by 

truncation mutagenesis. Schematic representations of the arrestin-2 truncation mutants 

used are shown in Figure 3.9A; most have been described previously (Bhandari et al., 

2009). GST-STAM-1 and GST were incubated with lysates prepared from HEK293 

cells expressing various HA-tagged arrestin-2 truncation mutants. The results from these 

binding experiments are summarized in Figure 3.9A, and the data is shown in Figure 3.9 

B and C. Both the N- and C-terminal regions of arrestin-2 bound to GST-STAM1, but 

not GST, although binding to the N-terminal region seemed to be stronger, suggesting 

that it represented the main binding region. Further deletion of this region revealed that 

the STAM-1 binding site on arrestin-2 is between amino acid residues 1–161 (Figure 

3.9C). We next determined whether expression of this region as a minigene in cells also 

disrupted the STAM-1/arrestin-2 interaction. However, when expressed in cells the 

arrestin-2-(1-161) minigene completely blocked CXCR4 degradation (Figure 3.9D). The 

N-terminal lysine residues within arrestin-2 are predicted to serve as phosphosensors and 

recognize phosphates attached to receptors (Kern et al., 2009), analogous to what has 

been observed for arrestin-1 (Vishnivetskiy et al., 2000); therefore, the arrestin-2-(1-161) 
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construct may bind to CXCR4 and have a dominant-negative effect on CXCR4 

internalization. To rule out any effects at the level of internalization, the first 24 amino 

acids from the N terminus of arrestin-2 were deleted to create arrestin-2-(25-161), and 

we initially tested the ability of this mutant to bind to STAM-1. As shown in Figure 

3.9E, GST fused to arrestin-2-(25-161), but not GST alone, efficiently bound to FLAG-

STAM-1 expressed in cells. A FLAG-tagged construct of arrestin-2-(25-161) when 

expressed in HEK293 cells also bound to GST-STAM-1-CC, suggesting that the 

STAM-1/CC domain binding site on arrestin-2 is located between amino acid residues 

25-161 (Figure 3.9F). 
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Figure 3.9. Mapping of the STAM-1 binding domain on arrestin-2. A. Arrestin-2 truncation mutants 

used in the binding studies are represented schematically. Binding between GST-STAM-1 and HA-

tagged arrestin-2 truncation mutants is shown as weak (+), intermediate (++), and strong (+++) on the 

right. B-C. Equimolar amounts (117 nM) of GST-STAM-1 and GST immobilized on glutathione-
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Sepharose resin were incubated with lysates from HEK293 cells transiently transfected with HA-arrestin-2 

constructs shown in A. Bound proteins were detected by immunoblotting using the anti-HA mAb 

followed by staining with Ponceau-S to assess the amount of GST fusion proteins used in the binding 

assay. D. CXCR4 degradation was assessed in HEK293 cells stable expressing HA-CXCR4 and transiently 

transfected with FLAG-Arr2-(1-161) and empty vector (pCMV) as described in Materials and Methods.  

E. Equimolar amounts (234 nM) of GST-arrestin-2, GST-Arr2-(25-161), and GST were incubated with 

lysates from HEK293 cells transiently transfected with FLAG-STAM-1 and empty vector (pCMV-10). F. 

Equimolar amounts (276 nM) of GST-STAM-1, GST-STAM-1-CC, and GST alone were incubated 

with lysates from HEK293 cells transiently transfected with FLAG-Arr-2-(25-161). In E and F, bound 

proteins were detected by immunoblotting using an M2 anti-FLAG mAb conjugated to HRP and blots 

were stained with Ponceau-S to assess the amount of GST-tagged protein used in the binding assay. 

Shown are representative blots from one of three independent experiments. 

 

Disrupting STAM-1/arrestin-2 interaction negatively regulates CXCR4 degradation  

We next examined whether expression of arrestin-2-(25-161) disrupted the 

STAM-1/arrestin-2 interaction and modulated CXCR4 degradation. As shown in Figure 

3.10A, expression of FLAG-arrestin-2-(25-161) in increasing concentration markedly 

disrupted the interaction between arrestin-2 and STAM-1. Overexpression of FLAG-

arrestin-2-(25-161) in HeLa cells significantly accelerated agonist promoted degradation 

of CXCR4 (Figure 3.10 B and C), similar to what was observed with the overexpression 

of STAM-1-CC domain. Together these data further indicate that the interaction 

between STAM-1 and arrestin-2 attenuates CXCR4 trafficking into the degradative 

pathway. This interaction may be specific to modulating CXCR4 and/or GPCR sorting, 

as EGFR degradation was not altered by expression of the STAM-1-CC domain and 
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arrestin-2-(25-161) (Figure 3.10D). 

 

 

Figure 3.10. Expression of arrestin-2-(25-161) disrupts the STAM-1/arrestin-2 interaction and 
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accelerates CXCR4 degradation. A. Lysates were prepared from HeLa cells co-transfected with T7-

STAM-1, HA-arrestin-2 and increasing amounts (0, 1, and 2.5 µg) of FLAG-Arr2 (25-161). Lysates were 

divided into equal aliquots and incubated with either an anti-T7 pAb or protein-G agarose alone (control). 

Immunoprecipitates were analyzed by immunoblotting to detect bound HA-arrestin-2 and endogenous 

HRS and lysates were analyzed to assess the expression of the various constructs. Blots were stripped and 

reporbed with anti-T7 mAb to detect immunoprecipitated STAM-1. Shown are representative blots from 

one of three independent experiments. B. CXCR4 degradation was assessed in HEK293 cells stable 

expressing HA-CXCR4 and transiently transfected with FLAG-Arr2-(25-161) or empty vector (pCMV) 

as described in Materials and Methods. C. Graphical representation of average percent receptor degraded. 

Error bars represent SEM from three independent experiments. Data were analyzed by two-way ANOVA 

and followed by a Bonferroni’s post hoc test. (*p < 0.0001). D. EGFR degradation was assessed in HeLa 

cells transfected with FLAG-STAM-1-CC, FLAG-Arr-2-(25-161) or pCMV. Cells were treated with 

100 ng/ml EFG for 1 hr followed by immunobloting as described in Materials and Methods. Bar graph 

represents the average percent amount of EGFR degraded in EGFR treated cells as compared to vehicle 

treated cells ± S.E.M. from three independent experiments. Data were analyzed by one-way analysis of 

variance and were found not to be significantly different. Shown are representative immunoblots from one 

of three independent experiments 

 

Role of the STAM-1/arrestin-2 interaction on the ubiquitination status of CXCR4, 

STAM-1 and HRS 

STAM, through its interaction with several deubiquitinating enzymes, may 

regulate the ubiquitination status of both cargo and of itself (McCullough et al., 2006; 

Row et al., 2006). Therefore, one possibility is that the STAM-1/arrestin-2 interaction 

regulates the ubiquitination status of CXCR4 and STAM-1, thereby modulating CXCR4 

trafficking into the degradative pathway. To examine this possibility we examined the 
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effect of expressing the STAM-1-CC domain on the ubiquitination status of both 

CXCR4 and STAM-1. Surprisingly, expression of the CC, compared with empty vector, 

did not significantly change the ubiquitination status of CXCR4 (Figure 3.11A) and 

STAM-1 (Figure 3.11B), suggesting that the STAM-1/arrestin-2 interaction does not 

regulate their ubiquitination status. In sharp contrast, expression of the CC domain 

blocked CXCR4 mediated ubiquitination of HRS (Figure 3.11C). Therefore, together 

our data show that the STAM-1/arrestin-2 interaction is critical for modulating 

ubiquitination of HRS, which is likely to be important for regulating sorting of CXCR4 

into the degradative pathway. 
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Figure 3.11. Disrupting the STAM-1/arrestin-2 interaction inhibits HRS ubiquitination but does not 

effect CXCR4 and STAM-1 ubiquitination. A. HEK293 cells stably expressing HA-CXCR4 were 

transfected with FLAG-ubiquitin and STAM-1-GAT domain or pCMV. B. HeLa cells were transfected 

with HA-ubiquitin, T7-STAM-1, and STAM-1-GAT or pCMV. C. Cells were transfected as in A, 

except T7-HRS was also transfected. Cells were serum starved and treated with 30 nM CXCL12 for 30–

60 min, followed by immunoprecipitation and immunoblotting to detect incorporated ubiquitin as 

described in Materials and Methods. Shown are representative blots from six (A) and three (B and C) 

independent experiments. 

 

Role of STAM-1, arrestins and AIP4 in CXCR4 mediated migration of HeLa cells 

Because STAM-1, arrestin-2 and AIP4 can modulate the levels of CXCR4 in 

cells, we next looked at the effect of STAM-1, arrestin-2 and AIP4 knockdown on 

migration of HeLa cells in response to CXCL12 as a chemoattractant. HeLa cells were 

co-transfected with siRNA against STAM-1, arrestin-2/3, AIP4 or control siRNA 

(GAPDH) and pEYFP empty vector. Cells were serum starved and seeded onto 

FluroBlok inserts coated with collagen at the bottom surface as described in Materials and 
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Method section. Inserts were placed in wells containing 30nM CXCL12 and incubated 

for 12 hours. Number of cells that migrated to the bottom of the well were fixed with 

PFA and counted under a fluorescent microscope. As shown in Figure 3.12A-B, 

knockdown of STAM-1 and arrestin-2/3 significantly inhibited the number of cells that 

migrated towards the ligand, however, AIP4 knock down had no effect on HeLa cells 

migration. 

 

 

 

Figure 3.12: Role of STAM-1, arrestins and AIP4 in CXCR4 mediated migration of HeLa cells. A. One 

hundred thousand HeLa cells co-transfected with siRNA against STAM-1, AIP4, arrestin-2/3 or 
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GAPDH and pEYFP-C1 were serum starved and seeded onto FluroBlok transwell inserts pre-coated with 

collagen.  Inserts were placed in wells containing 500µl DMEM containing 30nM CXCL12 or vehicle 

(0.1% BSA) and incubated at 37˚C for 12 hr. Cells from top of the membrane were scrapped and the 

inserts were fixed with PFA and mounted onto glass slides using permount mounting media. Number of 

cells that migrated to the bottom of the inserts were counted by observing the slides under fluorescent 

microscope. Shown are representative micrographs taken from three independent experiments B. Cells 

from 5 fields each from three independent experiments were counted and plotted as mean number of cells 

per 20× field. Data was analyzed by two-way ANOVA followed by bonferroni’s post-hoc test. (*P<0.001). 

Error bar represents SD. C. Equal number of cells used in the migration experiment were subject to 

immunoblot analysis to analyze the level of STAM1, arr-2/3 and AIP4 knockdown. Actin was used as a 

loading control. Shown are representative immunoblots from three independent experiments.  

 

Effect of STAM-1, AIP4 and arrestin-2/3 knockdown on surface expression of CXCR4 

Migration of cells can be a directly correlated with the amount of receptor present 

on the cell surface. Since STAM-1, arrestin-2 as well as AIP4 can regulate CXCR4 levels 

in cells, effect on cell migration can be indirectly due to effect on cell surface CXCR4 

expression. In order to determine whether STAM-1, AIP4 and arrestin-2 knockdown 

regulate CXCR4 surface expression, we analyzed CXCR4 surface expression following 

protein knockdown suing FACS analysis. HeLa cells were mock transfected or 

transfected with siRNA against GAPDH, STAM-1, AIP4 and arrestin-2/3 and cell 

surface expression of CXCR4 was determined by surface labeling of CXCR4 followed by 

FACS analysis. As shown in Figure 3.13 A and B, no significant difference in the surface 

expression of CXCR4 was observed in mock transfected as compared with GAPDH, 

STAM-1 and arrestin-2/3 transfected cells. However, cells depleted for AIP4 showed a 
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significant increase in CXCR4 surface levels. This is consistent with previous published 

data from the lab, which suggests that AIP4 is required for ubiquitination and subsequent 

degradation of CXCR4. siRNA mediated knockdown of AIP4 would block CXCR4 

degradation as a results would increases the total pool of CXCR4 in the cells.  

 

 

 

 

 

 

 

Figure 3.13: Effect of STAM-1, AIP4 and arrestin-2/3 knockdown on surface expression of CXCR4. A. 

HeLa cells mock transfected or transfected with siRNA against STAM-1, AIP4, arrestin-2/3 and control 
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siRNA (GAPDH) were fixed and stained with anti-PE conjugated anti-CXCR4 antibody or isotype 

control antibody (IgG2aκ). FACS was used to quantify the amount of antibody bound receptor present on 

the cell surface. B. Geometrical mean of the PE florescent intensity relative to mock-transfected cells from 

three independent experiments was plotted and the data were analyzed by one-way ANOVA followed by 

Bonferroni’s post hoc test (*=p<0.05). Error bar represents ±S.E.M. from three independent experiments 

performed. C. Amount of protein knockdown was determined by SDS-PAGE followed by 

immunoblotting to detect STAM-1, AIP4, and arresitn-2/3. Actin was used as a loading control. 

 

 

ROLE OF STAM AND AIP4 IN CXCR4-INDUCED PHOSPHORYLATION 

OF ERK-1/2  

Our data show that arrestin-2 is present on endosomes where it regulates the 

endosomal sorting of CXCR4 into the degradative pathway through interactions with 

AIP4 and STAM-1. Arrestins have been shown to scaffold several signaling molecules 

including Akt and the components of the mitogen-activated protein kinase (MAPK) 

cascade, such as Raf, MEK1 and ERK-1/2 (Beaulieu et al., 2005; Luttrell et al., 2001). 

Both arrestin-2 and arrestin-3 have been linked to CXCR4-induced ERK-1/2 activation 

(Busillo et al., 2010; Sun et al., 2002), but whether STAM-1 and/or AIP4 are also 

involved in signaling via ERK-1/2 pathway remains unknown. 

 

STAM and AIP4 are required for CXCR4-induced activation of ERK-1/2 

In order to investigate the role of arrestins, STAM-1 and AIP4 in CXCR4 

mediated signaling via MAPK cascade we utilized the approach of RNA interference in 
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HeLa and HEK-293 cells. Cells were transfected with siRNA targeting STAM-1, AIP4, 

arrestin-2/3 or control (GAPDH) siRNA. Cells were serum starved and treated with 10 

nM CXCL12 (2, 5, 10  and 15 min) and phosphorylated ERK (pERK-1/2) levels were 

determined by immunoblotting. As shown in Figure 3.14A, CXCL12 induced a similar 

rapid and transient increase in pERK-1/2 levels in both the control GAPDH and 

arrestin-2/3 siRNA treated HeLa cells which is identical to what is observed in either 

mock or untransfected HeLa cells (Figure 3.14C). However, the levels of pERK-1/2 

were significantly increased in the arrestin-2/3 depleted cells. This enhanced signaling is 

consistent with a defect in signal termination and is consistent for a role of arrestins in 

CXCR4 desensitization (Busillo and Benovic, 2007). We also observed that CXCR4-

induced ERK-1/2 activation was enhanced in mouse embryonic fibroblast (MEF) cells 

isolated from double arrestin-2/3 knockout animals as compared to MEFs isolated from 

matched WT animals (Figure 3.14B).  

We next examined the roles of STAM-1 and AIP4 in CXCR4-induced ERK-1/2 

activation. In contrast to arrestin-2/3 knockdown, depletion of STAM-1 using siRNA in 

HeLa cells significantly attenuated CXCR4 induced pERK-1/2, as compared to 

GAPDH siRNA transfected cells (Figure 3.14D). We also investigated the role of 

STAM-2 in CXCR4 promoted ERK-1/2 phosphorylation. HEK293 cells were 

transfected with siRNA against STAM-1, STAM-2, STAM1+2 and GAPDH and 

treated with 10 nM CXCL12 or vehicle for 2, 5, 10 min. As shown in Figure 3.14E, 

consistent with HeLa cells data, STAM-1 knockdown significantly attenuated ERK-1/2 

phosphorylation. Double STAM-1/2 knockdown further inhibited ERK-1/2 
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phosphorylation. However, STAM-2 knockdown had no significant effect on ERK-1/2 

phosphorylation, suggesting that STAM-1 plays a prominent role in CXCR4 mediated 

MAPK signaling. Similar to STAM-1, AIP4 depletion in HeLa cells using siRNA also 

significantly attenuated CXCR4-induced pERK-1/2 (Figure 3.14F). We next examined 

if this role of AIP4 was exclusive to CXCR4 signaling. HeLa cells were transfected with 

siRNA against AIP4 or control siRNA (GAPDH) and treated with carbachol, a non-

selective muscarinic receptor agonist, and epidermal growth factor (EGF), an agonist for 

tyrosine kinase receptor EGFR. As shown in Figure 3.14G, carbachol induced pERK-

1/2 levels were also attenuated in AIP4 depleted cells. However, epidermal growth factor 

promoted ERK-1/2 phosphorylation was unaffected upon AIP4 depletion (Figure 

3.14H), suggesting that AIP4 may have a general role in GPCR signaling. Expression of 

STAM-1-CC as well as arrestin-2-(25-161), that disrupts STAM-1/arrestin-2 also had 

no effect on ERK-1/2 phosphorylation (Figure 3.14 I and J). Taken together, our data 

suggest that STAM-1 and AIP4, but not arrestin-2/3, are downstream of CXCR4 in the 

pathway that leads to agonist activation of the ERK-1/2 signaling cascade.  
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Figure 3.14. STAM-1 and AIP4 but not arrestin-2/3 are required for CXCR4-induced ERK-1/2 

phosphorylation. A. HeLa cells transfected with siRNA against arrestin-2/3 or control siRNA (GAPDH) 

were serum starved and treated with 10 nM CXCL12 for 2, 5, 10, 20 min. ERK-1/2 phosphorylation was 

determined by SDS-PAGE followed by immunoblot (IB) analysis. Bolts were stripped and reprobed for 

total ERK and actin to assess loading. Phosphorylated ERK-1/2 levels were determined by densitometric 

analysis and normalized to total ERK-1/2 levels. Bars represent the percent ERK-1/2 phosphorylation 

compared to maximal pERK-1/2 levels (5 min) in GAPDH transfected cells. Data were analyzed by two-

way ANOVA followed by Bonferroni’s post hoc test (*=p<0.05, **=p<0.01). Error bars represent the 

standard error of the mean. Shown are representative blots from one of four independent experiments B. 

WT and arrestin2/3 knockout MEFs were serum starved and treated with 10 nM CXCL12 for the 

indicated time and ERK-1/2 phosphorylation was determined as described in A. C. CXCR4-induced 

ERK-1/2 phosphorylation was examined in HeLa cells treated with 10 nM CXCL12 for the 0, 2, 5, 10 , 

15, 30 and 60 min. ERK-1/2 phosphorylation was determined as described in A. D-E. HeLa cells 
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transfected with siRNA against STAM-1 or control siRNA (GAPDH) (C) or HEK-293 cells transfected 

with siRNA against STAM-1, STAM-2, STAM1+2 or control siRNA (GAPDH) and were serum starved 

and treated with 10 nM CXCL12  and vehicle for 2, 5 and 10 min. ERK-1/2 phosphorylation was 

determined as described in A. F-H. HeLa cells transfected with siRNA against AIP4 and control siRNA 

(GAPDH) were serum starved and treated with 10 nM CXCL12 (F), 100 nM Carbachol (G) and 100 

ng/mL EGF (H) for 2, 5, 10 and 20 min. ERK-1/2 phosphorylation was determined as described in A. I-

J. ERK-1/2 phosphorylation was examined in HeLa cells transfected with FLAG-Arr2-(25-161) (I) 

FLAG-STAM-1-coiled-coil-296-380 (J) and empty vector (pCMV). Cells were treated with 10 nM 

CXCL12 for the indicated times and ERK-1/2 phosphorylation was determined as described in A. Shown 

are representative blots from one of three independent experiments. 

STAM-1 interacts directly with AIP4 

To determine the mechanism by which STAM-1 and AIP4 mediate CXCR4 

activation of ERK-1/2 we initially examined whether these proteins associate with each 

other in cells. Cell lysates prepared from HeLa cells expressing FLAG-AIP4 were 

incubated with bacterially purified GST STAM-1, GST-STAM-2 and GST 

immobilized on glutathione Sepharose resin and bound FLAG AIP4 was detected by 

immunoblotting. Both GST-STAM-1 and GST-STAM-2, but not GST, bound to 

FLAG-AIP4, suggesting that AIP4 interacts with both STAM-1 and STAM-2 (Figure 

3.15A,B). We also performed reciprocal pull-down experiments in which purified GST-

AIP4 was incubated with cell lysates expressing FLAG-STAM-1 or FLAG-STAM-2. 

These experiments also revealed that both STAM-1 and STAM-2 interact with AIP4 

(Figure 3.15C). To rule out the possibility of an intermediate protein mediating this 

interaction 

We also performed reciprocal pull-down experiments in which purified GST-
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AIP4 was incubated with cell lysates expressing FLAG-STAM-1 or FLAG-STAM-2. 

These experiments also revealed that both STAM-1 and STAM-2 interact with AIP4 

(Figure 3.15C). To rule out the possibility of an intermediate protein mediating this 

interaction we performed binding experiments using purified proteins. As shown in 

Figure 3.15D, bacterially purified GST-AIP4 was able to interact with purified HIS-

tagged STAM-1, indicating that STAM-1 interacts directly with AIP4. Next, we 

examined the interaction between endogenous proteins in HEK293 and BT474 cells, 

both of which endogenously express STAM-1 and AIP4. BT474 cells are a breast cancer 

tumor cell line that expresses high levels of CXCR4 (Li et al., 2004) (Figure 3.15E). As 

shown in Figure 3.15F, endogenous STAM-1 was detected in samples in which 

endogenous AIP4 was immunoprecipitated, but not in control IgG immunoprecipitated 

samples, indicating that native AIP4 and STAM-1 are part of a complex in cells. 

Similarly, heterologously expressed FLAG-tagged STAM-1 co-immunoprecipitated 

with Myc-tagged AIP4 (Figure 3.15G). Upon exposure of the immunoblot for longer 

time (approx 5 min with ECL Dura), higher molecular weight FLAG-STAM-1 species 

were evident, possibly representing ubiquitinated STAM-1 and consistent with the 

notion that AIP4 mediates STAM-1 ubiquitination (Fig. 3.15G). To test this, we 

examined the ubiquitination status of FLAG-STAM-1 in HeLa cells that were co-

transfected with Myc-tagged wild-type AIP4 and the AIP4 C830A catalytically inactive 

mutant, which we have previously shown acts as a dominant-negative when expressed in 

cells (Marchese et al., 2003). As shown in Figure 3.15H, ubiquitination of FLAG-

STAM-1 was completely abolished in cells expressing the AIP4 C830A mutant, as 
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compared to the wild-type expressing cells, suggesting that AIP4 ubiquitinates STAM-1. 
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Figure 3.15. STAM-1 interacts directly with AIP4. A-B. Equimolar amounts (117 nM) of GST-STAM-1 

(A), GST-STAM-2 (B) and GST alone immobilized on glutathione sepharose resin were incubated with 

lysates from HeLa cells transiently transfected with FLAG-AIP4. Bound proteins were detected by 

immunoblotting with an anti-FLAG antibody. C-D. Equimolar amounts of GST-AIP4 (186 nM) and 

GST alone immobilized on glutathione sepharose resin were incubated with lysates from HeLa cells 

transiently transfected with FLAG-STAM-1 or FLAG-STAM-2 (C) or 500 ng purified HIS-STAM-1 

(D). Bound proteins were detected by SDS-PAGE followed by immunoblotting using anti-FLAG 

antibody (C) or anti-STAM-1 (D) antibodies. Blots were stained with Ponceau-S to detect the level of 

GST fusion protein used in the binding reactions. E. Endogenous AIP4 was immunoprecipitated from 

HEK293 and BT474 cells and samples were analyzed for the presence of endogenous STAM-1 by 
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immunoblotting. F. Equal amounts (10 �g) of cleared lysates from HeLa, HEK293, BT474 and SKBR3 

cells were subject to SDS-PAGE followed by immunoblotting to detect CXCR4, AIP4, STAM-1, Gαi 

and actin. G. HeLa cells were transfected with Myc-AIP4 and FLAG-STAM-1 together or alone with 

empty vector (pcDNA) and Myc-AIP4 was subject to immunoprecipitation (IP) followed by SDS-PAGE 

and immunoblotting to detect FLAG-STAM-1. A longer exposure of the FLAG-STAM-1 IB reveals the 

presence of high molecular weight bands that likely represent ubiquitinated species H. HeLa cells were 

transfected with FLAG-STAM-1, Myc-AIP4-WT, Myc-AIP4-C830A, HA-ubiquitin and empty vector 

(pcDNA or pCMV10). FLAG-STAM-1 was immunoprecipitated and samples were analyzed by SDS-

PAGE followed by immunoblotting to detect incorporated HA-ubiquitin. Shown are representative blots 

from one of three independent experiments performed. 

 

 

The SH3 domain in STAM-1 interacts with the proline-rich region in AIP4 

To define the STAM-1 interaction surface on AIP4 we employed truncation 

mutagenesis and assessed the ability of AIP4 truncation mutants to bind to STAM-1 

(Figure 3.16A). The AIP4 truncations were made based on the domain organization of 

AIP4. Initially we focused on the four tandemly linked WW domains and the HECT 

domain. The WW domains are protein-protein interaction modules that typically 

interact with PPxY and PPPY motifs in binding partners (Macias et al., 1996; Macias et 

al., 2002). Although STAM-1 does not encode a bonafide PPxY motif we have recently 

shown that the AIP4 WW domains may also interact with non-canonical motifs 

(Bhandari et al., 2009). The HECT domain iteracts with the E2 enzyme and has the 

catalytic cysteine residue that forms the direct thiolester intermediate with ubiquitin 

before transfer to a target protein (Scheffner et al., 1995). Lysates from HeLa cells 
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expressing FLAG-STAM-1 were incubated with GST-fusion proteins of full-length 

AIP4, a deletion mutant in which the four WW domains were removed (AIP4-ΔWW-I-

IV), the four WW domains alone (WW-I-IV) and the HECT domain alone. As shown 

in Figure 16B, bound FLAG-STAM-1 was detected in samples incubated with GST-

AIP4 and GST-ΔWW-I-IV, but not with GST-WW-I-IV and GST-HECT domain, 

suggesting that the STAM-1 binding region on AIP4 does not include the WW 

domains and nor the HECT domain. These data suggest that the STAM-1 binding 

region likely resides within the amino terminal region of AIP4. The amino terminal 

region of AIP4 includes a C2 domain, mostly known as a phospholipid binding domain 

(Dunn et al., 2004; Plant et al., 1997; Wiesner et al., 2007), and a proline-rich region. 

The proline-rich region in AIP4 has been shown to bind to a subset of SH3 domains 

(Angers et al., 2004), which are domains of approximately 60 amino acids that bind to 

PxxP motifs in proteins, where P represents a proline residue and x represents any amino 

acid (Li, 2005). As shown in Figure 3.16C, the proline-rich deletion mutant of AIP4 

(∆PRR) showed almost no binding to GST-STAM-1 when compared to full-length 

AIP4 (FL), suggesting that the proline-rich region represents the major binding site for 

STAM-1. Deletion of the SH3 domain in STAM-1 reduced binding to AIP4 by 

approximately 50% (Figure 3.16D), while the SH3 domain alone was sufficient for 

binding to AIP4 (Figure 3.16E). Taken together these data indicate that the SH3 

domain of STAM-1 is sufficient for interacting with the proline-rich region on AIP4. 
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Figure 3.16. AIP4 proline-rich region interacts with the SH3 domain of  STAM-1. A. Schematic 

representation of AIP4 truncation mutants. The C2 domain, the proline-rich region (PRR), the WW 
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domains (I-IV) and the HECT domain are indicated. B. Equimolar amounts of GST-AIP4, GST-AIP4-

ΔWW-I-IV, GST-WW-I-IV, GST-AIP4-HECT and GST immobilized on glutathione sepharose resin 

were incubated with lysates from HeLa cells expressing FLAG-STAM-1. Samples were subject to 

immunoblot (IB) analysis to detect bound FLAG-STAM-1. C. Equimolar amounts of GST-STAM-1 

and GST immobilized on glutathione sepharose resin were incubated with lysates from HeLa cells 

expressing FLAG-tagged full-length AIP4 (FL), FLAG-AIP4-ΔPRR (∆PRR) and empty vector 

(pCMV). Input shows the amount of wild-type and ∆PRR AIP4 used in the binding reactions. Samples 

were analyzed by IB to detect bound FLAG-AIP4. D. Equimolar amounts of GST-AIP4 and GST 

immobilized on glutathione sepharose resin were incubated with lysates from HeLa cells expressing 

FLAG-tagged full-length STAM-1 (FL) and FLAG-STAM-1-ΔSH3 (∆SH3). Samples were subject to 

IB analysis to detect bound FL and ∆SH3. Bars represent the average percent bound compared to FL as 

determined by densitometric analysis. The error bars represent the standard deviation from two 

independent experiments. E. GST-STAM-1-SH3 and GST were purified from bacterial call lysate and 

eluted from the beads as described in Materials and Methods section. Equimolar amounts of GST-STAM-

1-SH3 and GST were incubated with HeLa cell lysate expressing FLAG-AIP4. After incubation, 

glutathione sepharose beads were added and incubated for additional 1 hr. Samples were subject to IB 

analysis to detect bound FLAG-AIP4. Blots were stained with Ponceau-S to assess the amount of GST 

fusion protein used in the binding reactions. IBs are from one of three independent experiments performed. 

 

Interaction between STAM-1 and AIP4 and ubiquitination activity of AIP4 is 

important for CXCR4 mediated ERK-1/2 activation 

To determine whether the interaction between AIP4 and STAM-1 functions in 

CXCR4-induced ERK-1/2 phosphorylation, we transiently expressed an AIP4 mutant in 

which the proline-rich region was deleted (AIP4-ΔPRR) and hence was unable to bind 

to STAM-1. HeLa cells were transfected with STAM-1 and WT-AIP4 or AIP4-ΔPRR 
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and stimulated with 10nM CXCL12 for 5 mins, the time when maximal ERK-1/2 

phosphorylation was observed (Figure 3.14). As shown in figure 3.17A, over-expression 

of WT-AIP4 and STAM-1 led to a 3 fold increase in ERK-1/2 phosphorylation levels as 

compared to cells transfected with vector alone. This is consistent with our finding that 

knockdown of STAM-1 and AIP4 reduces CXCR4 mediate ERK-1/2 phosphorylation 

(Figure 3.14A-E). Remarkably, overexpression of AIP4-ΔPRR mutant failed to enhance 

ERK-1/2 phosphorylation similar to WT-AIP4, suggesting that the interaction between 

AIP4 and STAM is necessary for mediating CXCR4-induced ERK-1/2 activation. We 

next assessed whether the ubiquitin ligase activity of AIP4 was required for CXCR4 

promoted ERK-1/2 phosphorylation. As shown in Figure 3.17B, over-expression of the 

catalytically inactive C830A mutant of AIP4 failed to enhance ERK-1/2 

phosphorylation, as compared to wild-type AIP4, suggesting that the ubiquitin ligase 

activity of AIP4 is necessary for CXCR4-induced ERK-1/2 activation. We also 

examined the effect of CXCR4 activation on STAM-1 ubiquitination. HeLa cells were 

transfected with T7-STAM-1 and HA-Ubiquitin. Cells were serum-starved and 

stimulated with 100nM CXCL12 for 5 min. As shown in figure 3.17 C, CXCR4-

promoted STAM-1 ubiquitination was enhanced at 5 min after agonist treatment. This 

is in line with when ERK-1/2 activation is maximal. Taken together our data suggest 

that AIP4 interacts with and ubiquitinates STAM-1 as early as 5 mins after agonist 

stimulation. Interaction with STAM-1 as well as AIP4 ubiquitination activity is 

important for CXCR4 promoted ERK-1/2 phophopration; raising the possibility that 

STAM-1 ubiquitination is required for this process. 
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Figure 3.17. The role of AIP4 in CXCR4-induced ERK-1/2 phosphorylation. A-B. HeLa cells grown in 

24 well plates were transfected with 300 ng FLAG-STAM-1 and 200ng FLAG-AIP4 or FLAG-AIP4-



 140 
ΔPRR (A) or 300 ng Myc-STAM-1 and 200ng Myc-AIP4 or Myc-AIP4- C830A, the catalytically 

inactive mutant (B). Cells were treated with vehicle (PBS with 0.01% BSA) or 10 nM CXCL12 for 5 min. 

The degree of ERK-1/2 phosphorylation (pERK-1/2) was determined by IB analysis and quantified by 

densitometry and normalization to actin levels. Data represent the average pERK- 1/2 levels ± S.E.M. from 

3 independent experiments and are expressed as fold increase in pERK-1/2 levels in CXCL12 as compared 

to empty vector transfected cells. Data were analyzed by a one-way ANOVA. pERK-1/2 levels were 

significantly different between wild-type AIP4 and mutant AIP4 expressing cells in both (A) and (B). *, p < 

0.05. C. HeLa cells transfected with T7-STAM-1 and HA-ubiquitin were treated with vehicle (PBS with 

0.01% BSA) or 100 nM CXCL12 for 5 min. Samples were subject to IP (T7 and Goat-IgG control) and 

analyzed by IB to detect incorporated HA-ubiquitin. Shown are representative blots from one of three 

independent experiments. 

 

CXCR4 internalization is not required for ERK-1/2 phosphorylation 

We have previously shown that internalized CXCR4 co-localizes with both AIP4 

and STAM-1 on endosomes, suggesting that endocytosis and the presence of CXCR4 on 

endosomes may be required for ERK-1/2 activation. Expression of dynamin K44A, a 

dominant negative mutant of dynamin that blocks CXCR4 internalization (Marchese 

and Benovic, 2001), had no effect on CXCR4-induced ERK-1/2 phosphorylation, 

suggesting that CXCR4 internalization is not required for ERK-1/2 activation (Figure 

3.18A). To confirm this, HeLa cells were treated with siRNA targeting µ2, a subunit of 

the heterotetrameric protein complex AP2, which is involved in GPCR internalization 

through clathrin-coated pits (Kim and Benovic, 2002; Laporte et al., 1999) and which 

co-localizes with CXCR4 upon agonist activation (Marchese et al., 2003). Treatment of 

HeLa cells with µ2 siRNA, significantly attenuated agonist-induced internalization of 
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endogenous CXCR4, as compared to GAPDH siRNA treated cells, indicating that AP2 

is required for CXCR4 internalization (Figure 3.18B). Next, we examined CXCR4 

induced ERK-1/2 phosphorylation in the same cells that were used for the internalization 

experiments. As shown in Figure 3.18C, µ2 siRNA did not affect CXCR4-induced 

ERK-1/2 phosphorylation compared to GAPDH siRNA, suggesting that CXCR4 

internalization is not required for ERK-1/2 activation.  
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Figure 3.18. The role of endocytosis in CXCR4-induced ERK-1/2 phosphorylation. A. HeLa cells 

transfected with dynamin-K44A and empty vector (pcDNA) were treated with 10 nM CXCL12 for the 

indicated time points. pERK-1/2 levels were determined by immunoblot (IB) analysis and quantified as 

described in the legend to Figure 1. Data were analyzed by a two-way ANOVA followed by Bonferroni’s 

post hoc test and were not found to be statistically significant. B. HeLa cells were transfected with µ2 

siRNA and treated with vehicle and 10 nM CXCL12 for 20 min. Endogenous CXCR4 cell surface levels 

were quantified by FACS analysis, as described under Materials and methods. Data represent the mean ± 

S.E.M. from four independent experiments. Data were analyzed by a student's t-test (*=p<0.05). C. 

CXCL12 promoted ERK-1/2 phosphorylation was determined in the same cells used in the experiments 

described in (B). Data were analyzed by a student's t-test and were not found to be statistically significant. 

 

STAM-1 colocalizes with CXCR4 on the plasma membrane 

Given that internalization is not required for ERK-1/2 activation and because the 

kinetics of ERK-1/2 phosphorylation are rapid and transient (peak ERK-1/2 

phosphorylation at 5 min), it is likely that the molecular events responsible for ERK-1/2 

signaling occur proximal to the receptor at the plasma membrane. We have previously 

shown that in addition to endosomal co-localization with CXCR4, AIP4 also colocalizes 

with CXCR4 at the plasma membrane, but whether STAM-1 is found at the plasma 

membrane remains unknown (Marchese et al., 2003). To determine whether STAM-1 is 

also localized with CXCR4 at the plasma membrane we applied confocal 

immunofluorescence microscopy. To ensure that we focused only at the plasma 

membrane we also co-stained cells for AP2, which is only found at the plasma 

membrane. In HeLa cells treated with CXCL12, endogenous CXCR4 staining was 

punctate and many puncta co-localized with AP2 (Figure 3.19, arrow heads), consistent 
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with CXCR4 being recruited to clathrin-coated pits for internalization, as we have 

previously reported (Marchese et al., 2003). STAM-1 staining was also punctate but it 

showed only a limited amount of co-localization with CXCR4 and AP2 (Figure 3.19, 

lines). Surprisingly, some STAM-1 puncta that co-localized with CXCR4 were devoid of 

AP2 (Figure 3.19, arrows), suggesting that CXCR4 and STAM-1 exist in microdomains 

distinct from clathrin-coated pits at the plasma membrane.  

 

 

 

Figure 3.19. STAM-1 co-localizes with CXCR4 at the plasma membrane. HeLa cells grown on cover slips 

were treated with 10 nM CXCL12 for 5 min. Cells were then fixed, permeabilized and stained with anti-

CXCR4 (red), anti-STAM-1 (green) and anti-AP2 (blue). Arrows point to puncta that show co-

localization between CXCR4 and STAM-1. Arrowheads point to puncta that show co-localization 
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between CXCR4 and AP2. The white line indicates puncta that show co-localization between CXCR4, 

AP2 and STAM-1. The line with the circle indicates STAM-1 puncta that do no contain CXCR4 and 

AP2. Differential interference contrast (DIC) image is shown. Representative area (boxed) from each 

image is enlarged 4× and shown below in the bottom panels. Shown are representative micrographs from 

three independent experiments (5 images per experiment). Bars, 20 µm 

 

Biochemical distribution of CXCR4  

CXCR4 has been shown to distribute into cholesterol- and sphingolipid-rich 

microdomains known as lipid rafts in T cells (Nguyen and Taub, 2002), raising the 

possibility that CXCR4 and STAM-1 may be found together in this compartment. One 

particular lipid raft microdomain contains the protein caveolin, forming structures known 

as cavealae, to which many GPCRs and their downstream effector signaling molecules 

are localized (Patel et al., 2008). To verify the presence of CXCR4, STAM-1 and AIP4 

within lipid rafts we utilized detergent free sucrose gradient membrane fractionation 

protocol (Song et al., 1996). HeLa cells transfected with FLAG-AIP4 (Because of the 

limitations in detecting endogenous AIP4, we transiently expressed FLAG-AIP4 ~2-fold 

above endogenous) were serum starved and treated with CXCL12 or vechicle alone for 5 

min. Caveolar membranes were separated from the remainder of the membranes by 

sucrose gradient centrigufation. Purity of the frationation was determined by 

immunoblotting. Caveolin-1 fractionates in buoyant fractions near the top of the gradient 

and is used as a marker of caveolae. The heavy fractions or later fractions contain other 

cellular membranes and here we used α2-adaptin as a marker of this fraction. As shown 

in Figure 3.20A, CXCR4 was found in a fraction that was enriched in α2-adaptin, 
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consistent with the immunofluorescence microscopy data that showed that CXCR4 

mostly co-localizes with α2-adaptin (see Figure 3.19). In addition, CXCR4 was found in 

fractions enriched with caveolin-1, suggesting the presence of CXCR4 within caveolae 

and/or lipid rafts. We also examined these fractions for the presence of FLAG-AIP4 and 

STAM-1. STAM-1 and FLAG-AIP4 were mainly in the fraction that contained α2-

adaptin, consistent with their presence in non-caveolar membrane compartments, but a 

pool of both STAM-1 and AIP4 were also present in the caveolin-1 enriched fraction 

(Figure 3.20A). As CXCR4-induced ERK-1/2 phosphorylation requires coupling to the 

heterotrimeric G protein Gαi (data not shown), we also show that Gαi also co-

fractionates in the caveolin-1 enriched fraction (Figure 3.20A). A similar pattern of 

distribution among the fractions was observed in vehicle treated cells (Figure 3.20A), 

suggesting that agonist stimulation has no effect on the distribution of proteins to 

caveolae. To complement these data, we next examined the distribution of CXCR4, 

STAM and AIP4 relative to caveolin-1 by confocal microscopy. HeLa cells expressing 

endogenous CXCR4 were serum starved and treated with CXCL12 for 5 mins. Cells 

were fixed and stained with CXCR4, caveolin-1 and AP2. As shown in Figure 3.20B, 

CXCR4 colocalizes with caveolin-1 (arrow heads) as well as AP2. To examine the 

distribution of AIP4 and STAM-1, HeLa cells transiently transfected with YFP-AIP4 

(Figure 3.20C) and YFP-STAM-1 (Figure 3.20D) were stimulated with CXCL12 for 5 

min, fixed and stained with caveolin-1 and AP2. Both AIP4 and STAM-1 were found to 

co-localize with caveolin-1 at the plasma membrane, as assessed by confocal microscopy 

(Figures 3.20 C and D). We next examined whether caveolin-1 exists in a complex with 
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AIP4 and STAM-1 in cells by co-immunoprecipitation experiments. Endogenous AIP4 

was immunoprecipitated from HEK293 (Figure 3.20E) and HeLa (Figure 3.20F) cells 

and samples were analyzed by immunoblotting for the presence of endogenous caveolin-1 

and STAM-1. As shown in Figure 3.20E,F, both caveolin-1 and STAM-1 were found 

to co-immunoprecipitate with AIP4, suggesting that AIP4 and STAM-1 exist in a 

complex with caveolin-1 in cells. When taken together, our data suggest that STAM-1 

and AIP4 may co-localize with CXCR4 at the plasma membrane in caveolae and/or lipid 

rafts.  
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Figure 3.20. CXCR4 co-fractionates with AIP4, STAM-1 and caveolin-1. A. HeLa cells were transfected 

with low amounts of FLAG-AIP4 and were treated with vehicle (PBS with 0.01% BSA) and 10 nM 

CXCL12 for 5 min. Sucrose gradient centrifugation was performed, as described under Materials and 

methods. Nine fractions were collected and subject to immunoblot (IB) analysis for the presence of 

caveolin-1, CXCR4, FLAG-AIP4, STAM-1, Gαi and β2 adaptin. Shown are representative blots from 

one of three experiments. B. HeLa cells grown on cover slips were serum starved and treated with 10 nM 

CXCL12 for 5 min. Cells were then fixed, permeabilized and stained with anti-CXCR4 (red), anti-

caveolin-1 (green) and anti- -adaptin (clone AP6; blue) antibodies. Arrowheads indicate puncta that show 

colocalization between CXCR4 and caveolin-1 and arows indicate puncta that show colocalization between 

CXCR4 and AP2. C-D. HeLa cells transfected with YFP-AIP4 (C) or YFP-STAM-1 (D) grown on 

cover slips were serum starved and treated with10 nM CXCL12 for 5 min. Cells were then fixed, 

permeabilized and stained with anti-caveolin-1(red) and anti-β-adaptin (clone AP6; blue) antibodies. 

Arrows indicate puncta that show colocalization between YFP-AIP4 (B) or YFP-STAM1(D) and 

caveolin-1. Boxed region from each image is enlarged 4 and shown in the bottom panels. Representative 

micrographs from three independent experiments are shown. Micrograph showing AP2 staining in D was 

processed in Adobe Photoshop by applying a Gaussian blur (Gaussian blur of 1 pixel). Bars, 20 µm. E-F. 

Cell lysates from HEK293 cells stably expressing HA-CXCR4 (B) and HeLa cells (C) were subject to 

immunoprecipitation (IP) using an anti-AIP4 antibody (G11, Santa Cruz). Coimmunoprecipitated bound 

endogenous STAM-1 and caveolin-1 were detected by IB. Shown are representative blots from one of 

three experiments. The asterisk (*) indicates heavy chain of IgG.  
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We next investigated whether STAM-1 and AIP4 were involved in the recruitment of 

CXCR4 into the caveolar compartment.  STAM-1 and AIP4 were depleted from HeLa 

cells using siRNA and sucrose fractionation experiment were performed to isolate 

caveolar fractions similar to as described previously. As shown in Figure 3.21, depletion 

of both STAM-1 as well as AIP4 had no effect on the recruitment of CXCR4 to the 

caveolar fraction (fraction 4). When taken together, our data suggest that STAM-1 and 

AIP4 co-localize with CXCR4 at the plasma membrane in caveolae and/or lipid rafts and 

are consistent with the notion that CXCR4 induced signaling via STAM-1 and AIP4 

likely occurs from this compartment.  

 

 

 

Figure 3.21. Depletion of AIP4 and STAM-1 have no effect on recruitment of CXCR4 to caveolae. HeLa 

cells were transfected with 600pmoles of siRNA against GAPDH, STAM-1 and AIP4 and were treated 

with 10 nM CXCL12 for 5 min. Sucrose gradient centrifugation was performed, as described under 

Materials and methods. Nine fractions were collected and subject to immunoblot (IB) analysis for the 

presence of caveolin-1, CXCR4, AIP4 and STAM-1. Shown are representative blots from one of three 

experiments. 
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Caveolin-1 is required for CXCR4-induced ERK-1/2 activation 

To confirm a role for caveolae and/or lipid rafts in CXCR4-induced ERK-1/2 

activation we initially tested the effect of the cholesterol sequestering drug nystatin, 

which disrupts lipid rafts. HeLa cells were serum starved and treated with 50 µg/ml 

nystatin or DMSO for 30 min at 37°C. Cells were treatment with CXCL12 or vehicle 

for 5 min and ERK-1/2 phosphorylation was analyzed by immunoblotting. As shown in 

Figure 3.22A, treatment with Nystatin attenuated CXCL12 induced ERK-1/2 

phosphorylation as compared to DMSO treated cells. In contrast, Nystatin treatment had 

no effect on EGF-induced ERK-1/2 phosphorylation, suggesting that nystatin does not 

globally affect plasma membrane signaling (Figure 3.22A). We also examined the effect 

of Nystatin treatment on receptor internalization and found that Nystatin treatment only 

modestly inhibited CXCR4 internalization (Figure 3.22B). Consistent with HeLa cells, 

Nystatin treatment also significantly attenuated CXCR4-induced ERK-1/2 

phosphorylation in SKBR3 cells, a breast cancer cell line that expresses high levels of 

CXCR4 (Figure 3.15E), but not that induced by EGF (Figure 3.22C).  

As caveolin-1 is a major constituent of caveolae, we examined its role in CXCR4-

induced ERK-1/2 activation. We examined ERK-1/2 phosphorylation by quantitative 

confocal immunofluorescence microscopy because it allowed us to focus on individual 

cells and to determine the distribution of pERK-1/2 in activated cells. HeLa cells 

transiently transfected with GAPDH or caveolin-1 siRNA were treated with CXCL12 

or vehicle for 5 min, fixed and co-stained for caveolin-1 and pERK-1/2, as described 

under Materials and methods. In control siRNA transfected cells, CXCL12 treatment 
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significantly enhanced pERK-1/2 staining, which was mostly nuclear, as compared to 

vehicle treated cells (Figure 3.22D,E). In contrast, in caveolin-1 siRNA transfected cells, 

pERK-1/2 staining was significantly attenuated, as compared to vehicle treated cells. 

Caveolin-1 levels were significantly reduced in caveolin-1 siRNA transfected cells as 

compared to GAPDH transfected cells (Figure 3.22F,G). Taken together, these data 

suggest that caveolin-1 and caveolae are important for CXCR4-induced activation of 

ERK-1/2. 
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Figure 3.22. Caveolin-1 is essential for CXCR4-induced ERK-1/2 phosphorylation. A. Serum starved 

HeLa cells were treated with 50 µg/mL nystatin for 30 min followed by treatment with 10 nM CXCL12, 

100 ng/mL EGF and vehicle (PBS with 0.01% BSA) for 5 min. ERK-1/2 phosphorylation was determined 

by immunoblotting and pERK-1/2 levels were quantified by densitometry and normalized to total ERK 

levels. Bars represent the average pERK-1/2 levels ± S.E.M. from 3 independent experiments and are 

expressed as fold increase in CXCL12 compared to vehicle treated cells normalized to pERK-1/2 levels in 

DMSO treated cells. Data were analyzed by a student's t-test (*=p<0.05). Shown are representative blots 

from one of three independent experiments performed. B. HeLa cells treated with vehicle (DMSO) or 50 

g/ml nystatin were treated with vehicle (PBS with 0.01% BSA) or 10 nM CXCL12 for the indicated time 

points. Cell were then fixed and stained with anti-PE conjugated anti-CXCR4 antibody. Amount of 

receptor internalized upon stimulation was quantified using FACS and the data were analyzed by two-way 

ANOVA followed by Bonferroni’s post hoc test (*=p<0.05). Error bar represents ±S.E.M. from three 

independent experiments performed. C. Serum starved SKBr3 cells were treated with 50 g/ml nystatin for 

30 min followed by treatment with 10 nM CXCL12, 100 n g/mL EGF and vehicle (PBS with 0.01% 

BSA) for 5 min. ERK-1/2 phosphorylation was determined by immunoblotting and pERK-1/2 levels were 

quantified as described above. Data were analyzed by student's t-test (*=p<0.05). Error bar represents ± 

S.E.M. Shown are representative blots from one of three independent experiments performed. D. HeLa 

cells transfected with GAPDH and caveolin-1 siRNA were treated with 10 nM CXCL12 for 5 min. Cells 

were processed as described under Material and Methods and stained for pERK-1/2 and caveolin-1. Shown 

are micrographs from one of three independent experiments. Bar, 20 µm. E-F. The levels of pERK-1/2 

(E) and caveolin-1 (F) were determined by calculating the mean pixel intensity of pERK-1/2 and caveolin-

1 staining using Zeiss LSM 510 image analysis software. The bars represent the average of the mean pixel 

intensity of pERK-1/2 (E) or caveolin-1 (F) in GAPDH and caveolin-1 siRNA transfected cells treated 

with vehicle and 10nM CXCL12. A total of 45 cells from 3 independent experiments were used in the 

analysis. Data in (E) were analyzed using a two-way ANOVA followed by a Bonferroni posthoc test 
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(*,p<0.001). Data in (D) were analyzed by a Student's t-test. Error bars represent S.E.M. G. Level of 

caveolin-1 knockdown was determined by western blotting.  

 

STAM-1, AIP4 and arrestin-2/3 do not regulate CXCR4-mediated cell proliferation 

CXCR4 promoted MAPK activation has been shown to promote cellular 

proliferation (Shen et al., 2010). In order investigate the biological significance of 

STAM-1 and AIP4 mediated regulation ERK-1/2, we examined the effect of STAM-1 

and AIP4 knockdown on proliferation of HeLa cells. Proliferation was measured by 

quantifying the DNA content by staining the cells with DNA intercalating drug 

propidium iodide (PI). HeLa cells transfected with siRNA against STAM-1, AIP4 and 

arrestin-2/3 were treated with vehicle, 30 nM CXCL12 and 10% FBS for 12 hr. Cells 

were fixed, stained with propidium iodide (PI) and analyzed by flow cytometry. The 

amount of cells present in each phase of the cell cycle were quantified using “Watson 

Pragmatic” model (Watson et al., 1987). As shown in Figure 3.23A-D, CXCL12 

treatment promotes cell proliferation as percent number of cell present in the S-phase 

increased from 16±1.7% to 22±1.7% after CXCL12 treatment. Treatment with 10% FBS 

had a much greater effect on proliferation as number of cell present in S-phase were 

31±1.9%. However, knock down of STAM-1, AIP4 as well as arrestin-2/3 had no effect 

on the cell present in the S-phase as well as in the G1 phase of cell cycle (Figure 3.23E-

G). Taken together our data suggest that AIP4, STAM-1 and arrestin-2/3 does not 

regulate proliferation of HeLa cells.  
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Figure 3.23. Role of STAM-1, AIP4 and arrestin-2/3 in CXCR4 promoted proliferation of HeLa cells. 

A-D. HeLa cells transfected with control siRNA (GAPDH)(A) or siRNA against STAM-1(B), AIP4(C) 

or arrestin-2/3(D) or were serum starved and treated with 30nM CXCL12, 10% FBS or vehicle (PBS with 

0.1% BSA) for 12 hours. Cells were then fixed with ethanol and stained with propidium iodide as described 

in Materials and methods. Cells were analyzed by FACS to determine the percent cells in S, G1 and G2 

phase. E-G. Percent cell in S-phase (E), G1-phase (F) and G2-phase (G) were determined by Watson 

pragmatic cell cycle analysis model using FlowJo v.9.3 and the data were analyzed by two-way ANOVA 

followed by Bonferroni’s post hoc test (*=p<0.05). Error bar represents ±S.E.M. from three independent 

experiments performed. H. Protein knockdown was determined by SDS-PAGE and immunoblotting for 

STAM-1, AIP4 and arrestin-2/3.  
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Effect of STAM-1, AIP4 and arrestin-2/3 knockdown on PARP cleavage 

We also examined the effect of STAM-1, AIP4 and arrestin-2/3 knockdown on 

apoptosis by looking at PARP cleavage. PARP is a 116 kDa nuclear poly (ADP-ribose) 

polymerase which is involved in DNA repair in response to various kind stress (Satoh and 

Lindahl, 1992). PARP is cleaved between Asp214 and Gly215, by caspase-3, which 

separates the PARP amino-terminal DNA binding domain (24 kDa) from the carboxy-

terminal catalytic domain (89 kDa) (Lazebnik et al., 1994). Cleavage of PARP facilitates 

cellular disassembly and serves as a marker of cells undergoing apoptosis. As shown in 

figure 3.24, knockdown of STAM-1, AIP4 and arrestin-2/3 had no effect on PARP 

cleavage suggesting that these proteins are not involved in the apoptosis pathway. 

However, a more detailed analysis of the effects on apoptosis is required such as 

TUNNEL assay or Annexin-V staining.  

 

Figure 3.24: Effect of STAM-1, AIP4, arrestin-2/3 knocdown on PARP cleavage. Mock transfected 

HeLa cells or HeLa cells transfected with control siRNA (GAPDH) or siRNA against STAM-1, arrestin-

2/3 or AIP4 were collected in sample buffer and analyzed by SDS-PAGE followed by immunoblotting for 

PARP. Blot was stripped and reprobed for actin. Shown are representative blots from one of three 

independent experiments performed.  
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CHAPTER 4 

DISCUSSION 

The present study provides mechanistic insights into signaling and 

downregulation of the chemokine receptor CXCR4. We have identified an 

unprecedented role of arrestin-2 in trafficking and downregulation of CXCR4 through 

multiple interactions with ESCRT-0.  We reveal here that ESCRT-0 protein STAM-1 

via interaction with arrestin-2 regulates the ubiquitination status of HRS, which is critical 

for sorting ubiquitinated CXCR4 into the degradative pathway. In addition, we have also 

identified novel roles for AIP4 and STAM-1 in CXCR4 signaling, which are different 

from their roles in CXCR4 trafficking. Our data show that STAM-1 interacts with AIP4 

to mediate CXCR4-induced phosphorylation of ERK-1/2. Remarkably, a discrete 

subpopulation of AIP4 and STAM-1 that resides in caveolae with CXCR4 is responsible 

for this signaling event. We propose that the AIP4/STAM-1 interaction, as well as 

ubiquitin ligase activity of AIP4 in caveolae coordinates activation of ERK signaling. 

 

Role of arrestins in CXCR4 regulation 

Non-visual arrestins (arrestin-2 and 3) are generally known for their ability to mediate 

GPCR desensitization, trafficking and signaling (Ferguson et al., 1996; Goodman et al., 

1996; Kovacs et al., 2009; Luttrell and Lefkowitz, 2002). Arrestin-2 interacts with AIP4   

and   mediates    endosomal    sorting    of    CXCR4    into   the    degradative 
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pathway (Bhandari et al., 2007). Previous work done in the lab and the present study 

show that both arrestin-2 as well as AIP4 can directly interact with CXCR4-C-tail and 

co-localizes with the receptor on early endosomes (Figure 3.1 and 3.2) (Bhandari et al., 

2009; Marchese et al., 2003). However, mechanistic insight into the role of arrestin-2 as 

well as AIP4 in endosomal sorting of CXCR4 remains to be determined. Here we extend 

these findings and provide further insight into this unprecedented role of arrestin-2.   

 

Arrestin-2 interacts with ESCRT-0  

ESCRT proteins are required for the sorting of ubiquitinated cargo into the 

degradative pathway. ESCRT-0, which is composed of HRS and STAM, is the most 

proximal complex that recognizes the ubiquitinated cargo and recruits it into the sorting 

machinery. Our data suggest that arrestin-2 mediates multiple interactions with ESCRT-

0 on early endosomes. Arrestin-2 interacts directly with STAM-1, but not to its close 

isoform STAM-2 (Figure 3.3 A and B). The differential binding was somewhat 

surprising as STAM-1 and STAM-2 share strong overall sequence identity (~53% amino 

acid identity), especially within the coiled coil domain (71% amino acid identity), which 

is the region that binds to arrestin-2.  The C-terminal domains (24% amino acid 

identity) represent the most divergent regions between STAM-1 and STAM-2, but 

surprisingly, arrestin-2 binding to a STAM-1 truncation mutant deleted of the C-

terminal end was similar to binding to full-length STAM-1 (Figure 3.7 A and C) or 

when the C-terminal end was expressed alone we did not detect any binding to arrestin-2 

(Figure 3.7C). We also observed that activation of CXCR4 selectively enhances STAM-
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1 ubiquitination, but not STAM-2 ubiquitination (Figure 3.4B), thus further supporting 

the selectivity of STAM-1 towards CXCR4. This suggests that arrestin-2 likely restricts 

CXCR4 sorting to ESCRT-0 complexes that have STAM-1 but not STAM-2. Our data 

clearly show that arrestin-2 binds to STAM-1 and that the coiled-coil domain of 

STAM-1 (296-380) and amino acid residues 25-161 of arrestin-2 form the respective 

minimal binding regions. The precise molecular determinants that are responsible for 

preferential binding to STAM-1 but not to STAM-2 remain unknown, however, it is 

likely due to the amino acid residues that are different between STAM-1 and STAM-2, 

rather than a structural component. There also appears to be specificity with respect to 

arrestin-2 versus arrestin-3 binding. We were unable to detect arrestin-3 binding to 

STAM-1 by co-immunoprecipitation, although it bound somewhat to HRS (Figure 

3.3C).  This is consistent with our previous finding, where it was shown that knockdown 

of arrestin-2 blocked CXCR4 degradation more efficiently than arrestin-3 (Bhandari et 

al., 2007).  

Remarkably, linking GPCRs to the ESCRT machinery may be an evolutionary 

conserved function of arrestins. Rim8, an arrestin-like molecule in yeast Saccharomyces 

cerevisiae related to PalF, an arrestin-like molecule in the fungus Aspergillus nidulans, 

interacts with components of the ESCRT machinery (Herrador et al., 2010). Sequence 

homology predicts that both Rim8 and PalF share a limited amount of sequence identity 

with mammalian arrestins. In fungi, PalF may interact with a putative seven 

transmembrane domain (7TM) receptor in an analogous manner to which arrestins 

interact with ligand activated GPCRs (Herranz et al., 2005). Both Rim8 and PalF are 
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involved in a signaling cascade that senses the pH of the environment. In fungi, pH is 

recognized in part by the putative 7TM receptor called PalH. Akaline pH is thought to 

activate PalH and promotes its binding to PalF. The predicted cytoplasmic tail of PalH 

interacts with PalF and this interaction may be necessary to activate the intracellular 

signaling pathway necessary for pH sensing. Intriguingly, genetic screens in fungi have 

revealed that components of the ESCRT machinery, including ESCRT-I, ESCRT-II 

and ESCRT-III subunits Snf7 and Vps20, but not ESCRT-III subunits Vps2 and 

Vps24 are also necessary for pH sensing (Xu et al., 2004). Alkaline pH sensing may also 

be conserved in Rim8 (Saccharomyces cerevisiae orthologue of PalF) that binds to Rim21, a 

7TM receptor with pH sensing capabilities (Herrador et al., 2010). The arrestin-like 

molecule Rim8 not only interacts with the receptor Rim21, it also interacts with the 

ESCRT machinery. Rim8 interacts with ESCRT-I subunits Vps23 and Vps28. Genetic 

evidence suggests that ESCRT-0 is not involved in pH sensing signaling, therefore the 

arrestin-like protein Rim8 may link the 7TM receptor Rim21 directly to ESCRT-I. This 

raises the intriguing possibility that arrestin mediated recruitment of GPCRs to the 

ESCRT machinery may represent a conserved function.  

 

Role of STAM-1/arrestin-2 complex in CXCR4 sorting and degradation 

Our data show that knockdown of STAM-1 significantly accelerated CXCR4 

degradation, suggesting that STAM-1 in cells is a negative regulator of CXCR4 

degradation (Figure 3.6A). Consistent with this, we found that depletion of STAM-1 

had no effect on CXCR4 internalization and recycling that can also regulate the amount 
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of receptor that is degraded (Figure 3.6 B and C). In contrast, we have previously shown 

that arrestin-2 promotes CXCR4 degradation (Bhandari et al., 2007). We further 

investigated the role of STAM-1/arrestin-2  interaction and showed that disrupting this 

interaction by expressing minimal binding regions of both protein as minigenes enhanced 

agonist promoted degradation of CXCR4 (Figure 3.8B and 3.10B). Taken together our 

results suggest that arrestin-2 and STAM-1 act in concert to reduce the amount of 

CXCR4 that is degraded.  

 

Role of arrestin-2 in CXCR4 degradation 

We believe that arrestin-2 acts at multiple steps in the sorting process and may 

initially act upstream of STAM-1 to positively regulate sorting of CXCR4 into the 

degradative pathway.  This is consistent with our previous model of CXCR4 recruitment 

into ESCRT pathway by arrestin-2. Arrestin-2 interacts directly with phosphorylated 

serine residue 330 in the C-tail of CXCR4 (Figure 3.1 C and D) and links it to 

downstream elements of the ESCRT-0 through an interaction with either HRS and/or 

STAM-1. Our data are consistent with a model in which arrestin-2 exerts both positive 

and negative effects on CXCR4 sorting and it is a balance of these two activities that 

dictate the extent to which CXCR4 is degraded.   

 

Role of STAM-1/arrestin-2 interaction in CXCR4 degradation 

CXCR4 undergo rapid agonist-promoted ubiquitination by E3 ligase AIP4 that 

is important for proper sorting and lysosomal degradation. (Marchese and Benovic, 2001; 



 163 

Marchese et al., 2003). We also observed that activation of CXCR4 selectively enhances 

STAM-1 ubiquitination (Figure 3.4B). STAMs are also known to interact with 

deubiquitinating enzymes (DUBs), such as AMSH and UBPY, which play important 

role in regulating the ubiquitination status of cargo (e.g. EGFR) and/or of STAM itself 

(McCullough et al., 2004; Row et al., 2006). Therefore, one mechanism by which 

STAM-1/arrestin-2 interaction may regulates CXCR4 degradation is by modulating 

ubiquitination status of the cargo and/or STAM-1. Our data show that disrupting 

STAM-1/arrestin-2 interaction by expressing the STAM-1-CC minigene had no effect 

on either CXCR4 or  STAM-1 ubiquitination (Figure 13.11 A and B). Therefore, 

although arrestin-2 interacts with STAM-1, arrestin-2 may not be involved in STAM-1 

ubiquitination. Consistent with these findings, AMSH knockdown also had no effect on 

CXCR4 degradation (Figure 3.6D). Taken together, our data suggest that STAM-

1/arrestin-2 complex does not regulate CXCR4 degradation via regulating 

ubiquitination/deubiquitination of CXCR4 and STAM-1 (Figure 3.11A).  

We have previously shown (Marchese et al., 2003), and confirm here (Figure. 

3.11C), that activation of CXCR4 enhances ubiquitination of HRS.  HRS contains a 

UIM domain that mediates binding to multiple ubiquitin moieties simultaneously and is 

thought to bind to ubiquitin moieties on cargo to recruit them into the degradative 

pathway (Hirano et al., 2006).  Interestingly, monoubiquitination of UBD containing 

proteins, such as HRS and Eps15, is thought to induce an intramolecular interaction 

between the ubiquitin moiety and the internal UBD. This interaction promotes the 

formation of an auto inhibitory conformation culminating in an inability of these proteins 
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to bind to ubiquitin moieties on cargo (Hoeller et al., 2006).  Conceivably, in cells where 

STAM-1/arrestin-2 interaction was inhibited by expressing the STAM-1-CC domain, 

HRS ubiquitination was inhibited as well (Figure 3.11 C). Under this state, HRS could 

somehow enhance its sorting function possibly by facilitating interactions with 

ubiquitinated CXCR4 thus leading to enhanced degradation.  Therefore we propose that 

the STAM-1/arrestin-2 interaction promotes ubiquitination of HRS, in part, to inhibit 

its sorting activity.  As agonist activation of CXCR4 promotes ubiquitination of HRS, it 

would seem that CXCR4 blocks its own sorting by inhibiting HRS sorting activity.  We 

speculate that ubiquitination of HRS also release it from ubiquitinated CXCR4 while 

linking it to the ESCRT-I machinery.  Therefore, our data are consistent with a model 

whereby arrestin-2 interacts with STAM-1 to promote ubiquitination of HRS resulting 

in termination of its sorting function.   

While HRS ubiquitination appears to regulate the amount of CXCR4 that is 

degraded, presently it is not clear what is the role of STAM-1 ubiquitination on CXCR4 

trafficking.  Polyubiquitination of STAM has been shown to promote its degradation 

(Row et al., 2006), however it is doubtful that CXCR4 regulates STAM-1 stability, as we 

did not observe any differences in STAM-1 levels in cells treated with CXCL12 (data 

not shown).  Alternatively, ubiquitination of STAM-1 may have a role in some other 

aspect of CXCR4 related functions. We show that AIP4 ubiquitinates STAM-1 and that 

the ubiquitination activity of AIP4, as well as interaction with STAM-1, is important for 

CXCR4-mediated phosphorylation of ERK-1/2. This would suggest that ubiquitinated 

STAM-1 might regulate CXCR4 signaling via the MAPK pathway.  
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Role of STAM-1/arrestin-2 complex in ubiquitination of HRS 

Arrestin-2 interacts with AIP4 and regulates endosomal sorting of CXCR4 

(Bhandari et al., 2007). Therofore, arrestin-2 through its interaction with STAM-1 may 

serve as an adaptor to bridge AIP4 and HRS, which facilitates ubiquitination of HRS. 

There is evidence in the literature to support our model whereby arrestins can recruit a 

ligase to the cargo. A role for arrestins as an E3 ubiquitin ligase adaptor for receptor 

ubiquitination was first suggested in studies examining the regulation of β2AR. Agonist-

promoted ubiquitination of β2AR is impaired in MEFs isolated from arrestin-3 knock-

out mice, suggesting that arrestin-3 mediates ubiquitination of β2AR. In contrast, 

arrestin-2 is not involved in β2AR ubiquitination. Arrestin-3 interacts with the HECT-

domain E3 ubiquitin ligase Nedd4, which mediates ubiquitination of β2AR. Although 

arrestin-3 interacts with Mdm2, it does not mediate ubiquitination of β2AR. Depletion 

of Nedd4 by siRNA attenuates β2AR ubiquitination and lysosomal targeting and the 

interaction between β2AR and Nedd4 is dependent upon the presence of arrestin-3. This 

is consistent with a role of arrestin-3 serving as an adaptor to recruit Nedd4 to β2AR. 

(Shenoy et al., 2008). Similarly, yeast proteins called arrestin-related trafficking adaptors 

(ARTs) could recruit the E3 ligase Rsp5/Nedd4-like ubiquitin ligase to the cargo. This 

interaction can serve as a mechanism to provide specificity (Lin et al., 2008). Mammalian 

proteins called Arrestin domain-containing protein (ARRDs) also referred to as alpha-

arrestins are a family of 6 mammalian proteins related to yeast ART proteins. Recently, 

ARRDC3, that has an arrestin-like domain at the N-terminus and PPXY motifs at the 
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C-terminus is reported to interact with β2AR and serve as an adaptor for Nedd4-

dependent ubiquitination of the receptor. Depletion of ARRDC3 attenuates agonist-

induced ubiquitination and lysosomal targeting of β2AR (Nabhan et al., 2010). 

 

Taken together, our data are consistent with a model (Figure 4.1) in which upon 

activation of CXCR4, arrestin-2, through an interaction with STAM-1, promotes 

ubiquitination of HRS, possibly by recruiting AIP4.  Thus, it appears that arrestin-2 

serves as a critical molecule in regulating the interactions with, and the activities of, 

AIP4, HRS and STAM-1, in order to regulate the amount of CXCR4 that is degraded. 

However, the mechanism by which these proteins are coordinated and integrated to 

regulate the events that sort ubiquitinated CXCR4 into the degradative pathway remains 

unknown. It is also possible that arrestin-2 may be required for other events relating to 

the sorting process. 

 

 

Figure 4.1. Proposed mechanism for the role of the STAM-1/arrestin-2 complex in endosomal sorting of 

CXCR4. CXCR4 is ubiquitinated by the E3 ubiquitin ligase AIP4 at the plasma membrane, after which it 

is internalized onto early endosomes, although, ubiquitination is not required for this process. Once on 

endosomes ubiquitinated CXCR4 is recognized by HRS, likely by an interaction involving the ubiquitin 
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moiety (red) on CXCR4 and the UIM of HRS, and possibly via an interaction with arrestin-2. Arrestin-2 

then interacts with STAM-1, which serves to recruit AIP4 culminating in the ubiquitination of HRS. We 

speculate that this triggers a conformational change in HRS induced by an interaction between the 

ubiquitin moiety (blue) and the internal UIM. CXCR4 is subsequently committed to downstream 

interactions with ESCRT-I-III, whereas arrestin-2, STAM-1, AIP4, and autoinhibited HRS are recycled 

for an another round of sorting to take place. 

 

Role of STAM-1, arrestin-2 and AIP4 in CXCR4 mediated cell migration 

CXCR4 signaling is normally under very tight regulation, however, dysregulated 

CXCR4 signaling and expression levels have been linked to several pathologies including 

WHIM syndrome and cancers (Balabanian et al., 2005; Li et al., 2004).  In particular, in 

a subset of breast cancers, defective ubiquitination and endosomal sorting of CXCR4 has 

been associated with increased CXCR4 levels and metastatic potential of tumor cells (Li 

et al., 2004).   Our data suggest that both STAM-1 and arrestin-2 are important for 

CXCR4-mediated migration of HeLa cells (Figure 3.12). However, the mechanism 

remains to be determined. Interestingly, disrupting STAM-1/arrestin-2 interaction also 

inhibits CXCR4-mediated HeLa cell migration (data not shown). We have shown that 

CXCR4 is negatively regulated by STAM-1 in cells (Figure 3.6A), hence one possible 

explanation for inhibition of cell migration could be an effect of STAM-1 knockdown on 

CXCR4 protein levels/surface expression. However, we do not think that CXCR4 

protein levels regulate migration because: (1) although arrestin-2 knockdown inhibits 

CXCR4 degradation (Bhandari et al., 2007), it blocks CXCR4 mediated migration 

(Figure 3.12), (2) No effect of STAM-1 and arrestin-2 knockdown was observed on 
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surface expression of CXCR4, as compared to control siRNA treated cells (Figure 3.13). 

Taken together, our data suggest that STAM-1 and arrestin-2 regulate CXCR4 

promoted cell migration via signaling pathways independent of CXCR4 protein levels.  

CXCR4 promoted ERK signaling has been linked to cell migration. Yu et al., 

showed that CXCR4 promoted ERK activation induces expression of MMP-9 and 13 

that are required for migration of oral squamous carcinoma cells (Yu et al., 2011). Our 

data suggest that inhibition of CXCR4-mediated cell migration is independent of its 

effects on ERK-1/2 phosphorylation. Some of the key observations that support this data 

are: (1) AIP4 knockdown inhibits ERK-1/2 phosphorylation, but has no effect on 

migration of  HeLa cells (Figure 3.12A and 3.14F), (2) Arrestin-2 knockdown inhibits 

cell migration but has an opposite effect on ERK-1/2 phosphorylation (Figure 3.14A and 

B),  (3) Disrupting the STAM-1/arrestin-2 interaction inhibits migration, but does not 

affect ERK-1/2 phosphorylation (Figure 3.14 I and J). Taken together, these 

observations suggest that a signaling pathway other than ERK is responsible for STAM-

1/arrestin-2 promoted cell migration. Consistent with our findings, Mines et al, reported 

that CXCR4-mediated migration is independent of ERK activation. These authors have 

shown that a ubiquitination deficient CXCR4 mutant (3KR) is defective in promoting 

cell migration, however, activation of ERK was indistinguishable between wild type 

CXCR4 and CXCR4-3K/R mutant, suggesting that chemotaxis in response to CXCL12 

is independent of the ERK cascade (Mines et al., 2009). Interestingly, in Drosophila 

melanogaster, STAM is required for migration of tracheal cells to air sac primordium. 

Both STAM and HRS are required for efficient FGFR signaling during cell migration in 
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the air sac primordium and during the formation of fine cytoplasmic extensions in 

terminal cells (Chanut-Delalande et al., 2010), suggesting a role of ESCRT-0 in cellular 

migration.  

 

Role of STAM-1 and AIP4 in CXCR4 mediated ERK-1/2 phosphorylation 

Agonist binding to CXCR4 stimulates multiple downstream signaling pathways 

such as Akt and ERK-1/2, which mediate CXCR4-induced cell survival and migration 

(Busillo and Benovic, 2007). Despite the importance of CXCR4 signaling in 

development and disease, the molecular mechanisms mediating CXCR4 signaling remain 

poorly understood. Here, we show that a discrete subpopulation of STAM-1 and AIP4, 

but not arrestin, mediates ERK signaling upon activation of CXCR4 (Figure 3.13). We 

delineated a novel molecular mechanism by which the chemokine receptor CXCR4 

promotes activation of the ERK signaling cascade. Interaction between E3 ubiquitin 

ligase AIP4 and the STAM-1 acts as a positive regulator of ERK-1/2 phosphorylation. 

Both proteins have previously been shown to help sort CXCR4 and other cargo on 

endosomes for lysosomal degradation. However, their role in signaling is likely mediated 

by a subpopulation that is restricted in distribution to caveolae. Interestingly, AIP4 

binding to, and ubiquitination of STAM-1, may be required for this process, suggesting a 

novel role for ubiquitin in cell signaling. We propose a model whereby spatial segregation 

of AIP4-mediated ubiquitination of STAM-1 in caveolae is required for CXCR4 

signaling and possibly signaling mediated by other GPCRs. 
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Interaction between STAM-1 and AIP4 

Our data suggest that AIP4, through an interaction with STAM-1, mediates 

CXCR4-induced ERK-1/2 phosphorylation (Figure 3.17A). Over-expression of wild-

type AIP4 and STAM-1 led to a significant increase in ERK-1/2 phosphorylation. 

Remarkably, over-expression of AIP4-∆PRR, a mutant that does not bind to STAM-1, 

failed to enhance ERK-1/2 phosphorylation, suggesting that the interaction between 

AIP4 and STAM-1 is necessary for mediating CXCR4-induced ERK-1/2 activation. 

We also show that the ubiquitin ligase activity of AIP4 is required for this process, as 

expression of a catalytically inactive AIP4 mutant (C830A) failed to enhance ERK-1/2 

phosphorylation (Figure 3.17B). One possible role of the interaction between AIP4 and 

STAM-1 may be to activate and/or enhance AIP4 ligase activity. AIP4 exists in an auto-

inhibitory conformation via an intra-molecular interaction between the HECT-domain 

and the WW domains (Gallagher et al., 2006). Phosphorylation of serine/threonine 

residues within the proline-rich region releases the intra-molecular inhibition thereby 

enabling AIP4 to interact with and ubiquitinate target substrates. STAM-1 binding to 

AIP4 may function in an analogous manner by alleviating the auto-inhibited state, 

resulting in ubiquitination of other target substrates that remains to be identified. One 

possible substrate can be STAM-1 itself. Consistent with this, we show that CXCR4 

promoted STAM-1 ubiquitination was observed at 5 min after agonist treatment, in line 

with when ERK-1/2 activation is maximal, raising the possibility that STAM-1 

ubiquitination is required for this process (Figure 3.17C). However, the mechanism by 

which ubiquitination of STAM-1 may promote ERK-1/2 activation remains to be 
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determined. STAM-1 ubiquitination does not appear to be required for CXCR4 

endosomal sorting and STAM-1 protein levels do not change after CXCR4 activation 

(Malik and Marchese, 2010), therefore, it is unlikely that ubiquitination mediates 

degradation of STAM-1. Interestingly, STAM also binds to the deubiquitinating 

enzymes AMSH and USP8 via its SH3 domain (Kato et al., 2000), but whether they are 

involved in CXCR4 signaling remains to be determined. We have recently shown that 

AMSH does not mediate agonist-induced degradation of CXCR4 (Malik and Marchese, 

2010). Ubiquitin has previously been shown to play a role in GPCR-induced ERK 

signaling. Ubiquitination of arrestin-3 by the E3 ligase Mdm2 induces a stable 

association between arrestin-3 and phosphorylated ERK-1/2 following activation of a 

subset of GPCRs (Shenoy et al., 2007). Ubiquitinated arrestin-3 co-internalizes with the 

GPCR and pERK-1/2 onto endosomes, retaining bound pERK-1/2 on endosomes to act 

on cytosolic factors (DeWire et al., 2007). Although, we have previously shown that 

arrestins interact with STAM-1, our data indicate that arrestins do not regulate ERK-1/2 

signaling (Figure 3.13 A and B). To our knowledge, this present study represents the first 

to report a direct link between ubiquitin and an ESCRT protein in the regulation of 

GPCR stimulated ERK-1/2 signaling.  

 

STAM-1 and AIP4 mediated signaling originates proximal to the plasma membrane 

CXCR4 induced phosphorylation of ERK-1/2 is rapid and transient reaching a 

maximum response at 5 min after treatment with agonist and returning to basal levels by 

10 min of agonist treatment. A time course (0-60 min) of agonist stimulation also 
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indicates that phosphorylation of ERK-1/2 peaks at 5 min and returns to basal levels by 

10 min and remaining for up to 60 min after agonist treatment (Figure 3.14C), however, 

there is no second peak of ERK-1/2 activation/phosphorylation. Taken together, our 

data suggest that ERK signaling initiates proximal to the receptor at the plasma 

membrane. However, signaling can be sustained on endosomes, as we see phosphorylated 

ERK-1/2 species even 60 min after activation. For some GPCRs, such as the angiotensin 

AT1A receptor, agonist induced ERK-1/2 activation is also a rapid process, but in contrast 

to what is observed for CXCR4, ERK-1/2 activation remains sustained for 90 min 

following receptor activation (Ahn et al., 2004). The early and late elements of ERK-1/2 

activation are mechanistically distinct occurring through G protein-dependent and 

independent mechanisms. The initial signal is G protein-dependent and leads to nuclear 

localization of pERK-1/2, while the later sustained signal is arrestin-dependent and 

sequesters pERK-1/2 on endosomes in the cytoplasm (Ahn et al., 2004). 

The transient nature of ERK-1/2 activation induced by CXCR4 and the rapid 

appearance of pERK-1/2 in the nucleus following receptor activation is consistent with G 

protein-dependent signaling occurring proximal to the receptor at the plasma membrane. 

In addition, CXCR4-induced pERK-1/2 signaling is completely blocked by pretreatment 

with pertussis toxin, an inhibitor of Gαi (data not shown). A lack of sustained pERK-1/2 

levels argues against a later endosomal associated signaling event and inhibiting 

endocytosis using siRNA against µ2 subunit of AP2 complex and expression of dynamin 

K44A mutant has no effect on CXCR4 induced ERK-1/2 activation (Figure 3.18). 

However, we cannot rule out the possibility that an endosomal associated signaling event 
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may occur rapidly through the action of a second messenger and/or some other molecule. 

Our data also reveals that arrestins are not directly involved in CXCR4 mediated ERK 

signaling (Figure. 3.14 A and B). It was recently reported that siRNA mediated depletion 

of arrestin-2, and perhaps to a lesser degree arrestin-3, attenuated CXCR4-induced 

ERK-1/2 activation in HEK293 cells, suggesting that arrestin-2 regulates CXCR4 

mediated ERK signaling (Busillo et al., 2010; Sun et al., 2002). This discrepancy with 

our study is likely a consequence of differences in experimental design as we performed 

our experiments using HeLa cells in which both non-visual arrestins were depleted 

simultaneously and in arrestin-2/3 double knockout MEFs. Nevertheless, we do not 

believe that arrestin-2 interacts with STAM-1 to modulate CXCR4-induced ERK-1/2 

activation, as expression of minigenes (STAM-CC and arrestin-2-25-161) that disrupt 

this interaction do not affect CXCR4-induced ERK-1/2 activation (Figure 3.14 I and J). 

However, the possibility that arrestins can modulate CXCR4 signaling on endosomes 

cannot be ruled out since depleting arrestins in cells is a limiting step as arrestins are 

involved in initial desensitization of receptor signaling. Nevertheless, our data are 

consistent with the idea that CXCR4 signaling is regulated by STAM-1 and AIP4 

possibly proxial to the plasma membrane.  

 

Role of caveolae in GPCR signaling 

Lipids rafts have been implicated in CXCR4 signaling in T cells (Nguyen and 

Taub, 2002), as well as in prostate cancer cell lines where CXCR4 induces transactivation 

of receptor tyrosine kinase HER2 in lipid rafts (Chinni et al., 2008). Caveolae, a subset 
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of lipid raft microdomains that contain caveolin proteins, help to organize several signal 

transduction systems (Patel et al., 2008). Caveolin-1, a major component of caveolae, is 

thought to scaffold components of G protein signaling pathways, including 

heterotrimeric G proteins and their effector molecules (Oh and Schnitzer, 2001). 

Caveolin is also found to be upregulated in hepatocellular carcinoma cells where a 

positive correlation between caveolin-1 expression and invasion, metastasis and 

recurrence has been shown. Overexpression of caveolin-1 in HepG2 cells protects cell 

from apoptosis, as well as increases expression of MMP-2, MMP-9 and VGEF that lead 

to increase in migration and invasion (Tang et al., 2011).  

Here we show that CXCR4 and its cognate G protein Gαi, along with both 

AIP4 and STAM-1, co-fractionate with caveolin-1 in buoyant membrane fractions 

suggesting that they are localized to caveolae (Figure 3.20 A). We also show by confocal 

microscopy that CXCR4, AIP4 and STAM-1 co-localize with caveolin-1 at the plasma 

membrane (Figure 3.20 B  and D) as well as co-immunoprecipitate in HEK293 and 

HeLa cell (Figure 3.20 E and F). Depletion of caveolin-1 by siRNA, or treatment of cells 

with the cholesterol sequestering drug nystatin, attenuated CXCR4-induced 

phosphorylation of ERK-1/2 suggesting that caveolae are important for CXCR4 

signaling. We propose that a subpopulation of AIP4 and STAM-1 localized to caveolae 

and/or lipid rafts is essential for CXCR4-induced ERK-1/2 activation. It is possible that 

within caveolae AIP4 and STAM-1 facilitate or stabilize receptor/G protein interactions 

and consequently facilitate downstream signaling. Alternatively, AIP4 and STAM-1 may 

be directly involved in receptor/G protein signaling.  
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AIP4 and STAM-1 segregate into caveolae and/or lipid rafts 

Agonist treatment had no effect on the relative amounts of CXCR4, STAM-1, 

and AIP4 that cofractionated with caveolin-1, suggesting that they may be constitutively 

associated with caveolae. AIP4 belongs to the Nedd4-family of E3 ubiquitin ligase and 

one important feature of this family is that they encode a C2 domain (Ingham et al., 

2004). The C2 domain of AIP4 has been shown to have a role in membrane targeting 

(Angers et al., 2004; Jadwin et al., 2010). The C2-domain of other members of the 

Nedd4-like family has been shown to bind to membrane phospholipids (Dunn et al., 

2004; Wiesner et al., 2007). Interestingly, caveolin-1 was co-immunoprecipitated with 

AIP4 and STAM-1, suggesting that AIP4 and STAM-1 may be scaffolded by caveolin-

1 and thus may be recruited to caveolae through this interaction (Figure 3.20 E and F). 

Lipid rafts have been implicated in CXCR4 signaling in T cell lines  and in prostate 

cancer cell lines where CXCR4-induced transactivation of the receptor tyrosine kinase 

HER2 contributes to Akt activation and potentially to tumor invasiveness (Chinni et al., 

2006; Chinni et al., 2008; Nguyen and Taub, 2002). Therefore, segregation of CXCR4 

into caveolae and/or lipid rafts may be required for multiple signaling pathways and its 

role in cancer biology and possibly other diseases. Although depletion of STAM-1 and 

AIP4 had no effect on the recruitment of CXCR4 into the caveolar compartment (Figure 

3.21), it is possible that STAM-1 and AIP4 are required for the assembly of the 

downstream components in the caveolar compartment. Interestingly, AIP4 has been 

shown to interact with Jun amino-terminal kinase 1 (JNK1) via a MAP kinase docking 

domain located within its HECT domain (Gallagher et al., 2006). T cell receptor-
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induced JNK1-mediated phosphorylation of AIP4 leads to ubiquitination and 

proteasomal degradation of the Jun transcription factor, which regulates cytokine 

production in T cells (Gao et al., 2004). AIP4 may also negatively regulate JNK signaling 

following sorbitol induced stress by mediating ubiquitination and degradation of MKK4, 

the upstream activator of JNK (Ahn and Kurie, 2009). Our data are consistent for a   role 

of AIP4 in positively regulating ERK-1/2 activation induced by a GPCR. Although, the 

precise mechanism remains unknown, the role that AIP4 plays in this process appears to 

require an interaction with STAM-1.   

 

Clathrin-coated pit-associated CXCR4 is not involved in ERK-1/2 phosphorylation 

CXCR4, STAM-1 and AIP4 also co-fractionate with heavy membrane fractions, 

consistent with their presence in clathrin-coated pits and/or endosomal membranes 

(Figure 3.20A). However, their presence in clathrin-coated pits and internalization onto 

endosomes are not required for ERK signaling, as depletion of the µ2 subunit of AP2, as 

well as over-expression of catalytically inactive dynamin (K44A) mutant, had no effect on 

CXCR4 mediated ERK-1/2 phosphorylation (Figure 3.18 A and C). We also observed 

minimal co-localization between STAM-1 and AP2 in our confocal microscopy studies 

(Figure 3.19). STAM-1 co-fractionated with heavy membrane fractions containing AP2 

(Figure 3.20A), however, these fractions also contain endosomal membranes, where we 

have shown that STAM-1 co-localizes with CXCR4 (Figure 3.5 A and B). Therefore, 

the pool of STAM-1 that is localized to the plasma membrane may be restricted to 

caveolae and/or lipids rafts. It may be targeted to this compartment because of its ability 
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to associate with caveolin-1 and/or AIP4 (Figure 3.20 E and F). STAM-1 is mostly 

known for its role as a component of ESCRT-0, an endosomal associated protein 

complex involved in targeting ubiquitinated CXCR4 and other ubiquitinated cargo into 

the degradative pathway. STAM-1 and STAM-2 were originally identified as substrates 

for tyrosine phosphorylation downstream of several cytokine and growth factor receptors 

(Endo et al., 2000; Lohi and Lehto, 1998; Takeshita et al., 1996; Takeshita et al., 1997). 

They were shown to play a role in cytokine-induced T-cell development and survival, 

possibly through an interaction with Janus kinases but not via ERK-1/2 and Akt 

activation (Yamada et al., 2002). Our study reveal a novel role for STAM-1 in cell 

signaling and whether other components of the ESCRT machinery are involved remains 

to be determined. 

 

Summary and current model for CXCR4 signaling and downregulation 

Our current understanding of CXCR4 signaling and downregulation is 

summarized in figure 4.3. We have identified a novel role of arrestin-2 through its 

interaction with STAM-1 in endosomal sorting and degradation of CXCR4. An 

interaction between arrestin-2 and STAM-1 serves to recruit AIP4 that in-turn regulates 

the ubiquitination status of HRS. Together this complex is required for sorting and 

downregualtion of CXCR4. We have also identified a novel function for the 

AIP4/STAM-1 complex in CXCR4-mediated phosphorylation of ERK-1/2, which is 

different from their roles in endosomal trafficking. AIP4 binding to, and ubiquitination 

of STAM-1, may occur in caveolae and not in clathrin-coated pits and/or endosomes, 
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where AIP4 and STAM-1 have been previously shown to be located. This interaction is 

important for CXCR4-mediated activation of MAPK signaling, which is associated with 

cancer metastasis and tumor growth (Busillo and Benovic, 2007; Rubin et al., 2003; Yu et 

al., 2011).  

The information from this study may provide useful insight into the development of 

novel therapeutic targets for treating diseases in which CXCR4 is involved. 

 

 

Figure 4.2 Model for the regulation of CXCR4 signaling and downregualtion 

Upon activation by its cognate ligand CXCL12, CXCR4 can be sequestered into specialized microdomains 

of the plasma membrane such as clathrin coated pits (CCPs) and caveolae. Caveolar pool of CXCR4 

interacts with STAM-1 and AIP4 to activate ERK-1/2. Intereaction between AIP4 and STAM-1 as well 
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as ligase activity of AIP4 play an important role in CXCR4 mediated ERK-1/2 phosphorylation.  

Ubiquitinated CXCR4 is sequestered in the clathrin coated pits and endocytosed. Receptor is delivered to 

early endosomes where it gets sorted into the multivesicular bodies. Protein complex composed of STAM-

1, arrestin-2 play an important role in the sorting process. STAM-1/arrestin-2 complex recruits AIP4 on 

endosomes that inturn ubiquitinates HRS. Ubiquitination of HRS is a key process in the trafficking of 

CXCR4 to the downstream ESCRT complexes. Receptor is ultimately sequestered into the MVBs which 

fuses with the lysosomes to complete the degradation process. Some receptors may get deubiquitinated and 

are redirected into the recycling pathway that delivers the receptor back to the plasma membrane. 

 

FUTURE DIECTIONS 

This study was focused on understanding the role of arestin-2 in endosomal 

sorting and degradation of CXCR4. Although the importance of arestin-2/STAM-1 

interaction in CXCR4 endosomal sorting was clarified, there are several critical questions 

that remain to be explored in order to completely understand this novel role of arrestin-2. 

Some of the important future directions are discussed below. 

 

Recruitment of arrestin-2 to the receptor following agonist stimulation 

We show that arrestin-2 directly interacts with STAM-1 on endosomes to 

possibly recruit the E3 ubiquitin ligase AIP4. Together with AIP4, the STAM-

1/arrestin-2 complex regulates CXCR4 sorting and degradation. However, whether 

arrestin-2 traffics with the receptor to endosomes, or is recruited directly to the 

endosomal bound receptor remains to be investigated. Previous work, and work done in 

this study, suggests that arrestin-2 can directly interact with CXCR4, and that the C- tail 
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is important for this interaction (Figure 3.1B). We also show that serine residue 330 in 

the C-tail of CXCR4 is critical for interaction with arrestin-2 (Figure 3.1C). Since it is a 

serine residue it is logical to speculate that phosphorylation may modulate this 

interaction. In fact, it has been recently shown by Busillo et al., that serine residue 330 is  

phosphorylated by GRK6 in response to agonist stimulation (Busillo et al., 2010). The 

time frame in which the receptor gets phosphorylated (15-20 min) is consistent with the 

time required for the receptor to internalize and appear on early endosomes. Taken 

together, we popose a model whereby, phosphorylation of the receptor at serine residue 

330 by GRK6, post internalization, recruits arrestin-2 directly on the endosomes. Once 

recruited, arrestin-2 can interact with and recruit the receptor into the ESCRT 

machinery (Figure 4.2). Although, we did not test this hypothesis directly, we provide 

evidence that arrestin-2 co-localizes with the receptor on early endosomes upon agonist 

stimulation for 30 min (Figure 3.2 A, B).  

 

 

Figure 4.3 Proposed model for the role of arresitn-2 in recruitment of CXCR4 into the ESCRT pathway. 

Arrestin-2 interacts directly with receptor via phosphorylation of serine residue 330 in the C-tail of 
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receptor possible on the endosomes. Further, aarrestin-2 interacts with ESCRT-0 proteins and recruits the 

receptor into the ESCRT sotting pathway. 

 

However, several key questions remain to be addressed: 1) Is Serine residue 330 

phosphorylated on endosomes?; 3) Does GRK6 co-localize with arrestin-2 on 

endosomes, and if GRK6 is the kinase for S330 phosphorylation, what is the role of 

GRK6 in endosomal trafficking of CXCR4? 

Our data indicate that arrestin-2 interacts with ESCRT-0. Whether arrestin-2 also 

interacts with other ESCRT proteins reamains to be determined. Whether arrestins are 

required for the transfer of the receptor to downstream ESCRT components remains to 

be determined.  

 

Role of the STAM-1/arrestin-2 interaction in cell migration 

We show that the STAM-1/arrestin-2 interaction regulates CXCR4 degradation 

by negatively regulating the process of endosoal sorting. Why CXCR4 is retained on the 

early endosomes remain to be determined. One possible role for CXCR4 on endosomes 

might be to regulate signaling pathways involved in cellular migration. We show that 

both STAM-1 and arrestin-2 knockdown, as well as inhibition of the STAM-1/arrestin-

2 complex accelerates CXCR4 degradation and in-turn inhibits migration of HeLa cells. 

This sugests that the signaling pathway originating from endosomes can regulate cellular 

migration. Infact, the family of small Rho-like GTPases such as Cdc42, Rac1, and RhoA 

have been shown to play role in migration of cells. These GTPases activate a variety of 
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signaling pathways that control cell migration by regulating cytoskeletal rearrangements 

such as formation of filopodia, lamellipodia and actin rearrangment. Ral, which is 

another member of the Ras family of small GTPases, has been shown to induce 

CXCL12-promoted migration of B cells and multiple myeloma cells (de Gorter et al., 

2008). Rac has been shown to be activated by Tiam-1, a guanidine nucleotide exchange 

factor (GEF) for Rac, on endosomes.  Inhibition of Rab5-dependent endocytosis 

prevents Rac activation and hence migration (Palamidessi et. al., 2008) One possible 

mechanism by which STAM-1/arrestin-2 complex promotes cell migration is via 

regulating the small GTPase-mediated cytoskeletal rearrangement.  

 

Role of AIP4 ubiquitination activity and AIP4/STAM-1 interaction in ERK signaling 

Our data suggest that both STAM-1 and AIP4 are important for CXCR4 

promoted ERK-1/2 phosphorylation. Interaction between STAM-1/AIP4 is important 

for ERK-1/2 phosphorylation, however, the mechanism by which this complex functions 

to regulate signaling via ERK-1/2 remains to be determined. Our data suggest that 

ERK-1/2 co-immunoprecipitated in complex with STAM-1 and AIP4 (data not shown). 

Whether STAM-1/AIP4 complex merely serves as a  scaffold to bring the upstream 

MAPKK (i.e MEK) closer to the substrate (ERK) or whether the complex directly 

regulates the phosphorylation of ERK-1/2 remains to be determined.   

We also show that the ligase activity of AIP4 is important for CXCR4 promoted 

ERK-1/2 phosphorylation. AIP4 ubiquitinates STAM-1 within 5 min of agonist 

stimulation. However, the precise role of AIP4 ubiquitination activity, as well as the role 
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of ubiquitinated STAM-1 in CXCR4 signaling remains unclear. One approach to 

address the role of ubiquitinated STAM-1 in signaling would be to identify the lysine 

residues on STAM-1 that are ubiquitinated by AIP4. Expression of STAM-1 

ubiquitination-deficient mutant in cells would provide insight into the role of STAM-1 

ubiquitination in ERK-1/2 phosphorylation.  

ERK-1/2 has been shown to be ubiquitinated. The PHD domain of MEKK1 acts 

as an E3 ligase to ubiquitinate ERK-1/2 to promote its degradation (Lu et al., 2002). 

Whether ubiquitination of ERK-1/2 is mediated by AIP4 in context to CXCR4 

stimulation remain to be determined.  

 

CONCLUSION 

The present study provides mechanistic insight into the role of arrestin-2 in 

downregulation of chemokine receptor CXCR4. We show that in addition to their role 

in GPCR desensitization, internalization and recycling, arrestins also function in 

endosomal sorting of CXCR4. We also identified a novel pathway composed of STAM-

1 and AIP4 that regulates CXCR4 signaling in speciliazed microdomains called caveolae. 

We also show that the ligase activity of AIP4 is critical for this process. To our 

knowledge this is the first report demonstrating the role of ubiquitin in GPCR signaing. 

Overall, this study provides insight into the regulation of CXCR4 biology with potantial 

implicitations for designing novel interventions in pathologies related to CXCR4 

dysfunction.  
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